AS-Level

Topic: Function

May 2013-May 2023

Answer

Question 1

(i)	f: $x \mapsto 2x + k$, g: $x \mapsto x^2 - 6x + 8$, 2(2x + 3) + 3 = 25 $\rightarrow x = 4$ or $\{f(11) = 25, f(4) = 11\}$	M1 A1	[2]	ff(x) needs to be correctly formed
(ii)	$x^{2}-6x+8=2x+k$ $x^{2}-8x+8-k=0$ Uses $b^{2}-4ac < 0$ $\rightarrow k < -8$	M1 M1 A1	[3]	Eliminates y to form eqn in x. Uses the discriminant – even if =0.>0
(iii)	$x^{2} - 6x + 8 = (x - 3)^{2} - 1$ $y = (x - 3)^{2} - 1$ Makes x the subject $\rightarrow \pm \sqrt{(x + 1)} + 3$ Needs specifically to lose the "_".	B1 B1 M1 A1√	[4]	For "-3" and "-1" Makes x the subject, in terms of x and without $-$ or \pm .

(i)
$$2(x-3)^2 - 5$$
 or $a = 2$, $b = -3$, $c = -5$

B1B1B1

[3]

(ii) 3

B1 \(\frac{1}{2} \)

(iii) $(y) \ge 27$

B1 \(\frac{1}{2} \)

(iii) $(y) \ge 27$

B1 \(\frac{1}{2} \)

(iv) $2(x-3)^2 = (y+5)$
 $x-3 = (\pm)\sqrt{\frac{1}{2}}(y+5)$
 $x = 3 + /\pm\sqrt{\frac{1}{2}}(y+5)$

(f⁻¹(x)) = $3 + \sqrt{\frac{1}{2}}(x+5)$ for $x \ge 27$

B1B1B1

[3]

(it) ft on - their b. Allow $k \ge 3$ or $x \ge 3$

Allow >. Allow >. Allow $27 \le y \le \infty$ etc.

OR (x/y interchange as 1st operation)

(iv) $2(x-3)^2 = (y+5)$

M1 \((y-3)^2 = \frac{1}{2}(x+5) \)

 $(y-3)^2 = (\pm)\sqrt{\frac{1}{2}}(x+5)$

A1 \(\frac{1}{2} \)

A1B1 \(\frac{1}{2} \)

(iv) $2(x-3)^2 = (x+5)$

A1B1 \(\frac{1}{2} \)

(iv) $3 = (\pm)\sqrt{\frac{1}{2}}(x+5)$

(iv) $3 = (\pm)\sqrt{\frac{1}{2}}(x+5)$

A1B1 \(\frac{1}{2} \)

(iv) $3 = (\pm)\sqrt{\frac{1}{2}}(x+5)$

(iv) $3 = (\pm)\sqrt{1}$

(iv) $3 = (\pm)\sqrt{1}$

(iv) $3 = (\pm)\sqrt{1}$

(iv) $3 = (\pm)\sqrt{1}$

(i) Range is
$$(y) \ge c^2 + 4c$$

 $x^2 + 4x = (x+2)^2 - 4$

(Smallest value of c is) -2

B1

B1

M1

M1

A₁

[6]

[3]

Allow > $\mathbf{OR} \quad \frac{\mathrm{d}y}{\mathrm{d}x} = 2x + 4 = 0$

A1 -2

-2 with no (wrong) working gets B2

OR corresponding equation in b

OR (8) (2b + 23)(b - 1) = 0

(ii)
$$5a + b = 11$$

 $(a + b)^2 + 4 (a + b) = 21$
 $(11 - 5a + a)^2 + 4 (11 - 5a + a) = 21$
 $(8) (2a^2 - 13a + 18) = (8) (2a - 9) (a - 2)$
 $= 0$

 $a = \frac{9}{2}$, 2 OR $b = \left(-\frac{23}{2}\right)$, 1

A1 A1 for either a

A1 for either *a* or *b* correct. Condone 2nd value. Spotted solution scores only B marks.

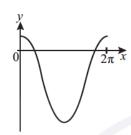
It. (ii) Last 5 marks $f^{-1}(x) = \sqrt{x+4} - 2$ B1 $g(1) = f^{-1} = (21) \text{ used}$ M1 $a + b = \sqrt{25} - 2 = 3$ Solve a + b = 3, 5a + b = 11 M1 a = 2, b = 1A1

Alt. (ii) Last 4 marks (a+b+7)(a+b-3)=0 M1A1 (Ignore solution involving a+b=-7) Solve a+b=3, 5a+b=11 M1 a=2, b=1 A1

Question 4

$$(x+1)(x-2)$$
 or other valid method
$$-1, 2$$

$$x < -1, x > 2$$
M1
A1


Attempt soln of eqn or other method Penalise \leq , \geq

 $f: x \mapsto 3\cos x - 2$ for $0 \le x \le 2\pi$.

(i)
$$3\cos x - 2 = 0 \rightarrow \cos x = \frac{2}{3}$$

 $\rightarrow x = 0.841 \text{ or } 5.44$

(ii) range is
$$-5 \le f(x) \le 1$$

(iii)

(iv) max value of
$$k = \pi$$
 or 180°.

(iv)
$$g^{-1}(x) = \cos^{-1}\left(\frac{x+2}{3}\right)$$

M1 A1 A1[↑]

[3] B2,1

[2]

B1 for ≥ -5 . B1 for ≤ 1 .

 $^{\uparrow}$ for $2\pi - 1$ st answer.

Makes cos subject, then cos⁻¹

B1,B1 B1 starts and ends at same point. Starts decreasing. One cycle only.

B1 for shape, not 'V' or 'U'.

[1]

[2]

[3]

[2]

В1

M1

A1

Make *x* the subject, copes with 'cos'. Needs to be in terms of *x*.

Question 6

(i)
$$x = (\pm)\sqrt{y-1}$$

 $f^{-1}: x \mapsto \sqrt{x-1} \text{ for } x > 1$

(ii)
$$ff(x) = (x^2 + 1)^2 + 1$$

 $x^2 + 1 = (\pm)13/4$
 $x = 3/2$

. (ii)
$$f(x) = f^{-1}(185/16) = 13/4$$
 M1
 $x = f^{-1}(13/4)$ M1
 $x = 3/2$ A1

B1 OR
$$y^2 = x - 1$$
 (x/y interchange 1st)

B1 Or $x^4 + 2x^2 - (153/16) = 0$ M1 Or $x^2 = 9/4, (-17/4)$ www. Condone $\pm 3/2$

> Alt.(ii) f(3/2) = 13/4 B1 f(13/4) = 185/16 B1 x = 3/2 B1 SC.B2 answer 1.5 with no working

 $f: x \mapsto 2x - 3, \ x \in \mathbb{R},$ $g: x \mapsto x^2 + 4x, x \in \mathbb{R}.$

(i)
$$ff = 2(2x - 3) - 3$$

Solves = 11 $\rightarrow x = 5$
(or $2x-3=11, x=7$. $2x-3=7 \rightarrow x=5$)

M1 **A**1 [2] Either forms ff correctly, or solves 2 equations co

(ii) min at
$$x = -2$$

 $\rightarrow \text{Range} \ge -4$

M1 A1 [2] Any valid method – could be guesswork.

(iii)
$$x^2 + 4x - 12 \quad (>0)$$

 $\rightarrow x = 2 \text{ or } -6$
 $\rightarrow x < -6, x > 2.$

M1 **A**1 A1

Makes quadratic = 0 + 2 solutions Correct limits – even if $>, <, \ge, <, =$

(iv)
$$gf(x) = (2x-3)^2 + 4(2x-3) = p$$

 $\rightarrow 4x^2 - 4x - 3 - p = 0$
Uses " $b^2 - 4ac$ " $16 = 16(-3-p)$
 $\rightarrow p = -4$

[3] B1

co unsimplified

$$→ 4x2 - 4x - 3 - p = 0$$
Uses "b² - 4ac" 16 = 16(-3 -p)
$$→ p = -4$$

M1 **A**1 [3] Use of discriminant

(v) -2

B1 [1]

[4]

co

(vi)
$$y = (x+2)^2 - 4$$

 $\sqrt{y+4} = x+2$
 $h^{-1}(x) = \sqrt{x+4} - 2$
B2,1
M1
A1

-1 for each error Correct order of operations co with x, not y. \pm left A0.

(i)		≤ 4 For f(x) allow x or y; [-5, 4], (-5,4)	B1 [[1]	Allow less explicit answers (eg $-5 \rightarrow 4$)
(ii)		roximately correct (independent of f) gion between (1, 1) and (4, 4); line -axis	B1 DB1	[2]	Ignore line $y = x$
(iii)	LINE:	$f^{-1}(x) = \frac{1}{3}(x+2)$	B1		Allow $y = \dots$ but must be a function of x
		for $-5 \le x \le 1$	B1B1		cao but allow <
	CURVE:	$5 - y = \frac{4}{x} \text{OR} x = 5 - \frac{4}{y}$	M1		
		$f^{-1}(x) = 5 - \frac{4}{x}$ oe	A1		cao
		for $1 < x \le 4$	B1	6]	cao but allow < or <
				-	

(a) (i)
$$(a+b)^{\frac{1}{3}} = 2$$
, $(9a+b)^{\frac{2}{3}} = 16$
 $a+b=8$, $9a+b=64$
 $a=7$, $b=1$

(ii) $x = (7y+1)^{\frac{1}{3}}$ (x/y interchange as first or last step)
 $x^3 = 7y + 1$ or $y^3 = 7x + 1$
 $5x = (1-x)^{-1}(x) = \frac{1}{7}(x^3 - 1)$ cao
 $5x = (1-x)^{-1}(x) = \frac{1}{7}(x) = \frac{1}{7}(x$

$$\mathbf{f}: x \mapsto 6 - 4\cos\left(\frac{1}{2}x\right)$$

$$\mathbf{(i)} \quad 6 - 4\cos\left(\frac{1}{2}x\right) = 4 \rightarrow 4\cos\left(\frac{1}{2}x\right) = 2$$

$$\mathbf{M1} \qquad \text{Makes } \cos\left(\frac{1}{2}x\right) \text{ the subject.}$$

$$\frac{1}{2}x = \frac{1}{3}\pi \quad x = \frac{2}{3}\pi$$

$$\mathbf{M1} \qquad \text{Looks up "} \frac{1}{2}x \text{" before } \times 2$$

$$co \quad (120^{\circ} \text{ gets A0 - decimals A0})$$

$$\mathbf{[3]} \qquad \text{condone } <$$

$$\mathbf{[2]} \qquad \text{fiii)}$$

$$\mathbf{B1} \qquad \mathbf{B1} \qquad \mathbf{Point of inflexion at } \pi$$

$$\mathbf{Fully correct}$$

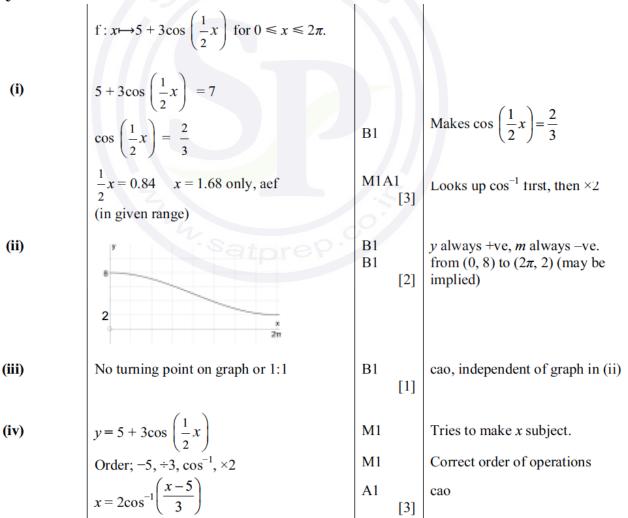
$$\mathbf{[2]} \qquad \mathbf{M3} \qquad \mathbf{M4} \qquad \mathbf{M4} \qquad \mathbf{M4} \qquad \mathbf{M5} \qquad \mathbf{M5} \qquad \mathbf{M6} \qquad \mathbf{$$

(i)
$$(x-1)^2-16$$
 B1B1 [2] Ft from (i) [1] Ft

(i) Attempt to find
$$(f^{-1})^{-1}$$

$$2xy = 1 - 5x \text{ or } \frac{1}{2x} = y + \frac{5}{2} \text{ Allow 1 sign error}$$
A1 Or with x/y transposed.

$$x = \frac{1}{2y + 5} \text{ oe Allow 1 sign error (total)}$$
A1 Or with x/y transposed. Allow $x = \frac{\frac{1}{2}}{y + \frac{5}{2}}$.


$$(f(x)) = \frac{1}{2x + 5} \text{ for } x \ge -\frac{9}{4}$$
A1 B1 Allow $\frac{\frac{1}{2}}{x + \frac{5}{2}}$. Condone $x > \frac{-9}{4}$, $(\frac{-9}{4}, \infty)$
(etc.)

(ii) $\mathbf{f}^{-1}(\frac{1}{x}) = \frac{1 - \frac{5}{x}}{\frac{2}{x}}$

$$\frac{x - 5}{2} \text{ or } \frac{1}{2}x - \frac{5}{2}$$
A1 B1 Reasonable attempt to find $\mathbf{f}^{-1}(\frac{1}{x})$.

| f:
$$x \mapsto 2x^2 - 6x + 5$$
 | M1 | Sets to 0 with p on LHS. Uses $b^2 - 4ac \to 36 - 8(5 - p)$ | DM1 | Sets to $0 \to p < \frac{1}{2}$ | 3 × B1 | [3] | co | must be "<", not " \leq ". |
| (ii) | $2x^2 - 6x + 5 = 2(x - \frac{3}{2})^2 + \frac{1}{2}$ | 3 × B1 | [2] | $(x \mapsto 2x^2 - 6x + 5 \text{ for } k \le x \le 4$ | B1 $^{\wedge}$ | B1 $^{\wedge}$ | [1] | (v) | h(x) = $2(x - \frac{3}{2})^2 + \frac{1}{2}$ | M1 | Using comp square form to try and get x as subject or y if transposed. Order of operations $\pm \frac{1}{2}$, ± 2 , $\sqrt{\frac{3}{2}}$ | DM1 | Order must be correct co (without \pm) | [3]

	$h = 60(1 - \cos kt)$			
(i)	Max h when $\cos = -1 \rightarrow 120$	B1	[1]	Со
(ii)	h = 0 and $t = 30$, or $h = 120$ and $t = 15\to \cos 30k = 1 or \cos 15k = -1\to 30k = 2\pi or 15k = \pi$	M1		Substituting a correct pair of values into the equation.
	$\rightarrow k = \frac{2\pi}{30} = \frac{\pi}{15}$	A1	[2]	co ag
(iii)	$90 = 60(1 - \cos kt)$ $\rightarrow \cos kt = \frac{-30}{60} = -0.5$ $\rightarrow kt = \frac{2\pi}{3} \text{ or } \rightarrow kt = \frac{4\pi}{3}$	B1		co – but there must be evidence of correct subtraction.
	→ Either $t = 10$ or 20 or both → $t = 10$ minutes	B1 B1	[3]	

(ii)
$$3x+1\leqslant -1 \text{ (Accept } 3x+1=-1,3a+1=-1)$$

$$x\leqslant -2/3 \Rightarrow \text{ largest value of } a \text{ is } -2/3 \text{ (in terms of } a)$$
(iii)
$$fg(x)=3(-1-x^2)+1$$

$$fg(x)+14=0\Rightarrow 3x^2=12 \text{ oe } (2 \text{ terms})$$

$$x=-2 \text{ only}$$
(iii)
$$gf(x)=-1-(3x+1)^2 \text{ oe }$$

$$gf(x)\leqslant -50\Rightarrow (3x+1)^2\geqslant 49 \text{ (Allow } \leqslant or =$$

$$3x+1\geqslant 7 \text{ or } 3x+1\le -7 \text{ (one sufficient)} \text{ www}$$

$$x\leqslant -8/3 \text{ only}$$
W1 Do not allow gf in (i) to score in (iii)
$$A1$$

$$A1$$

$$[2]$$
No marks in this part for gf used
$$A1$$

$$[3]$$
No marks in this part for fg used
$$A1$$

$$6/\geqslant 0$$
OR attempt soln of $9x^2+6x-48+/6$

$$6/\geqslant 0$$
OR $x-2\geqslant or 3x+8\leqslant 0 \text{ (one suffic)}$

	$f: x \to x^2 + ax + b ,$		
(i)			B1 for $(x + 3)^2$. B1 for -17
	$x^2 + 6x - 8 = (x+3)^2 - 17$	B1 B1	or B1 for $x = -3$, B1 $y = -17$
	or $2x + 6 = 0 \rightarrow x = -3 \rightarrow y = -17$		
	\rightarrow Range $f(x) \geqslant -17$	B1√	Following through visible method.
		[3]	
(ii)	(x-k)(x+2k) = 0	M1	Realises the link between roots and
()	$\equiv x^2 + 5x + b = 0$		the equation
	$\rightarrow k = 5$	A1	comparing coefficients of x
	$\rightarrow b = -2k^2 = -50$	A1	
		[3]	
(;;;)	$(x+a)^2 + a(x+a) + b = a$	M1	Replaces " x " by " $x + a$ " in 2 terms
(111)	Uses $b^2 - 4ac \rightarrow 9a^2 - 4(2a^2 + b - a)$	DM1	Any use of discriminant
	Uses $b^2 - 4ac \rightarrow 9a^2 - 4(2a^2 + b - a)$ $\rightarrow a^2 < 4(b - a)$	A1	Any use of discriminant
	- u - (0 u)	[3]	
0	. 10	[-]	
Quest	tion 18		

f:
$$x \mapsto 3x + 2$$
, $g: x \mapsto 4x - 12$
f⁻¹(x) = $\frac{x-2}{3}$
gf(x) = 4(3 x + 2) - 12
Equate $\rightarrow x = \frac{2}{7}$

B1

M1

Equates, collects terms, +soln

[4]

(ii)
$$-(1)(x-3)^2 + 4$$

Bibibi

[3]

Smallest (m) is 3

Bibibi

[3]

Accept $m \ge 3$, $m = 3$. Not $x \ge 3$.

[1]

Fit their b

Correct order of operations

 $f^{-1}(x) = 3 + \sqrt{4 - x}$ cao

Domain is $x \le 0$

Bibibi

[3]

Accept $m \ge 3$, $m = 3$. Not $x \ge 3$.

[1]

Accept $m \ge 3$, $m = 3$. Not $x \ge 3$.

[1]

Accept $m \ge 3$, $m = 3$. Not $x \ge 3$.

[1]

Accept $m \ge 3$, $m = 3$. Not $x \ge 3$.

[1]

Accept $m \ge 3$, $m = 3$. Not $x \ge 3$.

[1]

Accept $m \ge 3$, $m = 3$. Not $x \ge 3$.

[1]

Accept $m \ge 3$, $m = 3$. Not $x \ge 3$.

[1]

Accept $m \ge 3$, $m = 3$. Not $m \ge 3$.

[2]

Accept $m \ge 3$, $m = 3$. Not $m \ge 3$.

[3]

(i)
$$2a + 4b = 8$$

 $2a^2 + 3a + 4b = 14$
 $2a^2 + 3a + (8 - 2a) = 14 \rightarrow (a + 2)(2a - 3) = 0$

$$a = -2 \text{ or } 3/2$$

$$b = 3 \text{ or } 5/4$$
A1
$$y = \left(x - \frac{1}{2}\right)^2 - \frac{13}{4} \text{ Attempt completing of square}$$

$$x - \frac{1}{2} = (\pm)\sqrt{y + \frac{13}{4}} \text{ oe}$$

$$f^{-1}(x) = \frac{1}{2} - \sqrt{x + \frac{13}{4}} \text{ oe}$$

$$Domain of f^{-1} \text{ is } (x) \geqslant -13/4$$
M1
Substitute in -2 and -3

Sub linear into quadratic & attempt solution

If A0A0 scored allow SCA1 for either $(-2,3)$ or $(3/2,5/4)$

M1A1
Allow with x/y transposed

Allow $y = x - \frac{1}{2} = (\pm)\sqrt{y + \frac{13}{4}}$ oe
Allow $y = x - \frac{13}{4} =$

(iv)
$$y = 6x^2 - 21 \Rightarrow x = (\pm)\sqrt{\frac{y+21}{6}}$$
 M1
 $(fg)^{-1}(x) = -\sqrt{\frac{x+21}{6}}$ A1 Allow $y = \dots$ Must be a function of x ft from their part (iii) but x essential

(i)
$$6x - x^2 - 5 \le 3$$

 $\rightarrow x^2 - 6x + 8 \ge 0$

MI $\pm (6x - x^2 - 8) = , \le , \ge 0$ and attempts to solve Needs both values whether =2, <2, >2

Accept all recognisable notation.

(ii) Equate $mx + c$ and $6x - x^2 - 5$ Use of " $b^2 - 4ac$ "

 $4c = m^2 - 12m + 16$. AG

OR

$$\frac{dy}{dx} = 6 - 2x = m \rightarrow x = \left(\frac{6 - m}{2}\right)$$
 $4c = m^2 - 12m + 16$. AG

MI Equates $\frac{dy}{dx}$ to m and rearrange

$$m\left(\frac{6 - m}{2}\right) + c = 6\left(\frac{6 - m}{2}\right) - \left(\frac{6 - m}{2}\right)^2 - 5$$
 $4c = m^2 - 12m + 16$. AG

(iii) $6x - x^2 - 5 = 4 - (x - 3)^2$

(iv) $k = 3$.

(v) $g^{-1}(x) = \sqrt{4 - x} + 3$

MI $\pm (6x - x^2 - 8) = , \le , \ge 0$ and attempts to solve Needs both values whether =2, <2, >2

Accept all recognisable notation.

MI Equates, sets to 0. Use of discriminant with values of $a.b.c$ independent of x .

 $= (0)$ must appear before last line.

MI Equates $\frac{dy}{dx}$ to m and rearrange

MI Equates $mx + c$ and $6x - x^2 - 5$ and substitutes for x

AI

[3]

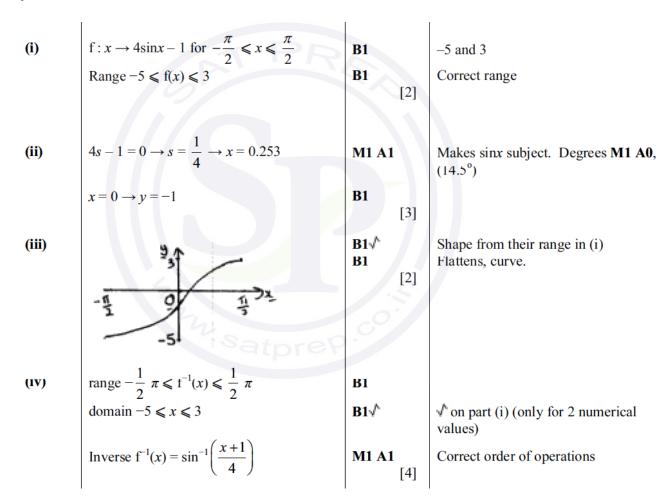
BI BI

[2]

MI AI

[2]

 $\frac{dy}{dx} = (1 - x)^2 + (1 - x)^2 +$


$$f: x \mapsto 10 - 3x, g: x \mapsto \frac{10}{3 - 2x},$$

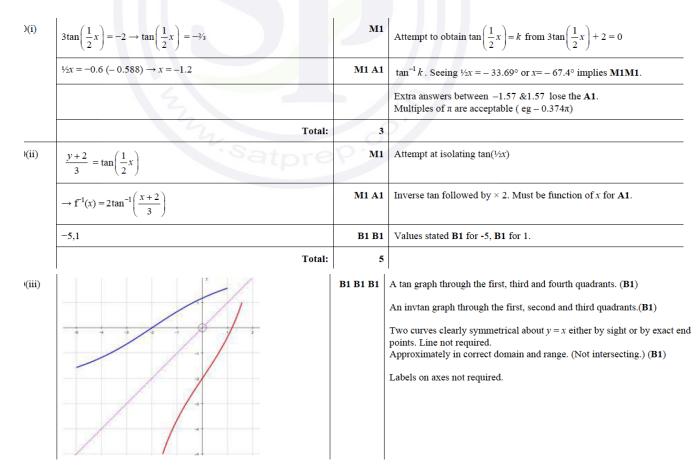
$$ff(x) = 10 - 3(10 - 3x)$$

$$gf(2) = \frac{10}{3 - 2(10 - 3(2))} (= -2)$$

$$x = 2$$
B1 Correct unsimplified expression with 2 in for x

B1
$$[3]$$

(i)	$(2x+3)^2+1$ Cannot score retrospectively in (iii)	B1B1B1	[3]	For $a = 2$, $b = 3$, $c = 1$
(ii)	g(x) = 2x + 3 cao	B1	[1]	In (ii),(iii) Allow if from $4\left(x+\frac{3}{2}\right)^2+1$
(iii)	$y = (2x+3)^2 + 1 \Rightarrow 2x + 3 = (\pm)\sqrt{y-1}$ or ft from (i)	M1		Or with x/y transposed.
	$x = (\pm)\frac{1}{2}\sqrt{y-1} - \frac{3}{2}$ or ft from (i)	M1		Or with x/y transposed Allow sign errors.
	$(fg)^{-1}(x) = \frac{1}{2}\sqrt{x-1} - \frac{3}{2}$ can Note alt. method $g^{-1}f^{-1}$	A1		Must be a function of x. Allow $y = \dots$
	Domain is $(x) > 10$	B1	[4]	Allow (10, ∞), $10 < x < \infty$ etc. but not with y or f or g involved. Not ≥ 10
	ALT. method for first 3 marks:			
	Trying to obtain $g^{-1}[f^{-1}(x)]$	*M1		
	$g^{-1} = \frac{1}{2}(x-3), f^{-1} = \sqrt{x-1}$	DM1		Both required
	A1 for $\frac{1}{2}\sqrt{x-1} - \frac{3}{2}$	A1		
Quest	ion 26			
(1)	2 < 5(4) < 7	T.lautificia	- h - +1	2 and 7 or correctly stating and


(i)	$3 \leqslant f(x) \leqslant 7$	B1 B1	[2]	Identifying both 3 and 7 or correctly stating one inequality. Completely correct statement. NB $3 \le x \le 7$ scores B1B0
(ii)	- Sator	B1* DB1	[2]	One complete oscillation of a sinusoidal curve between 0 and π . All correct, initially going downwards, all above $f(x)=0$
(iii)	$5-2\sin 2x = 6 \rightarrow \sin 2x = -\frac{1}{2}$ $\rightarrow 2x = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}$ $\rightarrow x = \frac{7\pi}{12} \text{ or } \frac{11\pi}{12}$ $0.583\pi \text{ or } 0.917\pi$ $\frac{\pi + 0.524}{2} \text{ or } \frac{2\pi - 0.524}{2}$ $1.83^{\circ} \text{ or } 2.88^{\circ}$	M1 A1 A1√	[3]	Make $\sin 2x$ the subject. $\sqrt[4]{}$ for $\frac{3\pi}{2} - 1^{st}$ answer from $\sin 2x = -\frac{1}{2}$ only, if in given range
(iv)	$k = \frac{\pi}{4}$	В1	[1]	
(v)	$2\sin 2x = 5 - y \rightarrow \sin 2x = \frac{1}{2}(5 - y)$	M1 M1		Makes $\pm \sin 2x$ the subject soi by final answer. Correct order of operations including correctly dealing with "–".
	$(g^{-1}(x)) = \frac{1}{2} \sin^{-1} \frac{(5-x)}{2}$	A1	[3]	Must be a function of x

(i)	fg(x) = 5x Range of fg is $y \ge 0$ oe		M1A1 B1	[3]	only Accept $y > 0$
(ii)	$y = 4/(5x+2) \Rightarrow x = (4-2y)/5y$ $g^{-1}(x) = (4-2x)/5x$ 0, 2 with no incorrect inequality $0 < x \le 2 \text{ oe, c.a.o.}$	oe oe	M1 A1 B1,B1 B1	[5]	Must be a function of x

3(i)	$gf(x) = 3(2x^2 + 3) + 2 = 6x^2 + 11$	B1	AG
	$fg(x) = 2(3x+2)^2 + 3$ Allow $18x^2 + 24x + 11$	B1	ISW if simplified incorrectly. Not retrospectively from (ii)
	Total:	2	
(ii)	$y = 2(3x+2)^2 + 3 \implies 3x + 2 = (\pm)\sqrt{(y-3)/2}$ oe	M1	Subtract 3; divide by 2; square root. Or x/y interchanged. Allow $\frac{\sqrt{y-3}}{2}$ for 1st M
	$\Rightarrow x = (\pm)\frac{1}{3}\sqrt{(y-3)/2} - \frac{2}{3} \text{ oe}$	M1	Subtract 2; divide by 3; Indep. of 1st M1. Or x/y interchanged.
	\Rightarrow (fg) ⁻¹ (x)= $\frac{1}{3}\sqrt{(x-3)/2}-\frac{2}{3}$ oe	Al	Must be a function of x. Allow alt. method $g^{-1}f^{-1}(x)$ OR $18\left(x+\frac{2}{3}\right)^2+3 \Rightarrow (fg)^{-1}(x)=\sqrt{\frac{x-3}{18}}-\frac{2}{3}$
	Solve $their(fg)^{-1}(x) \ge 0$ or attempt range of fg	M1	Allow <u>range</u> $\geqslant 3$ for M only. Can be implied by correct answer or $x > 11$
	Domain is $x \geqslant 11$	Al	/ 1
	Total:	5	1.5
(iii)	$6(2x)^2 + 11 = 2(3x + 2)^2 + 3$	M1	Replace x with 2x in gf and equate to their $fg(x)$ from (i). Allow $\underline{12}x^2 + 11 =$
	$6x^2 - 24x = 0$ oe	A1	Collect terms to obtain correct quadratic expression.
	x=0 , 4	A1	Both required
	Total:	3	

'(i)	$\left(3x-1\right)^2+5$	B1B1B1	First 2 marks dependent on correct $(ax+b)^2$ form. OR $a=3$, $b=-1$, $c=5$ e.g. from equating coefs
	Tot	al: 3	
(ii)	Smallest value of p is 1/3 seen. (Independent of (i))	B1	Allow $p \ge 1/3$ or $p = 1/3$ or $1/3$ seen. But not in terms of x.
	Tot	al: 1	
(iii)	$y = (3x-1)^2 + 5 \Rightarrow 3x-1 = (\pm)\sqrt{y-5}$	B1 FT	OR $y=9\left(x-\frac{1}{3}\right)^2+5 \Rightarrow \left(y-5\right)/9 = \left(x-\frac{1}{3}\right)^2$ (Fresh start)
	$x = (\pm) \frac{1}{2} \sqrt{y-5} + \frac{1}{2} $ OE	B1 FT	Both starts require 2 operations for each mark. FT for <i>their</i> values from part (i)
	$f^{-1}(x) = \frac{1}{3}\sqrt{x-5} + \frac{1}{3}$ OE domain is $x \ge their 5$	B1B1 FT	Must be a function of x and \pm removed. Domain must be in terms of x . Note: $\sqrt{y-5}$ expressed as $\sqrt{y}-\sqrt{5}$ scores Max B0B0B0B1 [See below for general instructions for different starts]
	Tot	al: 4	
(iv)	q < 5 CAO	B1	
	Tot	al: 1	

9(iii) For start $(ax - b)^2 + c$ or $a(x - b)^2 + c$ ($a \ne 0$) ft for their a, b, cFor start $(x - b)^2 + c$ ft but award only **B1** for 3 correct operations For start $a(bx - c)^2 + d$ ft but award **B1** for first2 operations correct and **B1** for the next 3 operations correct

	1	ı	ı
9	$f: x \mapsto \frac{2}{3-2x} g: x \mapsto 4x + a,$		
(i)	$y = \frac{2}{3 - 2x} \rightarrow y(3 - 2x) = 2 \rightarrow 3 - 2x = \frac{2}{y}$	M1	Correct first 2 steps
		M1 A1	Correct order of operations, any correct form with $f(x)or y =$
	Total:	3	
(ii)	$gf(-1) = 3 \ f(-1) = \frac{2}{5}$	M1	Correct first step
	$\frac{8}{5} + a = 3 \rightarrow a = \frac{7}{5}$	M1 A1	Forms an equation in a and finds a , OE
			(or $\frac{8}{3-2x} + a = 3$, M1 Sub and solves M1 , A1)
	Total:	3	
iii)	$g^{-1}(x) = \frac{x-a}{4} = f^{-1}(x)$	M1	Finding $g^{-1}(x)$ and equating to their $f^{-1}(x)$ even if $a = 7/5$
	$\rightarrow x^2 - x(a+6) + 4(=0)$	M1	Use of $b^2 - 4ac$ on a quadratic with a in a coefficient
	Solving $(a+6)^2 = 16 \text{ or } a^2 + 12a + 20 (=0)$	M1	Solution of a 3 term quadratic
	$\rightarrow a = -2 \text{ or } -10$	A1	-111
	Total:	4	
Que	stion 32		
5(i)	$y=\frac{2}{\sqrt{2}} \Rightarrow y^2=\frac{2}{\sqrt{2}}+1$ OF	M1	

5(i)	$y = \frac{2}{x^2 - 1} \implies x^2 = \frac{2}{y} + 1 \text{OE}$	M1	
	$x = (\pm)\sqrt{\frac{2}{y} + 1}$ OE	A1	With or without x/y interchanged.
	$f^{-1}(x) = -\sqrt{\frac{2}{x} + 1}$ OE	A1	Minus sign obligatory. Must be a function of x .
		3	
5(ii)	$\left(\frac{2}{x^2 - 1}\right)^2 + 1 = 5$	B1	
	$\frac{2}{x^2 - 1} = (\pm)2 \text{OE} \text{OR} x^4 - 2x^2 = 0 \text{OE}$ $x^2 - 1 = (\pm)1 \implies x^2 = 2 \text{ (or 0)}$ $x = -\sqrt{2} \text{or} -1.41 \text{ only}$	B1	Condone $x^2 = 0$ as an additional solution
	$x = -\sqrt{2} \qquad \text{or} \qquad -1.41 \text{ only}$		
		4	

(a)(i)	$4 = a + \frac{1}{2}b$ $3 = a + b$	M1	Forming simultaneous equations and eliminating one of the variables – probably a . May still include $\sin \frac{\pi}{2}$ and / or $\sin \frac{\pi}{6}$
	$\rightarrow a = 5, \ b = -2$	A1 A1	
		3	
(a)(ii)	$ff(x) = a + b\sin(a + b\sin x)$	M1	Valid method for ff. Could be $f(0) = N$ followed by $f(N) = M$.
	$ff(0) = 5 - 2\sin 5 = 6.92$	A1	
6(b)	EITHER: 10 = c + d and -4 = c - d 10 = c - d and -4 = c + d	(M1	Either pair of equations stated.
	$c = 3, d = 7, -7 \text{ or } \pm 7$	A1 A1)	Either pair solved ISW
			Alternately c=3 B1, range = 14 M1 \rightarrow d = 7, -7 or \pm 7 A1
	OR: $y = 3 + 7\sin(x)$	(M1 A1 A1)	Either of these diagrams can be awarded M1.Correct values of c and/or d can be awarded the A1, A1
		3	
Quest	cion 35		

!(i)	$\frac{4-x}{5}$	B1	ОЕ
	Equate a valid attempt at f^1 with f , or with x , or f with $x \to \left(\frac{2}{3}, \frac{2}{3}\right)$ or $(0.667, 0.667)$	M1, A1	Equating and an attempt to solve as far $x =$. Both coordinates.
	atpie	3	
(ii)		B1	Line $y = 4 - 5x$ – must be straight, through approximately (0,4) and intersecting the positive x axis near (1,0) as shown.
		B1	Line $y = \frac{4-x}{5}$ – must be straight and through approximately (0, 0.8). No need to see intersection with x axis.
		В1	A line through $(0,0)$ and the point of intersection of a pair of straight lines with negative gradients. This line must be at 45° unless scales are different in which case the line must be labelled $y=x$.
		3	

(i)	gg(x) = g(2x - 3) = 2(2x - 3) - 3 = 4x - 9	M1A1	
		2	
ii)	$y = \frac{1}{x^2 - 9} \to x^2 = \frac{1}{y} + 9 \text{ OE}$	M1	Invert; add 9 to both sides or with x/y interchanged
	$f^{-1}(x) = \sqrt{\frac{1}{x} + 9}$	A1	
	Attempt soln of $\sqrt{\frac{1}{x} + 9} > 3$ or attempt to find range of f.	M1	
	(y > 0)		
	Domain is $x > 0$ CAO	A1	May simply be stated for B2
		4	
ii)	EITHER:	(M1	
	$\frac{1}{(2x-3)^2-9} = \frac{1}{7}$		
	$(2x-3)^2 = 16 \text{ or } 4x^2 - 12x - 7 = 0$	A1	
	x = 7/2 or -1/2	A1	
	x = 7/2 only	A1)	
	$OR:$ $g(x) = f^{-1} \left(\frac{1}{7}\right)$	(M1	
	g(x) = 4	A1	
	2x - 3 = 4	A1	
	x = 7/2	A1)	
		4	
ues	stion 37	1	

20.00	cion o /			
)(i)(a)	f(x) > 2	B1	Accept $y > 2$, $(2, \infty)$, $(2, \infty]$, range > 2	
	12	1		
)(i)(b)	g(x) > 6	B1	Accept $y > 6$, $(6, \infty)$, $(6, \infty]$, range > 6	
	athi	1		
0(i)(c)	2 < fg(x) < 4	B1	Accept 2 < y < 4, (2, 4), 2 < range < 4	
		1		
(ii)	The range of f is (partly) outside the domain of g	В	ı	
			_ [

)(i)	Smallest value of c is 2. Accept 2, $c = 2$, $c \ge 2$. Not in terms of x	B1	Ignore superfluous working, e.g. $\frac{d^2y}{dx^2} = 2$
		1	
)(ii)	$y = (x-2)^2 + 2 \rightarrow x - 2 = (\pm)\sqrt{y-2} \rightarrow x = (\pm)\sqrt{y-2} + 2$	M1	Order of operations correct. Allow sign errors
	$f^{-1}(x) = \sqrt{x-2} + 2$	A1	Accept $y = \sqrt{x-2} + 2$
	Domain of f^{-1} is $x \ge 6$. Allow ≥ 6 .	B1	Not $f^{-1}(x) \ge 6$. Not $f(x) \ge 6$. Not $y \ge 6$
		3	
(iii)	$\left[(x-2)^2 + 2 - 2 \right]^2 + 2 = 51 \text{ SOI Allow 1 term missing for M mark}$ Or $(x^2 - 4x + 6)^2 - 4(x^2 - 4x + 6) + 6 = 51$	M1A1	ALT. $f(x) = f^{-1}(51) (M1) = \sqrt{51-2} + 2 (A1)$
	$(x-2)^4 = 49$ or $(x^2 - 4x + 4)^2 = 49$ OR $x^4 - 8x^3 + 24x^2 - 32x - 33 = 0$ often implied by next line	A1	$(x-2)^2 + 2 = \sqrt{49} + 2 \text{ OR } f(x) = 9$
	$(x-2)^2 = (\pm)7$ OR $x^2 - 4x - 3 = 0$. Ignore $x^2 - 4x + 11 = 0$	A1	$(x-2)^2 = 7 \text{ OR } x = f^{-1}(9)$
	$x = 2 + \sqrt{7}$ only CAO $x = 2 + \sqrt[4]{49}$ scores 3/5	A1	$x = 2 + \sqrt{7}$
		5	
Que	stion 39		Made annual in 15 annual DI for 25 and DI for 200 200

Que	Stion 37		
′(i)	$25 - 2(x+3)^2$	B1 B1	Mark expression if present: B1 for 25 and B1 for $-2(x+3)^2$. If no expression award $a = 25$ B1 and $b = 3$ B1.
		2	
(ii)	(-3, 25)	B1FT	FT from answers to (i) or by calculus
		1	///
(iii)	$(k) = -3$ also allow x or $k \geqslant -3$	B1FT	FT from answer to (i) or (ii) NOT $x = -3$
	13	1	5
(iv)	EITHER	C	
	$y = 25 - 2(x+3)^2 \rightarrow 2(x+3)^2 = 25 - y$	*M1	Makes their squared term containing x the subject or equivalent with x/y interchanged first. Condone errors with $+/-$ signs.
	$x+3=(\pm)\sqrt{\frac{1}{2}(25-y)}$	DM1	Divide by ± 2 and then square root allow \pm .
	OR		
	$y = 7 - 2x^2 - 12x \rightarrow 2x^2 + 12x + y - 7 (= 0)$	*M1	Rearranging equation of the curve.
	$x = \frac{-12 \pm \sqrt{12^2 - 8(y - 7)}}{4}$	DM1	Correct use of their ' a , b and c ' in quadratic formula. Allow just + in place of \pm .
	$g^{-1}(x) = \sqrt{\left(\frac{25-x}{2}\right)} - 3$ oe	A1	\pm gets A0. Must now be a function of x. Allow $y =$
	isw if substituting $x = -3$		
		3	

9	$f: x \mapsto \frac{x}{2} - 2$, $g: x \mapsto 4 + x - \frac{x^2}{2}$		
9(i)	$4 + x - \frac{x^2}{2} = \frac{x}{2} - 2 \to x^2 - x - 12 = 0$	M1	Equates and forms 3 term quadratic
	\rightarrow (4, 0) and (-3, -3.5) Trial and improvement, B3 all correct or B0	A1 A1	A1 For both x values or a correct pair. A1 all.
		3	
)(ii)	f(x) > g(x) for $x > 4$, $x < -3$	B1, B1	B1 for each part. Loses a mark for \leq or \geq .
		2	
(iii)	$fg(x) = 2 + \frac{x}{2} - \frac{x^2}{4} - 2 \left(= \frac{x}{2} - \frac{x^2}{4} \right)$	B1	CAO, any correct form
	i.e. $-\frac{1}{4}((x-1)^2 - 1)$ or $\frac{dy}{dx} = \frac{1}{2} - \frac{2x}{4} = 0 \rightarrow x = 1$	M1 A1	Completes the square or uses calculus. First A1 is for $x = 1$ or completed square form
	$\rightarrow y = \frac{1}{4} \rightarrow \text{Range of fg} \leqslant \frac{1}{4},$	A1	CAO, OE e.g. $y \leqslant \frac{1}{4}$, $[-\infty, \frac{1}{4})$ etc.
		4	
(iv)	Calculus or completing square on 'h' $\rightarrow x = 1$	M1	May use a sketch or $-\frac{b}{2a}$
	$k=1$ (accept $k \geqslant 1$)	A1	Complete method. CAO
		2	

(i)	$[2][(x-3)^2][-7]$	B1B1B1	
	4	3	
(ii)	Largest value of k is 3. Allow $(k=)$ 3.	B1	Allow $k \le 3$ but not $x \le 3$ as final answer.
		1	
l(iii)	$y = 2(x-3)^2 - 7 \rightarrow (x-3)^2 = \frac{1}{2}(y+7)$ or with x/y transposed	M1	Ft their a, b, c. Order of operations correct. Allow sign errors
	$x = 3 \pm \sqrt{\frac{1}{2}(y+7)}$ Allow $3 + \sqrt{\text{or } 3 - \sqrt{\text{or with } x/y \text{ transposed}}}$	DM1	Ft their a, b, c. Order of operations correct. Allow sign errors
	$f^{-1}(x) = 3 - \sqrt{\frac{1}{2}(x+7)}$	A1	
	(Domain is x) $\geqslant their - 7$	B1FT	Allow other forms for interval but if variable appears must be x
		4	
l(iv)	$x + 3 \le 1$. Allow $x + 3 = 1$	M1	Allow $x + 3 \le k$
	largest p is -2 . Allow $(p =) -2$	A1	Allow $p \le -2$ but not $x \le -2$ as final answer.
	$fg(x) = f(x+3) = 2x^2 - 7$ cao	B1	
		3	

)(i)	$2x^2 - 12x + 7 = 2(x - 3)^2 - 11$	B1 B1	Mark full expression if present: B1 for $2(x-3)^2$ and B1 for -11 . If no clear expression award $a=-3$ and $b=-11$.
		2	
(ii)	Range (of f or y) > 'their - 11'	B1FT	FT for their 'b' or start again. Condone >. Do NOT accept $x > \text{ or } \geqslant$
		1	
(iii)	$(k =)$ -"their a" also allow x or $k \le 3$	B1FT	FT for their "a" or start again using $\frac{dy}{dx} = 0$.
			Do NOT accept $x = 3$.
		1	
(iv)	$y = 2(x-3)^2 - 11 \rightarrow y + 11 = 2(x-3)^2$	*M1	Isolating their $(x-3)^2$, condone – 11.
	$\frac{y+11}{2} = (x-3)^2$		
	$x = 3 + \sqrt{\left(\frac{y+11}{2}\right)} \text{ or } 3 - \sqrt{\left(\frac{y+11}{2}\right)}$	DM1	Other operations in correct order, allow ± at this stage. Condone – 3.
	$(g^{-1}(x) \text{ or } y) = 3 - \sqrt{\frac{x+11}{2}}$	A1	needs ''. x and y could be interchanged at the start.
		3	
Ques	stion 43		

(a)(i)	[Greatest value of a is] 3	B1	Must be in terms of a. Allow $a < 3$. Allow $a \le 3$
		1	
(a)(ii)	Range is $y > -1$	B1	Ft on their a. Accept any equivalent notation
	$y = (x-3)^2 - 1 \rightarrow (x-3)^2 = 1 + y \rightarrow x = 3(\pm)\sqrt{1+y}$	M1	Order of operations correct. Allow sign errors
	$f^{-1}(x) = 3 - \sqrt{1+x}$ cao	A1	
	Sathre	3	
(b)(i)	$gg(2x) = \left[(2x - 3)^2 - 3 \right]^2$	B1	
	$(2x-3)^4-6(2x-3)^2+9$	B1	
		2	
b)(ii)	$\left[16x^4 - 96x^3 + 216x^2 - 216x + 81\right] + \left[\left(-24x^2 + 72x - 54\right) + 9\right]$	B4,3,2,1,0	
	$16x^4 - 96x^3 + 192x^2 - 144x + 36$		
		4	

3(i)	$\left[\left(x-2\right)^2\right]+\left[3\right]$	B1 DB1	2nd B1 dependent on ±2 in 1st bracket
		2	
(ii)	Largest k is 2 Accept $k \leq 2$	B1	Must be in terms of k
		1	
(iii)	$y = (x-2)^2 + 3 \implies x-2 = (\pm)\sqrt{y-3}$	M1	
	$\Rightarrow f^{-1}(x) = 2 - \sqrt{x - 3} \text{ for } x > 4$	A1B1	
		3	
(iv)	$gf(x) = \frac{2}{x^2 - 4x + 7 - 1} = \frac{2}{(x - 2)^2 + 2}$	B1	Either form
	Since $f(x) > 4 \Rightarrow gf(x) < 2/3$ (or since $x < 1$ etc)	M1A1	2/3 in answer implies M1 www
	range of $gf(x)$ is $0 < gf(x)(< 2/3)$	B1	Accept $0 < y < 2/3$, $(0, 2/3)$ but $0 < x < 2/3$ is SCM1A1B0
		4	

Question 45

(i)	$\left[\left(x-2\right)^2\right]\left[+4\right]$	B1 DB1	2nd B1 dependent on 2 inside bracket
		2	
(ii)	$(x-2)^2 < 5 \rightarrow -\sqrt{5} < x-2 \text{ and/or } x-2 < \sqrt{5}$	M1	Allow e.g. $x-2 < \pm \sqrt{5}$, $x-2 = \pm \sqrt{5}$ and decimal equivalents for $\sqrt{5}$ For M1, ft from <i>their</i> (i). Also allow $\sqrt{13}$ instead of $\sqrt{5}$ for clear slip
	$2 - \sqrt{5} < x < 2 + \sqrt{5}$	A1A1	A1 for each inequality – allow two separate statements but there must be 2 inequalities for x. Non-hence methods, if completely correct, score SC 1/3. Condone ≤
	12	[3]	.5

(i)	Max(a) is 8	B1	Allow $a = 8$ or $a \le 8$
	Min(b) is 24	B1	Allow $b = 24$ or $b \ge 24$
		2	SCB1 for 8 and 24 seen
(ii)	$gf(x) = \frac{96}{x - 1} - 4 \text{ or } gf(x) = \frac{100 - 4x}{x - 1}$	B1	$2\left(\frac{48}{x-1}\right) - 4 \text{ is insufficient}$ Apply ISW
		1	
(iii)	$y = \frac{96}{x - 1} - 4 \rightarrow y + 4 = \frac{96}{x - 1} \rightarrow x - 1 = \frac{96}{y + 4}$	M1	FT from their(ii) provided (ii) involves algebraic fraction. Allow sign errors
	$(gf)^{-1}(x) = \frac{96}{x+4} + 1$	A1	OR $\frac{100+x}{x+4}$. Must be a function of x. Apply ISW
		2	

'(i)	$(f^{-1}(x)) = \frac{x+2}{3}$ oe	В1	
	$y = \frac{2x+3}{x-1} \to (x-1)y = 2x+3 \to x(y-2) = y+3$	M1	Correct method to obtain $x = $, (or $y = $, if interchanged) but condone $+/-$ sign errors
	$(g^{-1}(x) \text{ or } y) = \frac{x+3}{x-2} \text{ oe } \left(eg \frac{5}{x-2} + 1\right)$	A1	Must be in terms of x
	$x \neq 2$ only	B1	FT for value of x from their denominator = 0
		4	
(ii)	$(fg(x)) = \frac{3(2x+3)}{x-1} - 2(=\frac{7}{3})$	B1	
	18x + 27 = 13x - 13 or 3(4x + 11) = 7(x - 1) $(5x = -40)$	M1	Correct method from their $fg = \frac{7}{3}$ leading to a linear equation and collect like terms. Condone omission of $2(x-1)$.
	Alternative method for question 7(ii)		
	$(\mathbf{f}^{-1}(\frac{7}{3})) = \frac{13}{9}$	B1	
	$\frac{2x+3}{x-1} = \frac{13}{9} \to 9(2x+3) = 13(x-1) \ (\to 5x = -40)$	M1	Correct method from $g(x)$ = their $\frac{13}{9}$ leading to a linear equation and collect like terms.
	x = -8	A1	
		3	

Question 48

i(i)	$-2(x-3)^2+15$ (a = -3, b = 15)	B1 B1	Or seen as $a = -3$, $b = 15$ B1 for each value
	4	2	c /
(ii)	(f(x) ≤) 15	B1	FT for (≤) their "b" Don't accept (3,15) alone
	14	1	
(iii)	$gf(x) = 2(-2x^2 + 12x - 3) + 5 = -4x^2 + 24x - 6 + 5$	B1	
	$gf(x) + 1 = 0 \to -4x^2 + 24x = 0$	M1	
	x = 0 or 6	A1	Forms and attempts to solve a quadratic Both answers given.
		3	

$(y=)\left[\left(x-3\right)^2\right]\left[-2\right]$	*B1 DB1	DB1 dependent on 3 in 1st bracket
$x-3=(\pm)\sqrt{y+2}$ or $y-3=(\pm)\sqrt{x+2}$	M1	Correct order of operations
$\left(g^{-1}(x)\right) = 3 + \sqrt{x+2}$	A1	Must be in terms of x
Domain (of g^{-1}) is $(x) > -1$	B1	Allow $(-1, \infty)$. Do not allow $y > -1$ or $g(x) > -1$ or $g^{-1}(x) > -1$
	5	

$f(x) = g(x) \rightarrow 2x^2 + 6x + 1 + k \ (= 0)$	*M1	Forms a quadratic with all terms on same side.
Use of $b^2 = 4ac$	DM1	Uses the discriminant = 0.
(k =) 3½	A1	OE, WWW
Alternative method for question 9(i)		
$4x + 8 = 2 (\rightarrow x = -1\frac{1}{2})$	*M1	Differentiating, equating gradients and solving to give $x =$
Substitutes their x value into either $2x^2 + 6x + 1 + k = 0$ OR into the curve to find $y = \frac{-13}{2}$ then both values into the line.	DM1	Substituting appropriately for <i>their x</i> and proceeding to find a value of k.
(k =) 3½	A1	OE, WWW
	3	
$2x^2 + 6x - 8 (< 0)$	M1	Forms a quadratic with all terms on same side
- 4 and 1	A1	
-4 <x<1< td=""><td>A1</td><td>CAO</td></x<1<>	A1	CAO
	3	
$\left(\mathbf{g}^{-1}(x)\right) = \frac{x-1}{2}$	B1	Needs to be in terms of x.
$(g^{-1}f(x)) = \frac{2x^2 + 8x + 1 - 1}{2} = 0 \rightarrow (2x^2 + 8x = 0) \rightarrow x =$	M1	Substitutes f into g^{-1} and attempts to solve it = 0 as far as $x =$
0,-4	A1	CAO
	3	

Question 51

(Least value of f(x) or y = -7 or > -7

(i)	Range of f is $0 < f(x) < 3$	B1B1	OE. Range cannot be defined using x
	Range of g is $g(x) > 2$	B1	OE
		3	
(ii)	$(fg(x)) = \frac{3}{2(\frac{1}{x} + 2) + 1} = \frac{3x}{2 + 5x}$	B1B1	Second B mark implies first B mark
		2	
(iii)	$y = \frac{3x}{2+5x} \rightarrow 2y + 5xy = 3x \rightarrow 3x - 5xy = 2y$	M1	Correct order of operations
	$x(3-5y) = 2y \to x = \frac{2y}{3-5y}$	M1	Correct order of operations
	$\left(\left(fg \right)^{-1} \left(x \right) \right) = \frac{2x}{3 - 5x}$	A1	
		3	

B1FT

FT for their b from a correct form of the expression.

[Stretch] [factor 2, x direction (or y-axis invariant)]	*B1 DB1	
[Translation or Shift] [1 unit in y direction] or [Translation/Shift] $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	B1B1	Accept transformations in either order. Allow (0, 1) for the vector
	4	

Question 53

9(a)	$\left[2(x+3)^2\right][-7]$	B1B1	Stating $a = 3, b = -7$ gets B1B1
		2	
9(b)	$y = 2(x+3)^2 - 7 \rightarrow 2(x+3)^2 = y+7 \rightarrow (x+3)^2 = \frac{y+7}{2}$	M1	First 2 operations correct. Condone sign error or with x/y interchange
	$x+3=(\pm)\sqrt{\frac{y+7}{2}} \rightarrow x=(\pm)\sqrt{\frac{y+7}{2}}-3 \rightarrow f^{-1}(x)=-\sqrt{\frac{x+7}{2}}-3$	A1FT	FT on their a and b . Allow $y =$
	Domain: $x \ge -5$ or ≥ -5 or $[-5, \infty)$	B1	Do not accept $y =, f(x) =, f^{-1}(x) =$
		3	
9(c)	$fg(x) = 8x^2 - 7$	B1FT	SOI. FT on their -7 from part (a)
	$8x^2 - 7 = 193 \rightarrow x^2 = 25 \rightarrow x = -5$ only	B1	
	Alternative method for question 9(c)		
	$g(x) = f^{-1}(193) \rightarrow 2x - 3 = -\sqrt{100} - 3$	M1	FT on their $f^{-1}(x)$
	x = -5 only	A1	///
		2	
9(d)	(Largest k is) $-\frac{1}{2}$	B1	Accept $-\frac{1}{2}$ or $k \leqslant -\frac{1}{2}$
	74	1	

3(a)	(y) = f(-x)	B1
		1
(b)	(y) = 2f(x)	B1
		1
3(c)	(y) = f(x+4) - 3	B1 B1
		2

(a)	$\left[\left(x-2\right)^2\right]\left[-1\right]$	B1 B1
		2
(Ъ)	Smallest $c = 2$ (FT on their part (a))	B1FT
		1
(c)	$y = (x-2)^2 - 1 \rightarrow (x-2)^2 = y+1$	*M1
	$x = 2(\pm)\sqrt{y+1}$	DM1
	$(f^{-1}(x)) = 2 + \sqrt{x+1} \text{ for } x > 8$	A1
		3
(d)	$gf(x) = \frac{1}{(x-2)^2 - 1 + 1} = \frac{1}{(x-2)^2}$ OE	В1
	Range of gf is $0 < gf(x) < \frac{1}{9}$	B1 B1
		3

(a)	ff(x) = a - 2(a - 2x)	M1
	ff(x) = 4x - a	A1
	$\mathbf{f}^{-1}(x) = \frac{a - x}{2}$	M1 A1
		4
(b)	$4x - a = \frac{a - x}{2} \longrightarrow 9x = 3a$	M1
	$x=\frac{a}{3}$ Satpre?	A1
		2

(a)	f(x) from -1 to 5	B1B1
	g(x) from -10 to 2 (FT from part (a))	B1FT
		3
(b)		B2, 1
		2
(c)	Reflect in x-axis	B1
	Stretch by factor 2 in the y direction	B1
	Translation by $-\pi$ in the <i>x</i> direction OR translation by $\begin{pmatrix} 0 \\ -\pi \end{pmatrix}$.	B1
		3

Question 58

(a)	$3(3x+b)+b=9x+4b \rightarrow 10=18+4b$	M1
	b = -2	A1
	Either $f(14) = 2$ or $f^{-1}(x) = 2(x + a)$ etc.	M1
	a = 5	A1
	3	4
(b)	$\mathbf{gf}(x) = 3\left(\frac{1}{2}x - 5\right) - 2$	M1
	$gf(x) = \frac{3}{2}x - 17$	A1
		2

(a)	$-1 \leqslant f(x) \leqslant 2$	B1 B1
		2
(b)	k=1	B1
	Translation by 1 unit upwards parallel to the y-axis	B1
		2
(c)	$y = -\frac{3}{2}\cos 2x - \frac{1}{2}$	B1
		1

i(a)	$y = \frac{2x}{3x-1} \to 3xy - y = 2x \to 3xy - 2x = y \text{ (or } -y = 2x - 3xy)$	*M1	For 1st two operations. Condone a sign error
	$x(3y-2)=y \rightarrow x = \frac{y}{3y-2}$ (or $x = \frac{-y}{2-3y}$)	DM1	For 2nd two operations. Condone a sign error
	$\left(\mathbf{f}^{-1}(x)\right) = \frac{x}{3x - 2}$	A1	Allow $(f^{-1}(x)) = \frac{-x}{2-3x}$
		3	
i(b)	$\left[\frac{2(3x-1)+2}{3(3x-1)}\right] = \left[\frac{6x}{3(3x-1)} = \frac{2x}{3x-1}\right]$	B1 B1	AG, WWW First B1 is for a correct single unsimplified fraction. An intermediate step needs to be shown. Equivalent methods accepted.
		2	
(c)	$(f(x)) > \frac{2}{3}$	B1	Allow $(y) > \frac{2}{3}$. Do not allow $x > \frac{2}{3}$
	TPR	1	

Question 61

(a)	$\left[\left(x+3\right)^2\right] \ \left[-4\right]$	B1 B1	
		2	
(b)	[Translation or shift] $\begin{pmatrix} -3 \\ -4 \end{pmatrix}$	B1 B1 FT	Accept [translation/shift] $\begin{pmatrix} -their\ a \\ their\ b \end{pmatrix}$ OR translation –3 units in x-direction and (translation) –4 units in y-direction.
		2	7 / /

(a)	5, -1	B1 B1	Sight of each value
	14	2	
(b)	SatpreP	*B1	Needs to be a curve, not straight lines. One complete cycle starting and finishing at <i>their</i> largest value.
	0 n/2 n	DB1	One complete cycle starting and finishing at $y = 5$ and going down to $y = -1$ and starting to level off at least one end.
		2	

(c)(i)	0 solution	B1	
		1	
(c)(ii)	2 solutions	B1	
		1	
(c)(iii)	1 solution	B1	
		1	
.(d)	Stretch by (scale factor) $\frac{1}{2}$, parallel to x-axis or in x direction (or	B1	
	horizontally)		
	Translation of $\begin{pmatrix} 0 \\ 4 \end{pmatrix}$	B1	Accept translation/shift Accept translation 4 units in positive <i>y</i> -direction.
		2	
.(e)	Translation of $\begin{pmatrix} -\frac{\pi}{2} \\ 0 \end{pmatrix}$	B1	Accept translation/shift Accept translation $-\frac{\pi}{2}$ units in x-direction.
	Stretch by (scale factor) 2 parallel to y-axis (or vertically).	B1	
		2	

(a)	0	B1	
		1	
)	$(f^{-1}(x)) = \frac{x+2}{4}, (g^{-1}(x)) = \frac{4-x}{x} \text{ or } \frac{4}{x} - 1$	B1 B1	OE. Sight of correct inverses.
	$x^2 + 6x - 16 (= 0)$	B1	Equating inverses and simplifying.
	(x+8) and $(x-2)$	M1	Correct attempt at solution of <i>their</i> 3-term quadratic-factorising, completing the square or use of formula.
	(x =) 2 or -8	A1	Do not accept answers obtained with no method shown.
	13	5	

Question 64 (a) $\int_{f_0(x)=(2x)}^{f_0(x)=(2x)}$

(a)	$fg(x) = (2x+1)^2 + 3$	B1	OE
		1	
(b)	$y = (2x+1)^2 + 3 \rightarrow 2x+1 = (\pm)\sqrt{y-3}$	M1	1st two operations. Allow one sign error or x/y interchanged
	$x = (\pm)\frac{1}{2}\left(\sqrt{y-3} - 1\right)$	M1	OE 2nd two operations. Allow one sign error or x/y interchanged
	$(fg^{-1}(x)) = \frac{1}{2}(\sqrt{x-3} - 1) \text{ for } (x) > 3$	A1 B1	Allow $(3, \infty)$
		4	
(c)	$gf(x) = 2(x^2 + 3) + 1$	B1	SOI
	$(2x+1)^2 + 3 - 3 = 2(x^2+3) + 1 \rightarrow 2x^2 + 4x - 6 (= 0)$	*M1	Express as 3-term quadratic
	(2)(x+3)(x-1) (=0)	DM1	Or quadratic formula or completing the square
	x = 1	A1	
		4	

$(y=)[3]+[2]\left[\cos\frac{1}{2}\theta\right]$	B1 B1 B1	
	3	

(a)	$\left[f(x)=\right](x+1)^2+2$	B1 B1	Accept $a = 1, b = 2$.
	Range [of f is (y)] $\geqslant 2$	B1FT	OE. Do not allow $x \ge 2$, FT on their b.
		3	
(b)	$y = (x+1)^2 + 2$ leading to $x = [\pm]\sqrt{y-2} - 1$	M1	Or by using the formula. Allow one sign error.
	$f^{-1}(x) = -\sqrt{x-2} - 1$	A1	
	- BA	2	
(c)	$2(x^2+2x+3)+1=13$	B1	Or using a correct completed square form of $f(x)$.
	$2x^2 + 4x - 6[=0]$ leading to $(2)(x-1)(x+3)[=0]$	B1	Or $x = 1, x = -3$ using formula or completing square. Must reach 2 solutions.
	x = -3 only	B1	
		3	
Ques	(Stretch) (factor 3 in a direction on parallel to the average)		

(a)	(Stretch) (factor 3 in y direction or parallel to the y-axis)	B1 B1	
	(Translation) $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$	B1 B1	Allow Translation 4 (units) in x direction. N.B. Transformations can be given in either order.
	4	4	
(b)	[y =] 3f(x - 4)	B1 B1	B1 for 3, B1 for $(x-4)$ with no extra terms.
	Satprer	2	

(a)	$[fg(x)] = \frac{1}{(2x+1)^2} - 1$	B1	SOI
	$1/(2x+1)^{2} - 1 = 3 \text{ leading to } 4(2x+1)^{2} = 1$ or $\frac{1}{(2x+1)} = [\pm]2 \text{ or } 16x^{2} + 16x + 3 = 0$	M1	Setting $fg(x)=3$ and reaching a stage before $2x+1=\pm \frac{1}{2}$ or reaching a 3 term quadratic in x
	$2x+1=\pm\frac{1}{2}$ or $2x+1=-\frac{1}{2}$ or $(4x+1)(4x+3)[=0]$	A1	Or formula or completing square on quadratic
	$x = -\frac{3}{4}$ only	A1	
	Alternative method for Question 8(a)		
	$x^2 - 1 = 3$	M1	
	g(x) = -2	A1	
	$\frac{1}{(2x+1)} = -2$	M1	
	$x = -\frac{3}{4}$ only	A1	
		4	
(b)	$y = \frac{1}{(2x+1)^2} - 1$ leading to $(2x+1)^2 = \frac{1}{y+1}$ leading to $2x+1=[\pm]\frac{1}{\sqrt{y+1}}$	*M1	Obtain $2x+1$ or $2y+1$ as the subject
	$x = [\pm] \frac{1}{2\sqrt{y+1}} - \frac{1}{2}$	DM1	Make $x(\text{or }y)$ the subject
	$-\frac{1}{2\sqrt{x+1}} - \frac{1}{2}$	A1	OE e.g. $-\frac{\sqrt{x+1}}{2x+2} - \frac{1}{2}$, $-\left(\sqrt{\frac{-x}{4x+4} + \frac{1}{4}} + \frac{1}{2}\right)$
		3	

(a)	$f(x) = (x-1)^2 + 4$	B1	
	$g(x) = (x+2)^2 + 9$	B1	
	g(x) = f(x+3) + 5	B1 B1	B1 for each correct element. Accept $p = 3, q = 5$
		4	
(b)	Translation or Shift	B1	
	$\begin{pmatrix} -3 \\ 5 \end{pmatrix}$ or acceptable explanation	B1 FT	If given as 2 single translations both must be described correctly e.g. $\begin{pmatrix} -3 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 5 \end{pmatrix}$ FT from their $f(x+p)+q$ or their $f(x) \rightarrow g(x)$ Do not accept $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$ or $\begin{pmatrix} -2 \\ 9 \end{pmatrix}$
		2	

(a)	$ff(x) = 2(2x^2 + 3)^2 + 3$	M1	Condone = 0.
	$8x^4 + 24x^2 + 21$	A1	ISW if correct answer seen. Condone = 0.
		2	
(b)	$8x^4 + 24x^2 + 21 = 34x^2 + 19 \Rightarrow 8x^4 + 24x^2 - 34x^2 + 21 - 19 = 0$	M1	Equating $34x^3 + 19$ to <i>their</i> 3-term $ff(x)$ and collect all terms on one side condone \pm sign errors.
	$8x^4 - 10x^2 + 2[=0]$	A1	
	$[2](x^2-1)(4x^2-1)$	M1	Attempt to solve 3-term quartic or 3-term quadratic by factorisation, formula or completing the square or factor theorem.
	$\left[x^2 = 1 \text{ or } \frac{1}{4} \text{ leading to }\right] x = 1 \text{ or } x = \frac{1}{2}$	A1	If factorising, factors must expand to give $8x^4$ or $4x^4$ 4 or <i>their</i> ax^4 otherwise M0A0 due to calculator use. Condone ± 1 , $\pm \frac{1}{2}$ but not $\sqrt{\frac{1}{4}}$ or $\sqrt{1}$.
		4	

Question 71

(a)	Translation $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	B1	Allow shift and allow by 1 in x-direction or [parallel to/on/in/along/against] the x-axis or horizontally. 'Translation by 1 to the right' only, scores B0
	Stretch	B1	Stretch. SC B2 for amplitude doubled.
	Factor 2 in y-direction	B1	With/by factor 2 in y-direction or [parallel to/on/in/along/against] the y-axis or vertically or with x axis invariant 'With/by factor 2 upwards' only, scores B0. Accept SF as an abbreviation for scale factor.
		3	Note: Transformations can be in either order
(b)	$[-\sin 6x][+15x] \text{ or } [\sin(-6x)][+15x] \text{ OE}$	B1 B1	Accept an unsimplified version. ISW. B1 for each correct component – square brackets indicate each required component.
	3		If B0, SC B1 for either $\sin(-2x) + 5x$ or $-\sin(2x) + 5x$ or $\sin 6x - 15x$ or $\sin \left(-\frac{2}{3}x\right) + \frac{5}{3}x$
	4	2	

(a)	Range of f is $f(x) \ge -4$	B1	Allow y, f or 'range' or $[-4,\infty)$
		1	
(b)	$y = (x-2)^2 - 4 \Rightarrow (x-2)^2 = y + 4 \Rightarrow x - 2 = +\sqrt{(y+4)} \text{ or } \pm \sqrt{(y+4)}$	M1	May swap variables here
	$\left[\mathbf{f}^{-1}(x)\right] = \sqrt{(x+4)} + 2$	A1	
		2	
(c)	$(x-2)^2 - 4 = -\frac{5}{3}x + 2 \Rightarrow x^2 - 4x + 4 - 4 = -\frac{5}{3}x + 2 \ [\Rightarrow x^2 - \frac{7}{3}x - 2 = 0]$	M1	Equating and simplifying to a 3-term quadratic
	$(3x+2)(x-3)[=0]$ or $\frac{7\pm\sqrt{7^2-4(3)(-6)}}{6}$ OE	M1	Solving quadratic
	x = 3 only	A1	
		3	

$f^{1}(12) = 6$	M1	Substitute 12 into <i>their</i> $f^{-1}(x)$ and evaluate			
$g(f^{-1}(12)) = 6a + 2$	M1	Substitute <i>their</i> '6' into $g(x)$			
$g(g(f^{-1}(12))) = a(6a + 2) + 2 = 62$	M1	Substitute the result into $g(x)$ and $= 62$			
$6a^2 + 2a - 60 = 0$	M1	Forming and solving a 3-term quadratic			
$a = -\frac{10}{3}$ or 3	A1				
Alternative method for Question 9(d)					
$g(f^{-1}(x)) = a(\sqrt{x+4}+2)+2 \text{ or } gg(x) = a(ax+2)+2$	M1	Substitute their $f^{1}(x)$ or $g(x)$ into $g(x)$			
$g(g(f^{-1}(x))) = a(a(\sqrt{x+4}+2)+2)+2$	M1	Substitute the result into $g(x)$			
$g(g(f^{-1}(12))) = a(6a + 2) + 2 = 62$	M1	Substitute 12 and = 62			
$6a^2 + 2a - 60 = 0$	M1	Forming and solving a 3-term quadratic			
$a = -\frac{10}{3}$ or 3	A1				
	5				

a = 2	В1	
$b = \frac{\pi}{4}$	B1 or $\frac{2\pi}{8}$	
c = 1	B1	
	3	

{Reflection} {[in the] x-axis} or {Stretch of scale factor -1} {parallel to y-axis}	*B1 DB1	{} indicate how the B1 marks should be awarded throughout.
Then {Translation} $\left\{ \begin{pmatrix} 0 \\ 3 \end{pmatrix} \right\}$	B1 B1	Or Translation 3 units in the positive <i>y</i> -direction. N.B. If order reversed a maximum of 3 out of 4 marks awarded.
Alternative method for question 1		
$\{Translation\} \left\{ \begin{pmatrix} 0 \\ -3 \end{pmatrix} \right\}$	B1 B1	Or Translation 3 units in the negative <i>y</i> -direction.
Then {Reflection} {in the x-axis} or {Stretch of scale factor -1} {parallel to y-axis}	*B1 DB1	N.B. If order reversed a maximum of 3 out of 4 marks awarded.
	4	

B1 A reflection of the given curve in y = x (the line y = x can be implied by position of curve).

1

(b) $y = \frac{-x}{\sqrt{4-x^2}}$ leading to $x^2 = y^2(4-x^2)$ *M1 Squaring and clearing the fraction. Condone one error in squaring -x or y

(b)	$y = \frac{-x}{\sqrt{4 - x^2}}$ leading to $x^2 = y^2 \left(4 - x^2\right)$	*M1	Squaring and clearing the fraction. Condone one error in squaring $-x$ or y
	$x^2(1+y^2) = 4y^2$	DM1	OE. Factorisation of the new subject with order of operations correct. Condone sign errors.
	$x = (\pm) \frac{2y}{\sqrt{1+y^2}}$	DM1	$x = (\pm)\sqrt{\frac{4y^2}{(1+y^2)}}$ OE is acceptable for this mark. Isolating the new subject. Order of operations correct. Condone sign errors.
	$f^{-1}(x) = \frac{-2x}{\sqrt{1+x^2}}$	A1	Selecting the correct square root. Must not have fractions in numerator or denominator.
		4	
(c)	1 or <i>a</i> = 1	B1	Do not allow $x = 1$ or $-1 < x < 1$
		1	
(d)	$[fg(x) = f(2x) =]\frac{-2x}{\sqrt{4 - 4x^2}}$	B1	Allow $\frac{-2x}{\sqrt{4-(2x)^2}}$ or any correct unsimplified form.
	$fg(x) = \frac{-x}{\sqrt{1-x^2}} \text{ or } \frac{-x}{1-x^2} \sqrt{1-x^2} \text{ or } \frac{x}{x^2-1} \sqrt{1-x^2}$	B1	Result of cancelling 2 in numerator and denominator.

Question 76

{Reflection} {[in the] x-axis} or {Stretch of scale factor -1} {parallel to y-axis}	*B1 DB1	{} indicate how the B1 marks should be awarded throughout.
Then {Translation} $\left\{ \begin{pmatrix} 0 \\ 3 \end{pmatrix} \right\}$	B1 B1	Or Translation 3 units in the positive <i>y</i> -direction. N.B. If order reversed a maximum of 3 out of 4 marks awarded.

(a)	f(5)=[2] and f(their 2)=[5] OR ff(5)= $\left[\frac{2+3}{2-1}\right]$ OR $\frac{\frac{x+3}{x-1}+3}{\frac{x+3}{x-1}-1}$ and an attempt to substitute $x=5$.	M1	Clear evidence of applying f twice with $x = 5$.
	5	A1	
		2	

(b)	$\frac{x+3}{x-1} = y \Rightarrow x+3 = xy - y \text{ OR } \frac{y+3}{y-1} = x \Rightarrow y+3 = xy - x$	*M1	Setting $f(x) = y$ or swapping x and y, clearing of fractions and expanding brackets. Allow \pm sign errors.
	$xy - x = y + 3 \Rightarrow x = \frac{y+3}{y-1}$ OE OR $y+3 = xy - x \Rightarrow y = \left[\frac{x+3}{x-1}\right]$ OE	DM1	Finding x or $y = $. Allow \pm sign errors.
	$[f^{-1}(x) \text{ or } y] = \frac{x+3}{x-1}$	A1	OE e.g. $1 + \frac{4}{x-1}$ etc. Must be a function of x, cannot be $x = 1$.
		3	

(a)	Stretch with [scale factor] either ± 2 or $\pm \frac{1}{2}$	B1	
	Scale factor $\frac{1}{2}$ in the <i>x</i> -direction	B1	
	Translation $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ or translation of 3 units in negative y-direction	B1	
		3	
(b)	(10,9)	B1 B1	B1 for each correct co-ordinate.
		2	
Ques	tion 79		

(a)	$\left\{-3(x-2)^2\right\}$ $\left\{+14\right\}$	B1 B1	B1 for each correct term; condone $a = 2$, $b = 14$.
		2	
(b)	[k=] 2	B1	Allow $[x] \le 2$.
		1	
(c)	[Range is] $[v] \leq -13$	B1	Allow $[f(x)] \le -13$, $[f] \le -13$ but NOT $x \le -13$.
	72	01	
(d)	$y = -3(x-2)^2 + 14$ leading to $(x-2)^2 = \frac{14-y}{3}$	M1	Allow $\frac{y-14}{-3}$. Allow 1 error in rearrangement if x , y on opposite sides.
	$x = 2(\pm)\sqrt{\frac{14 - y}{3}}$	A1	Allow $\frac{y-14}{-3}$.
	$[f^{-1}(x)] = 2 - \sqrt{\frac{14 - x}{3}}$	A1	OE. Allow $\frac{x-14}{-3}$. Must be x on RHS; must be negative square root only.
(e)	$[g(x) =] \left\{ -3(x+3-2)^2 \right\} + \{14+1\}$	B2, 1, 0	OR $\left\{-3(x+3)^2\right\} + \left\{12(x+3)\right\} + \left\{3\right\}$
	$g(x) = -3x^2 - 6x + 12$	B1	
		3	

(a)	$\left[x^{\frac{1}{2}} = \frac{1}{2} + \frac{16 - 4}{2} = 2 \pm \sqrt{3}\right]$	M1 A1	OE. Answer must come from formula or completing square. If M0A0 scored then SC B1 for $2\pm\sqrt{3}$ only.
	$[x=](2\pm\sqrt{3})^2$	M1	Attempt to square their $2 \pm \sqrt{3}$
	$7+4\sqrt{3}$, $7-4\sqrt{3}$	A1	Accept $7 \pm 4\sqrt{3}$ or $a = 7, b = \pm 4, c = 3$ SC B1 instead of second M1A1 for correct final answer only.
	Alternative method for question 9(a)		
	$-4x^{\frac{1}{2}} + 1 = 0$ leading to $(x+1)^2 = 16x$ leading to $x^2 - 14x + 1 = 0$	*M1 A1	OE
	$x = \frac{14 \pm \sqrt{196 - 4}}{2}$	DM1	Attempt to solve for x
	$7+4\sqrt{3}$, $7-4\sqrt{3}$	A1	SC B1 instead of second M1A1 for correct final answer only.
		4	
(b)	$[gh(x)=] m \left(x^{\frac{1}{2}}-2\right)^2 + n$	M1	SOI
	$\left[gh(x) = \right] m \left(x - 4x^{\frac{1}{2}} + 4 \right) + n \equiv x - 4x^{\frac{1}{2}} + 1$	A1	SOI
	m=1, n=-3	A1 A1	www
		4	
Ques	tion 81		
2.5		l n. n.	

(a)	$2[\{(x-2)^2\} \ \{+3\}]$	B1 B1	B1 for $a = 2$, B1 for $b = 3$. $2(x-2)^2 + 6$ gains B1B0
	13	2	
(b)	{Translation} $\binom{\{2\}}{\{3\}}$ OR {Stretch} {y direction} {factor 2}	B2,1,0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
	{Stretch} {y direction} {factor 2} OR {Translation} ${2}$ {6}	B2,1,0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
		4	

i(a)	$\left\{2(x-4)^2\right\} \{-9\}$	B1 B1	OE When a and b stated give priority to marking algebraic expression.
		2	
(b)	y>-7	B1	Allow $f(x) > -7$ or $(-7, \infty)$ Don't allow $x > -7$.
		1	
(c)	$\left(x-4\right)^2 = \frac{y+9}{2}$	M1	2 operations correct. Allow a sign error.
	$x = 4 \left[\pm \right] \sqrt{\frac{y+9}{2}}$	M1	2 operations correct. Allow a sign error.
	$[f^{-1}(x)] =]4 - \sqrt{\frac{x+9}{2}}$	A1 FT	OE FT on <i>their</i> answer to (a) i.e. $-a - \sqrt{\left(\frac{x-b}{2}\right)}$.
		3	
i(d)	$fg(x) = f(2x+4) = 2(2x+4-4)^2 - 9$	M1	Allow $2(2x+4)^2-16(2x+4)+23$.
	$8x^2 - 9$ only	A1	
		2	
	ction 83		

(a)	$\{(x+1)^2+2(x+1)-5\}+\{3\}, \text{ or } \{(x+1+1)^2\}+\{-6+3\}$	M1 M1	M1 for dealing with $\begin{pmatrix} -1\\0 \end{pmatrix}$ and M1 for dealing with $\begin{pmatrix} 0\\3 \end{pmatrix}$.
	$[y=]x^2+4x+1$	A1	Answer only given full marks.
		3	7/
(b)	{Stretch} { x direction or horizontally or y -axis invariant} { factor $\frac{1}{2}$ }	B2, 1, 0	Additional transformation B0.
	3	2	

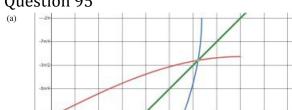
(a)	$x \neq 1 \text{ or } x < 1, x > 1 \text{ or } (-\infty, 1), (1, \infty)$ $[x \in \mathbb{R}]$	B1	Must be x not $f^{-1}(x)$ or y . Do not accept $1 < x < 1$.
		1	
(b)	$y = \frac{2x+1}{2x-1}$ leading to $(2x-1)y = 2x+1$ leading to $2xy-y = 2x+1$	*M1	Setting $y = 1$, removing fraction and expanding brackets.
	2xy - 2x = y + 1 leading to $2x(y-1) = y + 1$	DM1	Reorganising to get $x =$. Condone \pm sign errors only.
	leading to $x = \frac{y+1}{2(y-1)}$		
	$[f^{-1}(x)] = \frac{x+1}{2(x-1)}, \frac{x+1}{x-1} \times \frac{1}{2} \text{ or } \frac{1}{x-1} + \frac{1}{2}$	A1	OE. Must be in terms of x. Do not allow $\frac{x+1}{x-1} \div 2$.
		3	
(c)	(their $f^{-1}(3)$) leading to $\left(their f^{-1}(3)\right)^2 + 4 \left[f^{-1}(3) = 1, 1 + 4 = \right]$	M1	Correct order of operations and substitution of $x = 3$ needed.
	5	A1	
	AT FR	2	
(d)	Sight of 'not one to one' or 'many to one' or 'one to many'	B1	Any reason mentioning 2 values, or + and — , such as: square root gives 2 values or horizontal line test crosses curve twice or 2 values because of turning point or 2 values because it is a quadratic.
		1	
(e)	$f(x) = 1 + \frac{2}{2x - 1} = \frac{2x - 1}{2x - 1} + \frac{2}{2x - 1} = \frac{2x + 1}{2x - 1}$	B1	AG Do not condone equating expressions and verification.
	$f'(x) = -4(2x-1)^{-2}$ or $2(2x-1)^{-1} + \left\{ -(2x+1)2(2x-1)^{-2} \right\}$ or $\frac{(2x-1)2 - 2(2x+1)}{(2x-1)^2}$	*M1	For $k(2x-1)^{-2}$ and no other terms or correct use of the product or quotient rule then ISW.
	Gradient $m = -4$	A1	Differentiation must have clearly taken place.
	Equation of tangent is $y-3=-4(x-1)$ [$\Rightarrow y=-4x+7$]	DM1	Using (1, 3) in the equation of a line with <i>their</i> gradient.
	Crosses axes at $\left(\frac{7}{4},0\right)$ and $\left(0,7\right)$	A1 FT	SOI from <i>their</i> straight line or by integration from 0 to 'their 7/4'.
	$[Area =] \frac{49}{8}$	A1	OE e.g. 6.13 AWRT. If M0 A0 DM0, SC B2 available for correct answer.
		6	

(a)	$y = \frac{x^2 - 4}{x^2 + 4}$ leading to $(x^2 + 4)y = (x^2 - 4)$ leading to $x^2y + 4y = x^2 - 4$	*M1		clearing denominator and expanding brackets. wap variables first, look for $y^2x + 4x = y^2 - 4$.
	$x^2y - x^2 = -4y - 4$ leading to $x^2(1-y) = 4y + 4$ leading to $x^2 =$	DM1	If sv	making x^2 the subject. wap variables first, look for $(1-x)=4x+4 \Rightarrow y^2=$
	$x^2 = \frac{4y+4}{1-y}$ leading to $x = \sqrt{\frac{4y+4}{1-y}}$ leading to $[f^{-1}(x)] = \sqrt{\frac{4x+4}{1-x}}$	A1	OE	e.g. $\sqrt{\frac{-4x-4}{x-1}}$ without \pm in final answer.
	Alternative method for Q6(a)			
	$x = \frac{y^2 - 4}{y^2 + 4}$ leading to $x = 1 - \frac{8}{y^2 + 4}$ leading to $x - 1 = \frac{-8}{y^2 + 4}$	*M1	For	division and reaching $x-1=$ (or $y-1=$)
	$y^2 + 4 = \frac{-8}{x - 1}$ leading to $y^2 = \frac{-8}{x - 1} - 4$	DM1	For	making y^2 (or x^2) the subject.
	$[y =][f^{-1}(x)] = \sqrt{\frac{-8}{x-1} - 4}$	A1	OE	without ± in final answer.
		3		
i(b)	$1 - \frac{8}{x^2 + 4} = \frac{x^2 + 4}{x^2 + 4} - \frac{8}{x^2 + 4} \left[= \frac{x^2 + 4 - 8}{x^2 + 4} \right] = \frac{x^2 - 4}{x^2 + 4}$	M1 A1	Rei	ing common denominator or division to reach 1. mainder –8. WW
	0 < f(x) < 1	B1 B1	Stat	for each correct inequality. B0 if contradictory tement seen. cept $f(x) > 0$, $f(x) < 1$; $1 > f(x) > 0$; $(0,1)$ B1 for $0 \le f(x) \le 1$.
		4		
j(c)	Because the range of f does not include the whole of the domain of f (or any of it)	B1	doi	cept an answer that includes an example outside the main of f, e.g. $f(4) = \frac{12}{20}$. Must refer to the domain or > Need not explicitly use the term 'domain' but must not er just to the range.
	4	1		
Ques	stion 86			
(a)	$[f(x)] = \{-2(x+2)^2\} - \{5\}$	Bi	1 B1	
			2	
(b)	[f(x)] < -7		B1	Allow $y < -7, < -7, (-\infty, -7)$ or less than -7 $-\infty \langle f(x) \langle -7, -7 \rangle f(x) \rangle - \infty, f < -7$
			1	
(c)	$y = -2(x+2)^2 - 5 \rightarrow (x+2)^2 = \frac{-(y+5)}{2}$		M1	Operations correct. Allow sign errors. FT <i>their</i> quadratic from (a).
	$x = \left[\pm\right] \sqrt{\frac{-(y+5)}{2}} -2$		M1	Operations correct. Allow sign errors. FT <i>their</i> quadratic from (a).
	$[f^{-1}(x)] = -2 - \sqrt{\frac{-(x+5)}{2}} \text{ or } -2 - \sqrt{-\frac{(x+5)}{2}}$		A1	Allow $[f^{-1}(x)] = -2 - \sqrt{\frac{x+5}{-2}}$.
			3	

(a)	3	B1	Ignore any description.
		1	
(b)	2	B1	Ignore any description.
		1	
(c)	(8, 2)	B1 B1	Ignore any description. Allow vector notation and absence of brackets.
		2	
(d)	(1, 5)	B1 FT	FT each coordinate, (their8 – 7, their2 + 3) Allow
		B1 FT	vector notation and absence of brackets.
		2	

(a)	Three points at the bottom of their transformed graph plotted at $y = 2$	B1	All 5 points of the graph must be connected.
	Bottom three points of $\wedge \wedge$ at $x = 0$, $x = 1$ & $x = 2$	B1	Must be this shape.
	All correct	B1	Condone extra cycles outside $0 \le x \le 2$.
		3	SC: If B0 B0 scored, B1 available for ∧ in one of correct positions or all 5 points correctly plotted and not connected or correctly sized shape in the wrong position.
(b)	[g(x) =] f(2x) + 1	B1 B1	Award marks for their final answer as follows: f(2x) B1, + 1 B1. Condone $y = or f(x) = .$
		2	

(a)	$a\left(x+\frac{1}{x}\right)+1$	B1	ISW
		1	
)(b)	$a\left(2+\frac{1}{2}\right)+1=11$	M1	Substitute $x = 2$ into <i>their</i> expression from (a) and equate to 11. This may be done in 2 stages: $f(2)=2.5, g(2.5)=11$.
	[a =] 4	A1	
		2	
)(c)	No,[because it is] not one-one	B1	Or other suitable explanation that may include one to many or many to one.
		1	
'(d)	$[g^{-1}(x)] = \frac{x-1}{5} \text{ WWW}$	B1	Condone use of <i>a</i> instead of 5.
	$[g^{-1}f(x)] = \frac{x + \frac{1}{x} - 1}{5}$ OE	M1	Correct combination of their $g^{-1}(x)$ with given $f(x)$ Condone use of a instead of 5 .
	$\frac{x^2 - x + 1}{5x}$ or $\frac{1}{5} \left(x + \frac{1}{x} - 1 \right)$ or $\frac{1}{5} \left(x + x^{-1} - 1 \right)$ OE ISW	A1	Must not contain unresolved fractions e.g. $\frac{x+x^{-1}-1}{5}$.
		3	
P(e)	The domain of f does not include the whole of the range of g. Or The range of g does not lie in the domain of f.	B1	Accept an answer that includes an example outside the domain of f, e.g. $g(-1) = -4$ but for f, $x > 0$.
		1	
Que	stion 90		


(a)	$(x-2)^2+5$	B1	
		1	
(b)	$2(((x+1)^2)+(5))$	B2, 1, 0	
	4	2	
(c)	[g(x)=] 2f(x+3) or k=2, h=3	B1	In correct form. B0 if contradiction.
		1	
(d)	{Translation} $\left\{ \begin{pmatrix} -3 \\ 0 \end{pmatrix} \right\}$	B2, 1, 0 FT	FT on their $x+3$ or $h=3$.
	{Stretch} {y direction, factor 2}	B2, 1, 0 FT	FT on their 2 or $k=2$.
		4	

Stretch: $(2x)^2 - 2(2x) + 5$ or $(x-1)^2 + 4$ leading to $(2x-1)^2 + 4$	M1	Replacing x by $2x$.
Reflection: $(-2x)^2 - 2(-2x) + 5$ or $(-2x-1)^2 + 4$	M1	Replacing x by $-x$. FT on <i>their</i> stretch.
Stretch: $3\{(-2x)^2 - 2(-2x) + 5\}$ or $3\{(-2x-1)^2 + 4\}$	M1	Multiplying the whole function by 3. FT on <i>their</i> (stretch plus reflection).
$12x^2 + 12x + 15$	A1	
	4	

(a)	$[y] \leqslant -1$	B1	Accept for $f(x) \leqslant -1$, $-\infty < y \leqslant -1$, $(-\infty, -1]$.
			Do not accept $x \leqslant -1$.
		1	
(b)	$y = -3x^2 + 2$ rearranged to $3x^2 = 2 - y$, leading to $x^2 = \frac{2 - y}{3}$ or $y^2 = \frac{2 - x}{3}$	M1	
	$x = [\pm] \sqrt{\frac{2-y}{3}} \rightarrow [f^{-1}(x)] = \{-\} \left\{ \sqrt{\frac{2-x}{3}} \right\}$	A1 A1	A1 for minus, A1 for $\sqrt{\frac{2-x}{3}}$, allow $-\sqrt{\frac{x-2}{-3}}$.
		3	
(c)	$fg(x) = -3(-x^2 - 1)^2 + 2$	M1	SOI expect $-3x^4 - 6x^2 - 1$.
	$gf(x) = -(-3x^2 + 2)^2 - 1$	M1	SOI expect $-9x^4 + 12x^2 - 5$.
	$fg(x) - gf(x) + 8 = 0$ leading to $6x^4 - 18x^2 + 12$ [=0]	A1	OE
	$[6](x^2-1)(x^2-2)[=0]$ or formula or completion of the square	M1	Solving a 3-term quadratic equation in x^2 must be seen.
	$x = -1$, $-\sqrt{2}$ only these two solutions	A1	Allow $-\sqrt{1}$, $-1.41[4]$ Answers only SC B1.
		5	
Ones	stion 93		1

{Translation} $\binom{\{0\}}{\{-2\}}$	B2, 1, 0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
{Stretch} {[scale] factor 2} {parallel to x-axis}	B2, 1, 0	B2 for fully correct, B1 with two elements correct.
	4	Transformations can be in either order.

200			
(a)	[y] < 2 OR [f(x)] < 2	B1	OE e.g. $f < 2, (-\infty, 2), -\infty < f[x] < 2$. Do not accept $x < 2$ or $f(x) \le 2$.
	3	1	
(b)	$y=2-\frac{5}{x+2}$ leading to $y(x+2)=2(x+2)-5$ leading to $xy+2y=2x-1$	M1	or $\frac{5}{x+2} = 2 - y$ (allow sign errors).
	2y+1 = 2x - xy leading to $2y+1 = x(2-y)$	DM1	or $\frac{5}{2-y} = x+2$ (allow sign errors).
	$x = \frac{2y+1}{2-y} \rightarrow f^{-1}(x) = \frac{2x+1}{2-x}$	A1	OE or $y = \frac{5}{2-x} - 2$.
	Domain is $x < 2$	B1 FT	FT on the numerical part of <i>their</i> range from part (a), including $x \neq 2$ not penalized. No FT for $x \in \mathcal{R}, x = k, x \neq k$.
		4	
(c)	$fg(x) = 2 - \frac{5}{x+3+2}$	B1	
	$= \frac{2(x+5)-5}{x+5} \text{ or } \frac{2(x+5)}{x+5} - \frac{5}{x+5}$	M1	Use of <i>their</i> common denominator.
	$=\frac{2x+5}{x+5}$	A1	
		3	

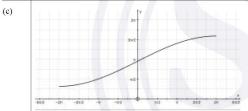
*B1 The line y = x correctly drawn. Can be implied by reasonably correct graph of $f^{-1}(x)$.

DB1 Fully correct (needs to reach y = 2 π and x-axis and cross the line y = x in the correct squares).

(b) $y = 3 + 2\sin\frac{1}{4}x$ leading to $\sin\frac{1}{4}x = \frac{y \pm 3}{2}$

MI Attempting to arrive at an expression for $\sin \frac{1}{4}x$; condone \pm sign errors. Variables may be interchanged initially.

M1 not implied by $x = \frac{y \pm 3}{2 \sin \frac{1}{x}}$.


2

A1

B1 FT

$$x = 4\sin^{-1}\left(\frac{y-3}{2}\right)$$
 leading to $[f^{-1}(x) \text{ or } y =] 4\sin^{-1}\left(\frac{x-3}{2}\right)$

ISW Must clearly be $\sin^{-1}\left(\frac{x-3}{2}\right)$ NOT $\frac{\sin^{-1}(x-3)}{2}$. Allow $\left(\frac{3-x}{-2}\right)$ but not $\div \frac{1}{4}$.

{Stretch} {factor 2} {in y-direction}

{Translation} $\begin{cases} \{0\} \\ \{3\} \end{cases}$

Continuing given graph from y intercept to -2π . The correct shape needed between 0 and -2π , including starting to level off (gradient in the final two squares needs to be reducing) as -2π is approached. The y co-ordinate at- 2π must be in the correct square.

Yes it does have an inverse, because the graph is always increasing OR because it is one-one OR because it passes the horizontal line test OR it is not a many to one [function].

If there is no graph to the left of the y axis, no mark is available.

FT an incorrect graph and if the answer is now 'No' provide an appropriate reason.

(d) {} indicates different elements throughout. {Stretch} {factor 4} {in x-direction} B2, 1, B2 for fu

B2, 1, 0	B2 for fully correct, B1 with two elements correct. Condone use of 'sf' instead of factor and 'co-ordinates' stretched instead of graph stretched. Allow any mention of x-axis, horizontally or y-axis invariant. Wavelength or period increased by a factor of 4 for B2 or by 4 for B1.
B2, 1, 0	B2 for fully correct, B1 with two elements correct. Condone use of 'sf' instead of factor and 'co-ordinates' stretched instead of graph stretched. Allow any mention of y-axis, vertically or x-axis invariant. Allow y 'co-ordinates' doubled or amplitude doubled for B2.
B2, 1, 0	B2 for fully correct, B1 with two elements correct. Allow shift. Any mention of y axis, y -direction or vertically implies $\{0\}$, so shift by 3 vertically is B2, but shift by a factor of 3 vertically or a translation of 3 'up' is B1.
6	After scoring B2, B2 the final transformation can only be awarded B2 if the order is fully correct i.e. the translation must not be applied before the y stretch. If all correct except the order award B2B2B1.

{Stretch} {factor 2} {in y-direction}	B2, 1, 0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
{Translation} $\begin{pmatrix} \{-6\} \\ \{0\} \end{pmatrix}$	B2, 1, 0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
	4	Transformations may be in either order.

'(a)	[Greatest =] 5	B1	No inequality required.
	[Least =] -1	B1	No inequality required.
			Condone (-1,5) or equivalent.
		2	
'(b)		B1	One complete cycle starting and finishing at $y = 2$. Maximum and minimum in correct quadrants. Shape and curvature approximately correct.
		B1 FT	Maximum and minimum (indicated on y-axis with numbers or lines, or labelled on graph). FT their greatest and least values. Award B1 for 5 and -1 even if their values were incorrect in (a).
		2	
'(c)	1	B1	www
		1	
Que	stion 98		

Que	Stion 98		
(a)	$1 + \frac{2a}{7 - a} = \frac{5}{2} \left[\Rightarrow \frac{2a}{7 - a} = \frac{3}{2} \Rightarrow 7a = 21 \right] \Rightarrow a = \dots$	M1	OE Substitute $x = 7$ then solve for a via legitimate mathematical steps. Condone sign errors only.
	OR $1 + \frac{2a}{7-a} = \frac{5}{2} \left[\Rightarrow (7-a) + 2a = \frac{5}{2} (7-a) \right] \Rightarrow 7a = 21 $ $\Rightarrow a = \dots$		
	a = 3	A1	If M0, SC B1 for $a = 3$ with no working.
	$f(5) = 1 + \frac{2(their3)}{5 - their3} = 4 \left[\Rightarrow 4b - 2 = 4 \right] \Rightarrow b = \dots$ $\left(2(their3) \right)$	M1	Evaluate $f(5)$, either separately or within gf then solve for b via legitimate mathematical steps. Condone sign errors only. FT <i>their a</i> value.
	OR gf(5) = $b\left(1 + \frac{2(their3)}{5 - their3}\right) - 2\left[\Rightarrow 4b - 2 = 4\right] \Rightarrow b = \dots$		·
	$b = \frac{3}{2}$	A1	OE e.g. $\frac{6}{4}$, 1.5.
	Satpre	4	
(b)	x>1	B1	Accept $(1,\infty)$ or $\{*: *>1\}$ where * is any variable. B0 for $f^{-1}(x)>1$ or $f(x)>1$ or $y>1$.
		1	
(c)	EITHER $x-1=\frac{6}{y-3}$ $\left[\Rightarrow (y-3)(x-1)=6\right]$	*M1	OE $y-1 = \frac{6}{x-3} \Rightarrow (x-3)(y-1) = 6$.
	OR $x=1+\frac{6}{y-3} \implies x(y-3)=(y-3)+6$		OE $y = 1 + \frac{6}{x - 3} \implies y(x - 3) = (x - 3) + 6$. Allow *M1 for use of <i>their</i> 3 from (a) .
	$y-3 = \frac{6}{x-1}$ or $y(x-1) = 3x+3$	DM1	OE $x-3 = \frac{6}{y-1}$ or $x(y-1) = 3y+3$.
			Allow DM1 for use of their 3 from (a).
	$\left[\mathbf{f}^{-1}(x)\right] = 3 + \frac{6}{x-1}$	A1	OE Correct answer e.g. $\frac{3x+3}{x-1}$ ISW. Must be in terms of x .
			*M1 DM1 possible for 'a' used, but A0 so max 2/3.
		3	THE DATE POSSIONE FOR A LASCA, Out 710 SO MAY 2/3.
		3	