AS-Level

Trigonometry And Circular measure

2013-2018

Question 1

The diagram shows a circle C with centre O and radius 3 cm. The radii OP and OQ are extended to S and R respectively so that ORS is a sector of a circle with centre O. Given that PS = 6 cm and that the area of the shaded region is equal to the area of circle C,

(i) show that angle $POQ = \frac{1}{4}\pi$ radians, \[3\]

(ii) find the perimeter of the shaded region. \[2\]
Question 2

The diagram shows a square $ABCD$ of side 10 cm. The mid-point of AD is O and BXC is an arc of a circle with centre O.

(i) Show that angle BOC is 0.9273 radians, correct to 4 decimal places. [2]

(ii) Find the perimeter of the shaded region. [3]

(iii) Find the area of the shaded region. [2]

Question 3

In the diagram, OAB is a sector of a circle with centre O and radius 8 cm. Angle BOA is α radians. OAC is a semicircle with diameter OA. The area of the semicircle OAC is twice the area of the sector OAB.

(i) Find α in terms of π. [3]

(ii) Find the perimeter of the complete figure in terms of π. [2]
Question 4

The diagram shows sector OAB with centre O and radius 11 cm. Angle $AOB = \alpha$ radians. Points C and D lie on OA and OB respectively. Arc CD has centre O and radius 5 cm.

(i) The area of the shaded region $ABDC$ is equal to k times the area of the unshaded region OCD. Find k. [3]

(ii) The perimeter of the shaded region $ABDC$ is equal to twice the perimeter of the unshaded region OCD. Find the exact value of α. [4]

Question 5

Fig. 1 shows a hollow cone with no base, made of paper. The radius of the cone is 6 cm and the height is 8 cm. The paper is cut from A to O and opened out to form the sector shown in Fig. 2. The circular bottom edge of the cone in Fig. 1 becomes the arc of the sector in Fig. 2. The angle of the sector is θ radians. Calculate

(i) the value of θ. [4]

(ii) the area of paper needed to make the cone. [2]
Question 6

The diagram shows a metal plate made by fixing together two pieces, $OABCD$ (shaded) and $OAED$ (unshaded). The piece $OABCD$ is a minor sector of a circle with centre O and radius $2r$. The piece $OAED$ is a major sector of a circle with centre O and radius r. Angle AOD is α radians. Simplifying your answers where possible, find, in terms of α, π and r,

(i) the perimeter of the metal plate. [3]

(ii) the area of the metal plate. [3]

It is now given that the shaded and unshaded pieces are equal in area.

(iii) Find α in terms of π. [2]

Question 7

The diagram shows part of a circle with centre O and radius 6 cm. The chord AB is such that angle $AOB = 2.2$ radians. Calculate

(i) the perimeter of the shaded region. [3]

(ii) the ratio of the area of the shaded region to the area of the triangle AOB, giving your answer in the form $k : 1$. [3]
Question 8

The diagram shows a sector of a circle with radius r cm and centre O. The chord AB divides the sector into a triangle AOB and a segment AXB. Angle AOB is θ radians.

(i) In the case where the areas of the triangle AOB and the segment AXB are equal, find the value of the constant p for which $\theta = p \sin \theta$. [2]

(ii) In the case where $r = 8$ and $\theta = \frac{\pi}{4}$, find the perimeter of the segment AXB. [3]

Question 9

The diagram shows triangle ABC in which AB is perpendicular to BC. The length of AB is 4 cm and angle CAB is α radians. The arc DE with centre A and radius 2 cm meets AC at D and AB at E. Find, in terms of α,

(i) the area of the shaded region, [3]

(ii) the perimeter of the shaded region. [3]
Question 10

In the diagram, $OADC$ is a sector of a circle with centre O and radius 3 cm. AB and CB are tangents to the circle and angle $ABO = \frac{1}{3}\pi$ radians. Find, giving your answer in terms of $\sqrt{3}$ and π.

(i) the perimeter of the shaded region. \hspace{1cm} [3]

(ii) the area of the shaded region. \hspace{1cm} [3]

Question 11

The diagram shows a triangle AOB in which OA is 12 cm, OB is 5 cm and angle AOB is a right angle. Point P lies on AB and OP is an arc of a circle with centre A. Point Q lies on AB and OQ is an arc of a circle with centre B.

(i) Show that angle BAO is 0.3948 radians, correct to 4 decimal places. \hspace{1cm} [1]

(ii) Calculate the area of the shaded region. \hspace{1cm} [5]
Question 12

In the diagram, AB is an arc of a circle with centre O and radius 4 cm. Angle AOB is α radians. The point D on OB is such that AD is perpendicular to OB. The arc DC, with centre O, meets OA at C.

(i) Find an expression in terms of α for the perimeter of the shaded region $ABDC$. \hspace{1cm} [4]

(ii) For the case where $\alpha = \frac{1}{6}\pi$, find the area of the shaded region $ABDC$, giving your answer in the form $k\pi$, where k is a constant to be determined. \hspace{1cm} [4]

Question 13

In the diagram, OAB is a sector of a circle with centre O and radius r. The point C on OB is such that angle ACO is a right angle. Angle AOB is α radians and is such that AC divides the sector into two regions of equal area.

(i) Show that $\sin\alpha \cos\alpha = \frac{1}{2}\alpha$. \hspace{1cm} [4]

It is given that the solution of the equation in part (i) is $\alpha = 0.9477$, correct to 4 decimal places.

(ii) Find the ratio

\[
\text{perimeter of region } OAC : \text{perimeter of region } ACB,
\]

\hspace{1cm} giving your answer in the form $k : 1$, where k is given correct to 1 decimal place. \hspace{1cm} [5]

(iii) Find angle AOB in degrees. \hspace{1cm} [1]
Question 14

In the diagram, AYB is a semicircle with AB as diameter and $OAXB$ is a sector of a circle with centre O and radius r. Angle $AOB = 2\theta$ radians. Find an expression, in terms of r and θ, for the area of the shaded region. [4]

Question 15

The diagram shows a metal plate $OABCDEF$ consisting of 3 sectors, each with centre O. The radius of sector COD is $2r$ and angle COD is θ radians. The radius of each of the sectors BOA and FOE is r, and $AOED$ and $CBOF$ are straight lines.

(i) Show that the area of the metal plate is $r^2(\pi + \theta)$. [3]

(ii) Show that the perimeter of the metal plate is independent of θ. [4]
Question 16

The diagram shows a metal plate $OABC$, consisting of a right-angled triangle OAB and a sector OBC of a circle with centre O. Angle $AOB = 0.6$ radians, $OA = 6$ cm and OA is perpendicular to OC.

(i) Show that the length of OB is 7.270 cm, correct to 3 decimal places. [1]

(ii) Find the perimeter of the metal plate. [3]

(iii) Find the area of the metal plate. [3]

Question 17

The diagram shows a circle with centre A and radius r. Diameters CAD and BAE are perpendicular to each other. A larger circle has centre B and passes through C and D.

(i) Show that the radius of the larger circle is $r/2$. [1]

(ii) Find the area of the shaded region in terms of r. [6]
Question 18

(a)

In Fig. 1, OAB is a sector of a circle with centre O and radius r. AX is the tangent at A to the arc AB and angle $BAX = \alpha$.

(i) Show that angle $AOB = 2\alpha$. \hspace{1cm} [2]

(ii) Find the area of the shaded segment in terms of r and α. \hspace{1cm} [2]

(b)

In Fig. 2, ABC is an equilateral triangle of side 4 cm. The lines AX, BX and CX are tangents to the equal circular arcs AB, BC and CA. Use the results in part (a) to find the area of the shaded region, giving your answer in terms of π and $\sqrt{3}$. \hspace{1cm} [6]
Question 19

The diagram shows triangle ABC where $AB = 5\text{ cm}$, $AC = 4\text{ cm}$ and $BC = 3\text{ cm}$. Three circles with centres at A, B and C have radii 3 cm, 2 cm and 1 cm respectively. The circles touch each other at points E, F and G, lying on AB, AC and BC respectively. Find the area of the shaded region EFG.

[7]

Question 20

The diagram shows a circle with radius $r\text{ cm}$ and centre O. The line PT is the tangent to the circle at P and angle $POT = \alpha$ radians. The line OT meets the circle at Q.

(i) Express the perimeter of the shaded region PQT in terms of r and α.

(ii) In the case where $\alpha = \frac{1}{3}\pi$ and $r = 10$, find the area of the shaded region correct to 2 significant figures.

[3]
Question 21

In the diagram, triangle ABC is right-angled at C and M is the mid-point of BC. It is given that angle $ABC = \frac{1}{3}\pi$ radians and angle $BAM = \theta$ radians. Denoting the lengths of BM and MC by x,

(i) find AM in terms of x. \[3\]
(ii) show that $\theta = \frac{1}{6}\pi - \tan^{-1}\left(\frac{1}{2\sqrt{3}}\right)$. \[2\]

Question 22

The diagram shows a major arc AB of a circle with centre O and radius 6 cm. Points C and D on OA and OB respectively are such that the line AB is a tangent at E to the arc CED of a smaller circle also with centre O. Angle $COD = 1.8$ radians.

(i) Show that the radius of the arc CED is 3.73 cm, correct to 3 significant figures. \[2\]
(ii) Find the area of the shaded region. \[4\]
Question 23

The diagram shows a metal plate $ABCD$ made from two parts. The part BCD is a semicircle. The part DAB is a segment of a circle with centre O and radius 10 cm. Angle BOD is 1.2 radians.

(i) Show that the radius of the semicircle is 5.646 cm, correct to 3 decimal places. [2]

(ii) Find the perimeter of the metal plate. [3]

(iii) Find the area of the metal plate. [3]

Question 24

In the diagram OCA and ODB are radii of a circle with centre O and radius $2r$ cm. Angle $AOB = \alpha$ radians. CD and AB are arcs of circles with centre O and radii r cm and $2r$ cm respectively. The perimeter of the shaded region $ABDC$ is $4.4r$ cm.

(i) Find the value of α. [2]

(ii) It is given that the area of the shaded region is 30 cm^2. Find the value of r. [3]
Question 25

In the diagram, $AB = AC = 8 \text{ cm}$ and angle $CAB = \frac{2}{7} \pi$ radians. The circular arc BC has centre A, the circular arc CD has centre B and ABD is a straight line.

(i) Show that angle $CBD = \frac{9}{14} \pi$ radians. [1]

(ii) Find the perimeter of the shaded region. [5]

Question 26

The diagram shows two circles with centres A and B having radii 8 cm and 10 cm respectively. The two circles intersect at C and D where CAD is a straight line and AB is perpendicular to CD.

(i) Find angle ABC in radians. [1]

(ii) Find the area of the shaded region. [6]
Question 27

The diagram shows a circle with radius r cm and centre O. Points A and B lie on the circle and $ABCD$ is a rectangle. Angle $AOB = 2\theta$ radians and $AD = r$ cm.

(i) Express the perimeter of the shaded region in terms of r and θ. \hspace{1cm} [3]

(ii) In the case where $r = 5$ and $\theta = \frac{1}{6}\pi$, find the area of the shaded region. \hspace{1cm} [4]

Question 28

In the diagram, $OAXB$ is a sector of a circle with centre O and radius 10 cm. The length of the chord AB is 12 cm. The line OX passes through M, the mid-point of AB, and OX is perpendicular to AB. The shaded region is bounded by the chord AB and by the arc of a circle with centre X and radius XA.

(i) Show that angle AXB is 2.498 radians, correct to 3 decimal places. \hspace{1cm} [3]

(ii) Find the perimeter of the shaded region. \hspace{1cm} [3]

(iii) Find the area of the shaded region. \hspace{1cm} [3]
Question 29

The diagram shows a rectangle $ABCD$ in which $AB = 5$ units and $BC = 3$ units. Point P lies on DC and AP is an arc of a circle with centre B. Point Q lies on DC and AQ is an arc of a circle with centre D.

(i) Show that angle $ABP = 0.6435$ radians, correct to 4 decimal places. [1]

(ii) Calculate the areas of the sectors BAP and DAQ. [3]

(iii) Calculate the area of the shaded region. [3]

Question 30

The diagram shows a semicircle with centre O and radius 6 cm. The radius OC is perpendicular to the diameter AB. The point D lies on AB, and DC is an arc of a circle with centre B.

(i) Calculate the length of the arc DC. [3]

(ii) Find the value of

\[
\frac{\text{area of region } P}{\text{area of region } Q'}
\]

giving your answer correct to 3 significant figures. [4]
Question 31

The diagram shows an isosceles triangle ABC in which $AC = 16\text{ cm}$ and $AB = BC = 10\text{ cm}$. The circular arcs BE and BD have centres at A and C respectively, where D and E lie on AC.

(i) Show that angle $BAC = 0.6435$ radians, correct to 4 decimal places. [1]

(ii) Find the area of the shaded region. [5]

Question 32

The diagram shows a sector POQ of a circle of radius 10 cm and centre O. Angle POQ is 2.2 radians. QR is an arc of a circle with centre P and POR is a straight line.

(i) Show that the length of PQ is 17.8 cm, correct to 3 significant figures. [2]

(ii) Find the perimeter of the shaded region. [4]

(ii) Find the y-coordinate of B. [2]
Question 33

The diagram shows a triangle OAB in which angle $OAB = 90^\circ$ and $OA = 5\, \text{cm}$. The arc AC is part of a circle with centre O. The arc has length $6\, \text{cm}$ and it meets OB at C. Find the area of the shaded region. [5]

Question 34

The diagram shows points A and B on a circle with centre O and radius r. The tangents to the circle at A and B meet at T. The shaded region is bounded by the minor arc AB and the lines AT and BT. Angle AOB is 2θ radians.

(i) In the case where the area of the sector AOB is the same as the area of the shaded region, show that $\tan \theta = 2\theta$. [3]

(ii) In the case where $r = 8\, \text{cm}$ and the length of the minor arc AB is $19.2\, \text{cm}$, find the area of the shaded region. [3]
Question 35

![Diagram of a circle with points A, B, O, and T, and a sector OAB with radius r cm and angle \(\theta \) radians.]

The diagram shows a circle with centre \(O \) and radius \(r \) cm. The points \(A \) and \(B \) lie on the circle and \(AT \) is a tangent to the circle. Angle \(AOB = \theta \) radians and \(OBT \) is a straight line.

(i) Express the area of the shaded region in terms of \(r \) and \(\theta \). \([3]\)

(ii) In the case where \(r = 3 \) and \(\theta = 1.2 \), find the perimeter of the shaded region. \([4]\)