A-level

Topic : Partial Fraction

May 2013-May 2023

Questions

Question 1

Express $\frac{7 x^{2}-3 x+2}{x\left(x^{2}+1\right)}$ in partial fractions.

Question 2

(i) Express $\frac{1}{x^{2}(2 x+1)}$ in the form $\frac{A}{x^{2}}+\frac{B}{x}+\frac{C}{2 x+1}$.
(ii) The variables x and y satisfy the differential equation

$$
y=x^{2}(2 x+1) \frac{\mathrm{d} y}{\mathrm{~d} x},
$$

and $y=1$ when $x=1$. Solve the differential equation and find the exact value of y when $x=2$. Give your value of y in a form not involving logarithms.

Question 3

Let $\mathrm{f}(x)=\frac{2 x^{2}-7 x-1}{(x-2)\left(x^{2}+3\right)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 4

(i) Express $\frac{7 x^{2}+8}{(1+x)^{2}(2-3 x)}$ in partial fractions.
(ii) Hence expand $\frac{7 x^{2}+8}{(1+x)^{2}(2-3 x)}$ in ascending powers of x up to and including the term in x^{2}, simplifying the coefficients.

Question 5

(i) Express $\frac{4+12 x+x^{2}}{(3-x)(1+2 x)^{2}}$ in partial fractions.
(ii) Hence obtain the expansion of $\frac{4+12 x+x^{2}}{(3-x)(1+2 x)^{2}}$ in ascending powers of x, up to and including the term in x^{2}.

Question 6
Let $\mathrm{f}(x)=\frac{6+6 x}{(2-x)\left(2+x^{2}\right)}$.
(i) Express $\mathrm{f}(x)$ in the form $\frac{A}{2-x}+\frac{B x+C}{2+x^{2}}$.
(ii) Show that $\int_{-1}^{1} \mathrm{f}(x) \mathrm{d} x=3 \ln 3$.

Question 7

Let $\mathrm{f}(x)=\frac{x^{2}-8 x+9}{(1-x)(2-x)^{2}}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 8

Let $\mathrm{f}(x)=\frac{5 x^{2}+x+6}{(3-2 x)\left(x^{2}+4\right)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 9

Let $\mathrm{f}(x)=\frac{11 x+7}{(2 x-1)(x+2)^{2}}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Show that $\int_{1}^{2} \mathrm{f}(x) \mathrm{d} x=\frac{1}{4}+\ln \left(\frac{9}{4}\right)$.

Question 10

(i) Show that $(x+1)$ is a factor of $4 x^{3}-x^{2}-11 x-6$.
(ii) Find $\int \frac{4 x^{2}+9 x-1}{4 x^{3}-x^{2}-11 x-6} \mathrm{~d} x$.

Question 11

Let $\mathrm{f}(x)=\frac{3 x^{3}+6 x-8}{x\left(x^{2}+2\right)}$.
(i) Express $\mathrm{f}(x)$ in the form $A+\frac{B}{x}+\frac{C x+D}{x^{2}+2}$.
(ii) Show that $\int_{1}^{2} \mathrm{f}(x) \mathrm{d} x=3-\ln 4$.

Question 12

Let $\mathrm{f}(x)=\frac{4 x^{2}+12}{(x+1)(x-3)^{2}}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 13

Let $\mathrm{f}(x)=\frac{4 x^{2}+7 x+4}{(2 x+1)(x+2)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Show that $\int_{0}^{4} \mathrm{f}(x) \mathrm{d} x=8-\ln 3$.

Question 14

Let $\mathrm{f}(x)=\frac{10 x-2 x^{2}}{(x+3)(x-1)^{2}}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 15

Let $\mathrm{f}(x)=\frac{3 x^{2}+x+6}{(x+2)\left(x^{2}+4\right)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 16
Let $\mathrm{f}(x)=\frac{x(6-x)}{(2+x)\left(4+x^{2}\right)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 17

(i) Express $\frac{1}{x(2 x+3)}$ in partial fractions.
[2]
(ii) The variables x and y satisfy the differential equation

$$
x(2 x+3) \frac{\mathrm{d} y}{\mathrm{~d} x}=y,
$$

and it is given that $y=1$ when $x=1$. Solve the differential equation and calculate the value of y when $x=9$, giving your answer correct to 3 significant figures.

Question 18
Let $\mathrm{f}(x)=\frac{5 x^{2}-7 x+4}{(3 x+2)\left(x^{2}+5\right)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 19
Let $\mathrm{f}(x)=\frac{3 x^{2}-4}{x^{2}(3 x+2)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence show that $\int_{1}^{2} \mathrm{f}(x) \mathrm{d} x=\ln \left(\frac{25}{8}\right)-1$.

Question 20
Let $\mathrm{f}(x)=\frac{4 x^{2}+9 x-8}{(x+2)(2 x-1)}$.
(i) Express $\mathrm{f}(x)$ in the form $A+\frac{B}{x+2}+\frac{C}{2 x-1}$.
(ii) Hence show that $\int_{1}^{4} \mathrm{f}(x) \mathrm{d} x=6+\frac{1}{2} \ln \left(\frac{16}{7}\right)$.

Question 21

Let $\mathrm{f}(x)=\frac{4 x^{2}+9 x-8}{(x+2)(2 x-1)}$.
(i) Express $\mathrm{f}(x)$ in the form $A+\frac{B}{x+2}+\frac{C}{2 x-1}$.
(ii) Hence show that $\int_{1}^{4} \mathrm{f}(x) \mathrm{d} x=6+\frac{1}{2} \ln \left(\frac{16}{7}\right)$.

Question 22
Let $\mathrm{f}(x)=\frac{5 x^{2}+x+27}{(2 x+1)\left(x^{2}+9\right)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence find $\int_{0}^{4} \mathrm{f}(x) \mathrm{d} x$, giving your answer in the form $\ln c$, where c is an integer.

Question 23
Let $\mathrm{f}(x)=\frac{12 x^{2}+4 x-1}{(x-1)(3 x+2)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 24
Let $\mathrm{f}(x)=\frac{x-4 x^{2}}{(3-x)\left(2+x^{2}\right)}$.
(i) Express $\mathrm{f}(x)$ in the form $\frac{A}{3-x}+\frac{B x+C}{2+x^{2}}$.
(ii) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{3}.

Question 25

(i) Express $\frac{1}{4-y^{2}}$ in partial fractions.
(ii) The variables x and y satisfy the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}=4-y^{2},
$$

and $y=1$ when $x=1$. Solve the differential equation, obtaining an expression for y in terms of x.

Question 26
Let $\mathrm{f}(x)=\frac{6 x^{2}+8 x+9}{(2-x)(3+2 x)^{2}}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence, showing all necessary working, show that $\int_{-1}^{0} \mathrm{f}(x) \mathrm{d} x=1+\frac{1}{2} \ln \left(\frac{3}{4}\right)$.

Question 27
Let $\mathrm{f}(x)=\frac{7 x^{2}-15 x+8}{(1-2 x)(2-x)^{2}}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 28
Let $\mathrm{f}(x)=\frac{6 x^{2}+8 x+9}{(2-x)(3+2 x)^{2}}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence, showing all necessary working, show that $\int_{-1}^{0} \mathrm{f}(x) \mathrm{d} x=1+\frac{1}{2} \ln \left(\frac{3}{4}\right)$.

Question 29
Let $\mathrm{f}(x)=\frac{12+12 x-4 x^{2}}{(2+x)(3-2 x)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 30

Let $\mathrm{f}(x)=\frac{16-17 x}{(2+x)(3-x)^{2}}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 31
Let $\mathrm{f}(x)=\frac{10 x+9}{(2 x+1)(2 x+3)^{2}}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence show that $\int_{0}^{1} \mathrm{f}(x) \mathrm{d} x=\frac{1}{2} \ln \frac{9}{5}+\frac{1}{5}$.

Question 32
Let $\mathrm{f}(x)=\frac{2 x(5-x)}{(3+x)(1-x)^{2}}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3}.

Question 33
Let $\mathrm{f}(x)=\frac{x^{2}+x+6}{x^{2}(x+2)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Hence, showing full working, show that the exact value of $\int_{1}^{4} \mathrm{f}(x) \mathrm{d} x$ is $\frac{9}{4}$.

Question 34
Let $\mathrm{f}(x)=\frac{2 x^{2}+x+8}{(2 x-1)\left(x^{2}+2\right)}$.
(i) Express $\mathrm{f}(x)$ in partial fractions.
[5]
(ii) Hence, showing full working, find $\int_{1}^{5} \mathrm{f}(x) \mathrm{d} x$, giving the answer in the form $\ln c$, where c is an integer.

Question 35

Let $\mathrm{f}(x)=\frac{2+11 x-10 x^{2}}{(1+2 x)(1-2 x)(2+x)}$.
(a) Express $\mathrm{f}(x)$ in partial fractions.
(b) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 36
Let $\mathrm{f}(x)=\frac{2}{(2 x-1)(2 x+1)}$.
(a) Express $\mathrm{f}(x)$ in partial fractions.
(b) Using your answer to part (a), show that

$$
\begin{equation*}
(\mathrm{f}(x))^{2}=\frac{1}{(2 x-1)^{2}}-\frac{1}{2 x-1}+\frac{1}{2 x+1}+\frac{1}{(2 x+1)^{2}} . \tag{2}
\end{equation*}
$$

(c) Hence show that $\int_{1}^{2}(\mathrm{f}(x))^{2} \mathrm{~d} x=\frac{2}{5}+\frac{1}{2} \ln \left(\frac{5}{9}\right)$.

Question 37
Let $\mathrm{f}(x)=\frac{8+5 x+12 x^{2}}{(1-x)(2+3 x)^{2}}$.
(a) Express $\mathrm{f}(x)$ in partial fractions.
(b) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 38
Let $\mathrm{f}(x)=\frac{7 x+18}{(3 x+2)\left(x^{2}+4\right)}$.
(a) Express $\mathrm{f}(x)$ in partial fractions.
(b) Hence find the exact value of $\int_{0}^{2} \mathrm{f}(x) \mathrm{d} x$.

Question 39

Let $\mathrm{f}(x)=\frac{8+5 x+12 x^{2}}{(1-x)(2+3 x)^{2}}$.
(a) Express $\mathrm{f}(x)$ in partial fractions.
(b) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 40

Let $\mathrm{f}(x)=\frac{5 a}{(2 x-a)(3 a-x)}$, where a is a positive constant.
(a) Express $\mathrm{f}(x)$ in partial fractions.
[3]

Question 41

Let $\mathrm{f}(x)=\frac{15-6 x}{(1+2 x)(4-x)}$.
(a) Express $\mathrm{f}(x)$ in partial fractions.

Question 42
Let $\mathrm{f}(x)=\frac{14-3 x+2 x^{2}}{(2+x)\left(3+x^{2}\right)}$.
(a) Express $\mathrm{f}(x)$ in partial fractions.
(b) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 43

The variables x and t satisfy the differential equation $\frac{\mathrm{d} x}{\mathrm{~d} t}=x^{2}(1+2 x)$, and $x=1$ when $t=0$.
Using partial fractions, solve the differential equation, obtaining an expression for t in terms of x.

Question 44

Express $\frac{4 x^{2}-13 x+13}{(2 x-1)(x-3)}$ in partial fractions.

Question 45
Let $\mathrm{f}(x)=\frac{5 x^{2}+8 x-3}{(x-2)\left(2 x^{2}+3\right)}$.
(a) Express $\mathrm{f}(x)$ in partial fractions.
(b) Hence obtain the expansion of $\mathrm{f}(x)$ in ascending powers of x, up to and including the term in x^{2}.

Question 46

Let $\mathrm{f}(x)=\frac{x^{2}+9 x}{(3 x-1)\left(x^{2}+3\right)}$.
Express $\mathrm{f}(x)$ in partial fractions.
[5]

Question 47
Let $\mathrm{f}(x)=\frac{5-x+6 x^{2}}{(3-x)\left(1+3 x^{2}\right)}$.
Express $\mathrm{f}(x)$ in partial fractions.
Question 48
Let $\mathrm{f}(x)=\frac{4-x+x^{2}}{(1+x)\left(2+x^{2}\right)}$.
Express $\mathrm{f}(x)$ in partial fractions.
Question 49
Let $\mathrm{f}(x)=\frac{2 x^{2}+7 x+8}{(1+x)(2+x)^{2}}$.
Express $\mathrm{f}(x)$ in partial fractions.
Question 50
Let $\mathrm{f}(x)=\frac{5 x^{2}+x+11}{\left(4+x^{2}\right)(1+x)}$.
Express $\mathrm{f}(x)$ in partial fractions.
Question 51
Let $\mathrm{f}(x)=\frac{21-8 x-2 x^{2}}{(1+2 x)(3-x)^{2}}$.
Express $\mathrm{f}(x)$ in partial fractions.

Question 52
Let $\mathrm{f}(x)=\frac{2 x^{2}+17 x-17}{(1+2 x)(2-x)^{2}}$.
Express $\mathrm{f}(x)$ in partial fractions.
Question 53
Let $\mathrm{f}(x)=\frac{3-3 x^{2}}{(2 x+1)(x+2)^{2}}$.
Express $\mathrm{f}(x)$ in partial fractions.

