AS-Level Topic : Calculus

May 2013-May 2023

Answer

Que	stion 1	T	T	1
	$y = \frac{8}{\sqrt{x}} - x$			
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -4x^{-\frac{3}{2}} - 1$	B 1		needs both
	dx	M1		Subs $x = 4$ into dy/dx
	$= -\frac{3}{2}$ when $x = 4$.	M1		Must be using differential +
	Eqn of BC $y - 0 = -\frac{3}{2}(x - 4)$	A1		correct form of line at $B(4,0)$.
	$\rightarrow C(1, 4\frac{1}{2})$		[4]	
(ii)	area under curve = $\int (\frac{8}{\sqrt{x}} - x)$			
	$=\frac{8x^{\frac{1}{2}}}{\frac{1}{2}}-\frac{1}{2}x^{2}$	B1 B1		(both unsimplified)
	Limits 1 to 4 \rightarrow 8 ¹ / ₂		-	
		M1		Using correct limits.
	Area under tangent = $\frac{1}{2} \times \frac{41}{2} \times 3 = \frac{63}{4}$	M1		Or could use calculus)
	Shaded area = $1\frac{3}{4}$	10.1		
		A1	[5]	

Question 2

$u = x^{2}y y + 3x = 9$ $u = x^{2}(9 - 3x) \text{ or } \left(\frac{9 - y}{3}\right)^{2}y$	MI	Expressing u in terms of 1 variable
$\frac{du}{dx} = 18x - 9x^2$ or $\frac{du}{dy} = 27 - 12y + y^2$	DM1A1	Knowing to differentiate.
= 0 when $x = 2$ or $y = 3 \rightarrow u = 12$	DM1 A1	Setting differential to 0.
$\frac{\mathrm{d}^2 u}{\mathrm{dx}^2} = 18 - 18x - \mathrm{ve}$	DM1 A1	Any valid method 7]

B1 B1		B1 Everything without "÷2". B1 "÷2"
M1 A1	[4]	Uses point in an integral.
	B 1	B1

$y = \sqrt{1 + 4x}$		
(i) $\frac{dy}{dx} = \frac{1}{2}(1+4x)^{-\frac{1}{2}} \times 4$	B1 B1	B1 Without "×4". B1 for "×4" even if first B mark lost.
= 2 at B(0, 1)	RA	
Gradient of normal $= -\frac{1}{2}$	M1	Use of $m_1m_2=-1$
Equation $y - 1 = -\frac{1}{2}x$	MI A1	Correct method for eqn.
	[5]	Contect method for equ.
(ii) At $A = -\frac{1}{4}$	B1	
$\int \sqrt{1+4x} dx = \frac{(1+4x)^{\frac{3}{2}}}{\frac{3}{2}} \div 4$	B1 B1	B1 Without the "÷4". For "÷4" even if first B
$\frac{3}{2}$	DI	mark lost.
Limits $-\frac{1}{4}$ to $0 \rightarrow \frac{1}{6}$	B1	
Area $BOC = \frac{1}{2} \times 2 \times 1 = 1$	B1√	For 1 + his "1/6".
7	[5]	
\rightarrow Shaded area = $\frac{7}{6}$	17072	
°,		
Question 5		
$\mathbf{f}(x) = \frac{5}{1-3r}, \ x \ge 1$		0'
$f(x) = \frac{1}{1-3x}, x \ge 1$	- D.	
-5 -5	rey	
(i) $f'(x) = \frac{-5}{(1-3x)^2} \times -3$	B1 B1	B1 without $\times -3$. B1 for $\times -3$, even if first B
(1-5x)	[2]	mark is incorrect
(ii) $15 > 0$ and $(1 - 3x)^2 > 0$, $f'(x) > 0$	B1√	$\sqrt{2}$ providing () ² in denominator.
\rightarrow increasing	[1]	v providing () in denominator.
	[1]	
(iii) $y = \frac{5}{1-3x} \to 3x = 1 - \frac{5}{x}$	M1	Attempt to make x the subject.
I SX Y	Al	Must be in terms of x .
$\rightarrow f^{-1}(x) = \frac{x-5}{3x} \text{ or } \frac{1}{3} - \frac{5}{3x}$		
Range is ≥ 1	B1	must be \geq
Domain is $-2.5 \le x < 0$	B1 B1	condone <
	[5]	
	11.100	

			I	
(i) $\pi r^2 h = 250\pi \rightarrow h = \frac{250}{r^2}$				
$\rightarrow S = 2\pi r h + 2\pi r^2$	M1		Make	s h the subject. $\pi r^2 h$ must be right
$\rightarrow S = 2\pi r^2 + \frac{500\pi}{2}$	M1	101	Ans g	iven – check all formulae
$dS = 500\pi$		[2]		
(ii) $\frac{dS}{dr} = 4\pi r - \frac{500\pi}{r^2}$	B1 I	B1	B1 for	r each term
$= 0 \text{ when } r^3 = 125 \rightarrow r = 5$ $\rightarrow S = 150\pi$	M1 A1		Sets d	ifferential to 0 + attempt at soln
d^2S 1000 π		[4]		
(iii) $\frac{d^2S}{dr^2} = 4\pi + \frac{1000\pi}{r^3}$	M1		Anvy	alid method.
This is positive \rightarrow Minimum	A1	[2]	2 nd dif	fferential must be correct – no need for rical answer or correct r .
Question 7	F	[-]	nume	rical answer or correct r.
$\frac{dy}{dx} = \frac{6}{x^2}$				
$y = -6x^{-1} + c$	B1 M1		-	ation only – unsimplified (2, 9) in an integral
Uses $(2, 9) \rightarrow c = 12$	A1		USES	(2, 9) in an integral
$y = -6x^{-1} + 12$		[3]		
Question 8				
(i) $\frac{dy}{dx} = 4(x-2)^3$		B1		Or $4x^3 - 24x^2 + 48x - 32$
Grad of tangent = -4		M1		Sub $x = 1$ into <i>their</i> derivative
Eq. of tangent is $y - 1 = -4(x - 1)$		M1		Line thru $(1, 1)$ and with m from deriv
$\rightarrow B(\frac{5}{4},0)$		A1		
Grad of normal = $\frac{1}{4}$		M1		Use of $m_1 m_2 = -1$
7				
Eq. of normal is $y - 1 = \frac{1}{4}(x - 1) \to C(0, \frac{3}{4})$		A1	[6]	
(ii) $AC^2 = 1^2 + \left(\frac{1}{4}\right)^2$		M1		
(ii) $AC = 1 + (\frac{1}{4})$				17
$\sqrt{17}$		A1	[2]	Allow $\sqrt{\frac{17}{16}}$
4			1-1	
(iii) $\int (x-2)^4 dx = \frac{(x-2)^5}{5}$		B1		Or $\frac{x^5}{5} - 2x^4 + 8x^3 - 16x^2 + 16x$
$\left[0-\left(-\frac{1}{5}\right)\right]=\frac{1}{5}$		M1		Apply limits $1 \rightarrow 2$ for curve
				E
$\Delta = \frac{1}{2} \times 1 \times (their\frac{5}{4} - 1) = \frac{1}{8}$		M 1		Or $\int_{1}^{\frac{5}{4}} (-4x+5) dx = \frac{1}{8}$
$\frac{1}{5} - \frac{1}{8} = \frac{3}{40}$ or 0.075		A1	141	
U U U			[4]	

Question 12 $\frac{dy}{dx} = -k^2(x+2)^{-2} + 1 = 0$ x+2=±k M1A1 Attempt differentiation & set to zero DM1 Attempt to solve $x = -2 \pm k$ A1 cao $\frac{d^2 y}{dx^2} = 2k^2 \left(x+2\right)^{-3}$ M1 Attempt to differentiate again Sub their x value with k in it into $\frac{d^2y}{dx^2}$ M1 When x = -2 = k, $\frac{d^2 y}{dx^2} = \left(\frac{2}{k}\right)$ which is (> 0) min A1 Only 1 of bracketed items needed for each When x = -2 - k, $\frac{d^2 y}{dx^2} = \left(\frac{2}{-k}\right)$ which is (< 0) but $\frac{d^2 y}{dx^2}$ and x need to be correct. A1 max [8]

$f(x) = 2x^{\frac{1}{2}} + x (+c)$	M1A1	Attempt integ $x^{\frac{1}{2}}$ or $+x$ needed for M
$5 = -2 \times \frac{1}{2} + 4 + c$	M1	Sub (4, 5). c must be present
c=2	A1 [4]	
Question 14		

$$y = \frac{8}{x} + 2x$$
(i) $\frac{dy}{dx} = \frac{-8}{x^2} + 2$
(i) $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dy}{dt}$
(ii) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iii) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int y^2 = \int \frac{64}{x^2} + 4x^2 + 32$
(iv) $\int \frac{1}{y^2} + \frac{1}{y^2$

estio	n 15		1
(i)	Sim triangles $\frac{y}{16-x} = \frac{12}{16}$ (or trig)	M1	Trig, similarity or eqn of line
	$\rightarrow y = 12 - \frac{3}{4x}$	A1	(could also come from eqn of line)
	$A = xy = 12x - \frac{3}{4}x^2.$	A1	ag - check working.
		[3]	
(ii)	$\frac{\mathrm{dA}}{\mathrm{dx}} = 12 - \frac{6x}{4}$	B1	
	$= 0$ when $x = 8$. $\rightarrow A = 48$.	M1 A1	Sets to 0 + solution.
	This is a Maximum. From –ve quadratic or 2nd differential.	B1 [4]	Can be deduced without any working. Allow even if '48' incorrect.
			1

Question 16

$y = \frac{2}{\sqrt{5x-6}}$		
(i) $\frac{\mathrm{d}y}{\mathrm{d}x} = 2 \times -\frac{1}{2} \times (5x-6)^{-\frac{3}{2}} \times 5$ $\longrightarrow -\frac{5}{8}$	B1 B1 B1 [3]	B1 without ' \times 5'. B1 For ' \times 5' Use of ' uv ' or ' u/v ' ok.
(ii) integral = $\frac{2\sqrt{5x-6}}{\frac{1}{2}} \div 5$	B1 B1	B1 without '÷5'. B1 for '÷ 5'
Uses 2 to $3 \rightarrow 2.4 - 1.6 = 0.8$	M1 A1 [4]	Use of limits in an integral.
Question 17		
dy []		

(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[3(3-2x)^2\right] \times \left[-2\right]$	B1B1		OR $-54 + 72x - 24x^2$ B2,1,0
	At $x = \frac{1}{2}, \frac{\mathrm{d}y}{\mathrm{d}x} = -24$	M1		
	$y-8 = -24\left(x-\frac{1}{2}\right)$	DM1		
	y = -24x + 20	A1		
			[5]	
(ii)	Area under curve = $\left[\frac{(3-2x)^4}{4}\right] \times \left[-\frac{1}{2}\right]$	B1B1		OR $27x - 27x^2 + 12x^3 - 2x^4$ B2,1,0
	$-2-\left(-\frac{81}{8}\right)$	M1		Limits $0 \rightarrow \frac{1}{2}$ applied to integral with intention of subtraction shown
	Area under tangent = $\int (-24x + 20)$	M1		or area trap $=\frac{1}{2}(20 + 8) \times \frac{1}{2}$
	$= \left -12x^2 + 20x \right $ or 7 (from trap)	A1		Could be implied
	$\frac{9}{8}$ or 1.125	A1	[6]	Dep on both M marks
			IAI	

Question 19

Attempt integration

$$f(x) = 2(x+6)^{\frac{1}{2}} - \frac{6}{x}(+c)$$

$$2(3) - \frac{6}{3} + c = 1$$

$$c = -3$$
MI
AlA1
Accept unsimplified terms
Sub.x = 3, y = 1. c must be present
[5]
Question 20

pts of intersection $2x + 1 = -x^2 + 12x - 20$ $\rightarrow x = 3, 7$	M1A1	Attempt at soln of sim eqns. co
Area of trapezium = $\frac{1}{2}(4)(7+15) = 44$	M1A1	Either method ok. co
(or $\int (2x+1) dx$ from 3 to 7 = 44)		
Area under curve = $-\frac{1}{3}x^3 + 6x^2 - 20x$	B2,1	-1 each term incorrect
Uses 3 to 7 \rightarrow $(54\frac{2}{3})$	DM1	Correct use of limits (Dep 1 st M1)
Shaded area = $10\frac{2}{3}$	A1	со
OR	[8]	
$\int_{3}^{7} \left(-x^{2} + 10x - 21 \right) = -\frac{x^{3}}{3} + 5x^{2} - 21x \right)$		Functions subtracted before integration
M1 subtraction, A1A1A1 for integrated terms, DM1 correct use of limits, A1		Subtraction reversed allow A3A0. Limits reversed allow DM1A0

(i)	$3x^2y = 288$ y is the height	B1		со
	$A = 2(3x^2 + xy + 3xy)$	M1		Considers at least 5 faces $(y \neq x)$
	Sub for $y \rightarrow A = 6x^2 + \frac{768}{x}$	A1		co answer given
		1	[3]	
(ii)	$\frac{\mathrm{d}A}{\mathrm{d}x} = 12x - \frac{768}{x^2}$	B1		со
	= 0 when $x = 4 \rightarrow A = 288$. Allow (4, 288)	M1 A1		Sets differential to 0 + solution. co
	$\frac{d^2A}{dx^2} = 12 + \frac{1536}{x^3}$	M1		Any valid method
	(= 36) > 0 Minimum	A1		co www dep on correct f" and $x = 4$
			[<mark>5]</mark>	

$\frac{dy}{dx} = \frac{12}{\sqrt{4x+a}} P(2, 14)$ Normal $3y + x = 44$		
(i) $m \text{ of normal} = -\frac{1}{3}$	B1	со
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 = \frac{12}{\sqrt{4x+a}} \to a = 8$	M1 A1 [3]	Use of $m_1 m_2 = -1$. AG.
ii) $\int y = 12(4x+a)^{\frac{1}{2}} \div \frac{1}{2} \div 4 (+c)$	B1 B1	Correct without " \div 4". for " \div 4".
Uses (2, 14) c = -10	M1 A1 [4]	Uses in an integral only. Dep 'c'. co All 4 marks can be given in (i)

f(x)	$=\frac{15}{2x+3}$			
(i)	$f'(x) = \frac{-15}{\left(2x+3\right)^2} \times 2$	B1 B1		Without the " \times 2". For " \times 2" (indep of 1 st B1).
	() ² always +ve \rightarrow f'(x) < 0 (No turning points) – therefore an inverse	B1√	[3]	$\sqrt{providing}()^2$ in f'(x). 1–1 insuff.
(ii)	$y = \frac{15}{2x+3} \to 2x+3 = \frac{15}{y}$	M1		Order of ops – allow sign error
	$\rightarrow x = \frac{\frac{15}{y} - 3}{2} \rightarrow \frac{15 - 3x}{2x}$	A1		co as function of x. Allow $y = \dots$
	(Range) $0 \leq f^{-1}(x) \leq 6$.			
	Allow $0 \le y \le 6, [0,6]$	B1		For range/domain ignore letters
	(Domain) $1 \le x \le 5$. Allow $[1, 5]$	B1	[4]	unless range/domain not identified

$$y = 8 - \sqrt{4 - x}$$
(i) $\frac{dy}{dx} = -\frac{1}{2}(4-x)^{-\frac{1}{2}} \times -1$

$$\int y \, dx = 8x - \frac{(4-x)^{\frac{3}{2}}}{\frac{3}{2}} \div -1$$
(ii) Eqn $y - 7 = \frac{y}{2}(x - 3)$

$$\rightarrow y = \frac{y}{2x} + \frac{5}{2}$$
(iii) Area under curve = J from 0 to 3 (58/3)
Area under line = $\frac{y}{2}(5\frac{y}{2} + 7) \times 3$

$$Or \left[\frac{y}{4}x^{2} + \frac{11x}{2}\right] \text{ from 0 to 3}$$

$$\rightarrow \frac{58}{3} - \frac{75}{4} = \frac{7}{12}$$
Question 25

$$\frac{d^2 y}{dx^2} = 2x - 1$$

$$\rightarrow \int \frac{dy}{dx} = x^2 - x + c$$

$$= 0 \text{ when } x = 3 \rightarrow c = -6$$

$$x^2 - x - 6 = 0 \text{ when } x = -2 \text{ (or 3)}$$

$$\rightarrow \int y = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 6x \quad (+k)$$

$$= -10 \text{ when } x = 3$$

$$\rightarrow k = 3\frac{1}{2}$$

$$\rightarrow y = 10\frac{5}{6}$$
B1
Correct integration (ignore +c)
M1 A1
Uses a constant of integration. co
A1
Puts dy/dx to 0
B1 $\sqrt{B1}\sqrt{}$
first 2 terms, $\sqrt{}$ for cx.
Correct method for k
A1
Co -r 10.8

0

Question 26 (i) $y = \frac{2}{3}x^{\frac{3}{2}} - 2x^{\frac{1}{2}} + (c)$ oe Attempt to integrate **B1B1** $\frac{2}{3} = \frac{16}{3} - 4 + c$ **M1** Sub $\left(4,\frac{2}{3}\right)$. Dependent on *c* present $c = -\frac{2}{3}$ A1 [4] (ii) $\frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{2}x^{-\frac{3}{2}}$ oe **B1B1** [2] (iii) $x^{\frac{1}{2}} - x^{-\frac{1}{2}} = 0 \rightarrow \frac{x-1}{\sqrt{x}} = 0$ **M1** Equate to zero and attempt to solve x = 1A1 When x = 1, $y = \frac{2}{3} - 2 - \frac{2}{3} = -2$ **M1A1** Sub. their '1' into their 'y' When x = 1, $\frac{d^2 y}{dx^2} (= 1) > 0$ Hence minimum **B1** Everything correct on final line. Also dep on correct (ii). Accept other valid methods [5]

$$\frac{dy}{dx} = \left[-2 \times 4(3x+1)^{-3}\right] \times \begin{bmatrix}3\end{bmatrix}$$

$$\begin{array}{c} \mathbf{B1B1} \\ \mathbf{B1} \\ \mathbf{B$$

(a) (i) $(a+b)^{\frac{1}{3}} = 2$, $(9a+b)^{\frac{2}{3}} = 16$ a+b=8, $9a+b=64a=7$, $b=1$	B1B1 M1 A1	Ignore 2 nd soln (-9, 17) throughout Cube etc. & attempt to solve Correct answers without any working 0/4
(ii) $x = (7y+1)^{\frac{1}{3}}$ $(x/y \text{ interchange as first or last step})$ $x^{3} = 7y+1 \text{ or } y^{3} = 7x+1$	[4] B1√ [∧] B1√	ft on from <i>their a, b</i> or in terms of <i>a, b</i> ft on from <i>their a, b</i> or in terms of
$f^{-1}(x) = \frac{1}{7}(x^3 - 1)$ cao Domain of f^{-1} is $x \ge 1$ cao	B1 B1	a, bA function of x requiredAccept >.Must be x
(b) $\frac{dy}{dx} = \left[\frac{1}{3}(7x^2+1)^{-\frac{2}{3}}\right] \times [14x]$	[4] B1B1	
When $x = 3$, $\frac{dy}{dx} = \frac{1}{3} \times (64)^{-\frac{2}{3}} \times 42$ $\left(=\frac{7}{8}\right)$ $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} = \frac{7}{8} \times 8$ 7	M1 DM1 A1 [5]	Use chain rule

(i)
$$x - 3\sqrt{x} + 2 \text{ or } k^2 - 3k + 2 \text{ or } (3\sqrt{x})^2 = (x+2)^2$$
 M1

$$\sqrt{x} = 1 \text{ or } 2 \text{ or } k = 1 \text{ or } 2 \text{ or } x^2 - 5x + 4(=0)$$
 A1
 $x = 1 \text{ or } 4$ A1
 $y = 3 \text{ or } 6$ A1

A1

(ii)
$$\int 3x \frac{1}{2} dx - \left[\int (x+2) dx \text{ or attempt at trapezium} \right]$$
 M1DM
 $2x \frac{3}{2} - \left[\left(\frac{1}{2}x^2 + 2x \right) \text{ or } \frac{1}{2}(y_2 + y_1)(x_2 - x_1) \right]$ A1A1

$$(16-2) - \left[\left[\left(8+8 \right) - \left(\frac{1}{2}+2 \right) \right] \text{ or their } \frac{1}{2} \times 9 \times 3 \right] \quad \text{DM1}$$

$$\frac{1}{2} \quad \text{A1}$$

OR

$$\begin{bmatrix} \int (y-2) \, dy \text{ or attempt at trap} \end{bmatrix} - \int \frac{y^2}{9} \, dy$$

$$\begin{bmatrix} \frac{1}{2}y^2 - 2y \text{ or } \frac{1}{2}(x_1 + x_2)(y_2 - y_1) \end{bmatrix} - \frac{y^3}{27}$$

$$\begin{bmatrix} (18-12) - \left(4\frac{1}{2} - 6\right) \text{ or } \frac{1}{2} \times 5 \times 3 \end{bmatrix} - \begin{bmatrix} 8-1 \end{bmatrix}$$

$$\begin{bmatrix} M1DM1 \\ A1A1 \\ DM1 \\ A1 \end{bmatrix}$$

OR attempt to eliminate *x* eg sub $x = \frac{y^2}{9}$ $y^2 - 9y + 18 = 0$ y = 3 or 6x = 1 or 4[4] Attempt to integrate. Subtract at **M**1 some stage Where (x_1, y_1) , (x_2, y_2) is *their* (1, 3), (4, 6) Apply *their* $1 \rightarrow 4$ limits correctly to curve For A mark allow reverse subtn \rightarrow $\frac{1}{2}$ but not reversed limits 1 [6] 2

> Apply *their* $3 \rightarrow 6$ limits correctly to curve

Question 30

(i)	Minimum since $f''(3) (= 4/3) > 0$ www	B1	
(ii)	$f'(x) = -18x^{-2} (+c)$	[1] B1	
	0 = -2 + c c = 2 (\rightarrow f'(x) = -18x ⁻² + 2)	M1 A1	Sub $f'(3) = 0$. (dep c present) c = 2 sufficient at this stage
	$f(x) = 18x^{-1} + 2x(+k)$	AI B1√B1√	Allow cx at this stage
	7 = 6 + 6 + k	M1	Sub $f(3) = 3$ (k present & numeric (or no) c)
	$k = -5 \rightarrow (f(x) = 18x^{-1} + 2x - 5)$ cao	A1 [7]	

T.

Que	stion 31				
(i)	$\left(3x-2\right)^2+1$		B 1	B1B1	For either of 1 st 2 marks bracket must be in the form $(ax + b)^2$ except for SCB2 for $9\left(x - \frac{2}{3}\right)^2 + 1$
				[3]	(3)
(ii)	$f'(x) = 9x^2 - 12x + 5$		B1		
	= their $(3x - 2)^2 + 1$ > 0 (or ≥ 1) hence an increasing function	1	M1 A1		Ft from (i). Some reference/recognition Allow > 1. Allow <i>their</i> 1 provided positive. Allow a complete alt method (2/2 or 0/2)
Que	stion 32				
un	$\frac{y}{2} = \frac{24}{x^3} - 4$ (If $x = 2$) it's negative \rightarrow Max	B1 [1	1	www	
(ii)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -12x^{-2} - 4x + (A)$	B2,1,0		oe one p	ber term
	= 0 when x = 2 $\rightarrow A = 11$	M1 A1 [4]	Attempt co	t at the constant <i>A</i> after ∫n
[iii)	$(y =) 12x^{-1} - 2x^2 + Ax + (c)$ y = 13 when x = 1 $\rightarrow c = -8$	B2,1,0 M1	*	to give '	sn't need $+c$, but does need a term A "Ax". t at c after \ln
	(If x = 2) y = 12	A1 [4]	co	
Questi	on 33				
•	$=x^3 + ax^2 + bx$				

(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2ax + b$	B1	со
(ii)	$b^2 - 4ac = 4a^2 - 12b \ (< 0)$	M1	Use of discriminant on their quadratic $\frac{dy}{dx}$
	$\rightarrow a^2 < 3b$	A1 [3]	or other valid method co – answer given
(iii)	$y = x^{3} - 6x^{2} + 9x$ $\frac{dy}{dx} = 3x^{2} - 12x + 9 < 0$ = 0 when x = 1 and 3 $\rightarrow 1 < x < 3$	M1 A1 A1 [3]	Attempt at differentiation co condone ≤

 $y = \frac{12}{3-2x}$ (i) Differential = $-12(3-2x)^{-2} \times -2$ B1 B1
[2]
co co (even if 1st B mark lost) (ii) $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = 0.4 \div 0.15$ $\rightarrow \frac{24}{(3-2x)^2} = \frac{8}{3}$ $\rightarrow x = 0 \text{ or } 3$ M1
Chain rule used correctly (AEF)
Equates their $\frac{dy}{dx}$ with their $\frac{8}{3}$ or $\frac{3}{8}$ A1 A1
[4]
Co co

Question 35

Vol = $(\pi) \int x^2 dy = (\pi) \int (y-1) dy$	M1	Use of $\int x^2 - \text{not } \int y^2 - \text{ignore } \pi$
Integral is $\frac{1}{2}y^2 - y$ or $\frac{(y-1)^2}{2}$	A1	co
Limits for y are 1 to 5	B1	Sight of an integral sign with 1 and 5
$\rightarrow 8\pi \text{ or } 25.1(\text{AWRT})$	A1 [4]	$\begin{array}{c} co\\ (no \ \pi \ max \ 3/4) \end{array}$

(i)	For $y = (4x+1)^{\frac{1}{2}}$, $\frac{dy}{dx} = \left[\frac{1}{2}(4x+1)^{-\frac{1}{2}}\right] \times [4]$	B1B1	
	When $x = 2$, gradient $m_1 = \frac{2}{3}$	B 1√ [∧]	Ft from their derivative above
	For $y = \frac{1}{2}x^2 + 1$, $\frac{dy}{dx} = x \rightarrow \text{gradient } m_2 = 2$	B1	
	$\alpha = \tan^{-1} m_2 - \tan^{-1} m_1$	M1	
	$\alpha = 63.43 - 33.69 = 29.7$ cao	A1	
		[6]	
(ii)	$\int (4x+1)^{\frac{1}{2}} dx = \left[\frac{(4x+1)^{\frac{3}{2}}}{2/3} \right] \div [4]$	B1B1	
	$\int \left(\frac{1}{2}x^2 + 1\right) dx = \frac{1}{6}x^3 + x$	B1	
	$\int \left(\frac{1}{2}x^2 + 1\right) dx = \frac{1}{6}x^3 + x$ $\int_0^2 (4x+1)^{\frac{1}{2}} dx = \frac{1}{6}[27-1], \int_0^2 \left(\frac{1}{2}x^2 + 1\right) dx = \left[\frac{8}{6} + 2\right]$	M1	Apply limits $0 \rightarrow 2$ to at least the 1 st integral
	$\frac{13}{3} - \frac{10}{3}$	M1	Subtract the integrals (at some stage)
	1	A1	
		[6]	

(i)	f'(2) = 4 − $\frac{1}{2} = \frac{7}{2}$ → gradient of normal = $-\frac{2}{7}$ y − 6 = $-\frac{2}{7}(x-2)$ AEF	B1M1	
	$y - 6 = -\frac{2}{7}(x - 2)$ AEF	A1∳ [3]	Ft from their $f'(2)$
(ii)	$f(x) = x^{2} + \frac{2}{x}(+c)$ $6 = 4 + 1 + c \Longrightarrow c = 1$	B1B1	
	$6 = 4 + 1 + c \Longrightarrow c = 1$	M1A1 [4]	Sub $(2, 6)$ – dependent on <i>c</i> being present
(iii)	$2x - \frac{2}{x^2} = 0 \Longrightarrow 2x^3 - 2 = 0$ x = 1	M1	Put $f'(x) = 0$ and attempt to solve
	x = 1	A1	Not necessary for last A mark as $x > 0$ given
	$f''(x) = 2 + \frac{4}{x^3}$ or any valid method	M1	
	f''(1) = 6 OR > 0 hence minimum	A1 [4]	Dependent on everything correct

Question 38

(i)	$\frac{dy}{dx} = 6 - 6x$ At $x = 2$, gradient $= -6$ soi y - 9 = -6(x - 2) oe Expect $y = -6x + 21When y = 0, x = 3\frac{1}{2} cao$	B1 B1√ ^k M1 A1 [4]	Line through $(2, 9)$ and with gradient <i>uneur</i> -6
(ii)	Area under curve: $\int 9+6x-3x^2 dx = 9x+3x^2-x^3$	B2,1,0	Allow unsimplified terms
	(27+27-27)-(18+12-8)	M1	Apply limits 2,3. Expect 5
	Area under tangent: $\frac{1}{2} \times \frac{3}{2} \times 9 (=\frac{27}{4})$	B1√ ^A	OR $\int_2^{\frac{7}{2}} (-6x + 21) dx (\rightarrow \frac{27}{4})$. Ft on <i>their</i>
	Area required $\frac{27}{4} - 5 = \frac{7}{4}$	A1 [5]	-6x + 21 and/or <i>their</i> 7/2.

(i)	$-(x+1)^{-2}-2(x+1)^{-3}$	M1A1 A1 [3]	M1 for recognisable attempt at differentn. Allow $\frac{-x^2 - 4x - 3}{(x+1)^4}$ from Q rule. (A2,1,0)
(ii)	f'(x) < 0 hence decreasing	B1 [1]	Dep. on <i>their</i> (i) < 0 for $x > -1$
(iii)	$\frac{-1}{(x+1)^2} - \frac{2}{(x+1)^3} = 0 \text{ or } \frac{-x^2 - 4x - 3}{(x+1)^4} = 0$ $\frac{-(x+1) - 2}{(x+1)^3} = 0 \rightarrow -x - 1 - 2 = 0 \text{ or}$	M1*	Set $\frac{dy}{dx}$ to 0
	$\frac{-(x+1)-2}{(x+1)^3} = 0 \to -x - 1 - 2 = 0 \text{ or}$ $-x^2 - 4x - 3 = 0$	M1 Dep*	OR mult by $(x+1)^3$ or $(x+1)^5$ (i.e.×mult) × multn $\rightarrow -(x+1)^3 - 2(x+1)^2 = 0$
	x = -3, y = -1/4	A1A1 [4]	(-3, -1/4) www scores 4/4

Question 40 $\begin{bmatrix} (2x+1)^{\frac{3}{2}} \\ \frac{3}{2} \end{bmatrix} [\div 2] \quad (+c)$ 7 = 9 + c $y = \frac{(2x+1)^{\frac{3}{2}}}{3} - 2 \quad \text{or unsimplified}$ M1 Attempt subst x = 4, y = 7. c must be there.Dep. on attempt at integration. c = -2 sufficient

Question 41

 $y = \frac{4}{2x-1}.$ Correct without the ÷2 **B**1 $\int \frac{16}{(2x-1)^2} dx = \frac{-16}{2x-1} \div 2$ (i) **B1** For the \div 2 even if first B1 is lost M1 Use of limits in a changed $Vol = \pi \left[\frac{-8}{2x-1} \right]$ with limits 1 and 2 expression. A1 co [4] $\rightarrow \frac{16\pi}{3}$ $m = \frac{1}{2}m$ of tangent = -2 (ii) M1 Use of $m_1m_2 = -1$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-4}{(2x-1)^2} \times 2$ **B**1 Correct without the ×2 **B**1 For the ×2 even if first B1 is lost Equating their $\frac{dy}{dx}$ to -2 $\rightarrow x = \frac{3}{2} \text{ or } -\frac{1}{2}$ (y = 2 or - 2) $\rightarrow c = \frac{5}{2} \text{ or } -\frac{7}{2}$ DM1 A1 co A1 co [6]

Question	174		
	u = 2x(y - x) and x + 3y = 12, $u = 2x\left(\frac{12 - x}{3} - x\right)$ $= 8x - \frac{8x^2}{3}$ $\frac{du}{dx} = 8 - \frac{16x}{3}$ $= 0 \text{ when } x = 1\frac{1}{2}$ $\rightarrow (y = 3\frac{1}{2})$ $\rightarrow u = 6$	M1 A1	Expresses u in terms of x
	$=8x-\frac{8x^2}{3}$		
	$\frac{du}{dt} = 8 - \frac{16x}{dt}$	M1	Differentiate candidate's quadratic,
	dx = 3		sets to $0 +$ attempt to find x, or
	$= 0$ when $x = 1\frac{1}{2}$	A1	other valid method
	$\rightarrow (y=3\frac{1}{2})$	A1	Complete method that leads to <i>u</i>
	$\rightarrow u = 6$	[5	
Question			
	$f'(x) = 5 - 2x^2$ and (3, 5)		
	$f'(x) = 5 - 2x^2$ and (3, 5) $f(x) = 5x - \frac{2x^3}{3}$ (+c)	B1	For integral
		M1	Uses the point in an integral
	$\rightarrow c = 8$	A1	со
		[3]	

	$y = x^3 + px^2$		
(i)	$y = x^{3} + px^{2}$ $\frac{dy}{dx} = 3x^{2} + 2px$	B1	cao
	Sets to $0 \to x = 0$ or $-\frac{2p}{3}$	M1	Sets differential to 0
	$\rightarrow (0,0) \text{ or } \left(-\frac{2p}{3},\frac{4p^3}{27}\right)$	A1 A1 [4]	cao cao, first A1 for any correct turning point or any correct pair of x values. 2nd A1 for 2 complete TPs
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x + 2p$	М1	Other methods include; clear demonstration of sign change of gradient, clear reference to the shape of the curve
	At $(0, 0) \rightarrow 2p$ +ve Minimum	A1	www
	At $\left(-\frac{2p}{3},\frac{4p^3}{27}\right) \rightarrow -2p$ -ve Maximum	A1 [3]	
(iii)	$y = x^3 + px^2 + px \rightarrow 3x^2 + 2px + p (= 0)$	B1	
	Uses $b^2 - 4ac$ $\rightarrow 4p^2 - 12p < 0$	M1	Any correct use of discriminant
	$\rightarrow 0 aef$	A1 [3]	cao (condone ≤)

(i)	$24 = r + r + r\theta$ $\rightarrow \theta = \frac{24 - 2r}{r}$		(May not use θ)
	r	M1	Attempt at $s = r\theta$ linked with 24 and r
	$A = \frac{1}{2} r^2 \theta = \frac{24r}{2} - r^2 = 12r - r^2. \text{ aef, ag}$	M1A1 [3]	Uses A formula with θ as f(r). cao
(ii)	$(A=)36-(r-6)^2$	B1 B1 [2]	cao
(iii)	Greatest value of $A = 36$	B1√	Ft on (ii).
	$(r=6) \rightarrow \theta=2$	B1 [2]	cao, may use calculus or the discriminant on $12r - r^2$

$$y = 2x^2$$
, $X(-2, 0)$ and $P(p, 0)$
 $A = \frac{1}{2} \times (2 + p) \times 2p^2 (= 2p^2 + p^3)$

(ii)
$$\frac{dA}{dp} = 4p + 3p^{2}$$

$$\frac{dA}{dt} = \frac{dA}{dp} \times \frac{dp}{dt} = 0.02 \times 20 = 0.4$$
MI
or
$$\frac{dA}{dt} = 4p\frac{dp}{dt} + 3p^{2}\frac{dp}{dt}$$

Questio	n 48		
(i)	$f'(x) = 2 - 2(x+1)^{-3}$	B1	
2.5	$f''(x) = 6(x+1)^{-4}$ f0 = 0 hence stationary at x = 0 f''0 = 6 > 0 hence minimum	B1 B1 B1	AG www. Dependent on correct $f''(x)$
(ii)	$AB^{2} = (3/2)^{2} + (3/4)^{2}$ $AB = 1.68 \text{ or } \sqrt{45/4} \text{ oe}$	[4] M1 A1 [2]	except $-6(x+1)^{-4} \rightarrow < 0$ MAX scores SC1
(iii)	Area under curve = $\int f(x) = x^2 - (x+1)^{-1}$ = $\left(1 - \frac{1}{2}\right) - \left(\frac{1}{4} - 2\right) = 9/4$	[2] B1	Ignore $+c$ even if evaluated Do not penalise reversed limits
	(Apply limits $-\frac{1}{2} \rightarrow 1$) Area trap. $=\frac{1}{2}(3+\frac{9}{4}) \times \frac{3}{2}$	M1A1 M1	Allow reversed subtn if final ans positive
	= 63/16 or 3.94 Shaded area $63/16 - 9/4 + 27/16$ or 1.69	A1 A1 [6]	
	ALT eqn <i>AB</i> is $y = -\frac{1}{2}x + \frac{11}{4}$ Area = $\int -\frac{1}{2}x + \frac{11}{4} - \int 2x + (x+1)^{-2}$	B1 M1	Attempt integration of at least one
	$= \left[-\frac{1}{4}x^{2} + \frac{11}{4}x \right] - \left[x^{2} - (x+1)^{-1} \right]$	A1A1	Ignore + <i>c</i> even if evaluated Dep. on integration having taken place
	Apply limits $-\frac{1}{2} \rightarrow 1$ to both integrals 27/16 or 1.69	M1 A1	Allow reversed subtn if final ans positive

M1 A1
[2]Attempt at base and height in terms
of
$$p$$
 and use of $\frac{bh}{2}$ B1caoM1 A1any correct method, cao[3]

-			
(i)	At $x = 4$, $\frac{dy}{dx} = 2$ $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} = 2 \times 3 = 6$	B1 M1A1 [3]	Use of Chain rule
(ii)	$(y) = x + 4x^{\frac{1}{2}}(+c)$	B1	
	Sub $x = 4$, $y = 6 \rightarrow 6 = 4 + (4 \times 4^{\frac{1}{2}}) + c$	M1	Must include c
	$c = -6 \rightarrow (y = x + 4x^{\frac{1}{2}} - 6$	A1	
(iii)	Eqn of tangent is $y - 6 = 2(x - 4)$ or (6-0)/(4-x) = 2	[3] M1	Correct eqn thru $(4, 6)$ & with $m = their 2$
	B = (1, 0) (Allow $x = 1$)	A1 M1	[Expect eqn of normal: $y = -\frac{1}{2}x + \frac{1}{2}x$
	Gradient of normal $= -1/2$	A1	[Expect eqn of normall <i>y</i> = <i>y</i> _{2x} + 8]
	C = (16, 0) (Allow $x = 16$)	A1 [5]	Or $AB = \sqrt{45}$, $AC = \sqrt{180} \rightarrow$
	Area of triangle = $\frac{1}{2} \times 15 \times 6 = 45$	[5]	Or $AB = \sqrt{45}$, $AC = \sqrt{180} \rightarrow$ Area = 45.0
Questior	n 50		
	$[2][(-1)^2][-1]$	Anosomanna	

(i)	$[3][(x-1)^2][-1]$	B1B1B1 [3]	
(ii)	$f'(x) = 3x^2 - 6x + 7$	B1	Ft <i>their</i> (i) + 5
	$f'(x) = 3x^2 - 6x + 7$ = $3(x-1)^2 + 4$ > 0 hence increasing	B 1√	
	> 0 hence increasing	DB1 [3]	Dep B1 $$ unless other valid reason
Questio	on 51		

	$y = \sqrt{(9 - 2x^2)} P(2, 1)$	c?'		
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2\sqrt{(9-2x^2)}} \times -4x$	B1 B1		Without " $\times -4x$ " Allow even if B0 above.
	At $P, x = 2, m = -4$ Normal grad = $\frac{1}{4}$ Eqn $AP \ y - 1 = \frac{1}{4}(x - 2)$ $\rightarrow A (-2, 0)$ or $B (0, \frac{1}{2})$ Midpoint AP also $(0, \frac{1}{2})$	M1 M1 A1 A1		For $m_1m_2 = -1$ calculus needed Normal, not tangent Full justification.
(ii)	$\int x^2 dy = \int \left(\frac{9}{2} - \frac{y^2}{2}\right) dy$ $= \frac{9y}{2} - \frac{y^3}{2}$	M1	[6]	Attempt to integrate x^2
	$= \frac{9y}{2} - \frac{y^3}{6}$ Upper limit = 3 Uses limits 1 to 3 \rightarrow volume = $4^{2/3} \pi$	A1 B1 DM1 A1	[6]	Correct integration Evaluates upper limit Uses both limits correctly
			[5]	

	$f''(x) = \frac{12}{x^3}$		
(i)	$f'(x) = -\frac{6}{x^2} (+c)$ = 0 when $x = 2 \rightarrow c = \frac{3}{2}$	B 1	Correct integration
	$= 0$ when $x = 2 \rightarrow c = \frac{3}{2}$	M1 A1	Uses $x = 2$, f'($x = 0$)
	$f(x) = \frac{6}{x} + \frac{3x}{2}$ (+A)	B1√B1√	For each integral
	= 10 when $x = 2 \rightarrow A = 4$	A1 [6]	
(ii)	$-\frac{6}{x^2} + \frac{3}{2} = 0 \rightarrow x = \pm 2$	M1	Sets their 2 term $f'(x)$ to 0.
	Other point is $(-2, -2)$	A1 [2]	
(iii)	At $x = 2$, f''(x) = 1.5 Min At $x = -2$, f''(x) = -1.5 Max	B1 B1	
		[2]	
Questi	ion 53		
	x		

(i)	$\tan 60 = \frac{x}{h} \rightarrow x = h \tan 60$ $A = h \times x$ $V = 40\sqrt{(3h^2)}$	B1 M1 A1 [3]	Any correct unsimplified length Correct method for area ag
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}h} = 80\sqrt{(3h)}$ If $h = 5$, $\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{2\sqrt{(3)}}$ or 0.289	B1 M1A1 [3]	B1 M1 (must be ÷, not ×).

Question 54
(i)
$$\frac{dy}{dx} = \left[\frac{1}{2}(1+4x)^{-1/2}\right] \times [4]$$

At $x = 6$, $\frac{dy}{dx} = \frac{2}{5}$
Gradient of normal at $P = -\frac{1}{2}$
Gradient of $PQ = -\frac{5}{2}$ hence PQ is a normal,
or $m_1m_2 = -1$
(ii) Vol for curve $= (\pi) \int (1+4x)$ and attempt to
integrate y^2
 $= (\pi) [x + 2x^2]$ ignore '+ c'
 $= (\pi) [6 + 72 - 0]$
 $= 78(\pi)$
Vol for line $= \frac{1}{3} \times (\pi) \times 5^2 \times 2$
 $= \frac{50}{3}(\pi)$
Total Vol $= 78\pi + 50\pi/3 = 94\frac{2}{3}\pi$ (or $284\pi/3$)
Question 55

$f(x) = x^{3} - 7x(+c)$ 5 = 27 - 21 + c c = -1 → f(x) = x^{3} - 7x - 1	B1 M1 A1	Sub $x = 3$, $y = 5$. Dep. on c present
	[3]	

Question 57

(i)	x = 1/3	B1 [1]	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{2}{16}(3x-1)\right] [3]$	B1B1	
	When $x = 3 \frac{dy}{dx} = 3$ soi	M1	
	Equation of QR is $y-4=3(x-3)$	M1	
	When $y = 0$ $x = 5/3$	A1 [5]	
(iii)	Area under curve = $\left[\frac{1}{16 \times 3}(3x-1)^3\right] \left[\times \frac{1}{3}\right]$	B1B1	
	$\frac{1}{16 \times 9} \left[8^3 - 0 \right] = \frac{32}{9}$	M1A1	Apply limits: <i>their</i> $\frac{1}{3}$ and 3
	Area of $\Delta = 8/3$	B1	5
	Shaded area $=\frac{32}{9} - \frac{8}{3} = \frac{8}{9}$ (or 0.889)	A1 [6]	

(i)	$A = 2\pi r^{2} + 2\pi rh$ $\pi r^{2}h = 1000 \rightarrow h = \frac{1000}{\pi r^{2}}$ Sub for h into $A \rightarrow A = 2\pi r^{2} + \frac{2000}{r}$ AG	B1 M1 A1 [3]	
(11)	$\frac{dA}{dr} = 0 \implies 4\pi r - \frac{2000}{r^2} = 0$ r = = 5.4 $\frac{d^2 A}{dr^2} = 4\pi + \frac{4000}{r^3}$ > 0 hence MIN hence MOST EFFICIENT AG	M1A1 DM1 A1 B1	Attempt differentiation & set = 0 Reasonable attempt to solve to r^3 = Or convincing alternative method
Question	59	[5]	

$y = \frac{3x^3}{3} - \frac{2x^{-2}}{-2} (+c)$	B1B1	
3 = -1 + 1 + c	M1	Sub $x = -1, y = 3$. <i>c</i> must be present
$y = x^3 + x^{-2} + 3$	A1	Accept $c = 3$ www
	[4]	

1	-		
	$\frac{dy}{dx} = 2x - 5x^{1/2} + 5$	B1	
	$\frac{dy}{dr} = 2$	B1	
	$2x - 5x^{1/2} + 5 = 2$	M1	Equate their dy/dx to <i>their</i> 2 or $\frac{1}{2}$.
	$2x - 5x^{1/2} + 3(=0)$ or equivalent 3-term	1711	Equate their dy/dx to men 2 of 72.
	quadratic	A1	
	Attempt to solve for $x^{1/2}$ e.g.		
	$(2x^{1/2} - 3)(x^{1/2} - 1) = 0$	DM1	Dep. on 3-term quadratic
	$x^{1/2} = 3/2$ and 1	A1	ALT
	x = 9/4 and 1		
		[7]	$5x^{\frac{1}{2}} = 2x + 3 \rightarrow 25x = (2x + 3)^{2}$ $4x^{2} - 13x + 9(=0)$
			4x - 13x + 9(=0) x = 9/4 and 1
Overti			x = 974 and 1
Questi			
	$(\pi) \int (x^3 + 1) dx$ $(\pi) \left[\frac{x^4}{4} + x \right]$	M1	Attempt to resolve y^2 and attempt to integrate
	$(\pi)\left[\frac{x^4}{x^4}+x\right]$	A1	to integrate
	6π or 18.8	DM1A1	11 5 0
		[4]	(Limits reversed: Allow M mark and allow A mark if final answer is
			(6π)
Questi	on 62		
(i)	$6+k=2 \rightarrow k=-4$	B 1	
~		[1]	
		1.5	
(ii)	$(y) = \frac{6x^3}{3} - \frac{4}{-2}x^{-2} (+c)$	B1B1√	ft on <i>their k</i> . Accept $+\frac{k}{-2}x^{-2}$
	9 = 2 + 2 + c c must be present	M1	Sub (1,9) with numerical k . Dep on
		1000	attempt ∫
	$(y) = 2x^3 + 2x^{-2} + 5$	A1 [4]	Equation needs to be seen Sub (2, 3) $\rightarrow c = -13\frac{1}{2}$ scores M1A0
		[4]	$\operatorname{Sub}(2,3) \rightarrow c = -1372 \operatorname{scores}\operatorname{IMTAO}$
Questi	on 63		
	$\frac{dy}{dt} = [8] + [-2][(2x-1)^{-2}]$	B2,1,0	
	$\frac{dy}{dx} = [8] + [-2] [(2x-1)^{-2}]$ = 0 \rightarrow 4(2x-1)^{2} = 1 oe eg 16x^{2} - 16x + 3 = 0	102,1,0	
	$=0 \rightarrow 4(2x-1)^2 = 1$ or $eg \ 16x^2 - 16x + 3 = 0$	M1	Set to zero, simplify and attempt to
	1 . 3		solve soi
	x = - and $-$	A1	Needs both <i>x</i> values. Ignore <i>y</i> values
	$x = \frac{1}{4} \text{ and } \frac{3}{4}$ $\frac{d^2 y}{dx^2} = 8(2x-1)^{-3}$	B1√*	The second
	$\frac{1}{\mathrm{d}x^2} = \delta(2x-1)$	BI≜ ∗	ft to $k(2x-1)^{-3}$ where $k > 0$

$$\text{When } x = \frac{1}{4}, \ \frac{d^2 y}{dx^2} (= -64) \text{ and/or } < 0 \text{ MAX}$$

$$\text{When } x = \frac{3}{4}, \ \frac{d^2 y}{dx^2} (= 64) \text{ and/or } > 0 \text{ MIN}$$

DB1 Alt. methods for last 3 marks (values either side of 1/4 & 3/4) must indicate which x-values and cannot use x = 1/2. (M1A1A1)

Question	64		
	$y = \frac{8}{x} + 2x.$		
(i)	$y = \frac{8}{x} + 2x.$ $\frac{dy}{dx} = -8x^{-2} + 2$ $\frac{d^2y}{dx^2} = 16x^{-3}$ $\int y^2 dx = -64x^{-1} \circ e + 32x \circ e + \frac{4x^3}{3} \circ e (+c)$	B1	unsimplified ok
	$\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{d}x^2} = 16x^{-3}$	B 1	unsimplified ok
	$\int y^2 dx = -64x^{-1} oe + 32x oe + \frac{4x^3}{3} oe (+c)$	3 × B1	B1 for each term – unsimplified ok
	dv		
(ii)	sets $\frac{dy}{dx}$ to $0 \rightarrow x = \pm 2$	M1	Sets to 0 and attempts to solve
	$\rightarrow M(2, 8)$ Other turning point is (-2, -8)	A1 A1	Any pair of correct values A1 Second pair of values A1
	If $x = -2$, $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} < 0$	M1	Using their $\frac{d^2y}{dx^2}$ if kx^{-3} and $x < 0$
	∴Maximum	A1 [5	1
(iii)	Vol = $\pi \times [$ part (i)] from 1 to 2	M1	Evidence of using limits 1&2 in their integral of x^2 (ignore π)
	$\frac{220\pi}{3}$,73.3 π ,230	A1 [2	their integral of y^2 (ignore π)

Question 65		
$f'(x) = \frac{8}{\left(5 - 2x\right)^2}$		
$f(x) = \frac{8(5-2x)^{-1}}{-1} \div -2 \ (+c)$	B1 B1	Correct without (÷ by -2) An attempt at integration (÷ by-2)
Uses $x = 2, y = 7$,	M1	Substitution of correct values into an integral to find c
<i>c</i> = 3	A1 [4]	

Questio	n 66	T		
(i)	$A = 2y \times 4x (= 8xy)$ 10y + 12x = 480 $\rightarrow A = 384x - 9.6x^{2}$	В1 В1 В1	[3]	answer given
(ii)	$\frac{\mathrm{d}A}{\mathrm{d}x} = 384 - 19.2x$ $= 0 \text{ when } x = 20$	B1 M1		Sets to 0 and attempt to solve oe Might see completion of square
	$\rightarrow x = 20, y = 24.$	A1		Needs both x and y
	Uses $x = -\frac{b}{2a} = \frac{-384}{-19.2} = 20$, M1, A1 y = 24, A1 From graph: B1 for $x = 20$, M1, A1 for y = 24		[3]	Trial and improvement B3 .

Question 6		I	1
(i)	$\frac{dy}{dx} = 2 - 8(3x+4)^{-\frac{1}{2}}$ $(x = 0, \rightarrow \frac{dy}{dx} = -2)$		
	$(x=0, \rightarrow \frac{\mathrm{d}y}{\mathrm{d}x}=-2)$		
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} \to -0.6$	MIAI [2]	Ignore notation. Must be $\frac{dy}{dx} \times 0.3$
(ii)	$y = \{2x\} \left\{ -\frac{8\sqrt{3x+4}}{\frac{1}{2}} \div 3 \right\} (+c)$	B1 B1	No need for $+c$.
	$x=0, y=\frac{4}{3} \rightarrow c=12.$	M1 A1 [4]	Uses x, y values after \int with c

$x = \frac{12}{y^2} - 2.$ $\text{Vol} = (\pi) \times \text{J} x^2 \text{ d} y$ $\rightarrow \left[\frac{-144}{3y^3} + 4y + \frac{48}{y} \right]$	MI 5 × AI	Ignore omission of π at this stage Attempt at integration
Limits 1 to 2 used $\rightarrow 22\pi$	A1	Un-simplified only from correct integration
	[5]	
Question 69		

(i)	Attempt diffn. and equate to $0 \frac{dy}{dx} = -k(kx-3)^{-2} + k = 0$ $(kx-3)^2 = 1$ or $k^3x^2 - 6k^2x + 8k(=0)$ $x = \frac{2}{k}$ or $\frac{4}{k}$ $\frac{d^2y}{dx^2} = 2k^2(kx-3)^{-3}$ When $x = \frac{2}{k}$, $\frac{d^2y}{dx^2} = (-2k^2) < 0$ MAX All previous	*M1 DM1 *A1*A1 B1 ^{^^} DB1		Must contain $(kx-3)^{-2}$ + other term(s) Simplify to a quadratic Legitimately obtained Ft must contain $Ak^2(kx-3)^{-3}$ where $A>0$ Convincing alt. methods (values
	When $x = \frac{4}{k}$, $\frac{d^2 y}{dx^2} = (2k^2) > 0$ MIN working correct	DB1	[7]	either side) must show which values used & cannot use x = 3 / k
(ii)	$V = (\pi) \int \left[(x-3)^{-1} + (x-3) \right]^2 dx$ = $(\pi) \int \left[(x-3)^{-2} + (x-3)^2 + 2 \right] dx$ = $(\pi) \left[-(x-3)^{-1} + \frac{(x-3)^3}{3} (+2x) \right]$ Condone missing 2x = $(\pi) \left[1 - \frac{1}{3} + 4 - \left(\frac{1}{3} - 9 + 0 \right) \right]$ = $40\pi/3$ oe or 41.9	*M1 A1 A1 DM1 A1	[5]	Attempt to expand y^2 and then integrate Or $\left[-(x-3)^{-1} + \frac{x^3}{3} - 3x^2 + 9x + 2x\right]$ Apply limits $0 \rightarrow 2$ 2 missing $\rightarrow 28\pi/3$ scores M1A0A1M1A0

(i)	at $x = a^2$, $\frac{dy}{dx} = \frac{2}{a^2} + \frac{1}{a^2} \text{ or } 2a^{-2} + a^{-2} \left(= \frac{3}{a^2} \text{ or } 3a^{-2} \right)$ $y - 3 = \frac{3}{a^2} \left(x - a^2 \right)$ or $y = \frac{3}{a^2} x + c \rightarrow 3 = \frac{3}{a^2} a^2 + c$ $y = \frac{3}{a^2} x$ or $3a^{-2}x$ cao	B1 M1 A1	[3]	$\frac{2}{a^2} + \frac{1}{a^2} \text{ or } 2a^{-2} + a^{-2} \text{ seen}$ anywhere in (i) Through (a ² , 3) & with <i>their</i> grad as f(a)
(ii)	$(y) = \frac{2}{a} \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + \frac{ax^{-\frac{1}{2}}}{-\frac{1}{2}} (+c)$ sub $x = a^2$, $y = 3$ into $\int dy / dx$ $c = 1 (y = \frac{4x^{\frac{1}{2}}}{a} - 2ax^{-\frac{1}{2}} + 1)$	B1B1 M1 A1	[4]	<i>c</i> must be present. Expect 3 = 4 - 2 + c
(iii)	sub $x = 16$, $y = 8 \rightarrow 8 = \frac{4}{a} \times 4 - 2a \times \frac{1}{4} + 1$ $a^{2} + 14a - 32(=0)$ a = 2 $A = (4, 3), B = (16, 8)$ $AB^{2} = 12^{2} + 5^{2} \rightarrow AB = 13$	*M1 A1 A1 DM1A1	[5]	Sub into <i>their y</i> Allow –16 in addition

Question 71

$f'(x) = 3x^2 - 6x - 9 \text{soi}$	B1	
Attempt to solve $f'(x) = 0$ or $f'(x) > 0$ or $f'(x) \ge 0$ soi	M1	
(3)(x-3)(x+1) or 3,-1 seen or 3 only seen	A1	With or without equality/inequality signs
Least possible value of <i>n</i> is 3. Accept $n = 3$. Accept $n \ge 3$	A1 [4]	Must be in terms of n

(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3}{\left(2x-1\right)^2} \times 2$	B1 B1	[2]	B1for a single correct term (unsimplified) without ×2.
(ii)	e.g. Solve for $\frac{dy}{dx} = 0$ is impossible.	B1√ [^]	[1]	Satisfactory explanation.
(iii)	If $x = 2$, $\frac{dy}{dx} = \frac{-6}{9}$ and $y = 3$ Perpendicular has $m = \frac{9}{6}$ $\rightarrow y - 3 = \frac{3}{2}(x - 2)$ Shows when $x=0$ then $y=0$ AG	M1* M1* DM1 A1		Attempt at both needed. Use of $m_1m_2 = -1$ numerically. Line equation using (2, their 3) and their <i>m</i> .
(iv)	$\frac{dx}{dt} = -0.06$ $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} \rightarrow -\frac{2}{3} \times -0.06 = 0.04$	M1 A1	[4]	

$$(y) = 8(4x+1)^{\frac{1}{2}} \div \frac{1}{2} \div 4 (+c)$$
 B1
B1

Uses
$$x = 2$$
 and $y = 5$ M1

Correct integrand (unsimplified) without $\div 4$ $\div 4$. Ignore *c*. Substitution of correct values into an integrand to find c. $y = 4\sqrt{4x+1} - 7$

	tion 74			
(i)	$3z - \frac{2}{z} = -1 \implies 3z^2 + z - 2 = 0$	M1		Express as 3-term quad. Accept
	$x^{1/2}$ (or z) = 2 / 3 or -1	Al		$x^{1/2}$ for z (OR
	x = 4/9 only	A1	[2]	$3x - 1 = -\sqrt{x}, \ 9x^2 - 13x + 4 = 0$
			[3]	M1, A1, A1 $x = 4/9$)
(ii)	$f(x) = \frac{3x^{3/2}}{3/2} - \frac{2x^{1/2}}{1/2} (+c)$	B1B1		
	Sub $x = 4, y = 10$ $10 = 16 - 8 + c \implies c = 2$	M1A1		c must be present
	When $x = \frac{4}{9}$, $y = 2\left(\frac{4}{9}\right)^{3/2} - 4\left(\frac{4}{9}\right)^{1/2} + 2$	M1		Substituting x value from part (i)
	-2/27	A1	[6]	
Ques	tion 75			
(i)	$\frac{dy}{dx} = -(x-1)^{-2} + 9(x-5)^{-2}$	M1A1		May be seen in part (ii)
	$m_{\text{tangent}} = -\frac{1}{4} + \frac{9}{4} = 2$	B1		
	Equation of normal is $y-5 = -\frac{1}{2}(x-3)$	M1		Through (3, 5) and with $m = -1/m_{tangent}$
	x=13	A1	[6]	m = 1/ mtangent
			[5]	
(ii)	$(x-5)^2 = 9(x-1)^2$	B1		Set $\frac{dy}{dx} = 0$ and simplify
	$x-5=(\pm)3(x-1)$ or $(8)(x^2-x-2)=0$	M1		Simplify further and attempt
	x = -1 or 2	A1		solution
	$\frac{d^2 y}{dx^2} = 2(x-1)^{-3} - 18(x-5)^{-3}$	B1		If change of sign used, x values
	dx^2			close to the roots must be used
	When $x = -1$, $\frac{d^2 y}{dx^2} = -\frac{1}{6} < 0$ MAX	B1		and all must be correct
	When $x = 2$, $\frac{d^2 y}{dx^2} = \frac{8}{3} > 0$ MIN	B 1	[6]	
I				

[4]

Question 76 (i) $A = (\frac{1}{2}, 0)$ **B1** Accept x = 0 at y = 0[1] ----- $\int (1-2x)^{\frac{1}{2}} dx = \left[\frac{(1-2x)^{3/2}}{3/2}\right] [\div(-2)]$ $\int (2x-1)^2 dx = \left[\frac{(2x-1)^3}{3}\right] [\div2]$ $\begin{bmatrix} 0-(-1/3) \\ 1/6 \end{bmatrix} - \begin{bmatrix} 0-(-1/6) \end{bmatrix}$ (ii) **B1B1** May be seen in a single expression May use $\int x \, dy$, may expand **B1B1** $(2x-1)^2$ **M1** Correct use of their limits **A1** [6]

(i)	$2x - 2/x^3 = 0$	M1	Set = 0.
	$x^4 = 1 \Rightarrow x = 1$ at A cao	Al	Allow 'spotted' x = 1
	Total:	2	
(ii)	$f(x) = x^2 + 1/x^2(+c)$ cao	B1	2
	$\frac{189}{16} = 16 + 1/16 + c$	M1	Sub (4, $\frac{189}{16}$). <i>c</i> must be present. Dep. on integration
	c = -17/4	Al	
(iii)	Total: $x^{2} + 1/x^{2} - 17/4 = 0 \Rightarrow 4x^{4} - 17x^{2} + 4 (= 0)$	3 M1	Multiply by $4x^2$ (or similar) to transform into 3-term quartic.
	$(4x^2-1)(x^2-4) (=0)$	MI	Treat as quadratic in x^2 and attempt solution or factorisation.
	x=½, 2	A1A1	Not necessary to distinguish. Ignore negative values. No working scores 0/4
	Total:	4	1.1
(iv)	$\int (x^2 + x^{-2} - 17/4) dx = \frac{x^3}{3} - \frac{1}{x} - \frac{17x}{4}$	B2,1,0√	Mark final integral
	(8/3-1/2-17/2)-(1/24-2-17/8)	M1	Apply <i>their</i> limits from (iii) (Seen). Dep. on integration of at least 1 term of y
	Area = 9 / 4	Al	Mark final answer. $\int y^2$ scores 0/4
	Total:	4	

∂(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 2 . \mathrm{At} x = 2, m = 2$		B1B1	Numerical m
	Equation of tangent is $y-2=2(x-2)$		B1	Expect $y = 2x - 2$
		Total:	3	
)(ii)	Equation of normal $y - 2 = -\frac{1}{2}(x - 2)$		M1	Through (2, 2) with gradient = $-1/m$. Expect $y = -\frac{1}{2}x + 3$
	$x^2 - 2x + 2 = -\frac{1}{2}x + 3 \rightarrow 2x^2 - 3x - 2 = 0$		M1	Equate and simplify to 3-term quadratic
	$x = -\frac{1}{2}, y = \frac{3}{4}$		AlAl	Ignore answer of (2, 2)
		Total:	4	
)(iii)	At $x = -\frac{1}{2}$, grad = $2(-\frac{1}{2}) - 2 = -3$		В1√	Ft their $-Y_2$.
	Equation of tangent is $y - 3\frac{1}{4} = -3(x + \frac{1}{2})$		*M1	Through <i>their B</i> with grad <i>their</i> -3 (not m_1 or m_2). Expect $y = -3x + 7/4$
	2x - 2 = -3x + 7/4		DM1	Equate their tangents or attempt to solve simultaneous equations
	$x = 3/4, y = -\frac{1}{2}$	P	Al	Both required.
		Total:	4	

Question 79

(i)	$f'(x) = \left[\frac{3}{2}(4x+1)^{1/2}\right]$ [4]		B1B1	Expect $6(4x+1)^{1/2}$ but can be unsimplified.
	$f''(x) = 6 \times 1/2 \times (4x+1)^{-1/2} \times 4$		B1√ [∧]	Expect $12(4x+1)^{-1/2}$ but can be unsimplified. Ft from <i>their</i> f'(x).
		Total:	3	
ii)	f(2), f'(2), kf''(2) = 27, 18, 4k OR 12		B1B1√B1√	Ft dependent on attempt at differentiation
	$27/18 = 18/4k$ oe OR $kf''(2) = 12 \implies k = 3$		M1A1	
		Total:	5	

5(i)	$V = \frac{1}{12}h^3 \text{ oe}$	B1	
	Total	1	
(ii)	$\frac{\mathrm{d}\boldsymbol{\nu}}{\mathrm{d}\boldsymbol{h}} = \frac{1}{4}\boldsymbol{h}^2 \text{ or } \frac{\mathrm{d}\boldsymbol{h}}{\mathrm{d}\boldsymbol{\nu}} = 4(12\boldsymbol{\nu})^{-2/3}$	M1A1	Attempt differentiation. Allow incorrect notation for M. For A mark accept <i>their</i> letter for volume - but otherwise correct notation. Allow V'
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}h}{\mathrm{d}\mathcal{V}} \times \frac{\mathrm{d}\mathcal{V}}{\mathrm{d}t} = \frac{4}{h^2} \times 20 \text{ soi}$	DM1	Use chain rule correctly with $\frac{d(V)}{dt} = 20$. Any equivalent formulation Accept non-explicit chain rule (or nothing at all)
	$\left(\frac{\mathrm{d}h}{\mathrm{d}t}\right) = \frac{4}{10^2} \times 20 = 0.8$ or equivalent fraction	A1	
	Total	: 4	

(i)	$f'(x) = [(4x+1)^{1/2} \div \frac{1}{2}] [\div 4] (+c)$	B1 B1	Expect $\frac{1}{2}(4x+1)^{1/2}(+c)$
	$f'(2)=0 \Rightarrow \frac{3}{2}+c=0 \Rightarrow c=-\frac{3}{2}$ (Sufficient)	B1 FT	Expect $\frac{1}{2}(4x+1)^{1/2} - \frac{3}{2}$. FT on their $f'(x) = k(4x+1)^{1/2} + c$. (i.e. $c = -3k$)
	Total:	3	
(ii)	f"(0)=1 SOI	B1	
	$f'(0) = 1/2 - 1\frac{1}{2} = -1$ SOI	B1 FT	Substitute $x = 0$ into <i>their</i> $f'(x)$ but must not involve <i>c</i> otherwise B0B0
	f(0) = -3	B1 FT	FT for 3 terms in AP. FT for 3rd B1 dep on 1st B1 . Award marks for the AP method only.
	Total:	3	
(iii)	$f(x) = \left[\frac{1}{2}(4x+1)^{3/2} + 3/2 + 4\right] - \left[\frac{1}{2}x\right](+k)$	B1 FT B1 FT	Expect $(1/12)(4x+1)^{3/2} - 1\frac{1}{2}x (+k)$. FT from <i>their</i> f'(x) but c numerical.
	$-3 = 1/12 - 0 + k \implies k = -37/12$ CAO	M1A1	Sub $x = 0, y = their f(0)$ into their $f(x)$. Dep on $cx & k$ present (c numerical)
	Minimum value = $f(2) = \frac{27}{12} - 3 - \frac{37}{12} = -\frac{23}{6}$ or -3.83	A1	
	Total:	5	

0(a)(i)	Attempt to integrate $V = (\pi) \int (y+1) dy$ $= (\pi) \left[\frac{y^2}{2} + y \right]$				M1	Use of h in integral e.g. $\int (h+1) = \frac{1}{2}h^2 + h$ is M0 . Use of $\int y^2 dx$ is M0
					A1	
	$=\pi\left[\frac{h^2}{2}+h\right]$	Π			A1	AG . Must be from clear use of limits $0 \rightarrow h$ somewhere.
				Total:	3	
0(ii)	$\int (y+1)^{1/2} \mathrm{d}y$	ALT	$6 - \int \left(x^2 - 1\right) \mathrm{d}x$		M1	Correct variable and attempt to integrate
	$\frac{2}{3}(y+1)^{3/2}$ oe	ALT	$6 - (\frac{1}{3}x^3 - x)$ CAO		*A1	Result of integration must be shown
	⅔[8−1]	ALT	$6 - \left[\left(\frac{8}{3} - 1\right) - \left(\frac{1}{3} - 1\right)\right]$	pre	DM1	Calculation seen with limits $0 \rightarrow 3$ for y. For ALT, limits are $1 \rightarrow 2$ and rectangle.
	14/3	ALT	6 - 4/3 = 14/3		A1	16/3 from $\frac{2}{3} \times 8$ gets DM1A0 provided work is correct up to applying limits.
(b)	Clear attempt to diffe	rentiate wr	t h	Total:	4 M1	Expect $\frac{\mathrm{d}\nu}{\mathrm{d}h} = \pi(h+1)$. Allow $h + 1$. Allow h .
	Derivative = 4π SOI				* <mark>A1</mark>	
_	$\frac{2}{\text{their derivative}}$. Can	be in term	is of h		DM1	
	$\frac{2}{4\pi} \operatorname{or} \frac{1}{2\pi} \text{or } 0.159$	bi -			A1	
23				Total:	4	

Gradient of normal is – 1/3 \rightarrow gradient of tangent is 3 SOI	B1 B1 FT	FT from their gradient of normal.
dy/dx = 2x - 5 = 3	M1	Differentiate and set = their 3 (numerical).
<i>x</i> = 4	*A1	
Sub $x = 4$ into line $\rightarrow y = 7$ & sub <i>their</i> (4, 7) into curve	DM1	OR sub $x = 4$ into curve $\rightarrow y = k - 4$ and sub <i>their</i> (4, $k - 4$) into line OR other valid methods deriving a linear equation in k (e.g. equating curve with either normal or tangent and sub $x = 4$).
<i>k</i> = 11	A1	
Total:	6	

(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-1/4} - 2$	B1	Accept unsimplified.
	$= 0$ when $\sqrt{x} = 2$		
	x = 4, y = 8	B1B1	
	Total:	3	
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -2x^{-\frac{3}{2}}$	B1FT	FT providing –ve power of <i>x</i>
	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\frac{1}{4}\right) \to \text{Maximum}$	B1	Correct $\frac{d^2 y}{dx^2}$ and x=4 in (i) are required.
			Followed by "< 0 or negative" is sufficient" but $\frac{d^2y}{dx^2}$ must be correct evaluated.
	Total:	2	
iii)	EITHER: Recognises a quadratic in \sqrt{x}	(M1	$Eg \sqrt{x} = u \to 2u^2 - 8u + 6 = 0$
	1 and 3 as solutions to this equation	A1	
	$\rightarrow x = 9, x = 1.$	A1)	
	OR: Rearranges then squares		
	OR: Rearranges then squares	(M1	\sqrt{x} needs to be isolated before squaring both sides.
	$\rightarrow x^2 - 10x + 9 = 0$ oe	A1	
	$\rightarrow x = 9, x = 1.$	A1)	Both correct by trial and improvement gets 3/3
	Total:	3	
iv)	k > 8	B1	
	Total:	1	

$Vol = \pi \int (5-x)^2 dx - \pi \int \frac{16}{x^2} dx$	M1*	Use of volume formula at least once, condone omission of π and limits dx .
	DM1	Subtracting volumes somewhere must be <u>after</u> squaring.
$\int (5-x)^2 dx = \frac{(5-x)^3}{3} \div -1$	B1 B1	B1 Without \div (-1). B1 for \div (-1)
$(or 25x - 10x^2/2 + \frac{1}{3}x^3)$	(B2,1,0)	-1 for each incorrect term
$\int \frac{16}{x^2} dx = -\frac{16}{x}$	B1	
Use of limits 1 and 4 in an integrated expression and subtracted.	DM1	Must have used "y2" at least once. Need to see values substituted.
\rightarrow 9 π or 28.3	A1	
Total:	7	

Question 86

(i)	Crosses x-axis at (6, 0)	B1	x = 6 is sufficient.
	$\frac{dy}{dx} = (0+) -12 (2-x)^{-2} \times (-1)$	B2,1,0	-1 for each incorrect term of the three or addition of $+$ C.
	Tangent $y = \frac{3}{4}(x-6)$ or $4y = 3x-18$	M1 A1	Must use dy/dx , $x =$ their 6 but not $x = 0$ (which gives $m = 3$), and correct form of line equation.
			Using $y = mx + c$ gets A1 as soon as c is evaluated.
	Total	: 5	
	If $x = 4$, $dy/dx = 3$		
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 3 \times 0.04 = 0.12$	M1 A1FT	M1 for ("their m" from $\frac{dy}{dx}$ and $x = 4$) × 0.04. Be aware: use of $x = 0$ gives the correct answer but gets M0 .
	Total	: 2	12

Question 87		
$y(i)$ $\frac{dy}{dx} = \frac{-4}{(5-3x)^2} \times (-3)$	B1 B1	B1 without ×(-3) B1 For ×(-3)
Gradient of tangent = 3, Gradient of normal $-\frac{1}{3}$	*M1	Use of $m_1m_2 = -1$ after calculus
\rightarrow eqn: $y-2=-\frac{1}{3}(x-1)$	DM1	Correct form of equation, with (1, their y), not (1,0)
$\rightarrow y = -\frac{1}{3}x + \frac{7}{3}$	A1	This mark needs to have come from $y = 2$, y must be subject
Total:	5	
(ii) $\operatorname{Vol} = \pi \int_{0}^{1} \frac{16}{(5-3x)^2} dx$	M1	Use of $V = \pi \int y^2 dx$ with an attempt at integration
$\pi \left[\frac{-16}{(5-3x)} \div -3 \right]$	A1 A1	A1 without(÷ -3), A1 for (÷ -3)
$= \left(\pi \left(\frac{16}{6} - \frac{16}{15}\right)\right) = \frac{8\pi}{5} \text{ (if limits switched must show - to +)}$	M1 A1	Use of both correct limits M1
Total:	5	

(i)	$y = 7x - \frac{x^3}{3} - \frac{6x^2}{2} (+c)$	B1	САО
	Uses $(3, -10) \rightarrow c = 5$	M1 A1	Uses the given point to find <i>c</i>
	Total:	3	
(ii)	$7 - x^2 - 6x = 16 - (x + 3)^2$	B1 B1	B1 <i>a</i> = 16, B1 <i>b</i> = 3.
	Total:	2	
(iii)	$16 - (x+3)^2 > 0 \rightarrow (x+3)^2 < 16$, and solve	M1	or factors $(x + 7)(x - 1)$
	End-points $x = 1$ or -7	A1	
	$\rightarrow -7 < x < 1$	A1	needs <, not \leq . (SR $x \le 1$ only, or $x \ge -7$ only B1 i.e. 1/3)
	Total:	3	

Volume = $\left(\frac{1}{2}\right)x^2\frac{\sqrt{3}}{2}h = 1$	$2000 \to h = \frac{8000}{\sqrt{3x^2}}$	M1	Use of (area of triangle, with attempt at ht) $\times h = 2000, h = f(x)$
$A = 3xh + (2) \times \left(\frac{1}{2}\right) \times x^2 \times$	$\frac{\sqrt{3}}{2}$	M1	Uses 3 rectangles and at least one triangle
Sub for $h \to A = \frac{\sqrt{3}}{2}x^2 + \frac{\sqrt{3}}{2}x^2$	$\frac{24000}{\sqrt{3}}x^{-1}$	A1	AG
	Total:	3	-
$\frac{dA}{dx} = \frac{\sqrt{3}}{2} 2x - \frac{24000}{\sqrt{3}} x^{-2}$		B1	CAO, allow decimal equivalent
$= 0 \text{ when } x^3 = 8000 \rightarrow x = 2$	20 M	[1 A1	Sets their $\frac{dA}{dx}$ to 0 and attempt to solve for x
	Total:	3	2.
$\frac{\mathrm{d}^2 A}{\mathrm{d}x^2} = \frac{\sqrt{3}}{2} 2 + \frac{48000}{\sqrt{3}} x^{-3}$	>0 Satorep	M1	Any valid method, ignore value of $\frac{d^2 A}{dx^2}$ providing it is positive
\rightarrow Minimum	A	A1 FT	FT on their <i>x</i> providing it is positive
	Total:	2	

l(i)	Gradient of $AB = \frac{1}{2}$	B1	
	Equation of <i>AB</i> is $y = \frac{1}{2}x - \frac{1}{2}$	B1	
		2	
. (ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \left(x - 1 \right)^{\frac{1}{2}}$	B1	
	$\frac{1}{2}(x-1)^{-\frac{1}{2}} = \frac{1}{2}$. Equate their $\frac{dy}{dx}$ to their $\frac{1}{2}$	*M1	
	x = 2, y = 1	A1	
	$y - 1 = \frac{1}{2}(x - 2)$ (thro' <i>their</i> (2,1) & <i>their</i> $\frac{1}{2}$) $\rightarrow y = \frac{1}{2}x$	DM1 A1	
		5	
!(iii)	EITHER: $\sin \theta = \frac{d}{1} \rightarrow d = \sin \theta$	(M1	Where θ is angle between <i>AB</i> and the <i>x</i> -axis
	gradient of $AB = \frac{1}{2} \Longrightarrow \tan \theta = \frac{1}{2} \Longrightarrow \theta = 26.5(7)^{\circ}$	B1	
	$d = \sin 26.5(7)^\circ = 0.45$ (or $\frac{1}{\sqrt{5}}$)	A1)	
	<i>OR1:</i> Perpendicular through <i>O</i> has equation $y = -2x$	(M1	
	Intersection with AB: $-2x = \frac{1}{2}x - \frac{1}{2} \rightarrow \left(\frac{1}{5}, \frac{-2}{5}\right)$	A1	
	$d = \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = 0.45 \text{ (or } \frac{1}{\sqrt{5}}\text{)}$	A1)	
	<i>OR2:</i> Perpendicular through (2, 1) has equation $y = -2x + 5$	(M1	
	Intersection with AB: $-2x + 5 = \frac{1}{2}x - \frac{1}{2} \rightarrow \left(\frac{11}{5}, \frac{3}{5}\right)$	A1	.5
	$d = \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = 0.45 \text{ (or } 1/\sqrt{5})$	A1)	
(iii)	OR3: ΔOAC has area $\frac{1}{4}$ [where $C = (0, -\frac{1}{2})$]	(B1	
	$\frac{1}{2} \times \frac{\sqrt{5}}{2} \times d = \frac{1}{4} \longrightarrow d = \frac{1}{\sqrt{5}}$	M1 A1)	
		3	

2			
)(i)	$ax^{2} + bx = 0 \rightarrow x(ax + b) = 0 \rightarrow x = \frac{-b}{a}$	B1	
	Find $f''(x)$ and attempt sub <i>their</i> $\frac{-b}{a}$ into <i>their</i> $f''(x)$	M1	
	When $x = \frac{-b}{a}$, $f''(x) = 2a\left(\frac{-b}{a}\right) + b = -b$ MAX	A1	
		3	
(ii)	Sub $f'(-2) = 0$	M1	
	Sub $f'(1) = 9$	M1	
	a=3 b=6	*A1	Solve simultaneously to give both results.
	$f'(x) = 3x^2 + 6x \rightarrow f(x) = x^3 + 3x^2 (+c)$	*M1	Sub <i>their a, b</i> into f'(x) and integrate 'correctly'. Allow $\frac{ax^3}{3} + \frac{bx^2}{2}(+c)$
	-3=-8+12+c	DM1	Sub $x = -2$, $y = -3$. Dependent on <i>c</i> present. Dependent also on <i>a</i> , <i>b</i> substituted.
	$f(x) = x^3 + 3x^2 - 7$	A1	
		6	
Que	stion 92	'	

(i)

<i>EITHER:</i> $4 - 3\sqrt{x} = 3 - 2x \rightarrow 2x - 3\sqrt{x} + 1 (=0)$ or e.g. $2k^2 - 3k + 1 (=0)$	(M1	Form 3-term quad & attempt to solve for \sqrt{x} .
$\sqrt{x} = \frac{1}{2}, 1$	A1	Or $k = \frac{1}{2}$ or 1 (where $k = \sqrt{x}$).
<i>x</i> = ¼, 1	A1)	
$OR1: (3\sqrt{x})^2 = (1+2x)^2$	(M1	
$4x^2 - 5x + 1$ (=0)	A1	.5
<i>x</i> = ¼, 1	A1)	0.
<i>OR2:</i> $\frac{3-y}{2} = \left(\frac{4-y}{3}\right)^2 (\rightarrow 2y^2 - 7y + 5(=0))$	(M1	Eliminate x
$y = \frac{5}{2}, 1$	A1	
$x = \frac{1}{4}, 1$	A1)	
	3	

(ii)	EITHER:	(B1	
	Area under line = $\int (3-2x) dx = 3x - x^2$		
	$=\left[\left(3-1\right)-\left(\frac{3}{4}-\frac{1}{16}\right)\right]$	M1	Apply <i>their</i> limits (e.g. $\frac{1}{4} \rightarrow 1$) after integn.
	Area under curve $= \int (4 - 3x^{1/2}) dx = 4x - 2x^{3/2}$	B1	
	$[(4-2)-(1-\frac{1}{4})]$	M1	Apply <i>their</i> limits (e.g. $\frac{1}{4} \rightarrow 1$) after integration.
	Required area = $\frac{21}{16} - \frac{5}{4} = \frac{1}{16}$ (or 0.0625)	A1)	
	<i>OR:</i> +/- $\int (3-2x) - (4-3x^{\frac{1}{2}}) = +/-\int (-1-2x+3x^{\frac{1}{2}})$	(*M1	Subtract functions and then attempt integration
	$+/-\left[-x-x^2+\frac{3x^{3/2}}{3/2}\right]$	A2, 1, 0 FT	FT on their subtraction. Deduct 1 mark for each term incorrect
	+/- $\left[-1-1+2-\left(-\frac{1}{4}+\frac{1}{16}+\frac{1}{8}\right)\right]=\frac{1}{16}$ (or 0.0625)	DM1 A1)	Apply their limits $\frac{1}{4} \rightarrow 1$
		5	

$f'(x) = \left[\left(\frac{3}{2} \right) (2x-1)^{1/2} \right] \times [2] - [6]$	B2, 1, 0	Deduct 1 mark for each [] incorrect.
$f'(x) < 0 \text{ or } \leq 0 \text{ or } = 0$ SOI	M1	
$(2x-1)^{1/2} < 2 \text{ or } \leq 2 \text{ or} = 2 \text{ OE}$	A1	Allow with k used instead of x
Largest value of k is $\frac{5}{2}$	A1	Allow $k \leq \frac{5}{2}$ or $k = \frac{5}{2}$ Answer must be in terms of k (not x)
2	5	1.5

	1
(i)	

)	$\frac{dy}{dx} = \frac{1}{2} \times (5x - 1)^{\frac{1}{2}} \times 5 (= \frac{5}{6})$	B1 B1	B1 Without \times 5 B1 \times 5 of an attempt at differentiation
	$m \text{ of normal} = -\frac{6}{5}$	M1	Uses $m_1m_2 = -1$ with their numeric value from their dy/dx
	Equation of normal $y-3 = -\frac{6}{5}(x-2)$ OE	A1	Unsimplified. Can use $y = mx + c$ to get $c = 5.4$ ISW
	or $5y + 6x = 27$ or $y = \frac{-6}{5}x + \frac{27}{5}$		
ii)	EITHER:	(B1	Correct expression without ÷5
	For the curve $(\int)\sqrt{5x-1}dx = \frac{(5x-1)^{\frac{3}{2}}}{\frac{3}{2}} \div 5$	B1	For dividing an attempt at integration of y by 5
	Limits from $\frac{1}{5}$ to 2 used \rightarrow 3.6 or $\frac{18}{5}$ OE	M1 A1	Using $\frac{1}{5}$ and 2 to evaluate an integrand (may be $\int y^2$)
	Normal crosses <i>x</i> -axis when $y = 0, \rightarrow x = (4\frac{1}{2})$	M1	Uses their equation of normal, NOT tangent
	Area of triangle = 3.75 or $\frac{15}{4}$ OE	A1	This can be obtained by integration
	Total area= $3.6 + 3.75 = 7.35, \frac{147}{20}$ OE	A1)	
	OR: For the curve: $(\int)\frac{1}{5}(y^2+1)dy = \frac{1}{5}\left(\frac{y^3}{3}+y\right)$	(B2, 1, 0	-1 each error or omission.
	Limits from 0 to 3 used $\rightarrow 2.4$ or $\frac{12}{5}$ OE	M1 A1	Using 0 and 3 to evaluate an integrand
	Uses their equation of normal, NOT tangent.	M1	Either to find side length for trapezium or attempt at integrating between 0 and 3
	Area of trapezium = $\frac{1}{2}(2+4\frac{1}{2}) \times 3 = \frac{39}{4}or \cdot 9\frac{3}{4}$	A1	This can be obtained by integration
	Shaded area = $\frac{39}{4} - \frac{12}{5} = 7.35, \frac{147}{20}$ OE	A1)	

i(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1	Sets $\frac{dy}{dx}$ to 0 and attempts to solve leading to two values for <i>x</i> .
	x = 1, x = 4	A1	Both values needed
		2	
s(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -2x + 5$	B1	
	Using both of their x values in their $\frac{d^2 y}{dx^2}$	M1	Evidence of any valid method for both points.
	$x = 1 \rightarrow (3) \rightarrow$ Minimum, $x = 4 \rightarrow (-3) \rightarrow$ Maximum	A1	
		3	
(iii)	$y = -\frac{x^3}{3} + \frac{5x^2}{2} - 4x (+c)$	B2, 1, 0	+c not needed. -1 each error or omission.
	Uses $x = 6$, $y = 2$ in an integrand to find $c \rightarrow c = 8$	M1 A1	Statement of the final equation not required.
		4	

(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 4 = 0$		Can use completing the square.
	$\rightarrow x = 2, y = 3$	B1 B1	
	Midpoint of <i>AB</i> is (3, 5)	B1 FT	FT on (<i>their</i> 2, <i>their</i> 3) with (4,7)
	$\rightarrow m = \frac{7}{3} (\text{or } 2.33)$	B1	
		4	
(ii)	Simultaneous equations $\rightarrow x^2 - 4x - mx + 9 (= 0)$	*M1	Equates and sets to 0 must contain m
	Use of $b^2 - 4ac \rightarrow (m+4)^2 - 36$	DM1	Any use of $b^{2}-4ac$ on equation set to 0 must contain m
	Solves = $0 \rightarrow -10$ or 2	A1	Correct end-points.
	-10 < m < 2	A1	Don't condone \leq at either or both end(s). Accept $-10 \leq m, m \leq 2$
		4	
Quest	tion 97		

(i)	Area = $\int \frac{1}{2} \left(x^4 - 1 \right) dx = \frac{1}{2} \left[\frac{x^5}{5} - x \right]$	*B1	
	$\frac{1}{2}\left[\frac{1}{5}-1\right]-0 = (-)\frac{2}{5}$	DM1A1	Apply limits 0→1
		3	
(ii)	$Vol = \pi \int y^2 dx = \frac{1}{4} (\pi) \int (x^8 - 2x^4 + 1) dx$	M1	(If middle term missed out can only gain the M marks)
	$\frac{1}{4}(\pi)\left[\frac{x^9}{9} - \frac{2x^5}{5} + x\right]$	*A1	
	$\frac{1}{2}(\pi)\left[\left(\frac{1}{9}-\frac{2}{5}+1\right]-0\right]$	DM1	.5
	$\frac{8\pi}{45}$ or 0.559	A1	
		4	
)(iii)	Vol = $\pi \int x^2 dy = (\pi) \int (2y+1)^{1/2} dy$	M1	Condone use of x if integral is correct
	$(\pi) \left[\frac{(2y+1)^{3/2}}{3/2} \right] [\div 2]$	*A1A1	Expect $(\pi)\left[\frac{(2y+1)^{3/2}}{3}\right]$
	$(\pi)\left[\frac{1}{3}-0\right]$	DM1	
	$\frac{\pi}{3}$ or 1.05	A1	Apply $-\frac{1}{2} \rightarrow 0$
		5	

(i)	$V = \frac{1}{3}\pi r^2 (18 - r) = 6\pi r^2 - \frac{1}{3}\pi r^3$	B1	AG
		1	
(ii)	$\frac{\mathrm{d}\nu}{\mathrm{d}r} = 12\pi r - \pi r^2 = 0$	M1	Differentiate and set = 0
	$\pi r (12 - r) = 0 \rightarrow r = 12$	A1	
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = 12\pi - 2\pi r$	M1	
	Sub $r = 12 \rightarrow 12\pi - 24\pi = -12\pi \rightarrow MAX$	A1	AG
		4	
(iii)	Sub $r = 12$, $h = 6 \rightarrow \text{Max} V = 288\pi$ or 905	B1	
		1	

Question 99

	$\frac{dy}{dx} = 3x^{1/2} - 3 - 2x^{-1/2}$	B2,1,0	
	at $x = 4$, $\frac{dy}{dx} = 6 - 3 - 1 = 2$	M1	
	Equation of tangent is $y = 2(x-4)$ OE	A1FT	Equation through (4, 0) with <i>their</i> gradient
		4	
Que	estion 100		

$\mathbf{f}(x) = 3x^2 - 2x - 8$	M1	Attempt differentiation
$-\frac{4}{3}$, 2 SOI	A1	
$\mathbf{f}(x) > 0 \Rightarrow x < -\frac{4}{3} \text{ SOI}$	M1	Accept $x > 2$ in addition. FT <i>their</i> solutions
Largest value of <i>a</i> is $-\frac{4}{3}$	A1	Statement in terms of <i>a</i> . Accept $a \leq -\frac{4}{3}$ or $a < -\frac{4}{3}$. Penalise extra solutions
	4	

.(i)	$dy / dx = [-2] - [3(1-2x)^{2}] \times [-2] (= 4 - 24x + 24x^{2})$	B2,1,0	Award for the accuracy within each set of square brackets
	$At x = \frac{1}{2} \frac{dy}{dx} = -2$	B1	
	Gradient of line $y = 1 - 2x$ is -2 (hence <i>AB</i> is a tangent) AG	B1	
(ii)	Shaded region = $\int_{0}^{\frac{1}{2}} (1-2x) - \int_{0}^{\frac{1}{2}} [1-2x - (1-2x)^{3}] \text{ oe}$	4 M1	Note: If area triangle OAB – area under the curve is used the first part of the integral for the area under the curve must be evaluated
	$= \int_{0}^{\frac{\pi}{2}} (1 - 2x)^{3} dx \qquad AC$	A1	
		2	
iii)	Area = $\left[\frac{\left(1-2x\right)^4}{4}\right] \left[\div -2\right]$	*B1B1	
	0 - (-1/8) = 1/8	DB1	OR $\int 1 - 6x + 12x^2 - 8x^3 = x - 3x^2 + 4x^3 - 2x^4$ (B2,1,0) Applying limits $0 \rightarrow \frac{1}{2}$
		3	

$\mathbf{f}'(x) = \frac{-8}{\left(x-2\right)^2}$	B1	SOI
$y = \frac{8}{x-2} + 2 \rightarrow y - 2 = \frac{8}{x-2} \rightarrow x - 2 = \frac{8}{y-2}$	M1	Order of operations correct. Accept sign errors
$f^{-1}(x) = \frac{8}{x-2} + 2$	A1	SOI
$\frac{-48}{(x-2)^2} + \frac{16}{x-2} + 4 - 5 (<0) \rightarrow x^2 - 20x + 84 (<0)$	M1	Formation of 3-term quadratic in $x_{x}(x-2)$ or $1/(x-2)$
(x-6)(x-14) or 6, 14	A1	SOI
2 < <i>x</i> < 6 , <i>x</i> > 14	A1	CAO
	б	

Question 103

(i)	$\mathrm{d}y / \mathrm{d}x = x - 6x^{\frac{1}{2}} + 8$	B2,1,0	
	Set to zero and attempt to solve a quadratic for $x^{\frac{1}{2}}$	M1	Could use a substitution for $x^{\frac{1}{2}}$ or rearrange and square correctly*
	$x^{\frac{1}{2}} = 4$ or $x^{\frac{1}{2}} = 2$ [$x = 2$ and $x = 4$ gets M1 A0]	A1	Implies M1. 'Correct' roots for <i>their</i> dy/dx also implies M1
	x = 16 or 4	A1FT	Squares of their solutions *Then A1,A1 for each answer
		5	
(ii)	$d^2 y / dx^2 = 1 - 3x^{-4/2}$	B1FT	FT on <i>their</i> dy/dx , providing a fractional power of x is present
		1	
(iii)	(When $x = 16$) $d^2 y / dx^2 = 1/4 > 0$ hence MIN	M1	Checking both of their values in their d^2y/dx^2
	(When $x = 4$) $d^2y/dx^2 = -1/2 < 0$ hence MAX	A1	All correct Alternative methods ok but must be explicit about values of x bein considered
	2	2	

$(y) = \frac{x^{\frac{3}{2}}}{\frac{1}{2}} - 3x (+c)$	B1B1	
Sub $(4, -6) -6 = 4 - 12 + c \rightarrow c = 2$	M1A1	$Expect (y) = 2x^{\frac{1}{2}} - 3x + 2$
	4	

Set = 0 and obtain $2(x+1)^3 = 1$ <u>convincingly</u> www AG $\frac{d^2y}{dx^2} = 2 + 2(x+1)^{-3} \text{ www}$ Sub, e.g., $(x+1)^{-3} = 2$ OE or $x = \left(\frac{1}{2}\right)^{\frac{1}{3}} - 1$	B1 B1 M1	Requires <u>exact</u> method – otherwise scores M0
1		Requires <u>exact</u> method – otherwise scores M0
Sub, e.g., $(x+1)^{-3} = 2$ OE or $x = \left(\frac{1}{2}\right)^{\frac{1}{3}} - 1$	M1	Requires exact method – otherwise scores M0
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6 \qquad \qquad \text{CAO www}$	A1	and exact answer – otherwise scores A0
	5	
$y^{2} = (x+1)^{4} + (x+1)^{-2} + 2(x+1)$ SOI	B 1	OR $y^2 = (x^4 + 4x^3 + 6x^2 + 4x + 1) + (2x + 2) + (x + 1)^{-2}$
$(\pi)\int y^2 dx = (\pi)\left[\frac{(x+1)^5}{5}\right] + \left[\frac{(x+1)^{-1}}{-1}\right] + \left[\frac{2(x+1)^2}{2}\right]$	B1B1B1	Attempt to integrate y^2 . Last term might appear as $(x^2 + 2x)$
OR $(\pi)\left[\frac{x^5}{5} + x^4 + 2x^3 + 2x^2 + x\right] + \left[x^2 + 2x\right] + \left[-\frac{1}{x+1}\right]$		
$(\pi)\left[\frac{32}{5} - \frac{1}{2} + 4 - \left(\frac{1}{5} - 1 + 1\right)\right]$	M1	Substitute limits $0 \rightarrow 1$ into an attempted integration of y^2 . Do not condone omission of value when $x = 0$
9.7π or 30.5	A1	Note: omission of $2(x+1)$ in first line $\rightarrow 6.7\pi$ scores 3/6 Ignore initially an extra volume, e.g. $(\pi) \int (4\frac{1}{2})^2$. Only take interaction account for the final answer
	6	

Que			
;(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 18x + 24$	M1A1	Attempt to differentiate. All correct for A mark
	$3x^2 - 18x + 24 = -3$	M1	Equate their $\frac{dy}{dx}$ to -3
	x = 3	A1	
	<i>y</i> = 6	A1	
	y-6=-3(x-3)	A1FT	FT on <i>their A</i> . Expect $y = -3x + 15$
		6	
(ii)	(3)(x-2)(x-4) SOI or $x=2, 4$ Allow $(3)(x+2)(x+4)$	M1	Attempt to factorise or solve. Ignore a RHS, e.g. = 0 or > 0, etc.
	Smallest value of k is 4	A1	Allow $k \ge 4$. Allow $k = 4$. Must be in terms of k
		2	

$\mathbf{f}(x) = \left[\frac{(3x-1)^{\frac{2}{3}}}{\frac{2}{3}}\right] [\div3] (+c)$	B1B1	
$1 = \frac{\frac{8^3}{3}}{2} + c$	M1	Sub $y = 1, x = 3$ Dep. on attempt to integrate and <i>c</i> present
$c = -1 \rightarrow y = \frac{1}{2} (3x - 1)^{\frac{2}{3}} - 1$ SOI	A1	
When $x = 0$, $y = \frac{1}{2}(-1)^{\frac{2}{3}} - 1 = -\frac{1}{2}$	DM1A1	Dep. on previous M1
	б	

l (i)	$y = \frac{x}{2} + \frac{6}{x} = 4 \to x = 2 \text{ or } 6$	B1 B1	Inspection or guesswork OK
	$\frac{dy}{dx} = \frac{1}{2} - \frac{6}{x^2}$	B1	Unsimplified OK
	When $x = 2$, $m = -1 \rightarrow x + y = 6$ When $x = 6$, $m = \frac{1}{3} \rightarrow y = \frac{1}{3}x + 2$	*M1	Correct method for either tangent
	Attempt to solve simultaneous equations	DM1	Could solve BOTH equations separately with $y = x$ and get $x = 3$ both times.
	(3,3)	A1	Statement about $y = x$ not required.
		6	
(ii)	$V = (\pi) \int \left(\frac{x^2}{4} + 6 + \frac{36}{x^2}\right) (dx)$	*M1	Integrate using $\pi \int y^2 dx$ (doesn't need π or dx). Allow incorrect squaring. Not awarded for $\pi \int \left\{ 4 - \left(\frac{x}{2} + \frac{6}{x}\right) \right\}^2 dx$. Integration indicated by increase in any power by 1.
	Integration $\rightarrow \frac{x^3}{12} + 6x - \frac{36}{x}$	A2,1	3 things wanted —1 each error, allow + C. (Doesn't need π)
	Using limits 'their 2' to 'their 6' $(53\frac{1}{3}\pi, \frac{160}{3}\pi, 168 \text{ awrt})$	DM1	Evidence of their values 6 and 2 from (i) substituted into their integrand and then subtracted. $48 - \left(-\frac{16}{3}\right)$ is enough.
	Vol for line: integration or cylinder $(\rightarrow 64\pi)$	M1	Use of $\pi r^2 h$ or integration of 4^2 (could be from $\left\{4 - \left(\frac{x}{2} + \frac{6}{x}\right)\right\}^2$)
	Subtracts $\rightarrow 10\frac{2}{3}\pi$ oe $\left(e.g.\frac{32}{3}\pi, 33.5 \text{ awrt}\right)$	A1	
i)	OR		
	$V = (\pi) \int 4^2 - \left(\frac{x}{2} + \frac{6}{x}\right)^2 (dx)$	M1 [*] M1	Integrate using $\pi \int y^2 dx$ (doesn't need π or dx) Integration indicated by increase in any power by 1.
	$= (\pi) \int 16 - \left(\frac{x^2}{4} + 6 + \frac{36}{x^2}\right) (dx)$.5
	$= (\pi) \left[16x - \left(\frac{x^3}{12} + 6x - \frac{36}{x}\right) \right] (dx)$	A2,1	$\operatorname{Or}\left[10x - \frac{x^3}{12} + \frac{36}{x}\right]$
	$=(\pi)(48-37\frac{1}{3})$	DM1	Evidence of their values 6 and 2 from (i) substituted
	$= 10\frac{2}{3}\pi \text{ oe}\left(\text{eg}\frac{32}{3}\pi, 33.5 \text{ awrt}\right)$	A1	
		6	

Uses $x = 2, y = 5$ $\rightarrow c = \frac{1}{2}$ oe isw $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1 A1 4	Uses (2, 5) in an integral (indicated by an increase in power by 1). No isw if candidate now goes on to produce a straight line equation
		No isw if candidate now goes on to produce a straight line equation
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	4	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$		
$\frac{dx}{dt} = 0.06 \div 3$	M1	Ignore notation. Must be 0.06÷3 for M1.
= 0.02 oe	A1	Correct answer with no working scores 2/2
	2	
$\frac{d^2 y}{dx^2} = \frac{1}{2} \left(4x + 1 \right)^{-\frac{1}{2}} \times 4$	B 1	
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \times \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{4x+1}} \times \sqrt{4x+1} (=2)$	B1FT	Must either show the algebraic product and state that it results in a constant or evaluate it as '= 2'. Must not evaluate at $x = 2$.
$dx^{*} dx \sqrt{4x+1}$		ft to apply only if $\frac{d^2 y}{dx^2}$ is of the form $k(4x+1)^{-\frac{1}{2}}$
	2	

0	$y = x^3 - 2x$	$x^2 + 5x^2$

0	$y = x^3 - 2x^2 + 5x$		
ı(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4x + 5$	B1	CAO
	Using $b^2 - 4ac \rightarrow 16 - 60 \rightarrow$ negative \rightarrow some explanation or completed square and explanation	M1 A1	Uses discriminant on equation (set to 0). CAO
		3	
(ii)	$m = 3x^2 - 4x + 5$ $\frac{dm}{dx} = 6x - 4 (= 0) \text{ (must identify as } \frac{dm}{dx} \text{)}$	B1FT	FT providing differentiation is equivalent
	$\rightarrow x = \frac{2}{3}, m = \frac{11}{3} \text{ or } \frac{dy}{dx} = \frac{11}{3}$	M1 A1	Sets to 0 and solves. A1 for correct <i>m</i> .
	Alt1: $m = 3\left(x - \frac{2}{3}\right)^2 + \frac{11}{3}, m = \frac{11}{3}$		Alt1: B1 for completing square, M1A1 for ans
	Alt2: $3x^2 - 4x + 5 - m = 0$, $b^2 - 4ac = 0$, $m = \frac{11}{3}$		Alt2: B1 for coefficients, M1A1 for ans
	$\frac{d^2m}{dx^2} = 6 + ve \rightarrow Minimum value or refer to sketch of curve or$	M1 A1	M1 correct method. A1 (no errors anywhere)
	check values of <i>m</i> either side of $x = \frac{2}{3}$,		
		5	
0(iii)	Integrate $\rightarrow \frac{x^4}{4} - \frac{2x^3}{3} + \frac{5x^2}{2}$	B2,1	Loses a mark for each incorrect term
	Uses limits 0 to 6 \rightarrow 270 (may not see use of lower limit)	M1 A1	Use of limits on an integral. CAO Answer only 0/4
		4	

$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{12}{\left(2x+1\right)^2} \rightarrow y = \frac{-12}{2x+1} \div 2 \ (+c)$	B1 B1	Correct without " \div 2". For " \div 2". Ignore "c".
Uses (1, 1) $\rightarrow c = 3 \ (\rightarrow y = \frac{-6}{2x+1} + 3)$	M1 A1	Finding "c" following integration. CAO
Sets y to 0 and attempts to solve for $x \to x = \frac{1}{2} \to ((\frac{1}{2}, 0))$	DM1 A1	Sets y to 0. $x = \frac{1}{2}$ is sufficient for A1.
	6	

Question 112

$y = 2x + \frac{5}{x} \rightarrow \frac{dy}{dx} = 2 - \frac{5}{x^2} = -3$ (may be implied) when $x = 1$.	M1 A1	Reasonable attempt at differentiation CAO (-3)
$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} \to -0.06$	M1 A1	Ignore notation, but needs to multiply $\frac{dy}{dx}$ by 0.02.
T PP.	4	

Question 113

_

$\mathbf{f}'(x) = 3x^2 + 4x - 4$	B1	
Factors or crit. values or sub any 2 values $(x \neq -2)$ into $f'(x)$ soi	M1	Expect $(x+2)(3x-2)$ or -2 , $\frac{2}{3}$ or any 2 subs (excluding $x = -2$).
For $-2 < x < \frac{2}{3}$, $\mathbf{f}'(x) < 0$; for $x > \frac{2}{3}$, $\mathbf{f}'(x) > 0$ soi Allow ≤ 0 , \geq	M1	Or at least 1 specific value $(\neq -2)$ in each interval giving opp signs Or $f(\frac{2}{3})=0$ and $f'(\frac{2}{3})\neq 0$ (i.e. gradient changes sign at $x = \frac{2}{3}$)
Neither www	A1	Must have 'Neither'
ALT 1 At least 3 values of f(x)	M1	e.g. $f(0) = 7$, $f(1) = 6$, $f(2) = 15$
At least 3 <u>correct</u> values of f(x)	A1	
At least 3 <u>correct</u> values of $f(x)$ spanning $x = \frac{2}{3}$	A1	-0
Shows a decreasing and then increasing pattern. Neither www	AI	Or similar wording. Must have 'Neither'
ALT 2 $f'(x) = 3x^2 + 4x - 4 = 3(x + \frac{2}{3})^2 - \frac{16}{3}$	B1B1	Do not condone sign errors
$\mathbf{f}'(\mathbf{x}) \ge -\frac{16}{3}$	M1	
f'(x) < 0 for some values and > 0 for other values. Neither www	A1	Or similar wording. Must have 'Neither'
	4	

(i)	$y = \frac{1}{3}ax^3 + \frac{1}{2}bx^2 - 4x (+c)$	B1	
	11 = 0 + 0 + 0 + c	M1	Sub $x = 0$, $y = 11$ into an integrated expression. <i>c</i> must be present
	$y = \frac{y_3}{ax^3} + \frac{y_2}{bx^2} - 4x + 11$	A1	
		3	
(ii)	4a + 2b - 4 = 0	M1	Sub $x = 2$, $dy / dx = 0$
	$\frac{1}{3}(8a)+2b-8+11=3$	M1	Sub $x = 2$, $y = 3$ into an integrated expression. Allow if 11 missing
	Solve simultaneous equations	DM1	Dep. on both M marks
	<i>a</i> = 3, <i>b</i> = -4	A1A1	Allow if no working seen for simultaneous equations
		5	

Question 115

$V = 4(\pi) \int (3x-1)^{-2/3} dx = 4(\pi) \left[\frac{(3x-1)^{1/3}}{1/3} \right] [\div 3]$	MIAIAI	Recognisable integration of y^2 (M1) Independent A1, A1 for [] []
$4(\pi)[2-1]$	DM1	Expect $4(\pi)(3x-1)^{\frac{1}{2}}$
4π or 12.6	A1	Apply limits $\frac{2}{3} \rightarrow 3$. Some working must be shown.
	5	
$dy / dx = (-2/3)(3x - 1)^{-4/3} \times 3$	B1	Expect $-2(3x-1)^{-4/3}$
When $x = 2/3$, $y = 2$ soi $dy/dx = -2$	B1B1	2nd B1 dep. on correct expression for dy//dx
Equation of normal is $y - 2 = \frac{1}{2}(x - \frac{2}{3})$	M1	Line through $(\frac{2}{3}, their 2)$ and with grad $-1/m$. Dep on m from diffn
$y = \frac{1}{2}x + \frac{5}{3}$	A1	0.5
0	5	

Integrate $\rightarrow \frac{\frac{3}{2}}{\frac{3}{2}} + 2\frac{\frac{1}{2}}{\frac{1}{2}}$ (+C)	B1 B1	B1 for each term correct – allow unsimplified. C not required.
$\left[\frac{\frac{3}{x^2}}{\frac{3}{2}} + 2\frac{x^2}{\frac{1}{2}}\right]_1^4 \to \frac{40}{3} - \frac{14}{3}$	MI	Evidence of 4 and 1 used correctly in their integrand ie at least one power increased by 1.
$=\frac{26}{3}$ oe	Al	Allow 8.67 awrt. No integrand implies use of integration function on calculator 0/4. Beware a correct answer from wrong working.
	4	

i)	$P \text{ is } (t, 5t) \ Q \text{ is } (t, t(9 - t^2)) \rightarrow 4t - t^3$		B1 B1	B1 for both y coordinates which can be implied by subsequent working. B1 for PQ allow $ 4t - t^3 $ or $ t^3 - 4t $. Note: $4x - x^3$ from equating line and curve 0/2 even if x th replaced by t.
			[2]	
$\frac{\mathrm{d}(P)}{\mathrm{d} t}$	$\frac{QQ}{t} = 4 - 3t^2$	BIFT		r differentiation of their <i>PQ</i> , which MUST be a cubic on, but can be $\frac{d}{dx}f(x)$ from (i) but not the equation rve.
= 0 -	$\rightarrow t = + \frac{2}{\sqrt{3}}$	M1	Setting th or x.	neir differential of PQ to 0 and attempt to solve for t
→ N	Jaximum $PQ = \frac{16}{3\sqrt{3}}$ or $\frac{16\sqrt{3}}{9}$	Al	award A	08 awrt. If answer comes from wrong method in (i) 0. nswer from correct expression by T&I scores 3/3.
		3		

Question 118	PRA	
$\frac{dy}{dx} = \left[\frac{3}{2} \times (4x+1)^{-\frac{1}{2}}\right] [\times 4] [-2] \left(\frac{6}{\sqrt{4x+1}} - 2\right)$	B2,1,0	Looking for 3 components
$\int y dx = \left[3(4x+1)^{\frac{3}{2}} \div \frac{3}{2} \right] \left[\div 4 \right] \left[-\frac{2x^2}{2} \right] (+C)$	B1 B1 B1	B1 for $3(4x+1)^{\frac{3}{2}} \div \frac{3}{2}$ B1 for '÷4'. B1 for ' $-\frac{2x^2}{2}$ '.
$\left(=\frac{(4x+1)^{\frac{3}{2}}}{2}-x^{2}\right)$		Ignore omission of + C. If included isw any attempt at evaluating.
	5	
At M , $\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \to \frac{6}{\sqrt{4x+1}} = 2$	M1	Sets their 2 term $\frac{dy}{dx}$ to 0 and attempts to solve (as far as $x = k$)
x = 2, y = 5	A1 A1	2.
2	3	0.
	prep.	

(i)	$0 = 9a + 3a^2$	M1	Sub $\frac{dy}{dx} = 0$ and $x = 3$
	a = -3 only	A1	
		2	
(ii)	$\frac{dy}{dx} = -3x^2 + 9x \to y = -x^3 + \frac{9x^2}{2} (+c)$	M1A1FT	Attempt integration. $\frac{1}{3}ax^3 + \frac{1}{2}a^2x^2$ scores M1. Ft on <i>their a</i> .
	$9\frac{1}{2} = -27 + 40\frac{1}{2} + c$	DM1	Sub $x = 3, y = 9\frac{1}{2}$. Dependent on <i>c</i> present
	<i>c</i> = -4	A1	Expect $y = -x^3 + \frac{9x^2}{2} - 4$
		4	
(iii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -6x + 9$	M1	$2ax + a^2$ scores M1
	At $x = 3$, $\frac{d^2 y}{dx^2} = -9 < 0$ MAX www	A1	Requires at least one of -9 or < 0 . Other methods possible.
	19	2	
Quest	tion 120		
7(1)	$2 - k(8 - 28 + 24) \rightarrow k = 1/2$	P1	

$2 = k(8 - 28 + 24) \to k = 1/2$	B1	
	1	
When $x = 5$, $y = [\frac{1}{2}](125 - 175 + 60) = 5$	M1	Or solve $[\frac{1}{2}](x^3 - 7x^2 + 12x) = x \Longrightarrow x = 5 [x = 0, 2]$
Which lies on $y = x$, oe	A1	
	2	
$\int \left[\frac{1}{2}(x^3 - 7x^2 + 12x) - x\right] dx .$	M1	Expect $\int \frac{1}{2}x^3 - \frac{7}{2}x^2 + 5x$
$\frac{1}{8}x^4 - \frac{7}{6}x^3 + \frac{5}{2}x^2$	B2,1,0FT	Ft on their k
2-28/3+10	DM1	Apply limits $0 \rightarrow 2$
8/3	A1	
OR $\frac{1}{8}x^4 - \frac{7}{6}x^3 + 3x^2$	B2,1,0FT	Integrate to find area under curve, Ft on their k
2-28/3+12	M1	Apply limits $0 \rightarrow 2$. Dep on integration attempted
Area $\Delta = \frac{1}{2} \times 2 \times 2$ or $\int_{0}^{2} x dx = \left[\frac{1}{2}x^{2}\right] = 2$	M1	
8/3	A1	
	5	

)(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[-\frac{1}{2}\left(4x-3\right)^{-2}\right] \times \left[4\right]$	B1B1	Can gain this in part (b)(ii)
	When $x = 1$, $m = -2$	B1FT	Ft from their $\frac{dy}{dx}$
	Normal is $y - \frac{1}{2} = \frac{1}{2}(x-1)$	M1	Line with gradient $-1/m$ and through A
	$y = \frac{1}{2}x$ soi	A1	Can score in part (b)
		5	
ï)(b)	$\frac{1}{2(4x-3)} = \frac{x}{2} \rightarrow 2x(4x-3) = 2 \rightarrow (2)(4x^2 - 3x - 1) (= 0)$	M1A1	x/2 seen on RHS of equation can score <i>previous</i> A1
	x = -1/4	A1	Ignore $x=1$ seen in addition
		3	
)(ii)	Use of chain rule: $\frac{dy}{dt} = (their - 2) \times (\pm) 0.3 = 0.6$	M1A1	Allow +0.3 or -0.3 for M1
		2	

Question 122

Sub (0, 2)	DMI	
	DMI	Dep on c present. Expect $c = 2$
Sub $(3, -1) \rightarrow -1 = 9k - 9 + their c$	DM1	
<i>k</i> = 2/3	Al	
	5	

(i)	$dy / dx = -2(2x - 1)^{-2} + 2$	B2,1,0	Unsimplified form ok (-1 for each error in '-2', ' $(2x-1)^{-2}$, and '2')
	$d^2y/dx^2 = 8(2x-1)^{-3}$	B1	Unsimplified form ok
		3	
(ii)	Set dy / dx to zero and attempt to solve – at least one correct step	M1	
	x = 0, 1	Al	Expect $(2x-1)^2 = 1$
	When $x = 0$, $d^2y / dx^2 = -8$ (or < 0). Hence MAX	B1	
	When $x = 1$, $d^2 y / dx^2 = 8$ (or > 0). Hence MIN	B1	Both final marks dependent on correct x and correct d^2y/dx^2 and no errors May use change of sign of dy/dx but not at $x = 1/2$
		4	

P(i)	$V = (\pi) \int (x^3 + x^2) (\mathrm{d}x)$	M1	Attempt $\int y^2 dx$
	$\left(\pi\right)\left[\frac{x^4}{4} + \frac{x^3}{3}\right]_0^3$	A1	
	$\left(\pi\right)\left[\frac{\$1}{4}+9\left(-0\right)\right]$	DM1	May be implied by a correct answer
	$\frac{117\pi}{4}$ oe	A1	Accept 91.9 If additional areas rotated about x-axis, maximum of M1A0DM1A0
		4	
)(ii)	$\frac{dy}{dx} = \frac{1}{2} \left(x^3 + x^2 \right)^{-1/2} \times \left(3x^2 + 2x \right)$	B2,1,0	Omission of $3x^2 + 2x$ is one error
	(At x = 3,) y = 6	B1	
	At $x = 3$, $m = \frac{1}{2} \times \frac{1}{6} \times 33 = \frac{11}{4}$ soi	DB1ft	Ft on <i>their</i> dy / dx providing differentiation attempted
	Equation of normal is $y-6=-\frac{4}{11}(x-3)$	DM1	Equation through (3, <i>their</i> 6) and with gradient $-1/their$ m
	When $x = 0, y = 7\frac{1}{11}$ oe	A1	
		6	
Quest	tion 125		
·			

$f'(-1) = 0 \rightarrow 3 - a + b = 0$ $f'(3) = 0 \rightarrow 27 + 3a + b = 0$	M1	Stationary points at $x = -1$ & $x = 3$ gives sim. equations in $a \& b$
<i>a</i> = -6	A1	Solve simultaneous equation
<i>b</i> =-9	A1	
Hence $f'(x) = 3x^2 - 6x - 9 \rightarrow f(x) = x^3 - 3x^2 - 9x(+c)$	B1	FT correct integration for <i>their a,b</i> (numerical a, b)
2 = -1 - 3 + 9 + c	M1	Sub $x = -1$, $y = 2$ into <i>their</i> integrated $f(x)$. <i>c</i> must be present
c=-3	A1	FT from <i>their</i> $f(x)$
$f(3) = k \rightarrow k = 27 - 27 - 27 - 3$	MI	Sub $x = 3$, $y = k$ into <i>their</i> integrated $f(x)$ (Allow <i>c</i> omitted)
<i>k</i> = -30	A1	
	8	

)(iii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}$	B1	
	$\frac{3}{2}(3x+4)^{\frac{1}{2}} = \frac{1}{2}$	M1	Allow M1 for $\frac{3}{2}(3x+4)^{-\frac{1}{2}} = 2$.
	$(3x+4)^{\frac{1}{2}}=3 \rightarrow 3x+4=9 \rightarrow x=\frac{5}{3}$ oe	A1	
		3	

(i)	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 7 \times -0.05$	M1	Multiply numerical gradient at $x = 2$ by ± 0.05 .
	-0.35 (units/s) or Decreasing at a rate of (+) 0.35	A1	Ignore notation and omission of units
		2	
(ii)	$(y) = \frac{x^4}{4} + \frac{4}{x} (+c)$ oe	B1	Accept unsimplified
	Uses (2, 9) in an integral to find c.	M1	The power of at least one term increase by 1.
	$c = 3$ or $(y =)\frac{x^4}{4} + \frac{4}{x} + 3$ oe	A1	A0 if candidate continues to a final equation that is a straight line.
		3	

Que			
l(i)	$\frac{dy}{dx} = \left[\frac{1}{2}(4x+1)^{-\frac{1}{2}}\right] [\times 4] \left[-\frac{9}{2}(4x+1)^{-\frac{3}{2}}\right] [\times 4]$	B1B1B1	B1 B1 for each, without × 4. B1 for ×4 twice.
	$\left(\frac{2}{\sqrt{4x+1}} - \frac{18}{\left(\sqrt{4x+1}\right)^3} or \frac{8x-16}{\left(4x+1\right)^{\frac{3}{2}}}\right)$		SC If no other marks awarded award B1 for both powers of $(4x + 1)$ correct.
	$\int y dx = \left[\frac{(4x+1)^{\frac{3}{2}}}{\frac{3}{2}}\right] [\div 4] + \left[\frac{9(4x+1)^{\frac{1}{2}}}{\frac{1}{2}}\right] [\div 4] (+C)$	B1B1B1	B1 B1 for each, without ÷ 4. B1 for ÷4 twice. + C not required.
	$\boxed{\left(\frac{\left(\sqrt{4x+1}\right)^{3}}{6} + \frac{9}{2}\left(\sqrt{4x+1}\right)(+C)\right)}$		SC If no other marks awarded, B1 for both powers of $(4x + 1)$ correct.
		6	
.(ii)	$\frac{dy}{dx} = 0 \to \frac{2}{\sqrt{4x+1}} - \frac{18}{(4x+1)^{\frac{3}{2}}} = 0$	M1	Sets their $\frac{dy}{dx}$ to 0 (and attempts to solve
	$4x + 1 = 9 \text{ or } (4x + 1)^2 = 81$	A1	Must be from correct differential.
	x = 2, y = 6 or M is (2, 6) only.	A1	Both values required. Must be from correct differential.
	·satprev	3	
(iii)	Realises area is $\int y dx$ and attempt to use their 2 and sight of 0.	*M1	Needs to use their integral and to see ' <i>their 2</i> ' substituted.
	Uses limits 0 to 2 correctly \rightarrow [4.5 + 13.5] – [$\frac{1}{6}$ + 4.5] (= 13 ^{1/3})	DM1	Uses both 0 and ' <i>their 2</i> ' and subtracts. Condone wrong way round.
	(Area =) 1 ¹ / ₃ or 1.33	A1	Must be from a correct differential and integral.
		3	13 ¹ / ₂ or 1 ¹ / ₂ with little or no working scores M1DM0A0.

i)	integrating $\rightarrow \frac{dy}{dx} = x^2 - 5x (+c)$	B1	
	= 0 when $x = 3$	M1	Uses the point to find c after $\int = 0$.
	<i>c</i> = 6	A1	
	integrating again $\rightarrow y = \frac{x^3}{3} - \frac{5x^2}{2} + 6x (+d)$	B1	FT Integration again FT if a numerical constant term is present.
	use of (3, 6)	M1	Uses the point to find d after $\int = 0$.
	$d = 1\frac{1}{2}$	A1	
		6	
ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - 5x + 6 = 0 \longrightarrow x = 2$	B1	
		1	
iii)	$x = 3$, $\frac{d^2y}{dx^2} = 1$ and/or +ve Minimum.	B1	www
	$x = 2, \frac{d^2y}{dx^2} = -1$ and/or -ve Maximum		
	May use shape of $+x^3$, curve or change in sign of $\frac{dy}{dx}$	B1	www SC: $x = 3$, minimum, $x = 2$, maximum, B1
		2	
)ue	stion 130		

(i)	$3 \times -\frac{1}{2} \times \left(1 + 4x\right)^{\frac{3}{2}}$	B 1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 \times -\frac{1}{2} \times (1+4x)^{-\frac{3}{2}} \times 4$	B1	Must have '× 4'
	If $x = 2$, $m = -\frac{2}{9}$, Perpendicular gradient $= \frac{9}{2}$	M1	Use of $m_1.m_2 = -1$
	Equation of normal is $y-1=\frac{9}{2}(x-2)$	M1	Correct use of line eqn (could use y=0 here)
	Put $y = 0$ or on the line before $\rightarrow \frac{16}{9}$	A1	AG
	dipion	5	
l(ii)	Area under the curve = $\int_{0}^{2} \frac{3}{\sqrt{1+4x}} dx = \frac{3\sqrt{1+4x}}{\frac{1}{2}} \div 4$	B1 B1	Correct without '÷4'. For 2nd B1, ÷4'.
	Use of limits 0 to $2 \rightarrow 4\frac{1}{2} - 1\frac{1}{2}$	M1	Use of correct limits in an integral.
	3	A1	
	Area of the triangle = $\frac{1}{2} \times 1 \times \frac{2}{9} = \frac{1}{9}$ or attempt to find $\int_{16/9}^{2} \left(\frac{9}{2}x - 8\right) dx$	M1	Any correct method.
	Shaded area = $3 - \frac{1}{9} = 2\frac{8}{9}$	A1	
		6	

	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2(x-1)^{-3}$	B1	
	When $x = 2, m = -2 \rightarrow \text{gradient of normal} = -\frac{1}{m}$	M1	<i>m</i> must come from differentiation
	Equation of normal is $y-3=\frac{1}{2}(x-2) \rightarrow y=\frac{1}{2}x+2$	A1	AG Through (2, 3) with gradient $-\frac{1}{m}$. Simplify to AG
		3	
)	$(\pi) \int y_1^2(dx), (\pi) \int y_2^2(dx)$	*M1	Attempt to integrate y^2 for at least one of the functions
	$ (\pi) \int \left(\frac{1}{2}x+2\right)^2 \text{ or } \left(\frac{1}{4}x^2+2x+4\right) (\pi) \int \left(\left(x-1\right)^{-4}+4\left(x-1\right)^{-2}+4\right) $	A1A1	A1 for $(\frac{1}{2}x+2)^2$ depends on an attempt to integrate this form later
	$ (\pi) \left[\frac{2}{3} \left(\frac{1}{2} x + 2 \right)^3 \text{ or } \frac{1}{12} x^3 + x^2 + 4x \right] $ $ (\pi) \left[\frac{(x-1)^{-3}}{-3} + \frac{4(x-1)^{-1}}{-1} + 4x \right] $	A1A1	Must have at least 2 terms correct for each integral
	$(\pi)\left\{18 - \frac{125}{12} \text{ or } \frac{2}{3} + 4 + 8 - \left(\frac{1}{12} + 1 + 4\right)\right\} \left\{\frac{-1}{24} - 2 + 12 - \left(\frac{-1}{3} - 4 + 8\right)\right\}$	DM1	Apply limits to at least 1 integrated expansion
	Attempt to add 2 volume integrals (or 1 volume integral + frustum) $\pi \left\{ 7 \frac{7}{12} + 6 \frac{7}{24} \right\}$	DM1	
	$13\frac{7}{8}\pi$ or $\frac{111}{8}\pi$ or 13.9π or 43.6	A1	$\frac{2}{3} + 4 + 8 - \left(\frac{1}{12} + 1 + 4\right) \frac{-1}{24} - 2 + 12 - \left(\frac{-1}{3} - 4 + 8\right)$
Ĩ		8	

$(y=) \frac{kx^{\frac{1}{2}+1}}{-\frac{1}{2}+1} \left(= \frac{k\sqrt{x}}{\frac{1}{2}} \right) (+c)$	B1	OE
Substitutes both points into an integrated expression with a '+ c ' and solve as far as a value for one variable.	M1	Expect to see $-1 = 2k + c$ and $4 = 4k + c$
$k = 2\frac{1}{2}$ and $c = -6$	A1	www
$y = 5\sqrt{x} - 6$	A1	OE From correct values of both $k \& c$ and correct integral.
	4	

Use of Pythagoras $\rightarrow r^2 = 15^2 - h^2$	M1	
$V = \frac{1}{3}\pi(225 - h^2) \times h \longrightarrow \frac{1}{3}\pi(225h - h^3)$	2 4 6 6 7 6 6 G	AG WWW e.g. sight of $r = 15 - h$ gets A0.
	2	
$\left(\frac{\mathrm{d}v}{\mathrm{d}h}\right) = \frac{\pi}{3}\left(225 - 3h^2\right)$	B1	
Their $\frac{\mathrm{d}v}{\mathrm{d}h} = 0$	M1	Differentiates, sets <i>their</i> differential to 0 and attempts to solve at least as far as $h^2 \neq 0$.
$(h =) \sqrt{75}, 5\sqrt{3} \text{ or AWRT 8.66}$	A1	Ignore $-\sqrt{75}$ OE and ISW for both A marks
$\frac{\mathrm{d}^2 h}{\mathrm{d}h^2} = \frac{\pi}{3} \ (-6h) \ (\to -\mathrm{ve})$	M1	Differentiates for a second time and considers the sign of the second differential or any other valid complete method.
→ Maximum	A1FT	Correct conclusion from correct 2nd differential, value for h not required, or any other valid complete method. FT for <i>their</i> h , if used, as long as it is positive.
9		SC Omission of π or $\frac{\pi}{3}$ throughout can score B0M1A1M1A0
	5	
Question 134		

At $A, x = \frac{1}{2}$.	B 1	Ignore extra answer $x = -1.5$
$\frac{dy}{dx} = 2 \rightarrow \text{Gradient of normal} (=-\frac{1}{2})$	*M1	With <i>their</i> positive value of x at A and <i>their</i> $\frac{dy}{dx}$, uses $m_1m_2 = -1$
Equation of normal: $y - 0 = -\frac{1}{2}(x - \frac{1}{2})$ or $y - 0 = -\frac{1}{2}(0 - \frac{1}{2})$ or $0 = -\frac{1}{2} \times \frac{1}{2} + c$	DM1	Use of <i>their</i> x at A and <i>their</i> normal gradient.
B (0, ¼)	A1	-0'
Satore	04	
At $A, x = \frac{1}{2}$.	B1	Ignore extra answer $x = -1.5$
$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 \rightarrow \text{Gradient of normal} (=-\frac{1}{2})$	*M1	With <i>their</i> positive value of x at A and <i>their</i> $\frac{dy}{dx}$, uses $m_1m_2 = -1$
Equation of normal: $y - 0 = -\frac{1}{2}(x - \frac{1}{2})$ or $y - 0 = -\frac{1}{2}(0 - \frac{1}{2})$ or $0 = -\frac{1}{2} \times \frac{1}{2} + c$	DM1	Use of <i>their x</i> at <i>A</i> and <i>their</i> normal gradient.
B (0, ¼)	A1	
	4	

)(iii)	$\int_{0}^{\frac{1}{2}} 1 - \frac{4}{(2x+1)^{2}} (dx)$	*M1	$\int y dx$ SOI with 0 and <i>their</i> positive x coordinate of A.
	$[\frac{1}{2}+1]-[0+2]=(-\frac{1}{2})$	DM1	Substitutes both 0 and their ½ into their Jydx and subtracts.
	Area of triangle above x-axis = $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{4} \left(= \frac{1}{16} \right)$	B1	
	Total area of shaded region = $\frac{9}{16}$	A1	OE (including AWRT 0.563)
	Alternative method for question 10(iii)		
	$\int_{-3}^{0} \frac{1}{(1-y)^{\frac{1}{2}}} - \frac{1}{2}(dy)$	*M1	$\int x dy$ SOI. Where x is of the form $k \left(1-y\right)^{-\frac{1}{2}} + c$ with 0 and <i>their</i> negative y intercept of curve.
	$\begin{bmatrix} -2 \end{bmatrix} - \begin{bmatrix} -4 + \frac{3}{2} \end{bmatrix} = (\frac{1}{2})$	DM1	Substitutes both 0 and <i>their</i> -3 into <i>their</i> $\int x dy$ and subtracts.
	Area of triangle above x-axis = $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{4} \left(= \frac{1}{16} \right)$	B1	
	Total area of shaded region = $\frac{9}{16}$	A1	OE (including AWRT 0.563)
Que	stion 135		

Attempt to solve $f'(x) = 0$ or $f'(x) > 0$ or $f'(x) \ge 0$	M1	SOI
(x-2)(x-4)	A1	2 and 4 seen
(Least possible value of n is) 4	A1	Accept $n = 4$ or $n \ge 4$
	3	
Question 136		

)(i)	$y = \left[\left(5x - 1 \right)^{1/2} \div \frac{3}{2} \div 5 \right] \left[-2x \right]$	B1 B1	2.
	$3 = \frac{27}{(3/2) \times 5} - 4 + c$	M1	Substitute $x = 2, y = 3$
	$c = 7 - \frac{18}{5} = \frac{17}{5} \rightarrow \left(y = \frac{2(5x-1)^{\frac{3}{2}}}{15} - 2x + \frac{17}{5} \right)$	A1	
(ii)	$d^{2}y / dx^{2} = \left[\frac{1}{2}(5x-1)^{-1/2}\right] [\times 5]$	B1 B1	
(iii)	$(5x-1)^{1/2} - 2 = 0 \rightarrow 5x - 1 = 4$ x = 1	M1A1	Set $\frac{dy}{dx} = 0$ and attempt solution (M1)
	$y = \frac{16}{25} - 2 + \frac{17}{5} = \frac{37}{15}$	A1	Or 2.47 or $\left(1, \frac{37}{15}\right)$
	$\frac{d^2 y}{dx^*} = \frac{5}{2} \times \frac{1}{2} = \frac{5}{4}$ (> 0) hence minimum	A1	OE

(i)	$(y=)(x+2)^2-1$	B1 DB1	2nd B1 dependent on 2 in bracket
	$x + 2 = (\pm)(y + 1)^{1/2}$	M1	
	$x = -2 + (y+1)^{1/2}$	A1	
(ii)	$x^{2} = 4 + (y+1) - (y+1)^{\frac{1}{2}}$	*M1A1	SOI. Attempt to find x^2 . The last term can be – or + at this stage
	$(\pi) \int x^{2} (dy) = (\pi) \left[5y + \frac{y^{2}}{2} - \frac{4(y+1)^{\frac{3}{2}}}{\frac{3}{2}} \right]$	A2,1,0	
	$(\pi)\left[15+\frac{9}{2}-\frac{64}{3}-\left(-5+\frac{1}{2}\right)\right]$	DM1	Apply <i>y</i> limits
	$\frac{8\pi}{3}$ or 8.38	A1	
			I

Question 138

$\mathbf{f}'(x) = \left[-(3x+2)^{-2} \right] \times [3] + [2x]$	B2, 1, 0	
< 0 hence decreasing	B1	Dependent on at least B1 for $f'(x)$ and must include < 0 or '(always) neg'
	3	
Question 139		

Question 139

(π) $\int (y-1) dy$	*M1	SOI Attempt to integrate x^2 or $(y-1)$
$(\pi)\left[\frac{y^2}{2}-y\right]$	A1	.5
$(\pi)\left[\left(\frac{25}{2}-5\right)-\left(\frac{1}{2}-1\right)\right]$	DM1	Apply limits $1 \rightarrow 5$ to an integrated expression
8π or AWRT 25.1	A1	
	4	

$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 2$	B1	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{6}$	B1	OE, SOI
$their(2x-2) = their\frac{4}{6}$	M1	LHS and RHS must be <i>their</i> $\frac{dy}{dx}$ expression and value
$x=\frac{4}{3}$ oe	A1	
	4	

(a)	$2(a+3)^{\frac{1}{2}} - a = 0$	M1	SOI. Set $\frac{dy}{dx} = 0$ when $x = a$. Can be implied by an answer in terms of a
	$4(a+3) = a^2 \to a^2 - 4a - 12 = 0$	M1	Take <i>a</i> to RHS and square. Form 3-term quadratic
	$(a-6)(a+2) \rightarrow a=6$	A1	Must show factors, or formula or completing square. Ignore $a = -2$ SC If <i>a</i> is never used maximum of M1A1 for $x = 6$, with visible solution
		3	
(b)	$\frac{d^2 y}{dx^2} = \left(x+3\right)^{\frac{1}{2}} - 1$	B1	
	Sub their $a \to \frac{d^2 y}{dx^2} = \frac{1}{3} - 1 = -\frac{2}{3} (or < 0) \to MAX$	M1A1	A mark only if completely correct If the second differential is not $-\frac{2}{3}$ correct conclusion must be drawn to award the M1
		3	
(c)	$(y=)\frac{2(x+3)^{\frac{3}{2}}}{\frac{3}{2}} - \frac{1}{2}x^2 (+c)$	B1B1	
	Sub $x = their \ a \text{ and } y = 14 \rightarrow 14 = \frac{4}{3}(9)^{\frac{3}{2}} - 18 + c$	M1	Substitute into an integrated expression. c must be present. Expect $c = -4$
	$y = \frac{4}{3}(x+3)^{\frac{3}{2}} - \frac{1}{2}x^2 - 4$	A1	Allow $f(x) = \dots$
		4	
Que	stion 142		
			B1

$(y) = \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{3x^{\frac{1}{2}}}{\frac{1}{2}} (+c)$	B1 B1
7 = 16 - 12 + c (M1 for subsituting $x = 4$, $y = 7$ into <i>their</i> integrated expansion	on) M1
$y = 2x^{\frac{3}{2}} - 6x^{\frac{1}{2}} + 3$	A1
	4

$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{1}{2}(5x-1)^{-1/2}\right] \times [5]$	B1 B1
Use $\frac{dy}{dt} = 2 \times \left(their \frac{dy}{dx} \text{ when } x = 1 \right)$	M1
$\frac{5}{2}$	A1
	4
$2 \times their \frac{5}{2} (5x-1)^{-1/2} = \frac{5}{8}$ oe	M1
$(5x-1)^{1/2} = 8$	A1
x=13	A1
	3

(a) $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4bx + b^2$	B1
$3x^2 - 4bx + b^2 = 0 \rightarrow (3x - b)(x - b) (= 0)$	M1
$x = \frac{b}{3}$ or b	A1
$a = \frac{b}{3} \rightarrow b = 3a$ AG	A1
Alternative method for question 11(a)	
$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4bx + b^2$	B1
Sub $b = 3a$ & obtain $\frac{dy}{dx} = 0$ when $x = a$ and when $x = 3a$	M1
$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 12a$	A1
< 0 Max at $x = a$ and > 0 Min at $x = 3a$. Hence $b = 3a$ AG	A1
	4
(b) Area under curve = $\int (x^3 - 6ax^2 + 9a^2x) dx$	M1
$\frac{x^4}{4} - 2ax^3 + \frac{9a^2x^2}{2}$	B2,1,0
$\frac{a^4}{4} - 2a^4 + \frac{9a^4}{2} \left(= \frac{11a^4}{4} \right)$ (M1 for applying limits $0 \rightarrow a$)	M1
When $x = a$, $y = a^3 - 6a^3 + 9a^3 = 4a^3$	B1
Area under line = $\frac{1}{2}a \times their 4a^3$	M1
Shaded area = $\frac{11a^4}{4} - 2a^4 = \frac{3}{4}a^4$	A1
	7

Question 145

Volume after 30 s = 18000	$\frac{4}{3}\pi r^{3} = 18000$	M1
r = 16.3 cm		A1
		2
$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$		B1
$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{600}{4\pi r^2}$		M1
$\frac{\mathrm{d}r}{\mathrm{d}t} = 0.181 \mathrm{cm} \mathrm{per} \mathrm{second}$		A1
		3

ī

(a)	$Volume = \pi \int x^2 dy = \pi \int \frac{36}{y^2} dy$	*M1
	$=\pi\left[\frac{-36}{y}\right]$	A1
	Uses limits 2 to 6 correctly \rightarrow (12 π)	DM1
	Vol of cylinder = π . 1 ² .4 or $\int 1^2 dy = [y]$ from 2 to 6	M1
	$Vol = 12\pi - 4\pi = 8\pi$	A1
		5
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-6}{x^2}$	B1
	$\frac{-6}{x^2} = -2 \longrightarrow x = \sqrt{3}$	M1
	$y = \frac{6}{\sqrt{3}} = 2\sqrt{3} \text{Lies on } y = 2x$	A1
	T PD	3

$\frac{dy}{dx} = 54 - 6(2x - 7)^2$ $\frac{d^2y}{dx} = -24(2x - 7)^2$	
$\frac{d^2y}{dx^2} = -24(2x - 7)$ (FT only for omission of '×2' from the bracket)	B2,1 F
$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \to (2x - 7)^2 = 9$	М
x = 5, y = 243 or $x = 2, y = 135$	A1 A
$x = 5 \frac{d^2 y}{dx^2} = -72 \rightarrow \text{Maximum}$ (FT only for omission of '×2 ' from the bracket)	B1F
$x = 2 \frac{d^2 y}{dx^2} = 72 \rightarrow \text{Minimum}$	B1F
(FT only for omission of '×2' from the bracket)	

(a)	$\frac{dy}{dx} = 3(3-2x)^2 \times -2 + 24 = -6(3-2x)^2 + 24$	B1B1
	(B1 without $\times -2$. B1 for $\times -2$)	
	$\frac{d^2 y}{dx^2} = -12(3-2x) \times -2 = 24(3-2x)$	B1FT B1
	(B1FT from $\frac{dy}{dx}$ without -2)	
		4
(b)	$\frac{dy}{dx} = 0$ when $6(3-2x)^2 = 24 \rightarrow 3-2x = \pm 2$	M1
	$x = \frac{1}{2}, y = 20$ or $x = \frac{2}{2}, y = 52$ (A1 for both x values or a correct pair)	A1A1
		3
(c)	If $x = \frac{y_2}{dx^2} = 48$ Minimum	B1FT
	If $x = 2\frac{1}{2}$, $\frac{d^2y}{dx^2} = -48$ Maximum	B1FT
	TPR	2

l(a)	Simultaneous equations $\frac{8}{x+2} = 4 - \frac{1}{2x}$	M1
	$x = 0$ or $x = 6 \rightarrow A(0, 4)$ and $B(6, 1)$	B1A1
	At $C \frac{-8}{(x+2)^2} = -\frac{1}{2} \to C(2,2)$	B1
	$(x+2)^2$ 2 (B1 for the differentiation. M1 for equating and solving)	M1A1
		6
l(b)	Volume under line = $\pi \int \left(-\frac{1}{2}x+4\right)^2 dx = \pi \left[\frac{x^3}{12}-2x^2+16x\right] = (42\pi)$ (M1 for volume formula. A2,1 for integration)	M1 A2,1
	Volume under curve = $\pi \int \left(\frac{8}{x+2}\right)^2 dx = \pi \left[\frac{-64}{x+2}\right] = (24\pi)$	A1
	Subtracts and uses 0 to $6 \rightarrow 18\pi$	M1A1
		6

(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{x^{-1/2}}{2k}\right] - \left[\frac{x^{-3/2}}{2}\right] + ([0])$	B2, 1, 0	([0]) implies that more than 2 terms counts as an error
	Sub $\frac{dy}{dx} = 3$ when $x = \frac{1}{4}$ Expect $3 = \frac{1}{k} - 4$	M1	
	$k = \frac{1}{7}$ (or 0.143)	A1	
		4	

(b)

$\int \frac{1}{k} x^{1/2} + x^{-1/2} + \frac{1}{k^2} = \left[\frac{2x^{3/2}}{3k} \right] + \left[2x^{1/2} \right] + \left[\frac{x}{k^2} \right]$	B2, 1, 0	OE
$\left(\frac{2k^2}{3} + 2k + 1\right) - \left(\frac{k^2}{12} + k + \frac{1}{4}\right)$	M1	Apply limits $\frac{k^2}{4} \rightarrow k^2$ to an integrated expression. Expect $\frac{7}{12}k^2 + k + \frac{3}{4}$
$\frac{7}{12}k^2 + k + \frac{3}{4} = \frac{13}{12}$	M1	Equate to $\frac{13}{12}$ and simplify to quadratic. OE, expect $7k^2 + 12k - 4 (= 0)$
$k = \frac{2}{7}$ only (or 0.286)	A1	Dependent on $(7k-2)(k+2) (=0)$ or formula or completing square.
	5	

Oue	stion 151		
Que			
(a)	$\frac{dy}{dx} = [2] [-2(2x+1)^{-2}]$	B1 B1	
	$\frac{d^2 y}{dx^2} = 8(2x+1)^{-3}$	B1	2
	3	3	
(b)	Set <i>their</i> $\frac{dy}{dx} = 0$ and attempt solution	M1	
	$(2x+1)^2 = 1 \rightarrow 2x+1 = (\pm) 1 \text{ or } 4x^2 + 4x = 0 \rightarrow (4)x(x+1) = 0$	M1	Solving as far as $x = \dots$
	<i>x</i> = 0	A1	WWW. Ignore other solution.
	(0, 2)	A1	One solution only. Accept $x = 0$, $y = 2$ only.
	$\frac{d^2 y}{dx^2} > 0$ from a solution $x > -\frac{1}{2}$ hence minimum	B1	Ignore other solution. Condone arithmetic slip in value of $\frac{d^2y}{dx^2}$.
			Their $\frac{d^2 y}{dx^2}$ must be of the form $k(2x+1)^{-3}$
		5	

(a)	$\frac{-2}{x+2}$	B1	Integrate $f(x)$. Accept $-2(x+2)^{-1}$. Can be unsimplified.
	$0 - \left(-\frac{2}{3}\right) = \frac{2}{3}$	M1 A1	Apply limit(s) to an integrated expansion. CAO for A1
		3	
(b)	-1 = -2 + c	M1	Substitute $x = -1, y = -1$ into <i>their</i> integrated expression (<i>c</i> present)
	$y = \frac{-2}{x+2} + 1$	A1	Accept $y = -2(x+2)^{-1} + 1$ 2 must be resolved.
		2	

(a)	$\left(\frac{dy}{dx}\right) = [8] \times [(3-2x)^{-3}] + [-1]$ $\left(=\frac{8}{(3-2x)^3} - 1\right)$	B2, 1, 0	B2 for all three elements correct, B1 for two elements correct, B0 for only one or no elements correct.
	$\frac{d^2 y}{dx^2} = -3 \times 8 \times (3 - 2x)^{-4} \times (-2) \qquad \left(= \frac{48}{(3 - 2x)^4} \right)$	B1 FT	FT providing <i>their</i> bracket is to a negative power
	$\int y dx = [(3-2x)^{-1}] [2 \div (-1 \times -2)] [-\frac{1}{2}x^2] (+c) \qquad \left(= \frac{1}{3-2x} - \frac{1}{2}x^2 + c \right)$	B1 B1 B1	Simplification not needed, B1 for each correct element
		6	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \to (3-2x)^3 = 8 \to 3-2x = k \to x =$		Setting <i>their</i> 2-term differential to 0 and attempts to solve as far as $x =$
	$\frac{1}{2}$	A1	
	Alternative method for question 10(b)		
	$y = 0 \rightarrow \frac{2}{(3-2x)^2} - x = 0 \rightarrow (x-2)(2x-1)^2 = 0 \rightarrow x =$		Setting y to 0 and attempts to solve a cubic as far as $x =$ (3 factors needed)
	12 Satpre?	A1	
		2	
(c)	Area under curve = their $\left[\frac{1}{3-2\times\left(\frac{1}{2}\right)^2}-\frac{\left(\frac{1}{2}\right)^2}{2}\right]-\left[\frac{1}{3-2\times 0}-0\right]$		Using <i>their</i> integral, <i>their</i> positive <i>x</i> limit from part (b) and 0 correctly.
	$\frac{1}{24}$	A1	
		2	

(a)	$\mathbf{f'}(4)\left(=\frac{5}{2}\right)$	*M1	Substituting 4 into $f'(x)$
	$\left(\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}\right) \to \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = \frac{5}{2} \times 0.12$	DM1	Multiplies <i>their</i> f'(4) by 0.12
	$\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = 0.3$	A1	OE
		3	
(b)	$\frac{\frac{6x^{\frac{1}{2}}}{\frac{1}{2}} - \frac{4x^{-\frac{1}{2}}}{-\frac{1}{2}}(+c)}{\frac{1}{2}}$	B1 B1	B1 for each unsimplified integral.
	Uses (4, 7) leading to $c = (-21)$	M1	Uses (4, 7) to find a <i>c</i> value
	y or $f(x) = 12x^{\frac{1}{2}} + 8x^{-\frac{1}{2}} - 21$ or $12\sqrt{x} + \frac{8}{\sqrt{x}} - 21$	A1	Need to see y or $f(x)$ = somewhere in <i>their</i> solution and 12 and 8
	TPR:	4	

Question 155

- 14	٢.	-	. 1	£.	
		d			

$4x^{\frac{1}{2}} - 2x = 3 - x \to x - 4x^{\frac{1}{2}} + 3(=0)$	*M1	3-term quadratic. Can be expressed as e.g. $u^2 - 4u + 3 (=0)$
$\left(x^{\frac{1}{2}}-1\right)\left(x^{\frac{1}{2}}-3\right)(=0)$ or $(u-1)(u-3)(=0)$	DM1	Or quadratic formula or completing square
$x^{\frac{1}{2}} = 1, 3$	A1	SOI
<i>x</i> = 1, 9	A1	

Alternative method for question 12(a)

$\left(4x^{\frac{1}{2}}\right)^2 = (3+x)^2$	*M1	Isolate $x^{\frac{1}{2}}$
$16x = 9 + 6x + x^2 \rightarrow x^2 - 10x + 9 (= 0)$	A1	3-term quadratic
(x-1)(x-9) (=0)	DM1	Or formula or completing square on a quadratic obtained by a correct method
<i>x</i> = 1, 9	A1	
	4	
$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^{1/2} - 2$	*B1	
$\frac{dy}{dx}$ or $2x^{1/2} - 2 = 0$ when $x = 1$ hence <i>B</i> is a stationary point	DB1	
	2	

:(b)

Area of correct triangle = $\frac{1}{2}$ (9 – 3) × 6	M1	or $\int_{3}^{9} (3-x)(dx) = \left[3x - \frac{1}{2}x^{2} \right] \rightarrow -18$
$\int (4x^{\frac{1}{2}} - 2x)(dx) = \left[\frac{4x^{\frac{3}{2}}}{\frac{3}{2}} - x^{2}\right]$	B1 B1	
$(72-81)-\left(\frac{64}{3}-16\right)$	M1	Apply limits $4 \rightarrow their 9$ to an integrated expression
$-14\frac{1}{3}$	A1	OE
Shaded region = $18 - 14\frac{1}{3} = 3\frac{2}{3}$	A1	OE
	6	

(c)

$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{1}{2}\left(25 - x^2\right)^{-1/2}\right] \times \left[-2x\right]$	B1 B1	
$\frac{-x}{\left(25-x^2\right)^{1/2}} = \frac{4}{3} \to \frac{x^2}{25-x^2} = \frac{16}{9}$	M1	Set = $\frac{4}{3}$ and square both sides
$16(25-x^2)=9x^2 \rightarrow 25x^2=400 \rightarrow x=(\pm)4$	A1	
When $x = -4, y = 5 \rightarrow (-4, 5)$	A1	
	5	
Question 157		
(Derivative =) $4\pi r^2 (\rightarrow 400\pi)$	Bi	1 SOI Award this mark for $\frac{\mathrm{d}r}{\mathrm{d}V}$
50 <i>their</i> derivative	MI	1 Can be in terms of r
$\frac{1}{8\pi}$ or 0.0398	Al	1 AWRT
		3
Question 158		
$(y=)\left[-(x-3)^{-1}\right]\left[+\frac{1}{2}x^{2}\right](+c)$	B1 B1	
7 = 1 + 2 + <i>c</i>	M1	Substitute $x = 2$, $y = 7$ into an integrated expansion (<i>c</i> present). Expect $c = 4$
$y = -(x-3)^{-1} + \frac{1}{2}x^2 + 4$	Al	OE
	4	

(a)	$9\left(x^{-\frac{1}{2}} - 4x^{-\frac{3}{2}}\right) = 0$ leading to $9x^{-\frac{3}{2}}(x-4) = 0$	M1	OE. Set <i>y</i> to zero and attempt to solve.
	x = 4 only	A1	From use of a correct method.
		2	
(b)	$\frac{dy}{dx} = 9\left(-\frac{1}{2}x^{-\frac{3}{2}} + 6x^{-\frac{5}{2}}\right)$	B2, 1, 0	B2; all 3 terms correct: 9, $-\frac{1}{2}x^{-\frac{3}{2}}$ and $6x^{-\frac{5}{2}}$ B1; 2 of the 3 terms correct
	At $x = 4$ gradient $= 9\left(-\frac{1}{16} + \frac{6}{32}\right) = \frac{9}{8}$	M1	Using <i>their</i> $x = 4$ in <i>their</i> differentiated expression and attempt to find equation of the tangent.
	Equation is $y = \frac{9}{8}(x-4)$	A1	or $y = \frac{9x}{8} - \frac{9}{2}$ OE
		4	
(c)	$9x^{-\frac{5}{2}}\left(-\frac{1}{2}x+6\right) = 0$	M1	Set <i>their</i> $\frac{dy}{dx}$ to zero and an attempt to solve.
	x = 12	A1	Condone $(\pm)12$ from use of a correct method.
(d)	$\int 9\left(x^{-\frac{1}{2}} - 4x^{-\frac{3}{2}}\right) dx = 9\left(\frac{x^{2}}{\frac{1}{2}} - \frac{4x^{-\frac{1}{2}}}{-\frac{1}{2}}\right)$	2 B2, 1, 0	B2; all 3 terms correct: 9, $\frac{x^2}{\frac{1}{2}}, \frac{-4x^{\frac{1}{2}}}{-\frac{1}{2}}$ B1; 2 of the 3 terms correct
	$9\left[\left(6+\frac{8}{3}\right)-\left(4+4\right)\right]$	M1	Apply limits <i>their</i> $4 \rightarrow 9$ to an integrated expression with no consideration of other areas.
	6	A1	Use of π scores A0
	3, 0	4	

(a)	At $x = 1$, $\frac{\mathrm{d}y}{\mathrm{d}x} = 6$	B1	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \left(\frac{\mathrm{d}x}{\mathrm{d}y} \times \frac{\mathrm{d}y}{\mathrm{d}t}\right) = \frac{1}{6} \times 3 = \frac{1}{2}$	M1 A1	Chain rule used correctly. Allow alternative and minimal notation.
		3	
i(b)	$[y =] \left(\frac{6(3x-2)^{-2}}{-2} \right) \div (3) \ [+c]$	B1 B1	
	-3 = -1 + c	M1	Substitute $x = 1$, $y = -3$. <i>c</i> must be present.
	$y = -(3x-2)^{-2} - 2$	A1	OE. Allow $f(x) =$
		4	

$\frac{\frac{1}{2}x^{-1/2}}{\left(k^2,2k\right)}$	$x^{2} - \frac{1}{2}k^{2}x^{-3/2} = 0$ leading to $\frac{1}{2}x^{-1/2} = \frac{1}{2}k^{2}x^{-3/2}$		M1	
(k ² ,2)				OE. Set to zero and one correct algebraic step towards the solutions. $\frac{dy}{dx}$ must only have 2 terms.
	k)		A1	
			4	
.(b) When	$x = 4k^2, \ \frac{dy}{dx} = \left[\frac{1}{4k} - \frac{1}{16k} = \right]\frac{3}{16k}$		B1	OE
$y = \begin{bmatrix} 2 \end{bmatrix}$	$2k + k^2 \times \frac{1}{2k} \bigg] = \frac{5k}{2}$		B 1	OE. Accept $2k + \frac{k}{2}$
Equation	ion of tangent is $y - \frac{5k}{2} = \frac{3}{16k} (x - 4k^2)$ or $y = mx + c \rightarrow \frac{5k}{2} = \frac{3}{16k} (4k^2) + \frac{3}$,	M1	Use of line equation with <i>their</i> gradient and $(4k^2, their y)$,
When	$x = 0, y = \left[\frac{5k}{2} - \frac{3k}{4} = \right]\frac{7k}{4}$ or from $y = mx + c, c = \frac{7k}{4}$		A1	OE
(c) $\int \left(x^{\frac{1}{2}} + \right)^{\frac{1}{2}} dx$	$+k^2x^{-\frac{1}{2}}\bigg)dx = \frac{2x^{\frac{3}{2}}}{3} + 2k^2x^{\frac{1}{2}}$		4 B1	Any unsimplified form
	$+4k^3$ $-\left(\frac{9k^3}{4}+3k^3\right)$		M1	Apply limits $\frac{9}{4}k^2 \rightarrow 4k^2$ to an integration of y. M0 if volume attempted.
$\frac{49k^3}{12}$			A1	OE. Accept $4.08 k^3$
Question 162	2	S	3	
$\left[\mathbf{f}^{-1}(x)=\right]\left((2x)\right)$	$(-1)^{1/2} \times \left(\frac{1}{3} \times 2 \times \frac{3}{2}\right) (-2)$	B2, 1, 0	Exp	$pect (2x-1)^{1/2} - 2$
$\left(2x-1\right)^{1/2}-2\leqslant$	$0 \rightarrow 2x - 1 \leqslant 4 \text{ or } 2x - 1 < 4$	M1	pov Alle '>	I. Rearranging and then squaring, must have ver of $\frac{1}{2}$ not present ow '=0'at this stage but do not allow ' \ge 0' or 0' -2' missed then must see \leq or < for the M1
Value [of <i>a</i>] is 2 ¹	$\frac{1}{2}$ or $a = \frac{2}{2}$	A1	Do	VW, OE e.g. $\frac{5}{2}$, 2.5 not allow from '=0' unless some reference to active gradient.
Question 16	3	4		
$f(x) = \int 2x^3 + \frac{1}{2}$		B1	Allow	w any correct form
r = 16 + 4 + c		M1		titute $f(2) = 7$ into an integral. st be present. Expect $c = -13$
		A1		y y = f(x) or y can appear earlier in

3

(a)	At stationary point $\frac{dy}{dx} = 0$ so $6(3 \times 2 - 5)^3 - k \times 2^2 = 0$		1	M1	Setting given $\frac{dy}{dx} = 0$ and substituting $x = 2$ into it.
	$[k=]\frac{3}{2}$			A1	OE
				2	
(b)	$[y=]\frac{6}{4\times 3}(3x-5)^4 - \frac{1}{3}kx^3 \ [+c].$		*] A1	M1 FT	Integrating (increase of power by 1 in at least one term) given
					Expect $\frac{1}{2}(3x-5)^4 - \frac{1}{2}x^3$. FT <i>their</i> non zero k.
	$-\frac{7}{2} = \frac{1}{2} (3 \times 2 - 5)^4 - \frac{1}{3} \times \frac{3}{2} \times 2^3 + c$ [leading to -3.5 + c =	= -3.5]	D	M1	Using (2,-3.5) in an integrated expression. + c needed. Substitution needs to be seen, simply stating $c = 0$ is DM0.
	$y = \frac{1}{2}(3x-5)^4 - \frac{1}{2}x^3$			A1	y = or f(x)= must be seen somewhere in solution.
(b)	Alternative method for Question 11(b)				
	$[y=]\frac{81}{2}x^4 - \frac{541}{2}x^3 + 675x^2 - 750x(+c) \text{ or } -270x^3 - k\frac{x^3}{3}$		*M1 A1 FT	Fron	$\frac{dy}{dx} = 162x^3 - 810x^2 - kx^2 - 1350x - 750$. FT their k
	$-\frac{7}{2} = \frac{81}{2} \times 2^4 - \frac{541}{2} \times 2^3 + 675 \times 2^2 - 750 \times 2 + c$		DM1	Usin	ng (2, -3.5) in an integrated expression. + c needed
	$y = \frac{81}{2}x^4 - \frac{541}{2}x^3 + 675x^2 - 750x + \frac{625}{2}$		A1	<i>y</i> = 0	or $f(x)$ = must be seen somewhere in solution.
-			4		
(c)	$[3\times] \Big[18(3x-5)^2 \Big] \Big[-2kx \Big]$	B2	2,1,0 FT	Squa B2 f	<i>heir k.</i> are brackets indicate each required component. for fully correct, B1 for one error or one missing component, for 2 or more errors.
-	Alternative method for Question 11(c)				2
	$486x^2 - 1623x + 1350 \text{ or } -1620x - 2kx$	B2	2,1,0 FT		heir k. For fully correct, B1 for one error, B0 for 2 or more errors.
	Satr	rel	2		
(d)	$[At x = 2] \left[\frac{d^2 y}{dx^2} \right] = 54(3 \times 2 - 5)^2 - 4k \text{ or } 48$		M1	OE. meth	Substituting $x = 2$ into <i>their</i> second differential or other valid nod.
	[>0] Minimum		A1	WW	W
-			2	_	

Curve intersects $y = 1$ at (3, 1)	B1	Throughout Question 9: $1 < their 3 < 5$ Sight of $x = 3$
$Volume = [\pi] \int (x-2) [dx]$	M1	M1 for showing the intention to integrate $(x-2)$. Condone missing π or using 2π .
$[\pi]\left[\frac{1}{2}x^2 - 2x\right] \text{ or } [\pi]\left[\frac{1}{2}(x-2)^2\right]$	A1	Correct integral. Condone missing π or using 2π .
$= [\pi] \left[\left(\frac{5^2}{2} - 2 \times 5 \right) - \left(\frac{their \cdot 3^2}{2} - 2 \times their \cdot 3 \right) \right]$ $= [\pi] \left[\frac{5}{2} + \frac{3}{2} \right] \text{ as a minimum requirement for their values}$	M1	Correct use of ' <i>their</i> 3' and 5 in an integrated expression. Condone missing π or using 2π . Condone +c. Can be obtained by integrating and substituting between 5 and 2 and then 3 and 2 then subtracting.
Volume of cylinder = $\pi \times 1^2 \times (5 - their 3) [= 2\pi]$	B1 FT	Or by integrating 1 to obtain x (condone y if 5 and <i>their</i> 3 used).
[Volume of solid = $4\pi - 2\pi =]2\pi$ or 6.28	A1	AWRT

(a)	$\frac{dy}{dx} = 3(3x+4)^{-0.5} - 1$	B1	B1	B1 All correct with 1 error, B2 if all correct
	Gradient of tangent = $-\frac{1}{4}$ and Gradient of normal = 4	*N	/ 11	Substituting $x = 4$ into a differentiated expression and using $m_1m_2 = -1$
	Equation of line is $(y - 4) = 4(x - 4)$ or evaluate c	DN	M1	With (4, 4) and their gradient of normal
	So $y = 4x - 12$		A1	
			5	
(b)	$3(3x+4)^{-0.5}-1=0$	N	M 1	Setting <i>their</i> $\frac{dy}{dx} = 0$
	Solving as far as $x =$	Ν	41	Where $\frac{dy}{dx}$ contains $a(bx+c)^{-0.5}$ a, b, c any values
	$x = \frac{5}{3}$, $y = 2\left(3 \times \frac{5}{3} + 4\right)^{0.5} - \frac{5}{3} = \frac{13}{3}$		A1	
			3	
(c)	$\frac{d^2 y}{dx^2} = -\frac{9}{2} (3x+4)^{-1.5}$	N	41	Differentiating <i>their</i> $\frac{dy}{dx}$ OR checking $\frac{dy}{dx}$ to find +ve
				and -ve either side of their $x = \frac{5}{3}$
	At $x = \frac{5}{3} \frac{d^2 y}{dx^2}$ is negative so the point is a maximum		A1	
			2	
(d)	Area = $\left[\int 2(3x+4)^{0.5} - x dx = \right] \frac{4}{9}(3x+4)^{1.5} - \frac{1}{2}x^2$	B1 B1	B1	for each correct term (unsimplified)
	$\left(\frac{4}{9}(16)^{1.5} - \frac{1}{2}(4)^2\right) - \frac{4}{9}(4)^{1.5} = \frac{256}{9} - 8 - \frac{32}{9}$	M1		bstituting limits 0 and 4 into an expression obtained integrating y
	$16\frac{8}{9}$	A1	Or	- <u>152</u> <u>9</u>
		4		

$[y =] -\frac{1}{x^3} + 8x^4 \ [+c]$	B1 B1	OE. Accept unsimplified.
$4 = -8 + \frac{1}{2} + c$	M1	Substituting $\left(\frac{1}{2}, 4\right)$ into an integrated expression
$y = -\frac{1}{x^3} + 8x^4 + \frac{23}{2}$	A1	OE. Accept $-x^{-3}$; must be 8; $y =$ must be seen in working.
	4	

Question 168

(a)	$\{5(y-3)^2\}$ $\{+5\}$	B1 B1	Accept $a = -3, b = 5$
		2	
(b)	$[f'(x)] = 35x^4 - 30x^2 + 50$	B1	
	$5(x^2-3)^2+5$ or $b^2 < 4ac$ and at least one value of $f'(x) > 0$	M1	
	> 0 and increasing	A1	WWW
		3	
Οιιes	tion 169		

Question 169

(a)	$\int \left(\frac{5}{2} - x^{\frac{1}{2}} - x^{-\frac{1}{2}}\right) dx$	M1	OR as 2 separate integrals $\int \left(\frac{5}{2} - x^{1/2}\right) dx - \int \left(x^{-1/2}\right) dx$
	$\left\{\frac{5}{2}x - \frac{2}{3}x^{\frac{3}{2}}\right\}\left\{-\right\}\left\{2x^{\frac{1}{2}}\right\}$	A1 A1 A1	If two separate integrals with no subtraction SC B1 for each correct integral.
	$\left(10 - \frac{16}{3} - 4\right) - \left(\frac{5}{8} - \frac{1}{12} - 1\right)$	DM1	Substitute limits $\frac{1}{4} \rightarrow 4$ at least once, must be seen.
	9/8 or 1.125	A1	WWW. Cannot be awarded if π appears in any integral.
		6	
(b)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] - \frac{1}{2}x^{-\frac{3}{2}}$	B1	
	When $x = 1, m = -\frac{1}{2}$	M1	Substitute $x = 1$ into a differential.
	[Equation of normal is] $y-1=2(x-1)$	M1	Through (1, 1) with gradient $-\frac{1}{m}$ or $\frac{1-p}{1} = 2$
	[When $x = 0$,] $p = -1$	A1	WWW
		4	

Question 170

 $f''(x) = -(\frac{1}{2}x+k)^{-3}$ **B1** (a) $f''(2) > 0 \implies -(1+k)^{-3} > 0$ **M1** Allow for solving *their* f''(2) > 0k < -1A1 WWW 3

(b)	$\left[f(x) = \int \left(\left(\frac{1}{2}x - 3\right)^{-2} - \left(-2\right)^{-2}\right) dx = \right] \left\{\frac{\left(\frac{1}{2}x - 3\right)^{-1}}{-1 \times \frac{1}{2}}\right\} \left\{-\frac{x}{4}\right\}$	B1 B1	Allow $-2\left(\frac{1}{2}x+k\right)^{-1}$ OE for 1 st B1 and $-(1+k)^{-2}x$ OE for 2 nd B1
	$3\frac{1}{2} = 1 - \frac{1}{2} + c$	M1	Substitute $x = 2$, $y = 3\frac{1}{2}$ into <i>their</i> integral with <i>c</i> present.
	$f(x) = \frac{-2}{\left(\frac{1}{2}x - 3\right)} - \frac{x}{4} + 3$	A1	OE
		4	
(c)	$\left(\frac{1}{2}x-3\right)^{-2}-\left(-2\right)^{-2}=0$	M1	Substitute $k = -3$ and set to zero.
	leading to $\left(\frac{1}{2}x-3\right)^2 = 4\left[\frac{1}{2}x-3=(\pm)2\right]$ leading to $x=10$	A1	
	$(10, -\frac{1}{2})$	A1	Or when $x = 10$, $y = -1 - 2\frac{1}{2} + 3 = -\frac{1}{2}$
	$f''(10) \left[= -(5-3)^{-3} \rightarrow \right] < 0 \rightarrow MAXIMUM$	A1	WWW
	T PD	4	

$\frac{dy}{dx} = \frac{1}{2} + \frac{1}{3(x-2)^{\frac{4}{3}}}$	В	1 (OE. Allow unsimplified.
Attempt at evaluating <i>their</i> $\frac{dy}{dx}$ at $x = 3\left[\frac{1}{2} + \frac{1}{3(3-2)^{\frac{4}{3}}} = \frac{5}{6}\right]$	*M		Substituting $x = 3$ into <i>their</i> differentiated expression – defined by one of 3 original terms with correct power of <i>x</i> .
Gradient of normal = $\frac{-1}{their \frac{dy}{dx}} \left[= -\frac{6}{5} \right]$	*DM	1	Negative reciprocal of <i>their</i> evaluated $\frac{dy}{dx}$.
Equation of normal $y - \frac{6}{5} = (their \text{ normal gradient})(x-3)$ $\left[y = -\frac{6}{5}x + 4.8 \Rightarrow 5y = -6x + 24 \right]$	DM	S	Using <i>their</i> normal gradient and <i>A</i> in the equation of a straight line. Dependent on *M1 and *DM1.
[When $y = 0$,] $x = 4$	А	1 0	or (4, 0)
Area under curve = $\int \left(\frac{1}{2}x + \frac{7}{10} - \frac{1}{(x-2)^{\frac{1}{3}}}\right) [dx]$	M1 H		ntention to integrate the curve (no need for limits). lone inclusion of π for this mark.
$\frac{1}{4}x^2 + \frac{7}{10}x - \frac{3(x-2)^{\frac{2}{3}}}{2}$			correct integral. Allow unsimplified. lone inclusion of π for this mark.
$\left(\frac{9}{4} + 2.1 - \frac{3}{2}\right) - \left(\frac{6.25}{4} + 1.75 - \frac{3 \times 0.5^{\frac{2}{3}}}{2}\right)$			r substitution of 3 and 2.5 into <i>their</i> integrated ession (with at least one correct term) and subtracting.
0.48[24]		f M1 inswe	IA1M0 scored then SC B1 can be awarded for correct rer.
[Area of triangle =] 0.6	B1 (DE	
[Total area =] 1.08	A1 I	Depe	endent on the first M1 and WWW.
	6		

)(a)	$[f'(x) =] 2x - \frac{k}{x^2}$	B1	
	$f'(2) = 0 \left[2 \times 2 - \frac{k}{2^2} = 0 \right] \Rightarrow k = \dots$	M1	Setting <i>their</i> 2-term $f'(2) = 0$, at least one term correct and attempting to solve as far as $k = .$
	k = 16	A1	
		3	
(b)	$f''(2) = e.g. 2 + \frac{2k}{2^3}$	M1	Evaluate a two term $f''(2)$ with at least one term correct. Or other valid method.
	$\left[2 + \frac{2k}{2^3}\right] > 0 \Rightarrow \text{minimum or} = 6 \Rightarrow \text{minimum}$	A1 FT	WWW. FT on positive <i>k</i> value.
		2	
(c)	When $x = 2$, $f(x) = 14$	B1	SOI
	[Range is or y or $f(x)$] \ge their $f(2)$	B1 FT	Not $x \ge their f(2)$
		2	
Qu	estion 173		

(a)	$\left[\frac{\mathrm{d}V}{\mathrm{d}r}\right] = \frac{9}{2} \left(r - \frac{1}{2}\right)^2$	B1	OE. Accept unsimplified.
	$\frac{dr}{dt} = \frac{dr}{dV} \times \frac{dV}{dt} = \frac{1.5}{their \frac{dV}{dr}} \left[= \frac{1.5}{\frac{9}{2} \left(5.5 - \frac{1}{2} \right)^2} = \frac{1.5}{112.5} \right]$	M1	Correct use of chain rule with 1.5, <i>their</i> differentiated expression for $\frac{dV}{dr}$ and using $r = 5.5$.
	0.0133 or $\frac{3}{225}$ or $\frac{1}{75}$ [metres per second]	A1	
	3	3	
(b)	$\frac{\mathrm{d}V}{\mathrm{d}r} \text{ or their } \frac{\mathrm{d}V}{\mathrm{d}r} = \frac{1.5}{0.1} \text{ or 15 OR } 0.1 = \frac{1.5}{their \frac{\mathrm{d}V}{\mathrm{d}r}} \left[= \frac{2 \times 1.5}{9 \left(r - \frac{1}{2}\right)^2} \text{OE} \right]$	B1 FT	Correct statement involving $\frac{dV}{dr}$ or <i>their</i> $\frac{dV}{dr}$, 1.5 and 0.1.
	$\left[\frac{9}{2}\left(r-\frac{1}{2}\right)^2 = 15 \Longrightarrow\right] r = \frac{1}{2} + \sqrt{\frac{10}{3}}$	B1	OE e.g. AWRT 2.3 Can be implied by correct volume.
	[Volume =] 8.13 AWRT	B1	OE e.g. $\frac{-3+5\sqrt{30}}{3}$. CAO.
		3	

$\frac{8}{3}$ r 1	*B1	For $(3x+2)^{-1}$
$y = -\frac{\overline{3}}{(3x+2)}[+c]$	DB1	For $-\frac{8}{3}$
$5\frac{2}{3} = -\frac{\frac{8}{3}}{(3 \times 2 + 2)} + c$	M1	Substituting $\left(2, 5\frac{2}{3}\right)$ into <i>their</i> integrated expression – defined by power = -1, or dividing by their power. + <i>c</i> needed
$y = -\frac{8}{3(3x+2)} + 6$	A1	OE e.g. $y = -\frac{8}{3}(3x+2)^{-1}+6$
	4	

(a)	$\left\{\frac{(3x-2)^{-\frac{1}{2}}}{-1/2}\right\} \div \{3\}$	B2, 1, 0	Attempt to integrate
	$-\frac{2}{3}[0-1]$	M1	M1 for applying limits $1 \rightarrow \infty$ to an integrated expression (either correct power or dividing by their power).
	$\frac{2}{3}$	A1	
		4	
(b)	$[\pi] \int y^2 dx = [\pi] \int (3x-2)^{-3} dx = [\pi] \frac{(3x-2)^{-2}}{-2\times 3}$	*M1 A1	M1 for attempt to integrate y^2 (power increases); allow 1 error. A1 for correct result in any form.
	$[\pi] \left[-\frac{1}{6} \right] \left[\frac{1}{16} - 1 \right]$	DM1	Apply limits 1 and 2 to an integrated expression and subtract correctly; allow 1 error.
	$\frac{5\pi}{32}$	A1	OE
		4	
(c)	$\frac{dy}{dx} = -\frac{3}{2} \times 3(3x-2)^{\frac{5}{2}}$	M1	M1 for attempt to differentiate (power decreases); allow 1 error.
	$At x = 1, \frac{dy}{dx} = -\frac{9}{2}$	*M1	Substitute $x = 1$ into <i>their</i> differentiated expression; allow 1 error.
	[Equation of normal is] $y-1=\frac{2}{9}(x-1)$ OR evaluates c	DM1	Forms equation of line or evaluates c using (1, 1) and gradient $\frac{-1}{their \frac{dy}{dx}}$.
	At <i>A</i> , $y = \frac{7}{9}$	A1	OE e.g. AWRT 0.778; must clearly identify y-intercept
	3	4	
	24	.9'	

Question	176
----------	-----

a)	$f(x) = \frac{2}{3}x^3 - 7x + 4x^{-1} [+c]$	B2, 1, 0	Allow terms on different lines; allow unsimplified.
	$-\frac{1}{3} = \frac{2}{3} - 7 + 4 + c$ leading to $c = [2]$	M1	Substitute $f(1) = -\frac{1}{3}$ into an integrated expression and evaluate <i>c</i> .
-	$f(x) = \frac{2}{3}x^3 - 7x + 4x^{-1} + 2$	A1	OE.
		4	
b)	$2x^4 - 7x^2 - 4 \ [=0]$	M1	Forms 3-term quadratic in x^2 with all terms on one side. Accept use of substitution e.g. $2y^2 - 7y - 4[=0]$.
	$(2x^2+1)(x^2-4) = 0$	M1	Attempt factors or use formula or complete the square. Allow \pm sign errors. Factors must expand to give <i>their</i> coefficient of x^2 or e.g. y. Must be quartic equation. Accept use of substitution e.g. $(2y+1)(y-4)$.
	$x = [\pm]2$	A1	If M0 for solving quadratic, SC B1 can be awarded for $[\pm]2$.
	$\begin{bmatrix} \frac{2}{3}(2)^3 - 7(2) + \frac{4}{2} + 2 & \text{leading to} \end{bmatrix} \begin{pmatrix} 2, -\frac{14}{3} \end{pmatrix}$ $\begin{bmatrix} \frac{2}{3}(-2)^3 - 7(-2) + \frac{4}{-2} + 2 & \text{leading to} \end{bmatrix} \begin{pmatrix} -2, \frac{26}{3} \end{pmatrix}$	B1 B1	B1 B1 for correct coordinates clearly paired; B1 for each correct point; B1 B0 if additional point.
	$\left[\frac{2}{3}(-2)^3 - 7(-2) + \frac{4}{-2} + 2 \text{leading to}\right] \left(-2, \frac{26}{3}\right)$		
		5	
(c)	$f''(x) = 4x + 8x^{-3}$	B1	OE
		1	
d)	f'(2) = 9 > 0 MINIMUM at $x = their 2$	B1 FT	FT on <i>their</i> $x = [\pm]2$ provided $f''(x)$ is correct. Must have correct value of $f''(x)$ if $x = 2$.
	f''(-2) = -9 < 0 MAXIMUM at $x = their - 2$	B1 FT	FT on <i>their</i> $x = [\pm]2$ provided $f''(x)$ is correct. Must have correct value of $f''(x)$ if $x = -2$. Special case: If values not shown and B0B0 scored, SC E for $f''(2) > 0$ MIN and $f''(-2) < 0$ MAX
	Alternative method for question 9(d)	-0	
	Evaluate $f'(x)$ for x-values either side of 2 and -2	M1	FT on <i>their</i> $x = [\pm]2$
	MINIMUM at $x = their 2$, MAXIMUM at $x = their 2$	A1 FT	FT on <i>their</i> $x = [\pm]2$. Must have correct values of $f'(x)$ shown. Special case: If values not shown and M0A0 scored SC E $f'(2) - \frac{1}{2} + \frac{1}{2} $
	Alternative method for question 9(d)	82	
	Justify maximum and minimum using correct sketch graph	B1 B1	Need correct coordinates in (b) for this method.
		2	

$\frac{dy}{dx} = \left\{ -k(3x-k)^{-2} \right\} \{\times 3\} \{+3\}$	B2, 1, 0	
$\frac{-3k}{(3x-k)^2} + 3 = 0 \text{leading to} (3)(3x-k)^2 = (3)k$	M1	Set $\frac{dy}{dx} = 0$ and remove the denominator
leading to $3x - k = [\pm]\sqrt{k}$		
$x = \frac{k \pm \sqrt{k}}{3}$	A1	OE
	4	
$a = \frac{4 \pm \sqrt{4}}{3}$ leading to $a = 2$	B1	Substitute $x = a$ when $k = 4$. Allow $x = 2$.
$\mathbf{f''}(x) = \mathbf{f'} \Big[-12(3x-4)^{-2} + 3 \Big] = 72(3x-4)^{-3}$	B1	Allow $18k(3x-k)^{-3}$
> 0 (or 9) when $x = 2 \rightarrow$ minimum	B1 FT	FT on <i>their</i> $x = 2$, providing their $x \ge \frac{3}{2}$ and $f''(x)$ is correct
	3	
Substitute $k = -1$ leading to $g'(x) = \frac{3}{(3x+1)^2} + 3$	M1	Condone one error.
g'(x) > 0 or $g'(x)$ always positive, hence g is an increasing function	A1	WWW. A0 if the conclusion depends on substitution of values into $g'(x)$.
Alternative method for question 11(c)		
$x = \frac{k \pm \sqrt{k}}{3}$ when $k = -1$ has no solutions, so g is increasing or decreasing	M1	Allow the statement 'no turning points' for increasing or decreasing
Show $g'(x)$ is positive for any value of x , hence g is an increasing function	A1	Or show $g(b) > g(a)$ for $b > a \rightarrow g$, hence g is an increasin function
5	2	

(a)	$(-2)^2 + y^2 = 8$ leading to $y = 2$ leading to $A = (0,2)$	B1	
	Substitute $y = their 2$ into circle leading to $(x-2)^2 + 4 = 8$	M1	Expect $x = 4$.
	B = (4, 2)	A1	
		3	
(b)	Attempt to find $[\pi] \int (8 - (x - 2)^2) dx$	*M1	
	$\left[\pi\right]\left[8x - \frac{\left(x-2\right)^3}{3}\right] \text{ or } \left[\pi\right]\left[8x - \left(\frac{x^3}{3} - 2x^2 + 4x\right)\right]$	A1	
	$\left[\pi\right]\left(32-\frac{16}{3}\right)$ or $\left[\pi\right]\left[32-\left(\frac{64}{3}-32+16\right)\right]$	DM1	Apply limits $0 \rightarrow their 4$.
	Volume of cylinder = $\pi \times 2^2 \times 4 = 16\pi$	B1 FT	OR from $\pi \int 2^2 dx$ with <i>their</i> limits from (a). FT on <i>their A</i> and <i>B</i>
	$\left[\text{Volume of revolution} = 26\frac{2}{3}\pi - 16\pi = \right]10\frac{2}{3}\pi$	A1	Accept 33.5
		5	

$\left[f(x)=\right]\frac{2x^{\frac{2}{3}}}{\frac{2}{3}}-\frac{x^{\frac{4}{3}}}{\frac{4}{3}} \ [+c]$	B1 B1	$\frac{2}{3}$ and $\frac{4}{3}$ may be seen as sums of 1 and a fraction.
5 = 12 - 12 + c	M1	Substituting (8,5) into an integral.
$\left[f(x) = \right] 3x^{\frac{2}{3}} - \frac{3}{4}x^{\frac{4}{3}} + 5$	A1	Fractions in the denominators scores A0.
	4	

Question 180

(a)	$\left\{\frac{(4x+2)^{-1}}{-1}\right\}\{\div 4\} \text{ or } eg\left\{\frac{1}{16}\right\}\left\{-(x+0.5)^{-1}\right\} \text{ or } \frac{-1}{(16x+8)}$	B1 B1	OE If more than one function of x present then B0 B0.
	0-(-1/24)	M1	Apply limits to an integral, ∞ must be used correctly.
	1/24	A1	Allow 0.0417 AWRT.
		4	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left\{-2\left(4x+2\right)^{-3}\right\} \{\times 4\}$	B1 B1	Allow unsimplified forms.
	Recognise $\frac{dy}{dx} = -1$	B1	SOI
	$their \frac{-8}{\left(4x+2\right)^3} = their -1$	M1	Must be numerical. Must be some attempt to solve <i>their</i> equation and $\frac{dy}{dx} \neq 0$.
	(0, ¼)	A1 A1	Accept $x = 0$, $y = \frac{1}{4}$. $y = \frac{1}{4}$ must be from $x = 0$ not $x = -1$.
	2	6	
Que	estion 181		

3(a)	$\left[\frac{dy}{dx}\right] \frac{1}{2} x^{-1/2} - 2x^{-3/2}$	B1 B1	Allow unsimplified versions.
	At $x = 1$, $\frac{dy}{dx} = \frac{1}{2} - 2 = -\frac{3}{2}$	M1	Substitute $x = 1$ into a differentiated <i>y</i> .
	Equation of tangent is $y-5 = -\frac{3}{2}(x-1)$	A1	WWW Or $y = -\frac{3}{2}x + \frac{13}{2}$.
		4	
(b)	$\frac{x^{3/2}}{3/2} + 8x^{1/2}$	B1	OE Integrate to find area under curve, allow unsimplified versions.
	$\left[\left(\frac{128}{3}+32\right)-\left(\frac{2}{3}+8\right)\right]$	M1	Apply limits $1 \rightarrow 16$ to an integrated expression.
	Area under line = $15 \times 5 = 75$	B1	Or by $\int_{1}^{16} 5 dx$.
	Required area = 75 - 66 = 9	A1	
		4	

(a)	$\frac{dy}{dx} = \left\{3\right\} + \left\{-4 \times \frac{1}{2} (3x+1)^{\frac{1}{2}} \times 3\right\} \left[=3 - 6(3x+1)^{\frac{1}{2}}\right]$	B1 B1	Correct differentiation of $3x + 1$ and no other terms and correct differentiation of $-4(3x+1)^{\frac{1}{2}}$. Accept unsimplified.
	$\left[\frac{d^2 y}{dx^2}\right] = \left[-\frac{1}{2} \times -6(3x+1)^{-\frac{3}{2}} \times 3\left[=9(3x+1)^{-\frac{3}{2}}\right]$	B1	WWW. Accept unsimplified. Do not award if $\frac{dy}{dx}$ is incorrect.
		3	
(b)	$\frac{dy}{dx} = 0$ leading to $3 - 6(3x+1)^{-\frac{1}{2}} = 0$	M1	Setting their $\frac{dy}{dx} = 0.$
	$(3x+1)^{\frac{1}{2}} = 2 \Longrightarrow 3x+1=4$ leading to $x=1$	A1	CAO – do not ISW for a second answer.
	y = -4 [coordinates (1, -4)]	A1	Condone inclusion of second value from a second answer.
	$\frac{d^2 y}{dx^2} = 9(3 \times 1 + 1)^{-\frac{3}{2}} = \frac{9}{8} \text{ or } > 0 \text{ so minimum}$	A1	Some evidence of substitution needed but $\frac{d^2 y}{dx^2}$. Do not award if
	TPA		$\frac{d^2 y}{dx^2}$ is incorrect or wrongly evaluated. Accept correct consideration of gradients either side of $x = 1$.
	9	4	
Ques	stion 183		

Line meets curve when: $2x + 2 = 5x^{\frac{1}{2}}$ leading to $2x - 5x^{\frac{1}{2}} + 2[=0]$ or $4x^2 + 8x + 4 = 25x$ leading to $4x^2 - 17x + 4[=0]$ or $x = \frac{y^2}{25}$ leading to $2y^2 - 25y + 50[=0]$	M1	Equating line and curve and rearranging so that terms are all on same side, condone sign errors, and making a valid attempt to solve by factorising, using the formula or completing the square. Factors are: $(2x^{\frac{1}{2}}-1)(x^{\frac{1}{2}}-2), (4x-1)(x-4)$ and $(2y-5)(y-10)$.
$x = \frac{1}{4}, x = 4$	A1	SC: If M1 not scored, SC B1 available for correct answers, could just be seen as limits.
Area = $\int 5x^{\frac{1}{2}} - (2x+2)dx = \int 5x^{\frac{1}{2}} - 2x - 2 dx$	*M1	Intention to integrate and subtract areas. Condone missing brackets and/or subtraction wrong way around.
$= \left[\frac{10}{3}x^{\frac{3}{2}} - x^2 - 2x\right]_{\frac{1}{4}}^4 = \left(\left(\frac{10}{3} \times 8 - 16 - 8\right) - \left(\frac{10}{3} \times \frac{1}{8} - \frac{1}{16} - \frac{1}{2}\right)\right)$	DM1	Integrating $kx^{\frac{3}{2}}$ seen) and substituting <i>'their</i> points of intersection' (but limits need to be found, not assumed to be 0 and something else).
$\frac{45}{16}$ or $2\frac{13}{16}$ or 2.8125	A1	OE exact answer. Condone $-\frac{45}{16}$ if corrected to $\frac{45}{16}$. A0 for inclusion of π . SC: If *M1 DM0 scored, SC B1 available for correct answer.

$\begin{bmatrix} y = \end{bmatrix} \left\{ \frac{3(4x-7)^{\frac{3}{2}}}{\frac{3}{2} \times 4} \right\} + \left\{ -\frac{4}{\frac{1}{2}} x^{\frac{1}{2}} \right\} \left[\Rightarrow \frac{1}{2} (4x-7)^{\frac{3}{2}} - 8x^{\frac{1}{2}} \right] [+c]$	B1 B1	Marks can be awarded for correct unsimplified expressions ISW.
$\frac{5}{2} = \frac{1}{2} (9)^{\frac{3}{2}} - 8 \times 4^{\frac{1}{2}} + c [\Rightarrow c = 5]$	M1	Using $(4, \frac{5}{2})$ in an integrated expression (defined by at least one correct power) including + c.
$y = \frac{3}{6} \left(4x - 7 \right)^{\frac{3}{2}} - 8x^{\frac{1}{2}} + 5.$	A1	Condone $c = 5$ as their final line if either $y = \text{or } f(x) = \text{seen}$ elsewhere in the solution. Coefficients must not contain unresolved double fractions.
	4	

a)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6\left(-1\right)^2 - \frac{4}{\left(-1\right)^3} > 0 \therefore \text{ minimum or } \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 10 \therefore \text{ minimum}$	B1	Sub $x = -1$ into $\frac{d^2 y}{dx^2}$, correct conclusion. WWW
		1	
o)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^3 + \frac{2}{x^2} [+c]$	*M1	Integrating $\frac{d^2 y}{dx^2}$ (at least one term correct).
	0 = -2 + 2 + c leading to $c = [0]$		Substituting $x = -1$, $\frac{dy}{dx} = 0$ (need to see) to evaluate <i>c</i> . DM0 if simply state $c = 0$ or omit $+c$.
	$y = \frac{1}{2}x^4 - \frac{2}{x} + (their c)x + k$		Integrated. FT <i>their</i> non-zero value of c if DM1 awarded.
	$\frac{9}{2} = \frac{1}{2} + 2 + k$ leading to $k = [2]$	DM1	Substituting $x = -1$, $y = \frac{9}{2}$ to evaluate k (dep on *M1).
	$y = \frac{1}{2}x^4 - \frac{2}{r} + 2$	A1	OE e.g. $2x^{-1}$ or $\frac{4}{2}$.
			A0 (wrong process) if c not evaluated but correct answer obtained.
		5	
)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^3 + \frac{2}{x^2} = 0$	M1	Their $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$.
	Leading to $x^5 = -1$	M1	Reaching equation of the form $x^5 = a$.
	So only stationary point is when $x = -1$	A1	x = -1 and stating e.g. 'only' or 'no other solutions.
		3	
d)	At $x = 1$, $\frac{dy}{dx} = [4]$	*M1	Substituting $x = 1$ into their $\frac{dy}{dx}$.
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}y} \times \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{4} \times 5$	DM1	OE Using chain rule correctly SOI.
	⁵ / ₄ Satpre?	A1	OE e.g. 1.25.
		3	

(a)	$(3x-2)^{\frac{1}{2}} = \frac{1}{2}x+1 \Longrightarrow 3x-2 = \left(\frac{1}{2}x+1\right)^2 = \frac{1}{4}x^2+x+1$	M1	Equating curve and line, attempt to square; $\frac{1}{4}x^2 + 1$ M0
	$\Rightarrow \frac{1}{4}x^2 - 2x + 3[=0] \Big[\Rightarrow x^2 - 8x + 12 = 0 \Big] \Rightarrow (x - 6)(x - 2)[=0]$	M1	Forming and solving a 3TQ by factorisation, formula or completing the square – see guidance.
	(2, 2) and (6, 4)	A1 A1	A1 for each point, or A1 A0 for two correct <i>x</i> -values. If M0 for solving, SC B2 possible: B1 for each point or B1 B0 for two correct <i>x</i> -values.
		4	
(b)	Area = $\pm \int_{[2]}^{[6]} \left((3x-2)^{\frac{1}{2}} - \left(\frac{1}{2}x+1\right) \right) [dx]$	*M1	For intention to integrate and subtract (M0 if squared).
	$\pm \left[\frac{2}{9}(3x-2)^{\frac{3}{2}} - \left(\frac{1}{4}x^{2} + x\right)\right]_{2}^{6}$	B1 B1	B1 for each bracket integrated correctly (in any form).
	$\pm \left(\left[\frac{2}{9} (16)^{\frac{3}{2}} - \left(\frac{1}{4} \times 36 + 6 \right) \right] - \left[\frac{2}{9} (4)^{\frac{3}{2}} - \left(\frac{1}{4} \times 4 + 2 \right) \right] \right)$	DM1	\pm (F(<i>their</i> 6) – F(<i>their</i> 2)) with <i>their</i> integral. Allow 1 sign error.
	4	A1	AWRT 0.444.
	$\frac{4}{9}$		SC1 B1 for $\frac{4}{9}$ if *M1 B1 B1 DM0.
			SC2 B1 for $\frac{4}{6}$ if *M1 B0 B0 DM0, provided limits
			stated.
Ques	stion 187		

$\left[\frac{dv}{dx}\right] = \left(9 - x\right)^2$	B1	Allow unsimplified forms. Allow any or no notation
Substitute $x = 4$ into <i>their</i> differentiated V,	*M1	Expect 25.
$\frac{dx}{dt} = \frac{1}{their \text{ derivative}} \times 3.6 \text{ (accept } \frac{dt}{dx} = \frac{their \text{ derivative}}{3.6} \text{)}$	M1	Correct use of the chain rule, ignore incorrect conversions at this point. Expect 0.144
$=\frac{1}{their numerical derivative} \times 3.6 \times \frac{100}{60}$	DM1	Correct use of the conversion factors.
$=\frac{1}{25} \times 3.6 \times \frac{100}{60} = 0.24$	A1	
	5	

U			
'(a)	$\frac{-3}{(a+2)^4} = -\frac{16}{27} \rightarrow \text{ e.g. } 16(a+2)^4 = 81$	M1	Equate first derivative and $-\frac{16}{27}$ and move term in <i>a</i> (or <i>x</i>) into the numerator.
	$\rightarrow (a+2)^2 = \frac{9}{4} \rightarrow a+2 = [\pm]\frac{3}{2}$	M1	Solve for $(a+2)$ or $(x+2)$
	$a = -\frac{1}{2}$ or $-\frac{7}{2}$	A1 A1	Allow 'x ='
		4	
(b)	$\left[\mathbf{f}(x)\right] = \frac{1}{\left(x+2\right)^3} \left[+c\right]$	B1	Allow unsimplified form and ' $y =$ '
	5 = 1 + <i>c</i>	M1	Sub $x = -1$, $y = 5$ into an integral.
	$\left[f(x)\right] = \frac{1}{\left(x+2\right)^3} + 4$	A1	Allow ' $y =$ '
		3	
•	ion 189	*\/1	

$x^{2} + (2x-1)^{2} - 2[=0] \rightarrow 5x^{2} - 4x - 1[=0]$	*M1 A1	Or $5y^2 + 2y - 7 [=0]$.
(5x+1)(x-1)[=0] or $(5y+7)(y-1)[=0]$	DM1	May see factors or formula or completing square.
x = 1, y = 1 or $(1, 1)$ only	A1	May be implied on the diagram.
	4	
$(\pi)\int (2-x^2)dx = (\pi)\left(2x-\frac{x^3}{3}\right)$	*M1 A1	Attempt integration of y^2 , allow $\int (2-y^2) dy$.
$(\pi)\left(2\sqrt{2}-\frac{(\sqrt{2})^3}{3}\right)-\left(2-\frac{1}{3}\right)$	DM1	Apply limits $1 \rightarrow \sqrt{2}$.
$\frac{\pi}{3}\left(4\sqrt{2}-5\right)$	A1	CAO, allow $\frac{\pi}{3}(2\sqrt{8}-5)$, must be in given form.
	4	
Arc length = $\frac{1}{8}(2\pi\sqrt{2})$ or $\frac{\pi\sqrt{2}}{4}$ oe	B1	Must be exact.
Perimeter = $\sqrt{2} + their$ arc length	B1 FT	Must be exact, do not allow inverse trig functions.
	2	
	$(5x+1)(x-1)[=0] \text{ or } (5y+7)(y-1)[=0]$ $x=1, y=1 \text{ or } (1, 1) \text{ only}$ $(\pi) \int (2-x^2) dx = (\pi) \left(2x - \frac{x^3}{3}\right)$ $(\pi) \left(2\sqrt{2} - \frac{(\sqrt{2})^3}{3}\right) - \left(2 - \frac{1}{3}\right))$ $\frac{\pi}{3} (4\sqrt{2} - 5)$ Arc length = $\frac{1}{8} (2\pi\sqrt{2}) \text{ or } \frac{\pi\sqrt{2}}{4} \text{ oe}$	(x = y) = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

(a)	$\left[y=\right]\left\{\frac{3x^{\frac{3}{2}}}{\frac{3}{2}}\right\} + \left\{-\frac{3x^{\frac{1}{2}}}{\frac{1}{2}}\right\}\left[+c\right]\left[=2x^{\frac{3}{2}}-6x^{\frac{1}{2}}\right]$	B1 B1	Marks can be awarded for correct unsimplified expressions, 1 mark each for contents of { } ISW.
	$5 = 2 \times 3^{\frac{3}{2}} - 6 \times 3^{\frac{1}{2}} + c$	M1	Correct use of $(3,5)$ in an integrated expression (defined by at least one correct power) including $+ c$.
	$y = 2x^{\frac{3}{2}} - 6x^{\frac{1}{2}} + 5$	A1	Condone $c = 5$ as their final line if either $y = \text{ or } f(x) = \text{ seen}$ elsewhere in the solution, but coefficients must not contain unresolved double fractions.
		4	
(b)	$3x^{\frac{1}{2}} - 3x^{-\frac{1}{2}} = 0$	M1	Setting given differential to 0.
	[<i>x</i> =] 1	A1	CAO WWW Condone extra solution of -1 only if it is rejected.
		2	
(c)	<i>x</i> >1 or <i>x</i> > " <i>their</i> 8(b)"	B1FT	Allow ≥
	6	1	

(a)	$\left[\frac{dy}{dx}\right] = \frac{9}{2}x - 12 \ [= 0] \ \text{or} \ [y =] \ \frac{9}{4} \left\{ \left(x - \frac{8}{3}\right)^2 + \frac{8}{9} \right\} \ \text{or} \ \frac{9}{4} \left(x - \frac{8}{3}\right)^2 + 2$	B1	OE Either $\frac{dy}{dx}$ or a correct expression in completed square form. Allow unsimplified.
	$\mathbf{x} = \frac{24}{9}$	B1	OE Condone 2.67 AWRT.
	<i>y</i> = 2		CAO Note: $x = \frac{-b}{2a} = \frac{8}{3}$ Bl; substitute $\frac{8}{3}$ for x in $y =$ B1; $y =$ 2 B1.
	3	3	
(b)	$[\text{Area} =] \int \left(18 - \frac{3}{8} x^{\frac{5}{2}} - \left(\frac{9}{4} x^2 - 12x + 18\right) \right) dx$	M1	Intention to integrate and subtract areas (either way around). Can be two separate functions or combined. Using y^2 scores 0/5 but condone inclusion of π except for the final mark.
	Note: Subtraction not required for these marks. Either separately $\left(\begin{bmatrix} 18x \end{bmatrix} - \frac{3x^2}{8 \times \frac{7}{2}} \right)$, $\left(\frac{9x^3}{4 \times 3} - \frac{12x^2}{2} [+18x] \right)$ Or combined $\begin{bmatrix} 18x \end{bmatrix} - \frac{3x^2}{8 \times \frac{7}{2}} - \frac{9x^3}{4 \times 3} + \frac{12x^2}{2} [-18x]$	B1,B1	One mark for correct integration of each curve, allow unsimplified. $\left(\begin{bmatrix} 18x \end{bmatrix} - \frac{3}{28}x^{\frac{7}{2}} \right) \left(\frac{3}{4}x^3 - 6x^2 \begin{bmatrix} +18x \end{bmatrix} \right)$ or $\begin{bmatrix} 18x \end{bmatrix} - \frac{3}{28}x^{\frac{7}{2}} - \frac{3}{4}x^3 + 6x^2 \begin{bmatrix} -18x \end{bmatrix}$ BUT condone sign errors that are only due to missing brackets.
	$= \left(-\frac{3}{28} \times 4^{\frac{7}{2}} - \frac{3}{4} \times 4^{3} + 6 \times 4^{2} \right) \left[-(0) \right]$	M1	Clear substitution of 4 into at least one integrated expression (defined by at least one correct power) which can be unsimplified.
	$=\frac{240}{7}$ or 34.3 AWRT	A1	SC: If all marks awarded except the final M1, SCB1 is available for the correct final answer.
		5	

(c)
$$\begin{bmatrix} \frac{dy}{dx} = \frac{1}{2 \times 3} x^2 \left[z = \frac{15}{16} x^2 \right] \\ \frac{\frac{dy}{dx} = \frac{dy}{dx} \times \frac{dx}{dx} = \frac{dy}{dx} = \frac{15}{16} \times 8 \times 2 \\ \frac{\frac{dy}{dx} = \frac{dy}{dx} \times \frac{dx}{dx} = \frac{dy}{dx} = \frac{15}{16} \times 8 \times 2 \\ \frac{12 \left[\frac{1}{2} \times 6 - 1 \right]^4 \left[z + 2 \left(\frac{2}{3} + \frac{2}{3} \right] \right] \\ \frac{12 \left[\frac{1}{2} \times 6 - 1 \right]^4 \left[z + 2 \left(\frac{2}{3} + \frac{2}{3} \right) \right] \\ \frac{12 \left[\frac{1}{2} \times 6 - 1 \right]^4 \left[z + 2 \left(\frac{1}{2} \times 1 \right)^{-3} \right] \\ \frac{12 \left[\frac{12}{2} \times 6 - 1 \right]^4 \left[z + 8 \left(\frac{1}{2} \times 1 \right)^{-3} \right] \\ \frac{12 \left[\frac{12}{2} \times 6 - 1 \right]^4 \left[z + 8 \left(\frac{1}{2} \times 1 \right)^{-3} \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{12}{2} \times 2 + \frac{1}{3} + \frac{1}{3} + c \right] \\ \frac{12 \left[\frac{$$

Question 190		
$\frac{dy}{dx} = \frac{1}{2}ax^{-\frac{1}{2}} - 2$	B2, 1, 0	
$0 = \frac{1}{2}a(9)^{\frac{1}{2}} - 2 \implies \frac{a}{6} - 2 = 0 \implies a = [12]$	M1	Substitute $x = 9$ and $\frac{1}{dx} = 0$ into <i>their</i> derivative and $\frac{1}{dx}$
		solve a linear equation for <i>a</i> .
[<i>a</i> =]12	A1	
$\left[y = their \ a \times (9)^{\frac{1}{2}} - 18 = \right] 18$	A1 FT	FT on <i>their a</i> .
	5	
$\left[y = their \ a \times (9)^{\frac{1}{2}} - 18 = \right] 18$		FT on <i>their a</i> .

-	stion 194	1	
(a)	$f'(x) = -3(-1)(4)(4x-p)^{-2} \left[= \frac{12}{(4x-p)^2} \right]$	B2, 1, 0	
	> 0 Hence increasing function	B1FT	Correct conclusion from <i>their</i> $f'(x)$.
		3	
(b)	$y = 2 - \frac{3}{4x - p} \implies (y - 2)(4x - p) = -3$ or $4xy - py = 8x - 2p - 3$	M1	OE Form horizontal equation. Sign errors only, no missing terms. May go directly to $4y = p - \frac{3}{x-2}$ OE M1 M1
	$4xy - 8x = py - 2p - 3 \Longrightarrow 4x(y - 2) = p(y - 2) - 3 \text{ or } 4x = -\frac{3}{x - 2} + p$	M1	OE Factorise out $[4]x$ or $[4]y$.
	$x = \frac{p(y-2)-3}{4(y-2)} \left[\Rightarrow x = \frac{p}{4} - \frac{3}{4y-8} \right] $ or $\frac{-\frac{3}{x-2} + p}{4}$	M1	OE Make x (or y) the subject.
	$\left[\mathbf{f}^{-1}(x) = \right] \frac{p}{4} - \frac{3}{4x - 8}$	A1	OE in correct form (must be in terms of x).
	6	4	
(c)	[<i>p</i> =]8	B1	
		1	
Que	stion 195		
(a)	$\pm \int (2x^{1/2} + 1) - \left(\frac{1}{2}x^2 - x + 1\right) dx \left[= \pm \int 2x^{1/2} - \frac{1}{2}x^2 + x dx \right]$	*M1	
	$\pm \left(\frac{4x^{3/2}}{3} + x - \left(\frac{x^3}{6} - \frac{x^2}{2} + x\right)\right) \text{ or } \pm \left(\frac{4x^{3/2}}{3} - \frac{x^3}{6} + \frac{x^2}{2}\right)$	B2, 1, 0	OE Coefficients may be unsimplified.
	$\pm \left(\frac{32}{3} - \frac{32}{3} + 8\right) \text{ or } \pm \left(\frac{44}{3} - 0 - \frac{20}{3} + 0\right)$	DM1	\pm (F(4) – F(0)) using <i>their</i> integral(s).
	=8	A1	Depends on all previous marks. If *M1 B2 DM0 and limits stated, SC B1 for +8
	arpier	5	
(b)	Upper curve: $\frac{dy}{dx} = x^{-\frac{1}{2}}$. Lower curve: $\frac{dy}{dx} = x - 1$	M1 A1	Attempt at differentiating one function. A1 if both correct.
	At $x = 4$: gradient of upper curve $=\frac{1}{2}$, gradient of lower curve $=3$	M1	Evaluate two gradients using $x = 4$.
	$\alpha = \tan^{-1} 3 - \tan^{-1} \frac{1}{2} \left[= 71.57 - 26.57 \right]$	M1	Use inverse tan to find angles then subtract. OR find equations of both tangents then Pythagoras usin a point on each e.g. on axes. OR cosine rule using intercepts or proportion.
	[<i>α</i> =]45°	A1	AWRT

Question 196					
$\frac{\mathrm{d}y}{\mathrm{d}x} = \left\{\frac{1}{60}(3x+1) \times 2\right\} \times \{3\}$	B1 B1	$May see \ \frac{1}{60} (18x+6) .$			
$\frac{1}{10}(3x+1) = 1$	M1	Equate <i>their</i> $\frac{dy}{dx}$ to 1.			
<i>x</i> = 3	A1				
	4				

Ques			
(a)	$-\frac{3}{2} = \frac{1}{2} + k$ leading to $k = -2$	B1	AG Need to see $4^{\frac{1}{2}}$ evaluated as $\frac{1}{4^{\frac{1}{2}}}$ or better.
		1	
(b)	$[y] = 2x^{\frac{1}{2}} - 2x [+c]$	M1 A1	Allow $\frac{x^{\frac{1}{2}}}{\frac{1}{2}} - 2x$.
	-1 = 4 - 8 + c	M1	Substitute $x = 4$, $y = -1$ (<i>c</i> present) Expect $c = 3$.
	$y = 2x^{\frac{1}{2}} - 2x + 3$ or $y = 2\sqrt{x} - 2x + 3$	A1	Allow if $f(x) = \text{ or } y = \text{ anywhere in the solution.}$
		4	
(c)	$x^{-1/2} - 2 = 0$	M1	Set <i>their</i> $\frac{dy}{dx}$ to zero.
	$x = \frac{1}{4}$	A1	If $\left(\frac{1}{2}\right)^2 = \pm \frac{1}{4}$ max of M1A1 if $\left(\frac{1}{4}, 3\frac{1}{2}\right)$ seen.
	(½, 3½)	A1	
		3	
(d)	$\frac{d^2 y}{dx^2} = -\frac{1}{2}x^{-\frac{3}{2}}$	BI	ι
	< 0 (or -4) hence Maximum	DB1	WWW Ignore extra solutions from $x = -\frac{1}{4}$.
		2	2

Gradient of $AB = \frac{2-(-1)}{5-2}$			M1	Expect 1, must be from $\Delta y / \Delta x$.
Equation of AB is $y-2=1(x-5)$ or $y+1=1(x-2)$			A1	OE. Expect $y = x - 3$.
			2	
$[\pi] \int x^2 dy = [\pi] \int (y^2 + 1)^2 dy = [\pi] \int (y^4 + 2y^2 + 1) dy$		M1	integ Subt befor	curve: Attempt to square $y^2 + 1$ and attempt ration. racting curve equation from line equation re squaring is M0. gration before squaring M0.
$\left[\pi\right]\left(\frac{y^5}{5} + \frac{2y^3}{3} + y\right)$	A2	2, 1, 0		
$[\pi] \int (y+3)^2 dy = [\pi] \int (y^2 + 6y + 9) dy$		M1		ine: Attempt to square <i>their</i> $y + 3$ and attempration.
$\left[\pi\right]\left(\frac{y^3}{3} + 3y^2 + 9y\right) \text{ or } \left[\pi\right]\left(\frac{(y+3)^3}{3}\right)$	A2	2, 1, 0	Not :	available for incorrect line equations.
$\left[\pi\right]\left\{\frac{8}{3}+12+18-\left(-\frac{1}{3}+3-9\right)\right\} \text{ or } \left[\pi\right]\left\{\frac{32}{5}+\frac{16}{3}+2-\left(-\frac{1}{5}-\frac{2}{3}-1\right)\right\}$		DM1	they and/o both	y limits $-1 \rightarrow 2$ to either integral providing have been awarded M1. Expect $15\frac{3}{5} [\pi]$ or $39[\pi]$. Some evidence of substitution of -1 and 2 must be seen. Dependent on at leas of the first 2 M1 marks.
Volume = $[\pi](39 - 15\frac{3}{5})$		DM1		ropriate subtraction. Dependent on at least or e first 2 M1 marks.
$= 23 \frac{2}{5} \pi \text{ or } \frac{117}{5} \pi \text{ or awrt } 73.5[1327]$		A1		
		9		

(a)	$[y=] \{x\} \{+(x-1)^{-2}\} [+c]$	B1 B1	May be unsimplified.
	Sub $x = 0$, $y = 3$ leading to $3 = 0 + 1 + c$	M1	Substitution into an integral, expect $c = 2$.
	$y = x + (x-1)^{-2} + 2$ or $f(x) = x + (x-1)^{-2} + 2$	A1	$\frac{-2}{(-2)(x-1)^2}$ or $\frac{-2(x-1)^{-2}}{-2}$ must be simplified.
		4	
(b)	[Gradient of tangent =] $f'(0) = 3$	B1	
	Equation of tangent is $y-3 = their$ gradient at $x = 0(x-0)$	M1*	Expect $y = 3x + 3$, normal gets M0.
	Intersection given by $3x + 3 = x + (x - 1)^{-2} + 2$	DM1	FT <i>their</i> equation from part (a).
	$2x+1 = \frac{1}{(x-1)^2} \rightarrow (2x+1)(x-1)^2 - 1 = 0 \text{ or solve equation before given}$ form reached and show solution (x = 3/2) satisfies given result	A1	WWW AG
		4	
(c)	Substitute $x = \frac{3}{2}$ leading to $(2x+1)(x-1)^2 - 1$ leading to $4 \times \frac{1}{4} - 1 = 0$.	B1	Evaluation of each bracket must be shown. Allow $\left(\frac{1}{2}\right)^2$
	Hence $x = \frac{3}{2}$ If shown in (b) must be referenced here (in part (c))		for second bracket. Solution of $(2x+1)(x-1)^2 - 1 = 0$ is acceptable.
	When $x = \frac{3}{2}$ $y = 7\frac{1}{2}$	B1	
		2	
Que	stion 200		
(a)	$\left[\frac{dy}{dx} = \right] \{9\} + \left\{-\frac{3}{2}(2x+1)^{1/2} \times 2\right\}$	B1, B1	I Including '+c' makes the second term B0.
	$9-3(2x+1)^{1/2} = 0$ leading to $2x+1=9$	MI	Set differential to zero and solve by squaring SOI. Beware $9^2 - 3^2(2x+1) = 0$ M0A0. $2x+1=\sqrt{3}$ or $2x+1=\pm 9$ get M0.
	Max point = (4, 9)	Al	
		4	
(b)	When $x = 1\frac{1}{2}$, shows substitution or $\frac{dy}{dx} = 3$	MI	
	Gradient of <i>AB</i> is $\frac{5\frac{1}{2} - 3\frac{1}{2}}{1\frac{1}{2} - 7\frac{1}{2}} \left[= \frac{-1}{3} \right]$	MI	Substituting into a correct expression for m _{AB} .
	$-\frac{1}{3}x^3 = -1$. [Hence <i>AB</i> is the normal]	Al	L Contraction of the second seco
	Alternative method for Question 10(b)		
	When $x = 1\frac{1}{2}$ $\frac{dy}{dx} = 3$, [perpendicular gradient is -1/3]	MI	L
	Perpendicular through A has equation $y = \frac{-x}{3} + 6$ which contains B(7.5,3.5)	M1 A1	
	leading to AB is a normal to the curve at A		

$$\begin{aligned} \begin{bmatrix} (3) \\ \left[\frac{9x^2}{2} \right]_{+}^{+} \left\{ \frac{-(2x+1)^2}{\frac{5}{2}x^2} \right\} \\ & \begin{bmatrix} 1 & 1 & 1 \\ \frac{9x^2}{2} \right]_{+}^{+} \left\{ \frac{-(2x+1)^2}{\frac{5}{2}x^2} \right\} \\ & \begin{bmatrix} \frac{9x^2}{2} + \frac{1}{2} \left(\frac{2x^2}{5} + 1 \right)^{1/2} \right]_{-}^{-} \left[\frac{9x^2}{2} + \frac{1}{2} \left(2x(1.5+1)^{1/2} \right) & \text{or} \\ & \begin{bmatrix} \frac{9x^2}{2} + \frac{1}{2} \left(\frac{2x^2}{5} + 1 \right)^{1/2} \right]_{-}^{-} \left[\frac{9x^2}{4} + \frac{1}{2} \right]_{0}^{-} \left(\frac{1}{4} + \frac{3x^2}{4} \right) & \text{or} \frac{149}{40} & \text{or} 48.325 - 3.725 \\ \hline \\ & \frac{1}{2} \left(\frac{5}{2} + \frac{1}{2} + \frac{1}{2} \right)_{+}^{-} \left(\frac{1}{6} + \frac{3x^2}{2} \right) & \text{or} \frac{193}{40} + \frac{149}{40} & \text{or} 48.325 - 3.725 \\ \hline \\ & \frac{1}{2} \left(\frac{5}{2} + \frac{1}{2} + \frac{1}{2} \right)_{+}^{-} \left(\frac{1}{6} + \left(\frac{3}{2} \right)^{2} + 6 + \frac{3}{2} \right) & \text{or} \frac{285}{8} - \frac{69}{8} + 1 - 271 \\ \hline \\ & \frac{1}{16} \left(\frac{1}{5} + \frac{1}{2} + \frac{1}{2} + \frac{1}{6} + \frac{1}{2} \right)_{-}^{-} \left(-\frac{1}{6} + \frac{3}{2} + \frac{1}{2} + \frac{3}{2} \right) & \text{or} \frac{285}{8} - \frac{69}{8} + 1 - 271 \\ \hline \\ & \frac{1}{16} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{6} + \frac{3}{2} \right) & \text{or} \frac{285}{8} - \frac{69}{8} + 1 - 271 \\ \hline \\ & \frac{1}{16} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{6} + \frac{3}{2} \right) & \text{or} \frac{285}{8} - \frac{69}{8} + 1 - 271 \\ \hline \\ & \frac{1}{16} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{6} + \frac{1}{2} \right) & \text{or} \frac{285}{8} - \frac{69}{8} + 1 - 271 \\ \hline \\ & \frac{1}{16} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{6} + \frac{1}{2} \right) & \text{or} \frac{285}{8} - \frac{69}{8} + 1 - 271 \\ \hline \\ & \frac{1}{16} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{6} + \frac{1}{2} \right) & \text{or} \frac{285}{8} - \frac{69}{8} + 1 - 271 \\ \hline \\ & \frac{1}{16} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{6} + \frac{1}{2} + \frac{1}{6} + \frac{1}{2} \right) & \text{or} \frac{1}{8} \\ & \frac{1}{16} \left(\frac{1}{2} + \frac{1}{6} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{6} + \frac{1}{2} + \frac{1}{2}$$

Ques	stion 203		
(a)	$\frac{dy}{dx} = \left\{ k \frac{1}{2} (4x+1)^{-\frac{1}{2}} \right\} \{ \times 4 \} \{ -1 \}$	B 2,1,0	OE e.g. $2k(4x+1)^{-\frac{1}{2}}-1$ B2 Three correct unsimplified {} and no others. B1 Two correct {} or three correct {} and an additional term e.g. +5. B0 More than one error.
		2	
(b)	$2k(4x+1)^{-\frac{1}{2}} - 1 = 0$ leading to $(4x+1)^{\frac{1}{2}} = 2k$ or $\frac{2k}{(4x+1)^{\frac{1}{2}}} = 1$	M1	OE Equating their $\frac{dy}{dx}$ of the form $ak(4x+1)^{\frac{1}{2}}-1$ where $a = 2$ or 0.5, to 0 and dealing with the negative power correctly including k not multiplied by $(4x+1)^{\frac{1}{2}}$.
	$x = \frac{4k^2 - 1}{4}$	A1	CAO OE simplified expression ISW.
		2	
(c)	$2 \times 10.5 (4x+1)^{-\frac{1}{2}} - 1 = 2$	M1	Putting k= 10.5 into their $\frac{dy}{dx}$ and equating to 2.
	$7 = (4x+1)^{\frac{1}{2}}$ leading to $4x+1 = 49$ leading to $x = 12$	A1	If M1 earned SCB1 available for $x = \frac{33}{64}$ from $a = \frac{1}{2}$.
	$y = [10.5\sqrt{4x+1} - x + 5 =]66.5$ [leading to (12, 66.5)]	A1	
	$y - 66.5 = -\frac{1}{2}(x - 12)$	A1	OE
Question 204 $\frac{dy}{dx} = \frac{1}{2x^2}$ or $\frac{1}{2}x^{-2}$		4 *M1	Differentiate $-\frac{1}{2x}$ M0 for $2x^{-2}$. No errors.
$[y=]\frac{1}{2x^2}x - \frac{1}{2x^2} = -\frac{1}{2x}$ or $\frac{1}{x} = \frac{1}{2x^2} [\Rightarrow 2x^2 - x = 0]$		DM1	Sub <i>their</i> $\frac{dy}{dx}$ into equation of line or set gradient = k to form equation in x.
$x = \frac{1}{2}$ only		A1	If DM0 then $x = \frac{1}{2}$, award A0XP then B0 B0.
$y = \left[2 \times \frac{1}{2} - 2\right] = -1$		B1	
<i>k</i> = 2		B1	
		5	

Ques								
(a)	$\frac{dV}{dh} = \frac{4}{3} \times 3(25+h)^2$ [= 4900 when h = 10]	B1	Correct expression for $\frac{\mathrm{d}V}{\mathrm{d}h}$.					
	$\frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \implies their \ "4(25+10)^2 "\times \frac{\mathrm{d}h}{\mathrm{d}t} = 500 \implies \frac{\mathrm{d}h}{\mathrm{d}t} = \left[\frac{500}{4900}\right]$	M1	Use chain rule correctly to find a numerical expression for $\frac{dh}{dt}$. Accept e.g. $\frac{500}{2500 + 2000 + 400}$.					
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.102 \Big[\mathrm{cms}^{-1}\Big]$	A1	AWRT OE e.g. $\frac{5}{49}$ ISW.					
		3						
(b)	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} \Rightarrow 500 = their \ "4(25+h)^2 "\times 0.075$	*M1	SOI Use chain rule correctly to form equation in h .					
	$\left[\left(25+h \right)^2 = \frac{5000}{3} \right] \Longrightarrow h = [15.8\ 248\dots]$	DM1	Solve quadratic to find <i>h</i> . Exact value of <i>h</i> is $\sqrt{\frac{5000}{3}} - 25$ or $\frac{50\sqrt{6}}{3} - 25$ h + 25 = 40.82					
	$V = 69900 \text{ cm}^3$	A1	AWRT ISW Look for 698(88.5).					
		3						
Oues	Question 206							
(a)		*M1	Integrate y^2 (power incr. by 1 or div by <i>their</i> new					
	$[\pi] \int \frac{16}{(2x-1)^4} [dx] = [\pi] \int 16(2x-1)^{-4} [dx] = [\pi] \left(-\frac{16}{3 \times 2 \times (2x-1)^3} \right)$		power). M0 if more than 1 error or $-\frac{16}{6}x(2x-1)^{-3}$.					
			0					
	$\left[\pi\right]\left(-\frac{16}{3\times2\times\left(2x-1\right)^3}\right)$	A1	OE e.g. $\left(-\frac{8}{3}(2x-1)^{-3}\right)$.					
	$[\pi] \left(-\frac{16}{6 \times 8} + \frac{16}{6 \times 1} \right) \left[= [\pi] \frac{112}{48} = [\pi] \frac{7}{3} \right]$	DM1	Sub correct limits into <i>their</i> integral: $F\left(\frac{3}{2}\right) - F(1)$.					
			Must see at least $\left(-\frac{1}{3}+\frac{8}{3}\right)$. Allow 1 sign error. Decimal: 2.33 π or 7.33.					
	Volume of cylinder $\left[= \pi \times 1^2 \times \frac{1}{2} \right] = \frac{1}{2} \pi$ OR $[\pi] \int_{1}^{1.5} 1 [dx] = \frac{1}{2} \pi$	B1	$\frac{1}{2}\pi$ or $\pm\pi\left(\frac{3}{2}-1\right)$ seen.					
	Volume of revolution $\left[=\frac{7}{3}\pi - \frac{1}{2}\pi\right] = \frac{11}{6}\pi$		A0 for 5.76 (not exact). If DM0 for insufficient substitution, or B0, SC B1 for $\frac{11}{6}\pi$.					
		5						
(b)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] \left\{-8\left(2x-1\right)^{-3}\right\} \left\{\times 2\right\}$	B2, 1, 0	OE B1 for each correct element in {}.					
	At <i>B</i> gradient = -2	B1						
	Eqn of tangent $y-1 = their "-2"\left(x-\frac{3}{2}\right)$	M1	SOI Following differentiation OE e.g. $y = -2x + 4$ or					
			$y = \frac{1}{2}x + \frac{1}{4}$. (Must have $m_N = -\frac{1}{m_T}$ for M1).					
	OR Eqn of normal $y-1 = their "\frac{1}{2}"\left(x-\frac{3}{2}\right)$		2 4 m_T					
	Tangent crosses x-axis at 2 or normal crosses x-axis at $-\frac{1}{2}$	A1	SOI For at least one intercept correct or correct integration.					
	Area = $\frac{5}{4}$	A1	From intercepts: $\frac{1}{2} \times \frac{5}{2} \times 1 = \frac{5}{4}$ or $1 + \frac{1}{4} = \frac{5}{4}$,					
			from lengths: $\frac{1}{2} \times \sqrt{5} \times \frac{\sqrt{5}}{2} = \frac{5}{4}$ or by integration.					
		6						

(a)	$6a^{2} - 30a + 6a = 0 \ [\Rightarrow 6a(a - 4) = 0]$	B1	Sub $x = a$ into $\frac{dy}{dx} = 0$. May see $a^2 - 5a + a = 0$.
	a = 4 only	B1	
		2	
(b)	$\frac{d^2y}{dx^2} = 12x - 30$ or correct values of $\frac{dy}{dx}$ either side of $x = 4$	M1	Differentiate $\frac{dy}{dx}$ (mult. by power or dec. power by 1) M0 if no values of $\frac{dy}{dx}$, only signs.
	$d^2 v$ $d^2 v$	A1	
	At $x = 4$, $\frac{d^2 y}{dx^2} > 0$ minimum or $\frac{d^2 y}{dx^2} = 18$ minimum		Must see 'minimum'.
	or concludes minimum from $\frac{dy}{dx}$ values		If M0, SC B1 for 'minimum' from $\frac{dy}{dx}$ sign diagram.
		2	
(c)	$[y =] \frac{6}{3}x^3 - \frac{30}{2}x^2 + 6(their a)x[+c]$	B1 FT	Expect $2x^3 - 15x^2 + 24x[+c]$. B1 poss. even if uses 'a' – no value in (a) – max 1/3.
	$-15 = 2(their "4")^{3} - 15(their "4")^{2} + 6(their "4")^{2} + c$	M1	Sub $x = their$ "4", $y = -15$ into integral (must incl + c) Look for $-15 = 128 - 240 + 96 + c$ [$\Rightarrow c = 1$].
	$y = 2x^3 - 15x^2 + 24x + 1$	A1	Coefficients must be correct and simplified. Need to see ' $y =$ ' or 'f(x) = ' in the working.
		3	
(d)	$\frac{dy}{dx} = 6x^2 - 30x + 6(their "4")[=0]$ If correct, $[6](x-1)(x-4)[=0]$ or $\frac{30 \pm \sqrt{(-30)^2 - 4(6)(24)}}{12}$	M1	OE Forming a 3-term quadratic using the given $\frac{dy}{dx}$ and solving by factorisation, formula or completing the square. Check for working in (b) .
	Coordinates (1,12)	A1	Allow $x = 1, y = 12$ (ignore $x = 4$ if present). If M0, award SC B1 for $(1,12)$.
	5	2	