AS-Level

Topic : Circular measure

May 2013-May 2023

Answer

Quest	tion 1					
(i)	$\frac{1}{2.3^2\pi} = \frac{1}{29^2\theta} - \frac{1}{23^2\theta}$		M1	A1		M1 needs $\frac{1}{2}r^{2}\theta$ once. A1 all
	$\frac{1}{2} \cdot 3^2 \pi = \frac{1}{2} \cdot 9^2 \theta - \frac{1}{2} \cdot 3^2 \theta$ $\rightarrow \theta = \frac{1}{4} \cdot \pi$		A1		[3]	correct. Answer given
(ii)	$P = 6 + 6 + 3 \times \frac{1}{4}\pi + 9 \times \frac{1}{4}\pi = 21.4$ cm.		M1			M1 is for use of $s=r\theta$ once.
	or $12 + 3\pi$		A1		[2]	
Quest	cion 2			·		
(i)	$BOC = 2\tan^{-1}\frac{1}{2} = 0.9273$	M1 A1		Corre	ct trigor	nometry. (ans given)
	$OB = \sqrt{(10^2 + 5^2)} \text{ or } 11.2 = r$ Arc $BXC = \sqrt{125} \times 0.9273$ \rightarrow Perimeter = 20.4 cm	B1 M1 A1	[2]			r Pyth) for the $OB = \sqrt{125}$. with θ in rads, $r \neq 10$
	Area = $\frac{1}{2}r^2\theta$ - $\frac{1}{2}.10.10 \rightarrow 7.96 \text{ cm}^2$.	M1 A1	[2]		ct formu 7.95 or	I used with rads, $r \neq 10$. 7.96
Quest	tion 3					
(i)	$(OAB) = \frac{1}{2} \times 8^2 \alpha$, $(OAC) = \frac{1}{2} \times \pi \times 4^2$		B1B1		Accep	t 25.1 (for <i>OAC</i>)
	$\alpha = \frac{\pi}{8}$		B1	[3]		
(ii)	$8 + 8 \times \text{their } \alpha + \frac{1}{2} \times 8 \times \pi$		B1 √		-	ets B1B0
	$8+5\pi$		B1	[2]	SC B1	for e.g. 5π (omitted <i>OB</i>)

Ques	tion 4				
(i)	sector areas are $\frac{1}{2}11^2 \alpha, \frac{1}{2}5^2 \alpha$	B	1	Si	ght of 11^2 , 5^2
	$k = \frac{\frac{1}{2} \times 11^2 \alpha - \frac{1}{2} \times 5^2 \alpha}{\frac{1}{2} \times 5^2 \alpha}$	М	1	O	$r \frac{11^2 - 5^2}{5^2}$
	$k = \frac{96}{25}$ or 3.84	A	1 [3]		
(ii)	perimeter shaded region= $11\alpha + 5\alpha + 6 + 6 = 16\alpha + 12$	B1			
	perimeter unshaded region = $5\alpha + 5 + 5 = 5\alpha + 10$	B1			
	$16\alpha + 12 = 2 (5\alpha + 10)$	M1			
	$\alpha = 4/3$ or 1.33	A1	[/]		
			[4]		
01100	tion 5				
· ·		D1			
(i)	slant length = 10 cm. circumference of base = 12π	B1 B1			
	arc length = 10θ (= 12π)	B1√		Us	e of $r\theta$, θ calculated, not 6 or 8.
	$\rightarrow \theta = 1.2\pi$ or 3.77 radians.	B1			
			[4]		
(ii)	$\frac{1}{2}r^{2}\theta = 188.5 \text{ cm}^{2} \text{ or } 60\pi.$	M1			e of $\frac{1}{2}r^2\theta$ with radians and
			[2]	r =	= calculated '10', not 6 or 8.
Ques	tion 6				
(i)	$r(2\pi-\alpha)$ $+2r\alpha+2r$		B1B1		
	$2\pi r + r\alpha + 2r$		B1 √		ft for $r\alpha$ instead of $2r\alpha$ or omission $2r$
			0	[3]	SC1 for $2r\alpha + 4r$. (Plate = shaded
		sł		[3]	part)
(ii)	$\frac{1}{2}(2r)^{2}\alpha + \pi r^{2} - \frac{1}{2}r^{2}\alpha$		B1B1		Either B1 can be scored in (iii)
	$\frac{3r^2\alpha}{2} + \pi r^2$		B1		
	2			[3]	
(iii)	$\pi r^2 - \frac{1}{2}r^2\alpha = 2r^2\alpha$		M1		For equating <i>their</i> 2 parts from (ii)
	· _				
	$\alpha = \frac{2}{5}\pi$		A1	[2]	
				[2]	I

$$\alpha = \frac{2}{5}\pi$$

(i)	$s = r\theta$ Angle of major arc = $2\pi - 2.2 = (4.083)$ Perimeter = $12 + 24.5 = 36.5$ or $12\pi - 1.2$ (or full circle – minor arc B1)	M1 B1 A1 [3]	Used with major or minor arc Could be gained in (ii) . co
(ii)	Area of major sector = $\frac{1}{2}r^2\theta$ = (73.49)	M1	Used with major/minor sector.
	Area of triangle = $\frac{1}{2} \cdot 6^2 \sin 2.2 = (14.55)$	M1	Correct formula or method. $(2\pi - 2.2)/\sin 2.2$ gets M1M1
	Ratio = $5.05 : 1$ (Allow $5.03 \rightarrow 5.06$)	A1 [3]	со
Ques	tion 8		
(i)			
	$\frac{1}{2}r^2\theta = \frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta$	B1	Correct equation.
	$\rightarrow 2\sin\theta = \theta \rightarrow p = 2.$	ВІ	All ok – answer given.
(ii)	Chord length = $8\sin 1.2 \times 2$ (14.9) (or from cosine rule)	[2] M1	Needs ×2. Any method ok.
	Arc length = 2.4×8 (19.2) Perimeter = sum of these = 34.1	B1 A1 [3]	co
Ques	tion 9	[-]	
(i)	area $\Delta = \frac{1}{2} \times 4 \times 4 \tan \alpha$ oe soi	B 1	$4\tan\alpha = \sqrt{16/\cos^2\alpha - 16}$. (Can also score in
	Area sector $=\frac{1}{2} \times 2^2 \alpha$ oe soi	B1	answer) Accept θ throughout
	Shaded area = $8\tan\alpha - 2\alpha$ cao	B1 [3]	Little/no working – accept terms in answer
	$DC = \frac{4}{\cos \alpha} - 2$ oe soi Arc $DE = 2\alpha$ soi anywhere provided clear	B1 B1	$\frac{4}{\cos \alpha} = \sqrt{16 + 16 \tan^2 \alpha}$. Can score in answer
	Perimeter $=$ $\frac{4}{\cos \alpha}$ + 4 tan α + 2 α cao	B1 [3]	Little/no working – accept terms in answer

(ii) Area
$$OABC(2) \times \frac{1}{2} \times 3 \times their AB$$

 $(=9\sqrt{3} \text{ or } \frac{9\sqrt{3}}{2})$

Area $OADC(\frac{1}{2} \times 3^2 \times (\frac{2\pi}{2} \text{ or } \frac{\pi}{3})) (= 3\pi \text{ or } \frac{3\pi}{2})$

Shaded area $9\sqrt{3} - 3\pi$ oe

[3] After B0B0 SCB1 for 6.16 or 6.17.
Allow $(\sqrt{3})^5 - 3\pi$

Question 11

(i)	$\tan\theta = \frac{5}{12}$ $\rightarrow (\theta = 0.3948)$	M1 [1]	Any valid trig method ag
(ii)	Other angle in triangle = $-\frac{1}{2}\pi - 0.3948$	B1	Unsimplified OK
	Area of triangle $AOB = \frac{1}{2} \times 12 \times 5 (= 30)$	B1	со
	Use of $\frac{1}{2}r^2\theta$ once	M1	With θ in radians and $r = 5$ or 12
	Shaded area = sector + sector - triangle		
	$=\frac{1}{2} \times 12^2 \times 0.3948 + \frac{1}{2}5^2\theta - 30$	DM1	Sum of 2 sectors – triangle or any other valid method using the given angle and a different one.
	= 28.43 + 14.70 - 30 = 13.1	A1 [5]	со
~			1

(i)	Arc $AB = 4\alpha$ Arc $DC = (4\cos\alpha)\alpha$	B1 B1	
	AC (or DB) = 4 – 4 cos α	B1	
	Perimeter = $4\alpha \cos \alpha + 4\alpha + 8 - 8\cos \alpha$	B1	
		[4]	
(ii)	$OD = 4\cos\frac{\pi}{6} \left(=2\sqrt{3}\right)$	B1	
	Shaded area = $\begin{bmatrix} \frac{1}{2} \times 4^2 \times \frac{\pi}{6} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \left(2\sqrt{3} \right)^2 \times \frac{\pi}{6} \end{bmatrix}$	B1B1	
	$\frac{\pi}{3}$	B1 [4]	Or $k = \frac{1}{3}$

(i)	$OC = r \cos \alpha$ or $AC = r \sin \alpha$ or oe soi (Area $\Delta OAC = \frac{1}{2}r^2 \sin \alpha \cos \alpha$	M1 A1	
	$\frac{1}{2}r^2\sin\alpha\cos\alpha = \frac{1}{2} \times \frac{1}{2}r^2\alpha \text{oe}$	M1	Or e.g. $\frac{1}{2}r^{2}\alpha - \frac{1}{2}r^{2}\cos\alpha\sin\alpha = \frac{1}{4}r^{2}\alpha$ $\frac{1}{2}r^{2}\alpha - \frac{1}{2}r^{2}\cos\alpha\sin\alpha = \frac{1}{2}r^{2}\cos\alpha\sin\alpha$
	$\sin \alpha \cos \alpha = \frac{1}{2} \alpha$	A1 [4]	AG
(ii)	Perimeter $\triangle OAC = r + r \sin \alpha + r \cos \alpha = 2.4(0)r$ Perim. $ACB = r\alpha + r \sin \alpha + r - r \cos \alpha = 2.18r$ or $2.17r$	M1A1	Allow with r a number. 2.0164 gets M1A0
	$ACB = r\alpha + r \sin \alpha + r - r \cos \alpha = 2.16r \text{ or } 2.1/r$	M1A1	Allow with <i>r</i> a number. 0.9644 gets M1A0 Allow 2.2 www.
	Ratio = $\frac{2.4(0)}{2.18 \text{ or } 2.17}$: 1=1.1 : 1	A1 [5]	Use of $\cos = 0.6$, $\sin = 0.8$, $\alpha = 0.9$ is PA 1
(iii)	54.3° cao	B1 [1]	

Question 14

Radius of semicircle = $\frac{1}{2}AB = r\sin\theta$	B1	aef
Area of semicircle = $\frac{1}{2}\pi r^2 \sin^2\theta = A_1$	B1√*	Uses $\frac{1}{2}\pi r^2$ with $r = f(\theta)$
Shaded area = semicircle - segment	B1B1	B1 (-sector), B1 for + (triangle)
$=A_1 - \frac{1}{2}r^22\theta + \frac{1}{2}r^2\sin 2\theta$	[4]	Di (sector), Di ior ((trangre)

(i)	Sector $OCD = \frac{1}{2}(2r)^2 \theta$ (= $2r^2\theta$)	B 1	$2r^2\theta$ seen somewhere
	Sector(s) $OAB/OEF = (2)\frac{1}{2}r^2(\pi - \theta)$ Total = $r^2(\pi + \theta)$	B1 B1	Accept with/without factor (2) AG www
(ii)	Arc $CD = 2r\theta$ Arc(s) AB/EF (2) $r(\pi - \theta)$ Straight edges = $4r$ Total $2\pi r + 4r$ (which is independent of θ)	[3] B1 B1 B1 B1 [4]	Accept with/without factor (2) Must be simplified

(i)	Length of $OB = \frac{6}{\cos 0.6} = 7.270$	M1	[1]	ag Any valid method
(ii)	$AB = 6\tan 0.6 \text{ or } 4.1$ Arc length = 7.27 × (½ π – 0.6) = (7.06) Perimeter = 6 + 7.27 + 7.06 + 6tan 0.6 = 24.4	B1 M1 A1	[3]	Sight of in (ii) Use of $s = r\theta$ with sector angle
(iii)	Area of $AOB = \frac{1}{2} \times 6 \times 7.27 \times \sin 0.6$ Area of $OBC = \frac{1}{2} \times 7.27^2 \times (\frac{1}{2}\pi - 0.6)$ \rightarrow area = 12.31 + 25.65 = 38.0	M1 M1 A1	[3]	Use of any correct area method Use of $\frac{1}{2}r^2\theta$.

Quest			
(i)	$BC^2 = r^2 + r^2 = 2r^2 \rightarrow BC = r\sqrt{2}$	B1 [1]	AG
(ii)	Area sector $BCFD = \frac{1}{4}\pi (r\sqrt{2})^2$ soi	M1	Expect $\frac{1}{2}\pi^{2}$
	Area $\Delta BCAD = \frac{1}{2}(2r)r$	M1	Expect r^2 (could be embedded)
	Area segment $CFDA = \frac{1}{2}\pi r^2 - r^2$.oe	A1	
	Area semi-circle $CADE = \frac{1}{2}\pi r^2$	B1	
	Shaded area $\frac{1}{2}\pi r^2 - \left(\frac{1}{2}\pi r^2 - r^2\right)$		
	or $\pi r^2 - \left(\frac{1}{2}\pi r^2 + \left(\frac{1}{2}\pi r^2 - r^2\right)\right)$	DM1	Depends on the area $\triangle BCD$
	=r ² .SatpreP	A1 [6]	

Question	18		1
(a) (i)	$BAO = OBA = \frac{\pi}{2} - \alpha$		Allow use of 90° or 180°
	$AOB = \pi - \left(\frac{\pi}{2} - \alpha\right) - \left(\frac{\pi}{2} - \alpha\right) = 2\alpha AG$	M1A1 [2]	Or other valid reasoning
(ii)	$\frac{1}{2}r^2(2\alpha) - \frac{1}{2}r^2\sin 2\alpha \text{oe}$	B2,1,0 [2]	SCB1 for reversed subtraction
(b)	Use of $\alpha = \frac{\pi}{6}$, $r = 4$	B1B1	
	1 segment $S = \left(\frac{1}{2}\right)4^2\left(\frac{\pi}{3}\right) - \left(\frac{1}{2}\right)4^2\sin\frac{\pi}{3}$		
	$=\left(\frac{8\pi}{3}-4\sqrt{3}\right)$	M1	Ft their (ii), α ,r
	Area ABC $T = \left(\frac{1}{2}\right) 4^2 \sin \frac{\pi}{3} \left(=4\sqrt{3}\right)$	B1	OR $AXB = \frac{T}{3} = 4\tan\frac{\pi}{6}$ or
	$T - 3S = \left(\frac{1}{2}\right)4^2 \sin\frac{\pi}{3} - 3$		$\frac{1}{2}\left(\frac{4}{\sqrt{3}}\right)^2 \sin\frac{2\pi}{3} \left(=\frac{4\sqrt{3}}{3}\right)$
	$\left[\left(\frac{1}{2}\right)4^2\left(\frac{\pi}{3}\right)-\left(\frac{1}{2}\right)4^2\sin\frac{\pi}{3}\right]$	M 1	OR $3\left[\frac{T}{3}-S\right] = 3\left[\frac{4\sqrt{3}}{3}-\left(\frac{8\pi}{3}-4\sqrt{3}\right)\right]$
	$16\sqrt{3} - 8\pi$ cao	A1 [6]	

 $BAC = \sin^{-1}(3/5)$ or $\cos^{-1}(4/5)$ or $\tan^{-1}(3/4)$ Accept 36.8(7)° **B1** $ABC = \sin^{-1}(4/5)$ or $\cos^{-1}(3/5)$ or $\tan^{-1}(4/3)$ Accept 53.1(3)° **B1 B1** $ACB = \pi / 2$ (Allow 90°) Shaded area = ΔABC - sectors (AEF + BEG + **M1** CFG) $\Delta ABC = \frac{1}{2} \times 4 \times 3 \text{ oe}$ **B1** Sum sectors = $\frac{1}{2} \left[3^2 0.6435 \right) +$ **M1** $2^{2}0.9273 + 1^{2}1.5708$] **OR** $\frac{\pi}{360} \left[3^2 36.8(7) + 2^2 53.1(3) + 1^2 90 \right]$ **A1** 6 - 5.536 = 0.464[7]

Question 2	20		
(i)	$PT = r \tan \alpha$	B1	
	$QT = OT - OQ = \frac{r}{2000} - r$		
	$QT = OT - OQ = \frac{r}{\cos \alpha} - r$ or $\sqrt{r^2 + r^2 \tan^2 \alpha} - r$	B1	
	Perimeter = sum of the 3 parts including $r\alpha$	B1 [3]	
(ii)	Area of triangle = $\frac{1}{2} \times 10 \times 10 \tan \frac{\pi}{3}$	M1	Correct formula used, $50\sqrt{3}$,86.6
	Area of sector = $\frac{1}{2} \times 10^2 \times \frac{1}{3}\pi$	M1	Correct formula used, $\frac{50\pi}{3}$, 52.36
	Shaded region has area 34 (2sf)	A1 [3]	
Question 2			
(i)	$CD = r\cos\theta, BD = r - r\sin\theta$ oe	B1 B1	allow degrees but not for last B1
	$CD = r\cos\theta, BD = r - r\sin\theta$ oe Arc $CB = r(\frac{1}{2}\pi - \theta)$ oe	B1	anow degrees out not for last D1
	$\rightarrow P = r\cos\theta + r - r\sin\theta + r(\frac{1}{2}\pi - \theta)$ oe	B1 √	√ sum – assuming trig used
	2	[4]	
(ii)	Sector = $\frac{1}{2} .5^2 .(\frac{1}{2}\pi - 0.6)$ (12.135)	M1	Uses $\frac{1}{2}r^2\theta$
	Triangle = $\frac{1}{2}$.5cos0.6.5sin0.6 (5.825)	M1	Uses $\frac{1}{2}bh$ with some use of trig.
	\rightarrow Area = 6.31	A1	2
	(or $\frac{1}{4}$ circle – triangle – sector)	[3]	
Question 2	22		1
(i)	$\tan\left(\frac{\pi}{3}\right) = \frac{AC}{2x} \text{ or } \cos\left(\frac{\pi}{3}\right) \left(=\sin\frac{\pi}{6}\right) = \frac{2x}{AB}$ $\rightarrow AC = 2\sqrt{3x} \text{ or } AB = 4x$	B 1	Either trig ratio
	$AM = \sqrt{13x^2}, \sqrt{13x}, 3.61x$	M1A1 [3]	Complete method.
(ii)	$\tan\left(\hat{MAC}\right) = \frac{x}{\text{Their }AC}$	M1	"Their AC " must be $f(x)$, $(M\hat{A}C) \neq \theta$.
	$\theta = \frac{1}{6}\pi - \tan^{-1}\frac{1}{2\sqrt{3}} \mathbf{AG}$	A1 [2]	$(\hat{MAC}) \neq \theta$. Justifies $\frac{\pi}{6}$ and links MAC & θ

(i)	$\cos 0.9 = OE / 6 \text{or} = \sin\left(\frac{\pi}{2} - 0.9\right) \text{oe}$ $OE = 6\cos 0.9 = 3.73 \text{oe}$	AG	M1 A1	[2]	Other methods possible
(ii)	Use of $(2\pi - 1.8)$ or equivalent method Area of large sector $= \frac{1}{2} \times 6^2 \times (2\pi - 1.8)$ oe Area of small sector $\frac{1}{2} \times 3.73^2 \times 1.8$ Total area $= 80.7(0) + 12.5(2) = 93.2$		M1 M1 M1 A1	[4]	Expect 4.48 Or $\pi 6^2 - \frac{1}{2} 6^2 1.8$. Expect 80.70 Expect 12.52 Other methods possible

(i)	$\frac{r}{10} = \sin 0.6 \text{ or } \frac{r}{10} = \cos 0.97$ or $BD = \sqrt{200 - 200 \cos 1.2} (=11.3)$ $r = 10 \times 0.5646, r = 10 \times \sin 0.6,$ $r = 10 \times \cos 0.971 \text{ or } r = \frac{1}{2} BD$ $\rightarrow r = 5.646$ AG	M1 A1	[2]	Or o	other va	ilid alternative.
(ii)	Major arc = $10(\theta)$ (= 50.832) $\theta = 2\pi - 1.2$ (= 5.083) or C = $2\pi \times 10$, Minor arc = 1.2×10 Semicircle = 5.646π (= 17.737) Major arc + semicircle = 68.6	M1 B1 A1	[3]	-	$2\pi - 1.2$ ied by	2 or π – 1.2 5.1
(iii)	Area of major sector $= \frac{1}{2}10^{2} (\theta) (= 254.159)$ Area of triangle <i>OBD</i> $= \frac{1}{2}10^{2} \sin 1.2 (= 46.602)$ Area = semicircle + sector + triangle (= 50.1 + 254.2 + 46.6) = 351	M1 M1 A1	[3]			e or $\pi - 1.2$ sin <i>C</i> or other complete method
Quest	tion 25	I	1 1			
(i)	$2r\alpha + r\alpha + 2r = 4.4r$ $\alpha = 0.8$		M1 A1		[2]	At least 3 of the 4 terms required
(ii)	$\frac{1}{2}(2r)^2 0.8 - \frac{1}{2}(r^2) 0.8 = 30$ (3/2) $r^2 \times 0.8 = 30 \rightarrow r = 5$		M1A A1	\ 1√	[3]	Ft through on <i>their</i> α

(i)	$ABC = \pi / 2 - \pi / 7 = 5\pi / 14.$ $CBD = \pi - 5\pi / 14 = 9\pi / 14$	B1	AG Or other valid exact method.
	Total:	1	
(ii)	$\sin\frac{\pi}{7} = \frac{\frac{1}{2}BC}{8} \text{ or } \frac{BC}{\sin\frac{2\pi}{7}} = \frac{8}{\sin\frac{5\pi}{14}} \text{ or}$ $BC^{2} = 8^{2} + 8^{2} - 2(8)(8)\cos\frac{2\pi}{7}$	M1	
	BC = 6.94(2)	A1	
	arc $CD = their 6.94 \times 9\pi / 14$	M1	Expect 14.02(0)
	arc $CB = 8 \times 2\pi / 7$	M1	Expect 7.18(1)
	perimeter = 6.94 + 14.02 + 7.18 = 28.1	A1	
	Total:	5	

·	stion 27		
'(i)	$\sin ABC = 8/10 \rightarrow ABC = 0.927(3)$	B1	Or $\cos = 6/10$ or $\tan = 8/6$. Accept 0.295π .
	Total:	1	
(ii)	$AB = 6$ (Pythagoras) $\rightarrow \Delta BCD = 8 \times 6 = 48.0$	M1A1	OR 8×10sin0.6435 or ½×10×10sin((2)×0.927)=48. 24or 40or80 gets M1A0
	Area sector $BCD = \frac{1}{2} \times 10^2 \times (2) \times their 0.9273$	*M1	Expect 92.7(3). 46.4 gets M1
	Area segment = 92.7(3) - 48	*A1	Expect 44.7(3). Might not appear until final calculation.
	Area semi-circle – segment = $\frac{1}{2} \times \pi \times 8^2 - their(92.7 - 48)$	DM1	Dep. on previous M1A1 OR $\pi \times 8^2 - (\frac{1}{2} \times \pi \times 8^2 + their 44.7)$.
	Shaded area = 55.8 - 56.0	A1	
	Total:	6	

	Total:	6	
Que	stion 28		
(i)	$(AB) = 2r\sin\theta \text{ (or } r\sqrt{2 - 2\cos2\theta} \text{ or } \frac{r\sin2\theta}{\sin\left(\frac{\pi}{2} - \theta\right)})$	B1	Allow unsimplifed throughout eg r + r, $\frac{2\theta}{2}$ etc
	$(\operatorname{Arc} AB) = 2r\theta$	B1	-0'
	$(P =) 2r + 2r\theta + 2r\sin\theta \text{ (or } r\sqrt{2 - 2\cos2\theta} \text{ or } \frac{r\sin2\theta}{\sin\left(\frac{\pi}{2} - \theta\right)})$	B1	
	Total:	3	
(ii)	Area sector $AOB = (\frac{1}{2}r^2 2\theta) \frac{25\pi}{6}$ or 13.1	B1	Use of segment formula gives 2.26 B1B1
	Area triangle $AOB = (\frac{1}{2} \times 2r\sin\theta \times r\cos\theta \text{ or } \frac{1}{2} \times r^2 \sin 2\theta)$ $\frac{25\sqrt{3}}{4} \text{ or } 10.8$	B1	
	Area rectangle $ABCD = (r \times 2r\sin\theta) 25$	B1	
	(Area =) Either $25 - (25\pi/6 - 25\sqrt{3}/4)$ or 22.7	B1	Correct final answer gets B4.
	Total:	4	

(i)	Letting M be midpoint of AB		
	$OM = 8$ (Pythagoras) $\rightarrow XM = 2$	B1	(could find $\sqrt{40}$ and use \sin^{-1} or \cos^{-1})
	$\tan AXM = \frac{6}{2} AXB = 2\tan^{-1}3 = 2.498$	M1 A1	AG Needs \times 2 and correct trig for M1
	(Alternative 1: $\sin AOM = \frac{6}{10}, AOM = 0.6435, AXB = \pi - 0.6435$)		(Alternative 1: Use of isosceles triangles, B1 for AOM, M1,A1 for completion)
			(Alternative 2: Use of circle theorem, B1 for AOB, M1,A1 for completion)
	Total:	3	
(ii)	$AX = \sqrt{(6^2 + 2^2)} = \sqrt{40}$	B1	CAO, could be gained in part (i) or part (iii)
	Arc $AYB = r\theta = \sqrt{40 \times 2.498}$	M1	Allow for incorrect $\sqrt{40}$ (not $r = 6 or 12 or 10$)
	Perimeter = $12 + arc = 27.8 cm$	A1	
	Total:	3	
(iii)	area of sector $AXBY = \frac{1}{2} \times (\sqrt{40})^2 \times 2.498$	M1	Use of $\frac{1}{2}r^2\theta$ with their r , (not $r = 6 \text{ or } r = 10$)
	Area of triangle $AXB = \frac{1}{2} \times 12 \times 2$, Subtract these $\rightarrow 38.0 \text{ cm}^2$	M1 A1	Use of $\frac{1}{2}bh$ and subtraction. Could gain M1 with $r = 10$.
	Total:	3	
Que	stion 30		

	6	Total:	3
Ques	stion 30		
'(i)	$\sin^{-1}\left(\frac{3}{5}\right) = 0.6435$	AG M	OR $(PBC =)\cos^{-1}\left(\frac{3}{5}\right) = 0.9273 \Rightarrow (ABP =)\frac{\pi}{2} - 0.9273 = 0.6435$ Or other valid method. Check working and diagram for evidence of incorrect method
(ii)	Use (once) of sector area = $\frac{1}{2}r^2\theta$	M	
	Area sector $BAP = \frac{1}{2} \times 5^2 \times 0.6435 = 8.04$	A	
	Area sector $DAQ = \frac{1}{2} \times \frac{1}{2}\pi \times 3^2 = 7.07$, Allow $\frac{9\pi}{4}$	A	2.
	34	C	2
(iii)	EITHER: Region = sect + sect - (rect - Δ) or sect - [rect - (sect + Δ)	(M	1 <u>Use</u> of correct strategy
	$(Area \ \Delta BPC =) \ \frac{1}{2} \times 3 \times 4 = 6 \qquad Seen$	А	1
	8.04 + 7.07 - (15 - 6) = 6.11	A1)
	<i>OR1:</i> Region = sector <i>ADQ</i> – (trap <i>ABPD</i> – sector <i>ABP</i>).	(M	1 Use of correct strategy
	(Area trap <i>ABPD</i> =) $\frac{1}{2}(5+1) \times 3 = 9$ Seen	А	1
	7.07 - (9 - 8.04) = 7.07 - 0.96 = 6.11	A1)
	<i>OR2:</i> Area segment AP = 2.5686 Area segment AQ = 0.5438 Region = segment AP + segment AQ + ΔAPQ .	(M	1 <u>Use</u> of correct strategy
	$(\text{Area } \Delta APQ =) \frac{1}{2} \times 2 \times 3 = 3 \qquad \text{Seen}$	А	1
	2.57 + 0.54 + 3 = 6.11	A1)
			3

(i)	Pythagoras $\rightarrow r = \sqrt{72}$ OE or $\cos 45 = \frac{6}{2} \rightarrow r = \frac{6}{2} = 6\sqrt{2}$	M1	Correct method leading to $r =$
	Arc $DC = \sqrt{72} \times \frac{1}{4\pi} = \frac{3\sqrt{2}}{2}\pi$, 2.12 π , 6.66	M1 A1	Use of $s=r\theta$ with their r (NOT 6) and $\frac{1}{4\pi}$
	2	3	
(ii)	Area of sector- <i>BDC</i> is $\frac{1}{2} \times 72 \times \frac{1}{4}\pi$ (= 9 π or 28.274)	*M1	Use of $\frac{1}{2}r^{2}\theta$ with their <i>r</i> (NOT 6) and $\frac{1}{4}\pi$
	Area $Q = 9\pi - 18 (10.274)$	DM1	Subtracts their $\frac{1}{2} \times 6 \times 6$ from their $\frac{1}{2}r^2\theta$
	Area <i>P</i> is $(\frac{1}{4}\pi 6^2 - \text{area } Q) = 18$	M1	Uses $\{\frac{1}{4}\pi 6^2 - (\text{their area } Q \text{ using } \sqrt{72})\}$
	Ratio is $\frac{18}{9\pi - 18} \left(\frac{18}{10.274}\right) \to 1.75$	A1	
		4	

Question 32

$\cos A = 8/10 \rightarrow A = 0.6435$	B1	AG Allow other valid methods e.g. $\sin A = 6/10$
	1	
<i>EITHER:</i> Area $\triangle ABC = \frac{1}{2} \times 16 \times 6$ or $\frac{1}{2} \times 10 \times 16 \sin 0.6435 = 48$	(M1A1	
Area 1 sector ¹ / ₂ ×10 ² ×0.6435	M1	
Shaded area = $2 \times their \operatorname{sector} - their \Delta ABC$	M1)	
$OR: \Delta BDE = 12, \ \Delta BDC = 30$	(B1 B1	
Sector = 32.18	M1	2.5
$2 \times \text{segment} + \Delta BDE$	M1)	0.
=16.4	A1	3
satpr	5	

5(i)	$\frac{PQ}{2} = 10 \times \sin 1.1$	M1	Correct use of sin/cos rule
	(PQ =) 17.8 (17.82implies M1 , A1) AG	A1	OR $PQ = \frac{10\sin 2.2}{\sin\left(\frac{\pi}{2} - 1.1\right)} or \frac{10\sin 2.2}{\sin 0.4708} \text{ or } \sqrt{200 - 200\cos 2.2} = 17.8$
		2	
(ii)	Angle $OPQ = (\pi/2 - 1.1)$ [accept 27°]	B1	OE Expect 0.4708 or 0.471. Can be scored in part (i)
	Arc $QR = 17.8 \times their (\pi/2 - 1.1)$	M1	Expect 8.39. (or 8.38).
	Perimeter = $17.8 - 10 + 10 + their \operatorname{arc} QR$	M1	
	26.2	A1	For both parts allow correct methods in degrees
		4	

Angle $AOC = \frac{6}{5}$ or 1.2		M1	Allow 68.8°. Allow $\frac{5}{6}$
$AB = 5 \times tan(their 1.2)$ OR by e.g. Sine Rule	Expect 12.86	DM1	OR $OB = \frac{5}{\cos their 1.2}$. Expect 13.80
Area $\triangle OAB = \frac{1}{2} \times 5 \times their 12.86$	Expect 32.15	DM1	OR $\frac{1}{2} \times 5 \times their OB \times sin their 1.2$
Area sector $\frac{1}{2} \times 5^2 \times their 1.2$	Expect 15	DM1	All DM marks are dependent on the first M1
Shaded region = 32.15 - 15 = 17.2		A1	Allow degrees used appropriately throughout. 17.25 scores A0
		5	

Question 35

$AT \text{ or } BT = r \tan \theta \text{ or } OT = \frac{r}{\cos \theta}$	B1	May be seen on diagram.
$\frac{1}{2r^2}2\theta$, & $\frac{1}{2}\times r\times (r\tan\theta \text{ or } AT) \text{ or } \frac{1}{2}\times r\times (\frac{r}{\cos\theta} \text{ or } OT) \sin\theta$	M1	Both formulae, $(\frac{1}{2}r^2\theta, \frac{1}{2}bh \text{ or } \frac{1}{2}absin\theta)$, seen with 2θ used when needed.
$\frac{1}{2}r^22\theta = 2 \times \frac{1}{2} \times r \times r \tan \theta - \frac{1}{2}r^22\theta$ oe $\rightarrow 2\theta = \tan \theta$ AG	A1	Fully correct working from a correct statement. Note: $\frac{1}{2}r^22\theta = \frac{1}{2}r^2\tan\theta$ is a valid statement.
	3	
$\theta = 1.2$ or sector area = 76.8	B1	
Area of kite = 165 awrt	B1	
164.6 – 76.8 = 87.8 awrt	B1	awrt 87.8 with little or no working can be awarded 3/3. SC Final answers that round to 88 with little or no working can be awarded 2/3.
2	3	2.

5(i)	$(\tan\theta = \frac{AT}{r}) \rightarrow AT = r \tan\theta \text{ or } OT = \frac{r}{\cos\theta} \text{ SOI}$	B1	CAO
	$\rightarrow A = \frac{1}{2} r^2 \tan \theta \qquad -\frac{1}{2} r^2 \theta$	B1 B1	B1 for $\frac{1}{2}r^2$ tan θ . B1 for " $-\frac{1}{2}r^2\theta$ " If Pythagoras used may see area of triangle as $\frac{1}{2}r\sqrt{r^2 + r^2tan^2\theta}$ or $\frac{1}{2}r\left(\frac{r}{\cos\theta}\right)sin\theta$
		3	
i(ii)	$ \tan \theta = \frac{AT}{3} \rightarrow AT = 7.716 $	M1	Correct use of trigonometry and radians in rt angle triangle
	Arc length = $r\theta$ = 3.6	B1	Accept 3×1.2
	OT by Pythagoras or cos 1.2 = $\frac{3}{OT}$ (= 8.279)	M1	Correct method for <i>OT</i>
	Perimeter = AT + arc + OT - radius = 16.6	A1	CAO, www
		4	

	0.8 oe	B1	
		1	
)	$BD = 5 \sin their 0.8$	M1	Expect 3.58(7). Methods using degrees are acceptable
	$DC = 5 - 5\cos their 0.8$	M1	Expect 1.51(6)
	Sector = $\frac{1}{2} \times 5^2 \times their 0.8$ OR Seg = $\frac{1}{2} \times 5^2 \times [their 0.8 - sintheir 0.8]$	M1	Expect 10 for sector. Expect 1.03(3) for segment
	Trap = $\frac{1}{2}(5 + theirDC) \times theirBD$ oe OR $\triangle BDC = \frac{1}{2}theirBD \times theirCD$	M1	OR (for last 2 marks) if X is on AB and XC is parallel to BD :
	Shaded area = 11.69 - 10 OR 2.71(9) - 1.03(3) = 1.69 cao	A1	$BDCX$ –(sector – ΔAXC) = 5.43(8) – [10 – 6.24(9)] = 1.69 cao M1A1
		5	

(i)	$A\hat{B}C$ using cosine rule giving $\cos^{-1}(\frac{-1}{8})$ or $2\sin^{-1}(\frac{3}{4})$ or $2\cos^{-1}\left(\frac{\sqrt{7}}{2}\right)$	M1	Correct method for $A \hat{B} C$, expect 1.696 ^e awrt
	or $B\hat{A}C = \cos^{-1}(\frac{3}{4})$ or $B\hat{A}C = \sin^{-1}\frac{\sqrt{7}}{4}$ or $B\hat{A}C = \tan^{-1}\frac{\sqrt{7}}{3}$		Or for $B \hat{A} C$, expect 0.723 ^c awrt
	$C\hat{B}Y = \pi - A\hat{B}C$ or $2 \times C\hat{A}B$	M1	For attempt at $C\hat{B}Y = \pi - A\hat{B}C$ or $C\hat{B}Y = 2 \times C\hat{A}B$
	OR		
	Find <i>CY</i> from $\triangle ACY$ using Pythagoras or similar $\triangle s$	M1	Expect $4\sqrt{7}$
	$C\hat{B} Y = \cos^{-1}\left(\frac{8^2 + 8^2 - (their CY)^2}{2 \times 8 \times 8}\right)$	M1	Correct use of cosine rule
	$C \hat{B} Y = 1.445^{c} AG$	A1	Numerical values for angles in radians, if given, need to be correct to 3 decimal places. Method marks can be awarded for working in degrees. Need 82.8° awrt converted to radians for A1. Identification of angles must be consistent for A1.
	2	3	
(ii)	Are CY = 8 × 1.445	B1	Use of $s=8\theta$ for arc CY, Expect 11.56
	$B\hat{A}C = \frac{1}{2}(\pi - A\hat{B}C) \text{ or } \cos^{-1}(\frac{3}{4})$	*M1	For a valid attempt at $B\hat{A}C$, may be from (i). Expect 0.7227 ^c
	Are $XC = 12 \times (\text{their } B \hat{A} C)$	DM1	Expect 8.673
	Perimeter = 11.56 + 8.673 + 4 = 24.2 cm awrt www	A1	Omission of '+4' only penalised here.
		4	

Angle $OAB = \pi / 2 - \pi / 5 = 3\pi / 10$ soi	B1	Allow 54° or 0.9425 rads
Sector $CAB = \frac{1}{2} \times \left(their \frac{3\pi}{10} \right) \times 5^2$	M1	Expect 11.78
$OA = \frac{5}{\sin\frac{\pi}{5}} = 8.507$	M1A1	May be implied by $OC = 3.507$
Sector $COD = \frac{1}{2} \times (their 3.507)^2 \times \frac{\pi}{5}$	M1	Expect 3.86
$\Delta OAB = \frac{1}{2} \times 5 \times (their 8.507) \sin \frac{3\pi}{10}$	M1	Or $\frac{1}{2} \times 5 \times \frac{5}{\tan \frac{\pi}{5}}$ or $2.5 \times \sqrt{(their 8.507)^2 - 25}$
= 17.20 or 17.21	A1	
Shaded area 17.20(<i>or</i> 17.21)-11.78-3.86=1.56 or 1.57	A1	
TP	8	

Angle <i>CBA</i> = $\sin^{-1}\left(\frac{7}{8}\right) = 1.0654$ or <i>CBD</i> = $\cos^{-1}\left(\frac{-17}{32}\right) = 2.13$	B1	Accept 61.0°, 66° or 122°
Sector $BCYD = \frac{1}{2} \times 8^2 \times 2 \times their 1.0654 (rad)$ soi or sector CBY = $\frac{1}{2} \times 8^2 \times their 1.0654 (rad)$	M1	Expect 68.1(9). Angle must be in radians (or <i>their</i> $61/360 \times 2 \times 8^2$) Or sector DBY
$\Delta BCD = 7 \times \sqrt{8^2 - 7^2} \text{ or } \frac{1}{2} \times 8^2 \times \sin(2 \times their 1.0654) \text{ soi}$	M1	Expect 27.1(1). Award M1 for ABC or ABD
Semi-circle $CXD = \frac{1}{2}\pi \times 7^2 = 76.9(7)$	M1	M1M1 for segment area formula used correctly
Total area = their68.19 - their27.11 + their76.97 = 118.0-118.1	M1A1	Cannot gain M1 without attempt to find angle CBA or CBD
24	6	

(i)	Angle <i>EAD</i> = Angle $ACD = \frac{3\pi}{10}$ or 54° or 0.942 soi	B1		
	or Angle $DAC = \frac{\pi}{5}$ or 36° or 0.628 soi			
	$AD = 8\sin(\frac{3\pi}{10}) \text{ or } 8\cos(\frac{\pi}{5})$	M1	Angles used	I must be correct
	(AD =) 6.47	A1		
	Alternative method for question 3(i)		I	
	$AB = \frac{8}{\tan\left(\frac{\pi}{5}\right)} \text{ or } AB = \frac{8\sin\left(\frac{3\pi}{10}\right)}{\sin\left(\frac{\pi}{5}\right)} \text{ or } 11.(01)$	B1	Angles used	I must be correct
	$AD = 11.0(1)\sin\frac{\pi}{5}$ oe	M1		
	(AD =) 6.47	A1		
	T PR	3		
(ii)	Area sector = $\frac{1}{2} (theirAD)^2 \times their \left(\frac{\pi}{2} - \frac{\pi}{5}\right)$	M1	19.7(4)	
	Area $\Delta ADC = \frac{1}{2} \times 8 \times their AD \times \sin \frac{\pi}{5}$ or $\frac{1}{2} \times 8\cos\left(\frac{3\pi}{10}\right) \times 8\sin\left(\frac{3\pi}{10}\right)$	M1	Or e.g. ½ th 15.2(2)	eir $AD imes \sqrt{8^2 - theirAD^2}$.
	(Shaded area =) 35.0 or 34.9	A1		
Ques	tion 42	3		
Perim	eter of $AOC = 2r + r\theta$		B1	
Angle	$COB = \pi - \theta$		B1	Could be on the diagram. Condone $180 - \theta$.

Angle $COB = \pi - \theta$	B1	Could be on the diagram. Condone $180 - \theta$.
Perimeter of $BOC = 2r + r(\pi - \theta)$	B1	FT on angle <i>COB</i> if of form $(k\pi - \theta)$, $k > 0$.
$(2r +) \pi r - r\theta = 2((2r) + r\theta)$ $(2 + \pi - \theta = 4 + 2\theta \rightarrow \theta = \frac{\pi - 2}{3})$	M1	Sets up equation using $r(k\pi - \theta)$ and $\times 2$ on corrective side. Condone any omissions of OA, OB and/or OC.
$\theta = 0.38$	A1	Equivalent answer in degrees scores A0.
	5	

Uses $A = \frac{1}{2}r^2\theta$	М1	Uses area formula.
$\theta = \frac{2A}{r^2}$	A1	
$P = r + r + r\theta$	B1	
$P = 2r + \frac{2A}{r}$	A1	Correct simplified expression for <i>P</i> .
	4	

(i)	Angle $CAO = \frac{\pi}{3}$	B1	
		1	
(ii)	$(\text{Sector } AOC) = \frac{1}{2}r^2 \times their\frac{\pi}{3}$	M1	SOI
	$(\Delta ABC) = \frac{1}{2}(r)(2r)\sin\left(their\frac{\pi}{3}\right)$ or $\frac{1}{2}(2r)(r)\frac{\sqrt{3}}{2}$ or $\frac{1}{2}(r)(r)\sqrt{3}$	M1	For M1M1, <i>their</i> $\frac{\pi}{3}$ must be of the form $k\pi$ where $0 < k < \frac{1}{2}$
	$(\Delta ABC) = \frac{1}{2}(r)(2r)\sin(\frac{\pi}{3})$ or $\frac{1}{2}(2r)(r)\frac{\sqrt{3}}{2}$ or $\frac{1}{2}(r)(r)\sqrt{3}$	A1	All correct
	$r^2\left(\frac{\sqrt{3}}{2}\right) - \frac{1}{2}r^2\left(\frac{\pi}{3}\right)$	A1	
		4	

Arc length $AB = 2r\theta$	B1	
$\operatorname{Tan} \theta = \frac{AT}{r} \text{ or } \frac{BT}{r} \to AT \text{ or } BT = r \tan \theta$	B1	Accept or $\sqrt{\left(\left(\frac{r}{\cos\theta}\right)^2 - r^2\right)}$ or $\frac{r\sin\theta}{\sin\left(\frac{\pi}{2} - \theta\right)}$ NOT (90 - θ
$P = 2r\theta + 2r\tan\theta$	B1FT	OE, FT for <i>their</i> arc length + $2 \times their AT$
	3	
Area $\triangle AOT = \frac{1}{2} \times 5 \times 5 \tan 1.2$ or Area $AOBT = 2 \times \frac{1}{2} \times 5 \times 5 \tan 1.2$	B1	
Sector area = $\frac{1}{2} \times 25 \times 2.4$ (or 1.2)	*M1	Use of $\frac{1}{2}r^2\theta$ with $\theta = 1.2$ or 2.4.
Shaded area = 2 triangles - sector	DM1	Subtraction of sector, using 2.4 where appropriate, from 2 triangles
Area = 34.3 (cm ²)	A1	AWRT
Alternative method for question 4(ii)	20.	
Area of $\triangle ABT = \frac{1}{2} \times (5 \times \tan 1.2)^2 \times \sin(\pi - 2.4)$ (= 55.86)	B1	
Segment area = $\frac{1}{2} \times 25 \times (2.4 - \sin 2.4) (= 21.56)$	*M1	Use of $\frac{1}{2}r^2(\theta - \sin \theta)$ with $\theta = 1.2$ or 2.4
Shaded area = triangle - segment	DM1	Subtraction of segment from $\triangle ABT$, using 2.4 where appropriate.
Area = 34.3 (cm^2)	A1	AWRT
	4	

3(i)	$OA \times \frac{3}{8}\pi = 6$	M1	
	$OA = \frac{16}{\pi} = 5.093(0)$	A1	
i(ii)	$AB = their 5.0930 \times \tan\frac{3}{16}\pi$	M1	
	Perimeter = $2 \times 3.4030 + 6 = 12.8$	A1	
(iii)	Area $OABC = (2 \times \frac{1}{2}) \times their 5.0930 \times their 3.4030$	M1	
	Area sector = $\frac{1}{2} \times (their 5.0930)^2 \times \frac{3}{8}\pi$	M1	
	Shaded area = <i>their</i> 17.331- <i>their</i> 15.279 = 2.05	M1A1	

$OC = 6\cos 0.8 = 4.18(0)$	M1A1	SOI
Area sector $OCD = \frac{1}{2} (their 4.18)^2 \times 0.8$	*M1	OE
$\Delta OCA = \frac{1}{2} \times 6 \times their 4.18 \times \sin 0.8$	M1	OE
Required area = their $\triangle OCA - their$ sector OCD	DM1	SOI. If not seen <i>their</i> areas of sector and triangle must be seen
2.01	A1	CWO. Allow or better e.g. 2.0064
	6	

$\cos POA = \frac{5}{13} \rightarrow POA = 1.17(6) \text{Allow } 67.4^{\circ}$	M1 A1
or $\sin = \frac{12}{13}$ or $\tan = \frac{12}{5}$	
Reflex $AOB = 2\pi - 2 \times their 1.17(6)$ OE in degrees or minor arc AB = $5 \times 2 \times their 1.17(6)$	M1
Major arc = $5 \times their \ 3.93(1)$ or $2\pi \times 5$ - their 11.7(6)	M1
AP (or BP) = $\sqrt{13^2 - 5^2} = 12$	B1
$\overline{\text{Cord length} = 43.7}$	A1
	6

'(a)	$BC^{2} = r^{2} + 4r^{2} - 2r \cdot 2r \times \cos\left(\frac{\pi}{6}\right) = 5r^{2} - 2r^{2}\sqrt{3}$	M1
	$BC = r\sqrt{\left(5 - 2\sqrt{3}\right)}$	A1
		2
(b)	$Perimeter = \frac{2\pi r}{6} + r + r\sqrt{\left(5 - 2\sqrt{3}\right)}$	M1 A1
		2
'(c)	Area = sector - triangle	
	Sector area = $\frac{1}{2}4r^2\frac{\pi}{6}$	M1
	Triangle area = $\frac{1}{2}r$. $2r\sin\frac{\pi}{6}$	M1
	Shaded area = $r^2 \left(\frac{\pi}{3} - \frac{1}{2} \right)$	A1
		3
Que	stion 50	
Angl	$e AOB = 15 \div 6 = 2.5$ radians	B

Angle $AOB = 15 \div 6 = 2.5$ radians	B1
Angle $BOC = \pi - 2.5$ (FT on angle AOB)	B1FT
$BC = 6(\pi - 2.5)$ ($BC = 3.850$)	M1
$\sin(\pi - 2.5) = BX \div 6 (BX = 3.59)$	M1
Either $OX = 6\cos(\pi - 2.5)$ or Pythagoras ($OX = 4.807$)	M1
$XC = 6 - OX$ ($XC = 1.193$) $\rightarrow P = 8.63$	A1
"Satarap"	6

1			
(a)	$\cos BAO = \frac{6}{8} \text{ or } \frac{8^2 + 12^2 - 8^2}{2 \times 8 \times 12}$	M1	Or other correct method
	<i>BAO</i> = 0.723	A1	
		2	
)(b)	Sector $ABC = \frac{1}{2} \times 12^2 \times their 0.7227$	*M1	Accept 52.1
	Triangle $AOB = \frac{1}{2} \times 8 \times 12 \sin(their 0.7227)$ or $\frac{1}{2} \times 12 \times \sqrt{28}$	*M1	or $\frac{1}{2} \times 8 \times 8\sin(\pi - 2 \times their 0.7227)$. Expect 31.7 or 31.8
	Shaded area = <i>their</i> 52.0 – <i>their</i> 31.7 = 20.3	DM1 A1	M1 dependent on both previous M marks
		4	
)(c)	$\operatorname{Arc} BC = 12 \times their 0.7227$	*M1	Expect 8.67
	Perimeter = $8 + 4 + their 8.67 = 20.7$	DM1 A1	
		3	

(a)	

(a)	Use of correct formula for the area of triangle ABC	M1	Use of 180–2 θ scores M0. Condone 2π – 2θ
	$\frac{1}{2}r^{2}\sin(\pi-2\theta) \text{ or } \frac{1}{2}r^{2}\sin 2\theta \text{ or } 2\times\frac{1}{2}r\times r\cos\theta\times\sin\theta \text{ or } 2\times\frac{1}{2}r\cos\theta\times r\sin\theta$	A1	OE
	[Shaded area = triangle - sector] = <i>their</i> triangle area $-\frac{1}{2}r^2\theta$	B1 FT	FT for <i>their</i> triangle area $-\frac{1}{2}r^2\theta$ (Condone use of 180 degrees for triangle area for B1)
		3	
(b)	Arc $BD = r\theta = 6$ cm	B1	SOI
	$AC = 2r\cos\theta = (2 \times 10\cos 0.6 = 20\cos 0.6 = 16.506)$ or $\sqrt{(2r^2 - 2r^2\cos(\pi - 2\theta))}$ or $\frac{r \times \sin(\pi - 2\theta)}{\sin\theta}$	*M1	Finding AC or $\frac{1}{2}$ AC (= 8.25)
	$DC = 2r\cos\theta - r \text{ or } \sqrt{\left(2r^2 - 2r^2\cos(\pi - 2\theta)\right)} - r \ (= 6.506)$	DM1	Subtracting r from their AC or r-rcos θ from their half AC (8.25-1.75)
	(Perimeter = 10 + 6 + 6.506 =) 22.5	A1	AWRT
	T PD	4	

a)	$\left(\sin\theta = \frac{r}{OC} \rightarrow\right) OC = \frac{r}{\sin\theta}$	M1 A1	
	$CD = r + \frac{r}{\sin\theta}$	A1	
		3	
)	Radius of arc $AB = 4 + \frac{4}{\sin{\frac{\pi}{6}}} = 4 + 8 = 12$	B1	SOI
	(Arc $AB =$) their $12 \times \frac{2\pi}{6}$ or $\left(\frac{1}{2}AB\right)$ their $12 \times \frac{\pi}{6}$	M1	Expect 4π , must use <i>their</i> CD, not 4
	Perimeter = $24 + 4\pi$	A1	
	satpre	3	

(c)	Area $FOC = \frac{1}{2} \times 4 \times their \ OC \times \sin \frac{\pi}{3}$	M1	
	8 \sqrt{3}	A1	
	Area sector $FOE = \frac{1}{2} \times \frac{2\pi}{3} \times 4^2 = \frac{16\pi}{3}$	B1	
	Shaded area = $16\sqrt{3} - \frac{16\pi}{3}$	A1	
	Alternative method for question 10(c)		
	$FC = \sqrt{\left(their \ OC\right)^2 - 4^2}$	M1	$\sqrt{48}$ or $4\sqrt{3}$
	Area $FOC = \frac{1}{2} \times 4 \times 4\sqrt{3} = 8\sqrt{3}$	A1	
	Area of half sector $FOE = \frac{1}{2} \times \frac{\pi}{3} \times 4^2 = \frac{8\pi}{3}$	B1	
	Shaded area = $16\sqrt{3} - \frac{16\pi}{3}$	A1	
		4	

	4		
Ques	tion 54		
(a)	$\Delta ADE = \frac{1}{2} (ka)^2 \sin \frac{\pi}{6}$	M1	Attempt to find the area of ΔADE .
	$\frac{1}{4}k^2a^2$	A1	OE.
	Sector $ABC = \frac{1}{2}a^2\frac{\pi}{6}$	B1	
	$2 \times \frac{1}{4}k^2 a^2 = \frac{1}{2}a^2 \frac{\pi}{6}$	M1	OE. For $2 \times \Delta ADE$ = sector ABC with at least one correct area.
	$k = \left(\sqrt{\frac{\pi}{6}}\right) = 0.7236$	A1	
	satprev	5	
(b)	$2 \times \frac{1}{2} (ka)^2 \sin \theta = \frac{1}{2} a^2 \theta$	M1	Condone omission of '2' or '1/2' on LHS for M1 only.
	$k^2 = \frac{\theta}{2\sin\theta}$	A1	
	$k^2 > \frac{1}{2}$ leading to $\frac{1}{\sqrt{2}} < k < 1$	A1	OE. Accept $k > \frac{1}{\sqrt{2}}$ or $k > 0.707$ (AWRT) or
			0.707(AWRT) < $k < 1$ or $k > \sqrt{\frac{1}{2}}$ OE
		3	

(b)

(a)	$\frac{1}{2} \times 4^2 \times \text{angle BAD} = 10$	M1	Use of sector area formula
	Angle BAD = 1.25	A1	OE. Accept 0.398π , 71.6° for SC B1 only
		2	
(b)	$\operatorname{Arc} BD = 4 \times their 1.25$	M1	Use of arc length formula. Expect 5.
	$BC = 4\tan(their1.25)$	M1	Expect 12.0(4). May use <i>ACB</i> =0.321 or 18.4°
	$CD = \frac{4}{\cos(their 1.25)} - 4 \text{ or } \sqrt{4^2 + (their BC)^2} - 4$	M1	Expect $12.69 - 4 = 8.69$. May use <i>ACB</i> .
	Perimeter = $5 + 12.0(4) + 8.69 = 25.7$ (cm)	A1	AWRT
		4	

Question 56

[By symmetry] $[6 \times P\hat{A}Q = 2\pi]$, $[P\hat{A}Q =]2\pi \div 6$,	M1				
Explaining that there are six sectors around the diagram that make up a complete circle.	A1	AG			
Alternative method for Question 12(a)					
Using area or circumference of circle centre $A \div 6$	M1	$\frac{400\pi}{6}$ or $\frac{40\pi}{6}$			
Justification for dividing by 6 followed by comparison with the sector area or arc length.	A1	AG			
Alternative method for Question 12(a)					
Explain why ΔPAQ is an equilateral triangle	M1	Assumption of this scores M0			
Using ΔPAQ is an equilateral triangle $\therefore P\hat{A}Q = \frac{\pi}{3}$	A1	AG			
Alternative method for Question 12(a)					
Using the internal angle of a regular hexagon = $\frac{2\pi}{3}$	M1				
Or $F\hat{A}O + O\hat{A}B = \frac{2\pi}{3}$, equilateral triangles					
$P\hat{A}Q = 2\pi - \left(\frac{\pi}{2} + \frac{2\pi}{3} + \frac{\pi}{2}\right) = \frac{\pi}{3}$	A1	AG			

(a) Alternative method for Question 12(a)

	$Sin\theta = \frac{20}{40}$, with θ clearly identified	M1	
	$\theta = \frac{\pi}{6}, 2\theta = \frac{\pi}{3} = F\hat{A}O$ and by similar triangles = $P\hat{A}Q$	A1	AG
		2	
(b)	Each straight section of rope has length 40 cm	B1	SOI
	Each curved section round each pipe has length $r\theta = 20 \times \frac{\pi}{3}$	*M1	Use of $r\theta$ with $r = 20$ and θ in radians
	Total length = $6 \times ((their \cdot 40) + k\pi)$	DM1	$6 \times (their \text{ straight section} + their \text{ curved section}).$ Their curved section must be from acceptable use of $r\theta$ – this could now be numeric.
	$240 + 40\pi$ or 366 (AWRT) (cm)	A1	Or directly: (6× diameter) + circumference
		4	

⁽a)

(c)	[Triangle area =] $\frac{1}{2} \times 40 \times 40 \times \sin\left(\frac{\pi}{3}\right)$ or $\frac{1}{2} \times 40 \times 20\sqrt{3}$ or	B1	
	$400\sqrt{3}$ or 693(AWRT)		
	[Total area of hexagon = $6 \times 400\sqrt{3}$ =] $2400\sqrt{3}$	B1	Condone $4800\frac{\sqrt{3}}{2}$
	Alternative method for Question 12(c)		
	[Trapezium area =] $\frac{1}{2} \times (40 + 80) \times 40 \sin\left(\frac{\pi}{3}\right)$ or $1200\sqrt{3}$ or 2080 (AWRT)	B1	
	[Total area of hexagon = $2 \times 1200 \sqrt{3}$ =] $2400 \sqrt{3}$	B1	Condone $4800\frac{\sqrt{3}}{2}$
	Alternative method for Question 12(c)		
	Area of triangle $ABC = 400\sqrt{3}$ or 693 (AWRT) or 4 × Area of half of triangle $ABC = 4 \times 200\sqrt{3}$ or 1390 (AWRT) or Area of rectangle $ABDE = 1600\sqrt{3}$ or 2770 (AWRT)	B1	
	[Total area of hexagon = $2 \times 400\sqrt{3} + 1600\sqrt{3}$ =] $2400\sqrt{3}$ Or [= $4 \times 200\sqrt{3} + 1600$ =] $2400\sqrt{3}$	B1	Condone $4800\frac{\sqrt{3}}{2}$
			If B0B0, SC B1 can be scored for sight of 4160 (AWRT) as final answer.
		2	
(d)	Each rectangle area = 40×20 (= 800)	B1	SOI, e.g. by sight of 4800
	Each sector area = $\frac{1}{2}r^2\theta = \frac{1}{2}\times 20^2 \times \frac{\pi}{3} \left[= \frac{200\pi}{3} \right]$	B1	SOI.
	Total area = $2400\sqrt{3} + 4800 + 400\pi$ or $10200(\text{cm}^2)$ (AWRT)	B1	Or directly: part (c) + 6800 + area circle radius 20.
		3	
Que	stion 57		

(a)	Either Let midpoint of PQ be H : sin $HCP = \frac{2}{4} \Rightarrow$ Angle $HCP = \frac{\pi}{6}$ Or sin $PSQ = \frac{4}{8} \Rightarrow$ Angle $PSQ = \frac{\pi}{6}$ Or using cosine rule: angle $PCQ = \frac{\pi}{3}$ Or by inspection: triangle PCQ or PCT is equilateral so angle $PCQ = \frac{\pi}{3}$	M1	
	Angle $PCS = \pi - \frac{\pi}{6} - \frac{\pi}{6} = \frac{2}{3}\pi$	A1	AG
		2	
(b)	Perimeter = $2 \times 4 \times \frac{2\pi}{3}$ or $8\pi - \frac{8\pi}{3}$	M1	Length of two arcs <i>PS</i> and <i>QR</i>
	+2π×2	M1	Adding circumference of two semicircles
	$\frac{28\pi}{3}$	A1	Must be a single term
		3	

Area sector $CPQ = \frac{1}{2} \times 4^2 \times \frac{\pi}{3} = \frac{8\pi}{3}$	M1	Uses correct formula for sector
Area of segment of large circle beyond <i>CPQ</i> = $\frac{8\pi}{3} - \frac{1}{2} \times 4^2 \times \sin\left(\frac{\pi}{3}\right) = \frac{8\pi}{3} - 4\sqrt{3}$	M1	Attempts to find area of segment
Area of small semicircle = $\pi \times 2$ or area of small circle = $\pi \times 2^2$	M1	
Area of plate = Large circle – $[2 \times]$ small semicircle – $[2 \times]$ segment area	M1	
$\pi \times 4^2 - \pi \times 2^2 - 2 \times \left(\frac{8\pi}{3} - 4\sqrt{3}\right) = \frac{20\pi}{3} + 8\sqrt{3}$	A1	AG
Alternative method for Question 8(c)	I	1
Area of sector $PCS = \frac{1}{2} \times 4^2 \times \frac{2\pi}{3} = \frac{16\pi}{3}$	M1	Uses correct formula for sector
Area of triangle $PCQ = \frac{1}{2} \times 4^2 \times \sin \frac{\pi}{3} = 4\sqrt{3}$	M1	Uses correct formula for triangle
Area of small semicircle = $\pi \times 2$ or area of circle = $\pi \times 2^2$	M1	
Area of plate = $[2 \times]$ large sector + $[2 \times]$ triangle – $[2 \times]$ small semicircle	M1	
$2\left(\frac{16\pi}{3}\right) + 2\left(4\sqrt{3}\right) - \pi \times 2^2 = \frac{20\pi}{3} + 8\sqrt{3}$	A1	AG
	5	

(c)

(a)	Angle XYC = $\sin^{-1}\left(\frac{9}{11}\right) = 0.9582$ or $\sin XYC = \frac{9}{11}$ leading to XYC = 0.9582	B1	AG. OE using cosine rule.
	4	1	
(b)	$XY = \sqrt{11^2 - 9^2} = \sqrt{40}$ or using 0.9582 and trigonometry	*M1 A1	
	AB = 9 + 11 - theirXY	B1 FT	OE e.g. $20 - 2\sqrt{10}$, $2 + 9 - 2\sqrt{10} + 11 - 2\sqrt{10}$
	Arc $AC = 11 \times 0.9582$	M1	
	Arc $BC = 9 \times \frac{\pi}{2}$	M1	
	Perimeter = [13.6(8) + 10.5(4) + 14.1(4) =] 38.4	A1	AWRT. Answer must be evaluated as a single decimal.
		6	

(a)	Angle XYC = $\sin^{-1}\left(\frac{9}{11}\right) = 0.9582$ or $\sin XYC = \frac{9}{11}$ leading to XYC = 0.9582	B1	AG. OE using cosine rule.
	11	1	
(b)	$XY = \sqrt{11^2 - 9^2} = \sqrt{40}$ or using 0.9582 and trigonometry	*M1 A1	
	AB = 9 + 11 - theirXY	B1 FT	OE e.g. $20 - 2\sqrt{10}$, $2 + 9 - 2\sqrt{10} + 11 - 2\sqrt{10}$
	$\operatorname{Arc} AC = 11 \times 0.9582$	M1	
	Arc $BC = 9 \times \frac{\pi}{2}$	M1	
	Perimeter = [13.6(8) + 10.5(4) +14.1(4) =] 38.4	A1	AWRT. Answer must be evaluated as a single decimal.
		6	

(a)	EITHER By using trigonometry: $\hat{BAC} = 0.6435$ and $\hat{ABC} = \frac{\pi - 0.6435}{2}$ OR By Pythagoras: $AP = 12 \Rightarrow BP = 3$ so $\tan A\hat{BC} = \frac{9}{3}$ OR Using $\triangle PBC$ and either the sine or cosine rule $\sin A\hat{BC} = \frac{3}{\sqrt{10}}$ or $\cos A\hat{BC} = \frac{\sqrt{10}}{10}$	MI	$\frac{3}{\sqrt{10}} = 0.9486 \frac{\sqrt{10}}{10} = 0.3162$
	$A\hat{B}C = \frac{\pi - 0.6435}{2} \text{ or } \tan^{-1}\frac{9}{3} \text{ or } \sin^{-1}\frac{3}{\sqrt{10}} \text{ or } \cos^{-1}\frac{\sqrt{10}}{10} \text{ or}$ 1.249(04) or71.56° = 1.25 radians (3 sf)	A1	AG. Final answer must be 1.25, more accurate value 1.24904 with no rounding to 3sf seen as the final answer gets M1A0. If decimals are used all values must be given to at least 4sf for A1.
	2	2	
(b)	$BC = \sqrt{(their 3)^2 + 9^2}$ or $\frac{9}{\sin 1.25}$ [= $\sqrt{90}$, $3\sqrt{10}$ or 9.48697]	M1	Using correct method(s) to find <i>BC</i> .
	Area of sector = $\frac{1}{2} \times (their BC)^2 \times tan^{-1} 3 [= 56.207 \text{ or } 56.25]$	M1	Using tan ⁻¹ 3 or 1.25 and <i>their BC</i> , but not 9 or 15, in correct area of sector formula.
	Area of triangle <i>PBC</i> = 13.4 to 13.6 or $\frac{1}{2} \times 9 \times 3$	B1	
	[Area = (56.207 or 56.25) - their 13.5 =] 42.7 or 42.8	A1	AWRT
		4	

Recognise that at least one of angles <i>A</i> , <i>B</i> , <i>C</i> is $\frac{\pi}{3}$	B 1	SOI; allow 60°.			
One arc $6 \times their \frac{\pi}{3}$ leading to two arcs $2 \times 6 \times their \frac{\pi}{3}$	M1	SOI e.g. may see 2π or 4π . Use of correct formula for length of arc and multiply by 2.			
Perimeter = $6 + 4\pi$	A1	Must be exact value.			
Alternative method for question 6(a)					
Calculate circumference of whole circle = 12π	B1				
One arc $\frac{1}{6} \times 12\pi$ leading to two arcs $2 \times \frac{1}{6} \times 12\pi$	M1	SOI e.g. may see 2π or 4π .			
Perimeter = $6 + 4\pi$	A1	Must be exact value.			
	3				
Sector = $\frac{1}{2} \times 6^2 \times their\left(\frac{\pi}{3}\right)$	M1	Use of correct formula for area of sector. SOI e.g. may see 6π or 12π .			
$\frac{1}{2} \times \left(6^2\right) \times their\left(\frac{\pi}{3}\right) - \frac{1}{2} \times \left(6^2\right) \times \sin\left(their\left(\frac{\pi}{3}\right)\right) + 6\pi \left[=6\pi - 9\sqrt{3} + 6\pi\right]$	M1 A1	M1 for attempt at strategy with values substituted: area of segment + area of sector A1 if correct (unsimplified).			
Area = $12\pi - 9\sqrt{3}$	A1	Must be simplified exact value.			
Alternative method for question 6(b)					
Sector = $\frac{1}{2} \times 6^2 \times their\left(\frac{\pi}{3}\right)$	M1	Use of correct formula for area of sector. SOI e.g. may see 6π or 12π .			
$2 \times \left(\frac{1}{2} \times 6^2 \times their\left(\frac{\pi}{3}\right)\right) - \frac{1}{2} \times \left(6^2\right) \times \sin\left(their\left(\frac{\pi}{3}\right)\right)$	M1 A1	M1 for attempt at strategy with values substituted: 2 × sector – triangle A1 if correct (unsimplified).			
Area = $12\pi - 9\sqrt{3}$	A1	Must be simplified exact value.			
Alternative method for question 6(b)					
Sector = $\frac{1}{2} \times 6^2 \times their\left(\frac{\pi}{3}\right)$	M1	Use of correct formula for area of sector. SOI e.g. may see 6π or 12π .			
$2 \times \left(\frac{1}{2} \times (6^2) \times their\left(\frac{\pi}{3}\right) - \frac{1}{2} \times (6^2) \times \sin\left(their\left(\frac{\pi}{3}\right)\right)\right) + \frac{1}{2} \times (6^2) \times \sin\left(their\left(\frac{\pi}{3}\right)\right) \left[=12\pi - 18\sqrt{3} + 9\sqrt{3}\right]$	M1 A1	M1 for attempt at strategy with values substituted: $2 \times segment + triangle$ A1 if correct (unsimplified).			
Area $\left[=6\pi - 9\sqrt{3} + 6\pi\right] = 12\pi - 9\sqrt{3}$	A1	Must be simplified exact value.			
	4				

⁽a)

(a)	$\tan A = \frac{12}{5}$ or $\cos A = \frac{5}{13}$ or $\sin A = \frac{12}{13}$	M1	OR $\tan B = \frac{5}{12}$ or $\cos B = \frac{12}{13}$ or $\sin B = \frac{5}{13}$
	<i>A</i> = 1.176 <i>B</i> = 0.3948	A1	Allow 1.18 or 67.4°, Allow 0.395 or 22.6°. May be implied by $\frac{\pi}{2}$ -1.176
	DE = 4	B1	If trigonometry used accept AWRT 4.00
	Arcs = $5 \times their1.176$ and $8 \times their0.3948$	M1	Or corresponding calculations in degrees.
	[Perimeter = 5.880 + 3.158 + 4 =] 13.0	A1	Accept 13. If DE is outside the given range this mark cannot be awarded.
		5	
(b)	Area of triangle = $\frac{1}{2} \times 5 \times their 12$ [= 30]	B1 FT	
	Area of sectors = $\frac{1}{2} \times 5^2 \times their \ 1.176 + \frac{1}{2} \times 8^2 \times their \ 0.3948$	M1	Or corresponding calculations in degrees
	[Area = 30 - 14.70 - 12.63 =] 2.67	A1	Allow 2.66 to 2.67
	FR	3	
Que	stion 62		

ı)	$6\sin 0.9 = \frac{AC}{2} \text{ or } AC^2 = 6^2 + 6^2 - 2 \times 6 \times 6\cos 1.8$	M1	OE Correct working in degrees is acceptable throughout.
	AC = 9.40	A1	SOI Accept 9.39 – 9.41, may be used but not seen for A1.
	Angle $CAB = \frac{1}{2}(\pi - 1.8)$	M1	SOI Expect 0.6708 (or 0.671).
	Arc $CD = their 9.40 \times their 0.6708$	M1	Expect 6.306 (or 6.31), do not accept 6 for <i>their</i> AC or 1.8 for CAB .
	[Perimeter = 6 + 3.40 + 6.306 =] 15.7	A1	Accept 15.69 – 15.72.
	3	5	
))	Sector $ADC - \Delta ABC = \frac{1}{2} \times their \ 9.40^2 \times their \ 0.6708 - \frac{1}{2} \times 6^2 \times \sin 1.8$	M1 M1	Accept correct use of their answers from part (a).
	[29.64 – 17.53 =] 12.1	A1	AWRT
		3	

(a)	$\left[\hat{AOB}=\right]\frac{2}{10}$	B1	OE Sight of 0.2 from $s = r\theta$ but $10\theta = 2$ is not enough. ISW if $\frac{2}{10} = \frac{\pi}{5}$.
-	$[B\hat{O}C =]\frac{5\pi+6}{30} \text{ or } \frac{1}{6}\pi+0.2$	B1	OE e.g. 0.724^{c} AWRT or 41.5 degrees AWRT. But not $\frac{2 + \frac{5\pi}{3}}{10}$ – fraction within a fraction. ISW incorrect simplifications.
(b)	$[BP] = 10\sin\left(\frac{5\pi+6}{30}\right) \text{ and } [OP] = 10\cos\left(\frac{5\pi+6}{30}\right)$ [= 6.6208] and [= 7.494] OR [BP] = $10\sin\left(\frac{5\pi+6}{30}\right)$ and [O \hat{B} P] = $\left(\frac{5\pi-3}{15}\right)$ [= 6.6208] and [= 0.84719]	M1	OE Any correct method for both lengths, for <i>their</i> angle BOC (which may have been incorrectly 'simplified' but not 0.2) or length BP and $O\hat{B}P$. May be seen as part of $\frac{1}{2}ab\sin C$. Sight of correct method enough. Can be implied by the next A1.
_	Area of $\triangle OBP = \frac{1}{2} \times 10 \sin\left(\frac{5\pi+6}{30}\right) \times 10 \cos\left(\frac{5\pi+6}{30}\right)$ or $\frac{1}{2} \times 10 \times 10 \sin\left(\frac{5\pi+6}{30}\right) \times \sin\left(\left(\frac{5\pi-3}{15}\right)\right)$ [=24.809]	A1	OE Can be implied by any answer in range (24.7, 24.9) or a final answer in the range (11.3, 11.5) WWW.
-	$[\text{Sector } BOC] = \frac{1}{2} \times 10^2 \times their \left(\frac{5\pi + 6}{30}\right)$ $\left[= 50\left(\frac{5\pi + 6}{30}\right) = 36.1799 \right]$	M1	Use of $\frac{1}{2}r^2\theta$ with <i>their</i> angle BOC (may have been incorrectly 'simplified' but not 0.2).
-	Area of region <i>BPC</i> = 11.4	A1 4	САО

(a)	Sector area = $\frac{1}{2}r^2\left(\frac{\pi}{6}\right)\left[=\frac{\pi}{12}r^2\right]$	B 1	Using $\frac{1}{2}r^2\theta$ with θ in radians SOI. B0 if using a value for <i>r</i> .
	$BD = \sin\frac{\pi}{6}r\left[=\frac{1}{2}r\right] \text{ and } AD = \cos\frac{\pi}{6}r\left[=\frac{\sqrt{3}}{2}r\right]$	B 1	SOI Finding triangle area. Decimals B0 unless exact values seen in working.
	so triangle area = $\frac{1}{2} \left(\sin \frac{\pi}{6} r \right) \left(\cos \frac{\pi}{6} r \right) \left[= \frac{1}{2} \times \frac{1}{2} r \times \frac{\sqrt{3}}{2} r \right]$		
	or $\frac{1}{2}r\left(\cos\frac{\pi}{6}r\right)\left(\sin\frac{\pi}{6}\right)\left[=\frac{1}{2}r\times\frac{\sqrt{3}}{2}r\times\frac{1}{2}\right]$		
	Area of $BCD = \frac{1}{12}\pi r^2 - \frac{\sqrt{3}}{8}r^2$	B1	OE e.g. $\frac{r^2}{4} \left(\frac{\pi}{3} - \frac{\sqrt{3}}{2} \right)$ with $\cos \frac{\pi}{6}$ and $\sin \frac{\pi}{6}$ evaluated.
			Must be exact, in terms of r^2 . ISW
		3	
i(b)	Angle $BAC = \sin^{-1} \left(\frac{\sqrt{3}}{2} r r \right) \left[= \frac{\pi}{3} \right]$	B1	SOI by length of <i>AD</i> , <i>CD</i> or arc, or by perimeter.
	Length $AD = \cos \frac{\pi}{3} r \left[= \frac{1}{2} r \right]$ [so length $CD = \frac{1}{2} r$]	M1	SOI Finding length by Pythagoras, or by trigonometry with <i>their</i> angle <i>BAC</i> , provided $BAC \neq \frac{\pi}{6}$.
	Length of arc $BC = r \times \frac{\pi}{3}$	M1	SOI Using $r\theta$ with θ in radians. Condone $\theta = \frac{\pi}{6}$.
	Perimeter of $BCD = \frac{\sqrt{3}}{2}r + \frac{1}{2}r + \frac{\pi}{3}r$	A1	OE e.g. $r\left(\frac{\sqrt{3}+1}{2}+\frac{\pi}{3}\right)$ with e.g. $\cos\frac{\pi}{3}$ evaluated. Must be exact, in terms of <i>r</i> . ISW
	4	4	

Question 65

(a) *M1 May use cosine rule to find APB. Stating APQ or $=\cos^{-1}\frac{5}{6}$ APB as an incorrect multiple of π is M0. $APQ = \cos^2 \theta$ = 0.5857 Accept 0.586 or 33.6° or APB (1.171 or 67.1°). A1 Perimeter = $4 \times r \times their 0.5857 = 2.34r$ or $0.745\pi r$ or (293/125)rDM1 A1 Must use a numerical value of *their* angle. 4 (b) **M1** Any sector with their appropriate angle. It must be Use of sector formula: Sector APB $=\frac{1}{2}r^2 \times (2 \times their 0.5857)$ or Sector APC clear the appropriate numerical angle is being used. (C is on PQ so PC = r) $= \frac{1}{2}r^2 \times (their 0.5857)$ Use of appropriate formula for area of triangle and correct combination with **M1** e.g. Area APB = $\frac{1}{2}r^2 \times \sin(2 \times their 0.5857)$. the sector to find the area of a half segment, one segment or both segments A1 or $0.0796\pi r^2$, allow $\frac{1}{4}r^2$ or $0.25r^2$. Shaded area $[=2 \times 0.1250r^2] = 0.250r^2$ 3

(a)	$2.5 \times \frac{4\pi}{3} + 2.24 \times \frac{5\pi}{6} = 10.47[2] + 5.86[4] \text{ or } \frac{10\pi}{3} + \frac{28\pi}{15}]$	B1	For either arc correct. Arc ARB could be AR+RB.
	3 6 3 3 15	M1	For adding two (or three) arc lengths using different radii and angles and nothing else. SOI
	16.34 or $\frac{26\pi}{5}$	A1	AWRT Condone 16.33 only.
		3	
b)	Area $AOB = \frac{1}{2} \times 2.5^2 \sin \frac{2\pi}{3}$ [=2.706] Area $APB = \frac{1}{2} \times 2.24^2 \sin \frac{5\pi}{6}$ [=1.254]	M1	For either $\triangle AOB$ or $\triangle APB$ (AB = 4.33, h= 1.25, 0.58) or any other valid method.
	[Difference =] 1.45	A1	AWRT Condone 1.46 only.
		2	
(c)	Area $AOB = \frac{1}{2} \times 2.5^2 \times \frac{4\pi}{3}$ [=13.09]	B1	For either sector area correct
	Area $APB = \frac{1}{2} \times 2.24^2 \times \frac{5\pi}{6}$ [=6.57]		
	[Area of cross section =] $\frac{1}{2} \times 2.5^2 \times \frac{4\pi}{3} + \frac{1}{2} \times 2.24^2 \times \frac{5\pi}{6} + \text{``their10}(b)\text{''}$ [=13.09+6.57+ ``their10(b)'']	M1	Adding two sector areas from different sectors and ' <i>their</i> 10(b)' and nothing else. SOI
	21.1	A1	CAO Condone slight inaccuracies in intermediate working if the correct answer is arrived at.
		3	

$[2r+8=20 \Rightarrow] r=6$	B1	
Angle $AOB = \frac{8}{their 6}$	*M1	Expect $\frac{4}{3}$ OE (76.4°). M0 Assume triangle is equilateral.
$AB = 2 \times 6\sin their \frac{2}{3} \text{ or } \sqrt{6^2 + 6^2 - 2 \times 6^2 \cos their \frac{4}{3}}$ $\text{or } AB = \frac{6}{\sin\left(\frac{\pi}{2} - their \frac{2}{3}\right)} \times \sin their \frac{4}{3}$	DM1	For 6 read <i>their</i> 6.
Perimeter = [7.42 + 8 =] 15.4	A1	AWRT
	4	
Area $= \frac{1}{2} \times 6^2 \times their \frac{4}{3} - \frac{1}{2} \times 6^2 \times sin their \frac{4}{3}$ or Area $= \frac{1}{2} \times 6^2 \times their \frac{4}{3} - 2 \times \frac{1}{2} \left(6 \sin their \frac{2}{3} \right) \left(6 \cos their \frac{2}{3} \right)$	M1	Sector area – whole triangle area. For 6 read <i>their</i> 6. Sector area – 2(half triangle area).
=[24-17.49=] 6.51	A1	AWRT
	2	

Ques	Suon 07				
(a)	$\tan BDC = \frac{4}{3}$ or $\sin BDC = \frac{4}{5}$ or $\cos BDC = \frac{3}{5}$ used to find ADC		M1	M1 May use cosine rule or $CAD = \tan^{-1}\frac{4}{8}$.	
	$BDC = 0.927[3] \rightarrow ADC = \pi - 0.927[3] [= 2.214 \text{ to } 2.215]$		A1	Allow degrees, 126.87, and 0.7048 π or 0.705 π	
	$Arc AC = 5 \times their 2.214$		M1	Use of $r\theta$ or $\frac{\theta}{360}.2\pi r$ Expect 11.07.	
	$AC = \sqrt{8^2 + 4^2}$ or $2 \times 5 \times \sin 1.107$		M1	Expect 8.94.	
	[Perimeter=11.07+8.94=]20.0		A1	Accept AWRT [20.01, 20.02].	
			5		
(b)	Sector $ACD = \frac{1}{2} \times 5^2 \times their 2.214$		M1	See use of $\frac{1}{2}r^2\theta$ or $\frac{\theta}{360}.\pi r^2$. Expect 27.7.	
	Subtracting the area of $\Delta ADC = \frac{1}{2} \times 5 \times 4$ or $\frac{1}{2} 5^2 \sin their 2.214$ or		M1	Subtracting the area of $\triangle ADC$, expect -10 .	
	$\frac{1}{2} \times 8 \times 4 - \frac{1}{2} \times 3 \times 4$				
	Shaded area = 27.7 - 10 = 17.7		A1	Accept AWRT [17.67, 17.68]. Correct answer cannot come from an angle of 2.215.	
			3		
Ques	stion 68				
(a)	$\frac{\gamma_2 r^2 \theta}{r \theta} = \frac{76.8}{9.6} \text{ or } \frac{1}{2} \left(\frac{9.6^2}{\theta^2} \right) \theta = 76.8$	M1	Elim	Eliminate $\theta or r$ using correct formulae SOI.	
	r = 16	A1			
	$\theta = 0.6$	A1	Acce	Accept 34.4°	
	$\Delta OAB = \frac{1}{2} \times their \ 16^2 \times \sin their \ 0.6$	M1		Allow Segment = $76.8 - \frac{1}{2} \times their \ 16^2 \times sin \ their \ 0.6.$ Expect 72.27.	
	[Area = 76.8 – 72.27 =] 4.53	A1	AW	RT	
	[Area = 76.8 – 72.27 =] 4.53	A1 5	AW	RT	
(b)	[Area = 76.8 – 72.27 =] 4.53 $AB = 2 \times 16 \times \sin 0.3 \text{ OR } AB^2 = 16^2 + 16^2 - 2 \times 16^2 \cos 0.6$			RT valid method with <i>their</i> r, θ . Expect $AB = 9.46$.	
(b)		5		valid method with <i>their</i> \mathbf{r} , θ . Expect $AB = 9.46$.	

Ques			
i(a)	$\frac{1}{2}OA = x\cos\theta \text{ or } \frac{OA}{\sin(\pi - 2\theta)} = \frac{x}{\sin\theta} \text{ or}$ $OA^2 = x^2 + x^2 - 2x^2\cos(\pi - 2\theta) \text{ or}$ $x^2 = r^2 + x^2 - 2rx\cos\theta \text{ or other valid method.}$	*B1	Correct expression containing $\frac{1}{2}OA$, OA or OA^2 (allow p , <i>a</i> or r for OA) containing only terms with x and θ but not just $OA = 2x \cos \theta$. Do not condone $\sin \pi - 2\theta$ until missing brackets recovered or $\cos(180 - 2\theta)$ until it becomes $-\cos 2\theta$ etc.
	$OA = 2x\cos\theta$ leading to Arc length $= 2x\theta\cos\theta$	DB1	AG Complete correct method showing all necessary working. Condone $2x\cos\theta \times \theta$.
		2	If B0 but www then SCB1 for $OA = 2x\cos\theta$ leading to Arc length = $2x\theta\cos\theta$.
i(b)	Sector area = $\frac{1}{2} (2x \cos \theta)^2 \times \theta$	M1	OE Using sector formula with a correct OA. Condone $\cos\theta^2$ for $\cos^2\theta$ and missing brackets.
	Triangle area = $\frac{1}{2} \times 2x \cos \theta x \sin \theta$ OR $\frac{1}{2}x^2 \sin(\pi - 2\theta)$	M1	Using a correct triangle formula for the correct triangle. Condone missing brackets and 180 for π .
	[Area <i>APB</i> =] <i>Their</i> sector area – <i>their</i> triangle area	M1	Both expressions must be areas involving terms with x^2 and θ only. Condone missing brackets and 180 for π for the triangle. Condone calling the sector a segment.
	$[\operatorname{Area} APB =] \frac{1}{2} (2x\cos\theta)^2 \times \theta - \frac{1}{2} x^2 \sin(\pi - 2\theta)$ $[= x^2 (2\theta\cos^2\theta - \frac{1}{2}\sin2\theta) \text{ or } x^2 \cos\theta (2\theta\cos\theta - \sin\theta)]$	A1	OE A correct expression. Mark the first unsimplified result of subtraction and ISW any incorrect 'simplifications'.
		4	
Ques	stion 70		

$\frac{1}{2} \times 8^2 \times \theta = \frac{16\pi}{3} \implies \theta = \frac{\pi}{6}$	B1	SOI OE e.g. $\frac{2\pi}{12}$, 0.524(3s.f.) Use of degrees acceptable throughout provided conversion used in formulae for sector area and arc length.
Arc length = $8 \times their \frac{\pi}{6}$ [= 4.1887]	M1	OE FT <i>their</i> θ . Look for $\frac{4\pi}{3}$.
$[BC =] 2 \times 8 \sin\left(\frac{1}{2} \times their \frac{\pi}{6}\right) [= 4.1411]$	M1	Attempt to find <i>BC</i> or <i>BC</i> ² (see alt. methods below) FT <i>their</i> θ . Look for $16\sin\frac{\pi}{12}$ or $4\sqrt{6} - 4\sqrt{2}$.
Perimeter = 8.33	A1	AWRT Must be combined into one term.