AS-Level

Topic: Calculus

May 2013-May 2023

Answer

Question 1
(i)
$y=\frac{8}{\sqrt{x}}-x$
$\frac{\mathrm{d} y}{\mathrm{dx}}=-4 x^{-\frac{3}{2}}-1$
$=-\frac{3}{2}$ when $x=4$.
Eqn of $B C y-0=-\frac{3}{2}(x-4)$
$\rightarrow C(1,41 / 2)$
(ii) area under curve $=\int\left(\frac{8}{\sqrt{x}}-x\right)$
$=\frac{8 x^{\frac{1}{2}}}{\frac{1}{2}}-1 / 2 x^{2}$
Limits 1 to $4 \rightarrow 8 \frac{1}{2}$
Area under tangent $=1 / 2 \times 41 / 2 \times 3=63 / 4$
Shaded area $=13 / 4$

B1		needs both
M1		Subs $x=4$ into d $y / \mathrm{d} x$ Must be using differential + M1 A1 correct form of line at $B(4,0)$.
B1 B1		(both unsimplified)
M1	Using correct limits.	
M1	Or could use calculus)	
A1	[5]	

Question 2

$u=x^{2} y \quad y+3 x=9$	M1		Expressing u in terms of 1 variable
$u=x^{2}(9-3 x)$ or $\left(\frac{9-y}{3}\right)^{2} y$	DM1A1		Knowing to differentiate.
$\frac{\mathrm{d} u}{\mathrm{dx}}=18 x-9 x^{2}$ or $\frac{\mathrm{d} u}{\mathrm{dy}}=27-12 y+y^{2}$			
$=0$ when $x=2$ or $y=3 \rightarrow u=12$	DM1 A1 DM1 A1	[7]	Any valid method
$\frac{\mathrm{d}^{2} u}{\mathrm{dx}^{2}}=18-18 x-\mathrm{ve}$		Setting differential to 0.	

Question 3

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{dx}}=\sqrt{2 x+5} \\
& \frac{(2 x+5)^{\frac{3}{2}}}{\frac{3}{2}} \div 2 \quad(+c) \\
& \operatorname{Uses}(2,5) \quad \rightarrow c=-4
\end{aligned}
$$

B1
B1

M1 A1

B1 Everything without " $\div 2$ ".
B1 " $\div 2$ "
[4] Uses point in an integral.

Question 4
$y=\sqrt{1+4 x}$
(i) $\frac{\mathrm{d} y}{\mathrm{dx}}=\frac{1}{2}(1+4 x)^{-\frac{1}{2}} \times 4$
$=2$ at $B(0,1)$
Gradient of normal $=-1 / 2$
Equation $y-1=-1 / 2 \mathrm{x}$
(ii) At A $x=-1 / 4$
$\int \sqrt{1+4 x} d x=\frac{(1+4 x)^{\frac{3}{2}}}{\frac{3}{2}} \div 4$
Limits $-1 / 4$ to $0 \rightarrow \frac{1}{6}$
Area $B O C=1 / 2 \times 2 \times 1=1$
\rightarrow Shaded area $=\frac{7}{6}$

Question 5

$\mathrm{f}(x)=\frac{5}{1-3 x}, x \geq 1$
(i) $\mathrm{f}^{\prime}(x)=\frac{-5}{(1-3 x)^{2}} \times-3$
(ii) $15>0$ and $(1-3 x)^{2}>0, \mathrm{f}(x)>0$
\rightarrow increasing
(iii) $y=\frac{5}{1-3 x} \rightarrow 3 x=1-\frac{5}{y}$
$\rightarrow \mathrm{f}^{-1}(x)=\frac{x-5}{3 x}$ or $\quad 1 / 3-\frac{5}{3 x}$
Range is ≥ 1
Domain is $-2.5 \leq x<0$

B1 B1

M1
M1 A1

B1
B1 B1
B1
$\mathrm{Bl} \mathrm{V}^{\wedge}$
[5]
For $1+$ his " $1 / 6$ ".

B1 without $\times-3$. B1 for $\times-3$, even if first B
mark is incorrect
\checkmark providing ()2 in denominator.
Attempt to make x the subject.
Must be in terms of x.

B1
B1 B1
B1 Without " $\times 4$ ". B1 for " $\times 4$ " even if first B mark lost.

Use of $m_{1} m_{2}=-1$
Correct method for eqn.

B1 Without the " $\div 4$ ". For " $\div 4$ " even if first B mark lost.
]
[1]
M1
A1

BI
[5]

Question 6
(i) $\pi r^{2} h=250 \pi \rightarrow h=\frac{250}{r^{2}}$
$\rightarrow S=2 \pi r h+2 \pi r^{2}$
$\rightarrow S=2 \pi r^{2}+\frac{500 \pi}{r}$
(ii) $\frac{\mathrm{d} S}{\mathrm{dr}}=4 \pi r-\frac{500 \pi}{r^{2}}$

$$
=0 \text { when } r^{3}=125 \quad \rightarrow r=5
$$

$$
\rightarrow S=150 \pi
$$

(iii) $\frac{\mathrm{d}^{2} S}{\mathrm{~d} r^{2}}=4 \pi+\frac{1000 \pi}{r^{3}}$

This is positive \rightarrow Minimum

Makes h the subject. $\pi r^{2} h$ must be right Ans given - check all formulae..

B1 for each term
Sets differential to $0+$ attempt at soln

Any valid method.
$2^{\text {nd }}$ differential must be correct - no need for numerical answer or correct r.

Question 7

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{dx}}=\frac{6}{x^{2}} \\
& y=-6 x^{-1}+c \\
& \text { Uses }(2,9) \rightarrow c=12 \\
& y=-6 x^{-1}+12
\end{aligned}
$$

B1

Question 8
(i) $\frac{\mathrm{dy}}{\mathrm{dx}}=4(x-2)^{3}$

Grad of tangent $=-4$
Eq. of tangent is $\mathrm{y}-1=-4(x-1)$
$\rightarrow \mathrm{B}\left(\frac{5}{4}, 0\right)$
Grad of normal $=\frac{1}{4}$
Eq. of normal is $y-1=\frac{1}{4}(x-1) \rightarrow \mathrm{C}\left(0, \frac{3}{4}\right)$
(ii) $A C^{2}=1^{2}+\left(\frac{1}{4}\right)^{2}$
$\frac{\sqrt{17}}{4}$
(iii) $\int(x-2)^{4} \mathrm{~d} x=\frac{(x-2)^{5}}{5}$
$\left[0-\left(-\frac{1}{5}\right)\right]=\frac{1}{5}$
$\Delta=\frac{1}{2} \times 1 \times\left(\right.$ their $\left.\frac{5}{4}-1\right)=\frac{1}{8}$
$\frac{1}{5}-\frac{1}{8}=\frac{3}{40}$ or 0.075

B1

Or $4 x^{3}-24 x^{2}+48 x-32$
Sub $x=1$ into their derivative
Line thru $(1,1)$ and with m from deriv

Use of $m_{1} m_{2}=-1$
[6]
[2]
Allow $\sqrt{\frac{17}{16}}$

Or $\frac{x^{5}}{5}-2 x^{4}+8 x^{3}-16 x^{2}+16 x$
Apply limits $1 \rightarrow 2$ for curve
Or $\frac{x^{5}}{5}-2 x^{4}+8 x^{3}-16 x^{2}+16$
Apply limits $1 \rightarrow 2$ for curve
Or $\int_{1}^{\frac{5}{4}}(-4 x+5) \mathrm{d} x=\frac{1}{8}$
[4]

Integration only - unsimplified Uses $(2,9)$ in an integral

Question 9
(i) $3 u+\frac{3}{u}-10=0$
$3 u^{2}-10 u+3=0 \Rightarrow(3 u-1)(u-3)=0$
$\sqrt{x}=\frac{1}{3}$ or 3
$\sqrt{x}=\frac{1}{9}$ or 9
(ii) $\mathrm{f}^{\prime \prime}(x)=\frac{3}{2} x^{-\frac{1}{2}}-\frac{3}{2} x^{-\frac{3}{2}}$

At $x=\frac{1}{9}$
$\mathrm{f}^{\prime \prime}(x)=\frac{3}{2}(3)-\frac{3}{2}(27)(=-36)<0 \rightarrow$ Max
At $x=9$
$\mathrm{f}^{\prime \prime}(x)=\frac{3}{2} \times \frac{1}{3}-\frac{3}{2} \times \frac{1}{27}\left(=\frac{4}{9}\right)>0 \rightarrow$ Min
(iii) $\mathrm{f}(x)=2 x^{\frac{3}{2}}+6 x^{\frac{1}{2}}-10 x(+c)$

$$
\begin{aligned}
-7 & =16+12-40+c \\
c & =5
\end{aligned}
$$

[3]

Valid method. Allow innac subs, even 3, $\frac{1}{3}$
Fully correct. No working, no marks.

B1 for $2 / 3$ terms correct. Allow in (i) Sub $(4,-7) . c$ must be present.
Or $3 x-10 \sqrt{x}+3=0$
Or $(3 \sqrt{x}-1)(\sqrt{x}-3)$ or apply formula etc.

Allow anywhere
[4]

B1 for $3(2 x-5)^{2}$, B1 for $(\times 2+1)$
SC B1 for $24 x^{2}-120 x+151$
Dep on $k(2 x-5)^{2}+c(k>0),(c \geq 0)$
[3]
Subst of particular values is B0

Question 10

$\mathrm{f}^{\prime}(x)=(2 x-5)^{2} \times 2+1$ or $24\left(x-\frac{5}{2}\right)^{2}+1$ $>0($ allow $\geq)$

Question 11

(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{1}{2}(x 4+4 x+4)^{\frac{-1}{2}}\right] \times\left[4 x^{3}+4\right]$

At $x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2} \times \frac{1}{2} \times 4=(1)$
Equation is $y-2=x$
(ii) $x+2=\sqrt{x^{4}+4 x+4} \Rightarrow(x+2)^{2}$
$=x 4+4 x+4$
$x^{2}-x^{4}=0$ oe
$x=0, \pm 1$
(iii) $(\pi)\left[\frac{x^{5}}{5}+2 x^{2}+4 x\right]$
$(\pi)\left[0-\left(\frac{-1}{5}+2-4\right)\right]$
$\frac{11 \pi}{5}(6.91)$ oe

B1B1
[4]

B1

B1
B2,1,0
[4]

M1A1

DM1

A1

Sub $x=0$ and attempt eqn of line following differentiation.

AG www

Attempt to integrate y^{2}
[4]

Question 12

$\frac{d y}{d x}=-k^{2}(x+2)^{-2}+1=0$ $x+2= \pm k$ $x=-2 \pm k$	M1A1	Attempt differentiation \& set to zero
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 k^{2}(x+2)^{-3}$	DM1	Attempt to solve
A1	cao	
M1	Attempt to differentiate again	
When $x=-2=k, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\left(\frac{2}{k}\right)$ which is (>0) min	A1	Sub their x value with k in it into $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$
When $x=-2-k, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\left(\frac{2}{-k}\right)$ which is (<0)	A1	but $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and x need to be correct.
max		[8]

Question 13

$$
\begin{aligned}
& f(x)=2 x^{\frac{1}{2}}+x(+c) \\
& 5=-2 \times \frac{1}{2}+4+c \\
& c=2
\end{aligned}
$$

Question 14

$$
y=\frac{8}{x}+2 x
$$

$$
\text { (i) } \begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-8}{x^{2}}+2 \\
& (-6 \text { at } A) \\
& \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} y}{\mathrm{~d} t} \\
& \rightarrow-0.24
\end{aligned}
$$

(ii) $\int y^{2}=\int \frac{64}{x^{2}}+4 x^{2}+32$
$=\left(\frac{-64}{x}+\frac{4 x^{3}}{3}+32 x\right)$
Limits 2 to 5 used correctly
$\rightarrow 271.2 \pi$ or 852
(allow 271π or 851 to 852)

M1A1	Attempt integ $x^{\frac{1}{2}}$ or $+x$ needed for M	
M1	Sub $(4,5) . c$ must be present	
A1		
	$[4]$	

Question 15
(i) Sim triangles $\frac{y}{16-x}=\frac{12}{16}$ (or trig)
$\rightarrow y=12-3 / 4 x$
$A=x y=12 x-3 / 4 x^{2}$.
(ii) $\frac{\mathrm{dA}}{\mathrm{dx}}=12-\frac{6 x}{4}$
$=0$ when $x=8 . \rightarrow A=48$.
This is a Maximum.
From - ve quadratic or 2 nd differential.

B1
[4]

Trig, similarity or eqn of line (could also come from eqn of line) ag - check working.

Sets to $0+$ solution.
Can be deduced without any working. Allow even if ' 48 ' incorrect.

Question 16

$$
\begin{aligned}
y= & \frac{2}{\sqrt{5 x-6}} \\
& \text { (i) } \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \times-1 / 2 \times(5 x-6)^{-\frac{3}{2}} \times 5 \\
& \rightarrow-\frac{5}{8}
\end{aligned}
$$

(ii) integral $=\frac{2 \sqrt{5 x-6}}{\frac{1}{2}} \div 5$

$$
\text { Uses } 2 \text { to } 3 \rightarrow 2.4-1.6=0.8
$$

Question 17

B1 B1
B1

B1 B1
M1 A1
[4]

B1 without ' $\times 5$ '. B1 For ' $\times 5$ ' Use of ' $u v^{\prime}$ ' or ' u / v ' ok.

B1 without ' $\div 5$ '. B1 for ' $\div 5$,
Use of limits in an integral.
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[3(3-2 x)^{2}\right] \times[-2]$

At $x=\frac{1}{2}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-24$
$y-8=-24\left(x-\frac{1}{2}\right)$
$y=-24 x+20$
(ii) Area under curve $=\left[\frac{(3-2 x)^{4}}{4}\right] \times\left[-\frac{1}{2}\right]$
$-2-\left(-\frac{81}{8}\right)$
Area under tangent $=\int(-24 x+20)$
$=\left|-12 x^{2}+20 x\right|$ or 7 (from trap)
$\frac{9}{8}$ or 1.125

B1B1
M1
DM1
A1
[5]
B1B1

$$
\text { OR }-54+72 x-24 x^{2} \quad \text { B2, } 1,0
$$

OR $27 x-27 x^{2}+12 x^{3}-2 x^{4}$ B2,1,0

Limits $0 \rightarrow 1 / 2$ applied to integral with intention of subtraction shown or area $\operatorname{trap}=1 / 2(20+8) \times 1 / 2$

Could be implied
Dep on both M marks
[6]

Question 18

$$
\text { (i) } \begin{aligned}
& A=2 x r+\pi r^{2} \\
& 2 x+2 \pi r=400(\Rightarrow x=200-\pi r) \\
& \\
& A=400 r-\pi r^{2}
\end{aligned}
$$

(ii) $\frac{\mathrm{d} A}{\mathrm{~d} r}=400-2 \pi r$
$=0$
$r=\frac{200}{\pi}$ oe
$x=0 \Rightarrow$ no straight sections $\frac{\mathrm{d}^{2} A}{\mathrm{~d} r^{2}}=-2 \pi \quad(<0) \quad$ Max

AG

| B1 | | |
| :--- | :--- | :--- | :--- |
| B1 | | |
| M1A1 | | Subst \& simplify to AG (www) |
| B1 | | Differentiate |
| M1 | | Set to zero and attempt to find r |
| A1 | | |
| A1 | | |
| B1 | | Dep on -2π, or use of other valid
 reason |
| | $[5]$ | |

Question 19

Attempt integration
$f(x)=2(x+6)^{\frac{1}{2}}-\frac{6}{x}(+c)$
$2(3)-\frac{6}{3}+c=1$
$c=-3$

$|$| M1 | |
| :--- | ---: |
| A1A1 | Accept unsimplified terms |
| M1 | Sub. $x=3, y=1 . c$ must be present |
| A1 | |
| | $[5]$ |

Question 20
pts of intersection $2 x+1=-x^{2}+12 x-20$
$\rightarrow x=3,7$
Area of trapezium $=\frac{1}{2}(4)(7+15)=44$
(or $\int(2 x+1) \mathrm{d} x$ from 3 to $7=44$)
Area under curve $=-\frac{1}{3} x^{3}+6 x^{2}-20 x$
Uses 3 to $7 \rightarrow\left(54 \frac{2}{3}\right)$

Shaded area $=10 \frac{2}{3}$

OR

$$
\left.\int_{3}^{7}\left(-x^{2}+10 x-21\right)=-\frac{x^{3}}{3}+5 x^{2}-21 x\right)
$$

M1 subtraction, A1A1A1 for integrated terms, DM1 correct use of limits, A1

M1A1 Attempt at soln of sim eqns. co

Either method ok. co
-1 each term incorrect
Correct use of limits (Dep 1 ${ }^{\text {st }} \mathrm{M} 1$)
co

Functions subtracted before integration

Subtraction reversed allow A3A0.
Limits reversed allow DM1A0
(i) $3 x^{2} y=288 y$ is the height
$A=2\left(3 x^{2}+x y+3 x y\right)$
Sub for $y \rightarrow A=6 x^{2}+\frac{768}{x}$
(ii) $\frac{\mathrm{d} A}{\mathrm{~d} x}=12 x-\frac{768}{x^{2}}$
$=0$ when $x=4 \rightarrow A=288$. Allow $(4,288)$
$\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}=12+\frac{1536}{x^{3}}$
$(=36)>0 \quad$ Minimum

B1		co
M1		Considers at least 5 faces $(y \neq x)$
A1		co answer given
		$[3]$
B1		co
M1 A1		Sets differential to $0+$ solution. co
M1		Any valid method
A1		co www dep on correct $\mathrm{f}^{\prime \prime}$ and $x=4$

Question 22

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{12}{\sqrt{4 x+a}} P(2,14) \text { Normal } 3 y+x=44
$$

(i) m of normal $=-\frac{1}{3}$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3=\frac{12}{\sqrt{4 x+a}} \rightarrow a=8
$$

(ii) $\int y=12(4 x+a)^{\frac{1}{2}} \div \frac{1}{2} \quad \div 4(+c)$

Uses $(2,14)$
$c=-10$

B1
M1 A1
[3]
B1 B1
M1
A1
co

Use of $m_{1} m_{2}=-1 . \quad \mathrm{AG}$.

Correct without " $\div 4$ ". for " $\div 4$ ".
Uses in an integral only. Dep ' c '.
co All 4 marks can be given in (i)

Question 23

$\mathrm{f}(x)=\frac{15}{2 x+3}$
(i) $\mathrm{f}^{\prime}(x)=\frac{-15}{(2 x+3)^{2}} \times 2$
()2 always $+\mathrm{ve} \rightarrow \mathrm{f}^{\prime}(x)<0$
(No turning points) - therefore an inverse
(ii) $y=\frac{15}{2 x+3} \rightarrow 2 x+3=\frac{15}{y}$
$\rightarrow x=\frac{\frac{15}{y}-3}{2} \rightarrow \frac{15-3 x}{2 x}$
(Range) $0 \leqslant \mathrm{f}^{-1}(x) \leqslant 6$.
Allow $0 \leqslant y \leqslant 6,[0,6]$
(Domain) $1 \leqslant x \leqslant 5$. Allow $[1,5]$

B1 B1
$B 1{ }^{\wedge}$
[3]

M1

Without the " $\times 2$ ". For " $\times 2$ " (indep of $1^{\text {st }} \mathrm{B} 1$).
\checkmark providing ()2 in $\mathrm{f}^{\prime}(x) .1-1$ insuff.

Order of ops - allow sign error co as function of x. Allow $y=\ldots$

For range/domain ignore letters unless range/domain not identified
$y=8-\sqrt{4-x}$
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{2}(4-x)^{-\frac{1}{2}} \times-1$
$\int y \mathrm{~d} x=8 x-\frac{(4-x)^{\frac{3}{2}}}{\frac{3}{2}} \div-1$
(ii) Eqn $y-7=1 / 2(x-3)$
$\rightarrow y=1 / 2 x+51 / 2$
(iii) Area under curve $=\mathrm{J}$ from 0 to $3(58 / 3)$

Area under line $=1 / 2(51 / 2+7) \times 3$
Or $\left[1 / 4 x^{2}+\frac{11 x}{2}\right]$ from 0 to 3
$\rightarrow \frac{58}{3}-\frac{75}{4}=\frac{7}{12}$
Question 25
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 x-1$
$\rightarrow \int \frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}-x \quad+c$
$=0$ when $x=3 \rightarrow c=-6$
$x^{2}-x-6=0$ when $x=-2$ (or 3)
$\rightarrow \int y=1 / 3 x^{3}-1 / 2 x^{2}-6 x \quad(+k)$
$=-10$ when $x=3$
$\rightarrow k=31 / 2$
$\rightarrow y=10 \frac{5}{6}$

Without (-1). For ($x-1$).

B1 for " $8 x$ " and $+c$ ". B1 for all except $\div(-1)$. B1 for $\div(-1)$.
(n.b. these 5 marks can be gained in(ii) or (iii))

M1 unsimplified. A1 as $y=m x+c$ Use of limits - needs use of "0" Correct method
M1 Subtraction. A1 co

Correct integration (ignore $+c$)
Uses a constant of integration. co Puts $\mathrm{d} y / \mathrm{d} x$ to 0 \checkmark first 2 terms, $\sqrt{ }$ for $c x$. Correct method for k Co -r 10.8

Question 26
(i) $y=\frac{2}{3} x^{\frac{3}{2}}-2 x^{\frac{1}{2}}+(c) \quad$ oe $\frac{2}{3}=\frac{16}{3}-4+c$
$c=-\frac{2}{3}$
(ii) $\frac{1}{2} x^{-\frac{1}{2}}+\frac{1}{2} x^{-\frac{3}{2}}$ oe
(iii) $x^{\frac{1}{2}}-x^{-\frac{1}{2}}=0 \rightarrow \frac{x-1}{\sqrt{x}}=0$
$x=1$
When $x=1, y=\frac{2}{3}-2-\frac{2}{3}=-2$
When $x=1, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}(=1)>0 \quad$ Hence minimum

B1B1
M1
A1

B1B1

M1

M1A1
[4]
[2]

B1 Everything correct on final line. Also dep on
[5]
Attempt to integrate
Sub $\left(4, \frac{2}{3}\right)$. Dependent on c present

Equate to zero and attempt to solve

Sub. their ' 1 ' into their ' y ' correct (ii). Accept other valid methods

Question 27

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\left[-2 \times 4(3 x+1)^{-3}\right] \times[3] \\
& \text { When } x=-1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 \\
& \text { When } x=-1, y=1 \quad \text { soi } \\
& y-1=3(x+1)(\rightarrow y=3 x+4)
\end{aligned}
$$

B1B1	$\left[-2 \times 4 u^{-3}\right] \times[3]$ is B0B1 unless resolved
B1	
B1	
B1 \downarrow	Ft on their ' 3 ' only (not $-\frac{1}{3}$). Dep on diffn

Question 28

$\text { (a) (i) } \begin{aligned} & (a+b)^{\frac{1}{3}}=2, \quad(9 a+b)^{\frac{2}{3}}=16 \\ & \\ & a+b=8,9 a+b=64 \\ & \\ & a=7, b=1 \end{aligned}$	B1B1 M1 A1 [4]	Ignore $2^{\text {nd }}$ soln $(-9,17)$ throughout Cube etc. \& attempt to solve Correct answers without any working $0 / 4$
(ii) $x=(7 y+1)^{\frac{1}{3}}(x / y$ interchange as first or last step)	B1 ${ }^{\text {k }}$	ft on from their a, b or in terms of a, b
$x^{3}=7 y+1$ or $y^{3}=7 x+1$	B1 ${ }^{*}$	ft on from their a, b or in terms of a, b
$\mathrm{f}^{-1}(x)=\frac{1}{7}\left(x^{3}-1\right)$ cao	B1	A function of x required
Domain of f^{-1} is $x \geqslant 1$ cao	B1	Accept $>$. Must be x
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{1}{3}\left(7 x^{2}+1\right)^{-\frac{2}{3}} \times[14 x]\right.$	B1B1	
When $x=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{3} \times(64)^{-\frac{2}{3}} \times 42 \quad\left(=\frac{7}{8}\right)$	M1	
$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{7}{8} \times 8$	DM1	Use chain rule
7	A1 [5]	

(i) $x-3 \sqrt{x}+2$ or $k^{2}-3 k+2$ or $(3 \sqrt{x})^{2}=(x+2)^{2}$
$\sqrt{x}=1$ or 2 or $k=1$ or 2 or $x^{2}-5 x+4(=0)$
$x=1$ or 4
$y=3$ or 6
(ii) $\int 3 x \frac{1}{2} \mathrm{~d} x-\left[\int(x+2) \mathrm{d} x\right.$ or attempt at trapezium $]$

$$
2 x \frac{3}{2}-\left[\left(\frac{1}{2} x^{2}+2 x\right) \text { or } \frac{1}{2}\left(y_{2}+y_{1}\right)\left(x_{2}-x_{1}\right)\right]
$$

$$
(16-2)-\left[\left[(8+8)-\left(\frac{1}{2}+2\right)\right] \text { or their } \frac{1}{2} \times 9 \times 3\right]
$$

$$
\frac{1}{2}
$$

OR
$\left[\int(y-2) \mathrm{d} y\right.$ or attempt at trap $]-\int \frac{y^{2}}{9} \mathrm{~d} y$
$\left[\frac{1}{2} y^{2}-2 y\right.$ or $\left.\frac{1}{2}\left(x_{1}+x_{2}\right)\left(y_{2}-y_{1}\right)\right]-\frac{y^{3}}{27}$
$\left[(18-12)-\left(4 \frac{1}{2}-6\right)\right.$ or $\left.\frac{1}{2} \times 5 \times 3\right]-[8-1]$ $\frac{1}{2}$

Question 30
(i) Minimum since $\mathrm{f}^{\prime \prime}(3)(=4 / 3)>0$ www
(ii) $\mathrm{f}^{\prime}(x)=-18 x^{-2}(+c)$
$0=-2+c$
$\mathrm{c}=2\left(\rightarrow \mathrm{f}^{\prime}(x)=-18 x^{-2}+2\right)$
$\mathrm{f}(x)=18 x^{-1}+2 x(+k)$
$7=6+6+k$
$k=-5 \rightarrow\left(\mathrm{f}(x)=18 x^{-1}+2 x-5\right)$ cao

M1DM1

A1A1

DM1

A1

M1DM1

A1A1

DM1

A1
[6] $-\frac{1}{2} \rightarrow \frac{1}{2}$ but not reversed limits
OR attempt to eliminate x eg sub
$x=\frac{y^{2}}{9}$
$y^{2}-9 y+18=0$
$y=3$ or 6
$x=1$ or 4

Attempt to integrate. Subtract at some stage
Where $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ is their $(1,3),(4,6)$

Apply their $1 \rightarrow 4$ limits correctly to curve

For A mark allow reverse subtn \rightarrow

- 2 疗

Apply their $3 \rightarrow 6$ limits correctly to curve
[1]

Sub $f^{\prime}(3)=0 . \quad(\operatorname{dep} c$ present $)$ $c=2$ sufficient at this stage
Allow $c x$ at this stage
Sub $\mathrm{f}(3)=3(k$ present \& numeric (or no) c)

Question 31
(i) $(3 x-2)^{2}+1$
(ii) $\mathrm{f}^{\prime}(x)=9 x^{2}-12 x+5$
$=$ their $(3 x-2)^{2}+1$
$>0($ or $\geqslant 1)$ hence an increasing function

B1B1B1

B1
M1

1

For either of $1^{\text {st }} 2$ marks bracket must be in the form $(a x+b)^{2}$ except for SCB2 for $9\left(x-\frac{2}{3}\right)^{2}+1$
[3]

Ft from (i). Some reference/recognition
Allow >1. Allow their 1 provided positive.
Allow a complete alt method (2/2 or $0 / 2$)

Question 32
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{24}{x^{3}}-4$
(i) (If $x=2$) it's negative \rightarrow Max
(ii) $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right)-12 x^{-2}-4 x+(A)$

$$
\begin{aligned}
& =0 \text { when } x=2 \\
& \rightarrow A=11
\end{aligned}
$$

iii) $(y=) 12 x^{-1}-2 x^{2}+A x+(c)$
$y=13$ when $x=1 \rightarrow c=-8$
(If $x=2$) $y=12$

B1

B2,1,0
M1
A1
[4]
B2, 1,0 *
M1
A1
[4]

Question 33
$y=x^{3}+a x^{2}+b x$
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+2 a x+b$
(ii) $b^{2}-4 a c=4 a^{2}-12 b(<0)$
$\rightarrow a^{2}<3 b$
(iii) $y=x^{3}-6 x^{2}+9 x$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-12 x+9<0$
$=0$ when $x=1$ and 3
$\rightarrow 1<x<3$

B1		co				
M1		Use of discriminant on their quadratic $\frac{\mathrm{d} y}{\mathrm{~d} x}$				
		or other valid method A1 - answer given				
		[3]	$	$	M1	
:---	:---					
A1						
A1						
	Attempt at differentiation					
co						
	condone \leqslant					

Question 34
$y=\frac{12}{3-2 x}$
(i) Differential $=-12(3-2 x)^{-2} \times-2$
(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}=0.4 \div 0.15$
$\rightarrow \frac{24}{(3-2 x)^{2}}=\frac{8}{3}$
$\rightarrow x=0$ or 3

B1 B1
[2]

M1
M1

A1 A1
co co (even if 1st B mark lost)

| $[2]$ | |
| :---: | :--- | :--- |
| M1 | Chain rule used correctly (AEF) |
| M1 | Equates their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ with their $\frac{8}{3}$ or $\frac{3}{8}$ |
| A1 A1
 [4] | co co |

Question 35
$\mathrm{Vol}=(\pi) \int x^{2} \mathrm{~d} y=(\pi) \int(y-1) \mathrm{d} y$
Integral is $\frac{1}{2} y^{2}-y$ or $\frac{(y-1)^{2}}{2}$
Limits for y are 1 to 5
$\rightarrow 8 \pi$ or 25.1 (AWRT)

Use of $\int x^{2}-$ not $\int y^{2}-$ ignore π co
Sight of an integral sign with 1 and 5

A1
[4] $\quad \begin{aligned} & \text { co } \\ & \text { (no } \pi \operatorname{max~3/4)}\end{aligned}$

Question 36

(i) $\begin{aligned} & \text { For } y=(4 x+1)^{\frac{1}{2}}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left[\frac{1}{2}(4 x+1)^{-\frac{1}{2}}\right] \times[4] \\ & \text { When } x=2 \text {, gradient } m_{1}=\frac{2}{3}\end{aligned}$

For $y=\frac{1}{2} x^{2}+1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=x \rightarrow$ gradient $m_{2}=2$
$\alpha=\tan ^{-1} m_{2}-\tan ^{-1} m_{1}$
$\alpha=63.43-33.69=29.7 \quad$ cao
(ii) $\int(4 x+1)^{\frac{1}{2}} \mathrm{~d} x=\left[\frac{(4 x+1)^{\frac{3}{2}}}{2 / 3}\right] \div[4]$
$\int\left(\frac{1}{2} x^{2}+1\right) \mathrm{d} x=\frac{1}{6} x^{3}+x$
$\int_{0}^{2}(4 x+1)^{\frac{1}{2}} \mathrm{~d} x=\frac{1}{6}[27-1], \int_{0}^{2}\left(\frac{1}{2} x^{2}+1\right) \mathrm{d} x=\left[\frac{8}{6}+2\right]$
$\frac{13}{3}-\frac{10}{3}$
1

B1B1
B1 ${ }^{\wedge}$
B1
M1
A1
[6]

B1B1

B1

M1
A1

M1 $\quad \begin{aligned} & \text { Apply limits } 0 \rightarrow 2 \text { to at least the } 1^{\text {st }} \\ & \text { integral }\end{aligned}$
Ft from their derivative above integral
Subtract the integrals (at some stage)

Question 37

(i) $\mathrm{f}^{\prime}(2)=4-\frac{1}{2}=\frac{7}{2} \rightarrow$ gradient of normal $=-\frac{2}{7}$ $y-6=-\frac{2}{7}(x-2)$ AEF
(ii)
$f(x)=x^{2}+\frac{2}{x}(+c)$
$6=4+1+c \Rightarrow c=1$
(iii)
$2 x-\frac{2}{x^{2}}=0 \Rightarrow 2 x^{3}-2=0$
$x=1$
$\mathrm{f}^{\prime \prime}(x)=2+\frac{4}{x^{3}}$ or any valid method $\mathrm{f}^{\prime \prime}(1)=6$ OR >0 hence minimum

B1M1	
A1部	Ft from their $\mathrm{f}^{\prime}(2)$
[3]	
B1B1	
M1A1 [4]	Sub (2,6)- dependent on c being present
M1	Put $\mathrm{f}^{\prime}(x)=0$ and attempt to solve
A1	Not necessary for last A mark as $x>0$ given
M1	
A1	Dependent on everything correct
[4]	

Question 38

(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=6-6 x$ At $x=2$, gradient $=-6 \quad$ soi $y-9=-6(x-2)$ oe Expect $y=-6 x+21$ When $y=0, x=3 \frac{1}{2} \quad$ cao	B1 B1 ${ }^{\wedge}$ M1 A1 [4]	Line through $(2,9)$ and with gradient ineur -6
(ii)	Area under curve: $\int 9+6 x-3 x^{2} d x=9 x+3 x^{2}-x^{3}$ $(27+27-27)-(18+12-8)$ Area under tangent: $\frac{1}{2} \times \frac{3}{2} \times 9\left(=\frac{27}{4}\right)$ Area required $\frac{27}{4}-5=\frac{7}{4}$	B2,1,0 M1 B1 ${ }^{\wedge}$ A1 [5]	Allow unsimplified terms Apply limits 2,3. Expect 5 OR $\int_{2}^{7 / 2}(-6 x+21) \mathrm{d} x\left(\rightarrow \frac{27}{4}\right)$. Ft on their $-6 x+21$ and/or their $7 / 2$.

Question 39

(i) $\left|\begin{array}{l|l|l}-(x+1)^{-2}-2(x+1)^{-3}\end{array}\right|$\begin{tabular}{ll}
M1A1 \& M1 for recognisable attempt at differentn.

A1 \&

\& {$[3]$}

Allow $\frac{-x^{2}-4 x-3}{(x+1)^{4}}$ from Q rule. (A2,1,0)
\end{tabular}

(ii)	$\mathrm{f}^{\prime}(x)<0$ hence decreasing	B1	Dep. on their (i) <0 for $x>1$
(iii)	$\begin{aligned} & \frac{-1}{(x+1)^{2}}-\frac{2}{(x+1)^{3}}=0 \text { or } \frac{-x^{2}-4 x-3}{(x+1)^{4}}=0 \\ & \frac{-(x+1)-2}{(x+1)^{3}}=0 \rightarrow-x-1-2=0 \text { or } \\ & -x^{2}-4 x-3=0 \end{aligned}$ $x=-3, y=-1 / 4$	M1* M1 Dep* A1A1 [4]	Set $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to 0 OR mult by $(x+1)^{3}$ or $(x+1)^{5}$ (i.e. \times mult) \times multn $\rightarrow-(x+1)^{3}-2(x+1)^{2}=0$ $(-3,-1 / 4)$ www scores $4 / 4$

Question 40

$$
\begin{aligned}
& {\left[\begin{array}{ll}
{\left[\frac{(2 x+1)^{\frac{3}{2}}}{\frac{3}{2}}\right][\div 2]} & (+c) \\
7=9+c
\end{array}\right.} \\
& y=\frac{(2 x+1)^{\frac{3}{2}}}{3}-2 \quad \text { or unsimplified }
\end{aligned}
$$

Attempt subst $x=4, y=7$. c must be there. Dep. on attempt at integration. $c=-2$ sufficient

Question 41
(i)

$$
y=\frac{4}{2 x-1}
$$

$$
\int \frac{16}{(2 x-1)^{2}} \mathrm{~d} x=\frac{-16}{2 x-1} \div 2
$$

$$
\mathrm{Vol}=\pi\left[\frac{-8}{2 x-1}\right] \text { with limits } 1 \text { and } 2
$$

$$
\rightarrow \frac{16 \pi}{3}
$$

(ii)

$$
\begin{aligned}
& m=\frac{1}{2} m \text { of tangent }=-2 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-4}{(2 x-1)^{2}} \times 2
\end{aligned}
$$

Equating their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to -2
$\rightarrow x=\frac{3}{2}$ or $-\frac{1}{2}$
($y=2$ or -2)
$\rightarrow c=\frac{5}{2} \quad$ or $-\frac{7}{2}$

B1	Correct without the $\div 2$
B1	For the $\div 2$ even if first B1 is lost
M1	Use of limits in a changed expression.
A1 [4]	co
M1	Use of $m_{1} m_{2}=-1$
B1	Correct without the $\times 2$
B1	For the $\times 2$ even if first B1 is lost
DM1	
A1	co
A1	co

Question 42

$$
\begin{aligned}
& u=2 x(y-x) \text { and } x+3 y=12, \\
& u=2 x\left(\frac{12-x}{3}-x\right) \\
& =8 x-\frac{8 x^{2}}{3} \\
& \frac{\mathrm{~d} u}{\mathrm{~d} x}=8-\frac{16 x}{3} \\
& =0 \text { when } x=1 \frac{1}{2} \\
& \rightarrow\left(y=3 \frac{1}{2}\right) \\
& \rightarrow u=6
\end{aligned}
$$

M1	A1	Expresses u in terms of x
M1		Differentiate candidate's quadratic, sets to $0+$ attempt to find x, or other valid method
A1		Complete method that leads to u A1
	$[5]$	Co

Question 43

$$
\begin{array}{l|l}
\mathrm{f}^{\prime}(x)=5-2 x^{2} \text { and }(3,5) & \\
\mathrm{f}(x)=5 x-\frac{2 x^{3}}{3}(+c) & \mathrm{B} 1 \\
\text { Uses }(3,5) & \mathrm{M} 1 \\
\rightarrow c=8 & \mathrm{~A} 1
\end{array}
$$

Question 44

(i)
$\left\{\begin{array}{l}y=\frac{8}{\sqrt{3 x+4}} \\ \frac{d y}{d x}=\frac{-4}{(3 x+4)^{\frac{3}{2}}} \times 3 \text { aef } \\ \rightarrow m_{(x=0)}=-\frac{3}{2} \text { Perpendicular } m_{(x=0)}=\frac{2}{3} \\ \text { Eqn of normal } y-4=\frac{2}{3}(x-0) \\ \text { Meets } x=4 \text { at } B\left(4, \frac{20}{3}\right) \\ \int \frac{8}{\sqrt{(3 x+4)}} \mathrm{d} x=\frac{8 \sqrt{(3 x+4))}}{\frac{1}{2}} \div 3\end{array}\right.$
\rightarrow Areas of P and Q are both $\frac{32}{3}$

Without the " $\times 3$ " For " $\times 3$ " even if 1 st B mark lost.

Use of $m_{1} m_{2}=-1$ after attempting to find $\frac{\mathrm{d} y}{\mathrm{~d} x}(x=0)$

Unsimplified line equation
cao

Without " $\div 3$ ". For " $\div 3$ "

Correct use of correct limits. cao

Correct method for area of trapezium

All correct.

Question 45

(i)	$\begin{aligned} & y=x^{3}+p x^{2} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}+2 p x \\ & \text { Sets to } 0 \rightarrow x=0 \text { or }-\frac{2 p}{3} \\ & \rightarrow(0,0) \text { or }\left(-\frac{2 p}{3}, \frac{4 p^{3}}{27}\right) \end{aligned}$	B1 M1 A1 A1 [4]	cao Sets differential to 0 cao cao, first A1 for any correct turning point or any correct pair of x values. 2nd A1 for 2 complete TPs
(ii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x+2 p$	M1	Other methods include; clear demonstration of sign change of gradient, clear reterence to the shape of the curve
	At $(0,0) \rightarrow 2 p+\mathrm{ve}$ Minimum At $\left(-\frac{2 p}{3}, \frac{4 p^{3}}{27}\right) \rightarrow-2 p-$ ve Maximum	A1 A1	www
(iii)	$y=x^{3}+p x^{2}+p x \rightarrow 3 x^{2}+2 p x+p(=0)$ Uses $b^{2}-4 a c$ $\rightarrow 4 p^{2}-12 p<0$ $\rightarrow 0<p<3$ aef	$\begin{array}{l\|r} \text { B1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & \\ & \end{array}$	Any correct use of discriminant cao (condone \leqslant)

Question 46

(i)
$24=r+r+r \theta$
$\rightarrow \theta=\frac{24-2 r}{r}$
$A=\frac{1}{2} r^{2} \theta=\frac{24 r}{2}-r^{2}=12 r-r^{2}$. aef, ag
(ii)
$(A=) 36-(r-6)^{2}$
(iii)
Greatest value of $A=36$
$(r=6) \rightarrow \theta=2$

Question 47
(i) $\left\lvert\, \begin{aligned} & y=2 x^{2}, X(-2,0) \text { and } P(p, 0) \\ & A=\frac{1}{2} \times(2+p) \times 2 p^{2}\left(=2 p^{2}+p^{3}\right) \\ & \frac{\mathrm{d} A}{\mathrm{~d} p}=4 p+3 p^{2} \\ & \frac{\mathrm{~d} A}{\mathrm{~d} t}=\frac{\mathrm{d} A}{\mathrm{~d} p} \times \frac{\mathrm{d} p}{\mathrm{~d} t}=0.02 \times 20=0.4 \\ & \text { or } \frac{\mathrm{d} A}{\mathrm{~d} t}=4 p \frac{\mathrm{~d} p}{\mathrm{~d} t}+3 p^{2} \frac{\mathrm{~d} p}{\mathrm{~d} t}\end{aligned}\right.$

Question 48

(i)
(ii)
(iii)

$$
\begin{aligned}
& \mathrm{f}^{\prime}(x)=2-2(x+1)^{-3} \\
& \mathrm{f}^{\prime \prime}(x)=6(x+1)^{-4} \\
& \mathrm{f} 0=0 \text { hence stationary at } x=0 \\
& \mathrm{f}^{\prime \prime} 0=6>0 \text { hence minimum } \\
& A B^{2}=(3 / 2)^{2}+(3 / 4)^{2} \\
& A B=1.68 \text { or } \sqrt{45 / 4} \text { oe } \\
& \text { Area under curve }=\int \mathrm{f}(x)=x^{2}-(x+1)^{-1} \\
& =\left(1-\frac{1}{2}\right)-\left(\frac{1}{4}-2\right)=9 / 4 \\
& \quad \text { Apply limits }-1 / 2 \rightarrow 1)
\end{aligned}
$$

Area trap. $=\frac{1}{2}\left(3+\frac{9}{4}\right) \times \frac{3}{2}$
$=63 / 16$ or 3.94
Shaded area $63 / 16-9 / 4+27 / 16$ or 1.69
ALT eqn $A B$ is $y=-1 / 2 x+11 / 4$
Area $=\int-1 / 2 x+11 / 4-\int 2 x+(x+1)^{-2}$
$=\left[-\frac{1}{4} x^{2}+\frac{11}{4} x\right]-\left[x^{2}-(x+1)^{-1}\right]$
Apply limits $-1 / 2 \rightarrow 1$ to both integrals
27/16 or 1.69

M1A1

Ignore $+c$ even if evaluated Do not penalise reversed limits
AG
www. Dependent on correct $\mathrm{f}^{\prime \prime}(x)$
except $-6(x+1)^{-4} \rightarrow<0$ MAX scores SC1

Allow reversed subtn if final ans positive

Attempt integration of at least one Ignore $+c$ even if evaluated Dep. on integration having taken place
Allow reversed subtn if final ans positive

Question 49

(i)
$\left\{\begin{array}{l}\text { At } x=4, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \\ \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=2 \times 3=6\end{array}\right.$
(ii)
(iii)

$$
(y)=x+4 x^{\frac{1}{2}}(+c)
$$

$$
\text { Sub } x=4, y=6 \rightarrow 6=4+\left(4 \times 4^{\frac{1}{2}}\right)+c
$$

$$
c=-6 \rightarrow\left(y=x+4 x^{\frac{1}{2}}-6\right.
$$

$$
\text { Eqn of tangent is } y-6=2(x-4) \text { or }
$$ $(6-0) /(4-x)=2$

$B=(1,0) \quad$ (Allow $x=1)$
Gradient of normal $=-1 / 2$
$C=(16,0) \quad$ (Allow $x=16)$
Area of triangle $=\frac{1}{2} \times 15 \times 6=45$

Question 50
(i)
$[3]\left[(x-1)^{2}\right][-1]$
(ii)

$$
\begin{aligned}
& \mathrm{f}^{\prime}(x)=3 x^{2}-6 x+7 \\
& =3(x-1)^{2}+4 \\
& >0 \text { hence increasing }
\end{aligned}
$$

B1B1B1
 [3]

B1
B1 ${ }^{*}$
DB1
[3]

Correct eqn thru $(4,6) \&$ with $m=$ their 2
[Expect eqn of normal: $y=-1 / 2 x+$ 8]

Or $A B=\sqrt{45}, A C=\sqrt{180} \rightarrow$ Area $=45.0$
Use of Chain rule

Must include c

Ft their $(\mathbf{i})+5$

Dep B1 $\sqrt{ }$ unless other valid reason

Question 51

(i)	$y=\sqrt{\left(9-2 x^{2}\right)} \quad P(2,1)$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 \sqrt{\left(9-2 x^{2}\right)}} \times-4 x$ At $P, x=2, m=-4$ Normal grad $=1 / 4$ Eqn $A P \quad y-1=1 / 4(x-2)$ $\rightarrow A(-2,0)$ or $B(0,1 / 2)$ Midpoint $A P$ also ($0,1 / 2$)	B1 B1 M1 M1 A1 A1
(ii)	$\begin{aligned} & \int x^{2} \mathrm{~d} y=\int\left(\frac{9}{2}-\frac{y^{2}}{2}\right) \mathrm{d} y \\ & =\frac{9 y}{2}-\frac{y^{3}}{6} \end{aligned}$ Upper limit $=3$ Uses limits 1 to 3 \rightarrow volume $=42 / 3 \pi$	M1 A1 B1 DM1 A1

Without " $\times-4 x$ "
Allow even if B0 above.
For $m_{1} m_{2}=-1$ calculus needed Normal, not tangent

Full justification.

Attempt to integrate x^{2}

Correct integration
Evaluates upper limit Uses both limits correctly

Question 52

Question 53

(i)	$\begin{aligned} & \tan 60=\frac{x}{h} \rightarrow x=h \tan 60 \\ & A=h \times x \\ & V=40 \sqrt{\left(3 h^{2}\right)} \end{aligned}$	B1 M1 A1 [3]	Any correct unsimplified length Correct method for area ag
(ii)	$\frac{\mathrm{d} V}{\mathrm{~d} h}=80 \sqrt{(3 h)}$ If $h=5, \frac{\mathrm{~d} h}{\mathrm{~d} t}=\frac{1}{2 \sqrt{(3)}}$ or 0.289	B1 M1A1 [3]	```B1 M1 (must be }\div\mathrm{ - not }\times\mathrm{).```

Question 54
(i) $\left\lvert\, \begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{1}{2}(1+4 x)^{-1 / 2}\right] \times[4] \\ & \text { At } x=6, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2}{5} \\ & \text { Gradient of normal at } P=-\frac{1}{2}\end{aligned}\right.$

Gradient of $P Q=-\frac{5}{2}$ hence $P Q$ is a normal, or $m_{1} m_{2}=-1$
(ii) Vol for curve $=(\pi) \int(1+4 x)$ and attempt to integrate y^{2}

$$
\begin{aligned}
& =(\pi)\left[x+2 x^{2}\right] \text { ignore } '+c ' \\
& =(\pi)[6+72-0] \\
& =78(\pi)
\end{aligned}
$$

Vol for line $=\frac{1}{3} \times(\pi) \times 5^{2} \times 2$

$$
=\frac{50}{3}(\pi)
$$

Total $\mathrm{Vol}=78 \pi+50 \pi / 3=94 \frac{2}{3} \pi($ or $284 \pi / 3)$

B1B1

B1
B1 ${ }^{\wedge}$
OR eqn of norm
$y-5=$ their $-\frac{5}{2}(x-6)$
When $y=0, x=8$ hence result
B1
[5]
M1

A1
DM1
A1
M1
A1

A1
[7]
Question 55
(i) $\left\lvert\, \begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{8}{x^{2}}+2 \text { cao } \\ & \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{16}{x^{3}}\end{aligned}\right.$
(ii) $\begin{aligned} & -\frac{8}{x^{2}}+2=0 \rightarrow 2 x^{2}-8=0 \\ & x= \pm 2 \\ & y= \pm 8\end{aligned}$
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0$ when $x=2$ hence MINIMUM
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}<0$ when $x=-2$ hence MAXIMUM

B1B1

B1
[3]
M1
A1
A1

B1 $\sqrt{\wedge}$

Apply limits $0 \rightarrow 6$ (allow reversed if corrected later)
OR $(\pi)\left[\frac{\left(-\frac{5}{2} x+20\right)^{3}}{3 \times-\frac{5}{2}}\right]_{6}^{8}$
-

Question 56

$$
\begin{aligned}
& \mathrm{f}(x)=x^{3}-7 x(+c) \\
& 5=27-21+c \\
& c=-1 \rightarrow \mathrm{f}(x)=x^{3}-7 x-1
\end{aligned}
$$

B1
M1
A1
[3]

Question 57

(i)	$x=1 / 3$	B1 [1]	
(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{2}{16}(3 x-1)\right][3]$ When $x=3 \frac{\mathrm{~d} y}{\mathrm{~d} x}=3$ soi Equation of $Q R$ is $y-4=3(x-3)$ When $y=0 \quad x=5 / 3$	B1B1 M1 M1 A1 $[5]$ 	
(iii)	$\begin{aligned} & \text { Area under curve }=\left[\frac{1}{16 \times 3}(3 x-1)^{3}\right]\left[\times \frac{1}{3}\right] \\ & \frac{1}{16 \times 9}\left[8^{3}-0\right]=\frac{32}{9} \\ & \text { Area of } \Delta=8 / 3 \\ & \text { Shaded area }=\frac{32}{9}-\frac{8}{3}=\frac{8}{9} \text { (or } 0.88 y \text {) } \end{aligned}$	$\begin{aligned} & \text { B1B1 } \\ & \text { M1A1 } \\ & \text { B1 } \\ & \text { AI } \end{aligned}$	Apply limits: their $\frac{1}{3}$ and 3

Question 58

(i)	$\begin{aligned} & A=2 \pi r^{2}+2 \pi r h \\ & \pi r^{2} h=1000 \rightarrow h=\frac{1000}{\pi r^{2}} \end{aligned}$ Sub for h into $A \rightarrow A=2 \pi r^{2}+\frac{2000}{r} \mathbf{A G}$	B1 M1 A1 [3]	
(ii)	$\begin{aligned} & \frac{\mathrm{d} A}{\mathrm{~d} r}=0 \Rightarrow 4 \pi r-\frac{2000}{r^{2}}=0 \\ & r==5.4 \\ & \frac{\mathrm{~d}^{2} A}{\mathrm{~d} r^{2}}=4 \pi+\frac{4000}{r^{3}} \\ & >0 \text { hence MIN hence MOST EFFICIENT AG } \end{aligned}$	M1A1 DM1 A1 B1 [5]	Attempt differentiation \& set $=0$ Reasonable attempt to solve to $r^{3}=$ Or convincing alternative method

Question 59

$$
\begin{aligned}
& y=\frac{3 x^{3}}{3}-\frac{2 x^{-2}}{-2}(+c) \\
& 3=-1+1+c \\
& y=x^{3}+x^{-2}+3
\end{aligned}
$$

B1B1		
M1		Sub $x=-1, y=3 . c$ must be present
A1	[4]	Accept $c=3$ www

Question 60

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-5 x^{1 / 2}+5 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 \\
& 2 x-5 x^{1 / 2}+5=2 \\
& 2 x-5 x^{1 / 2}+3(=0) \text { or equivalent } 3 \text {-term } \\
& \text { quadratic } \\
& \text { Attempt to solve for } x^{1 / 2} \text { e.g. } \\
& \left(2 x^{1 / 2}-3\right)\left(x^{1 / 2}-1\right)=0 \\
& x^{1 / 2}=3 / 2 \text { and } 1 \\
& x=9 / 4 \text { and } 1
\end{aligned}
$$

Question 61

$$
\begin{aligned}
& (\pi) \int\left(x^{3}+1\right) \mathrm{d} x \\
& (\pi)\left[\frac{x^{4}}{4}+x\right] \\
& 6 \pi \text { or } 18.8
\end{aligned}
$$

Question 62
(i) $6+k=2 \rightarrow k=-4$
(ii)

$$
\begin{aligned}
& (y)=\frac{6 x^{3}}{3}-\frac{4}{-2} x^{-2}(+c) \\
& 9=2+2+c \quad c \text { must be present } \\
& (y)=2 x^{3}+2 x^{-2}+5
\end{aligned}
$$

B1

Dep. on 3-term quadratic
ALT
$5 x^{1 / 2}=2 x+3 \rightarrow 25 x=(2 x+3)^{2}$
$4 x^{2}-13 x+9(=0)$
$x=9 / 4$ and 1

Applying limits 0 and 2.
(Limits reversed: Allow M mark and allow A mark if final answer is $6 \pi)$
[1]

B1B1 ${ }^{\wedge}$
M1
A1
[4] Sub $(2,3) \rightarrow c=-13 \frac{1}{2}$ scores M1 A0

Question 63
$\frac{\mathrm{d} y}{\mathrm{~d} x}=[8]+[-2]\left[(2 x-1)^{-2}\right]$
$=0 \rightarrow 4(2 x-1)^{2}=1$ oe eg $16 x^{2}-16 x+3=0$
$x=\frac{1}{4}$ and $\frac{3}{4}$
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=8(2 x-1)^{-3}$
When $x=\frac{1}{4}, \frac{\mathrm{~d}^{2} y}{\mathrm{dx}^{2}}(=-64)$ and/or <0 MAX
When $x=\frac{3}{4}, \frac{d^{2} y}{d x^{2}}(=64)$ and $/$ or $>0 \mathrm{MIN}$

B2,1,0
M1

Set to zero, simplify and attempt to solve soi
Needs both x values. Ignore y values
ft to $k(2 x-1)^{-3}$ where $k>0$

Alt. methods for last 3 marks (values either side of $1 / 4$ \& $3 / 4$)
must indicate which x-values and cannot use $x=1 / 2$. (M1A1A1)

Question 64
(i) $\left\lvert\, \begin{aligned} & y=\frac{8}{x}+2 x . \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=-8 x^{-2}+2 \\ & \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}=16 x^{-3} \\ & \int y^{2} \mathrm{~d} x=-64 x^{-1} \mathrm{oe}+32 x \text { oe }+\frac{4 x^{3}}{3} \text { oe }(+c)\end{aligned}\right.$
(ii) \quad sets $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to $0 \rightarrow x= \pm 2$
$\rightarrow M(2,8)$
Other turning point is $(-2,-8)$
If $x=-2, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}<0$
\therefore Maximum
(iii)
$\mathrm{Vol}=\pi \times[$ part (i) $]$ from 1 to 2
$\frac{220 \pi}{3}, 73.3 \pi, 230$

Question 65

$$
\begin{aligned}
& f^{\prime}(x)=\frac{8}{(5-2 x)^{2}} \\
& f(x)=\frac{8(5-2 x)^{-1}}{-1} \div-2(+c) \\
& \text { Uses } x=2, y=7 \\
& c=3
\end{aligned}
$$

Question 65

B1	unsimplified ok
B1	unsimplified ok
$\mathbf{3} \times \mathbf{B} 1$	B1 for each term - unsimplified ok

M1		Sets to 0 and attempts to solve
A1		Any pair of correct values A1
A1		Second pair of values A1
M1		Using their $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}$ if $k x^{-3}$ and $x<0$
A1		
M1		Evidence of using limits $1 \& 2$ in their integral of y^{2} (ignore $\left.\pi\right)$
A1	$[2]$	

B1 Correct without (\div by -2)
B1
M1 \quad Substitution of correct values into an integral to find c
A1
[4]

Question 66

$$
\text { (i) } \quad \begin{aligned}
& A=2 y \times 4 x(=8 x y) \\
& 10 y+12 x=480 \\
& \rightarrow A=384 x-9.6 x^{2}
\end{aligned}
$$

(ii)
$\frac{\mathrm{d} A}{\mathrm{~d} x}=384-19.2 x$
$=0$ when $x=20$
$\rightarrow x=20, y=24$.
Uses $x=-\frac{b}{2 a}=\frac{-384}{-19.2}=20$, M1, A1 $y=24, \mathrm{~A} 1$
From graph: $\mathbf{B 1}$ for $x=20, \mathbf{M 1}, \mathbf{A 1}$ for $y=24$

B1		
B1		
B1		answer given
B1		
M1		Sets to 0 and attempt to solve oe
		Might see completion of square
A1		Needs both x and y

Question 67

(i)

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=2-8(3 x+4)^{-1 / 2} \\
& \left(x=0, \rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-2\right) \\
& \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t} \rightarrow-0.6 \\
& y=\{2 x\}\left\{-\frac{8 \sqrt{3 x+4}}{\frac{1}{2}} \div 3\right\}(+c) \\
& x=0, y=\frac{4}{3} \rightarrow c=12 .
\end{aligned}
$$

Ignore notation. Must be $\frac{\mathrm{d} y}{\mathrm{~d} x} \times 0.3$

No need for $+c$.

Uses x, y values after \int with c

Question 68

$$
\left\lvert\, \begin{aligned}
& x=\frac{12}{y^{2}}-2 . \\
& \text { Vol }=(\pi) \times \mathrm{J} x^{2} \mathrm{~d} y \\
& \rightarrow\left[\frac{-144}{3 y^{3}}+4 y+\frac{48}{y}\right]
\end{aligned}\right.
$$

Limits 1 to 2 used

$$
\rightarrow 22 \pi
$$

vis
$5 \times$ AI

A1

Ignore omission of π at this stage Attempt at integration Un-simplified only from correct integration

Question 69

(i)	Attempt diffn. and equate to $0 \frac{\mathrm{~d} y}{\mathrm{~d} x}=-k(k x-3)^{-2}+k=0$ $\begin{aligned} & (k x-3)^{2}=1 \text { or } k^{3} x^{2}-6 k^{2} x+8 k(=0) \\ & x=\frac{2}{k} \text { or } \frac{4}{k} \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 k^{2}(k x-3)^{-3} \end{aligned}$ When $x=\frac{2}{k}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d}^{2}}=\left(-2 k^{2}\right)<0 \quad$ MAX All previous When $x=\frac{4}{k}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\left(2 k^{2}\right)>0 \quad$ MIN working correct	$\begin{aligned} & \text { *M1 } \\ & \text { DM1 } \\ & { }^{*} \mathbf{A 1}^{*} \text { A1 } \\ & \text { B1 }{ }^{\wedge} \\ & \text { DB1 } \\ & \text { DB1 } \end{aligned}$	[7]	Must contain $(k x-3)^{-2}+$ other term(s) Simplify to a quadratic Legitimately obtained Ft must contain $A k^{2}(k x-3)^{-3}$ where $A>0$ Convincing alt. methods (values either side) must show which values used \& cannot use $x=3 / k$
(ii)	$\begin{aligned} & V=(\pi) \cdot\left[(x-3)^{-1}+(x-3)\right]^{2} \mathrm{~d} x \\ & =(\pi)\left[(x-3)^{-2}+(x-3)^{2}+2\right] \mathrm{d} x \\ & =(\pi)\left[-(x-3)^{-1}+\frac{(x-3)^{3}}{3}(+2 x)\right] \text { Condone missing } 2 x \\ & =(\pi)\left[1-\frac{1}{3}+4-\left(\frac{1}{3}-9+0\right)\right] \\ & =40 \pi / 3 \text { oe or } 41.9 \end{aligned}$	*M1 A1 A1 DM1 A1	[5]	Attempt to expand y^{2} and then integrate $\begin{aligned} & \text { Or } \\ & {\left[-(x-3)^{-1}+\frac{x^{3}}{3}-3 x^{2}+9 x+2 x\right]} \end{aligned}$ Apply limits $0 \rightarrow 2$ 2 missing $\rightarrow 28 \pi / 3$ scores M1A0A1M1A0

Question 70

(i)	$\begin{aligned} & \text { at } x=a^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{2}{a^{2}}+\frac{1}{a^{2}} \text { or } 2 a^{-2}+a^{-2}\left(=\frac{3}{a^{2}} \text { or } 3 a^{-2}\right) \\ & y-3=\frac{3}{a^{2}}\left(x-a^{2}\right) \text { or } y=\frac{3}{a^{2}} x+c \rightarrow 3=\frac{3}{a^{2}} a^{2}+c \\ & y=\frac{3}{a^{2}} x \text { or } 3 a^{-2} x \text { cao } \end{aligned}$	B1 M1 A1	[3]	$\frac{2}{a^{2}}+\frac{1}{a^{2}}$ or $2 a^{-2}+a^{-2}$ seen anywhere in (i) Through $\left(a^{2}, 3\right) \&$ with their grad as $f(a)$
(ii)	$\begin{aligned} & (y)=\frac{2}{a} \frac{x^{1 / 2}}{\frac{1}{2}}+\frac{a x^{-1 / 2}}{-1 / 2}(+c) \\ & \text { sub } x=a^{2}, y=3 \text { into } \int \mathrm{d} y / \mathrm{d} x \\ & c=1 \quad\left(y=\frac{4 x^{1 / 2}}{a}-2 a x^{-1 / 2}+1\right) \end{aligned}$	$\begin{aligned} & \text { B1B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]	c must be present. Expect $3=4-2+c$
(iii)	$\begin{aligned} & \text { sub } x=16, y=8 \rightarrow 8=\frac{4}{a} \times 4-2 a \times \frac{1}{4}+1 \\ & a^{2}+14 a-32(=0) \\ & a=2 \\ & A=(4,3), B=(16,8) \quad A B^{2}=12^{2}+5^{2} \rightarrow A B=13 \end{aligned}$	$\begin{aligned} & \text { *M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { DM1A1 } \end{aligned}$	[5]	Sub into their y Allow - 16 in addition

Question 71

$\mathrm{f}^{\prime}(x)=3 x^{2}-6 x-9$ soi
Attempt to solve $\mathrm{f}^{\prime}(x)=0$ or $\mathrm{f}^{\prime}(x)>0$ or $\mathrm{f}^{\prime}(x) \geqslant 0$ soi $(3)(x-3)(x+1)$ or $3,-1$ seen or 3 only seen

Least possible value of n is 3 . Accept $n=3$. Accept $n \geqslant 3$

B1
M1
A1
A1

With or without equality/inequality signs Must be in terms of n

Question 72

(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-3}{(2 x-1)^{2}} \times 2$	B1	[2]	B1for a single correct term (unsimplified) without $\times 2$.
(ii)	e.g. Solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ is impossible.	B1 ${ }^{*}$	[1]	Satisfactory explanation.
(iii)	If $x=2, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-6}{9}$ and $y=3$ Perpendicular has $m=\frac{9}{6}$ $\rightarrow y-3=\frac{3}{2}(x-2)$ Shows when $x=0$ then $y=0$	M1* M1* DM1 A1	[4]	Attempt at both needed. Use of $m_{1} m_{2}=-1$ numerically. Line equation using (2, their 3) and their m.
(iv)	$\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} t}=-0.06 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{dt}} \rightarrow-\frac{2}{3} \times-0.06=0.04 \end{aligned}$	M1 A1	[2]	

Question 73

$(y)=8(4 x+1)^{\frac{1}{2}} \div 1 / 2 \div 4(+c)$				
Uses $x=2$ and $y=5$	B1			
$c=-7$	M1			
B1				
A1		$	$	A1
:---				
Correct integrand (unsimplified) without $\div 4$ $\div 4$. Ignore c.				
Substitution of correct values into an integrand to find c. $y=4 \sqrt{4 x+1}-7$				

Question 74

(i)	$\begin{aligned} & 3 z-\frac{2}{z}=-1 \Rightarrow 3 z^{2}+z-2=0 \\ & x^{1 / 2}(\text { or } z)=2 / 3 \text { or }-1 \\ & x=4 / 9 \text { only } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[3]	Express as 3-term quad. Accept $x^{1 / 2}$ for z (OR $\begin{aligned} & 3 x-1=-\sqrt{x}, 9 x^{2}-13 x+4=0 \\ & \text { M1, A1,A1 } x=4 / 9) \end{aligned}$
(ii)	$\mathrm{f}(x)=\frac{3 x^{3 / 2}}{3 / 2}-\frac{2 x^{1 / 2}}{1 / 2} \quad(+c)$ Sub $x=4, y=10 \quad 10=16-8+c \quad \Rightarrow \quad c=2$ When $x=\frac{4}{9}, y=2\left(\frac{4}{9}\right)^{3 / 2}-4\left(\frac{4}{9}\right)^{1 / 2}+2$ $-2 / 27$	B1B1 M1A1 M1 A1	[6]	c must be present Substituting x value from part (i)

Question 75

(i)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-(x-1)^{-2}+9(x-5)^{-2} \\ & m_{\text {tangent }}=-\frac{1}{4}+\frac{9}{4}=2 \end{aligned}$ Equation of normal is $y-5=-1 / 2(x-3)$ $x=13$	M1A1 B1 M1 A1	[5]	May be seen in part (ii) Through (3,5) and with $m=-1 / m_{\text {tangent }}$
(ii)	$\begin{aligned} & (x-5)^{2}=9(x-1)^{2} \\ & x-5=(\pm) 3(x-1) \text { or }(8)\left(x^{2}-x-2\right)=0 \\ & x=-1 \text { or } 2 \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2(x-1)^{-3}-18(x-5)^{-3} \end{aligned}$ When $x=-1, \frac{\mathrm{~d}^{2} y}{\mathrm{~d}^{2}}=-\frac{1}{6}<0 \quad$ MAX When $x=2, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{8}{3}>0 \quad$ MIN	B1 M1 A1 B1 B1 B1	[6]	Set $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and simplify Simplify further and attempt solution If change of sign used, x values close to the roots must be used and all must be correct

Question 76

Question 77

(i)	$2 x-2 / x^{3}=0$	M1	$\mathrm{Set}=0$.
	$x^{4}=1 \Rightarrow x=1$ at A cao	A1	Allow 'spotted' $x=1$
	Total:	2	
(ii)	$\mathrm{f}(x)=x^{2}+1 / x^{2}(+c)$ cao	B1	
	$\frac{189}{16}=16+1 / 16+c$	M1	$\operatorname{Sub}\left(4, \frac{189}{16}\right) . c$ must be present. Dep. on integration
	$c=-17 / 4$	A1	
(iii)	$x^{2}+1 / x^{2}-17 / 4=0 \Rightarrow 4 x^{4}-17 x^{2}+4(=0) \quad$ Total:	$\begin{array}{r} 3 \\ \mathrm{Ml} \end{array}$	Multiply by $4 x^{2}$ (or similar) to transform into 3-term quartic.
	$\left(4 x^{2}-1\right)\left(x^{2}-4\right)(=0)$	M1	Treat as quadratic in x^{2} and attempt solution or factorisation.
	$x=1 / 2,2$	AlAl	Not necessary to distinguish. Ignore negative values. No working scores 0/4
	Total:	4	
'(iv)	$\int\left(x^{2}+x^{-2}-17 / 4\right) \mathrm{d} x=\frac{x^{3}}{3}-\frac{1}{x}-\frac{17 x}{4}$	B2,1,0才	Mark final integral
	$(8 / 3-1 / 2-17 / 2)-(1 / 24-2-17 / 8)$	M1	Apply their limits from (iii) (Seen). Dep. on integration of at least 1 term of y
	Area $=9 / 4$	A1	Mark final answer. $\int y^{2}$ scores $0 / 4$
	Total:	4	

Question 78

$\ni(\mathrm{i})$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-2 . \text { At } x=2, m=2$	B1B1	Numerical m
	Equation of tangent is $y-2=2(x-2)$	B1	Expect $\mathrm{y}=2 \mathrm{x}-2$
	Total:	3	
(ii)	Equation of normal $y-2=-1 / 2(x-2)$	M1	Through (2,2) with gradient $=-1 / m$. Expect $y=-1 / 2 x+3$
	$x^{2}-2 x+2=-1 / 2 x+3 \rightarrow 2 x^{2}-3 x-2=0$	M1	Equate and simplify to 3-term quadratic
	$x=-1 / 2, \quad y=31 / 4$	A1A1	Ignore answer of (2,2)
		$\begin{array}{r} 4 \\ \mathrm{Bl}^{\downarrow} \end{array}$	Ft their $-1 / 2$.
${ }^{\prime}$ (iii)	Equation of tangent is $y-31 / 4=-3(x+1 / 2)$	*M1	Through their B with grad their -3 (not m_{1} or m_{2}). Expect $y=-3 x+7 / 4$
	$2 x-2=-3 x+7 / 4$	DM1	Equate their tangents or attempt to solve simultaneous equations
	$x=3 / 4, y=-1 / 2$	A1	Both required.
	Total:	4	

Question 79

(i)	$\mathrm{f}^{\prime}(x)=\left[\frac{3}{2}(4 x+1)^{1 / 2}\right][4]$		B1B1	Expect $6(4 x+1)^{1 / 2}$ but can be unsimplified.
	$\mathrm{f}^{\prime \prime}(x)=6 \times 1 / 2 \times(4 x+1)^{-1 / 2} \times 4$		B1 \downarrow	Expect $12(4 x+1)^{-1 / 2}$ but can be unsimplified. Ft from their $\mathrm{f}^{\prime}(x)$.
		Total:	3	
(ii)	$\mathrm{f}(2), \mathrm{f}^{\prime}(2), k \mathrm{f}{ }^{\prime \prime}(2)=27,18,4 k$ OR 12		B1B1 $\sqrt{\wedge} 1 \downarrow^{\wedge}$	Ft dependent on attempt at differentiation
	$27 / 18=18 / 4 k$ oe OR $k \mathrm{f}^{\prime \prime}(2)=12 \Rightarrow k=3$		M1A1	
		Total:	5	

Question 80

;(i)	$V=\frac{1}{12} h^{3} \text { oe }$	B1	
	Total:	1	
(ii)	$\frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{1}{4} h^{2} \text { or } \frac{\mathrm{d} h}{\mathrm{~d} V}=4(12 v)^{-2 / 3}$	M1A1	Attempt differentiation. Allow incorrect notation for M. For A mark accept their letter for volume - but otherwise correct notation. Allow V^{\prime}
	$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} h}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t} \quad=\frac{4}{h^{2}} \times 20$ soi	DM1	Use chain rule correctly with $\frac{\mathrm{d}(\mathrm{d})}{\mathrm{d} t}=20$. Any equivalent formulation Accept non-explicit chain rule (or nothing at all)
	$\left(\frac{\mathrm{d} h}{\mathrm{~d} t}\right)=\frac{4}{10^{2}} \times 20=0.8$ or equivalent fraction	A1	
	Total:	4	

Question 81

(i)	$\mathrm{f}^{\prime}(x)=\left[(4 x+1)^{1 / 2} \div 1 / 2\right][\div 4](+c)$	B1 B1	Expect $1 / 2(4 x+1)^{1 / 2}(+c)$
	$\mathrm{f}^{\prime}(2)=0 \Rightarrow \frac{3}{2}+c=0 \Rightarrow c=-\frac{3}{2}$ (Sufficient)	B1 FT	Expect $1 / 2(4 x+1)^{1 / 2}-\frac{3}{2}$. FT on their $\mathrm{f}^{\prime}(x)=k(4 x+1)^{1 / 2}+c$. (i.e. $c=-3 k$)
	Total:	3	
(ii)	$\mathrm{f}^{\prime \prime}(0)=1$ SOI	B1	
	$\mathrm{f}^{\prime}(0)=1 / 2-1^{1 / 2}=-1$ SOI	B1 FT	Substitute $x=0$ into their $\mathrm{f}^{\prime}(x)$ but must not involve c otherwise B0B0
	$f(0)=-3$	B1 FT	FT for 3 terms in AP. FT for 3rd B1 dep on 1st B1. Award marks for the AP method only.
	Total:	3	
iii)	$\mathrm{f}(x)=\left[1 / 2(4 x+1)^{3 / 2} \div 3 / 2 \div 4\right]-[11 / 2 x](+k)$	$\begin{aligned} & \text { B1 FT } \\ & \text { B1 FT } \end{aligned}$	Expect (1/12)(4x+1) ${ }^{3 / 2}-1^{1 / 2 x}(+k)$. FT from their $\mathrm{f}^{\prime}(x)$ but c numerical.
	$-3=1 / 12-0+k \Rightarrow k=-37 / 12 \mathrm{CAO}$	M1A1	Sub $x=0, y=$ their $\mathrm{f}(0)$ into their $\mathrm{f}(x)$. Dep on $c x \& k$ present (c numerical)
	Minimum value $=\mathrm{f}(2)=\frac{27}{12}-3-\frac{37}{12}=-\frac{23}{6}$ or -3.83	A1	
	Total:	5	

Question 82

(a)(i)	Attempt to integrate	$V=(\pi) \int(y+1) \mathrm{d} y$	M1	Use of h in integral e.g. $\int(h+1)=1 / 2 h^{2}+h$ is M0. Use of $\int y^{2} \mathrm{~d} x$ is M0
	$=(\pi)\left[\frac{y^{2}}{2}+y\right]$		A1	
	$=\pi\left[\frac{h^{2}}{2}+h\right]$		A1	AG. Must be from clear use of limits $0 \rightarrow h$ somewhere.
		Total:	3	
0 (ii)	$\int(y+1)^{1 / 2} \mathrm{~d} y$	ALT $6-\int\left(x^{2}-1\right) \mathrm{d} x$	M1	Correct variable and attempt to integrate
	$2 / 3(y+1)^{3 / 2}$ oe	ALT $6-\left(1 / 3 x^{3}-x\right)$ CAO	*A1	Result of integration must be shown
	$2 / 8[8-1]$	ALT $6-\left[\left(\frac{8}{3}-1\right)-\left(\frac{1}{3}-1\right)\right]$	DM1	Calculation seen with limits $0 \rightarrow 3$ for y. For ALT, limits are $1 \rightarrow 2$ and rectangle.
	$14 / 3$	ALT $6-4 / 3=14 / 3$	A1	$16 / 3$ from $2 / 8 \times 8$ gets DM1A 0 provided work is correct up to applying limits.
(b)	Clear attempt to differentiate wrt h		M1 ${ }^{4}$	Expect $\frac{\mathrm{d} V}{\mathrm{~d} h}=\pi(h+1)$. Allow $h+1$. Allow h.
	Derivative $=4 \pi$ SOI		*A1	
	\qquad Can be in terms of h		DM1	
	or 0.159		A1	
		Total:	4	

Question 83

Gradient of normal is $-1 / 3 \rightarrow$ gradient of tangent is 3 SOI	B1 B1 FT	FT from their gradient of normal.
$\mathrm{d} y / \mathrm{d} x=2 x-5=3$	M1	Differentiate and set $=$ their 3 (numerical).
$x=4$	$*^{\text {A1 }}$	
Sub $x=4$ into line $\rightarrow y=7 \&$ sub their $(4,7)$ into curve	DM1	OR sub $x=4$ into curve $\rightarrow y=k-4$ and sub their $(4, k-4)$ into line OR other valid methods deriving a linear equation in $k(e . g . ~ e q u a t i n g ~ c u r v e ~$ with either normal or tangent and sub $x=4)$.
$k=11$	A1	
	Total:	$\mathbf{6}$

Question 84

Question 85

$\mathrm{Vol}=\pi \int(5-x)^{2} \mathrm{~d} x-\pi \int \frac{16}{x^{2}} \mathrm{~d} x$	M1*	Use of volume formula at least once, condone omission of π and limits $\mathrm{d} x$.
	DM1	Subtracting volumes somewhere must be after squaring.
$\int(5-x)^{2} \mathrm{~d} x=\frac{(5-x)^{3}}{3} \div-1$	B1 B1	B1 Without $\div(-1)$. $\mathbf{B 1}$ for $\div(-1)$
(or $25 x-10 x^{2} / 2+1 / 3 x^{3}$)	(B2,1,0)	-1 for each incorrect term
$\int \frac{16}{x^{2}} \mathrm{~d} x=-\frac{16}{x}$	B1	
Use of limits 1 and 4 in an integrated expression and subtracted.	DM1	Must have used" y^{2} " ${ }^{\prime}$ at least once. Need to see values substituted.
$\rightarrow 9 \pi$ or 28.3	A1	
Total:	7	

Question 86

(i)	Crosses x-axis at (6,0)		B1	$x=6$ is sufficient.
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=(0+)-12(2-x)^{-2} \times(-1)$		B2,1,0	-1 for each incorrect term of the three or addition of +C .
	Tangent $y=3 / 4(x-6)$ or $4 y=3 x-18$		M1 A1	Must use $\mathrm{d} y / \mathrm{d} x, x=$ their 6 but not $x=0$ (which gives $m=3$), and correct form of line equation.
				Using $y=m x+c$ gets $\mathbf{A 1}$ as soon as c is evaluated.
		Total:	5	
ii)	If $x=4, \mathrm{~d} y / \mathrm{d} x=3$			
	$\frac{\mathrm{d} y}{\mathrm{~d} t}=3 \times 0.04=0.12$		M1 A1FT	M1 for ("their m " from $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $x=4$) $\times 0.04$. Be aware: use of $x=0$ gives the correct answer but gets M0.
		Total:	2	

Question 87

)(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-4}{(5-3 x)^{2}} \times(-3)$	B1 B1	B1 without $\times(-3)$ B1 For $\times(-3)$
	Gradient of tangent $=3$, Gradient of normal $-1 / 3$	*M1	Use of $m_{1} m_{2}=-1$ after calculus
	\rightarrow eqn: $y-2=-\frac{1}{3}(x-1)$	DM1	Correct form of equation, with (1, their y), not (1,0)
	$\rightarrow y=-\frac{1}{3} x+\frac{7}{3}$	A1	This mark needs to have come from $y=2, \mathrm{y}$ must be subject
	Total:	5	
(ii)	$\mathrm{Vol}=\pi \int_{0}^{1} \frac{16}{(5-3 x)^{2}} \mathrm{~d} x$	M1	Use of $V=\pi \int y^{2} \mathrm{~d} x$ with an attempt at integration
	$\pi\left[\frac{-16}{(5-3 x)} \div-3\right]$	A1 A1	A1 without($\div-3$, A1 for $(\div-3)$
	$=\left(\pi\left(\frac{16}{6}-\frac{16}{15}\right)\right)=\frac{8 \pi}{5}$ (if limits switched must show - to +)	M1 A1	Use of both correct limits M1
	Total:	5	

Question 88

(i)	$y=7 x-\frac{x^{3}}{3}-\frac{6 x^{2}}{2}(+c)$	B1	CAO
	Uses ($3,-10$) $\rightarrow c=5$	M1 A1	Uses the given point to find c
	Total:	3	
(ii)	$7-x^{2}-6 x=16-(x+3)^{2}$	B1 B1	B1 $a=16, \mathbf{B 1} b=3$.
	Total:	2	
(iii)	$16-(x+3)^{2}>0 \rightarrow(x+3)^{2}<16$, and solve	M1	or factors $(x+7)(x-1)$
	End-points $x=1$ or -7	A1	
	$\rightarrow-7<x<1$	A1	needs $<$, not \leqslant. (SR $x<1$ only, or $x>-7$ only B1 i.e. 1/3)
	Total:	3	

Question 89

;(i)	$\text { Volume }=\left(\frac{1}{2}\right) x^{2} \frac{\sqrt{3}}{2} h=2000 \rightarrow h=\frac{8000}{\sqrt{3 x^{2}}}$		M1	Use of (area of triangle, with attempt at ht) $\times h=2000, h=\mathrm{f}(x)$
	$A=3 x h+(2) \times\left(\frac{1}{2}\right) \times x^{2} \times \frac{\sqrt{3}}{2}$		M1	Uses 3 rectangles and at least one triangle
	Sub for $h \rightarrow A=\frac{\sqrt{ } 3}{2} x^{2}+\frac{24000}{\sqrt{3}} x^{-1}$		A1	AG
		Total:	3	
(ii)	$\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{\sqrt{3}}{2} 2 x-\frac{24000}{\sqrt{3}} x^{-2}$		B1	CAO, allow decimal equivalent
	$=0$ when $x^{3}=8000 \rightarrow x=20$		M1 A1	Sets their $\frac{\mathrm{d} A}{\mathrm{~d} x}$ to 0 and attempt to solve for x
		Total:	3	

(iii) $\quad \frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}=\frac{\sqrt{3}}{2} 2+\frac{48000}{\sqrt{3}} x^{-3}>0$

\rightarrow Minimum	A1 FT	FT on their x providing it is positive
Total:	$\mathbf{2}$	

Question 90

l(i)	Gradient of $A B=\frac{1}{2}$	B1	
	Equation of $A B$ is $y=\frac{1}{2} x-\frac{1}{2}$	B1	
		2	
(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=1 / 2(x-1)^{\frac{1}{2}}$	B1	
	$1 / 2(x-1)^{-\frac{1}{2}}=1 / 2$. Equate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to their ${ }^{1 / 2}$	*M1	
	$x=2, y=1$	A1	
	$y-1=1 / 2(x-2)$ (thro' their $(2,1) \&$ their $\left.{ }^{1 / 2}\right) \rightarrow y=1 / 2 x$	DM1 A1	
		5	
(.iii)	EITHER: $\sin \theta=\frac{d}{1} \rightarrow d=\sin \theta$	(M1	Where θ is angle between $A B$ and the x-axis
	gradient of $A B=1 / 2 \Rightarrow \tan \theta=1 / 2 \Rightarrow \theta=26.5(7)^{\circ}$	B1	
	$d=\sin 26.5(7)^{\circ}=0.45 \quad\left(\right.$ or $\left.\frac{1}{\sqrt{5}}\right)$	A1)	
	OR1: Perpendicular through O has equation $y=-2 x$	(M1	
	Intersection with $A B: \quad-2 x=1 / 2 x-1 / 2 \rightarrow\left(\frac{1}{5}, \frac{-2}{5}\right)$	A1	
	$d=\sqrt{\left(\frac{1}{5}\right)^{2}+\left(\frac{2}{5}\right)^{2}}=0.45 \text { (or } \frac{1}{\sqrt{5}} \text {) }$	A1)	
	OR2: Perpendicular through $(2,1)$ has equation $y=-2 x+5$	(M1	
	Intersection with $A B:-2 x+5=1 / 2 x-1 / 2 \rightarrow\left(\frac{11}{5}, \frac{3}{5}\right)$	A1	
	$d=\sqrt{\left(\frac{1}{5}\right)^{2}+\left(\frac{2}{5}\right)^{2}}=0.45(\text { or } 1 / \sqrt{ } 5)$	A1)	
(iii)	OR3: $\triangle O A C$ has area $\frac{1}{4}\left[\right.$ where $\left.C=\left(0,-\frac{1}{2}\right)\right]$	(B1	
	$\frac{1}{2} \times \frac{\sqrt{5}}{2} \times d=\frac{1}{4} \rightarrow d=\frac{1}{\sqrt{5}}$	M1 A1)	
		3	

Question 91

(i)	$a x^{2}+b x=0 \rightarrow x(a x+b)=0 \rightarrow x=\frac{-b}{a}$	B1	
	Find $\mathrm{f}^{\prime \prime}(x)$ and attempt sub their $\frac{-b}{a}$ into their $\mathrm{f}^{\prime \prime}(x)$	M1	
	When $x=\frac{-b}{a}, \mathrm{f}^{\prime \prime}(x)=2 a\left(\frac{-b}{a}\right)+b=-b \quad$ MAX	A1	
		3	
(ii)	Sub $\mathrm{f}^{\prime}(-2)=0$	M1	
	Sub $\mathrm{f}^{\prime}(1)=9$	M1	
	$a=3 \quad b=6$	*A1	Solve simultaneously to give both results.
	$\mathrm{f}^{\prime}(x)=3 x^{2}+6 x \rightarrow \mathrm{f}(x)=x^{3}+3 x^{2}(+c)$	*M1	Sub their a, b into $\mathrm{f}^{\prime}(x)$ and integrate 'correctly'. Allow $\frac{a x^{3}}{3}+\frac{b x^{2}}{2}(+c)$
	$-3=-8+12+c$	DM1	Sub $x=-2, y=-3$. Dependent on c present. Dependent also on a, b substituted.
	$\mathrm{f}(x)=x^{3}+3 x^{2}-7$	A1	
		6	

Question 92

;(i) \begin{tabular}{|l|r|l}

EITHER:
$4-3 \sqrt{ } x=3-2 x \rightarrow 2 x-3 \sqrt{ } x+1(=0)$ or e.g. $2 k^{2}-3 k+1(=0)$

\hline$\sqrt{x}=1 / 2,1$ \& A1 \& Or $k=1 / 2$ or $1($ where $k=\sqrt{ } x)$.

\hline$x=1 / 4,1$ \& A1) \&

\hline $\left.\begin{array}{l}\text { OR1: } \\
\left(3 \sqrt{x}^{2}\right.\end{array}\right)=(1+2 x)^{2}$ \& (M1 \&

\hline $4 x^{2}-5 x+1(=0)$ \& A1 \&

\hline$x=1 / 4,1$ \& A1) \&

\hline | OR2: |
| :--- |
| $\frac{3-y}{2}=\left(\frac{4-y}{3}\right)^{2}\left(\rightarrow 2 y^{2}-7 y+5(=0)\right)$ |
| $y=\frac{5}{2}, 1$ | \& (M1 \& Eliminate x

\hline$x=1 / 4,1$ \& A1 \&

\hline \& A1) \&

\hline
\end{tabular}

(ii)

EITHER: Area under line $=\int(3-2 x) \mathrm{d} x=3 x-x^{2}$	(B1	
$=\left[(3-1)-\left(\frac{3}{4}-\frac{1}{16}\right)\right]$	M1	Apply their limits $($ e.g. $1 / 4 \rightarrow 1)$ after integn.
Area under curve $=\int\left(4-3 x^{1 / 2}\right) \mathrm{d} x=4 x-2 x^{3 / 2}$	B1	
$[(4-2)-(1-1 / 4)]$	M1	Apply their limits $($ e.g. $1 / 4 \rightarrow 1)$ after integration.
Required area $=\frac{21}{16}-\frac{5}{4}=\frac{1}{16}($ or 0.0625$)$	(*M1	Subtract functions and then attempt integration
OR:		
$+/-\int(3-2 x)-\left(4-3 x^{\frac{1}{2}}\right)=+/-\int\left(-1-2 x+3 x^{\frac{1}{2}}\right)$	A2, 1,0 FT	FT on their subtraction. Deduct 1 mark for each term incorrect
$+/-\left[-x-x^{2}+\frac{3 x^{3 / 2}}{3 / 2}\right]$	DM1 A1)	Apply their limits $1 / 4 \rightarrow 1$
$+/-\left[-1-1+2-\left(-\frac{1}{4}+\frac{1}{16}+\frac{1}{8}\right)\right]=\frac{1}{16}$ (or 0.0625$)$	$\mathbf{5}$	

Question 93

$\mathrm{f}^{\prime}(x)=\left[\left(\frac{3}{2}\right)(2 x-1)^{1 / 2}\right] \times[2]-[6]$	B2, 1, 0	Deduct 1 mark for each $[\ldots]$ incorrect.
$\mathrm{f}^{\prime}(x)<0$ or $\leqslant 0$ or $=0$ SOI	M1	
$(2 x-1)^{1 / 2}<2$ or $\leqslant 2$ or $=2$ OE	A1	Allow with k used instead of x
Largest value of k is $\frac{5}{2}$	A1	Allow $k \leqslant \frac{5}{2}$ or $k=\frac{5}{2} \quad$ Answer must be in terms of $k($ not $x)$
	$\mathbf{5}$	

Question 94

(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \times(5 x-1)^{-\frac{1}{2}} \times 5 \quad\left(=\frac{5}{6}\right)$	B1 B1	B1 Without $\times 5$ B1 $\times 5$ of an attempt at differentiation
(ii)	$m \text { of normal }=-\frac{6}{5}$	M1	Uses $m_{1} m_{2}=-1$ with their numeric value from their $\mathrm{d} y / \mathrm{d} x$
	Equation of normal $y-3=-\frac{6}{5}(x-2)$ OE or $5 y+6 x=27$ or $y=\frac{-6}{5} x+\frac{27}{5}$	A1	Unsimplified. Can use $y=m x+c$ to get $c=5.4$ ISW
	EITHER:	(B1	Correct expression without $\div 5$
	For the curve $\left(\int\right) \sqrt{5 x-1} \mathrm{~d} x=\frac{(5 x-1)^{\frac{3}{2}}}{\frac{3}{2}} \div 5$	B1	For dividing an attempt at integration of y by 5
	Limits from $\frac{1}{5}$ to 2 used $\rightarrow 3.6$ or $\frac{18}{5} \mathrm{OE}$	M1 A1	Using $\frac{1}{5}$ and 2 to evaluate an integrand (may be $\int y^{2}$)
	Normal crosses x-axis when $y=0, \rightarrow x=(41 / 2)$	M1	Uses their equation of normal, NOT tangent
	$\text { Area of triangle }=3.75 \text { or } \frac{15}{4} \mathrm{OE}$	A1	This can be obtained by integration
	Total area $=3.6+3.75=7.35, \frac{147}{20} \mathrm{OE}$	A1)	
	OR: For the curve: $\text { (j) } \frac{1}{5}\left(y^{2}+1\right) \mathrm{d} y=\frac{1}{5}\left(\frac{y^{3}}{3}+y\right)$	(B2, 1, 0	-1 each error or omission.
	Limits from 0 to 3 used $\rightarrow 2.4$ or $\frac{12}{5} \mathrm{OE}$	M1 A1	Using 0 and 3 to evaluate an integrand
	Uses their equation of normal, NOT tangent.	M1	Either to find side length for trapezium or attempt at integrating between 0 and 3
	Area of trapezium $=\frac{1}{2}\left(2+4^{1 / 2}\right) \times 3=\frac{39}{4}$ or $9 \frac{3}{4}$	A1	This can be obtained by integration
	$\text { Shaded area }=\frac{39}{4}-\frac{12}{5}=7.35, \frac{147}{20} \mathrm{OE}$	A1)	

Question 95

(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0$	M1	Sets $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to 0 and attempts to solve leading to two values for x.
	$x=1, x=4$	A1	Both values needed
;(ii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-2 x+5$	$\begin{array}{r} 2 \\ \text { B1 } \end{array}$	
	Using both of their x values in their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$	M1	Evidence of any valid method for both points.
	$x=1 \rightarrow(3) \rightarrow$ Minimum, $x=4 \rightarrow(-3) \rightarrow$ Maximum	A1	
		3	
(iii)	$y=-\frac{x^{3}}{3}+\frac{5 x^{2}}{2}-4 x \quad(+\mathrm{c})$	B2, 1, 0	$+c$ not needed. -1 each error or omission.
	Uses $x=6, y=2$ in an integrand to find $\mathrm{c} \rightarrow \mathrm{c}=8$	M1 A1	Statement of the final equation not required.
		4	

Question 96

'(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-4=0$		Can use completing the square.
	$\rightarrow x=2, \mathrm{y}=3$	B1 B1	
	Midpoint of $A B$ is $(3,5)$	B1 FT	FT on (their 2, their 3) with (4,7)
	$\rightarrow m=\frac{7}{3}(\text { or } 2.33)$	B1	
		4	
(ii)	Simultaneous equations $\rightarrow x^{2}-4 x-m x+9(=0)$	*M1	Equates and sets to 0 must contain m
	Use of $b^{2-4 a c} \rightarrow(m+4)^{2}-36$	DM1	Any use of $b^{2-4 a c}$ on equation set to 0 must contain m
	Solves $=0 \rightarrow-10$ or 2	A1	Correct end-points.
	$-10<m<2$	A1	Don't condone \leqslant at either or both end(s). Accept $-10<m, m<$:
		4	

Question 97

(i)	$\text { Area }=\int 1 / 2\left(x^{4}-1\right) \mathrm{d} x=1 / 2\left[\frac{x^{5}}{5}-x\right]$	*B1	
	$1 / 2\left[\frac{1}{5}-1\right]-0=(-) \frac{2}{5}$	DM1A1	Apply limits $0 \rightarrow 1$
		3	
(ii)	$\mathrm{Vol}=\pi \int y^{2} \mathrm{~d} x=1 / 4(\pi) \int\left(x^{8}-2 x^{4}+1\right) \mathrm{d} x$	M1	(If middle term missed out can only gain the M marks)
	$1 / 4(\pi)\left[\frac{x^{9}}{9}-\frac{2 x^{5}}{5}+x\right]$	*A1	
	$1 / 4(\pi)\left[\left(\frac{1}{9}-\frac{2}{5}+1\right]-0\right.$	DM1	
	$\frac{8 \pi}{45}$ or 0.559	A1	
		4	
)(iii)	Vol $=\pi \int x^{2} \mathrm{~d} y=(\pi) \int(2 y+1)^{1 / 2} \mathrm{~d} y$	M1	Condone use of x if integral is correct
	$(\pi)\left[\frac{(2 y+1)^{3 / 2}}{3 / 2}\right][\div 2]$	*A1A1	Expect $(\pi)\left[\frac{(2 y+1)^{3 / 2}}{3}\right]$
	$(\pi)\left[\frac{1}{3}-0\right]$	DM1	
	$\frac{\pi}{3}$ or 1.05	A1	$\text { Apply }-\frac{1}{2} \rightarrow 0$
		5	

Question 98

(i)	$V=\frac{1}{3} \pi r^{2}(18-r)=6 \pi r^{2}-\frac{1}{3} \pi r^{3}$	B1	AG
		1	
(ii)	$\frac{\mathrm{d} V}{\mathrm{~d} r}=12 \pi r-\pi r^{2}=0$	M1	Differentiate and set $=0$
	$\pi r(12-r)=0 \rightarrow r=12$	A1	
	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} r^{2}}=12 \pi-2 \pi r$	M1	
	Sub $r=12 \rightarrow 12 \pi-24 \pi=-12 \pi \rightarrow$ MAX	A1	AG
		4	
(iii)	Sub $r=12, h=6 \rightarrow \operatorname{Max} V=288 \pi$ or 905	B1	
		1	

Question 99

$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{1 / 2}-3-2 x^{-1 / 2}$	B2,1,0	
at $x=4, \frac{\mathrm{~d} y}{\mathrm{~d} x}=6-3-1=2$	M1	
Equation of tangent is $y=2(x-4) \mathrm{OE}$	A1FT	Equation through $(4,0)$ with their gradient
	$\mathbf{4}$	

Question 100

$\mathrm{f}^{\prime}(x)=3 x^{2}-2 x-8$	M1	Attempt differentiation
$-\frac{4}{3}, 2$ SOI	A1	
$\mathrm{f}^{\prime}(x)>0 \Rightarrow x<-\frac{4}{3} \mathrm{SOI}$	$\mathbf{M 1}$	Accept $x>2$ in addition. FT their solutions
Largest value of a is $-\frac{4}{3}$	A1	Statement in terms of a. Accept $a \leqslant-\frac{4}{3}$ or $a<-\frac{4}{3}$. Penalise extra solutions
	4	

Question 101

(i)	$\mathrm{d} y / \mathrm{d} x=[-2]-\left[3(1-2 x)^{2}\right] \times[-2]\left(=4-24 x+24 x^{2}\right)$	B2,1,0	Award for the accuracy within each set of square brackets
(ii)	At $x=1 / 2 \mathrm{~d} y / \mathrm{d} x=-2$	B1	
	Gradient of line $y=1-2 x$ is -2 (hence $A B$ is a tangent) $\quad \mathbf{A G}$	B1	
	$\text { Shaded region }=\int_{0}^{1 / 2}(1-2 x)-\int_{0}^{1 / 2}\left[1-2 x-(1-2 x)^{3}\right] \text { oe }$	$\begin{array}{r} 4 \\ \text { M1 } \end{array}$	Note: If area triangle OAB - area under the curve is used the first part of the integral for the area under the curve must be evaluated
	$=\int_{0}^{2 / 2}(1-2 x)^{3} \mathrm{~d} x$	A1	
		2	
(iii)	Area $=\left[\frac{(1-2 x)^{4}}{4}\right][\div-2]$	*B1B1	
	$0-(-1 / 8)=1 / 8$	DB1	OR $\int 1-6 x+12 x^{2}-8 x^{3}=x-3 x^{2}+4 x^{3}-2 x^{4}(\mathbf{B} 2,1,0)$ Applying limits $0 \rightarrow 1 / 2$
		3	

Question 102

$\mathrm{f}^{\prime}(x)=\frac{-8}{(x-2)^{2}}$	B1	SOI
$y=\frac{8}{x-2}+2 \rightarrow y-2=\frac{8}{x-2} \rightarrow x-2=\frac{8}{y-2}$	M1	Order of operations correct. Accept sign errors
$\mathrm{f}^{-1}(x)=\frac{8}{x-2}+2$	$\mathbf{A 1}$	SOI
$\frac{-48}{(x-2)^{2}}+\frac{16}{x-2}+4-5(<0) \rightarrow x^{2}-20 x+84(<0)$	$\mathbf{M 1}$	Formation of 3-term quadratic in $x,(x-2)$ or $1 /(x-2)$
$(x-6)(x-14)$ or 6,14	$\mathbf{A 1}$	SOI
$2<x<6, x>14$	$\mathbf{A 1}$	CAO
$\mathbf{6}$		

Question 103

;(i)	$\mathrm{d} y / \mathrm{d} x=x-6 x^{1 / 2}+8$	B2,1,0	
	Set to zero and attempt to solve a quadratic for $x^{1 / 2}$	M1	Could use a substitution for $x^{1 / 2}$ or rearrange and square correctly*
	$x^{1 / 2}=4$ or $x^{1 / 2}=2[x=2$ and $x=4$ gets M1 A0]	A1	Implies M1. 'Correct' roots for their $\mathrm{d} y / \mathrm{d} x$ also implies M1
	$x=16$ or 4	A1FT	Squares of their solutions *Then $\mathbf{A 1}, \mathbf{A 1}$ for each answer
(ii)	$\mathrm{d}^{2} y / \mathrm{d} x^{2}=1-3 x^{-2 / 2}$	$\begin{array}{r} 5 \\ \text { B1FT } \end{array}$	FT on their $\mathrm{d} y / \mathrm{d} x$, providing a fractional power of x is present
		1	
(iii)	(When $x=16$) $\mathrm{d}^{2} y / \mathrm{d} x^{2}=1 / 4>0$ hence MIN	M1	Checking both of their values in their $\mathrm{d}^{2} y / \mathrm{d} x^{2}$
	(When $x=4) \mathrm{d}^{2} y / \mathrm{d} x^{2}=-1 / 2<0$ hence MAX	A1	All correct Alternative methods ok but must be explicit about values of x bein considered
		2	

Question 104

$(y)=\frac{x^{3 / 2}}{y / 2}-3 x(+c)$	B1B1	
Sub (4,-6) $-6=4-12+c \rightarrow c=2$	M1A1	Expect $(y)=2 x^{1 / 2}-3 x+2$
	$\mathbf{4}$	

Question 105

(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2(x+1)-(x+1)^{-2}$	B1	
	Set $=0$ and obtain $2(x+1)^{3}=1$ convincingly www AG	B1	
	$\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=2+2(x+1)^{-3} \mathrm{www}$	B1	
	Sub, e.g., $(x+1)^{-3}=2$ OE or $x=\left(\frac{1}{2}\right)^{\frac{1}{3}}-1$	M1	Requires exact method - otherwise scores M0
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6$ CAO www	A1	and exact answer - otherwise scores A0
	$y^{2}=(x+1)^{4}+(x+1)^{-2}+2(x+1)$ SOI	$\begin{array}{r} 5 \\ \text { B1 } \end{array}$	OR $y^{2}=\left(x^{4}+4 x^{3}+6 x^{2}+4 x+1\right)+(2 x+2)+(x+1)^{-2}$
.(ii)	$\begin{aligned} & (\pi) \int y^{2} d x=(\pi)\left[\frac{(x+1)^{5}}{5}\right]+\left[\frac{(x+1)^{-1}}{-1}\right]+\left[\frac{2(x+1)^{2}}{2}\right] \\ & \text { OR }(\pi)\left[\frac{x^{5}}{5}+x^{4}+2 x^{3}+2 x^{2}+x\right]+\left[x^{2}+2 x\right]+\left[-\frac{1}{x+1}\right] \end{aligned}$	B1B1B1	Attempt to integrate y^{2}. Last term might appear as $\left(x^{2}+2 x\right)$
	$(\pi)\left[\frac{32}{5}-\frac{1}{2}+4-\left(\frac{1}{5}-1+1\right)\right]$	M1	Substitute limits $0 \rightarrow 1$ into an attempted integration of y^{2}. Do not condone omission of value when $x=0$
	9.7π or 30.5	A1	Note: omission of $2(x+1)$ in first line $\rightarrow 6.7 \pi$ scores $3 / 6$ Ignore initially an extra volume, e.g. $(\pi) \int(41 / 2)^{2}$. Only take into account for the final answer
		6	

Question 106

;(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-18 x+24$	M1A1	Attempt to differentiate. All correct for A mark
	$3 x^{2}-18 x+24=-3$	M1	Equate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to -3
	$x=3$	A1	
	$y=6$	A1	
	$y-6=-3(x-3)$	A1FT	FT on their A. Expect $y=-3 x+15$
		6	
(ii)	(3) $(x-2)(x-4)$ SOI or $x=2,4$ Allow (3) $(x+2)(x+4)$	M1	Attempt to factorise or solve. Ignore a RHS, e.g. $=0$ or >0, etc.
	Smallest value of k is 4	A1	Allow $k \geqslant 4$. Allow $k=4$. Must be in terms of k
		2	

Question 107

| $\mathrm{f}(x)=\left[\frac{(3 x-1)^{\frac{2}{3}}}{\frac{2}{3}}\right][\div 3](+c)$ | B1B1 | |
| :--- | :--- | ---: | ---: |
| $1=\frac{8^{\frac{2}{3}}}{2}+c$ | M1 | Sub $y=1, x=3$ Dep. on attempt to integrate and c present |
| $c=-1 \rightarrow y=\frac{1}{2}(3 x-1)^{\frac{2}{3}}-1$ SOI | A1 | |
| When $x=0, y=\frac{1}{2}(-1)^{\frac{2}{3}}-1 \quad=-\frac{1}{2}$ | DM1A1 | Dep. on previous M1 |
| | $\mathbf{6}$ | |

Question 108

Question 109

(i)	$y=\frac{2}{3}(4 x+1)^{\frac{3}{2}} \div 4(+\mathrm{C})\left(=\frac{(4 x+1)^{\frac{3}{2}}}{6}\right)$	B1 B1	B1 without $\div 4 . \mathrm{B} 1$ for $\div 4$ oe. Unsimplified OK
	Uses $x=2, y=5$	M1	Uses (2,5) in an integral (indicated by an increase in power by 1).
	$\rightarrow c=1 / 2$ oe isw	A1	No isw if candidate now goes on to produce a straight line equation
		4	
(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$		
	$\frac{d x}{d t}=0.06 \div 3$	M1	Ignore notation. Must be $0.06 \div 3$ for M1.
	$=0.02 \mathrm{oe}$	A1	Correct answer with no working scores $2 / 2$
		2	
iii)	$\frac{\mathrm{d}^{2} y}{\mathrm{dx}}=1 / 2(4 x+1)^{-1 / 2} \times 4$	B1	
	$\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}} \times \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{\sqrt{4 x+1}} \times \sqrt{4 x+1} \quad(=2)$	B1FT	Must either show the algebraic product and state that it results in a constant or evaluate it as ' $=2$ '. Must not evaluate at $x=2$. ft to apply only if $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}$ is of the form $k(4 x+1)^{-1 / 2}$
		2	

Question 110

0	$y=x^{3}-2 x^{2}+5 x$		
(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-4 x+5$	B1	CAO
	Using $b^{2}-4 a c \rightarrow 16-60 \rightarrow$ negative \rightarrow some explanation or completed square and explanation	M1 A1	Uses discriminant on equation (set to 0). CAO
		3	
(ii)	$\begin{aligned} & m=3 x^{2}-4 x+5 \\ & \frac{\mathrm{~d} m}{\mathrm{~d} x}=6 x-4(=0)\left(\text { must identify as } \frac{\mathrm{d} m}{\mathrm{~d} x}\right) \end{aligned}$	B1FT	FT providing differentiation is equivalent
	$\rightarrow x=\frac{2}{3}, m=\frac{11}{3} \text { or } \frac{d y}{d x}=\frac{11}{3}$ Alt1: $m=3\left(x-\frac{2}{3}\right)^{2}+\frac{11}{3}, m=\frac{11}{3}$ Alt2: $3 x^{2}-4 x+5-m=0, b^{2}-4 a c=0, m=\frac{11}{3}$	M1 A1	Sets to 0 and solves. A1 for correct m. Alt1: B1 for completing square, M1A1 for ans Alt2: B1 for coefficients, M1A1 for ans
	$\frac{d^{2} m}{d x^{2}}=6+v e \rightarrow$ Minimum value or refer to sketch of curve or check values of m either side of $x=\frac{2}{3}$,	M1 A1	M1 correct method. A1 (no errors anywhere)
0 (iii)	$\text { Integrate } \rightarrow \frac{x^{4}}{4}-\frac{2 x^{3}}{3}+\frac{5 x^{2}}{2}$	5 B2,1	Loses a mark for each incorrect term
	Uses limits 0 to $6 \rightarrow 270$ (may not see use of lower limit)	M1 A1	Use of limits on an integral. CAO Answer only $0 / 4$
		4	

Question 111

$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{12}{(2 x+1)^{2}} \rightarrow y=\frac{-12}{2 x+1} \div 2(+c)$	B1 B1	Correct without " $\div 2$ ". For " $\div 2$ ". Ignore " c ".
Uses $(1,1) \rightarrow c=3\left(\rightarrow y=\frac{-6}{2 x+1}+3\right)$	M1 A1	Finding " c " following integration. CAO
Sets y to 0 and attempts to solve for $x \rightarrow x=\frac{1}{2} \rightarrow\left(\left(\frac{1}{2}, 0\right)\right)$	DM1 A1	Sets y to $0 . x=\frac{1}{2}$ is sufficient for A1.
	$\mathbf{6}$	

Question 112

$y=2 x+\frac{5}{x} \rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=2-\frac{5}{x^{2}}=-3$ (may be implied) when $x=1$.	M1 A1	Reasonable attempt at differentiation CAO (-3)
$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t} \rightarrow-0.06$	M1 A1	Ignore notation, but needs to multiply $\frac{\mathrm{d} y}{\mathrm{~d} x}$ by 0.02.
	$\mathbf{4}$	

Question 113

$\mathrm{f}^{\prime}(x)=3 x^{2}+4 x-4$	B1	
Factors or crit. values or sub any 2 values $(x \neq-2)$ into $\mathrm{f}^{\prime}(x)$ soi	M1	Expect $(x+2)(3 x-2)$ or $-2,2 / 3$ or any 2 subs $($ excluding $x=-2)$.
For $-2<x<2 / 3, \mathrm{f}^{\prime}(x)<0 ;$ for $x>2 / 3, \mathrm{f}^{\prime}(x)>0$ soi Allow \leqslant, \geqslant	M1	Or at least 1 specific value $(\neq-2)$ in each interval giving opp signs Or $\mathrm{f}^{\prime}(2 / 3)=0$ and $\mathrm{f}^{\prime}(2 / 3) \neq 0$ (i.e. gradient changes sign at $\left.x=2 / 3\right)$
Neither www	A1	Must have 'Neither'
ALT 1 At least 3 values of $\mathrm{f}(x)$	M1	e.g. $\mathrm{f}(0)=7, \mathrm{f}(1)=6, \mathrm{f}(2)=15$
At least 3 correct values of $\mathrm{f}(x)$	A1	
At least 3 correct values of $\mathrm{f}(x)$ spanning $x=2 / 3$	A1	
Shows a decreasing and then increasing pattern. Neither www	A1	Or similar wording. Must have 'Neither'
ALT $2 \mathrm{f}^{\prime}(x)=3 x^{2}+4 x-4=3(x+2 / 3)^{2}-16 / 3$	B1B1	Do not condone sign errors
$\mathrm{f}^{\prime}(x) \geqslant-\frac{16}{3}$	M1	
$\mathrm{f}^{\prime}(x)<0$ for some values and >0 for other values. Neither www	A1	Or similar wording. Must have 'Neither'
	$\mathbf{4}$	

Question 114

(i)	$y=1 / 3 a x^{3}+1 / 2 b x^{2}-4 x(+c)$	B1	
$11=0+0+0+c$	M1	Sub $x=0, y=11$ into an integrated expression. c must be present	
$y=1 / 3 a x^{3}+1 / 2 b x^{2}-4 x+11$	$\mathbf{A 1}$	$\mathbf{3}$	
		M1	Sub $x=2, \mathrm{~d} y / \mathrm{d} x=0$
(ii)	$4 a+2 b-4=0$	M1	Sub $x=2, y=3$ into an integrated expression. Allow if 11 missing
	$1 / 3(8 a)+2 b-8+11=3$	DM1	Dep. on both M marks
Solve simultaneous equations	A1A1	Allow if no working seen for simultaneous equations	
$a=3, b=-4$	$\mathbf{5}$		

Question 115

Question 116

Integrate $\rightarrow \frac{x^{\frac{3}{2}}}{\frac{3}{2}}+2 \frac{x^{\frac{1}{2}}}{\frac{1}{2}}(+\mathrm{C})$	B1 B1	B1 for each term correct - allow unsimplified. C not required.
$\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+2 \frac{x^{\frac{1}{2}}}{\frac{1}{2}}\right]_{1}^{4} \rightarrow \frac{40}{3}-\frac{14}{3}$	M1	Evidence of 4 and 1 used correctly in their integrand ie at least one power increased by 1.
$=\frac{26}{3}$ oe	A1	Allow 8.67 awrt. No integrand implies use of integration function on calculator 0/4. Beware a correct answer from wrong working.
	4	

Question 117

P is $(t, 5 t) Q$ is $\left(t, t\left(9-t^{2}\right)\right) \rightarrow \mathbf{4 t - t ^ { 3 }}$		B1 B1	B1 for both y coordinates which can be implied by subsequent working. B1 for $P Q$ allow $\left\|4 \boldsymbol{t}-\boldsymbol{t}^{3}\right\|$ or $\left\|\boldsymbol{t}^{3}-4 \boldsymbol{t}\right\|$. Note: $4 x-x^{3}$ from equating line and curve $0 / 2$ even if x th replaced by t.
	[2]		
$\frac{\mathrm{d}(P Q)}{\mathrm{d} t}=4-3 t^{2}$	B1FT B1FT for differentiation of their $P Q$, which MUST be a cubic expression, but can be $\frac{d}{d x} f(x)$ from (i) but not the equation of the curve.		
$=0 \rightarrow t=+\frac{2}{\sqrt{3}}$	M1	Setting their differential of $P Q$ to 0 and attempt to solve for t or x.	
\rightarrow Maximum $P Q=\frac{16}{3 \sqrt{3}}$ or $\frac{16 \sqrt{3}}{9}$	A1	Allow 3.08 awrt. If answer comes from wrong method in (i) award A0. Correct answer from correct expression by T\&I scores $3 / 3$.	
	3		

Question 118

$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{3}{2} \times(4 x+1)^{-\frac{1}{2}}\right][\times 4][-2]\left(\frac{6}{\sqrt{4 x+1}}-2\right)$	B2,1,0	Looking for 3 components
$\begin{aligned} & \int y \mathrm{~d} x=\left[3(4 x+1)^{\frac{3}{2}} \div \frac{3}{2}\right][\div 4]\left[-\frac{2 x^{2}}{2}\right](+\mathrm{C}) \\ & \left(=\frac{(4 x+1)^{\frac{3}{2}}}{2}-x^{2}\right) \end{aligned}$	B1 B1 B1	B1 for $3(4 x+1)^{\frac{3}{2}} \div \frac{3}{2}$ B1 for ' $\div 4$ '. B1 for ' $-\frac{2 x^{2}}{2}$, Ignore omission of $+\mathbf{C}$. If included isw any attempt at evaluating.
	5	
$\text { At } M, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \rightarrow \frac{6}{\sqrt{4 x+1}}=2$	M1	Sets their 2 term $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to 0 and attempts to solve (as far as $x=\mathrm{k}$)
$x=2, y=5$	A1 A1	
	3	

Question 119

(i)	$0=9 a+3 a^{2}$	M1	$\operatorname{Sub} \frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and $x=3$
	$a=-3$ only	A1	
		2	
(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-3 x^{2}+9 x \rightarrow y=-x^{3}+\frac{9 x^{2}}{2}(+c)$	M1A1FT	Attempt integration. $1 / 3 a x^{3}+1 / 2 a^{2} x^{2}$ scores M1. Ft on their a.
	$91 / 2=-27+40^{1 / 2}+c$	DM1	Sub $x=3, y=91 / 2$. Dependent on c present
	$c=-4$	A1	Expect $y=-x^{3}+\frac{9 x^{2}}{2}-4$
		4	
iii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-6 x+9$	M1	$2 a x+a^{2}$ scores M1
	At $x=3, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-9<0$ MAX www	A1	Requires at least one of -9 or <0. Other methods possible.
		2	

Question 120

7(i)	$2=k(8-28+24) \rightarrow k=1 / 2$	B1	
		1	
'(ii)	When $x=5, y=[1 / 2](125-175+60)=5$	M1	Or solve $[1 / 2]\left(x^{3}-7 x^{2}+12 x\right)=x \Rightarrow x=5[x=0,2]$
	Which lies on $y=x$, oe	A1	
		2	
(iii)	$\int\left[\frac{1}{2}\left(x^{3}-7 x^{2}+12 x\right)-x\right] d x$.	M1	Expect $\int \frac{1}{2} x^{3}-\frac{7}{2} x^{2}+5 x$
	$\frac{1}{8} x^{4}-\frac{7}{6} x^{3}+\frac{5}{2} x^{2}$	B2,1,0FT	Ft on their k
	$2-28 / 3+10$	DM1	Apply limits $0 \rightarrow 2$
	8/3	A1	
	OR $\frac{1}{8} x^{4}-\frac{7}{6} x^{3}+3 x^{2}$	B2,1,0FT	Integrate to find area under curve, Ft on their k
	$2-28 / 3+12$	M1	Apply limits $0 \rightarrow 2$. Dep on integration attempted
	Area $\Delta=1 / 2 \times 2 \times 2$ or $\int_{0}^{2} x \mathrm{~d} x=\left[1 / 2 x^{2}\right]=2$	M1	
	8/3	A1	
		5	

Question 121

)(i)(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[-1 / 2(4 x-3)^{-2}\right] \times[4]$	B1B1	Can gain this in part (b)(ii)
	When $x=1, m=-2$	B1FT	Ft from their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	Normal is $y-1 / 2=1 / 2(x-1)$	M1	Line with gradient $-1 / m$ and through A
	$y=1 / 2 x$ soi	A1	Can score in part (b)
		5	
(i)(b)	$\frac{1}{2(4 x-3)}=\frac{x}{2} \rightarrow 2 x(4 x-3)=2 \rightarrow(2)\left(4 x^{2}-3 x-1\right)(=0)$	M1A1	$x / 2$ seen on RHS of equation can score previous A1
	$x=-1 / 4$	A1	Ignore $x=1$ seen in addition
		3	
O(ii)	Use of chain rule: $\frac{\mathrm{d} y}{\mathrm{~d} t}=($ their -2$) \times(\pm) 0.3=0.6$	M1A1	Allow +0.3 or -0.3 for M1
		2	

Question 122

$y=1 / 3 k x^{3}-x^{2}(+c)$	M1A1	Attempt integration for M mark
Sub $(0,2)$	DM1	Dep on c present. Expect $c=2$
Sub $(3,-1) \rightarrow-1=9 k-9+$ their c	DM1	
$k=2 / 3$	Al	
	5	

Question 123

(i)	$\mathrm{d} y / \mathrm{d} x=-2(2 x-1)^{-2}+2$	B2,1,0	Unsimplified form ok (-1 for each error in ' -2 ', ' $(2 x-1)^{-2,}$ and ' 2 ')
	$\mathrm{d}^{2} y / \mathrm{d} x^{2}=8(2 x-1)^{-3}$	B1	Unsimplified form ok
		3	
(ii)	Set $\mathrm{d} y / \mathrm{d} x$ to zero and attempt to solve - at least one correct step	M1	
	$x=0,1$	A1	Expect $(2 x-1)^{2}=1$
	When $x=0, \mathrm{~d}^{2} y / \mathrm{dx}^{2}=-8($ or $<0)$. Hence MAX	B1	
	When $x=1, \mathrm{~d}^{2} y / \mathrm{d} x^{2}=8($ or $>0)$. Hence MIN	B1	Both final marks dependent on correct x and correct $\mathrm{d}^{2} y / \mathrm{d} x^{2}$ and no errors May use change of sign of $\mathrm{dy} / \mathrm{dx}$ but not at $x=1 / 2$
		4	

Question 124

Question 125

$\mathrm{f}^{\prime}(-1)=0 \rightarrow 3-a+b=0 \mathrm{f}^{\prime}(3)=0 \rightarrow 27+3 a+b=0$	M1	Stationary points at $x=-1 \& x=3$ gives sim. equations in a \& b
$a=-6$	A1	Solve simultaneous equation
$b=-9$	A1	
Hence $\mathrm{f}^{\prime}(x)=3 x^{2}-6 x-9 \rightarrow \mathrm{f}(x)=x^{3}-3 x^{2}-9 x(+c)$	B1	FT correct integration for their a, b (numerical $a, b)$
$2=-1-3+9+c$	M1	Sub $x=-1, y=2$ into their integrated $\mathrm{f}(x) . c$ must be present
$c=-3$	A1	FT from their $\mathrm{f}(x)$
$\mathrm{f}(3)=k \rightarrow k=27-27-27-3$	M1	Sub $x=3, y=k$ into their integrated $\mathrm{f}(x)$ (Allow c omitted)
$k=-30$	A1	
	$\mathbf{8}$	

Question 126

l(iii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}$	B1	
	$\frac{3}{2}(3 x+4)^{-\frac{1}{2}}=\frac{1}{2}$	M1	Allow M1 for $\frac{3}{2}(3 x+4)^{-\frac{1}{2}}=2$.
$(3 x+4)^{\frac{1}{2}}=3 \rightarrow 3 x+4=9 \rightarrow x=\frac{\mathbf{5}}{\mathbf{3}}$ oe	A1		
	$\mathbf{3}$		

Question 127

(i)	$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=7 \times-0.05$	M1	Multiply numerical gradient at $x=2$ by ± 0.05.
	-0.35 (units/s) or Decreasing at a rate of (+) 0.35	A1	Ignore notation and omission of units
		2	
(ii)	$(y)=\frac{x^{4}}{4}+\frac{4}{x}(+c) \mathrm{oe}$	B1	Accept unsimplified
	Uses (2,9) in an integral to find c .	M1	The power of at least one term increase by 1.
	$c=3$ or $(y=) \frac{x^{4}}{4}+\frac{4}{x}+3$ oe	A1	A0 if candidate continues to a final equation that is a straight line.
		3	

Question 128

l(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{1}{2}(4 x+1)^{-\frac{1}{2}}\right][\times 4]\left[-\frac{9}{2}(4 x+1)^{-\frac{3}{2}}\right][\times 4]$	B1B1B1	B1 B1 for each, without $\times 4 . \mathrm{B} 1$ for $\times 4$ twice.
	$\left(\frac{2}{\sqrt{4 x+1}}-\frac{18}{(\sqrt{4 x+1})^{3}}\right.$ or $\left.\frac{8 x-16}{(4 x+1)^{\frac{3}{2}}}\right)$		SC If no other marks awarded award B1 for both powers of $(4 x+1)$ correct.
	$\int y \mathrm{~d} x=\left[\frac{(4 x+1)^{\frac{3}{2}}}{\frac{3}{2}}\right][\div 4]+\left[\frac{9(4 x+1)^{\frac{1}{2}}}{\frac{1}{2}}\right][\div 4](+C)$	B1B1B1	B1 B1 for each, without $\div 4$. B1 for $\div 4$ twice. +C not required.
	$\left(\frac{(\sqrt{4 x+1})^{3}}{6}+\frac{9}{2}(\sqrt{4 x+1})(+C)\right)$		SC If no other marks awarded, B1 for both powers of $(4 x+1)$ correct.
		6	
(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \rightarrow \frac{2}{\sqrt{4 x+1}}-\frac{18}{(4 x+1)^{\frac{3}{2}}}=0$	M1	Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to 0 (and attempts to solve
	$4 x+1=9$ or $(4 x+1)^{2}=81$	A1	Must be from correct differential.
	$x=2, y=6$ or M is $(2,6)$ only .	A1	Both values required. Must be from correct differential.
(iii)	Realises area is $\int y \mathrm{~d} x$ and attempt to use their 2 and sight of 0 .	$\begin{array}{r} 3 \\ \text { *M1 } \end{array}$	Needs to use their integral and to see 'their 2' substituted.
	Uses limits 0 to 2 correctly $\rightarrow[4.5+13.5]-\left[\frac{1}{6}+4.5\right]\left(=13^{1 / 3}\right)$	DM1	Uses both 0 and 'their 2 ' and subtracts. Condone wrong way round.
	$\left(\right.$ Area $=1^{1 / 3}$ or 1.33	A1	Must be from a correct differential and integral.
		3	$131 / 3$ or $11 / 3$ with little or no working scores M1DM0A0.

Question 129

)(i)	$\text { integrating } \rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}-5 x(+c)$	B1	
	$=0$ when $x=3$	M1	Uses the point to find c after $\int=0$.
	$c=6$	A1	
	integrating again $\rightarrow y=\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+6 x \quad(+d)$	B1	FT Integration again FT if a numerical constant term is present.
	use of (3,6)	M1	Uses the point to find d after $\int=0$.
	$d=11 / 2$	A1	
(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}-5 x+6=0 \rightarrow x=2$	$\begin{array}{r} 6 \\ \text { B1 } \end{array}$	
		1	
(iii)	$x=3, \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}=1 \mathrm{and} / \mathrm{or}+\mathrm{ve}$ Minimum. $x=2, \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{d}^{2}}=-1$ and/or -ve Maximum	B1	www
	May use shape of ' $+x^{3}$, curve or change in sign of $\frac{d y}{d x}$	B1	www $\mathrm{SC}: x=3$, minimum, $x=2$, maximum, B 1
		2	

Question 130

(i)	$3 \times-1 / 2 \times(1+4 x)^{-\frac{3}{2}}$	B1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \times-1 / 2 \times(1+4 x)^{-\frac{3}{2}} \times 4$	B1	Must have ' $\times 4$ '
	If $x=2, m=-\frac{2}{9}$, Perpendicular gradient $=\frac{9}{2}$	M1	Use of $m_{1} \cdot m_{2}=-1$
	Equation of normal is $y-1=\frac{9}{2}(x-2)$	M1	Correct use of line eqn (could use $\mathrm{y}=0$ here)
	Put $y=0$ or on the line before $\rightarrow \frac{16}{9}$	A1	AG
I(ii)	$\text { Area under the curve }=\int_{0}^{2} \frac{3}{\sqrt{1+4 x}} \mathrm{~d} x=\frac{3 \sqrt{1+4 x}}{\frac{1}{2}} \div 4$	$\begin{array}{r} 5 \\ \text { B1 B1 } \end{array}$	Correct without ' $\div 4$ '. For 2nd B1, $\div 4$ '.
	Use of limits 0 to $2 \rightarrow 41 / 2-11 / 2$	M1	Use of correct limits in an integral.
	3	A1	
	Area of the triangle $=1 / 2 \times 1 \times \frac{2}{9}=\frac{1}{9}$ or attempt to find $\int_{16 / 9}^{2}\left(\frac{9}{2} x-8\right) d x$	M1	Any correct method.
	Shaded area $=3-\frac{1}{9}=2 \frac{8}{9}$	A1	
		6	

Question 131

Question 132

$(y=) \frac{k x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\left(=\frac{k \sqrt{x}}{\frac{1}{2}}\right)(+c)$	B1	OE
Substitutes both points into an integrated expression with $\mathrm{a}^{\prime}+c$ ' and solve as far as a value for one variable.	M1	Expect to see $-1=2 k+c$ and $4=4 k+c$
$k=2^{1 / 2}$ and $c=-6$	A1	WWW
$y=5 \sqrt{x}-6$	A1	OE From correct values of both $k \& c$ and correct integral.
	4	

Question 133

Use of Pythagoras $\rightarrow r^{2}=15^{2}-h^{2}$	M1		
$V=1 / 3 \pi\left(225-h^{2}\right) \times h \rightarrow 1 / 3 \pi\left(225 h-h^{3}\right)$	A1	AG WWW e.g. sight of $r=15-h$ gets A0.	
$\left(\frac{\mathrm{d} v}{\mathrm{~d} h}=\right) \frac{\pi}{3}\left(225-3 h^{2}\right)$	2	B1	
Their $\frac{\mathrm{d} v}{\mathrm{~d} h}=0$	M1	Differentiates, sets their differential to 0 and attempts to solve at least as far as $h^{2} \neq 0.0$	
$(h=) \sqrt{ } 75,5 \sqrt{ } 3$ or AWRT 8.66	A1	Ignore $-\sqrt{75}$ OE and ISW for both A marks	
$\frac{\mathrm{d}^{2} h}{\mathrm{~d} h^{2}}=\frac{\pi}{3}(-6 h)(\rightarrow-$ ve $)$	M1	Differentiates for a second time and considers the sign of the second differential or any other valid complete method.	
\rightarrow Maximum	A1FT	Correct conclusion from correct 2nd differential, value for h not required, or any other valid complete method. FT for their h, if used, as long as it is positive.	
		SC Omission of π or $\frac{\pi}{3}$ throughout can score B0M1A1M1A0	

Question 134

At $A, x=1 / 2$.	B1	Ignore extra answer $x=-1.5$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \rightarrow \text { Gradient of normal }(=-1 / 2)$	*M1	With their positive value of x at A and their $\frac{d y}{d x}$, uses $m_{1} m_{2}=-1$
Equation of normal: $y-0=-1 / 2(x-1 / 2) \text { or } y-0=-1 / 2(0-1 / 2) \text { or } 0=-1 / 2 \times 1 / 2+c$	DM1	Use of their x at A and their normal gradient.
$B(0,1 / 4)$	A1	
	4	
At $A, x=1 / 2$.	B1	Ignore extra answer $x=-1.5$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \rightarrow$ Gradient of normal $(=-1 / 2)$	*M1	With their positive value of x at A and their $\frac{d y}{d x}$, uses $m_{1} m_{2}=-1$
Equation of normal: $y-0=-1 / 2(x-1 / 2) \text { or } y-0=-1 / 2(0-1 / 2) \text { or } 0=-1 / 2 \times 1 / 2+c$	DM1	Use of their x at A and their normal gradient.
$B(0,1 / 4)$	A1	
	4	

I(iii)	$\int_{0}^{\frac{1}{2}} 1-\frac{4}{(2 x+1)^{2}}(\mathrm{~d} x)$	*M1	$\int y \mathrm{~d} x$ SOI with 0 and their positive x coordinate of A.
	$[1 / 2+1]-[0+2]=(-1 / 2)$	DM1	Substitutes both 0 and their $1 / 2$ into their $\int y \mathrm{~d} x$ and subtracts.
	Area of triangle above x-axis $=1 / 2 \times 1 / 2 \times 1 / 4\left(=\frac{1}{16}\right)$	B1	
	Total area of shaded region $=\frac{9}{16}$	A1	OE (including AWRT 0.563)
	Alternative method for question 10 (iii)		
	$\int_{-3}^{0} \frac{1}{(1-y)^{\frac{1}{2}}}-\frac{1}{2}(\mathrm{~d} y)$	*M1	$\int x \mathrm{~d} y$ SOI. Where x is of the form $\left.k(1-y)^{-\frac{1}{2}}+c\right)$ with 0 and their negative y intercept of curve.
	$[-2]-\left[-4+\frac{3}{2}\right]=(1 / 2)$	DM1	Substitutes both 0 and their -3 into their $\int x \mathrm{~d} y$ and subtracts.
	Area of triangle above x-axis $=1 / 2 \times 1 / 2 \times 1 / 4\left(=\frac{1}{16}\right)$	B1	
	Total area of shaded region $=\frac{9}{16}$	A1	OE (including AWRT 0.563)

Question 135

Attempt to solve $\mathrm{f}^{\prime}(x)=0$ or $\mathrm{f}^{\prime}(x)>0$ or $\mathrm{f}^{\prime}(x) \geqslant 0$	M1	SOI
$(x-2)(x-4)$	A1	2 and 4 seen
(Least possible value of n is) 4	A1	Accept $n=4$ or $n \geqslant 4$
	$\mathbf{3}$	

Question 136

)(i)	$y=\left[(5 x-1)^{1 / 2} \div \frac{3}{2} \div 5\right][-2 x]$	B1 B1	
	$3=\frac{27}{(3 / 2) \times 5}-4+c$	M1	Substitute $x=2, y=3$
	$c=7-\frac{18}{5}=\frac{17}{5} \rightarrow\left(y=\frac{2(5 x-1)^{\frac{3}{2}}}{15}-2 x+\frac{17}{5}\right)$	A1	
'(ii)	$\mathrm{d}^{2} y / \mathrm{d} x^{2}=\left[1 / 2(5 x-1)^{-1 / 2}\right][\times 5]$	B1 B1	
(iii)	$\begin{aligned} & (5 x-1)^{1 / 2}-2=0 \rightarrow 5 x-1=4 \\ & x=1 \end{aligned}$	M1A1	Set $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and attempt solution (M1)
	$y=\frac{16}{25}-2+\frac{17}{5}=\frac{37}{15}$	A1	Or 2.47 or $\left(1, \frac{37}{15}\right)$
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{x}}=\frac{5}{2} \times \frac{1}{2}=\frac{5}{4}(>0)$ hence minimum	A1	OE

Question 137

(i)	$(y=)(x+2)^{2}-1$	B1 DB1	2nd B1 dependent on 2 in bracket
	$x+2=(\pm)(y+1)^{1 / 2}$	M1	
(ii)	$x=-2+(y+1)^{1 / 2}$	A1	
$x^{2}=4+(y+1)-/+4(y+1)^{\frac{1}{2}}$	*M1A1	SOI. Attempt to find x^{2}. The last term can be - or + at this stage	
$(\pi) 5 x^{2}($ dy $)=(\pi)\left[5 y+\frac{y^{2}}{2}-\frac{4(y+1)^{\frac{3}{2}}}{\frac{3}{2}}\right]$	A2,1,0		
$(\pi)\left[15+\frac{9}{2}-\frac{64}{3}-\left(-5+\frac{1}{2}\right)\right]$	DM1	Apply y limits	
$\frac{8 \pi}{3}$ or 8.38	A1		

Question 138

$\mathrm{f}^{\prime}(x)=\left[-(3 x+2)^{-2}\right] \times[3]+[2 x]$	B2, 1, 0	
<0 hence decreasing	B1	Dependent on at least B1 for $\mathrm{f}^{\prime}(x)$ and must include <0 or '(always) neg'
	$\mathbf{3}$	

Question 139

$(\pi) \int(y-1)$ dy y	*M1	SOI Attempt to integrate x^{2} or $(y-1)$
$(\pi)\left[\frac{y^{2}}{2}-y\right]$	A1	
$(\pi)\left[\left(\frac{25}{2}-5\right)-\left(\frac{1}{2}-1\right)\right]$	DM1	Apply limits $1 \rightarrow 5$ to an integrated expression
8π or AWRT 25.1	A1	
	$\mathbf{4}$	

Question 140

$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-2$	B1	
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{6}$	B1	OE, SOI
their $(2 x-2)=$ their $\frac{4}{6}$	M1	LHS and RHS must be their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ expression and value
$x=\frac{4}{3}$ oe	A1	
	4	

Question 141

(a)	$2(a+3)^{\frac{1}{2}}-a=0$	M1	SOI. Set $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=a$. Can be implied by an answer in terms of a
	$4(a+3)=a^{2} \rightarrow a^{2}-4 a-12=0$	M1	Take a to RHS and square. Form 3-term quadratic
	$(a-6)(a+2) \rightarrow a=6$	A1	Must show factors, or formula or completing square. Ignore $a=-2$ SC If a is never used maximum of M1A1 for $x=6$, with visible solution
		3	
(b)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=(x+3)^{\frac{1}{2}}-1$	B1	
	Sub their $a \rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{dx}^{2}}=\frac{1}{3}-1=-\frac{2}{3}($ or $<0) \rightarrow$ MAX	M1A1	A mark only if completely correct If the second differential is not $-\frac{2}{3}$ correct conclusion must be drawn to award the M1
		3	
(c)	$(y=) \frac{2(x+3)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{1}{2} x^{2}(+c)$	B1B1	
	Sub $x=$ their a and $y=14 \rightarrow 14=\frac{4}{3}(9)^{\frac{3}{2}}-18+c$	M1	Substitute into an integrated expression. c must be present. Expect $c=-4$
	$y=\frac{4}{3}(x+3)^{\frac{3}{2}}-\frac{1}{2} x^{2}-4$	A1	Allow $f(x)=\ldots$
		4	

Question 142

$(y)=\frac{3 x^{\frac{3}{3}}}{\frac{3}{2}}-\frac{3 x^{\frac{1}{2}}}{\frac{1}{2}}(+c)$	B1 $\mathbf{~ B 1}$
$7=16-12+c$ $($ M1 for subsituting $x=4, y=7$ into their integrated expansion $)$	M1
$y=2 x^{\frac{1}{2}}-6 x^{\frac{1}{2}}+3$	A1
	4

Question 143

$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{1}{2}(5 x-1)^{-1 / 2}\right] \times[5]$	B1 B1
Use $\frac{\mathrm{d} y}{\mathrm{~d} t}=2 \times\left(\right.$ their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $\left.x=1\right)$	M1
$\frac{5}{2}$	A1
	4

$2 \times$ their $\frac{5}{2}(5 x-1)^{-1 / 2}=\frac{5}{8}$ oe	M1
$(5 x-1)^{1 / 2}=8$	A1
$x=13$	A1
	3

Question 144

(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-4 b x+b^{2}$	B1
	$3 x^{2}-4 b x+b^{2}=0 \rightarrow(3 x-b)(x-b)(=0)$	M1
	$x=\frac{b}{3} \text { or } b$	A1
	$a=\frac{b}{3} \rightarrow b=3 a \quad \mathbf{A G}$	A1
	Alternative method for question 11(a)	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-4 b x+b^{2}$	B1
	$\operatorname{Sub} b=3 a$ \& obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=a$ and when $x=3 a$	M1
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x-12 a$	A1
	<0 Max at $x=a$ and >0 Min at $x=3 a$. Hence $b=3 a$ AG	A1
(b)	Area under curve $=\int\left(x^{3}-6 a x^{2}+9 a^{2} x\right) \mathrm{d} x$	$\begin{array}{r} 4 \\ \text { M1 } \end{array}$
	$\frac{x^{4}}{4}-2 a x^{3}+\frac{9 a^{2} x^{2}}{2}$	B2,1,0
	$\frac{a^{4}}{4}-2 a^{4}+\frac{9 a^{4}}{2}\left(=\frac{11 a^{4}}{4}\right)$ (M1 for applying limits $0 \rightarrow a$)	M1
	When $x=a, y=a^{3}-6 a^{3}+9 a^{3}=4 a^{3}$	B1
	$\text { Area under line }=\frac{1}{2} a \times \text { their } 4 a^{3}$	M1
	Shaded area $=\frac{11 a^{4}}{4}-2 a^{4}=\frac{3}{4} a^{4}$	A1
	-	7

Question 145

Volume after $30 \mathrm{~s}=18000$	$\frac{4}{3} \pi r^{3}=18000$	M1
$r=16.3 \mathrm{~cm}$	A1	
	$\mathbf{2}$	
$\frac{\mathrm{d} V}{\mathrm{~d} r}=4 \pi r^{2}$	B1	
$\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{\mathrm{d} r}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{600}{4 \pi r^{2}}$	M1	
$\frac{\mathrm{d} r}{\mathrm{~d} t}=0.181 \mathrm{~cm}$ per second	A1	
	$\mathbf{3}$	

Question 146

(a)	$\text { Volume }=\pi \int x^{2} \mathrm{~d} y=\pi \int \frac{36}{y^{2}} \mathrm{~d} y$	*M1
	$=\pi\left[\frac{-36}{y}\right]$	A1
	Uses limits 2 to 6 correctly $\rightarrow(12 \pi)$	DM1
	Vol of cylinder $=\pi \cdot 1^{2} .4$ or $\int 1^{2} . d y \quad=[y]$ from 2 to 6	M1
	$\mathrm{Vol}=12 \pi-4 \pi=8 \pi$	A1
		5
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-6}{x^{2}}$	B1
	$\frac{-6}{x^{2}}=-2 \rightarrow x=\sqrt{3}$	M1
	$y=\frac{6}{\sqrt{3}}=2 \sqrt{3} \quad \text { Lies on } y=2 x$	A1
		3

Question 147

Question 148

(a)			$\frac{d y}{d x}=3(3-2 x)^{2} \times-2+24=-6(3-2 x)^{2}+24$ (B1 without $\times-2$. B1 for $\times-2$)	B1B1
			$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-12(3-2 x) \times-2=24(3-2 x)$ (B1FT from $\frac{\mathrm{d} y}{\mathrm{~d} x}$ without-2)	$\begin{array}{r} \text { B1FT } \\ \text { B1 } \end{array}$
				4
(b)			$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \text { when } 6(3-2 x)^{2}=24 \rightarrow 3-2 x= \pm 2$	M1
			$x=1 / 2, y=20 \text { or } x=2^{1 / 2}, y=52$ (A1 for both x values or a correct pair)	A1A1
				3
(c)			If $x=1 / 2, \frac{\mathrm{~d}^{2} y}{\mathrm{dx}^{2}}=48$ Minimum	B1FT
			If $x=2^{1 ⁄ 2}, \frac{\mathrm{~d}^{2} y}{\mathrm{dx}^{2}}=-48$ Maximum	B1FT
				2

Question 149

l(a)	Simultaneous equations $\frac{8}{x+2}=4-1 / 2 x$	M1
	$x=0$ or $x=6 \rightarrow A(0,4)$ and $B(6,1)$	B1A1
	At $C \frac{-8}{(x+2)^{2}}=\frac{1}{2}$	B1
	(B1 for the differentiation. M1 for equating and solving)	M1A1
		6
(b)	$\text { Volume under line }=\pi \int\left(-\frac{1}{2} x+4\right)^{2} \mathrm{~d} x=\pi\left[\frac{x^{3}}{12}-2 x^{2}+16 x\right]=(42 \pi)$ (M1 for volume formula. A2,1 for integration)	$\begin{array}{r} \text { M1 } \\ \mathbf{A 2 , 1} \end{array}$
	$\text { Volume under curve }=\pi \int\left(\frac{8}{x+2}\right)^{2} d x=\pi\left[\frac{-64}{x+2}\right]=(24 \pi)$	A1
	Subtracts and uses 0 to $6 \rightarrow 18 \pi$	M1A1
		6

Question 150

(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{x^{-1 / 2}}{2 k}\right]-\left[\frac{x^{-3 / 2}}{2}\right]+([0])$ Sub $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$ when $x=\frac{1}{4} \quad$ Expect $3=\frac{1}{k}-4$ $k=\frac{1}{7}($ or 0.143$)$	M1	
	A1		
	$\mathbf{4}$		

(b)	$\int \frac{1}{k} x^{1 / 2}+x^{-1 / 2}+\frac{1}{k^{2}}=\left[\frac{2 x^{3 / 2}}{3 k}\right]+\left[2 x^{1 / 2}\right]+\left[\frac{x}{k^{2}}\right]$	B2, 1, 0	OE
	$\left(\frac{2 k^{2}}{3}+2 k+1\right)-\left(\frac{k^{2}}{12}+k+\frac{1}{4}\right)$	M1	Apply limits $\frac{k^{2}}{4} \rightarrow k^{2}$ to an integrated expression. Expect $\frac{7}{12} k^{2}+k+\frac{3}{4}$
	$\frac{7}{12} k^{2}+k+\frac{3}{4}=\frac{13}{12}$	M1	Equate to $\frac{13}{12}$ and simplify to quadratic. OE , expect $7 k^{2}+12 k-4(=0)$
	$k=\frac{2}{7}$ only (or 0.286)	A1	Dependent on $(7 k-2)(k+2)(=0)$ or formula or completing square.
		5	

Question 151

(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=[2] \quad\left[-2(2 x+1)^{-2}\right]$	B1 B1	
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=8(2 x+1)^{-3}$	B1	
		3	
(b)	Set their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and attempt solution	M1	
	$(2 x+1)^{2}=1 \rightarrow 2 x+1=(\pm) 1$ or $4 x^{2}+4 x=0 \rightarrow(4) x(x+1)=0$	M1	Solving as far as $x=\ldots$.
	$x=0$	A1	WWW. Ignore other solution.
	$(0,2)$	A1	One solution only. Accept $x=0, y=2$ only
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0$ from a solution $x>-\frac{1}{2}$ hence minimum	B1	Ignore other solution. Condone arithmetic slip in value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$. Their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ must be of the form $k(2 x+1)^{-3}$
		5	

Question 152

(a)	-2 $x+2$	$\mathbf{B 1}$	Integrate $\mathrm{f}(x)$. Accept $-2(x+2)^{-1}$. Can be unsimplified.
$0-\left(-\frac{2}{3}\right)=\frac{2}{3}$	M1 A1	Apply limit(s) to an integrated expansion. CAO for A1	
(b)	$-1=-2+c$	$\mathbf{3}$	
$y=\frac{-2}{x+2}+1$	$\mathbf{M 1}$	Substitute $x=-1, y=-1$ into their integrated expression (c present $)$	
	$\mathbf{2}$		

Question 153

(a)	$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)=[8] \times\left[(3-2 x)^{-3}\right]+[-1] \quad\left(=\frac{8}{(3-2 x)^{3}}-1\right)$	B2, 1, 0	B2 for all three elements correct, B1 for two elements correct, B0 for only one or no elements correct.
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-3 \times 8 \times(3-2 x)^{-4} \times(-2) \quad\left(=\frac{48}{(3-2 x)^{4}}\right)$	B1 FT	FT providing their bracket is to a negative power
	$\int y \mathrm{~d} x=\left[(3-2 x)^{-1}\right][2 \div(-1 \times-2)]\left[-1 / 2 x^{2}\right](+\mathrm{c}) \quad\left(=\frac{1}{3-2 x}-\frac{1}{2} x^{2}+c\right)$	B1 B1 B1	Simplification not needed, B1 for each correct element
		6	
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \rightarrow(3-2 x)^{3}=8 \rightarrow 3-2 x=\mathrm{k} \rightarrow x=$	M1	Setting their 2-term differential to 0 and attempts to solve as far as $x=$
	$\frac{1}{2}$	A1	
	Alternative method for question 10(b)		
	$y=0 \rightarrow \frac{2}{(3-2 x)^{2}}-x=0 \rightarrow(x-2)(2 x-1)^{2}=0 \rightarrow x=$	M1	Setting y to 0 and attempts to solve a cubic as far as $x=$ (3 factors needed)
	$\frac{1}{2}$	A1	
(c)	Area under curve $=$ their $\left[\frac{1}{3-2 \times\left(\frac{1}{2}\right)^{\prime}}-\frac{\left(\frac{1}{2}\right)^{2}}{2}\right]-\left[\frac{1}{3-2 \times 0}-0\right]$	$\begin{array}{r} 2 \\ \mathbf{M 1} \end{array}$	Using their integral, their positive x limit from part (b) and 0 correctly.
	$\frac{1}{24}$	A1	
		2	

Question 154

(a)	$\mathrm{f}^{\prime}(4)\left(=\frac{5}{2}\right)$	$* \mathbf{M 1}$	Substituting 4 into $\mathrm{f}^{\prime}(x)$
$\left(\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}\right) \rightarrow\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)=\frac{5}{2} \times 0.12$	DM1	Multiplies their $\mathrm{f}^{\prime}(4)$ by 0.12	
$\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}=\right) 0.3$	A1	OE	
	3		
(b)	$\frac{6 x^{\frac{1}{2}}}{\frac{1}{2}}-\frac{4 x^{-\frac{1}{2}}}{-\frac{1}{2}}(+c)$	B1 B1	B1 for each unsimplified integral.
Uses $(4,7)$ leading to $c=(-21)$	M1	Uses $(4,7)$ to find a c value	
y or $\mathrm{f}(x)=12 x^{\frac{1}{2}}+8 x^{-\frac{1}{2}}-21$ or $12 \sqrt{x}+\frac{8}{\sqrt{x}}-21$	Need to see y or $\mathrm{f}(x)=$ somewhere in their solution and 12 and 8		
	$\mathbf{4}$		

Question 155

(a)	$4 x^{\frac{1}{2}}-2 x=3-x \rightarrow x-4 x^{\frac{1}{2}}+3(=0)$	*M1	3-term quadratic. Can be expressed as e.g. $u^{2}-4 u+3 \quad(=0)$
	$\left(x^{\frac{1}{2}}-1\right)\left(x^{\frac{1}{2}}-3\right)(=0)$ or $(u-1)(u-3)(=0)$	DM1	Or quadratic formula or completing square
	$x^{\frac{1}{2}}=1,3$	A1	SOI
	$x=1,9$	A1	
	Alternative method for question 12(a)		
	$\left(4 x^{\frac{1}{2}}\right)^{2}=(3+x)^{2}$	*M1	Isolate $x^{\frac{1}{2}}$
	$16 x=9+6 x+x^{2} \rightarrow x^{2}-10 x+9(=0)$	A1	3-term quadratic
	$(x-1)(x-9)(=0)$	DM1	Or formula or completing square on a quadratic obtained by a correct method
	$x=1,9$	A1	
		4	
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x^{1 / 2}-2$	*B1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $2 x^{1 / 2}-2=0$ when $x=1$ hence B is a stationary point	DB1	
		2	

(c)

Area of correct triangle $=\frac{1}{2}(9-3) \times 6$	M1	or $\int_{3}^{9}(3-x)(\mathrm{d} x)=\left[3 x-\frac{1}{2} x^{2}\right] \rightarrow-18$
$\int\left(4 x^{\frac{1}{2}}-2 x\right)(\mathrm{dx})=\left[\frac{4 x^{\frac{3}{2}}}{\frac{3}{2}}-x^{2}\right]$	B1 B1	
$(72-81)-\left(\frac{64}{3}-16\right)$	M1	Apply limits $4 \rightarrow$ their 9 to an integrated expression
$-14 \frac{1}{3}$	A1	OE
Shaded region $=18-14 \frac{1}{3}=3 \frac{2}{3}$	A1	OE
	$\mathbf{6}$	

Question 156

$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{1}{2}\left(25-x^{2}\right)^{-1 / 2}\right] \times[-2 x]$	B1 B1	
$\frac{-x}{\left(25-x^{2}\right)^{1 / 2}}=\frac{4}{3} \rightarrow \frac{x^{2}}{25-x^{2}}=\frac{16}{9}$	M1	Set $=\frac{4}{3}$ and square both sides
$16\left(25-x^{2}\right)=9 x^{2} \rightarrow 25 x^{2}=400 \rightarrow x=(\pm) 4$	A1	
When $x=-4, y=5 \rightarrow(-4,5)$	A1	
	$\mathbf{5}$	

Question 157

$($ Derivative $=) 4 \pi r^{2}(\rightarrow 400 \pi)$	B1	SOI Award this mark for $\frac{\mathrm{d} r}{\mathrm{~d} V}$
$\frac{50}{\text { their } \text { derivative }}$	M1	Can be in terms of r
$\frac{1}{8 \pi}$ or 0.0398	$\mathbf{A 1}$	AWRT
	$\mathbf{3}$	

Question 158

$(y=)\left[-(x-3)^{-1}\right]\left[+\frac{1}{2} x^{2}\right]$
$7=1+2+c$
$y=-(x-3)^{-1}+\frac{1}{2} x^{2}+4$

B1 B1	
M1	Substitute $x=2, y=7$ into an integrated expansion (c present). Expect $c=4$
A1	OE
$\mathbf{4}$	

Question 159

(a)	$9\left(x^{-\frac{1}{2}}-4 x^{-\frac{3}{2}}\right)=0$ leading to $9 x^{-\frac{3}{2}}(x-4)=0$	M1	OE. Set y to zero and attempt to solve.
	$x=4$ only	A1	From use of a correct method.
		2	
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=9\left(-\frac{1}{2} x^{-\frac{3}{2}}+6 x^{-\frac{5}{2}}\right)$	B2, 1, 0	B2; all 3 terms correct: $9,-\frac{1}{2} x^{-\frac{3}{2}}$ and $6 x^{-\frac{5}{2}}$ B1; 2 of the 3 terms correct
	At $x=4$ gradient $=9\left(-\frac{1}{16}+\frac{6}{32}\right)=\frac{9}{8}$	M1	Using their $x=4$ in their differentiated expression and attempt to find equation of the tangent.
	Equation is $y=\frac{9}{8}(x-4)$	A1	or $y=\frac{9 x}{8}-\frac{9}{2} \mathrm{OE}$
		4	
(c)	$9 x^{-\frac{5}{2}}\left(-\frac{1}{2} x+6\right)=0$	M1	Set their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to zero and an attempt to solve.
	$x=12$	A1	Condone (\pm)12 from use of a correct method.
(d)	$\int 9\left(x^{-\frac{1}{2}}-4 x^{-\frac{3}{2}}\right) \mathrm{d} x=9\left(\frac{x^{\frac{1}{2}}}{\frac{1}{2}}-\frac{4 x^{-\frac{1}{2}}}{-\frac{1}{2}}\right)$	B2, 1, 0	B2; all 3 terms correct: 9, $\frac{x^{\frac{1}{2}}}{\frac{1}{2}}, \frac{-4 x^{-\frac{1}{2}}}{-\frac{1}{2}}$ B1; 2 of the 3 terms correct
	$9\left[\left(6+\frac{8}{3}\right)-(4+4)\right]$	M1	Apply limits their $4 \rightarrow 9$ to an integrated expression with no consideration of other areas.
	6	A1	Use of π scores A0
		4	

Question 160

(a)	At $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=6$	B1	
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\left(\frac{\mathrm{d} x}{\mathrm{~d} y} \times \frac{\mathrm{d} y}{\mathrm{~d} t}\right)=\frac{1}{6} \times 3=\frac{1}{2}$	M1 A1	Chain rule used correctly. Allow alternative and minimal notation.
(b)	$[y=]\left(\frac{6(3 x-2)^{-2}}{-2}\right) \div(3)[+c]$	B1 B1	
$-3=-1+c$	$\mathbf{3}$		
$y=-(3 x-2)^{-2}-2$	M1	Substitute $x=1, y=-3 . c$ must be present.	

Question 161

(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x^{-1 / 2}-\frac{1}{2} k^{2} x^{-3 / 2}$	B1 B1	Allow any correct unsimplified form
	$\frac{1}{2} x^{-1 / 2}-\frac{1}{2} k^{2} x^{-3 / 2}=0 \text { leading to } \frac{1}{2} x^{-1 / 2}=\frac{1}{2} k^{2} x^{-3 / 2}$	M1	OE. Set to zero and one correct algebraic step towards the solutions. $\frac{\mathrm{d} y}{\mathrm{~d} x}$ must only have 2 terms.
	$\left(k^{2}, 2 k\right)$	A1	
		4	
(b)	When $x=4 k^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left[\frac{1}{4 k}-\frac{1}{16 k}=\right] \frac{3}{16 k}$	B1	OE
	$y=\left[2 k+k^{2} \times \frac{1}{2 k}\right]=\frac{5 k}{2}$	B1	OE. Accept $2 k+\frac{k}{2}$
	Equation of tangent is $y-\frac{5 k}{2}=\frac{3}{16 k}\left(x-4 k^{2}\right)$ or $y=m x+c \rightarrow \frac{5 k}{2}=\frac{3}{16 k}\left(4 k^{2}\right)+c$	M1	Use of line equation with their gradient and ($4 k^{2}$, their y),
	When $x=0, y=\left[\frac{5 k}{2}-\frac{3 k}{4}=\right] \frac{7 k}{4}$ or from $y=m x+c, c=\frac{7 k}{4}$	A1	OE
(c)	$\int\left(x^{\frac{1}{2}}+k^{2} x^{-\frac{1}{2}}\right) \mathrm{d} x=\frac{2 x^{\frac{3}{2}}}{3}+2 k^{2} x^{\frac{1}{2}}$	$\begin{array}{r} 4 \\ \text { B1 } \end{array}$	Any unsimplified form
	$\left(\frac{16 k^{3}}{3}+4 k^{3}\right)-\left(\frac{9 k^{3}}{4}+3 k^{3}\right)$	M1	Apply limits $\frac{9}{4} k^{2} \rightarrow 4 k^{2}$ to an integration of y. M0 if volume attempted.
	$\frac{49 k^{3}}{12}$	A1	OE. Accept $4.08 k^{3}$
		3	

Question 162

$\left[\mathrm{f}^{-1}(x)=\right]\left((2 x-1)^{1 / 2}\right) \times\left(\frac{1}{3} \times 2 \times \frac{3}{2}\right)(-2)$	B2, 1, 0	Expect $(2 x-1)^{1 / 2}-2$
$(2 x-1)^{1 / 2}-2 \leqslant 0 \rightarrow 2 x-1 \leqslant 4$ or $2 x-1<4$	M1	SOI. Rearranging and then squaring, must have power of $1 / 2$ not present Allow ' $=0$ 'at this stage but do not allow ' ≥ 0 ' or ' >0 ' If ' -2 ' missed then must see \leqslant or $<$ for the M1
Value [of a] is $2^{1 / 2}$ or $a=2^{1 / 2}$	A1	WWW, OE e.g. $\frac{5}{2}, 2.5$ Do not allow from ' $=0$ ' unless some reference to negative gradient.
	4	

Question 163

$[\mathrm{f}(x)=] 2 x^{3}+\frac{8}{x}[+c]$	B1	Allow any correct form
$7=16+4+c$	M1	Substitute $\mathrm{f}(2)=7$ into an integral. c must be present. Expect $c=-13$
$\mathrm{f}(x)=2 x^{3}+\frac{8}{x}-13$	A1	Allow $y=, \mathrm{f}(x)$ or y can appear earlier in answer
	$\mathbf{3}$	

Question 164

(a)	At stationary point $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ so $6(3 \times 2-5)^{3}-k \times 2^{2}=0$	M1	Setting given $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and substituting $x=2$ into it.
	$[k=] \frac{3}{2}$	A1	OE
		2	
(b)	$[y=] \frac{6}{4 \times 3}(3 x-5)^{4}-\frac{1}{3} k x^{3}[+c]$.	$\begin{array}{r} \text { *M1 } \\ \text { A1FT } \end{array}$	Integrating (increase of power by 1 in at least one term) given $\frac{\mathrm{d} y}{\mathrm{~d} x}$ Expect $\frac{1}{2}(3 x-5)^{4}-\frac{1}{2} x^{3}$. FT their non zero k.
	$-\frac{7}{2}=\frac{1}{2}(3 \times 2-5)^{4}-\frac{1}{3} \times \frac{3}{2} \times 2^{3}+c$ [leading to $\left.-3.5+c=-3.5\right]$	DM1	Using ($2,-3.5$) in an integrated expression. $+c$ needed. Substitution needs to be seen, simply stating $c=0$ is DM0.
	$y=\frac{1}{2}(3 x-5)^{4}-\frac{1}{2} x^{3}$	A1	$y=$ or $\mathrm{f}(x)=$ must be seen somewhere in solution.

(b)	Alternative method for Question 11(b)		
	$[y=] \frac{81}{2} x^{4}-\frac{541}{2} x^{3}+675 x^{2}-750 x(+c)$ or $-270 x^{3}-k \frac{x^{3}}{3}$	$\begin{array}{r} \text { *M1 } \\ \text { A1 FT } \end{array}$	From $\frac{\mathrm{d} y}{\mathrm{~d} x}=162 x^{3}-810 x^{2}-k x^{2}-1350 x-750$. FT their k
	$-\frac{7}{2}=\frac{81}{2} \times 2^{4}-\frac{541}{2} \times 2^{3}+675 \times 2^{2}-750 \times 2+c$	DM1	Using (2, 3.5) in an integrated expression. $+c$ needed
	$y=\frac{81}{2} x^{4}-\frac{541}{2} x^{3}+675 x^{2}-750 x+\frac{625}{2}$	A1	$y=$ or $\mathrm{f}(x)=$ must be seen somewhere in solution.
		4	
(c)	$[3 \times]\left[18(3 x-5)^{2}\right][-2 k x]$	B2,1,0 FT	FT their k. Square brackets indicate each required component. B2 for fully correct, B1 for one error or one missing component, B0 for 2 or more errors.
	Alternative method for Question 11(c)		
	$486 x^{2}-1623 x+1350$ or $-1620 x-2 k x$	B2, 1, 0 FT	FT their k. B 2 for fully correct, B 1 for one error, B 0 for 2 or more errors.
		2	
(d)	[At $x=2]\left[\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\right] 54(3 \times 2-5)^{2}-4 k$ or 48	M1	OE. Substituting $x=2$ into their second differential or other valid method.
	[>0] Minimum	A1	WWW
		2	

Question 165

Curve intersects $y=1$ at $(3,1)$	B1	Throughout Question 9: $\mathbf{1}<$ their $\mathbf{3}<\mathbf{5}$ Sight of $x=3$
Volume $=[\pi] j(x-2)[\mathrm{d} x]$	M1	M1 for showing the intention to integrate $(x-2)$. Condone missing π or using 2π.
$[\pi]\left[\frac{1}{2} x^{2}-2 x\right]$ or $[\pi]\left[\frac{1}{2}(x-2)^{2}\right]$	A1	Correct integral. Condone missing π or using 2π.
$=[\pi]\left[\left(\frac{5^{2}}{2}-2 \times 5\right)-\left(\frac{\text { their } 3^{2}}{2}-2 \times\right.\right.$ their 3$\left.)\right]$	M1	Correct use of 'their 3 ' and 5 in an integrated expression. Condone missing π or using 2π. Condone + c. Can be obtained by integrating and substituting between 5 and 2 and then 3 and 2 then subtracting.
$=[\pi]\left[\frac{5}{2}+\frac{3}{2}\right]$ as a minimum requirement for their values	B1 FT	Or by integrating 1 to obtain x (condone y if 5 and their 3 used).
Volume of cylinder $=\pi \times 1^{2} \times(5-$ their 3$)[=2 \pi]$	A1	AWRT
$[$ Volume of solid $=4 \pi-2 \pi=] 2 \pi$ or 6.28		

Question 166

(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3(3 x+4)^{-0.5}-1$	B1 B1	B1 All correct with 1 error, B2 if all correct
	Gradient of tangent $=-\frac{1}{4}$ and Gradient of normal $=4$	*M1	Substituting $x=4$ into a differentiated expression and using $m_{1} m_{2}=-1$
	Equation of line is $(y-4)=4(x-4)$ or evaluate c	DM1	With $(4,4)$ and their gradient of normal
	So $y=4 x-12$	A1	
		5	
(b)	$3(3 x+4)^{-0.5}-1=0$	M1	Setting their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
	Solving as far as $x=$	M1	Where $\frac{\mathrm{d} y}{\mathrm{~d} x}$ contains $a(b x+c)^{-0.5} a, b, c$ any values
	$x=\frac{5}{3}, \quad y=2\left(3 \times \frac{5}{3}+4\right)^{0.5}-\frac{5}{3}=\frac{13}{3}$	A1	
		3	
(c)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{9}{2}(3 x+4)^{-1.5}$	M1	Differentiating their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ OR checking $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to find +ve and -ve either side of their $x=\frac{5}{3}$
	At $x=\frac{5}{3} \frac{\mathrm{~d}^{2} y}{\mathrm{~d}^{2}}$ is negative so the point is a maximum	A1	
		2	

(d)

Area $=\left[12(3 x+4)^{0.5}-x \mathrm{~d} x=\right] \frac{4}{9}(3 x+4)^{1.5}-\frac{1}{2} x^{2}$	B1 B1	B1 for each correct term (unsimplified)
$\left(\frac{4}{9}(16)^{1.5}-\frac{1}{2}(4)^{2}\right)-\frac{4}{9}(4)^{1.5}=\frac{256}{9}-8-\frac{32}{9}$	M1	Substituting limits 0 and 4 into an expression obtained by integrating y
$16 \frac{8}{9}$	A1	Or $\frac{152}{9}$
	$\mathbf{4}$	

Question 167

$[y=]-\frac{1}{x^{3}}+8 x^{4}[+c]$	B1 B1	OE. Accept unsimplified.
$4=-8+\frac{1}{2}+c$	M1	Substituting $\left(\frac{1}{2}, 4\right)$ into an integrated expression
$y=-\frac{1}{x^{3}}+8 x^{4}+\frac{23}{2}$	A1	OE. Accept $-x^{-3} ;$ must be $8 ; y=$ must be seen in working.
	$\mathbf{4}$	

Question 168

(a) $\left\{5(y-3)^{2}\right\} \quad\{+5\}$	B1 B1	Accept $a=-3, b=5$	
(b)	$\left[\mathrm{f}^{\prime}(x)=\right] 5 x^{4}-30 x^{2}+50$	$\mathbf{2}$	
	$5\left(x^{2}-3\right)^{2}+5$ or $b^{2}<4 a c$ and at least one value of $\mathrm{f}(x)>0$	B1	
	>0 and increasing	M1	
		$\mathbf{3}$	A1

Question 169

(a)	$\int\left(\frac{5}{2}-x^{\frac{1}{2}}-x^{\frac{1}{2}}\right) \mathrm{d} x$	M1	OR as 2 separate integrals $\int\left(\frac{5}{2}-x^{1 / 2}\right) \mathrm{d} x-\int\left(x^{-1 / 2}\right) \mathrm{d} x$
	$\left\{\frac{5}{2} x-\frac{2}{3} x^{\frac{3}{2}}\right\}\{-\}\left\{2 x^{\frac{1}{2}}\right\}$	A1 A1 A1	If two separate integrals with no subtraction SC B1 for each correct integral.
	$\left(10-\frac{16}{3}-4\right)-\left(\frac{5}{8}-\frac{1}{12}-1\right)$	DM1	Substitute limits $\frac{1}{4} \rightarrow 4$ at least once, must be seen.
	$\frac{9}{8}$ or 1.125	A1	WWW. Cannot be awarded if π appears in any integral.
		6	
(b)	$\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right]-\frac{1}{2} x^{\frac{3}{2}}$	B1	
	When $x=1, m=-\frac{1}{2}$	M1	Substitute $x=1$ into a differential.
	[Equation of normal is] $y-1=2(x-1)$	M1	Through $(1,1)$ with gradient $-\frac{1}{m}$ or $\frac{1-p}{1}=2$
	$[$ When $x=0] p=$,	A1	www
		4	

Question 170

'(a)	$\mathrm{f}^{\prime \prime}(x)=-\left(\frac{1}{2} x+k\right)^{-3}$	B1	
$\mathrm{f}^{\prime \prime}(2)>0 \Rightarrow-(1+k)^{-3}>0$	M1	Allow for solving their $\mathrm{f}^{\prime \prime}(2)>0$	
$k<-1$	$\mathbf{A 1}$	WWW	
	$\mathbf{3}$		

(b)	$\left[\mathrm{f}(x)=\int\left(\left(\frac{1}{2} x-3\right)^{-2}-(-2)^{-2}\right) \mathrm{d} x=\right]\left\{\frac{\left(\frac{1}{2} x-3\right)^{-1}}{-1 \times \frac{1}{2}}\right\}\left\{-\frac{x}{4}\right\}$	B1 B1	Allow $-2\left(\frac{1}{2} x+k\right)^{-1}$ OE for $1^{\text {st }} \mathrm{B} 1$ and $-(1+k)^{-2} x$ OE for $2^{\text {nd }} \mathrm{B} 1$
	$3 \frac{1}{2}=1-\frac{1}{2}+c$	M1	Substitute $x=2, y=3 \frac{1}{2}$ into their integral with c present.
	$\mathrm{f}(x)=\frac{-2}{\left(\frac{1}{2} x-3\right)}-\frac{x}{4}+3$	A1	OE
		4	
(c)	$\left(\frac{1}{2} x-3\right)^{-2}-(-2)^{-2}=0$	M1	Substitute $k=-3$ and set to zero.
	leading to $\left(\frac{1}{2} x-3\right)^{2}=4\left[\frac{1}{2} x-3=(\pm) 2\right]$ leading to $x=10$	A1	
	($10,-\frac{1}{2}$)	A1	Or when $x=10, y=-1-2 \frac{1}{2}+3=-\frac{1}{2}$
	$\mathrm{f}^{\prime \prime}(10)\left[=-(5-3)^{-3} \rightarrow\right]<0 \rightarrow$ MAXIMUM	A1	WWW
		4	

Question 171

(a) $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}+\frac{1}{3(x-2)^{\frac{4}{3}}}$

B1 OE. Allow unsimplified.
*M1 Substituting $x=3$ into their differentiated expression defined by one of 3 original terms with correct power of x.

Gradient of normal $=\frac{-1}{\text { their } \frac{d y}{d x}}\left[=-\frac{6}{5}\right]$	*DM1	Negative reciprocal of their evaluated $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
Equation of normal $y-\frac{6}{5}=($ their normal gradient $)(x-3)$ $\left[y=-\frac{6}{5} x+4.8 \Rightarrow 5 y=-6 x+24\right]$	DM1	Using their normal gradient and A in the equation of a straight line. Dependent on $* M 1$ and *DM1.
$[$ When $y=0] x=4$,	A1	or $(4,0)$
	$\mathbf{5}$	

(b)

Area under curve $=\int\left(\frac{1}{2} x+\frac{7}{10}-\frac{1}{(x-2)^{\frac{1}{3}}}\right)[\mathrm{d} x]$	M1	For intention to integrate the curve (no need for limits). Condone inclusion of π for this mark.
$\frac{1}{4} x^{2}+\frac{7}{10} x-\frac{3(x-2)^{\frac{2}{3}}}{2}$	A1	For correct integral. Allow unsimplified. Condone inclusion of π for this mark.
$\left(\frac{9}{4}+2.1-\frac{3}{2}\right)-\left(\frac{6.25}{4}+1.75-\frac{3 \times 0.5^{\frac{2}{3}}}{2}\right)$	M1	Clear substitution of 3 and 2.5 into their integrated expression (with at least one correct term) and subtracting.
$0.48[24]$	A1	If M1AlM0 scored then SC Bl can be awarded for correct answer.
[Area of triangle $=] 0.6$	B1	OE
[Total area $=] 1.08$	A1	Dependent on the first M1 and WWW.
	$\mathbf{6}$	

Question 172

(a)	$\left[\mathrm{f}^{\prime}(x)=\right] 2 x-\frac{k}{x^{2}}$	B1	
	$\mathrm{f}^{\prime}(2)=0\left[2 \times 2-\frac{k}{2^{2}}=0\right] \Rightarrow k=\ldots$	$\mathbf{M 1}$	Setting their 2-term $\mathrm{f}^{\prime}(2)=0$, at least one term correct and attempting to solve as far as $k=$.
$k=16$	A1		
	$\mathbf{3}$		
(b)	$\mathrm{f}^{\prime \prime}(2)=$ e.g. $2+\frac{2 k}{2^{3}}$	$\mathbf{M 1}$	Evaluate a two term $\mathrm{f}^{\prime \prime}(2)$ with at least one term correct. Or other valid method.
$\left[2+\frac{2 k}{2^{3}}\right]>0 \Rightarrow$ minimum or $=6 \Rightarrow$ minimum	A1 FT	Www. FT on positive k value.	
	$\mathbf{2}$		
(c)	When $x=2, \mathrm{f}(x)=14$	B1	SOI
	$[$ Range is or y or $\mathrm{f}(x)] \geqslant$ their $\mathrm{f}(2)$	B1 FT	Not $x \geqslant$ their $\mathrm{f}(2)$
	$\mathbf{2}$		

Question 173

(a)	$\left[\frac{\mathrm{d} V}{\mathrm{~d} r}=\right] \frac{9}{2}\left(r-\frac{1}{2}\right)^{2}$	B1	OE. Accept unsimplified.
	$\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{\mathrm{d} r}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1.5}{\text { their } \frac{\mathrm{d} V}{\mathrm{~d} r}}\left[=\frac{1.5}{\frac{9}{2}\left(5.5-\frac{1}{2}\right)^{2}}=\frac{1.5}{112.5}\right]$	M1	Correct use of chain rule with 1.5 , their differentiated expression for $\frac{\mathrm{d} V}{\mathrm{~d} r}$ and using $r=5.5$.
	0.0133 or $\frac{3}{225}$ or $\frac{1}{75}$ [metres per second]	A1	
		3	
(b)	$\frac{\mathrm{d} V}{\mathrm{~d} r} \text { or their } \frac{\mathrm{d} V}{\mathrm{~d} r}=\frac{1.5}{0.1} \text { or } 15 \text { OR } 0.1=\frac{1.5}{\text { their } \frac{\mathrm{d} V}{\mathrm{~d} r}}\left[=\frac{2 \times 1.5}{9\left(r-\frac{1}{2}\right)^{2}} \text { OE }\right]$	B1 FT	Correct statement involving $\frac{\mathrm{d} V}{\mathrm{~d} r}$ or their $\frac{\mathrm{d} V}{\mathrm{~d} r}, 1.5$ and 0.1.
	$\left[\frac{9}{2}\left(r-\frac{1}{2}\right)^{2}=15 \Rightarrow\right] r=\frac{1}{2}+\sqrt{\frac{10}{3}}$	B1	OE e.g. AWRT 2.3 Can be implied by correct volume.
	[Volume $=$] 8.13 AWRT	B1	OE e.g. $\frac{-3+5 \sqrt{30}}{3}$. CAO.
		3	

Question 174

$y=-\frac{\frac{8}{3}}{(3 x+2)}[+c]$	${ }^{*} \mathbf{B 1}$	For $(3 x+2)^{-1}$
	DB1	For $-\frac{8}{3}$
$5 \frac{2}{3}=-\frac{\frac{8}{3}}{(3 \times 2+2)}+c$	M1	Substituting $\left(2,5 \frac{2}{3}\right)$ into their integrated expression -
$y=-\frac{8}{3(3 x+2)}+6$	A1	OE e.g. $y=-\frac{8}{3}(3 x+2)^{-1}+6$
	$\mathbf{4}$	

Question 175

Question 176

(a)	$\mathrm{f}(x)=\frac{2}{3} x^{3}-7 x+4 x^{-1}[+c]$	B2, 1, 0	Allow terms on different lines; allow unsimplified.
'(b)	$-\frac{1}{3}=\frac{2}{3}-7+4+c$ leading to $c=[2]$	M1	Substitute $f(1)=-\frac{1}{3}$ into an integrated expression and evaluate c.
	$\mathrm{f}(x)=\frac{2}{3} x^{3}-7 x+4 x^{-1}+2$	A1	OE.
		4	
	$2 x^{4}-7 x^{2}-4[=0]$	M1	Forms 3-term quadratic in x^{2} with all terms on one side. Accept use of substitution e.g. $2 y^{2}-7 y-4[=0]$.
	$\left(2 x^{2}+1\right)\left(x^{2}-4\right)[=0]$	M1	Attempt factors or use formula or complete the square. Allow \pm sign errors. Factors must expand to give their coefficient of x^{2} or e.g. y. Must be quartic equation. Accept use of substitution e.g. $(2 y+1)(y-4)$.
	$x=[\pm] 2$	A1	If M0 for solving quadratic, SC B1 can be awarded for $[\pm] 2$.
	$\begin{aligned} & {\left[\frac{2}{3}(2)^{3}-7(2)+\frac{4}{2}+2 \quad \text { leading to }\right]\left(2,-\frac{14}{3}\right)} \\ & {\left[\frac{2}{3}(-2)^{3}-7(-2)+\frac{4}{-2}+2 \quad \text { leading to }\right]\left(-2, \frac{26}{3}\right)} \end{aligned}$	B1 B1	B1 B1 for correct coordinates clearly paired; B1 for each correct point; B1 B0 if additional point.
		5	
(c)	$\mathrm{f}^{\prime \prime}(x)=4 x+8 x^{-3}$	B1	OE
'(d)	$\mathrm{f}^{\prime \prime}(2)=9>0$ MINIMUM at $x=$ their 2	B1 FT 1	FT on their $x=[\pm] 2$ provided $\mathrm{f}^{\prime \prime}(x)$ is correct. Must have correct value of $\mathrm{f}^{\prime \prime}(x)$ if $x=2$.
	$\mathrm{f}^{\prime \prime}(-2)=-9<0$ MAXIMUM at $x=$ their -2	B1 FT	FT on their $x=[\pm] 2$ provided $\mathrm{f}^{\prime \prime}(x)$ is correct. Must have correct value of $\mathrm{f}^{\prime \prime}(x)$ if $x=-2$. Special case: If values not shown and B0B0 scored, SC B1 for $\mathrm{f}^{\prime \prime}(2)>0$ MIN and $\mathrm{f}^{\prime \prime}(-2)<0$ MAX
	Alternative method for question 9(d)		
	Evaluate $\mathrm{f}^{\prime}(x)$ for x-values either side of 2 and -2	M1	FT on their $x=[\pm] 2$
	MINIMUM at $x=$ their 2, MAXIMUM at $x=$ their 2	A1 FT	FT on their $x=[\pm] 2$. Must have correct values of $\mathrm{f}^{\prime}(x)$ if shown. Special case: If values not shown and M0A0 scored SC B1 $\mathrm{f}^{\prime}(2)-/ 0 /+\mathrm{MIN}$ and $\mathrm{f}^{\prime}(-2)+/ 0 /-\operatorname{MAX}$

Alternative method for question 9(d)

Justify maximum and minimum using correct sketch graph	B1 B1	Need correct coordinates in (b) for this method.
	$\mathbf{2}$	

Question 177

(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left\{-k(3 x-k)^{-2}\right\}\{\times 3\}\{+3\}$	B2, 1, 0	
	$\frac{-3 k}{(3 x-k)^{2}}+3=0$ leading to $(3)(3 x-k)^{2}=(3) k$ leading to $3 x-k=[\pm] \sqrt{k}$	M1	Set $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and remove the denominator
	$x=\frac{k \pm \sqrt{k}}{3}$	A1	OE
		4	
(b)	$a=\frac{4 \pm \sqrt{4}}{3} \text { leading to } a=2$	B1	Substitute $x=a$ when $k=4$. Allow $x=2$.
	$\mathrm{f}^{\prime \prime}(x)=\mathrm{f}^{\prime}\left[-12(3 x-4)^{-2}+3\right]=72(3 x-4)^{-3}$	B1	Allow $18 k(3 x-k)^{-3}$
	>0 (or 9) when $x=2 \rightarrow$ minimum	B1 FT	FT on their $x=2$, providing their $x \geqslant \frac{3}{2}$ and $\mathrm{f}^{\prime \prime}(x)$ is correct
		3	
(c)	Substitute $k=-1$ leading to $\mathrm{g}^{\prime}(x)=\frac{3}{(3 x+1)^{2}}+3$	M1	Condone one error.
	$\mathrm{g}^{\prime}(x)>0$ or $\mathrm{g}^{\prime}(x)$ always positive, hence g is an increasing function	A1	WWW. A0 if the conclusion depends on substitution of values into $\mathrm{g}^{\prime}(x)$.
	Alternative method for question 11(c)		
	$x=\frac{k \pm \sqrt{k}}{3}$ when $k=-1$ has no solutions, so g is increasing or decreasing	M1	Allow the statement 'no turning points' for increasing or decreasing
	Show $g^{\prime}(x)$ is positive for any value of x, hence g is an increasing function	A1	Or show $\mathrm{g}(b)>\mathrm{g}(a)$ for $b>a \rightarrow \mathrm{~g}$, hence g is an increasing function
		2	

Question 178

(a)	$(-2)^{2}+y^{2}=8$ leading to $y=2$ leading to $A=(0,2)$	B1	
	Substitute $y=$ their 2 into circle leading to $(x-2)^{2}+4=8$	M1	Expect $x=4$.
	$B=(4,2)$	A1	
		3	
(b)	Attempt to find $[\pi] \int\left(8-(x-2)^{2}\right) \mathrm{d} x$	*M1	
	$[\pi]\left[8 x-\frac{(x-2)^{3}}{3}\right]$ or $[\pi]\left[8 x-\left(\frac{x^{3}}{3}-2 x^{2}+4 x\right)\right]$	A1	
	$[\pi]\left(32-\frac{16}{3}\right)$ or $[\pi]\left[32-\left(\frac{64}{3}-32+16\right)\right]$	DM1	Apply limits $0 \rightarrow$ their 4.
	Volume of cylinder $=\pi \times 2^{2} \times 4=16 \pi$	B1 FT	OR from $\pi \int 2^{2} \mathrm{~d} x$ with their limits from (a). FT on their A and B
	[Volume of revolution $\left.=26 \frac{2}{3} \pi-16 \pi=\right] 10 \frac{2}{3} \pi$	A1	Accept 33.5
		5	

Question 179

$[\mathrm{f}(x)=] \frac{2 x^{\frac{2}{3}}}{\frac{2}{3}}-\frac{x^{\frac{4}{3}}}{\frac{4}{3}}[+c]$	B1 B1	$\frac{2}{3}$ and $\frac{4}{3}$ may be seen as sums of 1 and a fraction.
$5=12-12+c$	M1	Substituting $(8,5)$ into an integral.
$[\mathrm{f}(x)=] 3 x^{\frac{2}{3}}-\frac{3}{4} x^{\frac{4}{3}}+5$	A1	Fractions in the denominators scores A0.
	$\mathbf{4}$	

Question 180

(a)	$\left\{\frac{(4 x+2)^{-1}}{-1}\right\}\{\div 4\}$ or eg $\left\{\frac{1}{16}\right\}\left\{-(x+0.5)^{-1}\right\}$ or $\frac{-1}{(16 x+8)}$	B1 B1	OE If more than one function of x present then B 0 B 0 .
	$0-(-1 / 24)$	M1	Apply limits to an integral, ∞ must be used correctly.
	1/24	A1	Allow 0.0417 AWRT.
		4	
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left\{-2(4 x+2)^{-3}\right\} \quad\{\times 4\}$	B1 B1	Allow unsimplified forms.
	Recognise $\frac{\mathrm{d} y}{\mathrm{~d} x}=-1$	B1	SOI
	their $\frac{-8}{(4 x+2)^{3}}=$ their -1	M1	Must be numerical. Must be some attempt to solve their equation and $\frac{\mathrm{d} y}{\mathrm{~d} x} \neq 0$.
	(0, 1/4)	A1 A1	Accept $x=0, y=1 / 4 . y=1 / 4$ must be from $x=0$ not $x=-1$.
		6	

Question 181

;(a)	$\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right]^{1 / 2} x^{-1 / 2}-2 x^{-3 / 2}$	B1 B1	Allow unsimplified versions.
	$\text { At } x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2}-2=-\frac{3}{2}$	M1	Substitute $x=1$ into a differentiated y.
	Equation of tangent is $y-5=-\frac{3}{2}(x-1)$	A1	WWW Or $y=-\frac{3}{2} x+\frac{13}{2}$.
		4	
(b)	$\frac{x^{3 / 2}}{3 / 2}+8 x^{1 / 2}$	B1	OE Integrate to find area under curve, allow unsimplified versions.
	$\left[\left(\frac{128}{3}+32\right)-\left(\frac{2}{3}+8\right)\right]$	M1	Apply limits $1 \rightarrow 16$ to an integrated expression.
	Area under line $=15 \times 5=75$	B1	Or by $\int_{1}^{16} 5 \mathrm{~d} x$.
	Required area $=75-66=9$	A1	
		4	

Question 182

(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\{3\}+\left\{-4 \times \frac{1}{2}(3 x+1)^{-\frac{1}{2}} \times 3\right\}\left[=3-6(3 x+1)^{-\frac{1}{2}}\right]$	B1 B1	Correct differentiation of $3 x+1$ and no other terms and correct differentiation of $-4(3 x+1)^{\frac{1}{2}}$. Accept unsimplified.
	$\left[\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\right]-\frac{1}{2} \times-6(3 x+1)^{-\frac{3}{2}} \times 3\left[=9(3 x+1)^{-\frac{3}{2}}\right]$	B1	WWW. Accept unsimplified. Do not award if $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is incorrect.
		3	
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \quad$ leading to $3-6(3 x+1)^{-\frac{1}{2}}=0$	M1	Setting their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
	$(3 x+1)^{\frac{1}{2}}=2 \Rightarrow 3 x+1=4$ leading to $x=1$	A1	CAO - do not ISW for a second answer.
	$y=-4[$ coordinates $(1,-4)]$	A1	Condone inclusion of second value from a second answer.
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=9(3 \times 1+1)^{-\frac{3}{2}}=\frac{9}{8} \text { or }>0 \text { so minimum }$	A1	Some evidence of substitution needed but $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$. Do not award if $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ is incorrect or wrongly evaluated. Accept correct consideration of gradients either side of $x=1$.
		4	

Question 183

Line meets curve when:
$2 x+2=5 x^{\frac{1}{2}}$ leading to $2 x-5 x^{\frac{1}{2}}+2[=0]$
or $4 x^{2}+8 x+4=25 x$ leading to $4 x^{2}-17 x+4[=0]$
or $x=\frac{y^{2}}{25}$ leading to $2 y^{2}-25 y+50[=0]$
$x=\frac{1}{4}, x=4$
Area $=\int 5 x^{\frac{1}{2}}-(2 x+2) \mathrm{dx}=\int 5 x^{\frac{1}{2}}-2 x-2 \mathrm{dx}$
$=\left[\frac{10}{3} x^{\frac{3}{2}}-x^{2}-2 x\right]_{\frac{1}{4}}^{4}=\left(\left(\frac{10}{3} \times 8-16-8\right)-\left(\frac{10}{3} \times \frac{1}{8}-\frac{1}{16}-\frac{1}{2}\right)\right)$
$\frac{45}{16}$ or $2 \frac{13}{16}$ or 2.8125

M1 Equating line and curve and rearranging so that terms are all on same side, condone sign errors, and making a valid attempt to solve by factorising, using the formula or completing the square.
Factors are: $\left(2 x^{\frac{1}{2}}-1\right)\left(x^{\frac{1}{2}}-2\right),(4 x-1)(x-4)$ and $(2 y-5)(y-10)$.

A1 SC: If M1 not scored, SC B1 available for correct answers, could just be seen as limits.
*M1 Intention to integrate and subtract areas. Condone missing brackets and/or subtraction wrong way around.

DM1
Integrating($k x^{\frac{3}{2}}$ seen) and substituting 'their points of intersection' (but limits need to be found, not assumed to be 0 and something else).

A1 OE exact answer.
Condone $-\frac{45}{16}$ if corrected to $\frac{45}{16}$. A0 for inclusion of π. SC: If *M1 DM0 scored, SC B1 available for correct answer.

Question 184

\(\left.\begin{array}{l|l|l}{[y=]\left\{\frac{3(4 x-7)^{\frac{3}{2}}}{\frac{3}{2} \times 4}\right\}+\left\{-\frac{4}{\frac{1}{2}} x^{\frac{1}{2}}\right\}\left[\Rightarrow \frac{1}{2}(4 x-7)^{\frac{3}{2}}-8 x^{\frac{1}{2}}\right][+c]} \& B1 B1 \& Marks can be awarded for correct unsimplified expressions ISW.

\hline \frac{5}{2}=\frac{1}{2}(9)^{\frac{3}{2}}-8 \times 4^{\frac{1}{2}}+c \quad[\Rightarrow c=5] \& M1 \& Using\left(4, \frac{5}{2}\right) in an integrated expression (defined by at least one

correct power) including+c .\end{array}\right]\)| A1Condone $c=5$ as their final line if either $y=$ or $\mathrm{f}(x)=$ seen
 elsewhere in the solution. Coefficients must not contain
 unresolved double fractions. |
| :--- |
| $y=\frac{3}{6}(4 x-7)^{\frac{3}{2}}-8 x^{\frac{1}{2}}+5$. |

Question 185

(a)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6(-1)^{2}-\frac{4}{(-1)^{3}}>0 \therefore$ minimum or $\frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}=10 \therefore$ minimum	B1	Sub $x=-1$ into $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$, correct conclusion. WWW
		1	
(b)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x^{3}+\frac{2}{x^{2}}[+c]$	*M1	Integrating $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ (at least one term correct).
	$0=-2+2+c$ leading to $c=[0]$	DM1	Substituting $x=-1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ (need to see) to evaluate c. DM0 if simply state $c=0$ or omit $+c$.
	$y=\frac{1}{2} x^{4}-\frac{2}{x}+($ their $c) x+k$	A1 FT	Integrated. FT their non-zero value of c if DM1 awarded.
	$\frac{9}{2}=\frac{1}{2}+2+k \text { leading to } k=[2]$	DM1	Substituting $x=-1, y=\frac{9}{2}$ to evaluate $k($ dep on $* \mathrm{M} 1)$.
	$y=\frac{1}{2} x^{4}-\frac{2}{x}+2$	A1	OE e.g. $2 x^{-1}$ or $\frac{4}{2}$. A0 (wrong process) if c not evaluated but correct answer obtained.
		5	
'(c)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x^{3}+\frac{2}{x^{2}}=0$	M1	Their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
	Leading to $x^{5}=-1$	M1	Reaching equation of the form $x^{5}=a$.
	So only stationary point is when $x=-1$	A1	$x=-1$ and stating e.g. 'only' or 'no other solutions.
(d)	$\text { At } x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=$	3 * M1	Substituting $x=1$ into their $\frac{d y}{d x}$.
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} x}{\mathrm{~d} y} \times \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{1}{4} \times 5$	DM1	OE Using chain rule correctly SOI.
	$\frac{5}{4}$	A1	OE e.g. 1.25.
		3	

Question 186
(a)

$(3 x-2)^{\frac{1}{2}}=\frac{1}{2} x+1 \Rightarrow 3 x-2=\left(\frac{1}{2} x+1\right)^{2}=\frac{1}{4} x^{2}+x+1$	M1	Equating curve and line, attempt to square; $\frac{1}{4} x^{2}+1$ M0
$\Rightarrow \frac{1}{4} x^{2}-2 x+3[=0]\left[\Rightarrow x^{2}-8 x+12=0\right] \Rightarrow(x-6)(x-2)[=0]$	M1	Forming and solving a 3TQ by factorisation, formula or completing the square - see guidance.
$(2,2)$ and $(6,4)$	A1 A1	A1 for each point, or A1 A0 for two correct x-values. If M0 for solving, SC B2 possible: B1 for each point or B1 B0 for two correct x-values.

'(b)

Area $= \pm \int_{[2]}^{[6]}\left((3 x-2)^{\frac{1}{2}}-\left(\frac{1}{2} x+1\right)\right)[\mathrm{d} x]$	$* \mathbf{M 1}$	For intention to integrate and subtract (M0 if squared).
$\pm\left[\frac{2}{9}(3 x-2)^{\frac{3}{2}}-\left(\frac{1}{4} x^{2}+x\right)\right]_{2}^{6}$	B1 B1	B1 for each bracket integrated correctly (in any form).
$\pm\left(\left[\frac{2}{9}(16)^{\frac{3}{2}}-\left(\frac{1}{4} \times 36+6\right)\right]-\left[\frac{2}{9}(4)^{\frac{3}{2}}-\left(\frac{1}{4} \times 4+2\right)\right]\right)$	DM1	$\pm(\mathrm{F}($ their 6$)-\mathrm{F}($ their 2$))$ with their integral. Allow 1 sign error.
$\frac{4}{9}$	A1	AWRT 0.444. SC1 B1 for $\frac{4}{9}$ if *M1 B1 B1 DM0.

Question 187

$\left[\frac{d v}{d x}\right]=(9-x)^{2}$	$\mathbf{B 1}$	Allow unsimplified forms. Allow any or no notation
Substitute $x=4$ into their differentiated V,	*M1	Expect 25.
$\frac{d x}{d t}=\frac{1}{\text { their } \text { derivative }} \times 3.6\left(\right.$ accept $\left.\frac{d t}{d x}=\frac{\text { their } \text { derivative }}{3.6}\right)$	$\mathbf{M 1}$	Correct use of the chain rule, ignore incorrect conversions at this point. Expect 0.144
$=\frac{1}{\text { their numerical derivative }} \times 3.6 \times \frac{100}{60}$	DM1	Correct use of the conversion factors.
$=\frac{1}{25} \times 3.6 \times \frac{100}{60}=0.24$	$\mathbf{A 1}$	

Question 188

'(a)	$\frac{-3}{(a+2)^{4}}=-\frac{16}{27} \rightarrow \text { e.g. } 16(a+2)^{4}=81$	M1	Equate first derivative and $-\frac{16}{27}$ and move term in a (or x) into the numerator
	$\rightarrow(a+2)^{2}=\frac{9}{4} \rightarrow a+2=[\pm] \frac{3}{2}$	M1	Solve for ($a+2$) or ($x+2$)
	$a=-\frac{1}{2} \text { or }-\frac{7}{2}$	A1 A1	Allow ' $\mathrm{x}=$ '
		4	
(b)	$[\mathrm{f}(x)]=\frac{1}{(x+2)^{3}}[+c]$	B1	Allow unsimplified form and ' $y=$ '
	$5=1+c$	M1	Sub $x=-1, y=5$ into an integral.
	$[\mathrm{f}(x)]=\frac{1}{(x+2)^{3}}+4$	A1	Allow ' $y=$ '
		3	

Question 189

(a)	$x^{2}+(2 x-1)^{2}-2[=0] \rightarrow 5 x^{2}-4 x-1[=0]$	*M1 A1	Or $5 y^{2}+2 y-7[=0]$.
	$(5 x+1)(x-1)[=0]$ or $(5 y+7)(y-1)[=0]$	DM1	May see factors or formula or completing square.
	$x=1, y=1$ or (1,1) only	A1	May be implied on the diagram.
(b)	$(\pi) \int\left(2-x^{2}\right) \mathrm{d} x=(\pi)\left(2 x-\frac{x^{3}}{3}\right)$	4 $* M 141$	Attempt integration of y^{2}, allow $\int\left(2-y^{2}\right) \mathrm{d} y$.
	$\left.(\pi)\left(2 \sqrt{2}-\frac{\left(\sqrt{2}^{3}\right.}{3}\right)-\left(2-\frac{1}{3}\right)\right)$	DM1	Apply limits $1 \rightarrow \sqrt{ }$ 2.
	$\frac{\pi}{3}(4 \sqrt{2}-5)$	A1	CAO, allow $\frac{\pi}{3}(2 \sqrt{8}-5)$, must be in given form.
		4	
(c)	Arc length $=\frac{1}{8}(2 \pi \sqrt{2})$ or $\frac{\pi \sqrt{2}}{4}$ oe	B1	Must be exact.
	Perimeter $=\sqrt{2}+$ their arc length	B1 FT	Must be exact, do not allow inverse trig functions.
		2	

Question 190

(a)	$[y=]\left\{\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}}\right\}+\left\{-\frac{3 x^{\frac{1}{2}}}{\frac{1}{2}}\right\}[+c]\left[=2 x^{\frac{3}{2}}-6 x^{\frac{1}{2}}\right]$	B1 B1	Marks can be awarded for correct unsimplified expressions, 1 mark each for contents of \{ \} ISW.
	$5=2 \times 3^{\frac{3}{2}}-6 \times 3^{\frac{1}{2}}+c$	M1	Correct use of $(3,5)$ in an integrated expression (defined by at least one correct power) including +c .
	$y=2 x^{\frac{3}{2}}-6 x^{\frac{1}{2}}+5$	A1	Condone $c=5$ as their final line if either $y=$ or $\mathrm{f}(x)=$ seen elsewhere in the solution, but coefficients must not contain unresolved double fractions.
		4	
(b)	$3 x^{\frac{1}{2}}-3 x^{-\frac{1}{2}}=0$	M1	Setting given differential to 0 .
	$[x=] 1$	A1	CAO WWW Condone extra solution of -1 only if it is rejected.
		2	
(c)	$x>1$ or $x>$ "their $8(\mathrm{~b})$ "	B1FT	Allow \geqslant
		1	

Question 191

(a)

$\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] \frac{9}{2} x-12[=0]$ or $[\mathrm{y}=] \frac{9}{4}\left\{\left(x-\frac{8}{3}\right)^{2}+\frac{8}{9}\right\}$ or $\frac{9}{4}\left(x-\frac{8}{3}\right)^{2}+2$	B1	OE Either $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or a correct expression in completed square form. Allow unsimplified.
$\boldsymbol{x}=\frac{24}{9}$	B1	OE Condone 2.67 AWRT.
$y=2$	B1	CAO Note: $x=\frac{-b}{2 a}=\frac{8}{3}$ B1; substitute $\frac{8}{3}$ for x in $y=\mathrm{B} 1 ; ~$ $y=2$
	$\mathbf{3}$	

(b)

$[\text { Area }=] \int\left(18-\frac{3}{8} x^{\frac{5}{2}}-\left(\frac{9}{4} x^{2}-12 x+18\right)\right) d x$	M1	Intention to integrate and subtract areas (either way around). Can be two separate functions or combined. Using y^{2} scores $0 / 5$ but condone inclusion of π except for the final mark.
Note: Subtraction not required for these marks. Either separately $\left([18 x]-\frac{3 x^{\frac{7}{2}}}{8 \times \frac{7}{2}}\right),\left(\frac{9 x^{3}}{4 \times 3}-\frac{12 x^{2}}{2}[+18 x]\right)$ Or combined $\quad[18 x]-\frac{3 x^{\frac{7}{2}}}{8 \times \frac{7}{2}}-\frac{9 x^{3}}{4 \times 3}+\frac{12 x^{2}}{2}[-18 x]$	B1,B1	One mark for correct integration of each curve, allow unsimplified. $\left([18 x]-\frac{3}{28} x^{\frac{7}{2}}\right)\left(\frac{3}{4} x^{3}-6 x^{2}[+18 x]\right)$ or $\quad[18 x]-\frac{3}{28} x^{\frac{7}{2}}-\frac{3}{4} x^{3}+6 x^{2}[-18 x]$ BUT condone sign errors that are only due to missing brackets.
$=\left(-\frac{3}{28} \times 4^{\frac{7}{2}}-\frac{3}{4} \times 4^{3}+6 \times 4^{2}\right) \quad[-(0)]$	M1	Clear substitution of 4 into at least one integrated expression (defined by at least one correct power) which can be unsimplified.
$=\frac{240}{7}$ or 34.3 AWRT	A1	SC: If all marks awarded except the final M1, SCB1 is available for the correct final answer.
	5	

(c)	$\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] \frac{-5 \times 3}{2 \times 8} x^{\frac{3}{2}}\left[=-\frac{15}{16} x^{\frac{3}{2}}\right]$	B1
$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} t}=-\frac{15}{16} \times 8 \times 2$	$\mathbf{M 1}$	Substitute $x=4$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and multiply by 2.
-15	$\mathbf{A 1}$	Accept decreasing [at/by] 15
	$\mathbf{3}$	Note: If incorrect curve used, this is not a MR and only M1 mark is available. Expect $\left(\frac{9(4)}{2}-12\right) \times 2[=12]$

Question 192
(a)
$12\left(\frac{1}{2} \times 6-1\right)^{-4}\left[=12(2)^{-4}=\frac{3}{4}\right]$
$y-4=\frac{3}{4}(x-6)$
OR evaluates $c=-\frac{1}{2}$
(b)

$$
\begin{aligned}
& {[y=]\left(\frac{12\left(\frac{1}{2} x-1\right)^{-3}}{-3}\right) \div \frac{1}{2}\left[=-8\left(\frac{1}{2} x-1\right)^{-3}\right]} \\
& 4=\frac{12 \times\left(\frac{1}{2} \times 6-1\right)^{-3}}{\frac{1}{2} \times-3}+c\left[\Rightarrow 4=-8 \times 2^{-3}+c\right] \Rightarrow c=[5] \\
& {[y=]-8\left(\frac{1}{2} x-1\right)^{-3}+5}
\end{aligned}
$$

Question 193
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} a x^{-\frac{1}{2}}-2$
$0=\frac{1}{2} a(9)^{-\frac{1}{2}}-2 \Rightarrow \frac{a}{6}-2=0 \Rightarrow a=[12]$

B2, 1, 0
1 Must have $+c$.
Substitute $y=4, x=6$ and solve for c in an integrated expression. May be unsimplified.
$0=\frac{1}{2} a(9)^{-2}-2 \rightarrow \frac{a}{6}-2-0 \rightarrow a=[12]$
1 Substitute $x=9$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ into their derivative and

$[a=] 12$	A1	
$\left[y=\right.$ their $\left.a \times(9)^{\frac{1}{2}}-18=\right] 18$	A1 FT	FT on their a.
	$\mathbf{5}$	

Question 194

(a)	$\mathrm{f}^{\prime}(x)=-3(-1)(4)(4 x-p)^{-2}\left[=\frac{12}{(4 x-p)^{2}}\right]$	B2, 1, 0	
	>0 Hence increasing function	B1FT	Correct conclusion from their $\mathrm{f}^{\prime}(x)$.
		3	
(b)	$y=2-\frac{3}{4 x-p} \Rightarrow(y-2)(4 x-p)=-3 \text { or } 4 x y-p y=8 x-2 p-3$	M1	OE Form horizontal equation. Sign errors only, no missing terms. May go directly to $4 y=p-\frac{3}{x-2}$ OE M1 M1
	$4 x y-8 x=p y-2 p-3 \Rightarrow 4 x(y-2)=p(y-2)-3$ or $4 x=-\frac{3}{x-2}+p$	M1	OE Factorise out [4] x or [4] y.
	$x=\frac{p(y-2)-3}{4(y-2)}\left[\Rightarrow x=\frac{p}{4}-\frac{3}{4 y-8}\right] \text { or } \frac{-\frac{3}{x-2}+p}{4}$	M1	OE Make x (or y) the subject.
	$\left[\mathrm{f}^{-1}(x)=\right] \frac{p}{4}-\frac{3}{4 x-8}$	A1	OE in correct form (must be in terms of x).
		4	
(c)	$[p=] 8$	B1	
		1	
Question 195 (a) $\pm \int\left(2 x^{1 / 2}+1\right)-\left(\frac{1}{2} x^{2}-x+1\right) \mathrm{d} x\left[= \pm \int 2 x^{1 / 2}-\frac{1}{2} x^{2}+x \mathrm{~d} x\right]$			
	$\pm\left(\frac{4 x^{3 / 2}}{3}+x-\left(\frac{x^{3}}{6}-\frac{x^{2}}{2}+x\right)\right)$ or $\pm\left(\frac{4 x^{3 / 2}}{3}-\frac{x^{3}}{6}+\frac{x^{2}}{2}\right)$	B2, 1, 0	OE Coefficients may be unsimplified.
	$\pm\left(\frac{32}{3}-\frac{32}{3}+8\right)$ or $\pm\left(\frac{44}{3}-0-\frac{20}{3}+0\right)$	DM1	$\pm(\mathrm{F}(4)-\mathrm{F}(0))$ using their integral(s).
	$=8$	A1	Depends on all previous marks. If *M1 B2 DM0 and limits stated, SC B1 for +8
		5	
(b)	Upper curve: $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{-\frac{1}{2}}$. Lower curve: $\frac{\mathrm{d} y}{\mathrm{~d} x}=x-1$	M1 A1	Attempt at differentiating one function. Al if both correct.
	At $x=4$: gradient of upper curve $=\frac{1}{2}$, gradient of lower curve $=3$	M1	Evaluate two gradients using $x=4$.
	$\alpha=\tan ^{-1} 3-\tan ^{-1} \frac{1}{2}[=71.57-26.57]$	M1	Use inverse tan to find angles then subtract. OR find equations of both tangents then Pythagoras using a point on each e.g. on axes. OR cosine rule using intercepts or proportion.
	$[\alpha=] 45^{\circ}$	A1	AWRT
		5	

Question 196

$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left\{\frac{1}{60}(3 x+1) \times 2\right\} \times\{3\}$	B1 B1	May see $\frac{1}{60}(18 x+6)$.
$\frac{1}{10}(3 x+1)=1$	M1	Equate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to 1.
$x=3$	$\mathbf{A 1}$	
	$\mathbf{4}$	

Question 197

(a)	$-\frac{3}{2}=\frac{1}{2}+k$ leading to $k=-2$	B1	AG Need to see $4^{-\frac{1}{2}}$ evaluated as $\frac{1}{4^{\frac{1}{2}}}$ or better.
		1	
(b)	$[y]=2 x^{\frac{1}{2}}-2 x \quad[+c]$	M1 A1	Allow $\frac{x^{\frac{1}{2}}}{1 / 2}-2 x$.
	$-1=4-8+c$	M1	Substitute $x=4, y=-1$ (c present) Expect $c=3$.
	$y=2 x^{\frac{1}{2}}-2 x+3 \text { or } y=2 \sqrt{x}-2 x+3$	A1	Allow if $\mathrm{f}(x)=$ or $y=$ anywhere in the solution.
		4	
(c)	$x^{-1 / 2}-2=0$	M1	Set their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to zero.
	$x=\frac{1}{4}$	A1	If $\left(\frac{1}{2}\right)^{2}= \pm \frac{1}{4}$ max of M1A1 if $\left(\frac{1}{4}, 3 \frac{1}{2}\right)$ seen.
	$\left(1 / 4,3^{1 / 2}\right)$	A1	
(d)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{1}{2} x^{-\frac{3}{2}}$	3 B1	
	<0 (or -4) hence Maximum	DB1	WWW Ignore extra solutions from $x=-\frac{1}{4}$.
		2	

Question 198

(a)

Gradient of $A B=\frac{2-(-1)}{5-2}$	M1	Expect 1, must be from $\Delta y / \Delta x$.
Equation of $A B$ is $y-2=1(x-5)$ or $y+1=1(x-2)$	A1	OE. Expect $y=x-3$.
	$\mathbf{2}$	

(b)

$[\pi] \int x^{2} \mathrm{~d} y=[\pi] \int\left(y^{2}+1\right)^{2} \mathrm{~d} y=[\pi] \int\left(y^{4}+2 y^{2}+1\right) \mathrm{d} y$	M1	For curve: Attempt to square $y^{2}+1$ and attempt integration. Subtracting curve equation from line equation before squaring is M0. Integration before squaring M0.
$[\pi]\left(\frac{y^{5}}{5}+\frac{2 y^{3}}{3}+y\right)$	A2, 1, 0	
$[\pi] \int(y+3)^{2} \mathrm{~d} y=[\pi] \int\left(y^{2}+6 y+9\right) \mathrm{d} y$	M1	For line: Attempt to square their $y+3$ and attempt integration.
$[\pi]\left(\frac{y^{3}}{3}+3 y^{2}+9 y\right) \text { or }[\pi]\left(\frac{(y+3)^{3}}{3}\right)$	A2, 1, 0	Not available for incorrect line equations.
$[\pi]\left\{\frac{8}{3}+12+18-\left(-\frac{1}{3}+3-9\right)\right\} \text { or }[\pi]\left\{\frac{32}{5}+\frac{16}{3}+2-\left(-\frac{1}{5}-\frac{2}{3}-1\right)\right\}$	DM1	Apply limits $-1 \rightarrow 2$ to either integral providing they have been awarded M1. Expect $15 \frac{3}{5}[\pi]$ and/or $39[\pi]$. Some evidence of substitution of both -1 and 2 must be seen. Dependent on at least one of the first 2 M 1 marks.
Volume $=[\pi]\left(39-15 \frac{3}{5}\right)$	DM1	Appropriate subtraction. Dependent on at least one of the first 2 M1 marks.
$=23 \frac{2}{5} \pi$ or $\frac{117}{5} \pi$ or awrt 73.5[1327]	A1	
	9	

Question 199

(a)	$[y=]\{x\}\left\{+(x-1)^{-2}\right\} \quad[+c]$	B1 B1	May be unsimplified.
	Sub $x=0, y=3$ leading to $3=0+1+\mathrm{c}$	M1	Substitution into an integral, expect $c=2$.
	$y=x+(x-1)^{-2}+2$ or $f(x)=x+(x-1)^{-2}+2$	A1	$\frac{-2}{(-2)(x-1)^{2}}$ or $\frac{-2(x-1)^{-2}}{-2}$ must be simplified.
		4	
(b)	[Gradient of tangent $=$] $\mathrm{f}^{\prime}(0)=3$	B1	
	Equation of tangent is $y-3=$ their gradient at $x=0(x-0)$	M1*	Expect $y=3 x+3$, normal gets M0.
	Intersection given by $3 x+3=x+(x-1)^{-2}+2$	DM1	FT their equation from part (a).
	$2 x+1=\frac{1}{(x-1)^{2}} \rightarrow(2 x+1)(x-1)^{2}-1=0$ or solve equation before given form reached and show solution $(x=3 / 2)$ satisfies given result	A1	WWW AG
		4	
(c)	Substitute $x=\frac{3}{2}$ leading to $(2 x+1)(x-1)^{2}-1$ leading to $4 \times 1 / 4-1=0$. Hence $x=\frac{3}{2}$ If shown in (b) must be referenced here (in part (c))	B1	Evaluation of each bracket must be shown. Allow $\left(\frac{1}{2}\right)^{2}$ for second bracket. Solution of $(2 x+1)(x-1)^{2}-1=0$ is acceptable.
	When $x=\frac{3}{2} \quad y=7^{1 / 2}$	B1	
		2	

Question 200

(a)	$\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right]\{9\}+\left\{-\frac{3}{2}(2 x+1)^{1 / 2} \times 2\right\}$	B1, B1	Including ' +c ' makes the second term B0.
	$9-3(2 x+1)^{1 / 2}=0$ leading to $2 x+1=9$	M1	Set differential to zero and solve by squaring SOI. Beware $9^{2}-3^{2}(2 x+1)=0$ MOA0. $2 x+1=\sqrt{3} \text { or } 2 x+1= \pm 9 \text { get M0. }$
	Max point $=(4,9)$	A1	WWW y $=9$ must come from original equation.
		4	
(b)	When $x=1 \frac{1}{2}$, shows substitution or $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$	M1	Substituting $x=1 \frac{1}{2}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
	Gradient of $A B$ is $\frac{51 / 2-31 / 2}{11 / 2-71 / 2}\left[=\frac{-1}{3}\right]$	M1	Substituting into a correct expression for $\mathrm{m}_{\text {AB }}$.
	$-\frac{1}{3} \times 3=-1 .[$ Hence $A B$ is the normal]	A1	

Alternative method for Question 10(b)
$\left.\begin{array}{|l|r|r|}\hline \text { When } x=11 / 2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=3,[\text { perpendicular gradient is }-1 / 3] & \text { M1 } & \\ \hline \begin{array}{l}\text { Perpendicular through A has equation } y=\frac{-x}{3}+6 \text { which contains } \mathrm{B}(7.5,3.5) \\ \text { leading to } \mathrm{AB} \text { is a normal to the curve at } \mathrm{A}\end{array} & \mathbf{M 1} & \text { A1 }\end{array}\right]$
(c)

$\left\{\frac{9 x^{2}}{2}\right\}+\left\{\frac{-(2 x+1)^{\frac{5}{2}}}{\frac{5}{2} \times 2}\right\}$	B1 B1	Integrating y with respect to x.
$\begin{aligned} & \left\{\frac{9}{2} 7.5^{2}-\frac{1}{5}(2 \times 7.5+1)^{2.5}\right\}-\left\{\frac{9}{2} 1.5^{2}-\frac{1}{5}(2 \times 1.5+1)^{2.5}\right\} \text { or } \\ & \left(\frac{9}{2} \times \frac{225}{4}-\frac{1024}{5}\right)-\left(\frac{81}{8}-\frac{32}{5}\right) \text { or } \frac{1933}{40}-\frac{149}{40} \text { or } 48.325-3.725 \end{aligned}$	M1	OE Apply limits $11 / 2$ to $71 / 2$ to an integral. Working must be seen. Expect 44.6 .
$\begin{aligned} & \frac{1}{2}\left(5 \frac{1}{2}+3 \frac{1}{2}\right) \times 6 \text { or } \int_{\frac{3}{2}}^{\frac{15}{2}}\left(\frac{-1}{3} x+6\right) \mathrm{d} x= \\ & \left(\frac{-1}{6} \times\left(\frac{15}{2}\right)^{2}+6 \times \frac{15}{2}\right)-\left(\frac{-1}{6} \times\left(\frac{3}{2}\right)^{2}+6 \times \frac{3}{2}\right) \text { or } \frac{285}{8}-\frac{69}{8}[=27] \end{aligned}$	B1	SOI Area of trapezium. May be seen combined with the area under the curve integral.
[Shaded area $=44.6-27=$] 17.6	A1	SC B1 if no substitution of the limits seen.
	5	

Question 201

$[y]=\frac{4}{-2}(x-3)^{-3+1}$ or $\frac{4}{-2(x-3)^{2}}[+c]$	B1	OE Allow $\frac{4}{-3+1}$ and $-3+1$ for the power.
$5=\frac{4}{-2}(4-3)^{-2}+c$ or $5=\frac{4}{-2(4-3)^{2}}+c$ leading to $c=$	M1	Correct use of $(4,5)$ to find c in an integrated expression (defined by the correct power and no extra x 's or terms).
$y=\frac{-2}{(x-3)^{2}}+7$ or $y=-2(x-3)^{-2}+7$	A1	OE $-\frac{4}{2}$ must be simplified to -2. Condone $c=7$ as their
final line as long as either y or $\mathrm{f}(x)=$ is seen elsewhere.		
Do not ISW if the result is of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.		

Question 202

$\left[\int\left(10 x^{\frac{1}{2}}-\frac{5}{2} x^{\frac{3}{2}}\right)=\right]\left\{\frac{10}{\frac{3}{2}} x^{\frac{3}{2}}\right\}\left\{-\frac{5}{2 \times \frac{5}{2}} x^{\frac{5}{2}}\right\}\left[=\frac{20}{3} x^{\frac{3}{2}}-x^{\frac{5}{2}}\right]$
$=\left(\right.$ their $\left.\frac{20}{3} \times 8-32\right)[-0]$

B1 B1 \mid B1 for contents of each $\}$ then ISW.

M1 Using limit(s) correctly in an integrated expression (defined by one correct power). Minimum acceptable working is their $\left(\frac{160}{3}-32\right)$.
[Area of shaded region $=$] $\frac{64}{3}, 21 \frac{1}{3}$ or $21.3[333 \ldots$]

A1 Condone the presence of π for the first 3 marks.
Condone using the limits the wrong way around for the M mark and if -21.3 is corrected to 21.3 allow the A mark. SC: if M0 scored SCB1 is available for correct final answer
If $\int\left(10 x^{\frac{1}{2}}-\frac{5}{2} x^{\frac{3}{2}}\right)=21.3$ and no integration seen B1 only.

Question 203

(a) $\left\lvert\, \frac{\mathrm{d} y}{\mathrm{~d} x}=\left\{k \frac{1}{2}(4 x+1)^{-\frac{1}{2}}\right\}\{\times 4\}\{-1\}\right.$	$\mathbf{B ~ 2 , 1 , 0}$	OE e.g. $2 k(4 x+1)^{-\frac{1}{2}}-1$ B2 Three correct unsimplified $\}$ and no others. B1 Two correct $\}$ or three correct $\}$ and an additional term e.g. +5. B0 More than one error.			
(b)	$2 k(4 x+1)^{-\frac{1}{2}}-1=0$ leading to $(4 x+1)^{\frac{1}{2}}=2 k$ or $\frac{2 k}{(4 x+1)^{\frac{1}{2}}}=1$	$\mathbf{2}$	M1		OE Equating their $\frac{d y}{d x}$ of the form $a k(4 x+1)^{-\frac{1}{2}}-1$ where
:---					
$a=2$ or 0.5, to 0 and dealing with the negative power					
correctly including k not multiplied by $(4 x+1)^{\frac{1}{2} .}$					

(c) $\quad 2 \times 10.5(4 x+1)^{-\frac{1}{2}}-1=2$

M1 Putting $\mathrm{k}=10.5$ into their $\frac{d y}{d x}$ and equating to 2.

| $7=(4 x+1)^{\frac{1}{2}}$ leading to $4 x+1=49$ leading to $x=12$ | A1 | If M1 earned SCB1 available for $x=\frac{33}{64}$ from $a=\frac{1}{2}$. |
| :--- | ---: | :--- | :--- |
| $y=[10.5 \sqrt{4 x+1}-x+5=] 66.5[$ leading to $(12,66.5)]$ | A1 | |
| $y-66.5=-\frac{1}{2}(x-12)$ | A1 | OE |
| | 4 | |

Question 204

$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 x^{2}}$ or $\frac{1}{2} x^{-2}$	$* \mathbf{M 1}$	Differentiate $-\frac{1}{2 x}$ M0 for $2 x^{-2} \cdot$ No errors.
$[y=] \frac{1}{2 x^{2}} x-\frac{1}{2 x^{2}}=-\frac{1}{2 x}$ or $\frac{1}{x}=\frac{1}{2 x^{2}}\left[\Rightarrow 2 x^{2}-x=0\right]$	DM1	Sub their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ into equation of line or set gradient $=k$

$x=\frac{1}{2}$ only
$y=\left[2 \times \frac{1}{2}-2\right]=-1$ to form equation in x.

$k=2$	B

Question 205

| $\frac{\mathrm{d} V}{\mathrm{~d} h}=\frac{4}{3} \times 3(25+h)^{2}[=4900$ when $h=10]$ | B1 | Correct expression for $\frac{\mathrm{d} V}{\mathrm{~d} h}$. |
| :--- | :--- | :--- | :--- |
| $\frac{\mathrm{d} V}{\mathrm{~d} h} \times \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} t} \Rightarrow$ their $" 4(25+10)^{2} " \times \frac{\mathrm{d} h}{\mathrm{~d} t}=500 \Rightarrow \frac{\mathrm{~d} h}{\mathrm{~d} t}=\left[\frac{500}{4900}\right]$ | M1 | Use chain rule correctly to find a numerical expression
 for $\frac{\mathrm{d} h}{\mathrm{~d} t} \cdot$ Accept e.g. $\frac{500}{2500+2000+400}$. |
| $\frac{\mathrm{d} h}{\mathrm{~d} t}=0.102\left[\mathrm{cms}^{-1}\right]$ | A1 | AWRT OE e.g. $\frac{5}{49}$ ISW. |

Question 206
(a)

$[\pi] \int \frac{16}{(2 x-1)^{4}}[\mathrm{~d} x]=[\pi] \int 16(2 x-1)^{-4}[\mathrm{~d} x]=[\pi]\left(-\frac{16}{3 \times 2 \times(2 x-1)^{3}}\right)$	*M1	Integrate \boldsymbol{y}^{2} (power incr. by 1 or div by their new power). M0 if more than 1 error or $-\frac{16}{6} x(2 x-1)^{-3}$.
$[\pi]\left(-\frac{16}{3 \times 2 \times(2 x-1)^{3}}\right)$	A1	OE e.g. $\left(-\frac{8}{3}(2 x-1)^{-3}\right)$.
$[\pi]\left(-\frac{16}{6 \times 8}+\frac{16}{6 \times 1}\right)\left[=[\pi] \frac{112}{48}=[\pi] \frac{7}{3}\right]$	DM1	Sub correct limits into their integral: $F\left(\frac{3}{2}\right)-F(1)$. Must see at least $\left(-\frac{1}{3}+\frac{8}{3}\right)$. Allow 1 sign error. Decimal: 2.33π or 7.33 .
Volume of cylinder $\left[=\pi \times 1^{2} \times \frac{1}{2}\right]=\frac{1}{2} \pi$ OR $[\pi] \int_{1}^{1.5} 1[\mathrm{~d} x]=\frac{1}{2} \pi$	B1	$\frac{1}{2} \pi$ or $\pm \pi\left(\frac{3}{2}-1\right)$ seen.
Volume of revolution $\left[=\frac{7}{3} \pi-\frac{1}{2} \pi\right]=\frac{11}{6} \pi$	A1	A0 for 5.76 (not exact). If DM0 for insufficient substitution, or B0, SC B1 for $\frac{11}{6} \pi$.
	5	

(b)

$\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right]\left\{-8(2 x-1)^{-3}\right\}\{\times 2\}$	B2, 1, 0	OE B1 for each correct element in $\}$.
At B gradient $=-2$	B1	
Eqn of tangent $y-1=$ their " -2 " $\left(x-\frac{3}{2}\right)$ OR Eqn of normal $y-1=$ their $" \frac{1}{2} "\left(x-\frac{3}{2}\right)$	M1	SOI Following differentiation OE e.g. $y=-2 x+4$ or $y=\frac{1}{2} x+\frac{1}{4}$. (Must have $m_{N}=-\frac{1}{m_{T}}$ for M1).
Tangent crosses x-axis at 2 or normal crosses x-axis at $-\frac{1}{2}$	A1	SOI For at least one intercept correct or correct integration.
Area $=\frac{5}{4}$	A1	From intercepts: $\frac{1}{2} \times \frac{5}{2} \times 1=\frac{5}{4}$ or $1+\frac{1}{4}=\frac{5}{4}$, from lengths: $\frac{1}{2} \times \sqrt{5} \times \frac{\sqrt{5}}{2}=\frac{5}{4}$ or by integration.
	6	

Question 207

