A-level

Topic : Differential Equation

May 2013-May 2023

Answers

(i)	State $\frac{dV}{dt} = 80 - kV$	B1	
	Correctly separate variables and attempt integration of one side Obtain $a \ln(80 - kV) = t$ or equivalent	M1 M1*	
	Obtain $-\frac{1}{k}\ln(80-kV) = t$ or equivalent	A1	
	Use $t = 0$ and $V = 0$ to find constant of integration or as limits M1 ((dep*)	
	Obtain $-\frac{1}{k}\ln(80-kV) = t - \frac{1}{k}\ln 80$ or equivalent	A1	
	Obtain given answer $V = \frac{1}{k}(80 - 80e^{-kt})$ correctly	A1	[7]
(ii)	Use iterative formula correctly at least once	M1	
	Obtain final answer 0.14	A1	
	Show sufficient iterations to 4 s.f. to justify answer to 2 s.f. or show a sign change in the interval (0.135, 0.145)	A1	[3]
(iii)	State a value between 530 and 540 cm ³ inclusive	В1	
	State or imply that volume approaches 569 cm ³ (allowing any value between 567 and 571 inclusive)	В1	[2]
Ques	stion 2		
(i)	Use any relevant method to determine a constant Obtain one of the values $A = 1$, $B = -2$, $C = 4$ Obtain a second value Obtain the third value [If A and C are found by the cover up rule, give B1 + B1 then M1A1 for finding B . If only one is found by the rule, give B1M1A1A1.]	M1 A1 A1 A1	[4]
(ii)	Separate variables and obtain one term by integrating $\frac{1}{y}$ or a partial fraction	M1	
	Obtain $\ln y = -\frac{1}{2} - 2 \ln (2x + 1) + c$, or equivalent	A3∜	

(i) Separate variables correctly and integrate at least one side

Obtain term
$$\ln t$$
, or equivalent

Obtain term of the form $a \ln(k-x^3)$

M1

Obtain term
$$-\frac{2}{3}\ln(k-x^3)$$
, or equivalent

EITHER: Evaluate a constant or use limits
$$t = 1, x = 1$$
 in a solution containing $a \ln t$ and $b \ln(k - x^3)$ M1*

Obtain correct answer in any form e.g.
$$\ln t = -\frac{2}{3}\ln(k-x^3) + \frac{2}{3}\ln(k-1)$$
 A1

Use limits
$$t = 4$$
, $x = 2$, and solve for k M1(dep*)
Obtain $k = 9$

OR: Using limits
$$t = 1$$
, $x = 1$ and $t = 4$, $x = 2$ in a solution containing $a \ln t$ and $b \ln (k - x^3)$ obtain an equation in k

Obtain a correct equation in any form, e.g.
$$\ln 4 = -\frac{2}{3}\ln(k-8) + \frac{2}{3}\ln(k-1)$$
 A1
Solve for k M1(dep*)

Obtain
$$k = 9$$
 A1

Substitute
$$k = 9$$
 and obtain $x = (9 - 8t^{-\frac{3}{2}})^{\frac{1}{3}}$ A1 [9]

(ii) State that x approaches
$$9^{\frac{1}{3}}$$
, or equivalent B1 \(\sqrt{1} \)

Question 4

(i) State or imply
$$V = \pi h^3$$

State or imply
$$\frac{\mathrm{d}V}{\mathrm{d}t} = -k\sqrt{h}$$

Use
$$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt}$$
, or equivalent

[The M1 is only available if $\frac{dV}{dh}$ is in terms of h and has been obtained by a correct method.]

[Allow B1 for $\frac{dV}{dt} = k\sqrt{h}$ but withhold the final A1 until the polarity of the constant

$$\frac{k}{3\pi}$$
 has been justified.]

(ii) Separate variables and integrate at least one side

Obtain terms
$$\frac{2}{5}h^{\frac{5}{2}}$$
 and $-At$, or equivalent

Use $t = 0$, $h = H$ in a solution containing terms of the form $ah^{\frac{5}{2}}$ and $bt + c$

Use $t = 60$, $h = 0$ in a solution containing terms of the form $ah^{\frac{5}{2}}$ and $bt + c$

Obtain a correct solution in any form, e.g. $\frac{2}{5}h^{\frac{5}{2}} = \frac{1}{150}H^{\frac{5}{2}}t + \frac{2}{5}H^{\frac{5}{2}}$

A1

(ii) Obtain final answer $t = 60\left(1 - \left(\frac{h}{H}\right)^{\frac{5}{2}}\right)$, or equivalent

A1 [6]

(iii) Substitute $h = \frac{1}{2}H$ and obtain answer $t = 49.4$

B1 [1]

Question 5

Use $2\cos^2 x = 1 + \cos 2x$ or equivalent
Separate variables and integrate at least one side
Obtain $\ln(y^3 + 1) = \dots$, or equivalent
Use $x = 0$, $y = 2$ to find constant of integration (or as limits) in an expression containing at least two terms of the form $a\ln(y^3 + 1)$, bx or $c\sin 2x$

Obtain $\ln(y^3 + 1) = 2x + \sin 2x + \ln 9$ or equivalent e.g. implied by correct constant
Identify at least one of $\frac{1}{2}\pi$ and $\frac{3}{2}\pi$ as x -coordinate at stationary point
Use correct process to find y -coordinate for at least one x -coordinate
Obtain 5.9

Obtain 48.1

Question 6

Separate variables correctly and recognisable attempt at integration of at least one side
Obtain h , or equivalent

A1

[6]

Obtain $y = 4(2 + e^{3x})^2$

(i) State or imply $\frac{dN}{dt} = kN(1 - 0.01N)$ and obtain the given answer k = 0.02 B1 1

(ii) Separate variables and attempt integration of at least one side M1

A1

- Integrate and obtain term 0.02*t*, or equivalent

 Carry out a relevant method to obtain *A* or *B* such that $\frac{1}{N(1-0.01N)} = \frac{A}{N} + \frac{B}{1-0.01N}, \text{ or } A = \frac{A}{N} + \frac{B}{N} = \frac{A}{N} = \frac{A}{N} + \frac{B}{N} = \frac{A}{N} = \frac{A}{N} + \frac{B}{N} = \frac{A}{N} = \frac{A}{N} = \frac{A}{N} + \frac{B}{N} = \frac{A}{N} = \frac{A}{N}$
 - equivalent M1*
 - Obtain A = 1 and B = 0.01, or equivalent
 - Integrate and obtain terms $\ln N \ln(1 0.01N)$, or equivalent
 - Evaluate a constant or use limits t = 0, N = 20 in a solution with terms $a \ln N$ and $b \ln(1 0.01N)$, $ab \neq 0$ M1(dep*)
 - Obtain correct answer in any form, e.g. $\ln N \ln(1 0.01N) = 0.02t + \ln 25$
 - Rearrange and obtain $t = 50 \ln(4N/(100 N))$, or equivalent A1 8
- (iii) Substitute N = 40 and obtain t = 49.0

- Separate variables correctly and attempt integration of at least one side B1
- Obtain term in the form $a\sqrt{(2x+1)}$ M1
- Express $1/(\cos^2 \theta)$ as $\sec^2 \theta$
- Obtain term of the form $k \tan \theta$ M1
- Evaluate a constant, or use limits x = 0, $\theta = \frac{1}{4}\pi$ in a solution with terms $a\sqrt{(2x+1)}$ and $k \tan \theta$,
- $ak \neq 0$ M1
- Obtain correct solution in any form, e.g. $\sqrt{(2x+1)} = \frac{1}{2} \tan \theta + \frac{1}{2}$
- Rearrange and obtain $x = \frac{1}{8} (\tan \theta + 1)^2 \frac{1}{2}$, or equivalent A1 7

- Separate variables correctly and attempt to integrate at least one side B1Obtain term lnR B1Obtain $\ln x - 0.57x$ B1Evaluate a constant or use limits x = 0.5, R = 16.8, in a solution containing terms of the form a ln R and b ln xM1Obtain correct solution in any form **A**1 Obtain a correct expression for R, e.g. $R = xe^{(3.80 - 0.57x)}$, $R = 44.7xe^{-0.57x}$ or $R = 33.6xe^{(0.285 - 0.57x)}$ **A**1 [6] (ii) Equate $\frac{dR}{dx}$ to zero and solve for x M1State or imply $x = 0.57^{-1}$, or equivalent, e.g. 1.75 **A**1 Obtain R = 28.8 (allow 28.9) A1[3] Question 10 (i) Sensibly separate variables and attempt integration of at least one side M1Obtain $2y^{\frac{1}{2}} = ...$ or equivalent **A**1 Correct integration by parts of $x \sin \frac{1}{3}x$ as far as $ax \cos \frac{1}{3}x \pm \int b \cos \frac{1}{3}x dx$ M1Obtain $-3x\cos\frac{1}{3}x + \int 3\cos\frac{1}{3}x dx$ or equivalent
- (ii) Use x = 0 and y = 100 to find constant M*1 Substitute 25 and calculate value of y DM*1 Obtain 203 **A**1 [3]

Obtain $-3x\cos\frac{1}{3}x + 9\sin\frac{1}{3}x$ or equivalent

Obtain $y = \left(-\frac{3}{10}x\cos\frac{1}{3}x + \frac{9}{10}\sin\frac{1}{3}x + c\right)^2$ or equivalent

A1

A1

A1

[6]

Separate variables and factorise to obtain
$$\frac{dy}{(3y+1)(y+3)} = 4x \, dx$$
 or equivalent

State or imply the form $\frac{A}{3y+1} + \frac{B}{y+3}$ and use a relevant method to find A or B

M1

Obtain $A = \frac{3}{8}$ and $B = -\frac{1}{8}$

A1

Integrate to obtain form $k_1 \ln(3y+1) + k_2 \ln(y+3)$

Obtain correct $\frac{1}{8} \ln(3y+1) - \frac{1}{8} \ln(y=3) = 2x^2$ or equivalent

A1

Substitute $x = 0$ and $y = 1$ in equation of form $k_1 \ln(3y+1) + k_2 \ln(y+3) = k_3 x^2 + c$

to find a value of c

M1

Obtain $c = 0$

Use correct process to obtain equation without natural logarithm present

M1

Obtain $y = \frac{3e^{16x^2} - 1}{3 - e^{16x^2}}$ or equivalent

Question 12

(i) Separate variables correctly and attempt integration of one side

Obtain term of the form $a \ln(k + e^{-t})$

A1

Evaluate a constant or use limits $x = 10$, $t = 0$ in a solution containing terms $a \ln(k + e^{-t})$

and $b \ln x$

Obtain correct solution in any form, e.g. $\ln x - \ln(k + e^{-t}) + \ln(k + 1)$

A1

[6]

(ii) Substitute $x = 20$, $t = 1$ and solve for k

Obtain the given answer

A1

[2]

(i)	Separate variables correctly and integrate one side	В1	
	Obtain term $2\sqrt{M}$, or equivalent Obtain term $50k\sin(0.02t)$, or equivalent	B1 B1	
	Evaluate a constant of integration, or use limits $M = 100$, $t = 0$ in a solution with terms		
	the form $a\sqrt{M}$ and $b\sin(0.02t)$	M1*	
	Obtain correct solution in any form, e.g. $2\sqrt{M} = 50k \sin(0.02t) + 20$	A1	5
(ii)	Use values $M=196$, $t=50$ and calculate k Obtain answer $k=0.190$	M1(dep*) A1	2
(iii)	State an expression for M in terms of t , e.g. $M = (4.75\sin(0.02t) + 10)^2$ State that the least possible number of micro-organisms is 28 or 27.5 or 27.6 (27.5625)	M1(dep*) A1	2
Oues	stion 14		
Sepa	arate variables and integrate one side $ln(x+2)$	B1 B1	
	$\cos 2A$ formula to express $\sin^2 2\theta$ in the form $a + b \cos 4\theta$ $\sin \text{correct form } (1 - \cos 4\theta)/2$, or equivalent	M1 A1	
Integ	grate and obtain term $\frac{1}{2}\theta - \frac{1}{8}\sin 4\theta$, or equivalent	A1 [↑]	
Eval	uate a constant, or use $\theta = 0$, $x = 0$ as limits in a solution containing terms $(x + 2), d \sin(4\theta), e\theta$	M 1	
Obta	ain correct solution in any form, e.g. $\ln(x+2) = \frac{1}{2}\theta - \frac{1}{8}\sin 4\theta + \ln 2$	A1	
	correct method for solving an equation of the form $ln(x + 2) = f$	M1	
	$\sin \operatorname{answer} x = 0.962$	A1	[9]
Ques	stion 15		
(i)	State $\frac{\mathrm{d}N}{\mathrm{d}t} = k(N-150)$	B1	[1]
(ii)	Substitute $\frac{dN}{dt} = 60$ and $N = 900$ to find value of k	M1	
	Obtain $k = 0.08$	A1	
	Separate variables and obtain general solution involving $\ln(N-150)$ Obtain $\ln(N-150) = 0.08t + c$ (following their k) or $\ln(N-150) = kt + c$	M1* A1√	
	Substitute $t = 0$ and $N = 650$ to find c	dep M1*	
	Obtain $ln(N-150) = 0.08t + ln500$ or equivalent	A1	
	Obtain $N = 500e^{0.08t} + 150$	A1	[7]
(iii)	Either Substitute $t = 15$ to find N or solve for t with $N = 2000$	M1	
	Obtain Either $N = 1810$ or $t = 16.4$ and conclude target not met	A1	[2]

(i)	Separate variables and attempt integration of one side	M1	
	Obtain term $-e^{-y}$	A1	
	Integrate xe^x by parts reaching $xe^x \pm \int e^x dx$	M1	
	Obtain integral $xe^x - e^x$	A1	
	Evaluate a constant, or use limits $x = 0, y = 0$	M1	
	Obtain correct solution in any form	A1	
	Obtain final answer $y = -\ln(e^x(1-x))$, or equivalent	A1	[7]

(ii) Justify the given statement B1

[1]

Question 17

Separate variables and attempt integration of at least one side	M1*
Obtain term ln y	A1
Obtain terms $\ln x - x^2$	A1
Use $x = 1$ and $y = 2$ to evaluate a constant, or as limits	DM1*
Obtain correct solution in any form, e.g. $\ln y = \ln x - x^2 + \ln 2 + 1$	A1
Obtain correct expression for y, free of logarithms, i.e. $y = 2x \exp(1-x^2)$	A1
	[6]

- (i) Separate variables correctly and attempt integration of at least one side **B**1 **B**1 Obtain term ln x Obtain term of the form $k \ln(3 + \cos 2\theta)$, or equivalent **M1** Obtain term $-\frac{1}{2}\ln(3+\cos 2\theta)$, or equivalent **A1** Use x = 3, $\theta = \frac{1}{4}\pi$ to evaluate a constant or as limits in a solution with terms $a \ln x$ and $b \ln(3 + \cos 2\theta)$, where $ab \neq 0$ **M1** State correct solution in any form, e.g. $\ln x = -\frac{1}{2} \ln(3 + \cos 2\theta) + \frac{3}{2} \ln 3$ **A1** Rearrange in a correct form, e.g. $x = \sqrt{\frac{27}{3 + \cos 2\theta}}$ **A1** [7]
- (ii) State answer $x = 3\sqrt{3}/2$, or exact equivalent (accept decimal answer in [2.59, 2.60]) B1 [1]

Separate variables and make reasonable attempt at integration of either integral	M1
Obtain term $\frac{1}{2}e^{2y}$	B 1
Use Pythagoras	M1
Obtain terms $\tan x - x$	A1
Evaluate a constant or use $x = 0$, $y = 0$ as limits in a solution containing terms	
$ae^{\pm 2y}$ and $b\tan x$, $(ab \neq 0)$	M 1
Obtain correct solution in any form, e.g. $\frac{1}{2}e^{2y} = \tan x - x + \frac{1}{2}$	A1
Set $x = \frac{1}{4}\pi$ and use correct method to solve an equation of the form $e^{\pm 2y} = a$ or $e^{\pm y} = a$, where	
a > 0	M1
Obtain answer $y = 0.179$	A1
	[8]

Question 20

Obtain answer t = 4

Ques	stion 20			
(i)		variables correctly and integrate at least one side and obtain term kt , or equivalent	M1 A1	
	Carry out	a relevant method to obtain A and B such that $\frac{1}{x(4-x)} = \frac{A}{x} + \frac{B}{4-x}$, or equivalent	M1*	
	Obtain A	$=B=\frac{1}{4}$, or equivalent	A1	
	Integrate a	and obtain terms $\frac{1}{4} \ln x - \frac{1}{4} \ln(4-x)$, or equivalent	A1 [↑]	
	EITHER:	Use a pair of limits in an expression containing $p \ln x$, $q \ln (4-x)$ and rt and evaluate a constant Obtain correct answer in any form, e.g. $\ln x - \ln(4-x) = 4kt - \ln 9$,	DM1	
		or $\ln\left(\frac{x}{4-x}\right) = 4kt - 8k$	A1	
		Use a second pair of limits and determine <i>k</i> Obtain the given exact answer correctly	DM1 A1	
	OR:	Use both pairs of limits in a definite integral Obtain the given exact answer correctly Substitute k and either pair of limits in an expression containing	M1* A1	
		$p \ln x$, $q \ln(4-x)$ and rt and evaluate a constant	DM1	
		Obtain $\ln \frac{x}{4-x} = t \ln 3 - \ln 9$ or equivalent	A1	[9]
(ii)	Substitute	x = 3.6 and solve for t	M1	

A1

[2]

(i)	State equation $\frac{dy}{dx} = \frac{1}{2}xy$	B1	[1]
(ii)	Separate variables correctly and attempts to integrate one side of equation Obtain terms of the form $a \ln y$ and bx^2 Use $x = 0$ and $y = 2$ to evaluate a constant, or as limits, in expression containing $a \ln y$ or bx^2 Obtain correct solution in any form, e.g. $\ln y = \frac{1}{4}x^2 + \ln 2$ Obtain correct expression for y , e.g. $y = 2e^{\frac{1}{4}x^2}$	M1 A1 M1 A1	[5]
(iii)	Show correct sketch for $x \ge 0$. Needs through $(0, 2)$ and rapidly increasing positive gradient.	B1	[1]
Question	22	I	

'(i)	State or imply $\frac{\mathrm{d}V}{\mathrm{d}t} = 2\frac{\mathrm{d}h}{\mathrm{d}t}$	B1
	State or imply $\frac{dV}{dt} = 1 - 0.2\sqrt{h}$	B1
	Obtain the given answer correctly	B1
	Total:	3
(ii)	State or imply $du = -\frac{1}{2\sqrt{h}} dh$, or equivalent	B1
	Substitute for h and dh throughout	M1
	Obtain $T = \int_{3}^{5} \frac{20(5-u)}{u} du$, or equivalent	A1
	Integrate and obtain terms $100 \ln u - 20u$, or equivalent	A1
	Substitute limits $u = 3$ and $u = 5$ correctly	M1
	Obtain answer 11.1, with no errors seen	A1
	Total:	6

)(i)	Carry out a relevant method to obtain A and B such that $\frac{1}{x(2x+3)} = \frac{A}{x} + \frac{B}{2x+3}$, or equivalent	M1
	Obtain $A = \frac{1}{3}$ and $B = -\frac{2}{3}$, or equivalent	A1
	Total:	2
(ii)	Separate variables and integrate one side	B1
	Obtain term ln y	B1
	Integrate and obtain terms $\frac{1}{3} \ln x - \frac{1}{3} \ln(2x+3)$, or equivalent	B2 FT
	Use $x = 1$ and $y = 1$ to evaluate a constant, or as limits, in a solution containing $a \ln y$, $b \ln x$, $c \ln(2x + 3)$	M1
	Obtain correct solution in any form, e.g. $\ln y = \frac{1}{3} \ln x - \frac{1}{3} \ln(2x+3) + \frac{1}{3} \ln 5$	A1
	Obtain answer $y = 1.29$ (3s.f. only)	A1
	Total:	7

(i)	State $\frac{dy}{dt} = -\frac{2y}{(1+t)^2}$, or equivalent	B1
	Separate variables correctly and attempt integration of one side	M1
	Obtain term ln y, or equivalent	A1
	Obtain term $\frac{2}{(1+t)}$, or equivalent	A1
	Use $y = 100$ and $t = 0$ to evaluate a constant, or as limits in an expression containing terms of the form $a \ln y$ and $\frac{b}{1+t}$	M1
	Obtain correct solution in any form, e.g. $\ln y = \frac{2}{1+t} - 2 + \ln 100$	A1
	Total:	6

(ii)	State that the mass of B approaches $\frac{100}{e^2}$, or exact equivalent	B1
	State or imply that the mass of A tends to zero	B1
	Total:	2
Questi	on 25	
(i)	Justify the given differential equation	B1
	Total:	1
(ii)	Separate variables correctly and attempt to integrate one side	B1
	Obtain term kt, or equivalent	B1
	Obtain term $-\ln(50-x)$, or equivalent	B1
	Evaluate a constant, or use limits $x = 0$, $t = 0$ in a solution containing terms $a \ln(50-x)$ and bt	M1*
	Obtain solution $-\ln(50-x) = kt - \ln 50$, or equivalent	A1
	Use $x = 25$, $t = 10$ to determine k	DM1
	Obtain correct solution in any form, e.g. $\ln 50 - \ln (50 - x) = \frac{1}{10} (\ln 2)t$	A1
	Obtain answer $x = 50(1 - \exp(-0.0693t))$, or equivalent	A1
	Total:	8

Question 26	
Separate variables correctly and attempt integration of one side	B1
Obtain term $\tan y$, or equivalent	B1
Obtain term of the form $k \ln \cos x$, or equivalent	M1
Obtain term $-4\ln\cos x$, or equivalent	A1
Use $x = 0$ and $y = \frac{1}{4}\pi$ in solution containing $a \tan y$ and $b \ln \cos x$ to evaluate a constant, or as limits	М1
Obtain correct solution in any form, e.g. $\tan y = 4 \ln \sec x + 1$	A1
Substitute $y = \frac{1}{3}\pi$ in solution containing terms $a \tan y$ and $b \ln \cos x$, and use correct method to find x	М1
Obtain answer $x = 0.587$	A1
	8
Question 27	
Separate variables and obtain $\int \frac{1}{y} dy = \int \frac{x+2}{x+1} dx$	В1
Obtain term ln y	B1
Use an appropriate method to integrate $(x+2)/(x+1)$	*M1
Obtain integral $x + \ln(x+1)$, or equivalent, e.g. $\ln(x+1) + x + 1$	A1
Use $x = 1$ and $y = 2$ to evaluate a constant, or as limits	DM1
Obtain correct solution in x and y in any form e.g. $\ln y = x + \ln(x+1) - 1$	A1
Obtain answer $y = (x+1)e^{x-1}$	A1
	7

(i)	Show sufficient working to justify the given statement AG	B1
		1
(ii)	Separate variables correctly and attempt integration of at least one side	B1
	Obtain term $\frac{1}{2}x^2$	B1
	Obtain terms $\tan^2 \theta + \tan \theta$, or $\sec^2 \theta + \tan \theta$	B1 + B1
	Evaluate a constant, or use limits $x = 1$, $\theta = \frac{1}{4}\pi$, in a solution with two terms of the form ax^2 and $b \tan \theta$, where $ab \neq 0$	M1
	State correct answer in any form, e.g. $\frac{1}{2}x^2 = \tan^2\theta + \tan\theta - \frac{3}{2}$	A1
	Substitute $\theta = \frac{1}{3}\pi$ and obtain $x = 2.54$	A1
		7
Owast	ion 20	

(i)	Separate variables correctly and integrate at least one side	B1
	Obtain term ln x	B1
	Obtain term $-\frac{2}{3}kt\sqrt{t}$, or equivalent	B1
	Evaluate a constant, or use limits $x = 100$ and $t = 0$, in a solution containing terms $a \ln x$ and $b t \sqrt{t}$	M1
	Obtain correct solution in any form, e.g. $\ln x = -\frac{2}{3}kt\sqrt{t} + \ln 100$	A1
		5
(ii)	Substitute $x = 80$ and $t = 25$ to form equation in k	M1
	Substitute $x = 40$ and eliminate k	M1
	Obtain answer $t = 64.1$	A1
		3

(i)	Fully justify the given statement	В1	Some indication of use of gradient of curve = gradient of tangent (PT) and no errors seen /no incorrect statements
		1	
(ii)	Separate variables and attempt integration of at least one side	B1 B1	Must be working from $\int \frac{1}{y} dy = \int k dx$
	Obtain terms $\ln y$ and $\frac{1}{2}x$		B marks are not available for fortuitously correct answers
	Use $x = 4$, $y = 3$ to evaluate a constant or as limits in a solution with terms $a \ln y$ and bx , where $ab \neq 0$	M1	
	Obtain correct solution in any form	A1	$\ln y = \frac{1}{2}x + \ln 3 - 2$
	Obtain answer $y = 3e^{\frac{1}{2}x-2}$, or equivalent	A1	Accept $y = e^{\frac{1}{2}x + \ln 3 - 2}$, $y = e^{\frac{x - 1.80}{2}}$, $y = 3\sqrt{e^{x - 4}}$ $ y = \dots$ scores A0
		5	

(i)	Carry out relevant method to find A and B such that $\frac{1}{4-y^2} = \frac{A}{2+y} + \frac{B}{2-y}$	M1	
	Obtain $A = B = \frac{1}{4}$	A1	
	Total:	2	
ii)	Separate variables correctly and integrate at least one side to obtain one of the terms $a \ln x$, $b \ln (2 + y)$ or $c \ln (2 - y)$	M1	
	Obtain term ln x	B1	
	Integrate and obtain terms $\frac{1}{4}\ln(2+y) - \frac{1}{4}\ln(2-y)$	A1FT	
	Use $x = 1$ and $y = 1$ to evaluate a constant, or as limits, in a solution containing at least two terms of the form $a \ln x$, $b \ln (2 + y)$ and $c \ln (2 - y)$	M1	
	Obtain a correct solution in any form, e.g. $\ln x = \frac{1}{4} \ln(2+y) - \frac{1}{4} \ln(2-y) - \frac{1}{4} \ln 3$	A1	
	Rearrange as $\frac{2(3x^4-1)}{(3x^4+1)}$, or equivalent	A1	
	Total:	6	

Separate variables correctly and integrate at least one side	B1
Obtain term ln y	B1
Obtain terms $2 \ln x - \frac{1}{2} x^2$	B1+B1
Use $x = 1$, $y = 1$ to evaluate a constant, or as limits	M1
Obtain correct solution in any form, e.g. $\ln y = 2 \ln x - \frac{1}{2} x^2 + \frac{1}{2}$	A1
Rearrange as $y = x^2 \exp\left(\frac{1}{2} - \frac{1}{2}x^2\right)$, or equivalent	A1
	7
Question 33	

State equation $\frac{dy}{dx} = k \frac{y^2}{x}$, or equivalent	В1	SC: If $k = 1$ seen or implied give B0 and then allow B1B1B0M1, max 3/8.		
Separate variables correctly and integrate at least one side	В1	$\int \frac{k}{x} dx = \int \frac{1}{y^2} dy$ Allow with incorrect value substitute	ed for k	
Obtain terms $-\frac{1}{y}$ and $k \ln x$	B1 + B1	Incorrect k used scores max. B1B0		
Use given coordinates correctly to find k and/or a constant of integration C in an equation containing terms $\frac{a}{y}$, $b \ln x$ and C	M1	SC: If an incorrect method is used to a correct method to find C	find k , M1 is allowable for	
Obtain $k = \frac{1}{2}$ and $c = -1$, or equivalent	A1 + A1	$\frac{1}{2}\ln x = 1 - \frac{1}{y}$ A0 for fortuitous answe	rs.	
Obtain answer $y = \frac{2}{2 - \ln x}$, or equivalent, and ISW	A1	$y = \frac{-1}{-1 + \ln\sqrt{x}}$		
		SC: MR of the fraction.		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = k \frac{y^2}{x^2}$	B1	
		Separate variables and integrate	B1	
		$\frac{-1}{y} = \frac{-k}{x} (+C)$	B1+B1	
		Substitute to find k and/or c	M1	
		$k = \frac{e}{2(e-1)}, c = \frac{2-e}{2(e-1)}$	A1+A1	
		Answer	A0	
	8			

Separate variables correctly and attempt integration of at least one side	
Obtain term $-\frac{1}{2y^2}$, or equivalent	B1
Obtain term – $k e^{-x}$	B1
Use a pair of limits, e.g. $x = 0$, $y = 1$ to obtain an equation in k and an arbitrary constant c	M1
Use a second pair of limits, e.g. $x=1, y=\sqrt{e}$, to obtain a second equation and solve for k or for c	M1
Obtain $k = \frac{1}{2}$ and $c = 0$	A1
Obtain final answer $y = e^{\frac{1}{2}x}$, or equivalent	A1
	7

(i)	Use chain rule	M1	$k \cos \theta \sin^{-3} \theta \left(= -k \csc^2 \theta \cot \theta \right)$ Allow M1 for $-2 \cos \theta \sin^{-1} \theta$
	Obtain correct answer in any form	A1	e.g. $-2\csc^2\theta\cot\theta$, $\frac{-2\cos\theta}{\sin^3\theta}$ Accept $\frac{-2\sin\theta\cos\theta}{\sin^4\theta}$
		2	
(ii)	Separate variables correctly and integrate at least one side	B1	$\int x dx = \int -\csc^2 \theta \cot \theta d\theta$
	Obtain term $\frac{1}{2}x^2$	B1	0.0
	Obtain term of the form $\frac{k}{\sin^2 \theta}$	M1*	or equivalent
	Obtain term $\frac{1}{2\sin^2\theta}$	A1	or equivalent
	Use $x = 4$, $\theta = \frac{1}{6}\pi$ to evaluate a constant, or as limits, in a solution	DM1	Dependent on the preceding M1
	with terms ax^2 and $\frac{b}{\sin^2\theta}$, where $ab \neq 0$		
	Obtain solution $x = \sqrt{(\csc^2 \theta + 12)}$	A1	or equivalent
		6	

(i)	Separate variables correctly and attempt integration of at least one side	В1	$\int e^{-y} dy = \int x e^x dx$
	Obtain term $-e^{-y}$	B1	B0B1 is possible
	Commence integration by parts and reach $xe^x \pm \int e^x dx$	M1	B0B0M1A1 is possible
	Obtain $xe^x - e^x$	A1	or equivalent
			B1B1M1A1 is available if there is no constant of integration
	Use $x = 0$, $y = 0$ to evaluate a constant, or as limits in a definite integral, in a solution with terms ae^{-y} , bxe^{x} and ce^{x} , where $abc \neq 0$	M1	Must see this step
	Obtain correct solution in any form	A1	$e.g. e^{-y} = e^x - xe^x$
	Rearrange as $y = -\ln(1-x)-x$	A1	or equivalent e.g. $y = \ln \frac{1}{e^x (1-x)}$ ISW
		7	
(ii)	Justify the given statement	В1	e.g. require $1-x>0$ for the ln term to exist, hence $x<1$ Must be considering the range of values of x , and must be relevant to <i>their</i> y involving $\ln(1-x)$
		1	

Separate variables correctly and integrate at least one side	B1
Obtain term $\ln(x+1)$	В1
Obtain term of the form $a \ln (y^2 + 5)$	M1
Obtain term $\frac{1}{2}\ln(y^2+5)$	A1
Use $y = 2$, $x = 0$ to determine a constant, or as limits, in a solution containing terms $a\ln(y^2 + 5)$ and $b\ln(x+1)$, where $ab \neq 0$	M1
Obtain correct solution in any form	A1
Obtain final answer $y^2 = 9(x+1)^2 - 5$	A1
	7

(i)	State $\frac{dN}{dt} = ke^{-0.02t}N$ and show $k = -0.01$	В1	$ OE \\ (-10 = k \times 1 \times 1000) $
		1	
(ii)	Separate variables correctly and integrate at least one side	B1	$\int \frac{1}{N} dN = \int -0.01 e^{-0.02t} dt$
	Obtain term $\ln N$	B1	OE
	Obtain term 0.5e ^{-0.02t}	B1	OE
	Use $N = 1000$, $t = 0$ to evaluate a constant, or as limits, in a solution with terms $a \ln N$ and $b e^{-0.02t}$, where $ab \neq 0$	M1	
	Obtain correct solution in any form e.g. $\ln N - \ln 1000 = 0.5 \left(e^{-0.02t} - 1\right)$	A1	$\ln 1000 - \frac{1}{2} = 6.41$
	Substitute $N = 800$ and obtain $t = 29.6$	A1	
	TPR	6	
(iii)	State that N approaches $\frac{1000}{\sqrt{e}}$	B1	Accept 606 or 607 or 606.5
		1	
Ques	tion 39		

Separate variables correctly to obtain $\int \frac{1}{x+2} dx = \int \cot \frac{1}{2} \theta d\theta$	В1	Or equivalent integrands. Integral signs SOI
Obtain term $\ln(x+2)$	B1	Modulus signs not needed.
Obtain term of the form $k \ln \sin \frac{1}{2}\theta$	M1	
Obtain term $2\ln\sin\frac{1}{2}\theta$	A1	- /.5/
Use $x = 1$, $\theta = \frac{1}{3}\pi$ to evaluate a constant, or as limits, in an	M1	Reach C = an expression or a decimal value
expression containing $p \ln(x+2)$ and $q \ln(\sin \frac{1}{2}\theta)$	pre	P.
Obtain correct solution in any form	A1	ln12 = 2.4849 Accept constant to at least 3 s.f.
e.g. $\ln(x+2) = 2\ln\sin\frac{1}{2}\theta + \ln 12$		Accept with $\ln 3 - 2 \ln \frac{1}{2}$
Remove logarithms and use correct double angle formula	М1	Need correct algebraic process. $\left(\frac{x+2}{12} = \frac{1-\cos\theta}{2}\right)$
Obtain answer $x = 4 - 6\cos\theta$	A1	
	8	

)(i)	Separate variables correctly and integrate one side	B1
	Obtain term 0.2t, or equivalent	B1
	Carry out a relevant method to obtain A and B such that $\frac{1}{(20-x)(40-x)} \equiv \frac{A}{20-x} + \frac{B}{40-x}$	*M1
	Obtain $A = \frac{1}{20}$ and $B = -\frac{1}{20}$	A1
	Integrate and obtain terms $-\frac{1}{20}\ln(20-x) + \frac{1}{20}\ln(40-x)$ OE	A1FT +A1FT
	Use $x = 10$, $t = 0$ to evaluate a constant, or as limits	DM1
	Obtain correct answer in any form	A1
(ii)	Obtain final answer $x = \frac{60e^{4t} - 40}{3e^{4t} - 1}$	A1
		9
	State that x approaches 20	B1
		1

(a)	Separate variables correctly and attempt integration of at least one side	B 1
	Obtain term of the form $a \tan^{-1}(2y)$	M1
	Obtain term $\frac{1}{2} \tan^{-1}(2y)$	A1
	Obtain term −e ^{-x}	B1
	Use $x = 1$, $y = 0$ to evaluate a constant or as limits in a solution containing terms of the form $a tan^{-1}(by)$ and $ce^{\pm x}$	M1
	Obtain correct answer in any form	A1
	Obtain final answer $y = \frac{1}{2} \tan(2e^{-1} - 2e^{-x})$, or equivalent	A1
		7
5(b)	State that y approaches $\frac{1}{2}\tan(2e^{-1})$, or equivalent	B1FT
		1
Ques	tion 42	
(a)	State $\frac{dy}{dx} = k \frac{y}{x\sqrt{x}}$, or equivalent	В1
	Separate variables correctly and attempt integration of at least one side	M1
	Obtain term ln y, or equivalent	A1
	Obtain term $-2k\frac{1}{\sqrt{x}}$, or equivalent	A1
	Use given coordinates to find k or a constant of integration c in a solution containing terms of the form $a \ln y$ and $\frac{b}{\sqrt{x}}$, where $ab \neq 0$	M1
	Obtain $k = 1$ and $c = 2$	A1 + A1
	Obtain final answer $y = \exp\left(-\frac{2}{\sqrt{x}} + 2\right)$, or equivalent	A1
		8
(b)	State that y approaches e^2 (FT their c in part (a) of the correct form)	B1FT
		1

Sep	arate variables correctly and integrate at least one side	B1
Obt	ain term $ln(y-1)$	B1
Can	ry out a relevant method to determine A and B such that $\frac{1}{(x+1)(x+3)} = \frac{A}{x+1} + \frac{B}{x+3}$	M1
Obt	ain $A = \frac{1}{2}$ and $B = -\frac{1}{2}$	A1
	grate and obtain terms $\frac{1}{2}\ln(x+1) - \frac{1}{2}\ln(x+3) = \frac{1}{2}\ln(x+1) - \frac{1}{2}\ln(x+3)$, or equivalent is on A and B)	A1 FT + A1 FT
	$x = 0$, $y = 2$ to evaluate a constant, or as limits in a solution containing terms of the form $a \ln(y-1)$, $b \ln(x+1)$ and $(x+3)$, where $abc \neq 0$	M1
Obt	ain correct answer in any form	A1
Obt	ain final answer $y = 1 + \sqrt{\left(\frac{3x+3}{x+3}\right)}$, or equivalent	A1
		9
Que	estion 44	
(a)	State or imply $\frac{\mathrm{d}V}{\mathrm{d}t} = -k\sqrt{h}$	B1
	State or imply $\frac{dV}{dh} = 2\pi rh - \pi h^2$, or equivalent	B1
	Use $\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \cdot \frac{\mathrm{d}h}{\mathrm{d}t}$	M1
	Obtain the given answer correctly	A1
	12 - 1.5	4
(b)	Separate variables and attempt integration of at least one side	M1
	Obtain terms $\frac{4}{3}rh^{\frac{3}{2}} - \frac{2}{5}h^{\frac{5}{2}}$ and $-Bt$	A3, 2, 1, 0
	Use $t = 0$, $h = r$ to find a constant of integration c	M1
	Use $t = 14$, $h = 0$ to find B	M1
	Obtain correct <i>c</i> and <i>B</i> , e.g. $c = \frac{14}{15}r^{\frac{5}{2}}$, $B = \frac{1}{15}r^{\frac{5}{2}}$	A1
	Obtain final answer $t = 14 - 20 \left(\frac{h}{r}\right)^{\frac{3}{2}} + 6 \left(\frac{h}{r}\right)^{\frac{5}{2}}$, or equivalent	A1
		8

Separate variables correctly and attempt integration of at least one side	B1	$\frac{1}{y}dy = \frac{1 - 2x^2}{x}dx$
Obtain term ln y	B1	
Obtain terms $\ln x - x^2$	B1	
Use $x = 1$, $y = 1$ to evaluate a constant, or as limits, in a solution containing at least 2 terms of the form $a \ln y$, $b \ln x$ and cx^2	M1	The 2 terms of required form must be from correct working e.g. $\ln y = \ln x - x^2 + 1$
Obtain correct solution in any form	A1	
Rearrange and obtain $y = xe^{1-x^2}$	A1	OE
	6	

Question 46

a) Correct separation of variables	B1	$\int \sec^2 2x dx = \int e^{-3t} dt$ Needs correct structure
Obtain term $-\frac{1}{3}e^{-3t}$	B1	
Obtain term of the form $k \tan 2x$	M1	From correct working
Obtain term $\frac{1}{2} \tan 2x$	A1	
Use $x = 0$, $t = 0$ to evaluate a constant, or as limits in a solution containing terms of the form $a \tan 2x$ and be^{-3t} , where $ab \neq 0$	M1	
Obtain correct solution in any form	A1	e.g. $\frac{1}{2}\tan 2x = -\frac{1}{3}e^{-3t} + \frac{1}{3}$
Obtain final answer $x = \frac{1}{2} \tan^{-1} \left(\frac{2}{3} \left(1 - e^{-3t} \right) \right)$	A1	///
2	7	• /.5/
State that x approaches $\frac{1}{2} \tan^{-1} \left(\frac{2}{3} \right)$	BIFT	Correct value. Accept $x \to 0.294$ The FT is dependent on letting $e^{-3t} \to 0$ in a solution containing e^{-3t} .
	1	

Separate variables correctly and attempt integration of at least one side	B1	$\frac{1}{y}dy = \frac{1 - 2x^2}{x}dx$
Obtain term ln y	B1	
Obtain terms $\ln x - x^2$	B1	
Use $x = 1$, $y = 1$ to evaluate a constant, or as limits, in a solution containing at least 2 terms of the form $a \ln y$, $b \ln x$ and cx^2	M1	The 2 terms of required form must be from correct working e.g. $\ln y = \ln x - x^2 + 1$
Obtain correct solution in any form	A1	
Rearrange and obtain $y = xe^{1-x^2}$	A1	OE
	6	

(a)	Separate variables correctly and attempt integration of at least one side	M1
	Obtain term ln y	A1
	Obtain term of the form $\pm \ln(1-\cos x)$	M1
	Obtain term $\ln(1-\cos x)$	A1
	Use $x = \pi$, $y = 4$ to evaluate a constant, or as limits, in a solution containing terms of the form $a \ln y$ and $b \ln(1 - \cos x)$	M1
	Obtain final answer $y = 2(1 - \cos x)$	A1
		6
(b)	Show a correct graph for $0 < x < 2\pi$ with the maximum at $x = \pi$	B1 FT
		1

(a)(i)	Justify the given statement $\frac{MN}{y} = \frac{dy}{dx}$	B1
	2. Satprep.C	1
(a)(ii)	Express the area of <i>PMN</i> in terms of y and $\frac{dy}{dx}$ and equate to $\tan x$	M1
	Obtain the given equation correctly	A1
		2

Separate variables and integrate at least one side	M1
Obtain term $\frac{1}{6}y^3$	A1
Obtain term of the form $\pm \ln \cos x$	M1
Evaluate a constant or use $x = 0$ and $y = 1$ in a solution containing terms ay^3 and $\pm \ln \cos x$, or equivalent	M1
Obtain correct answer in any form, e.g. $\frac{1}{6}y^3 = -\ln \cos x + \frac{1}{6}$	A1
Obtain final answer $y = \sqrt[3]{(1 - 6\ln \cos x)}$	A1
	6

State equation $\frac{dy}{dx} = k \frac{y}{\sqrt{x+1}}$	B1
Separate variables correctly for <i>their</i> differential equation and integrate at least one side	*M1
Obtain ln y	A1
Obtain $2[k]\sqrt{x+1}$	A1
Use $(0, 1)$ and $(3, e)$ in an expression containing $\ln y$ and $\sqrt{x+1}$ and a constant of integration to determine k and/or a constant of integration c (or use $(0, 1)$, $(3, e)$ and (x, y) as limits on definite integrals)	DM1
Obtain $k = \frac{1}{2}$ and $c = -1$	A1
Obtain $y = \exp(\sqrt{x+1} - 1)$	A1
1. Sathrep.Co	7

State a suitable form of partial fractions for $\frac{1}{x^2(1+2x)}$	B1
Use a relevant method to determine a constant	M1
Obtain one of $A = -2$, $B = 1$ and $C = 4$	A1
Obtain a second value	A1
Obtain the third value	A1
Separate variables correctly and integrate at least one term	M1
Obtain terms $-2 \ln x - \frac{1}{x} + 2 \ln (1 + 2x)$ and t	B3 FT
Evaluate a constant, or use limits $x = 1$, $t = 0$ in a solution containing terms t , $a \ln x$ and $b \ln (1 + 2x)$, where $ab \ne 0$	M1
Obtain a correct expression for t in any form, e.g. $t = -\frac{1}{x} + 2\ln\left(\frac{1+2x}{3x}\right) + 1$	A1
	11

(a)	State or imply equation of the form $\frac{dx}{dt} = k \frac{x}{20 - x}$	M1	
	Obtain $k = 19$	A1	AG
		2	
(b)	Separate variables and integrate at least one side	M1	
	Obtain terms $20 \ln x - x$ and $19t$, or equivalent	A1 A1	
	Evaluate a constant or use $t = 0$ and $x = 1$ as limits in a solution containing terms $a \ln x$ and bt	M1	
	Substitute $t = 1$ and rearrange the equation in the given form	A1	AG
		5	
(c)	Use $x_{n+1} = e^{0.9 + 0.05x_n}$ correctly at least once	M1	
	Obtain final answer $x = 2.83$	A1	
	Show sufficient iterations to 4 decimal places to justify 2.83 to 2 d.p. or show there is a sign change in the interval (2.825, 2.835)	A1	
		3	
(d)	Set $x = 20$ and obtain answer $t = 2.15$	B1	
		1	

Separate variables correctly	B1	$\int \frac{1}{y^2} \mathrm{d}y = \int 4x \mathrm{e}^{-2x} \mathrm{d}x$
$\int \frac{1}{y^2} \mathrm{d}y = -\frac{1}{y}$	B1	OE
Commence the other integration and reach $axe^{-2x} + b \int e^{-2x} dx$	M1	-0'
Obtain $-2xe^{-2x} + 2\int e^{-2x} dx$ or $-\frac{1}{2}xe^{-2x} + \frac{1}{2}\int e^{-2x} dx$	A1	SOI (might have taken out factor of 4)
Complete integration and obtain $-2xe^{-2x} - e^{-2x}$	A1	
Evaluate a constant or use $x = 0$ and $y = 1$ as limits in a solution containing terms of the form $\frac{p}{y}$, qxe^{-2x} , re^{-2x} , or equivalent.	M1	
Obtain $y = \frac{e^{2x}}{2x+1}$, or equivalent expression for y	A1	ISW
	7	

(a)	Show sufficient working to justify the given answer	B1	
		1	
(b)	Correct separation of variables	B1	e.g. $-\int_{t}^{1} dt = \int_{x \ln x} dx$
	Obtain term $\ln(\ln x)$	B1	
	Obtain term $-\ln t$	B1	
	Evaluate a constant or use $x = e$ and $t = 2$ as limits in an expression involving $\ln(\ln x)$	M1	
	Obtain correct solution in any form, e.g. $\ln(\ln x) = -\ln t + \ln 2$	A1	
	Use log laws to enable removal of logarithms	M1	
	Obtain answer $x = e^{\frac{2}{t}}$, or simplified equivalent	A1	
		7	
(c)	State that x tends to 1 coming from $x = e^{\frac{k}{t}}$	B1	
		1	
Que	estion 55		

Correctly separate variables and integrate at least one side	M1	To obtain $a \ln y$ or $b \ln (x+1) + c \ln(3x+1)$
Obtain term $\ln y$ from integral of $1/y$	B1	
State or imply the form $\frac{A}{x+1} + \frac{B}{3x+1}$ and use a correct method to find a constant	M1	
Obtain $A = -\frac{1}{2}$ and $B = \frac{3}{2}$	A1	-0.
Obtain terms $-\frac{1}{2}\ln(x+1) + \frac{1}{2}\ln(3x+1)$ or $-\frac{1}{2}\ln(2x+2) + \frac{1}{2}\ln(6x+2)$ or combination of these terms	A1 FT + A1 FT	The FT is on the values of A and B .
Use $x = 1$ and $y = 1$ to evaluate a constant, or expression for a constant, (decimal equivalent of $\ln t$ terms allowed) or as limits, in a solution containing terms $a \ln y$, $b \ln (x+1)$ and $c \ln (3x+1)$, where $abc \neq 0$	*M1	e.g. $\ln y = -\frac{1}{2}\ln(x+1) + \frac{1}{2}\ln(3x+1) - \frac{1}{2}\ln 2$
Obtain an expression for y or y^2 and substitute $x = 3$	DM1	Do not accept decimal equivalent of ln terms
Obtain answer $y = \frac{1}{2}\sqrt{5}$ or $\sqrt{\frac{5}{4}}$ or $\sqrt{\frac{10}{8}}$	A1	ISW. Must be simplified and exact, do not allow 1.118 or $e^{\frac{1}{2}\ln\frac{5}{4}}$.
	9	

(a)	Separate variables correctly	B1	$\frac{dN}{N^{\frac{3}{2}}} = (k \cos 0.02t) dt$ Allow without integral signs.
	Obtain term $-\frac{2}{\sqrt{N}}$	B1	OE Ignore position of k .
	Obtain term 50 sin 0.02t	B1	OE Ignore position of k .
	Use $t = 0$, $N = 100$ to evaluate a constant, or as limits, in a solution containing terms $\frac{a}{\sqrt{N}}$ and $b \sin 0.02t$, where $ab \neq 0$	M1	[e.g. $c = -0.2$ or $c = \frac{-0.2}{k}$]
	Obtain correct solution in any form, e.g. $-\frac{2}{\sqrt{N}} = 50k \sin 0.02t - 0.2$	A1	OE ISW e.g. $N = \frac{1}{(25k\sin 0.02t - 0.1)^2} -2N^{\frac{1}{2}} = \frac{k}{0.02}\sin 0.02t - \frac{1}{5}$ $50k\sin 0.02t = -\frac{2}{\sqrt{N}} + \frac{1}{5} \frac{1}{\sqrt{N}} = -\frac{1}{2}k(50\sin 0.02t) + \frac{1}{10}$ $50\sin(\frac{1}{50}t) = -\frac{2\sqrt{N}}{kN} + \frac{20}{100k}$
		5	(30) 1001
}(b)	Use the substitution $N = 625$ and $t = 50$ in expression of appropriate form to evaluate k	M1	Expression must contain $a + bk\sin 0.02t$, $(\sqrt{N})^{\pm n}$, where $n = -1, 1, 3$ or 5 and a and b are constants $ab \neq 0$ or $(a + bk\sin 0.02t)^{\pm 2}$ and $(N)^{\pm n}$. Allow with k replaced by $\frac{1}{k}$, error due to $k(N^{-3/2})$ when separating variables in 8(a) . If invert term by term when 3 terms shown then M0.
	Obtain $k = 0.00285[2148]$	A1	Must evaluate sin1. Degrees $k = 0.138$ M1 A0.
		2	
;(c)	Rearrange and obtain $N = 4(0.2 - 0.142(607)\sin 0.02t)^{-2}$ Substitution for k required	MI	Anything of the form $N = c(d - ek \sin 0.02t)^{-2}$, where c, d and e are constants $cde \neq 0$ and value of k substituted. Allow with k replaced by $1/k$, error due to $k(N^{-3/2})$ when separating variables in $8(a)$. OE ISW e.g. $N = \left(-\frac{10}{0.7125\sin 0.02t - 1}\right)^2 N = \frac{1}{\left(-0.0713\sin 0.02t + 0.1\right)^2}$ $N = \frac{100}{\left(\left(\frac{0.6}{\sin 1}\right)\sin 0.02t - 1\right)^2} \qquad N = \frac{1}{\left(\frac{3}{-50\sin 1} \times \sin 0.02t + \frac{1}{10}\right)^2}$
	Accept answers between 1209 and 1215	A1	$\left(\left(\frac{1}{\sin 1}\right)^{\sin 1.02t-1}\right) \qquad \left(\frac{-50\sin 1}{-50\sin 1} \times \sin 0.02t + \frac{10}{10}\right)$ $N = \left(\frac{0.06}{\sin 1}\sin 0.02t + 0.1\right)^{-2} \qquad N = \left(\frac{800}{80 - 57\sin 0.02t}\right)^{2}$ Do not need to substitute for $\sin(0.02t) = 1$, but must substitute for k . ISW Substitute $\sin 0.02t = 1$ or $t = 50\sin^{-1} 1$ or 78.5 or 25π .
			Answer with no working (rubric) $0/2$. SC $N = \dots$ not seen but correct numerical answer B1 1/2.
		2	

(a)	Correct separation of variables	B1	$\int e^{-y} dy = \int x e^{-x} dx$ Condone missing integral signs.
	Obtain term $-e^{-y}$	B1	
	Commence integration by parts and reach $\pm xe^{-x} \pm \int e^{-x} dx$	*M1	M0 if clearly using differentiation of a product.
	Complete integration and obtain $-xe^{-x} - e^{-x}$	A1	
	Use $x = 0$ and $y = 0$ to evaluate a constant or as limits in a solution containing or derived from terms ae^{-y} , bxe^{-x} and ce^{-x} , where $abc \neq 0$	DM1	Must see working for this. In a correct solution they should have $-e^{-y} + C = -xe^{-x} - e^{-x}$ or equivalent. If they take logarithms before finding the constant, the constant must be of the right form.
	Correct solution in any form Must follow from correct working	A1	e.g. $-e^{-y} = -xe^{-x} - e^{-x}$ A0 if constant of integration ignored or assumed to be zero.
	Obtain final answer $y = -\ln((x+1)e^{-x})$ from correct working	A1	OE e.g. $y = x - \ln(x+1)$, $y = \ln\left(\frac{e^x}{x+1}\right)$.
	16		A0 if constant of integration ignored or assumed to be zero.
		7	
(b)	Obtain answer $(y =)1 - \ln 2$	B1	Must follow from at least 6 or7 obtained in part 6(a).
		1	111
Que	estion 58		
Sepa	arate variables correctly	B1	$\int \frac{x}{1+x^2} dx = \int \frac{1}{y} dy$ Accept without integral signs.
Obta	in term ln y	B1	///
State	e term of the form $k \ln (1+x^2)$	M1	///
State	e correct term $\frac{1}{2}\ln(1+x^2)$	A1	OE
	uate a constant, or use limits $x = 0$, $y = 2$ in a solution containing terms y and $b \ln(1+x^2)$ where $ab \ne 0$	M1	If they remove logs first the constant must be of the correct form.
Obta	in correct solution in any form	A1	e.g $\ln y + \ln \frac{1}{2} = \frac{1}{2} \ln (1 + x^2)$
Simp	olify and obtain $y = 2\sqrt{1+x^2}$	A1	OE The question asks for simplification, so need to deal with $\exp(\ln())$.

(a)	a = 30 and $b = 0.01$	B1	
		1	

(b)	Separate variables and integrate one side	M1	
	Obtain terms $-100 \ln(30-0.01V)$ and t , or equivalent	A1 FT + A1 FT	FT their a and b.
	Evaluate a constant, or use $t = 0$, $V = 0$ as limits, in a solution containing terms $c \ln(30-0.01V)$ and dt where $cd \neq 0$	M1	
	Obtain solution $100 \ln 30 - 100 \ln (30 - 0.01V) = t$, or equivalent	A1	
	Substitute $V = 1000$ and obtain answer $t = 40.5$	A1	
		6	
(c)	Obtain $V = 3000 (1 - e^{-0.01r})$	B1	OE
	State that V approaches 3000	B1	
		2	

Question 60

(b)

'(a)	Show sufficient working to justify the given statement	B1	e.g. see $2\cot\theta \times -\csc^2\theta$ in the working or express in terms of $\sin\theta$ and $\cos\theta$ and use quotient rule to obtain the given result. Solution must have θ present throughout and must reach the given answer.
		1	

Separate variables correctly Check for relevant working in (a)	B1	$\int x dx = \int \frac{\tan^2 \theta}{\sin^2 \theta} - \frac{2 \cot \theta}{\sin^2 \theta} d\theta$ Condone incorrect notation e.g. missing dx. Need either the integral sign or the dx, d\theta.
Obtain term $\frac{1}{2}x^2$	B1	0
Obtain terms $\tan \theta + \cot^2 \theta$	B1 + B1	Alternative: $\int \frac{2\cot\theta}{\sin^2\theta} d\theta = \int \frac{2\cos\theta}{\sin^3\theta} d\theta = -\frac{1}{\sin^2\theta} (+C)$
Form an equation for the constant of integration, or use limits $x=2$, $\theta=\frac{1}{4}\pi$, in a solution with at least two correctly obtained terms of the form ax^2 , $b\tan\theta$ and $c\cot^2\theta$, where $abc\neq0$	M1	Need to have 3 terms. Constant of correct form.
State correct solution in any form, e.g. $\frac{1}{2}x^2 = \tan \theta + \cot^2 \theta$	A1	or $\frac{1}{2}x^2 = \tan\theta + \csc^2\theta - 1$ If everything else is correct, allow a correct final answer to imply this A1.
Substitute $\theta = \frac{1}{6}\pi$ and obtain answer $x = 2.67$	A1	2.6748 $\sqrt{\frac{18+2\sqrt{3}}{3}}$ If see a correctly rounded value ISW.
	7	

•			
(a)	Separate variables correctly	B1	$\int \frac{1}{x} \mathrm{d}x = \int k \mathrm{e}^{-0.1 t} \mathrm{d}t$
	Obtain term ln x	B1	
	Obtain term $-10ke^{-0.1t}$	B1	Not from $\int xe^{-0.1t}dt$
	Use $x = 20$, $t = 0$ to evaluate a constant or as limits in a solution containing terms $a \ln x$, $b e^{-0.1t}$ where $ab \neq 0$	M1	
	Obtain $\ln x = 10k \left(1 - e^{-0.1r}\right) + \ln 20$	A1	or equivalent ISW
		5	
(b)	Use $x = 40$, $t = 10$ to find k or $10k$	M1	Available for their function of the correct structure even if they found no constant in (a).
	Obtain $10k = 1.09654$	A1	or equivalent e.g. $10k = \frac{\ln 2}{1 - e^{-1}}$
	State that x tends to 59.9	A1	Need a number, not an expression for that value 3 sf or better 59.87595
		3	

Separate variables correctly and obtain e^{-3y} and $\sin^2 2x$ on the opposite sides	B1	
Obtain term $-\frac{1}{3}e^{-3y}$	B1	
Use correct double angle formula for $\sin^2 2x = (1/2)[1 - \cos 4x]$	M1	
Obtain terms $\frac{1}{2} \left[x - \frac{1}{4} \sin 4x \right]$ oe	A1	
Use $x = 0$, $y = 0$ to evaluate a constant or as limits in a solution containing terms of the form ax and $b\sin 4x$ and $ce^{\pm 3y}$	M1	.5
Obtain correct answer in any form e.g. $-\frac{1}{3}e^{-3y} = \frac{1}{2}\left[x - \frac{1}{4}\sin 4x\right] - \frac{1}{3}$	A1	. CO
Substitute $x = \frac{1}{2}$ and obtain $y = 0.175$ or $-\frac{1}{3} \ln \left(\frac{1}{4} + \frac{3}{8} \sin 2 \right)$	A1	OE ISW
	7	

Separate the variables correctly	B1	$\frac{y+4}{y^2+4} dy = \frac{1}{x} dx.$
Obtain lnx	B1	
Split the fraction and integrate to obtain $p \ln(y^2 + 4)$ or $q \tan^{-1} \frac{y}{2}$ correctly	*M1	Only following subdivision into $\frac{y}{y^2+4} + \frac{4}{y^2+4}$. If no subdivision seen then both terms $p \ln(y^2+4)$ and $q \tan^{-1} \frac{y}{2}$ must be present.
Obtain $\frac{1}{2}\ln\left(y^2+4\right)$	A1	
Obtain $2 \tan^{-1} \frac{y}{2}$	A1	
Use $(4, 2\sqrt{3})$ in an expression containing at least 2 of $a \ln x$, $b \ln (y^2 + 4)$ and $c \tan^{-1} \frac{y}{2}$ to obtain constant of integration	DM1	Allow one sign or arithmetic error e.g. $\frac{2\pi}{3}$. May use $(4, 2\sqrt{3})$ and $(x, 2)$ as limits to find x for the final 3 marks.
Correct solution (any form) e.g. $\frac{1}{2}\ln(y^2 + 4) + 2\tan^{-1}\frac{y}{2} = \ln x + \frac{2\pi}{3}$ or $\frac{1}{2}\ln(y^2 + 4) + 2\tan^{-1}\frac{y}{2} = \ln x + 2\tan^{-1}\sqrt{3} + \frac{1}{2}\ln 16 - \ln 4$	A1	However solution not asked for so allow $\frac{1}{2}\ln 8 + 2\tan^{-1} 1 = \ln x + 2\tan^{-1} \sqrt{3} + \frac{1}{2}\ln 16 - \ln 4.$
Obtain $\sqrt{8}e^{-\frac{1}{6}\pi}$ or 1.68 or more accurate or $2\sqrt{2}e^{-\frac{1}{6}\pi}$ or $\frac{\sqrt{8}}{e^{\frac{1}{6}\pi}}$ or $e^{0.516}$	A1	ISW Must remove $\ln \operatorname{so} x = \operatorname{e}^{(\ln 2\sqrt{2} - \pi/6)} \operatorname{A0}$.
Alternative method for first *M1 A1 A1		
$p\left((y+4)\tan^{-1}\frac{y}{2}-\int \tan^{-1}\frac{y}{2}dy\right)$	*M1	Allow sign error.
$(y+4)\frac{1}{2}\tan^{-1}\frac{y}{2} - \frac{y}{2}\tan^{-1}\frac{y}{2} + \int \frac{y}{y^2+4} dy$	A1	-0.
Obtain $2 \tan^{-1} \frac{y}{2} + \frac{1}{2} \ln \left(y^2 + 4 \right)$	A1	
	8	

Separate variables correctly	B1	$\int \frac{1}{4+9y^2} dy = \int e^{-(2x+1)} dx.$ Condone missing integral signs or dx and dy missing.
Obtain term $-\frac{1}{2}e^{-2x-1}$	B1	OE e.g. $-\frac{1}{2e}e^{-2x}$.
Obtain term of the form $a \tan^{-1} \left(\frac{3y}{2} \right)$	M1	
Obtain term $\frac{1}{6} \tan^{-1} \left(\frac{3y}{2} \right)$	A1	OE e.g. $\frac{1}{9} \times \frac{3}{2} \tan^{-1} \frac{3y}{2}$.
Use $x = 1$, $y = 0$ to evaluate a constant or as limits in a solution containing or derived from terms of the form $a tan^{-1}(by)$ and $ce^{\pm(2x+1)}$	М1	If they rearrange before evaluating the constant, the constant must be of the correct form.
Obtain correct answer in any form	A1	e.g. $\frac{1}{6} \tan^{-1} \frac{3y}{2} = \frac{1}{2} e^{-3} - \frac{1}{2} e^{-(2x+1)}$.
Obtain final answer $y = \frac{2}{3} \tan(3e^{-3} - 3e^{-2x-1})$	A1	OE Allow with $3e^{-3} = 0.149$
10	7	
State that y approaches $\frac{2}{3} \tan(3e^{-3})$	B1 FT	Or exact equivalent. The FT is on correct work on a solution containing e^{-2x-1} . Condone $y =$ Accept correct answer stated with minimal wording. 0.10032 is not exact so B0.
	1	
uestion 65		

Question 03		
Correct separation of variables	В1	$\int \sin^2 3y dy = \int 4 \sec 2x \tan 2x dx \text{ or equivalent.}$ Condone missing integral signs or dx and dy.
Integrate to obtain $k \sec 2x$	M1	
Obtain 2sec2x	A1	
Use double angle formula and integrate to obtain $py + q \sin 6y$	M1	Or two cycles of integration by parts.
Obtain $\frac{1}{2}y - \frac{1}{12}\sin 6y$	A1	
Use $y = 0$, $x = \frac{\pi}{6}$ in a solution containing terms $\lambda \sec 2x$ and $\mu \sin 6y$ to find the constant of integration	M1	
Obtain $\frac{1}{2}y - \frac{1}{12}\sin 6y = 2\sec 2x - 4$	A1	Or equivalent seen or implied by $\frac{\pi}{2} \left(-\frac{1}{12} \sin \pi \right) = 2 \sec 2x - 4.$
Obtain $x = 0.541$	A1	From correct working (not by using the calculator to integrate).
	8	