AS-Level

Pure Mathematics P1

Topic: Circular measure

May 2013- May 2023

Question 1

The diagram shows a circle C with centre O and radius 3 cm . The radii $O P$ and $O Q$ are extended to S and R respectively so that $O R S$ is a sector of a circle with centre O. Given that $P S=6 \mathrm{~cm}$ and that the area of the shaded region is equal to the area of circle C,
(i) show that angle $P O Q=\frac{1}{4} \pi$ radians,
(ii) find the perimeter of the shaded region.

Question 2

The diagram shows a square $A B C D$ of side 10 cm . The mid-point of $A D$ is O and $B X C$ is an arc of a circle with centre O.
(i) Show that angle $B O C$ is 0.9273 radians, correct to 4 decimal places.
(ii) Find the perimeter of the shaded region.
(iii) Find the area of the shaded region.

Question 3

In the diagram, $O A B$ is a sector of a circle with centre O and radius 8 cm . Angle $B O A$ is α radians. $O A C$ is a semicircle with diameter $O A$. The area of the semicircle $O A C$ is twice the area of the sector $O A B$.
(i) Find α in terms of π.
(ii) Find the perimeter of the complete figure in terms of π.

Question 4

The diagram shows sector $O A B$ with centre O and radius 11 cm . Angle $A O B=\alpha$ radians. Points C and D lie on $O A$ and $O B$ respectively. Arc $C D$ has centre O and radius 5 cm .
(i) The area of the shaded region $A B D C$ is equal to k times the area of the unshaded region $O C D$. Find k.
(ii) The perimeter of the shaded region $A B D C$ is equal to twice the perimeter of the unshaded region $O C D$. Find the exact value of α.

Question 5

Fig. 1

Fig. 2

Fig. 1 shows a hollow cone with no base, made of paper. The radius of the cone is 6 cm and the height is 8 cm . The paper is cut from A to O and opened out to form the sector shown in Fig. 2. The circular bottom edge of the cone in Fig. 1 becomes the arc of the sector in Fig. 2. The angle of the sector is θ radians. Calculate
(i) the value of θ,
(ii) the area of paper needed to make the cone.

Question 6

The diagram shows a metal plate made by fixing together two pieces, $O A B C D$ (shaded) and $O A E D$ (unshaded). The piece $O A B C D$ is a minor sector of a circle with centre O and radius $2 r$. The piece $O A E D$ is a major sector of a circle with centre O and radius r. Angle $A O D$ is α radians. Simplifying your answers where possible, find, in terms of α, π and r,
(i) the perimeter of the metal plate,
(ii) the area of the metal plate.

It is now given that the shaded and unshaded pieces are equal in area.
(iii) Find α in terms of π.

Question 7

The diagram shows part of a circle with centre O and radius 6 cm . The chord $A B$ is such that angle $A O B=2.2$ radians. Calculate
(i) the perimeter of the shaded region,
(ii) the ratio of the area of the shaded region to the area of the triangle $A O B$, giving your answer in the form $k: 1$.

Question 8

The diagram shows a sector of a circle with radius $r \mathrm{~cm}$ and centre O. The chord $A B$ divides the sector into a triangle $A O B$ and a segment $A X B$. Angle $A O B$ is θ radians.
(i) In the case where the areas of the triangle $A O B$ and the segment $A X B$ are equal, find the value of the constant p for which $\theta=p \sin \theta$.
(ii) In the case where $r=8$ and $\theta=2.4$, find the perimeter of the segment $A X B$.

Question 9

The diagram shows triangle $A B C$ in which $A B$ is perpendicular to $B C$. The length of $A B$ is 4 cm and angle $C A B$ is α radians. The arc $D E$ with centre A and radius 2 cm meets $A C$ at D and $A B$ at E. Find, in terms of α,
(i) the area of the shaded region,
(ii) the perimeter of the shaded region.

Question 10

In the diagram, $O A D C$ is a sector of a circle with centre O and radius $3 \mathrm{~cm} . A B$ and $C B$ are tangents to the circle and angle $A B C=\frac{1}{3} \pi$ radians. Find, giving your answer in terms of $\sqrt{ } 3$ and π,
(i) the perimeter of the shaded region,
(ii) the area of the shaded region.

Question 11

The diagram shows a triangle $A O B$ in which $O A$ is $12 \mathrm{~cm}, O B$ is 5 cm and angle $A O B$ is a right angle. Point P lies on $A B$ and $O P$ is an arc of a circle with centre A. Point Q lies on $A B$ and $O Q$ is an arc of a circle with centre B.
(i) Show that angle $B A O$ is 0.3948 radians, correct to 4 decimal places.
(ii) Calculate the area of the shaded region.

Question 12

In the diagram, $A B$ is an arc of a circle with centre O and radius 4 cm . Angle $A O B$ is α radians. The point D on $O B$ is such that $A D$ is perpendicular to $O B$. The arc $D C$, with centre O, meets $O A$ at C.
(i) Find an expression in terms of α for the perimeter of the shaded region $A B D C$.
(ii) For the case where $\alpha=\frac{1}{6} \pi$, find the area of the shaded region $A B D C$, giving your answer in the form $k \pi$, where k is a constant to be determined.

Question 13

In the diagram, $O A B$ is a sector of a circle with centre O and radius r. The point C on $O B$ is such that angle $A C O$ is a right angle. Angle $A O B$ is α radians and is such that $A C$ divides the sector into two regions of equal area.
(i) Show that $\sin \alpha \cos \alpha=\frac{1}{2} \alpha$.

It is given that the solution of the equation in part (i) is $\alpha=0.9477$, correct to 4 decimal places.
(ii) Find the ratio
perimeter of region $O A C$: perimeter of region $A C B$,
giving your answer in the form $k: 1$, where k is given correct to 1 decimal place.
(iii) Find angle $A O B$ in degrees.

Question 14

In the diagram, $A Y B$ is a semicircle with $A B$ as diameter and $O A X B$ is a sector of a circle with centre O and radius r. Angle $A O B=2 \theta$ radians. Find an expression, in terms of r and θ, for the area of the shaded region.

Question 15

The diagram shows a metal plate $O A B C D E F$ consisting of 3 sectors, each with centre O. The radius of sector $C O D$ is $2 r$ and angle $C O D$ is θ radians. The radius of each of the sectors $B O A$ and $F O E$ is r, and $A O E D$ and $C B O F$ are straight lines.
(i) Show that the area of the metal plate is $r^{2}(\pi+\theta)$.
(ii) Show that the perimeter of the metal plate is independent of θ.

Question 16

The diagram shows a metal plate $O A B C$, consisting of a right-angled triangle $O A B$ and a sector $O B C$ of a circle with centre O. Angle $A O B=0.6$ radians, $O A=6 \mathrm{~cm}$ and $O A$ is perpendicular to $O C$.
(i) Show that the length of $O B$ is 7.270 cm , correct to 3 decimal places.
(ii) Find the perimeter of the metal plate.
(iii) Find the area of the metal plate.

Question 17

The diagram shows a circle with centre A and radius r. Diameters $C A D$ and $B A E$ are perpendicular to each other. A larger circle has centre B and passes through C and D.
(i) Show that the radius of the larger circle is $r \sqrt{ } 2$.
(ii) Find the area of the shaded region in terms of r.

Question 18

(a)

Fig. 1

In Fig. 1, $O A B$ is a sector of a circle with centre O and radius $r . A X$ is the tangent at A to the arc $A B$ and angle $B A X=\alpha$.
(i) Show that angle $A O B=2 \alpha$.
(ii) Find the area of the shaded segment in terms of r and α.

Continue on the next pages...

(b)

Fig. 2

In Fig. 2, $A B C$ is an equilateral triangle of side 4 cm . The lines $A X, B X$ and $C X$ are tangents to the equal circular arcs $A B, B C$ and $C A$. Use the results in part (a) to find the area of the shaded region, giving your answer in terms of π and $\sqrt{ } 3$.

Question 19

The diagram shows triangle $A B C$ where $A B=5 \mathrm{~cm}, A C=4 \mathrm{~cm}$ and $B C=3 \mathrm{~cm}$. Three circles with centres at A, B and C have radii $3 \mathrm{~cm}, 2 \mathrm{~cm}$ and 1 cm respectively. The circles touch each other at points E, F and G, lying on $A B, A C$ and $B C$ respectively. Find the area of the shaded region $E F G$.

Question 20

The diagram shows a circle with radius $r \mathrm{~cm}$ and centre O. The line $P T$ is the tangent to the circle at P and angle $P O T=\alpha$ radians. The line $O T$ meets the circle at Q.
(i) Express the perimeter of the shaded region $P Q T$ in terms of r and α.
(ii) In the case where $\alpha=\frac{1}{3} \pi$ and $r=10$, find the area of the shaded region correct to 2 significant figures.

Question 21

In the diagram, $A O B$ is a quarter circle with centre O and radius r. The point C lies on the arc $A B$ and the point D lies on $O B$. The line $C D$ is parallel to $A O$ and angle $A O C=\theta$ radians.
(i) Express the perimeter of the shaded region in terms of r, θ and π.
(ii) For the case where $r=5 \mathrm{~cm}$ and $\theta=0.6$, find the area of the shaded region.

Question 22

In the diagram, triangle $A B C$ is right-angled at C and M is the mid-point of $B C$. It is given that angle $A B C=\frac{1}{3} \pi$ radians and angle $B A M=\theta$ radians. Denoting the lengths of $B M$ and $M C$ by x,
(i) find $A M$ in terms of x,
(ii) show that $\theta=\frac{1}{6} \pi-\tan ^{-1}\left(\frac{1}{2 \sqrt{3}}\right)$.

Question 23

The diagram shows a major arc $A B$ of a circle with centre O and radius 6 cm . Points C and D on $O A$ and $O B$ respectively are such that the line $A B$ is a tangent at E to the $\operatorname{arc} C E D$ of a smaller circle also with centre O. Angle $C O D=1.8$ radians.
(i) Show that the radius of the $\operatorname{arc} C E D$ is 3.73 cm , correct to 3 significant figures.
(ii) Find the area of the shaded region.

Question 24

The diagram shows a metal plate $A B C D$ made from two parts. The part $B C D$ is a semicircle. The part $D A B$ is a segment of a circle with centre O and radius 10 cm . Angle $B O D$ is 1.2 radians.
(i) Show that the radius of the semicircle is 5.646 cm , correct to 3 decimal places.
(ii) Find the perimeter of the metal plate.
(iii) Find the area of the metal plate.

Question 25

In the diagram $O C A$ and $O D B$ are radii of a circle with centre O and radius $2 r \mathrm{~cm}$. Angle $A O B=\alpha$ radians. $C D$ and $A B$ are arcs of circles with centre O and radii $r \mathrm{~cm}$ and $2 r \mathrm{~cm}$ respectively. The perimeter of the shaded region $A B D C$ is $4.4 r \mathrm{~cm}$.
(i) Find the value of α.
(ii) It is given that the area of the shaded region is $30 \mathrm{~cm}^{2}$. Find the value of r.

Question 26

In the diagram, $A B=A C=8 \mathrm{~cm}$ and angle $C A B=\frac{2}{7} \pi$ radians. The circular arc $B C$ has centre A, the circular arc $C D$ has centre B and $A B D$ is a straight line.
(i) Show that angle $C B D=\frac{9}{14} \pi$ radians.
(ii) Find the perimeter of the shaded region.

Question 27

The diagram shows two circles with centres A and B having radii 8 cm and 10 cm respectively. The two circles intersect at C and D where $C A D$ is a straight line and $A B$ is perpendicular to $C D$.
(i) Find angle $A B C$ in radians.
(ii) Find the area of the shaded region.

Question 28

The diagram shows a circle with radius $r \mathrm{~cm}$ and centre O. Points A and B lie on the circle and $A B C D$ is a rectangle. Angle $A O B=2 \theta$ radians and $A D=r \mathrm{~cm}$.
(i) Express the perimeter of the shaded region in terms of r and θ.
(ii) In the case where $r=5$ and $\theta=\frac{1}{6} \pi$, find the area of the shaded region.

Question 29

In the diagram, $O A X B$ is a sector of a circle with centre O and radius 10 cm . The length of the chord $A B$ is 12 cm . The line $O X$ passes through M, the mid-point of $A B$, and $O X$ is perpendicular to $A B$. The shaded region is bounded by the chord $A B$ and by the arc of a circle with centre X and radius $X A$.
(i) Show that angle $A X B$ is 2.498 radians, correct to 3 decimal places.
(ii) Find the perimeter of the shaded region.
(iii) Find the area of the shaded region.

Question 30

The diagram shows a rectangle $A B C D$ in which $A B=5$ units and $B C=3$ units. Point P lies on $D C$ and $A P$ is an arc of a circle with centre B. Point Q lies on $D C$ and $A Q$ is an arc of a circle with centre D.
(i) Show that angle $A B P=0.6435$ radians, correct to 4 decimal places.
(ii) Calculate the areas of the sectors $B A P$ and $D A Q$.
(iii) Calculate the area of the shaded region.

Question 31

The diagram shows a semicircle with centre O and radius 6 cm . The radius $O C$ is perpendicular to the diameter $A B$. The point D lies on $A B$, and $D C$ is an arc of a circle with centre B.
(i) Calculate the length of the arc $D C$.
(ii) Find the value of

$$
\frac{\text { area of region } P}{\text { area of region } Q},
$$

giving your answer correct to 3 significant figures.

Question 32

The diagram shows an isosceles triangle $A B C$ in which $A C=16 \mathrm{~cm}$ and $A B=B C=10 \mathrm{~cm}$. The circular arcs $B E$ and $B D$ have centres at A and C respectively, where D and E lie on $A C$.
(i) Show that angle $B A C=0.6435$ radians, correct to 4 decimal places.
(ii) Find the area of the shaded region.

Question 33

The diagram shows a sector $P O Q$ of a circle of radius 10 cm and centre O. Angle $P O Q$ is 2.2 radians. $Q R$ is an arc of a circle with centre P and $P O R$ is a straight line.
(i) Show that the length of $P Q$ is 17.8 cm , correct to 3 significant figures.
(ii) Find the perimeter of the shaded region.
(ii) Find the y-coordinate of B.

Question 34

The diagram shows a triangle $O A B$ in which angle $O A B=90^{\circ}$ and $O A=5 \mathrm{~cm}$. The arc $A C$ is part of a circle with centre O. The arc has length 6 cm and it meets $O B$ at C. Find the area of the shaded region.

Question 35

The diagram shows points A and B on a circle with centre O and radius r. The tangents to the circle at A and B meet at T. The shaded region is bounded by the minor $\operatorname{arc} A B$ and the lines $A T$ and $B T$. Angle $A O B$ is 2θ radians.
(i) In the case where the area of the sector $A O B$ is the same as the area of the shaded region, show that $\tan \theta=2 \theta$.
(ii) In the case where $r=8 \mathrm{~cm}$ and the length of the minor arc $A B$ is 19.2 cm , find the area of the shaded region.

Question 36

The diagram shows a circle with centre O and radius $r \mathrm{~cm}$. The points A and B lie on the circle and $A T$ is a tangent to the circle. Angle $A O B=\theta$ radians and $O B T$ is a straight line.
(i) Express the area of the shaded region in terms of r and θ.
(ii) In the case where $r=3$ and $\theta=1.2$, find the perimeter of the shaded region.

Question 37

The diagram shows an arc $B C$ of a circle with centre A and radius 5 cm . The length of the arc $B C$ is 4 cm . The point D is such that the line $B D$ is perpendicular to $B A$ and $D C$ is parallel to $B A$.
(i) Find angle $B A C$ in radians.
(ii) Find the area of the shaded region $B D C$.

Question 38

The diagram shows an isosceles triangle $A C B$ in which $A B=B C=8 \mathrm{~cm}$ and $A C=12 \mathrm{~cm}$. The arc $X C$ is part of a circle with centre A and radius 12 cm , and the arc $Y C$ is part of a circle with centre B and radius 8 cm . The points A, B, X and Y lie on a straight line.
(i) Show that angle $C B Y=1.445$ radians, correct to 4 significant figures.
(ii) Find the perimeter of the shaded region.

Question 39

The diagram shows a triangle $O A B$ in which angle $A B O$ is a right angle, angle $A O B=\frac{1}{5} \pi$ radians and $A B=5 \mathrm{~cm}$. The arc $B C$ is part of a circle with centre A and meets $O A$ at C. The $\operatorname{arc} C D$ is part of a circle with centre O and meets $O B$ at D. Find the area of the shaded region.

Question 40

In the diagram, $C X D$ is a semicircle of radius 7 cm with centre A and diameter $C D$. The straight line $Y A B X$ is perpendicular to $C D$, and the $\operatorname{arc} C Y D$ is part of a circle with centre B and radius 8 cm . Find the total area of the region enclosed by the two arcs.

Question 41

The diagram shows triangle $A B C$ which is right-angled at A. Angle $A B C=\frac{1}{5} \pi$ radians and $A C=8 \mathrm{~cm}$. The points D and E lie on $B C$ and $B A$ respectively. The sector $A D E$ is part of a circle with centre A and is such that $B D C$ is the tangent to the arc $D E$ at D.
(i) Find the length of $A D$.
(ii) Find the area of the shaded region.

Question 42

The diagram shows a semicircle with diameter $A B$, centre O and radius r. The point C lies on the circumference and angle $A O C=\theta$ radians. The perimeter of sector $B O C$ is twice the perimeter of sector $A O C$. Find the value of θ correct to 2 significant figures.

Question 43
A sector of a circle of radius $r \mathrm{~cm}$ has an area of $A \mathrm{~cm}^{2}$. Express the perimeter of the sector in terms of r and A.

Question 44

The diagram shows a semicircle $A C B$ with centre O and radius r. Arc $O C$ is part of a circle with centre A.
(i) Express angle $C A O$ in radians in terms of π.
(ii) Find the area of the shaded region in terms of r, π and $\sqrt{ } 3$, simplifying your answer.

Question 45

The diagram shows a circle with centre O and radius $r \mathrm{~cm}$. Points A and B lie on the circle and angle $A O B=2 \theta$ radians. The tangents to the circle at A and B meet at T.
(i) Express the perimeter of the shaded region in terms of r and θ.
(ii) In the case where $r=5$ and $\theta=1.2$, find the area of the shaded region.

Question 46

The diagram shows a sector $O A C$ of a circle with centre O. Tangents $A B$ and $C B$ to the circle meet at B. The arc $A C$ is of length 6 cm and angle $A O C=\frac{3}{8} \pi$ radians.
(i) Find the length of $O A$ correct to 4 significant figures.
(ii) Find the perimeter of the shaded region.
(iii) Find the area of the shaded region.

Question 47

The diagram shows a sector $A O B$ which is part of a circle with centre O and radius 6 cm and with angle $A O B=0.8$ radians. The point C on $O B$ is such that $A C$ is perpendicular to $O B$. The $\operatorname{arc} C D$ is part of a circle with centre O, where D lies on $O A$.

Find the area of the shaded region.

Question 48

The diagram shows a cord going around a pulley and a pin. The pulley is modelled as a circle with centre O and radius 5 cm . The thickness of the cord and the size of the pin P can be neglected. The pin is situated 13 cm vertically below O. Points A and B are on the circumference of the circle such that $A P$ and $B P$ are tangents to the circle. The cord passes over the major arc $A B$ of the circle and under the pin such that the cord is taut.

Calculate the length of the cord.
Question 49

In the diagram, $O A B$ is a sector of a circle with centre O and radius $2 r$, and angle $A O B=\frac{1}{6} \pi$ radians. The point C is the midpoint of $O A$.
(a) Show that the exact length of $B C$ is $r \sqrt{5-2 \sqrt{3}}$.
(b) Find the exact perimeter of the shaded region.
(c) Find the exact area of the shaded region.

Question 50

In the diagram, $A B C$ is a semicircle with diameter $A C$, centre O and radius 6 cm . The length of the $\operatorname{arc} A B$ is 15 cm . The point X lies on $A C$ and $B X$ is perpendicular to $A X$.

Find the perimeter of the shaded region $B X C$.
Question 51

In the diagram, arc $A B$ is part of a circle with centre O and radius 8 cm . Arc $B C$ is part of a circle with centre A and radius 12 cm , where $A O C$ is a straight line.
(a) Find angle $B A O$ in radians.
(b) Find the area of the shaded region.
(c) Find the perimeter of the shaded region.

Question 52

In the diagram, $A B C$ is an isosceles triangle with $A B=B C=r \mathrm{~cm}$ and angle $B A C=\theta$ radians. The point D lies on $A C$ and $A B D$ is a sector of a circle with centre A.
(a) Express the area of the shaded region in terms of r and θ.
(b) In the case where $r=10$ and $\theta=0.6$, find the perimeter of the shaded region.

Question 53

The diagram shows a sector $C A B$ which is part of a circle with centre C. A circle with centre O and radius r lies within the sector and touches it at D, E and F, where $C O D$ is a straight line and angle $A C D$ is θ radians.
(a) Find $C D$ in terms of r and $\sin \theta$.

It is now given that $r=4$ and $\theta=\frac{1}{6} \pi$.
(b) Find the perimeter of sector $C A B$ in terms of π.
(c) Find the area of the shaded region in terms of π and $\sqrt{3}$.

Question 54

The diagram shows a sector $A B C$ which is part of a circle of radius a. The points D and E lie on $A B$ and $A C$ respectively and are such that $A D=A E=k a$, where $k<1$. The line $D E$ divides the sector into two regions which are equal in area.
(a) For the case where angle $B A C=\frac{1}{6} \pi$ radians, find k correct to 4 significant figures.
(b) For the general case in which angle $B A C=\theta$ radians, where $0<\theta<\frac{1}{2} \pi$, it is given that $\frac{\theta}{\sin \theta}>1$.

Find the set of possible values of k.

Question 55

The diagram shows a triangle $A B C$, in which angle $A B C=90^{\circ}$ and $A B=4 \mathrm{~cm}$. The sector $A B D$ is part of a circle with centre A. The area of the sector is $10 \mathrm{~cm}^{2}$.
(a) Find angle $B A D$ in radians.
(b) Find the perimeter of the shaded region.

Question 56

The diagram shows a cross-section of seven cylindrical pipes, each of radius 20 cm , held together by a thin rope which is wrapped tightly around the pipes. The centres of the six outer pipes are A, B, C, D, E and F. Points P and Q are situated where straight sections of the rope meet the pipe with centre A.
(a) Show that angle $P A Q=\frac{1}{3} \pi$ radians.
(b) Find the length of the rope.
(c) Find the area of the hexagon $A B C D E F$, giving your answer in terms of $\sqrt{3}$.
(d) Find the area of the complete region enclosed by the rope.

Question 57

The diagram shows a symmetrical metal plate. The plate is made by removing two identical pieces from a circular disc with centre C. The boundary of the plate consists of two arcs $P S$ and $Q R$ of the original circle and two semicircles with $P Q$ and $R S$ as diameters. The radius of the circle with centre C is 4 cm , and $P Q=R S=4 \mathrm{~cm}$ also.
(a) Show that angle $P C S=\frac{2}{3} \pi$ radians.
(b) Find the exact perimeter of the plate.
(c) Show that the area of the plate is $\left(\frac{20}{3} \pi+8 \sqrt{3}\right) \mathrm{cm}^{2}$.

Question 58

In the diagram, X and Y are points on the line $A B$ such that $B X=9 \mathrm{~cm}$ and $A Y=11 \mathrm{~cm}$. Arc $B C$ is part of a circle with centre X and radius 9 cm , where $C X$ is perpendicular to $A B$. Arc $A C$ is part of a circle with centre Y and radius 11 cm .
(a) Show that angle $X Y C=0.9582$ radians, correct to 4 significant figures.
(b) Find the perimeter of $A B C$.

Question 59

In the diagram the lengths of $A B$ and $A C$ are both 15 cm . The point P is the foot of the perpendicular from C to $A B$. The length $C P=9 \mathrm{~cm}$. An arc of a circle with centre B passes through C and meets $A B$ at Q.
(a) Show that angle $A B C=1.25$ radians, correct to 3 significant figures.
(b) Calculate the area of the shaded region which is bounded by the $\operatorname{arc} C Q$ and the lines $C P$ and $P Q$.
Question 60

The diagram shows a metal plate $A B C$ in which the sides are the straight line $A B$ and the arcs $A C$ and $B C$. The line $A B$ has length 6 cm . The arc $A C$ is part of a circle with centre B and radius 6 cm , and the $\operatorname{arc} B C$ is part of a circle with centre A and radius 6 cm .
(a) Find the perimeter of the plate, giving your answer in terms of π.
(b) Find the area of the plate, giving your answer in terms of π and $\sqrt{3}$.

Question 61

The diagram shows a circle with centre A of radius 5 cm and a circle with centre B of radius 8 cm . The circles touch at the point C so that $A C B$ is a straight line. The tangent at the point D on the smaller circle intersects the larger circle at E and passes through B.
(a) Find the perimeter of the shaded region.
(b) Find the area of the shaded region.

Question 62

The diagram shows triangle $A B C$ with $A B=B C=6 \mathrm{~cm}$ and angle $A B C=1.8$ radians. The arc $C D$ is part of a circle with centre A and $A B D$ is a straight line.
(a) Find the perimeter of the shaded region.
(b) Find the area of the shaded region.

Question 63

The diagram shows a sector $O B A C$ of a circle with centre O and radius 10 cm . The point P lies on $O C$ and $B P$ is perpendicular to $O C$. Angle $A O C=\frac{1}{6} \pi$ and the length of the $\operatorname{arc} A B$ is 2 cm .
(a) Find the angle $B O C$.
(b) Hence find the area of the shaded region $B P C$ giving your answer correct to 3 significant figures.

Question 64

The diagram shows a sector $A B C$ of a circle with centre A and radius r. The line $B D$ is perpendicular to $A C$. Angle $C A B$ is θ radians.
(a) Given that $\theta=\frac{1}{6} \pi$, find the exact area of $B C D$ in terms of r.
(b) Given instead that the length of $B D$ is $\frac{\sqrt{3}}{2} r$, find the exact perimeter of $B C D$ in terms of r.

Question 65

The diagram shows two identical circles intersecting at points A and B and with centres at P and Q. The radius of each circle is r and the distance $P Q$ is $\frac{5}{3} r$.
(a) Find the perimeter of the shaded region in terms of r.
(b) Find the area of the shaded region in terms of r.

Question 66

The diagram shows a cross-section $R A S B$ of the body of aircraft. The cross-section consists of a sector $O A R B$ of a circle of radius 2.5 m , with centre O, a sector $P A S B$ of another circle of radius 2.24 m with centre P and a quadrilateral $O A P B$. Angle $A O B=\frac{2}{3} \pi$ and angle $A P B=\frac{5}{6} \pi$.
(a) Find the perimeter of the cross-section $R A S B$, giving your answer correct to 2 decimal places.
(b) Find the difference in area of the two triangles $A O B$ and $A P B$, giving your answer correct to 2 decimal places.
(c) Find the area of the cross-section $R A S B$, giving your answer correct to 1 decimal place.

Question 66

The diagram shows a sector $O A B$ of a circle with centre O. The length of the $\operatorname{arc} A B$ is 8 cm . It is given that the perimeter of the sector is 20 cm .
(a) Find the perimeter of the shaded segment.
(b) Find the area of the shaded segment.

Question 67

The diagram shows triangle $A B C$ in which angle B is a right angle. The length of $A B$ is 8 cm and the length of $B C$ is 4 cm . The point D on $A B$ is such that $A D=5 \mathrm{~cm}$. The sector $D A C$ is part of a circle with centre D.
(a) Find the perimeter of the shaded region.
(b) Find the area of the shaded region.

Question 68

The diagram shows a sector $O A B$ of a circle with centre O and radius $r \mathrm{~cm}$. Angle $A O B=\theta$ radians. It is given that the length of the $\operatorname{arc} A B$ is 9.6 cm and that the area of the sector $O A B$ is $76.8 \mathrm{~cm}^{2}$.
(a) Find the area of the shaded region.
(b) Find the perimeter of the shaded region.

Question 69

The diagram shows a sector $O A B$ of a circle with centre O. Angle $A O B=\theta$ radians and $O P=A P=x$.
(a) Show that the arc length $A B$ is $2 x \theta \cos \theta$.
(b) Find the area of the shaded region $A P B$ in terms of x and θ.

Question 70

The diagram shows a sector $A B C$ of a circle with centre A and radius 8 cm . The area of the sector is $\frac{16}{3} \pi \mathrm{~cm}^{2}$. The point D lies on the $\operatorname{arc} B C$.

Find the perimeter of the segment $B C D$.

