A-level

Topic :Vector

May 2013-May 2023

Answer

(i)	State or	B1		
	State or	imply $\overrightarrow{QP} = 12\mathbf{i} + 6\mathbf{j} - 6\mathbf{k}$ or equivalent	B1	
	Use QP	as normal and A as mid-point to find equation of plane	M1	
		12x+6y-6z = 48 or equivalent	A1	[4]
(ii)	Either	State equation of <i>PB</i> is $\mathbf{r} = 7\mathbf{i} + 7\mathbf{j} - 5\mathbf{k} + \lambda \mathbf{i}$	B 1	
		Set up and solve a relevant equation for λ .	M1	
		Obtain $\lambda = -9$ and hence B is $(-2, 7, -5)$	A1	
		Use correct method to find distance between A and B.	M1	
		Obtain 5.20	A1	
	<u>Or</u>	Obtain 12 for result of scalar product of QP and i or equivalent Use correct method involving moduli, scalar product and cosine	B1	
		to find angle APB	M1	
		Obtain 35.26° or equivalent	A1	
		Use relevant trigonometry to find AB	M1	
		Obtain 5.20	A1	[5]

(i)	Carry out a correct method for finding a vector equation for <i>AB</i> Obtain $\mathbf{r} = 2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k} + \lambda (3\mathbf{i} + \mathbf{j} - \mathbf{k})$ or	M1	
	$\mathbf{r} = \mu (2\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}) + (1 - \mu)(5\mathbf{i} - 2\mathbf{j} + \mathbf{k}), \text{ or equivalent}$	A1	
	Substitute components in equation of p and solve for λ or for μ	M1	
		1011	
	Obtain $\lambda = \frac{3}{2}$ or $\mu = -\frac{1}{2}$ and final answer $\frac{13}{2}\mathbf{i} - \frac{3}{2}\mathbf{j} + \frac{1}{2}\mathbf{k}$, or equivalent	A1	[4]
(ii)	Either equate scalar product of direction vector of AB and normal to q to zero or		
	substitute for A and B in the equation of q and subtract expressions	M1*	
	Obtain $3 + b - c = 0$, or equivalent	A1	
	Using the correct method for the moduli, divide the scalar product of the normals	to	
	p and q by the product of their moduli and equate to $\pm \frac{1}{2}$, or form horizontal		
	equivalent	M1*	
	Obtain correct equation in any form, e.g. $\frac{1+b}{\sqrt{(1+b^2+c^2)}\sqrt{(1+1)}} = \pm \frac{1}{2}$	A1	
	Solve simultaneous equations for b or for c	M1 (dep*)	
	Obtain $b = -4$ and $c = -1$	Al	
	Use a relevant point and obtain final answer $x - 4y - z = 12$, or equivalent	A1√ [*]	[7]
	(The f.t. is on b and c .)		
Que	stion 3		
(i)	Equate scalar product of direction vector of <i>l</i> and <i>p</i> to zero Solve for <i>a</i> and obtain $a = -6$	M1 A1	[2]
(ii)	Express general point of <i>l</i> correctly in parametric form, e.g. $3\mathbf{i} + 2\mathbf{j} + \mathbf{k} + \mu(2\mathbf{i} + \mathbf{j} + 2\mathbf{j})$	2 k)	
()	or $(1 - \mu)(3\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + \mu(\mathbf{i} + \mathbf{j} - \mathbf{k})$	B1	
	Equate at least two pairs of corresponding components of l and the second line and so		
	for λ or for μ	M1	
	Obtain either $\lambda = \frac{2}{3}$ or $\mu = \frac{1}{3}$; or $\lambda = \frac{2}{a-1}$ or $\mu = \frac{1}{a-1}$; or reach $\lambda(a-4) = 0$		
	or $(1 + \mu)(a - 4) = 0$	A1	
	Obtain $a = 4$ having ensured (if necessary) that all three component equations are sati	sfied A1	[4]
(***)		I	
(Ш)) Using the correct process for the moduli, divide scalar product of direction vector if <i>l</i> normal to <i>p</i> by the product of their moduli and equate to the sine of the given angle, o		
	an equivalent horizontal equation	M1*	
	Use $\frac{2}{\sqrt{5}}$ as sine of the angle	A1	
	v -		
	State equation in any form, e.g. $\frac{a+6}{\sqrt{a^2+4+1}} = \frac{2}{\sqrt{5}}$	A1	
	Solve for a $\sqrt{(a + 4 + 1)}\sqrt{(1 + 4 + 4)}$	M1 (dep*)	
		wir (ueh.)	
	Obtain answers for $a = 0$ and $a = \frac{60}{31}$, or equivalent	A1	[5]

(i)	EITHER	Obtain a vector parallel to the plane, e.g. $\overrightarrow{AB} = -2\mathbf{i} + 4\mathbf{j} - \mathbf{k}$	B1
		Use scalar product to obtain an equation in a, b, c, e.g. $-2a + 4b - c = 0$,	MI
		3a-3b+3c=0, or $a+b+2c=0$	M1 A1
		Obtain two correct equations in <i>a</i> , <i>b</i> , <i>c</i> Solve to obtain ratio $a : b : c$	M1
		Obtain $a:b:c=3:1:-2$, or equivalent	Al
		Obtain equation $3x + y - 2z = 1$, or equivalent	A1
	OR1:	Substitute for two points, e.g. A and B, and obtain $2a-b+2c=d$ and $3b+c=d$	B1
		Substitute for another point, e.g. <i>C</i> , to obtain a third equation and eliminate	
		one unknown entirely from the three equations	M1
		Obtain two correct equations in three unknowns, e.g. in a, b, c	A1
		Solve to obtain their ratio, e.g. $a:b:c$ Obtain $a:b:c=3:1:-2$, $a:c:d=3:-2:1$, $a:b:d=3:1:1$ or	M1
		Obtain $a:b:c=3:1:-2$, $a:c:d=3:-2:1$, $a:b:d=3:1:1$ or $b:c:d=-1:-2:1$	A1
		Obtain equation $3x + y - 2z = 1$, or equivalent	Al
		oo maa oo qaanaa ah oo	
(ii)	Obtain a	nswer $\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, or equivalent B1	[1]
(11)	Obtain a		[1]
(iii)	EITHEI	R: Use $\frac{\overrightarrow{OA}.\overrightarrow{OD}}{\left \overrightarrow{OD}\right }$ to find projection <i>ON</i> of <i>OA</i> onto <i>OD</i>	M1
		Obtain $ON = \frac{4}{3}$	A1
		Use Pythagoras in triangle OAN to find AN	M1
		Obtain the given answer	A1
	OR1:	Calculate the vector product of OA and OD	M1
		Obtain answer $6\mathbf{i} + 2\mathbf{j} - 5\mathbf{k}$	A1
		Divide the modulus of the vector product by the modulus of <i>OD</i>	M1
	0.02	Obtain the given answer Tables as a set $P = f(Q)$ to be a satisfier sector $2(i + 2i + 2k)$ from	A1
	<i>OR2:</i>	Taking general point P of OD to have position vector $\lambda(\mathbf{i}+2\mathbf{j}+2\mathbf{k})$, form	
		an equation in λ by either equating the scalar product of \overrightarrow{AP} and \overrightarrow{OP} to	
		zero, or using Pythagoras in triangle <i>OPA</i> , or setting the derivative of \overrightarrow{AP}	
		to zero	M 1
			A1
		Solve and obtain $\lambda = \frac{4}{9}$	AI
		Carry out method to calculate AP when $\lambda = \frac{4}{9}$	M1
		Obtain the given answer	A1

(i)		Find scalar product of the normals to the planes Jsing the correct process for the moduli, divide the scalar product by the product of the					
			\cos^{-1} of the result.	M1			
	Obtain 67	.8° (or 1	.18 radians)	A1	[3]		
(ii)	<u>EITHER</u>	Carry o	out complete method for finding point on line	M1			
		Obtain	one such point, e.g. $(2,-3,0)$ or $\left(\frac{17}{7},0,\frac{6}{7}\right)$ or $(0,-17,-4)$ or	A1			
		Either	State $3a - b + 2c = 0$ and $a + b - 4c = 0$ or equivalent	B1			
			Attempt to solve for one ratio, e.g. $a:b$	M1			
			Obtain $a:b:c=1:7:2$ or equivalent	A1			
			State a correct final answer, e.g. $r = [2, -3, 0] + \lambda [1, 7, 2]$	A1√			
		<u>Or 1</u>	Obtain a second point on the line	A1			
			Subtract position vectors to obtain direction vector	M1			
			Obtain [1, 7, 2] or equivalent	A1			
			State a correct final answer, e.g. $r = [2, -3, 0] + \lambda [1, 7, 2]$	A1√			

(i)		2x - 3y + 6z for LHS of equation 2x - 3y + 6z = 23	B1 B1	[2]
(ii)	<u>Either</u>	Use correct formula to find perpendicular distance Obtain unsimplified value $\frac{\pm 23}{\sqrt{2^2 + (-3)^2 + 6^2}}$, following answer to (i)	M1 A1√ ^k	
		Obtain $\frac{23}{7}$ or equivalent	A1	[3]

	<u>OR 1</u>	Use scalar product of $(4, -1, 2)$ and a vector normal to the plane	M1	
		Use unit normal to plane to obtain $\pm \frac{(8+3+12)}{\sqrt{49}}$	A1	
		Obtain $\frac{23}{7}$ or equivalent	A1	[3]
	<u>OR 2</u>	Find parameter intersection of p and $\mathbf{r} = \mu (2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k})$	M1	
		Obtain $\mu = \frac{23}{49}$ [and $\left(\frac{46}{49}, -\frac{69}{49}, \frac{138}{49}\right)$ as foot of perpendicular]	A1	
		Obtain distance $\frac{23}{7}$ or equivalent	A1	[3]
(iii)	Either	Recognise that plane is $2x - 3y + 6z = k$ and attempt use of formula for perpendicular distance to plane at least once	M1	
		Obtain $\frac{ 23-k }{7} = 14$ or equivalent	A1	
	OB	Obtain $2x - 3y + 6z = 121$ and $2x - 3y + 6z = -75$	A1	[3]
	<u>OR</u>	Recognise that plane is $2x - 3y + 6z = k$ and attempt to find at least one point on q using l with $\lambda = \pm 2$ Obtain $2x - 3y + 6z = 121$ Obtain $2x - 3y + 6z = -75$	M1 A1 A1	[3]
				C. 7

(i)	EITHER:	State or imply \overrightarrow{AB} and \overrightarrow{AC} correctly in component form	B1			
		Using the correct processes evaluate the scalar product $\overrightarrow{AB.AC}$, or equivalent Using the correct process for the moduli divide the scalar product by the	M1			
		product of the moduli	M 1			
		Obtain answer $\frac{20}{21}$	A1			
	0.0.	21				
	OR:	Use correct method to find lengths of all sides of triangle <i>ABC</i> Apply cosine rule correctly to find the cosine of angle <i>BAC</i>	M1 M1			
		Obtain answer $\frac{20}{21}$	A1	4		
(ii)	State an e	xact value for the sine of angle <i>BAC</i> , e.g. $\sqrt{41}/21$	В1√			
	Use correct area formula to find the area of triangle ABC Obtain answer $\frac{1}{2}\sqrt{41}$, or exact equivalent					
	Obtain and	swer $\frac{1}{2}\sqrt{41}$, or exact equivalent	A1	3		
	[SR: Allow use of a vector product, e.g. $AB \times AC = -6\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ B1 \checkmark . Using correct					
	process fo	r the modulus, divide the modulus by 2 M1. Obtain answer $\frac{1}{2}\sqrt{41}$ A1.]				
(iii)	EITHER:	State or obtain $b = 0$	B1			
		Equate scalar product of normal vector and BC (or CB) to zero	M 1			
		Obtain $a + b - 4c = 0$ (or $a - 4c = 0$)	A1			
		Substitute a relevant point in $4x + z = d$ and evaluate d	M 1			
		Obtain answer $4x + z = 9$, or equivalent	A1			
	<i>OR</i> 1:	Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{j}) \times (\mathbf{i} + \mathbf{j} - 4\mathbf{k})$	M1			
		Obtain two correct components of the product	A1			
		Obtain correct product, e.g. $-4\mathbf{i} - \mathbf{k}$	A1			
		Substitute a relevant point in $4x + z = d$ and evaluate d	M1			
	0.00	Obtain $4x + z = 9$, or equivalent	A1			
	<i>OR</i> 2:	Attempt to form 2-parameter equation for the plane with relevant vectors	M1			
		State a correct equation, e.g. $\mathbf{r} = 2\mathbf{i} + 4\mathbf{j} + \mathbf{k} + \lambda(\mathbf{j}) + \mu(\mathbf{i} + \mathbf{j} - 4\mathbf{k})$	A1			
		State 3 equations in x, y, z, λ and μ	A1			
		Eliminate μ Obtain answer $4x + z = 9$, or equivalent	M1 A1			
		Obtain answer $4x + 2 = 9$, or equivalent	AI			

(i)	Express g	eneral point of <i>l</i> in component form, e.g. $(1+3\lambda, 2-2\lambda, -1+2\lambda)$	B1
	Substitute	in given equation of p and solve for λ	M1
	Obtain fin	al answer $-\frac{1}{2}\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$, or equivalent, from $\lambda = -\frac{1}{2}$	A1
(ii)	State or in	nply a vector normal to the plane, e.g. $2\mathbf{i} + 3\mathbf{j} - 5\mathbf{k}$	B1
	normal for		M1
		correct process for the moduli, divide the scalar product by the product of the d find the inverse sine or cosine of the result	M1
		swer 23.2° (or 0.404 radians)	A1
		swei 23.2 (01 0.404 fadialis)	AI
(iii)	EITHER:	State $2a + 3b - 5c = 0$ or $3a - 2b + 2c = 0$	B1
()		Obtain two relevant equations and solve for one ratio, e.g. $a: b$	M1
		Obtain $a:b:c=4:19:13$, or equivalent	A1
		Substitute coordinates of a relevant point in $4x + 19y + 13z = d$, and evaluate d	M1
		Obtain answer $4x + 19y + 13z = 29$, or equivalent	A1
	<i>OR</i> 1:	Attempt to calculate vector product of relevant vectors, e.g.	
		$(2\mathbf{i}+3\mathbf{j}-5\mathbf{k})\times(3\mathbf{i}-2\mathbf{j}+2\mathbf{k})$	M1
		Obtain two correct components of the product	A1
		Obtain correct product, e.g. $-4i - 19j - 13k$	A1
		Substitute coordinates of a relevant point in $4x + 19y + 13z = d$	M1
		Obtain answer $4x + 19y + 13z = 29$, or equivalent	A1
Que	stion 9		
(i)	EITHER:	Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point P on l with parameter λ ,	
(1)	Difficient	e.g. $\mathbf{i} - 17\mathbf{j} + 4\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$	B1
		Calculate scalar product of \overrightarrow{AP} and a direction vector for l and equate to zero	M 1
		Solve and obtain $\lambda = 3$	A1
		Carry out a complete method for finding the length of AP	M 1
		Obtain the given answer 15 correctly	A1
	<i>OR</i> 1:	Calling $(4, -9, 9)$ B, state \overrightarrow{BA} (or \overrightarrow{AB}) in component form, e.g. $-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}$	B1
		Calculate vector product of \overrightarrow{BA} and a direction vector for <i>l</i> ,	
		e.g. $(-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$	M 1
		Obtain correct answer, e.g. $-30\mathbf{i} + 6\mathbf{j} + 33\mathbf{k}$	A1
		Divide the modulus of the product by that of the direction vector	M 1
			. 1

3

4

Divide the modulus of the product by that of the direction vectorM1Obtain the given answer correctlyA1

(ii) EITHER:	Substitute coordinates of a general point of l in equation of plane and either equate constant terms or equate the coefficient of λ to zero, obtaining an				
	equation in a and b	M1*			
	Obtain a correct equation, e.g. $4a - 9b - 27 + 1 = 0$	A1			
	Obtain a second correct equation, e.g. $-2a + b + 6 = 0$	A1			
	Solve for <i>a</i> or for <i>b</i>	M1(dep*)			
	Obtain $a = 2$ and $b = -2$	A1			
OR:	Substitute coordinates of a point of <i>l</i> and obtain a correct equation,				
	e.g. $4a - 9b = 26$	B1			
	<i>EITHER</i> : Find a second point on l and obtain an equation in a and b	M1*			
	Obtain a correct equation	A1			
	<i>OR</i> : Calculate scalar product of a direction vector for <i>l</i> and a vec	tor			
	normal to the plane and equate to zero	M1*			
	Obtain a correct equation, e.g. $-2a + b + 6 = 0$	A1			
	Solve for <i>a</i> or for <i>b</i>	M1(dep*)			
	Obtain $a = 2$ and $b = -2$	A1	[5]		
Question 11					
	(2)				

	$\left(\begin{array}{c}2\end{array}\right)$		
(i)	Obtain $\pm \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$ as direction vector of l_1	B1	
	$\left(-4\right)$		
	State that two direction vectors are not parallel	B1	
	Express general point of l_1 or l_2 in component form, e.g. $(2\lambda, 1-3\lambda, 5-4\lambda)$		
	or $(7 + \mu, l + 2\mu, 1 + 5\mu)$	B1	
	Equate at least two pairs of components and solve for λ or for μ	M1	
	Obtain correct answers for λ and μ	A1	
	Verify that all three component equations are not satisfied (with no errors seen)	A1	[6]
(ii)	Carry out correct process for evaluating scalar product of $\begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	M1	
	Use correct process for finding modulus and evaluating inverse cosine	M 1	
	Obtain 79.5° or 1.39 radians	A1	[3]

(i)	Carry out a correct method for finding a vector equation for <i>AB</i> Obtain $\mathbf{r} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k} + \lambda(-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$, or equivalent					
	Equate at least two pairs of components of general points on <i>AB</i> and <i>l</i> and solve for λ or for μ					
	Obtain con	rrect answe	r for λ or μ , e.g. $\lambda = 1$ or $\mu = 0$; $\lambda = -\frac{4}{5}$ or $\mu = \frac{3}{5}$;			
	or λ	$=\frac{1}{4}$ or $\mu =$	$=-\frac{3}{2}$	A1		
	Verify that	t not all thr	ee pairs of equations are satisfied and that the lines fail to intersect	A1	[5]	
(ii)	EITHER:	Obtain a v	vector parallel to the plane and not parallel to <i>l</i> , e.g. $\mathbf{i} - 2\mathbf{j} + \mathbf{k}$	B 1		
			r product to obtain an equation in a, b and c, e.g. $3a + b - c = 0$ cond relevant equation, e.g. $a - 2b + c = 0$ and solve for one ratio,	B1		
		e.g. <i>a</i> : <i>b</i>	al answer $a: b: c = 1:4:7$ A1	M1		
		Use coord	linates of a relevant point and values of a , b and c in general equation			
		and find d		M1		
	0.54		swer $x + 4y + 7z = 19$, or equivalent	A1		
	<i>OR</i> 1:		vector parallel to the plane and not parallel to l , e.g. $\mathbf{i} - 2\mathbf{j} + \mathbf{k}$	B1		
			econd relevant vector parallel to the plane and attempt to calculate			
			or product, e.g. $(\mathbf{i} - 2\mathbf{j} + \mathbf{k}) \times (3\mathbf{i} + \mathbf{j} - \mathbf{k})$	M 1		
			o correct components	A1		
			rrect answer, e.g. $\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$	A1		
			coordinates of a relevant point in $x + 4y + 7z = d$, or equivalent,			
		and find d		M1		
		Obtain ans	swer $x + 4y + 7z = 19$, or equivalent	A1		
Que	estion 13					
(i)	State or im	ply a correc	ct normal vector to either plane, e.g. $\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$, or $2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$	B 1		
			ess for evaluating the scalar product of two normal vectors	M 1		
			cess for the moduli, divide the scalar product of the two normals by oduli and evaluate the inverse cosine of the result	M1		
	-		or 1.50 radians	Al	4	
	Obtain ans	wei 05.9 0	1.50 faulais	AI	-	
(ii)	EITHER:	Carry out	a complete strategy for finding a point on <i>l</i>	M1		
			ch a point, e.g. $(0, 2, 1)$	A1		
			State two equations for a direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ for <i>l</i> ,			
			e.g. $a + 3b - 2c = 0$			
			and $2a + b + 3c = 0$	B1		
			Solve for one ratio, e.g. <i>a</i> : <i>b</i>	M 1		
			Obtain $a: b: c = 11: -7: -5$	A1		
			State a correct answer, e.g. $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda(11\mathbf{i} - 7\mathbf{j} - 5\mathbf{k})$	A1√		
		<i>OR</i> 1:	Obtain a second point on <i>l</i> , e.g. $\left(\frac{22}{7}, 0, -\frac{3}{7}\right)$	B1		

	OR3:	Obtain a co Express th	Subtract position vectors and obtain a direction vector for <i>l</i> Obtain $22\mathbf{i} - 14\mathbf{j} - 10\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda(22\mathbf{i} - 14\mathbf{j} - 10\mathbf{k})$ Attempt to find the vector product of the two normal vectors Obtain two correct components Obtain $11\mathbf{i} - 7\mathbf{j} - 5\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda(11\mathbf{i} - 7\mathbf{j} - 5\mathbf{k})$ he variable in terms of a second prect simplified expression, e.g. $x = (22 - 11y)/7$ e same variable in terms of the third	M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 M1	
			prrect simplified expression, e.g. $x = (11-11z)/5$ ector equation for the line M1	A1	
			rect answer, e.g. $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda \left(\mathbf{i} - \frac{7}{11}\mathbf{j} - \frac{5}{11}\mathbf{k}\right)$	A1√	
Ques	stion 14				
(i)			o form a vector equation for <i>AB</i> ation, e.g. $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \lambda(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ or $\mathbf{r} = 3\mathbf{i} + \mathbf{k} + \mu(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$	M1 A1	[2]
(ii)	-		ctor for <i>AB</i> and a relevant point, obtain an equation for <i>m</i> in any form $y + z = 4$, or equivalent	M1 A1	[2]
(iii)	Express g	general poin	t of AB in component form, e.g. $(1 + 2\lambda, 2 - 2\lambda, \lambda)$ or		
		$-2\mu, 1+\mu)$		B1 √	
		-	n of <i>m</i> and solve for λ or for μ	M1 A1	
	Obtain final answer $\frac{7}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}$ for the position vector of <i>N</i> , from $\lambda = \frac{2}{3}$ or $\mu = -\frac{1}{3}$				
	-		hethod for finding CN	M1	
	Obtain th	e given ans	wer $\sqrt{13}$	A1	[5]
Ques	stion 15				
(i)	Express a	general poi	nt on the line in single component form, e.g. $(\lambda, 2-3\lambda, -8+4\lambda)$,		
			of plane and solve for λ	M1	
	Obtain λ :			A1	[2]
	Obtain (3,	,-/,4)		A1	[3]
(ii)	State or in	nply norma	vector to plane is $4\mathbf{i} - \mathbf{j} + 5\mathbf{k}$	B1	
	Carry out process for evaluating scalar product of two relevant vectors				
	-	-	cess for the moduli, divide the scalar product by the product luate \sin^{-1} or \cos^{-1} of the result.	M1	
		1011 and $eva1.8^{\circ} or 0.95$		M1 A1	[4]
	South 94				[1]

(iii)	Either	Find at least one position of <i>C</i> by translating by appropriate multiple of direction vector $\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$ from <i>A</i> or <i>B</i>	M1	
		Obtain (-3,11, -20)	A1	
		Obtain (9, – 25, 28)	A1	
	Or	Form quadratic equation in λ by considering $BC^2 = 4AB^2$	M1	
		Obtain $26\lambda^2 - 156\lambda - 702 = 0$ or equivalent and hence $\lambda = -3$, $\lambda = 9$ Obtain $(-3, 11, -20)$ and $(9, -25, 28)$	A1 A1	[
Ques	stion 16	count(5,11, 20) and (5, 25,25)		L
(i)	EITHER:	Substitute for r in the given equation of p and expand scalar product	M1	
		Obtain equation in λ in any correct form	A1	
		Verify this is not satisfied for any value of λ	A1	
	<i>OR</i> 1:	Substitute coordinates of a general point of l in the Cartesian equation of plane p	M1	
		Obtain equation in λ in any correct form	A1	
		Verify this is not satisfied for any value of λ	A1	
	<i>OR</i> 2:	Expand scalar product of the normal to p and the direction vector of l	M1	
		Verify scalar product is zero	A1	
	OR3:	Verify that one point of <i>l</i> does not lie in the plane Use correct method to find the perpendicular distance of a general point	A1	
		of <i>l</i> from <i>p</i>	M1	
		Obtain a correct unsimplified expression in terms of λ	A1	
		Show that the perpendicular distance is $5/\sqrt{6}$, or equivalent, for all λ	A1	
(ii)	EITHER	: Calling the unknown direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ state equation $2a + b + 3c = 0$	B1	
		State equation $2a - b - c = 0$	B1	
		Solve for one ratio, e.g. <i>a</i> : <i>b</i>	M1	
		Obtain ratio $a:b:c=1:4:-2$, or equivalent	A1	
	OR:	Attempt to calculate the vector product of the direction vector of l and the normal vector of the plane $r_{i} = 2 r_{i} (2i + i + 2k) v(2i - i - k)$	мэ	
		vector of the plane p, e.g. $(2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) \times (2\mathbf{i} - \mathbf{j} - \mathbf{k})$	M2	
		Obtain two correct components of the product	A1	
		Obtain answer $2\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}$, or equivalent	A1	
		Form line equation with relevant vectors C_{i} and	M1	E.
		Obtain answer $\mathbf{r} = 5\mathbf{i} + 3\mathbf{j} + \mathbf{k} + \mu(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$, or equivalent	A1√	[6

(i)	<i>EITHER</i> : Obtain a vector parallel to the plane, e.g. $\overrightarrow{AB} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k}$	B 1
	Use scalar product to obtain an equation in a, b, c e.g. $a - 2b - 3c = 0$, $a + b - c = 0$,	
	or $3b + 2c = 0$	M1
	State two correct equations	A1
	Solve to obtain ratio $a:b:c$	M1
	Obtain $a: b: c = 5: -2: 3$	A1
	Obtain equation $5x - 2y + 3z = 5$, or equivalent	A1
	<i>OR</i> 1: Substitute for two points, e.g. <i>A</i> and <i>B</i> , and obtain $a + 3b + 2c = d$ and $2a + b - c = d$	(B 1
	Substitute for another point, e.g. C, to obtain a third equation and eliminate one unknown entirely from all three equations	(B1 M1
	Obtain two correct equations in three unknowns, e.g. in a, b, c	A1
	Solve to obtain their ratio	M1
	Obtain $a: b: c = 5: -2: 3$, $a: c: d = 5: 3: 5$, $a: b: d = 5: -2: 5$, or $b: c: d = -2: 3: 5$	A1
	Obtain equation $5x - 2y + 3z = 5$, or equivalent	A1)
		[6]
(ii)	Correctly form an equation for the line through D parallel to OA	M1
()	Obtain a correct equation e.g. $\mathbf{r} = -3\mathbf{i} + \mathbf{j} + 2\mathbf{k} + \lambda(\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})$	A1
	Substitute components in the equation of the plane and solve for λ	M1
	Obtain $\lambda = 2$ and position vector $-\mathbf{i} + 7\mathbf{j} + 6\mathbf{k}$ for P	A1
	Obtain the given answer correctly	A1
	obtain the given answer concerty	[5]
Oues	stion 18	
(i)	<i>Either</i> state or imply \overline{AB} or \overline{BC} in component form, or state position vector of	
(-)	midpoint of \overrightarrow{AC}	B1
		D 1

	a correct method for finding the position vector of ain answer $3\mathbf{i} + 3\mathbf{j} + \mathbf{k}$, or equivalent	D M1 A1
e.g. AB and BC		pare lengths of a pair of
0		M 1
Show that ABCD has a pair of adjacent sides that are equal A	w that ABCD has a pair of adjacent sides that are e	ual A1

OR: Calculate scalar product $\overrightarrow{AC.BD}$ or equivalentM1Show that ABCD has perpendicular diagonalsA1 [5]

(ii)	Obtain two relevant equations and solve for one ratio, e.g. $a : b$ Obtain $a : b : c = -7 : 8 : -3$, or equivalent Substitute coordinates of a relevant point in $-7x + 8y - 3z = d$, and evaluate Obtain answer $-7x + 8y - 3z = 29$, or equivalent	B1 M1 A1 M1 A1	
	<i>OR</i> 1:Attempt to calculate vector product of relevant vectors, e.g. $(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) \times (2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Obtain two correct components of the product	M1 A1	
	Obtain correct product, e.g. $-7i + 8j - 3k$	A1	
	Substitute coordinates of a relevant point in $-7x + 8y - 3z = d$ and evaluate d	M1	
	Obtain answer $-7x + 8y - 3z = 29$, or equivalent	A1	[5]
Que	stion 19		
(i)	State a correct equation for <i>AB</i> in any form, e.g. $\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(\mathbf{i} - \mathbf{j} + 2\mathbf{k})$, or equivalent		B1
	Equate at least two pairs of components of AB and l and solve for λ or for μ Obtain correct answer for λ or for μ , e.g. $\lambda = -1$ or $\mu = 2$		M1 A1
	Show that not all three equations are not satisfied and that the lines do not intersect		A1 [4]
(ii)	<i>EITHER</i> : Find \overrightarrow{AP} (or \overrightarrow{PA}) for a general point P on l, e.g. $(1 - \mu)\mathbf{i} + (-3 + 2\mu)\mathbf{j} + (-2 + \mu)\mathbf{k}$		B 1
	Calculate the scalar product of \overrightarrow{AP} and a direction vector for <i>l</i> and equate to zero Solve and obtain $\mu = \frac{3}{2}$		M1 A1
	Carry out a method to calculate AP when $\mu = \frac{3}{2}$		M1
	Obtain the given answer $\frac{1}{\sqrt{2}}$ correctly		A1
	OR 1: Find \overrightarrow{AP} (or \overrightarrow{PA}) for a general point P on l		(B1
	Use correct method to express AP^2 (or AP) in terms of μ		M1
	Obtain a correct expression in any form, e.g. $(1-\mu)^2 + (-3+2\mu)^2 + (-2+\mu)^2$		A 1
	Carry out a complete method for finding its minimum		M1
	Obtain the given answer correctly		A1)
	<i>OR</i> 2:Calling $(2, -2, -1)$ <i>C</i> , state \overrightarrow{AC} (or \overrightarrow{CA}) in component form, e.g. $\mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$		(B 1
	Use a scalar product to find the projection of \overline{AC} (or \overline{CA}) on l		M1
	Obtain correct answer in any form, e.g. $\frac{9}{\sqrt{6}}$		A1
	Use Pythagoras to find the perpendicular		M1
	Obtain the given answer correctly		A1)

(i)	Use correc	ct method	rect normal vector to either plane, e.g. $3i + j - k$ or $i - j + 2k$ to calculate their scalar product and planes are perpendicular	B1 M1 A1	[3]
(ii)	EITHER:	Obtain s	It a complete strategy for finding a point on <i>l</i> the line of intersection uch a point, e.g. $(0, 7, 5)$, $(1, 0, 1)$, $(5/4, -7/4, 0)$ State two equations for a direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ for <i>l</i> ,	M1 A1	
			e.g. $3a + b - c = 0$ and $a - b + 2c = 0$ Solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 1 : -7 : -4$, or equivalent State a correct answer, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$	B1 M1 A1 A1√	
		<i>OR</i> 1:	Obtain a second point on <i>l</i> , e.g. $(1, 0, 1)$ Subtract vectors and obtain a direction vector for <i>l</i> Obtain $-\mathbf{i} + 7\mathbf{j} + 4\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = \mathbf{i} + \mathbf{k} + \lambda(-\mathbf{i} + 7\mathbf{j} + 4\mathbf{k})$	B1 M1 A1 A1√ [∧]	
		OR2:	Attempt to find the vector product of the two normal vectors Obtain two correct components of the product Obtain $\mathbf{i} - 7\mathbf{j} - 4\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$	M1 A1 A1 A1√ ^k	
	OR1:	Obtain a Express Obtain a Form a v	one variable in terms of a second variable correct simplified expression, e.g. $y = 7 - 7x$ the third variable in terms of the second correct simplified expression, e.g. $z = 5 - 4x$ vector equation for the line correct equation, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$	M1 A1 M1 A1 M1 A1	
	OR2:	Obtain a Express Obtain a Form a v	one variable in terms of a second variable correct simplified expression, e.g. $z = 5 - 4x$ the same variable in terms of the third correct simplified expression e.g. $z = (7 + 4y) / 7$ vector equation for the line correct equation, e.g. $\mathbf{r} = \frac{5}{4}\mathbf{i} - \frac{7}{4}\mathbf{j} + \lambda(-\frac{1}{4}\mathbf{i} + \frac{7}{4}\mathbf{j} + \mathbf{k})$	M1 A1 M1 A1 M1 A1√ [∧]	[6]

(i)	Express general point of <i>l</i> in component form e.g. $(1 + 2\lambda, 2 - \lambda, 1 + \lambda)$	B 1	
(1)	Using the correct process for the modulus form an equation in λ	M1*	
	Reduce the equation to a quadratic, e.g. $6\lambda^2 + 2\lambda - 4 = 0$	A1	
	Solve for λ (usual requirements for solution of a quadratic)	DM1	
	Obtain final answers $-\mathbf{i} + 3\mathbf{j}$ and $\frac{7}{3}\mathbf{i} + \frac{4}{3}\mathbf{j} + \frac{5}{3}\mathbf{k}$	A1	[5]
(ii)	Using the correct process, find the scalar product of a direction vector for <i>l</i> and a normal for <i>p</i> Using the correct process for the moduli, divide the scalar product by the product of the moduli and equate the result to $\frac{2}{3}$	M1 M1	
	State a correct equation in any form, e.g. $\frac{2a-1+1}{\sqrt{(a^2+1+1)} \cdot \sqrt{(2^2+(-1)^2+1)}} = \pm \frac{2}{3}$	A1	
	Solve for a^2	M1	
	Obtain answer $a = \pm 2$	A1	[5]
Questi	on 22	1	,
(i)	State or obtain coordinates $(1, 2, 1)$ for the mid-point of <i>AB</i>		B1
	Verify that the midpoint lies on <i>m</i>		B1
	State or imply a correct normal vector to the plane, e.g. $2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$		B 1
	State or imply a direction vector for the segment <i>AB</i> , e.g. $-4\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$		B 1
	Confirm that <i>m</i> is perpendicular to <i>AB</i>		B1
		Total:	5
(ii)	State or imply that the perpendicular distance of <i>m</i> from the origin is $\frac{5}{3}$, or unsimplified equivalent		B1
	State or imply that <i>n</i> has an equation of the form $2x + 2y - z = k$		B 1

Obtain answer 2x + 2y - z = 2

Total:

B1

3

(i)	State or obtain coordinates $(1, 2, 1)$ for the mid-point of <i>AB</i>	B1
	Verify that the midpoint lies on <i>m</i>	B1
	State or imply a correct normal vector to the plane, e.g. $2i + 2j - k$	B1
	State or imply a direction vector for the segment AB , e.g. $-4i - 4j + 2k$	B1
	Confirm that m is perpendicular to AB	B1
	Total:	5
(ii)	State or imply that the perpendicular distance of <i>m</i> from the origin is $\frac{5}{3}$, or unsimplified equivalent	B1
	State or imply that <i>n</i> has an equation of the form $2x + 2y - z = k$	B1
	Obtain answer $2x + 2y - z = 2$	B1
	Total:	3
Questi	on 24	

<i>EITHER</i> : Find \overrightarrow{AP} for a general point P on l with parameter λ , e.g. $(8 + 3\lambda, -3 - \lambda, 4 + 2\lambda)$	(B1
Equate scalar product of \overrightarrow{AP} and direction vector of <i>l</i> to zero and solve for λ	M1
Obtain $\lambda = -\frac{5}{2}$ and foot of perpendicular $\frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} + 3\mathbf{k}$	A1
Carry out a complete method for finding the position vector of the reflection of A in l	M1
Obtain answer 2i + j + 2k	A1)
<i>OR:</i> Find \overrightarrow{AP} for a general point <i>P</i> on <i>l</i> with parameter λ , e.g.(8 + 3 λ , -3 - λ , 4 + 2 λ)	(B1
Differentiate $ AP ^2$ and solve for λ at minimum	M1
Obtain $\lambda = -\frac{5}{2}$ and foot of perpendicular $\frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} + 3\mathbf{k}$	A1
Carry out a complete method for finding the position vector of the reflection of <i>A</i> in <i>l</i>	M1
Obtain answer $2i + j + 2k$	A1)
Total:	5

(ii)	<i>EITHER:</i> Use scalar product to obtain an equation in a, b and c, e.g. $3a - b + 2c = 0$	(B1
	Form a second relevant equation, e.g. $9a - b + 8c = 0$ and solve for one ratio, e.g. $a : b$	M1
	Obtain final answer $a: b: c = 1: 1: -1$ and state plane equation $x + y - z = 0$	A1)
	<i>OR</i> 1: Attempt to calculate vector product of two relevant vectors, e.g. $(3i - j + 2k) \times (9i - j + 8k)$	(M1
	Obtain two correct components	A1
	Obtain correct answer, e.g. $-6i - 6j + 6k$, and state plane equation $-x - y + z = 0$	A1)
	<i>OR</i> 2: Using a relevant point and relevant vectors, attempt to form a 2-parameter equation for the plane, e.g. $\mathbf{r} = 6\mathbf{i} + 6\mathbf{k} + s(3\mathbf{i} - \mathbf{j} + 2\mathbf{k}) + t(9\mathbf{i} - \mathbf{j} + 8\mathbf{k})$	(M1
	State 3 correct equations in x , y , z , s and t	A1
	Eliminate <i>s</i> and <i>t</i> and state plane equation $x + y - z = 0$, or equivalent	A1)
'(iii)	OR3: Using a relevant point and relevant vectors, attempt to form a determinant equation for the plane, e.g. $\begin{vmatrix} x-3 & y-1 & z-4 \\ 3 & -1 & 2 \\ 9 & -1 & 8 \end{vmatrix} = 0$	(M1
	Expand a correct determinant and obtain two correct cofactors	A1
	Obtain answer $-6x - 6y + 6z = 0$, or equivalent	A1)
	Total:	3
	<i>EITHER</i> : Using the correct processes, divide the scalar product of \overrightarrow{OA} and a normal to the plane by the modulus of the normal or make a recognisable attempt to apply the perpendicular formula	(M1
	Obtain a correct expression in any form, e.g. $\frac{1+2-4}{\sqrt{(1^2+1^2+(-1)^2)}}$, or equivalent	A1 FT
	Obtain answer $1/\sqrt{3}$, or exact equivalent	A1)
	<i>OR1</i> : Obtain equation of the parallel plane through <i>A</i> , e.g. $x + y - z = -1$ [The f.t. is on the plane found in part (ii).]	(B1 FT
	Use correct method to find its distance from the origin	M1
	Obtain answer $1/\sqrt{3}$, or exact equivalent	A1)

)(i)	Carry out a correct method for finding a vector equation for AB	M1
	Obtain $\mathbf{r} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j} - \mathbf{k})$, or equivalent	A1
	Equate two pairs of components of general points on AB and l and solve for λ or for μ	M1
	Obtain correct answer for λ or μ , e.g. $\lambda = \frac{5}{7}$ or $\mu = \frac{3}{7}$	A1
	Obtain $m = 3$	A1
	Total:	5
(ii)	<i>EITHER:</i> Use scalar product to obtain an equation in a, b and c, e.g. $a - 2b - 4c = 0$	(B1
	Form a second relevant equation, e.g. $2a + 3b - c = 0$ and solve for one ratio, e.g. $a : b$	M1
	Obtain final answer $a: b: c = 14: -7:7$	A1
	Use coordinates of a relevant point and values of a , b and c and find d	M1
	Obtain answer $14x - 7y + 7z = 42$, or equivalent	A1)
	OR 1: Attempt to calculate the vector product of relevant vectors, e.g. $(i-2j-4k) \times (2i+3j-k)$	(M1
	Obtain two correct components	A1
	Obtain correct answer, e.g. $14i - 7j + 7k$	A1
	Substitute coordinates of a relevant point in $14x - 7y + 7z = d$, or equivalent, and find d	M1
	Obtain answer $14x - 7y + 7z = 42$, or equivalent	A1)

(1)	Equate at least two pairs of components of general points on l and m and solve for λ or for μ	
	Obtain correct answer for λ or μ , e.g. $\lambda = 3$ or $\mu = -2$; $\lambda = 0$ or $\mu = -\frac{1}{2}$; or $\lambda = \frac{3}{2}$ or $\mu = -\frac{7}{2}$	A1
	Verify that not all three pairs of equations are satisfied and that the lines fail to intersect	A1
		3
(ii)	Carry out correct process for evaluating scalar product of direction vectors for l a	nd <i>m</i> *M1
	Using the correct process for the moduli, divide the scalar product by the product the moduli and evaluate the inverse cosine of the result	of DM1
	Obtain answer 45° or $\frac{1}{4}\pi$ (0.785) radians	A1
		3
(iii)	<i>EITHER:</i> Use scalar product to obtain a relevant equation in a, b and c, e.g. $-a + b + 4c = 0$	B1
	Obtain a second equation, e.g. $2a + b - 2c = 0$ and solve for one ratio, e.g. $a : b$	M1
	Obtain $a: b: c = 2: -2: 1$, or equivalent	A1
	Substitute $(3, -2, -1)$ and values of a, b and c in general equation and fi	ind d M1
	Obtain answer $2x - 2y + z = 9$, or equivalent	A1
	OR1: Attempt to calculate vector product of relevant vectors, e.g $(-i + j + 4k) \times (2i + j - 2k)$	(M1
	Obtain two correct components	A1
	Obtain correct answer, e.g. $-6i + 6j - 3k$	A1
	Substitute $(3, -2, -1)$ in $-6x + 6y - 3z = d$, or equivalent, and find d	M1
	Obtain answer $-2x + 2y - z = -9$, or equivalent	A1)

)(i)	State or imply a correct normal vector to either plane, e.g. $\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ or $2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$	B1
	Carry out correct process for evaluating the scalar product of two normal vectors	M1
	Using the correct process for the moduli, divide the scalar product of the two normals by the product of their moduli and evaluate the inverse cosine of the result	M1
	Obtain final answer 72.5° or 1.26 radians	A1
		4
(ii)	<i>EITHER</i> : Substitute $y = 2$ in both plane equations and solve for x or for z	(M1
	Obtain $x = 3$ and $z = 1$	A1)
	<i>OR</i> : Find the equation of the line of intersection of the planes	
	Substitute $y = 2$ in line equation and solve for x or for z	(M1
	Obtain $x = 3$ and $z = 1$	A1)
EITHI	ER: Use scalar product to obtain an equation in a, b and c, e.g. $a + b + 3c = 0$	(B1
	Form a second relevant equation, e.g. $2a - 2b + c = 0$, and solve for one ratio, e.g. $a : b$	*M1
	Obtain final answer $a: b: c = 7:5:-4$	A1
	Use coordinates of A and values of a , b and c in general equation and find d	DM1
	Obtain answer $7x + 5y - 4z = 27$, or equivalent	A1 FT)
<i>OR</i> 1:	Calculate the vector product of relevant vectors, e.g. $(i + j + 3k) \times (2i - 2j + k)$	(*M1
	Obtain two correct components	A1
	Obtain correct answer, e.g. $7i + 5j - 4k$	A1
	Substitute coordinates of A in plane equation with their normal and find d	DM1
	Obtain answer $7x + 5y - 4z = 27$, or equivalent	A1 FT)

)(i)	Express general point of <i>l</i> in component form, e.g. $\mathbf{r} = (4 + \mu)\mathbf{i} + (3 + 2\mu)\mathbf{j} + (-1 - 2\mu)\mathbf{k}$, or equivalent	B1
	NB: Calling the vector $\mathbf{a} + \mu \mathbf{b}$, the B1 is earned by a correct reduction of the sum to a single vector or by expressing the substitution as a distributed sum $\mathbf{a}.\mathbf{n} + \mu \mathbf{b}.\mathbf{n}$	
	Substitute in given equation of p and solve for μ	M1
	Obtain final answer $2\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ from $\mu = -2$	A1
		3
)(ii)	Using the correct process, evaluate the scalar product of a direction vector for l and a normal for p	M1
	Using the correct process for the moduli, divide the scalar product by the product of the moduli and find the inverse sine or cosine of the result	M1
	Obtain answer 10.3° (or 0.179 radians)	A1
		3
(iii)	<i>EITHER</i> : State $a + 2b - 2c = 0$ or $2a - 3b - c = 0$	(B1
	Obtain two relevant equations and solve for one ratio, e.g. $a : b$	M1
	Obtain $a: b: c = 8: 3: 7$, or equivalent	A1
	Substitute <i>a</i> , <i>b</i> , <i>c</i> and given point and evaluate <i>d</i>	M1
	Obtain answer $8x + 3y + 7z = 5$	A1)
	OR1: Attempt to calculate vector product of relevant vectors, e.g. $(2i - 3j - k) \times (i + 2j - 2k)$	(M1
	Obtain two correct components of the product	A1
	Obtain correct product, e.g. 8i + 3j +7k	A1
	Use the product and the given point to find d	M1
	Obtain answer $8x + 3y + 7z = 5$, or equivalent	A1)

Ques	tion 29		
)(a)	EITHE	<i>R</i> : Find \overrightarrow{PQ} (or \overrightarrow{QP}) for a general point <i>Q</i> on <i>l</i> , e.g.	B1
		$(1+\mu)\mathbf{i}+(4+2\mu)\mathbf{j}+(4+3\mu)\mathbf{k}$	
		Calculate the scalar product of \overrightarrow{PQ} and a direction vector for l and equate to zero	M1
		Solve and obtain correct solution e.g. $\mu = -\frac{3}{2}$	A1
		Carry out method to calculate PQ	M1
		Obtain answer 1.22	A1
	OR 1:	Find \overrightarrow{PQ} (or \overrightarrow{QP}) for a general point Q on l	B1
		Use a correct method to express PQ^2 (or PQ) in terms of μ	M1
		Obtain a correct expression in any form	A1
		Carry out a complete method for finding its minimum	M 1
		Obtain answer 1.22	A1
(ii)	EITHE	<i>CR</i> : Use scalar product to obtain a relevant equation in <i>a</i> , <i>b</i> and <i>c</i> , e.g. $a + 2b + 3c = 0$	B1
		Obtain a second relevant equation, e.g. using $\overrightarrow{PA} a + 4b + 4c = 0$, and solve for one ratio	M1
		Obtain $a:b:c=4:1:-2$, or equivalent	A1
		Substitute a relevant point and values of a, b, c in general equation and find d	M1
		Obtain correct answer, $4x + y - 2z = 8$, or equivalent	A1
	OR1:	Attempt to calculate vector product of relevant vectors, e.g. $(i + 4j + 4k) \times (i + 2j + 3k)$	M1
		Obtain two correct components	A1
		Obtain correct answer, e.g. 4i + j – 2k	A1
		Substitute a relevant point and find d	M1
		Obtain correct answer, $4x + y - 2z = 8$, or equivalent	A1

(i)	Equate at le	east two pairs of components and solve for <i>s</i> or for <i>t</i>	M1	$\begin{cases} s = \frac{-4}{3} \\ t = \frac{-5}{3} & \text{or} \\ -5 \neq \frac{-1}{3} \end{cases} \begin{cases} s = -6 \\ t = -11 & \text{or} \\ 7 \neq -7 \end{cases} \begin{cases} s = \frac{-2}{5} \\ t = \frac{-13}{5} \\ \frac{6}{5} \neq \frac{-8}{5} \end{cases}$
	Obtain corr	ect answer for s or t, e.g. $s = -6$, $t = -11$	A1	
	Verify that to intersect	all three equations are not satisfied and the lines fail	A1	
	State that th	ne lines are not parallel	B1	
			4	
(ii)	EITHER:	Use scalar product to obtain a relevant equation in a , b and c , e.g. $2a + 3b - c = 0$	B1	
		Obtain a second equation, e.g. $a + 2b + c = 0$, and solve for one ratio, e.g. $a : b$	M1	
		Obtain $a : b : c$ and state correct answer, e.g. 5i - 3j + k, or equivalent	A1	50
	OR:	Attempt to calculate vector product of relevant vectors, e.g. $(2i + 3j - k) \times (i + 2j + k)$	M1	
		Obtain two correct components	A1	
		Obtain correct answer, e.g. 5i – 3j + k	A1	
			3	
(iii)	EITHER:	State position vector or coordinates of the mid-point of a line segment joining points on <i>l</i> and <i>m</i> , e.g. $\frac{3}{2}\mathbf{i}+\mathbf{j}+\frac{5}{2}\mathbf{k}$	B1	OR: Use the result of (ii) to form equations of planes containing l and m B1
		Use the result of (ii) and the mid-point to find d	M1	Use average of distances to find equation of <i>p</i> . M1
		Obtain answer $5x - 3y + z = 7$, or equivalent	A1	Obtain answer $5x - 3y + z = 7$, or equivalent A1
	OR:	Using the result of part (ii), form an equation in d by equating perpendicular distances to the plane of a point on l and a point on m	MI	0.00
		State a correct equation, e.g. $\left \frac{14-d}{\sqrt{35}} \right = \left \frac{-d}{\sqrt{35}} \right $	A1	
		Solve for <i>d</i> and obtain answer $5x - 3y + z = 7$, or equivalent	A1	
			3	

(i)	Carry out a correct method for finding a vector equation for AB	M1
	Obtain $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k} + \lambda(2\mathbf{i} - 2\mathbf{k})$, or equivalent	A1
	Equate pair(s) of components <i>AB</i> and <i>l</i> and solve for λ or μ	M1(dep*)
	Obtain correct answer for λ or μ	A1
	Verify that all three component equations are not satisfied	A1
	Total:	5
(ii)	State or imply a direction vector for <i>AP</i> has components $(2 + t, 5 + 2t, -3 - 2t)$	B1
	State or imply that $\cos 120^\circ$ equals the scalar product of \overrightarrow{AP} and \overrightarrow{AB} divided by the product of their moduli	M1
	Carry out the correct processes for finding the scalar product and the product of the moduli in terms of t , and obtain an equation in terms of t	M1
	Obtain the given equation correctly	A1
	Solve the quadratic and use a root to find a position vector for <i>P</i>	M1
	Obtain position vector $2\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$ from $t = -2$, having rejected the root $t = -\frac{2}{3}$	A1
	Total:	6

(i)	EITHER	Expand scalar product of a normal to m and a direction vector of l	M1
		Verify scalar product is zero	A1
		Verify that one point of <i>l</i> does not lie in the plane	A1
	OR:	Substitute coordinates of a general point of l in the equation of the plane m	M1
		Obtain correct equation in λ in any form	A1
		Verify that the equation is not satisfied for any value of λ	A1
			3

(ii)	Use correct method to evaluate a scalar product of normal vectors to m and n	M1
	Using the correct process for the moduli, divide the scalar product by the product of moduli and evaluate the inverse cosine of the result	the M1
	Obtain answer 74.5° or 1.30 radians	A1
		3
(iii)	<i>EITHER</i> : Using the components of a general point <i>P</i> of <i>l</i> form an equation in λ by equating the perpendicular distance from <i>n</i> to 2	M1
	<i>OR</i> : Take a point Q on l , e.g. (5, 3, 3) and form an equation in λ by equating th length of the projection of QP onto a normal to plane n to 2	e M1
	Obtain a correct modular or non-modular equation in any form	A1
	Solve for λ and obtain a position vector for <i>P</i> , e.g. $7\mathbf{i} + 5\mathbf{j} + 7\mathbf{j}$ from $\lambda = 3$	A1
	Obtain position vector of the second point, e.g. $3i + j - k$ from $\lambda = -1$	A1
Questi (i)	ion 33 Substitute for r and expand the scalar product to obtain an equation in λ	4 M1*
	Solve a linear equation for λ	M1(dep*)
	Obtain $\lambda = -3$ and position vector $\mathbf{r}_A = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ for A	A1
	·satprep.	3
(ii)	State or imply a normal vector of p is $3\mathbf{i} + \mathbf{j} + \mathbf{k}$, or equivalent	B1
	Use correct method to evaluate a scalar product of relevant vectors e.g. $(i - 2j + k).(3i + j + k)$	M1
	Using the correct process for calculating the moduli, divide the scalar product by the product of the moduli and evaluate the inverse sine or cosine of the result	M1
	Obtain answer 14.3° or 0.249 radians	A1

(iii)		vection vector of the line to be $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$, state a ion in a, b, c , e.g. $3a + b + c = 0$	B1
	State a second one ratio, e.g.	relevant equation, e.g. $a - 2b + c = 0$, and solve for $a : b$	M1
	Obtain a : b :	c = 3 : -2 : -7, or equivalent	A1
	State answer	$r = 2i + 3j - 4k + \mu (3i - 2j - 7k)$	A1ft
Quest	ion 34		
(i)	State or imply a corre $2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$, or $\mathbf{i} - 2\mathbf{j} + \mathbf{k}$	ct normal vector to either plane, e.g. - k	B1
	Carry out correct proc	cess for evaluating the scalar product of two normal vectors	M1
		cess for the moduli, divide the scalar product of the two normal vectors by noduli and evaluate the inverse cosine of the result	M1
	Obtain answer 56.9°	or 0.994 radians	A1
			4
(ii)	EITHER: Carry out	t a complete strategy for finding a point on the line (call the line <i>l</i>)	M1
	Obtain su	ich a point, e.g. (1, 1, 4)	A1
	EITHER:	State a correct equation for a direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ for l , e.g. $2a + 3b - c = 0$	B1
		State a second equation, e.g. $a - 2b + c = 0$, and solve for one ratio, e.g. $a : b$	M1
		Obtain $a:b:c=1:-3:-7$, or equivalent	A1
		State a correct answer, e.g. $\mathbf{r} = \mathbf{i} + \mathbf{j} + 4\mathbf{k} + \lambda(\mathbf{i} - 3\mathbf{j} - 7\mathbf{k})$	A1
	OR1 :	Attempt to calculate the vector product of the two normal vectors	M1
		Obtain two correct components	A1
		Obtain $i - 3j - 7k$, or equivalent	A1
		State a correct answer, e.g. $\mathbf{r} = \mathbf{i} + \mathbf{j} + 4\mathbf{k} + \lambda(\mathbf{i} - 3\mathbf{j} - 7\mathbf{k})$, or equivalent	A1

(i)	Obtain a vector parallel to the plane, e.g. $\overrightarrow{CB} = 2\mathbf{i} + \mathbf{j}$	B1
	Use scalar product to obtain an equation in a, b, c ,	M1
	Obtain two correct equations in <i>a</i> , <i>b</i> , <i>c</i>	A1
	Solve to obtain $a : b : c$,	M1
	Obtain $a: b: c = 5: -10: -1$,	A1
	Obtain equation $5x - 10y - z = -25$,	A1
(ii)	State or imply a normal vector for the plane OABC is k	B1
	Carry out correct process for evaluating a scalar product of two relevant vectors, e.g. $(5i - 10j - k)$.(k)	M1
	Using the correct process for calculating the moduli, divide the scalar product by the product of the moduli and evaluate the inverse cosine of the result	M1
	Obtain answer 84.9° or 1.48 radians	A1
		4

(i)	Carry out correct method for finding a vector equation for AB	M1
	Obtain $(\mathbf{r} =)\mathbf{i} + 2\mathbf{j} - \mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} + 2\mathbf{k})$, or equivalent	A1
	Equate two pairs of components of general points on <i>their AB</i> and <i>l</i> and solve for λ or for μ	M1
	Obtain correct answer for λ or μ , e.g. $\lambda = 0$, $\mu = -1$	A1
	Verify that all three equations are not satisfied and the lines fail to intersect (\neq is sufficient justification e.g. $2 \neq 0$) Conclusion needs to follow correct values	A1
		5
(ii)	State or imply midpoint has position vector $2\mathbf{i} + \frac{3}{2}\mathbf{j}$	B1
	Substitute in $2x - y + 2z = d$ and find d	M1
	Obtain plane equation $4x - 2y + 4z = 5$	A1
	Substitute components of l in plane equation and solve for μ	M1
	Obtain $\mu = -\frac{1}{2}$ and position vector $\frac{3}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}$ for the point <i>P</i>	A1
		5

Quesi			
(i)	Find \overrightarrow{PQ} for a general point Q on l , e.g. $-3\mathbf{i}+6\mathbf{k}+\mu(2\mathbf{i}-\mathbf{j}-2\mathbf{k})$	B1	
	Calculate scalar product of \overrightarrow{PQ} and a direction vector for l and equate the result to zero	M1	
	Solve for μ and obtain $\mu = 2$	A1	
	Carry out a complete method for finding the length of \overrightarrow{PQ}	M1	
	Obtain answer 3	A1	
)(ii)	Substitute coordinates of a general point of l in the plane equation and equate constant terms		
	Obtain a correct equation, e.g. $a + 2b + 6 = 13$		
	Equate the coefficient of μ to zero		
	Obtain a correct equation, e.g. $2a - b - 4 = 0$	A1	
	Substitute (1, 2, 3) in the plane equation	M1	
	Obtain a correct equation, e.g. $a + 2b + 6 = 13$	A1	
Quest	ion 38		
(i)	Express general point of <i>l</i> or <i>m</i> in component form e.g. $(a + \lambda, 2 - 2\lambda, 3 + 3\lambda)$ or $(2 + 2\mu, 1 - \mu, 2 + \mu)$ B1		

Obtain either $\lambda = -2$ or $\mu = -5$	AI	
or $\lambda = \frac{1}{3}a$ or $\mu = \frac{2}{3}a - 1$ or $\lambda = \frac{1}{5}(a - 4)$ or $\mu = \frac{1}{5}(3a - 7)$	00	
Obtain $a = -6$	A1	

Use scalar product to obtain a relevant equation in a , b and c , e.g. $a - 2b + 3c = 0$	B1		
Obtain a second equation, e.g. $2a - b + c = 0$ and solve for one ratio	M1		
Obtain $a : b : c = 1 : 5 : 3$	A1	OE	
Substitute a relevant point and values of a, b, c in general equation and find d	M1		
Obtain correct answer $x + 5y + 3z = 13$	A1FT	OE. The FT is on a from part (i), if used	
Alternative method for question 7(ii)			
Attempt to calculate vector product of relevant vectors,	M1	e.g. $(i-2j+3k).(2i-j+k)$	
Obtain two correct components	A1		
Obtain correct answer, e.g. $\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$	A1		
Substitute a relevant point and find <i>d</i>	M1		
Obtain correct answer $x + 5y + 3z = 13$	A1FT	OE. The FT is on a from part (i), if used	

Express general point of <i>l</i> in component form e.g. $(1 + \lambda, 3 - 2\lambda, -2 + 3\lambda)$	B 1
Substitute in equation of p and solve for λ	M
Obtain final answer $\frac{5}{3}\mathbf{i} + \frac{5}{3}\mathbf{j}$ from $\lambda = \frac{2}{3}$	Al
	3
Use correct method to evaluate a scalar product of relevant vectors e.g. $(i - 2j + 3k).(2i + j - 3k)$	M
Using the correct process for calculating the moduli, divide the scalar product by the product of the moduli and evaluate the inverse sine or cosine of the result	M
Obtain answer 40.0° or 0.698 radians	A
	:
Alternative method for question 10(ii)	
Use correct method to evaluate a vector product of relevant vectors e.g. $(i - 2j + 3k)x(2i + j - 3k)$	M
Using the correct process for calculating the moduli, divide the modulus of the vector product by the product of the moduli of the two vectors and evaluate the inverse sine or cosine of the result	M
Obtain answer 40.0° or 0.698 radians	A
	3

(i)	Substitute coordinates $(5, 2, -2)$ in $x + 4y - 8z = d$	M1
	Obtain plane equation $x + 4y - 8z = 29$, or equivalent	A1
		2
(ii)	Attempt to use perpendicular formula to find perpendicular from $(5, 2, -2)$ to <i>m</i>	M1
	Obtain a correct unsimplified expression, e.g. $\frac{5+8+16-2}{\sqrt{(1+16+64)}}$	A1
	Obtain answer 3	A1
(iii)	Calling the direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$, use a scalar product to form a relevant equation in a , b and c , e.g. $a + 4b - 8c = 0$ or $5a + 2b - 2z = 0$	B1
	Solve two relevant equations for the ratio $a : b : c$	M1
	Obtain $a: b: c = 4: -19: -9$	A1
	State answer $\mathbf{r} = 5\mathbf{i} + 2\mathbf{j} - 2\mathbf{k} + \lambda(4\mathbf{i} - 19\mathbf{j} - 9\mathbf{k})$	A1
Questi	ion 41	
(a)	Obtain $\overrightarrow{OM} = 2\mathbf{i} + \mathbf{j}$	B1
	Use a correct method to find \overrightarrow{MN}	M1
	Obtain $\overrightarrow{MN} = -\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$	A1
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3
(b)	Use a correct method to form an equation for MN	M1
	Obtain $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + \lambda(-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$ , or equivalent	A1
		2

(c)	Find $\overrightarrow{DP}$ for a point <i>P</i> on <i>MN</i> with parameter $\lambda$ , e.g. $(2 - \lambda, 1 + 2\lambda, -2 + 2\lambda)$	B1
	Equate scalar product of $\overrightarrow{DP}$ and a direction vector for <i>MN</i> to zero and solve for $\lambda$	M1
	Obtain $\lambda = \frac{4}{9}$	A1
	State that the position vector of <i>P</i> is $\frac{14}{9}\mathbf{i} + \frac{17}{9}\mathbf{j} + \frac{8}{9}\mathbf{k}$	A1
		4
Ques	tion 42	
(a)	State $\overrightarrow{AB}(\text{or }\overrightarrow{BA})$ and $\overrightarrow{BC}(\text{or }\overrightarrow{CB})$ in vector form	B1
	Calculate their scalar product	M1
	Show product is zero and confirm angle ABC is a right angle	A1

Taking a general point of *BC* to be *P*, form an equation in  $\lambda$  by either equating the scalar product of  $\overrightarrow{OP}$  and  $\overrightarrow{BC}$  to zero,

3

 $\mathbf{M1}$ 

**A1** 2

**B1** 

**M1** 

**A1** 

A1

Solve and obtain  $\lambda = -\frac{5}{9}$ 

Obtain answer  $\frac{1}{3}\sqrt{2}$  , or equivalent

Use correct method to calculate the lengths of AB and BC

Show that AB = BC and the triangle is isosceles

State a correct equation for the line through B and C,

e.g.  $\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda (2\mathbf{i} + \mathbf{j} + 2\mathbf{k}) \text{ or } \mathbf{r} = 3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \mu (-2\mathbf{i} - \mathbf{j} - 2\mathbf{k})$ 

or applying Pythagoras to triangle *OBP* (or *OCP*), or setting the derivative of  $|\overrightarrow{OP}|$  to zero

**(b)** 

(c)

(a)	State that the position vector of $M$ is $3i + j$	B1
	Use a correct method to find the position vector of N	M1
	Obtain answer $\frac{10}{3}$ <b>i</b> + 2 <b>j</b> + 2 <b>k</b>	A1
	Use a correct method to form an equation for MN	M1
	Obtain correct answer in any form, e.g. $\mathbf{r} = 3\mathbf{i} + \mathbf{j} + \lambda \left(\frac{1}{3}\mathbf{i} + \mathbf{j} + 2\mathbf{k}\right)$	A1
		5
(b)	State or imply $\mathbf{r} = \mu(2\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ as equation for <i>OB</i>	B1
	Equate sufficient components of <i>MN</i> and <i>OB</i> and solve for $\lambda$ or for $\mu$	<b>M1</b>
	Obtain $\lambda = 3$ or $\mu = 2$ and position vector $4\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}$ for P	A1
	T PR	3
(c)	Carry out correct process for evaluating the scalar product of direction vectors for OP and MP, or equivalent	M1
	Using the correct process for the moduli, divide the scalar product by the product of the moduli and evaluate the inverse cosine of the result	M1
	Obtain answer 21.6°	A1
	Use a correct method for finding the position vector of <i>C</i>	M1
(a)	State or imply $\overrightarrow{AB}$ or $\overrightarrow{AD}$ in component form	B1
	Obtain answer 4i + 3j + 4k, or equivalent	A1
	Using the correct process for the moduli, compare lengths of a pair of adjacent sides, e.g. <i>AB</i> and <i>AD</i>	M1
	Show that ABCD has a pair of unequal adjacent sides	A1
	Alternative method for question 8(a)	
	State or imply $\overrightarrow{AB}$ or $\overrightarrow{AD}$ in component form	B1
	Use a correct method for finding the position vector of <i>C</i>	M1
	Obtain answer 4i + 3j + 4k, or equivalent	A1
	Use the correct process to calculate the scalar product of $\overrightarrow{AC}$ and $\overrightarrow{BD}$ , or equivalent	M1
	Show that the diagonals of ABCD are not perpendicular	A1
		5
	Use the correct process to calculate the scalar product of a pair of relevant vectors, e.g. $\overrightarrow{AB}$ and $\overrightarrow{AD}$	M1
(b)		
(b)	Using the correct process for the moduli, divide the scalar product by the product of the moduli of the two vectors and evaluate the inverse cosine of the result	M1
(b)		M1 A1

(c)	Use a correct method to calculate the area, e.g. calculate AB.AC sin BAD	M1
	Obtain answer 11.0 (FT on angle BAD)	A1 FT
		2

Express general point of at least one line correctly in component form, i.e. $(1 + a\lambda, 2 + 2\lambda, 1 - \lambda)$ or $(2 + 2\mu, 1 - \mu, -1 + \mu)$	B1	
Equate at least two pairs of corresponding components and solve for $\lambda$ or for $\mu$	M1	May be implied $1 + a\lambda = 2 + 2\mu$ $2 + 2\lambda = 1 - \mu$ $1 - \lambda = -1 + \mu$
Obtain $\lambda = -3$ or $\mu = 5$	A1	
Obtain $a = -\frac{11}{3}$	A1	Allow <i>a</i> = – 3.667
State that the point of intersection has position vector $12i - 4j + 4k$	A1	Allow coordinate form (12, -4, 4)
	5	
Use correct process for finding the scalar product of direction vectors for the two lines	M1	$(a, 2, -1) \cdot (2, -1, 1) = 2a - 2 - 1$ or $2a - 3$
Using the correct process for the moduli, divide the scalar product by the product of the moduli and equate the result to $\pm \frac{1}{6}$	*M1	
State a correct equation in <i>a</i> in any form, e.g. $\frac{2a-2-1}{\sqrt{6}\sqrt{a^2+5}} = \pm \frac{1}{6}$	A1	
Solve for a	DM1	Solve 3-term quadratic for <i>a</i> having expanded $(2a - 3)^2$ to produce 3 terms e.g. $36(2a - 3)^2 = 6(a^2 + 5)$ $138a^2 - 432a + 294 = 0$ $23a^2 - 72a + 49 = 0$ $(23a - 49)$ $(a - 1) = 0$
Obtain <i>a</i> = 1	A1	
Obtain $a = \frac{49}{23}$	A1	Allow $a = 2.13$

Obtain $\overrightarrow{AB} = \begin{pmatrix} 2 \\ -2 \\ -4 \end{pmatrix}$ and $\overrightarrow{CD} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$	B1	Or equivalent seen or implied
Use the correct process for calculating the modulus of both vectors to obtain $AB$ and $CD$	M1	$AB = \sqrt{24}, CD = \sqrt{6}$
Using exact values, verify that $AB = 2CD$	A1	Obtain given statement from correct work Allow from $BA = 2DC$ , OE
	3	
Use the correct process to calculate the scalar product of the relevant vectors ( <i>their</i> $\overrightarrow{AB}$ and $\overrightarrow{CD}$ )	M1	$\begin{pmatrix} 2\\-2\\-4 \end{pmatrix} \text{and} \begin{pmatrix} 2\\1\\1 \end{pmatrix} \text{or} \begin{pmatrix} 2\\-2\\-4 \end{pmatrix} \text{and} \begin{pmatrix} 4\\2\\2 \end{pmatrix}$
Divide the scalar product by the product of the moduli and evaluate the inverse cosine of the result	M1	
Obtain answer 99.6° (or 1.74 radians) or better	A1	Do not ISW if go on to subtract from 180° (99.594, 1.738) Accept 260.4°
6	3	
State correct vector equations for <i>AB</i> and <i>CD</i> in any form, e.g. $(\mathbf{r} =) \begin{pmatrix} 2\\1\\5 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-2\\-4 \end{pmatrix}$ and $(\mathbf{r} =) \begin{pmatrix} 1\\1\\2 \end{pmatrix} + \mu \begin{pmatrix} 2\\1\\1 \end{pmatrix}$	B1ft	Follow their $\overrightarrow{AB}$ and $\overrightarrow{CD}$ Alternative: $(\mathbf{r} =) \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -2 \\ -4 \end{pmatrix}$ and $(\mathbf{r} =) \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$
Equate at least two pairs of components of their lines and solve for $\lambda$ or for $\mu$	M1	
Obtain correct pair of values from correct equations	A1	Alternatives when taking A or B as point on line
		$A  \lambda  \mu \qquad \qquad B  \lambda  \mu$
		$   \mathbf{ij} - \frac{1}{6}   \frac{1}{3}   \frac{17}{3} \neq \frac{7}{3}   \mathbf{ij}   -\frac{7}{6}   -\frac{2}{3}   \frac{17}{3} \neq \frac{7}{3}   $
224		<b>ik</b> $\frac{1}{2}$ 1 $0 \neq 2$ <b>ik</b> $-\frac{1}{2}$ 0 $0 \neq 2$
".satpr	eP	<b>jk</b> $\frac{3}{2}$ -3 5 $\neq$ -5 <b>jk</b> $\frac{1}{2}$ -4 5 $\neq$ -5
Verify that all three equations are not satisfied and that the lines do not intersect	A1	CWO with conclusion e.g. $\frac{17}{3} \neq \frac{7}{3}$ or $\frac{17}{3} = \frac{7}{3}$ is inconsistent or equivalent
	4	

Express general point of a line in component form, e.g. $(1+2s, 3-s, 2+3s)$ or $(2+t, 1-t, 4+4t)$				
Equate at least two pairs of components and solve for $s$ or for $t$	M1			
Obtain correct answer for <i>s</i> or for <i>t</i> (possible answers are $-1$ , 6, $\frac{2}{5}$ for $-3$ , 4, $-\frac{1}{5}$ for <i>t</i> )	rs and A1			
Verify that all three component equations are not satisfied	A1			
Show that the lines are not parallel and are thus skew	A1			
9	5			
Carry out correct process for evaluating the scalar product of the dire vectors	ction M1			
Using the correct process for the moduli, divide the scalar product by product of the moduli and evaluate the inverse cosine of the result	the M1			
Obtain answer 19.1° or 0.333 radians	A1			
	3			

## Question 48

(a)	State or imply $\overrightarrow{AB} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$	B1
	Carry out a correct method to find $\overrightarrow{OD}$	M1
	Obtain answer $-4\mathbf{i} - \mathbf{j} + 3\mathbf{k}$	A1
		3
(b)	State $\mathbf{r} = -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \lambda(2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$	B1FT
		1

(c)	For a general point <i>P</i> on <i>AB</i> , state $\overrightarrow{CP}$ or $\overrightarrow{DP}$ in component form, e.g. $\overrightarrow{CP} = (3 - 2\lambda, -\lambda, -6 + 2\lambda)$	*M1
	Equate a relevant scalar product to zero <i>or</i> equate derivative of $\left  \overrightarrow{CP} \right $ to zero <i>or</i> use Pythagoras in a relevant triangle and solve for $\lambda$	DM1
	Obtain $\lambda = 2$	A1
	Show the perpendicular is of length 3	A1
	Carry out a correct method to find the area of <i>ABCD</i> and obtain the answer 18	A1

(a)	Show that $OA = OB = \sqrt{5}$	<b>B</b> 1
	Evaluate the scalar product of the correct position vectors	M1
	Divide <i>their</i> scalar product by the product of the moduli of <i>their</i> vectors and evaluate the inverse cosine of the result	M1
	Obtain answer 101.5°	A1
		4

<b>(</b> b)	State or imply $M$ has position vector $\mathbf{i} - \mathbf{k}$	<b>B1</b>
	Taking a general point of <i>OM</i> to have position vector $\lambda \mathbf{i} - \lambda \mathbf{k}$ , express $AP = \sqrt{7} OA$ as an equation in $\lambda$	*M1
	State a correct equation in any form	A1
	Reduce to $\lambda^2 - 2\lambda - 15 = 0$	A1
	Solve a quadratic and state a position vector	DM1
	Obtain answers $5\mathbf{i} - 5\mathbf{k}$ and $-3\mathbf{i} + 3\mathbf{k}$	A1

(2)	<b>B</b> 1
State or imply $\overrightarrow{AB} = \begin{bmatrix} -1 \\ -3 \end{bmatrix}$	
Use the correct process to calculate the scalar product of a pair of relevant vectors, e.g. their $\overrightarrow{AB}$ and a direction vector for <i>l</i>	M1
Using the correct process for the moduli, divide the scalar product by the product of the moduli of the two vectors and evaluate the inverse cosine of the result	M1
Obtain answer 83.7° or 1.46 radians	A1
·satprep.	4

State or imply $\pm \overrightarrow{AP}$ and $\pm \overrightarrow{BP}$ in component form, i.e. $(1 + \lambda, 1 - 2\lambda, \lambda)$ and $(-1 + \lambda, 2 - 2\lambda, 3 + \lambda)$ , or equivalent	B1
Form an equation in $\lambda$ by equating moduli or by using $\cos BAP = \cos ABP$	*M1
Obtain a correct equation in any form $(1+\lambda)^2 + (1-2\lambda)^2 + \lambda^2 = (\lambda-1)^2 + (2-2\lambda)^2 + (\lambda+3)^2$	A1
Solve for $\lambda$ and obtain position vector	DM1
Obtain correct position vector for P in any form, e.g. $(8, -9, 7)$ or $8\mathbf{i} - 9\mathbf{j} + 7\mathbf{k}$	A1
T PRA	5

State $\overrightarrow{OM} = 4\mathbf{i} + 2\mathbf{j}$	<b>B1</b>			
Use a correct method to find $\overline{ON}$	<b>M1</b>			
Obtain answer 3 <b>j</b> + <b>k</b>	A1			
Use a correct method to find a line equation for MN	M1			
Obtain answer $\mathbf{r} = 3\mathbf{j} + \mathbf{k} + \lambda(4\mathbf{i} - \mathbf{j} - \mathbf{k})$ , or equivalent	A1			
	5			
Taking a general point <i>P</i> on <i>MN</i> , form an equation in $\lambda$ by <i>either</i> equating a relevant scalar product to zero <i>or</i> equating the derivative of $\overline{OP}$ to zero <i>or</i> using Pythagoras in triangle <i>OPM</i> or <i>OPN</i>	M1	.5		
Obtain $\lambda = \frac{2}{9}$	A1	OE		
Use correct method to find OP	M1			
Obtain the given answer correctly	A1			
Alternative method to Question 8(b)				
Use a scalar product to find the projection of OM (or ON) on MN	M1			
Obtain answer $\frac{14}{\sqrt{18}} \left( \text{or } \frac{4}{\sqrt{18}} \right)$	A1			
Use Pythagoras to obtain the perpendicular	<b>M1</b>			
Obtain the given answer correctly	A1			
	4			

l)	Obtain direction vector $-\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ , or equivalent	B1	Accept answers as column vectors throughout.
	Use a correct method to form a vector equation	M1	
-	State answer $\mathbf{r} = \mathbf{i} + 2\mathbf{j} - \mathbf{k} + \lambda (-\mathbf{i} + \mathbf{j} + 2\mathbf{k})$ , or equivalent correct form	A1	e.g. $\mathbf{r} = \begin{pmatrix} 0\\3\\1 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\-2 \end{pmatrix}$ Allow $\begin{pmatrix} x\\y\\z \end{pmatrix}$ for $\mathbf{r}$ .
		3	
b)	Use a correct method to find the position vector of <i>C</i>	M1	e.g. $\mathbf{OC} = \mathbf{OA} + \mathbf{AC} = \begin{pmatrix} 1-3\\ 2+3\\ -1+6 \end{pmatrix}$
-	Obtain answer $-2i + 5j + 5k$ , or equivalent	A1	Accept as coordinates.
		2	
		2	
	State $\overrightarrow{OP}$ in component form	B1 FT	1
-	State $\overrightarrow{OP}$ in component form Form an equation in $\lambda$ by equating the modulus of $OP$ to $\sqrt{14}$ , or equivalent		
1		B1 FT	$3\lambda^2 + \lambda - 4 = 0$ if using $\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ in (a). $3\mu^2 + 5\mu - 2 = 0$ if using $-\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ in (a) and <i>OB</i> .
1	Form an equation in $\lambda$ by equating the modulus of <i>OP</i> to $\sqrt{14}$ , or equivalent	B1 FT M1	$3\lambda^2 + \lambda - 4 = 0$ if using $\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ in (a).
1	Form an equation in $\lambda$ by equating the modulus of <i>OP</i> to $\sqrt{14}$ , or equivalent Simplify and obtain $3\lambda^2 - \lambda - 4 = 0$ , or equivalent	B1 FT M1 A1	$3\lambda^2 + \lambda - 4 = 0$ if using $\mathbf{i} - \mathbf{j} - 2\mathbf{k}$ in (a). $3\mu^2 + 5\mu - 2 = 0$ if using $-\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ in (a) and <i>OB</i> .

a)	Use correct method to evaluate the scalar product of relevant vectors	M1	(-4-2+6)
	Obtain answer zero and deduce the given statement	A1	Need a conclusion or a statement in advance that the scalar product will be zero.
		2	
))	Express general point of <i>l</i> or <i>m</i> in component form, e.g. $(3 + 4s, 2 - s, 5 + 3s)$ or $(1 - t, -1 + 2t, -2 + 2t)$	B1	
	Equate at least two pairs of components and solve for $s$ or for $t$	M1	
	Obtain correct answer $s = -1$ and $t = 2$	A1	
	Verify that all three equations are satisfied	A1	
	State position vector of the intersection $-i + 3j + 2k$ , or equivalent	A1	Can come from 1 correct value and no contradictory statement.
	T PD	5	
)	Taking a general point <i>P</i> on <i>m</i> , form an equation in <i>t</i> by <i>either</i> equating a relevant scalar product to zero, <i>or</i> equating the derivative of $ \overline{OP} $ to zero, <i>or</i> taking a specific point <i>Q</i> on <i>m</i> , e.g. $(1, -1, -2)$ , using Pythagoras in triangle <i>OPQ</i>	*M1	e.g. $\begin{pmatrix} 1-t\\ -1+2t\\ -2+2t \end{pmatrix} \begin{pmatrix} -1\\ 2\\ 2 \end{pmatrix} = 0$
	Obtain $t = \frac{7}{9}$	A1	
	Carry out correct method to find OP	DM1	
	Obtain $\frac{\sqrt{5}}{3}$	A1	Obtain the given answer from full and correct working

(a)	Obtain direction vector $-\mathbf{i} - 3\mathbf{j} + \mathbf{k}$		<b>B1</b>	OE
	Use a correct method to form a vector equation		M1	
	Obtain answer $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(-\mathbf{i} - 3\mathbf{j} + \mathbf{k})$ or $\mathbf{r} = \mathbf{i} \ 2\mathbf{j} + 2\mathbf{k} + \lambda(-\mathbf{i} - 3\mathbf{j} + \mathbf{k})$		A1	Need <b>r</b> or <b>r</b> on LHS
			3	
b)	Carry out the correct process for evaluating the scalar product of the direction vectors.	n	M1	$(-1, -3, 1) \cdot (1, -3, -2) = -1 + 9 - 2$
	Using the correct process for the moduli, divide the scalar product by the pro of the moduli and find the inverse cosine of the result for any 2 vectors	duct	M1	$\cos^{-1}\left(\frac{1+9\ 2}{(1+9+1)(1+9+4))}\right)$
	Obtain answer 61.1 °		A1	61.086°
	T PI		3	
c)	Express general point of AB or l in component form, e.g. $(2 - \lambda, 1 - 3\lambda, 1 + \lambda)$ $(1 + \mu, 2 - 3\mu, -3 - 2\mu)$	) or	<b>B1</b>	0
	Equate at least two pairs of components and solve for $\lambda$ or for $\mu$		M1	
	Obtain a correct answer for $\lambda$ or $\mu$ , e.g. $\lambda = 6$ , $\frac{1}{3}$ , or $-\frac{14}{9}$ ; $\mu = -5$ , $\frac{2}{3}$ or $-\frac{14}{9}$	<u>1</u> 9	A1	
	Verify that all three equations are not satisfied, and the lines do not intersect		A1	
			4	
<u> </u>	Express general point of <i>AB</i> or <i>l</i> in component form, e.g. $(1 - \lambda^*, -2 - 3\lambda^*, 2 + \lambda^*)$ or $(1 + \mu^*, 2 - 3\mu^*, -3 - 2\mu^*)$ estion 55 Using the correct process find the scalar product of direction vectors of <i>l</i>	M1	4	6).(-1, 2, 3) = -1.1 + 5.2 + 6.3 = -1 + 10 + 18
<u>`</u>	Express general point of <i>AB</i> or <i>l</i> in component form, e.g. $(1 - \lambda^*, -2 - 3\lambda^*, 2 + \lambda^*)$ or $(1 + \mu^*, 2 - 3\mu^*, -3 - 2\mu^*)$ estion 55	M1 M1	(1, 5, <i>Their</i>	6).(-1, 2, 3) = -1.1 + 5.2 + 6.3 = -1 + 10 + 18 e scalar product $\div [\sqrt{(1^2 + 5^2 + 6^2)}\sqrt{((-1)^2 + 2^2 + 3^2)}].$ e = $\cos^{-1}\frac{27}{\sqrt{62}\sqrt{14}}$ .
<u>`</u>	Express general point of <i>AB</i> or <i>l</i> in component form, e.g. $(1 - \lambda^*, -2 - 3\lambda^*, 2 + \lambda^*)$ or $(1 + \mu^*, 2 - 3\mu^*, -3 - 2\mu^*)$ estion 55 Using the correct process find the scalar product of direction vectors of <i>l</i> and OA Using the correct process for the moduli, divide the scalar product by the	07.04	(1, 5, <i>Thein</i> Angl	scalar product $\div [\sqrt{(1^2 + 5^2 + 6^2)}\sqrt{((-1)^2 + 2^2 + 3^2)}].$
<u> </u>	Express general point of <i>AB</i> or <i>l</i> in component form, e.g. $(1 - \lambda^*, -2 - 3\lambda^*, 2 + \lambda^*)$ or $(1 + \mu^*, 2 - 3\mu^*, -3 - 2\mu^*)$ estion 55 Using the correct process find the scalar product of direction vectors of <i>l</i> and OA Using the correct process for the moduli, divide the scalar product by the product of the moduli and find the inverse cosine of the result	M1	(1, 5, <i>Thein</i> Angl	e = $\cos^{-1} \frac{27}{\sqrt{62}\sqrt{14}}$ . RT 23.6°.
a)	Express general point of <i>AB</i> or <i>l</i> in component form, e.g. $(1 - \lambda^*, -2 - 3\lambda^*, 2 + \lambda^*)$ or $(1 + \mu^*, 2 - 3\mu^*, -3 - 2\mu^*)$ estion 55 Using the correct process find the scalar product of direction vectors of <i>l</i> and OA Using the correct process for the moduli, divide the scalar product by the product of the moduli and find the inverse cosine of the result	M1 A1	(1, 5, <i>Thein</i> Angl AWF 23.58	e scalar product ÷ $[\sqrt{(1^2 + 5^2 + 6^2)}\sqrt{((-1)^2 + 2^2 + 3^2)}].$ e $= \cos^{-1}\frac{27}{\sqrt{62}\sqrt{14}}.$ RT 23.6°. 889°. Radians 0.412 scores A0 (0.4117). E (4, 1, 0) or (4, 1, 1), for 4 <b>i</b> + <b>k</b> is not MR, but M1
a)	Express general point of <i>AB</i> or <i>l</i> in component form, e.g. $(1 - \lambda^*, -2 - 3\lambda^*, 2 + \lambda^*)$ or $(1 + \mu^*, 2 - 3\mu^*, -3 - 2\mu^*)$ estion 55 Using the correct process find the scalar product of direction vectors of <i>l</i> and <b>OA</b> Using the correct process for the moduli, divide the scalar product by the product of the moduli and find the inverse cosine of the result Obtain answer 23.6°.	M1 A1 3	$(1, 5, 7)$ Their Angle AMF 23.58 Note possi $(3-2)$ or let $QP = 3^{2} + (3-2)$ Other	e scalar product ÷ $[\sqrt{(1^2 + 5^2 + 6^2)}\sqrt{((-1)^2 + 2^2 + 3^2)}].$ e $= \cos^{-1}\frac{27}{\sqrt{62}\sqrt{14}}.$ RT 23.6°. 889°. Radians 0.412 scores A0 (0.4117). E (4, 1, 0) or (4, 1, 1), for 4 <b>i</b> + <b>k</b> is not MR, but M1
a)	Express general point of <i>AB</i> or <i>l</i> in component form, e.g. $(1 - \lambda^*, -2 - 3\lambda^*, 2 + \lambda^*)$ or $(1 + \mu^*, 2 - 3\mu^*, -3 - 2\mu^*)$ estion 55 Using the correct process find the scalar product of direction vectors of <i>l</i> and <b>OA</b> Using the correct process for the moduli, divide the scalar product by the product of the moduli and find the inverse cosine of the result Obtain answer 23.6°. Taking a general point <i>P</i> on <i>l</i> , state <b>AP</b> (or <b>PA</b> ) in component form, e.g. $(3 - \lambda, -5 + 2\lambda, -5 + 3\lambda)$ <i>Either</i> equate scalar product of <b>AP</b> and direction vector of <i>l</i> to zero and	M1 A1 3 B1	$(1, 5, 7)$ Their Angle AMF 23.58 Note possi $(3-2)$ or let $QP = 3^{2} + (3-2)$ Other	e scalar product ÷ $[\sqrt{(1^2 + 5^2 + 6^2)}\sqrt{((-1)^2 + 2^2 + 3^2)}]$ . e = $\cos^{-1}\frac{27}{\sqrt{62}\sqrt{14}}$ . RT 23.6°. 189°. Radians 0.412 scores A0 (0.4117). (4, 1, 0) or (4, 1, 1), for 4 <b>i</b> + <b>k</b> is not MR, but M1 ble. a, -5 + 2 $\lambda$ , -5 + 3 $\lambda$ ).(-1, 2, 3) = 0 10 -15 + $\lambda$ + 4 $\lambda$ + 9 $\lambda$ = 0 OQ = (4, 0, 1) so AQ = (3, -5, -5), (- $\lambda$ , 2 $\lambda$ , 3 $\lambda$ ), AP = (3 - $\lambda$ , -5 + 2 $\lambda$ , -5 + 3 $\lambda$ ) hence (-5) ² + (-5) ² = 1) ² + (-5 + 2 $\lambda$ ) ² + (-5 + 3 $\lambda$ ) ² + (- $\lambda$ ) ² + (2 $\lambda$ ) ² + (3 $\lambda$ ) ² r alternative approaches are possible, e.g. minimise Ai 2 ² , either by completing the square or by differentiating
<b>Que</b> a) b)	Express general point of <i>AB</i> or <i>l</i> in component form, e.g. $(1 - \lambda^*, -2 - 3\lambda^*, 2 + \lambda^*)$ or $(1 + \mu^*, 2 - 3\mu^*, -3 - 2\mu^*)$ estion 55 Using the correct process find the scalar product of direction vectors of <i>l</i> and <b>OA</b> Using the correct process for the moduli, divide the scalar product by the product of the moduli and find the inverse cosine of the result Obtain answer 23.6°. Taking a general point <i>P</i> on <i>l</i> , state <b>AP</b> (or <b>PA</b> ) in component form, e.g. $(3 - \lambda, -5 + 2\lambda, -5 + 3\lambda)$ <i>Either</i> equate scalar product of <b>AP</b> and direction vector of <i>l</i> to zero and solve for $\lambda$ or use Pythagoras in a relevant triangle and solve for $\lambda$	M1 A1 3 B1 M1	(1, 5, Their Angl AwF 23.58 Note possi (3 - $\lambda$ -3 - or let (3 - $\lambda$ QP = 3 ² + ( (3 - $\lambda$ Othe or AH $\lambda$ = 2 OE	e scalar product ÷ $[\sqrt{(1^2 + 5^2 + 6^2)}\sqrt{((-1)^2 + 2^2 + 3^2)}]$ . e = $\cos^{-1}\frac{27}{\sqrt{62}\sqrt{14}}$ . RT 23.6°. 189°. Radians 0.412 scores A0 (0.4117). (4, 1, 0) or (4, 1, 1), for 4 <b>i</b> + <b>k</b> is not MR, but M1 ble. a, -5 + 2 $\lambda$ , -5 + 3 $\lambda$ ).(-1, 2, 3) = 0 10 -15 + $\lambda$ + 4 $\lambda$ + 9 $\lambda$ = 0 OQ = (4, 0, 1) so AQ = (3, -5, -5), (- $\lambda$ , 2 $\lambda$ , 3 $\lambda$ ), AP = (3 - $\lambda$ , -5 + 2 $\lambda$ , -5 + 3 $\lambda$ ) hence (-5) ² + (-5) ² = 1) ² + (-5 + 2 $\lambda$ ) ² + (-5 + 3 $\lambda$ ) ² + (- $\lambda$ ) ² + (2 $\lambda$ ) ² + (3 $\lambda$ ) ² r alternative approaches are possible, e.g. minimise A $\lambda$ ² , either by completing the square or by differentiating

(c)	Set up a correct method for finding the position vector of the reflection of $A$ in $l$	M1	For all methods, allow a sign error in one component only: $\mathbf{OA'} = \mathbf{OP^*} + (\mathbf{OP^*} - \mathbf{OA})$ their (2,4,7) + (their 2,4,7 - 1,5,6) or $\mathbf{OA'} = \mathbf{OP^*} - (\mathbf{OA} - \mathbf{OP^*})$ their (2,4,7) - (1,5,6 - their 2,4,7) or $\mathbf{OA'} = \mathbf{OA} + 2(\mathbf{OP^*} - \mathbf{OA})$ $\begin{pmatrix} 1+2(their 2-1) \\ 5+2(their 4-5) \\ 6+2(their 7-6) \end{pmatrix}$ or midpoint $\mathbf{OP^*} = (\mathbf{OA} + \mathbf{OA'})/2$ with their $\lambda$ value substituted. $\frac{1+x}{2} = their 2$ $\frac{5+y}{2} = their 4$ $\frac{6+z}{2} = their 7$
	Obtain answer $3\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}$ or $3\left(\mathbf{i} + \mathbf{j} + \frac{8}{3}\right)$	A1	OE Condone coordinates x = 3, y = 3, z = 8 A1. No method shown and correct answer 2/2.
Ques	stion 56	2	

Express general point of <i>l</i> or <i>m</i> in component form, i.e. $(-1+2\lambda, 3-\lambda, 4-\lambda)$ or $(5+a\mu, 4+b\mu, 3+\mu)$	B1	
Equate components and eliminate either $\lambda$ or $\mu$	M1	e.g. $\mu = \frac{2}{1-b}$ , $\lambda = \frac{-1-b}{1-b}$ , $\mu = \frac{-4}{2+a}$ , $\lambda = \frac{a+6}{a+2}$
Eliminate the other parameter or obtain a second expression in the first	M1	$\lambda$ and $\mu$ are not required to be the subject of the equations.
Show intermediate steps to obtain $2b - a = 4$	A1	AG
Using the correct process equate the scalar product of the direction vectors to zero	*M1	$(2\mathbf{i} - \mathbf{j} - \mathbf{k}).(a\mathbf{i} + b\mathbf{j} + \mathbf{k}) = 0$ SOI.
Obtain $2a-b-1=0$	A1	OE e.g. $2(2b-4)-b-1=0$
Solve simultaneous equations for <i>a</i> or for <i>b</i>	DM1	1.5
Obtain $a = 2, b = 3$	A1	.0'
Satore	4	
Substitute found values in component equations and solve for $\lambda$ or for $\mu$	M1	
Obtain answer $3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ from either $\lambda = 2$ or $\mu = -1$	A1	Accept as coordinates or equivalent.

Obtain $\overline{OM} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$	B1	
Use a correct method to find $\overline{MN}$	M1	e.g. $\overrightarrow{MO} + \overrightarrow{OA} + \overrightarrow{AN}$ or $\overrightarrow{MO} + \overrightarrow{ON}$
Obtain $\overrightarrow{MN} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$	A1	Accept any notation.
	3	
Use a correct method to form an equation for MN	M1	Allow without <b>r</b> =
Obtain $\mathbf{r} = 2\mathbf{i} + 3\mathbf{j} + \lambda (\mathbf{i} + \mathbf{j} - 2\mathbf{k})$	A1 FT	OE e.g. $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} + \mu(\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ Must have $\mathbf{r} = \dots$ Follow <i>their</i> answers to part <b>9(a)</b> .
	2	
State $\overrightarrow{OP}$ for a general point <i>P</i> on <i>MN</i> in component form, e.g. $(2 + \lambda, 3 + \lambda, -2\lambda)$	B1	
Equate scalar product of $\overrightarrow{OP}$ and a direction vector for <i>MN</i> to zero and solve for $\lambda$	M1	
Obtain $\lambda = -\frac{5}{6}$	A1	OE e.g. $\mu = \frac{1}{6}$
Obtain $\sqrt{\frac{53}{6}}$ correctly	A1	AG e.g. from $\sqrt{\left(\frac{7}{6}\right)^2 + \left(\frac{13}{6}\right)^2 + \left(\frac{5}{3}\right)^2}$
	4	
stion 58		
	В	1
State $\overrightarrow{OM} = \begin{bmatrix} 2\\1\\0 \end{bmatrix}$		
	Use a correct method to find $\overline{MN}$ Obtain $\overline{MN} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$ Use a correct method to form an equation for $MN$ Obtain $\mathbf{r} = 2\mathbf{i} + 3\mathbf{j} + \lambda$ ( $\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ ) State $\overline{OP}$ for a general point <i>P</i> on <i>MN</i> in component form, e.g. $(2 + \lambda, 3 + \lambda, -2\lambda)$ Equate scalar product of $\overline{OP}$ and a direction vector for <i>MN</i> to zero and solve for $\lambda$ Obtain $\lambda = -\frac{5}{6}$	Use a correct method to find $\overline{MN}$ M1         Obtain $\overline{MN} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$ A1         3       Use a correct method to form an equation for $MN$ M1         Obtain $\mathbf{r} = 2\mathbf{i} + 3\mathbf{j} + \lambda$ ( $\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ )       A1 FT         2       State $\overline{OP}$ for a general point $P$ on $MN$ in component form, e.g. $(2 + \lambda, 3 + \lambda, -2\lambda)$ B1         Equate scalar product of $\overline{OP}$ and a direction vector for $MN$ to zero and solve for $\lambda$ M1         Obtain $\lambda = -\frac{5}{6}$ A1         Obtain $\sqrt{\frac{53}{6}}$ correctly       A1         4       Stion 58

Use a correct method to find $\overrightarrow{ON}$	M1	5
Obtain answer $\begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$	Al	
	3	
Carry out a correct method to form a vector equation for MN	M1	
Obtain a correct equation in any form, e.g. $\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -3 \\ -1 \end{pmatrix}$	A1	OE
	2	

c)	State a correct vector equation for <i>AB</i> in any form, e.g. $\mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 5 \\ 1 \end{pmatrix}$	B1	
	Equate components of AB and MN and solve for $\lambda$ or for $\mu$	M1	
	Obtain $\lambda = -3$ or $\mu = 2$	A1	
	Obtain position vector $\begin{pmatrix} -1\\10\\3 \end{pmatrix}$ , or equivalent, for $Q$	A1	
		4	

State or imply $\overrightarrow{AB}$ or $\overrightarrow{AC}$ correctly in component form	B1	$\left(\overrightarrow{AB}=2\mathbf{i}-2\mathbf{j}+\mathbf{k},  \overrightarrow{AC}=4\mathbf{i}-3\mathbf{k}\right).$
Using the correct process with relevant vectors to evaluate the scalar product $\overrightarrow{AB.AC}$ ,	M1	or $\overrightarrow{BA}.\overrightarrow{CA}$ (8-3=5). M0 for $\overrightarrow{AB}.\overrightarrow{CA}$ .
Using the correct process for the moduli, divide <i>their</i> scalar product by the product of <i>their</i> moduli to obtain $\cos \theta$ or $\theta$	M1	$\left(\frac{5}{\sqrt{9}\sqrt{25}}\right)$ Independent of the first M1.
Obtain answer $\frac{1}{3}$	A1	ISW. Need to see a value for $\cos \theta$ . Accept $\frac{5}{15}$ or 0.333 ( $\cos^{-1}\frac{1}{3}$ alone is not sufficient)
	4	
Use correct method to find an <b>exact</b> value for the sine of angle <i>BAC</i> from <i>their</i> (a)	M1	$\left(\sqrt{1-\frac{1}{9}}\right)$
Obtain answer $\frac{2}{3}\sqrt{2}$ , or equivalent	A1	
Use correct area formula to find the area of triangle <i>ABC</i> with <i>their</i> versions of relevant vectors	M1	$\left(\frac{1}{2}\sqrt{9}\sqrt{25} \times their\sin\theta\right)$ or $\frac{1}{2}\sqrt{9}\sqrt{25} \times \sin\left(\cos^{-1}\frac{1}{3}\right)$
Obtain answer $5\sqrt{2}$ or $\sqrt{50}$	A1	Only ISW
Alternative method 1 for question 6(b)		0
Use correct method to find the perpendicular distance from $A$ to $BC$ (or $B$ to $AC$ or $C$ to $AB$ )	M1	$\begin{pmatrix} 2+2\lambda \\ -2+2\lambda \\ 1-4\lambda \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ -4 \end{pmatrix} = 0 \Longrightarrow \lambda = \frac{1}{6}$
Obtain $\frac{1}{3}\sqrt{75}$	A1	$\left(\left \frac{7}{3}\mathbf{i}-\frac{5}{3}\mathbf{j}+\frac{1}{3}\mathbf{k}\right \right)$
Use correct area formula to find the area of triangle <i>ABC</i>	M1	$\left(\frac{1}{2} \times their\sqrt{24} \times their \frac{1}{3}\sqrt{75}\right)$ The length they use for <i>their</i> base must be found correctly.
Obtain answer $5\sqrt{2}$ or $\sqrt{50}$	A1	

(c)

(a)	State $\overrightarrow{OM} = 2\mathbf{i} + 2\mathbf{j}$ or equivalent	B1	Can be implied by $\overrightarrow{MB} = -2\mathbf{i} + 2\mathbf{j}$ or $\overrightarrow{MA} = 2\mathbf{i} - 2\mathbf{j}$ .
	Obtain $\overline{MD} = -2\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$	B1	
	Use a correct method to find $\overrightarrow{ON}$	M1	e.g. $\overrightarrow{OC} + \frac{2}{3}\overrightarrow{CB}$
	Obtain answer $3\mathbf{j} + \mathbf{k}$	A1	
		4	
(b)	Use the correct process for evaluating the scalar product of $\overrightarrow{MD}$ and $\overrightarrow{ON}$	M1	
	Using the correct process for the moduli, divide the scalar product by the product of the moduli and reach the inverse cosine of the result	M1	$\cos^{-1}\left(\frac{-6+3}{\sqrt{10}\sqrt{17}}\right)$
	Obtain final answer 103.3°	A1	
	TPA	3	
(c)	Taking a general point <i>P</i> of <i>ON</i> to have position vector $\lambda(3\mathbf{j}+\mathbf{k})$ , form an equation in $\lambda$ by <i>either</i> equating the scalar product of $\overrightarrow{ON}$ and $\overrightarrow{MP}$ to zero, <i>or</i> applying Pythagoras to triangle <i>OMP</i> , <i>or</i> equating the derivative of $ \overrightarrow{MP} $ to zero	M1	e.g. $\begin{pmatrix} -2\\ -2+3\lambda\\ \lambda \end{pmatrix}$ , $\begin{pmatrix} 0\\ 3\\ 1 \end{pmatrix} = 0$
	Solve and obtain $\lambda = \frac{3}{5}$	A1	
	Substitute for $\lambda$ and calculate $MP$	M1	$\overrightarrow{MP} = -2\mathbf{i} - \frac{1}{5}\mathbf{j} + \frac{3}{5}\mathbf{k}$
	Obtain $\sqrt{\frac{22}{5}}$	A1	AG
	Alternative method for question 11(c)		
	Use a scalar product to find the projection OQ of OM on OM	M1	
	Obtain $OQ = \frac{6}{\sqrt{10}}$	A1	0.5
	Use Pythagoras in triangle OMQ to find MQ	M1	
	Obtain $\sqrt{\frac{22}{5}}$	A1	AG
		4	

	Using the correct process for the moduli, divide the scalar product by the	A1	
	product of the moduli and obtain	А	
	$\cos^{-1}\{\pm(3-2-6)/[\sqrt{(3^2+(-1)^2+2^2)}\sqrt{(1^2+2^2+(-3)^2)}]\}$		
	Obtain answer 110.9° or 1.94°	A1	
		3	
)	Use a correct method to form an equation for line through <i>AB</i>	M1	
	Obtain $\mathbf{r} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k} + \mu_1 (2\mathbf{i} - 3\mathbf{j} + 5\mathbf{k})$	A1	OE e.g. $\mathbf{r} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k} + \mu_2 (-2\mathbf{i} + 3\mathbf{j} - 5\mathbf{k}).$ Need $\mathbf{r}$ or $(x, y, z)$ .
		2	
:)	Obtain a correct equation for line through <i>CD</i> e.g. $[\mathbf{r} = ] \mathbf{i} - 2\mathbf{j} + 5\mathbf{k} + \lambda_1(-4\mathbf{i} + 4\mathbf{j} - 6\mathbf{k})$	B1	OE e.g. $[\mathbf{r} = ]$ 5 $\mathbf{i} - 6\mathbf{j} + 11\mathbf{k} + \lambda_2(-4\mathbf{i} + 4\mathbf{j} - 6\mathbf{k})$ . <b>r</b> can be omitted or another symbol used.
	Equate two pairs of components of general points on <i>their l</i> and <i>their CD</i> and solve for $\lambda$ or for $\mu$	M1	
	Obtain e.g. $\lambda_1 = -2$ or $\mu_1 = 3$ or $\lambda_2 = -1$ or $\mu_2 = -4$	A1	
	Obtain position vector $9i - 10j + 17k$	A1	Condone (9, -10, 17) but not (9 <b>i</b> , -10 <b>j</b> , 17 <b>k</b> ).
		4	

(a)	Perform scalar product of direction vectors and set result equal to zero	M1	2c+6+4=0.
	Use <i>P</i> to find the value of $\lambda$	M1	$3-2\lambda = 7 \Rightarrow \lambda = -2 \ [a + \lambda c = 4, b + 4\lambda = -2].$ Equation for line <i>l</i> may contain $-\lambda$ instead of $+\lambda$ leading to $\lambda = 2$ all marks available.
	Obtain $c = -5$ or $b = 6$	A1	
	a = -6, b = 6 and $c = -5$ all correct	A1	E
	3. satpre	4	SC1: Use P to find the value of $\lambda$ M1 Substitute $\lambda = -2$ into point P, so $a - 2c = 4$ , and put $\mu = -1$ and $\lambda = -1$ into l so $a - c = -1$ , then solve to obtain $a = -6$ , $b = 6$ and $c = -5$ . All 3 values correct A1. Max 2/4.

b)	Find $\overrightarrow{PQ}$ (or $\overrightarrow{QP}$ ) for a general point $Q$ on $m$ = ± ((1 + 2 $\mu$ , 2 - 3 $\mu$ , 3 + $\mu$ ) - ( $a$ + $\lambda c$ , 3 - 2 $\lambda$ , $b$ + 4 $\lambda$ ))	B1	$\begin{bmatrix} \overrightarrow{PQ} \text{ or } \overrightarrow{QP} = \pm \begin{pmatrix} -3 + 2\mu \\ -5 - 3\mu \\ 5 + \mu \end{bmatrix} \end{bmatrix}$ Could be <i>their a</i> , <i>b</i> , <i>c</i> and $\lambda$ values provided M1 M1 gained in (a). Allow expression in answer column.				
	Equate the scalar product of $\overrightarrow{PQ}$ (or $\overrightarrow{QP}$ ) and a direction vector for <i>m</i> to zero and obtain an equation in $\mu$	M1*	$(2(-3+2\mu)-3(-5-3\mu)+(5+\mu))=0.$ Allow $\overline{PQ} = \overline{OQ} + \overline{OP}$ sign problem.				
_	Solve and obtain $\mu = -1$	A1	$PQ^{2} = (-3 + 2\mu)^{2} + (-5 - 3\mu)^{2} + (5 + \mu)^{2}.$ [= 14(\mu + 1)^{2} + 45]. Min when \mu = -1 or by differentiation.				
	Obtain $\overrightarrow{OQ} = -\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$ or $\overrightarrow{PQ} = -5\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$ Must be labelled correctly	A1	The working may be in (a) provided at least this result used in (b).				
	Carry out a method to find the position vector of <i>R</i>	DM1	e.g. Use $\overrightarrow{OR} = \overrightarrow{OP} + \frac{5}{2}\overrightarrow{PQ}$ or $\overrightarrow{OR} = \overrightarrow{OQ} + \frac{3}{2}\overrightarrow{PQ}$ or				
	Alternative method for DM1 $\overrightarrow{OR} = (4, 7, -2) + t (-5, -2, 4)  \overrightarrow{QR} = \overrightarrow{OR} - \overrightarrow{OQ}$ Solve $ \mathbf{QR} ^2 = \frac{9}{4}  \mathbf{PQ} ^2$ or $ \mathbf{QR}  = \frac{3}{2}  \mathbf{PQ}  t = 2.5$	R	$\overrightarrow{OR} = \frac{5}{2}\overrightarrow{OQ} - \frac{3}{2}\overrightarrow{OP} \text{ or } 2\overrightarrow{QR} = 2(\overrightarrow{OR} - \overrightarrow{OQ}) = 3\overrightarrow{PQ}$ where $\overrightarrow{OR} = (x, y, z)$ . $\overrightarrow{PQ}$ used in all these approaches, may be incorrect, mu be in the correct direction, i.e. not using $\overrightarrow{QP}$ for $\overrightarrow{PQ}$ .				
(b)	Obtain $-\frac{17}{2}i + 2j + 8k$ from correct working	A1	Accept coordinates. Don't accept $-\frac{17}{2}\mathbf{i} + \frac{4}{2}\mathbf{j} + \frac{16}{2}\mathbf{k}$ .				
		6	<b>SC2</b> Equate lines, attempt to find $\mu = -1$ or $\lambda = -1$ M $\overrightarrow{OQ} = -\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$ A1. Attempt to find $\overrightarrow{OQ}$ using other parameter value DM $\overrightarrow{OQ} = -\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$ therefore intersect A1. Then use main scheme for the final DM1 A1.				
	ź		First <b>DM1 A1</b> are available if they show the 3 coordinates are consistent for the 2 parameter values instead of attempting to find $\overrightarrow{OQ}$ using the other parameter value and then showing intersection				

Carry out correct method for finding a vector equation for AB	M1								
Obtain $[\mathbf{r}]$ <b>i</b> + 2 <b>j</b> - 2 <b>k</b> + $\lambda$ ( <b>i</b> - 3 <b>j</b> + 3 <b>k</b> )	A1								
Equate two pairs of components of general points on <i>their AB</i> and <i>l</i> and evaluate $\lambda$ or $\mu$	M1								
Obtain correct answer for $\lambda$ or $\mu$ , e.g. $\lambda = -1$ , $\mu = -2$	A1	Corr	ect va	lue fr	om two cor	rect co	ompor	nent eo	quations.
Verify that all three equations are not satisfied and the lines fail to intersect ( $\neq$ is sufficient justification e.g. $0 \neq -3$ ).	A1	Conclusion needs to follow correct values. Hybrid versions are possible e.g. using $\mathbf{j}$ and $\mathbf{k}$ to get one parameter and then $\mathbf{i}$ to obtain the other. or e.g. solving two pairs of simultaneous equations and showing that the results are not the same. Alternatives:							
		A	λ	μ		B	λ	μ	
		ij ik	2 5	1 5/2		ij ik	1 4	1 5/2	$4 \neq 7$ -13 $\neq$ -
		jk	-1	-2	$\begin{array}{c} 17/2 \\ 0 \neq -3 \end{array}$	jk	-2	-2	$\begin{array}{c} 17/2 \\ 0 \neq -3 \end{array}$
Find $\overrightarrow{AP}$ for a general point <i>P</i> on <i>l</i> , e.g. $-3\mathbf{j} + 5\mathbf{k} + \mu(2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k})$ Calculate scalar product of <i>their</i> $\overrightarrow{AP}$ and a direction vector for <i>l</i> and equate the result to zero	5 B1 M1	Or equivalent e.g. $\overrightarrow{PA} = -2\mu \mathbf{i} + (3\mu + 3)\mathbf{j} - (4\mu + 5)\mathbf{l}$					$(4\mu+5)\mathbf{k}$		
Obtain $\mu = -1$	A1	MO	11 usi	ng pa	rallel line tl	irougn	A.		
Obtain answer $-\mathbf{i} + 2\mathbf{j} - \mathbf{k}$	A1								
Alternative Method for Question 11(b)	1								
Find $\overline{AP}$ for a general point P on l, e.g. $-3\mathbf{j} + 5\mathbf{k} + \mu(2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k})$	B1	Or equivalent e.g. $\overrightarrow{PA} = -2\mu \mathbf{i} + (3\mu + 3)\mathbf{j} - (4\mu + 5)\mathbf{k}$							
Use Pythagoras and differentiate with respect to $\mu$ to obtain value of $\mu$ corresponding to minimum distance. (No need to prove it is a minimum)	M1	$\frac{1}{d\mu}\left(4\mu^{2}+9(\mu+1)^{2}+(4\mu+5)^{2}\right)=0.$							
		0							
Obtain $\mu = -1$	A1	6							
Obtain $\mu = -1$ Obtain answer $-\mathbf{i} + 2\mathbf{j} - \mathbf{k}$	AI A1	Acc	ept c	oordir	nates in plac	ce of p	ositio	n vect	or.

(a)	Obtain a vector for one side of the parallelogram	B1	e.g. $\overline{AB} = \begin{pmatrix} 2\\ 2\\ -1 \end{pmatrix}$ or $\overline{BC} = \begin{pmatrix} -1\\ -5\\ -6 \end{pmatrix}$ .
	Correct method to obtain $\pm \overrightarrow{OD}$	M1	e.g. $\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BC}$ . MO if use $\overrightarrow{AB} = \overrightarrow{CD}$ or $\overrightarrow{BC} = \overrightarrow{DA}$ .
	Obtain $\overline{OD} = \mathbf{i} - 4\mathbf{j} - 3\mathbf{k}$	A1	Any equivalent form. Accept coordinates.
		3	
(b)	Using the correct process, evaluate the scalar product $\overrightarrow{BA.BC}$	M1	(2+10-6) Scalar product of two relevant vectors. OE
	Using the correct process for the moduli, divide the scalar product by the product of the moduli.	M1	$\frac{2+10-6}{\sqrt{9}\times\sqrt{62}}$ .
	Obtain answer $\frac{2}{\sqrt{62}}$	A1	ISW Or simplified equivalent i.e. $\frac{\sqrt{62}}{31}$ .
	TPR	3	
(c)	State or imply $\sin \theta = \sqrt{\frac{58}{62}}$	B1 FT	Follow <i>their</i> $\cos \theta$ .
	Use correct method to find the area of <i>ABCD</i>	M1	<b>e.g.</b> $2 \times \frac{1}{2} BA \times BC \sin \theta$ . Condone decimals.
	Correct unsimplified expression for the area	A1 FT	<b>e.g.</b> $2 \times \frac{1}{2} \times 3 \times \sqrt{62} \times \sin \theta$ . Condone decimals. Follow <i>their</i> sides and angle.
	Obtain answer $3\sqrt{58}$	A1	Correct only.
		4	