A-level

Topic: Partial Fraction

May 2013-May 2023

Answers

Question 1

Questic	M 1		
State o	or imply correct form $\frac{A}{x} + \frac{Bx + C}{x^2 + 1}$	B1	
Use ar	ny relevant method to find at least one constant	M1	
	A = 2	A1	
Obtair	B=5	A1	
Obtair	1 C = -3	A1	[5]
Questic	on 2		
(i)	Use any relevant method to determine a constant	M1	
(-)	Obtain one of the values $A = 1$, $B = -2$, $C = 4$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	[4]
	[If A and C are found by the cover up rule, give $B1 + B1$ then $M1A1$ for finding B. If		
	only one is found by the rule, give B1M1A1A1.]		
(ii)	Separate variables and obtain one term by integrating $\frac{1}{y}$ or a partial fraction	M1	
(11)	y		
		12.0	
	Obtain $\ln y = -\frac{1}{2} - 2 \ln (2x + 1) + c$, or equivalent	A3√	
	Evaluate a constant, or use limits $x = 1$, $y = 1$, in a solution containing at least three		
	terms of the form $k \ln y$, l/x , $m \ln x$ and $n \ln (2x + 1)$, or equivalent	M1	
		1411	
	Obtain solution $\ln y = -\frac{1}{2} - 2\ln x + 2\ln(2x+1) + c$, or equivalent	A1	
	Substitute $x = 2$ and obtain $y = \frac{25}{36}e^{\frac{1}{2}}$, or exact equivalent free of logarithms	A1	[7]
	36		
Questic	on 3		

Q

(i)	State or imply partial fractions are of the form $\frac{A}{x-2} + \frac{Bx+C}{x^2+3}$	B1	
	Use a relevant method to determine a constant	M1	
	Obtain one of the values $A = -1$, $B = 3$, $C = -1$	A1	
	Obtain a second value	A1	
	Obtain the third value	A1	[5]

(ii) Use correct method to obtain the first two terms of the expansions of $(x-2)^{-1}$, $\left(1-\frac{1}{2}x\right)^{-1}$, $\left(x^2+3\right)^{-1}$ or $\left(1+\frac{1}{3}x^2\right)^{-1}$ M1 Substitute correct unsimplified expansions up to the term in x^2 into each

A1√+A1√ partial fraction M1

Multiply out fully by Bx + C, where $BC \neq 0$

Obtain final answer $\frac{1}{6} + \frac{5}{4}x + \frac{17}{72}x^2$, or equivalent

A1 [5]

Ouestion 4

(i) Either State or imply form
$$\frac{A}{1+x} + \frac{B}{(1+x)^2} + \frac{C}{2-3x}$$

Use any relevant method to find at least one constant M1

Obtain
$$A = -1$$

Obtain
$$B = 3$$
A1

Obtain
$$C = 4$$
 A1

Or State or imply form
$$\frac{A}{1+x} + \frac{Bx}{(1+x)^2} + \frac{C}{2-3x}$$

Obtain
$$A = 2$$

Obtain $B = -3$

Obtain
$$B = -3$$
Obtain $C = 4$

(ii) Either Use correct method to find first two terms of expansion of
$$(1+x)^{-1}$$
 or

$$(1+x)^{-2}$$
 or $(2-3x)^{-1}$ or $\left(1-\frac{3}{2}x\right)^{-1}$

Obtain correct unsimplified expansion of first partial fraction up to x^2 term A1√ Obtain correct unsimplified expansion of second partial fraction up to x^2 term A1√ Obtain correct unsimplified expansion of third partial fraction up to x^2 term A1√^

Obtain final answer
$$4 - 2x + \frac{25}{2}x^2$$

Use correct method to find first two terms of expansion of $(1+x)^{-2}$ Or 1

or
$$(2-3x)^{-1}$$
 or $\left(1-\frac{3}{2}x\right)^{-1}$ M1

Obtain correct unsimplified expansion of first partial fraction up to x^2 term A1√^ Obtain correct unsimplified expansion of second partial fraction up to x^2 term A1√ Expand and obtain sufficient terms to obtain three terms M1

Obtain final answer
$$4 - 2x + \frac{25}{2}x^2$$

(i) Either State or imply partial fractions are of form
$$\frac{A}{3-x} + \frac{B}{1+2x} + \frac{C}{(1+2x)^2}$$
 B1

Use any relevant method to obtain a constant M1

Obtain
$$A = 1$$

Obtain
$$B = \frac{3}{2}$$
 A1

Obtain
$$C = -\frac{1}{2}$$
 A1 [5]

Or State or imply partial fractions are of form
$$\frac{A}{3-x} + \frac{Dx + E}{(1+2x)^2}$$

Use any relevant method to obtain a constant M1

Obtain
$$A = 1$$

Obtain
$$D = 3$$

Obtain
$$D = 3$$
 A1
Obtain $E = 1$ A1 [5]

(ii) Obtain the first two terms of one of the expansion of
$$(3-x)^{-1}$$
, $\left(1-\frac{1}{3}x\right)^{-1}$

$$(1+2x)^{-1}$$
 and $(1+2x)^{-2}$

Obtain correct unsimplified expansion up to the term in x^2 of each partial fraction, A1√ following in each case the value of A, B, C A1√

Obtain answer
$$\frac{4}{3} - \frac{8}{9}x + \frac{1}{27}x^2$$
A1 [5]

[If A, D, E approach used in part (i), give M1A1 $^{\wedge}$ A1 $^{\wedge}$ for the expansions, M1 for multiplying out fully and A1 for final answer]

(i) Use a correct method for finding a constant M1
Obtain one of
$$A = 3$$
, $B = 3$, $C = 0$
Obtain a second value
Obtain a third value

A1
4

(ii) Integrate and obtain term
$$-3 \ln(2-x)$$
 B1 $\sqrt[4]{}$ Integrate and obtain term of the form $k \ln(2+x^2)$ M1

Obtain term $\frac{3}{2} \ln(2+x^2)$ A1 $\sqrt[4]{}$

Substitute limits correctly in an integral of the form
$$a \ln(2-x) + b \ln(2+x^2)$$
, where $ab \ne 0$ M1

Obtain given answer after full and correct working

A1 5

(i) State or imply the form
$$\frac{A}{1-x} + \frac{B}{2-x} + \frac{C}{(2-x)^2}$$

Use a correct method to determine a constant

M1

Obtain one of
$$A = 2$$
, $B = -1$, $C = 3$

(ii) Use correct method to find the first two terms of the expansion

of
$$(1-x)^{-1}$$
, $(2-x)^{-1}$, $(2-x)^{-2}$, $(1-\frac{1}{2}x)^{-1}$ or $(1-\frac{1}{2}x)^{-2}$

Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction

$$A1 \checkmark + A1 \checkmark + A1 \checkmark$$

Obtain final answer $\frac{9}{4} + \frac{5}{2}x + \frac{39}{16}x^2$, or equivalent

Question 8

(i) State or imply the form $\frac{A}{3-2x} + \frac{Bx+C}{x^2+4}$

Use a relevant method to determine a constant

M1

Obtain one of the values A = 3, B = -1, C = -2

Obtain one of the values A = 3, B = -1, C = -2Obtain a second value

A1

Obtain the third value A1 [5]

(ii) Use correct method to find the first two terms of the expansion of $(3-2x)^{-1}$, $(1-\frac{2}{3}x)^{-1}$,

$$(4+x^2)^{-1}$$
 or $(1+\frac{1}{4}x^2)^{-1}$

Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction $A1\sqrt[4]{+}A1\sqrt[4]{}$ Multiply out up to the term in x^2 by Bx + C, where $BC \neq 0$

Obtain final answer $\frac{1}{2} + \frac{5}{12}x + \frac{41}{72}x^2$, or equivalent A1 [5]

Question 9

(i) State or imply
$$f(x) = \frac{A}{2x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$$

Use a relevant method to determine a constant M1

Obtain one of the values A = 2, B = -1, C = 3

Obtain the remaining values A1 + A1 5

(ii) Integrate and obtain terms $\frac{1}{2} \cdot 2 \ln(2x-1) - \ln(x+2) - \frac{3}{x+2}$ Use limits correctly, namely substitution must be seen in at least two of the partial fractions to obtain M1 Integrate all 3 partial fractions and substitute in all three partial fractions for A1 since AG. M1 Obtain the given answer following full and exact working **A**1 5 Question 10 Substitute x = -1 and evaluate Either M1(i) Obtain 0 and conclude x+1 is a factor **A1** Divide by x+1 and obtain a constant remainder Or M1Obtain remainder = 0 and conclude x + 1 is a factor **A1** [2] Attempt division, or equivalent, at least as far as quotient $4x^2 + kx$ M1Obtain complete quotient $4x^2 - 5x - 6$ **A1** State form $\frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{4x+3}$ **A1** Use relevant method for finding at least one constant M1Obtain one of A = -2, B = 1, C = 8**A1** Obtain all three values **A1** Integrate to obtain three terms each involving natural logarithm of linear form **M**1 Obtain $-2 \ln(x+1) + \ln(x-2) + 2 \ln(4x+3)$, condoning no use of modulus signs and absence of ... +c**A1** [8] Question 11 **B1** (i) State or obtain A = 3Use a relevant method to find a constant M1**A1** Obtain one of B = -4, C = 4 and D = 0Obtain a second value **A1** Obtain the third value **A1** [5] B1√ (ii) Integrate and obtain $3x - 4 \ln x$ Integrate and obtain term of the form $k \ln(x^2 + 2)$ M1Obtain term $2\ln(x^2+2)$ A1√ Substitute limits in an integral of the form $ax + b \ln x + c \ln(x^2 + 2)$, where $abc \neq 0$ **M**1 Obtain given answer 3 – ln 4 after full and correct working **A1** [5]

B1√+ B1√+ B1√

(i) State or imply the form
$$\frac{A}{x+1} + \frac{B}{x-3} + \frac{C}{(x-3)^2}$$
Use a correct method to determine a constant
Obtain one of the values $A = 1$, $B = 3$, $C = 12$

B1

M1

(ii) Use correct method to find the first two terms of the expansion of $(x+1)^{-1}$, $(x-3)^{-1}$, $(1-\frac{1}{3}x)^{-1}$,

$$(x-3)^{-2}$$
, or $(1-\frac{1}{3}x)^{-2}$ M1
Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction A1 $\sqrt[4]{} + A1\sqrt[4]{} + A1\sqrt[4]{}$ Obtain final answer $\frac{4}{3} - \frac{4}{9}x + \frac{4}{3}x^2$, or equivalent A1

Question 13

(i) State or imply the form
$$A + \frac{B}{2x+1} + \frac{C}{x+2}$$

State or obtain $A = 2$

Use a correct method for finding a constant

Obtain one of $B = 1$, $C = -2$

Obtain the other value

B1

M1

A1

[5]

(ii) Integrate and obtain terms $2x + \frac{1}{2}\ln(2x+1) - 2\ln(x+2)$ Substitute correct limits correctly in an integral with terms $a\ln(2x+1)$ and $b\ln(x+2)$, where $ab \neq 0$ Obtain the given answer after full and correct working

A1 [5]

(i) State or imply the form
$$\frac{A}{x+3} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$$

Use a correct method to determine a constant

Obtain one of the values $A = -3$, $B = 1$, $C = 2$

Obtain a second value

Obtain the third value

[Mark the form $\frac{A}{x+3} + \frac{Dx+E}{(x-1)^2}$, where $A = -3$, $D = 1$, $E = 1$, B1M1A1A1A1 as above.]

[5]

(ii) Use a correct method to find the first two terms of the expansion of $(x+3)^{-1}$, $(1+\frac{1}{3}x)^{-1}$, $(x-1)^{-1}$, $(x-1)^{-2}$, or $(1-x)^{-2}$ M1

Obtain correct unsimplified expressions up to the term in x^2 of each partial fraction $\mathbf{A}\mathbf{1}^{1/2} + \mathbf{A}\mathbf{1}^{1/2} + \mathbf{A}\mathbf{1}^{1/2}$ Obtain final answer $\frac{10}{3}x + \frac{44}{9}x^2$, or equivalent

A1

Question 15

(i) State or imply the form
$$\frac{A}{x+2} + \frac{Bx+C}{x^2+4}$$

Use a correct method to determine a constant

Obtain one of $A=2$, $B=1$, $C=-1$

Obtain a second value

Obtain a third value

B1

M1

A1

[5]

(ii) Use correct method to find the first two terms of the expansion of
$$(x+2)^{-1}$$
, $(1+\frac{1}{2}x)^{-1}$, $(4+x^2)^{-1}$ or $(1+\frac{1}{4}x^2)^{-1}$ M1

Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction

Multiply out fully by $Bx + C$, where $BC \neq 0$

Obtain final answer $\frac{3}{4} - \frac{1}{4}x + \frac{5}{16}x^2$, or equivalent

A1

[5]

(i)	State or imply the form $\frac{A}{2+x} + \frac{Bx+C}{4+x^2}$	B1
	Use a relevant method to determine a constant	M1
	Obtain one of the values $A = -2$, $B = 1$, $C = 4$	A1
	Obtain a second value	A1
	Obtain the third value	A1
	Total:	5

(ii)	Use correct method to obtain the first two terms of the expansion of $(1 + \frac{1}{2}x)^{-1}$, $(2+x)^{-1}$, $(1+\frac{1}{4}x^2)^{-1}$ or $(4+x^2)^{-1}$	M1
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction	A1 [↑] + A1 [↑]
	Multiply out up to the term in x^2 by $Bx + C$, where $BC \neq 0$	M1
	Obtain final answer $\frac{3}{4}x - \frac{1}{2}x^2$	A1
	[Symbolic binomial coefficients, e.g. $_{-1}C_2$, are not sufficient for the first M1. The f.t. is on A, B, C .]	
	[In the case of an attempt to expand $x(6-x)(2+x)^{-1}(4+x^2)^{-1}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]	
	Total:	5

(i)	Carry out a relevant method to obtain A and B such that $\frac{1}{x(2x+3)} \equiv \frac{A}{x} + \frac{B}{2x+3}$, or equivalent	M1
	Obtain $A = \frac{1}{3}$ and $B = -\frac{2}{3}$, or equivalent	A1
	Total:	2
(ii)	Separate variables and integrate one side	B1
	Obtain term ln y	B1
	Integrate and obtain terms $\frac{1}{3} \ln x - \frac{1}{3} \ln(2x+3)$, or equivalent	B2 FT
	Use $x = 1$ and $y = 1$ to evaluate a constant, or as limits, in a solution containing $a \ln y$, $b \ln x$, $c \ln(2x + 3)$	M1
	Obtain correct solution in any form, e.g. $\ln y = \frac{1}{3} \ln x - \frac{1}{3} \ln(2x+3) + \frac{1}{3} \ln 5$	A1
	Obtain answer $y = 1.29$ (3s.f. only)	A1
	Total:	7

(i)	State or imply the form $\frac{A}{3x+2} + \frac{Bx+C}{x^2+5}$	B1
	Use a relevant method to determine a constant	M1
	Obtain one of the values $A = 2$, $B = 1$, $C = -3$	A1
	Obtain a second value	A1
	Obtain the third value	A1
	Total:	5
(ii)	Use correct method to find the first two terms of the expansion of $(3x+2)^{-1}$, $(1+\frac{3}{2}x)^{-1}$, $(5+x^2)^{-1}$ or $(1+\frac{1}{5}x^2)^{-1}$	M1
	[Symbolic coefficients, e.g. $\binom{-1}{2}$ are not sufficient]	
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction. The FT is on A , B , C . from part (i)	A1FT + A1FT
	Multiply out up to the term in x^2 by $Bx + C$, where $BC \neq 0$	M1
	Obtain final answer $\frac{2}{5} - \frac{13}{10}x + \frac{237}{100}x^2$, or equivalent	A1
	Total:	5

(i)	State or imply the form $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{3x+2}$	B1
	Use a relevant method to determine a constant	M1
	Obtain one of the values $A = 3$, $B = -2$, $C = -6$	A1
	Obtain a second value	A1
	Obtain the third value [Mark the form $\frac{Ax+B}{x^2} + \frac{C}{3x+2}$ using same pattern of marks.]	A1
	Total:	5
(ii)	Integrate and obtain terms $3 \ln x = \frac{2}{x} - 2 \ln(3x + 2)$ [The FT is on A, B and C] Note: Candidates who integrate the partial fraction $\frac{3x-2}{x^2}$ by parts should obtain $3 \ln x + \frac{2}{x} - 3$ or equivalent	B3 FT
	Use limits correctly, having integrated all the partial fractions, in a solution containing terms $a \ln x + \frac{b}{x} + c \ln(3x + 2)$	M1
	Obtain the given answer following full and exact working	A1
	Total:	5

(i)	Use a relevant method to determine a constant	M1
	Obtain one of the values $A = 2$, $B = 2$, $C = -1$	A1
	Obtain a second value	A1
	Obtain the third value	A1
		4
(ii)	Integrate and obtain terms $2x + 2\ln(x+2) - \frac{1}{2}\ln(2x-1)$ (deduct B1 for each error or omission) [The FT is on A, B and C]	B2 FT
	Substitute limits correctly in an integral containing terms $a \ln(x+2)$ and $b \ln(2x-1)$, where $ab \neq 0$	*M1
	Use at least one law of logarithms correctly	DM1
	Obtain the given answer after full and correct working	A1
Questio	on 21	5
(i)	Use a relevant method to determine a constant	M1
	Obtain one of the values $A = 2$, $B = 2$, $C = -1$	A1
	Obtain a second value	A1
	Obtain the third value	A1
	1. Satural.	4
(ii)	Integrate and obtain terms $2x + 2\ln(x+2) - \frac{1}{2}\ln(2x-1)$ (deduct B1 for each error or omission) [The FT is on A , B and C]	B2 FT
	Substitute limits correctly in an integral containing terms $a \ln(x+2)$ and $b \ln(2x-1)$, where $ab \neq 0$	*M1
	Use at least one law of logarithms correctly	DM1
	Obtain the given answer after full and correct working	A1
		5

(i)	State or imply the form $\frac{A}{2x+1} + \frac{Bx+C}{x^2+9}$	B1
	Use a correct method for finding a constant	M1
	Obtain one of $A = 3$, $B = 1$ and $C = 0$	A1
	Obtain a second value	A1
	Obtain the third value	A1
		5
(ii)	Integrate and obtain term $\frac{3}{2}\ln(2x+1)$ (FT on A value)	B1 FT
	Integrate and obtain term of the form $k \ln(x^2 + 9)$	M1
	Obtain term $\frac{1}{2}\ln(x^2+9)$ (FT on <i>B</i> value)	A1 FT
	Substitute limits correctly in an integral of the form $a \ln(2x+1) + b \ln(x^2+9)$, where $ab \neq 0$	M1
	Obtain answer ln 45 after full and correct working	A1
Ouestio	n 22	5

(i)	State or imply the form $A + \frac{B}{x-1} + \frac{C}{3x+2}$	B1
	State or obtain $A = 4$	B1
	Use a correct method to obtain a constant	M1
	Obtain one of $B = 3$, $C = -1$	A1
	Obtain the other value	A1
		5

(ii)	Use correct method to find the first two terms of the expansion of $(x-1)^{-1}$ or $(3x+2)^{-1}$, or equivalent	M1
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction	A1ft + A1ft
	Add the value of A to the sum of the expansions	M1
	Obtain final answer $\frac{1}{2} - \frac{9}{4}x - \frac{33}{8}x^2$	A1
		5

Use a correct method to find a constant	1
Obtain one of the values $A = -3$, $B = 1$, $C = 2$	
Obtain a second value	
Obtain the third value	1111

(ii)	Use a correct method to find the first two terms of the expansion of $(3-x)^{-1}$, $\left(1-\frac{1}{3}x\right)^{-1}$, $\left(2+x^2\right)^{-1}$ or $\left(1+\frac{1}{2}x^2\right)^{-1}$	M1
	Obtain correct unsimplified expansions up to the term in x^3 of each partial fraction	A1Ft + A1Ft
	Multiply out their expansion, up to the terms in x^3 , by $Bx + C$, where $BC \neq 0$	M1
	Obtain final answer $\frac{1}{6}x - \frac{11}{18}x^2 - \frac{31}{108}x^3$, or equivalent	A1
		5

6(i)	Carry out relevant method to find A and B such that $ \frac{1}{4 - y^2} = \frac{A}{2 + y} + \frac{B}{2 - y} $	M1
	Obtain $A = B = \frac{1}{4}$	A1
	Total:	2
i(ii)	Separate variables correctly and integrate at least one side to obtain one of the terms $a \ln x$, $b \ln (2 + y)$ or $c \ln (2 - y)$	M1
	Obtain term ln x	B1
	Integrate and obtain terms $\frac{1}{4}\ln(2+y) - \frac{1}{4}\ln(2-y)$	A1FT
	Use $x = 1$ and $y = 1$ to evaluate a constant, or as limits, in a solution containing at least two terms of the form $a \ln x$, $b \ln (2 + y)$ and $c \ln (2 - y)$	M1
	Obtain a correct solution in any form, e.g. $\ln x = \frac{1}{4} \ln(2+y) - \frac{1}{4} \ln(2-y) - \frac{1}{4} \ln 3$	A1
	Rearrange as $\frac{2(3x^4-1)}{(3x^4+1)}$, or equivalent	A1
	Total:	6

(i)	State or imply the form $\frac{A}{2-x} + \frac{B}{3+2x} + \frac{C}{(3+2x)^2}$	B1
	Use a correct method to find a constant	M1
	Obtain one of $A = 1, B = -1, C = 3$	A1
	Obtain a second value	A1
	Obtain the third value [Mark the form $\frac{A}{2-x} + \frac{Dx+E}{(3+2x)^2}$, where $A = 1$, $D = -2$ and $E = 0$, B1M1A1A1A1 as above.]	A1
		5

(ii)	Integrate and obtain terms $-\ln(2-x) - \frac{1}{2}\ln(3+2x) - \frac{3}{2(3+2x)}$	B3ft
	Substitute correctly in an integral with terms $a \ln (2-x)$, $b \ln (3+2x)$ and $c/(3+2x)$ where $abc \neq 0$	M1
	Obtain the given answer after full and correct working [Correct integration of the A, D, E form gives an extra constant term if integration by parts is used for the second partial fraction.]	A1
		5

State or imply the form $\frac{A}{1-2x} + \frac{B}{2-x} + \frac{C}{(2-x)^2}$	В
Use a correct method for finding a constant M1 is available following a single slip in working from their form but no A marks (even if a constant is "correct")	М
Obtain one of $A = 1$, $B = 3$, $C = -2$	A
Obtain a second value	A
Obtain the third value	A
[Mark the form $\frac{A}{1-2x} + \frac{Dx+E}{(2-x)^2}$, where $A = 1$, $D = -3$ and	
E = 4, B1M1A1A1A1 as above.]	

(ii)	Use a correct method to find the first two terms of the expansion of $(1-2x)^{-1}$, $(2-x)^{-1}$, $(2-x)^{-1}$, $(2-x)^{-2}$ or $(1-\frac{1}{2}x)^{-2}$	M1
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction	A3ft
	Obtain final answer $2 + \frac{9}{4}x + 4x^2$	Al
	[For the A , D , E form of fractions give M1A2ft for the expanded partial fractions, then, if $D \neq 0$, M1 for multiplying out fully, and A1 for the final answer.]	
		5

i)	State or imply the form $\frac{A}{2-x} + \frac{B}{3+2x} + \frac{C}{(3+2x)^2}$	B1
	Use a correct method to find a constant	M1
	Obtain one of $A = 1$, $B = -1$, $C = 3$	Al
	Obtain a second value	Al
	Obtain the third value [Mark the form $\frac{A}{2-x} + \frac{Dx+E}{(3+2x)^2}$, where $A = 1$, $D = -2$ and $E = 0$, B1M1A1A1A1 as above.]	Al
	E = 0, BINIAIAI as acove.]	5

ii)	Integrate and obtain terms	B3ft
	$-\ln(2-x) - \frac{1}{2}\ln(3+2x) - \frac{3}{2(3+2x)}$	
	Substitute correctly in an integral with terms $a \ln (2-x)$, $b \ln (3+2x)$ and $c/(3+2x)$ where $abc \neq 0$	M1
	Obtain the given answer after full and correct working [Correct integration of the A , D , E form gives an extra constant term if integration by parts is used for the second partial fraction.]	Al
		5
Questi	on 29	
(i)	State or imply the form $A + \frac{B}{2+x} + \frac{C}{3-2x}$	B1
	Use a correct method for finding a constant	Ml

(1)	State or imply the form $A + \frac{B}{2+x} + \frac{C}{3-2x}$	ВІ
	Use a correct method for finding a constant	M1
	Obtain one of $A = 2$, $B = -4$ and $C = 6$	Al
	Obtain a second value	Al
	Obtain the third value	Al
		5
(ii)	Use correct method to find the first two terms of the expansion of $(2+x)^{-1}$ or $(3-2x)^{-1}$, or equivalent	M1
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction	Alft +Alft
	Add the value of A to the sum of the expansions	M1
	Obtain final answer $2 + \frac{7}{3}x + \frac{7}{18}x^2$	Al
		5

(i)	State or imply the form $\frac{A}{2+x} + \frac{B}{3-x} + \frac{C}{(3-x)^2}$	B1
	Use a correct method to obtain a constant	M1
	Obtain one of $A = 2$, $B = 2$, $C = -7$	Al
	Obtain a second value	Al
	Obtain the third value	Al
	T PR	5

(i)	State or imply the form $\frac{A}{2x+1} + \frac{B}{2x+3} + \frac{C}{(2x+3)^2}$	B1
	Use a correct method to find a constant	M1
	Obtain the values $A = 1$, $B = -1$, $C = 3$	Al Al Al
	[Mark the form $\frac{A}{2x+1} + \frac{Dx+E}{(2x+3)^2}$, where $A = 1, D = -2$ and	
	E = 0, B1M1A1A1A1 as above.]	
	· SatnreP	5

(ii)	Integrate and obtain terms	B1 B1 B1
	$\frac{1}{2}\ln(2x+1) - \frac{1}{2}\ln(2x+3) - \frac{3}{2(2x+3)}$	
	[Correct integration of the A, D, E form of fractions gives	
	$\frac{1}{2}\ln(2x+1) + \frac{x}{2x+3} - \frac{1}{2}\ln(2x+3)$ if integration by parts is used	
	for the second partial fraction.]	
	Substitute limits correctly in an integral with terms $a \ln(2x+1)$,	M1
	$b \ln (2x+3)$ and $c/(2x+3)$, where $abc \neq 0$	
	If using alternative form: $cx/(2x+3)$	
	Obtain the given answer following full and correct working	Al
		5
Question	32	

Use a correct method for finding a constant	
Obtain one of $A = -3$, $B = -1$, $C = 2$	
Obtain a second value	
Obtain the third value	

11)	Use a correct method to find the first two terms of the expansion of $(3+x)^{-1}$,	M1
	$(1+\frac{1}{3}x)^{-1}$, $(1-x)^{-1}$ or $(1-x)^{-2}$	
	Obtain correct unsimplified expansions up to the term in x^3 of each partial fraction	Al
		Al
		Al
	Obtain final answer $\frac{10}{3}x + \frac{44}{9}x^2 + \frac{190}{27}x^3$	Al
Duesti	on 33	5
i)	State or imply the form $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+2}$	B1
	Use a correct method for finding a constant	Ml
	Obtain one of $A = -1$, $B = 3$, $C = 2$	Al
	Obtain a second value	Al
	Obtain the third value	Al
	3	5
(ii)	Integrate and obtain terms $\ln x - \frac{3}{x} + 2\ln(x+2)$	B1FT + B1FT + B1FT
	Substitute limits correctly in an integral with terms $a \ln x$, $\frac{b}{x}$ and $c \ln (x+2)$, where $abc \neq 0$	M1
	Obtain $\frac{9}{4}$ following full and exact working	Al
		5

(i)	State or imply the form $\frac{A}{2x-1} + \frac{Bx+C}{x^2+2}$	B1
	Use a correct method for finding a constant	M1
	Obtain one of $A = 4$, $B = -1$, $C = 0$	Al
	Obtain a second value	Al
	Obtain the third value	Al
		5
(ii)	Integrate and obtain term $2\ln(2x-1)$	B1FT
	Integrate and obtain term of the form $k \ln(x^2 + 2)$	*M1
	Obtain term $-\frac{1}{2}\ln(x^2+2)$	AlfT
	Substitute limits correctly in an integral of the form $a \ln(2x-1) + b \ln(x^2+2)$, where $ab \neq 0$	DM1
	Obtain answer In 27 after full and correct exact working	Al
	·satpreP·	5

P(a)	State or imply the form $\frac{A}{1+2x} + \frac{B}{1-2x} + \frac{C}{2+x}$	В1
	Use a correct method for finding a constant	M1
	Obtain one of $A = -2$, $B = 1$ and $C = 4$	A1
	Obtain a second value	A1
	Obtain the third value	A1
		5
)(b)	Use correct method to find the first two terms of the expansion of $(1+2x)^{-1}$, $(1-2x)^{-1}$, $(2+x)^{-1}$ or $\left(1+\frac{1}{2}x\right)^{-1}$	M1
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction	A1FT + A1FT + A1FT
	Obtain final answer $1 + 5x - \frac{7}{2}x^2$	A1
		5

(a)	State or imply the form $\frac{A}{2x-1} + \frac{B}{2x+1}$ and use a relevant method to find A or B	MI
	Obtain $A = 1, B = -1$	Al
		2
(b)	Square the result of part (a) and substitute the fractions of part (a)	M1
	Obtain the given answer correctly	Al
		2
(c)	Integrate and obtain $-\frac{1}{2(2x-1)} - \frac{1}{2}\ln(2x-1) + \frac{1}{2}\ln(2x+1) - \frac{1}{2(2x+1)}$, or equivalent	B3, 2, 1, 0
	Substitute limits correctly	M1
	Obtain the given answer correctly	Al
		5

(a)	State or imply the form $\frac{A}{1-x} + \frac{B}{2+3x} + \frac{C}{(2+3x)^2}$	B1
	Use a correct method for finding a coefficient	M1
	Obtain one of $A = 1$, $B = -1$, $C = 6$	Al
	Obtain a second value	Al
	Obtain the third value	Al
		5

l(b)	Use a correct method to find the first two terms of the expansion of $(1-x)^{-1}$, $(2+3x)^{-1}$, $(2+3x)^{-1}$, $(2+3x)^{-2}$ or $\left(1+\frac{3}{2}x\right)^{-2}$	M1
	Obtain correct un-simplified expansions up to the term in of each partial fraction	Al FT
		Al FT +
	3	Al FT
	Obtain final answer $2 - \frac{11}{4}x + 10x^2$, or equivalent	Al
		5

(a)	State or imply the form $\frac{A}{3x+2} + \frac{Bx+C}{x^2+4}$	Bl
	Use a correct method for finding a constant	M1
	Obtain one of $A = 3$, $B = -1$, $C = 3$	Al
	Obtain a second value	Al
	Obtain the third value	Al
		5
(b)	Integrate and obtain $ln(3x+2)$	B1 FT
	State a term of the form $k \ln(x^2 + 4)$.	M1
	$\dots -\frac{1}{2}\ln(x^2+4)\dots$	Al FT
	$\dots + \frac{3}{2} \tan^{-1} \frac{x}{2}$	B1 FT
	Substitute limits correctly in an integral with at least two terms of the form $a \ln(3x+2)$, $b \ln(x^2+4)$ and $c \tan^{-1}(\frac{x}{2})$, and subtract in correct order	M1
	Obtain answer $\frac{3}{2}\ln 2 + \frac{3}{8}\pi$, or exact 2-term equivalent	Al
		6

)(a)

State or imply the form $\frac{A}{1-x} + \frac{B}{2+3x} + \frac{C}{(2+3x)^2}$	B1
Use a correct method for finding a coefficient	M1
Obtain one of $A = 1$, $B = -1$, $C = 6$	Al
Obtain a second value	Al
Obtain the third value	Al
	5

Use a correct method to find the first two terms of the expansion of $(1-x)^{-1}$, $(2+3x)^{-1}$, $\left(1+\frac{3}{2}x\right)^{-1}$, $\left(2+3x\right)^{-2}$ or $\left(1+\frac{3}{2}x\right)^{-2}$	M1
GAT PRES	
Obtain correct un-simplified expansions up to the term in of each partial fraction	Al FT
	Al FT +
	Al FT
Obtain final answer $2 - \frac{11}{4}x + 10x^2$, or equivalent	Al
	5

(a)	Carry out a relevant method to determine constants A and B such that $\frac{5a}{(2x-a)(3a-x)} = \frac{A}{2x-a} + \frac{B}{3a-x}$	M1
	Obtain $A = 2$	A1
	Obtain $B = 1$	A1
		3

State or imply the form $\frac{A}{1+2x} + \frac{B}{4-x}$ and use a correct method to find a constant	M1
Obtain one of $A = 4$ and $B = -1$	A1
Obtain the second value	A1
	3

(a)	State or imply the form $\frac{A}{2+x} + \frac{B+Cx}{3+x^2}$	B1
	Use a correct method for finding a constant	M1
	Obtain one of $A = 4$, $B = 1$ and $C = -2$	A1
	Obtain a second value	A1
	Obtain the third value	A1
		5
(b)	Use correct method to find the first two terms of the expansion of $(2+x)^{-1}$, $\left(1+\frac{1}{2}x\right)^{-1}$, $\left(3+x^2\right)^{-1}$ or $\left(1+\frac{1}{3}x^2\right)^{-1}$	M1
	Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction	A1 FT A1 FT
	Multiply out, up to the terms in x^2 , by $B + Cx$, where $BC \neq 0$	M1
	Obtain final answer $\frac{7}{3} - \frac{5}{3}x + \frac{7}{18}x^2$	A1
		5

State a suitable form of partial fractions for $\frac{1}{x^2(1+2x)}$	B1
Use a relevant method to determine a constant	M1
Obtain one of $A = -2$, $B = 1$ and $C = 4$	A1
Obtain a second value	A1
Obtain the third value	A1
Separate variables correctly and integrate at least one term	M1
Obtain terms $-2\ln x - \frac{1}{x} + 2\ln(1+2x)$ and t	B3 FT
Evaluate a constant, or use limits $x = 1$, $t = 0$ in a solution containing terms t , $a \ln x$ and $b \ln (1 + 2x)$, where $ab \ne 0$	M1
Obtain a correct expression for t in any form, e.g. $t = -\frac{1}{x} + 2\ln\left(\frac{1+2x}{3x}\right) + 1$	A1
3 - !!	11

State or imply the form $A + \frac{B}{2x-1} + \frac{C}{x-3}$	B1	$\frac{Dx+E}{2x-1} + \frac{F}{x-3}$ and $\frac{P}{2x-1} + \frac{Qx+R}{x-3}$ are also valid.
Use a correct method for finding a constant	M1	
Obtain one of $A = 2$, $B = -3$ and $C = 2$	A1	Allow maximum M1A1 for one or more 'correct' values after B0.
Obtain a second value	A1	
Obtain the third value	A1	

(a)	State or imply the form $\frac{A}{x-2} + \frac{Bx+C}{2x^2+3}$	B1	If $1 - \frac{A}{x-2} + \frac{Bx+C}{2x^2+3}$ or $\frac{A}{x-2} + \frac{C}{2x^2+3}$ B0 then M1 A1 (for $A = 3$) still possible.
	Use a correct method for finding a constant	M1	
	Obtain one of $A = 3$, $B = -1$ and $C = 6$	A1	Allow all A marks obtained even if method would give errors if equations solved in a different order.
	Obtain a second value	A1	
	Obtain the third value	A1	
		5	
(b)	Use correct method to find the first two terms of the expansion of $(x-2)^{-1}$, $\left(1-\frac{1}{2}x\right)^{-1}$, $\left(2x^2+3\right)^{-1}$ or $\left(1+\frac{2}{3}x^2\right)^{-1}$	M1	Symbolic binomial coefficients not sufficient for the M1.
	Obtain correct unsimplified expansions, up to the term in x^2 , of each partial fraction	A1 FT A1 FT	The FT is on A, B and C. $-\frac{A}{2} \left[1 - \left(-\frac{x}{2} \right) + \frac{(-1)(-2)}{2} \left(-\frac{x}{2} \right)^2 + \dots \right]$ Bx + C $\left[2x^2 \right]$
			$\frac{Bx+C}{3}\left[1-\frac{2x^2}{3}+\dots\right]$
	Extract the coefficient 3 correctly from $(2x^2 + 3)^{-1}$ with expansion to $1 \pm \frac{2}{3}x^2$ then multiply by $Bx + C$ up to the terms in x^2 , where $BC \neq 0$	M1	$\frac{C}{3} + \frac{Bx}{3} \pm \frac{C}{3} \left(\frac{2}{3}\right) x^2 \text{ or } \frac{1}{3} \left(C + Bx \pm C \left(\frac{2}{3}\right) x^2\right)$ Allow a slip in multiplication for M1.
			Allow miscopies in B and C from 7(a).
	Obtain final answer $\frac{1}{2} - \frac{13}{12}x - \frac{41}{24}x^2$	A1	Do not ISW.

Question 46

State or imply the form $\frac{A}{3x-1} + \frac{Bx+C}{x^2+3}$	B1	1.5
Use a correct method for finding a constant	M1	0.7
Obtain one of $A = 1$, $B = 0$ and $C = 3$ from correct working	A1	A maximum of M1 A1 is available after B0.
Obtain a second value from correct working	A1	
Obtain the third value from correct working	A1	
	5	

State or imply the form $\frac{A}{3-x} + \frac{Bx+C}{1+3x^2}$	B1	
Use a correct method to find a constant	M1	
Obtain one of $A = 2$, $B = 0$ and $C = 1$	A1	
Obtain a second value	A1	
Obtain the third value	A1	
	5	

State or imply the form $\frac{A}{1+x} + \frac{Bx+C}{2+x^2}$	B1	
Use a correct method for finding a constant	M1	
Obtain one of $A = 2$, $B = -1$ and $C = 0$	A1	SC: A maximum of M1A1 is available for obtaining $A = 2$ after scoring B0.
Obtain a second value	A1	
Obtain the third value	A1	
	5	

Question 49

State or imply the form $\frac{A}{1+x} + \frac{B}{2+x} + \frac{C}{(2+x)^2}$	B1	
Use a correct method to find a constant	M1	
Obtain one of $A=3$, $B=-1$ and $C=-2$	A1	SR after B0 can score M1A1 for one correct value
Obtain a second value	A1	
Obtain the third value	A1	$\frac{A}{1+x} + \frac{Dx+E}{(2+x)^2}$, where $A = 3$, $D = -1$ and $E = -4$, is awarded B1 M1 A1 A1 A1 as above.
	5	

State or imply the form $\frac{Ax+B}{4+x^2} + \frac{C}{1+x}$	B1	
Use a correct method for finding a coefficient	M1	$(Ax + B)(1 + x) + C(4 + x^{2}) = 5x^{2} + x + 11.$
Obtain one of $A = 2$, $B = -1$ and $C = 3$	A1	If error present in above still allow A1 for C.
Obtain a second value	A1	
Obtain the third value	A1	If $A = 0$ then max M1 A1 (for C).
Sato	5) .

State or imply the form $\frac{A}{1+2x} + \frac{B}{3-x} + \frac{C}{(3-x)^2}$	В1	Alternative form: $\frac{A}{1+2x} + \frac{Dx + E}{(3-x)^2}$.
Use a correct method to find a constant	M1	Incorrect format for partial fractions: Allow M1 and a possible A1 if obtain one of these correct values. Max $2/5$ Allow M1 even if multiply up by $(1 + 2x)(3 - x)^3$.
Obtain one of $A = 2$, $B = 2$ and $C = -3$	A1	Alternative form: obtain one of $A = 2$, $D = -2$ and $E = 3$.
Obtain a second value	A1	
Obtain the third value	A1	Do not need to substitute values back into original form.
	5	If $\frac{A}{1+2x} + \frac{B}{3-x} + \frac{Cx+D}{(3-x)^2}$ B0 but M1 A1 for A, A1 for B and A1 for C and D. If $C = 0$ then recovers B1 from above.

Question 52

State or imply the form $\frac{A}{1+2x} + \frac{B}{2-x} + \frac{C}{(2-x)^2}$	B1	Alternative form: $\frac{A}{1+2x} + \frac{Dx+E}{(2-x)^2}$
Use a correct method for finding a coefficient	M1	e.g. $A(2-x)^2 + B(1+2x)(2-x) + C(1+2x)$ = $2x^2 + 17x - 17$ and compare coefficients or substitute for x . $A(2-x)^3 + B(1+2x)(2-x)^2 + C(1+2x)(2-x)$ = $2x^2 + 17x - 17$ scores M0.
Obtain one of $A = -4$, $B = -3$ and $C = 5$	A1	
Obtain a second value	A1	
Obtain the third value	A1	Extra term in partial fractions, then B0 unless recover at end. Allow the marks for any constants found correctly. Missing terms in partial fractions, B0 but M1A1 is available for a correct method that obtains at least one correct constant (e.g. cover-up rule) Max 2/5. Ignore any substitution back into their original expression.
7		If alternative form used: $A = -4$, $D = 3$ and $E = -1$.
	5	

State or imply the form $\frac{A}{2x+1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$	B1	Accept $\frac{A}{2x+1} + \frac{Dx+E}{(x+2)^2}$.
Use a correct method for finding a constant	M1	
Obtain one of $A = 1, B = -2, C = 3$	A1	For alternative form: $A = 1$, $D = -2$, $E = -1$.
Obtain a second value	A1	
Obtain the third value	A1	
	5	