AS-Level

Coordinate Geometry

May 2013-May 2023

Answer

Question 1

(i)	$\begin{aligned} & A(2,14), B(14,6) \text { and } C(7,2) . \\ & m \text { of } A B=-2 / 3 \end{aligned}$	B1		
	m of perpendicular $=\frac{3}{2}$	M1		For use of $m_{1} m_{2}=-1$
	eqn of $A D \quad y-14=-\frac{2}{3}(x-2)$	M1		Allow M1 for unsimplified eqn
	eqn of $C X \quad y-2=\frac{3}{2}(x-7)$	M1		Allow M1 for unsimplified eqn
	Sim Eqns $\rightarrow X(11,8)$	M1 A1	[6]	For solution of sim eqns.
(ii)	$\begin{aligned} & A X: X B=14-8: 8-6=3: 1 \\ & \text { Or } \sqrt{ }\left(9^{2}+6^{2}\right): \sqrt{ }\left(3^{2}+2^{2}\right)=3: 1 \end{aligned}$	M1 A1	[2]	Vector steps or Pythagoras.

Question 2

$$
\begin{aligned}
& 3 y+2 x=33 . \\
& \text { Gradient of line }=-2 / 3 \\
& \text { Gradient of perpendicular }=3 / 2 \\
& \text { Eqn of perp } y-3=\frac{3}{2}(x+1) \\
& \text { Sim Eqns } \rightarrow(3,9) \\
& (-1,3) \rightarrow(3,9) \rightarrow(7,15)
\end{aligned}
$$

Use of $m_{1} m_{2}=-1$ with gradient of line Correct form of perpendicular eqn. Sim eqns.

Vectors or other method.

Question 3

(i) $x^{2}-4 x+4=x \Rightarrow x^{2}-5 x+4=0$
$(x-1)(x-4)(=0)$ or other valid method
$(1,1),(4,4)$
Mid-point $=\left(2^{1 / 2}, 2^{1 / 2}\right)$
(ii) $x^{2}-(4+m) x+4=0 \rightarrow(4+m)^{2}-4(4)=0$
$4+m= \pm 4$ or $m(8+m)=0$
$m=-8$
$x^{2}+4 x+4=0$
$x=-2, y=16$
t(ii) $2 x-4=m$
$x^{2}-4 x+4=(2 x-4) x$
$x=-2($ ignore +2$)$
$m=-8$ (ignore 0)
$y=16$

M1M1		Eliminate y to reach 3-term quadratic
		Attempt solution
A1		
A1 ${ }^{\wedge}$		ft dependent on $1^{\text {st }} \mathrm{M} 1$
	[4]	
M1		Applying $b^{2}-4 a c=0$
DM1		Attempt solution
A1		Ignore $m=0$ in addition
M1		Sub non-zero m and attempt to solve
A1		Ignore (2,0) solution from $m=0$
	[5]	
M1		OR $2 x-4=m$
DM1		Sub $x=\frac{m+4}{2}, y=\frac{m(m+4)}{2}$ into quad
A1		$m=-8$ from resulting quad $m(m+8)=0$
A1		$x=-2$
A1		$y=16$

Question 4

(i) gradient of perpendicular $=-1 / 2$ soi $y-1=-1 / 2(x-3)$
(ii) $C=(-9,6)$
$A C^{2}=[3-(-9)]^{2}+[1-6]^{2}(\mathrm{ft}$ on their $C)$ $A C=13$
soi in (i) or (ii)
OR $A B^{2}=[3-(-21)]^{2}+[1-11]^{2} \quad$ M1
$A B=26 \quad \mathrm{~A} 1$
[3]
$A C=13 \quad \mathrm{Al}$

Eliminate y to reach 3-term quadratic Attempt solution
ft dependent on $1^{\text {st }} \mathrm{M}$

Applying $b^{2}-4 a c=0$
Attempt solution

Sub non-zero m and attempt to solve Ignore $(2,0)$ solution from $m=0$

OR $2 x-4=m$ Sub $x=\frac{m+4}{2}, y=\frac{m(m+4)}{2}$ into quad
$m=-8$ from resulting quad $m(m+8)=0$
$x=-2$
$y=16$

Question 5

$A(0,8) B(4,0) 8 y+x=33$		
m of $A B=-2$	B1	
m of $B C=1 / 2$	M1	Use of $m_{1} m_{2}=-1$ for $B C$ or $A D$
Eqn $B C \rightarrow y-0=1 / 2(x-4)$	M1	Correct method for equation of $B C$
Sim eqns $\rightarrow C(16,6)$	M1 A1	Sim Eqns for $B C, A C$.
Vector step method $\rightarrow D(12,14)$	M1 A1	M1 valid method.
$($ or $A D y=1 / 2 x+8, C D y=-2 x+38)$	$[7]$	
$($ or $M=(8,7) \rightarrow D=(12,14)$		

Question 6

(i) mid-point $=(3,4)$

Grad. $A B=-1 / 2 \rightarrow$ grad. of perp.,$=2$
$y-4=2(x-3)$
$y=2 x-2$
(ii) $q=2 p-2 \downarrow \quad p^{2}+q^{2}=4$ oe
$p^{2}+(2 p-2)^{2}=4 \rightarrow 5 p^{2}-8 p=0$
$\left\{\mathrm{OR}_{1}^{1} / 4(q+2)^{2}+q^{2}=4 \rightarrow 5 q^{2}+4 q-12=0\right\}$
$(0,-2)$ and $\left(\frac{8}{5}, \frac{6}{5}\right)$

Question 7

Sim eqns $\rightarrow A(1,3)$	M1 A1	co Allow answer only B2
Vectors or mid-point $\rightarrow C(12,14)$	M1 A1	Allow answer only B2

Question 8

$(2,7)$ to $(10,3)$	
Mid-point $(6,5)$	B 1
Gradient $=-1 / 2$	B 1
Perp gradient $=2$	$\mathrm{~B} 1 \downarrow$
Eqn $y-5=2(x-6)$	M1
Sets y to $0, \rightarrow(31 / 2,0)$	A1

Question 9

$$
(a-3)^{2}+(2-b)^{2}=125 \quad \text { oe }
$$

$$
\frac{2-b}{a-3}=2 \quad \text { oe }
$$

$$
(a-3)^{2}+(2 a-6)^{2}=125 \quad(\text { sub for } a \text { or } b)
$$

$$
(5)(a+2)(a-8)(=0) \quad \text { Attempt factorise/solve }
$$

$$
a=-2 \text { or } 8, \quad b=12 \text { or }-8
$$

B1

B1
M1
M1
A1A1

Or $1 / 4(2-b)^{2}+(2-b)^{2}=125$
$\operatorname{Or}(5)(b-12)(b+8)(=0)$
Answers (no working) after 2 correct eqns
[6] score SCB1B1 for each correct pair (a, b)

Question 10
(i) $m=\frac{3 a+9-(2 a-1)}{2 a+4-a}=\frac{a+10}{a+4}$ oe e.g. $\frac{-a-10}{-a-4}$ Gradient of perpendicular $=\frac{-(a+4)}{a+10}$ oe but $\operatorname{not} \frac{-1}{\left(\frac{a+10}{a+4}\right)}$
(ii) $\quad(\sqrt{ })\left[(a+4)^{2}+(a+10)^{2}\right]=(\sqrt{ }) 260$
($\sqrt{ })\left[(a+4)^{2}+(a+10)^{2}\right]$ cao
(2) $\left(a^{2}+14 a-72\right)(=0)$
$a=4$ or -18 cao
cao Allow omission of brackets for M1
Do not ISW. Max penalty for erroneous cancellation 1 mark

Allow their $(a+4),(a+10)$ from (i). Allow $(-a-4)^{2}$ etc. Allow omission of brackets

Question 11

(i) $m_{A B}=-3$ or $\frac{-9}{3}$
$m_{A D}=\frac{1}{3}$
Eqn $A D y-6=\frac{1}{3}(x-2)$ or $3 y=x+16$
(ii) Eqn $C D \quad y-3=-3(x-8)$ or $y=-3 x+27$ Sim Eqns
$\rightarrow D\left(6^{1 / 2}, 71 / 2\right)$
(iii) Use of vectors or mid-point
$\rightarrow E(5,12)$ or mid-point $(5,4.5)$
Length of $B E=15$

B1

M1

A1
$B 1{ }^{*}$
M1
A1
[3]
B1
B1
[2]
oe
use of $m_{1} m_{2}=-1$ with $\operatorname{grad} A B$
co - OK unsimplified

OK unsimplified.
Reasonable algebra leading to $x=$ or $y=$ with $A D$ and $C D$

May be implied co

M1A1
M1
A1
[4]
B1 ${ }^{\wedge}$
31 ${ }^{\wedge}$

Sub $(8,-4) \quad[$ alt: $(2 b+4) /(b-8)=-4 / k$
$\operatorname{Sub}(b, 2 b), \quad 4 b+2 b k=20$
M1 both M1 solving A1,
A1]

Ft on their b

Question 13

(i)	$\begin{aligned} & (9-p)^{2}+(3 p)^{2}=169 \\ & 10 p^{2}-18 p-88(=0) \quad \text { oe } \\ & p=4 \text { or }-11 / 5 \quad \text { oe } \end{aligned}$	$\begin{array}{\|lr} \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ & \\ & {[3]} \end{array}$	$\text { Or } \sqrt{ }=13$ 3-term quad
(ii)	Gradient of given line $=-\frac{2}{3}$ Hence gradient of $A B=\frac{3}{2}$ $\frac{3}{2}=\frac{3 p}{9-p} \quad \text { oe } \quad \text { eg }\left(\frac{-2}{3}\right)\left(\frac{3 p}{9-p}\right)=1$ (includes previous M1) $p=3$	B1 M1 M1 A1 [4]	Attempt using $m_{1} m_{2}=-1$ Or vectors $\binom{9-p}{3 p} \cdot\binom{3}{-2}$

Question 14

$A(4,6), B(10,2)$.
(i)

$$
M=(7,4)
$$

$$
m \text { of } A B=-\frac{2}{3}
$$

$$
m \text { of perpendicular }=\frac{3}{2}
$$

$$
\rightarrow y-4=\frac{3}{2}(x-7)
$$

(ii)
Eqn of line parallel to $A B$ through $(3,11)$
$\rightarrow y-11=-\frac{2}{3}(x-3)$
Sim eqns $\rightarrow C(9,7)$
B1 co
BI
M1 A1
Use of $m_{1} m_{2}=-1 \&$ their midpoint in the equation of a line. co
Needs to use m of $A B$
Must be using their correct lines.
[3] Co

Question 15

(i) $\quad \left\lvert\, \begin{aligned} & y-2 t=-2(x-3 t)(y+2 x=8 t) \\ & \text { Set } x \text { to } 0 \rightarrow B(0,8 t) \\ & \text { Set } y \text { to } 0 \rightarrow A(4 t, 0) \\ & \rightarrow \text { Area }=16 t^{2}\end{aligned}\right.$
(ii)
$m=\frac{1}{2}$
$\rightarrow y-2 t=\frac{1}{2}(x-3 t)(2 y=x+t)$
Set y to $0 \rightarrow C(-t, 0)$
Midpoint of $C P$ is (t, t)
This lies on the line $y=x$.

Question 16

(i)	$\begin{aligned} & A(-3,7), B(5,1) \text { and } C(-1, k) \\ & A B=10 \\ & 6^{2}+(k-1)^{2}=10^{2} \\ & k=-7 \text { and } 9 \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } \\ \text { A1 } \end{array}$	Use of Pythagoras
(ii)	$\begin{aligned} & m \text { of } A B=-3 / 4 \quad m \text { perp }=\frac{4}{3} \\ & M=(1,4) \\ & \text { Eqn } y-4=\frac{4}{3}(x-1) \end{aligned}$ Set y to $0, \rightarrow x=-2$	B1 M1 B1 M1 A1 [5]	B1 M1 Use of $m_{1} m_{2}=-1$ Complete method leading to D.

Question 17
(i) $x^{2}-x+3=3 x+a \rightarrow x^{2}-4 x+(3-a)=0$
(ii)
(ii) $\begin{aligned} & 5+(3-a)=0 \rightarrow a=8 \\ & x^{2}-4 x-5=0 \rightarrow x=5 \\ & \text { (iii) } \left\lvert\, \begin{array}{l}\left.16-4(3-a)=0 \quad \text { (applying } b^{2}-4 a c=0\right) \\ a=-1 \\ (x-2)^{2}=0 \rightarrow x=2 \\ y=5\end{array}\right.\end{aligned}$
B1
AG
[1]
Sub $x=-1$ into (i)
B1
OR B2 for $x=5$ www
M1
A1
OR $\mathrm{d} y / \mathrm{d} x=2 x-1 \rightarrow 2 x-1=3$
A1
$x=2$
A1
$y=2^{2}-2+3 \rightarrow y=5$
$5=6+a \rightarrow a=-1$
[4]

Question 18

(a)	$\begin{aligned} & 3 x=-\sqrt{3} / 2 \\ & x=\frac{-\sqrt{3}}{6} \text { oe } \end{aligned}$	$\begin{array}{\|ll} \text { M1 } & \\ \text { A1 } & \\ & {[2]} \end{array}$	Accept -0.866 at this stage Or $\frac{-3}{6 \sqrt{3}}$ or $\frac{-1}{2 \sqrt{3}}$
(b)	$\begin{aligned} & (2 \cos \theta-1)(\sin \theta-1)=0 \\ & \cos \theta=1 / 2 \text { or } \sin \theta=1 \\ & \theta=\pi / 3 \text { or } \pi / 2 \end{aligned}$	M1 A1 A1A1 [4]	Reasonable attempt to factorise and solve Award B1B1 www Allow $1.05,1.57$. SCA1 for both $60^{\circ}, 90^{\circ}$

Question 19
(i) $A B^{2}=6^{2}+7^{2}=85, B C^{2}=2^{2}+9^{2}=85$ (\rightarrow isosceles)
$A C^{2}=8^{2}+2^{2}=68$
$M=(2,-2)$ or $B M^{2}=(\sqrt{85})^{2}-\left(1 / 2 \sqrt{68)}^{2}\right.$
$B M=\sqrt{2^{2}+8^{2}}=\sqrt{68}$ or $\sqrt{85-17}=\sqrt{68}$
Area $\triangle A B C=\frac{1}{2} \sqrt{68} \sqrt{68}=34$
(ii)

Gradient of $A B=7 / 6$
Equation of $A B$ is $y+1=\frac{7}{6}(x+2)$
Gradient of $C D=-6 / 7$
Equation of $C D$ is $y+3=\frac{-6}{7}(x-6)$
Sim Eqns $2=\frac{-6}{7} x+\frac{36}{7}-\frac{7}{6} x-\frac{14}{6}$

$$
x=\frac{34}{85}=\frac{2}{5} \text { oe }
$$

B1B1	Or $A B=B C=\sqrt{85}$ etc	
B1		
B1		Where M is mid-point of $A C$
B1		
B1		
B1		
M1		Or $y-6=\frac{7}{6}(x-4)$
M1		
M1		
M1		
A1		

Question 20

(i)

$|$| $A(0,7), B(8,3)$ and $C(3 k, k)$ |
| :--- |
| m of $A B$ is $-1 / 2$ oe. |
| Eqn of $A B$ is $y=-1 / 2 x+7$ |
| Let $x=3 k, y=k$ |
| $\boldsymbol{k}=\mathbf{2 . 8}$ oe |
| OR |
| $\frac{7-k}{0-3 k}=\frac{3-k}{8-3 k}$ |
| $\rightarrow 20 k=56 \rightarrow k=2.8$ |
| OR |
| $\frac{7-k}{0-3 k}=\frac{7-3}{0-8}$ |
| $\rightarrow 20 k=56 \rightarrow k=2.8$ |

(ii)
$\mathrm{M}(4,5)$
Perpendicular gradient $=2$.
Perp bisector has eqn $y-5=2(x-4)$
Let $x=3 k, y=k$
$k=\frac{3}{5}$ oe
OR
$(0-3 \mathrm{k})^{2}+(7-\mathrm{k})^{2}=(8-3 \mathrm{k})^{2}+(3-\mathrm{k})^{2}$
$-14 \mathrm{k}+49=73-54 \mathrm{k} \rightarrow 40 \mathrm{k}=24 \rightarrow k=0.6$

B1 anywhere in (ii) Use or $m_{1} m_{2}=-1$ so1 Forming eqn using their M and their "perpendicular m"

M1A1

DM1A1
[4]

Use of Pythagoras.
Simplifies to a linear or 3 term quadratic $=0$.

Question 21

Question 22
(i) $\left\lvert\, \begin{aligned} & \frac{2+x}{2}=n \Rightarrow x=2 n-2 \\ & \frac{m+y}{2}=-6 \Rightarrow y=-12-m\end{aligned}\right.$
(ii) Sub their x, y into $y=x+1 \rightarrow-12-m=2 n-2+1$ $\frac{m+6}{2-n}=-1$ oe Not nested in an equation Eliminate a variable

$$
m=-9, n=-1
$$

No MR for $(1 / 2(2+n)$, $1 / 2(m-6))$
Expect $(2 n-2,-12-m)$
[2]
Expect $m+2 n=-11$
Expect $m-n=-8$

Note: other methods possible

Question 23

$$
\begin{aligned}
& A(a, 0) \text { and } B(0, b) \\
& a^{2}+b^{2}=100 \\
& M \text { has coordinates }\left(\frac{a}{2}, \frac{b}{2}\right) \\
& M \text { lies on } 2 x+y=10 \\
& \rightarrow a+\frac{b}{2}=10 \\
& \text { Sub } \rightarrow a^{2}+(20-2 a)^{2}=100 \\
& \text { or }\left(10-\frac{b}{2}\right)^{2}+b^{2}=100 \\
& \rightarrow a=6, b=8
\end{aligned}
$$

B1 M1*	soi B1 *	Uses Pythagoras with their A \& B. M1*
DM1 their A and B.		
D1		Subs into given line, using their M, to link a and b. Forms quadratic in a or in b.
A1	cao	

Question 24

(i) $\left\lvert\, \begin{aligned} & C=(4,-2) \\ & m_{A B}=-1 / 2 \rightarrow m_{C D}=2\end{aligned}\right.$

Equation of $C D$ is $y+2=2(x-4)$ oe
$y=2 x-10$
(ii) $A D^{2}=(14-0)^{2}+(-7-(-10))^{2}$
$A D=14.3$ or $\sqrt{ } 205$

B1		
M1		Use of $m_{1} m_{2}=-1$ on their $m_{A B}$ M1
A1		Use of their C and $m_{C D}$ in a line equation
M1		Use their D in a correct method

Question 25

(i)	$\tan x=\cos x \rightarrow \sin x=\cos ^{2} x$	M1	Use $\tan =\sin / \cos$ and multiply by \cos
	$\sin x=1-\sin ^{2} x$	M1	Use $\cos ^{2} x=1-\sin ^{2} x$
	$\sin x=0.6180$. Allow $(-1+\sqrt{5}) / 2$	M1	Attempt soln of quadratic in $\sin x$. Ignore solution -1.618 . Allow $x=$ 0.618
	x-coord of $A=\sin ^{-1} 0.618=0.666$ cao	A1	Must be radians. Accept 0.212π
	Total:	4	
(ii)	EITHER x-coord of B is π-their 0.666	(M1	Expect 2.475(3). Must be radians throughout
	y-coord of B is $\tan ($ their 2.475$)$ or $\cos ($ their 2.475$)$	M1	
	$x=2.48, y=-0.786$ or $-0.787 \quad$ cao	A1)	Accept $x=0.788 \pi$
	OR y-coord of B is $-(\cos$ or $\tan ($ their 0.666$))$	(M1	
	x-coord of B is $\cos ^{-1}\left(\right.$ their y) or $\pi+\tan ^{-1}($ their y)	M1	
	$x=2.48, y=-0.786$ or -0.787	A1)	Accept $x=0.788 \pi$
	Total:	3	

Question 26

:(i)	$(b-1) /(a+1)=2$	M1	OR Equation of $A P$ is $y-1=2(x+1) \rightarrow y=2 x+3$
	$b=2 a+3 \mathrm{CAO}$	A1	Sub $x=a, y=b \rightarrow b=2 a+3$
	Total:	2	
(ii)	$A B^{2}=11^{2}+2^{2}=125$ oe	B1	Accept $A B=\sqrt{ } 125$
	$(a+1)^{2}+(b-1)^{2}=125$	B1 FT	FT on their 125.
	$(a+1)^{2}+(2 a+2)^{2}=125$	M1	Sub from part (i) \rightarrow quadratic eqn in a (or possibly in $b \rightarrow b^{2}-2 b-99=0$)
	$(5)\left(a^{2}+2 a-24\right)=0 \rightarrow \operatorname{eg}(a-4)(a+6)=0$	M1	Simplify and attempt to solve
	$a=4$ or -6	A1	
	$b=11$ or -9	A1	OR (4, 11), (-6, -9) If A0A0, SR1 for either $(4,11)$ or $(-6,-9)$
	Total:	6	

Question 27

EITHER Elim y to form 3-term quad eqn in $x^{1 / 3}($ or u or y or even $x)$	(M1	Expect $x^{2 / 3}-x^{1 / 3}-2(=0)$ or $u^{2}-u-2(=0)$ etc.
$x^{1 / 3}($ or u or y or $x)=2,-1$	*A1 $^{\prime}$	Both required. But $\boldsymbol{x}=2,-1$ and not then cubed or cube rooted scores A0
Cube solution(s)	DM1	Expect $x=8,-1$. Both required
$(8,3),(-1,0)$	A1)	
OR Elim x to form quadratic equation in y	(M1	Expect $y+1=(y-1)^{2}$
$y^{2}-3 y=0$	*A1	
Attempt solution	DM1	Expect $y=3,0$
$(8,3),(-1,0)$	A1)	
	Total:	$\mathbf{4}$

Question 28

(i)	Gradient $=1.5$ Gradient of perpendicular $=-2 / 3$	B1	
	$\begin{aligned} \text { Equation of } A B \text { is } & y-6=-2 / 3(x+2) \\ \text { Or } & 3 y+2 x=14 \mathrm{oe} \end{aligned}$	M1 A1	Correct use of straight line equation with a changed gradient and $(-2,6)$, the (-(-2)) must be resolved for the A1 ISW.
			Using $y=m x+c$ gets $\mathbf{A 1}$ as soon as c is evaluated.
	Total:	3	
(ii)	Simultaneous equations \rightarrow Midpoint (1, 4)	M1	Attempt at solution of simultaneous equations as far as $x=$, or $y=$.
	Use of midpoint or vectors $\rightarrow B(4,2)$	M1A1	Any valid method leading to x, or to y.
	Total:	3	

Question 29

(i)		B1	One whole cycle - starts and finishes at -ve value
		DB1	Smooth curve, flattens at ends and middle. Shows $(0,2)$.
	Total:	2	
(ii)	$P\left(\frac{\pi}{3}, 1\right) Q(\pi,-2)$		
	$\rightarrow P Q^{2}=\left(\frac{2 \pi}{3}\right)^{2}+3^{2} \rightarrow P Q=3.7$	M1 A1	Pythagoras (on their coordinates) must be correct, OE.
(iii)	Total: Eqn of $P Q \quad y-1=-\frac{9}{2 \pi}\left(x-\frac{\pi}{3}\right)$		Correct form of line equation or sim equations from their P \& Q
	If $y=0 \rightarrow h=\frac{5 \pi}{9}$	A1	AG, condone $x=\frac{5 \pi}{9}$
	If $x=0 \rightarrow k=\frac{5}{2}$,	A1	SR: non-exact solutions A1 for both
	Total:	3	

Question 30

i(i)	Mid-point of $A B=(3,5)$	B1	Answers may be derived from simultaneous equations
	Gradient of $A B=2$	B1	
	Eqn of perp. bisector is $y-5=-1 / 2(x-3) \rightarrow 2 y=13-x$	M1A1	AG For M1 FT from mid-point and gradient of $A B$
		4	
(ii)	$-3 x+39=5 x^{2}-18 x+19 \rightarrow(5)\left(x^{2}-3 x-4\right)(=0)$	M1	Equate equations and form 3-term quadratic
	$x=4$ or -1	A1	
	$y=41 / 2$ or 7	A1	
	$C D^{2}=5^{2}+2^{1 / 2^{2}} \rightarrow C D=\sqrt{\frac{125}{4}}$	M1A1	Or equivalent integer fractions ISW
		5	

Question 31

(i)	$\frac{1}{\sqrt{3}}=\frac{2}{x}$ or $y-2=\frac{-1}{\sqrt{3}} x$	$\mathbf{M 1}$	OE, Allow $y-2=\frac{+1}{\sqrt{3}} x$. Attempt to express $\tan \frac{\pi}{6}$ or $\tan \frac{\pi}{3}$ exactly required or the use of $1 / \sqrt{ } 3$ or $\sqrt{ } 3$

Question 32

(i)	Gradient, m , of $A B=\frac{3 k+5-(k+3)}{k+3-(-3 k-1)}$ OE $\left(=\frac{2 k+2}{4 k+4}\right)=\frac{1}{2}$	M1A1	Condone omission of brackets for M mark
		2	
(ii)	$\begin{aligned} & \text { Mid-pt }=\left[\frac{1}{2}(-3 k-1+k+3), \frac{1}{2}(3 k+5+k+3)\right]= \\ & \left(\frac{-2 k+2}{2}, \frac{4 k+8}{2}\right) \text { SOI } \end{aligned}$	B1B1	B1 for $\frac{-2 k+2}{2}, \mathrm{~B} 1$ for $\frac{4 k+8}{2}$ (ISW) or better, i.e. $(-k+1,2 k+4)$
	Gradient of perpendicular bisector is $\frac{-1}{\text { their } m}$ SOI Expect -2	M1	Could appear in subsequent equation and/or could be in terms of k
	Equation: $y-(2 k+4)=-2[x-(-k+1)] \mathrm{OE}$	DM1	Through their mid-point and with their $\frac{-1}{m}$ (now numerical)
	$y+2 x=6$	A1	Use of numerical k in (ii) throughout scores SC2/5 for correct answer
		5	

Question 33

EITHER		
$\text { Gradient of bisector }=-\frac{3}{2}$	B1	
gradient $A B=\frac{5 h-h}{4 h+6-h}$	* M1	Attempt at $\frac{y-\text { step }}{x-\text { step }}$
Either $\frac{5 h-h}{4 h+6-h}=\frac{2}{3}$ or $-\frac{4 h+6-h}{5 h-h}=-\frac{3}{2}$	*M1	Using $m_{1} m_{2}=-1$ appropriately to form an equation.
OR		
$\text { Gradient of bisector }=-\frac{3}{2}$	B1	
Using gradient of $A B$ and A, B or midpoint $\rightarrow \frac{2}{3} x+\frac{h}{3}=y$ oe	*M1	Obtain equation of $A B$ using gradient from $m_{1} m_{2}=-1$ and a point.
Substitute co-ordinates of one of the other points	* ${ }^{\text {a }}$	Arrive at an equation in h.
$\mathrm{h}=2$	A1	
Midpoint is $\left(\frac{5 h+6}{2}, 3 h\right)$ or $(8,6)$	B1FT	Algebraic expression or FT for numerical answer from 'their h '
Uses midpoint and 'their h ' with $3 x+2 y=k$	DM1	Substitutes 'their midpoint' into $3 x+2 y=k$. If $y=-\frac{3}{2} x+c$ is used (expect $c=18$) the method mark should be withheld until they $\times 2$.
$\rightarrow k=36$ soi	A1	
	7	

Question 34

(i) \quad Eqn of $A C y=-\frac{1}{2} x+4$ (gradient must be $\left.\Delta y / \Delta x\right)$

Gradient of $O B=2 \rightarrow y=2 x$ (If y missing only penalise once)		
	M1 A1	Use of $m_{1} m_{2}=-1$, answers only ok.

(ii) \begin{tabular}{|l|r|l}
Simultaneous equations $\rightarrow((1.6,3.2))$ \& M1 \& Equate and solve for M1 and reach $\geqslant 1$ solution

\hline This is mid-point of $O B . \rightarrow B(3.2,6.4)$ \& M1 A1 \& Uses mid-point. CAO

\hline or \& \&

\hline | Let coordinates of $B(h, k)$ |
| :--- |
| $O A=A B \rightarrow h^{2}=8 k-k^{2}$ |
| $O C=B C \rightarrow k^{2}=16 h-h^{2} \rightarrow(3.2,6.4)$ | \& M1 for both equations, M1 for solving with $y=2 x$

\hline or \& \& | M1 for gradient product as -1, M1 solving with |
| :--- |
| $y=2 x$ |

\hline gradients $\left(\frac{k-4}{h} \times \frac{k}{h-8}=-1\right)$ \& $\mathbf{3}$ \&

\hline or \& M1 for complete equation, M1 solving with $y=2 x$

\hline Pythagoras: $h^{2}+(k-4)^{2}+(h-8)^{2}+k^{2}=4^{2}+8^{2}$ \& \&

\hline \& \&

\hline
\end{tabular}

Question 35

(i)	Gradient, m, of $A B=3 / 4$	B1	
	Equation of $B C$ is $y-4=\frac{-4}{3}(x-3)$	M1A1	Line through $(3,4)$ with gradient $\frac{-1}{m}$ (M1). (Expect $\left.y=\frac{-4}{3} x+8\right)$
	$x=6$	A1	Ignore any y coordinate given.
		4	
(ii)	$(A C)^{2}=7^{2}+1^{2} \rightarrow A C=7.071$	M1A1	M mark for $\sqrt{(\text { their } 6+/-1)^{2}+1}$.
		2	

Question 36

(i)	$2 x+\frac{12}{x}=k-x$ or $y=2(k-y)+\frac{12}{k-y} \rightarrow 3$ term quadratic.	*M1
	Use of $b^{2}-4 a c \rightarrow k^{2}-144<0$	DM1
	$-12<k<12$	A1
		3
(ii)	Using $k=15$ in their 3 term quadratic	M1
	$x=1,4$ or $y=11,14$	A1
	$(1,14)$ and $(4,11)$	A1
		3
(iii)	Gradient of $A B=-1 \rightarrow$ Perpendicular gradient $=+1$	B1FT
	Finding their midpoint using their $(1,14)$ and $(4,11)$	M1
	Equation: $\boldsymbol{y}-\mathbf{1 2}^{112} \mathbf{2}=\left(\boldsymbol{x}-\mathbf{2}^{1 / 2}\right)[y=x+10]$	A1
		3

Question 37

)(i)	$\begin{aligned} & 4 x^{1 / 2}=x+3 \rightarrow \\ & \left(x^{1 / 2}\right)^{2}-4 x^{1 / 2}+3(=0) \text { OR } 16 x=x^{2}+6 x+9 \end{aligned}$	M1	Eliminate y from the 2 equations and then: Either treat as quad in $x^{1 / 2}$ OR square both sides and RHS is 3-term
	$x^{1 / 2}=1$ or $3 x^{2}-10 x+9(=0)$	A1	If in 1st method $x^{1 / 2}$ becomes x, allow only M1 unless subsequently squared
	$x=1$ or 9	A1	
	$y=4$ or 12	A1ft	Ft from their x values If the 2 solutions are found by trial substitution B1 for the first coordinate and B3 for the second coordinate
	$A B^{2}=(9-1)^{2}+(12-4)^{2}$	M1	
	$A B=\sqrt{128}$ or $8 \sqrt{2}$ oe or 11.3	A1	
		6	
)(ii)	$\mathrm{d} y / \mathrm{d} x=2 x^{-1 / 2}$	B1	
	$2 x^{-1 / 2}=1$	M1	Set their derivative $=$ their gradient of $A B$ and attempt to solve
	$(4,8)$	A1	Alternative method without calculus: $\mathrm{M}_{\mathrm{AB}}=1$, tangent is $y=\mathrm{m} x+\mathrm{c}$ where $\mathrm{m}=1$ and meets $y=4 x^{1 / 2}$ when $4 x^{1 / 2}=x+\mathrm{c}$. This is a quadratic with $\mathrm{b}^{2}=4 \mathrm{a}$, so $16-4 \times 1 \times c=0$ so $\mathrm{c}=4$ B1 Solving $4 x^{1 / 2}=x+4$ gives $x=4$ and $y=8 \mathrm{M1A1}$
		3	
)(iii)	Equation of normal is $y-8=-1(x-4)$	M1	Equation through their T and with gradient $-1 /$ their gradient of AB. Expect $y=-x+12$,
	Eliminate $y($ or $x) \rightarrow-x+12=x+3$ or $\quad y-3=12-y$	M1	May use their equation of AB
	$(41 / 2,71 / 2)$	A1	
		3	

Question 38

'(i)	$D=(5,1)$	B1	
		1	
(ii)	$(x-5)^{2}+(y-1)^{2}=20$ oe	B1	FT on their D. Apply ISW, oe but not to contain square roots
		1	
(iii)	$(x-1)^{2}+(y-3)^{2}=(9-x)^{2}+(y+1)^{2}$ soi	M1	Allow 1 sign slip For M1 allow with $\sqrt{ }$ signs round both sides but sides must be equated
	$x^{2}-2 x+1+y^{2}-6 y+9=x^{2}-18 x+81+y^{2}+2 y+1$	A1	
	$y=2 x-9$ www AG	A1	
	Alternative method for question 7(iii)		
	grad. of $A B=-1 / 2 \rightarrow$ grad of perp bisector $=\frac{-1}{-1 / 2}$	M1	
	Equation of perp. bisector is $y-1=2(x-5)$	A1	
	$y=2 x-9$ www AG	A1	
		3	
(iv)	Eliminate y (or x) using equations in (ii) and (iii)	*M1	To give an (unsimplified) quadratic equation
	$5 x^{2}-50 x+105(=0)$ or $5(x-5)^{2}=20$ or $5 y^{2}-10 y-75(=0)$ or $5(y-1)^{2}=80$	DM1	Simplify to one of the forms shown on the right (allow arithmetic slips)
	$x=3$ and 7, or $y=-3$ and 5	A1	
	$(3,-3),(7,5)$	A1	Both pairs of $x \& y$ correct implies A1A1. SC B2 for no working
		4	

Question 39

Attempt to find the midpoint M	M1	
$(1,4)$	A1	
Use a gradient of $\pm 2 / 3$ and their M to find the equation of the line.	M1	
Equation is $y-4=-2 / 3(x-1)$	A1	AEF

Alternative method for question 2

Attempt to find the midpoint M	M1	
$(1,4)$	A1	
Replace 1 in the given equation by c and substitute their M	$\mathbf{M 1}$	
Equation is $y-4=-2 / 3(x-1)$	$\mathbf{A 1}$	AEF
	$\mathbf{4}$	

Question 40

'(a)	Centre $=(2,-1)$	B1	
	$r^{2}=[2-(-3)]^{2}+[-1-(-5)]^{2}$ or $[2-7]^{2}+[-1-3]^{2} \mathrm{OE}$	M1	OR $\frac{1}{2}\left[(-3-7)^{2}+(-5-3)^{2}\right] \mathrm{OE}$
	$(x-2)^{2}+(y+1)^{2}=41$	A1	Must not involve surd form $\operatorname{SCB} 3(x+3)(x-7)+(y+5)(y-3)=0$
		3	
(b)	Centre $=$ their $(2,-1)+\binom{8}{4}=(10,3)$	B1FT	SOI FT on their $(2,-1)$
	$(x-10)^{2}+(y-3)^{2}=$ their 41	B1FT	FT on their 41 even if in surd form SCB2 $(x-5)(x-15)+(y+1)(y-7)=0$
		2	
(c)	Gradient m of line joining centres $=\frac{4}{8} \mathrm{OE}$	B1	
	Attempt to find mid-point of line.	M1	Expect (6,1)
	Equation of $R S$ is $y-1=-2(x-6)$	M1	Through their $(6,1)$ with gradient $\frac{-1}{m}$
	$y=-2 x+13$	A1	AG
	Alternative method for question 12(c)		
	$(x-2)^{2}+(y+1)^{2}-41=(x-10)^{2}+(y-3)^{2}-41 \mathrm{OE}$	M1	
	$x^{2}-4 x+4+y^{2}+2 y+1=x^{2}-20 x+100+y^{2}-6 y+9 \mathrm{OE}$	A1	Condone 1 error or errors caused by 1 error in the first line
	$16 x+8 y=104$	A1	
	$y=-2 x+13$	A1	AG
		4	
(d)	$(x-10)^{2}+(-2 x+13-3)^{2}=41$	M1	Or eliminate y between C_{1} and C_{2}
	$x^{2}-20 x+100+4 x^{2}-40 x+100=41 \rightarrow 5 x^{2}-60 x+159=0$	A1	AG
		2	

Question 41

)(a)	Mid-point is $(-1,7)$	
	Gradient, m, of $A B$ is $8 / 12$ OE	B1
$y-7=-\frac{12}{8}(x+1)$	B1	
$3 x+2 y=11$ AG	M1	
(b)	Solve simultaneously $12 x-5 y=70$ and their $3 x+2 y=11$	A1
$x=5, y=-2$	$\mathbf{4}$	
	Attempt to find distance between their $(5,-2)$ and either $(-7,3)$ or $(5,11)$	M1
$(r)=\sqrt{12^{2}+5^{2}}$ or $\sqrt{13^{2}+0}=13$	A1	
Equation of circle is $(x-5)^{2}+(y+2)^{2}=169$	M1	
	A1	
	A1	$\mathbf{5}$

Question 42

(a)	Express as $(x-4)^{2}+(y+2)^{2}=16+4+5$	M1
	Centre $C(4,-2)$	A1
	Radius $=\sqrt{25}=5$	A1
		3
(b)	$P(1,2)$ to $C(4,-2)$ has gradient $-\frac{4}{3}$ (FT on coordinates of C)	B1FT
	$\text { Tangent at } P \text { has gradient }=\frac{3}{4}$	M1
	Equation is $y-2=\frac{3}{4}(x-1)$ or $4 y=3 x+5$	A1
		3
(c)	Q has the same coordinate as $P y=2$	B1
	Q is as far to the right of C as $P x=3+3+1=7 Q(7,2)$	B1
(d)	Gradient of tangent at $Q=-\frac{3}{4}$ by symmetry (FT from part (b))	$\begin{array}{r} 2 \\ \text { B1FT } \end{array}$
	Eqn of tangent at Q is $y-2=-\frac{3}{4}(x-7)$ or $4 y+3 x=29$	M1
	$T\left(4, \frac{17}{4}\right)$	A1
		3

Question 43

(a)	Centre is (3,1)	B1
	Radius $=5$ (Pythagoras)	B1
	Equation of C is $(x-3)^{2}+(y-1)^{2}=25$ ($\mathbf{F T}$ on their centre)	$\begin{array}{r} \text { M1 } \\ \text { A1FT } \end{array}$
		4
(b)	Gradient from $(3,1)$ to $(7,4)=3 / 4$ (this is the normal)	B1
	$\text { Gradient of tangent }=-\frac{4}{3}$	M1
	Equation is $y-4=-\frac{4}{3}(x-7)$ or $3 y+4 x=40$	M1A1
		4
)(c)	B is centre of line joining centres $\rightarrow(11,7)$	B1
	Radius $=5$ New equation is $(x-11)^{2}+(y-7)^{2}=25$ (FT on coordinates of B)	$\begin{array}{r} \text { M1 } \\ \text { A1FT } \end{array}$
		3

Question 44

(a) | $(-6-8)^{2}+(6-4)^{2}$ | M1 | OE |
| :--- | ---: | ---: |
| $=200$ | A1 | |
| $\sqrt{200}>10$, hence outside circle | A1 | AG ('Shown' not sufficient). Accept equivalents of $\sqrt{200}>10$ |
| Alternative method for question 11(a) | B1 | |
| Radius $=10$ and $C=(8,4)$ | M1 | |
| Min (x) on circle $=8-10=-2$ | A1 | AG |
| Hence outside circle | $\mathbf{3}$ | |
| | | |

(b)	angle $=\sin ^{-1}\left(\frac{\text { their } 10}{\text { their } 10 \sqrt{2}}\right)$
angle $=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right.$ or $\frac{\sqrt{2}}{2}$ or $\frac{10}{10 \sqrt{2}}$ or $\left.\frac{10}{\sqrt{200}}\right)=45^{\circ}$	

M1	Allow decimals for $10 \sqrt{ } 2$ at this stage. If cosine used, angle $A C T$ or $B C T$ must be identified, or implied by use of $90^{\circ}-45^{\circ}$.
A1	AG Do not allow decimals

Alternative method for question 11(b)

$\left(10 \sqrt{2}^{2}=10^{2}+T A^{2}\right.$	M1	
$T A=10 \rightarrow 45^{\circ}$	A1	AG
	$\mathbf{2}$	

(c)

Gradient, m, of $C T=-\frac{1}{7}$	B1	OE
Attempt to find mid-point (M) of $C T$	$* \mathbf{M 1}$	Expect $(1,5)$
Equation of $A B$ is $y-5=7(x-1)$	DM1	Through their $(1,5)$ with gradient $-\frac{1}{m}$
$y=7 x-2$	A1	
	$\mathbf{4}$	

(d)

| $(x-8)^{2}+(7 x-2-4)^{2}=100$ or equivalent in terms of y | M1 | Substitute their equation of $A B$ into equation of circle. |
| :--- | ---: | :--- | :--- |
| $50 x^{2}-100 x(=0)$ | A1 | |
| $x=0$ and 2 | A1 | WWW |
| Alternative method for question 11(d) | M1 | |
| $\mathbf{M C}=\binom{7}{-1}$ | A1 | |
| $\binom{1}{5}+\binom{-1}{-7}=\binom{0}{-2},\binom{1}{5}+\binom{1}{7}=\binom{2}{12}$ | A1 | |
| $x=0$ and 2 | $\mathbf{3}$ | |

Question 45

'(a)	$r=\sqrt{\left(6^{2}+3^{2}\right)} \text { or } r^{2}=45$	B1	Sight of $\mathrm{r}=6.7$ implies B1
	$(x-5)^{2}+(y-1)^{2}=r^{2}$ or $x^{2}-10 x+y^{2}-2 y=r^{2}-26$	M1	Using centre given and their radius or r in correct formula
	$(x-5)^{2}+(y-1)^{2}=45$ or $x^{2}-10 x+y^{2}-2 y=19$	A1	Do not allow $(\sqrt{45})^{2}$ for r^{2}
		3	
(b)	C has coordinates (11,4)	B1	
	0.5	B1	OE, Gradient of $A B, B C$ or $A C$.
	Grad of $\mathrm{CD}=-2$	M1	Calculation of gradient needs to be shown for this M1.
	$\left(\frac{1}{2} \times-2=-1\right)$ then states + perpendicular \rightarrow hence shown or tangent	A1	Clear reasoning needed.
	Alternative method for question 9(b)		
	C has coordinates (11,4)	B1	
	0.5	B1	OE, Gradient of $A B, B C$ or $A C$.
	Gradient of the perpendicular is -2 \rightarrow Equation of the perpendicular is $y-4=-2(x-11)$	M1	Use of $m_{1} m_{2}=-1$ with their gradient of $A B, B C$ or $A C$ and correct method for the equation of the perpendicular. Could use $D(5,16)$ instead of $C(11,4)$.
	Checks $D(5,16)$ or checks gradient of $C D$ and then states D lies on the line or $C D$ has gradient $-2 \rightarrow$ hence shown or tangent	A1	Clear check and reasoning needed. Checks that the other point lies on the line or checks gradient.

(b) \quad Alternative method for question 9(b)

C has coordinates $(11,4)$ or Gradient of $A B, B C$ or $A C=0.5$	B1	Only one of $A B, B C$ or $A C$ needed.
Equation of the perpendicular is $y-4=-2(x-11)$	B1	Finding equation of $C D$.
$(x-5)^{2}+(-2 x+26-1)^{2}=45 \rightarrow\left(x^{2}-22 x+121=0\right)$	M1	Solving simultaneously with the equation of the circle.
$(x-11)^{2}=0$ or $b^{2}-4 a c=0 \rightarrow$ repeated root \rightarrow hence shown or tangent	A1	Must state repeated root.

Alternative method for question 9(b)

C has coordinates $(11,4)$	B1	
Finding $C D=\sqrt{180}$ and $B D=\sqrt{225}$	B1	OE. Calculated from the co-ordinates of $B, C \& D$ without using r.
Checking (their BD) $)^{2}-(\text { their } C D)^{2}$ is the same as (their r) ${ }^{2}$	M1	
\therefore Pythagoras valid \therefore perpendicular \rightarrow hence shown or tangent	A1	Triangle $A C D$ could be used instead.

Alternative method for question 9(b)

C has coordinates $(11,4)$	B1	
Finding vectors $\overrightarrow{A C}$ and $\overrightarrow{C D}$ or $\overrightarrow{B C}$ and $\overrightarrow{C D}$ $\binom{6}{3}$ and $\binom{-6}{12}$ or $\binom{12}{6}$ and $\binom{-6}{12}$	B1	Must be correct pairing.
Applying the scalar product to one of these pairs of vectors	M1	Accept their $\overrightarrow{A C}$ and $\overrightarrow{C D}$ or their $\overrightarrow{B C}$ and $\overrightarrow{C D}$
Scalar product $=0$ then states $:$ perpendicular \rightarrow hence shown or tangent	A1	
	$\mathbf{4}$	

(c) $\quad E(-1,4)$
B1 B1 \mid WWW
B1 for each coordinate
Note: Equation of DE which is $y=2 x+6$ may be used to find E

Question 46

'(a)	$m_{A B}=\frac{4-2}{-1-3}=-\frac{1}{2}$	B1	
	Equation of tangent is $y-2=2(x-3)$	B1 FT	$(3,2)$ with their gradient $-\frac{1}{m_{A B}}$
		2	
(b)	$A B^{2}=4^{2}+2^{2}=20$ or $r^{2}=20$ or $r=\sqrt{20}$ or $A B=\sqrt{20}$	B1	
	Equation of circle centre B is $(x-3)^{2}+(y-2)^{2}=20$	M1 A1	FT their 20 for M1
		3	
'(c)	$(x-3)^{2}+(2 x-6)^{2}=$ their 20	M1	Substitute their $y-2=2 x-6$ into their circle, centre B
	$5 x^{2}-30 x+25=0$ or $5(x-3)^{2}=20$	A1	
	$[(5)(x-5)(x-1) \quad$ or $\quad x-3= \pm 2] \quad x=5,1$	A1	
		3	

Question 47

(a)	Centre of circle is $(4,5)$	B1 B1	
	$r^{2}=(7-4)^{2}+(1-5)^{2}$	M1	OE. Either using their centre and A or C or using A and C and dividing by 2.
	Equation is $(x-4)^{2}+(y-5)^{2}=25$	A1 FT	FT on their $(4,5)$ if used.
	A1	OE. Allow 5^{2} for 25.	
(b)	Gradient of radius $=\frac{9-5}{7-4}=\frac{4}{3}$	B1 FT	FT for use of their centre.
Equation of tangent is $y-9=-\frac{3}{4}(x-7)$	B1	or $y=\frac{-3 x}{4}+\frac{57}{4}$	

Question 48

(a)	Gradient of $A B=-\frac{3}{5}$, gradient of $B C=\frac{5}{3}$ or lengths of all 3 sides or vectors	M1	Attempting to find required gradients, sides or vectors
	$m_{a b} m_{b c}=-1$ or Pythagoras or $\overrightarrow{A B} \cdot \overrightarrow{B C}=0$ or $\cos A B C=0$ from cosine rule	A1	WWW
		2	
(b)	Centre $=$ mid-point of $A C=(2,4)$	B1	
(c)	$\left(x-\text { their } \mathrm{X}_{\mathrm{c}}\right)^{2}+\left(y-\text { their } y_{c}\right)^{2}\left[=r^{2}\right] \text { or }\left(\text { their } x_{\mathrm{c}}-x\right)^{2}+\left(\text { their } y_{c}-y\right)^{2}=\left[r^{2}\right]$	1 M1	Use of circle equation with their centre
	$(x-2)^{2}+(y-4)^{2}=17$	A1	Accept $x^{2}-4 x+y^{2}-8 y+3=0$ OE
		2	
(d)	$\left(\frac{x+3}{2}, \frac{y+0}{2}\right)=(2,4) \text { or } \mathbf{B E}=2 \mathbf{B D}=2\binom{-1}{4}$ Or Equation of $B E$ is $y=-4(x-3)$ or $y-4=-4(x-2)$ leading to $y=-4 x+12$ Substitute equation of $B E$ into circle and form a 3-term quadratic.	M1	Use of mid-point formula, vectors, steps on a diagram May be seen to find x coordinate at E
	$(x, y)=(1,8)$ or $\mathbf{O E}=\binom{3}{0}+\binom{-2}{8}=\binom{1}{8}$	A1	$E=(1,8)$ Accept without working for both marks SC B2
	Gradient of $B D, m,=-4$ or gradient $A C=\frac{1}{4}=$ gradient of tangent	B1	Or gradient of $B E=-4$
	Equation of tangent is $y-8=1 / 4(x-1) \mathrm{OE}$	M1 A1	For M1, equation through their E or $(1,8)$ (not, A, B or C) and with gradient $\frac{-1}{\text { their }-4}$
		5	

Question 49

(a)	$(5-1)^{2}+(11-5)^{2}=52 \text { or } \frac{11-5}{5-1}$	M1	For substituting $(1,5)$ into circle equation or showing gradient $=\frac{3}{2}$.
	For both circle equation and gradient, and proving line is perpendicular and stating that A lies on the circle	A1	1 Clear reasoning.
	Alternative method for Question 7(a)		
	$(x-5)^{2}+(y-11)^{2}=52$ and $y-5=-\frac{2}{3}(x-1)$	M1	Both equations seen and attempt to solve. May see $y=-\frac{2}{3} x+\frac{17}{3}$
	Solving simultaneously to obtain $(y-5)^{2}=0$ or $(x-1)^{2}=0 \Rightarrow 1$ root or tangent or discriminant $=0 \Rightarrow 1$ root or tangent	A1	Clear reasoning.
	Alternative method for Question 7(a)		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{10-2 x}{2 y-22}=\frac{10-2}{10-22}$	M1	Attempting implicit differentiation of circle equation and substitute $x=1$ and $y=5$.
	Showing gradient of circle at A is $-\frac{2}{3}$	A1	1 Clear reasoning.
			2
(b)	Centre is ($-3,-1$)	B1 B1	B1 for each correct co-ordinate.
	Equation is $(x+3)^{2}+(y+1)^{2}=52$	B1 FT	FT their centre, but not if either $(1,5)$ or $(5,11)$. Do not accept $\sqrt{52^{2}}$.
		3	3
Question 50			
	$\text { ent } A B=\frac{1}{2}$	B1	SOI
	meet when $-2 x+4=\frac{1}{2}(x-8)+3$ g as far as $x=$	*M1	Equating given perpendicular bisector with the line through $(8,3)$ using their gradient of $A B$ (but not -2) and solving. Expect $x=2, y=0$.
Usi	mid-point to get as far as $p=$ or $q=$	DM1	Expect $\frac{8+p}{2}=2$ or $\frac{3+q}{2}=0$
$p=$, $q=-3$	A1	Allow coordinates of B are ($-4,-3$).
Alternative method for Question 6			
Gradient $\mathrm{AB}=\frac{1}{2}$		B1	SOI
$\begin{aligned} & \frac{q-3}{p-8}=\frac{1}{2} \quad[\text { leading to } 2 q=p-2] \\ & \frac{q+3}{2}=-2\left(\frac{8+p}{2}\right)+4 \quad[\text { leading to } q=-11-2 p] \end{aligned}$		*M1	Equating gradient of $A B$ with their gradient of $A B$ (but not -2) and using mid-point in equation of perpendicular bisector.
Solving simultaneously their 2 linear equations		DM1	Equating and solving 2 correct equations as far as $p=$ or $q=$.
$p=-4, q=-3$		A1	Allow coordinates of B are ($-4,-3$).

Question 51

(a)	1.2679	B1	AWRT. ISW if correct answer seen. $3-\sqrt{3}$ scores B0
		$\mathbf{1}$	
(b)	1.7321	B1	AWRT. ISW if correct answer seen.
		$\mathbf{1}$	
(c)	Sight of 2 or 2.0000 or two in reference to the gradient	*B1	
	This is because the gradient at E is the limit of the gradients of the chords as the x-value tends to 3 or ∂x tends to 0.	DB1	Allow it gets nearer/approaches/tends/almost/approximately 2
		$\mathbf{2}$	

Question 52

(a) When $y=0 \quad x^{2}-4 x-77=0 \quad\left[\Rightarrow(x+7)(x-11)=0\right.$ or $\left.(x-2)^{2}=81\right]$

| $\mathbf{M 1}$ | Substituting $y=0$ |
| ---: | ---: | :--- |
| $\mathbf{A 1}$ | |
| $\mathbf{2}$ | |

I(b) \quad Centre of circle C is $(2,-3)$
Gradient of $A C$ is $-\frac{1}{3}$ or Gradient of $B C$ is $\frac{1}{3}$

Gradient of tangent at A is 3 or Gradient of tangent at B is -3	M1	For either perpendicular gradient
Equations of tangents are $y=3 x+21, y=-3 x+33$	A1	For either equation
Meet when $3 x+21=-3 x+33$	M1	OR: (centre of circle has x coordinate 2) so x coordinate of point of intersection is 2
Coordinates of point of intersection (2,27)	A1	
Alternative method for Question 10(b)	B1	
Implicit differentiation: $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ seen	M1	Fully differentiated $=0$ with at least one term involving y differentiated correctly
$2 x-4+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$	M1	For either gradient
Gradient of tangent at A is 3 or Gradient of tangent at B is -3	A1	For either equation
Equations of tangents are $y=3 x+21, y=-3 x+33$	M1	OR: (centre of circle has x coordinate 2$)$ so x coordinate of point of intersection is 2
Meet when $3 x+21=-3 x+33$	A1	
Coordinates of point of intersection $(2,27)$	$\mathbf{6}$	

Question 53

(a)	$x^{2}+(2 x+5)^{2}=20$ leading to $x^{2}+4 x^{2}+20 x+25=20$	M1	Substitute $y=2 x+5$ and expand bracket.
	(5) $\left(x^{2}+4 x+1\right)[=0]$	A1	3-term quadratic.
	$x=\frac{-4 \pm \sqrt{16-4}}{2}$	M1	OE. Apply formula or complete the square.
	$A=(-2+\sqrt{3}, 1+2 \sqrt{3})$	A1	Or 2 correct x values.
	$B=(-2-\sqrt{3}, 1-2 \sqrt{3})$	A1	Or all values correct. SC B1 all 4 values correct in surd form without working. SC B1 all 4 values correct in decimal form from correct formula or completion of the square
	$A B^{2}=$ their $\left(x_{2}-x_{1}\right)^{2}+$ their $\left(y_{2}-y_{1}\right)^{2}$	M1	Using their coordinates in a correct distance formula. Condone one sign error in $x_{2}-x_{1}$ or $y_{2}-y_{1}$
	$\left[A B^{2}=48+12\right.$ leading to $] A B=\sqrt{60}$	A1	OE. CAO. Do not accept decimal answer. Answer must come from use of surd form in distance formula.
		7	
(b)	$x^{2}+m^{2}(x-10)^{2}=20$	*M1	Finding equation of tangent and substituting into circle equation.
	$x^{2}\left(m^{2}+1\right)-20 m^{2} x+20\left(5 m^{2}-1\right)[=0]$	DM1	OE. Brackets expanded and all terms collected on one side of the equation.
	$\left[b^{2}-4 a c=\right] 400 m^{4}-80\left(m^{2}+1\right)\left(5 m^{2}-1\right)$	M1	Using correct coefficients from their quadratic equation.
	$400 m^{4}-80\left(5 m^{4}+4 m^{2}-1\right)=0 \rightarrow(-80)\left(4 m^{2}-1\right)=0$	A1	OE. Must have ' $=0$ ' for A1.
	$m= \pm \frac{1}{2}$	A1	
	Alternative method for question 9(b)		
	Length, l of tangent, is given by $l^{2}=10^{2}-20$	M1	
	$l=\sqrt{80}$	A1	
	$\tan \alpha=\frac{\sqrt{20}}{\sqrt{80}}=\frac{1}{2}$	M1 A1	Where α is the angle between the tangent and the x-axis.
	$m= \pm \frac{1}{2}$	A1	
		5	

Question 54
(a)

Centre is $(3,-2)$	B1	
Gradient of radius $=\frac{(\text { their }-2)-4}{(\text { their } 3)-5}[=3]$	$* \mathbf{M 1}$	Finding gradient using their centre (not $(0,0))$ and $P(5,4)$.
Equation of tangent $y-4=-\frac{1}{3}(x-5)$	DM1	Using P and the negative reciprocal of their gradient to find the equation of $A B$.
Sight of $[x=] 17$ and $[y=] \frac{17}{3}$	A1	
$\left[\right.$ Area $\left.=\frac{1}{2} \times \frac{17}{3} \times 17=\right] \frac{289}{6}$	A1	Or 48 $\frac{1}{6}$ or AWRT 48.2.

Alternative method for question 12(a)

$2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-6+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$	B1	
At $P: 10+8 \frac{\mathrm{~d} y}{\mathrm{~d} x}-6+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0\left[\Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{3}\right]$	*M1	Find the gradient using $P(5,4)$ in their implicit differential (with at least one correctly differentiated y term).
Equation of tangent $y-4=-\frac{1}{3}(x-5)$	DM1	Using P and their value for the gradient to find the equation of $A B$.
Sight of $[x=] 17$ and $[y=] \frac{17}{3}$	A1	
$\left[\right.$ Area $\left.=\frac{1}{2} \times \frac{17}{3} \times 17=\right] \frac{289}{6}$	A1	Or $48 \frac{1}{6}$ or AWRT 48.2.

(b)

$\text { Radius of circle }=\sqrt{40},$	B1	Or $2 \sqrt{10}$ or 6.32 AWRT or $r^{2}=40$.
$\text { Area of } \triangle C R Q=\frac{1}{2} \times(\text { their } r)^{2} \sin 120\left[=\frac{1}{2} \times 40 \times \frac{\sqrt{3}}{2}\right]$ OR Area of $\triangle C Q X=\frac{1}{2} \times \sqrt{40} \cos 30 \times \sqrt{40} \cos 60$ OE $\left[=\frac{1}{2} \times \sqrt{30} \times \sqrt{10}\right]$ OR Area of circle $-3 \times$ Area of segment $=40 \pi-3 \times\left(40 \frac{\pi}{3}-10 \sqrt{3}\right)$ OR $Q R=\sqrt{120}$ or $2 \sqrt{30}$ and area $=\frac{1}{2} Q R^{2} \sin 60$	M1	Using $\frac{1}{2} r^{2} \sin \theta$ with their r and 120 or $60[\times 3]$ Using $\frac{1}{2} \times$ base \times height in a correct right-angled triangle [×6]. Use of cosine rule and area of large triangle
$30 \sqrt{3}$	A1	AWRT 52[.0] implies B1M1A0.
	3	See diagram for points stated in 'Answer' column.

Question 55

(a)	$r^{2}\left[=(5-2)^{2}+(7-5)^{2}\right]=13$	B1	$r^{2}=13$ or $r=\sqrt{13}$
	Equation of circle is $(x-5)^{2}+(y-2)^{2}=13$	B1 FT	OE. FT on their 13 but LHS must be correct.
(b)	$(x-5)^{2}+(5 x-10-2)^{2}=13$	$\mathbf{2}$	
$26 x^{2}-130 x+156[=0]$	M1	Substitute $y=5 x-10$ into their equation.	
$[26](x-2)(x-3)[=0]$	M1	OE 3-term quadratic with all terms on one side. FT on their circle equation.	
Solve 3-term quadratic in x by factorising, using formula or completing the square. Factors must expand to give $t h e i r$ coefficient of x^{2}.			
$(2,0),(3,5)$	A1 A1	Coordinates must be clearly paired; A1 for each correct point. A1 A0 available if two x or y values only. If M0 for solving quadratic, SC B2 can be avarded for correct coordinates, SC B1 if two x or y values only.	
$(A B)^{2}=(3-2)^{2}+(5-0)^{2}$	M1	SOI. Using their points to find length of $A B$.	
$A B=\sqrt{26}$	A1	ISW. Dependent on final M1 only.	

Question 56

(a)	$(x+1)^{2}+(3 x-22)^{2}=85$	M1	OE. Substitute equation of line into equation of circle.
	$10 x^{2}-130 x+400[=0]$	A1	Correct 3-term quadratic
$[10](x-8)(x-5)$ leading to $x=8$ or 5	A1	Dependent on factors or formula or completing of square seen.	
$(8,4),(5,-5)$	A1	If M1A1A0A0 scored, then SC B1 for correct final answer only.	
	4		
(b)	Mid-point of $A B=\left(6 \frac{1}{2},-\frac{1}{2}\right)$	B1	Any valid method
	Use of $C=(-1,2)$	M1	Attempt to find r^{2}. Expect $r^{2}=62 \frac{1}{2}$.
$r^{2}=\left(-1-6 \frac{1}{2}\right)^{2}+\left(2+\frac{1}{2}\right)^{2}$	A1	OE.	
Equation of circle is $(x+1)^{2}+(y-2)^{2}=62 \frac{1}{2}$	4		

Question 57

'(a)	Equation of $B C$ is $\{y=\}\{2\}\{-3 x\}$	B2, 1, 0	OE forms $y+4=-3(x-2)$ or $y-2=-3(x-0)$.
		2	
(b)	$(x-2)^{2}+(2-3 x+4)^{2}=20$	*M1	OE Sub line equation into equation of circle to eliminate y.
	$10(x-2)^{2}=20$ or $[10]\left(x^{2}-4 x+2\right)[=0]$	A1	OE Accept ($\left.10 x^{2}-40 x+20\right)$.
	$x-2=[\pm] \sqrt{2} \text { or } x=\frac{4[\pm] \sqrt{16-8}}{2}$	DM1	Correctly solving their quadratic.
	$x=2-\sqrt{2}$	A1	OE only solution. Answer only SC B1 If DM1 not scored.
	$y=3 \sqrt{2}-4$	A1	OE only solution. Answer only SC B1 If DM1 not scored.
		5	

Question 58

(a) \begin{tabular}{l|r|r}

$1+1+a+b-12=0[\Rightarrow a+b=10]$
$4+36+2 a-6 b-12=0[\Rightarrow 2 a-6 b=-28]$
:---
correct values for a and b.

\hline$a=4, b=6$ \& B1 FT \& Or $x=-2, y=-3$

\hline Centre is $\left(-\frac{\text { their } a}{2},-\frac{\text { their } b}{2}\right)[-2,-3]$ \& $\mathbf{4}$ \&

\hline \& \&

\hline
\end{tabular}

(b)	Gradient of $A C$ is $\frac{1-\text { their } y}{1-\text { their } x}\left[=\frac{1--3}{1--2}=\frac{1+3}{1+2}=\frac{4}{3}\right]$	*M1	Using their centre correctly.
Gradient of tangent is $=\frac{-1}{\text { their } \frac{4}{3}}\left[=-\frac{3}{4}\right]$	A1 FT	Use of $m_{1} m_{2}=-1$ to obtain the gradient of the tangent.	
Equation: $y-1={ }^{\text {'their }-\frac{3}{4}(x-1) \text { or } y=-\frac{3}{4} x+\frac{7}{4}}$	DM1	Using (1,1) with their gradient of the tangent at A.	
$3 x+4 y=7$ or $4 y+3 x=7$. or integer multiples of these	A1		

Question 59

'(a)	Express as $(x+3)^{2}+(y-1)^{2}=26+9+1[=36]$	M1	Completing the square on x and y or using the form $x^{2}+y^{2}+2 g x+2 f y+c=0$, centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. SOI by correct answer.
	Centre ($-3,1$)	B1	
	Radius 6	B1	
	So lowest point is ($-3,-5$)	A1 FT	FT on their centre and their radius.
		4	
'(b)	Intersects when $x^{2}+(k x-5)^{2}+6 x-2(k x-5)-26=0$ or $(x+3)^{2}+(k x-5-1)^{2}=36$	*M1	Substituting $y=k x-5$ into their circle equation or rearranging and equating y.
	$x^{2}+k^{2} x^{2}-10 k x+25+6 x-2 k x+10-26=0$ or $x^{2}+6 x+9+k^{2} x^{2}-12 k x+36=36$ leading to $k^{2} x^{2}+x^{2}+6 x-12 k x+9[=0]$ or $\left(k^{2}+1\right) x^{2}+(6-12 k) x+9[=0]$	$\begin{array}{r} \text { DM1 } \\ \text { A1 } \end{array}$	Rearranging to 3 -term quadratic (terms grouped, all on one side). Allow 1 error. Correct quadratic (need to see 9 as constant term).
	$\begin{aligned} & (6-12 k)^{2}-4\left(k^{2}+1\right) \times 9[>0] \\ & {\left[\text { leading to } 144 k^{2}-144 k+36-36 k^{2}-36>0\right]} \end{aligned}$	DM1	Using discriminant $b^{2}-4 a c[>0]$ with their values. Allow if in square root.
	$\text { [} 108 k^{2}-144 k=0 \text { leading to] } k=0 \text { or } k=\frac{4}{3}$	A1	Need not see method for solving.
	$k<0, k>\frac{4}{3}$	A1	Do not accept $\frac{4}{3}<k<0$.
	-	6	

Question 60

Question 61

(a)	Mid-point $A B$ is $\left(\frac{10+5}{2}, \frac{2-1}{2}\right)\left[=\left(\frac{15}{2}, \frac{1}{2}\right)\right]$	B1	Accept unsimplified.
	Gradient of $A B=\frac{-1-2}{10-5}=\frac{-3}{5}$ Gradient perpendicular $=\frac{5}{3}$	M1	For use of $\frac{\text { Change in } y}{\text { Change in } x}$, condone inconsistent order of x and y, and $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$.
	$\frac{y-\frac{1}{2}}{x-\frac{15}{2}}=\frac{5}{3}\left[y-\frac{1}{2}=\frac{5}{3}\left(x-\frac{15}{2}\right)\right]$	A1	OE ISW Any correct version e.g. $y=\frac{5}{3} x-12$ or $5 x-3 y=36$.
		3	
(b)	[Radius $=] \sqrt{34}$ or 5.8 AWRT or $\left[(\text { radius })^{2}=\right] 34$	B1	Sight of $\sqrt{34}$ or 34. Condone confusion of r and r^{2}.
	$(x-5)^{2}+(y-2)^{2}$	B1	Sight of $(x-5)^{2}+(y-2)^{2}$
	$(x-5)^{2}+(y-2)^{2}=34$	B1	CAO ISW
	Alternative method for Question 1(b)		
	$x^{2}+y^{2}-10 x-4 y$	B1	
	[$c=] 5$ or $[c=]-5$	B1	Substitution of (10, -1) into $x^{2}+y^{2}-10 x-4 y+c=0$.
	$x^{2}+y^{2}-10 x-4 y-5=0$	B1	
		3	

Question 62

Method 1: Using angle at circumference		
$\cos B O A=\frac{\sqrt{20}}{10}$ or $\sin B O A=\frac{\sqrt{80}}{10}$ or $\tan B O A=\frac{\sqrt{80}}{\sqrt{20}}[=2]$	D1	Use a trig function in triangle $A O B$.
$B O A=63.4^{\circ} \Rightarrow B O C=126.8^{\circ}$ or 126.9°	A1	AWRT
$[B D C=] 63.4^{\circ}$	Strategy involving doubling	
Metho 2: Using cosine rule	M1	Calculate two lengths in triangle $B C D$.
$B C=8, B D=\sqrt{(\sqrt{20}+4)^{2}+2^{2}}, C D=\sqrt{(\sqrt{20}-4)^{2}+2^{2}}$	A1	AWRT
$64=80-16 \sqrt{5} \cos B D C$	Use cosine rule with their lengths	
$\cos B D C=\frac{\sqrt{5}}{5} \Rightarrow[B D C=] 63.4^{\circ}$	AW1	ODB or angle between $C D$ and the vertical from D
Method 3: Subtract angles from 90		
Calculate one angle at $D[=13.28]$	DM1	
Calculate a second angle at $D[=13.28]$ and subtract both from 90°	AWRT	
$[B D C=] 63.4^{\circ}$		

Question 63

$r^{2}=(7+2)^{2}+(12-5)^{2}$	B1	Expect 130, may use $A C$ rather than r.
Equation of circle is $(x+2)^{2}+(y-5)^{2}=130$	B1 FT	OE FT their 130, may use distance $B C$ rather than circle.
$(x+2)^{2}+(-2 x+21)^{2}=130$	M1	Substitute $y=-2 x+26$ into a circle equation.
$5 x^{2}-80 x+315[=0]$ leading to $[5](x-9)(x-7)$	M1	Factorisation OE must be seen.
$x=9$	A1	With or without $x=\mathbf{7}$.
$y=8$ OR $(9,8)$	$y=8$ or $(9,8)$ only. Both A1's dependent on the first M1.	

Question 64

(a)	$(x-1)^{2}+(x-9+4)^{2}=40$	M1	Substitute line into circle.
	$x^{2}-6 x-7[=0]$ leading to $(x+1)(x-7)[=0]$	M1	Simplify to 3-term quadratic and factorise OE.
	$(-1,-10),(7,-2)$ or $x=-1$ and $7, y=-10$ and -2	A1 A1	Answers only SC B1, SC B1 but must see a correct quadratic equation.
		4	
(b)	$\text { [C is mid-point }=]\left(\frac{\text { their } x_{1}+\text { their } x_{2}}{2}, \frac{\text { their } y_{1}+\text { their } y_{2}}{2}\right)$	M1	Expect (3, -6).
	$\begin{aligned} & \text { Radius }=\sqrt{(\text { their } x-\text { their } 3)^{2}+(\text { their } y \text {-their }(-6))^{2}} \text { OR } \\ & \text { their } v\left((7-(-1))^{2}+(-2-(-10))^{2}\right) / 2 \end{aligned}$	M1	Expect $\sqrt{32}$.
	$(x-3)^{2}+(y+6)^{2}=32$	A1	OE
		3	

Question65
(a)

$(x-a)^{2}+\left(\frac{1}{2} x+6-3\right)^{2}=20$ or using $x=2 y-12$	$* \mathbf{M 1}$	Obtaining an unsimplified equation in x or y only.
$\frac{5}{4} x^{2}+(3-2 a) x+a^{2}-11[=0]$	A1	OE e.g. $5 x^{2}+4(3-2 a) x+4 a^{2}-44$ Rearranging to get a correct 3-term quadratic on one side. Condone terms not grouped together. $5 y^{2}-y(54+4 a)+133+a^{2}+24$.
$(3-2 a)^{2}-4 \times \frac{5}{4}\left(a^{2}-11\right)[=0]$	DM1	OE Using $b^{2}-4 a c$ on their 3 term quadratic $[=0]$.
Method 1 for final 2 marks	A1	Clearly substituting $a=4$.
Using $a=4:(3-8)^{2}-5(5)=0$	B1	Condone no method shown for this value.
$a=-16$		

Method 2 for final 2 marks
(b)

$-a^{2}-12 a+64=0 \Rightarrow(a-4)(a+16)=0 \Rightarrow a=4$	A1	AG Full method clearly shown.
$a=-16$	B1	Condone no method shown for this value.
	5	If M0, SCB1 available for substituting $a=4$, finding $\mathrm{P}(2,7)$ and verifying that $\mathrm{CP}^{2}=20$.
Centre (4,3) identified or used or the point P is $(2,7)$	B1	
\therefore gradient of normal $=-2$	B1	SOI
Forming normal equation using their gradient (not 0.5) and their centre or P	M1	Condone use of $(\pm 4, \pm 3)$.
$\frac{y-3}{(x-4)}=-2 \text { or } y-7=-2(x-2)$	A1	OE Condone $\mathrm{f}(x)=$.
Method 1 for Question 10(c)	4	

Diameter: $y-3=\frac{1}{2}(x-4) \quad\left[\right.$ leading to $\left.y=\frac{1}{2} x+1\right]$ Or $2(x-4)+2(y-3) \frac{d y}{d x}=0 \quad\left[\text { leading to } y=\frac{1}{2} x+1\right]$	*M1	Using gradient $\frac{1}{2}$ with their centre. By implicit differentiation.
$(x-4)^{2}+\left(\frac{1}{2} x+1-3\right)^{2}=20 \quad\left[\frac{5}{4} x^{2}-10 x=0\right]$	DM1	Obtaining an unsimplified equation in x or y only. $\left[y^{2}-6 y+5=0\right] .$
$x=0$ or $8, y=1$ or $5[(0,1)$ and $(8,5)]$	A1	Correct co-ordinates for both points. Condone no method shown for solution.
Equations are $y-1=-2 x$ and $y-5=-2(x-8)$	A1	$2 x+y=1$ and $2 x+y=21$.
Method 2 for Question 10(c)		
Coordinates of points at which tangents meet curve are $(4+4,3+2)=(8,5)$ and $(4-4,3-2)=(0,1)$	*M1 A1	Vector approach using their centre and gradient $=0.5$. Condone answers only with no working.
Equations are $y-5=-2(x-8)$ and $y-1=-2 x$	DM1 A1	Forming equations of tangents using their $(0,1)$ and $(8,5)$.
Method 3 for Question 10(c)		
$\begin{aligned} & (x-4)^{2}+(-2 x+c-3)^{2}=20 \\ & {\left[5 x^{2}+(4-4 c) x+(c-3)^{2}-4=0\right]} \end{aligned}$	*M1	Obtaining an unsimplified equation in x only using equation of circle with $y=-2 x+c$.
$(4-4 c)^{2}-20\left((c-3)^{2}-4\right)[=0]$ [leading to $\left.-4 c^{2}-32 c+120 c+16-100=0\right]$	DM1	Using $b^{2}-4 a c[=0]$.

(c)

Method 1 for Question 10(c)		
Diameter: $y-3=\frac{1}{2}(x-4) \quad\left[\right.$ leading to $\left.y=\frac{1}{2} x+1\right]$ Or $2(x-4)+2(y-3) \frac{d y}{d x}=0 \quad\left[\text { leading to } y=\frac{1}{2} x+1\right]$	*M1	Using gradient $\frac{1}{2}$ with their centre. By implicit differentiation.
$(x-4)^{2}+\left(\frac{1}{2} x+1-3\right)^{2}=20 \quad\left[\frac{5}{4} x^{2}-10 x=0\right]$	DM1	Obtaining an unsimplified equation in x or y only. $\left[y^{2}-6 y+5=0\right] .$
$x=0$ or $8, y=1$ or $5[(0,1)$ and $(8,5)]$	A1	Correct co-ordinates for both points. Condone no method shown for solution.
Equations are $y-1=-2 x$ and $y-5=-2(x-8)$	A1	$2 x+y=1$ and $2 x+y=21$.

Method 2 for Question 10(c)

Coordinates of points at which tangents meet curve are $(4+4,3+2)=(8,5)$ and $(4-4,3-2)=(0,1)$	$*$ M1 A1	Vector approach using their centre and gradient $=0.5$. Condone answers only with no working.
Equations are $y-5=-2(x-8)$ and $y-1=-2 x$	DM1 A1	Forming equations of tangents using their $(0,1)$ and $(8,5)$.

Method 3 for Question 10(c)

$(x-4)^{2}+(-2 x+c-3)^{2}=20$ $\left[5 x^{2}+(4-4 c) x+(c-3)^{2}-4=0\right]$
$* \mathbf{M 1}$ $(4-4 c)^{2}-20\left((c-3)^{2}-4\right)[=0]$ $\left[\right.$ leading to $\left.-4 c^{2}-32 c+120 c+16-100=0\right]$
Obtaining an unsimplified equation in x only using equation of circle with $y=-2 x+c$.
$4 c^{2}-88 c+84[=0]\left[\right.$ leading to $\left.c^{2}-22 c+21=0\right]$
:---
$c=21$ and $c=1$ or $y=-2 x+21$ and $y=-2 x+1$
:---

Question 66

(a)	$x^{2}+(y-2)^{2}=100$	B1	OE e.g. $(x-0)^{2}+(y-2)^{2}=10^{2}$ ISW.
		1	
(b)	$\text { Gradient of radius }=\left[\frac{10-2}{6-0}=\right] \frac{4}{3} \text { or gradient of tangent }=\frac{-3}{4}$	M1	OE SOI Use coordinates to find gradient of radius or differentiate to find m_{T} $\begin{aligned} & \text { e.g. } 2 x+2(y-2) \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-3}{4} \text { at }(6,10) \\ & y=2+\sqrt{100-x^{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2}\left(100-x^{2}\right)^{-\frac{1}{2}}(-2 x)=-\frac{3}{4} . \end{aligned}$
	Equation of tangent is $y-10=-\frac{3}{4}(x-6) \quad\left[\Rightarrow y=-\frac{3}{4} x+\frac{29}{2}\right]$	A1	OE ISW Allow e.g. $\frac{58}{4}$.
		2	
(c)	Coordinates of centre of circle Q are $\left(0\right.$, their $\left.\frac{29}{2}\right)$	M1	SOI From a linear equation in (b).
	Equation of circle Q is $x^{2}+\left(y-\text { their } \frac{29}{2}\right)^{2}=\left(\frac{5 \sqrt{5}}{2}\right)^{2}\left[=\frac{125}{4}\right]$	A1FT	OE e.g. $(x-0)^{2}+(y-14.5)^{2}=31.25$ ISW.
	$\begin{aligned} & x^{2}+(11-2)^{2}=100 \Rightarrow x^{2}=19 \text { and } x^{2}+\left(11-\frac{29}{2}\right)^{2}=\frac{125}{4} \Rightarrow x^{2}=19 \\ & \text { OR e.g. } \frac{125}{4}-\left(y-\frac{29}{2}\right)^{2}+(y-2)^{2}=100 \Rightarrow 25 y=275 \Rightarrow y=11 \end{aligned}$	B1	OE e.g. $x=[\pm] \sqrt{19}, x^{2}-19=x^{2}-19$ Correct argument to verify both y-coords are 11 ISW.
		3	

$x^{2}+\left(-\frac{3}{4} x+\frac{29}{2}-\frac{29}{2}\right)^{2}=\frac{125}{4}\left[\Rightarrow \frac{25}{16} x^{2}=\frac{125}{4} \Rightarrow x^{2}=20\right]$
or $y^{2}-29 y+199[=0]$
$x= \pm 2 \sqrt{5}$ or $y=\frac{29 \mp 3 \sqrt{5}}{2}$
$y\left[=\left(-\frac{3}{4} \times \pm \sqrt{20}\right)+\frac{29}{2}\right]=\frac{29 \mp 3 \sqrt{5}}{2}$

M1 Substitute equation of their tangent into equation of their circle. May see $y=\sqrt{31.25-x^{2}}+14.5$

A1 OE e.g. $x= \pm \sqrt{20}$
For $2 x$-values or $2 y$-values or correct (x, y) pair.
OE e.g. $\frac{58}{4}+\frac{3 \sqrt{20}}{4}, \frac{58}{4}-\frac{3 \sqrt{20}}{4}$ Correct (x, y) pairs.

