A-level

Topic: Partial Fraction

May 2013-May 2023

Answers

Question 1

State or imply correct form $\frac{A}{x}+\frac{B x+C}{x^{2}+1}$
B1
M1
Use any relevant method to find at least one constant
Obtain $A=2$
Obtain $C=-3$

Question 2

(i) Use any relevant method to determine a constant

Obtain one of the values $A=1, B=-2, C=4$
Obtain a second value
Obtain the third value A1
[If A and C are found by the cover up rule, give $\mathrm{B} 1+\mathrm{B} 1$ then M1A1 for finding B. If only one is found by the rule, give B1M1A1A1.]
(ii) Separate variables and obtain one term by integrating $\frac{1}{y}$ or a partial fraction

Obtain $\ln y=-\frac{1}{2}-2 \ln (2 x+1)+c$, or equivalent

Evaluate a constant, or use limits $x=1, y=1$, in a solution containing at least three terms of the form $k \ln y, l / x, m \ln x$ and $n \ln (2 x+1)$, or equivalent
Obtain solution $\ln y=-\frac{1}{2}-2 \ln x+2 \ln (2 x+1)+c$, or equivalent
Substitute $x=2$ and obtain $y=\frac{25}{36} \mathrm{e}^{\frac{1}{2}}$, or exact equivalent free of logarithms

Question 3

(i) State or imply partial fractions are of the form $\frac{A}{x-2}+\frac{B x+C}{x^{2}+3}$

Use a relevant method to determine a constant
Obtain one of the values $A=-1, B=3, C=-1$
Obtain a second value
Obtain the third value
(ii) Use correct method to obtain the first two terms of the expansions of $(x-2)^{-1}$,
$\left(1-\frac{1}{2} x\right)^{-1},\left(x^{2}+3\right)^{-1}$ or $\left(1+\frac{1}{3} x^{2}\right)^{-1}$
M1
Substitute correct unsimplified expansions up to the term in x^{2} into each partial fraction
Multiply out fully by $B x+C$, where $B C \neq 0$
Obtain final answer $\frac{1}{6}+\frac{5}{4} x+\frac{17}{72} x^{2}$, or equivalent

Question 4

(i) Either State or imply form $\frac{A}{1+x}+\frac{B}{(1+x)^{2}}+\frac{C}{2-3 x}$

Use any relevant method to find at least one constant M1
Obtain $A=-1 \quad$ A1
Obtain $B=3 \quad$ A1
Obtain $C=4 \quad$ A1
Or State or imply form $\frac{A}{1+x}+\frac{B x}{(1+x)^{2}}+\frac{C}{2-3 x}$
Use any relevant method to find at least one constant M1
Obtain $A=2$
Obtain $B=-3$
Obtain $C=4$
(ii) Either Use correct method to find first two terms of expansion of $(1+x)^{-1}$ or

$$
(1+x)^{-2} \text { or }(2-3 x)^{-1} \text { or }\left(1-\frac{3}{2} x\right)^{-1}
$$

Obtain correct unsimplified expansion of first partial fraction up to x^{2} term A1 \downarrow Obtain correct unsimplified expansion of second partial fraction up to x^{2} term A1v Obtain correct unsimplified expansion of third partial fraction up to x^{2} term Alv
Obtain final answer $4-2 x+\frac{25}{2} x^{2}$
Or 1 Use correct method to find first two terms of expansion of $(1+x)^{-2}$
or $(2-3 x)^{-1}$ or $\left(1-\frac{3}{2} x\right)^{-1}$
Obtain correct unsimplified expansion of first partial fraction up to x^{2} term A1 \downarrow
Obtain correct unsimplified expansion of second partial fraction up to x^{2} term A1/
Expand and obtain sufficient terms to obtain three terms
Obtain final answer $4-2 x+\frac{25}{2} x^{2}$

Question 5

(i) Either State or imply partial fractions are of form $\frac{A}{3-x}+\frac{B}{1+2 x}+\frac{C}{(1+2 x)^{2}}$

Use any relevant method to obtain a constant
Obtain $A=1$
Obtain $B=\frac{3}{2}$
Obtain $C=-\frac{1}{2}$
A1
Or State or imply partial fractions are of form $\frac{A}{3-x}+\frac{D x+E}{(1+2 x)^{2}}$
Use any relevant method to obtain a constant
Obtain $A=1$
Obtain $D=3$
Obtain $E=1$
(ii) Obtain the first two terms of one of the expansion of $(3-x)^{-1},\left(1-\frac{1}{3} x\right)^{-1}$
$(1+2 x)^{-1}$ and $(1+2 x)^{-2}$
Obtain correct unsimplified expansion up to the term in x^{2} of each partial fraction, following in each case the value of A, B, C

Obtain answer $\frac{4}{3}-\frac{8}{9} x+\frac{1}{27} x^{2}$
[If A, D, E approach used in part (i), give M1A1 $\vee^{\wedge} \mathrm{Al} \|^{\wedge}$ for the expansions, M1 for multiplying out fully and A1 for final answer]

Question 6

(i) Use a correct method for finding a constant M1

Obtain one of $A=3, B=3, C=0$
Obtain a second value
Obtain a third value
(ii) Integrate and obtain term $-3 \ln (2-x)$

Integrate and obtain term of the form $k \ln \left(2+x^{2}\right) \quad$ M1
Obtain term $\frac{3}{2} \ln \left(2+x^{2}\right) \quad \mathrm{Al} \sqrt{\wedge}$
Substitute limits correctly in an integral of the form $a \ln (2-x)+b \ln \left(2+x^{2}\right)$, where $a b \neq 0 \quad$ M1
Obtain given answer after full and correct working
$\mathrm{Bl}{ }^{\downarrow}$

Question 7

(i) State or imply the form $\frac{A}{1-x}+\frac{B}{2-x}+\frac{C}{(2-x)^{2}}$

Use a correct method to determine a constant
Obtain one of $A=2, B=-1, C=3$
Obtain a second value A1
Obtain a third value A1
(ii) Use correct method to find the first two terms of the expansion
of $(1-x)^{-1},(2-x)^{-1},(2-x)^{-2},\left(1-\frac{1}{2} x\right)^{-1}$ or $\left(1-\frac{1}{2} x\right)^{-2}$
Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction

$$
\mathrm{A} 1 \checkmark+\mathrm{A} 1 \checkmark+\mathrm{A} 1 \checkmark
$$

Obtain final answer $\frac{9}{4}+\frac{5}{2} x+\frac{39}{16} x^{2}$, or equivalent

Question 8

(i) State or imply the form $\frac{A}{3-2 x}+\frac{B x+C}{x^{2}+4}$

Use a relevant method to determine a constant
Obtain one of the values $A=3, B=-1, C=-2$
Obtain a second value
Obtain the third value
(ii) Use correct method to find the first two terms of the expansion of $(3-2 x)^{-1},\left(1-\frac{2}{3} x\right)^{-1}$,
$\left(4+x^{2}\right)^{-1}$ or $\left(1+\frac{1}{4} x^{2}\right)^{-1}$
M1
Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction $\mathrm{A} 1^{\sqrt{2}}+\mathrm{A} 1^{\downarrow}$
Multiply out up to the term in x^{2} by $B x+C$, where $B C \neq 0$
Obtain final answer $\frac{1}{2}+\frac{5}{12} x+\frac{41}{72} x^{2}$, or equivalent

Question 9

(i) State or imply $\mathrm{f}(x) \equiv \frac{A}{2 x-1}+\frac{B}{x+2}+\frac{C}{(x+2)^{2}}$

Use a relevant method to determine a constant
Obtain one of the values $A=2, B=-1, C=3$
Obtain the remaining values $\mathrm{Al}+$
(ii) Integrate and obtain terms $\frac{1}{2} \cdot 2 \ln (2 x-1)-\ln (x+2)-\frac{3}{x+2} \quad \mathrm{~B} 1^{\downarrow}+\mathrm{B} 1^{\downarrow}+\mathrm{B} 1^{\downarrow}$

Use limits correctly, namely substitution must be seen in at least two of the partial fractions to obtain M1 Integrate all 3 partial fractions and substitute in all three partial fractions for A1 since AG.
Obtain the given answer following full and exact working
Question 10
(i) Either Substitute $x=-1$ and evaluate M1

Obtain 0 and conclude $x+1$ is a factor A1
Or Divide by $x+1$ and obtain a constant remainder M1
Obtain remainder $=0$ and conclude $x+1$ is a factor
A1
(ii) Attempt division, or equivalent, at least as far as quotient $4 x^{2}+k x \quad$ M1

Obtain complete quotient $4 x^{2}-5 x-6$
State form $\frac{A}{x+1}+\frac{B}{x-2}+\frac{C}{4 x+3}$
Use relevant method for finding at least one constant
Obtain one of $A=-2, B=1, C=8$
Obtain all three values A1

Integrate to obtain three terms each involving natural logarithm of linear form
Obtain $-2 \ln (x+1)+\ln (x-2)+2 \ln (4 x+3)$, condoning no use of modulus signs and absence of $\ldots+c$

Question 11

(i) State or obtain $A=3$	B1
Use a relevant method to find a constant	M1
Obtain one of $B=-4, C=4$ and $D=0$	A1
Obtain a second value	A1
Obtain the third value	A1
(ii) Integrate and obtain $3 x-4 \ln x$	B1 $\sqrt{4}$
Integrate and obtain term of the form $k \ln \left(x^{2}+2\right)$	M1
Obtain term $2 \ln \left(x^{2}+2\right)$	A1 $\sqrt{4}$
Substitute limits in an integral of the form $a x+b \ln x+c \ln \left(x^{2}+2\right)$, where $a b c \neq 0$	M1
Obtain given answer $3-\ln 4$ after full and correct working	A1

Obtain term $2 \ln \left(x^{2}+2\right)$

Obtain given answer $3-\ln 4$ after full and correct working

Question 12

(i) State or imply the form $\frac{A}{x+1}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}}$

Use a correct method to determine a constant
Obtain one of the values $A=1, B=3, C=12$
Obtain a second value
Obtain a third value
(ii) Use correct method to find the first two terms of the expansion
of $(x+1)^{-1},(x-3)^{-1},\left(1-\frac{1}{3} x\right)^{-1}$,
$(x-3)^{-2}$, or $\left(1-\frac{1}{3} x\right)^{-2}$
Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction
Obtain final answer $\frac{4}{3}-\frac{4}{9} x+\frac{4}{3} x^{2}$, or equivalent

Question 13

(i) State or imply the form $A+\frac{B}{2 x+1}+\frac{C}{x+2}$

State or obtain $A=2$
B1
Use a correct method for finding a constant
Obtain one of $B=1, C=-2$
A1
Obtain the other value
A1
(ii) Integrate and obtain terms $2 x+\frac{1}{2} \ln (2 x+1)-2 \ln (x+2)$

Substitute correct limits correctly in an integral with terms $a \ln (2 x+1)$
and $b \ln (x+2)$, where $a b \neq 0$
Obtain the given answer after full and correct working

Question 14

(i) State or imply the form $\frac{A}{x+3}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}$

Use a correct method to determine a constant
Obtain one of the values $A=-3, B=1, C=2$
Obtain a second value
Obtain the third value
[Mark the form $\frac{A}{x+3}+\frac{D x+E}{(x-1)^{2}}$, where $A=-3, D=1, E=1$, B1M1A1A1A1 as above.]
(ii) Use a correct method to find the first two terms of the expansion of $(x+3)^{-1},\left(1+\frac{1}{3} x\right)^{-1}$, $(x-1)^{-1},(1-x)^{-1},(x-1)^{-2}$, or $(1-x)^{-2}$
Obtain correct unsimplified expressions up to the term in x^{2} of each partial fraction $\mathbf{A} \mathbf{1}^{\wedge}+\mathbf{A} \mathbf{1}^{\wedge}+\mathbf{A} \downarrow^{\wedge}$
Obtain final answer $\frac{10}{3} x+\frac{44}{9} x^{2}$, or equivalent

Question 15

(i) \quad State or imply the form $\frac{A}{x+2}+\frac{B x+C}{x^{2}+4}$

Use a correct method to determine a constant
Obtain one of $A=2, B=1, C=-1$
Obtain a second value
Obtain a third value
B1
M1
A1
A1
A1
(ii) Use correct method to find the first two terms of the expansion of $(x+2)^{-1}$, $\left(1+\frac{1}{2} x\right)^{-1},\left(4+x^{2}\right)^{-1}$ or $\left(1+\frac{1}{4} x^{2}\right)^{-1}$
Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction
Multiply out fully by $B x+C$, where $B C \neq 0$
Obtain final answer $\frac{3}{4}-\frac{1}{4} x+\frac{5}{16} x^{2}$, or equivalent

M1
$A 1 v^{\star}+A 1 \imath^{\wedge}$
M1
A1
[5]

Question 16

State or imply the form $\frac{A}{2+x}+\frac{B x+C}{4+x^{2}}$	B1
Use a relevant method to determine a constant	M1
Obtain one of the values $A=-2, B=1, \mathrm{C}=4$	A1
Obtain a second value	A1
Obtain the third value	Total:
	$\mathbf{5}$

(ii) Use correct method to obtain the first two terms of the expansion of $\left(1+\frac{1}{2} x\right)^{-1}$,
$(2+x)^{-1},\left(1+\frac{1}{4} x^{2}\right)^{-1}$ or $\left(4+x^{2}\right)^{-1}$

Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction	A1 $^{\wedge}+\mathbf{A 1} \downarrow$
Multiply out up to the term in x^{2} by $B x+C$, where $B C \neq 0$	M1
Obtain final answer $\frac{3}{4} x-\frac{1}{2} x^{2}$	A1
[Symbolic binomial coefficients, e.g. ${ }_{-1} \mathrm{C}_{2}$, are not sufficient for the first M1. The f.t. is on A, B, C.]	
[In the case of an attempt to expand $x(6-x)(2+x)^{-1}\left(4+x^{2}\right)^{-1}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]	
	Total:

Question 17

(i)	Carry out a relevant method to obtain A and B such that $\frac{1}{x(2 x+3)} \equiv \frac{A}{x}+\frac{B}{2 x+3}$, or equivalent	M1
	Obtain $A=\frac{1}{3}$ and $B=-\frac{2}{3}$, or equivalent	A1
	Total:	2
(ii)	Separate variables and integrate one side	B1
	Obtain term $\ln y$	B1
	Integrate and obtain terms $\frac{1}{3} \ln x-\frac{1}{3} \ln (2 x+3)$, or equivalent	B2 FT
	Use $x=1$ and $y=1$ to evaluate a constant, or as limits, in a solution containing $a \ln y, b \ln x, c \ln (2 x+3)$	M1
	Obtain correct solution in any form, e.g. $\ln y=\frac{1}{3} \ln x-\frac{1}{3} \ln (2 x+3)+\frac{1}{3} \ln 5$	A1
	Obtain answer $y=1.29$ (3s.f. only)	A1
	Total:	7

Question 18

;(i)	State or imply the form $\frac{A}{3 x+2}+\frac{B x+C}{x^{2}+5}$	B1
	Use a relevant method to determine a constant	M1
	Obtain one of the values $A=2, B=1, C=-3$	A1
	Obtain a second value	A1
	Obtain the third value	A1
	Total:	5
(ii)	Use correct method to find the first two terms of the expansion of $(3 x+2)^{-1},\left(1+\frac{3}{2} x\right)^{-1}$, $\left(5+x^{2}\right)^{-1}$ or $\left(1+\frac{1}{5} x^{2}\right)^{-1}$ [Symbolic coefficients, e.g. $\binom{-1}{2}$ are not sufficient]	M1
	Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction. The FT is on A, B, C. from part (i)	$\begin{array}{r} \text { A1FT }+ \\ \text { A1FT } \end{array}$
	Multiply out up to the term in x^{2} by $B x+C$, where $B C \neq 0$	M1
	Obtain final answer $\frac{2}{5}-\frac{13}{10} x+\frac{237}{100} x^{2}$, or equivalent	A1
	Total:	5

Question 19

(i)	State or imply the form $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{3 x+2}$	B1
	Use a relevant method to determine a constant	M1
	Obtain one of the values $A=3, B=-2, C=-6$	A1
	Obtain a second value	A1
	Obtain the third value [Mark the form $\frac{A x+B}{x^{2}}+\frac{C}{3 x+2}$ using same pattern of marks.]	A1
	Total:	5
(ii)	Integrate and obtain terms $3 \ln x=\frac{2}{x}-2 \ln (3 x+2)$ [The FT is on A, B and C] Note: Candidates who integrate the partial fraction $\frac{3 x-2}{x^{2}}$ by parts should obtain $3 \ln x+\frac{2}{x}-3$ or equivalent	B3 FT
	Use limits correctly, having integrated all the partial fractions, in a solution containing terms $a \ln x+\frac{b}{x}+c \ln (3 x+2)$	M1
	Obtain the given answer following full and exact working	A1
	Total:	5

Question 20

(i)	Use a relevant method to determine a constant	M1
	Obtain one of the values $A=2, B=2, C=-1$	A1
	Obtain a second value	A1
Obtain the third value	A1	
(ii)	Integrate and obtain terms $2 x+2 \ln (x+2)-\frac{1}{2} \ln (2 x-1)($ deduct B1 for each error or omission) $[$ The FT is on A, B and $C]$	B2 FT
Substitute limits correctly in an integral containing terms $a \ln (x+2)$ and $b \ln (2 x-1)$, where $a b \neq 0$	*M1	
Use at least one law of logarithms correctly	DM1	
Obtain the given answer after full and correct working	A1	
	$\mathbf{5}$	

Question 21

(i)	Use a relevant method to determine a constant	M1
	Obtain one of the values $A=2, B=2, C=-1$	A1
Obtain a second value	A1	
Obtain the third value	A1	
(ii)	Integrate and obtain terms $2 x+2 \ln (x+2)-\frac{1}{2} \ln (2 x-1)($ deduct B1 for each error or omission) $[$ The FT is on A, B and $C]$	B2 FT
Substitute limits correctly in an integral containing terms $a \ln (x+2)$ and $b \ln (2 x-1)$, where $a b \neq 0$	*M1	
Use at least one law of logarithms correctly	DM1	
Obtain the given answer after full and correct working	A1	
	$\mathbf{5}$	

Question 22
(i)

State or imply the form $\frac{A}{2 x+1}+\frac{B x+C}{x^{2}+9}$	B1
Use a correct method for finding a constant	M1
Obtain one of $A=3, B=1$ and $C=0$	$\mathbf{A 1}$
Obtain a second value	$\mathbf{A 1}$
Obtain the third value	$\mathbf{A 1}$
	$\mathbf{5}$

(ii)

Integrate and obtain term $\frac{3}{2} \ln (2 x+1)$ (FT on A value)	B1 FT
Integrate and obtain term of the form $k \ln \left(x^{2}+9\right)$	M1
Obtain term $\frac{1}{2} \ln \left(x^{2}+9\right)$ (FT on B value)	A1 FT
Substitute limits correctly in an integral of the form $a \ln (2 x+1)+b \ln \left(x^{2}+9\right)$, where $a b \neq 0$	M1
Obtain answer $\ln 45$ after full and correct working	A1
	$\mathbf{5}$

Question 23
(i)

State or imply the form $A+\frac{B}{x-1}+\frac{C}{3 x+2}$	B1
State or obtain $A=4$	B1
Use a correct method to obtain a constant	M1
Obtain one of $B=3, C=-1$	A1
Obtain the other value	$\mathbf{A 1}$
	$\mathbf{5}$

(ii) Use correct method to find the first two terms of the expansion of $(x-1)^{-1}$ or $(3 x+2)^{-1}$, or equivalent

M1

Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction	A1ft $+\mathbf{A 1 f t}$
Add the value of A to the sum of the expansions	M1
Obtain final answer $\frac{1}{2}-\frac{9}{4} x-\frac{33}{8} x^{2}$	A1
	$\mathbf{5}$

Question 24
(i)

Use a correct method to find a constant	M1
Obtain one of the values $A=-3, B=1, C=2$	$\mathbf{A 1}$
Obtain a second value	$\mathbf{A 1}$
Obtain the third value	$\mathbf{A 1}$
	$\mathbf{4}$

(ii)

Use a correct method to find the first two terms of the expansion of $(3-x)^{-1},\left(1-\frac{1}{3} x\right)^{-1},\left(2+x^{2}\right)^{-1}$ or $\left(1+\frac{1}{2} x^{2}\right)^{-1}$	M1
Obtain correct unsimplified expansions up to the term in x^{3} of each partial fraction	$\mathbf{A 1 F t}+\mathbf{A 1 F t}$
Multiply out their expansion, up to the terms in x^{3}, by $B x+C$, where $B C \neq 0$	M1
Obtain final answer $\frac{1}{6} x-\frac{11}{18} x^{2}-\frac{31}{108} x^{3}$, or equivalent	A1
	5

Question 25

6(i)	Carry out relevant method to find A and B such that $\frac{1}{4-y^{2}} \equiv \frac{A}{2+y}+\frac{B}{2-y}$	M1
Obtain $A=B=\frac{1}{4}$	A1	
;(ii)	Separate variables correctly and integrate at least one side to obtain one of the terms $a \ln x, b \ln (2+y)$ or $c \ln (2-y)$	M1
Obtain term $\ln x$	2	
Integrate and obtain terms $\frac{1}{4} \ln (2+y)-\frac{1}{4} \ln (2-y)$	B1FT	
Use $x=1$ and $y=1$ to evaluate a constant, or as limits, in a solution containing at least two terms of the form $a \ln x, b \ln (2+y)$ and $c \ln (2-y)$	M1	
Obtain a correct solution in any form, e.g. $\ln x=\frac{1}{4} \ln (2+y)-\frac{1}{4} \ln (2-y)-\frac{1}{4} \ln 3$	A1	
	Rearrange as $\frac{2\left(3 x^{4}-1\right)}{\left(3 x^{4}+1\right)}$, or equivalent	

Question 26

(i)

State or imply the form $\frac{A}{2-x}+\frac{B}{3+2 x}+\frac{C}{(3+2 x)^{2}}$	B1
Use a correct method to find a constant	M1
Obtain one of $A=1, B=-1, C=3$	A1
Obtain a second value	$\mathbf{A 1}$
Obtain the third value $\left[\right.$ Mark the form $\frac{A}{2-x}+\frac{D x+E}{(3+2 x)^{2}}$, where $A=1, D=-2$ and $E=0$, B1M1A1A1A1 as above.] $\mathbf{A 1}$ $\mathbf{5}$ $\mathbf{}$	

(ii)

Integrate and obtain terms $-\ln (2-x)-\frac{1}{2} \ln (3+2 x)-\frac{3}{2(3+2 x)}$	B3ft
Substitute correctly in an integral with terms $a \ln (2-x)$, $b \ln (3+2 x)$ and $c /(3+2 x)$ where $a b c \neq 0$	M1
Obtain the given answer after full and correct working [Correct integration of the A, D, E form gives an extra constant term if integration by parts is used for the second partial fraction.]	A1
	$\mathbf{5}$

Question 27
(i)

State or imply the form $\frac{A}{1-2 x}+\frac{B}{2-x}+\frac{C}{(2-x)^{2}}$	Bl
Use a correct method for finding a constant M1 is available following a single slip in working from their form but no A marks (even if a constant is "correct")	M1
Obtain one of $A=1, B=3, C=-2$	Al
Obtain a second value	Al
Obtain the third value	Al
$\left[\right.$ Mark the form $\frac{A}{1-2 x}+\frac{D x+E}{(2-x)^{2}}$, where $A=1, D=-3$ and	
$E=4$, B1M1A1A1A1 as above.]	$\mathbf{5}$

(iii) \quad Use a correct method to find the first two terms of the expansion of

$(1-2 x)^{-1},(2-x)^{-1},\left(1-\frac{1}{2} x\right)^{-1},(2-x)^{-2}$ or $\left(1-\frac{1}{2} x\right)^{-2}$	
Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction	A3ft
Obtain final answer $2+\frac{9}{4} x+4 x^{2}$	Al
[For the A, D, E form of fractions give M1A2 ft for the expanded partial fractions, then, if $D \neq 0$, M1 for multiplying out fully, and A1 for the final answer.]	$\mathbf{5}$

Question 28
i)

State or imply the form $\frac{A}{2-x}+\frac{B}{3+2 x}+\frac{C}{(3+2 x)^{2}}$	Bl
Use a correct method to find a constant	Ml
Obtain one of $A=1, B=-1, C=3$	Al
Obtain a second value	Al
Obtain the third value $\left[\right.$ Mark the form $\frac{A}{2-x}+\frac{D x+E}{(3+2 x)^{2}}$, where $A=1, D=-2$ and $E=0$, B1M1A1A1A1 as above.]	Al
	$\mathbf{5}$

ii)

Integrate and obtain terms $-\ln (2-x)-\frac{1}{2} \ln (3+2 x)-\frac{3}{2(3+2 x)}$	B3ft
Substitute correctly in an integral with terms $a \ln (2-x)$, $b \ln (3+2 x)$ and $c /(3+2 x)$ where $a b c \neq 0$	M1
Obtain the given answer after full and correct working $[$ Correct integration of the A, D, E form gives an extra constant term if integration by parts is used for the second partial fraction.]	Al
	$\mathbf{5}$

Question 29

(i)	State or imply the form $A+\frac{B}{2+x}+\frac{C}{3-2 x}$	Bl
	Use a correct method for finding a constant	Ml
Obtain one of $A=2, B=-4$ and $C=6$	Al	
Obtain a second value	Al	
Obtain the third value	Al	
		$\mathbf{5}$
ii)	Use correct method to find the first two terms of the expansion of $(2+x)^{-1}$ or $(3-2 x)^{-1}$, or equivalent	Mlft + Alft
	Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction	$\mathbf{M l}$
	Add the value of A to the sum of the expansions	Al
	Obtain final answer $2+\frac{7}{3} x+\frac{7}{18} x^{2}$	$\mathbf{5}$

Question 30
(i)

State or imply the form $\frac{A}{2+x}+\frac{B}{3-x}+\frac{C}{(3-x)^{2}}$	Bl
Use a correct method to obtain a constant	Ml
Obtain one of $A=2, B=2, C=-7$	Al
Obtain a second value	Al
Obtain the third value	Al
	$\mathbf{5}$

Question 31
(i)

State or imply the form $\frac{A}{2 x+1}+\frac{B}{2 x+3}+\frac{C}{(2 x+3)^{2}}$	Bl
Use a correct method to find a constant	Ml
Obtain the values $A=1, B=-1, C=3$	Al Al Al
$\left[\right.$ Mark the form $\frac{A}{2 x+1}+\frac{D x+E}{(2 x+3)^{2}}$, where $A=1, D=-2$ and	
$E=0$, B1M1A1A1A1 as above. $]$	

(ii)

Integrate and obtain terms
$\frac{1}{2} \ln (2 x+1)-\frac{1}{2} \ln (2 x+3)-\frac{3}{2(2 x+3)}$

[Correct integration of the A, D, E form of fractions gives
$\frac{1}{2} \ln (2 x+1)+\frac{x}{2 x+3}-\frac{1}{2} \ln (2 x+3)$ if integration by parts is used for the second partial fraction.]

Substitute limits correctly in an integral with terms $a \ln (2 x+1)$, $b \ln (2 x+3)$ and $c /(2 x+3)$, where $a b c \neq 0$ If using alternative form: $c x /(2 x+3)$	M1
Obtain the given answer following full and correct working	Al
	$\mathbf{5}$

Question 32
(i)

State or imply the form $\frac{A}{3+x}+\frac{B}{1-x}+\frac{C}{(1-x)^{2}}$	Bl
Use a correct method for finding a constant	Ml
Obtain one of $A=-3, B=-1, C=2$	Al
Obtain a second value	Al
Obtain the third value	Al
	$\mathbf{5}$

Question 33
(ii)

Use a correct method to find the first two terms of the expansion of $(3+x)^{-1}$,	Ml
$\left(1+\frac{1}{3} x\right)^{-1},(1-x)^{-1}$ or $(1-x)^{-2}$	
Obtain correct unsimplified expansions up to the term in x^{3} of each partial fraction	Al
	Al
Obtain final answer $\frac{10}{3} x+\frac{44}{9} x^{2}+\frac{190}{27} x^{3}$	Al
	Al

Question 33
(i)

State or imply the form $\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+2}$	Bl
Use a correct method for finding a constant	Ml
Obtain one of $A=-1, B=3, C=2$	Al
Obtain a second value	Al
Obtain the third value	Al
	$\mathbf{5}$

(ii)

Integrate and obtain terms $\ln x-\frac{3}{x}+2 \ln (x+2)$	BlFT + B1FT + B1FT
Substitute limits correctly in an integral with terms $a \ln x, \frac{b}{x}$ $a b c \neq 0$	Ml
Obtain $\frac{9}{4}$ following full and exact working	
	Al

Question 34

(i)	State or imply the form $\frac{A}{2 x-1}+\frac{B x+C}{x^{2}+2}$	B1
	Use a correct method for finding a constant	M1
	Obtain one of $A=4, B=-1, C=0$	A1
	Obtain a second value	A1
	Obtain the third value	A1
		5
(ii)	Integrate and obtain term $2 \ln (2 x-1)$	B1FT
	Integrate and obtain term of the form $k \ln \left(x^{2}+2\right)$	*M1
	Obtain term $-\frac{1}{2} \ln \left(x^{2}+2\right)$	AlFT
	Substitute limits correctly in an integral of the form $a \ln (2 x-1)+b \ln \left(x^{2}+2\right)$, where $a b \neq 0$	DM1
	Obtain answer $\ln 27$ after full and correct exact working	A1
		5

Question 35

(a)

State or imply the form $\frac{A}{1+2 x}+\frac{B}{1-2 x}+\frac{C}{2+x}$	B1
Use a correct method for finding a constant	M1
Obtain one of $A=-2, B=1$ and $C=4$	A1
Obtain a second value	A1
Obtain the third value	A1
	$\mathbf{5}$

(b)

| Use correct method to find the first two terms of the expansion of $(1+2 x)^{-1}$, |
| :--- | ---: |\quad M1

Question 36

(a)	State or imply the form $\frac{A}{2 x-1}+\frac{B}{2 x+1}$ and use a relevant method to find A or B	M1
	Obtain $A=1, B=-1$	Al
		2
(b)	Square the result of part (a) and substitute the fractions of part (a)	M1
	Obtain the given answer correctly	A1
		2
(c)	Integrate and obtain $-\frac{1}{2(2 x-1)}-\frac{1}{2} \ln (2 x-1)+\frac{1}{2} \ln (2 x+1)-\frac{1}{2(2 x+1)}$, or equivalent	B3, 2, 1, 0
	Substitute limits correctly	M1
	Obtain the given answer correctly	Al
		5

Question 37
(a)

State or imply the form $\frac{A}{1-x}+\frac{B}{2+3 x}+\frac{C}{(2+3 x)^{2}}$	Bl
Use a correct method for finding a coefficient	Ml
Obtain one of $A=1, B=-1, C=6$	Al
Obtain a second value	Al
Obtain the third value	Al
	$\mathbf{5}$

| (b) Use a correct method to find the first two terms of the expansion | M1 |
| :--- | :--- | ---: |
| of $(1-x)^{-1},(2+3 x)^{-1},\left(1+\frac{3}{2} x\right)^{-1},(2+3 x)^{-2}$ or $\left(1+\frac{3}{2} x\right)^{-2}$ | |
| $\begin{array}{ll}\text { Obtain correct un-simplified expansions up to the term in } \\ \text { of each partial fraction }\end{array}$ | Al FT |
| Obtain final answer $2-\frac{11}{4} x+10 x^{2}$, or equivalent | Al FT |

Question 38
(a)

State or imply the form $\frac{A}{3 x+2}+\frac{B x+C}{x^{2}+4}$	Bl
Use a correct method for finding a constant	Ml
Obtain one of $A=3, B=-1, C=3$	Al
Obtain a second value	Al
Obtain the third value	Al
	$\mathbf{5}$

(b)

Integrate and obtain $\ln (3 x+2) \ldots$	Bl FT
State a term of the form $k \ln \left(x^{2}+4\right)$.	Ml
$\ldots-\frac{1}{2} \ln \left(x^{2}+4\right) \ldots$	Al FT
$\ldots+\frac{3}{2} \tan ^{-1} \frac{x}{2}$	Bl FT
Substitute limits correctly in an integral with at least two terms of the form $a \ln (3 x+2), b \ln \left(x^{2}+4\right)$ and $c \tan ^{-1}\left(\frac{x}{2}\right)$, and subtract in correct order	Ml
Obtain answer $\frac{3}{2} \ln 2+\frac{3}{8} \pi$, or exact 2 -term equivalent	Al
	$\mathbf{6}$

Question 39

(a)	State or imply the form $\frac{A}{1-x}+\frac{B}{2+3 x}+\frac{C}{(2+3 x)^{2}}$	Bl
Use a correct method for finding a coefficient	$\mathbf{M 1}$	
Obtain one of $A=1, B=-1, C=6$	$\mathbf{A l}$	
Obtain a second value	$\mathbf{A l}$	
Obtain the third value	$\mathbf{A l}$	

(b) $\quad \begin{aligned} & \text { Use a correct method to find the first two terms of the expansion } \\ & \text { of }(1-x)^{-1},(2+3 x)^{-1},\left(1+\frac{3}{2} x\right)^{-1},(2+3 x)^{-2} \text { or }\left(1+\frac{3}{2} x\right)^{-2}\end{aligned}$

Obtain correct un-simplified expansions up to the term in of each partial fraction	Al FT +
Al FT	
+	
Al FT	

Question 40

| (a)Carry out a relevant method to determine constants A and B such that
 $\frac{5 a}{(2 x-a)(3 a-x)}=\frac{A}{2 x-a}+\frac{B}{3 a-x}$ | M1 |
| :--- | :--- | ---: |
| Obtain $A=2$ | A1 |
| Obtain $B=1$ | A1 |
| | $\mathbf{3}$ |

Question 41

State or imply the form $\frac{A}{1+2 x}+\frac{B}{4-x}$ and use a correct method to find a constant	M1
Obtain one of $A=4$ and $B=-1$	A1
Obtain the second value	$\mathbf{A 1}$
	$\mathbf{3}$

Question 42

(a)	State or imply the form $\frac{A}{2+x}+\frac{B+C x}{3+x^{2}}$	B1
Use a correct method for finding a constant	M1	
Obtain one of $A=4, B=1$ and $C=-2$	A1	
Obtain a second value	A1	
Obtain the third value	A1	
(b)	Use correct method to find the first two terms of the expansion of $(2+x)^{-1}$, $\left(1+\frac{1}{2} x\right)^{-1},\left(3+x^{2}\right)^{-1}$ or $\left(1+\frac{1}{3} x^{2}\right)^{-1}$	M1
Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction A1 FT	A1 FT	
Obtain final answer $\frac{7}{3}-\frac{5}{3} x+\frac{7}{18} x^{2}$	M1	
	A1	

Question 43

State a suitable form of partial fractions for $\frac{1}{x^{2}(1+2 x)}$	B1
Use a relevant method to determine a constant	M1
Obtain one of $A=-2, B=1$ and $C=4$	A1
Obtain a second value	A1
Obtain the third value	A1
Separate variables correctly and integrate at least one term	M1
Obtain terms $-2 \ln x-\frac{1}{x}+2 \ln (1+2 x)$ and t	
Evaluate a constant, or use limits $x=1, t=0$ in a solution containing terms t, $a \ln x$ and $b \ln (1+2 x)$, where $a b \neq 0$	M1
Obtain a correct expression for t in any form, e.g. $t=-\frac{1}{x}+2 \ln \left(\frac{1+2 x}{3 x}\right)+1$	A1

Question 44

State or imply the form $A+\frac{B}{2 x-1}+\frac{C}{x-3}$	$\mathbf{B 1}$	$\frac{D x+E}{2 x-1}+\frac{F}{x-3}$ and $\frac{P}{2 x-1}+\frac{Q x+R}{x-3}$ are also valid.
Use a correct method for finding a constant	M1	A1
Obtain one of $A=2, B=-3$ and $C=2$	Allow maximum M1A1 for one or more 'correct' values	
Obtain a second value	A1	
Obtain the third value		

Question 45

(a)
\(\left.$$
\begin{array}{|l|r|l}\text { State or imply the form } \frac{A}{x-2}+\frac{B x+C}{2 x^{2}+3} & \text { B1 } & \begin{array}{l}\text { If } 1-\frac{A}{x-2}+\frac{B x+C}{2 x^{2}+3} \text { or } \frac{A}{x-2}+\frac{C}{2 x^{2}+3} \text { B0 } \\
\text { then M1 A1 (for } A=3) \text { still possible. }\end{array}
$$

\hline Use a correct method for finding a constant \& M1 \& A1

\hline Obtain one of A=3, B=-1 and C=6 \& Allow all A marks obtained even if method would give errors

if equations solved in a different order.\end{array}\right]\)| Obtain a second value |
| :--- |
| Obtain the third value |

(b)
Use correct method to find the first two terms of the
$(x-2)^{-1},\left(1-\frac{1}{2} x\right)^{-1},\left(2 x^{2}+3\right)^{-1}$ or $\left(1+\frac{2}{3} x^{2}\right)^{-1}$

Obtain correct unsimplified expansions, up to the term in x^{2}, of each partial fraction

M1	Symbolic binomial coefficients not sufficient for the M1.
A1 FT A1 FT The FT is on A, B and C. $-\frac{A}{2}\left[1-\left(-\frac{x}{2}\right)+\frac{(-1)(-2)}{2}\left(-\frac{x}{2}\right)^{2}+\ldots\right]$ M1 $\frac{B x+C}{3}\left[1-\frac{2 x^{2}}{3}+\ldots\right]$ A1 Do not ISW. 3$\frac{C}{3}\left(\frac{2}{3}\right) x^{2}$ or $\frac{1}{3}\left(C+B x \pm C\left(\frac{2}{3}\right) x^{2}\right)$ $\mathbf{5}$ Allow a slip in multiplication for M1. Allow miscopies in B and C from $7(a)$.	

Question 46

State or imply the form $\frac{A}{3 x-1}+\frac{B x+C}{x^{2}+3}$

Use a correct method for finding a constant	M1
Obtain one of $A=1, B=0$ and $C=3$ from correct working	A1
A maximum of M1 A1 is available after B0.	
Obtain a second value from correct working	A1
Obtain the third value from correct working	A1
	$\mathbf{5}$

Question 47

State or imply the form $\frac{A}{3-x}+\frac{B x+C}{1+3 x^{2}}$	B1	
Use a correct method to find a constant	M1	A1
Obtain one of $A=2, B=0$ and $C=1$	$\mathbf{A 1}$	
Obtain a second value	$\mathbf{A 1}$	
Obtain the third value	$\mathbf{5}$	

Question 48

\(\left.\begin{array}{l|r|r}State or imply the form \frac{A}{1+x}+\frac{B x+C}{2+x^{2}} \& B1 \&

\hline Use a correct method for finding a constant \& M1 \& A1

\hline SC: A maximum of M1A1 is available for obtaining

A=2 after scoring B0.\end{array}\right]\)| | $\mathbf{A 1}$ | $\mathbf{A 1}$ |
| :--- | ---: | :--- |
| Obtain a second value $A=2, B=-1$ and $C=0$ | $\mathbf{5}$ | |
| Obtain the third value | | |

Question 49

State or imply the form $\frac{A}{1+x}+\frac{B}{2+x}+\frac{C}{(2+x)^{2}}$	B1	
Use a correct method to find a constant	M1	
Obtain one of $A=3, B=-1$ and $C=-2$	A1	SR after B0 can score M1A1 for one correct value
Obtain a second value	A1	
Obtain the third value	A1	$\frac{A}{1+x}+\frac{D x+E}{(2+x)^{2}}$, where $A=3, D=-1$ and $E=-4$, is awarded B1 M1 A1 A1 A1 as above.
	5	
Question 50		
State or imply the form $\frac{A x+B}{4+x^{2}}+\frac{C}{1+x}$	B1	
Use a correct method for finding a coefficient	M1	$(A x+B)(1+x)+C\left(4+x^{2}\right)=5 x^{2}+x+11$.
Obtain one of $A=2, B=-1$ and $C=3$	A1	If error present in above still allow A 1 for C.
Obtain a second value	A1	
Obtain the third value	A1	If $A=0$ then max M1 A1 (for C).
	5	

Question 51

State or imply the form $\frac{A}{1+2 x}+\frac{B}{3-x}+\frac{C}{(3-x)^{2}}$	B1	Alternative form: $\frac{A}{1+2 x}+\frac{D x+E}{(3-x)^{2}}$.
Use a correct method to find a constant	M1	Incorrect format for partial fractions: Allow M1 and a possible Al if obtain one of these correct values. Max $2 / 5$ Allow M1 even if multiply up by $(1+2 x)(3-x)^{3}$.
Obtain one of $A=2, B=2$ and $C=-3$	A1	Alternative form: obtain one of $A=2, D=-2$ and $E=3$.
Obtain a second value	$\mathbf{A 1}$	Do not need to substitute values back into original form.
Obtain the third value	$\mathbf{5}$	If $\frac{A}{1+2 x}+\frac{B}{3-x}+\frac{C x+D}{(3-x)^{2}}$ B0 but M1 A1 for A, A1 for B and A1 for C and $D . ~$ If $C=0$ then recovers B1 from above.

Question 52

State or imply the form $\frac{A}{1+2 x}+\frac{B}{2-x}+\frac{C}{(2-x)^{2}}$
Use a correct method for finding a coefficient

Use a correct method for finding a coefficient	M1
Obtain	

Obtain one of $A=-4, B=-3$ and $C=5$	A

Obtain a second value	A

Obtain the third value
41

A1

B1 Alternative form: $\frac{A}{1+2 x}+\frac{D x+E}{(2-x)^{2}}$
M1 e.g. $A(2-x)^{2}+B(1+2 x)(2-x)+C(1+2 x)$
$=2 x^{2}+17 x-17$
and compare coefficients or substitute for x.
$A(2-x)^{3}+B(1+2 x)(2-x)^{2}+C(1+2 x)(2-x)$
$=2 x^{2}+17 x-17$ scores M0.

A1 Extra term in partial fractions, then B0 unless recover at end. Allow the marks for any constants found correctly. Missing terms in partial fractions, B0 but M1A1 is available for a correct method that obtains at least one correct constant (e.g. cover-up rule) Max 2/5. Ignore any substitution back into their original expression.

If alternative form used: $A=-4, D=3$ and $E=-1$.

Question 53

State or imply the form $\frac{A}{2 x+1}+\frac{B}{x+2}+\frac{C}{(x+2)^{2}}$	$\mathbf{B 1}$	Accept $\frac{A}{2 x+1}+\frac{D x+E}{(x+2)^{2}}$.
Use a correct method for finding a constant	$\mathbf{M 1}$	
Obtain one of $A=1, B=-2, C=3$	$\mathbf{A 1}$	For alternative form: $A=1, D=-2, E=-1$.
Obtain a second value	$\mathbf{A 1}$	
Obtain the third value	$\mathbf{A 1}$	
	$\mathbf{5}$	

