AS-Level

Coordinate Geometry

May 2013-May 2023

Answer

Question 1

	A(2, 14), B(14, 6) and $C(7, 2)$.			
(i)	$m \text{ of } AB = -\frac{2}{3}$	B1		
	<i>m</i> of perpendicular = $\frac{3}{2}$	M1		For use of $m_1m_2 = -1$
	eqn of AB $y-14 = -\frac{2}{3}(x-2)$	M1		Allow M1 for unsimplified eqn
	eqn of CX $y-2=\frac{3}{2}(x-7)$	M1		Allow M1 for unsimplified eqn
	$Sim Eqns \rightarrow X(11,8)$	M1 A1	[6]	For solution of sim eqns.
(ii)	AX: XB = 14-8: 8-6 = 3: 1 Or $\sqrt{(9^2+6^2)}: \sqrt{(3^2+2^2)} = 3: 1$	M1 A1	[2]	Vector steps or Pythagoras.

Ouestion 2

3y + 2x = 33.		
Gradient of line = $-\frac{2}{3}$ Gradient of perpendicular = $3/2$ Eqn of perp $y - 3 = \frac{3}{2}(x+1)$ Sim Eqns $\rightarrow (3, 9)$	B1 M1 M1 M1 A1	Use of Corre Sim o
$(-1,3) \rightarrow (3,9) \rightarrow (7,15)$	M1 A1 [7]	Vect

Use of $m_1m_2 = -1$ with gradient of line Correct form of perpendicular eqn. Sim eqns.

Vectors or other method.

(i)	$x^{2} - 4x + 4 = x \Rightarrow x^{2} - 5x + 4 = 0$
	(x-1)(x-4)(=0) or other valid method
	(1, 1), (4, 4)
	Mid-point = $(2\frac{1}{2}, 2\frac{1}{2})$

M1 Eliminate y to reach 3-term quadratic M1 Attempt solution A1 ft dependent on
$$1^{st}$$
 M1

[4]

[5]

(ii)
$$x^2 - (4+m)x + 4 = 0 \rightarrow (4+m)^2 - 4(4) = 0$$

 $4+m = \pm 4 \text{ or } m(8+m) = 0$
 $m = -8$
 $x^2 + 4x + 4 = 0$
 $x = -2, y = 16$

M1 Applying
$$b^2 - 4ac = 0$$

DM1 Attempt solution
A1 Ignore $m = 0$ in addition
M1 Sub non-zero m and attempt to solve
A1 Ignore $(2, 0)$ solution from $m = 0$

t (ii)
$$2x-4=m$$

 $x^2-4x+4=(2x-4)x$
 $x=-2$ (ignore +2)
 $m=-8$ (ignore 0)
 $y=16$

M1 OR
$$2x - 4 = m$$

Sub $x = \frac{m+4}{2}$, $y = \frac{m(m+4)}{2}$ into quad
A1 $m = -8$ from resulting quad $m(m+8)=0$
A1 $x = -2$
A1 $y = 16$

Question 4

(i) gradient of perpendicular =
$$-\frac{1}{2}$$
 soi
 $y-1=-\frac{1}{2}(x-3)$
B1
B1
[2]

(ii)
$$C = (-9, 6)$$

 $AC^2 = [3 - (-9)]^2 + [1 - 6]^2$ (ft on their C)
$$AC = 13$$
B1
M1
A1
AB = 26 A1
AC = 13 A1

$$A (0, 8) B (4, 0) 8y + x = 33$$
 $B1$
 $B1$
 $M1$
 $M1$

(i)	mid-point = (3, 4)	B1	soi
	Grad. $AB = -\frac{1}{2} \rightarrow \text{grad. of perp.}, = 2$	M1	For use of $-1/m$ soi
	y-4=2(x-3)	M1	ft on their $(3, 4)$ and 2
	y = 2x - 2	A1	
		[4]	
(ii)	$q = 2p - 2^{1/2}$ $p^2 + q^2 = 4$ oe	B1√ B1	ft for 1 st eqn.
	$p^{2} + (2p-2)^{2} = 4 \rightarrow 5p^{2} - 8p = 0$ {OR\(\frac{1}{4}(q+2)^{2} + q^{2} = 4 \rightarrow 5q^{2} + 4q - 12 = 0\)}	M1	Attempt substn (linear into quadratic) & simplify
	$(0,-2) \text{ and } \left(\frac{8}{5},\frac{6}{5}\right)$	A1A1 [5]	

[5]

Question 7

Sim eqns $\rightarrow A(1, 3)$ Vectors or mid-point $\rightarrow C(12, 14)$	M1 A1 M1 A1√	co Allow answer only B2 Allow answer only B2
Eqn of <i>BC</i> $4y = x + 44$ or <i>CD</i> $y = 3x - 22$	M1	equation ok – unsimplified
Sim eqns $\rightarrow B(4, 12)$ or $D(9, 5)$	DM1A1	Sim eqns. co
Vectors or mid-point $\rightarrow B(4, 12)$ or $D(9, 5)$	DM1A1	Valid method (or sim eqns) co
	[9]	///

Question 8

(a = 1, (1a a) (5)		
(2, 7) to (10, 3)		
Mid-point (6, 5)	B1 0	co
Gradient = $-\frac{1}{2}$	B1	co
Perp gradient = 2	B1√	co
Eqn $y - 5 = 2(x - 6)$	M1	Must be correct form of Perp
Sets y to $0, \rightarrow (3\frac{1}{2}, 0)$	A1	$\cos x = 3\frac{1}{2}$ only is ok.
(272, 3)	[5]	

(i)
$$m = \frac{3a+9-(2a-1)}{2a+4-a} = \frac{a+10}{a+4}$$
 on e.g. $\frac{-a-10}{-a-4}$

Gradient of perpendicular $=\frac{-(a+4)}{a+10}$ oe but

$$not \frac{-1}{\left(\frac{a+10}{a+4}\right)}$$

(ii)
$$(\sqrt{)}[(a+4)^2 + (a+10)^2] = (\sqrt{)}260$$

$$(\sqrt{)}[(a+4)^2 + (a+10)^2]$$
 cao
 $(2)(a^2 + 14a - 72) (=0)$
 $a = 4 \text{ or } -18$ cao

M1A1

A1[∧]

cao Allow omission of brackets

Do not ISW. Max penalty for erroneous cancellation 1 mark

[4]

M1

Allow their (a + 4), (a + 10) from (i). Allow $(-a-4)^2$ etc. Allow omission of brackets

Question 11

(i)
$$m_{AB} = -3 \text{ or } \frac{-9}{3}$$

 $m_{AD} = \frac{1}{3}$

Eqn
$$AD y - 6 = \frac{1}{3}(x-2)$$
 or $3y = x + 16$

B1 oe

[3]

B1√

[1]

B1

B1

M1 use of $m_1m_2 = -1$ with grad AB

A1

co - OK unsimplified [3]

- (ii) Eqn CD y-3=-3(x-8) or y=-3x+27Sim Eqns $\rightarrow D(6\frac{1}{2}, 7\frac{1}{2})$
- (iii) Use of vectors or mid-point \rightarrow E (5, 12) or mid-point (5,4.5) Length of BE = 15

B1√ OK unsimplified. $\sqrt[n]{}$ on m of AB. M1 Reasonable algebra leading to x = ory =with AD and CDA1

May be implied co [2]

Ft on their b

(i)
$$32-4k = 20 \Rightarrow k = 3$$
$$4b+3\times 2b = 20$$
$$b = 2$$

(ii) Mid-point =
$$(5, 0)$$

M1A1 Sub
$$(8, -4)$$
 [alt: $(2b+4)/(b-8) = -4/k$
M1 Sub $(b, 2b)$, $4b+2bk=20$
M1 both M1 solving A1,
A1]

(i)	$(9-p)^2 + (3p)^2 = 169$ $10p^2 - 18p - 88 (= 0)$ oe p = 4 or -11/5 oe	M1		Or $\sqrt{} = 13$ 3-term quad
	p = 4 or -11/5 oe	A1 A1		5-term quad
	p = 4 07 11/3 00	Ai	[3]	
(ii)	Gradient of given line $=-\frac{2}{3}$	B 1		
	Hence gradient of $AB = \frac{3}{2}$	M1		Attempt using $m_1 m_2 = -1$
	$\frac{3}{2} = \frac{3p}{9-p} \text{oe} \text{eg}\left(\frac{-2}{3}\right) \left(\frac{3p}{9-p}\right) = 1$	M1		Or vectors $\begin{pmatrix} 9-p \\ 3p \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -2 \end{pmatrix}$
	(includes previous M1) $p = 3$	A1	[4]	

Question 14

(i)
$$M = (7, 4)$$

 $m \text{ of } AB = -\frac{2}{3}$
 $m \text{ of perpendicular} = \frac{3}{2}$
 $y - 4 = \frac{3}{2}(x - 7)$

B1 co
 $m \text{ of perpendicular} = \frac{3}{2}$
 $y - 11 = -\frac{2}{3}(x - 3)$

Sim eqns $y = C(9, 7)$

B1 co
 $y = C(1, 1)$

B1 co
 $y = C(1, 1)$

M1 A1 Use of $m_1m_2 = -1$ & their midpoint in the equation of a line. co

M1 Needs to use $m \text{ of } AB$

DM1A1 Must be using their correct lines. Co

(i)	A(-3, 7), B(5, 1) and $C(-1, k)AB = 106^2 + (k-1)^2 = 10^2k = -7$ and 9	B1 M1 A1 [3]	Use of Pythagoras
(ii)	$m \text{ of } AB = -\frac{3}{4} m \text{ perp} = \frac{4}{3}$ $M = (1, 4)$	B1 M1	B1 M1 Use of $m_1 m_2 = -1$
	Eqn $y-4=\frac{4}{3}(x-1)$	B1	
	Set y to 0, $\rightarrow x = -2$	M1 A1 [5]	Complete method leading to <i>D</i> .

Question 17

(i)
$$x^2 - x + 3 = 3x + a \rightarrow x^2 - 4x + (3 - a) = 0$$

(ii) $5 + (3 - a) = 0 \rightarrow a = 8$
 $x^2 - 4x - 5 = 0 \rightarrow x = 5$

(iii) $16 - 4(3 - a) = 0$ (applying $b^2 - 4ac = 0$)
 $a = -1$
 $(x - 2)^2 = 0 \rightarrow x = 2$
 $y = 5$

(applying $b^2 - 4ac = 0$)
 $a = -1$
 $a = -1$

(a)	$3x = -\sqrt{3}/2$ $x = \frac{-\sqrt{3}}{6} \text{ oe}$	M1 A1 [2]	Accept -0.866 at this stage Or $\frac{-3}{6\sqrt{3}}$ or $\frac{-1}{2\sqrt{3}}$
(b)	$(2\cos\theta - 1)(\sin\theta - 1) = 0$ $\cos\theta = 1/2 \text{ or } \sin\theta = 1$ $\theta = \pi/3 \text{ or } \pi/2$	M1 A1 A1A1 [4]	Reasonable attempt to factorise and solve Award B1B1 www Allow 1.05, 1.57. SCA1for both 60°, 90°

(i)	$AB^2 = 6^2 + 7^2 = 85$, $BC^2 = 2^2 + 9^2 = 85$ (\rightarrow isosceles)	B1B1	Or $AB = BC = \sqrt{85}$ etc
	$AC^2 = 8^2 + 2^2 = 68$	B1	
	$M = (2, -2)$ or $BM^2 = (\sqrt{85})^2 - (\frac{1}{2}\sqrt{68})^2$	B1	Where M is mid-point of AC
	$BM = \sqrt{2^2 + 8^2} = \sqrt{68}$ or $\sqrt{85 - 17} = \sqrt{68}$	B1	
	Area $\triangle ABC = \frac{1}{2}\sqrt{68}\sqrt{68} = 34$	B1	
	-	[6]	
(ii)	Gradient of $AB = 7/6$	B1	_
	Equation of AB is $y+1=\frac{7}{6}(x+2)$	M1	Or $y-6=\frac{7}{6}(x-4)$
	Gradient of $CD = -6/7$	M1	
	Equation of <i>CD</i> is $y+3=\frac{-6}{7}(x-6)$	M1	
	Sim Eqns $2 = \frac{-6}{7}x + \frac{36}{7} - \frac{7}{6}x - \frac{14}{6}$	M1	
	34 2		

	A(0, 7), B(8, 3) and C(3k, k)		
(i)	m of AB is $-\frac{1}{2}$ oe. Eqn of AB is $y = -\frac{1}{2}x + 7$ Let $x = 3k$, $y = k$ k = 2.8 oe	B1 M1 M1 A1	Using A,B or C to get an equation Using C or A,B in the equation
	$\frac{7-k}{0-3k} = \frac{3-k}{8-3k}$	M1A1	Using A,B & C to equate gradients
	$\rightarrow 20k = 56 \rightarrow k = 2.8$	DM1A1	Simplifies to a linear or 3 term quadratic = 0.
	OR		
	$\frac{7-k}{0-3k} = \frac{7-3}{0-8}$	M1A1	Using A,B and C to equate gradients
	$\rightarrow 20k = 56 \rightarrow k = 2.8$	DM1A1 [4]	Simplifies to a linear or 3 term quadratic = 0.

(ii) M(4, 5)
Perpendicular gradient = 2.
Perp bisector has eqn
$$y-5=2(x-4)$$

Let $x = 3k$, $y = k$
 $k = \frac{3}{5}$ oe

OR

$$(0-3k)^2 + (7-k)^2 = (8-3k)^2 + (3-k)^2$$

$$-14k + 49 = 73 - 54k \rightarrow 40k = 24 \rightarrow k = 0.6$$

B1

M1

Use of $m_1m_2 = -1$ soi

Forming eqn using their M and their "perpendicular m"

A1

Use of Pythagoras.

DM1A1

Simplifies to a linear or 3 term quadratic = 0.

$$y = 3x - \frac{4}{x}$$

$$\frac{dy}{dx} = 3 + \frac{4}{x^2}$$

$$m \text{ of } AB = 4$$
Equate $\rightarrow x = \pm 2$

$$\rightarrow C(2, 4) \text{ and } D(-2, -4)$$

$$M1 \text{ A1}$$
Equating + solution.

$$M(0, 0) \text{ or stating M is the origin } m \text{ of } CD = 2$$
Perpendicular gradient $(= -\frac{1}{2})$

$$\rightarrow y = -\frac{1}{2}x$$
M1
$$M1$$
Use of $m_1m_2 = -1$, must use m_{CD} (not $m = 4$)

(i)
$$\begin{vmatrix} \frac{2+x}{2} = n \implies x = 2n-2 \\ \frac{m+y}{2} = -6 \implies y = -12-m \end{vmatrix}$$
B1
$$\begin{vmatrix} \text{No MR for } (\frac{1}{2}(2+n), \frac{1}{2}(m-6)) \\ \text{Expect } (2n-2, -12-m) \end{vmatrix}$$
(ii)
$$\begin{vmatrix} \text{Sub their } x, y \text{ into } y = x+1 \implies -12-m = 2n-2+1 \\ \frac{m+6}{2-n} = -1 \text{ oe Not nested in an equation} \\ \text{Eliminate a variable} \\ m = -9, \ n = -1 \end{vmatrix}$$
B1
$$\begin{vmatrix} \text{M1*} \\ \text{B1} \\ \text{DM1} \\ \text{A1A1} \end{vmatrix}$$
Expect $m+2n=-11$
Expect $m-n=-8$
Note: other methods possible

A(a, 0) and $B(0, b)a^2 + b^2 = 100M has coordinates \left(\frac{a}{2}, \frac{b}{2}\right)$	B1 M1* B1√		soi Uses Pythagoras with their $A \& B$. \checkmark on their A and B .
M lies on $2x + y = 10$ $\Rightarrow a + \frac{b}{2} = 10$ Sub $\Rightarrow a^2 + (20 - 2a)^2 = 100$	M1*		Subs into given line, using their M, to link a and b . Forms quadratic in a or in b .
or $\left(10 - \frac{b}{2}\right)^2 + b^2 = 100$ $\rightarrow a = 6, b = 8.$	A1	[6]	cao

Question 24

(i)	$C = (4, -2)$ $m_{AB} = -1/2 \rightarrow m_{CD} = 2$ Equation of CD is $y + 2 = 2(x - 4)$ oe $y = 2x - 10$	B1 M1 M1	[4]	Use of $m_1 m_2 = -1$ on their m_{AB} Use of <i>their C</i> and m_{CD} in a line equation
(ii)	$AD^2 = (14-0)^2 + (-7-(-10))^2$ $AD = 14.3 \text{ or } \sqrt{205}$	M1 A1	[2]	Use their D in a correct method

(i)	$\tan x = \cos x \to \sin x = \cos^2 x$	M1	Use tan = sin/cos and multiply by cos
	$\sin x = 1 - \sin^2 x$	M1	Use $\cos^2 x = 1 - \sin^2 x$
	$\sin x = 0.6180$. Allow $(-1 + \sqrt{5})/2$	M1	Attempt soln of quadratic in $\sin x$. Ignore solution –1.618. Allow $x = 0.618$
	x-coord of $A = \sin^{-1} 0.618 = 0.666$ cao	A1	Must be radians. Accept 0.212π
	Total:	4	
(ii)	EITHER x-coord of B is π – their 0.666	(M1	Expect 2.475(3). Must be radians throughout
	y-coord of B is $tan(their 2.475)$ or $cos(their 2.475)$	M1	
	x = 2.48, y = -0.786 or -0.787 cao	A1)	Accept $x = 0.788\pi$
	OR y-coord of B is – (cos or tan (their 0.666))	(M1	
	x-coord of B is $\cos^{-1}(their y)$ or $\pi + \tan^{-1}(their y)$	M1	
	x = 2.48, y = -0.786 or -0.787	A1)	Accept $x = 0.788\pi$
	Total:	3	

(i)	(b-1)/(a+1)=2	M1	OR Equation of AP is $y-1=2(x+1) \rightarrow y=2x+3$
	b = 2a + 3 CAO	A1	Sub $x = a$, $y = b \rightarrow b = 2a + 3$
	Total:	2	
(ii)	$AB^2 = 11^2 + 2^2 = 125$ oe	B1	Accept $AB = \sqrt{125}$
	$(a+1)^2 + (b-1)^2 = 125$	B1 FT	FT on their 125.
	$(a+1)^2 + (2a+2)^2 = 125$	M1	Sub from part (i) \rightarrow quadratic eqn in a (or possibly in $b \rightarrow b^2 - 2b - 99 = 0$)
	$(5)(a^2 + 2a - 24) = 0 \rightarrow eg(a - 4)(a + 6) = 0$	M1	Simplify and attempt to solve
	a = 4 or -6	A1	
	b = 11 or -9	A1	OR (4, 11), (-6, -9) If A0A0 , SR1 for either (4, 11) or (-6, -9)
	Total:	6	

Question 27

EITHER Elim y to form 3-term quad eqn in $x^{1/3}$ (or u or y or even x)	(M1	Expect $x^{2/3} - x^{1/3} - 2(=0)$ or $u^2 - u - 2 (=0)$ etc.
$x^{1/3}$ (or u or y or x) = 2, -1	*A1	Both required. But $\underline{x} = 2,-1$ and not then cubed or cube rooted scores A0
Cube solution(s)	DM1	Expect $x = 8, -1$. Both required
(8, 3), (-1,0)	A1)	
OR Elim x to form quadratic equation in y	(M1	Expect $y+1=(y-1)^2$
$y^2 - 3y = 0$	*A1	///
Attempt solution	DM1	Expect $y = 3, 0$
(8, 3), (-1,0)	A1)	1.5
Total	: 4	0.

~			
(i)	Gradient = 1.5 Gradient of perpendicular = -7/3	B1	
	Equation of AB is $y-6 = -\frac{2}{3}(x+2)$ Or $3y+2x=14$ oe	M1 A1	Correct use of straight line equation with a changed gradient and $(-2, 6)$, the $(-(-2))$ must be resolved for the A1 ISW.
			Using $y = mx + c$ gets A1 as soon as c is evaluated.
	Total:	3	
(ii)	Simultaneous equations \rightarrow Midpoint (1, 4)	М1	Attempt at solution of simultaneous equations as far as $x =$, or $y =$.
	Use of midpoint or vectors \rightarrow B (4, 2)	M1A1	Any valid method leading to x , or to y .
	Total:	3	

(i)	Mid-point of $AB = (3, 5)$	B1	Answers may be derived from simultaneous equations
	Gradient of $AB = 2$	B1	151
	Eqn of perp. bisector is $y-5=-\frac{1}{2}(x-3) \rightarrow 2y=13-x$	M1A1	AG For M1 FT from mid-point and gradient of AB
	4	4	,
ii)	$-3x + 39 = 5x^2 - 18x + 19 \rightarrow (5)(x^2 - 3x - 4)(=0)$	M1	Equate equations and form 3-term quadratic
	x = 4 or -1	A1	
	$y = 4\frac{1}{2} \text{ or } 7$	A1	
	$CD^2 = 5^2 + 2V_2^2 \rightarrow CD = \sqrt{\frac{125}{4}}$	M1A1	Or equivalent integer fractions ISW
		5	

(i)	$\frac{1}{\sqrt{3}} = \frac{2}{x}$ or $y - 2 = \frac{-1}{\sqrt{3}}x$	М1	OE, Allow $y-2=\frac{+1}{\sqrt{3}}x$. Attempt to express $\tan\frac{\pi}{6}or \tan\frac{\pi}{3}$ exactly is required or the use of $1/\sqrt{3}or\sqrt{3}$
	$(x=)2\sqrt{3}$	A1	OE
		2	
(ii)	Mid-point $(a, b) = (\frac{1}{2} their (i), 1)$	B1FT	Expect $(\sqrt{3}, 1)$
	Gradient of AB leading to gradient of bisector, m	M1	Expect $-1/\sqrt{3}$ leading to $m = \sqrt{3}$
	Equation is $y - their b = m(x - their a)$ OE	DM1	Expect $y-1 = \sqrt{3}(x-\sqrt{3})$
	$y = \sqrt{3} x - 2 \text{ OE}$	A1	
		4	

(i)	Gradient, m, of $AB = \frac{3k+5-(k+3)}{k+3-(-3k-1)}$ OE $\left(=\frac{2k+2}{4k+4}\right) = \frac{1}{2}$	M1A1	Condone omission of brackets for M mark
		2	
(ii)	Mid-pt = $\left[\frac{1}{2}(-3k-1+k+3), \frac{1}{2}(3k+5+k+3)\right]$ =	B1B1	B1 for $\frac{-2k+2}{2}$, B1 for $\frac{4k+8}{2}$ (ISW) or better, i.e. $(-k+1, 2k+4)$
	$\left(\frac{-2k+2}{2}, \frac{4k+8}{2}\right)$ SOI		
	Gradient of perpendicular bisector is $\frac{-1}{their \ m}$ SOI Expect -2	М1	Could appear in subsequent equation and/or could be in terms of k
	Equation: $y - (2k + 4) = -2[x - (-k + 1)]$ OE	DM1	Through <i>their</i> mid-point and with <i>their</i> $\frac{-1}{m}$ (now numerical)
	y + 2x = 6	A1	Use of numerical k in (ii) throughout scores SC2/5 for correct answer
	16	5	15/

EITHER		
Gradient of bisector $=-\frac{3}{2}$	B1	
gradient $AB = \frac{5h - h}{4h + 6 - h}$	*M1	Attempt at $\frac{y - step}{x - step}$
Either $\frac{5h-h}{4h+6-h} = \frac{2}{3}$ or $-\frac{4h+6-h}{5h-h} = -\frac{3}{2}$	*M1	Using $m_1m_2 = -1$ appropriately to form an equation.
OR		
Gradient of bisector = $-\frac{3}{2}$	B1	
Using gradient of AB and A, B or midpoint $\rightarrow \frac{2}{3}x + \frac{h}{3} = y$ oe	*M1	Obtain equation of AB using gradient from $m_1m_2 = -1$ and a point.
Substitute co-ordinates of one of the other points	*M1	Arrive at an equation in h .
h = 2	A1	
Midpoint is $\left(\frac{5h+6}{2},3h\right)$ or $(8,6)$	B1FT	Algebraic expression or FT for numerical answer from 'their h'
Uses midpoint and 'their h' with $3x + 2y = k$	DM1	Substitutes 'their midpoint' into $3x + 2y = k$. If $y = -\frac{3}{2}x + c$ is used (expect $c = 18$) the method mark should be withheld until they $\times 2$.
$\rightarrow k = 36 \text{ soi}$	A1	
	7	7 7 7

Eqn of AC $y = -\frac{1}{2}x + 4$ (gradient must be $\Delta y / \Delta x$)	M1A1	Uses gradient and a given point for equa. CAO
Gradient of $OB = 2 \rightarrow y = 2x$ (If y missing only penalise once)	M1 A1	Use of $m_1m_2 = -1$, answers only ok.
	4	
Simultaneous equations \rightarrow ((1.6, 3.2))	M1	Equate and solve for M1 and reach ≥1 solution
This is mid-point of $OB. \rightarrow B \ (3.2, 6.4)$	M1 A1	Uses mid-point. CAO
or		
Let coordinates of B (h, k) $OA = AB \rightarrow h^2 = 8k - k^2$ $OC = BC \rightarrow k^2 = 16h - h^2 \rightarrow (3.2, 6.4)$		M1 for both equations, M1 for solving with $y = 2$
or		
gradients $\left(\frac{k-4}{h} \times \frac{k}{h-8} = -1\right)$		M1 for gradient product as -1 , M1 solving with $y = 2x$
or		
Pythagoras: $h^2 + (k-4)^2 + (h-8)^2 + k^2 = 4^2 + 8^2$		M1 for complete equation, M1 solving with $y = 2$
	3	

(i)	Gradient, m , of $AB = 3/4$	B1	
	Equation of BC is $y-4=\frac{-4}{3}(x-3)$	M1A1	Line through (3, 4) with gradient $\frac{-1}{m}$ (M1). (Expect
			Line through (3, 4) with gradient $\frac{-1}{m}$ (M1). (Expect $y = \frac{-4}{3}x + 8$)
	<i>x</i> = 6	A1	Ignore any y coordinate given.
		4	
(ii)	$(AC)^2 = 7^2 + 1^2 \rightarrow AC = 7.071$	M1A1	M mark for $\sqrt{\left(their6 + / -1\right)^2 + 1}$.
		2	

)(i)	$2x + \frac{12}{x} = k - x \text{ or } y = 2(k - y) + \frac{12}{k - y} \rightarrow 3 \text{ term quadratic.}$	*M1	
	Use of $b^2 - 4ac \to k^2 - 144 < 0$	DM1	
	-12 < k < 12	A1	
		3	
(ii)	Using $k = 15$ in their 3 term quadratic	M1	
	x = 1,4 or y = 11, 14	A1	
	(1, 14) and (4, 11)	A1	
		3	
(iii)	Gradient of $AB = -1 \rightarrow \text{Perpendicular gradient} = +1$	B1FT	
	Finding their midpoint using their (1, 14) and (4, 11)	M1	
	Equation: $y - 12\frac{1}{2} = (x - 2\frac{1}{2}) [y = x + 10]$	A1	
		3	

)(i)	$4x^{1/2} = x + 3 \rightarrow (x^{1/2})^2 - 4x^{1/2} + 3 (= 0) \text{ OR } 16x = x^2 + 6x + 9$	M1	Eliminate y from the 2 equations and then: Either treat as quad in $x^{1/2}$ OR square both sides and RHS is 3-term
	$x^{1/2} = 1 \text{ or } 3 \ x^2 - 10x + 9 \ (=0)$	A1	If in 1st method $x^{1/2}$ becomes x , allow only M1 unless subsequently squared
	x = 1 or 9	A1	
	y = 4 or 12	A1ft	Ft from <i>their x</i> values If the 2 solutions are found by trial substitution B1 for the first coordinate and B3 for the second coordinate
	$AB^2 = (9-1)^2 + (12-4)^2$	M1	
	$AB = \sqrt{128} \text{ or } 8\sqrt{2} \text{ oe or } 11.3$	A1	
		6	
)(ii)	$dy/dx = 2 x^{-1/2}$	B1	
	$2x^{-1/2} = 1$	M1	Set <i>their</i> derivative = <i>their</i> gradient of <i>AB</i> and attempt to solve
	(4, 8)	A1	Alternative method without calculus: $M_{AB} = 1$, tangent is $y = mx + c$ where $m = 1$ and meets $y = 4x^{1/2}$ when $4x^{1/2} = x + c$. This is a quadratic with $b^2 = 4ac$, so $16 - 4 \times 1 \times c = 0$ so $c = 4$ B1 Solving $4x^{1/2} = x + 4$ gives $x = 4$ and $y = 8$ M1A1
		3	
)(iii)	Equation of normal is $y-8=-1(x-4)$	M1	Equation through <i>their T</i> and with gradient $-1/their$ gradient of AB. Expect $y = -x + 12$,
	Eliminate y (or x) $\rightarrow -x+12=x+3$ or $y-3=12-y$	M1	May use their equation of AB
	(4½, 7½)	A1	
		3	

i)	D = (5, 1)	B1	
		1	
i)	$(x-5)^2 + (y-1)^2 = 20$ oe	B1	FT on their D. Apply ISW, oe but not to contain square roots
		1	
ii)	$(x-1)^2 + (y-3)^2 = (9-x)^2 + (y+1)^2$ soi	M1	Allow 1 sign slip For M1 allow with $\sqrt{\rm signs}$ round both sides but sides must be equated
	$x^{2} - 2x + 1 + y^{2} - 6y + 9 = x^{2} - 18x + 81 + y^{2} + 2y + 1$	A1	
	y = 2x - 9 www AG	A1	
	Alternative method for question 7(iii)		
	grad. of $AB = -\frac{1}{2} \rightarrow \text{grad of perp bisector} = \frac{-1}{-\frac{1}{2}}$	M1	
	Equation of perp. bisector is $y-1=2(x-5)$	A1	
	y = 2x - 9 www AG	A1	
	10	3	
7)	Eliminate y (or x) using equations in (ii) and (iii)	*M1	To give an (unsimplified) quadratic equation
	$5x^2 - 50x + 105 = 0$ or $5(x-5)^2 = 20$ or $5y^2 - 10y - 75 = 0$ or $5(y-1)^2 = 80$	DM1	Simplify to one of the forms shown on the right (allow arithmetic slips)
	x = 3 and 7, or $y = -3$ and 5	A1	
	(3, -3), (7, 5)	A1	Both pairs of x & y correct implies A1A1. SC B2 for no working
		4	

Attempt to find the midpoint M	M1	0.			
(1, 4)	A1				
Use a gradient of $\pm \frac{2}{3}$ and <i>their M</i> to find the equation of the line.	M1				
Equation is $y - 4 = -\frac{2}{3}(x - 1)$	A1	AEF			
Alternative method for question 2	Alternative method for question 2				
Attempt to find the midpoint M	M1				
(1, 4)	A1				
Replace 1 in the given equation by c and substitute their M	M1				
Equation is $y - 4 = -\frac{2}{3}(x - 1)$	A1	AEF			
	4				

(a)	Centre = $(2, -1)$	B1	
	$r^2 = [2-(-3)]^2 + [-1-(-5)]^2$ or $[2-7]^2 + [-1-3]^2$ OE	M1	OR $\frac{1}{2} \left[(-3-7)^2 + (-5-3)^2 \right]$ OE
	$(x-2)^2 + (y+1)^2 = 41$	A1	Must not involve surd form SCB3 $(x+3)(x-7)+(y+5)(y-3)=0$
		3	
(b)	Centre = their $(2, -1) + {8 \choose 4} = (10, 3)$	B1FT	SOI FT on their (2, -1)
	$(x-10)^2 + (y-3)^2 = their 41$	B1FT	FT on their 41 even if in surd form SCB2 $(x-5)(x-15)+(y+1)(y-7)=0$
		2	
(c)	Gradient <i>m</i> of line joining centres = $\frac{4}{8}$ OE	B1	
	Attempt to find mid-point of line.	M1	Expect (6, 1)
	Equation of RS is $y-1=-2(x-6)$	M1	Through their (6, 1) with gradient $\frac{-1}{m}$
	y = -2x + 13	A1	AG
	Alternative method for question 12(c)		111
	$(x-2)^2 + (y+1)^2 - 41 = (x-10)^2 + (y-3)^2 - 41$ OE	M1	
	$x^2 - 4x + 4 + y^2 + 2y + 1 = x^2 - 20x + 100 + y^2 - 6y + 9$ OE	A1	Condone 1 error or errors caused by 1 error in the first line
	16x + 8y = 104	A1	/ / / /
	y = -2x + 13	A1	AG
	4	4	151
(d)	$(x-10)^2 + (-2x+13-3)^2 = 41$	M1	Or eliminate y between C ₁ and C ₂
	$x^2 - 20x + 100 + 4x^2 - 40x + 100 = 41 \rightarrow 5x^2 - 60x + 159 = 0$	A1	AG
	atpie	2	

	1
Mid-point is $(-1, 7)$	B1
Gradient, m, of AB is 8/12 OE	B1
$y - 7 = -\frac{12}{8}(x+1)$	M1
3x + 2y = 11 AG	A1
	4
Solve simultaneously $12x - 5y = 70$ and their $3x + 2y = 11$	M1
x = 5, y = -2	A1
Attempt to find distance between their (5, -2) and either (-7,3) or (5, 11)	M1
$(r) = \sqrt{12^2 + 5^2}$ or $\sqrt{13^2 + 0} = 13$	A1
Equation of circle is $(x-5)^2 + (y+2)^2 = 169$	A1
	5
	Gradient, m , of AB is $8/12$ OE $y-7 = -\frac{12}{8}(x+1)$ $3x+2y=11 \text{ AG}$ Solve simultaneously $12x-5y=70$ and their $3x+2y=11$ $x=5, y=-2$ Attempt to find distance between their $(5,-2)$ and either $(-7,3)$ or $(5,11)$ $(r) = \sqrt{12^2+5^2} \text{ or } \sqrt{13^2+0} = 13$

.(a)	Express as $(x-4)^2 + (y+2)^2 = 16+4+5$	M1
	Centre <i>C</i> (4, -2)	A1
	Radius = $\sqrt{25}$ = 5	A1
		3
.(b)	$P(1,2)$ to $C(4, -2)$ has gradient $-\frac{4}{3}$ (FT on coordinates of C)	B1FT
	Tangent at P has gradient = $\frac{3}{4}$	M1
	Equation is $y-2 = \frac{3}{4}(x-1)$ or $4y = 3x + 5$	A1
	32	3
(c)	Q has the same coordinate as $Py = 2$	B1
	Q is as far to the right of C as $Px = 3 + 3 + 1 = 7Q(7, 2)$	B1
		2
(d)	Gradient of tangent at $Q = -\frac{3}{4}$ by symmetry (FT from part (b))	B1FT
	Eqn of tangent at Q is $y-2 = -\frac{3}{4}(x-7)$ or $4y + 3x = 29$	M1
	$T(4, \frac{17}{4})$	A1
		3

)(a)	Centre is (3, 1)	B1
	Radius = 5 (Pythagoras)	B1
	Equation of C is $(x-3)^2 + (y-1)^2 = 25$ (FT on <i>their</i> centre)	M1 A1FT
		4
)(b)	Gradient from $(3, 1)$ to $(7, 4) = \frac{3}{4}$ (this is the normal)	B1
	Gradient of tangent = $-\frac{4}{3}$	M1
	Equation is $y-4 = -\frac{4}{3}(x-7)$ or $3y+4x = 40$	M1A1
		4
)(c)	B is centre of line joining centres \rightarrow (11, 7)	B1
	Radius = 5 New equation is $(x-11)^2 + (y-7)^2 = 25$ (FT on coordinates of B)	M1 A1FT
		3
Que	estion 44	
(a)	$(-6-8)^2 + (6-4)^2$ M1 OE	

(a)	$(-6-8)^2+(6-4)^2$	M1	OE			
	= 200	A1				
	$\sqrt{200} > 10$, hence outside circle	A1	AG ('Shown' not sufficient). Accept equivalents of $\sqrt{200} > 10$			
	Alternative method for question 11(a)		///			
	Radius = 10 and $C = (8, 4)$	B1				
	Min(x) on circle = 8 – 10 = –2	M1	1.5			
	Hence outside circle	A1	AG			
	Satore	3				
.(b)	$angle = \sin^{-1}\left(\frac{their10}{their10\sqrt{2}}\right)$	M1	Allow decimals for $10\sqrt{2}$ at this stage. If cosine used, angle ACT or BCT must be identified, or implied by use of 90° – 45° .			
	angle = $\sin^{-1}(\frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2} \text{ or } \frac{10}{10\sqrt{2}} \text{ or } \frac{10}{\sqrt{200}}) = 45^{\circ}$	A1	AG Do not allow decimals			
	Alternative method for question 11(b)					
	$(10\sqrt{2})^2 = 10^2 + TA^2$	M1				
	$TA = 10 \rightarrow 45^{\circ}$	A1	AG			
		2				

Gradient, m , of $CT = -\frac{1}{7}$	B1	OE
Attempt to find mid-point (M) of CT	*M1	Expect (1, 5)
Equation of AB is $y-5=7(x-1)$	DM1	Through <i>their</i> $(1, 5)$ with gradient $-\frac{1}{m}$
y = 7x - 2	A1	
	4	
$(x-8)^2 + (7x-2-4)^2 = 100$ or equivalent in terms of y	M1	Substitute <i>their</i> equation of <i>AB</i> into equation of circle.
$50x^2 - 100x \ (=0)$	A1	
x = 0 and 2	A1	www
Alternative method for question 11(d)		
$\mathbf{MC} = \begin{pmatrix} 7 \\ -1 \end{pmatrix}$	M1	
$ \begin{pmatrix} 1 \\ 5 \end{pmatrix} + \begin{pmatrix} -1 \\ -7 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 5 \end{pmatrix} + \begin{pmatrix} 1 \\ 7 \end{pmatrix} = \begin{pmatrix} 2 \\ 12 \end{pmatrix} $	A1	
x = 0 and 2	A1	
	3	

(a)	$r = \sqrt{\left(6^2 + 3^2\right)} \text{ or } r^2 = 45$	В1	Sight of $r = 6.7$ implies B1		
	$(x-5)^2 + (y-1)^2 = r^2 \text{ or } x^2 - 10x + y^2 - 2y = r^2 - 26$	M1	Using centre given and <i>their</i> radius or r in correct formula		
	$(x-5)^2 + (y-1)^2 = 45 \text{ or } x^2 - 10x + y^2 - 2y = 19$	A1	Do not allow $\left(\sqrt{45}\right)^2$ for r^2		
		3			
(b)	C has coordinates (11, 4)	B1			
	0.5	B1	OE, Gradient of AB, BC or AC.		
	Grad of CD =−2	M1	Calculation of gradient needs to be shown for this M1.		
	$(\frac{1}{2} \times -2 = -1)$ then states + perpendicular \rightarrow hence shown or tangent	A1	Clear reasoning needed.		
	Alternative method for question 9(b)				
	C has coordinates (11, 4)	B1			
	0.5	B1	OE, Gradient of AB, BC or AC.		
	Gradient of the perpendicular is -2 \rightarrow Equation of the perpendicular is $y-4=-2(x-11)$	M1	Use of $m_1m_2 = -1$ with <i>their</i> gradient of <i>AB</i> , <i>BC</i> or <i>AC</i> and correct method for the equation of the perpendicular. Could use $D(5, 16)$ instead of $C(11,4)$.		
	Checks $D(5, 16)$ or checks gradient of CD and then states D lies on the line or CD has gradient $-2 \rightarrow$ hence shown or tangent	A1	Clear check and reasoning needed. Checks that the other point lies on the line or checks gradient.		

Alternative method for question 9(b)				
C has coordinates (11, 4) or Gradient of AB, BC or $AC = 0.5$	B1	Only one of AB, BC or AC needed.		
Equation of the perpendicular is $y-4=-2(x-11)$	B1	Finding equation of CD.		
$(x-5)^2 + (-2x+26-1)^2 = 45 \rightarrow (x^2 - 22x+121 = 0)$	M1	Solving simultaneously with the equation of the circle.		
$(x-11)^2 = 0$ or $b^2 - 4ac = 0$ \rightarrow repeated root \rightarrow hence shown or tangent	A1	Must state repeated root.		
Alternative method for question 9(b)				
C has coordinates (11, 4)	B1			
Finding $CD = \sqrt{180}$ and $BD = \sqrt{225}$	B1	OE. Calculated from the co-ordinates of B , $C \& D$ without using r .		
Checking (their BD) ² – (their CD) ² is the same as (their r) ²	M1			
$∴$ Pythagoras valid $∴$ perpendicular \rightarrow hence shown or tangent	A1	Triangle ACD could be used instead.		
Alternative method for question 9(b)				
C has coordinates (11, 4)	B1			
Finding vectors \overrightarrow{AC} and \overrightarrow{CD} or \overrightarrow{BC} and \overrightarrow{CD} $ (= \begin{pmatrix} 6 \\ 3 \end{pmatrix} and \begin{pmatrix} -6 \\ 12 \end{pmatrix} \text{ or } \begin{pmatrix} 12 \\ 6 \end{pmatrix} and \begin{pmatrix} -6 \\ 12 \end{pmatrix}) $	B1	Must be correct pairing.		
Applying the scalar product to one of these pairs of vectors	M1	Accept their \overrightarrow{AC} and \overrightarrow{CD} or their \overrightarrow{BC} and \overrightarrow{CD}		
Scalar product = 0 then states \therefore perpendicular \rightarrow hence shown or tangent	A1			
	4			
E (-1, 4)	B1 B1	WWW B1 for each coordinate Note: Equation of DE which is $y = 2x + 6$ may be used t find E		
	2			

(a)	$m_{AB} = \frac{4-2}{-1-3} = -\frac{1}{2}$	B1	
	Equation of tangent is $y-2=2(x-3)$	B1 FT	(3, 2) with <i>their</i> gradient $-\frac{1}{m_{AB}}$
		2	
(b)	$AB^2 = 4^2 + 2^2 = 20$ or $r^2 = 20$ or $r = \sqrt{20}$ or $AB = \sqrt{20}$	B1	
	Equation of circle centre B is $(x-3)^2 + (y-2)^2 = 20$	M1 A1	FT their 20 for M1
		3	
(c)	$(x-3)^2 + (2x-6)^2 = their \ 20$	M1	Substitute their $y-2=2x-6$ into their circle, centre B
	$5x^2 - 30x + 25 = 0$ or $5(x-3)^2 = 20$	A1	
	$[(5)(x-5)(x-1) \text{ or } x-3=\pm 2]$ $x=5, 1$	A1	
		3	

(a)	Centre of circle is (4, 5)	B1 B1	
	$r^2 = (7-4)^2 + (1-5)^2$	M1	OE. Either using <i>their</i> centre and A or C or using A and C and dividing by 2.
	r = 5	A1 FT	FT on their (4, 5) if used.
	Equation is $(x-4)^2 + (y-5)^2 = 25$	A1	OE. Allow 5 ² for 25.
		5	
(b)	Gradient of radius = $\frac{9-5}{7-4} = \frac{4}{3}$	B1 FT	FT for use of <i>their</i> centre.
	Equation of tangent is $y-9=-\frac{3}{4}(x-7)$	B1	or $y = \frac{-3x}{4} + \frac{57}{4}$
	4		4 4

(a)	Gradient of $AB = -\frac{3}{5}$, gradient of $BC = \frac{5}{3}$ or lengths of all 3 sides or vectors	M1	Attempting to find required gradients, sides or vectors
	$m_{ab}m_{bc} = -1$ or Pythagoras or $\overrightarrow{AB.BC} = 0$ or $\cos ABC = 0$ from cosine rule	A1	www
		2	
(b)	Centre = mid-point of $AC = (2,4)$	B1	
		1	
(c)	$\left(x - their \mathbf{x_c}\right)^2 + \left(y - their y_c\right)^2 \left[= r^2 \right] or \left(their \mathbf{x_c} - \mathbf{x}\right)^2 + \left(their y_c - \mathbf{y}\right)^2 = \left[r^2\right]$	M1	Use of circle equation with their centre
	$(x-2)^2 + (y-4)^2 = 17$	A1	Accept $x^2 - 4x + y^2 - 8y + 3 = 0$ OE
		2	/
(d)	$\left(\frac{x+3}{2}, \frac{y+0}{2}\right) = (2,4) \text{ or } \mathbf{BE} = 2\mathbf{BD} = 2 \begin{pmatrix} -1\\4 \end{pmatrix}$	M1	Use of mid-point formula, vectors, steps on a diagram
	Or Equation of <i>BE</i> is $y = -4(x-3)$ or $y-4=-4(x-2)$ leading to $y=-4x+12$ Substitute equation of <i>BE</i> into circle and form a 3-term quadratic.		May be seen to find x coordinate at E
	$(x,y) = (1,8) \text{ or } \mathbf{OE} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ 8 \end{pmatrix} = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$	A1	E = (1, 8) Accept without working for both marks SC B2
	Gradient of <i>BD</i> , m , = -4 or gradient $AC = \frac{1}{4}$ = gradient of tangent	B1	Or gradient of $BE = -4$
	Equation of tangent is $y-8=\frac{1}{4}(x-1)$ OE	M1 A1	For M1, equation through <i>their</i> E or $(1, 8)$ (not, A, B or C) and with gradient $\frac{-1}{their - 4}$
		5	

(a)	$(5-1)^2 + (11-5)^2 = 52$ or $\frac{11-5}{5-1}$	1	For substituting (1,5) into circle equation or showing gradient = $\frac{3}{2}$.				
	For both circle equation and gradient, and proving line is perpendicular and stating that A lies on the circle		A1 Clear reasoning.				
	Alternative method for Question 7(a)						
	$(x-5)^2 + (y-11)^2 = 52$ and $y-5 = -\frac{2}{3}(x-1)$	1	Both equations seen and attempt to solve. May see $y = -\frac{2}{3}x + \frac{17}{3}$				
	Solving simultaneously to obtain $(y-5)^2 = 0$ or $(x-1)^2 = 0 \Rightarrow 1$ root or tangent or discriminant = $0 \Rightarrow 1$ root or tangent		A1 Clear reasoning.				
	Alternative method for Question 7(a)						
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10 - 2x}{2y - 22} = \frac{10 - 2}{10 - 22}$	1	Attempting implicit differentiation of circle equation and substitute $x = 1$ and $y = 5$.				
	Showing gradient of circle at A is $-\frac{2}{3}$		A1 Clear reasoning.				
			2				
(b)	Centre is (-3, -1)	В1	B1 B1 for each correct co-ordinate.				
	Equation is $(x + 3)^2 + (y + 1)^2 = 52$	B1	FT their centre, but not if either $(1, 5)$ or $(5, 11)$. Do not accept $\sqrt{52^2}$.				
			3				
Que	estion 50						
Grad	ient AB = $\frac{1}{2}$	В1	SOI				
	s meet when $-2x+4=\frac{1}{2}(x-8)+3$ ing as far as $x=$	*M1	Equating given perpendicular bisector with the line through $(8, 3)$ using <i>their</i> gradient of <i>AB</i> (but not -2) and solving. Expect $x = 2$, $y = 0$.				
Usin	g mid-point to get as far as $p = \text{ or } q =$	DM1	Expect $\frac{8+p}{2} = 2$ or $\frac{3+q}{2} = 0$				
p = -	-4, q = -3	A1	Allow coordinates of B are $(-4, -3)$.				
Alter	rnative method for Question 6						
Grad	ient AB = $\frac{1}{2}$	B1	SOI				
$\frac{q-3}{p-8}$	$\frac{3}{3} = \frac{1}{2}$ [leading to $2q = p - 2$],	*M1	Equating gradient of AB with their gradient of AB (but not -2) and using mid-point in equation of perpendicular bisector.				
$\frac{q+3}{2}$	$\frac{3}{2} = -2\left(\frac{8+p}{2}\right) + 4 \text{[leading to } q = -11 - 2p\text{]}$						
Solvi	ing simultaneously their 2 linear equations	DM1	Equating and solving 2 correct equations as far as $p = \text{or } q = .$				
p = -	-4, q = -3	A1	Allow coordinates of B are $(-4, -3)$.				

(a)	1.2679	B1	AWRT. ISW if correct answer seen. $3 - \sqrt{3}$ scores B0
		1	
(b)	1.7321	B1	AWRT. ISW if correct answer seen.
		1	
(c)	Sight of 2 or 2.0000 or two in reference to the gradient	*B1	
	This is because the gradient at E is the limit of the gradients of the chords as the x -value tends to 3 or ∂x tends to 0.	DB1	Allow it gets nearer/approaches/tends/almost/approximately 2
		2	

When $y = 0$ $x^2 - 4x - 77 = 0$ [$\Rightarrow (x+7)(x-11) = 0$ or $(x-2)^2 = 81$]	M1	Substituting $y = 0$
So x -coordinates are -7 and 11	A1	
	2	
Centre of circle C is $(2, -3)$	B1	
Gradient of AC is $-\frac{1}{3}$ or Gradient of BC is $\frac{1}{3}$	M1	For either gradient (M1 sign error, M0 if x-coordinate(s) in numerator)
Gradient of tangent at A is 3 or Gradient of tangent at B is -3	M1	For either perpendicular gradient
Equations of tangents are $y = 3x + 21$, $y = -3x + 33$	A1	For either equation
Meet when $3x + 21 = -3x + 33$	M1	OR: (centre of circle has x coordinate 2) so x coordinate of point of intersection is 2
Coordinates of point of intersection (2, 27)	A1	
Alternative method for Question 10(b)		
Implicit differentiation: $2y \frac{dy}{dx}$ seen	B1	
$2x - 4 + 2y\frac{\mathrm{d}y}{\mathrm{d}x} + 6\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1	Fully differentiated = 0 with at least one term involving y differentiated correctly
Gradient of tangent at A is 3 or Gradient of tangent at B is -3	M1	For either gradient
Equations of tangents are $y = 3x + 21$, $y = -3x + 33$	A1	For either equation
Meet when $3x + 21 = -3x + 33$	M1	OR: (centre of circle has x coordinate 2) so x coordinate of point of intersection is 2
Coordinates of point of intersection (2, 27)	A1	
	6	

(a)	$x^{2} + (2x+5)^{2} = 20$ leading to $x^{2} + 4x^{2} + 20x + 25 = 20$	M1	Substitute $y = 2x + 5$ and expand bracket.
	$(5)(x^2+4x+1)[=0]$	A1	3-term quadratic.
	$x = \frac{-4 \pm \sqrt{16 - 4}}{2}$	M1	OE. Apply formula or complete the square.
	$A = \left(-2 + \sqrt{3}, 1 + 2\sqrt{3}\right)$	A1	Or 2 correct x values.
	$B = \left(-2 - \sqrt{3}, 1 - 2\sqrt{3}\right)$	A1	Or all values correct. SC B1 all 4 values correct in surd form without working. SC B1 all 4 values correct in decimal form from correct formula or completion of the square
	$AB^{2} = their(x_{2} - x_{1})^{2} + their(y_{2} - y_{1})^{2}$	M1	Using <i>their</i> coordinates in a correct distance formula. Condone one sign error in $x_2 - x_1$ or $y_2 - y_1$
	$\left[AB^2 = 48 + 12 \text{ leading to }\right]AB = \sqrt{60}$	A1	OE. CAO. Do not accept decimal answer. Answer must come from use of surd form in distance formula.
	T PE	7	
b)	$x^2 + m^2 (x - 10)^2 = 20$	*M1	Finding equation of tangent and substituting into circle equation.
	$x^{2}(m^{2}+1)-20m^{2}x+20(5m^{2}-1)$ [=0]	DM1	OE. Brackets expanded and all terms collected on one side of the equation.
	$[b^2 - 4ac =]400m^4 - 80(m^2 + 1)(5m^2 - 1)$	M1	Using correct coefficients from their quadratic equation.
	$400m^4 - 80(5m^4 + 4m^2 - 1) = 0 \rightarrow (-80)(4m^2 - 1) = 0$	A1	OE. Must have '=0' for A1.
	$m = \pm \frac{1}{2}$	A1	
	Alternative method for question 9(b)		7 7
	Length, l of tangent, is given by $l^2 = 10^2 - 20$	M1	
	$I = \sqrt{80}$	A1	
	$\tan \alpha = \frac{\sqrt{20}}{\sqrt{80}} = \frac{1}{2}$	M1 A1	Where α is the angle between the tangent and the <i>x</i> -axis.
	$m = \pm \frac{1}{2}$	A1	
		5	

(a)	Centre is $(3, -2)$	B1	
	Gradient of radius = $\frac{(their - 2) - 4}{(their 3) - 5} [= 3]$	*M1	Finding gradient using <i>their</i> centre (not $(0, 0)$) and $P(5, 0)$
	Equation of tangent $y-4=-\frac{1}{3}(x-5)$	DM1	Using P and the negative reciprocal of <i>their</i> gradient to the equation of AB .
	Sight of $[x =]17$ and $[y =]\frac{17}{3}$	A1	
	$\left[\text{Area} = \frac{1}{2} \times \frac{17}{3} \times 17 = \right] \frac{289}{6}$	A1	Or $48\frac{1}{6}$ or AWRT 48.2.
	Alternative method for question 12(a)		
	$2x + 2y\frac{\mathrm{d}y}{\mathrm{d}x} - 6 + 4\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	B1	
	At P: $10 + 8\frac{dy}{dx} - 6 + 4\frac{dy}{dx} = 0 \left[\Rightarrow \frac{dy}{dx} = -\frac{1}{3} \right]$	*M1	Find the gradient using $P(5,4)$ in <i>their</i> implicit different (with at least one correctly differentiated y term).
	Equation of tangent $y-4=-\frac{1}{3}(x-5)$	DM1	Using P and <i>their</i> value for the gradient to find the equa of AB .
	Sight of $[x =]17$ and $[y =]\frac{17}{3}$	A1	
	Area = $\frac{1}{2} \times \frac{17}{3} \times 17 = \frac{289}{6}$	A1	Or $48\frac{1}{6}$ or AWRT 48.2.
(b)	Radius of circle = $\sqrt{40}$,	В1	Or $2\sqrt{10}$ or 6.32 AWRT or $r^2 = 40$.
	Area of $\triangle CRQ = \frac{1}{2} \times (their r)^2 \sin 120 \left[= \frac{1}{2} \times 40 \times \frac{\sqrt{3}}{2} \right]$	M1	Using $\frac{1}{2}r^2\sin\theta$ with their r and 120 or 60 [×3]
	OR 5 6 6 7		Using $\frac{1}{2}$ ×base×height in a correct right-angled trian
	Area of $\triangle CQX = \frac{1}{2} \times \sqrt{40}\cos 30 \times \sqrt{40}\cos 60$ OE $\left[= \frac{1}{2} \times \sqrt{30} \times \sqrt{10} \right]$	10	Using $\frac{1}{2}$ voase×neight in a correct right-angled than [×6].
	OR		[70].
	Area of circle $-3 \times$ Area of segment $= 40\pi - 3 \times (40\frac{\pi}{3} - 10\sqrt{3})$		
	OR		

Radius of circle = $\sqrt{40}$,	B1	Or $2\sqrt{10}$ or 6.32 AWRT or $r^2 = 40$.
Area of $\triangle CRQ = \frac{1}{2} \times (their r)^2 \sin 120 \left[= \frac{1}{2} \times 40 \times \frac{\sqrt{3}}{2} \right]$	M1	Using $\frac{1}{2}r^2\sin\theta$ with their r and 120 or 60 [×3]
OR Area of $\triangle CQX = \frac{1}{2} \times \sqrt{40}\cos 30 \times \sqrt{40}\cos 60$ OE $\left[= \frac{1}{2} \times \sqrt{30} \times \sqrt{10} \right]$ OR	0	Using $\frac{1}{2}$ ×base×height in a correct right-angled triangle [×6].
Area of circle $-3 \times$ Area of segment $= 40\pi - 3 \times (40\frac{\pi}{3} - 10\sqrt{3})$ OR		
$QR = \sqrt{120} \text{ or } 2\sqrt{30} \text{ and area} = \frac{1}{2}QR^2 \sin 60$		Use of cosine rule and area of large triangle
30√3	A1	AWRT 52[.0] implies B1M1A0.
	3	See diagram for points stated in 'Answer' column.

(a)	$r^2 \left[= (5-2)^2 + (7-5)^2 \right] = 13$	B1	$r^2 = 13$ or $r = \sqrt{13}$
	Equation of circle is $(x-5)^2 + (y-2)^2 = 13$	B1 FT	OE. FT on <i>their</i> 13 but LHS must be correct.
		2	
(b)	$(x-5)^2 + (5x-10-2)^2 = 13$	M1	Substitute $y = 5x - 10$ into <i>their</i> equation.
	$26x^2 - 130x + 156 \ [= 0]$	A1 FT	OE 3-term quadratic with all terms on one side. FT on <i>their</i> circle equation.
	[26](x-2)(x-3) $[=0]$	M1	Solve 3-term quadratic in x by factorising, using formula o completing the square. Factors must expand to give <i>their</i> coefficient of x^2 .
	(2, 0), (3, 5)	A1 A1	Coordinates must be clearly paired; A1 for each correct point. A1 A0 available if two x or y values only. If M0 for solving quadratic, SC B2 can be awarded for correct coordinates, SC B1 if two x or y values only.
	$(AB)^2 = (3-2)^2 + (5-0)^2$	M1	SOI. Using their points to find length of AB.
	$AB = \sqrt{26}$	A1	ISW. Dependent on final M1 only.
)ue	estion 56		
a)	$(x+1)^2+(3x-22)^2-85$	M1	OE. Substitute equation of line into equation of circle.

i(a)	$(x+1)^2 + (3x-22)^2 = 85$	M1	OE. Substitute equation of line into equation of circle.
	$10x^2 - 130x + 400 \ [= 0]$	A1	Correct 3-term quadratic
	[10](x-8)(x-5) leading to $x=8 or 5$	A1	Dependent on factors or formula or completing of square seen.
	(8, 4), (5, -5)	A1	If M1A1A0A0 scored, then SC B1 for correct final answer only.
	3	4	
))	Mid-point of $AB = \left(6\frac{1}{2}, -\frac{1}{2}\right)$	M1	Any valid method
	Use of $C = (-1, 2)$	B1	SOI
	$r^2 = \left(-1 - 6\frac{1}{2}\right)^2 + \left(2 + \frac{1}{2}\right)^2$	M1	Attempt to find r^2 . Expect $r^2 = 62\frac{1}{2}$.
	Equation of circle is $(x+1)^2 + (y-2)^2 = 62\frac{1}{2}$	A1	OE.
		4	

(a)	Equation of BC is $\{y = \}\{2\}\{-3x\}$	B2, 1, 0	OE forms $y + 4 = -3(x-2)$ or $y - 2 = -3(x-0)$.
		2	
(b)	$(x-2)^2 + (2-3x+4)^2 = 20$	*M1	OE Sub line equation into equation of circle to eliminate y.
	$10(x-2)^2 = 20 \text{ or } [10](x^2 - 4x + 2)[= 0]$	A1	OE Accept $(10x^2 - 40x + 20)$.
	$x-2=[\pm]\sqrt{2} \text{ or } x = \frac{4[\pm]\sqrt{16-8}}{2}$	DM1	Correctly solving their quadratic.
	$x = 2 - \sqrt{2}$	A1	OE only solution. Answer only SC B1 If DM1 not scored.
	$y = 3\sqrt{2} - 4$	A1	OE only solution. Answer only SC B1 If DM1 not scored.
		5	

(a)	$1+1+a+b-12=0[\Rightarrow a+b=10]$ $4+36+2a-6b-12=0[\Rightarrow 2a-6b=-28]$	B1 B1	B1 for each equation. Allow unsimplified. Can be implied by correct values for a and b .
	a=4,b=6	B1	
	Centre is $\left(-\frac{their a}{2}, -\frac{their b}{2}\right)$ [-2,-3]	B1 FT	Or $x = -2, y = -3$
		4	

(b)	Gradient of AC is $\frac{1-\text{their }y}{1-\text{their }x} = \frac{1-3}{1-2} = \frac{1+3}{1+2} = \frac{4}{3}$	*M1	Using their centre correctly.
	Gradient of tangent is $=\frac{-1}{their}\frac{4}{3}\left[=-\frac{3}{4}\right]$	A1 FT	Use of $m_1 m_2 = -1$ to obtain the gradient of the tangent.
	Equation: $y-1 = \text{'their} - \frac{3}{4}, (x-1) \text{ or } y = -\frac{3}{4}x + \frac{7}{4}$	DM1	Using $(1,1)$ with <i>their</i> gradient of the tangent at A .
	3x + 4y = 7 or $4y + 3x = 7$. or integer multiples of these	A1	

)(a)	Express as $(x+3)^2 + (y-1)^2 = 26+9+1[=36]$	M1	Completing the square on x and y or using the form $x^2+y^2+2gx+2fy+c=0$, centre $(-g,-f)$ and radius $\sqrt{g^2+f^2-c}$. SOI by correct answer.
	Centre (-3, 1)	B1	
	Radius 6	B1	
	So lowest point is (-3, -5)	A1 FT	FT on their centre and their radius.
		4	
)(b)	Intersects when $x^2 + (kx - 5)^2 + 6x - 2(kx - 5) - 26 = 0$ or $(x+3)^2 + (kx - 5 - 1)^2 = 36$	*M1	Substituting $y = kx - 5$ into <i>their</i> circle equation or rearranging and equating y .
	$x^{2} + k^{2}x^{2} - 10kx + 25 + 6x - 2kx + 10 - 26 = 0$ or $x^{2} + 6x + 9 + k^{2}x^{2} - 12kx + 36 = 36$ leading to $k^{2}x^{2} + x^{2} + 6x - 12kx + 9[=0]$ or $(k^{2} + 1)x^{2} + (6 - 12k)x + 9[=0]$	DM1	Rearranging to 3-term quadratic (terms grouped, all on one side). Allow 1 error. Correct quadratic (need to see 9 as constant term).
	$(6-12k)^{2} - 4(k^{2}+1) \times 9 > 0$ [leading to $144k^{2} - 144k + 36 - 36k^{2} - 36 > 0$]	DM1	Using discriminant $b^2 - 4ac [> 0]$ with their values. Allow if in square root.
	[$108k^2 - 144k = 0$ leading to] $k = 0$ or $k = \frac{4}{3}$	A1	Need not see method for solving.
	$k < 0, k > \frac{4}{3}$	A1	Do not accept $\frac{4}{3} < k < 0$.
		6	

Ouestion 60

(a)	$(5-2p)^2 + (p+2)^2 = (10-2p)^2 + (3-p)^2$	M1 A	Allow one sign error for M mark only.
	$25-20p+4p^2+p^2+4p+4=100-40p+4p^2+9-6p+p^2$ $30p=80 \rightarrow p=\frac{8}{3} \text{ oe}$	A	Allow 2.67 AWRT.
	4	10	3
(b)(i)	$m_{AC} = \frac{p+2}{2p-5}$ $m_{BC} = \frac{p-3}{2p-10}$	M1	Allow a sign error.
	$\frac{p+2}{2p-5} \times \frac{p-3}{2p-10} = -1$	M1	Use of $m_1m_2 = -1$ with their m_{AC} and m_{BC} .
	$p^2 - p - 6 = -(4p^2 - 30p + 50) \rightarrow 5p^2 - 31p + 44 \ (=0)$	A1	
	$p=4$ (Ignore $p=\frac{11}{5}$)	A1	Factors $(p-4)(5p-11)$, or formula or completing square must be seen.
		4	
(b)(ii)	Mid-point of $AB = (7\frac{1}{2}, \frac{1}{2})$	B1	SOI
	$r^2 = 2V_2^2 + 2V_2^2$ $\left[= \frac{50}{4} \right]$ or $r = \sqrt{(2V_2^2 + 2V_2^2)}$ $\left[= \frac{5\sqrt{2}}{2} \right]$	*M1	Or $r^2 = \frac{1}{4} (5^2 + 5^2)$ $\left[= \frac{50}{4} \right]$ etc.
	Equation of circle is $(x - their7\frac{1}{2})^2 + (y - their\frac{1}{2})^2 = their\frac{50}{4}$	DM1	Must use r^2 not r or d or d^2
	$x^2 + y^2 - 15x - y + 44 = 0$	A1	CAO
		4	

(a)	Mid-point AB is $\left(\frac{10+5}{2}, \frac{2-1}{2}\right) \left[= \left(\frac{15}{2}, \frac{1}{2}\right) \right]$	В1	Accept unsimplified.
	Gradient of $AB = \frac{-1-2}{10-5} = \frac{-3}{5}$ Gradient perpendicular = $\frac{5}{3}$	M1	For use of $\frac{\text{Change in } y}{\text{Change in } x}$, condone inconsistent order of x and y , and $m_1m_2 = -1$.
	$\frac{y - \frac{1}{2}}{x - \frac{15}{2}} = \frac{5}{3} \left[y - \frac{1}{2} = \frac{5}{3} \left(x - \frac{15}{2} \right) \right]$	A1	OE ISW Any correct version e.g. $y = \frac{5}{3}x - 12$ or $5x - 3y = 36$.
		3	
(b)	[Radius =] $\sqrt{34}$ or 5.8 AWRT or [(radius) ² =] 34	B1	Sight of $\sqrt{34}$ or 34. Condone confusion of r and r^2 .
	$(x-5)^2+(y-2)^2$	B1	Sight of $(x-5)^2 + (y-2)^2$
	$(x-5)^2 + (y-2)^2 = 34$	B1	CAO ISW
	Alternative method for Question 1(b)		
	$x^2 + y^2 - 10x - 4y$	B1	
	[c=]5 or [c=]-5	B1	Substitution of (10, -1) into $x^2 + y^2 - 10x - 4y + c = 0$.
	$x^2 + y^2 - 10x - 4y - 5 = 0$	B1	
		3	
Ques	stion 62		

(a)	$x^{2} + (mx + 10)^{2} = 20 \text{ or } y^{2} + \left(\frac{y - 10}{m}\right)^{2} = 20 \text{ or } mx + 10 = \sqrt{20 - x^{2}}$	*M1	Substitute equation of line into equation of circle.
	$x^{2}(1+m^{2}) + 20mx + 80 [=0] \text{ or}$ $y^{2}(m^{2}+1) - 20y + (100 - 20m^{2})[=0]$	A1	Collect terms into a 3 term quadratic.
	$(20m)^{2} - 4(1+m^{2}) \times 80[=0 \implies 80m^{2} - 320 = 0 \Rightarrow [80](m^{2} - 4) = 0]$ or $(-20)^{2} - 4(m^{2} + 1)(100 - 20m^{2})[=0 \Rightarrow [80](m^{4} - 4m^{2}) = 0]$	DM1	Use $b^2 - 4ac[=0]$.
	m=±2	A1	Two values for m .
	12	4	1.5
(b)	Method 1: Use of quadratic		0.
	$(1+2^2)x^2 \pm 20(2)x + 80 = 0 \Rightarrow 5x^2 \pm 40x + 80 = 0$ or $y^2(2^2+1) - 20y + (100 - 20(2^2)) = 0 \Rightarrow [5](y^2 - 4y + 4) = 0$	M1	Sub <i>their m</i> into <i>their</i> quadratic in x or y or restart with <i>their</i> tangent equation and equation of circle.
	$[5](x\pm 4)^2 = 0 \implies x = \pm 4 \text{ or } y = 2$	A1	Correct solutions or one correct pair (x, y) .
	(-4,2), (4,2)	A1	Two correct points with x and y paired correctly.
	Method 2: Using equation of normal		
	$2x+10 = -\frac{1}{2}x \text{or} -2x+10 = \frac{1}{2}x$	M1	Equate tangent and normal and solve for x .
	x = ±4	A1	Two correct x -values or one correct pair (x, y) .
	(-4,2), (4,2)	A1	Two correct points with x and y paired correctly.
		3	

Method 1: Using angle at circumference		
$\cos BOA = \frac{\sqrt{20}}{10} \text{ or } \sin BOA = \frac{\sqrt{80}}{10} \text{ or } \tan BOA = \frac{\sqrt{80}}{\sqrt{20}} [=2]$	*M1	Use a trig function in triangle AOB.
$BOA = 63.4^{\circ} \Rightarrow BOC = 126.8^{\circ} \text{ or } 126.9^{\circ}$	DM1	Strategy involving doubling
[BDC =]63.4°	A1	AWRT
Metho 2: Using cosine rule		
$BC = 8$, $BD = \sqrt{(\sqrt{20} + 4)^2 + 2^2}$, $CD = \sqrt{(\sqrt{20} - 4)^2 + 2^2}$	*M1	Calculate two lengths in triangle BCD.
$64 = 80 - 16\sqrt{5}\cos BDC$	DM1	Use cosine rule with their lengths
$\cos BDC = \frac{\sqrt{5}}{5} \Rightarrow [BDC =] 63.4^{\circ}$	A1	AWRT
Method 3: Subtract angles from 90°		
Calculate one angle at D [=13.28]	*M1	ODB or angle between CD and the vertical from D
Calculate a second angle at D [=13.28] and subtract both from 90°	DM1	
[BDC =]63.4°	A1	AWRT
	3	

$r^2 = (7+2)^2 + (12-5)^2$	B1	Expect 130, may use AC rather than r .
Equation of circle is $(x+2)^2 + (y-5)^2 = 130$	B1 FT	OE FT <i>their</i> 130, may use distance <i>BC</i> rather than circle.
$(x+2)^2 + (-2x+21)^2 = 130$	M1	Substitute $y = -2x + 26$ into a circle equation.
$5x^2 - 80x + 315 = 0$ leading to $[5](x-9)(x-7)$	M1	Factorisation OE must be seen.
x = 9	A1	With or without $x = 7$.
y = 8 OR (9, 8)	A1	$y = 8 \operatorname{or}(9.8)$ only. Both A1's dependent on the first M1.
	6	/~/

(a)	$(x-1)^2 + (x-9+4)^2 = 40$	M1	Substitute line into circle.
	$x^2 - 6x - 7 = 0$ leading to $(x+1)(x-7) = 0$	M1	Simplify to 3-term quadratic and factorise OE.
	(-1, -10), $(7, -2)$ or $x = -1$ and 7 , $y = -10$ and -2	A1 A1	Answers only SC B1, SC B1 but must see a correct quadratic equation.
		4	
(b)	[C is mid-point =] $(\frac{their \ x_1 + their \ x_2}{2}, \frac{their \ y_1 + their \ y_2}{2})$	M1	Expect (3, -6).
	Radius = $\sqrt{(their\ x - their\ 3)^2 + (their\ y - their\ (-6))^2}$ OR	M1	Expect $\sqrt{32}$.
	their $\sqrt{(7-(-1))^2+(-2-(-10))^2}/2$		
	$(x-3)^2 + (y+6)^2 = 32$	A1	OE
		3	

$\left (x-a)^2 + \left(\frac{1}{2}x + 6 - 3\right)^2 = 20 \text{ or using } x = 2y - 12 \right $	*M1	Obtaining an unsimplified equation in x or y only.
$\frac{5}{4}x^2 + (3-2a)x + a^2 - 11[=0]$	A1	OE e.g. $5x^2 + 4(3-2a)x + 4a^2 - 44$ Rearranging to get a correct 3-term quadratic on one side Condone terms not grouped together. $5y^2 - y(54+4a) + 133 + a^2 + 24$.
$(3-2a)^2-4\times\frac{5}{4}(a^2-11)[=0]$	DM1	OE Using $b^2 - 4ac$ on their 3 term quadratic $[= 0]$.
Method 1 for final 2 marks		
Using $a = 4$: $(3-8)^2 - 5(5) = 0$	A1	Clearly substituting $a = 4$.
a = -16	B1	Condone no method shown for this value.
Method 2 for final 2 marks		
$-a^2 - 12a + 64 = 0 \Rightarrow (a - 4)(a + 16) = 0 \Rightarrow a = 4$	A1	AG Full method clearly shown.
a = -16	B1	Condone no method shown for this value.
	5	If M0, SCB1 available for substituting $a = 4$, finding P(2, 7) and verifying that $CP^2 = 20$.
Centre (4, 3) identified or used or the point P is (2, 7)	B1	
∴ gradient of normal = -2	B1	SOI
Forming normal equation using their gradient (not 0.5) and their centre or P	M1	Condone use of $(\pm 4, \pm 3)$.
$\frac{y-3}{(x-4)} = -2$ or $y-7 = -2(x-2)$	A1	OE Condone $f(x) = .$
Method 1 for Question 10(c)	4	
Method 1 for Question 10(c)		
1, , [1]	*M1	
Diameter: $y-3=\frac{1}{2}(x-4)$ [leading to $y=\frac{1}{2}x+1$]	*M1	Using gradient $\frac{1}{2}$ with their centre.
Diameter: $y-3=\frac{1}{2}(x-4)$ [leading to $y=\frac{1}{2}x+1$] Or $2(x-4)+2(y-3)\frac{dy}{dx}=0$ [leading to $y=\frac{1}{2}x+1$]	*M1	Using gradient $\frac{1}{2}$ with their centre. By implicit differentiation.
Or	*M1	
Or $2(x-4) + 2(y-3)\frac{dy}{dx} = 0 \left[\text{leading to } y = \frac{1}{2}x + 1 \right]$		By implicit differentiation. Obtaining an unsimplified equation in x or y only. $[y^2 - 6y + 5 = 0].$
Or $2(x-4) + 2(y-3)\frac{dy}{dx} = 0 \left[\text{leading to } y = \frac{1}{2}x + 1 \right]$ $(x-4)^2 + \left(\frac{1}{2}x + 1 - 3\right)^2 = 20 \left[\frac{5}{4}x^2 - 10x = 0\right]$	DM1	By implicit differentiation. Obtaining an unsimplified equation in x or y only. $[y^2 - 6y + 5 = 0].$ Correct co-ordinates for both points. Condone no method
Or $2(x-4) + 2(y-3)\frac{dy}{dx} = 0 \left[\text{leading to } y = \frac{1}{2}x + 1 \right]$ $(x-4)^2 + \left(\frac{1}{2}x + 1 - 3\right)^2 = 20 \left[\frac{5}{4}x^2 - 10x = 0\right]$ $x = 0 \text{ or } 8, y = 1 \text{ or } 5 [(0,1) \text{ and } (8,5)]$	DM1	By implicit differentiation. Obtaining an unsimplified equation in x or y only. $[y^2 - 6y + 5 = 0]$. Correct co-ordinates for both points. Condone no methoshown for solution.
Or $2(x-4) + 2(y-3)\frac{dy}{dx} = 0 \left[\text{leading to } y = \frac{1}{2}x + 1 \right]$ $(x-4)^2 + \left(\frac{1}{2}x + 1 - 3\right)^2 = 20 \left[\frac{5}{4}x^2 - 10x = 0\right]$ $x = 0 \text{ or } 8, y = 1 \text{ or } 5 [(0,1) \text{ and } (8,5)]$ Equations are $y-1 = -2x$ and $y-5 = -2(x-8)$	DM1	By implicit differentiation. Obtaining an unsimplified equation in x or y only. $[y^2 - 6y + 5 = 0]$. Correct co-ordinates for both points. Condone no methoshown for solution.
Or $2(x-4)+2(y-3)\frac{dy}{dx} = 0 \left[\text{leading to } y = \frac{1}{2}x+1\right]$ $\left(x-4\right)^2 + \left(\frac{1}{2}x+1-3\right)^2 = 20 \left[\frac{5}{4}x^2-10x=0\right]$ $x = 0 \text{ or } 8, y = 1 \text{ or } 5 \left[(0,1) \text{ and } (8,5)\right]$ Equations are $y-1=-2x$ and $y-5=-2(x-8)$ Method 2 for Question 10(c) Coordinates of points at which tangents meet curve are	DM1 A1 A1	By implicit differentiation. Obtaining an unsimplified equation in x or y only. $[y^2 - 6y + 5 = 0]$. Correct co-ordinates for both points. Condone no methoshown for solution. $2x + y = 1$ and $2x + y = 21$. Vector approach using their centre and gradient = 0.5. Condone answers only with no working.
Or $2(x-4)+2(y-3)\frac{dy}{dx} = 0 \left[\text{leading to } y = \frac{1}{2}x+1 \right]$ $(x-4)^2 + \left(\frac{1}{2}x+1-3\right)^2 = 20 \left[\frac{5}{4}x^2 - 10x = 0\right]$ $x = 0 \text{ or } 8, y = 1 \text{ or } 5 \left[(0,1) \text{ and } (8,5) \right]$ Equations are $y-1=-2x$ and $y-5=-2(x-8)$ Method 2 for Question 10(c) Coordinates of points at which tangents meet curve are $(4+4,3+2) = (8,5)$ and $(4-4,3-2) = (0,1)$	DM1 A1 A1 *M1 A1	By implicit differentiation. Obtaining an unsimplified equation in x or y only. $[y^2 - 6y + 5 = 0]$. Correct co-ordinates for both points. Condone no methoshown for solution. $2x + y = 1$ and $2x + y = 21$. Vector approach using their centre and gradient = 0.5. Condone answers only with no working.
Or $2(x-4)+2(y-3)\frac{dy}{dx}=0$ [leading to $y=\frac{1}{2}x+1$] $(x-4)^2+\left(\frac{1}{2}x+1-3\right)^2=20$ [$\frac{5}{4}x^2-10x=0$] x=0 or $8, y=1$ or 5 [$(0,1)$ and $(8,5)$] Equations are $y-1=-2x$ and $y-5=-2(x-8)$ Method 2 for Question $10(c)$ Coordinates of points at which tangents meet curve are $(4+4,3+2)=(8,5)$ and $(4-4,3-2)=(0,1)$ Equations are $y-5=-2(x-8)$ and $y-1=-2x$ Method 3 for Question $10(c)$ $(x-4)^2+(-2x+c-3)^2=20$	DM1 A1 A1 *M1 A1	By implicit differentiation. Obtaining an unsimplified equation in x or y only. $[y^2 - 6y + 5 = 0]$. Correct co-ordinates for both points. Condone no methoshown for solution. $2x + y = 1$ and $2x + y = 21$. Vector approach using their centre and gradient = 0.5. Condone answers only with no working.
Or $2(x-4)+2(y-3)\frac{dy}{dx} = 0$ [leading to $y = \frac{1}{2}x+1$] $(x-4)^2 + \left(\frac{1}{2}x+1-3\right)^2 = 20 \left[\frac{5}{4}x^2 - 10x = 0\right]$ $x = 0$ or $8, y = 1$ or 5 [(0,1) and (8,5)] Equations are $y - 1 = -2x$ and $y - 5 = -2(x-8)$ Method 2 for Question 10(c) Coordinates of points at which tangents meet curve are $(4+4, 3+2) = (8, 5)$ and $(4-4, 3-2) = (0, 1)$ Equations are $y - 5 = -2(x-8)$ and $y - 1 = -2x$ Method 3 for Question 10(c)	MI AI *MI AI DMI AI	By implicit differentiation. Obtaining an unsimplified equation in x or y only. $[y^2 - 6y + 5 = 0]$. Correct co-ordinates for both points. Condone no methoshown for solution. $2x + y = 1$ and $2x + y = 21$. Vector approach using their centre and gradient = 0.5. Condone answers only with no working. Forming equations of tangents using <i>their</i> (0,1) and (8,3). Obtaining an unsimplified equation in x only using

Method 1 for Question 10(c)

.,					
Diameter: $y-3=\frac{1}{2}(x-4)$ [leading to $y=\frac{1}{2}x+1$]	*M1	Using gradient $\frac{1}{2}$ with their centre.			
Or $2(x-4)+2(y-3)\frac{dy}{dx} = 0$ [leading to $y = \frac{1}{2}x+1$]		By implicit differentiation.			
$(x-4)^2 + \left(\frac{1}{2}x+1-3\right)^2 = 20 \left[\frac{5}{4}x^2-10x=0\right]$	DM1	Obtaining an unsimplified equation in x or y only. $[y^2 - 6y + 5 = 0]$.			
x = 0 or 8, y = 1 or 5 [(0,1) and (8,5)]	A1	Correct co-ordinates for both points. Condone no method shown for solution.			
Equations are $y-1 = -2x$ and $y-5 = -2(x-8)$	A1	2x + y = 1 and $2x + y = 21$.			
Method 2 for Question 10(c)	Method 2 for Question 10(c)				
Coordinates of points at which tangents meet curve are $(4+4, 3+2) = (8, 5)$ and $(4-4, 3-2) = (0, 1)$	*M1 A1	Vector approach using their centre and gradient = 0.5 . Condone answers only with no working.			
Equations are $y-5 = -2(x-8)$ and $y-1 = -2x$	DM1 A1	Forming equations of tangents using their (0, 1) and (8, 5)			
Method 3 for Question 10(c)	Method 3 for Question 10(c)				
$(x-4)^{2} + (-2x+c-3)^{2} = 20$ $\left[5x^{2} + (4-4c)x + (c-3)^{2} - 4 = 0\right]$	*M1	Obtaining an unsimplified equation in x only using equation of circle with $y = -2x + c$.			
$(4-4c)^2-20((c-3)^2-4)[=0]$	DM1	Using $b^2 - 4ac[=0]$.			
[leading to $-4c^2 - 32c + 120c + 16 - 100 = 0$]					
$4c^2 - 88c + 84[=0] [leading to c^2 - 22c + 21 = 0]$	A1				
c = 21 and $c = 1$ or $y = -2x + 21$ and $y = -2x + 1$	A1	Condone no method shown for solution.			
	4				

(a)	$x^2 + (y-2)^2 = 100$	B1	OE e.g. $(x-0)^2 + (y-2)^2 = 10^2$ ISW.
		1	///
(b)	Gradient of radius = $\left[\frac{10-2}{6-0}\right] = \frac{4}{3}$ or gradient of tangent = $\frac{-3}{4}$	M1	OE SOI Use coordinates to find gradient of radius or differentiate to find m_T e.g. $2x + 2(y - 2)\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{-3}{4}$ at (6, 10) $y = 2 + \sqrt{100 - x^2} \Rightarrow \frac{dy}{dx} = \frac{1}{2}(100 - x^2)^{-\frac{1}{2}}(-2x) = -\frac{3}{4}$.
	Equation of tangent is $y-10 = -\frac{3}{4}(x-6)$ $\left[\Rightarrow y = -\frac{3}{4}x + \frac{29}{2}\right]$	A1	OE ISW Allow e.g. $\frac{58}{4}$.
		2	
(c)	Coordinates of centre of circle Q are $\left(0, their \frac{29}{2}\right)$	М1	SOI From a linear equation in (b).
	Equation of circle Q is $x^2 + \left(y - their \frac{29}{2}\right)^2 = \left(\frac{5\sqrt{5}}{2}\right)^2 \left[\frac{125}{4}\right]$	A1FT	OE e.g. $(x-0)^2 + (y-14.5)^2 = 31.25$ ISW.
	$x^{2} + (11 - 2)^{2} = 100 \Rightarrow x^{2} = 19 \text{ and } x^{2} + \left(11 - \frac{29}{2}\right)^{2} = \frac{125}{4} \Rightarrow x^{2} = 19$ $OR \text{ e.g. } \frac{125}{4} - \left(y - \frac{29}{2}\right)^{2} + \left(y - 2\right)^{2} = 100 \Rightarrow 25y = 275 \Rightarrow y = 11$	В1	OE e.g. $x = [\pm]\sqrt{19}$, $x^2 - 19 = x^2 - 19$ Correct argument to verify both y -coords are 11 ISW.
		3	

(d)	$\begin{vmatrix} x^2 + \left(-\frac{3}{4}x + \frac{29}{2} - \frac{29}{2}\right)^2 = \frac{125}{4} \ \left[\Rightarrow \frac{25}{16}x^2 = \frac{125}{4} \Rightarrow x^2 = 20 \right] \\ \text{or } y^2 - 29y + 199[=0] \end{vmatrix}$	M1	Substitute equation of <i>their</i> tangent into equation of <i>their</i> circle. May see $y = \sqrt{31.25 - x^2 + 14.5}$.
	$x = \pm 2\sqrt{5}$ or $y = \frac{29 \mp 3\sqrt{5}}{2}$	A1	OE e.g. $x = \pm \sqrt{20}$ For 2 x-values or 2 y-values or correct (x, y) pair.
	$y \left[= \left(-\frac{3}{4} \times \pm \sqrt{20} \right) + \frac{29}{2} \right] = \frac{29 \mp 3\sqrt{5}}{2}$	A1	OE e.g. $\frac{58}{4} + \frac{3\sqrt{20}}{4}$, $\frac{58}{4} - \frac{3\sqrt{20}}{4}$ Correct (x, y) pairs.
		3	

