AS-Level

Topic: Sequence and Series

May 2013-May 2023

Answer

Question 1

(a)
$$S_n = 2n^2 + 8n$$

 $S_1 = 10 = a$
B1
 $S_2 = 24 = a + (a + d) d = 4$
M1 A1
[3] correct use of S_n formula.

b) GP $a = 64$ $ar = 48 \rightarrow r = \frac{3}{4}$
B1
 $\rightarrow 3$ rd term is $ar^2 = 36$
AP $a = 64$, $a + 8d = 48 \rightarrow d = -2$
B1
 $36 = 64 + (n - 1)(-2)$
 $\rightarrow n = 15$.
A1
[5]

Question 2

(a)
$$57 = 2(24 + 3d) \rightarrow d = 1.5$$

 $48 = 12 + (n - 1)1.5 \rightarrow n = 25$

(b) $ar^2 = 4a \quad r = \pm 2$

$$\frac{a(r^6 - 1)}{r - 1} = ka$$

M1 A1
Use of correct S_n formula.
Use of correct T_n formula.

[4]
B1
B1
Callow for $r = 2$)

B1 B1

Question 3

 $\rightarrow k = 63$ or k = -21

(i)
$$ar^2 = -108, ar^5 = 32$$

 $r^3 = \frac{32}{-108} = \left(-\frac{8}{27}\right)$
 $r = \left(-\frac{2}{3}\right)$ or -0.666 or -0.667

(ii) $a = -243$

(iii) $S_{\infty} = \frac{-243}{1 + \frac{2}{3}} = -\frac{729}{5}$ or -145.8

M1

Eliminating a
 $-\frac{2}{3}$ from little or no working $\rightarrow \frac{3}{3}$ www

[1]

ft on their $r \left(-\frac{108}{r^2} \text{ or } \frac{32}{r^5}\right)$

M1A1

Accept -146 . For M1 $|r|$ must be < 1

[4]

(a)
$$\frac{a}{1-r} = 8a \Rightarrow 1(a) = 8(a)(1-r)$$
 B1
 $r = \frac{7}{8}$ oe B1

(b)
$$a + 4d = 197$$

 $\frac{10}{2}[2a + 9d] = 2040$
 $d = 14$

B1 [2]
B1 Or
$$2a + 9d = 408$$
B1 Attempt to solve simultaneously
M1A1 [4]

(a) (i)
$$a = 300, d = 12$$

 $\rightarrow 540 = 300 + (n - 1)12 \rightarrow n = 21$

(ii) $S_{26} = 13 (600 + 25 \times 12) = 11700$
 $\rightarrow 3 \text{ hours } 15 \text{ minutes.}$

(b) $ar = 48 \text{ and } ar^2 = 32 \rightarrow r = \frac{2}{3}$
 $\rightarrow a = 72$.

(b) $ar = 48 \text{ and } ar^2 = 32 \rightarrow r = \frac{2}{3}$
 $\rightarrow a = 72$.

(c) $ar = 48 \text{ and } ar^2 = 32 \rightarrow r = \frac{2}{3}$
 $\rightarrow a = 72$.

(d) Use of *n*th term. Ans 20 gets 0.

Ignore incorrect units

Correct use of s_n formula.

Needs ar and ar^2 + attempt at a and r .

(b)
$$ar = 48$$
 and $ar^2 = 32 \rightarrow r = \frac{2}{3}$
 $\rightarrow a = 72$.
 $S_{\infty} = 72 \div \frac{1}{3} = 216$.

 $a = \frac{12}{7}$ or 1.71(4)

Correct S_{∞} formula with $|\mathbf{r}| < 1$ M1 A1√ [4]

Question 6

(a)
$$\frac{10}{2}(2a+9d) = 400$$
 oe
$$\frac{20}{2}(2a+19d) = 1400 \text{ OR}$$

$$\frac{10}{2}[2(a+10d)+9d] = 1000$$

$$d = 6 \quad a = 13$$
(b) $\frac{a}{1-r} = 6$

$$\frac{12(1-r)}{1-r^2} = 7$$
 or $\frac{1-r^2}{1-r} = \frac{12}{7}$

$$r = \frac{5}{7} \text{ or } 0.714$$
B1
$$\rightarrow 2a+9d=80$$

B1
$$\rightarrow 2a+9d=80$$

M1A1A1
[5]

M1
Substitute or divide

A1

A1√

[5]

Ignore any other solns for r and a

36, 32, ...

(i)
$$r = \frac{8}{9} S_{\infty} = (their \ a) \div (1 - their \ r)$$

$$S_{\infty} = 36 \div \frac{1}{9} = 324$$

M1 Method for r and S_{∞} ok. ($|r| < 1$)

co

[2]

(ii) $d = -4$

B1 co

(ii)
$$d = -4$$
 B1 co
 $0 = \frac{n}{2} (72 + (n-1)(-4))$ $M1$ S_n formula ok and a value for $d \neq \frac{8}{9}$ $A1$ Condone $n = 0$ but no other soln

Question 8

(i) GP 8 8
$$r$$
 8 r^2
AP 8 8 $+ 8d$ 8 $+ 20d$
 $8r = 8 + 8d$ and $8r^2 = 8 + 20d$
Eliminates $d \rightarrow 2r^2 - 5r + 3 = 0$
 $\rightarrow r = 1.5$ (or 1)

B1 B1 B1 B1 Correct elimination.
Correct elimination.
 $\Rightarrow r = 1.5$ (or 1)

[4] B1 \uparrow Co (no penalty for including $r = 1$)

[4] B1 \uparrow Co (no penalty for including $r = 1$)

[4] B1 \uparrow Co (no penalty for including $r = 1$)

[5] Ath term of $\Rightarrow a + 3d = 9\frac{1}{2}$

M1 A1 (a) needs $\Rightarrow a + 3d$ and correct method for $\Rightarrow a + 3d$ and $\Rightarrow a +$

(i)
$$S_P = \frac{2}{1 - \frac{1}{2}}, S_P = \frac{3}{1 - \frac{1}{3}}$$

$$S_P = 4, S_Q = \frac{9}{2}$$

$$S_R = 5 \quad \text{cao}$$
At least one correct

A1
$$r = \frac{1}{5}$$
M1
At least one correct

A1

A1

A1

A1

(a)
$$S_n = 32n - n^2$$
.
Set n to 1, a or $S_1 = 31$
Set n to 2 or other value $S_2 = 60$
 \rightarrow 2nd term $= 29 \rightarrow d = -2$
(or equates formulae – compares coeffs n^2 , n)

[M1 comparing, A1 d A1 a]

(b) $\frac{a}{1-r} = 20$, $\frac{a(1-r)^2}{1-r}$, or $a + ar = 12.8$

Elimination of $\frac{a}{1-r}$ or a or r
 $\Rightarrow (r = 0.6) \rightarrow a = 8$

DM1 A1

Correct method.

co

[M1 only when coeffs compared]

**Correct' elimination to form equation in a or r

DM1 A1

Complete method leading to $a = 0$

Condone $a = 0$ and $a = 0$

Condone $a = 0$ and $a = 0$

Question 12

(i)
$$S = \frac{a}{1-r}$$
, $3S = \frac{a}{1-2r}$
 $1-r = 3-6r$
 $r = \frac{2}{5}$

(ii) $7 + (n-1)d = 84$ and/or $7 + (3n-1)d = 245$
 $[(n-1)d = 77, (3n-1)d = 238, 2nd = 161]$
 $\frac{n-1}{3n-1} = \frac{77}{238}$ (must be from the correct u_n formula)

 $n = 23$ $(d = \frac{77}{22} = 3.5)$

B1 At least $3S = \frac{a}{1-2r}$ Eliminate S

B1 Two different seen – unsimplified ok
Or other attempt to elim d . E.g. sub $d = \frac{161}{2n}$

(if n is eliminated d must be found)

(a)	2222/17 (=131 or 130.7) 131 × 17 (=2227) -2222 + 2227 = 5	M1 M1 A1 [3]	Ignore signs. Allow 2239/17→131.7 or 132 Ignore signs. Use 131. 5 www gets 3/3
(b)	$r = \frac{2\cos\theta}{\sqrt{3}}$ soi oe	B1	
	$(-1 <) \frac{2\cos\theta}{\sqrt{3}} < 1$ or $(0 <) \frac{2\cos\theta}{\sqrt{3}} < 1$ soi	M1 [∧]	Ft on <i>their r</i> . Ignore a 2nd inequality on LHS
	$\pi/6$, $5\pi/6$ soi (but dep. on M1) $\pi/6 < \theta < 5\pi/6$ cao	A1A1	Allow 30°, 150°.
	$\pi/6 < \theta < 5\pi/6$ cao	A1 [5]	Accept ≤

2000000	T 1		1
(a)	1st, 2nd, <i>n</i> th are 56, 53 and -22 a = 56, $d = -3-22 = 56 + (n - 1)(-3)\rightarrow n = 27S_{27} = \frac{27}{2}(112 + 26(-3))\rightarrow 459$	M1 A1 M1 A1	Uses correct u_n formula. co Needs positive integer n Co
(b)	1^{st} , 2^{nd} , 3^{rd} are $2k + 6$, $2k$ and $k + 2$.		
(i)	Either $\frac{2k}{2k+6} = \frac{k+2}{2k}$ or uses a , r and eliminates	M1 DM1 A1 [3]	Correct method for equation in <i>k</i> . Forms quad. or cubic equation with no brackets or fractions. Co
(ii)	$S_{\infty} = \frac{a}{1-r} \text{ with } r = \frac{2k}{2k+6} \text{ or } \frac{k+2}{2k} \left(=\frac{2}{3}\right)$ $\rightarrow 54$	M1 A1 [2]	Needs attempt at a and r and S_{∞}

(a)
$$ar^2 = \frac{1}{3}$$
, $ar^3 = \frac{2}{9}$
 $\rightarrow r = \frac{2}{3}$ aef M1 Any valid method, seen or implied. Could be answers only.

Substituting $\rightarrow a = \frac{3}{4}$ A1 Both a and r
 $\rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4}$ aef M1 A1 Correct formula with $|r| < 1$, cao

(b) $4a = a + 4d \rightarrow 3a = 4d$ B1 May be implied in $360 = 5/2(a + 4a)$
 $360 = S_5 = \frac{5}{2}(2a + 4d)$ or $12.5a$ M1 Correct S_n formula or sum of S_n terms

 $\Rightarrow a = 28.8^{\circ}$ aef Cao, may be implied (may use degrees or radians)

(i) (a)
$$\begin{vmatrix} 1.92 + 1.84 + 1.76 + ... & \text{oe} \\ \frac{20}{2}[2 \times 1.92 + 19 \times (-0.08)] & \text{oe} \\ 23.2 & \text{cao} \end{vmatrix}$$

(b) $\begin{vmatrix} 1.92 + 1.92(.96) + 1.92(.96)^2 + ... \\ \frac{1.92(1 - .96^{20}}{1 - .96} \\ 26.8 & \text{cao} \end{vmatrix}$

(ii) $\begin{vmatrix} 1.92 \\ 1 - .96 \end{vmatrix} = 48 \text{ or } \frac{0.96}{1 - 0.96} = 24 \text{ & then} \\ \text{Double AG} \end{vmatrix}$

(iii) $\begin{vmatrix} 1.92 \\ 1 - .96 \end{vmatrix} = 48 \text{ or } \frac{0.96}{1 - 0.96} = 24 \text{ & then} \\ \text{Double AG} \end{vmatrix}$

(iv) $\begin{vmatrix} 1.92 \\ 1 - .96 \end{vmatrix} = 48 \text{ or } \frac{0.96}{1 - 0.96} = 24 \text{ & then} \\ \text{Double AG} \end{vmatrix}$

(iv) $\begin{vmatrix} 1.92 \\ 1 - .96 \end{vmatrix} = 48 \text{ or } \frac{0.96}{1 - 0.96} = 24 \text{ & then} \\ \text{Double AG} \end{vmatrix}$

(vi) $\begin{vmatrix} 1.92 \\ 1 - .96 \end{vmatrix} = 48 \text{ or } \frac{0.96}{1 - 0.96} = 24 \text{ & then} \\ \text{Double AG} \end{vmatrix}$

(vii) $\begin{vmatrix} 1.92 \\ 1 - .96 \end{vmatrix} = 48 \text{ or } \frac{0.96}{1 - 0.96} = 24 \text{ & then} \\ \text{Double AG} \end{vmatrix}$

(viii) $\begin{vmatrix} 1.92 \\ 1 - .96 \end{vmatrix} = 48 \text{ or } \frac{0.96}{1 - 0.96} = 24 \text{ & then} \\ \text{Double AG} \end{vmatrix}$

(viv) $\begin{vmatrix} 1.92 \\ 1 - 0.96 \end{vmatrix} = 48 \text{ or } \frac{0.96}{1 - 0.96} = 24 \text{ & then} \\ \text{Double AG} \end{vmatrix}$

'which is true' scores SCB1

i	I	ı	I
(i)	$x^2 - 4x = 12$ $x = -2 \text{ or } 6$	M1	$4x - x^2 = 12 \text{ scores M1A0}$
	x = -2 or 6	A1	
	3^{rd} term = $(-2)^2 + 12 = 16$ or $6^2 + 12 = 48$	A1A1	SC1 for 16, 48 after $x = 2, -6$
		[4]	
(ii)	$r^2 = \frac{x^2}{4x} \left(= \frac{x}{4} \right)$ soi	M1	
	$r^{2} = \frac{x^{2}}{4x} \left(= \frac{x}{4} \right) \text{ soi}$ $\frac{4x}{1 - \frac{x}{4}} = 8$ $x = \frac{4}{3} \text{ or } r = \frac{1}{3}$	M1	Accept use of unsimplified
	$1-\frac{x}{4}$		$\frac{x^2}{4x}$ or $\frac{4x}{x^2}$ or $\frac{4}{x}$
	4 1		$4x x^2 x^2$
	$x = \frac{1}{3}$ or $r = \frac{1}{3}$	A1	
	$3^{\text{rd}} \text{ term} = \frac{16}{27} \text{ (or } 0.593)$	A1	
	27 (61 0.573)	[4]	
	ALT		
	4x 1 $4x$ 2 x 1	201	
	$\frac{1}{1-r} = 8 \to r = 1 - \frac{1}{2}x \text{ or } \frac{1}{1-r} = 8 \to x = 2(1-r)$	M1	
	$\begin{vmatrix} \frac{4x}{1-r} = 8 \rightarrow r = 1 - \frac{1}{2}x \text{ or } \frac{4x}{1-r} = 8 \rightarrow x = 2(1-r) \\ x^2 = 4x \left(1 - \frac{1}{2}x\right) \qquad r = \frac{2(1-r)}{4} \\ x = \frac{4}{3} \qquad r = \frac{1}{3} $	M1	
	4		
	$x = \frac{1}{3}$ $r = \frac{1}{3}$	A1	
Questi	ion 18		

a+11d=17	B1	
$\frac{31}{2}(2a+30d)=1023$	B1	
Solve simultaneous equations $d = 4$, $a = -27$ 31st term = 93	M1 A1 A1 [5]	At least one correct

$r = \frac{3+2d}{3} \text{ or } \frac{3+12d}{3+2d} \text{ or } r^2 = \frac{3+12d}{3}$	B1	1 correct equation in r and d only is sufficient
$(3+2d)^2 = 3(3+12d)$ oe OR sub $2d = 3r - 3$	M1	Eliminate r or d using valid method
$(4)d(d-6) = 0$ OR $3r^{2} = 18r - 15 \rightarrow (r-1)(r-5)$	DM1	Attempt to simplify and solve quadratic
d = 6 $r = 5$	A1 A1 [5]	Ignore $d = 0$ or $r = 1$ Do not allow -5 or ± 5

(a)
$$a = 50, ar^2 = 32$$

 $r = \frac{4}{5} \text{ (allow } -\frac{4}{5} \text{ for M mark)}$

$$A1$$

$$S_{\infty} = 250$$
(b) (i) $2\sin x, 3\cos x, (\sin x + 2\cos x).$

$$3c - 2s = (s + 2c) - 3c$$

$$(or uses $a, a + d, a + 2d)$

$$4c = 3s \rightarrow t = \frac{4}{3} \text{ to show}$$

$$u_1 = \frac{8}{5}, u_2 = \frac{9}{5}, u_3 = \frac{10}{5}, \text{ B1 only}$$
(ii) $\rightarrow c = \frac{3}{5}, s = \frac{4}{5} \text{ or calculator } x = 53.1^{\circ}$

$$A1$$

$$3 = \frac{10}{5} \text{ or calculator } x = 53.1^{\circ}$$

$$A2 = \frac{10}{5} \text{ or calculator } x = 53.1^{\circ}$$

$$A3 = \frac{10}{5} \text{ or calculator } x = 53.1^{\circ}$$

$$A4 = \frac{1}{5} \text{ or calculator } x = \frac{10}{5} \text{ or calculator } x = \frac{10}{5$$$$

(a)	$\frac{6}{1-r} = \frac{12}{1+r}$ $r = \frac{1}{3}$ $S = 9$	M1 A1 A1	[3]	
(b)	$\frac{13}{2} \left[2\cos\theta + 12\sin^2\theta \right] = 52$	M1*		Use of correct formula for sum of AP
	$2\cos\theta + 12(1-\cos^2\theta) = 8 \rightarrow 6\cos^2\theta - \cos\theta - 2(=0)$	DM1		Use $s^2 = 1 - c^2$ & simplify to 3-term quad
	$\cos \theta = 2/3$ or $-1/2$ soi	A1		Accept 0.268π , $2\pi/3$. SRA1 for
	$\theta = 0.841$, 2.09 Dep on previous A1	A1A1	[5]	48.2°, 120° Extra solutions in range –1

(a) (i)	200+(15-1)(+/-5)	M1		Use of <i>n</i> th term with $a = 200$, $n = 14$ or 15 and $d = \pm / -5$.
	= 130	A1	[2]	
(ii)	$\frac{n}{2} \left[400 + (n-1)(+/-5) \right] = (3050)$ $\rightarrow 5n^2 - 405n + 6100 \ (=0)$	M1		Use of S_n $a=200$ and $d = +/-5$.
	$\begin{array}{l} \to 5n^2 - 405n + 6100 \ (=0) \\ \to 20 \end{array}$	A1 A1		
			[3]	
(b) (i)	$ar^2, ar^5 \rightarrow r = \frac{1}{2}$	M1 A1		Both terms correct.
	$ar^{2}, ar^{5} \rightarrow r = \frac{1}{2}$ $\frac{63}{2} = \frac{a(1 - \frac{1}{2}^{6})}{\frac{1}{2}} \rightarrow a = 16$	M1 A1	[4]	Use of $S_n = 31.5$ with a numeric r .
(ii)	Sum to infinity = $\frac{16}{\frac{1}{2}}$ = 32	B1√	[1]	

Question 24

$a(1+r) = 50$ or $\frac{a(1-r^2)}{1-r} = 50$	B1	
$ar(1+r) = 30 \text{ or } \frac{a(1-r^3)}{1-r} = 30+a$		r otherwise attempt to solve or r
Eliminating a or r	M1 A	ny correct method
r = 3/5	A1	
a = 125/4 oe	A1 .	
S = 625 / 8 oe		through on their r and a
3	[6] (-	-1 < r < 1)

Question 25

(i)	$S = \frac{r^2 - 3r + 2}{1 - r}$	M1	
	$S = \frac{(r-1)(r-2)}{1-r} = \frac{-(1-r)(r-2)}{1-r} = 2 - r \text{ OR}$ $\frac{(1-r)(2-r)}{1-r} = 2 - r \text{ OE}$	A1	\mathbf{AG} Factors must be shown. Expressions requiring minus sign taken out mus be shown
	Total:	2	
(ii)	Single range $1 < S < 3$ or $(1, 3)$	В2	Accept $1 < 2 - r < 3$. Correct range but with $S = 2$ omitted scores SR B1 $1 \le S \le 3$ scores SR B1 . [$S > 1$ and $S < 3$] scores SR B1 .
	Total:	2	

(a)	$(S_n =) \frac{n}{2} [32 + (n-1)8]$ and 20000	М1	M1 correct formula used with d from $16 + d = 24$
		A1	A1 for correct expression linked to 20000.
	$\rightarrow n^2 + 3n - 5000 (<,=,> 0)$	DM1	Simplification to a three term quadratic.
	\rightarrow (n = 69.2) \rightarrow 70 terms needed.	A1	Condone use of 20001 throughout. Correct answer from trial and improvement gets 4/4.
	Total:	4	
(b)	$a = 6, \frac{a}{1-r} = 18 \rightarrow r = \frac{2}{3}$	M1A1	Correct $S\infty$ formula used to find r .
	New progression $a = 36$, $r = \frac{4}{9}$ oe	М1	Obtain new values for a and r by any valid method.
	New $S\infty = \frac{36}{1 - \frac{4}{9}} \to 64.8 \text{ or } \frac{324}{5} \text{ oe}$	A1	(Be aware that $r = -\frac{2}{3}$ leads to 64.8 but can only score M marks)

$a = 32, a + 4d = 22, \rightarrow d = -2.5$	B1	
$a + (n-1)d = -28 \rightarrow n = 25$	B1	
$S_{25} = \frac{25}{2} (64 - 2.5 \times 24) = 50$	M1 A1	M1 for correct formula with $n = 24$ or $n = 25$
Total:	4	
a = 2000, r = 1.025	B1	$r = 1 + 2.5\%$ ok if used correctly in S_n formula
$S_{10} = 2000(\frac{1.025^{10} - 1}{1.025 - 1}) = 22400$ or a value which rounds to this	M1 A1	M1 for correct formula with $n = 9$ or $n = 10$ and their a and r
		SR: correct answer only for $n = 10$ B3, for $n = 9$, B1 (£19 900)
Total:	3	

$\frac{1}{2}n[-24+(n-1)6] \sim 3000$ Note: \sim denotes <u>any</u> inequality or equality	M1	Use correct formula with RHS ≈ 3000 (e.g. 3010).
$(3)(n^2-5n-1000)(\sim 0)$	A1	Rearrange into a 3-term quadratic.
n ~34.2 (&−29.2)	A1	
35. Allow <i>n</i> ≥ 35	A1	
	4	

(a)	Uses $r = (1.05 \text{ or } 105\%)^{9, 10 \text{ or } 11}$	B1	Used to multiply repeatedly or in any GP formula.
	New value = 10000 × 1.05 ¹⁰ = (\$)16 300	B1	
		2	
(b)	EITHER: $n = 1 \rightarrow 5$ $a = 5$	(B1	Uses $n = 1$ to find a
	$n=2 \rightarrow 13$	B1	Correct S_n for any other value of n (e.g. $n = 2$)
	$a + (a+d) = 13 \to d = 3$	M1 A1)	Correct method leading to $d =$
	OR: $\left(\frac{n}{2}\right)(2a+(n-1)d) = \left(\frac{n}{2}\right)(3n+7)$		$\left(\frac{n}{2}\right)$ maybe be ignored
	$\therefore dn + 2a - d = 3n + 7 \rightarrow dn = 3n \rightarrow d = 3$	(*M1A1	Method mark awarded for equating terms in n from correct S_n formula.
	2a - (their 3) = 7, a = 5	DM1 A1)	
		4	

(i)	<u>3a</u> = <u>a</u>	M1	Attempt to equate 2 sums to infinity. At least one correct
	1-r 1+2r		
	3+6r=1-r	DM1	Elimination of 1 variable (a) at any stage and multiplication
	$r = -\frac{2}{7}$	A1	
		3	_ \
(ii)	$\frac{1}{2}n[2\times15+(n-1)4]=\frac{1}{2}n[2\times420+(n-1)(-5)]$	M1A1	Attempt to equate 2 sum to n terms, at least one correct (M1). Both correct (A1)
	n = 91	A1	
		3	
Que	estion 31		

(i)	40+60×1.2 = 112	M1A1	Allow 1.12 m. Allow M1 for 40 + 59 × 1.2 OE
	12	2	
(ii)	Find rate of growth e.g. 41.2/40 or 1.2/40	*M1	SOI, Also implied by 3%, 0.03 or 1.03 seen
	40×(1+their 0.03) ^{60 or 59}	DM1	
	236	A1	Allow 2.36 m
		3	

$\left[\frac{a(1-r^n)}{1-r}\right]\left[\div\right]\left[\frac{a}{1-r}\right]$	M1M1	Correct formulae <u>used</u> with/without $r = 0.99$ or $n = 100$.
	DM1	Allow numerical a (M1M1). 3rd M1 is for division $\frac{S_n}{S_\infty}$ (or ratio) SOI
$1-0.99^{100}$ SOI OR $\frac{63(a)}{100(a)}$ SOI	A1	Could be shown multiplied by 100(%). Dep. on DM1
63(%) Allow 63.4 or 0.63 but not 2 infringements (e.g. 0.634, 0.63%)	A1	$n = 99$ used scores Max M3. Condone $a = 0.99$ throughout $S_n = S_\infty$ (without division shown) scores 2/5
	5	

(i)	$r = 1.02$ or $\frac{102}{100}$ used in a GP in some way.	B1	Can be awarded here for use in S_n formula.
	Amount in 12th week = $8000 (their r)^{11}$ or $(their \ a \ from \ \frac{8000}{their \ r}) (their \ r)^{12}$	M1	Use of ar^{n-1} with a = 8000 & $n = 12$ or with a = $\frac{8000}{1.02}$ and $n = 13$.
	= 9950 (kg) awrt	A1	Note: Final answer of either 9943 or 9940 implies M1. Full marks can be awarded for a correct answer from a list of terms.
		3	
(ii)	In 12 weeks, total is $\frac{8000((their r)^{12} - 1)}{((their r) - 1)}$	M1	Use of S_n with a = 8000 and $n = 12$ or addition of 12 terms.
	= 107000 (kg) awrt	A1	Correct answer but no working 2/2
		2	

Question 34

8(a)	$ar = 12$ and $\frac{a}{1-r} = 54$	B1 B1	CAO, OE CAO, OE
	Eliminates a or $r \to 9r^2 - 9r + 2 = 0$ or $a^2 - 54a + 648 = 0$	M1	Elimination leading to a 3-term quadratic in a or r
	$\rightarrow r = \frac{2}{3} \text{ or } \frac{1}{3} \text{ hence to } a \rightarrow a = 18 \text{ or } 36$	A1	Needs both values.
		4	
(b)	nth term of a progression is $p + qn$		
)(i)	first term = $p + q$. Difference = q or last term = $p + qn$	B1	Need first term and, last term or common difference
	$S_n = \frac{n}{2} (2(p+q) + (n-1)q) \text{ or } \frac{n}{2} (2p+q+nq)$	M1A1	Use of S_n formula with their a and d . ok unsimplified for A1.
		3	
b)(ii)	Hence $2(2p+q+4q)=40$ and $3(2p+q+6q)=72$	DM1	Uses their S_n formula from (i)
	Solution $\rightarrow p = 5$ and $q = 2$ [Could use S_n with a and $d \rightarrow a = 7$, $d = 2 \rightarrow p = 5$, $q = 2$.]	A1	Note: answers 7, 2 instead of 5, 2 gets M1A0 – must attempt to solve for M1
	· Sathrep.	2	

a + (n-1)3 = 94	B1	
$\frac{n}{2} [2a + (n-1)3] = 1420$ OR $\frac{n}{2} [a+94] = 1420$	B1	
Attempt elimination of a or n	M1	
$3n^2 - 191n + 2840 = 0$ OR $a^2 - 3a - 598 = 0$	A1	3-term quadratic (not necessarily all on the same side)
n = 40 (only)	A1	
a = -23 (only)	A1	Award 5/6 if a 2nd pair of solutions (71/3, 26) is given in addition or if given as the only answer.
	6	

Questionso		
From the AP: $x-4=y-x$	B1	Or equivalent statement e.g. $y = 2x - 4$ or $x = \frac{y+4}{2}$.
From the GP: $\frac{y}{x} = \frac{18}{y}$	B1	Or equivalent statement e.g. $y^2 = 18x$ or $x = \frac{y^2}{18}$.
Simultaneous equations: $y^2 - 9y - 36 = 0$ or $2x^2 - 17x + 8 = 0$	M1	Elimination of either x or y to give a three term quadratic $(=0)$
OR		
$4+d = x, 4+2d = y \rightarrow \frac{4+2d}{4+d} = r$ oe	B1	
$\left(4+d\right)\left(\frac{4+2d}{4+d}\right)^2 = 18 \to 2d^2 - d - 28 = 0$	M1	Uses $ar^2 = 18$ to give a three term quadratic (= 0)
d = 4	B1	Condone inclusion of $d = \frac{-7}{2}$ oe
OR		
From the GP $\frac{y}{x} = \frac{18}{y}$	B1	
	B1	
$4 + 2\left(\frac{y^2}{18} - 4\right) = y \rightarrow y^2 - 9y - 36 = 0$	M1	
x = 8, y = 12.	A1	Needs both x and y. Condone $\left(\frac{1}{2}, -3\right)$ included in final
		answer. Fully correct answer www 4/4.
	4	///
AP 4th term = 16	B1	Condone inclusion of $\frac{-13}{2}$ oe
GP 4th term = $8 \times \left(\frac{12}{8}\right)^3$	M1	A valid method using their x and y from (i).
= 27 Satore	A1	Condone inclusion of -108
		Note: Answers from fortuitous $x = 8$, $y = 12$ in (i) can only score M1. Unidentified correct answer(s) with no working seen after valid $x = 8$, $y = 12$ to be credited with appropriate marks.
	3	

(i)	$S_{80} = \frac{80}{2} [12 + 79 \times (-4)] \text{ or } \frac{80}{2} [6 + I], I = -310$	M1A1	Correct formula (M1). Correct a , d and n (A1).
	-12 160	A1	
		3	
(ii)	$S_{\infty} = \frac{6}{1 - \frac{1}{3}} = 9$	M1A1	Correct formula with $ r < 1$ for M1
		2	

i(i)	$S_n = \frac{p(2^n - 1)}{2 - 1} \text{ soi}$	M1	
	$p(2^n-1) > 1000p \to 2^n > 1001$ AG	A1	
		2	
(ii)	p + (n-1)p = 336	B1	Expect $np = 336$
	$\boxed{\frac{n}{2} \left[2p + (n-1)p \right] = 7224}$	B1	Expect $\frac{n}{2}(p+np) = 7224$
	Eliminate n or p to an equation in one variable	M1	Expect e.g. $168(1+n) = 7224$ or $1 + 336/p = 43$ etc
	n=42, p=8	A1A1	
		5	

i(i)	$\frac{x}{2} [2 + (x-1)(-/+0.02)]$ or $1.01x - 0.01x^2$ or $0.99x + 0.01x^2$ oe	B1	Allow – or + 0.02. Allow n used
		1	
(ii)	Equate to 13 then <i>either</i> simplify to a 3-term quadratic equation or find at least 1 solution (need not be correct) to an unsimplified quadratic	M1	Expect $n^2 - 101n + 1300$ (=0) or $0.99x + 0.01x^2 = 13$. Allow x used
	16	A1	Ignore 85.8 or 86
		2	
(iii)	Use of $\frac{a(1-r^n)}{1-r}$ with $a = 1, r = 0.92, n = 20$ soi	M1	
	(=) 10.1	A1	///
	Use of $(S_{\infty} =) \frac{a}{1-r}$ with $a = 1, r = 0.92$	M1	OR $\frac{(1)(1-0.92^n)}{1-0.92} = 13 \rightarrow 0.92^n = -0.04$ oe
	$S_{\infty} = 12.5$ so never reaches target or < 13	A1	Conclusion required – 'Shown' is insufficient No solution so never reaches target or < 13
	Sature	4	

(a)(i)	$S_{10} = S_{15} - S_{10} \text{ or } S_{10} = S_{(11 \text{ to } 15)}$	M1	Either statement seen or implied.
	5(2a+9d) oe	B1	
	$7.5(2a+14d) - 5(2a+9d)$ or $\frac{5}{2}[(a+10d) + (a+14d)]$ oe	A1	
	$d = \frac{a}{3} \text{ AG}$	A1	Correct answer from convincing working
		4	Condone starting with $d = \frac{a}{3}$ and evaluating both summations as 25a.
(a)(ii)	(a+9d) = 36 + (a+3d)	M1	Correct use of $a + (n-1)d$ twice and addition of ± 36
	a = 18	A1	
		2	Correct answer www scores 2/2
(b)	$S_{\infty} = 9 \times S_4; \frac{a}{1-r} = 9 \frac{a(1-r^4)}{1-r} \text{ or } 9(a+ar+ar^2+ar^3)$	B1	May have 12 in place of a.
	$9(1-r^n) = 1$ where $n = 3,4$ or 5	M1	Correctly deals with a and correctly eliminates $(1-r)^2$
	$r^4 = \frac{8}{9} \text{ oe}$	A1	\
	$(5^{\text{th}} \text{ term} =) 10\% \text{ or } 10.7$	A1	
		4	Final answer of 10.6 suggests premature approximation – award 3/4 www.
Ques	tion 41		

(a)	$ar^2 = 48$, $ar^3 = 32$, $r = \frac{2}{3}$ or $a = 108$	M1	Solution of the 2 eqns to give r (or a). A1 (both)
	$r = \frac{2}{3}$ and $a = 108$	A1	
	$S\infty = \frac{108}{\frac{1}{3}} = 324$	A1	FT Needs correct formula and r between -1 and 1 .
	Satprer	3	
(b)	Scheme A $a = 2.50$, $d = 0.16$ S _n = 12(5 + 23×0.16)	M1	Correct use of either AP S _n formula.
	$S_n = 104 \text{ tonnes.}$	A1	
	Scheme B $a = 2.50$, $r = 1.06$	B1	Correct value of r used in GP.
	$=\frac{2.5(1.06^{24}-1)}{1.06-1}$	M1	Correct use of either S_n formula.
	$S_n = 127$ tonnes.	A1	
		5	

'(i)	$\frac{5k-6}{3k} = \frac{6k-4}{5k-6} \longrightarrow (5k-6)^2 = 3k(6k-4)$	M1	OR any valid relationship
	$25k^2 - 60k + 36 = 18k^2 - 12k \rightarrow 7k^2 - 48k + 36$	A1	AG
		2	
(ii)	$k=rac{6}{7}$, 6	B1B1	Allow 0.857(1) for $\frac{6}{7}$
	When $k = \frac{6}{7}$, $r = -\frac{2}{3}$	B1	Must be exact
	When $k = 6$, $r = \frac{4}{3}$	B1	
		4	
(iii)	Use of $S_{\infty} = \frac{a}{1-r}$ with $r = their - \frac{2}{3}$ and $a = 3 \times their - \frac{6}{7}$	M1	Provided $0 < their - 2/3 < 1$
	$\frac{18}{7} \div \left(1 + \frac{2}{3}\right) = \frac{54}{35}$ or 1.54	A1	FT if 0.857(1) has been used in part (ii).
		2	
Ques	tion 43		
		1	

i(a)(i)	$21st \text{ term} = 13 + 20 \times 1.2 = 37 \text{ (km)}$	B1	
		1	-111
(a)(ii)	$S_{21} = \frac{1}{2} \times 21 \times (26 + 20 \times 1.2) \text{ or } \frac{1}{2} \times 21 \times (13 + their 37)$	M1	A correct sum formula used with correct values for a , d and n .
	525 (km)	A1	
		2	///
3(b)(i)	$\frac{x-3}{x} = \frac{x-5}{x-3}$ oe (or use of a, ar and ar ²)	M1	Any valid method to obtain an equation in one variable.
	(a = or x =) 9	A1	7
	72	2	
(b)(ii)	$r = \left(\frac{x-3}{x}\right) \text{ or } \left(\frac{x-5}{x-3}\right) \text{ or } \sqrt{\frac{x-5}{x}} = \frac{2}{3}. \text{ Fourth term} = 9 \times (\frac{2}{3})^3$	M1	Any valid method to find r and the fourth term with their $a \& r$.
	2½ or 2.67	A1	OE, AWRT
		2	
(b)(iii)	$S\infty = \frac{a}{1-r} = \frac{9}{1-\frac{2}{3}}$	M1	Correct formula and using <i>their</i> ' r ' and ' a ', with $ r < 1$, to obtain a numerical answer.
	27 or 27.0	A1	AWRT
		2	

(i)	Identifies common ratio as 1.1	B1	
	Use of $x(1.1)^{20} = 20$	M1	SOI
	$x \left(= \frac{20}{\left(1.1 \right)^{20}} \right) = 3.0$	A1	Accept 2.97
		3	
(ii)	their3.0 × $\frac{\left[\left(1.1\right)^{21} - 1\right]}{1.1 - 1}$ \rightarrow 192	M1 A1	Correct formula used for M mark. Allow 2.97 used from (i) Accept 190 from $x = 2.97$
		2	

Question 45

3(a)	2%	B1	
	TER	1	
3(b)	Bonus = $600 + 23 \times 100 = 2900$	B1	
	Salary = 30000×1.03^{23}	M1	Allow 30000×1.03 ²⁴ (60984)
	= 59207.60	A1	Allow answers of 3significant figure accuracy or better
	their 2900 their 59200	M1	SOI
	4.9(0)%	A1	
		5	

3(a)	$r = \cos^2 \theta$ SOI	M1
	$S_{\infty} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$	M1
		A1
		3
b)(i)	$d = \sin^2\theta \cos^2\theta - \sin^2\theta$	M1
	$\sin^2\theta \left(\cos^2\theta - 1\right)$	M1
	$-\sin^4 \theta$	A1
		3
(b)(ii)	Use of $S_{16} = \frac{16}{2} [2a + 15d]$	M1
	With both $a = \frac{3}{4}$ and $d = -\frac{9}{16}$	A1
	$S_{16} = -55\frac{1}{2}$	A1
		3

1st term is -6 , 2nd term is -4.5 (M1 for using k th terms to find both a and d)	M1
$\rightarrow a = -6, d = 1.5$	A1 A1
$S_n = 84 \rightarrow 3n^2 - 27n - 336 = 0$	M1
Solution $n = 16$	A1
	5

Question 48

$117 = \frac{9}{2} (2a + 8d)$	B1
Either $91 = S_4$ with 'a' as $a + 4d$ or $117 + 91 = S_{I3}$ (M1 for overall approach. M1 for S_n)	M1M1
Simultaneous Equations $\rightarrow a = 7, d = 1.5$	A1
	4

Question 49

i(a)	\$36 000 × (1.05) ⁿ (B1 for $r = 1.05$. M1 method for r th term)	B1M1
	\$53 200 after 8 years.	A1
		3
(b)	$S_{10} = 36000 \frac{\left(1.05^{10} - 1\right)}{\left(1.05 - 1\right)}$	M1
	\$453 000	A1
		2

(a)	$(d =) -\frac{\tan^2 \theta}{\cos^2 \theta} - \frac{1}{\cos^2 \theta}$	B1	Allow sign error(s). Award only at form $(d =)$ stage
	$-\frac{\sin^2\theta}{\cos^4\theta} - \frac{1}{\cos^2\theta} \text{or} \frac{-\sec^2\theta}{\cos^2\theta}$	M1	Allow sign error(s). Can imply B1
	$\frac{-\sin^2\theta - \cos^2\theta}{\cos^4\theta} \text{ or } \frac{-\frac{1}{\cos^2\theta}}{\cos^2\theta}$	M1	
	$-\frac{1}{\cos^4 \theta}$	A1	AG, WWW
		4	

(b)	$a = \frac{4}{3}$, $d = -\frac{16}{9}$	B1	SOI, both required. Allow $a = \frac{1}{\frac{3}{4}}$, $d = -\frac{1}{\frac{9}{16}}$
	$u_{13} = \frac{1}{\cos^2 \theta} - \frac{12}{\cos^4 \theta} = \frac{4}{3} + 12 \left(\frac{-16}{9}\right)$	M1	Use of correct formula with <i>their a</i> and <i>their d</i> . The first 2 steps could be reversed
	-20	A1	www
		3	

S_x and S_{x+1}	M1	Using two values of n in the given formula
a=5, d=2	A1 A1	
$a + (n-1) d > 200 \rightarrow 5 + 2(k-1) > 200$	M1	Correct formula used with their a and d to form an equation or inequality with 200, condone use of n
(k =) 99	A1	Condone ≥ 99

Alternative method for question 4

$\frac{n}{2}(2a + (n-1)d) \equiv n^2 + 4n \to \left(\frac{d}{2} = 1, a - \frac{1}{2}d = 4\right)$	M1	Equating two correct expressions of S_n and equating coefficients of n and n^2
d = 2, a = 5	A1 A1	
$a + (n-1) d > 200 \rightarrow 5 + 2(k-1) > 200$	M1	Correct formula used with their a and d to form an equation or inequality with 200, condone use of n
(k =) 99	A1	Condone ≥ 99

Question 52

$(-2p)^2 = (2p+6) \times (p+2) \text{ or } \frac{-2p}{2p+6} = \frac{p+2}{-2p}$	M1	OE. Using "a, b, c then $b^2 = ac$ " or $a = 2p + 6$, $ar = -2p$ and $ar^2 = p + 2$ to form a correct relationship in terms of p only
$(2p^2 - 10p - 12 = 0) p = 6$	A1	<i>~</i> /
$a = 18$ and $r = -\frac{2}{3}$	A1	
$(\mathbf{s}_{\infty}) = their \ a \div (1 - their \ r)$ $\left(=18 \div \frac{5}{3}\right)$	M1	Correct formula used with their values for a and r , $ r < 1$ Both $a \& r$ from the same value of p .
$(s_{\infty}=)10.8$	A1	OE. A0 if an extra solution given
		SC B2 for $s_{\infty} = \frac{2p+6}{1-\frac{-2p}{2p+6}} or \frac{2p+6}{1-\frac{p+2}{-2p}}$ ignore any subsequent algebraic simplification.
	5	

(a)	$S = \frac{a}{1 - r} , \qquad 2S = \frac{a}{1 - R}$	B1	SOI at least one correct
	$\frac{2a}{1-r} = \frac{a}{1-R}$	M1	SOI
	$2 - 2R = 1 - r \rightarrow r = 2R - 1$	Å1	AG
		3	

(b)	$ar^2 = aR \to (a)(2R-1)^2 = R(a)$	*M1	
	$4R^2 - 5R + 1 = 0$ $\rightarrow (4R - 1)(R - 1) = 0$	DM1	Allow use of formula or completing square.
	$R = \frac{1}{4}$	A1	Allow $R = 1$ in addition
	$S = \frac{2a}{3}$	A1	

(a)(i)	$\frac{\cos\theta}{1-r} = \frac{1}{\cos\theta}$	B1	
	$1 - r = \cos^2 \theta$ leading to $r = 1 - \cos^2 \theta$	M1	Eliminate fractions
	$r = \sin^2 \theta$ leading to 2nd term = $\cos \theta \sin^2 \theta$	A1	AG
		3	
(a)(ii)	$S_{12} = \frac{\cos\left(\frac{\pi}{3}\right)\left[1 - \left(\sin^2\left(\frac{\pi}{3}\right)\right)^{12}\right]}{1 - \sin^2\left(\frac{\pi}{3}\right)} = \frac{0.5\left[1 - (0.75)^{12}\right]}{1 - 0.75}$	M1	Evidence of correct substitution, use of S_n formula and attempt to evaluate
	1.937	A1	
		2	
(b)	$[d =] \cos \theta \sin^2 \theta - \cos \theta$	M1	Use of $d = u_2 - u_1$
	$-\frac{1}{8}$	A1	
	$[85\text{th term} =] \frac{1}{2} + 84 \times -\frac{1}{8}$	M1	Use of $a + 84d$ with a calculated value of d
	-10	A1	
		1	

)(a)	$ar = \frac{24}{100} \times \frac{a}{1-r}$	M1	Form an equation using a numerical form of the percentage and correct formula for u_2 and S_∞
	$100r^2 - 100r + 24[=0]$	A1	OE. All 3 terms on one side of an equation.
	$(20r-8)(5r-3)[=0] \rightarrow r = \frac{2}{5}, \frac{3}{5}$	A1	Dependent on factors or formula seen from their quadratic.
		3	
(b)	$3 \times \{(a+4d)\} = \{(2(a+1)+11(d+1))\}$	*M1	SOI Attempt to cross multiply with contents of at least one { } correct
	Simplifies to $a+d=13$	A1	
	$\left[\frac{5}{2}\right] \times 3\left\{\left(2a+4d\right)\right\} = \left[\frac{5}{2}\right] \times 2\left\{\left(4\left(a+1\right)+4\left(d+1\right)\right)\right\}$	*M1	SOI Attempt to cross multiply with contents of at least one { } correct
	Simplifies to $-a + 2d = 8$	A1	
	Solve 2 linear equations simultaneously	DM1	Elimination or substitution expected
	$d = 7, \ a = 6$	A1	SC B1 for a=6, d=7 without complete working
		6	

$\left(a+b=2\times\frac{3}{2}a\right) \Rightarrow b=2a$	B1	SOI
$18^2 = a(b+3)$ OE or 2 correct statements about r from the GP, e.g. $r = \frac{18}{a}$ and $b+3=18r$ or $r^2 = \frac{b+3}{a}$	В1	SOI
$324 = a(2a + 3) \Rightarrow 2a^{2} + 3a - 324[= 0]$ or $b^{2} + 3b - 648[= 0]$ or $6r^{2} - r - 12[= 0]$ or $4d^{2} + 3d - 162[= 0]$	M1	Using the correct connection between AP and GP to form a 3-term quadratic with all terms on one side.
(a-12)(2a+27)[=0] or $(b-24)(b+27)[=0]$ or $(2r-3)(3r+4)[=0]$ or $(d-6)(4d+27)[=0]$	M1	Solving <i>their</i> 3-term quadratic by factorisation, formula or completing the square to obtain answers for a , b , r or d .
a = 12, b = 24	A1	WWW. Condone extra 'solution' $a = -13.5, b = -27$ only.
	5	

(b)	Common difference $d = 6$	B1 FT	SOI. FT their $\frac{a}{2}$
	$S_{20} = \frac{20}{2} (2 \times 12 + 19 \times 6)$	M1	Using correct sum formula with <i>their a, their</i> calculated <i>d</i> and 20.
	1380	A1	
		3	
Ques	stion 57		

$(-12)^2 = 8k \times 2k$	M1	Forming an equation in k
k = -3	A1	
Using correct formula for S_{∞} [$r = 0.5$, $a = -384$]	M1	With -1 < r < 1
$S_{\infty} = -768$	A1	
Alternative method for Question 5		
$r^2 = \frac{2k}{8k}$	M1	
$r = [\pm]0.5$	A1	
Using correct formula for S_{∞} [$r = 0.5$, $a = -384$]	M1	-1 <r<1< td=""></r<1<>
$S_{\infty} = -768$	A1	
	4	

10(2a+19d) = 405	B1	
20(2a+39d) = 1410	B1	
Solving simultaneously two equations obtained from using the correct sum formulae $[a=6, d=1.5]$	M1	Reach $a = \text{ or } d =$
Using the correct formula for 60th term with their a and d	M1	
60th term = 94.5	A1	OE, e.g. $\frac{189}{2}$
	5	

$ar = 54$ and $\frac{a \text{ or their } a}{1-r} = 243$	В1	SOI
$\frac{54}{r} = 243(1-r) \text{ leading to } 243r^2 - 243r + 54[=0] [9r^2 - 9r + 2 = 0]$ OR $a^2 - 243a + 13122[=0]$	*M1	Forming a 3-term quadratic expression in r or a using their 2nd term and S_{∞} . Allow \pm sign errors.
k(3r-2)(3r-1)[=0] OR $(a-81)(a-162)[=0]$	DM1	Solving <i>their</i> 3-term quadratic using factorisation, formula or completing the square. If factorising, factors must expand to give $\pm their$ coefficient of r^2 .
$54 \div \left(their \frac{2}{3}\right) = a \text{ OR } 54 \div \left(their 81\right) = r$	DM1	May be implied by final answer.
Tenth term = $\frac{512}{243} \left[\text{OR } 81 \times \left(\frac{2}{3}\right)^9 \text{OR } 54 \times \left(\frac{2}{3}\right)^8 \right]$	A1	OE. Must be exact. Special case: If B1M1DM0DM1 scored then SC B1 can be awarded for the correct final answer.
	5	

		5	
Ques	stion 60		
(a)	$[(3^{rd} \text{ term} - 1^{st} \text{ term}) = (5^{th} \text{ term} - 3^{rd} \text{ term}) \text{ leading to}]$ $-6\sqrt{3} \sin x - 2\cos x = 10\cos x + 6\sqrt{3} \sin x$ $[\text{ leading to } -12\sqrt{3} \sin x = 12\cos x]$ OR $[(1^{st} \text{ term} + 5^{th} \text{ term}) = 2 \times 3^{rd} \text{ term leading to}] 12\cos x = -12\sqrt{3} \sin x$	*M1	OE. From the given terms, obtain 2 expressions relating to the common difference of the arithmetic progression, attempt to solve them simultaneously and achieve an equation just involving sinv and cosx.
	Elimination of sinx and cosx to give an expression in tanx $\left[\tan x = -\frac{1}{\sqrt{3}}\right]$	DM1	For use of $\frac{\sin x}{\cos x} = \tan x$
	$[x=]\frac{5\pi}{6} \text{ only}$	A1	CAO. Must be exact.
		3	
(b)	$d = 2\cos x$ or $d = 2\cos(their x)$	B1 FT	Or an equivalent expression involving sinx and $\cos x$ e.g. $-3\sqrt{3}\sin(their\ x) - \cos(their\ x) \left[= -\sqrt{3} \right]$ FT for <i>their</i> x from (a) only. If not $\pm\sqrt{3}$, must see unevaluated form.
	$S_{25} = \frac{25}{2} \left(2 \times \left(2\cos\left(theirx\right) \right) + \left(25 - 1 \right) \times \left(theird\right) \right)$	M1	Using the correct sum formula with $\frac{25}{2}$, $(25-1)$ and with
	$\left[= 12.5 \left(2 \times \left(-\sqrt{3} \right) + 24 \left(-\sqrt{3} \right) \right) \right]$		a replaced by either $2(\cos(their x))$ or $\pm \sqrt{3}$ and d replaced by either $2(\cos(their x))$ or $\pm \sqrt{3}$.
	_325√3	A1	Must be exact.
		3	

(a)	$\frac{5a}{1-\left(\pm\frac{1}{4}\right)}$	B1	Use of correct formula for sum to infinity.
	$\frac{8}{2} \left[2a + 7(-4) \right]$	*M1	Use of correct formula for sum of 8 terms and form equation; allow 1 error.
	4a = 8a - 112 leading to $a = [28]$	DM1	Solve equation to reach a value of <i>a</i> .
	a = 28	A1	Correct value.
		4	
(b)	their $28 + (k-1)(-4) = 0$	M1	Use of correct method with their a.
	[k=]8	A1	
		2	

Question 62

$ar^2 = a + d$	B1	
$ar^4 = a + 5d$	B1	
$a^2r^4 = a(a+5d)$ leading to $a^2 + 5ad = (a+d)^2$	*M1	Eliminating r or complete elimination of a and d .
$\begin{bmatrix} 3ad - d^2 = 0 \\ \end{bmatrix}$ leading to $d = 3a$ OR $[r = 2]$ leading to $d = 3a$	A1	
$S_{20} = \frac{20}{2} [2a + 19 \times 3a]$	DM1	Use of formula with <i>their</i> d in terms of a .
590 <i>a</i>	A1	
	6	

(a)	$\frac{n}{2} \Big[8 + (n-1)d \Big] = 5863 \text{leading to} n \Big[8 + (n-1)d \Big] = 11726$ $\text{leading to} (n-1)d = \frac{11726}{n} - 8$	В1	Must show a useful intermediate step. WWW AG.
		1	
(b)	$4+(n-1)d=139$ leading to $\frac{11726}{n}-8=135$	*M1	OE Use of correct \mathbf{u}_n formula with expression from (a) or \mathbf{S}_n formula to eliminate d .
	$n = \frac{11726}{143} = 82$	A1	
	$81d = \frac{11726}{82} - 8$	DM1	Substitute <i>their n</i> into a correct u_n or S_n formula
	$d = \frac{5}{3}$	A1	Accept $\frac{138}{81}$ OE fraction only If M0 DM0 scored them SC B1 B1 for correct n and d values only.
		4	

(a)	$2 \times 6k = k + k + 6$ or $6k - k = k + 6 - 6k$ or $2d = 6$ leading to $d = 3$, :: $6k - 3 = k$	B1	OE A correct equation in k only. Can be implied by correct final answer.
	$k = \frac{6}{10}$ or 0.6	B1	OE
		2	
(b)	d = 3	В1	Correct value of d can be implied by a correct final answer. Working may be seen in part (a) but must be used in (b).
	$S_{30} = \frac{30}{2} \left(2 \times \text{'their } k' + 29 \times \text{'their } d' \right)$	M1	It needs to be clear that the candidate is using a correct sum formula. There is no requirement to check the candidates working for d but it must be clearly identified.
	$S_{30} = 1323$	A1	ISW if corrected to 1320.
		3	

Question 65

r = 0.8	B1	OE
a = 12.5	B1	OE
$S_{\infty} = 12.5 \div (1-0.8)$	M1	Using $\frac{a}{1-r}$ with 'their a' and 'their r' but $ r $ must be <1.
$S_{\infty} = \frac{125}{2}, 62\frac{1}{2} \text{ or } 62.5$	A1	$\frac{12\frac{1}{2}}{\frac{1}{5}} \text{ or similar does not get A1.}$
	4	///

a+12d=12	B1	For correct equation.
$\frac{30}{2} \left(2a + (30 - 1)d \right) = -15$	B1	For correct equation in a and d . If using $\frac{n}{2}(a+l)$, must replace l with an expression involving a and d .
a = 72, d = -5	B1	Both values correct SOI.
$S_{50} = \frac{50}{2} \left(2 \left(their a \right) + 49 \left(their d \right) \right)$	M1	Using sum formula with <i>their a</i> and <i>d</i> values obtained via a valid method.
$S_{50} = -2525$	A1	
	5	

'(a)	$216r^3 = 64 \ \rightarrow r = \ 2/3$	B1	Allow decimal to 3sf (AWRT).
	$S_{\infty} = \frac{216}{1 - their \frac{2}{3}} = 648 \text{ cao}$	M1 A1	M1 depends on <i>their</i> $ \mathbf{r} < 1$.
		3	
(b)	$216\left(\frac{2}{3}\right) = 144 \implies 144 = a + d$	B1 FT	SOI, may be implied in the use of $96 = 144 + 3d$ and finding a. Mis-reads not condoned in $9(b)$.
	$216\left(\frac{2}{3}\right)^2 = 96 \to 96 = a + 4d$	B1 FT	SOI, may be implied in the use of $96 = 144 + 3d$ and finding a .
	Solve simultaneously	*M1	No working may be seen.
	d = -16, $a = 160$	A1	Both required.
	$S_{21} = \frac{21}{2} \left\{ 320 + 20(-16) \right\} = 0$	DM1 A1	Or use of $\frac{21}{2}$ (a+u ₂₁).
	TPA	6	

Question 68

$2a - a = a^2 - 2a$	B1	OE An unsimplified correct equation in a or d only, e.g. $a^2 + a = 4a$. Can be implied by correct values for a or d .
a=3 or d=3	B1	Condone 'extra' solution of $a = 0$ or $d = 0$.
a = 3 and $d = 3$	B1	SOI
$S_{50} = \frac{50}{2} \left(2 \times their a + 49 \times their d \right)$	M1	May be done using 50th term (=150). Their a and d must be numerical.
3825	A1	ISW SC B2 for 1275 a or 1275d
121	5	1.5

$a r^2 = 1764$ and $a r + a r^2 = 3444$ or $a r = 1680$ or $\frac{a(1-r^3)}{1-r} - a = 3444$	В1	Two correct algebraic statements.
Attempt to solve as far as $r = \text{or } a =$	M1	Any valid method, e.g. $1764 \div 1680$ or from $20 r^2 - 41r + 21$ OE (condone solving using a calculator).
$r = \frac{1764}{1680} = \frac{21}{20}$ or 1.05 [$a = 1600$]	A1	Note: $r = \frac{1764}{3444 - 1764}$ www implies B1 and M1.
17 500	A1	AWRT e.g. 17 474.1
	4	

5.42

a)	r = 0.8	B1	SOI				
	$50 \times (their 0.8)^7 = 10.5$			Evaluate 8 th or 9 th term in GP.			
	$50 \times (their \ 0.8)^8 = 8.39$. Hence 9th impact required	A1	impac States	Two terms correct + conclusion (mention of 9^{th} ct or u_9 somewhere in the solution). ment that one is <10 (and the other >10) is ficient unless it mentions 9^{th} impact or u_9 .			
	Alternative method for final two marks: Logarithm method						
	$50 \times (their 0.8)^n < 10 \Rightarrow (their 0.8)^n < 0.5$ $n \log(their 0.8) < \log 0.5$	M1					
	$n > \frac{\log 0.5}{\log(their 0.8)} \Rightarrow [n >] 7.2$						
	n=8 hence 9 th impact required		AG N	Need conclusion that mentions 9^{th} impact or u_9 .			
		3					
(b)	$\frac{50(1-(their 0.8)^{20})}{1-their 0.8}$	M1	OE U	Use of formula with their r SOI.			
	=247	A1	Must be to the nearest mm (not 247.1).				
		2					
)	50 1-their 0.8	M1		of sum to infinity formula with <i>their r</i> SOI. tituting a value of n into the sum formula M0.			
	=250	A1					
)ue	stion 71	2					
1)	$5.00+20\times0.02$ or $5.02+19\times0.02$		M1	Allow for $a = 5$, $n = 20$ with $d = 0.02$ only. $a = 5$, $n = 21$ (OE) with $d = 0.2$ gets M1 only.			
	5.40	5/.0	A1				
	4		2				
(b)	$r = \frac{5.02}{5} = 1.004 \text{ or } \frac{251}{250}$	eP.C	B1				

A1 Any correct rounding of 5.41557108.

3

Que	Stion / L		
(a)	$r = \frac{a}{a+2}$	B1	OE SOI
	$\frac{a}{1 - \frac{a}{a+2}} = 264$	M1	Use of S∞ formula.
	$\frac{a(a+2)}{a+2-a}$ = 264 leading to $\frac{a(a+2)}{2}$ = 264 leading to $a^2 + 2a - 528$ [=0]	M1*	Process to a 3 term quadratic or a 3 term cubic. May contain terms on LHS and RHS.
	(a-22)(a+24)[=0]	DM1	Attempt to solve.
	a = 22 (only)	A1	22 without working SC DB1 (dep on 2 nd M1).
		5	
(b)	$d = \frac{6^2}{6+2} - 6 = -\frac{3}{2}$	B1	
	$\frac{n}{2} \left\{ 12 + \left(n - 1 \right) \left(\frac{-3}{2} \right) \right\} [<] - 480$	M1*	Forming an inequation with <i>their</i> numerical <i>d</i> . May use an equality.
	$[3](n^2-9n-640)[>0]$	A1	OE May contain terms on LHS and RHS.
	$[n=] \frac{9 \pm \sqrt{81 + 2560}}{2}$	DM1	OE. Expect 30.19 . Working for solution must be shown.
	31 only	A1	Must come from a correct first inequality (or an equality). 31 no working SC DB1 (dep on correct quadratic and correct inequality/equality).
		5	
Que	estion 73		

$\left[ar = 16, \frac{a}{1-r} = 100\right] \text{ leading to } a = \frac{16}{r} \text{ and } a = 100(1-r)$	В1	Rearranging two algebraic statements to give $a = .$ These can be implied by a correct equation in one variable.
$100(1-r)r = 16$ leading to $100r^2 - 100r + 16[=0]$	*M1	Using their two expressions and rearranging to get a 3-term quadratic expression with all of the terms on one side. Condone sign errors only.
$(5r-4)(5r-1) = 0$ OR $\frac{25 \pm \sqrt{25^2 - 4.25.4}}{2.25}$ leading to $r = \left[\frac{4}{5} \text{ or } \frac{1}{5}\right]$	DM1	Condone $(5r-4)(5r-1)$ following $100r^2 - 100r + 16$.
a = 20, a = 80	A1	SC: if DM0 scored SCB1 is available for sight of 20 and 80.
Alternative Method for Question 9(a)		
$ar = 16, \frac{a}{1-r} = 100$ leading to $r = \frac{16}{a}$ and $r = \frac{100-a}{100}$	B1	Rearranging two algebraic statements to give $r = .$ These can be implied by a correct equation in one variable.
$1600 = 100a - a^2$ leading to $a^2 - 100a + 1600 = 0$	*M1	Using their two expressions and rearranging to get a 3-term quadratic expression with all of the terms on one side. Condone sign errors and 160 instead of 1600 only.
$(a-20)(a-80) = 0$ OR $\frac{100 \pm \sqrt{100^2 - 4.1600}}{2}$	DM1	
a = 20, a = 80	A1	SC: if DM0 scored SCB1 is available for sight of 20 and 80.
	4	

(b)	$r=rac{4}{5}$, $rac{1}{5}$	B1	OE SOI	
	$[u_n =] their 20 \times their \left(\frac{4}{5}\right)^{n-1} \ [v_n =] their 80 \times their \left(\frac{1}{5}\right)^{n-1}$	B1FT	2 expressions for the nth term FT <i>their</i> values from part (a) if $ r $ less than 1.	
	Method 1 for final 2 marks			
	$20 \times \left(\frac{1}{5}\right)^{n-1} \times 4^{n-1}$	M1	Correctly separating the numerator and denominator of their $\left(\frac{4}{5}\right)^{n-1}$ or one correct step towards the solution eg	
			$u_n = 80 \times \frac{4^{n-2}}{5^{n-1}} \ .$	
	$u_n = \frac{1}{4} \times 80 \times \left(\frac{1}{5}\right)^{n-1} \times 4^{n-1} = 4^{n-2} \times 80 \times \left(\frac{1}{5}\right)^{n-1} = 4^{n-2} \times v_n$	A1	AG Given result clearly shown	
	Method 2 for final 2 marks			
	$\frac{20 \times 0.8^{n-1}}{80 \times 0.2^{n-1}} = \frac{1}{4} \times 4^{n-1}$	M1	Dividing two nth terms of the correct format and simplifying their terms in r .	
	$=4^{-1}\times 4^{n-1}=4^{n-2}$	A1	AG	
		4		
Question 74				
(a)	$2(2p-6) = p + \frac{p^2}{6} \Rightarrow \frac{p^2}{6} - 3p + 12[=0]$ $OR (2p-6) - \frac{p^2}{6} = p - (2p-6) \Rightarrow \frac{p^2}{6} - 3p + 12[=0]$ $OR \frac{1}{6}d^2 + d[=0]$	4	Correct method leading to formation of a 3-term quadratic in p (all terms on one side) or 2-term quadratic in d . OE e.g. $p^2 - 18p + 72[=0]$, $\frac{1}{2}p^2 - 9p + 36[=0]$.	
	U			

OR $\frac{1}{6}d^2 + d[=0]$		OE e.g. $p^2 - 18p + 72[=0]$, $\frac{1}{2}p^2 - 9p + 36[=0]$.
$p^{2} - 18p + 72[=0] \Rightarrow (p-6)(p-12)[=0]$ or OR $d(\frac{1}{6}d+1)[=0] \Rightarrow d = -6$	$\frac{18\pm\sqrt{(-18)^2-4(1)(72)}}{2}$ DM1	Solve a 3-term quadratic in p by factorisation, formula or completing the square or solve a 2-term quadratic in d by factorisation.
p = 12 only	atore S A1	Since $p = 6$ gives $d = 0$. If *M1 DM0 then $p = 12$ only, award SC B1, max 2/3 marks. A0 XP if error in either factor and $p = 12$ only. p = 12 only by trial and improvement 3/3.
	3	
For GP $r = \left[\frac{2p-6}{\frac{p^2}{6}} \right] = \frac{18}{24} \left[= \frac{3}{4} \right]$	B1	OE SOI.
Sum to infinity = $\frac{24}{1 - \frac{3}{4}} = 96$	B1 FT	FT their value of p if used correctly to find r (B0 if ' p ' used) provided $ r < 1$. e.g. $p = 18 \Rightarrow \left[S_{\infty} = \right] \frac{54}{1 - \frac{5}{9}} = 121.5$.
	2	