AS-Level Pure Mathematics P1 Topic : Quadratics May 2013- May 2023

Question 1

The straight line y = mx + 14 is a tangent to the curve $y = \frac{12}{x} + 2$ at the point *P*. Find the value of the constant *m* and the coordinates of *P*. [5]

Question 2

A curve has equation $y = 2x^2 - 3x$.

- (i) Find the set of values of x for which y > 9. [3]
- (ii) Express $2x^2 3x$ in the form $a(x+b)^2 + c$, where a, b and c are constants, and state the coordinates of the vertex of the curve. [4]

The functions f and g are defined for all real values of x by

$$f(x) = 2x^2 - 3x$$
 and $g(x) = 3x + k$,

where k is a constant.

(iii) Find the value of k for which the equation gf(x) = 0 has equal roots. [3]

Question 3

- (i) Express $2x^2 10x + 8$ in the form $a(x + b)^2 + c$, where *a*, *b* and *c* are constants, and use your answer to state the minimum value of $2x^2 10x + 8$. [4]
- (ii) Find the set of values of k for which the equation $2x^2 10x + 8 = kx$ has no real roots. [4]

Question 4

A line has equation y = 2x + c and a curve has equation $y = 8 - 2x - x^2$.

- (i) For the case where the line is a tangent to the curve, find the value of the constant *c*. [3]
- (ii) For the case where c = 11, find the *x*-coordinates of the points of intersection of the line and the curve. Find also, by integration, the area of the region between the line and the curve. [7]

Question 5

- (i) Express $4x^2 12x$ in the form $(2x + a)^2 + b$. [2]
- (ii) Hence, or otherwise, find the set of values of x satisfying $4x^2 12x > 7$. [2]

Question 6

Find the set of values of k for which the line y = 2x - k meets the curve $y = x^2 + kx - 2$ at two distinct points. [5]

Question 7

Express $2x^2 - 12x + 7$ in the form $a(x + b)^2 + c$, where a, b and c are constants. [3]

A line has equation y = 2x - 7 and a curve has equation $y = x^2 - 4x + c$, where *c* is a constant. Find the set of possible values of *c* for which the line does not intersect the curve. [3] Question 9 (a) Find the values of the constant *m* for which the line y = mx is a tangent to the curve $y = 2x^2 - 4x + 8$.

- [3] (b) The function f is defined for $x \in \mathbb{R}$ by $f(x) = x^2 + ax + b$, where a and b are constants. The
 - solutions of the equation f(x) = 0 are x = 1 and x = 9. Find
 - (i) the values of *a* and *b*,
 (ii) the coordinates of the vertex of the curve y = f(x).
 [2]

Question 10

Find the set of values of k for which the curve $y = kx^2 - 3x$ and the line y = x - k do not meet. [3]

Question 11

A curve has equation $y = 2x^2 - 6x + 5$.	
(i) Find the set of values of x for which $y > 13$.	[3]

(ii) Find the value of the constant k for which the line $y = 2x + k$ is a tangent to the curve.	[3]
Question 12	

(1) Express $x + 0x + 2$ in the form $(x + a) + b$, where a and b are constants.	(i) Express $x^2 + 6x + 2$ in the form $(x + a)^2 + b$, where a and b are constants.	[2]
---	---	-----

(ii) Hence, or otherwise, find the set of values of x for which $x^2 + 6x + 2 > 9$.	[2]
Question 13	

Find the set of values of k for which the equation $2x^2 + 3kx + k = 0$ has distinct real roots. [4]

Question 14

Find the set of values of *a* for which the curve $y = -\frac{2}{x}$ and the straight line y = ax + 3a meet at two distinct points. [4]

Question 15

A curve has equation $y = \frac{1}{x} + c$ and a line has equation y = cx - 3, where c is a constant.

- (i) Find the set of values of c for which the curve and the line meet.
- (ii) The line is a tangent to the curve for two particular values of *c*. For each of these values find the *x*-coordinate of the point at which the tangent touches the curve. [4]

Question 16

Express $3x^2 - 12x + 7$ in the form $a(x + b)^2 + c$, where *a*, *b* and *c* are constants. [3] Question 17

The equation of a curve is $y = x^2 - 6x + k$, where k is a constant.

(i) Find the set of values of k for which the whole of the curve lies above the x-axis.	[2]
---	-----

(ii) Find the value of k for which the line y + 2x = 7 is a tangent to the curve. [3]

[4]

A curve has equation $y = 2x^2 - 3x + 1$ and a line has equation $y =$	$kx + k^2$, where k is a constant.
--	-------------------------------------

- (i) Show that, for all values of k, the curve and the line meet. [4]
- (ii) State the value of k for which the line is a tangent to the curve and find the coordinates of the point where the line touches the curve. [4]

Question 19

The equation of a curve is $y = 2x + \frac{12}{x}$ and the equation of a line is y + x = k, where k is a constant.

(i) Find the set of values of k for which the line does not meet the curve. [3]

In the case where k = 15, the curve intersects the line at points A and B.

- (ii) Find the coordinates of A and B. [3]
- (iii) Find the equation of the perpendicular bisector of the line joining A and B. [3]

Question 20

Showing all necessary working, solve the equation $4x - 11x^{\frac{1}{2}} + 6 = 0.$ [3]

Question 21

A line has equation y = x + 1 and a curve has equation $y = x^2 + bx + 5$. Find the set of values of the constant *b* for which the line meets the curve. [4]

Question 22

The line 4y = x + c, where c is a constant, is a tangent to the curve $y^2 = x + 3$ at the point P on the curve.

(i) Find the value of <i>c</i> .	[3]
(ii) Find the coordinates of <i>P</i> .	[2]

Question 23

A line has equation y = 3kx - 2k and a curve has equation $y = x^2 - kx + 2$, where k is a constant.

- (i) Find the set of values of k for which the line and curve meet at two distinct points. [4]
- (ii) For each of two particular values of k, the line is a tangent to the curve. Show that these two tangents meet on the x-axis.

Question 24

A straight line has gradient *m* and passes through the point (0, -2). Find the two values of *m* for which the line is a tangent to the curve $y = x^2 - 2x + 7$ and, for each value of *m*, find the coordinates of the point where the line touches the curve. [7]

Question 25

Find the set of values of *m* for which the line with equation y = mx + 1 and the curve with equation $y = 3x^2 + 2x + 4$ intersect at two distinct points. [4]

The equation of a curve is $y = 2x^2 + kx + k - 1$, where k is a constant.

(a) Given that the line y = 2x + 3 is a tangent to the curve, find the value of k. [3]

It is now given that k = 2.

(b) Express the equation of the curve in the form $y = 2(x + a)^2 + b$, where *a* and *b* are constants, and hence state the coordinates of the vertex of the curve. [3]

Question 27

The equation of a line is y = mx + c, where *m* and *c* are constants, and the equation of a curve is xy = 16.

- (a) Given that the line is a tangent to the curve, express *m* in terms of *c*. [3]
- (b) Given instead that m = -4, find the set of values of *c* for which the line intersects the curve at two distinct points. [3]

Question 28

A curve has equation $y = 3x^2 - 4x + 4$ and a straight line has equation y = mx + m - 1, where *m* is a constant.

Find the set of values of *m* for which the curve and the line have two distinct points of intersection.

Question 29

The equation of a curve is $y = 2x^2 + m(2x + 1)$, where *m* is a constant, and the equation of a line is y = 6x + 4.

Show that, for all values of *m*, the line intersects the curve at two distinct points. [5]

Question 30

Find the set of values of *m* for which the line with equation y = mx - 3 and the curve with equation $y = 2x^2 + 5$ do not meet. [3]

Question 31

A line has equation y = 3x + k and a curve has equation $y = x^2 + kx + 6$, where k is a constant.

Find the set of values of *k* for which the line and curve have two distinct points of intersection. [5]

Question 32

By using a suitable substitution, solve the equation

$$(2x-3)^2 - \frac{4}{(2x-3)^2} - 3 = 0.$$
 [4]

[5]

A line with equation y = mx - 6 is a tangent to the curve with equation $y = x^2 - 4x + 3$.

Find the possible values of the constant m, and the corresponding coordinates of the points at which the line touches the curve. [6]

Question 34

- (a) Express $16x^2 24x + 10$ in the form $(4x + a)^2 + b$. [2]
- (b) It is given that the equation $16x^2 24x + 10 = k$, where k is a constant, has exactly one root.

Find the value of this root.

Question 35

The equation of a curve is $y = (2k-3)x^2 - kx - (k-2)$, where k is a constant. The line y = 3x - 4 is a tangent to the curve.

Find the value of *k*. [5]

Question 36

Express $5y^2 - 30y + 50$ in the form $5(y + a)^2 + b$, where a and b are constants. [2]

Question 37

A curve has equation $y = kx^2 + 2x - k$ and a line has equation y = kx - 2, where k is a constant.

Find the set of values of *k* for which the curve and line do not intersect. [5]

Question 38

A curve has equation $y = x^2 + 2cx + 4$ and a straight line has equation y = 4x + c, where *c* is a constant. Find the set of values of *c* for which the curve and line intersect at two distinct points. [5]

Question 39

The point *P* lies on the line with equation y = mx + c, where *m* and *c* are positive constants. A curve has equation $y = -\frac{m}{x}$. There is a single point *P* on the curve such that the straight line is a tangent to the curve at *P*.

(a)	Find the coordinates of P,	giving the y-coordinate in terms of m.	[6]
------------	----------------------------	--	-----

The normal to the curve at P intersects the curve again at the point Q.

(b) Find the coordinates of *Q* in terms of *m*. [4]

[2]

The equation of a curve is $y = 4x^2 - kx + \frac{1}{2}k^2$ and the equation of a line is y = x - a, where k and a are constants.

- (a) Given that the curve and the line intersect at the points with x-coordinates 0 and $\frac{3}{4}$, find the values of k and a. [4]
- (b) Given instead that $a = -\frac{7}{2}$, find the values of k for which the line is a tangent to the curve. [5]

Question 41

(a)	Express $x^2 - 8x + 11$ in the form $(x + p)^2$	+q where p and q are constants.	[2]
------------	---	---------------------------------	-----

(b) Hence find the exact solutions of the equation $x^2 - 8x + 11 = 1$. [2]

Question 42

Find the set of values of k for which the equation $8x^2 + kx + 2 = 0$ has no real roots. [2]

Question 43

The equation of a curve is $y = 4x^2 + 20x + 6$.

- (a) Express the equation in the form $y = a(x+b)^2 + c$, where a, b and c are constants. [3]
- (b) Hence solve the equation $4x^2 + 20x + 6 = 45$.
- (c) Sketch the graph of $y = 4x^2 + 20x + 6$ showing the coordinates of the stationary point. You are not required to indicate where the curve crosses the *x* and *y*-axes. [3]

Question 44

Solve the equation $3x + 2 = \frac{2}{x - 1}$.

Question 45

A line has equation y = 3x - 2k and a curve has equation $y = x^2 - kx + 2$, where k is a constant.

Show that the line and the curve meet for all values of k.

Question 46

The function f is defined for $x \in \mathbb{R}$ by $f(x) = x^2 - 6x + c$, where c is a constant. It is given that f(x) > 2 for all values of x.

Find the set of possible values of *c*.

[3]

[3]

[4]

[4]

- (a) Express $4x^2 24x + p$ in the form $a(x+b)^2 + c$, where *a* and *b* are integers and *c* is to be given in terms of the constant *p*. [2]
- (b) Hence or otherwise find the set of values of p for which the equation $4x^2 24x + p = 0$ has no real roots. [1]

Question 48

Solve the equation $8x^6 + 215x^3 - 27 = 0$.

Question 49

The line with equation y = kx - k, where k is a positive constant, is a tangent to the curve with equation $y = -\frac{1}{k}$.

Find, in either order, the value of k and the coordinates of the point where the tangent meets the curve. [5]

[3]