A-Level Topic : Continuous Random Variable

May 2013-May 2023

Answers

Ouestion	1
Question	-

(i)	$\int_{-\infty}^{\infty} \frac{k}{x^3} dx = 1$	M1		All correct, including limits and an attempt to integrate
	$\int_{-\infty}^{\infty} \frac{k}{x^3} dx = 1$ $\left[-\frac{k}{2x^2}\right]_{-1}^{\infty} = 1$ $0 - \left(-\frac{k}{2}\right) = 1$	Al	2	or $0 + \frac{k}{2} = 1$ or $\frac{k}{2} = 1$ AG must be convincing
(ii)	$\int_{1}^{2} \frac{2}{x^{3}} dx$ $= \left[-\frac{1}{x^{2}} \right]_{1}^{2}$ $= \frac{3}{4}$	M1		Attempt integ $f(x)$; ignore limits
	$= \left[-\frac{1}{x^2} \right]_1$ $= \frac{3}{4}$	A1	2	
(iii)	$\int_{1}^{\infty} \frac{2}{x^{2}} dx$ $= \left[-\frac{2}{x} \right]_{1}^{\infty}$	M1		Attempt integ $xf(x)$; ignore limits
	$=\left[-\frac{2}{x}\right]_{1}^{\infty}$	Al		Correct & correct limits
	= 2	Al	3	
	ž,	[Tota	ul: 7]	

Quest	ion 2	-0.9	
(i)	$\frac{2}{3}\int_{1}^{2}x^{2}dx$	M1	Attempt integ. $xf(x)$; ignore limits
	$\frac{2}{3} \int_{1}^{2} x^{2} dx$ $= \frac{2}{3} \left[\frac{x^{3}}{3} \right]_{1}^{2}$	A1	Correct integration and limits
	$=\frac{14}{9}$ or 1.56 o.e.	A1 [3]	
(ii)	$\frac{2}{3} \int_{1}^{\frac{14}{9}} x dx$ (= $\frac{2}{3} \left[\frac{x^3}{3} \right]_{1}^{2}$)	M 1	Attempt integ. $f(x)$; with limits
	$3 \begin{bmatrix} 3 \end{bmatrix}_{1}^{7}$ = $\frac{115}{243}$ or 0.473 (3 s.f.)	A1 [2]	
(iii)	$\frac{115}{243} < \frac{1}{2}$ o.e.	M1	Comparison of prob. or values
	Hence mean < median	A1ft[2]	ft (i) or (ii)
	Ku	[Total: 7]	

Quest	tion 3					
(i)	$\frac{1}{2} \int_{4}^{t} \frac{1}{\sqrt{t}} dt = 0.9 \text{ or } \frac{1}{2} \int_{t}^{9} \frac{1}{\sqrt{t}} dt = 0.1$	M1	Attempt integ $f(t)$ with unknown limit and 0.9/0.1.			
	$\left[\sqrt{t}\right]_{4}^{t} = 0.9 \text{ or } \left[\sqrt{t}\right]_{t}^{9} = 0.1$	A1	Correct integration & limits = 0.9 or 0.1 .			
	$((\sqrt{t}-2) = 0.9 \text{ or } (3 - \sqrt{t}) = 0.1)$ t = 8.41 (mins) (3 sf)	A1 [3]				
(ii)	$\frac{1}{2}\int_4^9 \frac{t}{\sqrt{t}} dt \text{oe}$	M1	Attempt integ <i>t</i> f(<i>t</i>). Ignore limits			
	$\frac{1}{2} \left[\frac{t1.5}{1.5} \right]_{4}^{9}$ oe	A1	Correct integration & limits			
	$=\frac{19}{3}$	A1				
	$\frac{1}{2}\int_{4}^{9}\frac{t^{2}}{\sqrt{t}}dt \text{oe}$	M1	Attempt integ $t^2 f(t)$. Ignore limits			
	$\left(=\frac{1}{2}\left[\frac{t2.5}{2.5}\right]_{4}^{9}=\frac{211}{5}\right)$	PR				
	$= \frac{212}{5} - (\frac{19}{3})^2$	M1	integ $t^2 f(t) - (\text{integ } tf(t))^2$ attempted			
	$= \frac{94}{45} \text{ or } 2.09 (3 \text{ sf})$	A1 [6]				
Question 4						
	r^{10} 1 (100 3 5)		200			

(i)
$$\int_{0}^{10} \frac{1}{2500} (100t^{3} - t^{5}) dt$$
(i)
$$\int_{0}^{10} \frac{1}{2500} \left[25t^{4} - \frac{t^{6}}{6} \right]_{0}^{10} = \frac{100}{3})$$
(ii)
$$\int_{n}^{10} \frac{1}{2500} (100t - t^{3}) dt$$
(ii)
$$\int_{n}^{10} \frac{1}{2500} (100t - t^{3}) dt$$
(ii)
$$\int_{n}^{10} \frac{1}{2500} (100t - t^{3}) dt$$
(ii)
$$\int_{n}^{10} \frac{1}{2500} \left[50t^{2} - \frac{t_{4}}{4} \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[50t^{2} - \frac{t_{4}}{4} \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{n} \frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{n} \frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{n} \frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{n} \frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{n} \frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{n} \frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right) \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right] \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right] \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right] = 0.1$$
(ii)
$$\frac{1}{2500} \left[2500 - \left(50n^{2} - \frac{n^{4}}{4} \right] = 0.1$$
(ii)

Ques	stion 5	I		
(i)	$\int_{0}^{2} k(x-2)^{2} \mathrm{d}x = 1$	M1		Attempt to integrate $f(x)$ with correct limits and = 1
	$\left(\left[\frac{k(x-2)^3}{3}\right]_0^2 = 1\right)$ $k\left[0 - \left(-\frac{8}{3}\right)\right] = 1$ $k = \frac{3}{8} \text{ AG}$	A1	[2]	Must see this line or better, e.g. $k \times \frac{8}{3} = 1$
(ii)	$\frac{\frac{3}{8}\int_{d}^{2} (x-2)^{2} dx = 0.2}{\left(\frac{3}{8}\left[\frac{(x-2)^{3}}{3}\right]_{d}^{2} = 0.2\right)}$	M1		$\int f(x) dx$ with limits d and 2 or 0 and d, and = 0.2 or =0.8 Condone missing 'k'
	$\frac{3}{8} \left[0 - \frac{(d-2)^3}{3} \right] = 0.2 \text{ oe}$ ((d-2) ³ = -1.6) d = 0.83(0) (3 s.f.)	M1 A1	[3]	Reasonable attempt to integrate from a correct expression, with limits substituted to give expression in d ³ . Condone missing 'k'
(iii)	$\frac{\frac{3}{8}\int_{0}^{2} x(x-2)^{2} dx}{\left(=\frac{3}{8}\int_{0}^{2} x^{3} - 4x^{2} + 4x dx\right)}$ $=\frac{3}{8} \left[\frac{x^{4}}{4} - \frac{4x^{3}}{3} + 2x^{2}\right]_{0}^{2}$ $=\frac{1}{2}$	M1 A1		Attempt integ $xf(x)$; ignore limits, condone missing k $\left(\frac{3}{8}\left[x \times \frac{(x-2)^3}{3} - \int \frac{(x-2)^3}{3} dx\right]_0^2\right)$ $= \frac{3}{8}\left[x \times \frac{(x-2)^3}{3} - \frac{(x-2)^4}{12}\right]_0^2$ Correct integration & limits, condone missing k
		A1	[3]	.5 .0

(i)	Longest lifetime	B1	[1]	Must be in context
(ii)	$\int_{1}^{a} \frac{k}{x^2} dx = 1$	M1		Int $f(x)$ and equate to 1. Ignore limits
	$k\left[-\frac{1}{x}\right]\frac{a}{1} = 1$	Al		Correct integral and limits
	$\left(k\left[-\frac{1}{a}+1\right]=1\right)$			
	$k\left[\frac{-1+a}{a}\right] = 1$ or $k(-1+a) = a$			
	$k = \frac{a}{a-1}$ AG	A1	[3]	Must be convinced (AG)
(iii)	$\frac{5}{3} \int_{1}^{2.5} \frac{1}{x} dx \text{or } k \int_{1}^{2.5} \frac{1}{x} dx$	M1		Int $xf(x)$. Ignore limits
	$= \frac{5}{3} [\ln x]_{1}^{2.5} \text{ or } k[\ln x]_{1}^{2.5}$	A1		Correct integral and limits (Accept "k" or "their k")
	$=\frac{5}{3}\ln 2.5$ or 1.53 (3 s.f.)	A1	[3]	

ht =
$$\frac{1}{2}$$
seenB1or $y = \frac{1}{8}x$ $\frac{1}{2} \times m \times \left(\frac{m}{4} \times "\frac{1}{2}"\right) = \frac{1}{2}$ M1 $\frac{1}{2} \times m \times ("\frac{1}{8}"m) = \frac{1}{2}$ or $\frac{m^2}{16} = \frac{1}{2}$ o.e.N.B. B1 M1 must be consistentOr Integrating linear function of form $y = kx$
with limits 0 and m or m and 4 and equated to
0.5 $m = \sqrt{8}$ or $2\sqrt{2}$ or 2.83 (3 s.f.)A1[3]

-				
(i)	$k \int_{0}^{4} (16t - t^{3}) dt = 1$ $k \left[8t^{2} - \frac{t^{4}}{4} \right]_{0}^{4} = 1$	M1		Int $f(t) = 1$ ignore limits
	$k\left[8t^2 - \frac{t^4}{4}\right] \frac{4}{0} = 1$	Al		correct integration with correct limits
	k(128-64) = 1 o.e.			
	$k(128 - 64) = 1 \text{ o.e.}$ $k \times 64 = 1$ $\left(k = \frac{1}{64}\right) \mathbf{AG}$			
		A1	[3]	must be convinced (AG)
(ii)	$\frac{1}{64} \int_{0}^{1} (16t - t^3) dt$	M1		Int $f(t)$ between 0 and 1 (accept 0 and a value < 1, 1 and 4)
	$\frac{1}{64} \int_{0}^{1} (16t - t^{3}) dt$ $= \frac{1}{64} \left[8t^{2} - \frac{t^{4}}{4} \right]_{0}^{1}$ $= \frac{1}{64} \left[8 - \frac{1}{4} \right]$ $= \frac{31}{256} \text{ or } 0.121094$	A1	111	correct integration and correct limits (ignore "k")
	$=\frac{1}{64}\left[8-\frac{1}{4}\right]$			
	$=\frac{31}{256}$ or 0.121094	A1		
	$\left(\frac{31}{256}\right)^2 = 0.0147 \ (3 \text{ s.f.}) \text{ o.e.}$	B1√*	[4]	ft their " $\frac{31}{256}$ "
i li .	$\frac{1}{64} \int_{0}^{4} (16t^{2} - t^{4}) dt$ $= \frac{1}{64} \left[\frac{16t^{3}}{3} - \frac{t^{5}}{5} \right]_{0}^{4}$	M1		Int $f(t)$ ignore limits
	$=\frac{1}{64}\left[\frac{16t^{3}}{3}-\frac{t^{5}}{5}\right]_{0}^{4}$	Al	0	correct integration and correct limits (ignore "k")
	$=\frac{1}{64}\left(\frac{1024}{3}-\frac{1024}{5}\right)$			
	$=\frac{32}{15}$ or 2.13 (3 s.f.) o.e.	A1	[3]	

		[Total: 10]	
	$\ln m = 0.5 \ln a$ $m = \sqrt{a}$	A1 A1 [4]	or $\ln m = \ln a^{0.5}$
	$\frac{1}{\ln a} \begin{bmatrix} \ln x \end{bmatrix}_{1} = 0.5$ $\frac{1}{\ln a} \ln m = 0.5$	Al	Correct integration and limits (1 to m or m to a (condone missing k)
iii)	$\frac{1}{\ln a} \int_{1}^{m} \frac{1}{x} dx = 0.5$ $\frac{1}{\ln a} [\ln x]_{1}^{m} = 0.5$	M1	Int $f(x)$ and equate to 0.5. Ignore limits
	$=\frac{1}{\ln a}\left(a-1\right)$	A1 [3]	
	$= \frac{1}{\ln a} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} a \\ 1 \end{bmatrix} \text{ or } k\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} a \\ 1 \end{bmatrix}$	A1	Correct integration and limits (condone missing k)
(ii)	$\frac{1}{\ln a} \int_{1}^{a} dx \qquad \text{or } k \int_{1}^{a} 1 dx$	M1	Int $xf(x)$. Ignore limits
	$k \ln a = 1$ $k = 1/\ln a$	A1 [3]	AG
	$\int_{1}^{a} \frac{k}{x} dx = 1$ $k[\ln x]_{1}^{a} = 1$	Al	Correct integration and limits and = 1
(i)	$\int_{1}^{\frac{h}{X}} dx = 1$	M1	Int $f(x)$ & equate to 1. Ignore limits

(i)	$\frac{1}{2}c^{2} = 1$ $c = \sqrt{2} \text{ or } 1.41 (3 \text{ sf})$ $f(x) = x \text{ or } y = x$	M1		Area of triangle = 1 or integral of kx with limits 0 and c and equated to 1
	$c = \sqrt{2}$ or 1.41 (3 sf)	A1	[2]	
(ii)	f(x) = x or y = x	B 1	0	Seen or implied, e.g. by next line. Can be awarded anywhere in the question. Implied by
	$\int_{a}^{1} x dx = 0.1$	M1		(a+1) in area of trapezium. Ignore limits. Must be integral of kx and equated to 0.1. Or trapezium area.
	$\begin{bmatrix} x^2 \\ 2 \end{bmatrix}_a^1 = 0.1$ $1 - a^2 = 0.2$	A1√ [^]		Correct limits, ft incorrect kx .
	$1 - a^2 = 0.2$ a = 0.894 (3 sf)	A1	[4]	$\sqrt{\left(\frac{4}{5}\right)}$ oe
(iii)	$\int_{0}^{\sqrt{2}} x^2 dx$	M 1		Ignore limits; ft their $f(x)$ but not $\int x dx$
	$\int_{0}^{\sqrt{2}} x^{2} dx$ $\left[\frac{x^{3}}{3}\right] \sqrt{2} \\ 0$ $= \frac{2}{3} \sqrt{2} \text{ or } 0.943 \text{ or } \sqrt{\left(\frac{8}{3}\right)}$	A1√ ^k	[2]	ft their <i>c</i> , dep $0 < ans <$ their <i>c</i> . Not ft their f(<i>x</i>)

Questic	on 11			
(a)	$\int_{0.5}^{0.5} (1.5t - 0.75t^{2}) dt \text{o.e.}$ $= \left[0.75t^{2} - 0.25t^{3} \right]_{0}^{0.5} \text{o.e.}$	M1		Attempt int $f(t)$
	$= \left[0.75t^2 - 0.25t^3 \right]_0^{0.5} \text{ o.e.}$	A1		Correct integration and limits
	$=\frac{5}{32}$ or 0.156 (3 sf)	Al	3	
(b) (i)	$\frac{1}{2}\pi a^2 = 1 \text{or } \pi a^2 = 2 \text{oe}$	M1		Attempt to find the area and equate to 1
	$\frac{1}{2}\pi a^2 = 1$ or $\pi a^2 = 2$ oe $a = \sqrt{\frac{2}{\pi}}$ or 0.798 (3 sf)	A1	2	
(ii)	0	B1	1	
(iii)	Symmetry stated, seen or implied 0.8	M1 A1	2	Could be a diagram As final answer
		Total: 8		
Question 12				

Juestic	on 12			
(i)	$\frac{3}{4}\int_{0}^{c}(cx-x^{2})dx=1$	M1		Attempt integ $f(x)$ and = 1. Ignore limits
	$\frac{3}{4} \left[\frac{cx^2}{2} - \frac{x^3}{3} \right]_0^c = 1$	Al		Correct integration and limits (condone c = 2
	$\frac{3}{4}\left(\frac{c^3}{2} - \frac{c^3}{3}\right) = 1 \text{ or } \frac{3}{4} \times \frac{c^3}{6} = 1 \text{ or } \frac{c^3}{8} = 1$	A1	[3]	No errors seen
	$(c = 2 \mathbf{AG})$			
(ii)	Inverted parabola Through $(0, 0)$ and $(2, 0)$ and zero elsewhere	B1 B1		Must not extend beyond [0,2]
	Median = 1	B1	[3]	
(iii)	$\frac{3}{4} \int_{0}^{1.5} (2x - x^2) dx$	M1		Attempt integ $f(x)$ ignore limits
	$=\frac{3}{4}\left[x^{2}-\frac{x^{3}}{3}\right]_{0}^{1.5}$	<mark>A</mark> 1		Correct integration ignore limits
	$\frac{3}{4} \left(1.5^2 - \frac{1.5^3}{3} \right)$	B1		Use of correct limits [0,1.5] or 1–[1.5,2]
	$=\frac{27}{32}$ or 0.844 (3 sf)	A1	[4]	
(iv)	$\left(\frac{27}{32} - \frac{1}{2} \text{ or } 0.844 - 0.5\right)$			
	$=\frac{11}{32}$ or 0.344 (3 st)	Blf	[1]	ft their (iii) For use of symmetry Note If do not use "hence" and start again B1 for cwo
		Total	11	

(i)	$k \int_{0}^{15} (225 - t^{2}) dt = 1$ $k \left[225t - \frac{t^{3}}{3} \right]_{0}^{15} = 1$ $k \times [3375 - 1125] = 1 \text{ or } k \times 2250 = 1$ $(k = \frac{1}{2250} \text{ AG})$	M1 A1 A1 3	Attempt integ $f(x)$ and = 1. Ignore limits Correct integration and limits No errors seen
(ii)	$\frac{1}{2250} \int_{10}^{15} (225 - t^2) dt$ $(= \frac{1}{2250} \left[225t - \frac{t^3}{3} \right]_{10}^{15})$ $= \frac{1}{2250} \left[2250 - (2250 - \frac{1000}{3}) \right]$ $= \frac{4}{27} \text{ or } 0.148 (3 \text{ sf})$	M1 A1 A1 3	Attempt integ, ignore limits Or $1-\int_0^{10}$ Correct integration and limits. Condone missing k
(iii)	$\frac{1}{2250} \int_{0}^{15} (225t - t^{3}) dt$ $= \frac{1}{2250} \left[\frac{225t^{2}}{2} - \frac{t^{4}}{4} \right]_{0}^{15}$ $= \frac{1}{2250} \left[\frac{50625}{2} - \frac{50625}{4} \right]$ $= \frac{45}{8} \text{ or } 5.625 \text{ or } 5.63 (3 \text{ sf})$	M1* A1 M1*dep A1 4	Attempt integ $xf(x)$, ignore limits Correct integration and limits. Condone missing k Sub correct limits into their integral Accept 5 mins 37 or 38 secs
	Total	10	.5

Ques	Subil 14	e0'	
	$\frac{1}{2}a^2 = 1$	M1	or $\int_{0}^{a} x dx = 1$
	$a = \sqrt{2}$	A1	Allow 1.41 or better
	$\int_{0}^{\sqrt{2}} x^2 \mathrm{d}x$	M1	ignore limits
	$= \left[\frac{x^3}{3}\right]_0^{\sqrt{2}}$	Alf	correct integral and limits, but ft their a
	$=\frac{\left(\sqrt{2}\right)^3}{3} = \text{or } \frac{2^{1.5}}{3} \text{ or } \frac{2.83}{3} \text{ or } 0.9428$	A1 [5]	must see this numerical expression, or equiv SR Equating $\int x f(x)$ to 0.943 scores M1 Solving to find $a = 1.41$ scores A1
	(= 0.943 AG)		
		[Total 5]	

Questi	on 15	1		
(i)	$k \int_{-2}^{2} (4 - x^2) \mathrm{d}x = 1$	M1		attempt Integral $f(x) = 1$, ignore limits
	$k \int_{-2}^{2} (4 - x^{2}) dx = 1$ $k [4x - \frac{x^{3}}{3}]_{-2}^{2} = 1$	A1		correct integration & limits
	$\left(k\left(8-\frac{8}{3}-\left(-8-\left(-\frac{8}{3}\right)=1\right)\right)\right)$			
	$k \times \frac{32}{3} = 1$ oe Not e.g. $k \times 10.7 = k$			
	$k = \frac{3}{32} \text{ AG}$	A1	[3]	exact answer correctly found
(ii)	Inverted parabola, vertex on y axis	B1		parabola must finish on x axis at ± 2 , labelled (ignore markings on y axis)
	$\mathrm{E}(X)=0$	B1	[2]	labelled (ignore markings on y axis)
(iii)	$\frac{3}{32} \int_{-2}^{1} (4 - x^{2}) dx$ $\frac{3}{32} \left[4x - \frac{x^{3}}{3} \right]_{-2}^{1}$	M1		or $1 - \frac{3}{32} \int_{1}^{2} (4 - x^2) dx$ ignore limits
	$\frac{3}{32} \left[4x - \frac{x^3}{3}\right]_{-2}^{1}$	A1		or $1 - \frac{3}{32} \left[4x - \frac{x^3}{3} \right]_{1}^{2}$
	$\frac{3}{32} \left(4 - \frac{1}{3} - \left(-8 - \left(-\frac{8}{3}\right)\right)\right)$			correct integration and correct limits = $1 - \frac{3}{32}(8 - \frac{8}{3} - (4 - \frac{1}{3}))$
	$=\frac{27}{32}$ or 0.844 (3 sf)	A1	[3]	

Question 16	1	1	
(i)	$k \int_{1}^{2} (3-x)dx = 1$	M1	Attempt $\int f(x) = 1$, ignore limits or $\frac{k}{2}(h_1 + h_2) = 1$
	$k\left[3x - \frac{x^2}{2}\right]_1^2 = 1$	A1	2 Correct integration & limits or $\frac{k}{2}(2+1) = 1$
	(k(6-2-(3-0.5))=1)		
	$k \times 1.5 = 1 \text{ or } k \times \frac{3}{2} = 1 \text{ or } k = \frac{1}{1.5} \text{ oe}$ $k = \frac{2}{3} \text{ AG}$	A1 [3]	No errors seen
(ii)	$\frac{2}{3} \int_{1}^{m} (3-x) dx = 0.5$ oe \int from m to 2	M1*	Attempt Int $f(x) = 0.5$, ignore limits oe
	$\left(\frac{2}{3}\left[3x - \frac{x^2}{2}\right]_1^m = 0.5\right)$		Or use of area of trapezium
	$\frac{2}{3} \left[3m - \frac{m^2}{2} - 2.5 \right] = 0.5$	dep M1*	Sub of correct limits into their integral. Or trapezium using 1 and m/m and 2 Any correct 3-term $QE = 0$ or $(m-3)^2$ =2.5
	$m^2 - 6m + 6.5 = 0$ oe	A1	
	$\left(m = \frac{6 \pm \sqrt{36 - 4 \times 6.5}}{2} = 1.42 \text{ or } 4.58\right)$ m = 1.42 (3 sf)	A1 [4]	or $\frac{6-\sqrt{10}}{2}$ oe; single correct ans
Question 12	7		

Ouestion 17

Question 17							
(a) (i)	E(X) = 1.5	B1	0				
	$\frac{2}{9}\int_0^3 (3x^3 - x^4) \mathrm{d}x$	M1		Attempt integ $x^2 f(x)$ ignore limits			
	$\frac{2}{9} \int_{0}^{3} (3x^{3} - x^{4}) dx$ $= \frac{2}{9} \left[\frac{3x^{4}}{4} - \frac{x^{5}}{5} \right]_{0}^{3}$						
	$= \frac{2}{9} \left[\frac{243}{4} - \frac{243}{5} \right] \qquad (= 2.7)$	M1		Sub correct limits into correct integral			
	$Var(X) (= 2.7 - 1.5^2) = 0.45$ oe	A1 [√]	[4]	Ft their $E(X)$, but no ft for –ve Var.			
(ii)	0.5	B1	[1]				
(iii)	$(1 - \frac{13}{27}) \div 2$ = $\frac{7}{27}$ or 0.259	M1		or $\frac{2}{9} \int_{2}^{3} (3x - x^2) dx$ oe			
	$=\frac{7}{27}$ or 0.259	A1	[2]	As final answer			
(b)	$\frac{1}{2} \times 2 \times 2a = \frac{1}{2} \qquad \text{or } \int_0^2 ax dx = \frac{1}{2}$ $a = \frac{1}{4}$	M1		Attempt correct equation in 'a'			
	$a = \frac{1}{4}$	A1					
	$\frac{1}{2} \times b \times \frac{1}{2}b = 1$ or $\int_{a}^{b} \frac{1}{2}x dx = 1$	M1		or $\frac{1}{2} \times b \times ab = 1$ or $\int_0^b ax dx = 1$ attempt correct			
	$b = 2\sqrt{2}$ or $b = 2 \times \sqrt{2}$			equation in (a and) b			
	$b = 2\sqrt{2}$	A1 [√]	[4]	Allow $b = \sqrt{8}$ or 2.83 (3 sf)			
				Ft incorrect a , both Ms needed			

(i)	$k \int_{5}^{10} (10t - t^{2}) dt = 1$ $k \left[5t^{2} - \frac{t^{3}}{3} \right]_{5}^{10} = 1$ $k (500 - \frac{1000}{3} - (125 - \frac{125}{3})) = 1$ $k \times \frac{250}{3} = 1$ $(k = -\frac{3}{3} AC)$	M1 A1			tempt to integrate, ignore limits
	$(k=\frac{3}{250}\mathbf{AG})$	A1	[3]	No	errors seen; No inexact decimals seen
(ii)	$\frac{3}{250} \int_{5}^{10} (10t^2 - t^3) dt$ $= \frac{3}{250} \left[\frac{10t^3}{3} - \frac{t^4}{4} \right]_{5}^{10}$		M1 A1		Attempt to integrate, ignore limits Correct integral and limit. Condone missing k
	$=\frac{3}{250}\left(\frac{10000}{3} - \frac{10000}{4} - \left(\frac{1250}{3} - \frac{625}{4}\right)\right)$ = 6.875 or 55/8		A1	[3]	Allow 6.88
(iii)	$P(T < E(T) = \frac{3}{250} \left[5t^2 - \frac{t^3}{3} \right]^{"6.875"}_{5}$ = 0.5361		M1*		ft their $E(T)$
	"0.5361" – 0.5 P(<i>T</i> between E(<i>T</i>) & median = 0.036	1	DMI A1		allow 0.036 Alternative Method Integrate f(t)limits 5 and m equated to 0.5 M1* Integrate f(t)limits their 6.736 (provided between 5 and 10) and their 6.875DM1 Allow without "minutes"
(iv)	10 (minutes)		B1	[1]	
	The Sate				

(a)	0.3 or 1 – 0.6 or 0.4 or 0.2 seen 0.8	M1 A1 [2]]	
(b) (i)	$k \int_0^{1.5} (2.25 - x^2) \mathrm{d}x = 1$	M1		tempt integ $f(x)$ and '= 1'. Ignore nits
	$k \left[2.25x - \frac{x^3}{3} \right]_{0}^{1.5} = 1$	A1		rrect integration and limits
	$k \times [3.375 - 1.125] = 1 \text{ or } k \times \frac{9}{4} = 1 \text{ oe}$			
	$k = \frac{4}{9}\mathbf{AG}$	A1 [3]] No	o errors seen
(ii)	$\frac{4}{9} \int_{0}^{1.5} (2.25x - x^3) dx$	M1		tempt integ $xf(x)$, ignore limits, indone missing k
	$=\frac{4}{9}\left[2.25\frac{x^2}{2}-\frac{x^4}{4}\right]^{1.5}$	A1	co	prrect integration and limits, condone
	= 0.5625 or 0.563		m	issing k
	Mean no. of hours = 56.25 or 56.3 56 hrs 15 mins	A1 A1√ [4	1 0	their 0.5625
			P	
(iii)	Max <i>x</i> is 1.5, less than 2.9 or $150 < 290$	B1 [1] No	eeds numerical justification
(iv)	any <i>a</i> such that $2.9 \le a \le 5$	B1 [1]	
Questio	n 20			
(i)	2 m	B1	[1]	allow without units
(ii)	$k\int_0^2 x^2 (2-x)\mathrm{d}x = 1$	M1		attempt integ $f(x)$ and '= 1'. Ignore limits
	$k \left[\frac{2x^3}{3} - \frac{x^4}{4} \right]_0^2$	A1		correct integration and limits
	$k \times \left[\frac{16}{3} - 4\right] = 1$ or $k \times \frac{4}{3} = 1$ oe			-
	$k = \frac{3}{4} \text{ AG}$	Al	[3]	No errors seen
	·Satura		[-]	
(iii)	$\frac{\frac{3}{4}}{\frac{5}{6}} \int_{0}^{2} x^{3} (2-x) dx$ $= \frac{3}{4} \times \left[\frac{2x^{4}}{4} - \frac{x^{5}}{5}\right]_{0}^{2}$	M1		attempt integ $xf(x)$, condone missing k
	$= \frac{3}{4} \times \left[\frac{2x^4}{4} - \frac{x^5}{5}\right]_0^2$	A1		correct integration and limits, condone missing k
	1.2 m oe	A1	[3]	allow without units
(iv)	1.2 m oe $\frac{3}{4} \int_{0}^{1} x^{2} (2-x) dx$ $(= \frac{3}{4} \times (\frac{2}{3} - \frac{1}{4}))$ $= \frac{5}{16} \text{ or } 0.3125 \text{ oe}$ $400 \times \frac{5}{16} = 125$	M 1		attempt integ $f(x)$, 0 to 1, condone missing k
	$\left(-\frac{1}{4} \wedge \left(\frac{1}{3} - \frac{1}{4}\right)\right)$ = $\frac{5}{16}$ or 0.3125 oe	A1		
	$400 \times \frac{5}{16} = 125$	A1 ft	[3]	ft their $\frac{5}{16}$

(a)
$$0.3 \text{ or } 1 - 0.6 \text{ or } 0.4 \text{ or } 0.2 \text{ seen}$$

 0.8
(b) (i) $k \int_0^{1.5} (2.25 - x^2) dx = 1$
 $k \left[2.25x - \frac{x^3}{3} \right]_0^{1.5} = 1$
 $k \left[2.25x - \frac{x^3}{3} \right]_0^{1.5} = 1$ or $k \times \frac{9}{4} = 1$ or $k \times \frac{9}{4} = 1$ or $k = \frac{4}{9} \text{AG}$
(ii) $\frac{4}{9} \int_0^{4.5} (2.25x - x^3) dx$
 $= \frac{4}{9} \left[2.25 \frac{x^2}{2} - \frac{x^4}{4} \right]_0^{1.5}$
 $= 0.5625 \text{ or } 0.563$
Mean no. of hours = 56.25 or 56.3 56 hrs
 15 mins
(ii) Max x is 1.5, less than 2.9 or 150 < 290
(iv) any a such that $2.9 \le a \le 5$
(iii) A1 (1) A1 (2) A1

(i)	$\sigma_X, \sigma_Z, \sigma_Y, \sigma_W$ or X, Z, Y, W	B2		B1 if two adjacent sds interchanged, ie $\sigma_Z, \sigma_X, \sigma_Y, \sigma_W$ or $\sigma_X, \sigma_Y, \sigma_Z, \sigma_W$ or $\sigma_X, \sigma_Z, \sigma_W, \sigma_Y$
			[2]	B1 for correct order reversed
(ii) (a)	Mean = 0 stated or found or " $-$ 0" seen	B1		
	$\frac{1}{18} \int_{-3}^{3} x^{4} dx - 0$ $= \frac{1}{18} \left[\frac{x^{5}}{5} \right]_{-3}^{3}$	M1		Attempt integral ² $f(x)$. Ignore limits Allow without "- 0"
	$18 \begin{bmatrix} 5 \\ -3 \end{bmatrix} - 3$ = $\frac{1}{18} \begin{bmatrix} \frac{3^5}{5} + \frac{3^5}{5} \end{bmatrix}$ oe = 5.4			
	sd = $\sqrt{5.4}$ or $\sqrt{\frac{1}{18} \left[\frac{3^5}{5} + \frac{3^5}{5}\right]}$ or 2.324 sd = 2.32 (3 sf) AG	A1	[3]	Must see $\sqrt{\text{correct expression or 5.4}}$ or 2.324 or better
(b)	$\frac{1}{18}\int_{'2.324'}^{3} x^2 dx$	M1		Attempt to integrate $f(x)$, ignore limits
	$\frac{1}{18} \left[\frac{x^3}{3} \right]' 2.324' = \frac{1}{18} \left[\frac{3^3}{3} - \frac{'2.324'^3}{3} \right]$	A1		Sub correct limits into correct integral
	= 0.268 (3 sf)	A1	[3]	Allow 0.269
(c)	o Satpre	B1	[1]	

(i)	m_X, m_Y, m_Z, m_W or X, Y, Z, W	B2	[2]	B1 if two adjacent means interchanged, i.e. m_T, m_X, m_Z, m_W or m_X, m_Z, m_Y, m_W or m_X, m_Y, m_W, m_Z B1 for correct order reversed.
(ii) (a)	$\int_{0}^{3} \frac{4}{81} x^{4} dx$ $= \left[\frac{4}{81} \frac{x^{5}}{5}\right]_{0}^{3}$	M1		Attempt int $xf(x)$. Ignore limits
	$= \left[\frac{\frac{4}{81} \frac{x^5}{5}}{9}\right]_0^3$	A1		Correct integration and limits (condone missing 4/81)
	$=\frac{4}{81} \times \frac{3^5}{5}$ or $\frac{4}{81} \times \frac{243}{5}$ or $\frac{972}{405}$ oe			Must see correct expression as well as $\frac{12}{5}$ or 2.4
	$=\frac{12}{5}$ or 2.4 AG	A1	[3]	No errors seen
(b)	$\int_{2.4}^{3} \frac{4}{81} x^3 dx \qquad \text{or } 1 - \int_{0}^{2.4} \frac{4}{81} x^3 dx$	M1		Attempt int $f(x)$ ignore limits
	$= \left[\frac{\frac{4}{81} \frac{x^4}{4}}{\frac{3}{2.4}}\right]_{2.4}^3 \text{ or } 1 - \left[\frac{\frac{4}{81} \frac{x^4}{4}}{\frac{3}{6}}\right]_{0}^{2.4}$	A1		Correct integration and limits (condone missing 4/81)
	$= 1 - \frac{4}{81} \times \frac{2.4^4}{4}$ oe			
	$=\frac{369}{625}$ or 0.59(0) (3 sf)	A1	[3]	As final answer
(c)	1	B1	[1]	
Question 23	3			
			D1	

(a)(i)	<i>k</i> = 1	B1	.5
	Total:	1	0
(a)(ii)	f_2 : area > 1 (area \neq 1)	B1	oe
	f ₃ : includes negative values of f ₃	B1	oe
	Total:	2	
(b)(i)	$6\int_{-a}^{a} (a^2 - x^2) dx = 1$	M1	Integ $f(x) = 1$, ignore limits
	$6[a^2x - \frac{x^3}{3}]_{-a}^a = 1$	A1	Correct integral and limits
	$6(2a^{3} - \frac{2a^{3}}{3}) = 1$ $\frac{24a^{3}}{3} = 1 \text{ or } 8a^{3} = 1$ $a = 1/2 \qquad \text{AG}$	A1	Correctly obtained. No errors seen. (SR Verification scores M1A1 only max 2/3)

(b)(ii)	0	B1	
	Total:	1	
(b)(iii)	$6 \int_{-0.5}^{0.5} \left(\frac{x^2}{4} - x^4\right) dx$ (= 6 $\left[\frac{x^3}{12} - \frac{x^5}{5}\right]_{-0.5}^{0.5} = 0.05$) Var = 0.05 - 0 ²	M1	attempt int $x^2 f(x)$ & correct limits
	= 0.05 oe	A1	cao; allow omission of -0^2

i(i)	$k \int_{0}^{1} (x - x^2) \mathrm{d}x = 1$	M1	Attempt integ $f(x)$ and "= 1", ignore limits
	$= k \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 = 1$	A1	correct integration, limits 0 and 1
	$= k \begin{bmatrix} \frac{1}{2} & -\frac{1}{3} \end{bmatrix} = 1 \text{ or } \frac{k}{6} = 1$	A1	correctly obtained, no errors seen
	Total:	3	
(ii)	E(X) = 0.5	B1	
	$6\int_{0}^{1} (x^3 - x^4) \mathrm{d}x$	M1	Attempt integ $x^2 f(x)$, limits 0 to 1
	$ (= 6 \left[\frac{1}{4} - \frac{1}{5} \right] = 0.3) "0.3" - "0.5"^2 $	М1	their int $x^2 f(x)$ – their $(E(X))^2$ dep +ve result
	= 0.05(= 1/20)	A1	
	Total:	4	
(iii)	$6\int_{0.4}^{1} (x-x^2) dx$	M 1	ignore limits, eg M1 for $6 \int_{0.4}^{2} (x - x^2) dx$
	$= 6\left\{\frac{1}{2} - \frac{1}{3} - \left(\frac{0.4^2}{2} - \frac{0.4^3}{3}\right)\right\}$	A1FT	subst correct limits into correct integration
	= 0.648(= 81/125)	A1	condone incorrect "k" for A1

(i)	$0.5 \times 1 \times h=0.25$ h = 0.5 grad = 0.5	M1	$P(X < 2) = 4 \times P(X < 1)$ M1
	$\mathbf{f}(x) = 0.5x$	A1	P(X < 2) = 1 a = 2 A1 A1
	$0.5 \times a \times 0.5a = 1$	M1	$0.5 \times 2 \times h' = 1$ M1 h' = 1
	<i>a</i> = 2	A1	grad = 0.5
	P(X < 2) = 1	A1	f(x) = 0.5x A1
	Total:	5	
(ii)	$\int_0^m 0.5x dx = 0.5$	M1	Attempt $\int f(x) dx = 0.5$ Ignore limits
	$=\left[\frac{x^2}{4}\right]_0^m = 0.5$	A1FT	Correct integration (ft $f(x)$) & limits = 0.5
	$m = \sqrt{2}$ or 1.41 (3 sf)	A1	or by similarity $m = \frac{1}{\sqrt{2}} \times 2$ M2 = $\sqrt{2}$ A1

(i)	Greater area where $x < 7.5$ than $x > 7.5$	B 1	Allow Graph higher for $x < 7.5$ than for $x > 7.5$ or Graph decreasing or equiv expl'n
	Total:	1	
(ii)	$\int_{5}^{10} \frac{k}{x^2} dx = 1$	M1	Attempt Integ $f(x) = 1$ ignore limits
	$k\left[-\frac{1}{x}\right]_{5}^{10} = 1$	A1	Correct integration and limits
	$k \times \frac{1}{10} = 1$		
	k = 10 AG	A1	No errors seen
(iii)	$10\int_{5}^{10} \frac{1}{x} dx$	M1	Attempt Integ $xf(x)$ ignore limits
	$= 10 [\ln x]_5^{10}$ = 10(ln10 - ln5)	M1	Correct integration and limits
	= 10ln2 or 6.93 (3 sf)	A1	OE
	Total:	3	
(iv)	$10\int_{5}^{10} 1 dx - "6.93"^2$	M1	Attempt (Integ $x^2f(x)$) – (E(x)) ² . No limits M0
	= 1.95 (accept 1.96)	A1	Use of 6.93 gives 1.97 A0

(i)	$\left \frac{1}{4} \int_{0}^{2} (x^{2} + x) \mathrm{d}x \right = \left \frac{1}{4} \left[\frac{x^{3}}{3} + \frac{x^{2}}{2} \right]_{0}^{2} \right $	M1	Attempt integ $xf(x)$, ignore limits
	$= \frac{1}{4}(\frac{8}{3}+2) (-0)$	A1	Subst correct limits in correct integration
	$=\frac{7}{6}$ OE or 1.17 (3 sf)	A1	
		3	
(ii)	$\frac{1}{4}\int_{0}^{m} (x+1) \mathrm{d}x = 0.5 \left(=\frac{1}{4}\left[\frac{x^{2}}{2} + x\right]_{0}^{m} = 0.5\right)$	M1	attempt integ $f(x)$, limits 0 to unknown (or unknown to 2) and = 0.5
	$\frac{\frac{1}{4}(\frac{m^2}{2} + m) = 0.5}{m^2 + 2m - 4} = 0$ $m = \frac{-2\pm\sqrt{4+16}}{2} \text{ OE}$	A1	a correct equation in <i>m</i> (any form) or $\sqrt{5}-1$
	<i>m</i> = 1.24	A1	must reject the negative value if there
Questic	on 28		

(i)	$k\int_{0}^{a} \frac{1}{\sqrt{x}} dx = 1$	M1	Attempt int $f(x)$ and $= 1$ ignore limits
	$(2k[x^{0.5}]_0^a = 1)$	A1	OE; a correct eqn in $k \& a$ after sub limits
	$2ka^{0.5} = 1$ or $a = \frac{1}{4k^2}$	0	
	$k \int_{0}^{a} \frac{x}{\sqrt{x}} dx = 3$	M1	Attempt int $xf(x)$ and = 3
	e.g. $\frac{2}{3}ka^{1.5} = 3$ or $a^3 = \frac{81}{4k^2}$	A1	OE; a correct eqn in k and a after sub limits
	e.g. $a^2 = 81$ or e.g. $k^2 = \frac{81}{4 \times 9^3}$	M1	Attempt eliminate one letter
	<i>a</i> = 9	A1	Convincingly obtained
	e.g. $k = \frac{9}{54}$	A1	
	$k = \frac{1}{6}$ AG		
l(ii)	$\frac{1}{6} \int_{0}^{m} \frac{1}{\sqrt{x}} \mathrm{d}x = 0.5 \text{OE}$	М1	Attempt int $f(x)$, unknown limit and = 0.5
	$\frac{1}{3}m^{0.5} = 0.5$	A1	a correct equn in <i>m</i> after sub limits
	<i>m</i> = 2.25	A1	

i(i)	$1 - 6 \int_{0.3}^{0.7} \left(x - x^2 \right) \mathrm{d}x$	M1	or $2 \times 6 \int_{0}^{0.3} (x - x^2) dx$ or similar correct expression before integration
	$1 - \left[6(\frac{x^2}{2} - \frac{x^3}{3})\right] \frac{0.7}{0.3}$	A1	or similar correct expression after integration
	$1 - 6\left[\frac{0.7^2}{2} - \frac{0.7^3}{3} - \frac{0.3^2}{2} + \frac{0.3^3}{3}\right]$	M1	Attempt subst correct limits in this or other correct expression
	= 0.432 (or 54/125)	A1	(SR1 Omission of '1-' scores B2 for 0.568 or 71/125) (SR2 Omission of '2x' scores B2 for 0.216 or 27/125)
	19	4	
(ii)	Correct shape between $x = 0$ and 1	B1	No curve outside this range.
	E(X) = 0.5	B 1	
		2	
(iii)	$6\int_{0}^{1} (x^{3} - x^{4}) dx$ = $\left[6\left(\frac{x^{4}}{4} - \frac{x^{5}}{5}\right) \right]_{0}^{1}$	M1	attempt int $x^2 f(x)$, ignore limits
	$6\left[\frac{1^4}{4} - \frac{1^5}{5}\right] $ (= 0.3)	M1	attempt subst correct limits in correct integ
	$Var(X) = '0.3' - '0.5'^{2}$ = 0.05	A1FT	FT their mean, dep their $Var(X) > 0$

Questio	m 30		
(i)	$k \int_{1}^{2} \left(\frac{1}{x^{2}} + \frac{1}{x^{3}}\right) dx = 1$	M1	Attempt integ $f(x) \& = 1$; ignore limits
	$k \left[-\frac{1}{x} - \frac{1}{2x^2} \right]_1^2 = 1$	A1	Correct integral & limits & '= 1'
	$k\left[-\frac{1}{2}-\frac{1}{8}+1+\frac{1}{2}\right] = 1$ $k = \frac{8}{7} \mathbf{AG}$	A1	Sufficient working must be shown, no errors seen
		3	
(ii)	$\frac{8}{7} \frac{2}{1} \left(\frac{1}{x} + \frac{1}{x^2}\right) dx$	M1	Attempt integ $xf(x)$, ignore limits
	$=\frac{8}{7}\left[\ln x - \frac{1}{x}\right]_{1}^{2}$	A1	Correct integral & limits, condone missing k
	$=\frac{8}{7}(\ln 2 + \frac{1}{2})$ or 1.36 (3 sf)	A1	
(iii)	$\frac{\$}{7} \int_{1}^{1.5} \left(\frac{1}{x^2} + \frac{1}{x^3}\right) dx$ $= \frac{\$}{7} \left[-\frac{1}{x} - \frac{1}{2x^2} \right]_{1}^{1.5}$	3 M1	Attempt integration $f(x)$ between 1 and 1.5 or between 1.5 and 2
	$= \frac{44}{63} \text{or } 0.698$	A1	Or $\frac{19}{63}$ or 0.302
	$\frac{44}{63}(1-\frac{44}{63})^2$	M1	FT their $\frac{44}{63}$
	× 3	M1	Independent provided answer is <1
	= 0.191	A1	
		5	

20000				
(i)	$\frac{1}{2} \times a \times b = 1$	MI	Attempt Δ area = 1 or $\int (b-bx/a) dx = 1$ with correct limits	
	$b = \frac{2}{a}$	A1	Tep	
		2		
(ii)	$\operatorname{grad} = -\frac{2}{a^2}$ or $-\frac{b}{a}$	B1	allow without '-' sign (could be implied or seen in (i))	
	$y - (\frac{2}{a}) = \operatorname{grad} \times x \text{ or } y = \operatorname{grad} \times (x - a)$	M1	correct use of $y = mx + c$ or $y - y_1 = m(x - x_1)$ with (0,b) or (a,0) including attempt at substitution of their b	
	$y \cdot (\frac{2}{a}) = -\frac{2}{a^2} x \text{ or } y = -\frac{2}{a^2} (x - a)$ and $y = \frac{2}{a} - \frac{2}{a^2} x$ AG	A1	No errors seen	
(iii)	$\int_{0}^{a} (\frac{2}{a}x - \frac{2}{a^{2}}x^{2}) dx$	M1	Attempt int $xf(x)$ ignore limits	
	$= \left[\frac{1}{a}x^2 - \frac{2}{3a^2}x^3\right]_0^a$	A1	Correct integration ignore limits	
	$a - \frac{2}{3}a = 0.5$	M1	Sub correct limits into their integral and = 0.5	
	a = 1.5	A1		

i(i)	$\int_{5}^{10} \frac{k}{x^2} \mathrm{d}x = 1$	M1	Attempt integration $f(x)$ and '= 1'; ignore limits
	$\left[-\frac{k}{x}\right]_{5}^{10} = 1 \text{ oe}$	A1	Correct integration and limits and '= 1'
	$\left(\frac{k}{5} - \frac{k}{10} = 1\right)$		
	k = 10 AG	A1	No errors seen
		3	
(ii)	$10\int_{5}^{10}\frac{1}{x}dx$	M1	Attempt integ $xf(x)$; ignore limits.
	$10[\ln x]_{5}^{10}$		or 10(ln 10 – ln 5)
	$= 10 \ln 2 \mathbf{AG}$	A1	No errors seen
		2	
(iii)	$10\int_{9}^{10} \frac{1}{x^2} dx$	M1	Attempt integ f(x) with correct limits
	$(10\left[-\frac{1}{x}\right]_{9}^{10})$		
	$10\left[-\frac{1}{10}+\frac{1}{9}\right]$	A1	Substitute correct limits in correct integration
	$=\frac{1}{9}$ or 0.111 (3 sf)	A1	
	Satpres	3	
(iv)	$\int_{5}^{a} \frac{k}{x^2} \mathrm{d}x = 0.6$	M1	Attempt integration of $f(x)$ with correct limits and = 0.6
	$\int_{5}^{a} \frac{k}{x^{2}} dx = 0.6$ $10 \left[-\frac{1}{x} \right]_{5}^{a} = 0.6$		
	$10[\frac{1}{5} - \frac{1}{a}] = 0.6$	A1	Substitute correct limits in correct integration
	$a = \frac{50}{7}$ or 7.14 (3 sf)	A1	
		3	

Question 3	33
------------	----

(i)	$k\int_{2}^{6}x^{-1}\mathrm{d}x = 1$	M1	Attempt integrate $f(x) \& = 1$. Ignore limits
	$k[\ln x]_{2}^{6} = 1$ k(ln 6 - ln 2) = 1 or kln 3 = 1 $k = \frac{1}{\ln 3} AG$	A1	correct sub of correct limits in correct integral leading to correct ans. No errors seen.
		2	
(ii)	$\frac{1}{\ln 3} \int_2^6 1 \mathrm{d}x$	M1	Attempt integ $xf(x)$. Ignore limits
	$= \frac{1}{\ln 3} \left[x \right]_{2}^{6} (= \frac{1}{\ln 3} (6 - 2))$	A1	Correct integral and limits
	$=\frac{4}{\ln 3}=3.64$ AG	A1	No errors seen
		3	
iii)	$P(X < E(X)) = \frac{1}{\ln 3} \int_{2}^{3.64} x^{-1} dx$	M1	Attempt integ $f(x)$ from 2 to $\frac{4}{\ln 3}$ or 3.64 oe
	$= \frac{1}{\ln 3} \left[\ln x \right]_{2}^{3.64}$ $= \frac{1}{\ln 3} \left(\ln 3.64 - \ln 2 \right) (= 0.545)$	A1	Correct sub correct limits into correct integral
	P(m < X < E(X)) = "0.545" - 0.5	M1	Subt 0.5 from their $P(X \le E(X))$ art 0.045 . ft their $P(X \le E(X) \ge 0.5)$
	= 0.045 (2 sfs)	A1	equivalent method M1 method for median-need 0.5 and limits 2 to m or m to 6 A1 sqrt 12 or 3.464 M1 calc area from "3.464" to 3.64 A1 0.045 or better, not 0.046
		4	

(i)	$\int_0^a \frac{k}{(x+1)^2} \mathrm{d}x = 1$	M1	Any attempt integ $f(x)$ and $= 1$. Ignore limits
	$-\left[\frac{k}{(x+1)}\right]_{0}^{a} = 1$	M1	Attempt subst correct limits into correct integral
	$-k(\frac{1}{a+1}-1) = 1$		
	$k \times \frac{a}{a+1} = 1$ and $k = \frac{a+1}{a}$ AG	A1	No errors seen
		3	
(ii)	Max time allowed by model (for runners to finish)	B1	Allow: All runners finish in time <i>a</i> or less or Longest time (taken by any runner) oe
		1	
(iii)	$\frac{a+1}{a} \int_{0}^{0.5} \frac{1}{(x+1)^2} \mathrm{d}x = \frac{3}{4}$	M1	Attempt integ $f(x)$ and $=\frac{3}{4}$; ignore limits oe. Condone missing / incorrect k
	$-\frac{a+1}{a} \left[\frac{1}{(x+1)} \right]_{0}^{0.5} = \frac{3}{4}$ $-\frac{a+1}{a} \left(\frac{2}{3} - 1 \right) = \frac{3}{4}$	M1	Attempt subst correct limits into correct integral. Condone missing / incorrect k
	$-\frac{a+1}{a}(\frac{2}{3}-1) = \frac{3}{4}$		
	<i>a</i> = 0.8 oe	A1	
		3	
Ques	tion 35		
-			

(i)	$\sqrt{2}\int_{\frac{\pi}{2}}^{\frac{\pi}{4}}\cos x dx$	M1	Attempt integ $f(x)$ with correct limits
	$\sqrt{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos x dx$ $= \sqrt{2} [\sin x] \frac{\frac{\pi}{4}}{\frac{\pi}{6}}$	-0	
	$=\frac{2-\sqrt{2}}{2}$ oe or 0.293 (3 sf)	A1	SC Final answer of 0.707 scores B1sc
		2	
(ii)	$\sqrt{2} \int_0^m \cos x dx = 0.5$	M1	Attempt to integ $f(x) \& = 0.5$. Ignore limits. Condone missing $\sqrt{2}$
	$\sqrt{2} [sinx]_0^m = 0.5$	A1	Correct integral and limits 0 to unknown & = 0.5 Condone missing $\sqrt{2}$
	$\sqrt{2}$ sinm = 0.5		
	$\sin m = \frac{1}{2\sqrt{2}} \text{ oe}$	M1	For rearranging their expression to the form $\sin m = (\sin m = 0.35355 \text{ or } 0.354)$ seen or implied
	m = 0.361 (3 sfs)	A1	No errors seen (Note 20.705 can score M1 A1 M1 A0)
		4	

'(iii)	$\sqrt{2} \int_0^{\frac{\pi}{4}} x \cos x \mathrm{d}x$	M1	Attempt to integ $xf(x)$. Ignore limits. Condone missing $\sqrt{2}$
	$= \sqrt{2} \{ [x(\sin x)] \frac{\pi}{4} - \int_0^{\frac{\pi}{4}} \sin x dx \}$	M1	Attempt to integ by parts leading to expression of form ±xsinx±cosx with correct limits
	$= \sqrt{2} \left\{ \frac{\pi}{4\sqrt{2}} - 0 - \left[-\cos x \right] \frac{\pi}{4} \right\}$	A1	For $\sqrt{2}(x \sin x - (-\cos x))$ with correct limits
	$= \sqrt{2} \left\{ \frac{\pi}{4\sqrt{2}} + \cos \frac{\pi}{4} - 1 \right\}$	A1	
	$=\frac{\pi}{4}+1-\sqrt{2}$ oe or 0.371 (3 sf)		
		4	

i(i)	$\frac{3}{a^3} \int_0^a x^2 dx$ $(= \frac{3}{a^3} \left[\frac{x^3}{3} \right]_0^a)$	M1	Attempt to integrate $f(x)$ with limits 0 and a (condone missing $\frac{3}{a^3}$)
	$=\frac{3a^3}{3a^3}$	A1	$\frac{3a^3}{3a^3} - 0$ or better seen
	= 1 Hence f is pdf for all a	A1	Answer = 1 and comment
		3	
(ii)	$\frac{3}{a^3} \int_{0}^{2} x^2 dx = 0.5$ $\frac{3}{a^3} \left[\frac{x^3}{3} \right]_{0}^{2} = 0.5$	M1	Attempt to integrate f(x)=0.5, limits 0 and 2 oe, condone missing $\frac{3}{a^3}$
	$\overline{a^3} \lfloor \overline{3} \rfloor_0 = 0.5$		
	$\frac{3}{a^3} \times \frac{8}{3} = 0.5$ oe	A1	$\frac{2^3}{3} - 0$ or better, condone missing $\frac{3}{a^3}$
	$a^3 = 16 \text{ or } a = \sqrt[3]{16}$ (= 2.52 AG)	A1	Convincingly obtained Note: Attempt to verify 2.52, M1 as stated except not equated to 0.5.A1 as stated, A1 for evaluation to 0.499apprx 0.5
	Sat	3	P
i(iii)	$\frac{3}{16} \int_{0}^{2.52} x^3 dx \qquad \text{or } \frac{3}{16} \int_{0}^{a} x^3 dx$	M1	Attempt integ <i>x</i> f(<i>x</i>), correct limits, condone missing $\frac{3}{a^3}$
	$= \frac{3}{16} \left[\frac{x^4}{4} \right]_0^{2.52} \qquad \text{or } \frac{3}{16} \left[\frac{x^4}{4} \right]_0^a$		
	$=\frac{3}{16} \times \frac{40.317}{4}$	A1	$\frac{2.52^4}{4} - 0$ or better, condone missing $\frac{3}{a^3}$
	= 1.89 (3 sf)	A1	
		3	

(i)	$a\int_{1}^{b}\frac{1}{x^2}dx = 1$	M1	Attempt int $f(x)$ and = 1, ignore limits
	$a\left[-\frac{1}{x}\right] \frac{b}{1} = 1$	A1	correct integ and limits = 1
	$a[1 - \frac{1}{b}] = 1 \text{ or } a \times \frac{b-1}{b} = 1$ $b = \frac{a}{a-1} \mathbf{AG}$	A1	No errors seen
		3	
(ii)	$a \int_{1}^{\frac{3}{2}} \frac{1}{x^2} dx = \frac{1}{2}$ $a \left[-\frac{1}{x} \right]_{1}^{\frac{3}{2}} = \frac{1}{2}$	M1	Attempt int $f(x)$ with limits 1 to $\frac{3}{2}$ and $=\frac{1}{2}$
	$a\left[-\frac{1}{x}\right]\frac{\frac{3}{2}}{1} = \frac{1}{2}$	P	RA
	$a \left[1 - \frac{2}{3}\right] = \frac{1}{2}$	A1	oe correct equn in a
	$a = \frac{3}{2}, b = 3$	A1	Both
		3	
(iii)	$\frac{3}{2}\int_{1}^{3}\frac{1}{x}dx$	M1	Attempt int $xf(x)$, ignore limits – condone missing a
	$=\frac{3}{2}[\ln x]_{1}^{3}$	A1	FT Correct integ and <i>their</i> limits 1 to b – condone missing a
	$=\frac{3}{2}\ln 3 \text{ or } 1.65 (3 \text{ sf})$	A1	FT their a and b (valid b i.e. >1)
	Z	3	.5

(a)(i)	$0.5 \times 1/a = \left(\frac{0.5}{a}\right)$	M1	Or attempt to integrate $f(x)$ (=1/a) between 0 and 0.5
	$=\frac{1}{2a}$ oe	A1	Accept 0.5/a for A1
		2	
(a)(ii)	<u>a</u> 2	B1	
		1	
a)(iii)	$\int_0^a \frac{x^2}{a} dx - \left(\frac{a}{2}\right)^2$	M1	Integ their $x^2 f(x)$ from 0 to <i>a</i> and sub their mean ²
	$\operatorname{Var}(X) = \frac{a^2}{3} - \frac{a^2}{4}$ $(\operatorname{Var}(X) = \frac{a^2}{12} \mathbf{AG})$	A1	Must see this line oe
	(1404) 12 140)		
		2	RA

(b)	$\int_{2}^{b} \frac{3}{2(t-1)^2} \mathrm{d}t$	M1	Attempt integ $g(t)$ ignore limits
	$\left[-\frac{3}{2(t-1)}\right]_2^b$	A1	Correct integral
	$\frac{-\frac{3}{2}(\frac{1}{(b-1)}-1) = \frac{3}{4}}{(1-\frac{1}{(b-1)}=\frac{1}{2})}$	M1	Attempt subst correct limits in their integ and $=\frac{3}{4}$
	<i>b</i> = 3	A1	
		4	

(i)	$k\int_{0}^{3} \left(3x - x^{2}\right) \mathrm{d}x = 1$	M1	Attempt to integrate $f(x)$ and $= 1$
	$k \left[\frac{3}{2}x^2 - \frac{x^3}{3} \right]_0^3$	A1	Correct integral and limits
	$k\left(\frac{27}{2}-\frac{27}{3}\right)=1$		
	$k = \frac{2}{9}$	A1	AG No errors seen
(ii)	$\frac{2}{9}\int_{1}^{2} \left(3x - x^{2}\right) dx = \frac{2}{9} \left[\frac{3}{2}x^{2} - \frac{x^{3}}{3}\right]_{1}^{2} = \frac{2}{9} \times \left(6 - \frac{8}{3} - \frac{3}{2} + \frac{1}{3}\right)$	3 M1	Attempt to integrate $f(x) dx$ with limits 1 and 2 OE
	$\frac{13}{27}$ or 0.481 (3 sf)	A1	
	6	2	
iii)	$y = 3x - x^2$ symmetrical about $x = \frac{3}{2}$	M1	Attempt $\frac{2}{9} \int_{0}^{3} (3x^2 - x^3) dx$
	$E(X) = \frac{3}{2}$	A1	
	$\frac{2}{9}\int_{0}^{3} (3x^3 - x^4) \mathrm{d}x$	M1	Attempt to integrate $x^2 f(x)$
	$=\frac{2}{9}\left[\frac{3x^4}{4} - \frac{x^5}{5}\right]_0^3 \left(=\frac{2}{9} \times \frac{243}{20} = \frac{27}{10}\right)$	M1	Subtract their $(E(X))^2$ from their integral $x^2f(x)$ with correct limits substituted
	$\frac{27}{10} - \left(\frac{3}{2}\right)^2$		6
	$\frac{9}{20}$ or 0.45	A1	
	·satpreP	5	

(i)	$\frac{1}{2} \times a \times \frac{a}{2} = 1 \text{or} \frac{1}{2} \int_{0}^{a} x dx = 1$	M1	Attempt at triangle area or integral $f(x)$ and $= 1$,
	$\frac{a^2}{4} = 1 \text{ OE}$		
	4 a = 2	A1	
		2	
(ii)	$\frac{1}{2}\int_{0}^{2}x^{2}dx$	M1	Attempt integral $xf(x)$
	$=\left[\frac{x^3}{6}\right]_0^2$	M1	Correct integral and limits 0 to their 'a'
	$\left(=\frac{8}{6}\right)=\frac{4}{3}$	A1	AG CWO
	9	3	
iii)	$P\left(X < \frac{4}{3}\right) = \frac{1}{2} \int_{0}^{\frac{4}{3}} x dx$	M1	Attempt integral $f(x)$ between correct limits
-	$=\frac{4}{9}$	A1	or $\frac{5}{9}$
	$P(E(X) < X < m) = \frac{1}{2} - \frac{4}{9}$	M1	or $\frac{5}{9} - \frac{1}{2}$
-	$\frac{1}{18}$	A1	
	Alternative method for question 4(iii)	.0'	
[Attempt to find <i>m</i>	M1	
	$m = \sqrt{2}$	A1	
-	Integrate $f(x)$ between $\frac{4}{3}$ and $\sqrt{2}$	M1	
-	1 18	A1	
ŀ		4	

(a)	$\frac{\frac{3}{4000}}{\frac{3}{4000}} \int_{5}^{10} (100 - x^2) dx$ $= \frac{3}{4000} \left[100x - \frac{x^3}{3} \right] \frac{10}{5}$	M1	Attempt integration of $f(x)$, ignore limits. Condone omission of $\frac{3}{4000}$
	$= \frac{3}{4000} \left(1000 - \frac{1000}{3} - 500 + \frac{125}{3} \right)$	M1	Correct limits 5 and 10. OE SOI
	$= 0.156 (3 \text{ sf}) \text{ or } \frac{5}{32}$	A1	For fully correct working seen including substitution of limits
		3	
(b)	$\frac{3}{4000} \int_{p}^{10} (100 - x^2) \mathrm{d}x = \frac{1}{4}$	M1	Attempt integration of $f(x)$ with any limits and $=\frac{1}{4}$ or $=\frac{3}{4}$ seen. Condone omission of $\frac{3}{4000}$
	$\frac{3}{4000} \left[100x - \frac{x^3}{3} \right] \frac{10}{p} = \frac{1}{4}$	A1	Correct integration with correct limits seen (or implied for limits p and 10) and = $\frac{1}{4}$ OE Condone omission of $\frac{3}{4000}$
	$\frac{3}{4000} \left(1000 - \frac{1000}{3} - 100p + \frac{p^3}{3}\right) = \frac{1}{4}$	M1	Attempt substitution correct limits in their integration of $f(x)$. Accept limits 0 to p if clearly seen, accept limits -10 and p . Substitution must be seen.
	e.g. $\frac{2000}{3} - 100p + \frac{p^3}{3} = \frac{1000}{3}$ $p^3 - 300p + 1000 = 0$	A1	AG No errors seen
		4	
i(c)	Curve is symmetrical about $x = 0$	B1	May be implied by sketch. No contradictions or integrate $f(x)$ between $-q$ and $+q$ and equate to 0.5 leading to q^3 -300 q + 1000 = 0 oe
	<i>q</i> = 3.47	B1	
		2	

(a)	7.5	B1
		1
(b)	$\frac{6}{125}\int_{5}^{10} (-x^4 + 15x^3 - 50x^2) \mathrm{d}x$	M1
	$\frac{6}{125} \left[-\frac{x^5}{5} + 15\frac{x^4}{4} - 50\frac{x^3}{3} \right]_5^{10} - 7.5^{2}$	M1
	1.25 (3 sf)	A1
		3
(c)	$\frac{6}{125} \int_{5}^{6} (-x^{2} + 15x - 50) dx$ $\frac{6}{125} \left[-\frac{x^{3}}{3} + 15\frac{x^{2}}{2} - 50x \right]_{5}^{6}$	М
	6 625	м

6 625	M1
$\frac{6}{125}(-102+\frac{625}{6})$ oe	
0.104	A1
2×('0.104'×(1-'0.104')	M1
0.186 (3 sf)	A1ft
	5

(a)	$\int_{1}^{a} \frac{k}{x^2} \mathrm{d}x = 1$	M1
	$k\left[-\frac{1}{x}\right]_{1}^{a} = 1$ $k\left[1-\frac{1}{a}\right] = 1$	A1
	$k\left[\frac{a-1}{a}\right] = 1$ $\left(k = \frac{1}{a-1}\right) \mathbf{AG}$	A1
	$\left(k = \frac{1}{a-1}\right) \mathbf{AG}$	
		3
(b)	$\frac{a}{a-1}\int_{1}^{a}\frac{1}{x}dx$	M1
	$\frac{a}{a-1}\left[\ln x\right]_{1}^{a}$	A1
	$\frac{a \ln a}{a - 1}$	A1
		3
(c)	$\frac{a}{a-1} \int_{1}^{m} \frac{1}{x^2} dx = \frac{3}{5}$	M1
	$\frac{a}{a-1} \left[-\frac{1}{x} \right]_{1}^{m} = \frac{3}{5}$ $\frac{a}{a-1} \left[1 - \frac{1}{m} \right] = \frac{3}{5}$	A1
	$\frac{1}{m} = 1 - \frac{3(a-1)}{5a} \text{ or } \frac{1}{m} = \frac{2a+3}{5a}$	A1
	$m = \frac{5a}{2a+3}$	A1
		4

(a)	'Tails down' parabola only from $x = 0$ to 20 shown	B1
		1
(b)	Symmetrical	B1
		1
(c)	$\frac{3}{4000} \int_{0}^{20} \left(20t^3 - t^4 \right) dx = \frac{3}{4000} \left[20\frac{t^4}{4} - \frac{t^5}{5} \right]_{0}^{20}$	M1
	$Var(T) = \frac{3}{4000} \times 160000 - 10^2$	M1
	20	A1
		3
(d)	$(p-0.5) \times 2$ or $1-2(1-p)$	M1
	2p - 1	A1
		2
(e)	$\frac{3}{4000} \int_{8}^{12} \left(20t - t^2 \right) \mathrm{d}x$	M1
	$\frac{3}{4000} \left[20\frac{t^2}{2} - \frac{t^3}{3} \right]_{8}^{12} = \frac{3}{4000} \left(1440 - 576 - 640 + \frac{512}{3} \right)$	A1
	$\frac{37}{125}$ or 0.296	A1
		3
(f)	Does not allow times greater than 20 minutes	B1
	2	1

(a)	$(k=) \frac{1}{a}$	B1
		1
(b)	(Mean =) their $k \times \frac{a^2}{2} \left(=\frac{a}{2}\right)$	B1 FT
	$\frac{1}{a}\int_{0}^{a}x^{2}dx\left(=\frac{a^{2}}{3}\right)$	M1
	$-\left(\frac{a}{2}\right)^{2}\left(=\frac{a^{2}}{12}\right)$	M1
	$\left(\frac{a^2}{12}=3\right)a=6$	A1
		4

(a)	$\frac{1}{2} \times 3 \times c = 1$	B1
	$\frac{1}{2} \times 3 \times c = 1$ $(c = \frac{2}{3} AG)$	
		1
(b)	$\left(\frac{1}{3}\right)^2$	M1
	ATPRA	
	$=\frac{1}{9}$ or 0.111(3sf)	A1
		2
(c)	Equation of line is $y = \frac{2}{3} - \left(\frac{2}{3} \div 3\right)x$	*M1
	$E(X) = \int_{0}^{3} \left(\frac{2}{3}x - \frac{2}{9}x^{2}\right) dx$	DM1
	$=\left[\frac{x^2}{3} - \frac{2x^3}{27}\right]_0^3$	A1 FT
	= 1	A1
		4

(a)	$\frac{1}{2} \times \frac{1}{2}k \times k = 1$	M1	Or use of $\int_{0}^{k} \left(-\frac{1}{2}x + \frac{1}{2}k\right) dx = 1$ and attempt at integral.
	<i>k</i> = 2	A1	Unsupported answers M0 A0. Do not accept ± 2 .
		2	
(b)	$\mathbf{f}(x) = -\frac{1}{2}x + 1$	B1 FT	FT their k from $y = -\frac{1}{2}x + \frac{1}{2}k$.
	$\int_{0}^{2} (-\frac{1}{2}x^{2} + x) dx = \left[-\frac{x^{3}}{6} + \frac{x^{2}}{2} \right]_{0}^{2}$	M1	Attempt integration of $xf(x)$ limits 0 to k. FT <i>their</i> $f(x)$. Could be in terms of k.
	$\frac{2}{3}$ or 0.667 (3 sf)	A1	
	AT PRA	3	

$\int_{p}^{1} (-\frac{1}{2}x+1) dx \ [= 0.25]$	M1	FT their equation of line ; correct integral and limits (could be reversed) stated or $\frac{1}{2}(1-p)(1-\frac{1}{2}p+\frac{1}{2})$ [= 0.25].
$\begin{bmatrix} -\frac{x^2}{4} + x \end{bmatrix}_p^1 = 0.25$ $-\frac{1}{4} + 1 + \frac{p^2}{4} - p = 0.25$	MI	Attempt substitution of correct limits (not reversed) into their integral or attempt expand must equal 0.25. OE
$p^2 - 4p + 2 = 0$	MI	Obtain 3-term quadratic set equal to 0, obtain at least 1 solution.
$p = 2 - \sqrt{2}$ or 0.586	A1	CAO
Z	4	

(a)	$P(X > 10) = \int_{10}^{20} \frac{3}{8000} (x - 20)^2 dx$	M1	Attempt integration of $f(x)$, ignore limits.
	$= \left[\frac{3}{8000} \times \frac{(x-20)^3}{3}\right]_{10}^{20} \text{ or } \frac{3}{8000} \left[\frac{x^3}{3} - \frac{40x^2}{2} + 400x\right]_{10}^{20}$	M1	Substitute correct limits 10 to 20 or 1 – limits 0 to 10 in <i>their</i> integral
	$=\frac{1}{8000}\Big[0-(-10)^3\Big]$		
	$\frac{1}{8}$ or 0.125	A1	SC Unsupported answer of $\frac{1}{8}$ scores B1 only
	$(\frac{1}{8})^2 = \frac{1}{64}$ or 0.0156 (3 sf)	B1 FT	FT <i>their</i> $P(X > 10)$ dependent on first M1 gained
		4	
(b)	$\int_0^{20} \frac{3}{8000} (x^3 - 40x^2 + 400x) \mathrm{d}x$	M1	Attempt integration of $xf(x)$. Ignore limits.
	$\frac{3}{8000} \left[\frac{x^4}{4} - \frac{40x^3}{3} + \frac{400x^2}{2} \right]_0^{20}$	A1	Correct integral (by expanding or by parts)
	or $\left(\frac{3x}{8000} \times \frac{(x-20)^3}{3}\right) - \frac{1}{8000} \left(\frac{(x-20)^4}{4}\right)$	0	
	$\frac{3}{8000} \left[\frac{160000}{4} - \frac{40 \times 8000}{3} + 200 \times 400 \right]$	M1	Subst correct limits in their (4th degree) integral
	5	A1	
		4	
(c)	$\int_0^m \frac{3}{8000} (x - 20)^2 dx = 0.5$	M1	Attempt to integrate $f(x)$ and equate to 0.5. Ignore limit
	$\left[\frac{3}{8000} \times \frac{(x-20)^3}{3}\right]_0^m = 0.5 \text{ or } \frac{3}{8000} \left[\frac{x^3}{3} - \frac{40x^2}{2} + 400x\right]_0^m = 0.5$	М1	Attempt integral and substitute limits 0 and m or m and 20 and = 0.5
	$\frac{1}{8000} \Big[(m-20)^3 - (-20)^3 \Big] = 0.5$		
	$(m-20)^3 = -4000$	A1	AG. Found convincingly.
	$(m = 20 + \sqrt[3]{-4000})$ m = 4.13 (3 sf)	B1	
		4	
(d)	Doesn't allow for trains > 20 mins late or Doesn't allow for trains being early	B1	or any relevant comment e.g. trains on Sun may be different to trains on Mon
		1	

(a)	$\frac{1}{2}p(p-1) = 1$	M1	For area =1 For verification methods accept $\frac{1}{2} \times 2 \times 1 = 1$ or $\frac{1}{2} \times 2 \times (p-1) = 1$ or $\frac{1}{2} \times 1 \times p = 1$ as indication that area=1
	<i>p</i> = 2	A1	AG - Convincing method and answer. Must see quadratic rearranged to =0 and no errors seen. N.B. Accept convincing verification methods (e.g. statement such as 'assume $p = 2$ ' or 'if $p = 2$ ' or 'using $p = 2$ ' or showing by clear substitution that $p = 2$ fits $\frac{1}{2}p(p-1) = 1$ with clear conclusion)
		2	
(b)	Gradient = 2 equation of line is $y = 2x + c$ line passes through (1, 0), hence $c = -2$	M1	Award for attempting equation of line $y=mx+c$ with $m = 2, -2, \frac{1}{2}$ or $-\frac{1}{2}$ and numerical c ($c\neq 0$)
	y = 2x - 2	A1	May be seen in (a) M1 can be implied by correct answer
	$2\int_{1}^{2} (x^2 - x) \mathrm{d}x$	M1	For attempting $\int xf(x)dx$. Ignore limits, FT <i>their</i> equation.
	$2\left[\frac{x^3}{3} - \frac{x^2}{2}\right]_1^2$	A1 FT	Correct integration FT <i>their</i> $f(x)$ and correct limits
	$\frac{5}{3}$ or 1.67 (3 sf)	A1	
		5	
			C I I

Question 50		
$\mathrm{E}(X) = 3$	B1	N.B. $E(X)=108k$ is B0 until correct k substituted in.
$k \int_{0}^{6} (6x - x^2) dx = 1$	M1	Attempt integration of $f(x)$ and =1. Ignore limits at this stage.
$k\left[3x^2 - \frac{x^3}{3}\right]_0^6 \ [=1]$		
$k\left(108 - \frac{216}{3}\right) = 1$ $k = \frac{3}{3} \text{ or } \frac{1}{3}$	A1	
$k = \frac{3}{108} \text{ or } \frac{1}{36}$		<u> </u>
$'\frac{3}{108}'\int_{0}^{6}(6x^{3}-x^{4})\mathrm{d}x$	*M1	Attempt integration of <i>their</i> $k \times x^2 f(x)$. Ignore limits at this stage. Accept in terms of <i>k</i> .
$=\frac{3}{108}\left[\frac{3x^4}{2} - \frac{x^5}{5}\right]_0^6 = 10.8$		
'10.8' - '3' ²	DM1	Their 10.8 (from use of limits 0 and 6) minus their $(E(X))^2$. Accept in terms of k: 388.8k–(108k) ²
$\frac{9}{5}$ or 1.8	A1	CWO. Must be convincingly obtained as AG.
	6	
Question 51		
$1 - \frac{20}{27}$ or $\frac{20}{27} - \frac{1}{2}$	M1	For either expression seen.
$\frac{20}{27} - \left(1 - \frac{20}{27}\right) \text{ or } \left(\frac{20}{27} - \frac{1}{2}\right)$.5	
$\frac{13}{27}$	Al	OE. Accept 0.481 or 0.482.
apie	2	

(a)	$\frac{1}{18} \int_{0}^{1.2} (9 - x^2) dx$	M1	Attempt to integrate $f(x)$, ignore limits. Must see an increase of power.
	$\frac{1}{18} \left[9x - \frac{x^3}{3} \right]_0^{1.2}$	A1	Correct integration and correct limits.
	$\frac{71}{125}$ or 0.568	A1	SC unsupported answer scores B2 only.
		3	
(b)	$\frac{1}{18}\int_{0}^{3}(9x-x^{3})dx$	M1	Attempt to integrate $xf(x)$, ignore limits. Must see an increase of power.
	$\frac{1}{18} \left[\frac{9x^2}{2} - \frac{x^4}{4} \right]_0^3$	A1	Correct integration and correct limits.
	$\frac{9}{8}$ or 1.125	A1	SC unsupported answer scores B2 only.
		3	
(c)	$\frac{1}{18} \left[9x - \frac{x^3}{3} \right]_0^m = 0.5$	M1	Attempt to integrate $f(x)$ with correct limits and $= 0.5$. OE. Accept limits <i>m</i> to 3. Allow <i>x</i> instead of <i>m</i> .
	$\frac{1}{18} \left[9m - \frac{m^3}{3} \right] - 0.5 = 0$	A1	Any correct cubic equation in <i>m</i> or <i>x</i> .
	$m^3 - 27m + 27 = 0$	A1	AG. Correctly obtain this equation. No errors seen.
		3	
Ques	stion 53		

'(a)(i)	$k \int_{0}^{2} (4x - x^2) \mathrm{d}x = 1$	M1	Attempt integral $f(x)$ and $= 1$. Ignore limits (must see a power increase for attempted integration).
	$k \left[\frac{4x^2}{2} - \frac{x^3}{3} \right]_0^2 = 1$	A1	Correct integration and correct limits.
	$k \times \frac{16}{3} = 1 \left[k = \frac{3}{16} \right]$	A1	OE AG Convincingly obtained. At least one interim step. No errors seen.
		3	
(a)(ii)	$\frac{3}{16}\int_{0}^{2} (4x^2 - x^3) \mathrm{d}x$	M1	Attempt integral $xf(x)$. Ignore limits. (must see a power increase for attempted integration). Condone missing k .
	$\frac{3}{16} \left[\frac{4x^2}{2} - \frac{x^3}{3} \right]_0^2$	A1	Correct integration and correct limits. Condone missing k .
	$\frac{5}{4}$	A1	Unsupported correct answer scores SC B2 only.
		3	

·(a)	$\frac{1}{18} \int_{0}^{1.2} (9 - x^2) dx$	M1	Attempt to integrate $f(x)$, ignore limits. Must see an increase of power.
	$\frac{1}{18} \left[9x - \frac{x^3}{3} \right]_0^{1.2}$	A1	Correct integration and correct limits.
	$\frac{71}{125}$ or 0.568	A1	SC unsupported answer scores B2 only.
		3	
(b)	$\frac{1}{18} \int_{0}^{3} (9x - x^{3}) dx$	M1	Attempt to integrate $xf(x)$, ignore limits. Must see an increase of power.
	$\frac{1}{18} \left[\frac{9x^2}{2} - \frac{x^4}{4} \right]_0^3$	A1	Correct integration and correct limits.
	$\frac{9}{8}$ or 1.125	A1	SC unsupported answer scores B2 only.
		3	
(c)	$\frac{1}{18} \left[9x - \frac{x^3}{3} \right]_0^m = 0.5$	M1	Attempt to integrate $f(x)$ with correct limits and $= 0.5$. OE. Accept limits <i>m</i> to 3. Allow <i>x</i> instead of <i>m</i> .
	$\frac{1}{18} \left[9m - \frac{m^3}{3} \right] - 0.5 = 0$	A1	Any correct cubic equation in <i>m</i> or <i>x</i> .
	$m^3 - 27m + 27 = 0$	A1	AG. Correctly obtain this equation. No errors seen.
		3	

(a)	Quadratic curve, hence symmetrical	B1	OE. Allow sketch and 'symmetrical' or just 'curve symmetrical'
		1	
(b)	$-k\int_{1}^{3} (x^2 - 4x + 3)dx = 1$	M1	Attempt to integrate $f(x)$ and '= 1'. Ignore limits at this stage
	$-k\left[\frac{x^3}{3} - 2x^2 + 3x\right]_1^3$	A1	Fully correct expression (correct integration and limits)
	$-k \times \left[0 - \frac{4}{3}\right] = 1$ or $k \times \frac{4}{3} = 1$	A1	AG, OE. Correctly substitute limits and '= 1' and correctly obtain result with no errors seen.
	$\left[k = \frac{3}{4}\right]$		
	- DR	3	
(c)	$-\frac{3}{4}\int_{1}^{3} \left(x^{4}-4x^{3}+3x^{2}\right) \mathrm{d}x$	M1	Attempt to integrate x^2 f(x) from 1 to 3
	$-\frac{3}{4} \times \left[\frac{x^5}{5} - x^4 + x^3\right]_{1}^{3}$	A1	Correct integration and limits
	$\left[=\frac{3}{4}\times\frac{28}{5}=\frac{21}{5}\right]$		
	$\left[\frac{21}{5}-2^2\right]=0.2$	A1	
		3	
(d)	$-\frac{3}{4}\int_{2.5}^{3} \left(x^2 - 4x + 3\right) dx$	M1	OE. Attempt to integrate $f(x)$, from 2.5 to 3 (or 1 to 2.5)
	$= -\frac{3}{4} \times \left[\frac{x^3}{3} - 2x^2 + 3x\right]_{2.5}^3 = \frac{5}{32} \text{ or } 0.15625$	A1	
	$1 - \left(1 - \frac{5}{32}\right)^3$	M1	OE. FT their $\frac{5}{32}$.
	= 0.399 (3 sf)	A1	
		4	

(a)(i)	1	B1	no ambiguity
		1	
(a)(ii)	$\frac{1}{2}$	BI	No ambiguity
		1	L
(a)(iii)	$[q =] \frac{1}{2}p$	Bl	Accept $2q = p$
(b)	$p\int_{0}^{a}(a^2-x^2)\mathrm{d}x=1$	1 M1	
	$\frac{2}{3}a^3p = 1$	A1	OE, simplified
	$"\frac{3}{2a^{3}}"\int_{0}^{a}(a^{2}x-x^{3})dx = 3 \text{ or } "\frac{3}{2a^{3}}"\int_{0}^{a}(a^{2}x-x^{3})dx = 3$	M1	Attempt to integrate $xf(x)$, with multiplier p or $\frac{3}{2a^3}$ or <i>their</i> p, and equate to 3
	$p \times \frac{a^4}{4} = 3$	A1	May be implied by next line
	$p \times \frac{a^4}{4} = 3$ $"\frac{3}{2a^3}" \times \frac{a^4}{4} = 3$	M1	OE. Substitute from one equation into the other. FT <i>their</i> equations
	<i>a</i> = 8	A1	
Οιιρς	tion 57	6	1
(a)	$\frac{a}{2}$	B 1	
	2	1	
(b)	$\frac{1}{4}$	B1	
	atpret	1	
(c)	$\mathbf{f}(\mathbf{x}) = \frac{1}{a}$	B1	SOI (may be seen in part (a) or part (b))
	$E(X) = \frac{a}{2}$	B 1	SOI
	$\int_0^a \frac{1}{a} x^2 dx$	M1	Attempt integrate <i>their</i> $f(x) \times x^2$ with correct limits
	$= \left[\frac{x^3}{3a}\right]_0^a = \frac{a^2}{3}$	A1	
	$\frac{a^2}{3} - (\frac{a}{2})^2 \text{ or } \frac{a^2}{3} - \frac{a^2}{4} [= \frac{a^2}{12} \text{ AG }]$		Must see previous line and answer No errors seen
		5	
(d)	$P(X < \frac{b}{3}) = \frac{p}{3}$		SOI (could be on a diagram) OR by integration: prob = 1-(2/3)(b/a)
	$P(\frac{b}{3} < X < a - \frac{b}{3}) = 1 - \frac{2p}{3}$	A1	
		2	

(a)	Curve of similar shape, $x = 0$ to $x = 4$, with highest point (2, 0.375)	B1	Not straight lines, not bell shaped. Must be correct at x and $x = 4$, highest point must be at $x = 2$, y value $\pm \frac{1}{4}$ square. Must not go below the x-axis.
		1	
(b)	Curve of similar shape, from $x = 0$ to $x = 2$, highest point at $x = 1$	B1	Not straight lines, not bell shaped. Must be correct at x and $x = 2$. Highest point must be at $x = 1$.
	Highest point (1, 0.75)	B1	
		2	
(c)	$\frac{3}{32} \int_{1+a}^{3} (3+2x-x^2) dx = \frac{1}{4} \text{or} \frac{3}{32} \int_{1-a}^{1+a} (3+2x-x^2) dx = \frac{1}{2}$	M1	OE Attempt to integrate f(x) and correct limits with corre RHS.
	$\frac{3}{32} \left[3x + x^2 - \frac{x^3}{3} \right]_{1+a}^3 = \frac{1}{4} \text{ or } \frac{3}{32} \left[3x + x^2 - \frac{x^3}{3} \right]_{1-a}^{1+a} = \frac{1}{2}$	A1	Correct integration.
	$a^3 - 12a + 8 = 0$	A1	AG Substitute limits and correctly obtain equation. May see $3/32(6a+4a-6a/3-2a^3/3) = 0.5$ No errors seen.
		3	
(d)	$0.69^3 - 12 \times 0.69 + 8 = 0.049 \ (2 \text{ sf}) > 0$ $0.70^3 - 12 \times 0.70 + 8 = -0.057 \ (2 \text{ sf}) < 0$ Hence $0.69 < a < 0.70$	B1	AG Must state either the correct expression and > 0 and < or both answers to 2 sf. Both answers correct and conclusion. Accept equivalent expressions.
		1	OR: $a = 0.695$ (3 sf) which is between 0.69 & 0.70.
ੱ ।	tion 59 1-p or p-0.5	1 M	OR: <i>a</i> = 0.695 (3 sf) which is between 0.69 & 0.70.
Ques			OR: <i>a</i> = 0.695 (3 sf) which is between 0.69 & 0.70.
ੱਕ ਜ	1 - p or $p - 0.5$	M	OR: <i>a</i> = 0.695 (3 sf) which is between 0.69 & 0.70.
(a)	1 - p or p - 0.5 [P(-1 < X < 0) =] 2p - 1	M	 OR: a = 0.695 (3 sf) which is between 0.69 & 0.70. 1 SOI, e.g. on diagram. 1 Clearly as final answer. 2 1 OE Attempt integral, with correct limits and RHS
(a)	$1 - p \text{ or } p - 0.5$ $[P(-1 < X < 0) =] 2p - 1$ $\int_{-3}^{2} (a - b(x^{2} + x))dx = 1 \qquad \text{or} \int_{-3}^{2} (ax - b(x^{3} + x^{2}))dx = -0.5$	M	 OR: a = 0.695 (3 sf) which is between 0.69 & 0.70. 1 SOI, e.g. on diagram. 1 Clearly as final answer. 2 1 OE Attempt integral, with correct limits and RHS 1 OE Correct integration.
(a)	$\frac{1-p \text{ or } p-0.5}{[P(-1 < X < 0) =] 2p-1}$ $\begin{bmatrix} 2 \\ -3 \end{bmatrix} (a-b(x^2+x))dx = 1 \qquad \text{or} \qquad \int_{-3}^{2} (ax-b(x^3+x^2))dx = -0.5 \\ \hline \left[ax-b\left(\frac{x^3}{3}+\frac{x^2}{2}\right)\right]_{-3}^{2} (=1) \text{or} \left[a\frac{x^2}{2}-b\left(\frac{x^4}{4}+\frac{x^3}{3}\right)\right]_{-3}^{2} (=-0.5) \\ \hline 2a-8b/3-2b+3a-9b+9b/2=1 \text{ or} 2a-4b-8b/3-9a/2+81b/2 \end{bmatrix}$	M A M A	 OR: a = 0.695 (3 sf) which is between 0.69 & 0.70. 1 SOI, e.g. on diagram. 1 Clearly as final answer. 2 1 OE Attempt integral, with correct limits and RHS 1 OE Correct integration.
(a)	$\frac{1-p \text{ or } p-0.5}{[P(-1 < X < 0) =] 2p-1}$ $\begin{bmatrix} 2 \\ -3 \end{bmatrix} (a-b(x^2+x))dx = 1 \qquad \text{or} \qquad \int_{-3}^{2} (ax-b(x^3+x^2))dx = -0.5 \\ \hline \left[ax-b\left(\frac{x^3}{3}+\frac{x^2}{2}\right)\right]_{-3}^{2} (=1) \text{or} \left[a\frac{x^2}{2}-b\left(\frac{x^4}{4}+\frac{x^3}{3}\right)\right]_{-3}^{2} (=-0.5) \\ \hline 2a-8b/3-2b+3a-9b+9b/2=1 \text{ or} 2a-4b-8b/3-9a/2+81b/2 \end{bmatrix}$	M A M A	OR: a = 0.695 (3 sf) which is between 0.69 & 0.70. 1 SOI, e.g. on diagram. 1 Clearly as final answer. 2 I 1 OE Attempt integral, with correct limits and RHS 1 OE Correct integration. 1 Correctly obtained. No errors seen. 3 I
(a) 7(b)(i)	$\frac{1-p \text{ or } p-0.5}{[P(-1 < X < 0) =] 2p-1}$ $\frac{\int_{-3}^{2} (a-b(x^{2}+x))dx = 1}{\left[ax-b\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}\right)\right]_{-3}^{2} (=1) \text{ or } \left[a\frac{x^{2}}{2}-b\left(\frac{x^{4}}{4}+\frac{x^{3}}{3}\right)\right]_{-3}^{2} (=-0.5)$ $\frac{2a-8b/3-2b+3a-9b+9b/2=1 \text{ or } 2a-4b-8b/3-9a/2+81b/4-9b=-0.5 \text{ leading to } 30a-55b=6 \text{ AG}}{a}$	M A M A	 OR: a = 0.695 (3 sf) which is between 0.69 & 0.70. 1 SOI, e.g. on diagram. 1 Clearly as final answer. 2 1 OE Attempt integral, with correct limits and RHS 1 OE Correct integration. 1 Correctly obtained. No errors seen. 3 (1 Use f(-3) = 0 or f(2) = 0. Further attempts at integration M0.
(a) 7(b)(i)	$\frac{1-p \text{ or } p-0.5}{[P(-1 < X < 0) =] 2p-1}$ $\frac{\int_{-3}^{2} (a-b(x^{2}+x))dx = 1}{\left[ax-b\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}\right)\right]_{-3}^{2} (=1) \text{ or } \left[a\frac{x^{2}}{2}-b\left(\frac{x^{4}}{4}+\frac{x^{3}}{3}\right)\right]_{-3}^{2} (=-0.5)$ $\frac{2a-8b/3-2b+3a-9b+9b/2=1 \text{ or } 2a-4b-8b/3-9a/2+81b/4-9b=-0.5 \text{ leading to } 30a-55b=6 \text{ AG}}{a-b(9-3)=0 \text{ or } a-b(4+2)=0 \text{ [hence } a-6b=0]}$	M A M A A A X	 OR: a = 0.695 (3 sf) which is between 0.69 & 0.70. 1 SOI, e.g. on diagram. 1 Clearly as final answer. 2 1 OE Attempt integral, with correct limits and RHS 1 OE Correct integration. 1 OE Correctly obtained. No errors seen. 3 (1 Use f(-3) = 0 or f(2) = 0. Further attempts at integration M0.

(a)	Curve of similar shape, $x = 0$ to $x = 4$, with highest point (2, 0.375)	B1	Not straight lines, not bell shaped. Must be correct at $x = 0$ and $x = 4$, highest point must be at $x = 2$, y value $\pm \frac{1}{4}$ square. Must not go below the x-axis.
		1	
(b)	Curve of similar shape, from $x = 0$ to $x = 2$, highest point at $x = 1$	B 1	Not straight lines, not bell shaped. Must be correct at $x = 0$ and $x = 2$. Highest point must be at $x = 1$.
	Highest point (1, 0.75)	B1	
		2	
(c)	$\frac{3}{32} \int_{1+a}^{3} (3+2x-x^2) dx = \frac{1}{4} \text{or} \frac{3}{32} \int_{1-a}^{1+a} (3+2x-x^2) dx = \frac{1}{2}$	M1	OE Attempt to integrate f(x) and correct limits with correct RHS.
	$\frac{3}{32} \left[3x + x^2 - \frac{x^3}{3} \right]_{1+a}^3 = \frac{1}{4} \text{ or } \frac{3}{32} \left[3x + x^2 - \frac{x^3}{3} \right]_{1-a}^{1+a} = \frac{1}{2}$	A1	Correct integration.
	$a^3 - 12a + 8 = 0$	A1	AG Substitute limits and correctly obtain equation. May see $3/32(6a+4a-6a/3-2a^3/3) = 0.5$ No errors seen
		3	
(d)	$0.69^3 - 12 \times 0.69 + 8 = 0.049 \ (2 \text{ sf}) > 0$ $0.70^3 - 12 \times 0.70 + 8 = -0.057 \ (2 \text{ sf}) < 0$ Hence $0.69 < a < 0.70$	B1	AG Must state either the correct expression and > 0 and < 0 or both answers to 2 sf. Both answers correct and conclusion. Accept equivalent expressions. OR: $a = 0.695$ (3 sf) which is between 0.69 & 0.70.
		1	

(a)	1-2(a+b) or $1-2a$ or $0.5-a-b$ or $1-(a+b)$ or $a+a+b$	M1	OE. Seen or implied – may be on the diagram (or for correct un-simplified final expression).
	$P(0.6 \le X \le 1.8) = 1 - 2a - b$	A1	Accept 1 – (2a + b).
		2	
(b)(i)	$k\int_{0}^{3} (9x^2 - 6x^3 + x^4) dx = 1$	M1	Attempt integrate $f(x)$ ignore limits and '= 1'.
	$k \left[\frac{9x^3}{3} - \frac{6x^4}{4} + \frac{x^5}{5} \right]_0^3 = 1$	A1	Correct integration seen, correct limits.
	$k \times \frac{81}{10} = 1, \ k = \frac{10}{81}$	A1	AG. Convincingly obtained. No errors seen. (Must see integration).
		3	
(b)(ii)	$\frac{\frac{10}{81}\int_{0}^{3}(9x^{4}-6x^{5}+x^{6})dx}{\left[\frac{10}{81}\left[\frac{9x^{5}}{5}-x^{6}+\frac{x^{7}}{7}\right]_{0}^{3}\right]\left[=\frac{18}{7} \text{ or } 2.57\right]}$	M1	Attempt integrate $x^2 f(x)$ between 0 and 3 condone missing k. Must see integration or correct answer of 18/7 seen or implied.
	$\frac{18}{7}$ - '1.5' ²	M1	Their integral of $x^2 f(x) - 1.5^2$ (or their mean ²).
	$=\frac{9}{28}$ or 0.321	A1	
		3	

		3.0	. 1
'(a)	$\frac{1}{2}\pi\left(\sqrt{\frac{2}{\pi}}\right)^2$	M1	
	= 1, which is the area under a PDF [and $f(x) \ge 0$]	Al	Result and statement are both needed.
		2	2
(b)	$\cos^{-1}\left(\frac{\sqrt{\frac{1}{\pi}}}{\sqrt{\frac{2}{\pi}}}\right) = \frac{\pi}{4}$	B1	AG. Accept alternative approaches, e.g. using Pythagoras, tangent, or isosceles right-angle triangles. Answer should be convincingly obtained and all correct.
	Area of sector = $\frac{1}{4}$	B1	
	Area of triangle $AOB = \frac{1}{2}OA \times OB = \frac{1}{2} \times \sqrt{\frac{1}{\pi}} \times \sqrt{\frac{2}{\pi} - \frac{1}{\pi}}$ or Area of triangle $AOB = \frac{1}{2}OA \times OB \times \sin(AOB) = \frac{1}{2} \times \sqrt{\frac{1}{\pi}} \times \sqrt{\frac{2}{\pi}} \sin \frac{\pi}{4}$	M1	Accept alternative approaches. Note: $AB = \sqrt{0.7979^2 - 0.5642^2}$ [= 0.5642] Allow values to 3sf.
	$\frac{1}{2\pi}$ or 0.1592	A1	
	$(\frac{1}{4})^{2} - (\frac{1}{2\pi})^{2}$ or $(0.25)^{2} - (0.1592)^{2}$	M1	Attempt area of sector – area of triangle <i>AOB</i> .
	$=\frac{1}{4}-\frac{1}{2\pi}$ or 0.0908 (3sf)	A1	
(b)	Alternative Method for Question Q7(b): Using integration		
	Find equation of curve $x^2 + y^2 = \frac{2}{\pi}$	M1	
	$y = \sqrt{\frac{2}{\pi} - x^2}$	A1	
	Attempt to integrate (any limits)	M1	
	Use of correct limits $\sqrt{\frac{1}{\pi}}$ to $\sqrt{\frac{2}{\pi}}$	B1	
	Correct integration with correct limits	A1	
	$=\frac{1}{4}-\frac{1}{2\pi}$ or 0.0908 (3sf)	A1	Correct final answer.
		6	
Ques	tion 63		
$\frac{3}{2}\int_{0}^{1}(x)$	$(-x^3)dx$	M1 /	Attempt to integrate $xf(x)$; ignore limits.

$\frac{3}{2}\int_{0}^{1} (x-x^{3}) \mathrm{d}x$		· · · · · · · · · · · · · · · · · · ·
$=\frac{3}{2}\left[\frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{1}$	A1	Correct integration and limits.
$=\frac{3}{8}$	A1	
	3	

Quest	tion 64		
(a)(i)	$\frac{1}{2} \times 4 \times a = 1$	M1	
	<u></u>		or let $f(x) = kx$ and attempt $\int_0^4 kx dx = 1$.
	$[a = \frac{1}{2}] f(x) = \frac{1}{8} x$	A1	$\begin{bmatrix} k \begin{bmatrix} \frac{1}{2} \\ 2 \end{bmatrix}_0 = 1; 8k = 1; k = \frac{1}{8}.$
			$f(x) = \frac{1}{8}x \text{ or } k = \frac{1}{8}.$
		2	
(a)(ii)	$\int_0^4 x \times \frac{1}{8} x \mathrm{d}x$	M1	Attempt to integrate $x \times their$ f(x). Ignore limits accept in terms of k.
	$\left[\frac{x^3}{24}\right]_0^4$	A1ft	Their integral and correct limits accept in terms of k .
	$=\frac{8}{3}$ or 2.67 (3 sf)	A1	Note: Final answer of $64k/3$ scores $2/3$.
		3	
(b)	$\frac{a-1}{a} = \frac{1}{\sqrt{2}}$		Or attempt $\int_{0}^{1} g(w)dw = \frac{1}{2}$ i.e. $\int_{0}^{1} (\frac{2}{a} - \frac{2}{a^2}w)dw = \frac{1}{2}$, or integral from 1 to <i>a</i> . g(w) must be linear of form $g(w) = mw$ (+ <i>c</i>). Or area attempt: attempt to calculate heights using their linear equation ($h_1=2/a$ and $h_2=-2/a^2+2/a$) and use in either area trapezium = 0.5, or area trapezium =area small triangle or area small triangle = 0.5. Area trapezium = $1/2 \times 1$ ($2/a + -2/a^2 + 2/a$) Area triangle = $1/2(a - 1)(-2/a^2 + 2/a)$) Note: alternative expression for $h_1 = (a - 2)/(a - 1)$.
	$a\sqrt{2}-\sqrt{2}=a$	A1	Or $a^2 - 4a + 2 = 0$. Any correct equation in <i>a</i> , <i>a</i> not in denominator.
	$a = 2 + \sqrt{2} = 3.41$	A1	
	34.satprep.co	3	

Ques	stion 65		
(a)	$\frac{1}{2} \times 2 \times 1$ or $\int_{0}^{2} \frac{1}{2} x dx = 1$, which is the correct area under a pdf.	B1	Calculation and result.
	$f(x) \ge 0$	B1	Condone $f(x) > 0$ or 'Line is above <i>x</i> -axis' OE.
		2	
(b)	$\frac{1}{2}\pi r^2 = 1$	M1	Area of semi-circle equated to 1 OE. Missing factor of ½ gets M1A0.
	$r = \sqrt{\frac{2}{\pi}}$ or 0.798 (3sf)	A1	
		2	
(c)(i)	Area to the left of 15 is greater than 0.5	B1	OE, e.g. 'The distribution of X is skewed to the right / positively skewed, suggesting the median will be less than the mid-point of the interval.' or 'The distribution of X is skewed to the right / positively skewed' or 'It is a decreasing function suggesting the median will be less than the mid-point of the interval'.
	10	1	
(c)(ii)	$\int_{10}^{20} \left(\frac{40}{x} - \frac{x}{10}\right) dx$	M1	Integration of $xh(x)$ attempted. Ignore limits.
	$\left[40 \ln x - \frac{x^2}{20} \right]_{10}^{20}$	A1	Correct integration and limits (can be implied by final answer).
	= 40ln 2 - 15 or 12.7 (3sf)	A1	
		3	