Vector

2013-2018

Question 1

The diagram shows a parallelogram $O A B C$ in which

$$
\overrightarrow{O A}=\left(\begin{array}{r}
3 \\
3 \\
-4
\end{array}\right) \quad \text { and } \quad \overrightarrow{O B}=\left(\begin{array}{l}
5 \\
0 \\
2
\end{array}\right)
$$

(i) Use a scalar product to find angle $B O C$.
(ii) Find a vector which has magnitude 35 and is parallel to the vector $\overrightarrow{O C}$.

Question 2

Relative to an origin O, the position vectors of points A and B are given by

$$
\overrightarrow{O A}=\mathbf{i}-2 \mathbf{j}+2 \mathbf{k} \quad \text { and } \quad \overrightarrow{O B}=3 \mathbf{i}+p \mathbf{j}+q \mathbf{k},
$$

where p and q are constants.
(i) State the values of p and q for which $\overrightarrow{O A}$ is parallel to $\overrightarrow{O B}$.
(ii) In the case where $q=2 p$, find the value of p for which angle $B O A$ is 90°.
(iii) In the case where $p=1$ and $q=8$, find the unit vector in the direction of $\overrightarrow{A B}$.

Question 3

Relative to an origin O, the position vectors of three points, A, B and C, are given by

$$
\overrightarrow{O A}=\mathbf{i}+2 p \mathbf{j}+q \mathbf{k}, \quad \overrightarrow{O B}=q \mathbf{j}-2 p \mathbf{k} \quad \text { and } \quad \overrightarrow{O C}=-\left(4 p^{2}+q^{2}\right) \mathbf{i}+2 p \mathbf{j}+q \mathbf{k}
$$

where p and q are constants.
(i) Show that $\overrightarrow{O A}$ is perpendicular to $\overrightarrow{O C}$ for all non-zero values of p and q.
(ii) Find the magnitude of $\overrightarrow{C A}$ in terms of p and q.
(iii) For the case where $p=3$ and $q=2$, find the unit vector parallel to $\overrightarrow{B A}$.

Question 4

The diagram shows a pyramid $O A B C$ in which the edge $O C$ is vertical. The horizontal base $O A B$ is a triangle, right-angled at O, and D is the mid-point of $A B$. The edges $O A, O B$ and $O C$ have lengths of 8 units, 6 units and 10 units respectively. The unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ respectively.
(i) Express each of the vectors $\overrightarrow{O D}$ and $\overrightarrow{C D}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(ii) Use a scalar product to find angle $O D C$.

Question 5

Relative to an origin O, the position vectors of points A and B are given by

$$
\overrightarrow{O A}=\mathbf{i}+2 \mathbf{j} \quad \text { and } \quad \overrightarrow{O B}=4 \mathbf{i}+p \mathbf{k}
$$

(i) In the case where $p=6$, find the unit vector in the direction of $\overrightarrow{A B}$.
(ii) Find the values of p for which angle $A O B=\cos ^{-1}\left(\frac{1}{5}\right)$.

Question 6

The diagram shows a pyramid $O A B C D$ in which the vertical edge $O D$ is 3 units in length. The point E is the centre of the horizontal rectangular base $O A B C$. The sides $O A$ and $A B$ have lengths of 6 units and 4 units respectively. The unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to $\overrightarrow{O A}, \overrightarrow{O C}$ and $\overrightarrow{O D}$ respectively.
(i) Express each of the vectors $\overrightarrow{D B}$ and $\overrightarrow{D E}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(ii) Use a scalar product to find angle $B D E$.

Question 7

The position vectors of points A, B and C relative to an origin O are given by

$$
\overrightarrow{O A}=\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right), \quad \overrightarrow{O B}=\left(\begin{array}{r}
6 \\
-1 \\
7
\end{array}\right) \quad \text { and } \quad \overrightarrow{O C}=\left(\begin{array}{l}
2 \\
4 \\
7
\end{array}\right)
$$

(i) Show that angle $B A C=\cos ^{-1}\left(\frac{1}{3}\right)$.
(ii) Use the result in part (i) to find the exact value of the area of triangle $A B C$.

Question 8

The diagram shows a trapezium $A B C D$ in which $B A$ is parallel to $C D$. The position vectors of A, B and C relative to an origin O are given by

$$
\overrightarrow{O A}=\left(\begin{array}{l}
3 \\
4 \\
0
\end{array}\right), \quad \overrightarrow{O B}=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right) \quad \text { and } \quad \overrightarrow{O C}=\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)
$$

(i) Use a scalar product to show that $A B$ is perpendicular to $B C$.
(ii) Given that the length of $C D$ is 12 units, find the position vector of D.

Question 9

Relative to an origin O, the position vectors of points A and B are given by

$$
\overrightarrow{O A}=\left(\begin{array}{c}
3 p \\
4 \\
p^{2}
\end{array}\right) \text { and } \overrightarrow{O B}=\left(\begin{array}{c}
-p \\
-1 \\
p^{2}
\end{array}\right)
$$

(i) Find the values of p for which angle $A O B$ is 90°.
(ii) For the case where $p=3$, find the unit vector in the direction of $\overrightarrow{B A}$.

Question 10

Three points, O, A and B, are such that $\overrightarrow{O A}=\mathbf{i}+3 \mathbf{j}+p \mathbf{k}$ and $\overrightarrow{O B}=-7 \mathbf{i}+(1-p) \mathbf{j}+p \mathbf{k}$, where p is a constant.
(i) Find the values of p for which $\overrightarrow{O A}$ is perpendicular to $\overrightarrow{O B}$.
(ii) The magnitudes of $\overrightarrow{O A}$ and $\overrightarrow{O B}$ are a and b respectively. Find the value of p for which $b^{2}=2 a^{2}$.
(iii) Find the unit vector in the direction of $\overrightarrow{A B}$ when $p=-8$.

The diagram shows a pyramid $O A B C X$. The horizontal square base $O A B C$ has side 8 units and the centre of the base is D. The top of the pyramid, X, is vertically above D and $X D=10$ units. The mid-point of $O X$ is M. The unit vectors \mathbf{i} and \mathbf{j} are parallel to $\overrightarrow{O A}$ and $\overrightarrow{O C}$ respectively and the unit vector \mathbf{k} is vertically upwards.
(i) Express the vectors $\overrightarrow{A M}$ and $\overrightarrow{A C}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(ii) Use a scalar product to find angle $M A C$.

Question 12
Relative to an origin O, the position vector of A is $3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ and the position vector of B is $7 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$.
(i) Show that angle $O A B$ is a right angle.
(ii) Find the area of triangle $O A B$.

Question 13
Relative to an origin O, the position vectors of the points A, B and C are given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
3 \\
2 \\
-3
\end{array}\right), \quad \overrightarrow{O B}=\left(\begin{array}{r}
5 \\
-1 \\
-2
\end{array}\right) \quad \text { and } \quad \overrightarrow{O C}=\left(\begin{array}{l}
6 \\
1 \\
2
\end{array}\right)
$$

(i) Show that angle $A B C$ is 90°.
(ii) Find the area of triangle $A B C$, giving your answer correct to 1 decimal place.

Question 14

Relative to an origin O, the position vectors of points A and B are given by

$$
\overrightarrow{O A}=2 \mathbf{i}+4 \mathbf{j}+4 \mathbf{k} \quad \text { and } \quad \overrightarrow{O B}=3 \mathbf{i}+\mathbf{j}+4 \mathbf{k}
$$

(i) Use a vector method to find angle $A O B$.

The point C is such that $\overrightarrow{A B}=\overrightarrow{B C}$.
(ii) Find the unit vector in the direction of $\overrightarrow{O C}$.
(iii) Show that triangle $O A C$ is isosceles.

Question 15

Relative to the origin O, the position vectors of points A and B are given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
3 \\
0 \\
-4
\end{array}\right) \quad \text { and } \quad \overrightarrow{O B}=\left(\begin{array}{r}
6 \\
-3 \\
2
\end{array}\right) .
$$

(i) Find the cosine of angle $A O B$.

The position vector of C is given by $\overrightarrow{O C}=\left(\begin{array}{c}k \\ -2 k \\ 2 k-3\end{array}\right)$.
(ii) Given that $A B$ and $O C$ have the same length, find the possible values of k.

Question 16

Relative to an origin O, the position vectors of the points A and B are given by

$$
\overrightarrow{O A}=\left(\begin{array}{c}
p-6 \\
2 p-6 \\
1
\end{array}\right) \quad \text { and } \quad \overrightarrow{O B}=\left(\begin{array}{c}
4-2 p \\
p \\
2
\end{array}\right)
$$

where p is a constant.
(i) For the case where $O A$ is perpendicular to $O B$, find the value of p.
(ii) For the case where $O A B$ is a straight line, find the vectors $\overrightarrow{O A}$ and $\overrightarrow{O B}$. Find also the length of the line $O A$.

Question 17

Relative to an origin O, the position vectors of points A, B and C are given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
0 \\
2 \\
-3
\end{array}\right), \quad \overrightarrow{O B}=\left(\begin{array}{r}
2 \\
5 \\
-2
\end{array}\right) \quad \text { and } \quad \overrightarrow{O C}=\left(\begin{array}{l}
3 \\
p \\
q
\end{array}\right)
$$

(i) In the case where $A B C$ is a straight line, find the values of p and q.
(ii) In the case where angle $B A C$ is 90°, express q in terms of p.
(iii) In the case where $p=3$ and the lengths of $A B$ and $A C$ are equal, find the possible values of q.

Question 18

The diagram shows a cuboid $O A B C P Q R S$ with a horizontal base $O A B C$ in which $A B=6 \mathrm{~cm}$ and $O A=a \mathrm{~cm}$, where a is a constant. The height $O P$ of the cuboid is 10 cm . The point T on $B R$ is such that $B T=8 \mathrm{~cm}$, and M is the mid-point of $A T$. Unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to $O A, O C$ and $O P$ respectively.
(i) For the case where $a=2$, find the unit vector in the direction of $\overrightarrow{P M}$.
(ii) For the case where angle $A T P=\cos ^{-1}\left(\frac{2}{7}\right)$, find the value of a.

The diagram shows a pyramid $O A B C$ with a horizontal triangular base $O A B$ and vertical height $O C$. Angles $A O B, B O C$ and $A O C$ are each right angles. Unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to $O A, O B$ and $O C$ respectively, with $O A=4$ units, $O B=2.4$ units and $O C=3$ units. The point P on $C A$ is such that $C P=3$ units.
(i) Show that $\overrightarrow{C P}=2.4 \mathbf{i}-1.8 \mathbf{k}$.
(ii) Express $\overrightarrow{O P}$ and $\overrightarrow{B P}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(iii) Use a scalar product to find angle $B P C$.

Question 20

The position vectors of A, B and C relative to an origin O are given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
2 \\
3 \\
-4
\end{array}\right), \quad \overrightarrow{O B}=\left(\begin{array}{l}
1 \\
5 \\
p
\end{array}\right) \quad \text { and } \quad \overrightarrow{O C}=\left(\begin{array}{l}
5 \\
0 \\
2
\end{array}\right)
$$

where p is a constant.
(i) Find the value of p for which the lengths of $A B$ and $C B$ are equal.
(ii) For the case where $p=1$, use a scalar product to find angle $A B C$.

Question 21
Relative to an origin O, the position vectors of points A and B are given by

$$
\overrightarrow{O A}=2 \mathbf{i}-5 \mathbf{j}-2 \mathbf{k} \text { and } \overrightarrow{O B}=4 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}
$$

The point C is such that $\overrightarrow{A B}=\overrightarrow{B C}$. Find the unit vector in the direction of $\overrightarrow{O C}$.

Question 22
Relative to an origin O, the position vectors of points A, B and C are given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right), \quad \overrightarrow{O B}=\left(\begin{array}{r}
5 \\
-1 \\
k
\end{array}\right) \quad \text { and } \quad \overrightarrow{O C}=\left(\begin{array}{r}
2 \\
6 \\
-3
\end{array}\right)
$$

respectively, where k is a constant.
(i) Find the value of k in the case where angle $A O B=90^{\circ}$.
(ii) Find the possible values of k for which the lengths of $A B$ and $O C$ are equal.

The point D is such that $\overrightarrow{O D}$ is in the same direction as $\overrightarrow{O A}$ and has magnitude 9 units. The point E is such that $\overrightarrow{O E}$ is in the same direction as $\overrightarrow{O C}$ and has magnitude 14 units.
(iii) Find the magnitude of $\overrightarrow{D E}$ in the form $\sqrt{ } n$ where n is an integer.

Question 23

The diagram shows a triangular pyramid $A B C D$. It is given that

$$
\overrightarrow{A B}=3 \mathbf{i}+\mathbf{j}+\mathbf{k}, \quad \overrightarrow{A C}=\mathbf{i}-2 \mathbf{j}-\mathbf{k} \quad \text { and } \quad \overrightarrow{A D}=\mathbf{i}+4 \mathbf{j}-7 \mathbf{k}
$$

(i) Verify, showing all necessary working, that each of the angles $D A B, D A C$ and $C A B$ is 90°. [3]
(ii) Find the exact value of the area of the triangle $A B C$, and hence find the exact value of the volume of the pyramid.
[The volume V of a pyramid of base area A and vertical height h is given by $V=\frac{1}{3} A h$.]

Question 24

Relative to an origin O, the position vectors of the points A, B and C are given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
2 \\
-2 \\
-1
\end{array}\right), \quad \overrightarrow{O B}=\left(\begin{array}{r}
-2 \\
3 \\
6
\end{array}\right) \quad \text { and } \quad \overrightarrow{O C}=\left(\begin{array}{l}
2 \\
6 \\
5
\end{array}\right)
$$

(i) Use a scalar product to find angle $A O B$.
(ii) Find the vector which is in the same direction as $\overrightarrow{A C}$ and of magnitude 15 units.
(iii) Find the value of the constant p for which $p \overrightarrow{O A}+\overrightarrow{O C}$ is perpendicular to $\overrightarrow{O B}$.

Question 25

The diagram shows a cuboid $O A B C D E F G$ with a horizontal base $O A B C$ in which $O A=4 \mathrm{~cm}$ and $A B=15 \mathrm{~cm}$. The height $O D$ of the cuboid is 2 cm . The point X on $A B$ is such that $A X=5 \mathrm{~cm}$ and the point P on $D G$ is such that $D P=p \mathrm{~cm}$, where p is a constant. Unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to $O A, O C$ and $O D$ respectively.
(i) Find the possible values of p such that angle $O P X=90^{\circ}$.
(ii) For the case where $p=9$, find the unit vector in the direction of $\overrightarrow{X P}$.
(iii) A point Q lies on the face $C B F G$ and is such that $X Q$ is parallel to $A G$. Find $\overrightarrow{X Q}$.

Question 26
Relative to an origin O, the position vectors of the points A and B are given by

$$
\overrightarrow{O A}=2 \mathbf{i}+3 \mathbf{j}+5 \mathbf{k} \quad \text { and } \quad \overrightarrow{O B}=7 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}
$$

(i) Use a scalar product to find angle $O A B$.
(ii) Find the area of triangle $O A B$.

Question 27
Relative to an origin O, the position vectors of points A and B are given by

$$
\overrightarrow{O A}=\left(\begin{array}{l}
5 \\
1 \\
3
\end{array}\right) \quad \text { and } \quad \overrightarrow{O B}=\left(\begin{array}{r}
5 \\
4 \\
-3
\end{array}\right) .
$$

The point P lies on $A B$ and is such that $\overrightarrow{A P}=\frac{1}{3} \overrightarrow{A B}$.
(i) Find the position vector of P.
(ii) Find the distance $O P$.
(iii) Determine whether $O P$ is perpendicular to $A B$. Justify your answer.

Question 28

Relative to an origin O, the position vectors of three points A, B and C are given by

$$
\overrightarrow{O A}=3 \mathbf{i}+p \mathbf{j}-2 p \mathbf{k}, \quad \overrightarrow{O B}=6 \mathbf{i}+(p+4) \mathbf{j}+3 \mathbf{k} \quad \text { and } \quad \overrightarrow{O C}=(p-1) \mathbf{i}+2 \mathbf{j}+q \mathbf{k},
$$

where p and q are constants.
(i) In the case where $p=2$, use a scalar product to find angle $A O B$.
(ii) In the case where $\overrightarrow{A B}$ is parallel to $\overrightarrow{O C}$, find the values of p and q.

Question 29

Relative to an origin O, the position vectors of points A and B are given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
3 \\
-6 \\
p
\end{array}\right) \quad \text { and } \quad \overrightarrow{O B}=\left(\begin{array}{r}
2 \\
-6 \\
-7
\end{array}\right)
$$

and angle $A O B=90^{\circ}$.
(i) Find the value of p.

The point C is such that $\overrightarrow{O C}=\frac{2}{3} \overrightarrow{O A}$.
(ii) Find the unit vector in the direction of $\overrightarrow{B C}$.

Question 30

Relative to an origin O, the position vectors of the points A, B and C are given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
8 \\
-6 \\
5
\end{array}\right), \quad \overrightarrow{O B}=\left(\begin{array}{r}
-10 \\
3 \\
-13
\end{array}\right) \quad \text { and } \quad \overrightarrow{O C}=\left(\begin{array}{r}
2 \\
-3 \\
-1
\end{array}\right)
$$

A fourth point, D, is such that the magnitudes $|\overrightarrow{A B}|,|\overrightarrow{B C}|$ and $|\overrightarrow{C D}|$ are the first, second and third terms respectively of a geometric progression.
(i) Find the magnitudes $|\overrightarrow{A B}|,|\overrightarrow{B C}|$ and $|\overrightarrow{C D}|$.
(ii) Given that D is a point lying on the line through B and C, find the two possible position vectors of the point D.

Question 31

The diagram shows a trapezium $O A B C$ in which $O A$ is parallel to $C B$. The position vectors of A and B relative to the origin O are given by $\overrightarrow{O A}=\left(\begin{array}{r}2 \\ -2 \\ -1\end{array}\right)$ and $\overrightarrow{O B}=\left(\begin{array}{l}6 \\ 1 \\ 1\end{array}\right)$.
(i) Show that angle $O A B$ is 90°.

The magnitude of $\overrightarrow{C B}$ is three times the magnitude of $\overrightarrow{O A}$.
(ii) Find the position vector of C.
(iii) Find the exact area of the trapezium $O A B C$, giving your answer in the form $a \sqrt{ } b$, where a and b are integers.
(a) Relative to an origin O, the position vectors of two points P and Q are \mathbf{p} and \mathbf{q} respectively. The point R is such that $P Q R$ is a straight line with Q the mid-point of $P R$. Find the position vector of R in terms of \mathbf{p} and \mathbf{q}, simplifying your answer.
(b) The vector $6 \mathbf{i}+a \mathbf{j}+b \mathbf{k}$ has magnitude 21 and is perpendicular to $3 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$. Find the possible values of a and b, showing all necessary working.
Question 33

Fig. 1

Fig. 2

Fig. 1 shows a rectangle with sides of 7 units and 3 units from which a triangular corner has been removed, leaving a 5 -sided polygon $O A B C D$. The sides $O A, A B, B C$ and $D O$ have lengths of 7 units, 3 units, 3 units and 2 units respectively. Fig. 2 shows the polygon $O A B C D$ forming the horizontal base of a pyramid in which the point E is 8 units vertically above D. Unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to $O A, O D$ and $D E$ respectively.
(i) Find $\overrightarrow{C E}$ and the length of $C E$.
(ii) Use a scalar product to find angle $E C A$, giving your answer in the form $\cos ^{-1}\left(\frac{m}{\sqrt{ } n}\right)$, where m and n are integers.

The diagram shows a pyramid $O A B C D$ with a horizontal rectangular base $O A B C$. The sides $O A$ and $A B$ have lengths of 8 units and 6 units respectively. The point E on $O B$ is such that $O E=2$ units. The point D of the pyramid is 7 units vertically above E. Unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to $O A$, $O C$ and $E D$ respectively.
(i) Show that $\overrightarrow{O E}=1.6 \mathbf{i}+1.2 \mathbf{j}$.
(ii) Use a scalar product to find angle $B D O$.

Question 35

The diagram shows a three-dimensional shape. The base $O A B$ is a horizontal triangle in which angle $A O B$ is 90°. The side $O B C D$ is a rectangle and the side $O A D$ lies in a vertical plane. Unit vectors \mathbf{i} and \mathbf{j} are parallel to $O A$ and $O B$ respectively and the unit vector \mathbf{k} is vertical. The position vectors of A, B and D are given by $\overrightarrow{O A}=8 \mathbf{i}, \overrightarrow{O B}=5 \mathbf{j}$ and $\overrightarrow{O D}=2 \mathbf{i}+4 \mathbf{k}$.
(i) Express each of the vectors $\overrightarrow{D A}$ and $\overrightarrow{C A}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(ii) Use a scalar product to find angle $C A D$.

Question 36
Relative to an origin O, the position vectors of the points A, B and C are given by

$$
\overrightarrow{O A}=\left(\begin{array}{r}
1 \\
-3 \\
2
\end{array}\right), \quad \overrightarrow{O B}=\left(\begin{array}{r}
-1 \\
3 \\
5
\end{array}\right) \quad \text { and } \quad \overrightarrow{O C}=\left(\begin{array}{r}
3 \\
1 \\
-2
\end{array}\right)
$$

(i) Find $\overrightarrow{A C}$.
(ii) The point M is the mid-point of $A C$. Find the unit vector in the direction of $\overrightarrow{O M}$.
(iii) Evaluate $\overrightarrow{A B} \cdot \overrightarrow{A C}$ and hence find angle $B A C$.

