AS-Level Topic : Quadratics May 2013-May 2023 Answer

Question 1 $mx + 14 = \frac{12}{x} + 2 \rightarrow mx^2 + 12x - 12 = 0$ M1 Eliminates x (or y) Uses $b^2 = 4ac \rightarrow m = -3$ M1 Any use of discriminant $-3x^{2} + 12x - 12 = 0 \rightarrow P(2, 8)$ A1 DM1 A1 Any valid method. [Or $m = -12x^{-2}$ M1 Sub M1 x = 2 A1] [$\rightarrow m = -3$ and y = 8 M1 A1] [5] Question 2 $f: x \mapsto 2x^2 - 3x, g: x \mapsto 3x + k$ (i) $2x^2 - 3x - 9 > 0$ $\rightarrow x = 3 \text{ or } -1\frac{1}{2}$ M1 A1 For solving quadratic. Ignore > or \ge Set of $x \ge 3$, or $x < -\frac{1}{2}$ A1 condone \geq or \leq [3] (ii) $2x^2 - 3x = 2(x - \frac{3}{4})^2 - \frac{9}{8}$ B3,2,1 $-x^2$ in bracket is an error. Vertex $(\frac{3}{4}, -\frac{9}{8})$ B1√ \checkmark on 'c' and 'b'. [4] (iii) $gf(x) = 6x^2 - 9x + k = 0$ **B**1 Use of $b^2 - 4ac \rightarrow k = \frac{27}{8}$ oe. M1 A1 Used on a quadratic (even fg). [3]

$$2x^{2} - 10x + 8 \rightarrow a(x + b)^{2} + c$$
(i) $a = 2, b = -2\frac{1}{2}, c = -4\frac{1}{2}$
 $\rightarrow \text{ min value is } -4\frac{1}{2} \text{ Allow } (2\frac{1}{2}, -4\frac{1}{2})$
(ii) $2x^{2} - 10x + 8 - kx = 0$
 $Use \text{ of } b^{2} - 4ac^{n}$
 $(-10 - k)^{2} - 64 < 0 \text{ or } k^{2} + 20 k + 36 < 0$
 $\rightarrow k = -18 \text{ or } -2$
 $-18 < k < -2$

$$Allow = 4x + 36 < 0$$
(4)
$$Allow = 4x + 36 < 0$$
(5)
$$Allow = 4x + 36 < 0$$
(4)
$$Allow = 4x + 36 < 0$$
(5)
$$Allow = 4x + 36 < 0$$
(6)
$$Allow = 4x + 36 < 0$$
(7)
$$Allow = 4x + 36 < 0$$
(8)
$$Allow = 4x + 36 < 0$$
(9)
$$A$$

Question 4 (i) $x^2 + 4x + c - 8 (= 0)$ 16 - 4(c - 8) = 0 Attempt to simplify to 3-term quadratic **M1** Apply $b^2 - 4ac = 0$. '= 0' soi **M**1 c = 12**A1** $-2 - 2x = 2 \rightarrow x = (-2)$ -4 + c = 8 + 4 - 4**M1** Equate derives of curve and line. Expect x=-2Sub *their* x = -2 into line and curve, and **M1** equate c = 12**A1** [3] (ii) $x^2 + 4x + 3 \rightarrow (x+1)(x+3) (= 0) \rightarrow x = -1 \text{ or } -3$ **B1** $\left[\left(8-2x-x^2\right)-\left[\left(2x+11\right)\right]$ or area of trapezium Attempt to integrate. At some stage subtract M1M1 $-x^{2} - \frac{x^{3}}{3} - \left[x^{2} + 11x\right] \text{or} \left[8x - x^{2} - \frac{x^{3}}{3}\right] - \frac{1}{2}(5+9) \times 2$ A1B1 A1 for curve, B1 for line **OR** $\left[-3x - 2x^2 - \frac{x^3}{3} \right]$ A2,1,0 Apply their limits to at least integral for curve For M marks allow reversed limits and/or **M1** $1\frac{1}{2}$ oe subtraction of areas but then final A0 **A1** [7] **Question 5** For -3 and -9 (i) $(2x-3)^2 - 9$ **B1B1** [2] **M1** At least one of these statements (ii) 2x-3 > 4 2x-3 < -4 $x > 3\frac{1}{2} (or) x < -\frac{1}{2}$ cao Allow 'and' $3\frac{1}{2}$, $-\frac{1}{2}$ so iscores first M1 A1 Allow $-\frac{1}{2} > x > 3\frac{1}{2}$ $4x^2 - 12x - 7 \rightarrow (2x - 7)(2x + 1)$ **M**1 Attempt to solve 3-term quadratic Allow 'and' $3\frac{1}{2}$, $-\frac{1}{2}$ so iscores first M1 $x > 3\frac{1}{2} (or) < -\frac{1}{2}$ cao **A1** [2] Allow $-\frac{1}{2} > x > 3\frac{1}{2}$

Question 6

$x^{2} + x(k-2) + (k-2)(=0)$	M1	Equate and move terms to one side of equ. Apply $b^2 - 4ac$ (>0). Allow \ge at this
$(k-2)^2 - 4(k-2)(>0)$ soi	M1	Apply $b' = 4ac$ (>0). Anow \geq at this stage.
(k-2)(k-6)(>0) k < 2 or k > 6 (condone \leq, \geq)	DM1 A2	Attempt to factorise or solve or find 2
Allow $\{-\infty, 2\}U\{6, \infty\}$ etc.	[5]	solns. SCA1 for 2, 6 seen with wrong inequalities

2
$$(x-3)^2 - 11$$

B1B1B1 For 2, $(x-3)^2$, -11. Or $a=2, b=-3$,
[3] $c=-11$

Question 8

$$\begin{array}{c|c} x^2 - 4x + c = 2x - 7 \rightarrow x^2 - 6x + c + 7 (= 0) \\ 36 - 4(c + 7) < 0 \\ c > 2 \end{array} \qquad \begin{array}{c|c} \mathbf{M1} \\ \mathbf{DM1} \\ \mathbf{M1} \\ \mathbf{M1}$$

(a)	$y = 2x^{2} - 4x + 8$ Equates with $y = mx$ and selects a, b, c Uses $b^{2} = 4ac$ $\rightarrow m = 4$ or -12 .	M1 M1 A1	[3]	Equate + solution or use of dy/dx Use of discriminant for both.
(b) (i)	$f(x) = x^{2} + ax + b$ Eqn of form $(x-1)(x-9)$	M1	0	Any valid method allow $(x+1)(x+9)$ for M1
	$\rightarrow a = -10, b = 9$ (or using 2 sim eqns M1 A1)	A1	[2]	must be stated
(ii)	Calculus or $x = \frac{1}{2} (1+9)$ by symmetry $\rightarrow (5, -16)$	M1 A1	[2]	Any valid method
Question	10			
kx^2	$-3x = x - k \implies kx^2 - 4x + k(=0)$		M1	Eliminate <i>y</i> and rearrange into 3-

$kx^2 - 3x = x - k \implies kx^2 - 4x + k (= 0)$	M1		Eliminate y and rearrange into 3- term quad
$(-4)^2 - 4(k)(k)$ soi	M1		$b^2 - 4ac$.
$k > 2$, $k < -2$ cao Allow $(2, \infty)$ etc. Allow $2 < k < -k$	A1	[3]	
		[2]	

(i)	$2x^{2} - 6x + 5 > 13$ $2x^{2} - 6x - 8(>0)$ (x =) -1 and 4. x > 4, x < -1	M1 A1 A1	[2]	Sets to 0 + attempts to solve Both values required Allow all recognisable notation.
			[3]	
(ii)	$2x^{2} - 6x + 5 = 2x + k$ $\rightarrow 2x^{2} - 8x + 5 - k (= 0)$ Use of $b^{2} - 4ac$ $\rightarrow -3$ OR $\frac{dy}{dx} = 4x - 6$ $4x - 6 = 2$ $x = 2$ $x = 2 \rightarrow y = 1$	M1* DM1 A1 M1*	[3]	Equates and sets to 0. Use of discriminant Sets (their $\frac{dy}{dx}$) = 2
	$x = 2 \rightarrow y = 1$ Using their (2,1) in $y = 2x + k$	DM1		Uses their $x = 2$ and their $y = 1$
	or $y = 2x^2 - 6x + 5$ $\rightarrow k = -3$	A1	[3]	
Questior	n 12			

(i)	$\left(x+3\right)^2-7$	B1B1	[2]	For $a = 3, b = -7$
(ii)	1,-7 seen $x > 1$, $x < -7$ oe	B1 B1	[2]	x > 1 or $x < -7Allow x \leq -7, x \geq 1 oe$
Questi	ion 13			

$(3k)^2 - 4 \times 2 \times k$	M1	Attempt $b^2 - 4ac$
$9k^2 - 8k > 0$ soi Allow $9k^2 - 8k \ge 0$	A1	Must involve correct inequality. Can be implied by correct answers
0, 8/9 soi	A1	
k < 0, k > 8/9 (or 0.889)	A1	Allow (-∞, 0) , (8/9, ∞)
Total:	4	

$ax + 3a = -\frac{2}{x} \rightarrow ax^2 + 3ax + 2 (= 0)$	*M1	Rearrange into a 3-term quadratic.
Apply $b^2 - 4ac > 0$ SOI	DM1	Allow \geq . If no inequalities seen, M1 is implied by 2 correct final answers in <i>a</i> or <i>x</i> .
$a < 0, a > \frac{8}{9}$ (or 0.889) OE	A1 A1	For final answers accept $0 \ge a \ge \frac{8}{9}$ but not $\leq > \ge$.
	4	

⁽i)

$1 + cx = cx^{2} - 3x \rightarrow cx^{2} - x(c+3) - 1 (= 0)$	M1	Multiply throughout by x and rearrange terms on one side of equality
Use $b^2 - 4ac \Big[= (c+3)^2 + 4c = c^2 + 10c + 9$ or $(c+5)^2 - 16 \Big]$	M1	Select their correct coefficients which must contain 'c' twice Ignore = $0, < 0, >0$ etc. at this stage
(Critical values) -1, -9	A1	SOI
$c \leqslant -9, c \geqslant -1$	A1	
	4	
Sub their <i>c</i> to obtain a quadratic $\begin{bmatrix} c = -1 \rightarrow -x^2 - 2x - 1 (= 0) \end{bmatrix}$	M1	
x = -1	A1	
Sub their c to obtain a quadratic $[c = (-9 \rightarrow -9x^2 + 6x - 1)(=0)$] M1	
x=1/3	A	[Alt 1: $dy/dx = -1/x^2 = c$, when $c = -1, x = \pm 1, c = -9, x = \pm \frac{1}{3}$ Give M1 for equating the gradients, A1 for all four answers and M1A1 for checking and eliminating] [Alt 2: $dy/dx = -1/x^2 = c$ leading to $1/x - 1/x^2 = (-1/x^2)(x) - 3$ Give M1 A1 at this stage and M1A1 for solving]
	4	

Question 16

B1B1B1 OR a = 3, b = -2, c = -5. 1st mark is dependent on the form $(x + a)^2$ $[3]\left[\left(x-2\right)^2\right][-5]$ following 3

3

Question 17

		A complete method as far as finding a set of values for k by:
Either $(x - 3)^2 + k - 9 > 0, k - 9 > 0$		Either completing the square and using 'their $k - g' > $ or ≥ 0 OR
or $2x - 6 = 0 \rightarrow (3, k - 9), k - 9 > 0$	M1	Differentiating and setting to 0, using 'their $x=3$ ' to find y and using 'their $k-9$ ' > or ≥ 0 OR
or $b^2 < 4ac$ oe $\rightarrow 36 < 4k$	ep.	Use of discriminant \leq or ≤ 0 . Beware use of $>$ and incorrect algebra.
$\rightarrow k > 9$ Note: not \geqslant	A1	T&I leading to (or no working) correct answer 2/2 otherwise 0/2
	2	
EITHER		
$x^{2} - 6x + k = 7 - 2x \rightarrow x^{2} - 4x + k - 7 (= 0)$	*M1	Equates and collects terms.
Use of $b^2 - 4ac = 0$ (16 - 4(k - 7) = 0)	DM1	Correct use of discriminant = 0, involving k from a 3 term quadratic.
OR		
$2x - 6 = -2 \rightarrow x = 2 (y = 3)$	[*] M1	Equates their $\frac{dy}{dx}$ to ± 2 , finds a value for <i>x</i> .
(their 3) or $7-2$ (their 2) = (their 2) ² - 6(their 2) + k	DM1	Substitutes their value(s) into the appropriate equation.
$\rightarrow k = 11$	A1	
	3	

'(i)	For <i>their</i> 3-term quad a recognisable application of $b^2 - 4ac$	M1	Expect $2x^2 - x(3+k) + 1 - k^2$ (=0) of for the 3-term quad.
	$(b^2 - 4ac =) (3+k)^2 - 4(2)(1-k^2)$ oe	A1	Must be correct. Ignore any RHS
	$9k^2 + 6k + 1$	A1	Ignore any RHS
	$(3k+1)^2 \ge 0$ Do not allow > 0. Hence curve and line meet. AG	A1	Allow (9) $\left(k + \frac{1}{3}\right)^2 \ge 0$. Conclusion required.
	ALT Attempt solution of 3-term quadratic	M1	
	Solutions $x = k + 1$, $\frac{1}{2}(1 - k)$	A1A1	
	Which exist for all values of <i>k</i> . Hence curve and line meet. AG	A1	
		4	
(ii)	k = -1/3	B1	ALT $dy/dx = 4x - 3 \Longrightarrow 4x - 3 = k$
	Sub (one of) their $k = -\frac{1}{3}$ into either line $1 \rightarrow 2x^2 - \frac{8}{3}x + \frac{8}{9}(=0)$	M1	Sub $k = 4x - 3$ into line $1 \rightarrow 2x^2 - x(4x) + 1 - (4x - 3)^2 (= 0)$
	Or into the derivative of line $1 \rightarrow 4x - (3+k)(=0)$		
	$x = 2/3$ Do not allow unsubstantiated $\left(\frac{2}{3}, -\frac{1}{9}\right)$ following $k = -\frac{1}{3}$	A1	$x = 2/3, y = -1/9$ (both required) [from $-18x^2 + 24x - 8$ (=0) oe]
	$y = -1/9$ Do not allow unsubstantiated $\left(\frac{2}{3}, -\frac{1}{9}\right)$ following $k = -\frac{1}{3}$	A1	k = -1/3
		4	
Ques	stion 19		
)(j)	12 12	1	11 Attempt to eliminate v (or x) to form a 3 term quadratic

)(i)	$2x + \frac{12}{x} = k - x$ or $y = 2(k - y) + \frac{12}{k - y} \rightarrow 3$ term quadratic.	*M1	Attempt to eliminate y (or x) to form a 3 term quadratic. Expect $3x^2 - kx + 12$ or $3y^2 - 5ky + (2k^2 + 12) (= 0)$
	Use of $b^2 - 4ac \rightarrow k^2 - 144 < 0$	DM1	Using the discriminant, allow \leq , = 0; expect 12 and -12
	$-12 \le k \le 12$	A1	Do NOT accept ≤ . Separate statements OK.
	Satorep	- 3	
(ii)	Using $k = 15$ in their 3 term quadratic	M1	From (i) or restart. Expect $3x^2 - 15x + 12$ or $3y^2 - 75y + 462$ (= 0)
	x = 1,4 or $y = 11, 14$	A1	Either pair of x or y values correct.
	(1, 14) and (4, 11)	A1	Both pairs of coordinates
		3	
(iii)	Gradient of $AB = -1 \rightarrow$ Perpendicular gradient = +1	B1FT	Use of $m_1m_2 = -1$ to give +1 or ft from their A and B.
	Finding their midpoint using their (1, 14) and (4, 11)	М1	Expect (2½, 12½)
	Equation: $y - 12\frac{1}{2} = (x - 2\frac{1}{2}) [y = x + 10]$	A1	Accept correct unsimplified and isw
		3	

$(4x^{\frac{1}{2}}-3)(x^{\frac{1}{2}}-2)$ oe soi Alt: $4x+6=11\sqrt{x} \Rightarrow 16x^2-73x+36$	M1	Attempt solution for $x^{\frac{1}{2}}$ or sub $u = x^{\frac{1}{2}}$
$x^{\frac{1}{2}} = 3/4 \text{ or } 2$ (16x-9)(x-4)	A1	Reasonable solutions for $x^{\frac{1}{2}}$ implies M1 ($x = 2, 3/4,$ M1A0)
x = 9/16 oe or 4	A1	Little or no working shown scores SCB3, spotting one solution, B0
	3	
Question 21	·	
$x^{2} + bx + 5 - x + 1 - x^{2} + x(b-1) + 4(-0)$	M1	Eliminate x or y with all terms on side of an equation

$x^{2} + bx + 5 = x + 1 \rightarrow x^{2} + x(b - 1) + 4 (= 0)$	M1	Eliminate x or y with all terms on side of an equation
$(b^2 - 4ac =) (b-1)^2 - 16$	M1	
<i>b</i> associated with $-3 \& +5$ or $b-1$ associated with ± 4	A1	$(x-2)^2 = 0 \operatorname{or} (x+2)^2 = 0, x = \pm 2, b-1 = \pm 4$ (M1A1) Association can be an equality or an inequality
$b \ge 5, b \le -3$	A1	
Question 22	4	

)	Eliminates x or $y \to y^2 - 4y + c - 3 = 0$ or $x^2 + (2c - 16)x + c^2 - 48 = 0$	M1	Eliminates x or y completely to a quadratic
	Uses $b^2 = 4ac \rightarrow 4c - 28 = 0$	M1	Uses discriminant = 0. (c the only variable) Any valid method (may be seen in part (i))
	<i>c</i> = 7	A1	
	Alternative method for question 2(i)		
	$\frac{dy}{dx} = \frac{1}{2\sqrt{(x+3)}} = \frac{1}{4}$	M1	
	Solving	M1	
	c=7 Satore9	A1	
	aupier.	3	
)	Uses $c = 7$, $y^2 - 4y + 4 = 0$	M1	Ignore (1,-2), c=-9
	(1, 2)	A1	
		2	

- 5	<u>/:</u> ``	
-)	(1)	
	(-)	

i(i)	$3kx - 2k = x^{2} - kx + 2 \rightarrow x^{2} - 4kx + 2k + 2 (= 0)$	B1	kx terms combined correctly-implied by correct $b^2 - 4ac$
	Attempt to find $b^2 - 4ac$	M1	Form a quadratic equation in k
	1 and $-\frac{1}{2}$	A1	SOI
	$k > 1, k < -\frac{1}{2}$	A1	Allow $x > 1, x < -1/2$
		4	
(ii)	$y = 3x - 2, y = -\frac{3}{2}x + 1$	M1	Use of <i>their k</i> values (twice) in $y = 3kx - 2k$
	$3x-2=-\frac{3}{2}x+1$ OR $y+2=2-2y$	M1	Equate <i>their</i> tangent equations OR substitute $y = 0$ into both lines
	$x = \frac{2}{3}, \rightarrow y = 0$ in one or both lines	A1	Substitute $x = \frac{2}{3}$ in one or both lines
		3	

Question 24

Equation of line is $y = mx - 2$	B1	OR
$x^{2} - 2x + 7 = mx - 2 \rightarrow x^{2} - x(2 + m) + 9 = 0$	M1	
Apply $b^2 - 4ac(=0) \rightarrow (2+m)^2 - 4 \times 9 (=0)$	*M1	
m = 4 or -8	A1	
$m = 4 \rightarrow x^2 - 6x + 9 = 0 \rightarrow x = 3$ $m = -8 \rightarrow x^2 + 6x + 9 = 0 \rightarrow x = -3$	DM1	
(3, 10), (-3, 22)	A1A1	

$3x^2 + 2x + 4 = mx + 1 \rightarrow 3x^2 + x(2-m) + 3 (=0)$	B1
$(2-m)^2 - 36$ SOI	M1
(m+4)(m-8) (>/= 0) or $2-m$ >/= 6 and $2-m$ =-6 OE</td <td>A1</td>	A1
m < -4, m > 8 WWW	A1

(a)	$2x^{2} + kx + k - 1 = 2x + 3 \rightarrow 2x^{2} + (k - 2)x + k - 4 = 0$	M1
	Use of $b^2 - 4ac = 0 \to (k-2)^2 = 8(k-4)$	M1
	<i>k</i> = 6	A1
		3
(b)	$2x^{2} + 2x + 1 = 2\left(x + \frac{1}{2}\right)^{2} + 1 - \frac{1}{2}$	
	$2x^{2} + 2x + 1 = 2\left(x + \frac{1}{2}\right)^{2} + 1 - \frac{1}{2}$ $a = \frac{1}{2}, b = \frac{1}{2}$	B1 B1
	vertex $\left(-\frac{1}{2},\frac{1}{2}\right)$	B1FT
	(FT on a and b values)	
		3

Question 27

$x(mx+c) = 16 \rightarrow mx^2 + cx - 16 = 0$	
Use of $b^2 - 4ac = c^2 + 64m$	М
Sets to $0 \rightarrow m = \frac{-c^2}{64}$	А
x(-4x+c) = 16	М
Use of $b^2 - 4ac \rightarrow c^2 - 256$	
c > 16 and $c < -16$	A1 A

Question 28

A curve has equation $y = 3x^2 - 4x + 4$ and a straight line has equation y = mx + m - 1, where m is a constant.

Find the set of values of m for which the curve and the line have two distinct points of intersection. [5]

$3x^{2} - 4x + 4 = mx + m - 1 \rightarrow 3x^{2} - (4 + m)x + (5 - m) (= 0)$	M1	3-term quadratic
$b^2 - 4ac = (4+m)^2 - 4 \times 3 \times (5-m)$	M1	Find $b^2 - 4ac$ for <i>their</i> quadratic
$m^2 + 20m - 44$	A1	
(m+22)(m-2)	A1	Or use of formula or completing square. This step must be seen
m>2 , m<-22	A1	Allow $x > 2$, $x < -22$
	5	

$2x^2 + m(2x+1) - 6x - 4(=0)$	*M1	y eliminated and all terms on one side with correct algebraic steps. Condone ± errors
Using $b^2 - 4ac$ on $2x^2 + x(2m-6) + m - 4 \ (=0)$	DM1	Any use of discriminant with their <i>a</i> , <i>b</i> and <i>c</i> identified correctly.
$4m^2 - 32m + 68$ or $2m^2 - 16m + 34$ or $m^2 - 8m + 17$	A1	
$(2m-8)^2 + k$ or $(m-4)^2 + k$ or minimum point $(4,k)$ or finds $b^2 - 4ac$ (=-4,-16,-64)	DM1	OE. Any valid method attempted on their 3-term quadratic
$(m-4)^2 + 1$ oe + always > 0 \rightarrow 2 solutions for all values of <i>m</i> or Minimum point (4,1) + (fn) always > 0 \rightarrow 2 solutions for all values of <i>m</i> or $b^2 - 4ac < 0$ + no solutions \rightarrow 2 solutions for the original equation for all values of <i>m</i>	A1	Clear and correct reasoning and conclusion without wrong working.
	5	

Question 30

$2x^{2} + 5 = mx - 3 \rightarrow 2x^{2} - mx + 8 \ (= 0)$	B1	Form 3-term quadratic
$m^2 - 64$	M1	Find $b^2 - 4ac$.
-8 < m < 8	A1	Accept (-8, 8) and equality included
	3	
Question 31		

$x^{2} + kx + 6 = 3x + k$ leading to $x^{2} + x(k-3) + (6-k) = 0$	M1	Eliminate y and form 3-term quadratic.
$(k-3)^2 - 4(6-k)[>0]$	M1	OE. Apply $b^2 - 4ac$.
$k^2 - 2k - 15[>0]$	A1	Form 3-term quadratic.
(k+3)(k-5)[>0]	A1	Or $k = -3$, 5 from use of formula or completing square.
k < -3, k > 5	A1 FT	Or any correct alternative notation, do not allow \leq , \geq . FT for <i>their</i> outside regions.
	5	

$u = 2x - 3$ leading to $u^4 - 3u^2 - 4 = 0$	M1	Or $u = (2x-3)^2$ leading to $u^2 - 3u - 4 = 0$
$(u^2-4)(u^2+1) = 0$	M1	Or $(u-4)(u+1) = 0$
$2x - 3 = [\pm]2$	A1	
$x = \frac{1}{2}$, $\frac{5}{2}$ only	A1	
	4	

$x^{2} - 4x + 3 = mx - 6$ leading to $x^{2} - x(4 + m) + 9$	*M1	Equating and gathering terms. May be implied on the next line.
$b^2 - 4ac$ leading to $(4+m)^2 - 4 \times 9$	DM1	SOI. Use of the discriminant with <i>their a</i> , <i>b</i> and <i>c</i>
$4 + m = \pm 6 \text{ or}(m-2)(m+10) = 0$ leading to $m = 2 \text{ or} -10$	A1	Must come from $b^2 - 4ac = 0$ SOI
Substitute both their m values into their equation in line 1	DM1	
m = 2 leading to $x = 3$; $m = -10$ leading to $x = -3$	A1	
(3, 0), (-3, 24)	A1	Accept 'when $x = 3$, $y = 0$; when $x = -3$, $y = 24$ ' If final A0A0 scored, SC B1 for one point correct WWW

	$(4x-3)^2$ or $(4x+(-3))^2$ or $a = -3$	B1	k(4x - recovered)	3) ² where $k \neq 1$ scores B0 but mark final answer, allow ery.
	+ 1 or b = 1	B1		
	TP	2		
(b)	[For one root] $k = 1$ or ' <i>their b</i> '	B1 FT		by inspection or solving or from $4 \times 16 \times (10 - k) = 0$ WWW
	$[\text{Root or } x =]\frac{3}{4} \text{ or } 0.75$	B1	SC B2	2 for correct final answer WWW.
		2		
)u	estion 35			
(2k	$(-3)x^{2} - kx - (k-2) = 3x - 4$		*M1	Equating curve and line
(2k	$(-3)x^{2} - (k+3)x - (k-6)[=0]$		DM1	Forming a 3-term quadratic
(<i>k</i> +	$3)^{2} + 4(2k-3)(k-6)[=0]$		DM1	Use of discriminant (dependent on both previous M marks)
$9k^2$	$-54k+81[=0]$ [leading to $k^2-6k+9=0$]		M1	Simplifying and solving <i>their</i> 3-term quadratic in k
k =	3	0	A1	
	estion 36	ep.c	A1	
Quo		89.0 B1		Accept $a = -3, b = 5$
) uo {5(estion 36 $(y-3)^2$ {+5}	BI		Accept $a = -3, b = 5$
2u0 {5(2u0	estion 36	B1	B1 4	Accept $a = -3$, $b = 5$ minate y and form 3-term quadratic. Allow 1 error.
)u {5()u 	estion 36 $(y-3)^2$ {+5} estion 37		. B1 4 I1 Eli I1 Ap	
2u0 {5(2u0 	estion 36 $(y-3)^2$ {+5} estion 37 $(x^2+2x-k=kx-2)$ leading to $kx^2+(-k+2)x-k+2$ [=0]	*N DN	B1 A II Eli II Ap cor	minate y and form 3-term quadratic. Allow 1 error. ply $b^2 - 4ac$; allow 1 error but a, b and c must be
2u0 {5(2u0 ko (- 5/	estion 36 $(y-3)^2$ {+5} estion 37 $(x^2+2x-k=kx-2)$ leading to $kx^2+(-k+2)x-k+2$ [=0] $(k+2)^2-4k(-k+2)$	*N DN	B1 4 II Eli II Ap con A1 Ma II So fac	minate y and form 3-term quadratic. Allow 1 error. ply $b^2 - 4ac$; allow 1 error but a, b and c must be rect for <i>their</i> quadratic.
{5(2uc (- 5) (-	estion 36 $(y-3)^2$ {+5} estion 37 $(x^2+2x-k=kx-2)$ leading to $kx^2+(-k+2)x-k+2$ [=0] $(k+2)^2-4k(-k+2)$ (-k+2)(-k+2-4k)	×N DN A DN	BI 2 II Eli II Ap con AI Ma II So fac Fac AI W If I	minate y and form 3-term quadratic. Allow 1 error. ply $b^2 - 4ac$; allow 1 error but a, b and c must be rect for <i>their</i> quadratic. ay be shown in quadratic formula. lving a 3-term quadratic in k (all terms on one side) by torising, use of formula or completing the square.

$x^{2} + 2cx + 4 = 4x + c$ leading to $x^{2} + 2cx - 4x + 4 - c$ [=0]	*M1	Equate ys and move terms to one side of equation.
$b^2 - 4ac = (2c - 4)^2 - 4(4 - c)$	DM1	Use of discriminant with their correct coefficients.
$\left[4c^2 - 16c + 16 - 16 + 4c = \right] 4c^2 - 12c$	A1	
$b^2 - 4ac > 0$ leading to $(4)c(c-3) > 0$	M1	Correctly apply '> 0' considering both regions.
<i>c</i> < 0, <i>c</i> > 3	A1	Must be in terms of <i>c</i> . SC B1 instead of M1A1 for $c \le 0$, $c \ge 3$
	5	

(a)	$mx + c = -\frac{m}{x} \implies mx^2 + cx + m = 0$	M1	All x terms in the numerator. OE e.g. $mx^2 + cx = -m$
	$b^2 - 4ac = 0 \Rightarrow c^2 - 4m^2 = 0$	M1	OE $b^2 - 4ac = 0$ is implied by $c^2 - 4m^2 = 0$.
	$c = [\pm]2m$	A1	SOI. Allow \pm at this stage.
	$mx^{2} \ [\pm]2mx + m = 0 \Longrightarrow x^{2} \ [\pm]2x + 1 = 0$	M1	Sub $c = +2m$ Ignore substitution of $-2m$.
	$(x+1)^2 = 0 \Rightarrow x = -1$ only	A1	
	y = m only or $(-1, m)$ only	A1	
	Alternative method to question 11(a)		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{m}{x^2}$	M1	As this is a method mark a sign error is allowed.
	$\frac{m}{x^2} = m \implies x^2 = 1$	M1 A1	Equating <i>their</i> $\frac{dy}{dx}$ and <i>m</i> and attempt to solve.
	$x = \pm 1$ or $x = -1$	A1	If $x = -1$ and $y = m$ are the only answers offered h award the final M1 A1.
	Selecting $x = -1$ as the only answer and attempt to find y	M1	
	y = m or $(-1, m)$	A1	
	Satprey	6	
(b)	Equation of normal is $y - m = \frac{-1}{m}(x+1)$	*M1	Through <i>their P</i> with gradient $\frac{-1}{m}$, OE
			e.g. $y = \frac{-1}{m}x + \frac{m^2 - 1}{m}$.
			Allow use of the gradient of the curve as $-\frac{1}{\left[\frac{m}{(their x)^2}\right]}$
			<i>their</i> P. Coordinates of P must be in terms of <i>m</i> only.
	$\frac{-x}{m} - \frac{1}{m} + m = \frac{-m}{x} \implies x^2 + x(1 - m^2) - m^2 = 0$	DM1	OE Equating <i>their</i> normal equation to the equation curve and removing <i>x</i> from the denominator.
	$(x+1)(x-m^2) = 0 \Rightarrow x = m^2$	A1	or $x = \frac{m^2 - 1 \pm \sqrt{1 - 2m^2 + m^4 + 4m^2}}{2} = \frac{m^2 - 1 \pm (m^2 + 1)}{2}$
	$y = \frac{-m}{m^2} = \frac{-1}{m}$	A1	or $\left(m^2, \frac{-1}{m}\right)$, ignore the coordinates of P.
		+	

a) $4 \times 0^2 - 0 + \frac{1}{2}k^2 = 0 - a$	M1	Equating the equations of curve and line and substituting $x = 0$. Condone slight errors e.g. \pm sign errors.
$4 \times \left(\frac{3}{4}\right)^2 - \frac{3}{4}k + \frac{1}{2}k^2 = \frac{3}{4} - a$	M1	Equating the equations of curve and line and substituting $x = \frac{3}{4}$. Condone slight errors e.g. \pm sign errors.
k=2, a=-2	A1 A1	WWW
Alternative method for question 5(a)		
$(x-0)\left(x-\frac{3}{4}\right)=0 \text{ or } x(4x-3)=0 \implies 4x^2-3x=0]$	*M1	Use 0, $\frac{3}{4}$ to form a quadratic equation. Do not allow $(x+0)\left(x+\frac{3}{4}\right)=0$.
$4x^2 - kx + \frac{1}{2}k^2 = x - a$ leading to $4x^2 - (k+1)x + \frac{1}{2}k^2 + a = 0$	DM1	Equating the equations of curve and line and rearranging so that terms are all on same side. Condone slight errors e.g. \pm sign errors.
k=2, a=-2	A1 A1	WWW
Alternative method for question 5(a)		
$-\frac{b}{a} = \frac{3}{4} + 0 \text{ and } \frac{c}{a} = 0 \times \frac{3}{4}$	*M1	Using sum and product of roots. Condone ± sign errors.
$\frac{k+1}{4} = \frac{3}{4}$ and $\frac{\frac{1}{2}k^2 + a}{4} = 0$	DM1	Equating the equations of curve and line and equating to $\frac{3}{4}$ and 0.
k = 2, a = -2	A1 A1	WWW
	4	
b) $4x^2 - kx + \frac{1}{2}k^2 = x + \frac{7}{2} \Rightarrow 4x^2 - kx - x + \frac{1}{2}k^2 - \frac{7}{2}[=0]$	*M1	OE Substitute $a = -\frac{7}{2}$ and rearrange so that terms are all on same side, condone \pm sign errors. Watch for multiples.
$(k+1)^2 - 4 \times 4\left(\frac{1}{2}k^2 - \frac{7}{2}\right)$	*DM1	Use of $b^2 - 4ac$ with the coefficients from <i>their</i> 3-term quadratic. Both coefficients 'b' and 'c' must consist of two components.
$\Rightarrow 7k^2 - 2k - 57$	A1	OE
(k-3)(7k+19) or other valid method	DM1	Factorising or use of the formula or completing the square. Must be evidence of an attempt to solve for this mark. Dependent upon both previous method marks.
$k=3, k=-\frac{19}{7}$	A1	OE e.g. AWRT – 2.71. No ISW if inequalities used. SC: If second DM1 not scored, SC B1 available for correct final answers.
Alternative method for question 5(b)		
$8x-k=1$ and $4x^2-kx+\frac{1}{2}k^2=x+\frac{7}{2}$	*M1	Equating gradients and equating line and curve.
$4x^{2} - (8x - 1)x + \frac{1}{2}(8x - 1)^{2} = x + \frac{7}{2} \text{ or}$ $4(\frac{k+1}{8})^{2} - k\left(\frac{k+1}{8}\right) + \frac{1}{2}k^{2} = \frac{k+1}{8} + \frac{7}{2}$	*DM1	Forming an equation in <i>x</i> or <i>k</i> only.
$28x^2 - 8x - 3$ or $7k^2 - 2k - 57$	A1	OE A correct 3 term quadratic in x or k only.
(14x+3)(2x-1) or $(k-3)(7k+19)$ or other valid method	DM1	OE Factorising or use of the formula or completing the square. Must be evidence of an attempt to solve for this mark. Dependent upon both previous method marks.

(a)	$x^2 - 8x + 11 = (x - 4)^2 \dots$ or $p = -4$	B1	If <i>p</i> and <i>q</i> -values given after <i>their</i> completed square expression, mark the expression and ISW.
	-5 or $q = -5$	B1	
		2	
(b)	$(x-4)^2 - 5 = 1$ so $(x-4)^2 = 6$ so $x-4 = [\pm]\sqrt{6}$	M1	Using <i>their</i> p and q values or by quadratic formula
	$x = 4 \pm \sqrt{6}$ or $\frac{8 \pm \sqrt{24}}{2}$	A1	Or exact equivalent. No FT; must have \pm for this mark. ISW decimals 1.55, 6.45 if exact answers seen. If M0, SC B1 possible for correct answers.
		2	

Question 42

$k^2 - 4 \times 8 \times 2 \ [<0]$	M1	Use of $b^2 - 4ac$ but not just in the quadratic formula.
$-8 < k < 8 \text{ or } -8 < k, k < 8 \text{ or } \mathbf{k} < 8 \text{ or } (-8, 8)$	A1	Condone '- 8 < k or k < 8', '- 8 < k and k < 8' but not $\sqrt{64}$.
	2	
Question 43		

(a)	$\mathbf{y} = 4\left(x + \frac{5}{2}\right)^2 - 19$		There is no requirement for the candidate to list a , b and c . Look at values in their final expression, condone omission of ² , and award marks as follows:
		B1	<i>a</i> = 4
		B1	$b = \frac{5}{2}$ OE
		B1	c = -19
		3	
(b)	$\left(Their 4\left(x+\frac{5}{2}\right)^2 - 19\right) = 45 \left[\Rightarrow \left(x+\frac{5}{2}\right)^2 = 16\right]$	*M1	Equate their quadratic completed square form from 6(a) to 45 or re-start and use completing the square.
	Solve as far as <i>x</i> =	DM1	Any valid method leading to two answers.
	$[x=]\frac{3}{2},-\frac{13}{2}$	A1	SC: If M0 or M1 DM0 awarded, B1 available for correct final answers.
		3	
(c)	Quadratic curve that is the right way up (must be seen either side of stationary point)	B1	No axes required, ignore any axes even if incorrect.
	Stationary point stated using any valid method or correctly	B1 FT	FT <i>their</i> values from 6(a) as long as <i>their</i> expression is of the
	labelled on their diagram.	B1 FT	form $p(qx+r)^2 + s$. Expect $\left(-\frac{5}{2}, -19\right)$.
			Condone if stated correctly but plotted incorrectly.
		3	

$(3x+2)(x-1)=2 \implies 3x^2-x-4 \ [=0]$	M1	OE Multiply by denominator and obtain a quadratic.
(3x-4)(x+1)[=0]	M1	Solve by factorising, formula or completing the square.
$[x=] -1, \frac{4}{3}$	A1	Allow 1.33 If M1 M0, SC B1 possible for two correct answers.
	3	

Question 45

$x^{2}-kx+2=3x-2k$ leading to $x^{2}-x(k+3)+(2+2k) = 0$	M1	3-term quadratic, may be implied in the discriminant.
$b^{2} - 4ac = (k+3)^{2} - 8(1+k)$ (ignore '= 0' at this stage)	DM1	Cannot just be seen in the quadratic formula.
$=(k-1)^2 \operatorname{accept} (k-1)(k-1)$	A1	Or use of calculus to show minimum of zero at $k = 1$ or sketch of $f(k) = k^2 - 2k + 1$.
≥ 0 Hence will meet for all values of k	A1	Clear conclusion.
	4	
Question 46	10	

$x^{2}-6x+c>2$ leading to $(x-3)^{2}-9+c>2$	M1 A1	M1 for completion of the square with an equation or in equality with the '2'.
$c > 11 - (x - 3)^2$ and $(x - 3)^2 \ge 0$	M1	SOI
c>11	A1	
Alternative Method 1	10	
$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 6 = 0$	M1	M1 for differentiating and setting $\frac{dy}{dx} = 0$.
<i>x</i> = 3	A1	
When $x = 3$, $y = 9 - 18 + c$	M1	
[-9+c>2] c>11	A1	
Alternative Method 2		
$x^{2}-6x+c>2$ leading to $x^{2}-6x+c-2[>0]$ then use of $b^{2}-4ac'$	M1	
36-4(1)(c-2) < 0	M1 A1	OE Must be correct inequality for M1.
<i>c</i> >11	A1	
	4	

(a)	$4(x-3)^2$ seen or $a = 4$ and $b = -3$	B1	DE Award marks for the correct expression or their values $\left(\begin{array}{c} p \\ p \end{array} \right)$
	-36 + p or $p - 36$ seen or $c = p - 36$	B1	a, b and c. Condone $4(x-3) + p - 36 = 0$ and $4\left(\frac{p}{4} - 9\right)$.
		2	
(b)	$p-36 > 0$ leading to $p > 36$ or $24^2 - 4 \times 4p \langle 0 \Rightarrow p \rangle 36$ or $36 < p$	B1	Allow (36, ∞) or 36 < $p < \infty$. Consider final answer only.
		1	

$\frac{[8x^{6} + 215x^{3} - 27 = 0] \text{ leading to } (8x^{3} - 1)(x^{3} + 27)[=0]}{OR}$ $\frac{-215 \pm \sqrt{215^{2} - 4.8 27}}{2.8} \text{ or } \frac{-215 \pm \sqrt{47089}}{2.8}$	M1	OE If a substitution is used then the correct coefficients mube retained. Condone substitution of $x = x^3$.
¹ / ₈ , −27	A1	Both correct values seen. SC: if M0 scored SC B1 is available for sight of $\frac{1}{8}$ and -27 OE
$\frac{1}{2}$ or 0.5, -3	A1	SC : if M0SCB1 scored then SCB1 is available for the correct answers and no others. Do not ISW if answers given as a range.
	3	
Question 49		
$kx - k = -\frac{1}{2x} \Rightarrow 2kx^2 - 2kx + 1 = 0$	*N	11 OE e.g. $kx^2 - kx + \frac{1}{2} [= 0], x^2 - x + \frac{1}{2k} [= 0]$
OR quadratic in $y: x = \frac{y+k}{k} \Rightarrow y = -\frac{1}{2\left(\frac{y+k}{k}\right)} \Rightarrow 2y^2 + 2ky + k = 0$		Equate line and curve to form 3-term quadratic (all terms on one side).
$b^{2} - 4ac[=0] \Rightarrow ([-]2k)^{2} - 4(2k)(1)[=0]$ or $4k^{2} - 8k [= 0 \Rightarrow 4k(k-2) = 0]$ OR using equation in $y: (2k)^{2} - 4(2)(k) = 0$	DM	11 Use discriminant correctly with their <i>a,b,c</i> not in quadratic formula. DM0 if <i>x</i> still present. May see $k^2 - 4(k)\left(\frac{1}{2}\right) = 0$ or $1 - 4\left(\frac{1}{2k}\right) = 0$.
k = 2 only	1	If DM0 then $k = 2$, award A0 XP then B0 B0 Allow A1 even if divides by k to solve. If $k = 0$ also present but uses $k = 2$, award A1.
$4x^{2} - 4x + 1 = 0 \left[\Longrightarrow (2x - 1)^{2} = 0 \right] \Rightarrow x = \frac{1}{2}$	1	81
$y = 2 \times \frac{1}{2} - 2 = -1$	1	81
y=2×-2-2=-1	00	