AS-Level
 Topic: Binomial Theorem

May 2013-May 2023

Answer

Question 1
(i) $\left\lvert\, \begin{aligned} & (2+a x)^{5}=32+80 a x+80 a^{2} x^{2} \\ & \text { (ii) } \\ & \times(1+2 x) \\ & 240=80 a^{2}+160 a \\ & \rightarrow a=1 \text { or } a=-3 .\end{aligned}\right.$

$3 \times \mathrm{B} 1$
$\mathrm{M1}$
DM 1 Al

[3] | B1 for each term. | |
| :--- | :--- |
| [3] | $\begin{array}{l}\text { Realises need to consider 2 } \\ \text { terms. } \\ \text { Solution of 3-term quadratic. }\end{array}$ |

Question 2
$\left(2 x-\frac{1}{2 x}\right)^{6}$
(i) Coeff of $x^{2}=15 \times 16 \times(-1 / 2)^{2}=60$
(ii) Constant term is $20 \times 8 x^{3} \times\left(-1 \div 8 x^{3}\right)$ $\times\left(1+x^{2}\right)$ needs to consider 2 terms $\rightarrow 60-20=40$

B1 B1
B1
M1
A1

B1 for $2 / 3$ parts. B1
[2]
B1 unsimplified
Needs to consider the constant term
[3]

Question 3
(i) $1-6 p x+15 p^{2} x^{2}$
(ii) $15 p^{2} \times 1-6 p \times-1$

$$
3 p(5 p+2)=0
$$

$$
p=-\frac{2}{5} \text { oe }
$$

Question 4
(i) $81\left(x^{8}\right)$
(ii) $10 \times 3^{3}\left(x^{8}\right)$ soi leading to their answer $270\left(x^{8}\right)$
(iii) $\mathrm{k} \times$ (i)

405 soi

+ (ii)
$675\left(x^{8}\right)$

B1 for $10,5 \mathrm{C} 2$ or 5 C 3 . B1 for 3^{3}. But must be multiplied.
$\mathrm{k} \neq 1,0$

Question 5

(i) $64+576 x+2160 x^{2}$
(ii) $576 a\left(x^{2}\right)+2160\left(x^{2}\right)=0$ $a=-\frac{2160}{576}$ oe $\left(\mathrm{eg}-\frac{15}{4}\right)$ or -3.75

B1B1B1 \mid Can score in (ii)

$$
[3]
$$

M1
A1
[2]

Question 6

$$
\begin{aligned}
& \left(x^{2}-\frac{2}{x}\right)^{5} \\
& \text { Term in } x \text { is } 10 \times\left(x^{2}\right)^{2} \times\left(\frac{-2}{x}\right)^{3} \\
& \text { Coefficient }=-80(x)
\end{aligned}
$$

B1 B1
B1

B1 10 or ${ }^{5} \mathrm{C}_{2}$ or ${ }^{5} \mathrm{C}_{3}$, B $1\left(\frac{-2}{x}\right)^{3}$ co Must be identified

Question 7

$$
\left(1+x^{2}\right)\left(\frac{x}{2}-\frac{4}{x}\right)^{6}
$$

Term in $x^{2}=15 \times \frac{1}{16} \times(-4)^{2}=15$
Constant term $=20 \times \frac{1}{8} \times(-4)^{3}=-160$
Coefficient of $x^{2}=-145$

B1 B1
B1 B1
B1 へ
[5]

B1 unsimplified. B1 15.
B1 unsimplified. B1 -160
Uses 2 terms. on previous answers

Question 8
$\left[{ }^{8} \mathrm{C}_{6}\right.$ or 28$] \times\left[16\right.$ or $\left.4^{2}\right]\left(x^{6}\right) \times\left[\frac{1}{\left(64 \text { or } 2^{6}\right)\left(x^{6}\right)}\right]$
7
B1B1B1 \quad Seen in expansion ok. Allow ${ }^{8} \mathrm{C}_{2}$

B1
Identified as answer
[4]
Question 9

$$
\begin{aligned}
& \left(15 \text { or }{ }^{16} C_{2}\right) \times 2^{4} \times(a x)^{2},\left(20 \text { or }{ }^{6} C_{3}\right) \times 2^{3} \times(a x)^{3} \\
& a=\frac{15 \times 2^{4}}{20 \times 2^{3}}=\frac{3}{2}
\end{aligned}
$$

B1B1

M1A1
$240 a=160 a$ is M0
[4]

Question 10

$$
\begin{aligned}
& \text { (i) }(1+x)^{5}=1+5 x+10 x^{2} \\
& \text { (ii) }\left(1+p x+x^{2}\right)^{5} \\
& (1+) 5\left(p x+x^{2}\right)+10\left(p x+x^{2}\right)^{2} \\
& \\
& \text { Coeff of } x^{2}=5+10 p^{2} \\
& =95 \rightarrow p=3
\end{aligned}
$$

B2,1 [2]	Loses 1 for each error
M1	Replace x by $\left(p x+x^{2}\right)$ in their expansion
DM1	Considers 2 terms
A1	co - no penalty for ± 3
[3]	

Question 11

$$
\begin{aligned}
& { }^{7} \mathrm{C}_{1} \times 2^{6} \times a(=)^{7} \mathrm{C}_{2} \times 2^{5} \times a^{2} \text { soi } \\
& a=\left(\frac{7 \times 2^{6}}{21 \times 2^{5}}\right)=\frac{2}{3} \quad \text { oe }
\end{aligned}
$$

$\mathbf{B 2}, \mathbf{1 , 0}$ Treat the same error in each expression as a B1 $\begin{array}{ll} & \\ & \text { [3] }\end{array}$ single error

Question 12

(i)	$a^{5}-5 a^{4} x+10 a^{3} x^{2}-10 a^{2} x^{3}+\ldots$.	B2,1,0	Ok full expansion (ignore extra terms) Descending: Ok if full expansion but max B1 for 4 terms
(ii)	$\begin{aligned} & (1-a x)\left(. .10 a^{3} x^{2}-10 a^{2} x^{3} . .\right)=\left(x^{3}\right)\left(-10 a^{4}-10 a^{2}\right) \\ & -10 a^{4}-10 a^{2}=-200 \\ & a^{2}=4 \quad \text { ignore } a^{2}=-5 \\ & a= \pm 2 \quad \text { cao } \end{aligned}$	M1 A1 ${ }^{\wedge}$ M1 A1 [4]	Attempt to find coeff. of x^{3} from 2 terms Ft from their $10 a^{3},-10 a^{2}$ from part (i) Attempt soln. for a^{2} from 3-term quad. in a^{2} Ignore any imaginary solutions

Question 13

(i) $\quad(2-x)^{6}$

Coeff of x^{2} is 240
Coeff of x^{3} is $-20 \times 8=-160$
(ii)

$$
(3 x+1)(2-x)^{6}
$$

Product needs exactly 2 terms
$\rightarrow 720-160=560$

Question 14

$$
(1-x)^{2}(1+2 x)^{6} .
$$

(i) (a)
-
(b)
$(1+2 x)^{6}=1+12 x+60 x^{2}$

Product of (a) and (b) with >1 term
$\rightarrow 60-72+15=3$

B2,1	-1 each error
B2,1	-1 each error SC B1 only, in each part, for all 3 correct descending powers SC only one penalty for omission of the ' 1 ' in each expansion
M1	Must be 2 or more products
DM1A1 [3]	M1 exactly 3 products. cao, condone $3 x^{2}$

Question 15

$$
\begin{cases}{[7 \mathrm{C} 2] \times\left[\left(\frac{x}{3}\right)^{5}\right] \times\left[\left(\frac{9}{x^{2}}\right)^{2}\right]} & \text { soi } \\ 21 \times \frac{1}{3^{5}}\left(x^{5}\right) \times 81\left(\frac{1}{x^{4}}\right) & \text { soi } \\ 7 & \end{cases}
$$

B2,1,0
Seen

B1
B1 Identified as required term Accept $7 x$
[4]

Question 16

$$
\begin{aligned}
& (x+2 k)^{7} \\
& \text { Term in } x^{5}=21 \times 4 k^{2}=84 k^{2} \\
& \text { Term in } x^{4}=35 \times 8 k^{3}=280 k^{3} \\
& \text { Equate and solve } \rightarrow k=0.3 \text { or } \frac{3}{10}
\end{aligned}
$$

B1
B1
M1 A1
Correct method to obtain k.

Question 17

$$
\left\lvert\, \begin{aligned}
& (a+x)^{5}=a^{5}+{ }^{5} C_{1} a^{4} x+{ }^{5} C_{2} a^{3} x^{2}+\ldots \text { soi } \\
& \left(-\frac{2}{a} \times\left(\text { their } 5 a^{4}\right)+\left(\text { their } 10 a^{3}\right)\right)\left(x^{2}\right) \\
& 0
\end{aligned}\right.
$$

Question 18

(i)	$80\left(x^{4}\right),-32\left(x^{5}\right)$	B1B1 [2]	Fully simplified
(ii)	$\begin{aligned} & (-32+80 p)\left(x^{5}\right)=0 \\ & p=2 / 5 \text { or } 32 / 80 \text { oe } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 }{ }^{\wedge} \end{aligned}$	Attempt to mult. relevant terms \& put $=0$

Question 19

$$
\begin{aligned}
& 5 \mathrm{C} 2\left(\frac{1}{x}\right)^{3}\left(3 x^{2}\right)^{2} \\
& 10(\times 1) \times 3^{2} \\
& 90(x)
\end{aligned}
$$

B1		Can be seen in expansion
B1		Identified as leading to answer
B1		
	$[3]$	

Question 20

$$
\begin{aligned}
& \left(x-\frac{3}{2 x}\right)^{6} \\
& \text { Term is }{ }^{6} \mathrm{C}_{3} \times x^{3} \times\left(\frac{-3}{2 x}\right)^{3} \\
& \rightarrow-67.5 \text { oe }
\end{aligned}
$$

B1 B1

B1
[3]

Question 22

$$
\begin{aligned}
& (+1-) 20 \times 3^{3}\left(x^{3}\right), \quad 10 a^{3}\left(x^{3}\right) \text { soi } \\
& -540+10 a^{3}=100 \text { oe } \\
& a=4
\end{aligned}
$$

Question 23

Question 24

$8 \mathrm{C} 6(2 x)^{6}\left(\frac{1}{2 x^{3}}\right)^{2}$ soi	B1	
$28 \times 64 \times \frac{1}{4}$ oe (powers and factorials evaluated)	B2,1,0	
448	B1	[4]

Question 25

5C2 $\left(\frac{1}{a x}\right)^{3}\left(2 a x^{2}\right)^{2}$ soi	B1	Seen or implied. Can be part of an expansion.
$10 \times \frac{1}{a^{3}} \times 4 a^{2}=5$ soi	M1A1	M1 for identifying relevant term and equating to 5, all correct. Ignore extra x
$a=8$ cao	A1	
	Total:	4

Question 26

$7 \mathrm{C} 1 \times 2^{6} \times a(x), 7 \mathrm{C} 2 \times 2^{5} \times[a(x)]^{2}$	B1 B1	SOI Can be part of expansion. Condone $a x^{2}$ only if followed by a^{2}.
$a=\frac{7 \times 2^{6}}{21 \times 2^{5}}=\frac{2}{3}$	ALT $2^{7}[1+a x / 2]^{7} \rightarrow 7 C 1[a(x) / 2]=7 C 2[a(x) / 2]^{2}$	
Total:	$\mathbf{3}$	Ignore extra soln $a=0$. Allow $a=0.667$. Do not allow an extra x in the answer

Question 27

(i)	Coefficient of $x=80(x)$	B2	Correct value must be selected for both marks. SR +80 seen in an expansion gets $\mathbf{B 1}$ or -80 gets $\mathbf{B 1}$ if selected.
	Total:	$\mathbf{2}$	
(ii)	Coefficient of $\frac{1}{x}=-40\left(\frac{1}{x}\right)$	B2	Correct value soi in (ii) $)$ if powers unsimplified only allow if selected. SR +40 soi in (ii) gets $\mathbf{B 1}$.
	Coefficient of $x=(1 \times$ their 80$)+(3 \times$ their -40$)=-40(x)$	M1 A1	Links the appropriate 2 terms only for M1.
	Total:	$\mathbf{4}$	

Question 28

$(3-2 x)^{6}$			
Coeff of $x^{2}=3^{4} \times(-2)^{2} \times{ }_{6} C_{2}=a$ Coeff of $x^{3}=3^{3} \times(-2)^{3} \times{ }_{6} C_{3}=b$	B3,2,1	Mark unsimplified forms. -1 each independent error but powers	
$\frac{a}{b}=-\frac{9}{8}$		Bust be correct. Ignore any ' x ' present.	
	Total:	$\mathbf{4}$	

Question 29

3(i)	$6 \mathrm{C} 3\left(\frac{2}{x}\right)^{3}(-3 x)^{3}$ SOI also allowed if seen in an expansion	M1	Both x 's can be missing.
	-4320 Identified as answer	A1	Cannot be earned retrospectively in (ii).
		2	
(ii)	$6 \mathrm{C} 2\left(\frac{2}{x}\right)^{4}[(-) 3 x]^{2} \quad$ SOI clearly identified as critical term	M1	Both x 's and minus sign can be missing.
$15 a \times 16 \times 9-$ their $4320(=0)$	A1 FT	FT on their 4320.	
$a=2$	A1		
	$\mathbf{3}$		

Question 30

EITHER:		
Term is ${ }^{9} C_{3} \times 2^{6} \times(-1 / 4)^{3}$	$(\mathbf{B 1 , ~ B 1 , ~ B 1) ~}$	OE
OR1: $\left(\frac{8 x^{3}-1}{4 x^{2}}\right)^{9}=\left(\frac{1}{4 x^{2}}\right)^{9}\left(8 x^{3}-1\right)^{9}$ or $-\left(\frac{1}{4 x^{2}}\right)^{9}\left(1-8 x^{3}\right)^{9}$		
Term is $-\frac{1}{4^{9}} \times{ }^{9} C_{3} \times 8^{6}$	(B1, B1, B1)	OE
OR2: $(2 x)^{9}\left(1-\frac{1}{8 x^{3}}\right)^{9}$	(B1, B1, B1)	OE
Term is $2^{9} \times{ }^{9} C_{3} \times\left(-\frac{1}{8}\right)^{3}$	B1	
Selected term, which must be independent of $x=-84$	4	

Question 31

(i)	${ }^{7} \mathrm{C}_{2}(+/-2 x)^{2}$ or ${ }^{7} \mathrm{C}_{3}(-2 x)^{3}$	M1	SOI, Allow for either term correct. Allow + or - inside first bracket.
	$84\left(x^{2}\right),-280\left(x^{3}\right)$	A1A1	
		$\mathbf{3}$	
(ii)	$2 \times($ their -280$)+5 \times($ their 84$)$ only	M1	
	-140	A1	
		$\mathbf{2}$	

Question 32

${ }_{5} \mathrm{C}_{3} x^{2}\left(\frac{-2}{x}\right)^{3} \mathrm{SOI}$	$\mathbf{B 2 , 1 , 0}$	-80 www scores B3. Accept ${ }_{5} \mathrm{C}_{2}$.
-80 Accept $\frac{-80}{x}$	$\mathbf{B 1}$	+80 without clear working scores SCB1
	$\mathbf{3}$	

Question 33

Coefficient of x^{2} in $\left(2+\frac{x}{2}\right)^{6}$ is ${ }_{6} \mathrm{C}_{2} \times 2^{4} \times(1 / 2)^{2}\left(x^{2}\right)(=60)$	$\mathbf{B 2 , 1 , 0}$	3 things wanted -1 each incorrect component, must be multiplied
together. Allow ${ }_{6} \mathrm{C}_{4},\binom{6}{4}$ and factorial equivalents. Marks can be		
awarded for correct term in an expansion.		

Question 34

(i)	$(1-2 x)^{5}=1-10 x+40 x^{2}$ (no penalty for extra terms)	B2,1	Loses a mark for each incorrect term. Treat $-32 x^{5}+80 x^{4}-80 x^{3}$ as MR -1
		2	
(ii)	$\rightarrow\left(1+a x+2 x^{2}\right)\left(1-10 x+40 x^{2}\right)$		
	3 terms in $x^{2} \rightarrow 40-10 a+2$	M1 A1FT	Selects 3 terms in x^{2}. FT from (i)
	Equate with $12 \rightarrow \mathrm{a}=3$	A1	CAO
		3	

Question 35

$7 \mathrm{C} 5 x^{2}(-2 / x)^{5}$	soi	B1	Can appear in an expansion. Allow 7C2
21×-32	soi	B1	Identified. Allow $\left(21 x^{2}\right) \times\left(-32 x^{-5}\right)$. Implied by correct answer
-672	B1	Allow $\frac{-672}{x^{3}}$. If $0 / 3$ scored, 672 scores SCB1	
	$\mathbf{3}$		

Question 36

For a correctly selected term in $\frac{1}{x^{2}}:(3 x)^{4}$ or 3^{4}	B1	Components of coefficient added together $0 / 4$ B1 expect 81
$\times\left(\frac{2}{3 x^{2}}\right)^{3}$ or $(2 / 3)^{3}$	B1	B1 expect $8 / 27$
$\times 7 \mathrm{C}_{3}$ or $7 \mathrm{C}_{4}$	B1	B1 expect 35
$\rightarrow \mathbf{8 4 0}$ or $\frac{840}{\boldsymbol{x}^{2}}$	B1	All of the first three marks can be scored if the correct term is seen in an expansion and it is selected but then wrongly simplified.
	SC: A completely correct unsimplified term seen in an expansion but not correctly selected can be awarded B2.	
$\mathbf{4}$		

Question 37

$5 \mathrm{C} 3\left[(-)(p x)^{3}\right]$ soi	B1	Can be part of expansion. Condone omission of - sign
$(-1) 10 p^{3}=-2160$ then \div and cube root	M1	Condone omission of - sign.
$p=6$	$\mathbf{A 1}$	
	3	

Question 38

(i)	$\frac{-5}{x}+\frac{5}{8 x^{3}}-\frac{1}{32 x^{5}}\left(\right.$ or $\left.-5 x^{-1}+\frac{5}{8} x^{-3}-\frac{1}{32} x^{-5}\right)$	B1B1B1	B1 for each correct term SCB1 for both $\frac{+5}{x} \& \frac{+1}{32 x^{5}}$
(ii)	$1 \times 20+4 \times$ their $(-5)=0$	M1A1	Must be from exactly 2 terms SCB1 for $20+20=40$
		$\mathbf{2}$	

Question 39

For $\left(\frac{2}{x}-3 x\right)^{5}$ term in x is 10 or $5 \mathrm{C}_{3}$ or $5 \mathrm{C} 2 \times\left(\frac{2}{x}\right)^{2} \times(-3 x)^{3}$ or	B2,1	3 elements required. -1 for each error with or without x 's. Can be seen in an expansion.
$\left(\frac{2}{x}\right)^{5} \frac{5 \cdot 4.3}{3!}\left(-\frac{3}{2} x^{2}\right)^{3}$ or $(-3 x)^{5} \frac{5.4}{2!}\left(\frac{2}{3 x^{2}}\right)^{2}$	B1	Allow $-1080 x$ Allow if expansion stops at this term. Allow from expanding brackets.
-1080 identified	$\mathbf{3}$	

Question 40

(i)	Ind term $=(2 x)^{3} \times\left(\frac{k}{x}\right)^{3} \times{ }_{6} \mathrm{C}_{3}$	$\mathbf{B 2 , 1 , 0}$	Term must be isolated
	$=540 \rightarrow k=1^{1 / 2}$	$\mathbf{B 1}$	
		$\mathbf{3}$	
(ii)	Term, in x^{2} is $(2 x)^{4} \times\left(\frac{k}{x}\right)^{2} \times{ }_{6} \mathrm{C}_{2}$	B1	All correct - even if k incorrect.
	$15 \times 16 \times k^{2}=540\left(\right.$ or $\left.540 x^{2}\right)$	B1	FT For $240 k^{2}$ or $240 k^{2} x^{2}$
	$\mathbf{2}$		

Question 41

(i)	$1+6 y+15 y^{2}$	B1	CAO
		1	
(ii)	$1+6\left(p x-2 x^{2}\right)+15\left(p x-2 x^{2}\right)^{2}$	M1	SOI. Allow $6 \mathrm{Cl} \times 1^{5}\left(p x-2 x^{2}\right), 6 \mathrm{C} 2 \times 1^{4}\left(p x-2 x^{2}\right)^{2}$
	$\left(15 p^{2}-12\right)\left(x^{2}\right)=48\left(x^{2}\right)$	A1	1 term from each bracket and equate to 48
	$p=2$	A1	SC: Al $p=4$ from $15 p-12=48$
		3	

Question 42

$\frac{6 x}{2}, 15 \times \frac{x^{2}}{4}$	B1 B1	OE In or from a correct expansion. Can be implied by correct equation.
$\times(4+a x) \rightarrow 3 a+15=3$	M1	2 terms in x^{2} equated to 3 or $3 x^{2}$. Condone x^{2} on one side only.
$a=-4$	$\mathbf{A 1}$	CAO
	$\mathbf{4}$	

Question 43

$6 \mathrm{C} 2 \times(2 x)^{4} \times \frac{1}{\left(4 x^{2}\right)^{2}}$	B1	SOI SC: Condone errors in $\left(4^{-1}\right)^{2}$ evaluation or interpretation for B1 only
$15 \times 2^{4} \times \frac{1}{4^{2}}$	B1	Identified as required term.
15	B1	
$\mathbf{3}$		

Question 44

(a)	$5 \mathrm{C} 2[2(x)]^{3}\left[\frac{a}{\left(x^{2}\right)}\right]^{2}$	B1	SOI Can include correct x^{\prime} s
	$10 \times 8 \times a^{2}\left(\frac{x^{3}}{x^{4}}\right)=720\left(\frac{1}{x}\right)$	B1	SOI Can include correct x^{\prime} 's
	$a= \pm 3$	B1	
		3	
(b)	$5 \mathrm{C} 4[2(x)]\left[\frac{\text { their } a}{\left(x^{2}\right)}\right]^{4}$	B1	SOI Their a can be just one of their values (e.g. just 3). Can gain mark from within an expansion but must use their value of a
	810 identified	B1	Allow with x^{-7}
		2	

Question 45

(a)	$1+5 a+10 a^{2}+10 a^{3}+\ldots$	B1
(b)	$1+5\left(x+x^{2}\right)+10\left(x+x^{2}\right)^{2}+10\left(x+x^{2}\right)^{3}+\ldots$ SOI	M1
	$1+5\left(x+x^{2}\right)+10\left(x^{2}+2 x^{3}+\ldots\right)+10\left(x^{3}+\ldots\right)+\ldots$ SOI	A1
	$1+5 x+15 x^{2}+30 x^{3}+\ldots$	A1
	$\mathbf{3}$	

Question 46

(a)	$1+5 a+10 a^{2}+10 a^{3}+\ldots$	B1
		1
(b)	$1+5\left(x+x^{2}\right)+10\left(x+x^{2}\right)^{2}+10\left(x+x^{2}\right)^{3}+\ldots \text { SOI }$	M1
	$1+5\left(x+x^{2}\right)+10\left(x^{2}+2 x^{3}+\ldots\right)+10\left(x^{3}+\ldots\right)+\ldots$ SOI	A1
	$1+5 x+15 x^{2}+30 x^{3}+\ldots$	A1
		3

Question 47

$\left(k x+\frac{1}{x}\right)^{5}+\left(1-\frac{2}{x}\right)^{8}$
Coefficient in $\left(k x+\frac{1}{x}\right)^{5}=10 \times k^{2}$
(B1 for 10. B1 for k^{2})

Coefficient in $\left(1-\frac{2}{x}\right)^{8}=8 \times-2$	$\mathbf{B 2 , 1 , 0}$
$10 k^{2}-16=74 \rightarrow k=3$	$\mathbf{B 1}$
	$\mathbf{5}$

Question 48

$\left[7 C l a^{6} b(x)\right]$,	$\left[7 C 2 a^{5} b^{2}\left(x^{2}\right)\right], \quad\left[7 C 4 a^{3} b^{4}\left(x^{4}\right)\right]$	B2, $\mathbf{1 , 0}$	SOI, can be seen in an expansion.
$\frac{7 C 2 a^{5} b^{2}\left(x^{2}\right)}{7 C l a^{6} b(x)}=\frac{7 C 4 a^{3} b^{4}\left(x^{4}\right)}{7 C 2 a^{5} b^{2}\left(x^{2}\right)} \rightarrow \frac{21 a^{5} b^{2}}{7 a^{6} b}=\frac{35 a^{3} b^{4}}{21 a^{5} b^{2}}$	M1 A1	M1 for a correct relationship OE (Ft from their 3 terms). For A1 binomial coefficients must be correct $\&$ evaluated.	
$\frac{a}{b}=\frac{5}{9}$	A1	OE	
	$\mathbf{5}$		

Question 49

Coefficient of x^{3} in $(1-2 x)^{5}$ is -80	B1	Can be seen in an expansion but must be simplified correctly.
Coefficient of x^{2} in $(1-2 x)^{5}$ is 40	B1	
Coefficient of x^{3} in $(1+k x)(1-2 x)^{5}$ is $40 k-80=20$	M1	Uses the relevant two terms to form an equation $=20$ and solves to find k. Condone x^{3} appearing in some terms if recovered.
$(k=) \frac{5}{2}$	A1	
	$\mathbf{4}$	

Question 50

(a)	$6 C 2 \times\left[2\left(x^{2}\right)\right]^{4} \times\left[\frac{a}{(x)}\right]^{2}, 6 C 3 \times\left[2\left(x^{2}\right)\right]^{3} \times\left[\frac{a}{(x)}\right]^{3}$	B1 B1	SOI Can be seen in an expansion
	$15 \times 2^{4} \times a^{2}=20 \times 2^{3} \times a^{3}$	M1	SOI Terms must be from a correct series
	$a=\frac{15 \times 2^{4}}{20 \times 2^{3}}=\frac{3}{2}$	A1	OE
		4	
(b)	0	B1	
		1	

Question 51

(a)	$1+5 x+10 x^{2}$	B1	
		$\mathbf{1}$	
(b)	$1-12 x+60 x^{2}$	B2, $\mathbf{1 , 0}$	B2 all correct, B1 for two correct components.
		$\mathbf{2}$	
(c)	$\left(1+5 x+10 x^{2}\right)\left(1-12 x+60 x^{2}\right)$ leading to $60-60+10$	$\mathbf{M 1}$	3 products required
	10	A1	Allow $10 x^{2}$
		$\mathbf{2}$	

Question 52

(a)	$(a-x)^{6}=a^{6}-6 a^{5} x+15 a^{4} x^{2}-20 a^{3} x^{3}+\ldots$	B2, 1, 0	Allow extra terms. Terms may be listed. Allow $a^{6} x^{0}$.
		2	
(b)	$\left(1+\frac{2}{a x}\right)\left(\ldots 15 a^{4} x^{2}-20 a^{3} x^{3}+\ldots\right)$ leading to $\left[x^{2}\right]\left(15 a^{4}-40 a^{2}\right)$	M1	Attempting to find 2 terms in x^{2}
	$15 a^{4}-40 a^{2}=-20$ leading to $15 a^{4}-40 a^{2}+20[=0]$	A1	Terms on one side of the equation
	$\left(5 a^{2}-10\right)\left(3 a^{2}-2\right)[=0]$	M1	oe. M1 for attempted factorisation or solving for a^{2} or $u\left(=a^{2}\right)$ using e.g.f formula or completing the square
	$a= \pm \sqrt{2}, \pm \sqrt{\frac{2}{3}}$	B1 B1	OE exact form only If B0B0 scored then SC B1 for $\sqrt{2}, \sqrt{\frac{2}{3}} \mathrm{WWW}$ or $\pm 1.41, \pm 0,816$ WWW
		5	

Question 53

$[$ Coefficient of x or $p=] 480$	B1	SOI. Allow 480x even in an expansion.
$\left[\operatorname{Term}\right.$ in $\frac{1}{x}$ or $\left.q=\right][10 \times](2 x)^{3}\left(\frac{k}{x^{2}}\right)^{2}$	M1	Appropriate term identified and selected.
$\left[10 \times 2^{3} k^{2}=\right] 80 k^{2}$	A1	Allow $\frac{80 k^{2}}{x}$
$p=6 q$ used $\left(480=6 \times 80 k^{2}\right.$ or $\left.80=80 k^{2}\right)$	M1	Correct link used for $t h e i r$ coefficient of x and $\frac{1}{x}(p$ and $q)$ with
$\left[k^{2}=1 \Rightarrow\right] k= \pm 1$	A1	A0 if a range of values given. Do not allow $\pm \sqrt{1}$.
	$\mathbf{5}$	

Question 54

(a)	243	B1	
	$-810 x$	B1	
	$+1080 x^{2}$	B1	
		$\mathbf{3}$	
(b)	$(4+x)^{2}=16+8 x+x^{2}$	B1	
	Coefficient of x^{2} is $16 \times 1080+8 \times(-810)+243$	M1	Allow if at least 2 pairs used correctly
11043	A1	Allow $11043 x^{2}$	
	$\mathbf{3}$		

Question 55

(a)	$1+6 a x+15 a^{2} x^{2}$	B1	Terms must be evaluated.
	(b)	their $15 a^{2} \pm(3 \times$ their $6 a)$	$\mathbf{1}$
$15 a^{2}-18 a=-3$	$* \mathbf{M 1}$	Expect $15 a^{2}-18 a$.	
$(3)(a-1)(5 a-1)[=0]$	DM1		
$a=1, \frac{1}{5}$	A1	Dependent on 3-term quadratic. Or solve using formula or completing the square.	
	$\mathbf{4}$		

Question 56

(a)	Terms required for $x^{2}:-5 \times 2^{4} \times a x+10 \times 2^{3} \times a^{2} x^{2}\left[=-80 a x+80 a^{2} x^{2}\right]$	B1	Can be seen as part of an expansion or in correct products.
$\begin{array}{ll}2 \times(\pm \text { their coefficient of } x)+4 \times\left(\pm \text { their coefficient of } x^{2}\right)\end{array}$	DM1	$\begin{array}{l}\text { Forming a 3-term quadratic in } a, \text { with all terms on the same } \\ \text { side or correctly setting up prior to completing the square and } \\ \text { solving using factorisation, formula or completing the square. } \\ \text { If factorising, factors must expand to give } \text { their coefficient of } \\ a^{2} .\end{array}$	
$\begin{array}{l}x^{2} \text { coefficient is } 320 a^{2}-160 a=-15 \\ \Rightarrow 64 a^{2}-32 a+3 \Rightarrow(8 a-3)(8 a-1)\end{array}$	A1	$\begin{array}{l}\text { OE. } \\ \text { Special case: If DM0 for solving quadratic, SC B1 can be } \\ \text { awarded for correct final answers. }\end{array}$	
$a=\frac{1}{8}$ or $a=\frac{3}{8}$	$\mathbf{4}$		

(b) $\quad 320 a^{2}-160 a=k \Rightarrow 320 a^{2}-160 a-k[=0]$

M1	Forming a 3-term quadratic in a with all terms on the same side. Allow \pm sign errors.
M1	Any use of discriminant on a 3-term quadratic.
A1	
B1	Condone $a=\frac{1}{4}$ from $k=20$.

Alternative method for question 8(b)

$320 a^{2}-160 a=k$ and divide by $320\left[a^{2}-\frac{a}{2}=\frac{k}{320}\right]$	M1	Allow \pm sign errors.
Attempt to complete the square $\left[\left(a-\frac{1}{4}\right)^{2}-\frac{1}{16}=\frac{k}{320}\right]$	M1	Must have $\left(a-\frac{1}{4}\right)^{2}$
$a=\frac{1}{4}$	A1	
$k=-20$	B1	

Question 57

(a)	$1-\frac{1}{x}+\frac{1}{4 x^{2}}$	$\mathbf{B 1}$	OE. Multiply or use binomial expansion. Allow unsimplified.
		$\mathbf{1}$	
(b)	$1+12 x+60 x^{2}+160 x^{3}$	$\mathbf{B 2}, \mathbf{1}, \mathbf{0}$	Withhold 1 mark for each error; B2, $1,0$. ISW if more than 4 terms in the expansion.
(c)	their $(1 \times 12)+$ their $(-1 \times 60)+$ their $\left(\frac{1}{4} \times 160\right)$	$\mathbf{2}$	
	$[12-60+40=]-8$	$\mathbf{M 1}$	Attempts at least 2 products where each product contains one term from each expansion.
	$\mathbf{A 1}$	Allow $-8 x$.	

Question 58

$\begin{array}{l|l|r|l}\text { (a) } & { }^{6} \mathrm{C}_{2} \times(3 x)^{4}\left(\frac{2}{x^{2}}\right)^{2} & \text { B1 } & \text { Can be seen within an expansion. } \\$\cline { 2 - 4 } \& \(\left.15 \times 3^{4} \times 2^{2} \& B1 \& Identified. Powers must be correct.

\hline 4860 \& B1 \& Without any power of x

\hline \& \mathbf{3} \&

\hline (b) \& Their 4860 and one other relevant term \& M1 \& Using their 4860 and an attempt to find a term in x^{-3}\end{array}\right]\)| Must be identified. |
| :--- |
| Other term $=6 C 3(3 x)^{3}\left(\frac{2}{x^{2}}\right)^{3}$ or $6 C 3 \times 3^{3} \times 2^{3}$ or 4320 |
| $[4860-4320=] 540$ |

Question 59

$4 C 1 \times p \times \frac{1}{p^{3}} x^{3}$	B1	OE soi Can be seen in an expansion.
$\frac{4}{p^{2}}=144$	B1	OE Correct with correct power of p and only one p term.
$p= \pm \frac{1}{6}$	B1 B1	OE $\pm \frac{2}{12}$ etc. Allow ± 0.167 for B1 B1.
	$\mathbf{S C ~ B 1 ~ f o r ~} \pm \sqrt{\frac{1}{36}}$ B1 only,	

Question 60

Coefficient of $x^{4}=15$	B1	Condone inclusion of x^{4}. Can be seen as part of an expansion.
Coefficient of $x^{2}=240 a^{2}$	B1	Condone inclusion of x^{2}. Can be seen as part of an expansion.
'Their 240 ' a^{2} - 'their 15 '	M1	Forming an equation of the form $p a^{2}=q$, where p and q are constants. Condone inclusion of powers of x as long as they then disappear.
$a=\frac{1}{4} \text { or } 0.25$	A1	OE Do not condone extra 'answer' of $-\frac{1}{4}$, or allow $\sqrt{\frac{1}{16}}$ or similar.
	4	

Question 61

(a)	$x^{4} \text { term is }[10 \times]\left(2 x^{2}\right)^{3}\left(\frac{k^{2}}{x}\right)^{2}$	M1	For selecting the term in x^{4}.
	$\begin{aligned} & 80 k^{4} x^{4} \Rightarrow a=80 k^{4} \\ & {\left[x^{2} \text { term is }[6 \times](2 k x)^{2} \times 1=24 k^{2} x^{2} \Rightarrow\right] b=24 k^{2}} \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { B1 } \end{aligned}$	For correct value of a. Allow $80 k^{4} x^{4}$. For correct value of b. Allow $24 k^{2} x^{2}$.
		3	
(b)	$80 k^{4}+24 k^{2}-216[=0] \quad\left[\Rightarrow 10 k^{4}+3 k^{2}-27=0\right]$	M1	Forming a 3-term equation in k (all terms on one side) with their a and b and no x 's.
	$\left(2 k^{2}-3\right)\left(5 k^{2}+9\right)[=0]\left[\Rightarrow k^{2}=\frac{3}{2} \text { or }-\frac{9}{5}\right]$	M1	Attempt to solve 3-term quartic (or quadratic in another variable) by factorisation, formula or completing the square - see guidance.
	$[k]= \pm \sqrt{\frac{3}{2}}$	A1	OE e.g. $\pm \frac{\sqrt{6}}{2}, \pm \sqrt{1.5}, \quad$ AWRT ± 1.22 Omission of $\pm \mathrm{A} 0$. Additional answers A0. If M1 M0, SC B1 can be awarded for correct final answer, $\max 2 / 3$.
		3	

Question 62

(a)	$1+10 x+40 x^{2}$ May be part of a complete expansion	$\mathbf{B 2 , 1 , 0}$	1^{5} must be simplified to 1 , allow if the ' 1 ' is seen in a more complete expansion but not the final answer. Mis-reads not condoned in this question.
(b)	$1-12 x+54 x^{2}$ May be part of a complete expansion	$\mathbf{B 2}, \mathbf{1 , 0}$	1^{4} must be simplified to 1 , allow if the ' 1 ' is seen in a more complete expansion but not the final answer. Mis-reads not condoned in this question.
(c)	$54-120+40$	$\mathbf{2}$	$\mathbf{M 1}$
Forming exactly 3 products correctly using their			
terms.			

Question 63

Coefficient of x^{2} in $\left(1+\frac{2}{p} x\right)^{5}$ is $10\left(\frac{2}{p}\right)^{2}=\frac{10 \times 2^{2}}{p^{2}}\left[=\frac{40}{p^{2}}\right]$	B1	Accept with x^{2} present. Must evaluate ${ }^{5} \mathrm{C}_{2}$
Coefficient of x^{2} in $(1+p x)^{6}$ is $15(p)^{2}\left[=15 p^{2}\right]$	B1	Accept with x^{2} present. Must evaluate ${ }^{6} \mathrm{C}_{2}$
$\frac{40}{p^{2}}+15 p^{2}=70$	*M1	Forming an equation in p with their coefficients, the given 70 , no x terms and no extra terms.
$15 p^{4}-70 p^{2}+40[=0]$ or $3 p^{4}-14 p^{2}+8[=0]$	DM1	Forming a 3-term equation in p (or another variable) with all terms on one side and their coefficients.
$\begin{aligned} & {[5]\left(p^{2}-4\right)\left(3 p^{2}-2\right)[=0] \text { or } \frac{70 \pm \sqrt{70^{2}-4(15)(40)}}{30} \text { or }} \\ & \frac{14 \pm \sqrt{14^{2}-4(3)(8)}}{6} \end{aligned}$	DM1	Attempt to solve 3-term quartic (or quadratic in another variable) by factorisation, formula or completing the square.
$p= \pm 2, \pm \sqrt{\frac{2}{3}}$	A1	OE e.g. $\pm \frac{\sqrt{6}}{3}$ or AWRT ± 0.816 If *M1 DM1 DM0, allow SC B1 for 4 correct values.

Question 64

$7 \mathrm{C} 1\left(\frac{x}{a}\right)^{6}\left(\frac{a}{x^{2}}\right)$ or 7C6 $\left(\frac{x}{a}\right)^{6}\left(\frac{a}{x^{2}}\right) 7 \mathrm{C} 2\left(\frac{x}{a}\right)^{5}\left(\frac{a}{x^{2}}\right)^{2}$ or 7C5 $\left(\frac{x}{a}\right)^{5}\left(\frac{a}{x^{2}}\right)^{2}$	B1 B1	Coefficients $x^{4} \& x$. Can be seen in an expansion.
$\frac{\left(\frac{7}{a^{5}}\right)}{\left(\frac{21}{a^{3}}\right)}=3$	M1	OE. Allow extraneous x^{4} and x at this stage; numerator and denominator must be functions of a. Allow errors in evaluation of the combinations.
$a^{2}=\frac{1}{9}$	A1	Completely correct.

Question 65

(a)	$x^{5}+10 x^{3}+40 x+\frac{80}{x}+\frac{80}{x^{3}}+\frac{32}{x^{5}} \text { or } x^{5}+10 x^{3}+40 x+80 x^{-1}+80 x^{-3}+32 x^{-5}$	B2, 1, 0	B2, all terms correct, B1 5 terms correct. Terms must be simplified. Lists of terms allowed.
		2	
(b)	their $40 \times a+\left(\right.$ their coefficient of $\left.x^{-1}\right) \times b=0$	M1	Coefficients of a and b must be non-zero, allow x 's so long as they are dealt with correctly.
	(their coefficient of $\left.x^{-1}\right) \times a+\left(\right.$ their coefficient of $\left.x^{-3}\right) \times b=80$	M1	Coefficients of a and b must be non-zero, allow x 's as long as they are dealt with correctly.
	$a=2 \quad b=-1$	A1 A1	Dependent on both M marks, may be seen without working.
		4	

Question 66

$\left[\right.$ Coefficient of $\left.x^{4}=p=\right] 15 a^{2}$	B1	May be seen in an expansion or with x^{4}.
$\left[\right.$ Coefficient of $\left.x^{2}=q=\right] 54 a^{2}$	B1	May be seen in an expansion or with x^{2}.
Equating their $p+$ their q to 276 leading to an equation in a^{2} only	M1	No x terms and no extra terms. If p and q are not identified then it needs to be clear from the expansion that the appropriate coefficients are being used. $69 a^{2}=276$ implies the first 3 marks.
$a= \pm 2$	A1	CAO
	$\mathbf{4}$	

Question 67

(a)	$16+96 x+216 x^{2}$	$\mathbf{B 2 , 1 , 0}$	ISW (higher powers of x). Terms may be in any order or presented as a list.
	(b)	$1-10 x+40 x^{2}$	$\mathbf{2}$
B2, 1, $\mathbf{0}$	ISW (higher powers of x). Terms may be in any order or presented as a list.		
(c)	$(16 \times 40)-(10 \times 96)+(1 \times 216)$	$\mathbf{2}$	$\mathbf{M 1}$

