AS-Level
 Pure Mathematics P1 Topic :Coordinate Geometry and Circles May 2013- May 2023

Question 1

The diagram shows three points $A(2,14), B(14,6)$ and $C(7,2)$. The point X lies on $A B$, and $C X$ is perpendicular to $A B$. Find, by calculation,
(i) the coordinates of X,
(ii) the ratio $A X: X B$.

Question 2

The point R is the reflection of the point $(-1,3)$ in the line $3 y+2 x=33$. Find by calculation the coordinates of R.

Question 3

A curve has equation $y=x^{2}-4 x+4$ and a line has equation $y=m x$, where m is a constant.
(i) For the case where $m=1$, the curve and the line intersect at the points A and B. Find the coordinates of the mid-point of $A B$.
(ii) Find the non-zero value of m for which the line is a tangent to the curve, and find the coordinates of the point where the tangent touches the curve.

Question 4

The point A has coordinates $(3,1)$ and the point B has coordinates $(-21,11)$. The point C is the mid-point of $A B$.
(i) Find the equation of the line through A that is perpendicular to $y=2 x-7$.
(ii) Find the distance $A C$.

Question 5

The diagram shows a rectangle $A B C D$ in which point A is $(0,8)$ and point B is $(4,0)$. The diagonal $A C$ has equation $8 y+x=64$. Find, by calculation, the coordinates of C and D.

Question 6

The point A has coordinates $(-1,6)$ and the point B has coordinates $(7,2)$.
(i) Find the equation of the perpendicular bisector of $A B$, giving your answer in the form $y=m x+c$.
(ii) A point C on the perpendicular bisector has coordinates (p, q). The distance $O C$ is 2 units, where O is the origin. Write down two equations involving p and q and hence find the coordinates of the possible positions of C.

Question 7

The diagram shows a parallelogram $A B C D$, in which the equation of $A B$ is $y=3 x$ and the equation of $A D$ is $4 y=x+11$. The diagonals $A C$ and $B D$ meet at the point $E\left(6 \frac{1}{2}, 8 \frac{1}{2}\right)$. Find, by calculation, the coordinates of A, B, C and D.

Question 8

Find the coordinates of the point at which the perpendicular bisector of the line joining $(2,7)$ to $(10,3)$ meets the x-axis.

Question 9

The coordinates of points A and B are $(a, 2)$ and $(3, b)$ respectively, where a and b are constants. The distance $A B$ is $\sqrt{ }(125)$ units and the gradient of the line $A B$ is 2 . Find the possible values of a and of b.

Question 10

A is the point $(a, 2 a-1)$ and B is the point $(2 a+4,3 a+9)$, where a is a constant.
(i) Find, in terms of a, the gradient of a line perpendicular to $A B$.
(ii) Given that the distance $A B$ is $\sqrt{ }(260)$, find the possible values of a.

Question 11

The diagram shows a trapezium $A B C D$ in which $A B$ is parallel to $D C$ and angle $B A D$ is 90°. The coordinates of A, B and C are $(2,6),(5,-3)$ and $(8,3)$ respectively.
(i) Find the equation of $A D$.
(ii) Find, by calculation, the coordinates of D.

The point E is such that $A B C E$ is a parallelogram.
(iii) Find the length of $B E$.

Question 12

The line $4 x+k y=20$ passes through the points $A(8,-4)$ and $B(b, 2 b)$, where k and b are constants.
(i) Find the values of k and b.
(ii) Find the coordinates of the mid-point of $A B$.

Question 13

The point A has coordinates $(p, 1)$ and the point B has coordinates $(9,3 p+1)$, where p is a constant.
(i) For the case where the distance $A B$ is 13 units, find the possible values of p.
(ii) For the case in which the line with equation $2 x+3 y=9$ is perpendicular to $A B$, find the value of p.

Question 14

The point C lies on the perpendicular bisector of the line joining the points $A(4,6)$ and $B(10,2)$. C also lies on the line parallel to $A B$ through $(3,11)$.
(i) Find the equation of the perpendicular bisector of $A B$.
(ii) Calculate the coordinates of C.

Question 15

The line with gradient -2 passing through the point $P(3 t, 2 t)$ intersects the x-axis at A and the y-axis at B.
(i) Find the area of triangle $A O B$ in terms of t.

The line through P perpendicular to $A B$ intersects the x-axis at C.
(ii) Show that the mid-point of $P C$ lies on the line $y=x$.

Question 16

Points A, B and C have coordinates $A(-3,7), B(5,1)$ and $C(-1, k)$, where k is a constant.
(i) Given that $A B=B C$, calculate the possible values of k.

The perpendicular bisector of $A B$ intersects the x-axis at D.
(ii) Calculate the coordinates of D.

Question 17

A curve has equation $y=x^{2}-x+3$ and a line has equation $y=3 x+a$, where a is a constant.
(i) Show that the x-coordinates of the points of intersection of the line and the curve are given by the equation $x^{2}-4 x+(3-a)=0$.
(ii) For the case where the line intersects the curve at two points, it is given that the x-coordinate of one of the points of intersection is -1 . Find the x-coordinate of the other point of intersection.
(iii) For the case where the line is a tangent to curve at a point P, find the value of a and the coordinates of P.

Question 18

Two points have coordinates $A(5,7)$ and $B(9,-1)$.
(i) Find the equation of the perpendicular bisector of $A B$.

The line through $C(1,2)$ parallel to $A B$ meets the perpendicular bisector of $A B$ at the point X.
(ii) Find, by calculation, the distance $B X$.

Question 19
Triangle $A B C$ has vertices at $A(-2,-1), B(4,6)$ and $C(6,-3)$.
(i) Show that triangle $A B C$ is isosceles and find the exact area of this triangle.
(ii) The point D is the point on $A B$ such that $C D$ is perpendicular to $A B$. Calculate the x-coordinate of D.

Question 20

Three points have coordinates $A(0,7), B(8,3)$ and $C(3 k, k)$. Find the value of the constant k for which
(i) C lies on the line that passes through A and B,
(ii) C lies on the perpendicular bisector of $A B$.

Question 21

A curve has equation $y=3 x-\frac{4}{x}$ and passes through the points $A(1,-1)$ and $B(4,11)$. At each of the points C and D on the curve, the tangent is parallel to $A B$. Find the equation of the perpendicular bisector of $C D$.

Question 22

Three points, A, B and C, are such that B is the mid-point of $A C$. The coordinates of A are $(2, m)$ and the coordinates of B are ($n,-6$), where m and n are constants.
(i) Find the coordinates of C in terms of m and n.

The line $y=x+1$ passes through C and is perpendicular to $A B$.
(ii) Find the values of m and n.

Question 23

The line $\frac{x}{a}+\frac{y}{b}=1$, where a and b are positive constants, intersects the x - and y-axes at the points A and B respectively. The mid-point of $A B$ lies on the line $2 x+y=10$ and the distance $A B=10$. Find the values of a and b.

Question 24

C is the mid-point of the line joining $A(14,-7)$ to $B(-6,3)$. The line through C perpendicular to $A B$ crosses the y-axis at D.
(i) Find the equation of the line $C D$, giving your answer in the form $y=m x+c$.
(ii) Find the distance $A D$.

Question 25

The diagram shows the graphs of $y=\tan x$ and $y=\cos x$ for $0 \leqslant x \leqslant \pi$. The graphs intersect at points A and B.
(i) Find by calculation the x-coordinate of A.
(ii) Find by calculation the coordinates of B.

Question 26

$A(-1,1)$ and $P(a, b)$ are two points, where a and b are constants. The gradient of $A P$ is 2 .
(i) Find an expression for b in terms of a.
(ii) $B(10,-1)$ is a third point such that $A P=A B$. Calculate the coordinates of the possible positions of P.

Question 27

Find the coordinates of the points of intersection of the curve $y=x^{\frac{2}{3}}-1$ with the curve $y=x^{\frac{1}{3}}+1$.

Question 28

The point A has coordinates $(-2,6)$. The equation of the perpendicular bisector of the line $A B$ is $2 y=3 x+5$.
(i) Find the equation of $A B$.
(ii) Find the coordinates of B.

Question 29

The equation of a curve is $y=2 \cos x$.
(i) Sketch the graph of $y=2 \cos x$ for $-\pi \leqslant x \leqslant \pi$, stating the coordinates of the point of intersection with the y-axis.

Points P and Q lie on the curve and have x-coordinates of $\frac{1}{3} \pi$ and π respectively.
(ii) Find the length of $P Q$ correct to 1 decimal place.

The line through P and Q meets the x-axis at $H(h, 0)$ and the y-axis at $K(0, k)$.
(iii) Show that $h=\frac{5}{9} \pi$ and find the value of k.

Question 30

The points $A(1,1)$ and $B(5,9)$ lie on the curve $6 y=5 x^{2}-18 x+19$.
(i) Show that the equation of the perpendicular bisector of $A B$ is $2 y=13-x$.

The perpendicular bisector of $A B$ meets the curve at C and D.
(ii) Find, by calculation, the distance $C D$, giving your answer in the form $\sqrt{ }\left(\frac{p}{q}\right)$, where p and q are integers.

Question 31

A straight line cuts the positive x-axis at A and the positive y-axis at $B(0,2)$. Angle $B A O=\frac{1}{6} \pi$ radians, where O is the origin.
(i) Find the exact value of the x-coordinate of A.
(ii) Find the equation of the perpendicular bisector of $A B$, giving your answer in the form $y=m x+c$, where m is given exactly and c is an integer.

Question 32

The coordinates of points A and B are $(-3 k-1, k+3)$ and $(k+3,3 k+5)$ respectively, where k is a constant ($k \neq-1$).
(i) Find and simplify the gradient of $A B$, showing that it is independent of k.
(ii) Find and simplify the equation of the perpendicular bisector of $A B$.

Question 33

Points A and B have coordinates (h, h) and $(4 h+6,5 h)$ respectively. The equation of the perpendicular bisector of $A B$ is $3 x+2 y=k$. Find the values of the constants h and k.

Question 34

The diagram shows a kite $O A B C$ in which $A C$ is the line of symmetry. The coordinates of A and C are $(0,4)$ and $(8,0)$ respectively and O is the origin.
(i) Find the equations of $A C$ and $O B$.
(ii) Find, by calculation, the coordinates of B.

Question 35

Two points A and B have coordinates $(-1,1)$ and $(3,4)$ respectively. The line $B C$ is perpendicular to $A B$ and intersects the x-axis at C.
(i) Find the equation of $B C$ and the x-coordinate of C.
(ii) Find the distance $A C$, giving your answer correct to 3 decimal places.

Question 36

The equation of a curve is $y=2 x+\frac{12}{x}$ and the equation of a line is $y+x=k$, where k is a constant.
(i) Find the set of values of k for which the line does not meet the curve.

In the case where $k=15$, the curve intersects the line at points A and B.
(ii) Find the coordinates of A and B.
(iii) Find the equation of the perpendicular bisector of the line joining A and B.

Question 37

The diagram shows the curve with equation $y=4 x^{\frac{1}{2}}$.
(i) The straight line with equation $y=x+3$ intersects the curve at points A and B. Find the length of $A B$.
(ii) The tangent to the curve at a point T is parallel to $A B$. Find the coordinates of T.
(iii) Find the coordinates of the point of intersection of the normal to the curve at T with the line $A B$.

Question 38

The coordinates of two points A and B are $(1,3)$ and $(9,-1)$ respectively and D is the mid-point of $A B$. A point C has coordinates (x, y), where x and y are variables.
(i) State the coordinates of D.
(ii) It is given that $C D^{2}=20$. Write down an equation relating x and y.
(iii) It is given that $A C$ and $B C$ are equal in length. Find an equation relating x and y and show that it can be simplified to $y=2 x-9$.
(iv) Using the results from parts (ii) and (iii), and showing all necessary working, find the possible coordinates of C.

Question 39

The point M is the mid-point of the line joining the points $(3,7)$ and $(-1,1)$. Find the equation of the line through M which is parallel to the line $\frac{x}{3}+\frac{y}{2}=1$.

Question 40

A diameter of a circle C_{1} has end-points at $(-3,-5)$ and $(7,3)$.
(a) Find an equation of the circle C_{1}.

The circle C_{1} is translated by $\binom{8}{4}$ to give circle C_{2}, as shown in the diagram.
(b) Find an equation of the circle C_{2}.

The two circles intersect at points R and S.
(c) Show that the equation of the line $R S$ is $y=-2 x+13$.
(d) Hence show that the x-coordinates of R and S satisfy the equation $5 x^{2}-60 x+159=0$.

Question 41

(a) The coordinates of two points A and B are $(-7,3)$ and $(5,11)$ respectively.

Show that the equation of the perpendicular bisector of $A B$ is $3 x+2 y=11$.
(b) A circle passes through A and B and its centre lies on the line $12 x-5 y=70$.

Find an equation of the circle.

Question 42

The equation of a circle with centre C is $x^{2}+y^{2}-8 x+4 y-5=0$.
(a) Find the radius of the circle and the coordinates of C.

The point $P(1,2)$ lies on the circle.
(b) Show that the equation of the tangent to the circle at P is $4 y=3 x+5$.

The point Q also lies on the circle and $P Q$ is parallel to the x-axis.
(c) Write down the coordinates of Q.

The tangents to the circle at P and Q meet at T.
(d) Find the coordinates of T.

Question 43

The coordinates of the points A and B are $(-1,-2)$ and $(7,4)$ respectively.
(a) Find the equation of the circle, C, for which $A B$ is a diameter.
(b) Find the equation of the tangent, T, to circle C at the point B.
(c) Find the equation of the circle which is the reflection of circle C in the line T.

Question 44

A circle with centre C has equation $(x-8)^{2}+(y-4)^{2}=100$.
(a) Show that the point $T(-6,6)$ is outside the circle.

Two tangents from T to the circle are drawn.
(b) Show that the angle between one of the tangents and $C T$ is exactly 45°.

The two tangents touch the circle at A and B.
(c) Find the equation of the line $A B$, giving your answer in the form $y=m x+c$.
(d) Find the x-coordinates of A and B.

Question 45

A circle has centre at the point $B(5,1)$. The point $A(-1,-2)$ lies on the circle.
(a) Find the equation of the circle.

Point C is such that $A C$ is a diameter of the circle. Point D has coordinates $(5,16)$.
(b) Show that $D C$ is a tangent to the circle.

The other tangent from D to the circle touches the circle at E.
(c) Find the coordinates of E.

Question 46

The diagram shows a circle with centre A passing through the point B. A second circle has centre B and passes through A. The tangent at B to the first circle intersects the second circle at C and D.

The coordinates of A are $(-1,4)$ and the coordinates of B are (3,2).
(a) Find the equation of the tangent $C B D$.
(b) Find an equation of the circle with centre B.
(c) Find, by calculation, the x-coordinates of C and D.

Question 47
The points $A(7,1), B(7,9)$ and $C(1,9)$ are on the circumference of a circle.
(a) Find an equation of the circle.
(b) Find an equation of the tangent to the circle at B.

Question 48

Points $A(-2,3), B(3,0)$ and $C(6,5)$ lie on the circumference of a circle with centre D.
(a) Show that angle $A B C=90^{\circ}$.
(b) Hence state the coordinates of D.
(c) Find an equation of the circle.

The point E lies on the circumference of the circle such that $B E$ is a diameter.
(d) Find an equation of the tangent to the circle at E.

Question 49

The point A has coordinates $(1,5)$ and the line l has gradient $-\frac{2}{3}$ and passes through A. A circle has centre $(5,11)$ and radius $\sqrt{52}$.
(a) Show that l is the tangent to the circle at A.
(b) Find the equation of the other circle of radius $\sqrt{52}$ for which l is also the tangent at A.

Question 50

Points A and B have coordinates $(8,3)$ and (p, q) respectively. The equation of the perpendicular bisector of $A B$ is $y=-2 x+4$.

Find the values of p and q.

Question 51

The equation of a curve is $y=(x-3) \sqrt{x+1}+3$. The following points lie on the curve. Non-exact values are rounded to 4 decimal places.

$$
A(2, k) \quad B(2.9,2.8025) \quad C(2.99,2.9800) \quad D(2.999,2.9980) \quad E(3,3)
$$

(a) Find k, giving your answer correct to 4 decimal places.
(b) Find the gradient of $A E$, giving your answer correct to 4 decimal places.

The gradients of $B E, C E$ and $D E$, rounded to 4 decimal places, are $1.9748,1.9975$ and 1.9997 respectively.
(c) State, giving a reason for your answer, what the values of the four gradients suggest about the gradient of the curve at the point E.

Question 52

The equation of a circle is $x^{2}+y^{2}-4 x+6 y-77=0$.
(a) Find the x-coordinates of the points A and B where the circle intersects the x-axis.
(b) Find the point of intersection of the tangents to the circle at A and B.

Question 53

The line $y=2 x+5$ intersects the circle with equation $x^{2}+y^{2}=20$ at A and B.
(a) Find the coordinates of A and B in surd form and hence find the exact length of the chord $A B$.

A straight line through the point $(10,0)$ with gradient m is a tangent to the circle.
(b) Find the two possible values of m.

Question 54

The diagram shows the circle with equation $x^{2}+y^{2}-6 x+4 y-27=0$ and the tangent to the circle at the point $P(5,4)$.
(a) The tangent to the circle at P meets the x-axis at A and the y-axis at B.

Find the area of triangle $O A B$, where O is the origin.
(b) Points Q and R also lie on the circle, such that $P Q R$ is an equilateral triangle.

Find the exact area of triangle $P Q R$.

Question 55

A circle with centre $(5,2)$ passes through the point $(7,5)$.
(a) Find an equation of the circle.

The line $y=5 x-10$ intersects the circle at A and B.
(b) Find the exact length of the chord $A B$.

Question 56

The circle with equation $(x+1)^{2}+(y-2)^{2}=85$ and the straight line with equation $y=3 x-20$ are shown in the diagram. The line intersects the circle at A and B, and the centre of the circle is at C.
(a) Find, by calculation, the coordinates of A and B.
(b) Find an equation of the circle which has its centre at C and for which the line with equation $y=3 x-20$ is a tangent to the circle.

Question 57

The diagram shows the circle with equation $(x-2)^{2}+(y+4)^{2}=20$ and with centre C. The point B has coordinates $(0,2)$ and the line segment $B C$ intersects the circle at P.
(a) Find the equation of $B C$.
(b) Hence find the coordinates of P, giving your answer in exact form.

Question 58

The equation of a circle is $x^{2}+y^{2}+a x+b y-12=0$. The points $A(1,1)$ and $B(2,-6)$ lie on the circle.
(a) Find the values of a and b and hence find the coordinates of the centre of the circle.
(b) Find the equation of the tangent to the circle at the point A, giving your answer in the form $p x+q y=k$, where p, q and k are integers.

Question 59

The equation of a circle is $x^{2}+y^{2}+6 x-2 y-26=0$.
(a) Find the coordinates of the centre of the circle and the radius. Hence find the coordinates of the lowest point on the circle.
(b) Find the set of values of the constant k for which the line with equation $y=k x-5$ intersects the circle at two distinct points.

Question 60

The coordinates of points A, B and C are $A(5,-2), B(10,3)$ and $C(2 p, p)$, where p is a constant.
(a) Given that $A C$ and $B C$ are equal in length, find the value of the fraction p.
(b) It is now given instead that $A C$ is perpendicular to $B C$ and that p is an integer.
(i) Find the value of p.
(ii) Find the equation of the circle which passes through A, B and C, giving your answer in the form $x^{2}+y^{2}+a x+b y+c=0$, where a, b and c are constants.

Question 61

Points A and B have coordinates $(5,2)$ and $(10,-1)$ respectively.
(a) Find the equation of the perpendicular bisector of $A B$.
(b) Find the equation of the circle with centre A which passes through B.

Question 62

The diagram shows the circle with equation $x^{2}+y^{2}=20$. Tangents touching the circle at points B and C pass through the point $A(0,10)$.
(a) By letting the equation of a tangent be $y=m x+10$, find the two possible values of m.
(b) Find the coordinates of B and C.

The point D is where the circle crosses the positive x-axis.
(c) Find angle $B D C$ in degrees.

Question 63
Points $A(7,12)$ and B lie on a circle with centre $(-2,5)$. The line $A B$ has equation $y=-2 x+26$.
Find the coordinates of B.

Question 64

A circle has equation $(x-1)^{2}+(y+4)^{2}=40$. A line with equation $y=x-9$ intersects the circle at points A and B.
(a) Find the coordinates of the two points of intersection.
(b) Find an equation of the circle with diameter $A B$.

Question 65

The equation of a circle is $(x-a)^{2}+(y-3)^{2}=20$. The line $y=\frac{1}{2} x+6$ is a tangent to the circle at the point P.
(a) Show that one possible value of a is 4 and find the other possible value.
(b) For $a=4$, find the equation of the normal to the circle at P.
(c) For $a=4$, find the equations of the two tangents to the circle which are parallel to the normal found in (b).

Question 66

The diagram shows a circle P with centre $(0,2)$ and radius 10 and the tangent to the circle at the point A with coordinates $(6,10)$. It also shows a second circle Q with centre at the point where this tangent meets the y-axis and with radius $\frac{5}{2} \sqrt{5}$.
(a) Write down the equation of circle P.
(b) Find the equation of the tangent to the circle P at A.
(c) Find the equation of circle Q and hence verify that the y-coordinates of both of the points of intersection of the two circles are 11.
(d) Find the coordinates of the points of intersection of the tangent and circle Q, giving the answers in surd form.

