A-level
 Topic :Differential Equation
 May 2013-May 2023
 Questions

Question 1

Liquid is flowing into a small tank which has a leak. Initially the tank is empty and, t minutes later, the volume of liquid in the tank is $V \mathrm{~cm}^{3}$. The liquid is flowing into the tank at a constant rate of $80 \mathrm{~cm}^{3}$ per minute. Because of the leak, liquid is being lost from the tank at a rate which, at any instant, is equal to $k V \mathrm{~cm}^{3}$ per minute where k is a positive constant.
(i) Write down a differential equation describing this situation and solve it to show that

$$
\begin{equation*}
V=\frac{1}{k}\left(80-80 \mathrm{e}^{-k t}\right) . \tag{7}
\end{equation*}
$$

(ii) It is observed that $V=500$ when $t=15$, so that k satisfies the equation

$$
k=\frac{4-4 \mathrm{e}^{-15 k}}{25}
$$

Use an iterative formula, based on this equation, to find the value of k correct to 2 significant figures. Use an initial value of $k=0.1$ and show the result of each iteration to 4 significant figures.
(iii) Determine how much liquid there is in the tank 20 minutes after the liquid started flowing, and state what happens to the volume of liquid in the tank after a long time.

Question 2
(i) Express $\frac{1}{x^{2}(2 x+1)}$ in the form $\frac{A}{x^{2}}+\frac{B}{x}+\frac{C}{2 x+1}$.
(ii) The variables x and y satisfy the differential equation

$$
y=x^{2}(2 x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}
$$

and $y=1$ when $x=1$. Solve the differential equation and find the exact value of y when $x=2$. Give your value of y in a form not involving logarithms.

Question 3

The variables x and t satisfy the differential equation

$$
t \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{k-x^{3}}{2 x^{2}}
$$

for $t>0$, where k is a constant. When $t=1, x=1$ and when $t=4, x=2$.
(i) Solve the differential equation, finding the value of k and obtaining an expression for x in terms of t.
(ii) State what happens to the value of x as t becomes large.

Question 4

A tank containing water is in the form of a cone with vertex C. The axis is vertical and the semivertical angle is 60°, as shown in the diagram. At time $t=0$, the tank is full and the depth of water is H. At this instant, a tap at C is opened and water begins to flow out. The volume of water in the tank decreases at a rate proportional to $\sqrt{ } h$, where h is the depth of water at time t. The tank becomes empty when $t=60$.
(i) Show that h and t satisfy a differential equation of the form

$$
\begin{equation*}
\frac{\mathrm{d} h}{\mathrm{~d} t}=-A h^{-\frac{3}{2}}, \tag{4}
\end{equation*}
$$

where A is a positive constant.
(ii) Solve the differential equation given in part (i) and obtain an expression for t in terms of h and H.
(iii) Find the time at which the depth reaches $\frac{1}{2} H$.
[The volume V of a cone of vertical height h and base radius r is given by $V=\frac{1}{3} \pi r^{2} h$.]

Question 5

A particular solution of the differential equation

$$
3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=4\left(y^{3}+1\right) \cos ^{2} x
$$

is such that $y=2$ when $x=0$. The diagram shows a sketch of the graph of this solution for $0 \leqslant x \leqslant 2 \pi$; the graph has stationary points at A and B. Find the y-coordinates of A and B, giving each coordinate correct to 1 decimal place.

Question 6

The variables x and y are related by the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 y \mathrm{e}^{3 x}}{2+\mathrm{e}^{3 x}} \tag{6}
\end{equation*}
$$

Given that $y=36$ when $x=0$, find an expression for y in terms of x.

Question 7

The population of a country at time t years is N millions. At any time, N is assumed to increase at a rate proportional to the product of N and $(1-0.01 N)$. When $t=0, N=20$ and $\frac{\mathrm{d} N}{\mathrm{~d} t}=0.32$.
(i) Treating N and t as continuous variables, show that they satisfy the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} N}{\mathrm{~d} t}=0.02 N(1-0.01 N) \tag{1}
\end{equation*}
$$

(ii) Solve the differential equation, obtaining an expression for t in terms of N.
(iii) Find the time at which the population will be double its value at $t=0$.

Question 8

The variables x and θ satisfy the differential equation

$$
2 \cos ^{2} \theta \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=\sqrt{ }(2 x+1)
$$

and $x=0$ when $\theta=\frac{1}{4} \pi$. Solve the differential equation and obtain an expression for x in terms of θ.

Question 9

In a certain country the government charges tax on each litre of petrol sold to motorists. The revenue per year is R million dollars when the rate of tax is x dollars per litre. The variation of R with x is modelled by the differential equation

$$
\frac{\mathrm{d} R}{\mathrm{~d} x}=R\left(\frac{1}{x}-0.57\right)
$$

where R and x are taken to be continuous variables. When $x=0.5, R=16.8$.
(i) Solve the differential equation and obtain an expression for R in terms of x.
(ii) This model predicts that R cannot exceed a certain amount. Find this maximum value of R.

Question 10
The variables x and y are related by the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{5} x y^{\frac{1}{2}} \sin \left(\frac{1}{3} x\right)
$$

(i) Find the general solution, giving y in terms of x.
(ii) Given that $y=100$ when $x=0$, find the value of y when $x=25$.

Question 11

Given that $y=1$ when $x=0$, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x\left(3 y^{2}+10 y+3\right)
$$

obtaining an expression for y in terms of x.

Question 12

The number of organisms in a population at time t is denoted by x. Treating x as a continuous variable, the differential equation satisfied by x and t is

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{x \mathrm{e}^{-t}}{k+\mathrm{e}^{-t}},
$$

where k is a positive constant.
(i) Given that $x=10$ when $t=0$, solve the differential equation, obtaining a relation between x, k and t.
(ii) Given also that $x=20$ when $t=1$, show that $k=1-\frac{2}{\mathrm{e}}$.
(iii) Show that the number of organisms never reaches 48, however large t becomes.

Question 13
The number of micro-organisms in a population at time t is denoted by M. At any time the variation in M is assumed to satisfy the differential equation

$$
\frac{\mathrm{d} M}{\mathrm{~d} t}=k(\sqrt{ } M) \cos (0.02 t)
$$

where k is a constant and M is taken to be a continuous variable. It is given that when $t=0, M=100$.
(i) Solve the differential equation, obtaining a relation between M, k and t.
(ii) Given also that $M=196$ when $t=50$, find the value of k.
(iii) Obtain an expression for M in terms of t and find the least possible number of micro-organisms.

Question 14

The variables x and θ satisfy the differential equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} \theta}=(x+2) \sin ^{2} 2 \theta
$$

and it is given that $x=0$ when $\theta=0$. Solve the differential equation and calculate the value of x when $\theta=\frac{1}{4} \pi$, giving your answer correct to 3 significant figures.

Question 15

Naturalists are managing a wildlife reserve to increase the number of plants of a rare species. The number of plants at time t years is denoted by N, where N is treated as a continuous variable.
(i) It is given that the rate of increase of N with respect to t is proportional to $(N-150)$. Write down a differential equation relating N, t and a constant of proportionality.
(ii) Initially, when $t=0$, the number of plants was 650 . It was noted that, at a time when there were 900 plants, the number of plants was increasing at a rate of 60 per year. Express N in terms of t.
(iii) The naturalists had a target of increasing the number of plants from 650 to 2000 within 15 years. Will this target be met?

Question 16

The variables x and y satisfy the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x \mathrm{e}^{x+y},
$$

and it is given that $y=0$ when $x=0$.
(i) Solve the differential equation and obtain an expression for y in terms of x.
(ii) Explain briefly why x can only take values less than 1 .

Question 17

The variables x and y satisfy the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}=y\left(1-2 x^{2}\right),
$$

and it is given that $y=2$ when $x=1$. Solve the differential equation and obtain an expression for y in terms of x in a form not involving logarithms.

Question 18

The variables x and θ satisfy the differential equation

$$
(3+\cos 2 \theta) \frac{\mathrm{d} x}{\mathrm{~d} \theta}=x \sin 2 \theta,
$$

and it is given that $x=3$ when $\theta=\frac{1}{4} \pi$.
(i) Solve the differential equation and obtain an expression for x in terms of θ.
(ii) State the least value taken by x.

Question 19

The variables x and y satisfy the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{-2 y} \tan ^{2} x
$$

for $0 \leqslant x<\frac{1}{2} \pi$, and it is given that $y=0$ when $x=0$. Solve the differential equation and calculate the value of y when $x=\frac{1}{4} \pi$.

Question 20

A large field of area $4 \mathrm{~km}^{2}$ is becoming infected with a soil disease. At time t years the area infected is $x \mathrm{~km}^{2}$ and the rate of growth of the infected area is given by the differential equation $\frac{\mathrm{d} x}{\mathrm{~d} t}=k x(4-x)$, where k is a positive constant. It is given that when $t=0, x=0.4$ and that when $t=2, x=2$.
(i) Solve the differential equation and show that $k=\frac{1}{4} \ln 3$.
(ii) Find the value of t when 90% of the area of the field is infected.

Question 21

The diagram shows a variable point P with coordinates (x, y) and the point N which is the foot of the perpendicular from P to the x-axis. P moves on a curve such that, for all $x \geqslant 0$, the gradient of the curve is equal in value to the area of the triangle $O P N$, where O is the origin.
(i) State a differential equation satisfied by x and y.

The point with coordinates $(0,2)$ lies on the curve.
(ii) Solve the differential equation to obtain the equation of the curve, expressing y in terms of x.
(iii) Sketch the curve.

Question 22

A water tank has vertical sides and a horizontal rectangular base, as shown in the diagram. The area of the base is $2 \mathrm{~m}^{2}$. At time $t=0$ the tank is empty and water begins to flow into it at a rate of $1 \mathrm{~m}^{3}$ per hour. At the same time water begins to flow out from the base at a rate of $0.2 \sqrt{ } h \mathrm{~m}^{3}$ per hour, where $h \mathrm{~m}$ is the depth of water in the tank at time t hours.
(i) Form a differential equation satisfied by h and t, and show that the time T hours taken for the depth of water to reach 4 m is given by

$$
\begin{equation*}
T=\int_{0}^{4} \frac{10}{5-\sqrt{ } h} \mathrm{~d} h \tag{3}
\end{equation*}
$$

(ii) Using the substitution $u=5-\sqrt{ } h$, find the value of T.

Question 23
(i) Express $\frac{1}{x(2 x+3)}$ in partial fractions.
(ii) The variables x and y satisfy the differential equation

$$
x(2 x+3) \frac{\mathrm{d} y}{\mathrm{~d} x}=y
$$

and it is given that $y=1$ when $x=1$. Solve the differential equation and calculate the value of y when $x=9$, giving your answer correct to 3 significant figures.

Question 24

In a certain chemical process a substance A reacts with and reduces a substance B. The masses of A and B at time t after the start of the process are x and y respectively. It is given that $\frac{\mathrm{d} y}{\mathrm{~d} t}=-0.2 x y$ and $x=\frac{10}{(1+t)^{2}}$. At the beginning of the process $y=100$.
(i) Form a differential equation in y and t, and solve this differential equation.
(ii) Find the exact value approached by the mass of B as t becomes large. State what happens to the mass of A as t becomes large.

Question 25

In a certain chemical reaction, a compound A is formed from a compound B. The masses of A and B at time t after the start of the reaction are x and y respectively and the sum of the masses is equal to 50 throughout the reaction. At any time the rate of increase of the mass of A is proportional to the mass of B at that time.
(i) Explain why $\frac{\mathrm{d} x}{\mathrm{~d} t}=k(50-x)$, where k is a constant.

It is given that $x=0$ when $t=0$, and $x=25$ when $t=10$.
(ii) Solve the differential equation in part (i) and express x in terms of t.

Question 26
The variables x and y satisfy the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=4 \cos ^{2} y \tan x
$$

for $0 \leqslant x<\frac{1}{2} \pi$, and $x=0$ when $y=\frac{1}{4} \pi$. Solve this differential equation and find the value of x when $y=\frac{1}{3} \pi$.
Question 27
The variables x and y satisfy the differential equation

$$
(x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}=y(x+2)
$$

and it is given that $y=2$ when $x=1$. Solve the differential equation and obtain an expression for y in terms of x.

Question 28

The variables x and θ satisfy the differential equation

$$
x \cos ^{2} \theta \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=2 \tan \theta+1
$$

for $0 \leqslant \theta<\frac{1}{2} \pi$ and $x>0$. It is given that $x=1$ when $\theta=\frac{1}{4} \pi$.
(i) Show that $\frac{\mathrm{d}}{\mathrm{d} \theta}\left(\tan ^{2} \theta\right)=\frac{2 \tan \theta}{\cos ^{2} \theta}$.
(ii) Solve the differential equation and calculate the value of x when $\theta=\frac{1}{3} \pi$, giving your answer correct to 3 significant figures.

Question 29

In a certain chemical reaction the amount, x grams, of a substance is decreasing. The differential equation relating x and t, the time in seconds since the reaction started, is

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-k x \sqrt{ } t
$$

where k is a positive constant. It is given that $x=100$ at the start of the reaction.
(i) Solve the differential equation, obtaining a relation between x, t and k.
(ii) Given that $t=25$ when $x=80$, find the value of t when $x=40$.

Question 30

In the diagram, the tangent to a curve at the point P with coordinates (x, y) meets the x-axis at T. The point N is the foot of the perpendicular from P to the x-axis. The curve is such that, for all values of x, the gradient of the curve is positive and $T N=2$.
(i) Show that the differential equation satisfied by x and y is $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} y$.

The point with coordinates $(4,3)$ lies on the curve.
(ii) Solve the differential equation to obtain the equation of the curve, expressing y in terms of x.

Question 31

(i) Express $\frac{1}{4-y^{2}}$ in partial fractions.
(ii) The variables x and y satisfy the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}=4-y^{2}
$$

and $y=1$ when $x=1$. Solve the differential equation, obtaining an expression for y in terms of x.

Question 32

The coordinates (x, y) of a general point on a curve satisfy the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(2-x^{2}\right) y .
$$

The curve passes through the point (1, 1). Find the equation of the curve, obtaining an expression for y in terms of x.

Question 33

A certain curve is such that its gradient at a general point with coordinates (x, y) is proportional to $\frac{y^{2}}{x}$. The curve passes through the points with coordinates $(1,1)$ and (e, 2). By setting up and solving a differential equation, find the equation of the curve, expressing y in terms of x.

Question 34
The variables x and y satisfy the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=k y^{3} \mathrm{e}^{-x}
$$

where k is a constant. It is given that $y=1$ when $x=0$, and that $y=\sqrt{ } \mathrm{e}$ when $x=1$. Solve the differential equation, obtaining an expression for y in terms of x.

Question 35

(i) Differentiate $\frac{1}{\sin ^{2} \theta}$ with respect to θ.
(ii) The variables x and θ satisfy the differential equation

$$
x \tan \theta \frac{\mathrm{~d} x}{\mathrm{~d} \theta}+\operatorname{cosec}^{2} \theta=0
$$

for $0<\theta<\frac{1}{2} \pi$ and $x>0$. It is given that $x=4$ when $\theta=\frac{1}{6} \pi$. Solve the differential equation, obtaining an expression for x in terms of θ.

Question 36
The variables x and y satisfy the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=x \mathrm{e}^{x+y}$. It is given that $y=0$ when $x=0$.
(i) Solve the differential equation, obtaining y in terms of x.
(ii) Explain why x can only take values that are less than 1 .

Question 37

The variables x and y satisfy the differential equation

$$
(x+1) y \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{2}+5 .
$$

It is given that $y=2$ when $x=0$. Solve the differential equation obtaining an expression for y^{2} in terms of x.

Question 38

The number of insects in a population t weeks after the start of observations is denoted by N. The population is decreasing at a rate proportional to $N \mathrm{e}^{-0.02 t}$. The variables N and t are treated as continuous, and it is given that when $t=0, N=1000$ and $\frac{\mathrm{d} N}{\mathrm{~d} t}=-10$.
(i) Show that N and t satisfy the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} N}{\mathrm{~d} t}=-0.01 \mathrm{e}^{-0.02 t} N \tag{1}
\end{equation*}
$$

(ii) Solve the differential equation and find the value of t when $N=800$.
(iii) State what happens to the value of N as t becomes large.

Question 39

The variables x and θ satisfy the differential equation

$$
\sin \frac{1}{2} \theta \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=(x+2) \cos \frac{1}{2} \theta
$$

for $0<\theta<\pi$. It is given that $x=1$ when $\theta=\frac{1}{3} \pi$. Solve the differential equation and obtain an expression for x in terms of $\cos \theta$.

Question 40

The variables x and t satisfy the differential equation $5 \frac{\mathrm{~d} x}{\mathrm{~d} t}=(20-x)(40-x)$. It is given that $x=10$ when $t=0$.
(i) Using partial fractions, solve the differential equation, obtaining an expression for x in terms of t.
(ii) State what happens to the value of x when t becomes large.

Question 41

The variables x and y satisfy the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1+4 y^{2}}{\mathrm{e}^{x}}
$$

It is given that $y=0$ when $x=1$.
(a) Solve the differential equation, obtaining an expression for y in terms of x.
(b) State what happens to the value of y as x tends to infinity.

Question 42

A certain curve is such that its gradient at a point (x, y) is proportional to $\frac{y}{x \sqrt{x}}$. The curve passes through the points with coordinates $(1,1)$ and $(4, \mathrm{e})$.
(a) By setting up and solving a differential equation, find the equation of the curve, expressing y in terms of x.
(b) Describe what happens to y as x tends to infinity.

Question 43
The variables x and y satisfy the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y-1}{(x+1)(x+3)}
$$

It is given that $y=2$ when $x=0$.
Solve the differential equation, obtaining an expression for y in terms of x.
Question 44

A tank containing water is in the form of a hemisphere. The axis is vertical, the lowest point is A and the radius is r, as shown in the diagram. The depth of water at time t is h. At time $t=0$ the tank is full and the depth of the water is r. At this instant a tap at A is opened and water begins to flow out at a rate proportional to \sqrt{h}. The tank becomes empty at time $t=14$.

The volume of water in the tank is V when the depth is h. It is given that $V=\frac{1}{3} \pi\left(3 r h^{2}-h^{3}\right)$.
(a) Show that h and t satisfy a differential equation of the form

$$
\begin{equation*}
\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{B}{2 r h^{\frac{1}{2}}-h^{\frac{3}{2}}}, \tag{4}
\end{equation*}
$$

where B is a positive constant.
(b) Solve the differential equation and obtain an expression for t in terms of h and r.

Question 45

The coordinates (x, y) of a general point of a curve satisfy the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(1-2 x^{2}\right) y
$$

for $x>0$. It is given that $y=1$ when $x=1$.
Solve the differential equation, obtaining an expression for y in terms of x.

Question 46

The variables x and t satisfy the differential equation

$$
\mathrm{e}^{3 t} \frac{\mathrm{~d} x}{\mathrm{~d} t}=\cos ^{2} 2 x
$$

for $t \geqslant 0$. It is given that $x=0$ when $t=0$.
(a) Solve the differential equation and obtain an expression for x in terms of t.
(b) State what happens to the value of x when t tends to infinity.

Question 47
The coordinates (x, y) of a general point of a curve satisfy the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(1-2 x^{2}\right) y
$$

for $x>0$. It is given that $y=1$ when $x=1$.
Solve the differential equation, obtaining an expression for y in terms of x.
Question 48
The variables x and y satisfy the differential equation

$$
(1-\cos x) \frac{\mathrm{d} y}{\mathrm{~d} x}=y \sin x .
$$

It is given that $y=4$ when $x=\pi$.
(a) Solve the differential equation, obtaining an expression for y in terms of x.
(b) Sketch the graph of y against x for $0<x<2 \pi$.

Question 49

For the curve shown in the diagram, the normal to the curve at the point P with coordinates (x, y) meets the x-axis at N. The point M is the foot of the perpendicular from P to the x-axis.

The curve is such that for all values of x in the interval $0 \leqslant x<\frac{1}{2} \pi$, the area of triangle $P M N$ is equal to $\tan x$.
(a) (i) Show that $\frac{M N}{y}=\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Hence show that x and y satisfy the differential equation $\frac{1}{2} y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\tan x$.
(b) Given that $y=1$ when $x=0$, solve this differential equation to find the equation of the curve, expressing y in terms of x.

Question 50

A curve is such that the gradient at a general point with coordinates (x, y) is proportional to $\frac{y}{\sqrt{x+1}}$. The curve passes through the points with coordinates $(0,1)$ and $(3, \mathrm{e})$.

By setting up and solving a differential equation, find the equation of the curve, expressing y in terms of x.

Question 51
The variables x and t satisfy the differential equation $\frac{\mathrm{d} x}{\mathrm{~d} t}=x^{2}(1+2 x)$, and $x=1$ when $t=0$.
Using partial fractions, solve the differential equation, obtaining an expression for t in terms of x.

Question 52

A large plantation of area $20 \mathrm{~km}^{2}$ is becoming infected with a plant disease. At time t years the area infected is $x \mathrm{~km}^{2}$ and the rate of increase of x is proportional to the ratio of the area infected to the area not yet infected.

When $t=0, x=1$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=1$.
(a) Show that x and t satisfy the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{19 x}{20-x} \tag{2}
\end{equation*}
$$

(b) Solve the differential equation and show that when $t=1$ the value of x satisfies the equation $x=\mathrm{e}^{0.9+0.05 x}$.
(c) Use an iterative formula based on the equation in part (b), with an initial value of 2, to determine x correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
(d) Calculate the value of t at which the entire plantation becomes infected.

Question 53

The variables x and y satisfy the differential equation

$$
\mathrm{e}^{2 x} \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 x y^{2}
$$

and it is given that $y=1$ when $x=0$.
Solve the differential equation, obtaining an expression for y in terms of x.
Question 54
(a) Given that $y=\ln (\ln x)$, show that

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x \ln x} \tag{1}
\end{equation*}
$$

The variables x and t satisfy the differential equation

$$
x \ln x+t \frac{\mathrm{~d} x}{\mathrm{~d} t}=0
$$

It is given that $x=\mathrm{e}$ when $t=2$.
(b) Solve the differential equation obtaining an expression for x in terms of t, simplifying your answer.
(c) Hence state what happens to the value of x as t tends to infinity.

Question 55

The variables x and y satisfy the differential equation

$$
(x+1)(3 x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}=y,
$$

and it is given that $y=1$ when $x=1$.
Solve the differential equation and find the exact value of y when $x=3$, giving your answer in a simplified form.

Question 56

At time t days after the start of observations, the number of insects in a population is N. The variation in the number of insects is modelled by a differential equation of the form $\frac{\mathrm{d} N}{\mathrm{~d} t}=k N^{\frac{3}{2}} \cos 0.02 t$, where k is a constant and N is a continuous variable. It is given that when $t=0, N=100$.
(a) Solve the differential equation, obtaining a relation between N, k and t.
(b) Given also that $N=625$ when $t=50$, find the value of k.
(c) Obtain an expression for N in terms of t, and find the greatest value of N predicted by this model.

Question 57

The variables x and y satisfy the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x \mathrm{e}^{y-x}
$$

and $y=0$ when $x=0$.
(a) Solve the differential equation, obtaining an expression for y in terms of x.
(b) Find the value of y when $x=1$, giving your answer in the form $a-\ln b$, where a and b are integers.

Question 58

The variables x and y satisfy the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x y}{1+x^{2}}
$$

and $y=2$ when $x=0$.
Solve the differential equation, obtaining a simplified expression for y in terms of x.

Question 59

A gardener is filling an ornamental pool with water, using a hose that delivers 30 litres of water per minute. Initially the pool is empty. At time t minutes after filling begins the volume of water in the pool is V litres. The pool has a small leak and loses water at a rate of 0.01 V litres per minute.

The differential equation satisfied by V and t is of the form $\frac{\mathrm{d} V}{\mathrm{~d} t}=a-b V$.
(a) Write down the values of the constants a and b.
(b) Solve the differential equation and find the value of t when $V=1000$.
(c) Obtain an expression for V in terms of t and hence state what happens to V as t becomes large.

Question 60

The variables x and θ satisfy the differential equation

$$
x \sin ^{2} \theta \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=\tan ^{2} \theta-2 \cot \theta
$$

for $0<\theta<\frac{1}{2} \pi$ and $x>0$. It is given that $x=2$ when $\theta=\frac{1}{4} \pi$.
(a) Show that $\frac{\mathrm{d}}{\mathrm{d} \theta}\left(\cot ^{2} \theta\right)=-\frac{2 \cot \theta}{\sin ^{2} \theta}$.
(You may assume without proof that the derivative of $\cot \theta$ with respect to θ is $-\operatorname{cosec}^{2} \theta$.) [1]
(b) Solve the differential equation and find the value of x when $\theta=\frac{1}{6} \pi$.

Question 61

In a certain chemical reaction the amount, x grams, of a substance is increasing. The differential equation satisfied by x and t, the time in seconds since the reaction began, is

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=k x \mathrm{e}^{-0.1 t}
$$

where k is a positive constant. It is given that $x=20$ at the start of the reaction.
(a) Solve the differential equation, obtaining a relation between x, t and k.
(b) Given that $x=40$ when $t=10$, find the value of k and find the value approached by x as t becomes large.

Question 62

The variables x and y satisfy the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{3 y} \sin ^{2} 2 x
$$

It is given that $y=0$ when $x=0$.
Solve the differential equation and find the value of y when $x=\frac{1}{2}$.
Question 63
The variables x and y satisfy the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}+4}{x(y+4)}
$$

for $x>0$. It is given that $x=4$ when $y=2 \sqrt{3}$.
Solve the differential equation to obtain the value of x when $y=2$.
Question 64
(a) The variables x and y satisfy the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4+9 y^{2}}{\mathrm{e}^{2 x+1}}
$$

It is given that $y=0$ when $x=1$.
Solve the differential equation, obtaining an expression for y in terms of x.
(b) State what happens to the value of y as x tends to infinity. Give your answer in an exact form.

Question 65

The variables x and y satisfy the differential equation

$$
\cos 2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{4 \tan 2 x}{\sin ^{2} 3 y},
$$

where $0 \leqslant x<\frac{1}{4} \pi$. It is given that $y=0$ when $x=\frac{1}{6} \pi$.
Solve the differential equation to obtain the value of x when $y=\frac{1}{6} \pi$. Give your answer correct to 3 decimal places.

