A-level
 Topic :Differential Equation

May 2013-May 2023

Answers

Question 1

(i) State $\frac{\mathrm{d} V}{\mathrm{dt}}=80-k V \quad$ B1

Correctly separate variables and attempt integration of one side M1
Obtain $a \ln (80-k V)=t$ or equivalent M1*
Obtain $-\frac{1}{k} \ln (80-k V)=t$ or equivalent A1

Use $t=0$ and $V=0$ to find constant of integration or as limits M1 (dep*)
Obtain $-\frac{1}{k} \ln (80-k V)=t-\frac{1}{k} \ln 80$ or equivalent A1
Obtain given answer $V=\frac{1}{k}\left(80-80 \mathrm{e}^{-k t}\right)$ correctly A1
(ii) Use iterative formula correctly at least once

Obtain final answer 0.14
Show sufficient iterations to 4 s.f. to justify answer to 2 s.f. or show a sign change in the interval $(0.135,0.145)$
(iii) State a value between 530 and $540 \mathrm{~cm}^{3}$ inclusive

State or imply that volume approaches $569 \mathrm{~cm}^{3}$ (allowing any value between 567 and 571 inclusive)

B1

Question 2

(i) Use any relevant method to determine a constant

Obtain one of the values $A=1, B=-2, C=4$
Obtain a second value
Obtain the third value
[If A and C are found by the cover up rule, give $\mathrm{B} 1+\mathrm{B} 1$ then M1A1 for finding B. If only one is found by the rule, give B1M1A1A1.]
(ii) Separate variables and obtain one term by integrating $\frac{1}{y}$ or a partial fraction

Obtain $\ln y=-\frac{1}{2}-2 \ln (2 x+1)+c$, or equivalent
$\mathrm{A}{ }^{\wedge}$

Question 3

(i) Separate variables correctly and integrate at least one side
Obtain term $\ln t$, or equivalent
Obtain term of the form $a \ln \left(k-x^{3}\right)$
Obtain term $-\frac{2}{3} \ln \left(k-x^{3}\right)$, or equivalent A1
EITHER: Evaluate a constant or use limits $t=1, x=1$ in a solution containing $a \ln t$ and $b \ln \left(k-x^{3}\right)$
Obtain correct answer in any form e.g. $\ln t=-\frac{2}{3} \ln \left(k-x^{3}\right)+\frac{2}{3} \ln (k-1)$
Use limits $t=4, x=2$, and solve for k
OR: Using limits $t=1, x=1$ and $t=4, x=2$ in a solution containing $a \ln t$ and $b \ln \left(k-x^{3}\right)$ obtain an equation in k
Obtain a correct equation in any form, e.g. $\ln 4=-\frac{2}{3} \ln (k-8)+\frac{2}{3} \ln (k-1)$ A1
Solve for k
Obtain $k=9$
Substitute $k=9$ and obtain $x=\left(9-8 t^{-\frac{3}{2}}\right)^{\frac{1}{3}}$
A1
(ii) State that x approaches $9^{\frac{1}{3}}$, or equivalent

Question 4

(i) State or imply $V=\pi h^{3}$

State or imply $\frac{\mathrm{d} V}{\mathrm{~d} t}=-k \sqrt{h}$
B1
Use $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} h} \cdot \frac{\mathrm{~d} h}{\mathrm{~d} t}$, or equivalent
Obtain the given equation A1
[The M1 is only available if $\frac{\mathrm{d} V}{\mathrm{~d} h}$ is in terms of h and has been obtained by a correct method.]
[Allow B1 for $\frac{\mathrm{d} V}{\mathrm{~d} t}=k \sqrt{h}$ but withhold the final A1 until the polarity of the constant $\frac{k}{3 \pi}$ has been justified.]
(ii) Separate variables and integrate at least one side

Obtain terms $\frac{2}{5} h^{\frac{5}{2}}$ and $-A t$, or equivalent
Use $t=\mathrm{v}, h=H$ in a solution containing terms of the form $a h^{\frac{5}{2}}$ and $b t+c$
Use $t=60, h=0$ in a solution containing terms of the form $a h^{\frac{5}{2}}$ and $b t+c$
Obtain a correct solution in any form, e.g. $\frac{2}{5} h^{\frac{5}{2}}=\frac{1}{150} H^{\frac{5}{2}} t+\frac{2}{5} H^{\frac{5}{2}}$
(ii) Obtain final answer $t=60\left(1-\left(\frac{h}{H}\right)^{\frac{5}{2}}\right)$, or equivalent
(iii) Substitute $h=\frac{1}{2} H$ and obtain answer $t=49.4$

Question 5

Use $2 \cos ^{2} x=1+\cos 2 x$ or equivalent
B1
Separate variables and integrate at least one side M1
Obtain $\ln \left(y^{3}+1\right)=\ldots$ or equivalent
Obtain $\ldots=2 x+\sin 2 x$ or equivalent
Use $x=0, y=2$ to find constant of integration (or as limits) in an expression containing at least two terms of the form $a \ln \left(y^{3}+1\right), b x$ or $c \sin 2 x$
Obtain $\ln \left(y^{3}+1\right)=2 x+\sin 2 x+\ln 9$ or equivalent e.g. implied by correct constant
M1*

Identify at least one of $\frac{1}{2} \pi$ and $\frac{3}{2} \pi$ as x-coordinate at stationary point
Use correct process to find y-coordinate for at least one x-coordinate
Obtain 5.9
Obtain 48.1

A1
A1 [10]

Question 6

Separate variables correctly and recognisable attempt at integration of at least one side
Obtain $\ln y$, or equivalent
Obtain $k \ln \left(2+\mathrm{e}^{3 x}\right)$
Use $y(0)=36$ to find constant in $y=A\left(2+\mathrm{e}^{3 x}\right)^{k}$ or $\ln y=k \ln \left(2+\mathrm{e}^{3 x}\right)+c$ or equivalent
Obtain equation correctly without logarithms from $\ln y=\ln \left(A\left(2+\mathrm{e}^{3 x}\right)^{k}\right)$
Obtain $y=4\left(2+e^{3 x}\right)^{2}$

Question 7

(i) State or imply $\frac{\mathrm{d} N}{\mathrm{~d} t}=k N(1-0.01 N)$ and obtain the given answer $k=0.02$
(ii) Separate variables and attempt integration of at least one side

Integrate and obtain term $0.02 t$, or equivalent
Carry out a relevant method to obtain A or B such that $\frac{1}{N(1-0.01 N)} \equiv \frac{A}{N}+\frac{B}{1-0.01 N}$, or equivalent
Obtain $A=1$ and $B=0.01$, or equivalent
Integrate and obtain terms $\ln N-\ln (1-0.01 N)$, or equivalent
Evaluate a constant or use limits $t=0, N=20$ in a solution with terms $a \ln N$ and $b \ln (1-0.01 N), a b \neq 0$
Obtain correct answer in any form, e.g. $\ln N-\ln (1-0.01 N)=0.02 t+\ln 25$
Rearrange and obtain $t=50 \ln (4 N /(100-N))$, or equivalent
(iii) Substitute $N=40$ and obtain $t=49.0$

B1

Question 8

Separate variables correctly and attempt integration of at least one side
Obtain term in the form $a \sqrt{(2 x+1)}$
Express $1 /\left(\cos ^{2} \theta\right)$ as $\sec ^{2} \theta$
Obtain term of the form $k \tan \theta$
Evaluate a constant, or use limits $x=0, \theta=\frac{1}{4} \pi$ in a solution with terms $a \sqrt{(2 x+1)}$ and $k \tan \theta$,
$a k \neq 0$
Obtain correct solution in any form, e.g. $\sqrt{(2 x+1)}=\frac{1}{2} \tan \theta+\frac{1}{2}$
Rearrange and obtain $x=\frac{1}{8}(\tan \theta+1)^{2}-\frac{1}{2}$, or equivalent

Question 9

(i) Separate variables correctly and attempt to integrate at least one side B1
$\begin{array}{ll}\text { Obtain term } \ln R & \text { B1 }\end{array}$
Obtain $\ln x-0.57 x$
Evaluate a constant or use limits $x=0.5, R=16.8$, in a solution containing terms of the form $a \ln R$ and $b \ln x$
Obtain correct solution in any form
Obtain a correct expression for R, e.g. $R=x e^{(3.80-0.57 x)}, R=44.7 x e^{-0.57 x}$ or
$R=33.6 x e^{(0.285-0.57 x)}$
(ii) Equate $\frac{\mathrm{d} R}{\mathrm{~d} x}$ to zero and solve for x

State or imply $x=0.57^{-1}$, or equivalent, e.g. 1.75
Obtain $R=28.8$ (allow 28.9)

Question 10

(i) Sensibly separate variables and attempt integration of at least one side

Obtain $2 y^{\frac{1}{2}}=\ldots$ or equivalent
Correct integration by parts of $x \sin \frac{1}{3} x$ as far as $a x \cos \frac{1}{3} x \pm \int b \cos \frac{1}{3} x \mathrm{~d} x$
Obtain $-3 x \cos \frac{1}{3} x+\int 3 \cos \frac{1}{3} x \mathrm{~d} x$ or equivalent
Obtain $-3 x \cos \frac{1}{3} x+9 \sin \frac{1}{3} x$ or equivalent
Obtain $y=\left(-\frac{3}{10} x \cos \frac{1}{3} x+\frac{9}{10} \sin \frac{1}{3} x+c\right)^{2}$ or equivalent
(ii) Use $x=0$ and $y=100$ to find constant

Question 11

Separate variables and factorise to obtain $\frac{\mathrm{d} y}{(3 y+1)(y+3)}=4 x \mathrm{~d} x$ or equivalent
State or imply the form $\frac{A}{3 y+1}+\frac{B}{y+3}$ and use a relevant method to find A or B
Obtain $A=\frac{3}{8}$ and $B=-\frac{1}{8}$
Integrate to obtain form $k_{1} \ln (3 y+1)+k_{2} \ln (y+3)$
Obtain correct $\frac{1}{8} \ln (3 y+1)-\frac{1}{8} \ln (y=3)=2 x^{2}$ or equivalent M1

Substitute $x=0$ and $y=1$ in equation of form $k_{1} \ln (3 y+1)+k_{2} \ln (y+3)=k_{3} x^{2}+c$
to find a value of c
Obtain $c=0$
Use correct process to obtain equation without natural logarithm present M1
Obtain $y=\frac{3 e^{16 x^{2}}-1}{3-e^{16 x^{2}}}$ or equivalent

Question 12

(i) Separate variables correctly and attempt integration of one side

Obtain term $\ln x$
Obtain term of the form $a \ln \left(k+\mathrm{e}^{-t}\right)$
Obtain term $-\ln \left(k+\mathrm{e}^{-t}\right)$
Evaluate a constant or use limits $x=10, t=0$ in a solution containing terms $a \ln \left(k+\mathrm{e}^{-t}\right)$ and $b \ln x$
Obtain correct solution in any form, e.g. $\ln x-\ln 10=-\ln \left(k+\mathrm{e}^{-t}\right)+\ln (k+1)$
(ii) Substitute $x=20, t=1$ and solve for k

M1 (dep*) Obtain the given answer

A1
(iii) Using $\mathrm{e}^{-t} \rightarrow 0$ and the given value of k, find the limiting value of x

M1
A1

Question 13

(i) Separate variables correctly and integrate one side B1

Obtain term $2 \sqrt{M}$, or equivalent B1
Obtain term $50 k \sin (0.02 t)$, or equivalent B1
Evaluate a constant of integration, or use limits $M=100, t=0$ in a solution with terms of the form $a \sqrt{M}$ and $b \sin (0.02 t) \quad$ M1*
Obtain correct solution in any form, e.g. $2 \sqrt{M}=50 k \sin (0.02 t)+20 \quad$ A1
(ii) Use values $M=196, t=50$ and calculate $k \quad$ M1 (dep*)

Obtain answer $k=0.190$
A1 2
(iii) State an expression for M in terms of t, e.g. $M=(4.75 \sin (0.02 t)+10)^{2} \quad$ M1 (dep*)

State that the least possible number of micro-organisms is 28 or 27.5 or 27.6 (27.5625)

Question 14

Separate variables and integrate one side
B1
Obtain term $\ln (x+2)$
B1
Use $\cos 2 A$ formula to express $\sin ^{2} 2 \theta$ in the form $a+b \cos 4 \theta$
Obtain correct form $(1-\cos 4 \theta) / 2$, or equivalent
Integrate and obtain term $\frac{1}{2} \theta-\frac{1}{8} \sin 4 \theta$, or equivalent
Evaluate a constant, or use $\theta=0, x=0$ as limits in a solution containing terms $c \ln (x+2), d \sin (4 \theta), e \theta$
Obtain correct solution in any form, e.g. $\ln (x+2)=\frac{1}{2} \theta-\frac{1}{8} \sin 4 \theta+\ln 2$
Obtain answer $x=0.962$

Question 15
(i) State $\frac{\mathrm{d} N}{\mathrm{~d} t}=k(N-150)$
(ii) Substitute $\frac{\mathrm{d} N}{\mathrm{~d} t}=60$ and $N=900$ to find value of k

Obtain $k=0.08$
Separate variables and obtain general solution involving $\ln (N-150)$
Obtain $\ln (N-150)=0.08 t+c$ (following their $k)$ or $\ln (N-150)=k t+c$
Substitute $t=0$ and $N=650$ to find c
Obtain $\ln (N-150)=0.08 t+\ln 500$ or equivalent
Obtain $N=500 \mathrm{e}^{0.08 t}+150$
(iii) Either Substitute $t=15$ to find N or solve for t with $N=2000$

Obtain Either $N=1810$ or $t=16.4$ and conclude target not met

Question 16

(i) Separate variables and attempt integration of one side M1
Obtain term $-\mathrm{e}^{-y}$ A1
Integrate $x \mathrm{e}^{x}$ by parts reaching $x \mathrm{e}^{x} \pm \int \mathrm{e}^{x} \mathrm{~d} x$ M1
Obtain integral $x \mathrm{e}^{x}-\mathrm{e}^{x}$ A1
Evaluate a constant, or use limits $x=0, y=0$ M1
Obtain correct solution in any form A1
Obtain final answer $y=-\ln \left(\mathrm{e}^{x}(1-x)\right)$, or equivalent A1
(ii) Justify the given statement

Question 17
Separate variables and attempt integration of at least one side

Obtain correct expression for y, free of logarithms, i.e. $y=2 x \exp \left(1-x^{2}\right)$

Question 18

(i) Separate variables correctly and attempt integration of at least one side

Obtain term $\ln x$
Obtain term of the form $k \ln (3+\cos 2 \theta)$, or equivalent
Obtain term $-\frac{1}{2} \ln (3+\cos 2 \theta)$, or equivalent
Use $x=3, \theta=\frac{1}{4} \pi$ to evaluate a constant or as limits in a solution with terms $a \ln x$ and $b \ln (3+\cos 2 \theta)$, where $a b \neq 0$
State correct solution in any form, e.g. $\ln x=-\frac{1}{2} \ln (3+\cos 2 \theta)+\frac{3}{2} \ln 3$
Rearrange in a correct form, e.g. $x=\sqrt{\left(\frac{27}{3+\cos 2 \theta}\right)}$
(ii) State answer $x=3 \sqrt{3} / 2$, or exact equivalent (accept decimal answer in [2.59, 2.60])

Question 19

Separate variables and make reasonable attempt at integration of either integral
M1
Obtain term $\frac{1}{2} \mathrm{e}^{2 y}$
Use Pythagoras
Obtain terms $\tan x-x$
Evaluate a constant or use $x=0, y=0$ as limits in a solution containing terms $a \mathrm{e}^{ \pm 2 y}$ and $b \tan x,(a b \neq 0)$
Obtain correct solution in any form, e.g. $\frac{1}{2} \mathrm{e}^{2 y}=\tan x-x+\frac{1}{2}$
Set $x=\frac{1}{4} \pi$ and use correct method to solve an equation of the form $\mathrm{e}^{ \pm 2 y}=a$ or $\mathrm{e}^{ \pm y}=a$, where $a>0$
Obtain answer $y=0.179$

Question 20

(i) $\begin{aligned} & \text { Separate variables correctly and integrate at least one side } \\ & \text { Integrate and obtain term } k t \text {, or equivalent }\end{aligned}$

Carry out a relevant method to obtain A and B such that $\frac{1}{x(4-x)} \equiv \frac{A}{x}+\frac{B}{4-x}$, or equivalent
Obtain $A=B=\frac{1}{4}$, or equivalent
Integrate and obtain terms $\frac{1}{4} \ln x-\frac{1}{4} \ln (4-x)$, or equivalent
EITHER: Use a pair of limits in an expression containing $p \ln x, q \ln (4-x)$ and $r t$ and evaluate a constant
Obtain correct answer in any form, e.g. $\ln x-\ln (4-x)=4 k t-\ln 9$,
or $\ln \left(\frac{x}{4-x}\right)=4 k t-8 k$
Use a second pair of limits and determine k
Obtain the given exact answer correctly
(ii)

Substitute $x=3.6$ and solve for t	
Obtain answer $t=4$	M1

Question 21

(i)	State equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x y$	B1	[1]
(ii)	Separate variables correctly and attempts to integrate one side of equation Obtain terms of the form $a \ln y$ and $b x^{2}$ Use $x=0$ and $y=2$ to evaluate a constant, or as limits, in expression containing $a \ln \mathrm{y}$ or $b x^{2}$ Obtain correct solution in any form, e.g. $\ln y=\frac{1}{4} x^{2}+\ln 2$ Obtain correct expression for y, e.g. $y=2 \mathrm{e}^{\frac{1}{4} x^{2}}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[5]
(iii)	Show correct sketch for $x \geqslant 0$. Needs through $(0,2)$ and rapidly increasing positive gradient.	B1	[1]

Question 22

'(i)	State or imply $\frac{\mathrm{d} V}{\mathrm{~d} t}=2 \frac{\mathrm{~d} h}{\mathrm{~d} t}$	B1
	State or imply $\frac{\mathrm{d} V}{\mathrm{~d} t}=1-0.2 \sqrt{h}$	B1
	Obtain the given answer correctly	Total:
(ii)	State or imply $\mathrm{d} u=-\frac{1}{2 \sqrt{h}} \mathrm{~d} h$, or equivalent	B1
Substitute for h and $\mathrm{d} h$ throughout	B1	
Obtain $T=\int_{3}^{5} \frac{20(5-u)}{u} \mathrm{~d} u$, or equivalent	M1	
	Integrate and obtain terms $100 \ln u-20 u$, or equivalent	A1
Substitute limits $u=3$ and $u=5$ correctly	A1	
Obtain answer 11.1, with no errors seen	M1	
		A1

Question 23

(i)	Carry out a relevant method to obtain A and B such that $\frac{1}{x(2 x+3)} \equiv \frac{A}{x}+\frac{B}{2 x+3}$, or equivalent	M1
	Obtain $A=\frac{1}{3}$ and $B=-\frac{2}{3}$, or equivalent	A1
	Total:	2
(ii)	Separate variables and integrate one side	B1
	Obtain term $\ln y$	B1
	Integrate and obtain terms $\frac{1}{3} \ln x-\frac{1}{3} \ln (2 x+3)$, or equivalent	B2 FT
	Use $x=1$ and $y=1$ to evaluate a constant, or as limits, in a solution containing $a \ln y, b \ln x, c \ln (2 x+3)$	M1
	Obtain correct solution in any form, e.g. $\ln y=\frac{1}{3} \ln x-\frac{1}{3} \ln (2 x+3)+\frac{1}{3} \ln 5$	A1
	Obtain answer $y=1.29$ (3s.f. only)	A1
	Total:	7

Question 24

(i)

State $\frac{\mathrm{d} y}{\mathrm{~d} t}=-\frac{2 y}{(1+t)^{2}}$, or equivalent	B1
Separate variables correctly and attempt integration of one side	M1
Obtain term $\ln y$, or equivalent	$\mathbf{A 1}$
Obtain term $\frac{2}{(1+t)}$, or equivalent	$\mathbf{A 1}$
Use $y=100$ and $t=0$ to evaluate a constant, or as limits in an expression containing terms of the form $a \ln y$ and $\frac{b}{1+t}$ M1 Obtain correct solution in any form, e.g. $\ln y=\frac{2}{1+t}-2+\ln 100$ $\mathbf{A 1}$	

(ii)

State that the mass of B approaches $\frac{100}{\mathrm{e}^{2}}$, or exact equivalent	B1	
State or imply that the mass of A tends to zero		B1
	Total:	$\mathbf{2}$

Question 25

(i)	Justify the given differential equation	B1
	Total:	1
(ii)	Separate variables correctly and attempt to integrate one side	B1
	Obtain term $k t$, or equivalent	B1
	Obtain term $-\ln (50-x)$, or equivalent \square	B1
	Evaluate a constant, or use limits $x=0, t=0$ in a solution containing terms $a \ln (50-x)$ and $b t$	M1*
	Obtain solution $-\ln (50-x)=k t-\ln 50$, or equivalent	A1
	Use $x=25, t=10$ to determine k	DM1
	Obtain correct solution in any form, e.g. $\ln 50-\ln (50-x)=\frac{1}{10}(\ln 2) t$	A1
	Obtain answer $x=50(1-\exp (-0.0693 t)$), or equivalent	A1
	Total:	8

Question 26

Separate variables correctly and attempt integration of one side	B1
Obtain term $\tan y$, or equivalent	B1
Obtain term of the form $k \ln \cos x$, or equivalent	M1
Obtain term $-4 \ln \cos x$, or equivalent	A1
Use $x=0$ and $y=\frac{1}{4} \pi$ in solution containing $a \tan y$ and $b \ln \cos x$ to evaluate a constant, or as limits	M1
Obtain correct solution in any form, e.g. $\tan y=4 \ln \sec x+1$	A1
Substitute $y=\frac{1}{3} \pi$ in solution containing terms $a \tan y$ and $b \ln \cos x$, and use correct method to find x	M1
Obtain answer $x=0.587$	A1
Question 27	8
Separate variables and obtain $\int \frac{1}{y} \mathrm{~d} y=\int \frac{x+2}{x+1} \mathrm{~d} x$	B1
Obtain term $\ln y$	B1
Use an appropriate method to integrate ($x+2$)/($x+1$)	*M1
Obtain integral $x+\ln (x+1)$, or equivalent, e.g. $\ln (x+1)+x+1$	A1
Use $x=1$ and $y=2$ to evaluate a constant, or as limits	DM1
Obtain correct solution in x and y in any form e.g. $\ln y=x+\ln (x+1)-1$	A1
Obtain answer $y=(x+1) \mathrm{e}^{x-1}$	A1
	7

Question 28

i(i)	Show sufficient working to justify the given statement	AG
	(ii)	Separate variables correctly and attempt integration of at least one side
	Obtain term $\frac{1}{2} x^{2}$	1
	Obtain terms $\tan ^{2} \theta+\tan \theta$, or $\sec ^{2} \theta+\tan \theta$	B1
Evaluate a constant, or use limits $x=1, \theta=\frac{1}{4} \pi$, in a solution with two terms of the		
form $a x^{2}$ and $b \tan \theta$, where $a b \neq 0$	M1	
State correct answer in any form, e.g. $\frac{1}{2} x^{2}=\tan ^{2} \theta+\tan \theta-\frac{3}{2}$	A1	
	Substitute $\theta=\frac{1}{3} \pi$ and obtain $x=2.54$	A1

Question 29

(i)	Separate variables correctly and integrate at least one side	B1
	Obtain term $\ln x$	B1
	Obtain term $-\frac{2}{3} k t \sqrt{t}$, or equivalent	B1
	Evaluate a constant, or use limits $x=100$ and $t=0$, in a solution containing terms $a \ln x$ and $b t \sqrt{t}$	M1
	Obtain correct solution in any form, e.g. $\ln x=-\frac{2}{3} k t \sqrt{t}+\ln 100$	A1
(ii)	Substitute $x=80$ and $t=25$ to form equation in k	M1
	Substitute $x=40$ and eliminate k	M1
Obtain answer $t=64.1$	A1	
		3

Question 30

(i)	Fully justify the given statement	B1	Some indication of use of gradient of curve $=$ gradient of tangent $(P T)$ and no errors seen /no incorrect statements
		1	
(ii)	Separate variables and attempt integration of at least one side Obtain terms $\ln y$ and $\frac{1}{2} x$	B1 B1	Must be working from $\int \frac{1}{y} \mathrm{~d} y=\int k \mathrm{~d} x$ B marks are not available for fortuitously correct answers
	Use $x=4, y=3$ to evaluate a constant or as limits in a solution with terms $a \ln y$ and $b x$, where $a b \neq 0$	M1	
	Obtain correct solution in any form	A1	$\ln y=\frac{1}{2} x+\ln 3-2$
	Obtain answer $y=3 \mathrm{e}^{\frac{1}{2} x-2}$, or equivalent	A1	Accept $y=\mathrm{e}^{\frac{1}{2} x+\ln 3-2}, y=\mathrm{e}^{\frac{x-1.80}{2}}, y=3 \sqrt{\mathrm{e}^{x-4}}$ $\|y\|=\ldots$ scores A0
		5	

Question 31

(i)	Carry out relevant method to find A and B such that $\frac{1}{4-y^{2}} \equiv \frac{A}{2+y}+\frac{B}{2-y}$	M1
	Obtain $A=B=\frac{1}{4}$	A1
	Total:	2
ii)	Separate variables correctly and integrate at least one side to obtain one of the terms $a \ln x, b \ln (2+y)$ or $c \ln (2-y)$	M1
	Obtain term $\ln x$	B1
	Integrate and obtain terms $\frac{1}{4} \ln (2+y)-\frac{1}{4} \ln (2-y)$	A1FT
	Use $x=1$ and $y=1$ to evaluate a constant, or as limits, in a solution containing at least two terms of the form $a \ln x, b \ln (2+y)$ and $c \ln (2-y)$	M1
	Obtain a correct solution in any form, e.g. $\ln x=\frac{1}{4} \ln (2+y)-\frac{1}{4} \ln (2-y)-\frac{1}{4} \ln 3$	A1
	Rearrange as $\frac{2\left(3 x^{4}-1\right)}{\left(3 x^{4}+1\right)}$,or equivalent	A1
	Total:	6

Question 32

Question 34

Separate variables correctly and attempt integration of at least one side	B1
Obtain term $-\frac{1}{2 y^{2}}$, or equivalent	B1
Obtain term $-k \mathrm{e}^{-x}$	B1
Use a pair of limits, e.g. $x=0, y=1$ to obtain an equation in k and an arbitrary constant c	M1
Use a second pair of limits, e.g. $x=1, y=\sqrt{\mathrm{e}}$, to obtain a second equation and solve for k or for c	M1
Obtain $k=\frac{1}{2}$ and $c=0$	A1
Obtain final answer $y=\mathrm{e}^{\frac{1}{2} x}$, or equivalent	A1

Question 35

(i)	Use chain rule	M1	$\begin{aligned} & k \cos \theta \sin ^{-3} \theta(=-k \operatorname{cosec} 2 \cot \theta) \\ & \text { Allow M1 for }-2 \cos \theta \sin ^{-1} \theta \end{aligned}$
	Obtain correct answer in any form	A1	$\text { e.g. }-2 \operatorname{cosec}^{2} \theta \cot \theta, \frac{-2 \cos \theta}{\sin ^{3} \theta} \text { Accept } \frac{-2 \sin \theta \cos \theta}{\sin ^{4} \theta}$
		2	
(ii)	Separate variables correctly and integrate at least one side	B1	$\int x \mathrm{~d} x=\int-\operatorname{cosec}^{2} \theta \cot \theta \mathrm{~d} \theta$
	Obtain term $\frac{1}{2} x^{2}$	B1	
	Obtain term of the form $\frac{k}{\sin ^{2} \theta}$	M1*	or equivalent
	Obtain term $\frac{1}{2 \sin ^{2} \theta}$	A1	or equivalent
	Use $x=4, \theta=\frac{1}{6} \pi$ to evaluate a constant, or as limits, in a solution with terms $a x^{2}$ and $\frac{b}{\sin ^{2} \theta}$, where $a b \neq 0$	DM1	Dependent on the preceding M1
	Obtain solution $x=\sqrt{\left(\operatorname{cosec}^{2} \theta+12\right)}$	A1	or equivalent
		6	

Question 36

(i)	Separate variables correctly and attempt integration of at least one side	B1	$\int \mathrm{e}^{-y} \mathrm{~d} y=\int x \mathrm{e}^{x} \mathrm{~d} x$
	Obtain term $-\mathrm{e}^{-y}$	B1	B0B1 is possible
	Commence integration by parts and reach $x \mathrm{e}^{x} \pm \int \mathrm{e}^{x} \mathrm{~d} x$	M1	B0B0M1A1 is possible
	Obtain $x \mathrm{e}^{x}-\mathrm{e}^{x}$	A1	or equivalent
			B1B1M1A1 is available if there is no constant of integration
	Use $x=0, y=0$ to evaluate a constant, or as limits in a definite integral, in a solution with terms $a \mathrm{e}^{-y}, b x \mathrm{e}^{x}$ and $c \mathrm{e}^{x}$, where $a b c \neq$ 0	M1	Must see this step
	Obtain correct solution in any form	A1	e.g. $\mathrm{e}^{-y}=\mathrm{e}^{x}-x \mathrm{e}^{x}$
	Rearrange as $y=-\ln (1-x)-x$	A1	or equivalent e.g. $y=\ln \frac{1}{\mathrm{e}^{x}(1-x)}$ ISW
		7	
(ii)	Justify the given statement	B1	e.g. require $1-x>0$ for the \ln term to exist, hence $x<1$ Must be considering the range of values of x, and must be relevant to their y involving $\ln (1-x)$
		1	

Question 37

Separate variables correctly and integrate at least one side	B1
Obtain term $\ln (x+1)$	B1
Obtain term of the form $a \ln \left(y^{2}+5\right)$	M1
Obtain term $\frac{1}{2} \ln \left(y^{2}+5\right)$	A1
Use $y=2, x=0$ to determine a constant, or as limits, in a solution containing terms $a \ln \left(y^{2}+5\right)$ and $b \ln (x+1)$, where $a b \neq 0$	M1
Obtain correct solution in any form	A1
Obtain final answer $y^{2}=9(x+1)^{2}-5$	A1

Question 38

(i)	State $\frac{\mathrm{d} N}{\mathrm{~d} t}=k \mathrm{e}^{-0.02 t} N$ and show $k=-0.01$	B1	OE $(-10=k \times 1 \times 1000)$
		1	
(ii)	Separate variables correctly and integrate at least one side	B1	$\int \frac{1}{N} \mathrm{~d} N=\int-0.01 \mathrm{e}^{-0.02 t} \mathrm{~d} t$
	Obtain term $\ln N$	B1	OE
	Obtain term $0.5 \mathrm{e}^{-0.02 t}$	B1	OE
	Use $N=1000, t=0$ to evaluate a constant, or as limits, in a solution with terms $a \ln N$ and $b \mathrm{e}^{-0.02 t}$, where $a b \neq 0$	M1	
	Obtain correct solution in any form e.g. $\ln N-\ln 1000=0.5\left(\mathrm{e}^{-0.02 t}-1\right)$	A1	$\ln 1000-\frac{1}{2}=6.41$
	Substitute $N=800$ and obtain $t=29.6$	A1	
		6	
iii)	State that N approaches $\frac{1000}{\sqrt{e}}$	B1	Accept 606 or 607 or 606.5
		1	

Question 39

Separate variables correctly to obtain $\int \frac{1}{x+2} \mathrm{~d} x=\int \cot \frac{1}{2} \theta \mathrm{~d} \theta$	B1	Or equivalent integrands. Integral signs SOI
Obtain term $\ln (x+2)$	B1	Modulus signs not needed.
Obtain term of the form $k \ln \sin \frac{1}{2} \theta$	M1	
Obtain term $2 \ln \sin \frac{1}{2} \theta$	M1	Reach $C=$ an expression or a decimal value
Use $x=1, \theta=\frac{1}{3} \pi$ to evaluate a constant, or as limits, in an	A1	ln12 $=2.4849 \ldots . .$. Accept constant to at least 3 s.f.
expression containing $p \ln (x+2)$ and $q \ln \left(\sin \frac{1}{2} \theta\right)$	Accept with ln3-2ln$\frac{1}{2}$	
Obtain correct solution in any form	M1	Need correct algebraic process. $\left(\frac{x+2}{12}=\frac{1-\cos \theta}{2}\right)$
e.g. $\ln (x+2)=2 \ln \sin \frac{1}{2} \theta+\ln 12$	$\mathbf{A 1}$	
Remove logarithms and use correct double angle formula		
Obtain answer $x=4-6 \cos \theta$		

Question 40

(i)	Separate variables correctly and integrate one side	B1
	Obtain term $0.2 t$, or equivalent	B1
	Carry out a relevant method to obtain A and B such that $\frac{1}{(20-x)(40-x)} \equiv \frac{A}{20-x}+\frac{B}{40-x}$	*M1
	$\text { Obtain } A=\frac{1}{20} \text { and } B=-\frac{1}{20}$	A1
	Integrate and obtain terms $-\frac{1}{20} \ln (20-x)+\frac{1}{20} \ln (40-x) \mathrm{OE}$	$\begin{array}{r} \text { A1FT } \\ +\underset{\text { A1FT }}{ } \end{array}$
	Use $x=10, t=0$ to evaluate a constant, or as limits	DM1
	Obtain correct answer in any form	A1
	Obtain final answer $x=\frac{60 \mathrm{e}^{4 t}-40}{3 \mathrm{e}^{4 t}-1}$	A1
		9
(ii)	State that x approaches 20	B1
		1

Question 41

(a)	Separate variables correctly and attempt integration of at least one side	B1
	Obtain term of the form $a \tan ^{-1}(2 y)$	M1
Obtain term $\frac{1}{2} \tan ^{-1}(2 y)$	A1	
Obtain term $-\mathrm{e}^{-x}$	B1	
Use $x=1, y=0$ to evaluate a constant or as limits in a solution containing terms of the form $a \tan ^{-1}(b y)$ and $c \mathrm{e}^{ \pm x}$	M1	
Obtain correct answer in any form	A1	
Obtain final answer $y=\frac{1}{2} \tan \left(2 \mathrm{e}^{-1}-2 \mathrm{e}^{-x}\right)$,or equivalent	A1	
;(b)	State that y approaches $\frac{1}{2} \tan \left(2 \mathrm{e}^{-1}\right)$, or equivalent	7
	B1FT	

Question 42
i(a)

| State $\frac{\mathrm{d} y}{\mathrm{~d} x}=k \frac{y}{x \sqrt{x}}$, or equivalent | B1 |
| :--- | :--- | :--- |
| Separate variables correctly and attempt integration of at least one side | M1 |
| Obtain term $\ln y$, or equivalent | A1 |
| Obtain term $-2 k \frac{1}{\sqrt{x}}$, or equivalent | A1 |
| Use given coordinates to find k or a constant of integration c in a solution containing terms of the form $a \ln y$ and $\frac{b}{\sqrt{x}}$, where | M1 |
| $a b \neq 0$ | A1 + A1 |
| Obtain $k=1$ and $c=2$ | A1 |
| Obtain final answer $y=\exp \left(-\frac{2}{\sqrt{x}}+2\right)$, or equivalent | $\mathbf{8}$ |

(b) \begin{tabular}{l|l|l|l}

State that y approaches e^{2}
(FT their c in part (a) of the correct form)

\hline \&
\end{tabular}

Question 43

Separate variables correctly and integrate at least one side	B1
Obtain term $\ln (y-1)$	B1
Carry out a relevant method to determine A and B such that $\frac{1}{(x+1)(x+3)} \equiv \frac{A}{x+1}+\frac{B}{x+3}$	M1
Obtain $A=\frac{1}{2}$ and $B=-\frac{1}{2}$	A1
Integrate and obtain terms $\frac{1}{2} \ln (x+1)-\frac{1}{2} \ln (x+3) \frac{1}{2} \ln (x+1)-\frac{1}{2} \ln (x+3)$, or equivalent $(\mathbf{F T}$ is on A and $B)$	+ A1 FT
Use $x=0, y=2$ to evaluate a constant, or as limits in a solution containing terms of the form $a \ln (y-1), b \ln (x+1)$ and $c \ln (x+3)$, where $a b c \neq 0$	M1
Obtain correct answer in any form	A1
Obtain final answer $y=1+\sqrt{\left(\frac{3 x+3}{x+3}\right)}$, or equivalent	A1

Question 44

(a)	State or imply $\frac{\mathrm{d} V}{\mathrm{~d} t}=-k \sqrt{h}$	B1
	State or imply $\frac{\mathrm{d} V}{\mathrm{~d} h}=2 \pi r h-\pi h^{2}$, or equivalent	B1
	Use $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} h} \cdot \frac{\mathrm{~d} h}{\mathrm{~d} t}$	M1
	Obtain the given answer correctly	A1
		4
(b)	Separate variables and attempt integration of at least one side	M1
	Obtain terms $\frac{4}{3} r h^{\frac{3}{2}}-\frac{2}{5} h^{\frac{5}{2}}$ and $-B t$	A3, 2, 1, 0
	Use $t=0, h=r$ to find a constant of integration c	M1
	Use $t=14, h=0$ to find B	M1
	Obtain correct c and B, e.g. $c=\frac{14}{15} r^{\frac{5}{2}}, B=\frac{1}{15} r^{\frac{5}{2}}$	A1
	Obtain final answer $t=14-20\left(\frac{h}{r}\right)^{\frac{3}{2}}+6\left(\frac{h}{r}\right)^{\frac{5}{2}}$, or equivalent	A1
		8

Question 45

Separate variables correctly and attempt integration of at least one side	$\mathbf{B} 1$	$\frac{1}{y} \mathrm{~d} y=\frac{1-2 x^{2}}{x} \mathrm{~d} x$		
Obtain term $\ln y$	B1			
Obtain terms $\ln x-x^{2}$	M1			
Use $x=1, y=1$ to evaluate a constant, or as limits, in a solution containing at least 2 terms of the form $a \ln y, b \ln x$ and $c x^{2}$	A1			
Obtain correct solution in any form $y=\ln x-x^{2}+1$			\quad	A1
:---				
Rearrange and obtain $y=x e^{1-x^{2}}$				

Question 46

(a)	Correct separation of variables	B1	$\int \sec ^{2} 2 x \mathrm{~d} x=\int \mathrm{e}^{-3 t} \mathrm{~d} t$ Needs correct structure
	Obtain term $-\frac{1}{3} \mathrm{e}^{-3 t}$	B1	
	Obtain term of the form $k \tan 2 x$	M1	From correct working
	Obtain term $\frac{1}{2} \tan 2 x$	A1	
	Use $x=0, t=0$ to evaluate a constant, or as limits in a solution containing terms of the form $a \tan 2 x$ and $b \mathrm{e}^{-3 t}$, where $a b \neq 0$	M1	
	Obtain correct solution in any form	A1	e.g. $\frac{1}{2} \tan 2 x=-\frac{1}{3} \mathrm{e}^{-3 t}+\frac{1}{3}$
	Obtain final answer $x=\frac{1}{2} \tan ^{-1}\left(\frac{2}{3}\left(1-\mathrm{e}^{-3 t}\right)\right)$	A1	
		7	
(b)	State that x approaches $\frac{1}{2} \tan ^{-1}\left(\frac{2}{3}\right)$	B1 FT	Correct value. Accept $x \rightarrow 0.294$ The FT is dependent on letting $\mathrm{e}^{-3 t} \rightarrow 0$ in a solution containing $\mathrm{e}^{-3 t}$.
		1	

Question 47

Separate variables correctly and attempt integration of at least one side	$\mathbf{B} 1$	$\frac{1}{y} \mathrm{~d} y=\frac{1-2 x^{2}}{x} \mathrm{~d} x$
Obtain term $\ln y$	$\mathbf{B 1}$	
Obtain terms $\ln x-x^{2}$	$\mathbf{B 1}$	
Use $x=1, y=1$ to evaluate a constant, or as limits, in a solution containing at least 2 terms of the form $a \ln y, b \ln x$ and $c x^{2}$	$\mathbf{M 1}$	The 2 terms of required form must be from correct working e.g. $\ln y=\ln x-x^{2}+1$
Obtain correct solution in any form	$\mathbf{A 1}$	
Rearrange and obtain $y=x e^{1-x^{2}}$	$\mathbf{6}$	OE

Question 48

(a)	Separate variables correctly and attempt integration of at least one side	M1
Obtain term $\ln y$	A1	
Obtain term of the form $\pm \ln (1-\cos x)$	M1	
Obtain term $\ln (1-\cos x)$	A1	
Use $x=\pi, y=4$ to evaluate a constant, or as limits, in a solution containing terms of the form $a \ln y$ and $b \ln (1-\cos x)$	M1	
Obtain final answer $y=2(1-\cos x)$	A1	
	$\mathbf{6}$	

(b) Show a correct graph for $0<x<2 \pi$ with the maximum at $x=\pi$

Question 49

(a)(i)	Justify the given statement $\frac{M N}{y}=\frac{\mathrm{d} y}{\mathrm{~d} x}$	B1
		$\mathbf{1}$
(a)(ii)	Express the area of $P M N$ in terms of y and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and equate to tan x	$\mathbf{M 1}$
	Obtain the given equation correctly	$\mathbf{A 1}$

(b) \begin{tabular}{l|l|c}
Separate variables and integrate at least one side \& M1

\hline Obtain term $\frac{1}{6} y^{3}$ \& A1

\cline { 2 - 3 } \& Obtain term of the form $\pm \ln \cos x$ \& M1

\hline | Evaluate a constant or use $x=0$ and $y=1$ in a solution containing |
| :--- |
| terms $a y^{3}$ and $\pm \ln \cos x$, or equivalent | \& M1

\hline Obtain correct answer in any form, e.g. $\frac{1}{6} y^{3}=-\ln \cos x+\frac{1}{6}$ \& A1

\hline Obtain final answer $y=\sqrt[3]{(1-6 \ln \cos x)}$ \& A1

\hline \& $\mathbf{6}$
\end{tabular}

Question 50

State equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=k \frac{y}{\sqrt{x+1}}$	B1
Separate variables correctly for their differential equation and integrate at least one side	*M1
Obtain $\ln y$	A1
Obtain $2[k] \sqrt{x+1}$	A1
Use $(0,1)$ and $(3$, e) in an expression containing ln y and $\sqrt{x+1}$ and a constant of integration to determine k and/or a constant of integration c (or use $(0,1),(3, \mathrm{e})$ and (x, y) as limits on definite integrals)	DM1
Obtain $k=\frac{1}{2}$ and $c=-1$	A1
Obtain $y=\exp (\sqrt{x+1}-1)$	A1

Question 51

State a suitable form of partial fractions for $\frac{1}{x^{2}(1+2 x)}$	B1
Use a relevant method to determine a constant	M1
Obtain one of $A=-2, B=1$ and $C=4$	A1
Obtain a second value	A1
Obtain the third value	A1
Separate variables correctly and integrate at least one term	M1
Obtain terms $-2 \ln x-\frac{1}{x}+2 \ln (1+2 x)$ and t	M1
Evaluate a constant, or use limits $x=1, t=0$ in a solution containing terms t, $a \ln x$ and $b \ln (1+2 x)$, where $a b \neq 0$	A1
Obtain a correct expression for t in any form, e.g. $t=-\frac{1}{x}+2 \ln \left(\frac{1+2 x}{3 x}\right)+1$	$\mathbf{1 1}$

Question 52

(a)	State or imply equation of the form $\frac{\mathrm{d} x}{\mathrm{~d} t}=k \frac{x}{20-x}$	M1	
	Obtain $k=19$	A1	AG
		2	
(b)	Separate variables and integrate at least one side	M1	
	Obtain terms $20 \ln x-x$ and 19t, or equivalent	A1 A1	
	Evaluate a constant or use $t=0$ and $x=1$ as limits in a solution containing terms $a \ln x$ and $b t$	M1	
	Substitute $t=1$ and rearrange the equation in the given form	A1	AG
		5	
(c)	Use $x_{n+1}=\mathrm{e}^{0.9+0.05 x_{n}}$ correctly at least once	M1	
	Obtain final answer $x=2.83$	A1	
	Show sufficient iterations to 4 decimal places to justify 2.83 to 2 d.p. or show there is a sign change in the interval $(2.825,2.835)$	A1	
		3	
(d)	Set $x=20$ and obtain answer $t=2.15$	B1	
		1	

Question 53

Separate variables correctly	B1	$\int \frac{1}{y^{2}} \mathrm{~d} y=\int 4 x \mathrm{e}^{-2 x} \mathrm{~d} x$
$\int \frac{1}{y^{2}} \mathrm{~d} y=-\frac{1}{y}$	B1	OE
Commence the other integration and reach $a x \mathrm{e}^{-2 x}+b \int \mathrm{e}^{-2 x} \mathrm{~d} x$	M1	
Obtain $-2 x \mathrm{e}^{-2 x}+2 \int \mathrm{e}^{-2 x} \mathrm{~d} x$ or $-\frac{1}{2} x \mathrm{e}^{-2 x}+\frac{1}{2} \int \mathrm{e}^{-2 x} \mathrm{~d} x$	A1	SOI (might have taken out factor of 4)
Complete integration and obtain $-2 x \mathrm{e}^{-2 x}-\mathrm{e}^{-2 x}$	A1	
Evaluate a constant or use $x=0$ and $y=1$ as limits in a solution containing	M1	
terms of the form $\frac{p}{y}, q x \mathrm{e}^{-2 x}, r \mathrm{e}^{-2 x}$, or equivalent.	A1	ISW
Obtain $y=\frac{\mathrm{e}^{2 x}}{2 x+1}$, or equivalent expression for y	$\mathbf{7}$	

Question 54

'(a)	Show sufficient working to justify the given answer	B1	
		1	
(b)	Correct separation of variables	B1	$\text { e.g. }-\int \frac{1}{t} \mathrm{~d} t=\int \frac{1}{x \ln x} \mathrm{~d} x$
	Obtain term $\ln (\ln x)$	B1	
	Obtain term $-\ln t$	B1	
	Evaluate a constant or use $x=\mathrm{e}$ and $t=2$ as limits in an expression involving $\ln (\ln x)$	M1	
	Obtain correct solution in any form, e.g. $\ln (\ln x)=-\ln t+\ln 2$	A1	
	Use log laws to enable removal of logarithms	M1	
	Obtain answer $x=\mathrm{e}^{\frac{2}{t}}$, or simplified equivalent	A1	
		7	
'(c)	State that x tends to 1 coming from $x=\mathrm{e}^{\frac{k}{t}}$	B1	
Qu	tion 55	1	

Correctly separate variables and integrate at least one side	M1	To obtain $a \ln y$ or $b \ln (x+1)+c \ln (3 x+1)$
Obtain term $\ln y$ from integral of $1 / y$	B1	
State or imply the form $\frac{A}{x+1}+\frac{B}{3 x+1}$ and use a correct method to find a constant	M1	
Obtain $A=-\frac{1}{2}$ and $B=\frac{3}{2}$	A1	
Obtain terms $-\frac{1}{2} \ln (x+1)+\frac{1}{2} \ln (3 x+1)$ or $-\frac{1}{2} \ln (2 x+2)+\frac{1}{2} \ln (6 x+2)$ or combination of these terms	$\begin{array}{r} \mathbf{A 1 F T} \\ +\mathrm{A} 1 \\ \text { FT } \end{array}$	The FT is on the values of A and B.
Use $x=1$ and $y=1$ to evaluate a constant, or expression for a constant, (decimal equivalent of \ln terms allowed) or as limits, in a solution containing terms $a \ln y, b \ln (x+1)$ and $c \ln (3 x+1)$, where $a b c \neq 0$	*M1	$\text { e.g. } \ln y=-\frac{1}{2} \ln (x+1)+\frac{1}{2} \ln (3 x+1)-\frac{1}{2} \ln 2$
Obtain an expression for y or y^{2} and substitute $x=3$	DM1	Do not accept decimal equivalent of \ln terms
Obtain answer $y=\frac{1}{2} \sqrt{5}$ or $\sqrt{\frac{5}{4}}$ or $\sqrt{\frac{10}{8}}$	A1	ISW. Must be simplified and exact, do not allow 1.118 or $\mathrm{e}^{\frac{1}{2} \ln \frac{5}{4}}$.
	9	

Question 56

(a)

Separate variables correctly	B1	$\frac{\mathrm{d} N}{N^{\frac{3}{2}}}=(k \cos 0.02 t) \mathrm{d} t$ Allow without integral signs.
$\text { Obtain term }-\frac{2}{\sqrt{N}}$	B1	OE Ignore position of k.
Obtain term $50 \sin 0.02 t$	B1	OE Ignore position of k.
Use $t=0, N=100$ to evaluate a constant, or as limits, in a solution containing terms $\frac{a}{\sqrt{N}}$ and $b \sin 0.02 t$, where $a b \neq 0$	M1	$\left[\right.$ e.g. $c=-0.2$ or $\left.c=\frac{-0.2}{k}\right]$
Obtain correct solution in any form, e.g. $-\frac{2}{\sqrt{N}}=50 k \sin 0.02 t-0.2$	A1	OE ISW $\begin{aligned} & \text { e.g. } N=\frac{1}{(25 k \sin 0.02 t-0.1)^{2}} \quad-2 N^{-\frac{1}{2}}=\frac{k}{0.02} \sin 0.02 t-\frac{1}{5} \\ & 50 k \sin 0.02 t=-\frac{2}{\sqrt{N}}+\frac{1}{5} \quad \frac{1}{\sqrt{N}}=-\frac{1}{2} k(50 \sin 0.02 t)+\frac{1}{10} \\ & 50 \sin \left(\frac{1}{50} t\right)=-\frac{2 \sqrt{N}}{k N}+\frac{20}{100 k} \end{aligned}$
	5	
Use the substitution $N=625$ and $t=50$ in expression of appropriate form to evaluate k	M1	Expression must contain $a+b k \sin 0.02 t,(\sqrt{N})^{ \pm n}$, where $n=-1,1,3$ or 5 and a and b are constants $a b \neq 0$ or $(a+b k \sin 0.02 t)^{ \pm 2}$ and $(N)^{ \pm n}$. Allow with k replaced by $\frac{1}{k}$, error due to $k\left(N^{-3 / 2}\right)$ when separating variables in $\mathbf{8 (a)}$. If invert term by term when 3 terms shown then M0.
Obtain $k=0.00285[2148]$	A1	Must evaluate $\sin 1$. Degrees $k=0.138$ M1 A0.
	2	

;(c)
Rearrange and obtain $N=4(0.2-0.142(607) \sin 0.02 t)^{-2}$
Substitution for k required

$|$

M1 Anything of the form $N=c(d-e k \sin 0.02 t)^{-2}$, where c, d and e are constants $c d e \neq 0$ and value of k substituted. Allow with k replaced by $1 / k$, error due to $k\left(N^{-3 / 2}\right)$ when separating variables in $8(a)$.
OE ISW
e.g.
$N=\left(-\frac{10}{0.7125 \sin 0.02 t-1}\right)^{2} N=\frac{1}{(-0.0713 \sin 0.02 t+0.1)^{2}}$
$N=\frac{100}{\left(\left(\frac{0.6}{\sin 1}\right) \sin 0.02 t-1\right)^{2}} \quad N=\frac{1}{\left(\frac{3}{-50 \sin 1} \times \sin 0.02 t+\frac{1}{10}\right)^{2}}$
$N=\left(-\frac{0.06}{\sin 1} \sin 0.02 t+0.1\right)^{-2} \quad N=\left(\frac{800}{80-57 \sin 0.02 t}\right)^{2}$
Do not need to substitute for $\sin (0.02 t)=1$, but must substitute for k.

A1 ISW
Substitute $\sin 0.02 t=1$ or $t=50 \sin ^{-1} 1$ or 78.5 or 25π.
Answer with no working (rubric) $0 / 2$.
$\mathbf{S C} N=\ldots$ not seen but correct numerical answer B1 $1 / 2$.

Question 57

(a)	Correct separation of variables	B1	$\int \mathrm{e}^{-y} \mathrm{~d} y=\int x \mathrm{e}^{-x} \mathrm{~d} x \quad$ Condone missing integral signs.
	Obtain term $-\mathrm{e}^{-y}$	B1	
	Commence integration by parts and reach $\pm x \mathrm{e}^{-x} \pm \int \mathrm{e}^{-x} \mathrm{~d} x$	*M1	M0 if clearly using differentiation of a product.
	Complete integration and obtain $-x \mathrm{e}^{-x}-\mathrm{e}^{-x}$	A1	
	Use $x=0$ and $y=0$ to evaluate a constant or as limits in a solution containing or derived from terms $a \mathrm{e}^{-y}, b x \mathrm{e}^{-x}$ and $c \mathrm{e}^{-x}$, where $a b c \neq 0$	DM1	Must see working for this. In a correct solution they should have $-\mathrm{e}^{-y}+C=-x \mathrm{e}^{-x}-\mathrm{e}^{-x}$ or equivalent. If they take logarithms before finding the constant, the constant must be of the right form.
	Correct solution in any form Must follow from correct working	A1	e.g. $-e^{-y}=-x e^{-x}-e^{-x}$ A0 if constant of integration ignored or assumed to be zero.
	Obtain final answer $y=-\ln \left((x+1) \mathrm{e}^{-x}\right)$ from correct working	A1	OE e.g. $y=x-\ln (x+1), y=\ln \left(\frac{\mathrm{e}^{x}}{x+1}\right)$. A0 if constant of integration ignored or assumed to be zero.
		7	
(b)	Obtain answer ($y=) 1-\ln 2$	B1	Must follow from at least 6 or7 obtained in part 6(a).
		1	

Question 58

Separate variables correctly	B1	$\int \frac{x}{1+x^{2}} \mathrm{~d} x=\int \frac{1}{y} \mathrm{~d} y$ Accept without integral signs.		
Obtain term $\ln y$	M1			
State term of the form $k \ln \left(1+x^{2}\right)$	A1	OE		
State correct term $\frac{1}{2} \ln \left(1+x^{2}\right)$	M1	If they remove logs first the constant must be of the correct form.		
Evaluate a constant, or use limits $x=0, y=2$ in a solution containing terms $a \ln y$ and $b \ln \left(1+x^{2}\right)$ where $a b \neq 0$	A1	e.g ln $y+\ln \frac{1}{2}=\frac{1}{2} \ln \left(1+x^{2}\right)$		Obtain correct solution in any form
:---				
Simplify and obtain $y=2 \sqrt{1+x^{2}}$				

Question 59

(a)	$a=30$ and $b=0.01$	B1	
		1	
(b)	Separate variables and integrate one side	M1	
	Obtain terms $-100 \ln (30-0.01 \mathrm{~V})$ and t, or equivalent	$\begin{array}{r} \text { A1 FT } \\ + \text { A1 FT } \end{array}$	FT their a and b.
	Evaluate a constant, or use $t=0, V=0$ as limits, in a solution containing terms c $\ln (30-0.01 V)$ and $d t$ where $c d \neq 0$	M1	
	Obtain solution $100 \ln 30-100 \ln (30-0.01 \mathrm{~V})=t$, or equivalent	A1	
	Substitute $V=1000$ and obtain answer $t=40.5$	A1	
		6	
(c)	Obtain $V=3000\left(1-\mathrm{e}^{-0.01 t}\right)$	B1	OE
	State that V approaches 3000	B1	
		2	

Question 60

'(a) Show sufficient working to justify the given statement

		or ru pr
	$\mathbf{1}$	

(b)	Separate variables correctly Check for relevant working in (a)	B1	$\int x \mathrm{~d} x=\int \frac{\tan ^{2} \theta}{\sin ^{2} \theta}-\frac{2 \cot \theta}{\sin ^{2} \theta} \mathrm{~d} \theta$ Condone incorrect notation e.g. missing $\mathrm{d} x$. Need either the integral sign or the $\mathrm{d} x, \mathrm{~d} \theta$.
	Obtain term $\frac{1}{2} x^{2}$	B1	
	Obtain terms $\tan \theta+\cot ^{2} \theta$	B1 + B1	Alternative: $\int \frac{2 \cot \theta}{\sin ^{2} \theta} \mathrm{~d} \theta=\int \frac{2 \cos \theta}{\sin ^{3} \theta} \mathrm{~d} \theta=-\frac{1}{\sin ^{2} \theta}(+C)$
	Form an equation for the constant of integration, or use limits $x=2, \theta=\frac{1}{4} \pi$, in a solution with at least two correctly obtained terms of the form $a x^{2}, b \tan \theta$ and $\cot ^{2} \theta$, where $a b c \neq 0$	M1	Need to have 3 terms. Constant of correct form.
	State correct solution in any form, e.g. $\frac{1}{2} x^{2}=\tan \theta+\cot ^{2} \theta$	A1	or $\frac{1}{2} x^{2}=\boldsymbol{\operatorname { t a n }} \theta+\operatorname{cosec}^{2} \theta-1$ If everything else is correct, allow a correct final answer to imply this A1.
	Substitute $\theta=\frac{1}{6} \pi$ and obtain answer $x=2.67$	A1	$2.6748 \ldots \sqrt{\frac{18+2 \sqrt{3}}{3}}$ If see a correctly rounded value ISW.
		7	

Question 61

(a)	Separate variables correctly	B1	$\int \frac{1}{x} \mathrm{~d} x=\int k \mathrm{e}^{-0.1 t} \mathrm{~d} t$
	Obtain term $\ln x$	B1	
	Obtain term $-10 \mathrm{k}^{-0.1 t}$	B1	Not from $\int x \mathrm{e}^{-0.1 t} \mathrm{~d} t$
	Use $x=20, t=0$ to evaluate a constant or as limits in a solution containing terms $a \ln x, b e^{-0.1 t}$ where $a b \neq 0$	M1	
	Obtain $\ln x=10 k\left(1-\mathrm{e}^{-0.1 t}\right)+\ln 20$	A1	or equivalent ISW
		5	
(b)	Use $x=40, t=10$ to find k or $10 k$	M1	Available for their function of the correct structure even if they found no constant in (a).
	Obtain $10 k=1.09654$	A1	or equivalent e.g. $10 k=\frac{\ln 2}{1-e^{-1}}$
	State that x tends to 59.9	A1	Need a number, not an expression for that value 3 sf or better $59.87595 \ldots .$.
		3	

Question 62

Separate variables correctly and obtain $\mathrm{e}^{-3 y}$ and $\sin ^{2} 2 x$ on the opposite sides	B1	
Obtain term $-\frac{1}{3} \mathrm{e}^{-3 y}$	B1	
Use correct double angle formula for $\sin ^{2} 2 x=(1 / 2)[1-\cos 4 x]$	M1	
Obtain terms $\frac{1}{2}\left[x-\frac{1}{4} \sin 4 x\right]$ oe	A1	
Use $x=0, y=0$ to evaluate a constant or as limits in a solution containing terms of the form $a x$ and $b \sin 4 x$ and $c \mathrm{e}^{ \pm 3 y}$	M1	
Obtain correct answer in any form		
e.g. $-\frac{1}{3} \mathrm{e}^{-3 y}=\frac{1}{2}\left[x-\frac{1}{4} \sin 4 x\right]-\frac{1}{3}$	A1	
Substitute $x=\frac{1}{2}$ and obtain $y=0.175$ or $-\frac{1}{3} \ln \left(\frac{1}{4}+\frac{3}{8} \sin 2\right)$	A1	OE ISW

Question 63

Separate the variables correctly	B1	$\frac{y+4}{y^{2}+4} \mathrm{~d} y=\frac{1}{x} \mathrm{~d} x .$
Obtain $\ln x$	B1	
Split the fraction and integrate to obtain $p \ln \left(y^{2}+4\right)$ or $q \tan ^{-1} \frac{y}{2}$ correctly	*M1	Only following subdivision into $\frac{y}{y^{2}+4}+\frac{4}{y^{2}+4}$. If no subdivision seen then both terms $p \ln \left(y^{2}+4\right)$ and $q \tan ^{-1} \frac{y}{2}$ must be present.
Obtain $\frac{1}{2} \ln \left(y^{2}+4\right)$	A1	
Obtain $2 \tan ^{-1} \frac{y}{2}$	A1	
Use $(4,2 \sqrt{3})$ in an expression containing at least 2 of $a \ln x, b \ln \left(y^{2}+4\right)$ and $c \tan ^{-1} \frac{y}{2}$ to obtain constant of integration	DM1	Allow one sign or arithmetic error e.g. $\frac{2 \pi}{3}$. May use $(4,2 \sqrt{3})$ and $(x, 2)$ as limits to find x for the final 3 marks.
Correct solution (any form) e.g. $\frac{1}{2} \ln \left(y^{2}+4\right)+2 \tan ^{-1} \frac{y}{2}=\ln x+\frac{2 \pi}{3}$ or $\frac{1}{2} \ln \left(y^{2}+4\right)+2 \tan ^{-1} \frac{y}{2}=\ln x+2 \tan ^{-1} \sqrt{3}+\frac{1}{2} \ln 16-\ln 4$	A1	However solution not asked for so allow $\frac{1}{2} \ln 8+2 \tan ^{-1} 1=\ln x+2 \tan ^{-1} \sqrt{3}+\frac{1}{2} \ln 16-\ln 4 .$
Obtain $\sqrt{8} \mathrm{e}^{-\frac{1}{6} \pi}$ or 1.68 or more accurate or $2 \sqrt{2} \mathrm{e}^{-\frac{1}{6} \pi}$ or $\frac{\sqrt{8}}{\mathrm{e}^{\frac{1}{6} \pi}}$ or $\mathrm{e}^{0.516}$	A1	ISW Must remove \ln so $x=\mathrm{e}^{(\ln 2 \sqrt{2}-\pi / 6)} \mathrm{A} 0$.

Alternative method for first *M1 A1 A1

$p\left((y+4) \tan ^{-1} \frac{y}{2}-\int \tan ^{-1} \frac{y}{2} \mathrm{~d} y\right)$	*M1	Allow sign error.
$(y+4) \frac{1}{2} \tan ^{-1} \frac{y}{2}-\frac{y}{2} \tan ^{-1} \frac{y}{2}+\int \frac{y}{y^{2}+4} \mathrm{~d} y$	$\mathbf{A 1}$	
Obtain $2 \tan ^{-1} \frac{y}{2}+\frac{1}{2} \ln \left(y^{2}+4\right)$	$\mathbf{A 1}$	
	$\mathbf{8}$	

Question 64

(a)	Separate variables correctly	B1	$\int \frac{1}{4+9 y^{2}} \mathrm{~d} y=\int \mathrm{e}^{-(2 x+1)} \mathrm{d} x$ Condone missing integral signs or $\mathrm{d} x$ and $\mathrm{d} y$ missing.
	$\text { Obtain term }-\frac{1}{2} \mathrm{e}^{-2 x-1}$	B1	$\text { OE e.g. }-\frac{1}{2 \mathrm{e}} \mathrm{e}^{-2 x}$
	Obtain term of the form $a \tan ^{-1}\left(\frac{3 y}{2}\right)$	M1	
	Obtain term $\frac{1}{6} \tan ^{-1}\left(\frac{3 y}{2}\right)$	A1	OE e.g. $\frac{1}{9} \times \frac{3}{2} \tan ^{-1} \frac{3 y}{2}$.
	Use $x=1, y=0$ to evaluate a constant or as limits in a solution containing or derived from terms of the form $a \tan ^{-1}(b y)$ and $c \mathrm{e}^{ \pm(2 x+1)}$	M1	If they rearrange before evaluating the constant, the constant must be of the correct form.
	Obtain correct answer in any form	A1	$\text { e.g. } \frac{1}{6} \tan ^{-1} \frac{3 y}{2}=\frac{1}{2} \mathrm{e}^{-3}-\frac{1}{2} \mathrm{e}^{-(2 x+1)} \text {. }$
	Obtain final answer $y=\frac{2}{3} \tan \left(3 \mathrm{e}^{-3}-3 \mathrm{e}^{-2 x-1}\right)$	A1	OE Allow with $3 \mathrm{e}^{-3}=0.149 \ldots$
		7	
(b)	State that y approaches $\frac{2}{3} \tan \left(3 \mathrm{e}^{-3}\right)$	B1 FT	Or exact equivalent. The FT is on correct work on a solution containing $\mathrm{e}^{-2 x-1}$. Condone $y=\ldots$ Accept correct answer stated with minimal wording. $0.10032 \ldots$ is not exact so $B 0$.
		1	
Question 65			
Corr	separation of variables	B1	$\int \sin ^{2} 3 y \mathrm{~d} y=\int 4 \sec 2 x \tan 2 x \mathrm{~d} x$ or equivalent. Condone missing integral signs or $\mathrm{d} x$ and $\mathrm{d} y$.
Integrate to obtain $k \sec 2 x$		M1	
Obtain $2 \sec 2 x$		A1	
Use double angle formula and integrate to obtain $p y+q \sin 6 y$		M1	Or two cycles of integration by parts.
$\text { Obtain } \frac{1}{2} y-\frac{1}{12} \sin 6 y$		A1	
Use $y=0, x=\frac{\pi}{6}$ in a solution containing terms $\lambda \sec 2 x$ and $\mu \sin 6 y$ to find the constant of integration		M1	
$\text { Obtain } \frac{1}{2} y-\frac{1}{12} \sin 6 y=2 \sec 2 x-4$		A1	Or equivalent seen or implied by $\frac{\pi}{2}\left(-\frac{1}{12} \sin \pi\right)=2 \sec 2 x-4$
Obtain $x=0.541$		A1	From correct working (not by using the calculator to integrate).
		8	

