AS-Level

Topic: Sequence and Series

May 2013-May 2023

Answer

Question 1

, (a)	$S_{n}=2 n^{2}+8 n$		[3]	correct use of S_{n} formula.
	$S_{1}=10=a$	B1		
	$S_{2}=24=a+(a+d) d=4$	M1 A1		
b)	GP $a=64 \mathrm{ar}=48 \rightarrow r=3 / 4$	B1		
	$\rightarrow 3 \mathrm{rd}$ term is $a r^{2}=36$	M1		$a r^{2}$ numerical - for their r
	AP $a=64, a+8 d=48 \rightarrow d=-2$	B1		
	$36=64+(n-1)(-2)$	M1		correct use of $a+(n-l) d$
	$\rightarrow n=15$.	A1	[5]	

Question 2
(a) $57=2(24+3 d) \rightarrow d=1.5$ $48=12+(n-1) 1.5 \rightarrow n=25$
(b) $a r^{2}=4 a \quad r= \pm 2$
$\frac{a\left(r^{6}-1\right)}{r-1}=k a$
$\rightarrow k=63$ or $k=-21$

M1 A
M1 A1
[4]
B1
B1

B1 B1

Use of correct S_{n} formula. Use of correct T_{n} formula. (allow for $r=2$)

Question 3
(i) $a r^{2}=-108, a r^{5}=32$

$$
\begin{aligned}
& r^{3}=\frac{32}{-108}=\left(-\frac{8}{27}\right) \\
& r=\left(-\frac{2}{3}\right) \text { or }-0.666 \text { or }-0.667
\end{aligned}
$$

(ii) $a=-243$
(iii) $S_{\infty}=\frac{-243}{1+\frac{2}{3}}=-\frac{729}{5}$ or -145.8

M1	Eliminating a
A1 [3]	$-\frac{2}{3}$ from little or no working $\rightarrow \frac{3}{3}$ www
$\text { B1 } \downarrow$ [1]	ft on their $r\left(-\frac{108}{r^{2}}\right.$ or $\left.\frac{32}{r^{5}}\right)$
M1A1	Accept -146. For M1 $\|r\|$ must be <1

Question 4
(a) $\frac{a}{1-r}=8 a \Rightarrow 1(a)=8(a)(1-r)$
$r=\frac{7}{8}$ oe
[2]

B1
B1
M1A1
[4]

Or $2 a+9 d=408$
Attempt to solve simultaneously

Question 5
(a) (i) $a=300, d=12$ $\rightarrow 540=300+(n-1) 12 \rightarrow n=21$
(ii) $S_{26}=13(600+25 \times 12)=11700$
$\rightarrow 3$ hours 15 minutes.
(b) $a r=48$ and $a r^{2}=32 \rightarrow r=2 / 3$
$\rightarrow a=72$. $S_{\infty}=72 \div 1 / 3=216$.

M1 A1

M1
AI
M1
A1
M1
$A 1 V^{k}$
[4]

Use of nth term. Ans 20 gets 0 .
Ignore incorrect units Correct use of s_{n} formula.

Needs $a r$ and $a r^{2}+$ attempt at a and r.
Correct S_{∞} formula with $|r|<1$

Question 6
(a) $\frac{10}{2}(2 a+9 d)=400$ oe

$$
\begin{aligned}
& \frac{20}{2}(2 a+19 d)=1400 \mathrm{OR} \\
& \frac{10}{2}[2(a+10 d)+9 d]=1000 \\
& d=6 \quad a=13
\end{aligned}
$$

(b) $\frac{a}{1-r}=6 \quad \frac{2 a}{1-r^{2}}=7$

$$
\frac{12(1-r)}{1-r^{2}}=7 \quad \text { or } \quad \frac{1-r^{2}}{1-r}=\frac{12}{7}
$$

$$
r=\frac{5}{7} \text { or } 0.714
$$

$$
a=\frac{12}{7} \text { or } 1.71(4)
$$

Solve sim. eqns both from S_{n} formulae

A1

A1 ${ }^{\wedge}$
Ignore any other solns for r and a

Substitute or divide

Question 7

36, 32, ...
(i) $r=\frac{8}{9} S_{\infty}=($ their $a) \div(1-$ their $r)$

$$
S_{\infty}=36 \div \frac{1}{9}=324
$$

(ii) $d=-4$
$0=\frac{n}{2}(72+(n-1)(-4))$
$\rightarrow n=19$

M1		Method for r and S_{∞} ok. $(\|r\|<1)$
A1	co	
B1		co
M1		S_{n} formula ok and a value for $d\left(\neq \frac{8}{9}\right)$
A1	$[3]$	Condone $n=0$ but no other soln

Question 8
(i) $\begin{array}{ccccc}\text { GP } & 8 & 8 r & 8 r^{2} \\ \text { AP } & 8 & 8+8 d & 8+20 d\end{array}$
$8 r=8+8 d$ and $8 r^{2}=8+20 d$
Eliminates $d \rightarrow 2 r^{2}-5 r+3=0$ $\rightarrow r=1.5$ (or 1)
(ii) 4th term of GP $=a r^{3}=8 \times 27 / 8=27$ If $r=1.5, d=0.5$ 4th term of $\mathrm{AP}=a+3 d=91 / 2$

B1 B1	B1 for each equation.
M1	Correct elimination.
A1	co (no penalty for including $r=1$)
B1 $\underbrace{[4]}$	co
M1A1 $[3]$	needs $a+3 d$ and correct method for d

Question 9

(i) $200 / 2(2 a+199 d)=4 \times 100 / 2(2 a+99 d)$
$d=2 a \quad$ cao
(ii) $a+99 d=a+99 \times 2 a$ 199a cao

M1A1
A1
[3]
M1
A1

Correct formula used (once) M1, correct eqn A1

Sub. their part(i) into correct formula
(i) $S_{P}=\frac{2}{1-\frac{1}{2}}, S_{P}=\frac{3}{1-\frac{1}{3}}$
$S_{P}=4, S_{Q}=\frac{9}{2}$
$S_{R}=5$ cao
(ii) $\frac{4}{1-r}=$ their S_{R}
$r=\frac{1}{5}$

At least one correct

At least one correct
At

Question 11

(a) $S_{n}=32 n-n^{2}$.

Set n to $1, a$ or $S_{1}=31$
Set n to 2 or other value $S_{2}=60$
$\rightarrow 2$ nd term $=29 \rightarrow d=-2$
(or equates formulae - compares coeffs n^{2}, n)
[M1 comparing, A1 $d \mathrm{~A} 1 a$]
(b) $\frac{a}{1-r}=20, \frac{a(1-r)^{2}}{1-r}$, or $a+a r=12.8$

Elimination of $\frac{a}{1-r}$ or a or r
$\rightarrow(r=0.6) \rightarrow a=8$

Question 12
(i) $S=\frac{a}{1-r}, \quad 3 S=\frac{a}{1-2 r}$
$1-r=3-6 r$
$r=\frac{2}{5}$
(ii) $7+(n-1) d=84$ and/or $7+(3 n-1) d=245$
$[(n-1) d=77,(3 n-1) d=238,2 n d=161]$
$\frac{n-1}{3 n-1}=\frac{77}{238}$ (must be from the correct u_{n} formula)
$n=23 \quad\left(d=\frac{77}{22}=3.5\right)$

B1		At least $3 S=\frac{a}{1-2 r}$
M1		Eliminate S
A1		
	[3]	
B1		At least one of these equations seen
B1		Two different seen - unsimplified ok
M1		Or other attempt to elim d. E.g. sub $d=\frac{161}{2 n}$
		(if n is eliminated d must be found)
A1		
	[4]	

Question 13

(a)	$\begin{aligned} & 2222 / 17(=131 \text { or } 130.7) \\ & 131 \times 17(=2227) \\ & -2222+2227=5 \end{aligned}$	$\begin{array}{lr} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & \end{array}$	Ignore signs. Allow $2239 / 17 \rightarrow 131.7$ or 132 Ignore signs. Use 131. 5 www gets $3 / 3$
(b)		B1 M1 ${ }^{\wedge}$ A1A1 A1 [5]	Ft on their r. Ignore a 2nd inequality on LHS Allow $30^{\circ}, 150^{\circ}$. Accept \leqslant

Question 14

(a) $\quad 1 \mathrm{st}, 2 \mathrm{nd}, n$th are 56,53 and -22
$a=56, d=-3$
$-22=56+(n-1)(-3)$
$\rightarrow n=27$
$S_{27}=\frac{27}{2}(112+26(-3))$
$\rightarrow 459$
(b) $\quad 1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ are $2 k+6,2 k$ and $k+2$.
(i) Either $\frac{2 k}{2 k+6}=\frac{k+2}{2 k}$
or uses a, r and eliminates
$\rightarrow 2 k^{2}-10 k-12=0$
$\rightarrow k=6$

(ii) $\begin{aligned} & S_{\infty}=\frac{a}{1-r} \text { with } r=\frac{2 k}{2 k+6} \text { or } \frac{k+2}{2 k}\left(=\frac{2}{3}\right) \\ & \rightarrow 54\end{aligned}$

Ml
A 1
Needs attempt at a and r and S_{∞}
[2]

(a)	$\begin{aligned} & a r^{2}=\frac{1}{3}, a r^{3}=\frac{2}{9} \\ & \rightarrow r=\frac{2}{3} \text { aef } \end{aligned}$ Substituting $\rightarrow a=\frac{3}{4}$ $\rightarrow S_{\infty}=\frac{\frac{3}{4}}{\frac{1}{3}}=2 \frac{1}{4}$ aef	M1 A1 M1 A1 [4]	Any valid method, seen or implied. Could be answers only. Both a and r Correct formula with $\|r\|<1$, cao
(b)	$\begin{aligned} & 4 a=a+4 d \rightarrow 3 a=4 d \\ & 360=S_{5}=\frac{5}{2}(2 a+4 d) \text { or } 12.5 a \\ & \rightarrow a=28.8^{\circ} \text { aef } \\ & \text { Largest }=a+4 d \text { or } 4 a=115.2^{\circ} \text { aef } \end{aligned}$	B1 M1 A1 B1 [4]	May be implied in $360=5 / 2(a+4 a)$ Correct S_{n} formula or sum of 5 terms cao, may be implied (may use degrees or radians)

Question 16

(i) (a) $1.92+1.84+1.76+\ldots$ oe

$$
\begin{aligned}
& \frac{20}{2}[2 \times 1.92+19 \times(-0.08)] \text { oe } \\
& 23.2 \quad \text { cao }
\end{aligned}
$$

(b) $1.92+1.92(.96)+1.92(.96)^{2}+\ldots$
$\frac{1.92\left(1-.96^{20}\right.}{1-.96}$
26.8 cao
(ii) $\frac{1.92}{1-.96}=48$ or $\frac{0.96}{1-0.96}=24 \&$ then

Double AG
B1 OR $a=0.96, d=-.04 \&$ ans doubled/adjusted

Corr formula used with corr d \& their
[3] a, n
$a=1, n=21 \rightarrow 12.6$ (25.2),
$a=0.96, n=21 \rightarrow 11.76$ (23.52)
B1

M1
A1
OR $\mathrm{a}=.96, \mathrm{r}=.96$ \& ans
/doubled/adjusted
Corr formula used with $r=.96$ \& their
[3]
a, n
$a=.96, n=21 \rightarrow 13.82$ (27.63)
$a=1, n=21 \rightarrow 14.39$ (28.78)

M1A1
$a=1 \rightarrow 25(50)$ but must be doubled
[2]
for M1
$1.92 \frac{\left(1-0.96^{n}\right)}{1-0.96}<48 \rightarrow 0.96^{n}>0$
(www)
'which is true' scores SCB1

Question 17
(ii) $\left\lvert\, \begin{aligned} & x^{2}-4 x=12 \\ & x=-2 \text { or } 6 \\ & 3^{\text {rd }} \text { term }=(-2)^{2}+12=16 \text { or } 6^{2}+12=48 \\ & r^{2}=\frac{x^{2}}{4 x}\left(=\frac{x}{4}\right) \text { soi } \\ & \frac{4 x}{1-\frac{x}{4}}=8 \\ & x=\frac{4}{3} \text { or } r=\frac{1}{3} \\ & 3^{\text {rd }} \text { term }=\frac{16}{27}(\text { or } 0.593) \\ & \text { ALT } \\ & \frac{4 x}{1-r}=8 \rightarrow r=1-\frac{1}{2} x \text { or } \frac{4 x}{1-r}=8 \rightarrow x=2(1-r) \\ & x^{2}=4 x\left(1-\frac{1}{2} x\right) \quad r=\frac{2(1-r)}{4} \\ & x=\frac{4}{3}\end{aligned}\right.$

Question 18

$$
\begin{aligned}
& a+11 d=17 \\
& \frac{31}{2}(2 a+30 d)=1023
\end{aligned}
$$

Solve simultaneous equations $d=4, a=-27$ 31st term $=93$
$4 x-x^{2}=12$ scores M1A0 SC 1 for 16,48 after $x=2,-6$

Accept use of unsimplified $\frac{x^{2}}{4 x}$ or $\frac{4 x}{x^{2}}$ or $\frac{4}{x}$
[4]

B1
B1
M1
A1
A1
At least one correct
[5]

$$
\begin{aligned}
& r=\frac{3+2 d}{3} \text { or } \frac{3+12 d}{3+2 d} \text { or } r^{2}=\frac{3+12 d}{3} \\
& (3+2 d)^{2}=3(3+12 d) \text { oe } \\
& \text { OR } \\
& \text { sub } 2 d=3 r-3 \\
& (4) d(d-6)=0 \\
& \text { OR } \\
& 3 r^{2}=18 r-15 \rightarrow(r-1)(r-5) \\
& d=6 \\
& r=5
\end{aligned}
$$

1 correct equation in r and d only is sufficient

Eliminate r or d using valid method

Attempt to simplify and solve quadratic

Ignore $d=0$ or $r=1$
Do not allow -5 or ± 5

Question 20

(i) (a) $\left\lvert\, \begin{aligned} & a+(n-1) d=10+29 \times 2 \\ & \text { (b) } \left\lvert\, \begin{array}{l}1 / 2 n(20+2(n-1))=2000 \text { or } 0 \\ \text { (ii) } \quad \\ \begin{array}{l}\text { (n=) } 41\end{array} \\ r=1.1, \text { oe } \\ \text { Uses } S_{30}=\frac{10\left(1.1^{30}-1\right)}{1.1-1}(=1645) \\ \text { Percentage lost }=\frac{2000-1645}{2000} \times 100 \\ =17.75\end{array}\right.\end{aligned}\right.$

M1
A1
[2]

M1

A1
A1
[3]
B1

M1

DM1

A1
[4]

Use of nth term of an AP with $\mathrm{a}= \pm 10, \mathrm{~d}= \pm 2, \mathrm{n}=30$ or 29
Condone $-68 \rightarrow 68$

Use of S_{n} formula for an AP with $a= \pm 10, d= \pm 2$ and equated to either 0 or 2000.
Correct 3 term quadratic $=0$.
e.g. $\frac{11}{10}, 110 \%$

Use of S_{n} formula for a GP, $\mathrm{a}= \pm 10$, $\mathrm{n}=30$.

Fully correct method for \% left with "their 1645"
allow 17.7 or 17.8 .

Question 21
(a)
$a=50, a r^{2}=32$
$\rightarrow r=\frac{4}{5}$ (allow $-\frac{4}{5}$ for M mark)
$\rightarrow S_{\infty}=250$
(b) (i) $2 \sin x, 3 \cos x,(\sin x+2 \cos x)$.
$3 c-2 s=(s+2 c)-3 c$
(or uses $a, a+d, a+2 d$)
$\rightarrow 4 c=3 s \rightarrow t=\frac{4}{3}$
SC uses $t=\frac{4}{3}$ to show
$u_{1}=\frac{8}{5}, u_{2}=\frac{9}{5}, u_{3}=\frac{10}{5}, \mathbf{B 1}$ only
(ii) $\rightarrow c=\frac{3}{5}, s=\frac{4}{5}$ or calculator $x=53.1^{\circ}$
M1
$\rightarrow a=1.6, d=0.2$
$\rightarrow S_{20}=70$
$\left.\begin{array}{|ll|l}\text { B1 } & & \begin{array}{l}\text { seen or implied } \\ \text { M1 }\end{array} \\ \text { A1 } & & \begin{array}{l}\text { Finding } r \text { and use of correct } S_{\infty} \\ \text { formula }\end{array} \\ \text { M1 } & & \begin{array}{l}\text { Only if }|\mathrm{r}|<1\end{array} \\ \text { M1 A1 } & & \begin{array}{l}\text { Links terms up with AP, needs one } \\ \text { expression for } d .\end{array} \\ & & \text { Arrives at } t=k \text {. ag }\end{array}\right]$

Question 22

(a)	$\begin{aligned} & \frac{6}{1-r}=\frac{12}{1+r} \\ & r=\frac{1}{3} \\ & S=9 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[3]	
(b)	$\begin{aligned} & \frac{13}{2}\left[2 \cos \theta+12 \sin ^{2} \theta\right]=52 \\ & 2 \cos \theta+12\left(1-\cos ^{2} \theta\right)=8 \rightarrow 6 \cos ^{2} \theta-\cos \theta-2(=0) \\ & \cos \theta=2 / 3 \text { or }-1 / 2 \text { soi } \\ & \theta=0.841,2.09 \text { Dep on previous A1 } \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { DM1 } \\ & \text { A1 } \\ & \text { A1A1 } \end{aligned}$	[5]	Use of correct formula for sum of AP Use $s^{2}=1-c^{2} \&$ simplify to 3 term quad Accept $0.268 \pi, 2 \pi / 3$. SRA1 for $48.2^{\circ}, 120^{\circ}$ Extra solutions in range -1

Question 23

(a) (i)	$\begin{aligned} & 200+(15-1)(+/-5) \\ & =130 \end{aligned}$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \end{array}$	[2]	Use of nth term with $a=200, n=14$ or 15 and $d=+/-5$.
(ii)	$\begin{aligned} & \frac{n}{2}[400+(n-1)(+/-5)]=(3050) \\ & \rightarrow 5 n^{2}-405 n+6100(=0) \\ & \rightarrow 20 \end{aligned}$	$\begin{array}{\|l\|} \mathbf{M 1} \\ \mathbf{A 1} \\ \text { A1 } \end{array}$	[3]	Use of $S_{n} a=200$ and $d=+/-5$.
	$\begin{aligned} & a r^{2}, a r^{5} \rightarrow r=1 / 2 \\ & \frac{63}{2}=\frac{a(1-1 / 2)}{1 / 2} \rightarrow a=16 \end{aligned}$	$\begin{array}{\|l\|} \text { M1 A1 } 1 \\ \text { M1 A1 } \end{array}$	[4]	Both terms correct. Use of $S_{n}=31.5$ with a numeric r.
(ii)	Sum to infinity $=\frac{16}{1 / 2}=32$	B1 ${ }^{\wedge}$	[1]	\checkmark for their a and r with $\|r\|<1$.

Question 24

$$
\begin{aligned}
& a(1+r)=50 \text { or } \frac{a\left(1-r^{2}\right)}{1-r}=50 \\
& a r(1+r)=30 \text { or } \frac{a\left(1-r^{3}\right)}{1-r}=30+a
\end{aligned}
$$

Eliminating a or r
$r=3 / 5$
$a=125 / 4 \quad$ oe
$S=625 / 8$ oe
B1

B1
M1
A1
A1
A1 ${ }^{\wedge}$

Or otherwise attempt to solve for r Any correct method

Ft through on their r and a
[6] $\quad(-1<r<1)$

Question 25

:(i)	$S=\frac{r^{2}-3 r+2}{1-r}$	M1	
	$S=\frac{(r-1)(r-2)}{1-r}$ $\frac{(1-r)(2-r)}{1-r}=2-r$ OE	A1	AG Factors must be shown. Expressions requiring minus sign taken out mus be shown
	Total:	$\mathbf{2}$	
(ii)	Single range $1<S<3$ or $(1,3)$	B2	Accept $1<2-r<3$. Correct range but with $S=2$ omitted scores SR B1 $1 \leqslant S \leqslant 3$ scores SR B1. $[S>1$ and $S<3]$ scores SR B1.

Question 26

(a)	$\left(S_{n}=\right) \frac{n}{2}[32+(n-1) 8]$ and 20000	M1	M1 correct formula used with d from $16+d=24$
		A1	A1 for correct expression linked to 20000.
	$\rightarrow n^{2}+3 n-5000(<,=,>0)$	DM1	Simplification to a three term quadratic.
	$\rightarrow(n=69.2) \rightarrow 70$ terms needed.	A1	Condone use of 20001 throughout. Correct answer from trial and improvement gets $4 / 4$.
	Total:	4	
(b)	$a=6, \frac{a}{1-r}=18 \rightarrow r=2 / 3$	M1A1	Correct S_{00} formula used to find r.
	New progression $a=36, r=\frac{4}{9}$ oe	M1	Obtain new values for a and r by any valid method.
	New $S \propto 0=\frac{36}{1-\frac{4}{9}} \rightarrow 64.8$ or $\frac{324}{5}$ oe	A1	(Be aware that $r=-2 / 3$ leads to 64.8 but can only score M marks)

Question 27

(a)	$a=32, a+4 d=22, \rightarrow d=-2.5$	B1	
	$a+(n-1) d=-28 \rightarrow n=25$	B1	
	$S_{25}=\frac{25}{2}(64-2.5 \times 24)=50$	M1 A1	M1 for correct formula with $n=24$ or $n=25$
	Total:	4	
(b)	$a=2000, r=1.025$	B1	$r=1+2.5 \%$ ok if used correctly in S_{n} formula
	$S_{10}=2000\left(\frac{1.025^{10}-1}{1.025-1}\right)=22400$ or a value which rounds to this	M1 A1	M1 for correct formula with $n=9$ or $n=10$ and their a and r
			SR: correct answer only for $n=10 \mathbf{B 3}$, for $n=9, \mathbf{B 1}(£ 19900)$
	Total:	3	

Question 28

$1 / 2 n[-24+(n-1) 6] \sim 3000$ Note: \sim denotes any inequality or equality	M1	Use correct formula with RHS ≈ 3000 (e.g. 3010).
$(3)\left(n^{2}-5 n-1000\right)(\sim 0)$	A1	Rearrange into a 3-term quadratic.
$n \sim 34.2(\&-29.2)$	$\mathbf{A 1}$	
35. Allow $n \geqslant 35$	$\mathbf{A 1}$	
	$\mathbf{4}$	

Question 29

(a)

Uses $r=(1.05 \text { or } 105 \%)^{9,10 \text { or } 11}$	B1	Used to multiply repeatedly or in any GP formula.
New value $=10000 \times 1.05^{10}=(\$) 16300$	B1	
	2	
EITHER: $n=1 \rightarrow 5 \quad a=5$	(B1	Uses $n=1$ to find a
$n=2 \rightarrow 13$	B1	Correct S_{n} for any other value of $n($ e.g. $n=2)$
$a+(a+d)=13 \quad \rightarrow d=3$	M1 A1)	Correct method leading to $d=$
OR: $\left(\frac{n}{2}\right)(2 a+(n-1) d)=\left(\frac{n}{2}\right)(3 n+7)$		$\left(\frac{n}{2}\right)$ maybe be ignored
$\therefore d n+2 a-d=3 n+7 \rightarrow d n=3 n \rightarrow d=3$	(*M1A1	Method mark awarded for equating terms in n from correct S_{n} formula.
$2 a-($ their 3$)=7, \quad a=5$	DM1 A1)	
	4	

Question 30

(i)	$\frac{3 a}{1-r}=\frac{a}{1+2 r}$	M1	Attempt to equate 2 sums to infinity. At least one correct
	$3+6 r=1-r$	DM1	Elimination of 1 variable (a) at any stage and multiplication
	$r=-\frac{2}{7}$	A1	
		3	
(ii)	$1 / 2 n[2 \times 15+(n-1) 4]=1 / 2 n[2 \times 420+(n-1)(-5)]$	M1A1	Attempt to equate 2 sum to n terms, at least one correct (M1). Both correct (A1)
	$n=91$	A1	
		3	

Question 31

(ii) \quad Find rate of growth e.g. $41.2 / 40$ or $1.2 / 40$

Find rate of growth e.g. 41.2/40 or $1.2 / 40$	${ }^{*}$ M1	SOI, Also implied by $3 \%, 0.03$ or 1.03 seen
$40 \times(1+\text { their } 0.03)^{60 \text { or 59 }}$	DM1	
236	A1	Allow 2.36 m
	$\mathbf{3}$	

Question 32

$\left[\frac{a\left(1-r^{n}\right)}{1-r}\right]\left[\div\left[\frac{a}{1-r}\right]\right.$	M1M1	Correct formulae used with/without $r=0.99$ or $n=100$.
	DM1	Allow numerical a (M1M1). 3rd M1 is for division $\frac{S_{n}}{S_{\infty}}$ (or ratio)
SOI		

Question 33

(i)	$r=1.02$ or $\frac{102}{100}$ used in a GP in some way.	B1	Can be awarded here for use in S_{n} formula.
	$\begin{aligned} & \text { Amount in 12th week }=8000(\text { their } r)^{11} \\ & \text { or }\left(\text { their a from } \frac{8000}{\text { their } r .} \text {) }(\text { their } r)^{12}\right. \end{aligned}$	M1	Use of $a r^{n-1}$ with $\mathrm{a}=8000 \& n=12$ or with $\mathrm{a}=\frac{8000}{1.02}$ and $n=13$.
	$=9950(\mathrm{~kg})$ awrt	A1	Note: Final answer of either 9943 or 9940 implies M1. Full marks can be awarded for a correct answer from a list of terms.
		3	
(ii)	In 12 weeks, total is $\frac{8000\left((\text { their } r)^{12}-1\right)}{((\text { their } r)-1)}$	M1	Use of S_{n} with a $=8000$ and $n=12$ or addition of 12 terms.
	$=107000(\mathrm{~kg}) \mathrm{awrt}$	A1	Correct answer but no working $2 / 2$
		2	

Question 34

3(a)	$a r=12 \text { and } \frac{a}{1-r}=54$	B1 B1	CAO, OE CAO, OE
	Eliminates a or $r \rightarrow 9 r^{2}-9 r+2=0$ or $a^{2}-54 a+648=0$	M1	Elimination leading to a 3-term quadratic in a or r
	$\rightarrow r=\frac{2}{3}$ or $\frac{1}{3}$ hence to $a \rightarrow a=18$ or 36	A1	Needs both values.
		4	
(b)	nth term of a progression is $p+q n$		
b)(i)	first term $=p+q$. Difference $=q$ or last term $=p+q n$	B1	Need first term and, last term or common difference
	$S_{n}=\frac{n}{2}(2(p+q)+(n-1) q)$ or $\frac{n}{2}(2 p+q+n q)$	M141	Use of S_{n} formula with their a and d. ok unsimplified for A1.
		3	
b)(ii)	Hence $2(2 p+q+4 q)=40$ and $3(2 p+q+6 q)=72$	DM1	Uses their S_{n} formula from (i)
	Solution $\rightarrow p=5$ and $q=2$ [Could use S_{n} with a and $d \rightarrow a=7, d=2 \rightarrow p=5, q=2$.]	A1	Note: answers 7, 2 instead of 5, 2 gets M1A0 - must attempt to solve for M1
		2	

Question35

$a+(n-1) 3=94$	B1	
$\frac{n}{2}[2 a+(n-1) 3]=1420$ OR $\quad \frac{n}{2}[a+94]=1420$	M1	
Attempt elimination of a or n	A1	3-term quadratic (not necessarily all on the same side)
$3 n^{2}-191 n+2840(=0)$ OR $\quad a^{2}-3 a-598(=0)$	$\mathbf{A 1}$	
$n=40$ (only)	$\mathbf{A 1}$	Award $5 / 6$ if a 2nd pair of solutions (71/3, 26) is given in addition or if given as the only answer.
$a=-23$ (only)	$\mathbf{6}$	

Question36

From the AP: $x-4=y-x$	B1	Or equivalent statement e.g. $y=2 x-4$ or $x=\frac{y+4}{2}$.
From the GP: $\frac{y}{x}=\frac{18}{y}$	B1	Or equivalent statement e.g. $y^{2}=18 x$ or $x=\frac{y^{2}}{18}$.
Simultaneous equations: $y^{2}-9 y-36=0$ or $2 x^{2}-17 x+8=0$	M1	Elimination of either x or y to give a three term quadratic ($=0$)
OR		
$4+d=x, 4+2 d=y \rightarrow \frac{4+2 d}{4+d}=r \mathrm{oe}$	B1	
$(4+d)\left(\frac{4+2 d}{4+d}\right)^{2}=18 \rightarrow 2 d^{2}-d-28=0$	M1	Uses $\mathrm{ar}^{2}=18$ to give a three term quadratic $(=0)$
$d=4$	B1	Condone inclusion of $d=\frac{-7}{2}$ oe
OR		
From the GP $\frac{y}{x}=\frac{18}{y}$		
$\rightarrow x=\frac{y^{2}}{18} \rightarrow 4+d=\frac{y^{2}}{18} \rightarrow d=\frac{y^{2}}{18}-4$	B1	
$4+2\left(\frac{y^{2}}{18}-4\right)=y \rightarrow y^{2}-9 y-36=0$	M1	
$x=8, y=12$.	A1	Needs both x and y. Condone $\left(\frac{1}{2},-3\right)$ included in final answer. Fully correct answer www 4/4.
	4	
AP 4th term $=16$	B1	Condone inclusion of $\frac{-13}{2}$ oe
$\text { GP 4th term }=8 \times\left(\frac{12}{8}\right)^{3}$	M1	A valid method using their x and y from (i).
$=27$	A1	Condone inclusion of -108
		Note: Answers from fortuitous $x=8, y=12$ in (i) can only score M1. Unidentified correct answer(s) with no working seen after valid $x=8, y=12$ to be credited with appropriate marks.
	3	

Question37

(i)	$S_{80}=\frac{80}{2}[12+79 \times(-4)]$ or $\frac{80}{2}[6+l], l=-310$	M1A1	Correct formula (M1). Correct a, d and n (A1).
	-12160	$\mathbf{A 1}$	
		$\mathbf{3}$	
(ii)	$S_{\infty}=\frac{6}{1-\frac{1}{3}}=9$	$\mathbf{M 1 A 1}$	Correct formula with $\|r\|<1$ for M1

Question 38

i(i)	$S_{n}=\frac{p\left(2^{n}-1\right)}{2-1} \text { soi }$	M1	
	$p\left(2^{n}-1\right)>1000 p \rightarrow 2^{n}>1001 \quad$ AG	A1	
		2	
(ii)	$p+(n-1) p=336$	B1	Expect $n p=336$
	$\frac{n}{2}[2 p+(n-1) p]=7224$	B1	Expect $\frac{n}{2}(p+n p)=7224$
	Eliminate n or p to an equation in one variable	M1	Expect e.g. $168(1+n)=7224$ or $1+336 / p=43$ etc
	$n=42, p=8$	A1A1	
		5	

Question 39

;(i)	$\frac{x}{2}[2+(x-1)(-1+0.02)]$ or $1.01 x-0.01 x^{2}$ or $0.99 x+0.01 x^{2}$ oe	B1	Allow - or +0.02 . Allow n used
		1	
(ii)	Equate to 13 then either simplify to a 3-term quadratic equation or find at least 1 solution (need not be correct) to an unsimplified quadratic	M1	Expect $n^{2}-101 n+1300(=0)$ or $0.99 x+0.01 x^{2}=13$. Allow x used
	16	A1	Ignore 85.8 or 86
		2	
(iii)	Use of $\frac{a\left(1-r^{n}\right)}{1-r}$ with $a=1, r=0.92, n=20$ soi	M1	
	(=) 10.1	A1	
	Use of $\left(S_{\infty}=\right) \frac{a}{1-r}$ with $a=1, r=0.92$	M1	$\text { OR } \frac{(1)\left(1-0.92^{n}\right)}{1-0.92}=13 \rightarrow 0.92^{n}=-0.04 \mathrm{oe}$
	$S_{\infty}=12.5$ so never reaches target or <13	A1	Conclusion required - 'Shown' is insufficient No solution so never reaches target or <13
		4	

Question 40

(a)(i)	$S_{10}=S_{15}-S_{10}$ or $\mathrm{S}_{10}=\mathrm{S}_{(11 \text { to } 15)}$	M1	Either statement seen or implied.
	$5(2 a+9 d)$ oe	B1	
	$7.5(2 a+14 d)-5(2 a+9 d) \text { or } \frac{5}{2}[(a+10 d)+(a+14 d)] \text { oe }$	A1	
	$d=\frac{a}{3} \mathbf{A G}$	A1	Correct answer from convincing working
		4	Condone starting with $d=\frac{a}{3}$ and evaluating both summations as 25 a.
(a)(ii)	$(a+9 d)=36+(a+3 d)$	M1	Correct use of $a+(n-1) d$ twice and addition of ± 36
	$a=18$	A1	
		2	Correct answer www scores $2 / 2$
(b)	$S_{\infty}=9 \times \mathrm{S}_{4} ; \frac{a}{1-r}=9 \frac{a\left(1-r^{4}\right)}{1-r} \text { or } 9\left(a+a r+a r^{2}+a r^{3}\right)$	B1	May have 12 in place of a.
	$9\left(1-r^{\mathrm{n}}\right)=1$ where $n=3,4$ or 5	M1	Correctly deals with a and correctly eliminates ' $1-r$ '
	$r^{4}=\frac{8}{9} \text { oe }$	A1	
	$\left(5^{\text {th }}\right.$ term $\left.=\right) 10^{2 / 3}$ or 10.7	A1	
		4	Final answer of 10.6 suggests premature approximation - award $3 / 4$ www.

Question 41

(a)	$a r^{2}=48, a r^{3}=32, \mathrm{r}=2 / 3$ or $a=108$	M1	Solution of the 2 eqns to give r (or a). Al (both)
	$\mathrm{r}=2 / 3$ and $a=108$	A1	
	$S_{\infty 0}=\frac{108}{\frac{1}{3}}=324$	A1	FT Needs correct formula and r between -1 and 1 .
		3	
(b)	$\begin{aligned} & \text { Scheme } \mathrm{A} a=2.50, d=0.16 \\ & \mathrm{~S}_{\mathrm{n}}=12(5+23 \times 0.16) \end{aligned}$	M1	Correct use of either AP S_{n} formula.
	$\mathrm{S}_{\mathrm{n}}=104$ tonnes.	A1	
	Scheme B $a=2.50, r=1.06$	B1	Correct value of r used in GP.
	$=\frac{2.5\left(1.06^{24}-1\right)}{1.06-1}$	M1	Correct use of either S_{n} formula.
	$\mathrm{S}_{\mathrm{n}}=127$ tonnes.	A1	
		5	

Question 42

'(i)	$\frac{5 k-6}{3 k}=\frac{6 k-4}{5 k-6} \quad \rightarrow \quad(5 k-6)^{2}=3 k(6 k-4)$	M1	OR any valid relationship
	$25 k^{2}-60 k+36=18 k^{2}-12 k \rightarrow 7 k^{2}-48 k+36$	A1	AG
		2	
(ii)	$k=\frac{6}{7}, 6$	B1B1	$\text { Allow } 0.857(1) \text { for } \frac{6}{7}$
	When $k=\frac{6}{7}, r=-\frac{2}{3}$	B1	Must be exact
	When $k=6, r=\frac{4}{3}$	B1	
		4	
(iii)	Use of $S_{\infty}=\frac{a}{1-r}$ with $r=$ their $-\frac{2}{3}$ and $a=3 \times$ their $\frac{6}{7}$	M1	Provided $0<\mid$ their $-2 / 3 \mid<1$
	$\frac{18}{7} \div\left(1+\frac{2}{3}\right)=\frac{54}{35}$ or 1.54	A1	FT if $0.857(1)$ has been used in part (ii).
		2	

Question 43

;(a)(i)	21 st term $=13+20 \times 1.2=37(\mathrm{~km})$	B1	
		1	
(a)(ii)	$S_{21}=1 / 2 \times 21 \times(26+20 \times 1.2)$ or $1 / 2 \times 21 \times(13+$ their 37$)$	M1	A correct sum formula used with correct values for a, d and n.
	525 (km)	A1	
		2	
;(b)(i)	$\frac{x-3}{x}=\frac{x-5}{x-3}$ oe (or use of $a, a r$ and $a r^{2}$)	M1	Any valid method to obtain an equation in one variable.
	$(a=$ or $x=) 9$	A1	
		2	
(b)(ii)	$r=\left(\frac{x-3}{x}\right)$ or $\left(\frac{x-5}{x-3}\right)$ or $\sqrt{\frac{x-5}{x}}=2 / 3 . \quad$ Fourth term $=9 \times(2 / 3)^{3}$	M1	Any valid method to find r and the fourth term with their a \& r.
	22/3 or 2.67	A1	OE, AWRT
		2	
(b)(iii)	$S \infty=\frac{a}{1-r}=\frac{9}{1-\frac{2}{3}}$	M1	Correct formula and using their ' r ' and ' a ', with $\|r\|<1$, to obtain a numerical answer.
	27 or 27.0	A1	AWRT
		2	

Question 44

(i)	Identifies common ratio as 1.1	B1	
	Use of $x(1.1)^{20}=20$	M1	SOI
	$x\left(=\frac{20}{(1.1)^{20}}\right)=3.0$	A1	Accept 2.97
		$\mathbf{3}$	
(ii)	their $3.0 \times \frac{\left[(1.1)^{21}-1\right]}{1.1-1} \rightarrow 192$	$\mathbf{M 1}$	Correct formula used for M mark. Allow 2.97 used from (i) Accept 190 from $x=2.97 \ldots$

Question 45

$3(\mathrm{a})$	2%	B1	
3 ;(b)	Bonus $=600+23 \times 100=2900$	$\mathbf{1}$	
	Salary $=30000 \times 1.03^{23}$	B1	
	$=59207.60$	M1	Allow $30000 \times 1.03^{24}(60984)$
	A1	Allow answers of 3 significant figure accuracy or better	
their 2900	M1	SOI	
their 59200	A1		
$4.9(0) \%$	$\mathbf{5}$		

Question 46

Question 47

lst term is $-6,2$ nd term is -4.5 (M1 for using k th terms to find both a and $d)$	M1
$\rightarrow a=-6, d=1.5$	$\mathbf{A 1 ~ A 1 ~}$
$S_{n}=84 \rightarrow 3 n^{2}-27 n-336=0$	$\mathbf{M 1}$
Solution $n=16$	$\mathbf{A 1}$
	$\mathbf{5}$

Question 48

$117=\frac{9}{2}(2 a+8 d)$	B1
Either $91=S_{4}$ with ' a ' as $a+4 d$ or $117+91=S_{13}$ (M1 for overall approach. M1 for $\left.S_{n}\right)$	M1M1
Simultaneous Equations $\rightarrow a=7, d=1.5$	$\mathbf{A 1}$
	$\mathbf{4}$

Question 49

Question 50
(a)

$(d=)-\frac{\tan ^{2} \theta}{\cos ^{2} \theta}-\frac{1}{\cos ^{2} \theta}$	$\mathbf{B 1}$	Allow sign error(s). Award only at form $(d=) \ldots$ stage
$-\frac{\sin ^{2} \theta}{\cos ^{4} \theta}-\frac{1}{\cos ^{2} \theta}$ or $\frac{-\sec ^{2} \theta}{\cos ^{2} \theta}$	M1	Allow sign error(s). Can imply B1
$\frac{-\sin ^{2} \theta-\cos ^{2} \theta}{\cos ^{4} \theta}$ or $\frac{-\frac{1}{\cos ^{2} \theta}}{\cos ^{2} \theta}$	M1	
$-\frac{1}{\cos ^{4} \theta}$	A1	AG, WWW
	$\mathbf{4}$	

(b) \begin{tabular}{l|r|l}
$a=\frac{4}{3}, d=-\frac{16}{9}$ \& B1 \& SOI, both required. Allow $a=\frac{1}{\frac{3}{4}}, d=-\frac{1}{\frac{9}{16}}$

\hline$u_{13}=\frac{1}{\cos ^{2} \theta}-\frac{12}{\cos ^{4} \theta}=\frac{4}{3}+12\left(\frac{-16}{9}\right)$ \& $\mathbf{M 1}$ \& | Use of correct formula with their a and their d. The first 2 steps |
| :--- |
| could be reversed |

\hline-20 \& A1 \& WWW

\hline \& $\mathbf{3}$ \&

\hline
\end{tabular}

Question 51

S_{x} and S_{x+1}	M1	Using two values of n in the given formula
$a=5, d=2$	A1 A1	
$a+(n-1) d>200 \rightarrow 5+2(k-1)>200$	$\mathbf{M 1}$	Correct formula used with their a and d to form an equation or inequality with 200, condone use of n
$(k=) 99$	A1	Condone $\geqslant 99$

Alternative method for question 4

$\frac{n}{2}(2 a+(n-1) d) \equiv n^{2}+4 n \rightarrow\left(\frac{d}{2}=1, a-\frac{1}{2} d=4\right)$	M1	Equating two correct expressions of S_{n} and equating coefficients of n and n^{2}
$d=2, a=5$	A1 A1	
$a+(n-1) d>200 \rightarrow 5+2(k-1)>200$	M1	Correct formula used with their a and d to form an equation or inequality with 200, condone use of n
$(k=) 99$	A1	Condone $\geqslant 99$

Question 52

$(-2 p)^{2}=(2 p+6) \times(p+2)$ or $\frac{-2 p}{2 p+6}=\frac{p+2}{-2 p}$	M1	OE. Using " a, b, c then $b^{2}=a c$ " or $a=2 p+6, a r=-2 p$ and $a r^{2}=p+2$ to form a correct relationship in terms of p only
$\left(2 p^{2}-10 p-12=0\right) p=6$	A1	A1
$a=18$ and $r=-2 / 3$	M1	Correct formula used with their values for a and $r,\|r\|<1$ Both a \& r from the same value of p.
$\left(\mathrm{s}_{\infty}\right)=$ their $a \div(1-$ their $r)$		
$\left(=18 \div \frac{5}{3}\right)$	A1	OE. A0 if an extra solution given

Question 53

(a) | $S=\frac{a}{1-r}, \quad 2 S=\frac{a}{1-R}$ | B1 | SOI at least one correct |
| :--- | :--- | :--- |
| $\frac{2 a}{1-r}=\frac{a}{1-R}$ | M1 | SOI |
| $2-2 R=1-r \rightarrow r=2 R-1$ | $\mathbf{A 1}$ | AG |
| | $\mathbf{3}$ | |

(b)

$a r^{2}=a R \rightarrow(a)(2 R-1)^{2}=R(a)$	$* \mathbf{M 1}$	
$4 R^{2}-5 R+1(=0) \rightarrow(4 R-1)(R-1)(=0)$	DM1	Allow use of formula or completing square.
$R=\frac{1}{4}$	$\mathbf{A 1}$	Allow $R=1$ in addition
$S=\frac{2 a}{3}$	A1	

Question 54

(a)(i)	$\frac{\cos \theta}{1-r}=\frac{1}{\cos \theta}$	B1	
	$1-r=\cos ^{2} \theta$ leading to $r=1-\cos ^{2} \theta$	M1	Eliminate fractions
	$r=\sin ^{2} \theta \quad$ leading to 2 nd term $=\cos \theta \sin ^{2} \theta$	A1	AG
		3	
(a)(ii)	$S_{12}=\frac{\cos \left(\frac{\pi}{3}\right)\left[1-\left(\sin ^{2}\left(\frac{\pi}{3}\right)\right)^{12}\right]}{1-\sin ^{2}\left(\frac{\pi}{3}\right)}=\frac{0.5\left[1-(0.75)^{12}\right]}{1-0.75}$	M1	Evidence of correct substitution, use of S_{n} formula and attempt to evaluate
	1.937	A1	
		2	
(b)	$[d=] \cos \theta \sin ^{2} \theta-\cos \theta$	M1	Use of $d=u_{2}-u_{1}$
	$-\frac{1}{8}$	A1	
	[85th term $=] \frac{1}{2}+84 \times-\frac{1}{8}$	M1	Use of $a+84 d$ with a calculated value of d
	-10	A1	
		4	

Question 55

(a)	$a r=\frac{24}{100} \times \frac{a}{1-r}$	M1	Form an equation using a numerical form of the percentage and correct formula for u_{2} and S_{∞}
	$100 r^{2}-100 r+24[=0]$	A1	OE. All 3 terms on one side of an equation.
	$(20 r-8)(5 r-3)[=0] \rightarrow r=\frac{2}{5}, \frac{3}{5}$	A1	Dependent on factors or formula seen from their quadratic.
		3	
(b)	$3 \times\{(a+4 d)\}=\{(2(a+1)+11(d+1))\}$	*M1	SOI Attempt to cross multiply with contents of at least one $\{$ \} correct
	Simplifies to $a+d=13$	A1	
	$\left[\frac{5}{2}\right] \times 3\{(2 a+4 d)\}=\left[\frac{5}{2}\right] \times 2\{(4(a+1)+4(d+1))\}$	*M1	SOI Attempt to cross multiply with contents of at least one \{ \} correct
	Simplifies to $-a+2 d=8$	A1	
	Solve 2 linear equations simultaneously	DM1	Elimination or substitution expected
	$d=7, a=6$	A1	SC B1 for $a=6, d=7$ without complete working
		6	

Question 56

(a)

$\left(a+b=2 \times \frac{3}{2} a\right) \Rightarrow b=2 a$	B1	SOI		
$18^{2}=a(b+3)$ OE or 2 correct statements about r from the GP, e.g. $r=\frac{18}{a}$ and $\mathrm{b}+3=18 \mathrm{r}$ or $r^{2}=\frac{b+3}{a}$	B 1	SOI		
$324=a(2 a+3) \Rightarrow 2 a^{2}+3 a-324[=0]$ or $b^{2}+3 b-648[=0]$ or $6 r^{2}-r-12[=0]$ or $4 d^{2}+3 d-162[=0]$	M1	Using the correct connection between AP and GP to form a 3-term quadratic with all terms on one side.		
$(\mathrm{a}-12)(2 a+27)[=0]$ or $(b-24)(b+27)[=0]$ or $(2 r-3)(3 r+4)[=0]$ or		M1		Solving their 3-term quadratic by factorisation, formula or
:---				
completing the square to obtain answers for a, b, r or d.				

(b)

Common difference $d=6$	B1 FT	SOI. FT their $\frac{a}{2}$
$\mathrm{~S}_{20}=\frac{20}{2}(2 \times 12+19 \times 6)$	M1	Using correct sum formula with their a, their calculated d and 20.
1380	A1	
	3	

Question 57

$(-12)^{2}=8 k \times 2 k$	M1	Forming an equation in k
$k=-3$	A1	
Using correct formula for $\mathrm{S}_{\infty}[r=0.5, a=-384]$	M1	With $-1<r<1$
$\mathrm{~S}_{\infty}=-768$	A1	

Alternative method for Question 5

$r^{2}=\frac{2 k}{8 k}$	$\mathbf{M 1}$	
$r=[\pm] 0.5$	$\mathbf{A 1}$	
Using correct formula for $\mathrm{S}_{\infty}[r=0.5, a=-384]$	$\mathbf{M 1}$	$-1<r<1$
$\mathrm{~S}_{\infty}=-768$	$\mathbf{A 1}$	
	$\mathbf{4}$	

Question 58

$10(2 a+19 d)=405$	B1	
$20(2 a+39 d)=1410$	B1	
Solving simultaneously two equations obtained from using the correct sum formulae $[a=6, d=1.5]$	M1	Reach $a=$ or $d=$
Using the correct formula for 60th term with their a and d	M1	
60th term $=94.5$	A1	OE, e.g. $\frac{189}{2}$
	$\mathbf{5}$	

Question 59

$a r=54$ and $\frac{a \text { or their } a}{1-r}=243$	B1	SOI		
$\frac{54}{r}=243(1-r)$ leading to $243 r^{2}-243 r+54[=0]\left[9 r^{2}-9 r+2=0\right]$				
OR $a^{2}-243 a+13122[=0]$	$*$ M1	Forming a 3-term quadratic expression in r or a using their 2nd term and So. Allow \pm sign errors.		
$k(3 r-2)(3 r-1)[=0]$ OR $(a-81)(a-162)[=0]$	DM1	Solving their 3-term quadratic using factorisation, formula or completing the square. If factorising, factors must expand to give \pm their coefficient of r^{2}.		
$54 \div\left(\right.$ their $\left.\frac{2}{3}\right)=a$ OR $54 \div($ their 81$)=r$	DM1	May be implied by final answer.	\quad	A1
:---				
Tenth term $=\frac{512}{243}\left[\right.$ OR $81 \times\left(\frac{2}{3}\right)^{9}$ OR $\left.54 \times\left(\frac{2}{3}\right)^{8}\right]$		OE. Must be exact.		
:---				
Special case: If B1M1DM0DM1 scored then SC B1 can be				
awarded for the correct final answer.				

Question 60

(a)	$\begin{aligned} & {\left[\left(3^{\text {rd }} \text { term }-1^{\text {st }} \text { term }\right)=\left(5^{\text {th }} \text { term }-3^{\text {rd }} \text { term }\right) \text { leading to } \ldots\right]} \\ & -6 \sqrt{3} \sin x-2 \cos x=10 \cos x+6 \sqrt{3} \sin x \\ & {[\text { leading to }-12 \sqrt{3} \sin x=12 \cos x]} \end{aligned}$ OR $\left[\left(1^{\text {st }} \text { term }+5^{\text {th }} \text { term }\right)=2 \times 3^{\text {rd }} \text { term leading to } \ldots\right] 12 \cos x=-12 \sqrt{3} \sin x$	*M1	OE. From the given terms, obtain 2 expressions relating to the common difference of the arithmetic progression, attempt to solve them simultaneously and achieve an equation just involving $\sin x$ and $\cos x$.
	Elimination of $\sin x$ and $\cos x$ to give an expression in $\tan x$ $\left[\tan x=-\frac{1}{\sqrt{3}}\right]$	DM1	For use of $\frac{\sin x}{\cos x}=\tan x$
	$[x=] \frac{5 \pi}{6}$ only	A1	CAO. Must be exact.
		3	
(b)	$d=2 \cos x$ or $d=2 \cos ($ their $x)$	B1 FT	Or an equivalent expression involving $\sin x$ and $\cos x$ e.g. $-3 \sqrt{3} \sin ($ their $x)-\cos ($ their $x)[=-\sqrt{3}]$ FT for their x from (a) only. If not $\pm \sqrt{3}$, must see unevaluated form.
	$\begin{aligned} & \mathrm{S}_{25}=\frac{25}{2}(2 \times(2 \cos (\text { their } x))+(25-1) \times(\text { their })) \\ & {[=12.5(2 \times(-\sqrt{3})+24(-\sqrt{3}))]} \end{aligned}$	M1	Using the correct sum formula with $\frac{25}{2},(25-1)$ and with a replaced by either $2(\cos ($ their $x))$ or $\pm \sqrt{3}$ and d replaced by either $2(\cos ($ their $x))$ or $\pm \sqrt{3}$.
	$-325 \sqrt{3}$	A1	Must be exact.
		3	

Question 61

(a)	$\frac{5 a}{1-\left(\pm \frac{1}{4}\right)}$	B1	Use of correct formula for sum to infinity.
$\frac{8}{2}[2 a+7(-4)]$	${ }^{*}$ M1	Use of correct formula for sum of 8 terms and form equation; allow 1 error.	
$4 a=8 a-112$ leading to $a=[28]$	DM1	Solve equation to reach a value of a.	
$a=28$	A1	Correct value.	
(b)	their $28+(k-1)(-4)=0$	M1	
	$[k=] 8$	Use of correct method with their a.	
	$\mathbf{2}$		

Question 62

$a r^{2}=a+d$	B1	
$a r^{4}=a+5 d$	B1	
$a^{2} r^{4}=a(a+5 d)$ leading to $a^{2}+5 a d=(a+d)^{2}$	${ }^{*} \mathbf{M 1}$	Eliminating r or complete elimination of a and d.
$\left[3 a d-d^{2}=0\right.$ leading to $] d=3 a$ OR $[r=2$ leading to $] \quad d=3 a$	A1	
$S_{20}=\frac{20}{2}[2 a+19 \times 3 a]$	DM1	Use of formula with their d in terms of a.
$590 a$	A1	
	$\mathbf{6}$	

Question 63

(a)	$\frac{n}{2}[8+(n-1) d]=5863$ leading to $n[8+(n-1) d]=11726$ leading to $(n-1) d=\frac{11726}{n}-8$	B1	Must show a useful intermediate step. WWW AG.
		1	
(b)	$4+(n-1) d=139$ leading to $\frac{11726}{n}-8=135$	*M1	OE Use of correct \mathbf{u}_{n} formula with expression from (a) or S_{n} formula to eliminate d.
	$n=\frac{11726}{143}=82$	A1	
	$81 d=\frac{11726}{82}-8$	DM1	Substitute their n into a correct u_{n} or S_{n} formula
	$d=\frac{5}{3}$	A1	Accept $\frac{138}{81}$ OE fraction only If M0 DM0 scored them SC B1 B1 for correct n and d values only.
		4	

Question 64

(a)	$2 \times 6 k=k+k+6 \text { or } 6 k-k=k+6-6 k$ or $2 d=6$ leading to $d=3, \therefore 6 k-3=k$	B1	OE A correct equation in k only. Can be implied by correct final answer.
	$k=\frac{6}{10} \text { or } 0.6$	B1	OE
		2	
(b)	$d=3$	B1	Correct value of d can be implied by a correct final answer. Working may be seen in part (a) but must be used in (b).
	$S_{30}=\frac{30}{2}\left(2 x^{\prime} \text { their } k \text { ' }+29 x^{\prime} \text { their } d^{\prime}\right)$	M1	It needs to be clear that the candidate is using a correct sum formula. There is no requirement to check the candidates working for d but it must be clearly identified.
	$S_{30}=1323$	A1	ISW if corrected to 1320 .
		3	

Question 65

$r=0.8$	B1	OE
$a=12.5$	$\mathbf{B 1}$	OE
$S_{\infty}=12.5 \div(1-0.8)$	M1	Using $\frac{a}{1-r}$ with 'their a ' and 'their r ' but $\|r\|$ must be <1.
$S_{\infty}=\frac{125}{2}, 62 \frac{1}{2}$ or 62.5	$\mathbf{A 1}$	$12 \frac{1}{2}$
		$\frac{1}{\frac{1}{5}}$ or similar does not get A1.
	$\mathbf{4}$	

Question 66

$a+12 d=12$	$\mathbf{B 1}$	For correct equation.				
$\frac{30}{2}(2 a+(30-1) d)=-15$	$\mathbf{B 1}$	For correct equation in a and d. If using $\frac{n}{2}(a+l)$, must				
replace l with an expression involving a and d.				$a=72, d=-5$	$\mathbf{B 1}$	Both values correct SOI.
:---	---:	:---				
$\mathrm{S}_{50}=\frac{50}{2}(2($ their $a)+49($ their $d))$	$\mathbf{A 1}$	Using sum formula with $t h e i r ~$ via a valid method.				
$\mathrm{S}_{50}=-2525$	$\mathbf{5}$					

Question 67

'(a)	$216 r^{3}=64 \rightarrow r=2 / 3$	B1	Allow decimal to 3 sf (AWRT).
	$S_{\infty}=\frac{216}{1-\text { their } 2 / 3}=648 \mathrm{cao}$	M1 A1	M1 depends on their $\|\mathrm{r}\|<1$.
(b)	$216\left(\frac{2}{3}\right)=144 \rightarrow 144=a+d$	3 B1 FT	SOI, may be implied in the use of $96=144+3 d$ and finding a. Mis-reads not condoned in 9(b).
	$216\left(\frac{2}{3}\right)^{2}=96 \rightarrow 96=a+4 d$	B1 FT	SOI, may be implied in the use of $96=144+3 d$ and finding a.
	Solve simultaneously	*M1	No working may be seen.
	$d=-16, \quad a=160$	A1	Both required.
	$S_{21}=\frac{21}{2}\{320+20(-16)\}=0$	DM1 A1	Or use of $\frac{21}{2}\left(a+u_{21}\right)$.
		6	

Question 68

$2 a-a=a^{2}-2 a$	B1	OE An unsimplified correct equation in a or d only, e.g. $a^{2}+a=4 a$. Can be implied by correct values for a or d.
$a=3$ or $d=3$	B1	Condone 'extra' solution of $a=0$ or $d=0$.
$a=3$ and $d=3$	B1	SOI
$\mathrm{S}_{50}=\frac{50}{2}(2 \times$ their $a+49 \times$ their $d)$	M1	May be done using 50th term ($=150$). Their a and d must be numerical.
3825	A1	ISW SC B2 for $1275 a$ or $1275 d$
$\mathbf{5}$		

Question 69

$a r^{2}=1764$ and $a \mathrm{r}+a r^{2}=3444$ or $a r=1680$ or $\frac{a\left(1-r^{3}\right)}{1-r}-a=3444$	B1	Two correct algebraic statements.
Attempt to solve as far as $r=$ or $a=$	M1	Any valid method, e.g. $1764 \div 1680$ or from 20 $r^{2}-41 r+21$ OE (condone solving using a calculator).
$r=\frac{1764}{1680}=\frac{21}{20}$ or $1.05[a=1600]$	A1	Note: $r=\frac{1764}{3444-1764}$ www implies B1 and M1.
17500	A1	AWRT e.g. $17474.1 \ldots .$.
	$\mathbf{4}$	

Question 70

(a)	$r=0.8$	B1	SOI
	$50 \times(\text { their } 0.8)^{7}=10.5$	M1	Evaluate $8^{\text {th }}$ or $9^{\text {th }}$ term in GP.
	$50 \times(\text { their } 0.8)^{8}=8.39$. Hence 9th impact required	A1	AG Two terms correct + conclusion (mention of $9^{\text {th }}$ impact or u_{9} somewhere in the solution). Statement that one is <10 (and the other >10) is insufficient unless it mentions $9^{\text {th }}$ impact or u_{9}.
	Alternative method for final two marks: Logarithm method		
	$\begin{aligned} & 50 \times(\text { their } 0.8)^{n}<10 \Rightarrow(\text { their } 0.8)^{n}<0.5 \\ & n \log (\text { their } 0.8)<\log 0.5 \\ & n>\frac{\log 0.5}{\log (\text { their } 0.8)} \Rightarrow[n>] 7.2 \end{aligned}$	M1	
	$n=8$ hence $9^{\text {th }}$ impact required	A1	AG Need conclusion that mentions $9^{\text {th }}$ impact or u_{9}.
		3	
(b)	$\frac{50\left(1-(\text { their } 0.8)^{20}\right)}{1-\text { their } 0.8}$	M1	OE Use of formula with their r SOI.
	$=247$	A1	Must be to the nearest mm (not 247.1).
		2	
(c)	$\frac{50}{1-\text { their } 0.8}$	M1	Use of sum to infinity formula with their r SOI. Substituting a value of n into the sum formula M0.
	$=250$	A1	
		2	

Question 71

(a)	$5.00+20 \times 0.02$ or $5.02+19 \times 0.02$	M1	Allow for $a=5, n=20$ with $d=0.02$ only. $a=5, n=21$ (OE) with $d=0.2$ gets M1 only.
	5.40	A1	
		2	
(b)	$r=\frac{5.02}{5}=1.004 \text { or } \frac{251}{250}$	B1	
	$5.00 \times(\text { their } 1.004)^{20}$ or $5.02 \times(\text { their } 1.004)^{19}$	M1	Allow $a=5, n=20$.
	5.42	A1	Any correct rounding of 5.41557108 .
		3	

Question 72

(a)	$r=\frac{a}{a+2}$	B1	OE SOI
	$\frac{a}{1-\frac{a}{a+2}}=264$	M1	Use of $\mathrm{S} \infty$ formula.
	$\frac{a(a+2)}{a+2-a}=264$ leading to $\frac{a(a+2)}{2}=264$ leading to $a^{2}+2 a-528 \quad[=0]$	M1*	Process to a 3 term quadratic or a 3 term cubic. May contain terms on LHS and RHS.
	$(a-22)(a+24)[=0]$	DM1	Attempt to solve.
	$a=22$ (only)	A1	22 without working SC DB1 (dep on $\left.2^{\text {nd }} \mathrm{M} 1\right)$.
		5	
(b)	$d=\frac{6^{2}}{6+2}-6=-\frac{3}{2}$	B1	
	$\frac{n}{2}\left\{12+(n-1)\left(\frac{-3}{2}\right)\right\}[<]-480$	M1*	Forming an inequation with their numerical d. May use an equality.
	$[3]\left(n^{2}-9 n-640\right)[>0]$	A1	OE May contain terms on LHS and RHS.
	$[n=] \frac{9 \pm \sqrt{81+2560}}{2}$	DM1	OE. Expect 30.19 . Working for solution must be shown.
	31 only	A1	Must come from a correct first inequality (or an equality). 31 no working SC DB1 (dep on correct quadratic and correct inequality/equality).
		5	
Question 73			
(a)	$\left[a r=16, \frac{a}{1-r}=100\right]$ leading to $a=\frac{16}{r}$ and $a=100(1-r)$	B1	Rearranging two algebraic statements to give $a=$. These can be implied by a correct equation in one variable.
	$100(1-r) r=16$ leading to $100 r^{2}-100 r+16[=0]$	*M1	Using their two expressions and rearranging to get a 3-term quadratic expression with all of the terms on one side. Condone sign errors only.
	$\begin{aligned} & (5 r-4)(5 r-1)=0 \\ & \text { OR } \\ & 25 \pm \sqrt{25^{2}-4.25 .4} \end{aligned} \quad \text { leading to } r=\left[\frac{4}{5} \text { or } \frac{1}{5}\right]$	DM1	Condone ($5 r-4$) (5r-1) following $100 r^{2}-100 r+16$.
	$a=20, a=80$	A1	SC: if DM0 scored SCB1 is available for sight of 20 and 80.

Alternative Method for Question 9(a)

$\left[a r=16, \frac{a}{1-r}=100\right]$ leading to $r=\frac{16}{a}$ and $r=\frac{100-a}{100}$	B1	Rearranging two algebraic statements to give $r=$. These can be implied by a correct equation in one variable.
$1600=100 a-a^{2}$ leading to $a^{2}-100 a+1600[=0]$	$*$ M1	Using their two expressions and rearranging to get a 3-term quadratic expression with all of the terms on one side. Condone sign errors and 160 instead of 1600 only.
$(a-20)(a-80)=0$ OR $\frac{100 \pm \sqrt{100^{2}-4.1600}}{2}$	DM1	
$a=20, a=80$	A1	SC: if DM0 scored $\mathbf{S C B 1}$ is available for sight of 20 and 80.
	$\mathbf{4}$	

(b)

$r=\frac{4}{5}, \frac{1}{5}$	B1	OE SOI
$\left[u_{n}=\right]$ their $20 \times$ their $\left(\frac{4}{5}\right)^{n-1}\left[v_{n}=\right]$ their $80 \times$ their $\left(\frac{1}{5}\right)^{n-1}$	B1FT	2 expressions for the nth term FT their values from part (a) if $\|r\|$ less than 1.

Method 1 for final 2 marks

$20 \times\left(\frac{1}{5}\right)^{n-1} \times 4^{n-1}$	M1	Correctly separating the numerator and denominator of their $\left(\frac{4}{5}\right)^{n-1}$ or one correct step towards the solution eg
$u_{n}=\frac{1}{4} \times 80 \times\left(\frac{1}{5}\right)^{n-1} \times 4^{n-1}=4^{n-2} \times 80 \times\left(\frac{1}{5}\right)^{n-1}=4^{n-2} \times v_{n}$	A1	AG Given result clearly shown

Method 2 for final 2 marks

$\frac{20 \times 0.8^{n-1}}{80 \times 0.2^{n-1}}=\frac{1}{4} \times 4^{n-1}$	M1	Dividing two nth terms of the correct format and simplifying their terms in r.
$=4^{-1} \times 4^{n-1}=4^{n-2}$	A1	AG
	$\mathbf{4}$	

Question 74

(a)
i(b)

$\begin{aligned} & 2(2 p-6)=p+\frac{p^{2}}{6} \Rightarrow \frac{p^{2}}{6}-3 p+12[=0] \\ & \text { OR }(2 p-6)-\frac{p^{2}}{6}=p-(2 p-6) \Rightarrow \frac{p^{2}}{6}-3 p+12[=0] \\ & \text { OR } \frac{1}{6} d^{2}+d[=0] \end{aligned}$	*M1	Correct method leading to formation of a 3-term quadratic in p (all terms on one side) or 2-term quadratic in d. OE e.g. $p^{2}-18 p+72[=0], \frac{1}{2} p^{2}-9 p+36[=0]$.
$\begin{aligned} & p^{2}-18 p+72[=0] \Rightarrow(p-6)(p-12)[=0] \text { or } \frac{18 \pm \sqrt{(-18)^{2}-4(1)(72)}}{2} \\ & \text { OR } d\left(\frac{1}{6} d+1\right)[=0] \Rightarrow d=-6 \end{aligned}$	DM1	Solve a 3-term quadratic in p by factorisation, formula or completing the square or solve a 2-term quadratic in d by factorisation.
$p=12$ only	A1	Since $p=6$ gives $d=0$. If *M1 DM0 then $p=12$ only, award SC B1, max $2 / 3$ marks. A0 XP if error in either factor and $p=12$ only. $p=12$ only by trial and improvement $3 / 3$.
	3	
For GP $r=\left[\frac{2 p-6}{\frac{p^{2}}{6}}\right]=\frac{18}{24}\left[=\frac{3}{4}\right]$	B1	OE SOI.
Sum to infinity $=\frac{24}{1-\frac{3}{4}}=96$	B1 FT	FT their value of p if used correctly to find r (B0 if ' p ' used) provided $\|r\|<1$. e.g. $p=18 \Rightarrow\left[S_{\infty}=\right] \frac{54}{1-\frac{5}{9}}=121.5$.
	2	

