AS-Level

Topic: Quadratics
May 2013-May 2023

Answer

Question 1

$m x+14=\frac{12}{x}+2 \rightarrow m x^{2}+12 x-12=0$
Uses $b^{2}=4 a c \rightarrow m=-3$
$-3 x^{2}+12 x-12=0 \rightarrow P(2,8)$
[Or $m=-12 x^{-2}$ M1 Sub M1 $\left.x=2 \mathrm{~A} 1\right]$
$[\rightarrow m=-3$ and $y=8$ M1 A1]

M1		
M1		Aliminates x (or y)
A1		
DM1 A1		
		Any valid method.

Eliminates x (or y)
Any use of discriminant Any valid method.

Question 2

$$
\mathrm{f}: x \mapsto 2 x^{2}-3 x, \mathrm{~g}: x \mapsto 3 x+k
$$

(i) $2 x^{2}-3 x-9>0$
$\rightarrow x=3$ or $-1 \frac{1}{2}$
Set of $x x>3$, or $x<-1 \frac{1}{2}$
(ii) $2 x^{2}-3 x=2\left(x-\frac{3}{4}\right)^{2}-\frac{9}{8}$

Vertex $\left(\frac{3}{4},-\frac{9}{8}\right)$
(iii) $\operatorname{gf}(x)=6 x^{2}-9 x+k=0$

Use of $b^{2}-4 a c \rightarrow k=\frac{27}{8}$ oe.

M1 A1
A1
$\mathrm{B} 1 \sqrt{\wedge} \quad \stackrel{*}{ }$ on ' c ' and ' b '.
[4]

B1
[3]

B3,2,1 $-x^{2}$ in bracket is an error.

M1 A1	Used on a quadratic (even fg).

For solving quadratic. Ignore $>$ or \geqslant condone \geqslant or \leqslant
$-x^{2}$ in bracket is an error.

Question 3
$2 x^{2}-10 x+8 \rightarrow a(x+b)^{2}+c$
(i) $a=2, b=-2 \frac{1}{2}, c=-4 \frac{1}{2}$
$\rightarrow \min$ value is $-4 \frac{1}{2}$ Allow $\left(2 \frac{1}{2},-4 \frac{1}{2}\right)$
(ii) $2 x^{2}-10 x+8-k x=0$

Use of " $b^{2}-4 a c$ "
$(-10-k)^{2}-64<0$ or $k^{2}+20 k+36<0$
$\rightarrow k=-18$ or -2
$-18<k<-2$
$3 \times \mathrm{B} 1 \quad$ Or $2\left(x-2 \frac{1}{2}\right)^{2}-4 \frac{1}{2}$ not by differentiation

Sets equation to 0 and uses discriminant correctly co Dep on $1^{\text {st }}$ M1 only co

Can score by sub $x=2 \frac{1}{2}$ into original but Realises discriminant <0. Allow \leqslant
[4]

Question 4

$$
\text { (i) } \begin{aligned}
& x^{2}+4 x+c-8(=0) \\
& 16-4(c-8)=0 \\
& c=12 \\
& \\
& -2-2 x=2 \rightarrow x=(-2) \\
& -4+c=8+4-4 \\
& \\
& c=12
\end{aligned}
$$

(ii) $x^{2}+4 x+3 \rightarrow(x+1)(x+3)(=0) \rightarrow$
$x=-1$ or -3
$\int\left(8-2 x-x^{2}\right)-\left[\int(2 x+11)\right.$ or area of trapezium $]$
$\left.-x^{2}-\frac{x^{3}}{3}\right]-\left[x^{2}+11 x\right]$ or $\left[8 x-x^{2}-\frac{x^{3}}{3}\right]-\frac{1}{2}(5+9) \times 2$

Apply their limits to at least integral for curve $1 \frac{1}{3}$ oe

Attempt to simplify to 3-term quadratic
Apply $b^{2}-4 a c=0 . \quad '=0$ ' soi

Equate derivs of curve and line. Expect $x=-2$ Sub their $x=-2$ into line and curve, and equate

Attempt to integrate. At some stage subtract
A1 for curve, B1 for line OR $\left[-3 x-2 x^{2}-\frac{x^{3}}{3}\right] \mathrm{A} 2,1,0$
For M marks allow reversed limits and/or subtraction of areas but then final A0

Question 5

(i) $(2 x-3)^{2}-9$
(ii) $2 x-3>4 \quad 2 x-3<-4$ $x>3 \frac{1}{2}$ (or) $x<-\frac{1}{2} \quad$ cao
Allow $-\frac{1}{2}>x>3 \frac{1}{2}$
$4 x^{2}-12 x-7 \rightarrow(2 x-7)(2 x+1)$
$x>3 \frac{1}{2}($ or $)<-\frac{1}{2} \quad$ cao
Allow $-\frac{1}{2}>x>3 \frac{1}{2}$

Question 6

$$
\begin{aligned}
& x^{2}+x(k-2)+(k-2)(=0) \\
& (k-2)^{2}-4(k-2)(>0) \text { soi } \\
& (k-2)(k-6)(>0) \\
& k<2 \text { or } k>6 \quad(\text { condone } \leqslant, \geqslant) \\
& \text { Allow }\{-\infty, 2\} \cup\{6, \infty\} \text { etc. }
\end{aligned}
$$

Attempt to solve 3-term quadratic
Allow 'and' $3 \frac{1}{2},-\frac{1}{2}$ soi scores first M1

M1 \quad Equate and move terms to one side of equ. Apply $b^{2}-4 a c(>0)$. Allow \geqslant at this stage.

Attempt to factorise or solve or find 2 solns. SCA1 for 2, 6 seen with wrong inequalities

Question 7

$$
2(x-3)^{2}-11
$$

B1B1B1 For 2, $(x-3)^{2},-11$. Or $a=2, b=3$, [3] $c=11$
Question 8

$$
\left|\begin{array}{l|c|l}
x^{2}-4 x+c=2 x-7 \rightarrow x^{2}-6 x+c+7(=0) & \text { M1 } & \text { All terms on one side } \\
36-4(c+7)<0 \\
c>2
\end{array}\right| \begin{array}{ll}
\text { DM1 } & \text { Apply } b^{2}-4 a c<0 . \text { Allow } \leqslant . \\
& \text { A1 } \\
& {[3]}
\end{array}
$$

Question 9

(a) $\quad y=2 x^{2}-4 x+8$

Equates with $y=m x$ and selects a, b, c
Uses $b^{2}=4 a c$
$\rightarrow m=4$ or -12 .
(b) (i)
$\mathrm{f}(x)=x^{2}+a x+b$
Eqn of form $(x-1)(x-9)$
$\rightarrow a=-10, b=9$
(or using 2 sim eqns M1 A1)
(ii)

Calculus or $x=\frac{1}{2}(1+9)$ by symmetry $\rightarrow(5,-16)$

M1
M1
A1

M1

A1

M1
A1
[2]
[3]
[2]

Equate + solution or use of $\mathrm{d} y / \mathrm{d} x$ Use of discriminant for both.

Any valid method allow
$(x+1)(x+9)$ for M1
must be stated

Any valid method

M1
M1
A1

Eliminate y and rearrange into 3term quad $b^{2}-4 a c$.
[3]

Question 11

Question 12

(i)	$(x+3)^{2}-7$	B1B1	[2]	For $a=3, b=-7$
(ii)	$1,-7$ seen $x>1, \quad x<-7$	oe	B1 B1	$x>1$ or $x<-7$ Allow $x \leqslant-7,-\cdots \geqslant 1$ oe [2]

Question 13

$(3 k)^{2}-4 \times 2 \times k$	M1	Attempt $b^{2}-4 a c$
$9 k^{2}-8 k>0 \quad$ soi \quad Allow $9 k^{2}-8 k \geqslant 0$	A1	Must involve correct inequality. Can be implied by correct answers
$0,8 / 9$ soi	A1	
$k<0, k>8 / 9$ (or 0.889$)$	A1	Allow $(-\infty, 0),(8 / 9, \infty)$
	$\mathbf{4}$	

Question 14

$a x+3 a=-\frac{2}{x} \rightarrow a x^{2}+3 a x+2(=0)$	$* \mathbf{M 1}$	Rearrange into a 3-term quadratic.
Apply $b^{2}-4 a c>0$ SOI	DM1	Allow \geqslant. If no inequalities seen, M1 is implied by 2 correct final answers in a or x.
$a<0, a>\frac{8}{9}$ (or 0.889) OE	A1 A1	For final answers accept $0>\mathrm{a}>\frac{8}{9}$ but not $\leqslant \geqslant$.
	$\mathbf{4}$	

Question 15

'(i)	$1+c x=c x^{2}-3 x \rightarrow c x^{2}-x(c+3)-1(=0)$	M1	Multiply throughout by x and rearrange terms on one side of equality
	Use $b^{2}-4 a c\left[=(c+3)^{2}+4 c=c^{2}+10 c+9\right.$ or $\left.(c+5)^{2}-16\right]$	M1	Select their correct coefficients which must contain ' c ' twice Ignore $=0,<0,>0$ etc. at this stage
	(Critical values) $-1,-9$	A1	SOI
	$c \leqslant-9, \quad c \geqslant-1$	A1	
		4	
(ii)	Sub their c to obtain a quadratic $\left[c=-1 \rightarrow-x^{2}-2 x-1(=0)\right]$	M1	
	$x=-1$	A1	
	Sub their c to obtain a quadratic [$c=\left(-9 \rightarrow-9 x^{2}+6 x-1(=0)\right]$	M1	
	$x=1 / 3$	A1	[Alt 1: $d y / d x=-1 / x^{2}=c$, when $c=-1, x= \pm 1, c=-9, x= \pm \frac{1}{3}$ Give M1 for equating the gradients, A1 for all four answers and M1A1 for checking and eliminating] [Alt 2: $d y / d x=-1 / x^{2}=c$ leading to $1 / x-1 / x^{2}=\left(-1 / x^{2}\right)(\mathrm{x})-3$ Give M1 A1 at this stage and M1A1 for solving]
		4	

Question 16

$[3]\left[(x-2)^{2}\right][-5]$	B1B1B1	OR $a=3, b=-2, \mathrm{c}=-5.1$ st mark is dependent on the form $(x+a)^{2}$ following 3
	$\mathbf{3}$	

Question 17

(i)

		A complete method as far as finding a set of values for k by:
Either $(x-3)^{2}+k-9>0, k-9>0$	M1	Either completing the square and using 'their $k-9$ ' $>$ or $\geqslant 0$ OR Differentiating and setting to 0, using 'their $x=3$ ' to find y and using 'their $k-9$ ' $>$ or $\geqslant 0$ OR
or $2 x-6=0 \rightarrow(3, k-9), k-9>0$		Use of discriminant $<$ or $\leqslant 0$. Beware use of $>$ and incorrect algebra.
or $b^{2}<4 a c$ oe $\rightarrow 36<4 k$	A1	T\&I leading to (or no working) correct answer $2 / 2$ otherwise $0 / 2$.
$\rightarrow k>9$ Note: not \geqslant	$\mathbf{2}$	

(ii)

EITHER		
$x^{2}-6 x+k=7-2 x \rightarrow x^{2}-4 x+k-7(=0)$	${ }^{*} \mathbf{M 1}$	Equates and collects terms.
Use of $b^{2}-4 a c=0(16-4(k-7)=0)$	DM1	Correct use of discriminant $=0$, involving k from a 3 term quadratic.
OR	${ }^{*} \mathbf{M 1}$	
$2 x-6=-2 \rightarrow x=2(y=3)$	Equates their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to ± 2, finds a value for x.	
(their 3$)$ or $7-2($ their 2$)=(\text { their } 2)^{2}-6($ their 2$)+k$	A1	
$\rightarrow k=11$	$\mathbf{3}$	
	Substitutes their value(s) into the appropriate equation.	

Question 18

'(i)

For their 3-term quad a recognisable application of $b^{2}-4 a c$	M1	Expect $2 x^{2}-x(3+k)+1-k^{2}(=0)$ oe for the 3 -term quad.
$\left(b^{2}-4 a c=\right)(3+k)^{2}-4(2)\left(1-k^{2}\right)$ oe	A1	Must be correct. Ignore any RHS
$9 k^{2}+6 k+1$	A1	Ignore any RHS
$(3 k+1)^{2} \geqslant 0$ Do not allow >0. Hence curve and line meet. AG	A1	Allow (9) $\left(k+\frac{1}{3}\right)^{2} \geqslant 0$. Conclusion required.
ALT Attempt solution of 3-term quadratic	M1	
Solutions $x=k+1, \quad 1 / 2(1-k)$	A1A1	
Which exist for all values of k. Hence curve and line meet. AG	A1	
	4	
$k=-1 / 3$	B1	ALT $\mathrm{d} y / \mathrm{d} x=4 x-3 \Rightarrow 4 x-3=k$
Sub (one of) their $k=-1 / 3$ into either line $1 \rightarrow 2 x^{2}-\frac{8}{3} x+\frac{8}{9}(=0)$ Or into the derivative of line $1 \rightarrow 4 x-(3+k)(=0)$	M1	Sub $k=4 x-3$ into line $1 \rightarrow 2 x^{2}-x(4 x)+1-(4 x-3)^{2}(=0)$
$x=2 / 3$ Do not allow unsubstantiated $\left(\frac{2}{3},-\frac{1}{9}\right)$ following $k=-\frac{1}{3}$	A1	$x=2 / 3, y=-1 / 9$ (both required) [from $-18 x^{2}+24 x-8(=0)$ oe]
$y=-1 / 9$ Do not allow unsubstantiated $\left(\frac{2}{3},-\frac{1}{9}\right)$ following $k=-\frac{1}{3}$	A1	$k=-1 / 3$
-	4	

Question 19

(i)	$2 x+\frac{12}{x}=k-x$ or $y=2(k-y)+\frac{12}{k-y} \rightarrow 3$ term quadratic.	*M1	Attempt to eliminate y (or x) to form a 3 term quadratic. Expect $3 x^{2}-k x+12$ or $3 y^{2}-5 k y+\left(2 \mathbf{k}^{2}+12\right)(=0)$
	Use of $b^{2}-4 a c \rightarrow k^{2}-144<0$	DM1	Using the discriminant, allow $\leqslant,=0$ expect 12 and -12
	$-12<k<12$	A1	Do NOT accept \leqslant. Separate statements OK.
		3	
(ii)	Using $k=15$ in their 3 term quadratic	M1	From (i) or restart. Expect $3 x^{2}-15 x+12$ or $3 y^{2}-75 y+462$ ($=0$)
	$x=1,4$ or $y=11,14$	A1	Either pair of x or y values correct..
	$(1,14)$ and $(4,11)$	A1	Both pairs of coordinates
		3	
(iii)	Gradient of $A B=-1 \rightarrow$ Perpendicular gradient $=+1$	B1FT	Use of $m_{1} m_{2}=-1$ to give +1 or ft from their A and B.
	Finding their midpoint using their $(1,14)$ and $(4,11)$	M1	Expect ($\left.2^{1 / 2}, 121 / 2\right)$
	Equation: $y-12^{1 / 2}=(x-21 / 2)[y=x+10]$	A1	Accept correct unsimplified and isw
		3	

Question 20

$\left(4 x^{1 / 2}-3\right)\left(x^{1 / 2}-2\right)$ oe soi Alt: $4 x+6=11 \sqrt{x} \Rightarrow 16 x^{2}-73 x+36$	M1	Attempt solution for $x^{1 / 2}$ or sub $u=x^{1 / 2}$
$x^{1 / 2}=3 / 4$ or 2 $(16 x-9)(x-4)$	A1	Reasonable solutions for $x^{1 / 2}$ implies M1 $(x=2,3 / 4$, M1A0 $)$
$x=9 / 16$ oeor 4	A1	Little or no working shown scores SCB3, spotting one solution, B0
	$\mathbf{3}$	

Question 21

$x^{2}+b x+5=x+1 \rightarrow x^{2}+x(b-1)+4(=0)$	M1	Eliminate x or y with all terms on side of an equation
$\left(b^{2}-4 a c=\right)(b-1)^{2}-16$	M1	
b associated with $-3 \&+5$ or $b-1$ associated with ± 4	A1	$(x-2)^{2}=0$ or $(x+2)^{2}=0, x= \pm 2, b-1= \pm 4$ (M1A1) Association can be an equality or an inequality
$b \geqslant 5, b \leqslant-3$	A1	
	4	

Question 22

!(i)	Eliminates x or $y \rightarrow y^{2}-4 y+c-3=0$ or $x^{2}+(2 c-16) x+c^{2}-48=0$	M1	Eliminates x or y completely to a quadratic
	Uses $b^{2}=4 a c \rightarrow 4 c-28=0$	M1	Uses discriminant $=0 .(\mathrm{c}$ the only variable $)$ Any valid method (may be seen in part (i))
	$c=7$	A1	
	Alternative method for question 2(i)		
	$\frac{d y}{d x}=\frac{1}{2 \sqrt{(x+3)}}=\frac{1}{4}$	M1	
	Solving	M1	
	$c=7$	A1	
		3	
(ii)	Uses $c=7, y^{2}-4 y+4=0$	M1	Ignore ($1,-2$), $\mathrm{c}=-9$
	$(1,2)$	A1	
		2	

Question 23

;(i)	$3 k x-2 k=x^{2}-k x+2 \rightarrow x^{2}-4 k x+2 k+2(=0)$	B1	$k x$ terms combined correctly-implied by correct $b^{2}-4 a c$
	Attempt to find $b^{2}-4 a c$	M1	Form a quadratic equation in k
	1 and $-\frac{1}{2}$	A1	SOI
	$k>1, k<-\frac{1}{2}$	A1	Allow $x>1, x<-1 / 2$
		4	
(ii)	$y=3 x-2, \quad y=-\frac{3}{2} x+1$	M1	Use of their k values (twice) in $y=3 k x-2 k$
	$3 x-2=-\frac{3}{2} x+1$ OR $y+2=2-2 y$	M1	Equate their tangent equations OR substitute $y=0$ into both lines
	$x=\frac{2}{3}, \rightarrow y=0$ in one or both lines	A1	Substitute $x=\frac{2}{3}$ in one or both lines
		3	

Question 24

Equation of line is $y=m x-2$	B1	OR
$x^{2}-2 x+7=m x-2 \rightarrow x^{2}-x(2+m)+9=0$	M1	
Apply $b^{2}-4 a c(=0) \rightarrow(2+m)^{2}-4 \times 9(=0)$	*M1	
$m=4$ or -8	A1	
$m=4 \rightarrow x^{2}-6 x+9=0 \rightarrow x=3$ $m=-8 \rightarrow x^{2}+6 x+9=0 \rightarrow x=-3$	DM1	
$(3,10),(-3,22)$	A1A1	

Question 25

$3 x^{2}+2 x+4=m x+1 \rightarrow 3 x^{2}+x(2-m)+3(=0)$	B1	
$(2-m)^{2}-36$ SOI	M1	
$(m+4)(m-8)(>1=0)$ or $2-m>1=6$ and $2-m<1=-6$	OE	A1
$m<-4, m>8$ WWW	A1	

Question 26

i(a)	$2 x^{2}+k x+k-1=2 x+3 \rightarrow 2 x^{2}+(k-2) x+k-4=0$	M1
	Use of $b^{2}-4 a c=0 \rightarrow(k-2)^{2}=8(k-4)$	M1
	$k=6$	A1
		3
(b)	$\begin{aligned} & 2 x^{2}+2 x+1=2\left(x+\frac{1}{2}\right)^{2}+1-\frac{1}{2} \\ & a=\frac{1}{2}, b=\frac{1}{2} \end{aligned}$	B1 B1
	$\text { vertex }\left(-\frac{1}{2}, \frac{1}{2}\right)$ (FT on a and b values)	B1FT
		3

Question 27

(a)	$x(m x+c)=16 \rightarrow m x^{2}+c x-16=0$	B1
	Use of $b^{2}-4 \mathrm{ac}=c^{2}+64 m$	M1
Sets to $0 \rightarrow m=\frac{-c^{2}}{64}$	A1	
		3
(b)	$x(-4 x+c)=16$ Use of $b^{2}-4 \mathrm{ac} \rightarrow c^{2}-256$	M1
$c>16$ and $c<-16$	A1 A1	
	$\mathbf{3}$	

Question 28

A curve has equation $y=3 x^{2}-4 x+4$ and a straight line has equation $y=m x+m-1$, where m is a constant.

Find the set of values of m for which the curve and the line have two distinct points of intersection.

$3 x^{2}-4 x+4=m x+m-1 \rightarrow 3 x^{2}-(4+m) x+(5-m)(=0)$	M1	3-term quadratic
$b^{2}-4 a c=(4+m)^{2}-4 \times 3 \times(5-m)$	$\mathbf{M 1}$	Find $b^{2}-4 a c$ for their quadratic
$m^{2}+20 m-44$	$\mathbf{A 1}$	
$(m+22)(m-2)$	$\mathbf{A 1}$	Or use of formula or completing square. This step must be seen
$m>2, m<-22$	$\mathbf{A 1}$	Allow $x>2, x<-22$
	$\mathbf{5}$	

Question 29

$2 x^{2}+m(2 x+1)-6 x-4(=0)$	$* \mathbf{M 1}$	y eliminated and all terms on one side with correct algebraic steps. Condone \pm errors
Using $b^{2}-4 a c$ on $2 x^{2}+x(2 m-6)+m-4(=0)$	DM1	Any use of discriminant with their a, b and c identified correctly.
$4 m^{2}-32 m+68$ or $2 m^{2}-16 m+34$ or $m^{2}-8 m+17$	A1	
$(2 m-8)^{2}+k$ or $(m-4)^{2}+k$ or minimum point $(4, k)$	DM1	OE. Any valid method attempted on their 3-term quadratic
or finds $b^{2}-4 a c(=-4,-16,-64)$	A1	Clear and correct reasoning and conclusion without wrong working.
$(m-4)^{2}+1$ oe + always $>0 \rightarrow 2$ solutions for all values of m		
or		
Minimum point $(4,1)+(f n)$ always $>0 \rightarrow 2$ solutions for all values of m or $b^{2}-4 a c<0+$ no solutions $\rightarrow 2$ solutions for the original equation for all values of m	$\mathbf{5}$	

Question 30

$2 x^{2}+5=m x-3 \rightarrow 2 x^{2}-m x+8(=0)$	B1	Form 3-term quadratic
$m^{2}-64$	$\mathbf{M 1}$	Find $b^{2}-4 a c$.
$-8<m<8$	$\mathbf{A 1}$	Accept $(-8,8)$ and equality included
	$\mathbf{3}$	

Question 31

$x^{2}+k x+6=3 x+k$ leading to $x^{2}+x(k-3)+(6-k)[=0]$	M1	Eliminate y and form 3-term quadratic.
$(k-3)^{2}-4(6-k)[>0]$	M1	OE. Apply $b^{2}-4 a c$.
$k^{2}-2 k-15[>0]$	A1	Form 3-term quadratic.
$(k+3)(k-5)[>0]$	A1 FT	Or $k=-3,5$ from use of formula or completing square.
$k<-3, \quad k>5$	Or,$~$ FT for their outside regions.	

Question 32

$u=2 x-3$ leading to $u^{4}-3 u^{2}-4[=0]$	M1	Or $u=(2 x-3)^{2}$ leading to $u^{2}-3 u-4[=0]$
$\left(u^{2}-4\right)\left(u^{2}+1\right)[=0]$	M1	Or $(u-4)(u+1)[=0]$
$2 x-3=[\pm] 2$	A1	
$x=\frac{1}{2}, \frac{5}{2}$ only	A1	
	$\mathbf{4}$	

Question 33

$x^{2}-4 x+3=m x-6$ leading to $x^{2}-x(4+m)+9$	"M1	Equating and gathering terms. May be implied on the next line.
$b^{2}-4 a c$ leading to $(4+m)^{2}-4 \times 9$	DM1	SOI. Use of the discriminant with their a, b and c
$4+m= \pm 6$ or $(m-2)(m+10)=0$ leading to $m=2$ or -10	A1	Must come from $b^{2}-4 a c=0$ SOI
Substitute both their m values into their equation in line 1	DM1	
$m=2$ leading to $x=3 ; m=-10$ leading to $x=-3$	A1	
$(3,0),(-3,24)$	A1	Accept 'when $x=3, y=0 ;$ when $x=-3, y=24^{\prime}$ If final A0A0 scored, SC B1 for one point correct WWW

Question 34

(a)	$(4 x-3)^{2}$ or $(4 x+(-3))^{2}$ or $a=-3$ +1 or $b=1$	B1	$k(4 x-3)^{2}$ where $k \neq 1$ scores B0 but mark final answer, allow recovery.
(b)	$[$ For one root $] k=1$ or 'their $b '$	$\mathbf{2}$	
[Root or $x=] \frac{3}{4}$ or 0.75	B1 FT	Either by inspection or solving or from $24^{2}-4 \times 16 \times(10-k)=0$ WWW	
	SC B2 for correct final answer WWW.		

Question 35

$(2 k-3) x^{2}-k x-(k-2)=3 x-4$	$* \mathbf{M 1}$	Equating curve and line
$(2 k-3) x^{2}-(k+3) x-(k-6)[=0]$	DM1	Forming a 3-term quadratic
$(k+3)^{2}+4(2 k-3)(k-6)[=0]$	DM1	Use of discriminant (dependent on both previous M marks)
$9 k^{2}-54 k+81[=0]\left[\right.$ leading to $\left.k^{2}-6 k+9=0\right]$	$\mathbf{M 1}$	Simplifying and solving their 3-term quadratic in k
$k=3$	A1	

Question 36

$$
\left\{5(y-3)^{2}\right\} \quad\{+5\} \quad \mid \quad \text { B1 B1 } \mid \text { Accept } a=-3, b=5
$$

Question 37

$k x^{2}+2 x-k=k x-2$ leading to $k x^{2}+(-k+2) x-k+2[=0]$	$* \mathbf{M 1}$	Eliminate y and form 3-term quadratic. Allow 1 error.
$(-k+2)^{2}-4 k(-k+2)$	DM1	Apply $b^{2}-4 a c ;$ allow 1 error but a, b and c must be correct for their quadratic.
$5 k^{2}-12 k+4$ or $(-k+2)(-k+2-4 k)$	A1	May be shown in quadratic formula.
$(-k+2)(-5 k+2)$	DM1	Solving a 3-term quadratic in k (all terms on one side) by factorising, use of formula or completing the square. Factors must expand to give their coefficient of k^{2}.
$\frac{\text { A1 }}{5}<k<2$	WWW, accept two separate correct inequalities. If M0 for solving quadratic, SC B1 can be awarded for correct final answer.	
$\mathbf{5}$		

Question 38

$x^{2}+2 c x+4=4 x+c$ leading to $x^{2}+2 c x-4 x+4-c[=0]$	${ }^{*} \mathbf{M 1}$	Equate y s and move terms to one side of equation.
$b^{2}-4 a c=(2 c-4)^{2}-4(4-c)$	DM1	Use of discriminant with $t h e i r$ correct coefficients.
$\left[4 c^{2}-16 c+16-16+4 c=\right] 4 c^{2}-12 c$	A1	
$b^{2}-4 a c>0$ leading to (4)c(c-3)>0	M1	Correctly apply ‘>0' considering both regions.
$c<0, c>3$	A1	Must be in terms of c. SC B1 instead of M1A1 for $\mathrm{c} \leqslant 0, \mathrm{c} \geqslant 3$
	$\mathbf{5}$	

Question 39

(a)	$m x+c=-\frac{m}{x} \Rightarrow m x^{2}+c x+m=0$	M1	All x terms in the numerator. OE e.g. $m x^{2}+c x=-m$.
	$b^{2}-4 a c=0 \Rightarrow c^{2}-4 m^{2}=0$	M1	OE $b^{2}-4 a c=0$ is implied by $c^{2}-4 m^{2}=0$.
	$c=[\pm] 2 m$	A1	SOI. Allow \pm at this stage.
	$m x^{2}[\pm] 2 m x+m=0 \Rightarrow x^{2}[\pm] 2 x+1=0$	M1	Sub $c=+2 m \quad$ Ignore substitution of $-2 m$.
	$(x+1)^{2}=0 \Rightarrow x=-1$ only	A1	
	$y=m$ only or $(-1, m)$ only	A1	
	Alternative method to question 11(a)		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{m}{x^{2}}$	M1	As this is a method mark a sign error is allowed.
	$\frac{m}{x^{2}}=m \Rightarrow x^{2}=1$	M1 A1	Equating their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and m and attempt to solve.
	$x= \pm 1$ or $x=-1$	A1	If $x=-1$ and $y=m$ are the only answers offered here award the final M1 A1.
	Selecting $x=-1$ as the only answer and attempt to find y	M1	
	$y=m$ or $(-1, m)$	A1	
(b)	Equation of normal is $y-m=\frac{-1}{m}(x+1)$	$\begin{array}{r} 6 \\ * M 1 \end{array}$	Through their P with gradient $\frac{-1}{m}, \mathrm{OE}$ e.g. $y=\frac{-1}{m} x+\frac{m^{2}-1}{m}$. Allow use of the gradient of the curve as $-\frac{1}{\left[\frac{m}{(\text { their } x)^{2}}\right]}$ with their P . Coordinates of P must be in terms of m only.
	$\frac{-x}{m}-\frac{1}{m}+m=\frac{-m}{x} \Rightarrow x^{2}+x\left(1-m^{2}\right)-m^{2}[=0]$	DM1	OE Equating their normal equation to the equation of the curve and removing x from the denominator.
	$(x+1)\left(x-m^{2}\right)[=0] \Rightarrow x=m^{2}$	A1	or $x=\frac{m^{2}-1 \pm \sqrt{1-2 m^{2}+m^{4}+4 m^{2}}}{2}=\frac{m^{2}-1 \pm\left(m^{2}+1\right)}{2}=m^{2}$
	$y=\frac{-m}{m^{2}}=\frac{-1}{m}$	A1	or $\left(m^{2}, \frac{-1}{m}\right)$, ignore the coordinates of P .
		4	

Question 40

(a) \begin{tabular}{l|r|l}

$4 \times 0^{2}-0+\frac{1}{2} k^{2}=0-a$ \& $\mathbf{M 1}$ \& | Equating the equations of curve and line and substituting $x=0$. |
| :--- |
| Condone slight errors e.g. \pm sign errors. |

\hline $4 \times\left(\frac{3}{4}\right)^{2}-\frac{3}{4} k+\frac{1}{2} k^{2}=\frac{3}{4}-a$ \& M1 \& | Equating the equations of curve and line and substituting $x=\frac{3}{4}$ |
| :--- |
| Condone slight errors e.g. \pm sign errors. |

\hline$k=2, a=-2$ \& A1 A1 \& WWW

\hline
\end{tabular}

Alternative method for question 5(a)

$(x-0)\left(x-\frac{3}{4}\right)=\mathbf{0}$ or $x(4 x-3)=0\left[\Longrightarrow 4 x^{2}-3 x=0\right]$	$* \mathbf{M 1}$	Use $0, \frac{3}{4}$ to form a quadratic equation. Do not allow
$4 x^{2}-k x+\frac{1}{2} k^{2}=x-a$ leading to $4 x^{2}-(k+1) x+\frac{1}{2} k^{2}+a[=0]$	DM1	Equating the equations of curve and line and rearranging so that terms are all on same side. Condone slight errors e.g. \pm sign errors.
$k=2, a=-2$	A1 A1	WWW

Alternative method for question 5(a)

$-\frac{b}{a}=\frac{3}{4}+0$ and $\frac{c}{a}=0 \times \frac{3}{4}$	*M1	Using sum and product of roots. Condone \pm sign errors.
$\frac{k+1}{4}=\frac{3}{4}$ and $\frac{\frac{1}{2} k^{2}+a}{4}=0$	DM1	Equating the equations of curve and line and equating to $\frac{3}{4}$ and 0.
$k=2, a=-2$	A1 A1	WWW
	4	

(b)

$4 x^{2}-k x+\frac{1}{2} k^{2}=x+\frac{7}{2} \Rightarrow 4 x^{2}-k x-x+\frac{1}{2} k^{2}-\frac{7}{2}[=0]$
$(k+1)^{2}-4 \times 4\left(\frac{1}{2} k^{2}-\frac{7}{2}\right)$
$\Rightarrow 7 k^{2}-2 k-57$
$(k-3)(7 k+19)$ or other valid method
$k=3, k=-\frac{19}{7}$

*M1 OE Substitute $a=-\frac{7}{2}$ and rearrange so that terms are all on same side, condone \pm sign errors. Watch for multiples.
*DM1 Use of $b^{2}-4 a c$ with the coefficients from their 3 -term quadratic. Both coefficients ' b ' and ' c ' must consist of two components.

A1 OE
DM1 Factorising or use of the formula or completing the square. Must be evidence of an attempt to solve for this mark. Dependent upon both previous method marks.

A1 OE e.g. AWRT - 2.71. No ISW if inequalities used. SC: If second DM1 not scored, SC B1 available for correct final answers.

Alternative method for question 5(b)

$8 x-k=1$ and $4 x^{2}-k x+\frac{1}{2} k^{2}=x+\frac{7}{2}$	*M1	Equating gradients and equating line and curve.
$4 x^{2}-(8 x-1) x+\frac{1}{2}(8 x-1)^{2}=x+\frac{7}{2}$ or	*DM1	Forming an equation in x or k only.
$4\left(\frac{k+1}{8}\right)^{2}-k\left(\frac{k+1}{8}\right)+\frac{1}{2} k^{2}=\frac{k+1}{8}+\frac{7}{2}$	A1	OE A correct 3 term quadratic in x or k only.
$28 x^{2}-8 x-3$ or $7 k^{2}-2 k-57$	DM1	OE Factorising or use of the formula or completing the square. Must be evidence of an attempt to solve for this mark. Dependent upon both previous method marks.
$(14 x+3)(2 x-1)$ or $(k-3)(7 k+19)$ or other valid method		

Question 41

(a)	$x^{2}-8 x+11=(x-4)^{2} \ldots$ or $p=-4$	B1	If p and q-values given after their completed square expression, mark the expression and ISW.
$\ldots-5$ or $q=-5$	B1		
(b)	$(x-4)^{2}-5=1$ so $(x-4)^{2}=6$ so $x-4=[\pm] \sqrt{6}$	$\mathbf{2}$	
$x=4 \pm \sqrt{6}$ or $\frac{8 \pm \sqrt{24}}{2}$	M1	Using their p and q values or by quadratic formula	
	Or exact equivalent. No FT, must have \pm for this mark. ISW decimals $1.55,6.45$ if exact answers seen. If M0, SC B1 possible for correct answers.		
	$\mathbf{2}$		

Question 42

$k^{2}-4 \times 8 \times 2[<0]$	M1	Use of $b^{2}-4 a c$ but not just in the quadratic formula.
$-8<k<8$ or $-8<k, k<8$ or $\|\boldsymbol{k}\|<8$ or $(-8,8)$	A1	Condone' $-8<k$ or $k<8^{\prime},,^{\prime}-8<k$ and $k<8^{\prime}$ but not $\sqrt{64}$.
	$\mathbf{2}$	

Question 43

(a)	$\mathbf{y}=4\left(x+\frac{5}{2}\right)^{2}-19$		There is no requirement for the candidate to list a, b and c. Look at values in their final expression, condone omission of ${ }^{2}$, and award marks as follows:
		B1	$a=4$
		B1	$b=\frac{5}{2} \mathrm{OE}$
		B1	$c=-19$
		3	
(b)	$\left(\right.$ Their $\left.4\left(x+\frac{5}{2}\right)^{2}-19\right)=45\left[\Rightarrow\left(x+\frac{5}{2}\right)^{2}=16\right]$	*M1	Equate their quadratic completed square form from 6(a) to 45 or re-start and use completing the square.
	Solve as far as $x=$	DM1	Any valid method leading to two answers.
	$[x=] \frac{3}{2},-\frac{13}{2}$	A1	SC: If M0 or M1 DM0 awarded, B1 available for correct final answers.
		3	
(c)	Quadratic curve that is the right way up (must be seen either side of stationary point)	B1	No axes required, ignore any axes even if incorrect.
	Stationary point stated using any valid method or correctly labelled on their diagram.	B1 FT B1 FT	FT their values from 6(a) as long as their expression is of the form $p(q x+r)^{2}+s$. Expect $\left(-\frac{5}{2},-19\right)$. Condone if stated correctly but plotted incorrectly.
		3	

Question 44

$(3 x+2)(x-1)=2 \Rightarrow 3 x^{2}-x-4[=0]$	M1	OE Multiply by denominator and obtain a quadratic.
$(3 x-4)(x+1)[=0]$	M1	Solve by factorising, formula or completing the square.
$[x=]-1, \frac{4}{3}$	$\mathbf{A 1}$	Allow 1.33 If M1 M0, SC B1 possible for two correct answers.
	$\mathbf{3}$	

Question 45

$x^{2}-k x+2=3 x-2 k$ leading to $x^{2}-x(k+3)+(2+2 k)[=0]$	M1	3-term quadratic, may be implied in the discriminant.
$b^{2}-4 a c=(k+3)^{2}-8(1+k)$ (ignore ' $=0$ ' at this stage)	DM1	Cannot just be seen in the quadratic formula.
$=(k-1)^{2}$ accept $(k-1)(k-1)$	A1	Or use of calculus to show minimum of zero at $k=1$ or sketch of $\mathrm{f}(k)=k^{2}-2 k+1$.
$\geqslant 0$ Hence will meet for all values of k	$\mathbf{A 1}$	Clear conclusion.
	$\mathbf{4}$	

Question 46

$x^{2}-6 x+c>2$ leading to $(x-3)^{2}-9+c>2$	M1 A1	M1 for completion of the square with an equation or in equality with the' 2 '.
$c>11-(x-3)^{2}$ and $(x-3)^{2} \geq 0$	M1	SOI
$c>11$	A1	
Alternative Method 1	M1	M1 for differentiating and setting $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-6=0$	A1	
$x=3$	M1	
When $x=3, y=9-18+c$	A1	
$[-9+c>2] c>11$		

Alternative Method 2

$x^{2}-6 x+c>2$ leading to $x^{2}-6 x+c-2[>0]$ then use of ' $b^{2}-4 a c^{\prime}$	M1	
$36-4(1)(c-2)<0$	M1 A1	OE Must be correct inequality for M1.
$c>11$	A1	
	$\mathbf{4}$	

Question 47

(a)	$4(x-3)^{2}$ seen or $a=4$ and $b=-3$	B1	OE Award marks for the correct expression or their values
	$-36+p$ or $p-36$ seen or $c=p-36$	B1	a, b and c. Condone $4(x-3)+p-36=0$ and $4\left(\frac{p}{4}-9\right)$.
(b)	$p-36>0$ leading to $p>36$ or $24^{2}-4 \times 4 p\langle 0 \Rightarrow p\rangle 36$ or $36<p$	$\mathbf{2}$	
	B1	Allow $(36, \infty)$ or $36<p<\infty$. Consider final answer only.	
	$\mathbf{1}$		

Question 48

$\left[8 x^{6}+215 x^{3}-27=0\right]$ leading to $\left(8 x^{3}-1\right)\left(x^{3}+27\right)[=0]$		
OR		
$\frac{-215 \pm \sqrt{215^{2}-4.8 .-27}}{2.8}$ or $\frac{-215 \pm \sqrt{47089}}{2.8}$	M1	OE If a substitution is used then the correct coefficients must be retained. Condone substitution of $x=x^{3}$.
$\frac{1}{8},-27$	A1	Both correct values seen. SC: if M0 scored $\mathbf{S C}$ B1 is available for sight of $\frac{1}{8}$ and -27 OE
$\frac{\mathbf{1}}{2}$ or $0.5,-3$	A1	SC: if M0SCB1 scored then SCB1 is available for the correct answers and no others. Do not ISW if answers given as a range.

Question 49

$k x-k=-\frac{1}{2 x} \Rightarrow 2 k x^{2}-2 k x+1[=0]$	$* \mathbf{M 1}$	OE e.g. $k x^{2}-k x+\frac{1}{2}[=0], x^{2}-x+\frac{1}{2 k}[=0]$
OR quadratic in $y: x=\frac{y+k}{k} \Rightarrow y=-\frac{1}{2}\left(\frac{y+k}{k}\right) \Rightarrow 2 y^{2}+2 k y+k=0$		Equate line and curve to form 3-term quadratic (all terms on one side).
$b^{2}-4 a c[=0] \Rightarrow([-] 2 k)^{2}-4(2 k)(1)[=0]$ or $4 k^{2}-8 k[=0 \Rightarrow 4 k(k-2)=0]$ OR using equation in $y:(2 k)^{2}-4(2)(k)=0$	DM1	Use discriminant correctly with their a, b, c not in quadratic formula. DM0 if x still present. May see $k^{2}-4(k)\left(\frac{1}{2}\right)=0$ or $1-4\left(\frac{1}{2 k}\right)=0$.
$k=2$ only	B1	If DM0 then $k=2$, award A0 XP then B0 B0 Allow A1 even if divides by k to solve. If $k=0$ also present but uses $k=2$, award A1.
$4 x^{2}-4 x+1=0\left[\Rightarrow(2 x-1)^{2}=0\right] \Rightarrow x=\frac{1}{2}$	B1	
$y=2 \times \frac{1}{2}-2=-1$		

