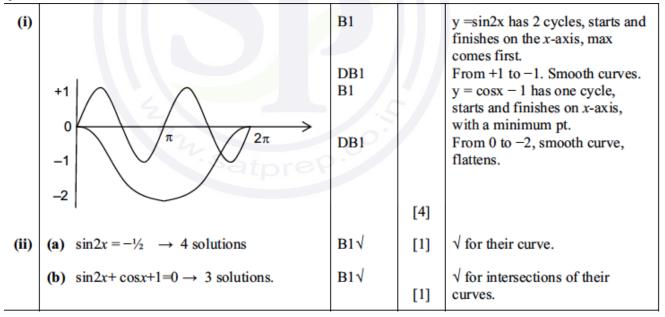
AS-Level


Topic: Trigonometry

May 2013-May 2023

Answer

Question 1

	$2\cos^2\theta = \tan^2\theta$			
(i)		M1 A1	[2]	Use of $t^2 = s^2 \div c^2$ or alternative. Correct eqn.
	\rightarrow 0ses ε + s =1 \rightarrow 2 ε =1 ε	711	[2]	
(ii)	$(2c^2 - 1)(c^2 + 1) = 0 \rightarrow c = \pm \frac{1}{\sqrt{2}}$	M1		Method of solving for 3-term quadratic.
	$\rightarrow \theta = \frac{1}{4}\pi$ or $\frac{3}{4}\pi$.	A1 A1√		(in terms of π). $\sqrt{\text{ for } \pi - 1^{\text{st}}}$ ans. Cannot gain A1 $\sqrt{\text{ if other}}$
			[3]	answers given in the range.

$$a = \sin \theta - 3\cos \theta , b = 3\sin \theta + \cos \theta$$
(i) $a^2 + b^2 = (s^2 + 9c^2 - 6sc) + (9s^2 + c^2 + 6sc)$
 $10c^2 + 10s^2 = 10$
B1
M1 A1
Use of $s^2 + c^2 = 1$ to get constant. (can get 2/3 for missing 6sc)

(ii) $2s - 6c = 3s + c \rightarrow s = -7c$
 $\rightarrow \tan \theta = -7$
 $\rightarrow 98.1^\circ$
M1
A1
Collecting and $t = s \div c$

A1√

Question 4

and 278.1°

(i)
$$\frac{\sin\theta(\sin\theta-\cos\theta)+\cos\theta(\sin\theta+\cos\theta)}{(\sin\theta+\cos\theta)(\sin\theta-\cos\theta)}$$

$$\frac{\sin^2\theta-\sin\theta\cos\theta+\cos\theta\sin\theta=\cos^2\theta}{\sin^2\theta-\cos^2\theta}$$
A1
$$\frac{1}{\sin^2\theta-\cos^2\theta}$$
AG
A1
[3] www
[1]

(ii)
$$s^2-(1-s^2)=\frac{1}{3} \text{ or } 1-c^2-c^2=\frac{1}{3}$$
or
$$3(s^2-c^2)=c^2+s^2$$

$$\sin\theta=(\pm)\sqrt{\frac{2}{3}} \text{ or } \cos\theta=(\pm)\sqrt{\frac{1}{3}}$$
A1
$$\cot s = (\pm)\sqrt{\frac{2}{3}} \text{ or } \cos\theta=(\pm)\sqrt{\frac{1}{3}}$$
A1
$$\cot s = (\pm)\sqrt{\frac{2}{3}} \text{ or } \cos\theta=(\pm)\sqrt{\frac{1}{3}}$$
A1
$$\cot s = (\pm)\sqrt{\frac{2}{3}} \text{ or } \cos\theta=(\pm)\sqrt{\frac{1}{3}}$$
A1
$$\cot s = (\pm)\sqrt{\frac{2}{3}} \text{ or } \cos\theta=(\pm)\sqrt{\frac{1}{3}}$$
A1
$$\cot s = (\pm)\sqrt{\frac{2}{3}} \cot\theta=(\pm)\sqrt{\frac{1}{3}}$$
A1
$$\cot s = (\pm)\sqrt{\frac{2}{3}} \cot\theta=(\pm)\sqrt{\frac{1}{3}}$$
A1

$\sin \theta = (\pm)\sqrt{\frac{2}{3}} \text{ or } \cos \theta = (\pm)\sqrt{\frac{1}{3}}$ or $\tan \theta = (\pm)\sqrt{2}$ $\theta = 54.7^{\circ}, 125.3^{\circ}, 234.7^{\circ}, 305.3^{\circ}$ A1A1

A1 Or
$$s = (\pm) 0.816$$
, $c = (\pm) 0.577$, $t = (\pm) 1.414$

A1A1 any 2 solutions for 1st A1 >4 solutions in range max A1A0

[4] answers in the range.

For 180^o + first answer, providing no extra

(a)
$$x^2 - 1 = \sin \frac{\pi}{3}$$

 $x = \pm 1.366$

M1

A1A1 \(\int \) for negative of 1st answer

(b) $2\theta + \frac{\pi}{3} = \frac{5\pi}{6} \left(\text{ or } \frac{13\pi}{6} \text{ or } \frac{\pi}{6} \right)$

B1

1 correct angle on RHS is sufficient

$$2\theta = \frac{\pi}{2} = \left(\text{ or } \frac{11\pi}{6} \right)$$

M1

Isolating 2θ

$$\theta = \frac{\pi}{4}, \frac{11\pi}{12}$$

A1A1

SC decimals 0.785 & 2.88 scores M1B1

(iii)
$$\tan(90-x) = \frac{p}{\sqrt{1-p^2}}$$
 $B1\sqrt[h]{}$ [1] $\sqrt[h]{}$ for reciprocal of (ii)

Question 7

$$\frac{\tan x + 1}{\sin x \tan x + \cos x} \equiv \sin x + \cos x$$
(i) LHS $\frac{\left(\frac{s}{c}\right) + 1}{\left(\frac{s^2}{c} + c\right)} = \frac{s + c}{s^2 + c^2}$

$$= RHS$$
M1 Use of $t = s/c$ twice Correct algebra and use of $s^2 + c^2 = 1$
AG all ok

(ii)
$$s + c = 3s - 2c$$

 $\rightarrow \tan x = \frac{3}{2}$ Allow $\cos^2 = \frac{4}{13}$, $\sin^2 = \frac{9}{13}$
 $\rightarrow x = 0.983$ and 4.12 or 4.13

M1
A1 A1
A1 A1

[3]
Uses (i) and $t = \frac{s}{c}$ $t = \frac{2}{3}$ or 0 is M0
co. A 1st + π , providing no excess solns in range. Allow 0.313 π , 1.31 π

(i)
$$\frac{1}{\cos \theta} - \frac{\cos \theta}{1 + \sin \theta} = \tan \theta.$$

$$LHS = \frac{1 + s - c^2}{c(1 + s)} = \frac{s^2 + s}{c(1 + s)} = \frac{s}{c}$$

$$= \tan \theta$$

(ii)
$$\rightarrow \tan\theta + 2 = 0$$
 ie $\tan\theta = -2$
 $\rightarrow \theta = 116.6^{\circ}$ or 296.6°

M1

Correct addition of fractions

M1M1

Use of $s^2+c^2=1$. (1+s)cancelled.

A1 → answer given.

[4] M1 Uses part (i). Allow $\tan\theta = \pm 2$ A1 A1√ Co. √ for 180°+ and no other solutions in [3] the range.

Question 10

reflex angle θ is such that $\cos \theta = k$,

- (i) (a) $\sin \theta = -\sqrt{(1-k^2)}$ **(b)** Uses $t = s/c \to \frac{-\sqrt{1-k^2}}{k}$
- (ii) θ is in 4th quadrant. 2θ lies between 540° and 720°

B1 B1 [2]

M1

- (-) B1 rest B1
- $\sqrt{}$ for (i) $\div k$. B1√ [1]
- В1 $\sin 2\theta$ is negative in both these quadrants. B1 co [2]

Question 11

(i) LHS
$$\equiv \frac{\sin^2 \theta - (1 - \cos \theta)}{(1 - \cos \theta)\sin \theta}$$
 cao
$$\equiv \frac{1 - \cos^2 \theta - 1 + \cos \theta}{(1 - \cos \theta)\sin \theta}$$

$$\equiv \frac{\cos \theta (1 - \cos \theta)}{(1 - \cos \theta)\sin \theta}$$

$$\equiv \frac{1}{\tan \theta}$$

- - **A1**
- (ii) $\tan \theta = (\pm)\frac{1}{2}$ 26.6°, 153.4°

- **B**1 Put over common denominator
- **M**1 Use $s^2 = 1 - c^2$ oe
 - Correct factorisation from line 2
- **M1** Ft for 180 – 1st answer A1A1√ [3]

AG

[4]

$$a = 1, \quad b = 2$$
 B1B1 Or $1 + 2 \sin x$

(i)
$$(s^2 - c^2)(s^2 + c^2)$$
 OR $s^2(1 - c^2) - c^2(1 - s^2)$
 $sin^2\theta - cos^2\theta$
 $2sin^2\theta - 1$ www **AG**

(ii)
$$2\sin^2\theta - 1 = \frac{1}{2} \implies \sin\theta = (\pm)\frac{\sqrt{3}}{2} \text{ or } (\pm)0.866$$

$$\theta = 60^{\circ}$$

$$\theta = 120^{\circ}$$

$$\theta = 240^{\circ}, 300^{\circ}$$

OR
$$\sin^4 \theta - (1 - \sin^2 \theta)^2$$

 $\sin^4 \theta - (1 - 2\sin^2 \theta + \sin^4 \theta)$
 $= 2\sin^2 \theta - 1$ AG

M1

A1

A1

B1

B1

[3]

OR $\cos 2\theta = -\frac{1}{2} \to 2\theta = 120, 240$

B1
$$^{\uparrow}$$
 Ft for 180 + their 60, 360 - their 60
B1 $^{\uparrow}$ Allow $\frac{\pi}{3}$, $\frac{2\pi}{3}$ etc. Extra sols in range -1

Correct formula

AG

M1

M1

A1

Ft for 180 - their 60

Question 14

 $1 + \sin x \tan x = 5 \cos x$ M1 (i) Replaces t by s/c $1 + \frac{s^2}{c} = 5c$ M1 Replace s^2 by $1 - c^2$ $\rightarrow 6c^2 - c - 1 (= 0)$ **A**1 [3]

M1 Correct method (ii) Soln of quadratic \rightarrow (c = $-\frac{1}{3}$ or $\frac{1}{2}$) A1 A1 со со → $x = 60^{\circ}$ or 109.5° [3]

Question 15 $tan^{-1}(3) = 1.249 \text{ or } 71.565^{\circ}$

sin 1.25 or sin71.6 or 0.949 so
$$(x =) 1.95$$
 cao, accept $1 + \frac{3}{\sqrt{10}}$ oe

Attempt at tan⁻¹3 or right angle triangle with attempt at hypotenuse = $\sqrt{10}$ Attempt at sin tan⁻¹3

Answer only B3

Correct formula used in appropriate place

(i)	$\tan \theta = 1/3$ $\theta = 18.4^{\circ} \text{ only}$	M1 A1 [2]	Ignore solns. outside range 0→180
(ii)	$\tan 2x = (\pm)1/\sqrt{3}$ Must be sq. root soi	M1	$\sin 2x = (\pm)1/2 \text{ or } \cos 2x = (\pm)\sqrt{3/2}$ $u \sin g c^2 + s^2 = 1$. Not $\tan x = (\pm)\frac{1}{\sqrt{3}}$ etc.
	(x) = 15 (x) = any correct second value (75, 105, 165) (x) = cao	A1 A1 [↑] A1 [4]	ft for (90 ± their 15) or (180 – their 15) All four correct. Extra solns in range 1

Question 18

(i)
$$\frac{\sin\theta - \cos\theta}{\sin\theta + \cos\theta}.$$
Divides top and bottom by $\cos\theta$

$$\rightarrow \frac{t-1}{t+1}$$
(ii)
$$\frac{\sin\theta - \cos\theta}{\sin\theta + \cos\theta} = \frac{1}{6}\tan\theta$$

$$\rightarrow \frac{t-1}{t+1} = \frac{t}{6}$$

$$\rightarrow t^2 - 5t + 6 = 0$$

$$\rightarrow t = 2 \text{ or } t = 3$$

$$\rightarrow \theta = 63.4^{\circ} \text{ or } 71.6^{\circ}$$
B1
Using the identity.
Forms a 3 term quadratic with terms all on same side. co co

Question 19

(i)
$$\theta$$
 is obtuse, $\sin \theta = k$

$$\cos \theta = -\sqrt{(1 - k^2)}$$
B1 cao

[1]

(ii) $\tan \theta = \frac{\sin \theta}{\cos \theta}$ used

$$\rightarrow \tan \theta = -\frac{k}{\sqrt{(1 - k^2)}}$$
 aef

[2] Ft for their cosine as a function of k only, from part (i)

(iii) $\sin (\theta + \pi) = -k$

B1 cao

[1]

[1]

(a)
$$1 + 3\sin^2\theta + 4\cos\theta = 0$$

 $1 + 3(1 - \cos^2\theta) + 4\cos\theta + 0$
 $3\cos^2\theta - 4\cos\theta - 4 = 0$
 $\cos\theta = -2/3$
 $\theta = 131.8 \text{ or } 228.2$

(b) $c = b/a$ cao $d = a - b$

M1 Attempt to multiply by $\cos\theta$

Use $c^2 + s^2 = 1$

A1

B1 Ignore other solution
Ft for $360 - 1^{st}$ soln. -1 extra solns in range
Radians $2.30 \& 3.98$ scores SCB1

B1

[2] Allow $D = (0, a - b)$

(i)
$$\left(\frac{1}{\sin x} - \frac{1}{\tan x}\right)^2 = \left(\frac{1}{s} - \frac{c}{s}\right)^2$$
 M1 Use of $\tan = \sin/\cos$

$$\frac{(1-c)^2}{s^2} = \frac{(1-c)^2}{1-c^2}$$

$$= \frac{(1-c)(1-c)}{(1-c)(1+c)} \text{ or } \frac{(1-c)^2}{(1-c)(1+c)}$$

$$= \frac{1-\cos x}{1+\cos x}$$
A1 [4] ag

(ii) $\left(\frac{1}{\sin x} - \frac{1}{\tan x}\right)^2 = \frac{2}{5}$

$$\frac{1-\cos x}{1+\cos x} = \frac{2}{5} \to \cos x \frac{3}{7}$$

$$\to x = 1.13 \text{ or } 5.16$$
M1 Making $\cos x$ the subject

A1 A1 [3]

$$\begin{vmatrix} 4x^2 + x^2 = 1/2 \text{ soi} \\ \text{Solve as quadratic in } x^2 \\ x^2 = 1/4 \\ x = \pm 1/2 \end{vmatrix}$$

$$\begin{vmatrix} \mathbf{B1} \\ \mathbf{M1} \\ \mathbf{A1} \\ \mathbf{A1} \\ \mathbf{A1} \\ \mathbf{A1} \end{vmatrix}$$

$$[4]$$
E.g. $(4x^2 - 1)(2x^2 + 1)$ or $x^2 =$ formula Ignore other solution

(i)	$4\cos^2\theta + 15\sin\theta = 0$	M1	Replace $\tan \theta$ by $\frac{\sin \theta}{\cos \theta}$ and multiply by
	$4(1-s^2) + 15s = 0 \to 4\sin^2\theta - 15\sin\theta - 4 = 0$		$\sin \theta$ or equivalent Use $c^2 = 1 - s^2$ and rearrange to AG (www)
(ii)	$\sin \theta = -1/4$ $\theta = 194.5 \text{ or } 345.5$	B1 B1B1√ [3]	Ignore other solution Ft from 1st solution, SC B1 both angles in rads (3.39 and 6.03)

(i)
$$3\sin^2 x - \cos^2 x + \cos x = 0$$

Use $s^2 = 1 - c^2$ and simplify to 3-term quad $\cos x = -3/4$ and 1

 $x = 2.42$ (allow 0.77π) or 0 (extra in range max 1)

(ii) $2x = 2\pi - their 2.42$ or $360 - 138.6$
 $x = 1.21 (0.385\pi), 1.93 (0.614/5\pi), 0, \pi (3.14)$ (extra max 1)

(iii) $2x = 2\pi - their 2.42$ or $360 - 138.6$
 $3x = 1.21 (0.385\pi), 1.93 (0.614/5\pi), 0, \pi (3.14)$ (extra max 1)

(iv) $3\sin^2 x - \cos^2 x + \cos x = 0$

M1

Multiply by $\cos x$

Expect $4c^2 - c - 3 = 0$

(iv) $5\cos^2 x = 1$

Expect $4c^2 - c - 3 = 0$

Expect $4c^2 - c - 3 = 0$

(vi) $5\cos^2 x = 1$

Expect $4c^2 - c - 3 = 0$

Expect $4c^2 - c - 3 = 0$

(vii) $2\cos^2 x = 1$

Expect $4c^2 - c - 3 = 0$

(i)
$$\frac{1+\cos\theta}{1-\cos\theta} - \frac{1-\cos\theta}{1+\cos\theta} \equiv \frac{4}{\sin\theta \tan\theta}$$

$$LHS = \frac{1+2c+c^2-\left(1-2c+c^2\right)}{\left(1-c\right)\left(1+c\right)}$$

$$= \frac{4c}{1-c^2}$$

$$= \frac{4c}{s^2}$$

$$= \frac{4}{ts} \mathbf{AG}$$
A1 A1 A1 A1 for numerator. A1 denominator Essential step for award of A1
$$= \frac{4}{ts} \mathbf{AG}$$

$$\sin\theta \left(\frac{1+\cos\theta}{1-\cos\theta} - \frac{1-\cos\theta}{1+\cos\theta}\right) = 3.$$

$$\to s \times \frac{4}{ts} = 3 \ (\to t = \frac{4}{3})$$

$$\theta = 53.1^{\circ} \ \text{and} \ 233.1^{\circ}$$
M1 At $\mathbf{A}\mathbf{1}^{\checkmark}$ for $180^{\circ} + 1^{\text{st}}$ answer.

Question 27

$$3\sin^2\theta = 4\cos\theta - 1$$
Uses $s^2 + c^2 = 1$

$$→ 3c^2 + 4c - 4 (= 0)$$
(→ $c = \frac{2}{3}$ or -2)
$$→ θ = 48.2^{\circ}$$
 or 311.8°
0.841, 5.44 rads, **A1** only (0.268π, 1.73π)

M1 A1

Equation in $\cos\theta$ only. All terms on one side of (=)

For $360^{\circ} - 1$ st answer.

$4\sin^2 x = 6\cos^2 x \Rightarrow \tan^2 x = \frac{6}{4} \text{ or } 4\sin^2 x = 6(1 - \sin^2 x)$	M1		$Or 4(1-\cos^2 x) = 6\cos^2 x$
[$\tan x = (\pm)1.225 \text{ or } \sin x = (\pm)0.7746 \text{ or } \cos x = (\pm)0.6325$] x = 50.8 (Allow 0.886 (rad)) Another angle correct	A1 A1√		Or any other angle correct Ft from 1st angle (Allow radians) All 4 angles correct in degrees
$x = 50.8^{\circ}, 129.2^{\circ}, 230.8^{\circ}, 309.2^{\circ}$ [0.886, 2.25/6, 4.03, 5.40 (rad)]	A1	[4]	An 4 angles correct in degrees

(i)	$2\sin 2x = 6\cos 2x$ $\tan 2x = k$ $\rightarrow \tan 2x = 3 \text{ or } k = 3$	M1 A1	[2]	Expand and collect as far as $tan2x = a$ constant from $sin \div cos$ soi cwo
(ii)	$x = (\tan^{-1}(their k)) \div 2$ $(71.6^{\circ} \text{ or } -108.4^{\circ}) \div 2$	M1		Inverse then ÷2. soi.
	$x = 35.8^{\circ}, -54.2^{\circ}$	A1 A1 √	[3]	$\sqrt{}$ on 1st answer +/ − 90° if in given range but no extra solutions in the given range.
	$\begin{vmatrix} x = 0.624^{c}, -0.946^{c} \\ x = 0.198\pi^{c}, -0.301\pi^{c} \end{vmatrix}$			Both SR A1A0

Question 30

(i)	$\cos^4 x = (1 - \sin^2 x)^2$ = $1 - 2\sin^2 x + \sin^4 x$ AG	B1	[1]	Could be LHS to RHS or vice versa
(ii)	$8\sin^4 x + 1 - 2\sin^2 x + \sin^4 x = 2(1 - \sin^2 x)$ $9\sin^4 x = 1$ $x = 35.3^\circ \text{ (or any correct solution)}$ Any correct second solution from 144.7°, 215.3°, 324.7° The remaining 2 solutions	M1 A1 A1 A1 A1 A1	[5]	Substitute for $\cos^4 x$ and $\cos^2 x$ or OR sub for $\sin^4 x \to 3\cos^2 x = 2$ $\to \cos x = (\pm)\sqrt{2/3}$ Allow the first 2 A1 marks for radians (0.616, 2.53, 3.76, 5.67)

(i)	$\frac{2\sin\theta + \cos\theta}{\sin\theta + \cos\theta} = \frac{2\sin\theta}{\cos\theta}$	M1	Replace $\tan \theta$ by $\sin \theta / \cos \theta$
	$2\sin\theta\cos\theta + \cos^2\theta = 2\sin^2\theta + 2\sin\theta\cos\theta \Rightarrow c^2 = 2s^2$	M1 A1	Mult by $c(s + c)$ or making this a common denom For A1 simplification to AG without error or omission must be seen.
	Total:	3	
(ii)	$\tan^2\theta = 1/2$ or $\cos^2\theta = 2/3$ or $\sin^2\theta = 1/3$	В1	Use $\tan \theta = s/c$ or $c^2 + s^2 = 1$ and simplify to one of these results
	$\theta = 35.3^{\circ} \text{ or } 144.7^{\circ}$	B1 B1 FT	FT for 180 – other solution. SR B1 for radians 0.615, 2.53 (0.196π, 0.804π) Extra solutions in range amongst solutions of which 2 are correct gets B1B0
	Total:	3	

(i)	$LHS = \left(\frac{1}{c} - \frac{s}{c}\right)^2$	M1	Eliminates tan by replacing with $\frac{\sin}{\cos}$ leading to a function of \sin and/or \cos only.
	$=\frac{\left(1-s\right)^2}{1-s^2}$	M1	Uses $s^2 + c^2 = 1$ leading to a function of sin only.
	$=\frac{(1-s)(1-s)}{(1-s)(1+s)}=\frac{1-\sin\theta}{1+\sin\theta}$	A1	AG. Must show use of factors for A1.
	Total:	3	
(ii)	Uses part (i) $\rightarrow 2 - 2s = 1 + s$		
	$\rightarrow s = V_3$	М1	Uses part (i) to obtain $s = k$
	$\theta = 19.5^{\circ} \text{ or } 160.5^{\circ}$	A1A1 FT	FT from error in 19.5° Allow 0.340° (0.3398°) & 2.80(2) or $0.108\pi^{\circ}$ & $0.892\pi^{\circ}$ for A1 only. Extra answers in the range lose the second A1 if gained for 160.5°.
	Total:	3	

Question 33

(i)	$\frac{1+\cos\theta}{\sin\theta} + \frac{\sin\theta}{1+\cos\theta} \equiv \frac{2}{\sin\theta}.$		
	$\frac{(1+c)^2 + s^2}{s(1+c)} = \frac{1+2c+c^2+s^2}{s(1+c)}$	M1	Correct use of fractions
	$= \frac{2+2c}{s(1+c)} = \frac{2(1+c)}{s(1+c)} \to \frac{2}{s}$	M1 A1	Use of trig identity, A1 needs evidence of cancelling
	Total:	3	7.7.7
1)	$\frac{2}{s} = \frac{3}{c} \to t = \frac{2}{3}$	M1	Use part (i) and $t = s \div c$, may restart from given equation
	$\rightarrow \theta = 33.7^{\circ} \text{ or } 213.7^{\circ}$	A1 A1FT	FT for 180° + 1st answer. 2nd A1 lost for extra solns in range
	Total:	3	•

(i)	$\cos\theta + 4 + 5\sin^2\theta + 5\sin\theta - 5\sin\theta - 5 (= 0)$	M1	Multiply throughout by $\sin \theta + 1$. Accept if $5\sin \theta - 5\sin \theta$ is not seen
	$5(1-\cos^2\theta)+\cos\theta-1 \ (=0)$	М1	Use $s^2 = 1 - c^2$
	$5\cos^2\theta - \cos\theta - 4 = 0$ AG	A1	Rearrange to AG
		3	
(ii)	$\cos \theta = 1$ and -0.8	B1	Both required
	$\theta = [0^{\circ}, 360^{\circ}], [143.1^{\circ}], [216.9^{\circ}]$	B1 B1 B1 FT	Both solutions required for 1st mark. For 3rd mark FT for $(360^{\circ} - their 143.1^{\circ})$ Extra solution(s) in range (e.g. 180°) among 4 correct solutions scores $\frac{3}{4}$
		4	

(i)	EITHER: Uses $\tan^2 2x = \frac{\sin^2 2x}{\cos^2 2x}$	(M1	Replaces $\tan^2 2x$ by $\frac{\sin^2 2x}{\cos^2 2x}$ not $\frac{\sin^2 2x}{\cos^2 2x}$
	Uses $\sin^2 2x = (1 - \cos^2 2x)$	M1	Replaces $\sin^2 2x$ by $(1 - \cos^2 2x)$
	$\rightarrow 2\cos^2 2x + 3\cos 2x + 1 = 0$	A1)	AG. All correct
	$OR: \\ \tan^2 2x = \sec^2 2x - 1$	(M1	Replaces $\tan^2 2x$ by $\sec^2 2x - 1$
	$\sec^{2} 2x = \frac{1}{\cos^{2} 2x}$ Multiply through by $\cos^{2} 2x$ and rearrange	M1	Replaces $\sec^2 2x$ by $\frac{1}{\cos^2 2x}$
	$\rightarrow 2\cos^2 2x + 3\cos 2x + 1 = 0$	A1)	AG. All correct
	TPA	3	
(ii)	$\cos 2x = -\frac{1}{2}, -1$	M1	Uses (i) to get values for cos 2x. Allow incorrect sign(s).
(-)	$2x = 120^{\circ}, 240^{\circ} \text{ or } 2x = 180^{\circ}1$ $x = 60^{\circ} \text{ or } 120^{\circ}$	A1 A1 FT	A1 for 60° or 120° FT for 180–1st answer
	or $x = 90^{\circ}$	A1	Any extra answer(s) in given range only penalise fourth mark so max 3/4.
		4	

7(a)	a = -2, b = 3	B1B1	/-"/
	3	2	
(b)(i)	$s + s^2 - sc + 2c + 2sc - 2c^2 = s + sc \rightarrow s^2 - 2c^2 + 2c = 0$	B1	Expansion of brackets must be correct
	$1 - \cos^2\theta - 2\cos^2\theta + 2\cos\theta = 0$	M1	Uses $s^2 = 1 - c^2$
	$3\cos^2\theta - 2\cos\theta - 1 = 0$	A1	AG
		3	
b)(ii)	$\cos \theta = 1$ or $-\frac{1}{3}$	В1	
	$\theta = 0^{\circ} \text{ or } 109.5^{\circ} \text{ or} -109.5^{\circ}$	B1B1B1 FT	FT for – their 109.5°
		4	

(a)	$2\tan x + 5 = 2\tan^2 x + 5\tan x + 3 \rightarrow 2\tan^2 x + 3\tan x - 2(=0)$	M1A1	Multiply by denom., collect like terms to produce 3-term quad. in tanx
	0.464 (accept 0.148π), 2.03 (accept 0.648π)	A1A1	SCA1 for both in degrees 26.6°, 116.6° only
		4	
(b)	$\alpha = 30^{\circ}$ $k = 4$	B1B1	Accept $\alpha = \pi / 6$
		2	

(a)(i)	$\frac{\tan^2\theta - 1}{\tan^2\theta + 1} = \frac{\frac{\sin\theta^2}{\cos\theta^2} - 1}{\frac{\sin\theta^2}{\cos\theta^2} + 1}$	M1	
	$= \frac{\sin \theta^2 - \cos \theta^2}{\sin \theta^2 + \cos \theta^2}$	A1	multiplying by $\cos\theta^2$ Intermediate stage can be omitted by multiplying directly by $\cos\theta^2$
	$= \sin \theta^2 - \cos \theta^2 = \sin \theta^2 - \left(1 - \sin \theta^2\right) = 2\sin^2 \theta - 1$	A1	Using $\sin \theta^2 + \cos \theta^2 = 1$ twice. Accept $a = 2$, $b = -1$
	ALT 1 $\frac{\sec^2\theta - 2}{\sec^2\theta}$	M1	ALT 2 $\frac{\tan^2 \theta - 1}{\sec^2 \theta}$
	$1 - \frac{2}{\sec^2 \theta} = 1 - 2\cos^2 \theta$	A1	$(\tan^2\theta - 1)\cos^2\theta$
	$1 - 2\left(1 - \sin^2\theta\right) = 2\sin^2\theta - 1$	A1	$\sin^2\theta - \cos^2\theta = \sin^2\theta - \left(1 - \sin^2\theta\right) = 2\sin^2\theta - 1$
		3	/ / /
(a)(ii)	$2\sin^2\theta - 1 = \frac{1}{4} \to \sin\theta = (\pm)\sqrt{\frac{5}{8}} \text{ or } (\pm)0.7906$	M1	OR $\frac{t^2 - 1}{t^2 + 1} = \frac{1}{4} \rightarrow 3t^2 = 5 \rightarrow t = (\pm)\sqrt{\frac{5}{3}} \text{ or } t = (\pm)1.2910$
	$\theta = -52.2$	A1	
	atpre	2	
(b)(i)	$\sin x = 2\cos x \to \tan x = 2$	M1	Or $\sin x = \sqrt{\frac{4}{5}}$ or $\cos x = \sqrt{\frac{1}{5}}$
	x = 1.11 with no additional solutions	A1	Accept 0.352π or 0.353π . Accept in co-ord form ignoring y co-ord
		2	
(b)(ii)	Negative answer in range $-1 < y < -0.8$	B1	
	-0.894 or -0.895 or -0.896	B1	
		2	

)(i)	$2\cos x = -3\sin x \to \tan x = -\frac{2}{3}$	M1	cos =.
			M0 for tanx = $\pm 1/3$
	$\rightarrow x = 146.3^{\circ} \text{ or } 326.3^{\circ} \text{awrt}$	A1 A1FT	FT for 180 added to an incorrect first answer in the given range. The second A1 is withheld if any further values in the range $0^{\circ} \leqslant x \leqslant 360^{\circ}$ are given. Answers in radians score A0, A0.
		3	
)(ii)	No labels required on either axis. Assume that the diagram is 0° to 360° unless labelled otherwise. Ignore any part of the diagram outside this range.		
	SA PA	B1	Sketch of $y = 2\cos x$. One complete cycle; start and finish at <u>top of curve</u> at roughly the same positive y value and go below the x axis by roughly the same distance. (Can be a poor curve but not straight lines.)
		В1	Sketch of $y=-3\sin x$ One complete cycle; start and finish on the x axis, must be inverted and go below and then above the x axis by roughly the same distance. (Can be a poor curve but not straight lines.)
		B1	Fully correct answer including the sine curve with clearly larger amplitude than cosine curve. Must now be reasonable curves.
			Note: Separate diagrams can score 2/3
		3	
(iii)	x < 146.3°, x > 326.3°	B1FT B1FT	Does not need to include 0°, 360°. √ from their answers in (i) Allow combined statement as long as correct inequalities if taken separately. SC For two correct values including ft but with ≤ and ≥ B1
		2	
Que	estion 40		
(;)	$a + \frac{1}{2}b = 5$	ns l	Alternatively these marks can be awarded when ½ and —Lappear
11)	$\mu = \gamma \gamma \mu = 0$	DI I	A DELIVATIVE IV THESE THATKS CAIL DE AWATGEG WHELL 1/2 AUG — L'ADDEAT

(i)	$a + \frac{1}{2}b = 5$	B1	11
	a-b=11	B1	after a or b has been eliminated.
	$\rightarrow a = 7$ and $b = -4$	B1	
	Satpre	[3]	
ii)	a+b or their $a+their$ b (3)	B1	Not enough to be seen in a table of values – must be selected.
	a-b or their a – their b (11).	B1	Graph from their values can get both marks. Note: Use of $b^2 - 4ac$ scores $0/3$
	$\rightarrow k < 3, k > 11$	B1	Both inequalities correct. Allow combined statement as long as correct inequalities if taken separately. Both answers correct from T & I or guesswork 3/3 otherwise 0/3
		3	

(i)	$(\sin\theta + \cos\theta)(1 - \sin\theta\cos\theta) \equiv \sin^3\theta + \cos^3\theta.$		Accept abbreviations s and c
	LHS = $\sin\theta + \cos\theta - \sin^2\theta\cos\theta - \sin\theta\cos^2\theta$	M1	Expansion
	$= \sin\theta(1 - \cos^2\theta) + \cos\theta(1 - \sin^2\theta) \text{ or } (s + c - c(1 - c^2) - s(1 - s^2))$	M1A1	Uses identity twice. Everything correct. AG
	Uses $\sin^2\theta + \cos^2\theta = 1 \rightarrow \sin^3\theta + \cos^3\theta$ (RHS)		or from RHS: M1 for use of trig ID twice
	Or		
	LHS = $(\sin \theta + \cos \theta)(\sin^2 \theta + \cos^2 \theta - \sin \theta \cos \theta)$	M1	M1 for factorisation
	$= \sin^3\theta + \sin\theta\cos^2\theta - \sin^2\theta\cos\theta + \cos\theta\sin^2\theta + \cos^3\theta - \sin\theta\cos^2\theta = \sin^3\theta + \cos^3\theta$	M1A1	
		3	
(ii)	$(\sin\theta + \cos\theta)(1 - \sin\theta\cos\theta) = 3\cos^3\theta \rightarrow \sin^3\theta = 2\cos^3\theta$	M1	
	$\rightarrow \tan^3\theta = 2 \rightarrow \theta = 51.6^{\circ} \text{ or } 231.6^{\circ} \text{ (only)}$	A1A1FT	Uses $\tan^3 = \sin^3 \div \cos^3$. A1 CAO. A1FT, 180 + their acute angle. $\tan^3 \theta = 0$ gets M0
	T PA	3	

Question 42

$\frac{(\tan\theta + 1)(1 - \cos\theta) + (\tan\theta - 1)(1 + \cos\theta)}{(1 + \cos\theta)(1 - \cos\theta)} \text{ soi}$		M1	
$\frac{\tan\theta - \tan\theta\cos\theta + 1 - \cos\theta + \tan\theta - 1 + \tan\theta\cos\theta - \cos\theta}{1 - \cos^2\theta}$	www	A1	
$\frac{2(\tan\theta - \cos\theta)}{\sin^2\theta} \text{ www}$	AG	A1	
		3	7 7 7
$(2)(\tan\theta - \cos\theta) (=0) \rightarrow (2) \left(\frac{\sin\theta}{\cos\theta} - \cos\theta\right) (=0)$ soi		M1	Equate numerator to zero and replace $\tan \theta$ by $\sin \theta / \cos \theta$
$(2)\left(\sin\theta - \left(1 - \sin^2\theta\right)\right) \ (=0)$		DM1	Multiply by $\cos\theta$ and replace $\cos^2\theta$ by $1-\sin^2\theta$
$\sin \theta = 0.618(0) \qquad \text{soi}$	nre	A1	Allow (√5–1)/2
θ = 38.2°		A1	Apply penalty –1 for extra solutions in range
		4	

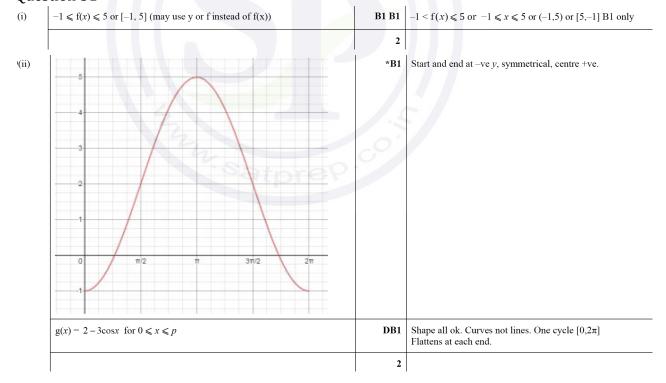
(i)	$fg(x) = 2 - 3\cos(\frac{1}{2}x)$	B1	Correct fg
	$2 - 3\cos(\frac{1}{2}x) = 1 \rightarrow \cos(\frac{1}{2}x) = \frac{1}{3} \rightarrow \left(\frac{1}{2}x\right) = \cos^{-1}\left(their\frac{1}{3}\right)$	M1	M1 for correct order of operations to solve their $fg(x) = 1$ as far as using inverse cos expect 1.23, (or 70.5°) condone $x = 1$.
	$x = 2.46 \text{ awrt or } \frac{4.7\pi}{6} (0.784\pi \text{ awrt})$	A1	One solution only in the given range, ignore answers outside the range. Answer in degrees A0.
			Alternative: Solve $f(y) = 1 \rightarrow y = 1.23 \rightarrow \frac{1}{2}x = 1.23$ B1M1 $\rightarrow x = 2.46$ A1
		3	

·(ii)	В1	One cycle of \pm cos curve, evidence of turning at the ends not required at this stage. Can be a poor curve but not an inverted "V". If horizontal axis is not labelled mark everything to the right of the vertical axis. If axis is clearly labelled mark $0 \rightarrow 2\pi$.
	B1	Start and finish at roughly the same negative y value. Significantly more above the x axis than below or correct range implied by labels.
	B1	Fully correct. Curves not lines. Must be a reasonable curve clearly turning at both ends. Labels not required but must be appropriate if present.
	3	

(i)	In $\triangle ABD$, $\tan \theta = \frac{9}{BD} \rightarrow BD = \frac{9}{\tan \theta}$ or $9\tan(90 - \theta)$ or $9\cot \theta$ or $\sqrt{\left[\left(20 \tan \theta\right)^2 - 9^2\right]}$ (Pythag) or $\frac{9\sin(90 - \theta)}{\sin \theta}$ (Sine rule)	B1	Both marks can be gained for correct equated expressions.	
	In $\triangle DBC$, $\sin \theta = \frac{BD}{20} \rightarrow BD = 20\sin \theta$	B1		
	$20\sin\theta = \frac{9}{\tan\theta}$	M1	Equates their expressions for BD and uses $\sin\theta\cos\theta = \tan\theta$ or $\cos\theta\sin\theta = \cot\theta$ if necessary.	
	$\rightarrow 20\sin^2\theta = 9\cos\theta AG$	A1	Correct manipulation of their expression to arrive at given answer.	
			SC: $\ln \Delta DBC, \sin \theta = \frac{BD}{20} \rightarrow BD = 20 \sin \theta \qquad B1$ $\ln \Delta ABD, BA = \frac{9}{\sin \theta} \text{ and } \cos \theta = \frac{BD}{BA}$	
			$\cos\theta = \frac{20\sin\theta}{9/\sin\theta} \rightarrow \cos\theta = \frac{20\sin^2\theta}{9}$ M1 $\rightarrow 20\sin^2\theta = 9\cos\theta$ A1 Scores 3/4	
		4		
(ii)	Uses $s^2 + c^2 = 1 \rightarrow 20\cos^2\theta + 9\cos\theta - 20 (= 0)$	M1	Uses $s^2 + c^2 = 1$ to form a three term quadratic in $\cos \theta$	
	$\rightarrow \cos\theta = 0.8$	A1	www	
	$\rightarrow \theta = 36.9^{\circ}$ awrt	A1	www. Allow 0.644° awrt. Ignore 323.1° or 2.50°. Note: correct answer without working scores 0/3.	
		3		

Question 45

(i)	$\frac{(\cos\theta - 4)(5\cos\theta - 2) - 4\sin^2\theta}{\sin\theta(5\cos\theta - 2)} (=0)$	M1	Accept numerator only
	$\frac{5\cos^2\theta - 22\cos\theta + 8 - 4\left(1 - \cos^2\theta\right)}{\sin\theta(5\cos\theta - 2)} \ (= 0)$	M1	Simplify numerator and use $s^2 = 1 - c^2$. Accept numerator only
	$9\cos^2\theta - 22\cos\theta + 4 = 0 \text{ www } \mathbf{AG}$	A1	
		3	
(ii)	Attempt to solve for $\cos\theta$, (formula, completing square expected)	M1	Expect $\cos \theta = 0.1978$. Allow 2.247 in addition
	θ = 78.6°, 281.4° (only, second solution in the range)	A1A1FT	Ft for (360° – 1st solution)
		3	


(a)	$3(1-\cos^2 2\theta) + 8\cos 2\theta = 0 \rightarrow 3\cos^2 2\theta - 8\cos 2\theta - 3 (= 0)$	M1	Use $s^2 = 1 - c^2$ and simplify to 3-term quadratic in 2θ
	$\cos 2\theta = -\frac{1}{3} \text{ soi}$	A1	Ignore other solution
	$2\theta = 109.(47)^{\circ} \text{ or } 250.(53)^{\circ}$	A1	One solution is sufficient, may be implied by either of the next solns
	$\theta = 54.7^{\circ} \text{ or } 125.3^{\circ}$	A1A1ft	Ft for 180° – other solution Use of double angles leads to $3c^4 - 7c^2 + 2 = 0 \Rightarrow c = \pm 1/\sqrt{3}$ for M1A1A1 then A1A1 for each angle Similar marking if $3\sin^2 2\theta = -8\cos 2\theta$ is squared leading to $9\sin^4 2\theta + 64\sin^2 2\theta - 64 = 0$
		5	
'(b)	$\sqrt{3} = a + \tan 0 \to a = \sqrt{3}$	B1	b = 8 or -4 (or -10, 14 etc) scores M1A0
	$0 = \tan(-b\pi/6) + \sqrt{3}$ taken as far as \tan^{-1} , angle units consistent	M1	A0 if $tan^{-1}(-\sqrt{3})$ is not exact; (b=2 no working scores B2)
	b = 2	A1	
		3	

estion 17		
$q \leqslant f(x) \leqslant p + q$	B1B1	B1 each inequality – allow two separate statements Accept $<$, $(q, p+q)$, $[q, p+q]$ Condone y or x or f in place of $f(x)$
	2	
(a) 2	B1	Allow $\frac{\pi}{4}$, $\frac{3\pi}{4}$
(b) 3	B1	Allow $0, \frac{\pi}{2}, \pi$
(c) 4	B1	Allow $\frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}$
12	3	
$3\sin^2 2x + 2 = 4 \rightarrow \sin^2 2x = \frac{2}{3} \text{ soi}$	M1	
Sin2x = (±)0.816(5). Allow sin 2x = (±) $\sqrt{\frac{2}{3}}$ or 2x = sin ⁻¹ (±) $\sqrt{\frac{2}{3}}$	A1	OR Implied by at least one correct value for x . Allow \sin^{-1} form
(2x=) at least two of 0.955(3), 2.18(6), 4.09(7), 5.32(8)	A1	Can be implied by corresponding values of <i>x</i> below Allow for at least two of 0.304π , 0.696π , $1.30(4)\pi$, $1.69(6)\pi$ OR at least two of $54.7(4)^{\circ}$, $125.2(6)^{\circ}$, $234.7(4)^{\circ}$, $305.2(6)^{\circ}$
(x =) 0.478, 1.09, 2.05, 2.66.	A1A1	Allow 0.152π , 0.348π , 0.652π , 0.848π SC A1 for 2 or 3 correct. SC A1 for all of 27.4° , 62.6° , 117.4° , 152.6° Sin $2x = \pm \frac{2}{3} \rightarrow x = 0.365, 1.21, 1.94, 2.78$ scores SC M1A0A0A1
	5	

l(i)	$a^2 + 2ab + b^2, a^2 - 2ab + b^2$	В1	Correct expansions.
	$\sin^2 x + \cos^2 x = 1 \text{ used} \rightarrow (a+b)^2 + (a-b)^2 = 1$	M1	Appropriate use of $\sin^2 x + \cos^2 x = 1$ with $(a+b)^2$ and $(a-b)^2$
	$a^2 + b^2 = \frac{1}{2}$	A1	No evidence of ±2ab, scores 2/3
	Alternative method for question 4(i)		
	$2a = (s+c) \& 2b = (s-c) \text{ or } a = \frac{1}{2}(s+c) \& b = \frac{1}{2}(s-c)$	B1	
	$a^{2}+b^{2} = \frac{1}{4}(s+c)^{2} + \frac{1}{4}(s-c)^{2} = \frac{1}{2}(s^{2}+c^{2})$	M1	Appropriate use of $\sin^2 x + \cos^2 x = 1$
	$a^2 + b^2 = \frac{1}{2}$	A1	Method using only $(\sin x - b)^2$ and $(a - \cos x)^2$ scores 0/3.
		3	SC B1 for assuming θ is acute giving $a = \frac{1}{\sqrt{5}} + b$ or $2\sqrt{5} - b$
(ii)	$\tan x = \frac{\sin x}{\cos x} \to \frac{a+b}{a-b} = 2$	M1	Use of $\tan x = \frac{\sin x}{\cos x}$ to form an equation in a and b only
	a=3b	A1	
		2	
Que	stion 49		
(6)	3 3	R1	Accent + 3

(i)	3, -3	B1	Accept ± 3
	-1/2	B1	
	21/2	B1	
		3	Condone misuse of inequality signs.
(ii)	Satprep.co		Only mark the curve from $0 \to 2\pi$. If the x axis is not labelled assume that $0 \to 2\pi$ is the range shown. Labels on axes are not required.
	2 complete oscillations of a cosine curve starting with a maximum at (0,a), a>0	B1	
	Fully correct curve which must appear to level off at 0 and/or 2π .	B1	
	Line starting on positive y axis and finishing below the x axis at 2π . Must be straight.	B1	
		3	
(iii)	4	B1	
		1	

(i)	LHS = $\left(\frac{1}{c} - \frac{s}{c}\right)^2 = \frac{(1-s)(1-s)}{c^2} = \frac{(1-s)(1-s)}{1-s^2}$	B1	Expresses tan in terms of sin and cos
		B1	correctly 1- s ² as the denominator
	$=\frac{(1-s)(1-s)}{(1-s)(1+s)}$	M1	Factors and correct cancelling www
	$\frac{1-\sin x}{1+\sin x}$ AG	A1	
		4	
(ii)	Uses part (i) to obtain $\frac{1-\sin 2x}{1+\sin 2x} = \frac{1}{3} \rightarrow \sin 2x = \frac{1}{2}$	M1	Realises use of $2x$ and makes $\sin 2x$ the subject
	$x = \frac{\pi}{12}$	A1	Allow decimal (0.262)
	$(or) x = \frac{5\pi}{12}$	A1	FT for $\frac{1}{2}\pi - 1$ st answer. Allow decimal (1.31) $\frac{\pi}{12} \text{ and } \frac{5\pi}{12} \text{ only, and no others in range.}$ SC $\sin x^{-1/2} \rightarrow \frac{\pi}{6} \frac{5\pi}{6} \text{ B1}$
		3	

(iii)	(greatest value of $p = \pi$	B1	
		1	
(iv)	$x = 2 - 3\cos x \to \cos x = \frac{1}{3}(2 - x)$	M1	Attempt at cosx the subject. Use of cos ⁻¹
	$g^{-1}(x) = \cos^{-1}\frac{2-x}{3}$ (may use 'y =')	A1	Must be a function of x,
		2	

(i)	$3\cos^4\theta + 4\left(1-\cos^2\theta\right) - 3\left(=0\right)$	M1	Use $s^2 = 1 - c^2$
	$3x^2 + 4(1-x) - 3(=0) \rightarrow 3x^2 - 4x + 1(=0)$	A1	AG
		2	
ii)	Attempt to solve for x	M1	Expect $x = 1, 1/3$
	$\cos \theta = (\pm)1, \ (\pm)0.5774$	A1	Accept $(\pm)\left(\frac{1}{\sqrt{3}}\right)$ SOI
	(θ =) 0°, 180°, 54.7°, 125.3°	A3,2,1,0	A2,1,0 if more than 4 solutions in range
	16	5	

i(a)	$(2x + 1) = \tan^{-1}(\frac{1}{3}) (= 0.322 \text{ or } 18.4 \text{ OR } -0.339 \text{ rad or } 8.7^{\circ})$	*M1	Correct order of operations. Allow degrees.
	Either their $0.322 + \pi$ or 2π Or their $-0.339 + \frac{\pi}{2}$ or π	DM1	Must be in radians
	x = 1.23 or $x = 2.80$	A1	AWRT for either correct answer, accept 0.39π or 0.89π
		A1	For the second answer with no other answers between 0 and 2.8 SC1 For both 1.2 and 2.8
		4	
b)(i)	$5\cos^2 x - 2$	B1	Allow $a = 5$, $b = -2$
	3	1	
b)(ii)	-2	B1FT	FT for sight of their b
	3	B1FT	FT for sight of <i>their</i> $a + b$
		2	

i(i)	$4\tan x + 3\cos x + \frac{1}{\cos x} = 0 \implies 4\sin x + 3\cos^2 x + 1 = 0$	M1	Multiply by $\cos x$ or common denominator of $\cos x$
	$4\sin x + 3(1-\sin^2 x) + 1 = 0 \rightarrow 3\sin^2 x - 4\sin x - 4 = 0$	M1	Use $\cos^2 x = 1 - \sin^2 x$ and simplify to 3-term quadratic in $\sin x$
	$\sin x = -\frac{2}{3}$	A1	AG
		3	
(ii)	$2x-20^\circ = 221.8^\circ, 318.2^\circ$	M1A1	Attempt to solve $\sin(2x-20) = -2/3(M1)$. At least 1 correct (A1)
	$x = 120.9^{\circ}, 169.1^{\circ}$	A1 A1FT	FT for 290° – other solution. SC A1 both answers in radians
		4	

$2\tan\theta - 6\sin\theta + 2 = \tan\theta + 3\sin\theta + 2 \rightarrow \tan\theta - 9\sin\theta \ (=0)$	M1	Multiply by denominator and simplify
$\sin\theta - 9\sin\theta\cos\theta \ (=0)$	M1	Multiply by $\cos \theta$
$\sin \theta (1 - 9\cos \theta) (= 0) \rightarrow \sin \theta = 0, \cos \theta = \frac{1}{9}$	M1	Factorise and attempt to solve at least one of the factors = 0
θ = 0 or 83.6° (only answers in the given range)	A1A1	
	5	
Question 56		
10. I		

l(a)	$(\tan x - 2)(3\tan x + 1) (= 0)$. or formula or completing square	M1	Allow reversal of signs in the factors. Must see a method
	$\tan x = 2 \text{ or } -\frac{1}{3}$	A1	
	$x = 63.4^{\circ}$ (only value in range) or 161.6° (only value in range)	B1FT B1FT	
	12.	4	
.(b)	Apply $b^2 - 4ac < 0$	M1	SOI. Expect $25 - 4(3)(k) < 0$, $\tan x$ must not be in coefficients
	$k > \frac{25}{12}$	A1	Allow $b^2 - 4ac = 0$ leading to correct $k > \frac{25}{12}$ for M1A1
		2	
(c)	k = 0	M1	SOI
	$\tan x = 0 \text{ or } \frac{5}{3}$	A1	
	$x = 0^{\circ} \text{ or } 180^{\circ} \text{ or } 59.0^{\circ}$	A1	All three required
		3	

(a)	$\frac{\tan \theta}{1 + \cos \theta} + \frac{\tan \theta}{1 - \cos \theta} = \frac{\tan \theta (1 - \cos \theta) + \tan \theta (1 + \cos \theta)}{1 - \cos^2 \theta}$	M1
	$= \frac{2 \tan \theta}{\sin^2 \theta}$	M1
	$= \frac{2\sin\theta}{\cos\theta\sin^2\theta}$	M1
	$= \frac{2}{\sin \theta \cos \theta} \mathbf{AG}$	A1
		4
(b)	$\frac{2}{\sin\theta\cos\theta} = \frac{6\cos\theta}{\sin\theta}$	M1
	$\cos^2\theta = \frac{1}{3} \to \cos\theta = (\pm)0.5774$	A1
	54.7°, 125.3° (FT for 180° – 1st solution)	A1 A1FT
		4

Question 58

(a)	$3\cos\theta = 8\tan\theta \to 3\cos\theta = \frac{8\sin\theta}{\cos\theta}$	M1
	$3(1-\sin^2\theta)=8\sin\theta$	M1
	$3\sin^2\theta + 8\sin\theta - 3 = 0$	A1
		3
(b)	$(3\sin\theta - 1)(\sin\theta + 3) = 0 \rightarrow \sin\theta = \frac{1}{3}$	M1
	<i>θ</i> = 19.5°	A1
		2

(a)	$-1 \leqslant f(x) \leqslant 2$	B1 B1
		2
(b)	k=1	B1
	Translation by 1 unit upwards parallel to the y-axis	B1
		2
(c)	$y = -\frac{3}{2}\cos 2x - \frac{1}{2}$	B1
		1

(a)	$\frac{\left(1+\sin\theta\right)^2+\cos^2\theta}{\cos\theta(1+\sin\theta)}$	M1
	Use of $\sin^2 \theta + \cos^2 \theta = 1 \rightarrow \frac{2 + 2\sin \theta}{\cos \theta (1 + \sin \theta)} \rightarrow \frac{2}{\cos \theta}$.	M1A1
		3
(b)	$\frac{2}{\cos\theta} = \frac{3}{\sin\theta} \to \tan\theta = 1.5$	M1
	$\theta = 0.983$ or 4.12 (FT on second value for 1st value $+\pi$)	A1 A1FT
		3

Question 61

$3\tan^4\theta + \tan^2\theta - 2 \ (=0)$	M1	SOI 3-term quartic, condone sign errors for this mark only
$\left(3\tan^2\theta - 2\right)\left(\tan^2\theta + 1\right) \left(=0\right)$	M1	Attempt to factorise or solve 3-term quadratic in $\tan^2 \theta$.
$\tan \theta = (\pm)\sqrt{\frac{2}{3}} \text{ or } (\pm)0.816 \text{ or } (\pm)0.817$	A1	SOI Implied by final answer = 39.2° after 1st M1 scored
39.2°, 140.8°	A1 A1 FT	FT for 2nd solution =180° – 1st solution
	5	

2	V1011 0 =		
(a)	$\left(\frac{1}{\cos x} - \frac{\sin x}{\cos x}\right) \left(\frac{1}{\sin x} + 1\right)$	B1	Uses " $\tan x = \sin x \div \cos x$ " throughout
	$\left(\frac{1-\sin x}{\cos x}\right)\left(\frac{1+\sin x}{\sin x}\right) \text{ or } \left(\frac{1-\sin^2 x}{\cos x \sin x}\right)$	M1	Correct algebra leading to two or four terms
	$\left(\frac{\cos^2 x}{\cos x \sin x}\right)$	A1	OE. A correct expression which can be cancelled directly to $\frac{\cos x}{\sin x} \text{ e.g. } \frac{\cos x \left(1 - \sin^2 x\right)}{\sin x \left(1 - \sin^2 x\right)}$
	$\left(\frac{\cos^2 x}{\cos x \sin x}\right) = \left(\frac{\cos x}{\sin x}\right) = \frac{1}{\tan x}$	A1	AG. Must show cancelling. If x is missing throughout their working withhold this mark.
		4	
(b)	Uses (a) $\rightarrow \frac{1}{\tan x} = 2\tan^2 x \tan^3 x = \frac{1}{2}$	M1	Reducing to $\tan^3 x = k$.
	$(x =) 38.4^{\circ}$	A1	AWRT. Ignore extra answers outside the range 0 to 180° but A0 if within.
		2	

(a)	$\left(\frac{\sin\theta}{1-\sin\theta} - \frac{\sin\theta}{1+\sin\theta} = \right) \frac{\sin\theta(1+\sin\theta) - \sin\theta(1-\sin\theta)}{1-\sin^2\theta}$	*M1	Put over a single common denominator
	$\frac{2\sin^2\theta}{\cos^2\theta}$	DM1	Replace $1-\sin^2\theta$ by $\cos^2\theta$ and simplify numerator
	$2\tan^2\theta$	A1	AG
		3	
(b)	$2\tan^2\theta = 8 \rightarrow \tan\theta = (\pm)2$	B1	SOI
	$(\theta =) 63.4^{\circ}, 116.6^{\circ}$	B1 B1 FT	FT on 180 – 1st solution (with justification)
		3	

$\tan\theta + 2\sin\theta = 3\tan\theta - 6\sin\theta$ leading to $2\tan\theta - 8\sin\theta = 0$	M1	OE
$2\sin\theta - 8\sin\theta\cos\theta \ (=0)$ leading to $[2]\sin\theta (1-4\cos\theta) \ [=0]$	M1	
$\cos \theta = \frac{1}{4}$	A1	Ignore $\sin \theta = 0$
$\theta = 75.5^{\circ}$ only	A1	
	4	
Question 65		

(a)	$\frac{\tan x + \sin x}{\tan x - \sin x} [=k] \text{ leading to } \frac{\sin x + \sin x \cos x}{\sin x - \sin x \cos x} [=k]$ or $\frac{\frac{1}{\cos x} + 1}{\frac{1}{\cos x} - 1} [=k] \text{ or } \frac{\tan x + \tan x \cos x}{\tan x - \tan x \cos x} [=k]$	M1	Multiply numerator and denominator by $\cos x$, or divide numerator and denominator by $\tan x$ or $\sin x$
	$\frac{\sin x (1 + \cos x)}{\sin x (1 - \cos x)} \text{ or } \frac{\frac{1}{\cos x} + 1}{\frac{1}{\cos x} - 1} \cdot \frac{\cos x}{\cos x} \text{ or } \frac{\tan x (1 + \cos x)}{\tan x (1 - \cos x)} \text{ leading to } \frac{1 + \cos x}{1 - \cos x} [= k]$	A1	AG, WWW
		2	
(b)	$k - k\cos x = 1 + \cos x$ leading to $k - 1 = k\cos x + \cos x$	M1	Gather like terms on LHS and RHS
	$k-1=(k+1)\cos x$ leading to $\cos x = \frac{k-1}{k+1}$	A1	WWW, OE
		2	
(c)	Obtaining $\cos x$ from their (b) or (a)	M1	Expect $\cos x = \frac{3}{5}$
	± 0.927 (only solutions in the given range)	A1	AWRT. Accept ±0.295π
		2	

Zue	Stion oo		
(a)	$\frac{1+\sin x}{1-\sin x} - \frac{1-\sin x}{1+\sin x} = \frac{(1+\sin x)^2 - (1-\sin x)^2}{(1-\sin x)(1+\sin x)}$	*M1	For using a common denominator of $(1-\sin x)(1+\sin x)$ and reasonable attempt at the numerator(s).
	$\equiv \frac{1 + 2\sin x + \sin^2 x - \left(1 - 2\sin x + \sin^2 x\right)}{\left(1 - \sin x\right)\left(1 + \sin x\right)}$	DM1	For multiplying out the numerators correctly. Condone sign errors for this mark.
	$\equiv \frac{4\sin x}{1 - \sin^2 x} \equiv \frac{4\sin x}{\cos^2 x}$	DM1	For simplifying denominator to $\cos^2 x$.
	$\equiv \frac{4\sin x}{\cos x \cos x} \equiv \frac{4\tan x}{\cos x}$	A1	AG. Do not award A1 if undefined notation such as s, c, t or missing x's used throughout or brackets are missing.
	Alternative method for Question 10(a)		
	$\frac{4\tan x}{\cos x} \equiv \frac{4\sin x}{\cos^2 x} \equiv \frac{4\sin x}{1 - \sin^2 x}$	*M1	Using $\tan x = \frac{\sin x}{\cos x}$ and $\cos^2 x = 1 - \sin^2 x$
	$\equiv \frac{-2}{1+\sin x} + \frac{2}{1-\sin x}$	DM1	Separating into partial fractions.
	$\equiv 1 + \frac{-2}{1 + \sin x} + \frac{2}{1 - \sin x} - 1$	DM1	Use of 1-1 or similar
	$\equiv -\frac{1-\sin x}{1+\sin x} + \frac{1+\sin x}{1-\sin x}$	A1	
		4	
b)	$\cos x = \frac{1}{2}$	*B1	OE. WWW.
	$x = \frac{\pi}{3}$	DB1	Or AWRT 1.05
	$x = 0 \text{ from } \tan x = 0 \text{ or } \sin x = 0$	B1	WWW. Condone extra solutions outside the domain 0 to $\frac{\pi}{2}$ but B0 if any inside.
		3	//

(a)	Reach $\frac{\cos^2\theta - \sin^2\theta}{\cos^2\theta}$ or $\frac{1 - \sin^2\theta}{1 - \sin^2\theta} - \frac{\sin^2\theta}{\cos^2\theta}$ or $\frac{\sin^2\theta + \cos^2\theta}{\cos^2\theta} - 2\tan^2\theta$ or $\sec^2\theta - \frac{2\sin^2\theta}{\cos^2\theta}$ or $2 - \sec^2\theta$ or $\frac{\cos 2\theta}{\cos^2\theta}$	M1	May start with $1-\tan^2\theta$
	$1-\tan^2\theta$	A1	AG, must show sufficient stages
		2	
(b)	$1 - \tan^2\theta = 2\tan^4\theta \Rightarrow 2\tan^4\theta + \tan^2\theta - 1 = 0$	M1	Forming a 3-term quadratic in $\tan^2 \theta$ or e.g. u
	$\tan^2 \theta = 0.5 \text{ or } -1 \text{ leading to } \tan \theta = [\pm] \sqrt{0.5}$	M1	
	θ = 35.3° and 144.7° (AWRT)	A1	Both correct. Radians 0.615, 2.53 scores A0.
		3	

(a)	$\tan x + \cos x = k(\tan x - \cos x) \text{ leading to } \sin x + \cos^2 x = k(\sin x - \cos^2 x)$	M1	Use $\tan x = \frac{\sin x}{\cos x}$ and clear fraction.
	$\sin x + 1 - \sin^2 x = k \sin x - k + k \sin^2 x$	*M1	Use $\cos^2 x = 1 - \sin^2 x$ twice to obtain an equation in sine.
	$k\sin^2 x + \sin^2 x + k\sin x - \sin x - k - 1 = 0$	DM1	Gather like terms on one side of the equation.
	$(k+1)\sin^2 x + (k-1)\sin x - (k+1) = 0$	A1	AG. Factorise to obtain answer.
		4	
(b)	$5\sin^2 x + 3\sin x - 5 = 0$	B1	
	$\sin x = \frac{-3 \pm \sqrt{9 + 100}}{10}$	M1	Use formula or complete the square.
	$x = 48.1^{\circ}, 131.9^{\circ}$	A1 A1 FT	AWRT. Maximum A1 if extra solutions in range. FT for 180 – <i>their</i> answer or 540 – <i>their</i> answer if sinx is negative If M0 given and correct answers only SCB1B1 available. If answers in radians; 0.839, 2.30 can score SCB1 for both.
		4	

(a)	$[(3^{\text{rd}} \text{ term} - 1^{\text{st}} \text{ term}) = (5^{\text{th}} \text{ term} - 3^{\text{rd}} \text{ term}) \text{ leading to}]$ $-6\sqrt{3} \sin x - 2\cos x = 10\cos x + 6\sqrt{3} \sin x$ $[\text{leading to } -12\sqrt{3} \sin x = 12\cos x]$ OR $[(1^{\text{st}} \text{ term} + 5^{\text{th}} \text{ term}) = 2 \times 3^{\text{rd}} \text{ term leading to}] 12\cos x = -12\sqrt{3} \sin x$	*M1	OE. From the given terms, obtain 2 expressions relating to the common difference of the arithmetic progression, attempt to solve them simultaneously and achieve an equation just involving sinx and cosx.
	Elimination of sinx and cosx to give an expression in tanx $\left[\tan x = -\frac{1}{\sqrt{3}}\right]$	DM1	For use of $\frac{\sin x}{\cos x} = \tan x$
	$[x=]\frac{5\pi}{6} \text{ only}$	A1	CAO. Must be exact.
	7	3	
(b)	$d = 2\cos x$ or $d = 2\cos(their x)$	B1 FT	Or an equivalent expression involving sinx and cosx e.g. $-3\sqrt{3}\sin\left(their\ x\right) - \cos\left(their\ x\right) \left[=-\sqrt{3}\right]$ FT for their x from (a) only. If not $\pm\sqrt{3}$, must see unevaluated form.
	$S_{25} = \frac{25}{2} \left(2 \times \left(2\cos\left(theirx\right) \right) + \left(25 - 1 \right) \times \left(theird\right) \right)$ $\left[= 12.5 \left(2 \times \left(-\sqrt{3} \right) + 24 \left(-\sqrt{3} \right) \right) \right]$	M1	Using the correct sum formula with $\frac{25}{2}$, $(25-1)$ and with a replaced by either $2(\cos(their x))$ or $\pm \sqrt{3}$ and d replaced by either $2(\cos(their x))$ or $\pm \sqrt{3}$.
	-325√3	A1	Must be exact.
		3	

$2\cos^2\theta - 7\cos\theta + 3[=0]$	M1	Forming a 3-term quadratic expression with all terms on the same side or correctly set up prior to completing the square. Allow \pm sign errors.
$(2\cos\theta - 1)(\cos\theta - 3) = 0$	DM1	Solving <i>their</i> 3-term quadratic using factorisation, formula or completing the square.
$[\cos \theta = \frac{1}{2} \text{ or } \cos \theta = 3 \text{ leading to}] \theta = -60^{\circ} \text{ or } \theta = 60^{\circ}$	A1	
$\theta = -60^{\circ}$ and $\theta = 60^{\circ}$	A1 FT	FT for \pm same answer between 0° and 90° or 0 and $\frac{\pi}{2}$. $\pm \frac{\pi}{3} \text{ or } \pm 1.05 \text{ AWRT scores maximum M1M1A0A1FT.}$ Special case: If M1 DM0 scored then SC B1 for $\theta = -60^{\circ}$ or $\theta = 60^{\circ}$, and SC B1 FT can be awarded for $\pm (their\ 60^{\circ})$.
	4	

Question 71

(a)	a = 5	B1
3	b = 2	B1
3	c = 3	B1
3		3
(b)(i)	3	B1
		1
(b)(ii)	2	B1
		1

$3\cos\theta(2\tan\theta - 1) + 2(2\tan\theta - 1) [= 0]$	M1	Or similar partial factorisation; condone sign errors.
$(2\tan\theta - 1) (3\cos\theta + 2) [= 0]$ [leading to $\tan\theta = \frac{1}{2}$, $\cos\theta = -\frac{2}{3}$]	M1	OE. At least 2 out of 4 products correct.
26.6°, 131.8°	A1 A1	WWW. Must be 1 d.p. or better. Final A0 if extra solution within the interval. SC B1 No factorisation: Division by $2\tan\theta - 1$ leading to 131.8° or division by $3\cos\theta + 2$ or similar leading to 26.6° .

(a)	$\frac{(\sin\theta + 2\cos\theta)(\cos\theta + 2\sin\theta) - (\sin\theta - 2\cos\theta)(\cos\theta - 2\sin\theta)}{(\cos\theta - 2\sin\theta)(\cos\theta + 2\sin\theta)}$	*M1	Obtain an expression with a common denominator
	$\frac{5\sin\theta\cos\theta + 2\cos^2\theta + 2\sin^2\theta - \left(5\sin\theta\cos\theta - 2\sin^2\theta - 2\cos^2\theta\right)}{\cos^2\theta - 4\sin^2\theta}$	A1	
	$= \frac{4(\cos^2\theta + \sin^2\theta)}{\cos^2\theta - 4\sin^2\theta}$		
	$\frac{4}{\cos^2\theta - 4(1-\cos^2\theta)}$	DM1	Use $\cos^2 \theta + \sin^2 \theta = 1$ twice
	$\frac{4}{5\cos^2\theta - 4}$	A1	AG
		4	
(b)	$\frac{4}{5\cos^2\theta - 4} = 5 \text{leading to} 25\cos^2\theta = 24$	M1	Make $\cos \theta$ the subject
	leading to $\cos \theta = \sqrt{\frac{24}{25}} [= (\pm)0.9798]$		
	$\theta = 11.5^{\circ} \text{ or } 168.5^{\circ}$	A1 A1 FT	FT on 180° – 1st solution
		3	
Ques	tion 74		

(a)	$6y + 2 - 7y^{1/2}$ [= 0]	*M1	OE Rearrange to a 3-term quadratic.
	$(2y^{\frac{1}{2}}-1)(3y^{\frac{1}{2}}-2) = 0 \text{ or e.g. } (2u-1)(3u-2) = 0$	DM1	Or use of formula or completing the square.
	$[y^{1/2}=]\frac{1}{2},\frac{2}{3}$	A1	Answers only SC B1 if DM1 not scored.
	$[y=]\frac{1}{4},\frac{4}{9}$	A1	Answers only SC B1 if DM1 not scored.
	· Sathrep.	4	
(b)	Use of $tan x = their y$ values	M1	Must have at least 2 values of y from part (a).
	x = 14[.0], 24[.0], x = 194[.0], 204[.0]	A1 A1 FT	FT for 180 + angle (twice). AWRT
		3	

(a)	[<i>p</i> =] 3	B1	
		1	
(b)	$[q=] \frac{1}{2}$	B1	
		1	
(c)	[r=]-2	B1	
		1	

$4\cos^4 x + \cos^2 x - 3 = 0 \Rightarrow (4\cos^2 x - 3)(\cos^2 x + 1) = 0$	M1	Attempt to solve 3 term quartic (or quadratic in another variable)
$\Rightarrow \left[\cos^2 x = \right] \frac{3}{4} \left[\cos^2 x = -1\right]$	A1	If M0 scored then SC B1 is available for sight of $\frac{3}{4}$ [and -1].
$\Rightarrow \cos x = \left[\pm\right] \sqrt{their \frac{3}{4}} \mathbf{OE} \left[=\pm \frac{\sqrt{3}}{2}\right]$	M1	Square rooting 'their $\cos^2 x$ '. Allow without \pm . May be implied by correct final answer(s). Ignore $\sqrt{-1}$.
$[x=]$ $\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$	A1 A1 FT	Dependent on preceding M1 only. Exact answers needed. A1 for any 2 correct answers A1 A1 for 4 correct answers and no others inside the range $0 \le x \le 2\pi$ A0 A1 FT can be awarded for two exact answers that are $2\pi - their \frac{\pi}{6}$ and $\frac{5\pi}{6}$, within the range $0 \le x \le 2\pi$.
		SC : If all 4 answers given in degrees (30, 150, 210, 330) or non-exact (AWRT 0.524, 2.62, 3.67, 5.76 or 0.167π , 0.833π , 1.17π , 1.83) and no others then SC B1 .
	5	
$\cos^2 x = \frac{-1 - \sqrt{1 + 16k}}{8} < 0 \text{ [} \therefore \text{ no solutions]}.$	B1	State that this root is less than 0, needs to be linked to $\cos^2 x$. Can be achieved by substituting a value for $k \ge 0$.
$[\cos^2 x] = \frac{-1 \pm \sqrt{1 + 16k}}{8}$	*M1	Must use quadratic formula. Allow any value of k but not ± 3 . Condone $+$ rather than \pm .
Substituting $k = 5$ and obtain 1 from the formula	DM1	Or argue logically if $k \ge 5 \Rightarrow 1+16k > 81 \Rightarrow >1$.
$\cos^2 x = 1 \text{ or } \cos^2 x > \text{ or } \geqslant 1$	A1	Needs to be linked to $\cos^2 x$.
Concluding statement having considered both \pm cases. \therefore no solutions	A1	Dependent upon all previous marks having been scored.
Alternative method for question 11(b)		777
$\cos^2 x = \frac{-1 - \sqrt{1 + 16k}}{8} < 0 \text{ [} \therefore \text{ no solutions]}.$	B1	State that this root is less than 0, needs to be linked to $\cos^2 x$. Can be achieved by substituting a value for $k \ge 0$.
$[\cos^2 x] = \frac{-1 \pm \sqrt{1 + 16k}}{8}$	*M1	Must use quadratic formula. Allow any value of k but not ± 3 . Condone $+$ rather than \pm .
$\frac{-1 + \sqrt{1 + 16k}}{8} * 1 \Rightarrow -1 + \sqrt{1 + 16k} * 8 \Rightarrow 1 + 16k * 81$	DM1	* represents any inequality or =.
k*5	A1	* represents any inequality or =.
Concluding statement having considered both \pm cases. \therefore no solutions	A1	Dependent upon all previous marks having been scored.
	5	

(a)	EITHER (1){Translation} $\binom{\{30^\circ\}}{\{0\}}$ OR (2){Translation} $\binom{\{60^\circ\}}{\{0\}}$	B2,1,0	B2 for fully correct, B1 with two elements correct. { } indicates different elements. Accept angle in radians.
	(3){Stretch} {factor 2} {in x-direction}	B2,1,0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
	(4) Stretch factor 4 in y-direction and correct order	B1	Stretch, <i>y</i> -direction and factor and correct order. Correct order is either (1) then (3) or (3) then (2). (4) can be anywhere in the sequence.
		5	
(b)	$4\sin\left(\frac{1}{2}x - 30^{\circ}\right) = 2\sqrt{2} \Rightarrow \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) \left[=45\right]$	M1	SOI
	$\frac{1}{2}x - 30 = 45$ or $135 \implies x = 2(45 + 30)$ or $x = 2(135 + 30)$	M1	SOI. The M marks are independent.
	x = 150°, x = 330°	A1	Both exact values, condone $\frac{5\pi}{6}, \frac{11\pi}{6}$. A0 if extra solutions in the interval. Ignore other solutions outside $[0^\circ, 360^\circ]$.
		3	
Ques	stion 78		

$ \frac{\sin^3\theta}{\sin\theta - 1} - \frac{\sin^2\theta}{1 + \sin\theta} = \frac{\sin^3\theta (1 + \sin\theta)}{(\sin\theta - 1)(1 + \sin\theta)} - \frac{\sin^2\theta (\sin\theta - 1)}{(\sin\theta - 1)(1 + \sin\theta)} $ $ \left[= \frac{\sin^3\theta (1 + \sin\theta) - \sin^2\theta (\sin\theta - 1)}{(\sin\theta - 1)(1 + \sin\theta)} \right] $	*M1	Using a common denominator.
$-\frac{\sin^2\theta + \sin^4\theta}{1 - \sin^2\theta}$	DM1	Reaching $\pm (1-\sin^2\theta)$ in denominator. SOI by $\pm\cos^2\theta$.
$-\frac{\sin^2\theta \left(1+\sin^2\theta\right)}{\cos^2\theta}$	DM1	Using $\sin^2\theta + \cos^2\theta = 1$ in denominator and isolating $\sin^2\theta$ in numerator.
$-\tan^2\theta \left(1+\sin^2\theta\right)$	A1	AG - Using/stating $\tan \theta = \frac{\sin \theta}{\cos \theta}$ is sufficient for A1. May be working from both sides provided the argumen is complete. A0 if θ or brackets missing throughout, or sign errors. Allow recovery if AG follows from <i>their</i> working.
Alternative method for Q4(a)		
$-\tan^2\theta(1+\sin^2\theta) = -\frac{\sin^2\theta\left(1+\sin^2\theta\right)}{1-\sin^2\theta}$	*M1	Using $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\sin^2 \theta + \cos^2 \theta = 1$.
$\frac{-\sin^2\theta - \sin^4\theta}{(1 - \sin\theta)(1 + \sin\theta)}$	DM1	Factorising denominator.
$\frac{\sin^2\theta + \sin^3\theta - \sin^3\theta + \sin^4\theta}{\left(\sin\theta - 1\right)(1 + \sin\theta)} = \frac{\sin^3\theta\left(1 + \sin\theta\right) - \sin^2\theta\left(\sin\theta - 1\right)}{\left(\sin\theta - 1\right)(1 + \sin\theta)}$	DM1	Factorising numerator.

(a) $\frac{\sin^3 \theta}{\sin \theta - 1} - \frac{\sin^2 \theta}{1 + \sin \theta}$	A1	AG A0 if θ or brackets missing throughout, or sign errors. Allow recovery if AG follows from <i>their</i> working.
	4	
(b) $-\tan^2\theta (1+\sin^2\theta) = \tan^2\theta (1-\sin^2\theta)$ leading to [2] $\tan^2\theta = 0$	M1	Obtaining a $(trig function)^2 = 0$ WWW.
$\tan \theta = 0$ leading to $[\theta =]\pi$	A1	Ignore extra solutions outside the interval $(0, 2\pi)$.
Alternative method for Q4(b)		
$-\frac{\sin^2\theta}{\cos^2\theta}(1+\sin^2\theta) = \frac{\sin^2\theta}{\cos^2\theta}(1-\sin^2\theta)$ leading to	M1	Obtaining a $(trig function)^2 = 0$ WWW.
$-\sin^2\theta - \sin^4\theta = \sin^2\theta - \sin^4\theta$ leading to $[2]\sin^2\theta = 0$		
$\sin \theta = 0$ leading to $[\theta =] \pi$	A1	Ignore extra solutions outside the interval $(0, 2\pi)$.
	2	
Question 79		
$8(1-\cos^2\theta)+6\cos\theta+1 [=0]$	M1	Expect $8\cos^2\theta - 6\cos\theta - 9 = 0$.
$(4\cos\theta+3)(2\cos\theta-3) \ [=0]$	A1	Factors or formula or completing square must be shown.
$[\rightarrow \cos \theta = -0.75 \rightarrow \theta =] 138.6^{\circ} \text{ only,}$	A1	AWRT, ignore solutions outside the given range, answer in radians A0.
	3	
Question 80		
Use of $\sin^2 \alpha + \cos^2 \alpha = 1$ eg $\sin \alpha = \left[\pm\right] \sqrt{1 - \left(\frac{8}{17}\right)^2}$	*M1	Or Pythagoras seen (may quote 8, 15, 17 triple).
$\sin\alpha = \frac{15}{17}$	A1	
$\tan \alpha = \frac{15}{8}$	A1	
$\frac{1}{\sin\alpha} + \frac{1}{\tan\alpha} = \frac{17}{15} + \frac{8}{15}$	DM1	Dealing with reciprocals and addition of fraction correctly.
$=\frac{5}{3}$ oe	A1	Correct answer with no working shown scores 0. Extra answers from $\sin\alpha = -\frac{15}{17}$ are allowed.
	5	

(a)	$k^2 - 4 \times 8 \times 2 \ [< 0]$	M1	Use of $b^2 - 4ac$ but not just in the quadratic formula.
	$-8 < k < 8 \text{ or } -8 < k$, $k < 8 \text{ or } \mathbf{k} < 8 \text{ or } (-8, 8)$	A1	Condone '- $8 < k$ or $k < 8$ ', '- $8 < k$ and $k < 8$ ' but not $\sqrt{64}$.
		2	
(b)	$2(4\cos\theta-1)(\cos\theta-1)$ or $(4\cos\theta-1)(\cos\theta-1)$	M1	OE Or use of formula or completing the square. Allow use of replacement variable.
	$\cos\theta = \frac{2}{8} , \cos\theta = 1$	A1	OE For both answers. SC: If M0, SC B1 available for sight of $\cos \theta = \frac{2}{8}$ and 1
	[θ=] 0°, 75.5°	A1	AWRT ISW rejection of 0°. For both answers and no others in the range $0^{\circ} \le \theta \le 180^{\circ}$, must be in degrees. SC: If M0 B1 scored, SC B1 available for correct answers. SC: If M1 A0 scored, SC B1 available for $\cos \theta = \frac{2}{8}$ and $\theta = 75.5^{\circ}$ only, WWW.
		3	

Question 82

(a)	$\frac{\sin\theta(\sin\theta-\cos\theta)+\cos\theta(\sin\theta+\cos\theta)}{(\sin\theta+\cos\theta)(\sin\theta-\cos\theta)} \left[= \frac{\sin^2\theta+\cos^2\theta}{\sin^2\theta-\cos^2\theta} \right]$	*M1	Sight of a correct common denominator, either in one or two fractions, condone missing brackets if recovered. In the numerator condone \pm sign errors only.
	$\frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta}$ $\frac{\sin^2 \theta}{\cos^2 \theta} - \frac{\cos^2 \theta}{\cos^2 \theta}$	DM1	Divide throughout by $\cos^2 \theta$.
	$\frac{\tan^2\theta + 1}{\tan^2\theta - 1} AG$	A1	
(b)	$\frac{\tan^2 \theta + 1}{\tan^2 \theta - 1} = 2 \Rightarrow \tan^2 \theta + 1 = 2\left(\tan^2 \theta - 1\right)$	*M1	Equate expression from (a) to 2 and clear fraction.
	$\tan \theta = [\pm]\sqrt{3}$	DM1	Simplify as far as $\tan \theta = $. May be implied by a correct final answer in degrees or radians.

Alternative method for first two marks of Question 7(b)

$\frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta - \cos^2 \theta} = 2 \Rightarrow 1 = 2\sin^2 \theta - 2(1 - \sin^2 \theta)$	*M1	Equate expression to 2, clear fraction and use trig identities to form an equation in $sin\theta$ or $cos\theta$ only.
$sin\theta = [\pm]\sqrt{\frac{3}{4}} \text{ or } cos\theta = [\pm]\sqrt{\frac{1}{4}}$	DM1	Simplify as far as $sin\theta =$, or $cos\theta =$.
$\theta = \frac{1}{3}\pi, \frac{2}{3}\pi$	A1 FT	A1 for either correct answer then A1FT For their second value being $\pi-$ (their first) and no others in range $0 \leqslant \theta \leqslant \pi$, both values must be exact and in radians. SC: B1 for $\theta=60^\circ,120^\circ$ or $0.333\pi,0.667\pi$ AWRT. or $1.05,2.09$ AWRT.
	4	

(a)	$\left \frac{\sin \theta - \cos \theta + \sin \theta + \cos \theta}{\left(\sin \theta + \cos \theta\right) \left(\sin \theta - \cos \theta\right)} \right[= \frac{\sin \theta - \cos \theta + \sin \theta + \cos \theta}{\sin^2 \theta - \cos^2 \theta} \right] = 1$	*M1	Use common denominator and equate to 1.
	$2\sin\theta \left[=\sin^2\theta - \cos^2\theta\right] = \sin^2\theta - \left(1 - \sin^2\theta\right)$	DM1	Multiply by common denominator and replace $\cos^2 \theta$ by $1 - \sin^2 \theta$.
	$2\sin^2\theta - 2\sin\theta - 1 = 0$	A1	OE In the given form.
		3	
(b)	$[\sin \theta =] \frac{2 \pm \sqrt{(-2)^2 - 4(2)(-1)}}{4} \left[= \frac{2 \pm \sqrt{4 + 8}}{4} = \frac{1 \pm \sqrt{3}}{2} \right]$	M1	Use formula or complete the square to solve a quadratic equation of the correct form.
	201.5° or 338.5°	A1 A1 FT	AWRT; A1 for either solution correct. A1 FT for 540 – (first value). If M0, allow SC B1 B1FT similarly.
		3	

(a)	$\tan \theta \sin \theta = 1$ leading to $\sin^2 \theta = \cos \theta$	M1	Use of $\tan \theta = \frac{1}{\cos \theta}$ and multiplication by
			$\cos \theta$.
	$1 - \cos^2\theta = \cos\theta \text{ or } \cos^2\theta + \cos\theta - 1 \text{ [= 0]}$	M1	Use of trig identity to form a 3-term quadratic.
	$[\cos \theta =] \frac{-1 \pm \sqrt{5}}{2}$	M1	Use of formula or completion of the square must be seen on a 3-term quadratic. Expect 0.6180.
	51.8°,	A1	Both A marks dependent on the 2nd M1.
	308.2°	A1 FT	FT for (360° – 1st soln), A0 if extra solutions in range. Radians 0.905 and 5.38, A1 only for both.
		5	
(b)	$\frac{\tan \theta}{\sin \theta} - \frac{\sin \theta}{\tan \theta} = \frac{\sin \theta}{\sin \theta \cos \theta} - \frac{\sin \theta \cos \theta}{\sin \theta} = \frac{1}{\cos \theta} - \cos \theta$	M1	Use $\tan \theta = \frac{\sin \theta}{\cos \theta}$ twice with correct use of fractions.
	$=\frac{1-\cos^2\theta}{\cos\theta} = \frac{\sin^2\theta}{\cos\theta}$	M1	Use $1 - \cos^2 \theta = \sin^2 \theta$ with correct use of fractions.
	$= \tan \theta \sin \theta$	A1	www
		3	

(a)	$3\sin^2 x - 3\sin^2 x \cos^2 x - 4\cos^2 x = 0$	M1	Replace $\tan^2 x$ with $\frac{\sin^2 x}{\cos^2 x}$ and multiply by $\cos^2 x$.
	$3(1-\cos^2 x) - 3(1-\cos^2 x)\cos^2 x - 4\cos^2 x = 0$	M1	Replace $\sin^2 x$ by $1-\cos^2 x$ twice.
	$3\cos^4 x - 10\cos^2 x + 3 = 0$ or $-3\cos^4 x + 10\cos^2 x - 3 = 0$	A1	Or multiple of these equations.
		3	
b)	$\left(3\cos^2 x - 1\right)\left(\cos^2 x - 3\right) \ \left[=0\right]$	M1	OE, using <i>their</i> equation in the given form. Allow unusual notation if meaning is clear.
	$\cos x = \left[\pm\right] \frac{1}{\sqrt{3}}$	A1	SOI Answer only SC B1.
	54.7°,	A1	
	125.3°	A1 FT	Only other answer and must be from correct factorisation for A1. FT for 180° – their first answer. Answers only SC B1, SC B1 FT.
)ne	stion 86	4	

(a)(i)	$\cos^2\theta + 2\sin\theta\cos\theta + \sin^2\theta = 1$ leading to $2\sin\theta\cos\theta = 0$ or $\sin 2\theta = 0$	*B1	Or arriving at $\cos \theta = 0$ or $\sin \theta = 0$ or $\tan \theta = 0$ after first expanding and www.
	$\left[heta = ight] 0 , rac{\pi}{2} , \pi$	DB 2,1,0	B2 for three correct answers only. B1 for two correct answers and one incorrect or 3 correct answers plus other values in the range. SC DB1 for correct 3 answers in degrees and no others. Ignore extras outside of the range and allow decimal equivalents.
		3	Verifying 3 answers rather than expanding and solving 0/3.
(a)(ii)	$\cos 0 + \sin 0 = [1 + 0 =] 1$ and $\cos \frac{\pi}{2} + \sin \frac{\pi}{2} [= 0 + 1] = 1$	B1	Checking both correct values. Do not allow solving an equation. Condone use of 90 degrees.
	$\cos \pi + \sin \pi [= -1 + 0] = -1 \text{ or } \neq 1$	B1	www
	7.80.00	2	
'(b)	$\frac{(\cos\theta - \sin\theta)\sin\theta + (\cos\theta + \sin\theta)(1 - \cos\theta)}{(\cos\theta + \sin\theta)(\cos\theta - \sin\theta)}$	M1	Correct common denominator and correct products in the numerator and no missing terms. Correct factors in the denominator can be implied by $\cos^2\theta - \sin^2\theta$. Condone brackets missing if recovered.
	$=\frac{\cos\theta\sin\theta-\sin^2\theta+\cos\theta-\cos^2\theta+\sin\theta-\sin\theta\cos\theta}{\cos^2\theta-\sin^2\theta}$	A1	
	$=\frac{\sin\theta + \cos\theta - \cos^2\theta - \sin^2\theta}{\cos^2\theta - \sin^2\theta} = \frac{\cos\theta + \sin\theta - 1}{1 - 2\sin^2\theta}$	A1	AG Clear evidence of using $sin^2\theta + cos^2\theta = 1$ in either the numerator or denominator. Condone c, s and/or omission of θ . Working from both sides of the identity and correctly arriving at the same expression can score M1A1. A final statement is then required for the A1.
		3	

(c)	$\frac{\cos\theta + \sin\theta - 1}{1 - 2\sin^2\theta} = 2(\cos\theta + \sin\theta - 1)$ leading to $1 = 2(1 - 2\sin^2\theta)$	*M1	Replacing LHS with the expression from (b) and attempting to simplify i.e. condone omission of $(\cos\theta + \sin\theta - 1) = 0$ at this stage. M0 for $0 = 2(1 - 2\sin^2\theta)$
	$k\sin^2\theta = 1 \text{ or } 3 \text{ leading to } \sin\theta = \left[\pm\right]\sqrt{\frac{1 \text{ or } 3}{k}}$ $\left[4\sin^2\theta = 1 \text{ leading to } \sin\theta = \pm\frac{1}{2}\right]$	DM1	Dividing by k and taking the square root of a positive value < 1. This mark can be implied by the solutions $\frac{1}{6}\pi, \frac{5}{6}\pi$.
	Solutions $0, \frac{1}{6}\pi, \frac{1}{2}\pi, \frac{5}{6}\pi$	A1	Allow 0, 0.524, 1.57, 2.62 AWRT. If M0 SCB1 for $(\cos \theta + \sin \theta - 1) = 0 \Rightarrow 0, \frac{1}{2}\pi$. If M0 SCB1 for all four correct answers and no others. Ignore answers outside of the range. Answers in degrees A0.
		3	

$4\sin\theta + \tan\theta = 0 \Rightarrow 4\sin\theta + \frac{\sin\theta}{\cos\theta} [= 0]$	M1	For use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$. BOD if θ missing.
$\Rightarrow \sin\theta (4\cos\theta + 1)[=0 \Rightarrow \sin\theta = 0 \text{ or }] \cos\theta = -\frac{1}{4}$	M1	WWW Factorise, not divide by $\sin \theta$ or $\tan \theta$. May see $\tan \theta (4\cos \theta + 1)[=0]$ or $\sin \theta (4 + \sec \theta)[=0]$.
$ heta=104.5^{\circ}$	A1	AWRT 1.82 rads A0. Ignore answers outside (0, 180°). If M1 M0, SC B1 for $\theta = 104.5^{\circ}$ max 2/3.
	2	