A-Level

Topic: Discrete, Continuous Hypothesis and Types of Error

May 2013-May 2023

Answers

Question 1

Assume shots independent OR prob of scoring constant	B1		In context
H ₀ : P(score) = 0.82 H ₁ : P(score) > 0.82	B 1		Both. Allow 'p'
$20 \times 0.82^{19} \times 0.18 + 0.82^{20}$ = 0.102 (3 sf)	M1 A1		For use of Bin(20,0.82)and either P(19) and/or P(20) attempted
No evidence that improved	B1f	5	Valid comparison seen (with 0.05 if H₁ p≠ 0.82) and correct conclusion ft numerical errors in 0.102 only
			Normal approx'n: B1 B1 (μ = 16.4 acceptable here) if earned, then: CR = 1.222 (from $\frac{18.5 - 20 \times 0.82}{\sqrt{20 \times 0.82 \times (1 - 0.82)}}$,
			need cc) comp $z = 1.282$ No evidence that improved SC 1 Same scheme for proportions

[Total: 5]

(i)	Assume sd unchanged or 4500	B1		
	H ₀ : Pop mean = 34600 H ₁ : Pop mean > 34600	B1		Both. Allow just μ , but not just "mean"
	$\frac{35400 - 34600}{4500}$ $\frac{4500}{\sqrt{90}}$ = 1.687/1.686 (1.69) cf 1.645 < 1.686 Evidence that mean wkly profit has increased	M1 A1 M1 A1 f	6	Allow without $\sqrt{90}$ Valid comparison (or $0.0458/0.0459 < 0.05$ or $35380 < 35400$ or $34600 < 34620$) If H_1 : \neq , and 1.96 used, max B1B0M1A1M1A1f No contradictions
(ii)	Distr'n of Xunknown.	B1*		Allow not Normal
	Yes	B1* dep	2	
(iii)	0.05 or 5%	B1	1	
(iv)	$\frac{a - 34600}{\frac{4500}{\sqrt{90}}} = 1,645$	M1		Attempt to find cv must see (+) 1.645 allow without √90. If found in (i) award when used
	$ \frac{a = 35380}{35380 - 36500} = -2.361) $ $ \frac{4500}{\sqrt{90}} = -2.361 $	M1		used
	$1 - \Phi(2.361')$ = 0.0091	M1 A1	6	Standardising with their "CV" must use $\sqrt{90}$
	The second secon			Correct tail

[Total: 14]

Question 3

(i)	$\frac{73.1-75.2}{\frac{5.7}{\sqrt{n}}} = -1.563$ $n = \{-1.563 \times 5.7 \div (-2.1)\}^2$	M1 A1	For standardising (with \sqrt{n}) Any correct expression for n or \sqrt{n} . May be implied by ans.
	n = 18 Assume s.d. for the region is 5.7	A1 B1 [4]	
(ii)	H ₀ : pop mean (or μ) = 75.2 H ₀ : pop mean (or μ) < 75.2 1.563 comp 1.555 Evidence that plants shorter	B1 M1 A1 [3]	Both (could be stated in (i)) For comparison of z values / areas / x values CWO. No contradictions

[Total: 7]

(i)	H ₀ : Pop mean (or λ or μ) is 5.3 H ₁ : Pop mean (or λ or μ) is less than 5.3	В1	Both
	$P(X \le 1) = e^{-5.3}(1+5.3)$ $P(X \le 2) = e^{-5.3}(1+5.3 + \frac{5.3^2}{2})/P(X=2)$	M1	Both attempted
	$P(X \le 1) = 0.0314 \text{ or } 0.0315$ & $P(X \le 2) = 0.102 / P(X=2) = 0.7071$	A1	Both correct
	CR is 0 or 1 cases	A1	Dep. M1 and $P(X \le 1) < 0.05 < P(X \le 2)$
	No evidence mean has decreased	B1f [5]	ft their CR
(ii)	Concluding mean has decreased when it hasn't	B1	In context
	'0.0314 or 0.0315'	B1ft[2]	ft their $P(X \le 1)$, dep. < 0.05
(iii)	(Po(18.4)) N(18.4, 18.4)	B1 B1ft	Stated or implied B1 for N(18.4,); B1f for var. = 18.4
	$\frac{20.5 - 18.4}{\sqrt{18.4}} \qquad (= 0.490)$	M1	For standardising with or without cc. Allow without $\sqrt{}$
	1 – Φ('0.490')	M1	Use of tables and attempt to find area consistent with their working
	= 0.312 (3 s.f.)	A1 [5]	

[Total: 12]

(i)	Conclude die is biased when it isn't oe	B1	In context
	${}^{5}C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{2} + 5\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right) + \left(\frac{1}{6}\right)^{5} + 5$	M1	or $1 - \left({}^{5}C_{2} \left(\frac{1}{6} \right)^{2} \left(\frac{5}{6} \right) 3 + 5 \left(\frac{1}{6} \right) \left(\frac{5}{6} \right)^{4} + \left(\frac{5}{6} \right)^{5} \right)$
	$= \frac{23}{648} \text{ or } 0.0355 \text{ (3 sf)}$	A1 [3]	allow 1 end error
(ii)	2		
(11)	State or attempt P(0, 1, 2) with $p = \overline{3}$	M1	Or 1–P(3,4,5)
	${}^{5}C_{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{3}+5\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{4}+\left(\frac{1}{3}\right)^{5}$	M1	Attempt at correct expression
		A1	Allow 0.21
	$= \frac{17}{81} \text{ or } 0.210 \text{ (3 sf)}$	[3]	
(iii)	Est $Var(P_s) = \frac{0.625 \times (1 - 0.625)}{80}$	M1	
	$(=\frac{3}{1024})$		
	z = 2.054 (or 2.055)	B1	
	$0.625 \pm z \times \sqrt{\frac{'3'}{1024}}$	M1	Any z
	= 0.514 to 0.736 (3 sf)	A1 [4]	
		[۲]	

H_0 : Pop mean = 17 H_1 : Pop mean \neq 17	B1	Both correct. Allow μ , but not just "mean"	
$\frac{18.2 - 17}{\frac{2.4}{\sqrt{5}}}$	M1	Allow incorrect 18.2. Must have √5	$17 \pm 1.96 \frac{2.4}{\sqrt{5}}$ M1
= 1.12 (3 sf)	A1		= (14.9, 19.1) A1
'1.12' < 1.96 oe	M1	Comp '1.12' with 1.96 or area '0.132' with 0.025	'14.9'<18.2<'19.1' M1
Claim can be accepted	Alft	ft their '1.12'	
TE	[5]	If H_1 : $\mu > 17$ and cf 1.645: can score max B0M1A1M1A1ft	

(i)	E (X)= 3.5 $(1^2+2^2+3^2+4^2+5^2+6^2) \div 6 - 3.5$	B1 B1	2	21/6 oe, must see correct expression and no incorrect working
	$(=\frac{35}{12} \text{ AG})$			
(ii)	Attempt P $(X < 3)$ or $1 - P(X \ge 3)$	M1		seen or implied
	$N(3.5, \frac{35}{12}/50)$	M1		seen or implied
	$\frac{3 - "3.5"}{\sqrt{\frac{35}{12} / 50}} (= -2.070)$	M1		or $\frac{2.99 - "3.5"}{\sqrt{\frac{35}{12}/50}}$ (= -2.111)
	Φ ("-2.070") = 1 - Φ ("2.070")	ore	b.	Φ ('-2.111') = 1 - Φ ('2.111')
	= 0.0192	M1		= 0.0174 or 0.0173
	as final answer	A1		Consistent area As final answer or valid total method
			5	Allow with incorrect cc (e.g. 2.5) OR no √.Must have ÷50
(iii)	Die is biased (towards lower numbers)	B1 indep		Comment implying die is biased
	Mean of 50 throws ≥ 3 (Allow > 3) or Equal nos of high and low	B1 indep	2	Comment implying results of exp't do not indicate bias (or indicate bias towards higher numbers)
	scores or More high scores			Both must be in context

(i)	Assume sd unchanged or sd = 10.4	B1		Oe e.g. var unchanged
	H ₀ : Pop mean speed (or μ) = 62.3 H ₁ : Pop mean speed (or μ) < 62.3	B 1		Both. Not just "Mean "
	$\frac{59.9 - 62.3}{\frac{10.4}{\sqrt{75}}}$	M1		Accept sd/var mixes, but must have √75
	= -1.999 or -2.00 (allow + or -) Compare -2.054 or -2.055 No evidence that mean speed decreased	A1 M1 A1 ft	6	Correct z value (or correct critical value) Valid comparison of z's/areas/critical values No contradictions. Do not ft 2-tail test.
(ii)	Pop distribution unknown Yes	B1 B1	2	

(i)	P(Type I) = 1 - P(\geq 4 assuming $p = 0.7$) 1-($^{6}C_{4} \times 0.7^{4} \times 0.3^{2} + ^{6}C_{5} \times 0.7^{5} \times 0.3$ + 0.7 6) (= 1 - 0.744) = 0.256 (3 s.f.)	M1 M1 A1	[3]	or P(\leq 3 assuming $p = 0.7$) May be implied ${}^6\mathrm{C}_3 \times 0.7^3 \times 0.3^3 + {}^6\mathrm{C}_2 \times 0.7^2 \times 0.3^4 + {}^6\mathrm{C}_1 \times 0.7 \times 0.3^5 + 0.3^6$ Allow one end error = 0.256 (3 s.f.) SR if zero scored allow B1 for use of B(6, 0.7) in any two or more terms
(ii)	P(Type II) = P(\geqslant 4 assuming $p = 0.35$) = ${}^{6}C_{4} \times 0.35^{4} \times 0.65^{2} + {}^{6}C_{5} \times 0.35^{5} \times 0.65 + 0.35^{6}$ = 0.117	M1 M1 A1	[3]	May be implied Allow one end error SR if zero scored allow B1 for use of B(6, 0.35) in any two or more terms
(iii)	Type 1 They will reject Luigi's belief, although it might be true.	B1	[2]	In context

(i)	H_0 : $p = 0.2$ H_1 : $p < 0.2$	B1	(Allow π)
	P(0 or 1 5s in 25 H ₀)	M1	$0.8^{25} + 25 \times 0.8^{24} \times 0.2$ Use of B(25,1/5) and P(0) or P(1) or both – may be implied by "0.0274"
	= 0.0274 (3 s.f.)	A1	0.0274
	Comp with 0.025	M1	Valid comparison
	No evidence (at 2.5% level) to support claim	A1√ [5]	No contradictions SR Use of Normal N(5,4) leading to $z = 1.75$ or 0.0401 B1* H ₀ $\mu = 5$ H ₁ $\mu < 5$ B1. Comparison 1.75 < 1.96 or 0.0401 > 0.025 B1* dep
(ii)	Normal	B1	
	$\mu = 200, \sigma^2 = 160 \text{ or } \sigma = \sqrt{160}$	B1 [2]	
(iii)	Concluding that the machine produces the right proportion of 5s, although it doesn't.	B1 [1]	Not concluding that the machine produces too few 5s although it does. Must be in context o.e. No contradictions

¿ucstion,	14				
(i)	2 nd	B1			
	More representative of all appointments or Lengths may vary during the day or 1 st does not include later appts so not representative	B1	[2]	Any implication that tir throughout day, e.g. do	
(ii)	0.01 o.e.	В1			
	Concluding that times spent are too long when they are not.	В1	[2]	Concluding that the me than 10 mins when it is	ean time spent is more not. Must be in context.
(iii)	H ₀ : Pop mean appt time (or μ) = 10 H ₁ : Pop mean appt time (or μ) > 10	В1		Both correct. Allow μ , but not just "mean"	
	$\frac{\frac{147}{12}}{\frac{3.4}{\sqrt{12}}}(\pm)$	MI		Allow incorrect $\frac{147}{12}$ Must have $\sqrt{12}$	$10 + 2.326 \times \frac{3.4}{\sqrt{12}}$ M1
	= $(\pm)2.292$ or $(0.0109$ if area comparison done)	A1		(accept totals method)	= 12.28 A1
	"2.292" < 2.326 o.e.	M1		For valid comparison Comp "2.292" with 2.326	$\frac{147}{12}$ < 12.28 M1
	(No evidence to reject H_0 .) No reason to believe appts are too long	A1√	[5]	Or 0.0109 with 0.01 Or 147/12 with 12.28 Dep 2.326, ft their "2.292" No contradictions	
(iv)	Normal population	B1	[1]	Must have "population	" or equiv

H_0 : Pop mean (or μ or λ) = 50 (or 5)		
H ₁ : Pop mean (or μ or λ) \neq 50 (or 5)	B1	Not just "mean"
$\frac{60.5 - 50}{\sqrt{50}} \ (\pm)$	M1	For standardising with N(50,50) or N(5,5/ $\sqrt{10}$)
= (±)1.485 OR 0.0687 OR C.V	A1	Allow M1 with wrong or no continuity correction OR no √ (accept c.v method M1, A1 for 61.63 or 48.868)
1.485 < 1.645 or 0.0687 > 0.05 No evidence that mean changed	M1 A1√ [5]	For valid comparison (zs or areas or cv) (S.R For cv comparison 61.63 only award final A1 if cc used)
		or if H_1 : $\lambda > 50$, 1.485 < 1.96 M1 No evid mean changed A0 (i.e. if one-tail test, max B0 M1 A1 M1 A0)

	ATF	[Tot	al: 6]	
(ii)	Type II H ₀ will not be rejected	B1 B1	[2]	or Stephan will conclude standard not fallen No contradictions
	$ \begin{array}{l} 1 - (^{20}\text{C}_{17} \times 0.1^3 \times 0.9^{17} + ^{20}\text{C}_{18} \times 0.1^2 \\ \times 0.9^{18} + 20 \times 0.1 \times 0.9^{19} + 0.9^{20}) \\ = 0.133 \text{ (3 sf)} \end{array} $	A1	[4]	
	$1 - (^{20}\text{C}_{17} \times 0.1^3 \times 0.9^{17} + {}^{20}\text{C}_{18} \times 0.1^2$	M1		Allow 1–P(18,19,20) or 1–P(16,17,18,19,20)
	1 – P(17, 18, 19, 20)	M1		Use of B(20,0.1)
(i)	H_0 : Rate = 0.9 H_1 : Rate < 0.9	B1		p = 0.9 p < 0.9

Claim is justified or There is evidence that claim is true	A1 √	[5]	comparison or CVs Correct conclusion. No contradictions NB 2-tail test scores B0 M1 A1 M1 (use 1.96) A0
= 1.90 comp with $z = 1.645$	M1		For valid comparison "1.90" with 1.645 or area
$\frac{250.06 - 250}{0.2 \div \sqrt{40}}$	M1 A1		M1 for standardising, must have √40. Accept cv method
H_0 : $\mu = 250$ H_1 : $\mu > 250$	В1		Both hypotheses

(i)	H_0 : population proportion = 0.1 oe H_1 : population proportion > 0.1 oe	B1		Allow " $p = 0.1$ " and " $p > 0.1$ "
	$P(X \ge 4) = 1 - P(X \le 3) =$ $1 - \begin{pmatrix} 0.9^{18} + 18 \times 0.9^{17} \times 0.1 + \\ {}^{18}C_2 \times 0.9^{16} \times 0.1^2 + {}^{18}C_3 \times 0.9^{15} \times 0.1^3 \end{pmatrix}$	M1		Allow 1 – (one term omitted or extra or wrong)
	= 0.0982 (3 sf)	A1		(note CR method 0.0982 and CR \geq 5 for
	Comp 0.08	M1		A1) Valid comparison (0.9018 < 0.92 also recovered previous A1). Or 4 is not in CR
	No evidence that more reach 1m	A1√	[5]	Dep M1M1 no contraditions "Accept H ₀ " provided H ₀ defined
(ii)	Not rejected H ₀ Type II	B1√ B1dep √	[2]	Ft their (i) If (i) "reject H ₀ " then ft gives Type I error
(iii)	$P(X \ge 5) (= 0.0282)$ 0.0282 < 0.08	M1 B1√		Attempt $P(X \ge 5)$ e.g. '0.0982' – $^{18}C_4 \times 0.9^{14} \times 0.1^4$ oe. Valid comp of
	P(Type I error) = 0.0282 (3 sf)	A1	[3]	their ≥ 5 (if CR method used, could be awarded in (i))
Quest	ion 17			

(i)	"Different" being investigated	B1	[1]	Oe ("changed", "not equal to")
(ii)	H_0 : Pop mean (or μ) in region same as elsewhere			Must be "pop mean", not just "mean" Can be awarded in (i)
	H_1 : Pop mean (or μ) in region diff from elsewhere	B1	. P	oe
	1.91 < 2.054 (or 2.055) or -1.91 > -2.054	M1		or $P(z > 1.91) = 0.0281 > 0.02$ or $0.0562 > 0.04$ or $0.972 < 0.98$ Accept 2.05 if nothing better seen.
	No evidence that mean is different	A1	[3]	inequality sign incorrect M1A0 no contradictions "accept H ₀ " provided H ₀ reasonably well defined

	10	Total: 10	
(iv)	He will reject H ₀ .	B1 1	
(iii)	$\lambda = 1.5$ $1 - e^{-1.5} \left(1 + 1.5 + \frac{1.5^2}{2!} \right)$ $= 0.191 (3 sf)$	B1 M1 A1 3	1 - P(X = 0, 1, 2) Attempted, any λ As final answer
(ii)	$\lambda = 3.875$ $= e^{-3.875} \left(1 + 3.875 + \frac{3.875^2}{2!} \right) = 0.257 (3 \text{ sf})$	B1 M1 A1 3	P($X = 0, 1, 2$) Attempted, any λ As final answer
(i) 	$\lambda = 4.65$ $e^{-4.65} \times \frac{4.65^4}{4!}$ = 0.186 (3 sf)	B1 M1 A1 3	Poisson P($X = 4$) with any λ

(i)	$\frac{4.8}{\sqrt{40}}$	B1	or $\frac{4.8^2}{40}$. Accept $4.8\sqrt{40}$ or $4.8^2 \times 40$ for totals method
	$\frac{50.3 - 49.5}{\frac{4.8}{\sqrt{40}}} \tag{= 1.054}$	M1	For standardising with their SD Accept ± Accept totals method. No mixed methods
	$1 - \Phi(1.054)$ = 0.146 (3 sf)	M1 A1 4	For use of tables and finding area consistent with their working
(ii) (a)	Looking for decrease	B1 1	
(b)	H ₀ : Pop mean time spent (or μ) = 49.5 H ₁ : Pop mean time spent (or μ) < 49.5 $\frac{\frac{1920}{40} - 49.5}{\frac{4.8}{\sqrt{40}}}$ (= -1.976) '1.976' > 1.555 (or '-1.976' < -1.555)	B1 M1	Not just "mean time spent" For standardising. Allow $\div \frac{4.8}{40}$ Accept totals method; CV method. No mixed methods For valid comparison (area comparison
	There is evidence that mean time has decreased.	A1 4	0.024 < 0.06) CWO. No contradictions in conclusions
(c)	Population normally distr so No	B1 1	Both needed

(i)	Cables broken or not all cables can be accessed oe or Too many cables oe or too time consuming oe	B1	[1]	e.g. previous days' stocks may have gone
(ii)	H ₀ : Pop mean brk str (or μ) = 5 H ₁ : Pop mean brk str (or μ) < 5	В1		Not just "mean"
	$(\pm)\frac{4.95-5}{\frac{0.15}{\sqrt{60}}}$	M1		Allow 60 instead of √60
	$(=\pm 2.582)$	A1		
	comp ± 2.326 There is evidence that mean breaking strength is less than it should be Or reject H_0 (H_0 correctly defined)	B1 ft	[4]	Ft their -2.582 (No ft 2 tailed test) Correct comparison shown, no errors seen. Accept area comparison 0.0049 with 0.01 [CR method $(x-5)/(0.15/\sqrt{60})$ = -2.326 M1 A1 leading to $x = 4.955$ compared to 4.95 and correct conclusion B1ft OR $((x-4.95)/0.15/\sqrt{60})$ leading to 4.995 M1 A1 compared to 5and correct conclusion B1ft]
(iii)	Population not necessarily normal so yes	B1 B1dep	[2]	SR B1 For "it" is not necc normal (no mention of population) AND Yes

(i)	H_0 : $P(correct) = \frac{1}{8}$ H_1 : $P(correct) > \frac{1}{8}$	B1	[1]	Or H_0 $p = 1/8$ $H_1p > 1/8$
(ii)	$1 - \left(\left(\frac{1}{8}\right)^{10} + 10\left(\frac{1}{8}\right)^{9} \left(\frac{7}{8}\right) + {}^{10}C_{2} \left(\frac{1}{8}\right)^{8} \left(\frac{7}{8}\right)^{2} \right)$	M1		M1 for attempt at correct expression accept 1 error only, e.g. 1 term extra, omitted or wrong, or omit "1—" or incorrect p/q Correct expression
	= 0.120 (3 sf) or 0.119	A1	[3]	Note Use of Poisson in (ii) could score M1 only for expression $1 - P(0,1,2) \lambda = 1.25$
(iii)	12%	B1f	[1]	ft their (ii) Must be a probability

(i)	Conclude flight times affected	B1	Or accept pop mean changed from 6.2
	when in fact they have not been.	B1	although pop mean has not changed from 6.2
(ii)	H ₀ : Pop mean (or μ) = 6.2 H ₀ : Pop mean (or μ) \neq 6.2 $\frac{5.98 - 6.2}{0.8}$ $\frac{0.8}{\sqrt{40}}$ = -1.739 (±) Accept (±)1.74 comp $z = 1.96$ No evidence that flight times affected	B1 M1 A1 B1	Allow with 40 instead of $\sqrt{40}$ Allow SD/Var mix (CV method 5.952 or 6.2279 M1 A1) For valid comparison or $P(z < -1.739) = 0.041 > 0.025$ or $5.98 > 5.952$ or $6.2 < 6.228$ and correct conclusion
(iii)	H ₀ was not rejected oe Type II	B1* B1*dep	If in (ii) H ₀ was rejected, then: H ₀ rejected B1; Type I B1dep
	Total	8	

Question 23

(i)	H_0 : $\lambda = 0.5$ H_1 : $\lambda > 0.5$	В1	1	or Pop mean = 0.5, not just Mean = 0.5 or Pop mean (per m ²) = 0.1 Accept μ instead of λ
(ii)	$1 - e^{-0.5}(1 + 0.5)$ = 0.0902 (3 sf) comp 0.1 Claim justified or there is evidence to support claim	M1 A1 M1	4	$1 - P(X = 0,1)$ attempted, any λ . Allow 1 end error Allow 0.09 Valid comparison NB 0.9098>0.9 recovers M1A1 M1 oe Accept 'Reject H ₀ ' if correctly defined No contradictions.

		[Tot	al: 7]	
(iii)	True (or new) mean	B1	[1]	
	although mean time has increased (or is more than 12.4) oe	B1	[2]	
(ii)	Not reject (or accept) that mean time is unchanged (or is 12.4) oe	B1		
	comp cv $z = 1.96$ No evidence that pop mean time has increased	Blf	[4]	or $P(z > 1.684) = 0.0461 > 0.025$ Allow accept H_0 if correctly defined. Ft their test statistic. No contradictions
	$2.1 + \sqrt{50}$ 1.684	Al Dif	F41	D(> 1.604) 0.0461 > 0.025
	$\frac{12.9 - 12.4}{2.1 + \sqrt{50}}$	M1		Allow with 50 instead of √50
(i)	H ₀ : pop mean (or μ) = 12.4 H ₁ : pop mean (or μ) > 12.4	B1		not just "mean"

(i) (ii)	H ₀ : $p = 0.2$ or $\mu = 10$ H ₁ : $p > 0.2$ or $\mu > 10$ N(10, 8) seen or implied $\frac{125 - 10}{\sqrt{8}} \text{ or } \frac{\frac{125}{50} - 02}{\sqrt{\frac{0.2 \times 0.8}{50}}}$ $= 0.884$	B1 B1 M1 A1	[1]	or $N\left(0.2, \frac{0.2 \times 0.8}{50}\right)$ For standardising allow with no or wrong cc
	comp 1.282	M1f		Allow area comparison with 0.188 or comp 1.645 if $H_1 p \neq 0.2$
	Claim not justified or No evidence to support claim	Alf	[5]	Allow accept H_0 provided correctly defined. Follow through their test statistic ;dep 1-tail test No Contradictions SR; Use of B(50,0.2) scores B1 provided at least two probabilities calculated. M1 For finding $P(X \ge 13)$ allow one end error. A1 for 0.186
		[Tota	al: 6]	

Ouestion 26

H_1 : $\mu > 2.60$	B1		allow pop mean, not just 'mean'
$\pm \frac{2.64 - 2.6}{0.2 \div \sqrt{75}}$ = \pm 1.732	M1 A1	,0	accept ± 1.73 (3 sf)
'1.732' > 1.645 Reject Ho. There is evidence that μ has increased	B1 √	[4]	valid comparison with 1.645 (or $0.0416 < 0.05$) and correct conclusion \checkmark their 1.732 no contradictions (or CV method $x_{crit} = 2.638$ M1A1 comp $2.64 > 2.638$ and conclubed by the second of the secon
$\frac{x - 2.6}{0.2 \div \sqrt{75}} = 1.645 \qquad (x = 2.638)$ $\pm \frac{'2.638' - 2.68}{0.2 \div \sqrt{75}}$ $= \pm 1.819$ $\Phi('-1.819') = 1 - \Phi('1.819')$ $\models 0.0345 \text{ or } 0.0344$	M1 M1 A1 M1 A1	[5]	for standardising with their "2.638" using 2.68 accept 1.82 (3 sf) indep M mark, calculate correct area/prob consistent with their working
	H ₁ : $\mu > 2.60$ $\pm \frac{2.64 - 2.6}{0.2 \div \sqrt{75}}$ $= \pm 1.732$ '1.732' > 1.645 Reject Ho. There is evidence that μ has increased $\frac{x - 2.6}{0.2 \div \sqrt{75}} = 1.645$ $(x = 2.638)$ $\pm \frac{'2.638' - 2.68}{0.2 \div \sqrt{75}}$ $= \pm 1.819$ $\Phi('-1.819') = 1 - \Phi('1.819')$	H ₁ : $\mu > 2.60$ $ \pm \frac{2.64 - 2.6}{0.2 \div \sqrt{75}} $ = ± 1.732 M1 A1 '1.732' > 1.645 Reject Ho. There is evidence that μ has increased $ \frac{x - 2.6}{0.2 \div \sqrt{75}} = 1.645 $ $ \pm \frac{'2.638' - 2.68}{0.2 \div \sqrt{75}} $ = ± 1.819 $ \Phi('-1.819') = 1 - \Phi('1.819') $ M1 Legal 15	H ₁ : $\mu > 2.60$ $ \pm \frac{2.64 - 2.6}{0.2 \div \sqrt{75}} = \pm 1.732$ M1 A1 '1.732' > 1.645 Reject Ho. There is evidence that μ has increased $ \frac{x - 2.6}{0.2 \div \sqrt{75}} = 1.645 \qquad (x = 2.638) \qquad \text{M1} $ $ \pm \frac{2.638' - 2.68}{0.2 \div \sqrt{75}} = \pm 1.819 $ $ \Phi('-1.819') = 1 - \Phi('1.819') $ M1 Length 1.819' \text{M1} M1 M1

(a)	$\lambda = 4.5$ $e^{-4.5}$ $\left(\frac{99}{100}\right)^{450}$ $\left(\frac{99}{100}\right)^{450}$ $\left(\frac{99}{100}\right)^{450} = 0.010860$ $\left(\frac{99}{100}\right)^{450} = 0.010860$	B1 M1 M1		alone allow any λ
	= 2.29% (3 sf)	A1	[4]	
(b)	H ₀ : P(6) = $\frac{1}{6}$ or $p = \frac{1}{6}$ H ₁ : P(6) < $\frac{1}{6}$ or $p < \frac{1}{6}$ $\left(\frac{5}{6}\right)^{25} + 25\left(\frac{5}{6}\right)^{24} \times \frac{1}{6} + {}^{25}C_2\left(\frac{5}{6}\right)^{23} \times \left(\frac{1}{6}\right)^2$	B1 M1		Both needed allow one error (extra term/missing term / incorrect term) CR method: attempt at least P(0) and P(0 and 1) (0.010 and 0.06 < 0.1)
	= 0.189 (3 sf)	A1		CR is 0,1 and must see 0.189 for A1
	comp 0.1	M1		valid comp '0.189' with 0.1 oe valid comparison of 2 with CR
	No reason to believe die biased	A1	[5]	correct conclusion, ↑ their 0.189 no contradictions

(i)	Prob could be different later in day or on a different day oe	B1	[1]	or any explanation why not random or "Not random" or "Not representative"
(ii)	Looking for decrease (or improvement) H ₀ : P(not arrive) = 0.2 H ₁ : P(not arrive) < 0.2	B1 B1	[2]	oe Allow "p = 0.2"
(iii)	Concluding that prob has <u>decreased</u> (or publicity has worked) when it hasn't oe	B1	[1]	In context
(iv)	$P(X = 0) \text{ and } P(X = 1) \text{ attempted}$ $P(X \le 2) = 0.8^{30} + 30 \times 0.8^{29} \times 0.2 + 30^{2} \times 0.2^{2} \times 0.2^{2} \times 0.0442)$ $P(X \le 3) = 0.8^{30} + 30 \times 0.8^{29} \times 0.2 + 30^{2} \times 0.2^{2} \times 0.2^{$	M1 M1 B1		B(30, 0.2) Not nec'y added May be implied by calc P($X \le 2$) or P($X \le 3$) Attempt P($X \le 2$) Or '0.0442' + 30 C ₃ × 0.8 ²⁷ × 0.2 ³ = 0.123
	cr is $X \le 2$ P(Type I) = 0.0442 (3 sf)	A1 A1	[5]	
(v)	3 is outside cr No evidence that <i>p</i> has decreased (or that publicity has worked)	M1 A1 √	[2]	Comparison of 3 with their cr or $P(X \le 3) = 0.123$ which is > 0.05 Correct conclusion. No contradictions

(i)	H_0 : pop mean journey time = 35.2 mins H_1 : pop mean journey time < 35.2 mins	B1		Allow " μ ". Not "mean journey time"
	$\frac{34.7-35.2}{5.6/\sqrt{25}} \qquad (=-0.446)$	M1		For standardising (√25 needed)
	$\Phi(<"-0.446") = 1 - \Phi("0.446")$ = 0.328 (3 sf)	M1 A1	[4]	For correct area consistent with their working As final answer
(ii)	H_0 is rejected but Type II error can only be made if H_0 is not rejected	В1	[1]	Allow just "H ₀ is rejected." oe

Question 30

	H_0 : P(hit target) = 0.65 H_1 : P(hit target) > 0.65	B1		Allow $p = 0.65$ Allow $p > 0.65$
	${}^{20}\text{C}_2 \times 0.35^2 \times 0.65^{18} + 19 \times 0.35 \times 0.65^{19} + 0.65^{20}$	M1		Allow one end error. Allow p/q mix. Allow (1–) for M mark
:	= 0.0121 (3 sf)	A1		A mark recovered following valid comparison
	Comp 0.01 There is no evidence (at the 1% level) that she has improved	M1 A1√	[5]	For valid comparison She has probably not improved. No contradictions. (SR Use of Normal M0, but M1A1 for valid comparison could be awarded)
Question 3	31			

(i)	H ₀ : Pop mean = 2.5 (or 7.5) H ₀ : Pop mean < 2.5 (or 7.5)	B1	or $\lambda = 2.5$ (Not just "mean") Allow μ or $\lambda < 2.5$
	$\lambda = 7.5$		1.5
	$P(X \le 2) = e^{-7.5} (1 + 7.5 + \frac{7.5^2}{2}) = 0.0203$ $P(X \le 3) = 0.0203 + e^{-7.5} \times \frac{7.5^3}{3!} = 0.0591$	M1 A1	Either $P(X \le 2)$ or $P(X \le 3)$, allow any λ <i>Both Correct</i>
	$CR \text{ is } X \leq 2$	A1	Clear statement
	Reject H ₀ Evidence that no of sightings fewer	A1 [↑] [5]	Follow through their $CR/their\ P(X \le 2)$
(ii)	P(Type I) = 0.0203 (3 sf)	B1 [↑] [1]	ft their $P(X \le 2)$
(iii)	H ₀ was rejected oe	B1 [1]	or Type II is P(not reject H ₀)oe

H _o : Pop mean yield = 8.2 H ₁ : Pop mean yield > 8.2 $(\pm) \frac{8.7-8.2}{1.2/\sqrt{16}}$	B1 M1	or $\mu = 8.2$ (not just "mean") $\mu > 8.2$ Allow without $\sqrt{\text{sign (Allow cc)}}$
= $(\pm)1.667$ Comp $z = 1.645$ Or Area comparison $0.0475-0.0478$) Reject H ₀ Evidence that mean yield has increased	A1 M1	Or comp 1 - Φ('1.667') with 0.05 Valid Comparison z-values (same sign) or areas No Contradictions No follow through for 2 tail test

	H ₀ : λ (or μ) = 42 H ₁ : λ (or μ) \neq 42 Po(42) \sim N(42, 42) stated or implied	B1 B1√	Or pop weekly mean = 2.1 etc. allow 'population mean' not just 'mean' ft their '42' (Accept alt method N(2.1,2.1/20)
	$\frac{53.5-42}{\sqrt{42}}$	M1	
	= 1.77(4) (or 0.038 for area comparison)	A1	allow with wrong or no cc. Accept alt method using N(2.1,2.1/20) with or without cc
	comp 1.96	M1	Valid comp z or 1 – ('1.774') with 0.025 seen
	No evidence that mean has changed	A1 [↑] [6]	allow comp 1.645 if H_1 : λ (or μ) > 42 No contradictions. No ft for H_1 : λ (or μ) > 42 Note – accept other valid methods(e.g. cv method)
Question	34		
(0)		D44	

(i)	Conclude less than 90% satisfied when this is not true oe	B11		In context
(ii)	$ 1 - (0.9^{15} + 15 \times 0.9^{14} \times 0.1 + {}^{15}C_2 \times 0.9^{13} \times 0.1^2 + {}^{15}C_3 \times 0.9^{12} \times 0.1^3) = 0.0556 (3 sf) or 0.0555 $	M1 M1 A1	****	Attempt $(1-)P(X=15,14,13,12)$ allow 1 end error Attempt fully correct expression
Question	35	1		

(i)	H ₀ : $\mu = 12.5$ H ₁ : $\mu \neq 12.5$ $\frac{13.5-12.5}{4.2+\sqrt{50}}$ = 1.68(4)	B1 M1 A1		allow 4.2 ÷ 50
	'1.684' < 1.96	M1		comp 1.96 allow comp 1.645 if H1: $\mu >$ 12.5 or comp 1 – ('1.684') with 0.025
	No evidence that mean time has changed	A1 ft	[5]	No contradictions ft their 1.684, but not comp 1.645
(ii)	0.05	B1	[1]	

$B(200, \frac{1}{6}) \to N(\frac{100}{3}, \frac{250}{9})$	B1	seen or implied
$\frac{25.5 - \frac{100}{3}}{\sqrt{\frac{250}{9}}}$	M1	allow with wrong or no cc
= -1.486	A1	(Accept alternative correct methods)
comp '1.486' with 1.282	M1	or comp ('1.486') with 0.1
Evidence to reject H ₀ There is some evidence that $p < \frac{1}{6}$		
or, e.g. It is likely that $p < \frac{1}{6}$ oe	A1 ft [5]	No contradictions

(i)	H ₀ : P(free gift) = 0.3 or $p = 0.3$ H ₁ : P(free gift) < 0.3 or $p < 0.3$	B1	[1]	
(ii)	$P(X \le 2) = 0.7^{20} + 20 \times 0.7^{19} \times 0.3 + {}^{20}C_2 \times 0.7^{18} \times 0.3^2 = 0.03548 \text{ or } 0.0355$	M1* A1		$P(X \le 2)$ attempted
	$P(X \le 3) =$ '0.03548' + $^{20}C_3 \times 0.7^{17} \times 0.3^3$ (= 0.107)	M1*		$P(X \le 3)$ attempted
	One comparison with 0.05 seen	M1*		or implied by fully correct methods for $P(X \le 2)$ and $P(X \le 3)$
	P(Type I error) = 0.0355 (3 sf)	DA1 √	[5]	dep on all 3 Ms
(iii)	$P(X \le 3) = 0.107$	· 9·		
	0.107' > 0.05 or cv = 2 and compare 3 >2	M1		Compare their $P(X \le 3)$ with 0.05
	No evidence to reject claim oe	A1 √	[2]	No evidence that 30% is not correct oe ft their 0.107

(i)	H ₀ : Pop mean time (or μ) = 20.5 H ₁ : Pop mean time (or μ) < 20.5	B1		Not just "mean"
	$\frac{20.3-20.5}{1.2 \div \sqrt{100}}$	M1		Allow without √ sign
	=-1.667 or $0.0478/0.952$ if areas compared	A1		(accept $\pm 1.667/1.67$)
	'1.667' < 1.751 (or '-1.667' > -1.751) No evidence that (pop) mean time	M1		Correct comparison of their z_{calc} with 1.751/1.75 oe valid comparison of areas (0.0478 > 0.04)
	has decreased	A1ft	[5]	No contradictions (ft their z)
(ii)	$\frac{cv-20.5}{1.2+\sqrt{100}} = -1.751$	M1*		
	cv = 20.29 or 20.3	A1		
	$\frac{20.29-20.1}{1.2+\sqrt{100}}$ (= 1.583 or 1.582)	DM1		Allow $\frac{20.3-20.1}{1.2\div\sqrt{100}}$ (= 1.667) M1
	$1 - \Phi(1.583)$	M1		$1 - \Phi(1.667)$ M1
	= 0.0567 - 0.0569 (3 sf)	A1	[5]	= 0.0478 (3 sf) A1
(iii)	Concluding (mean) time not decreased when in fact it has.	B1	[1]	Must be in context oe
Question	n 39		543	

(i)	$H_0: P(6) = {}^{1}/_{6}$ $H_1: P(6) < {}^{1}/_{6}$	B1	[1]	Allow H_0 : $p = \frac{1}{6}$ H_1 : $p < \frac{1}{6}$
(ii)	$ \left(\frac{5}{6}\right)^{15} = 0.065 > 0.05 $	M1 A1	[2]	Correct result and comparison needed for A1 SR if 2 tail test followed allow A1 for $0.065 > 0.025$
(iii)	$\left(\frac{5}{6}\right)^{16} = 0.054 \text{ and } \left(\frac{5}{6}\right)^{17} = 0.045$	M1	ρ.	both
	Smallest n is 17	A1	[2]	No errors seen
	OR $\left(\frac{5}{6}\right)^n < 0.05$ and attempt to solve	M1		
	$n\ln\left(\frac{5}{6}\right) < \ln 0.05$ smallest <i>n</i> is 17	A1		

(i)	H ₀ : Pop mean time (or μ) = 20.5 H ₁ : Pop mean time (or μ) < 20.5	B1		Not just "mean"		
	$\frac{20.3-20.5}{1.2 \div \sqrt{100}}$	M1		Allow without √ sign		
	=-1.667 or $0.0478/0.952$ if areas compared	A1		(accept $\pm 1.667/1.67$)		
	'1.667' < 1.751 (or '-1.667' > -1.751) No evidence that (pop) mean time	M1		Correct comparison of their z_{calc} with 1.751/1.75 oe valid comparison of areas (0.0478 > 0.04)		
	has decreased	A1ft	[5]	No contradictions (ft their z)		
(ii)	$\frac{cv-20.5}{1.2+\sqrt{100}} = -1.751$	M1*				
	cv = 20.29 or 20.3	A1		Epiropeiro (Silverito)		
	$\frac{^{120.29^{1}-20.1}}{^{1.2+\sqrt{100}}}$ (= 1.583 or 1.582)	DM1		Allow $\frac{20.3-20.1}{1.2+\sqrt{100}}$ (= 1.667) M1		
	1 – Φ('1.583')	M1		$1 - \Phi(1.667)$ M1		
	= 0.0567 - 0.0569 (3 sf)	A1	[5]	= 0.0478 (3 sf) A1		
(iii)	Concluding (mean) time not decreased when in fact it has.	B1	[1]	Must be in context oe		
Question	41					

(i)	$(\lambda =) 4.5$	B1	
	$e^{-4.5}(1+4.5+\frac{4.5^2}{2!})$	M1	Allow any λ . Allow one end error
	= 0.174	A1	
	Total:	3	
(ii)	Accept reduction in mean no. of missed appts although untrue	B1	or Mean is 0.9 (or 4.5) but < 3 missed appts. In context
	Total:	1	
(iii)	$P(X \geqslant 3)$	M1	Attempted
	$=1-e^{-1}(1+1+\frac{1^2}{2!})$	M1	Allow any λ except 4.5 or 0.9, Allow one end error
	= 0.0803 (3 sfs)	A1	

(i)	(H ₁): $\mu \neq 6.4$	B1	
	Total:	1	
(ii)	comp 2.43 with a z-value $z = 2.576$ AND	M1	oe valid comparison
	No evidence that μ is not 6.4 or do not reject $\mu = 6.4$	A1	Allow "Accept $\mu = 6.4$ " Must mention μ , not just "H ₀ " or "H ₁ "
	Total:	2	
iii)	Testing for an increase in μ , or for a decrease in μ , rather than a change	B1	Any equiv statement
Ouesti	ion 43		

7(i)	H ₀ : Pop mean no. accidents = 5.64 H ₁ : Pop mean no. accidents < 5.64	B1	or "= 0.47 (per month)" not just "mean", but allow just " λ " or " μ "
	Use of $\lambda = 5.64$	B1	used in a Poisson calculation
	$= e^{-5.64} \left(1 + 5.64 + \frac{5.64^2}{2} \right)$	M1	Allow incorrect λ in otherwise correct
	= 0.08(0)	A1	
	Comp with 0.05	М1	Valid comparison (Poisson only), no contradictions.
	No evidence to believe mean no. of accidents has decreased; accept H_0 (if correctly defined)	A1FT	Normal distribution: M0M0
	Total:	6	//
'(ii)	Mean < 0.47 but conclude that this is not so	B1	(Mean) no. of accidents reduced , but conclude not reduced. Must be in context.
	Total:	1	
(iii)	(Need greatest x such that $P(X \le x) < 0.05$) $P(X \le 1) = e^{-5.64} (1 + 5.64) = 0.024$ $P(X \le 2) = 0.08$	B1	Both, could be seen in (i)
	Hence rejection region is $X \le 1$	B1	Can be implied
	With $\lambda = 12 \times 0.05 = 0.6$, $1 - P(X \le 1) = 1 - e^{-0.6}(1 + 0.6)$	M1	λ =0.6 and 1 – P($X \le 1$)
	= 0.122 (3 sf)	A1	Normal scores 0

(i)	$0.75^{20} + 20 \times 0.75^{19} \times 0.25 + {}^{20}C_2 \times 0.75^{18} \times 0.25^2$	M1	No end errors
	= 0.0913	A1	As final answer
	Total:	2	
(ii)	H ₀ : Pop proportion=0.25 H ₁ : Pop proportion<0.25	B1	Allow p or π , not "proportion" (Accept anywhere in the question)
	$0.75^{25} + 25 \times 0.75^{24} \times 0.25$	M1	Must be B(25,0,25) No end errors
	= 0.00702	A1	
	comp 0.01	M1	Valid comparison
	There is evidence that the claim is not justified	A1 FT	OE. No contradictions

(i)	mean = 6.6	B1	B1 for 6.6 (could be scored in iii)
	$P(X \le 1) = e^{-6.6} (1 + 6.6) = 0.0103$	M1	Allow incorrect λ in both probs
	$P(X \le 2) = e^{-6.6}(1 + 6.6 + \frac{6.6^3}{2}) = 0.0400$	M1A1	A1 for both values
	CR is <i>X</i> ≤ 1	DA1	Dep on at least one M
	$P(Type I error) = P(X \le 1) = 0.0103$	B1FT	FT their $P(X \le 1)$
	Total:	6	
ii)	Wrongly concluding that (mean) no of (sports) injuries has decreased	B1	Must be in context
iii)	H_0 : $\lambda = 6.6 H_1$: $\lambda < 6.6$	B1	Can be scored in (i). Allow μ or $\lambda / 1.1$ or 6.6 or $P(X \le 2) = 0.0400 > 0.02$
	2 not in CR	M1	
	No evidence mean no. of injuries has decreased	A1FT	
	Total:	3	
(iv)	N(39.6, 39.6)	B1	May be implied
	$\frac{29.5 - 39.6}{\sqrt{39.6}} \tag{= -1.605}$	M1	Allow with wrong or no cc
		3.54	For area consistent with their mean
	$\Phi(\text{``-1.605''}) = 1 - \Phi(\text{``1.605''})$	M1	Tof area consistent with their mean

Assume sd still = 3.8	B1	or sd unchanged
H_0 : $\mu = 64.0$ H_1 : $\mu < 64.0$	B1	/ / / /
$\frac{63.3-64.0}{\frac{33}{\sqrt{100}}}$	M1	Standardising with their values (no sd / var mixes) Must have $\sqrt{100}$
=-1.842	A1	.5/
comp "1.842" with z-value "1.842" < 1.96	M1	comp +ve with +ve or –ve with –ve or comp Φ ("1.842") with 0.975 0.9672 < 0.975 OE
No evidence that heights are shorter	A1FT	OE FT their Z _{calc}

Questi	on 47		
3(i)	$\overline{x} = 27/150 \ (= 0.18)$	B1	
	$s = \sqrt{\frac{150}{149}} \times \sqrt{\frac{5.01}{150} - 0.18^2} \text{ or variance}$ $(= 0.031729)$ $(\text{var} = 3/2980 = 0.0010067)$	M1	or var = $1/149(5.01 - 27.0^2/150)$
	H ₀ : Pop mean = 0.185 H ₁ : Pop mean < 0.185	B1	allow just 'μ'
	$\frac{0.18 - 0.185}{\frac{0.031729'}{\sqrt{150}}}$	M1	standardising, need $\sqrt{150}$
	= (-) 1.930 (3 sfs) or 1.93	A1	
	Comp with $z = (-) 2.326$	M1	$\begin{array}{c} consistent \ signs \\ or \ using \ probs \ 0.0268 > 0.01 \ or \ 0.9732 \\ < 0.99 \\ or \ using \ x_{crit} \ 0.18 > 0.17897 \end{array}$
	There is no evidence (at 1% level) that concentration with drug is less than without drug	A1 FT	conclusion FT no contradictions
(ii)	$\frac{cv - 0.185}{\frac{0.031729!}{\sqrt{150}}} \ (= -2.326)$	M1	must use 0.185 and $\sqrt{150}$
	= 0.17897 or 0.179	A1	acceptance region (for H ₀) is > 0.179
	$\frac{"0.17897" - 0.175}{\frac{'0.031729'}{\sqrt{150}}} $ (=1.534)	M1	must use 0.175 and $\sqrt{150}$
	1 – φ("1.534")	M1	indep mark
	= 0.0625 (3 sf)	A1	Accept 0.0610 to 0.0628

(i)	H_0 : mean no. sales = 3.5	B1	or " = 0.7 (per day)"
	H ₁ : mean no. sales > 3.5	M1	allow ' λ ' or ' μ ' but not just 'mean'
	$P(X \ge 5) = 1 - e^{-3.5} (1 + 3.5 + \frac{3.5^2}{2!} + \frac{3.5^3}{3!} + \frac{3.5^4}{4!})$	M1	
	= 0.275	A1	allow 0.274
	Comp with 0.10	M1	valid comparison using Poisson
	No evidence (at 10%) to believe that sales per day have increased	A1 FT	correct conclusion FT no contradictions
(ii)	$\lambda = 3.9$	B1	_
	$e^{-3.9} \times \frac{3.9^2}{2!}$	M1	any λ (\neq 0.7 or 0.6), single term
	= 0.154 (3 sf)	A1	

! (i)	$\overline{m} = \frac{98.2}{100} = 0.982$	B1	Accept either
	$s = \sqrt{\frac{100}{99}} \times \sqrt{\frac{104.52}{100} - 0.982^2} (= 0.28582)$ or var = 0.08169	М1	
	H_0 : Pop mean mass = 1.01 H_1 : Pop mean mass < 1.01	B1	not just 'mean', but allow just ' μ '
	$\pm \frac{0.982 - 1.01}{\frac{0.28582}{\sqrt{100}}}$	M1	$\pm \frac{0.982 - 1.01}{\frac{0.284387}{\sqrt{100}}} $ M1
	= -0.980 (3 sf) accept \pm	A1	= -0.985 (3 sfs) accept ± A1
	Comp with $z = -1.645$ (or areas 0.1635 > 0.05)	M1	Valid comparison of z's or area's
	No evidence that (mean) mass is less than 1.01	A1 FT	Correct conclusion FT their z
(ii)	Distr of X normal (so distr of \overline{X} normal) Must state or imply No	B1	X/parent population

(i)	$\overline{x} = 27/150 \ (= 0.18)$	B1	
	$s = \sqrt{\frac{150}{149}} \times \sqrt{\frac{5.01}{150} - 0.18^2} \text{ or variance}$ $(= 0.031729)$ $(\text{var} = 3/2980 = 0.0010067)$	M1	or var = $1/149(5.01 - 27.0^2/150)$
	H ₀ : Pop mean = 0.185 H ₁ : Pop mean < 0.185	B1	allow just 'μ'
	$\frac{0.18 - 0.185}{\frac{'0.031729'}{\sqrt{150}}}$	M1	standardising, need $\sqrt{150}$
	= (-) 1.930 (3 sfs) or 1.93	A1	
	Comp with $z = (-) 2.326$	M1	consistent signs or using probs $0.0268 > 0.01$ or $0.9732 < 0.99$ or using x_{crit} $0.18 > 0.17897$
	There is no evidence (at 1% level) that concentration with drug is less than without drug	A1 FT	conclusion FT no contradictions

(ii)	$\frac{cv - 0.185}{\frac{0.031729}{\sqrt{150}}} \ (= -2.326)$	M1	must use 0.185 and $\sqrt{150}$
	= 0.17897 or 0.179	A1	acceptance region (for H_0) is > 0.179
	$\frac{"0.17897" - 0.175}{\frac{'0.031729'}{\sqrt{150}}} $ (=1.534)	M1	must use 0.175 and $\sqrt{150}$
	1 – φ("1.534")	M1	indep mark
	= 0.0625 (3 sf)	A1	Accept 0.0610 to 0.0628

(i)	H_0 : mean no. sales = 3.5	B1	or " = 0.7 (per day)"
	H ₁ : mean no. sales > 3.5	M1	allow ' λ ' or ' μ ' but not just 'mean'
	$P(X \ge 5) = 1 - e^{-3.5} (1 + 3.5 + \frac{3.5^2}{2!} + \frac{3.5^3}{3!} + \frac{3.5^4}{4!})$	M1	
	= 0.275	A1	allow 0.274
	Comp with 0.10	M1	valid comparison using Poisson
	No evidence (at 10%) to believe that sales per day have increased	A1 FT	correct conclusion FT no contradictions
(ii)	$\lambda = 3.9$	B1	
	$e^{-3.9} \times \frac{3.9^2}{2!}$	M1	any λ (\neq 0.7 or 0.6), single term
	= 0.154 (3 sf)	A1	

(i)	(Po)(2.4)	B1	seen or implied
	$e^{-2.4}\left(1+2.4+\frac{2.4^2}{2}+\frac{2.4^3}{3!}\right)$	M1	allow + P(4)/one end error. Allow wrong λ
	= 0.779 (3 sfs)	A1	Final answer (Note: accept combination method)
		3	
(ii)	H ₀ : λ (or mean) = 3.6 (or 0.9) H ₁ : λ (or mean) < 3.6 (or 0.9)	B1	Accept μ for both
	$e^{-3.6}(1+3.6)$	M1	Allow any λ
	= 0.126	A1	
	0.126 > 0.1	M1	Valid comparison. (Comparison with 0.9 could recover previous M1A1)
	No evidence that fewer than usual sold	A1FT	Correct conclusion. No contradictions

5(i)	H ₀ : P(Orange) = 0.17 H ₁ : P(Orange) < 0.17	B1	or H_0 : $p = 0.17 H_1$: $p < 0.17$
i(ii)	Wrongly concluding that % age is less than 17%	B1	OE in context allow "fewer than 3 orange in packet even though average 17% is correct"
		1	
(iii)	B(30, 0.17) stated or implied	M1	eg by $0.17^p \times 0.83^q$ $(p+q=30)$ or ${}^{30}C_r$ $(r<30)$
	$(1 - 0.17)^{30} + 30(1 - 0.17)^{29} \times 0.17 + {}^{30}C_2(1 - 0.17)^{28} \times 0.17^2$	M1	correct, but allow $+ {}^{30}C_3(1-0.17)^{27} \times 0.17^3$
	= 0.0949 (3 sf)	A1	(SR: use of N(5.1,4.233) M1 standardising (with or without cc) M1 max 2/3)
5(iv)	$P(\geqslant 3 \text{ orange } p = 0.05)$	M1	stated or attempted; can be implied

i(iv)	$P(\ge 3 \text{ orange } p = 0.05)$	M1	stated or attempted; can be implied
	= $1 - [(0.95)^{30} + 30(0.95)^{29} \times 0.05 + {}^{30}C_2(0.95)^{28} \times 0.05^2]$	M1	allow + ${}^{30}C_3(0.95)^{27} \times 0.05^3$ in bracket, or ans 0.0608
	= 0.188 (3 sfs)	A1	

5(i)	Assume (pop) sd same (0.3) H ₀ : Pop mean = 2.4	B1	
	H ₁ : Pop mean ≠ 2.4	B1	Allow '\mu' but not just 'mean'
	$\pm \frac{2.3 - 2.4}{\frac{0.3}{\sqrt{30}}}$	M1	Must have $\sqrt{30}$, Critical region approach (2.293, 2.507) or (2.193, 2.407)
	=±1.826	A1	
	$comp z = \pm 1.96$	M1	Valid comparison (e.g. compare 0.034 with 0.025)
	No evidence that mean time changed	Alf	In context, allow accept H ₀ if correctly defined, no contradictions.
			One-tail test can score B1, B0, M1, A1, M1, A0 Max 4/6
		6	
(ii)(a)	0.05	B1	
		1	
(ii)(b)	Concluding mean time has not changed when it has.	B1	OE, must have e.g. conclude/accept SR Allow mean has decreased if a one tailed test in Part (i)
		1	

7(i)	H_0 : $P(10) = 0.1$ H_1 : $P(10) > 0.1$	B1	Both. Allow 'p' for P(10)
	B(9,0.1) P($X \ge 3$) = 1 - (0.9 ⁹ + 9×0.9 ⁸ × 0.1 + ${}^{9}C_{2} \times 0.9^{7} \times 0.1^{2}$)	M1	Allow one extra term in bracket
	= 0.05297 or 0.053(0)	A1	
	comp 0.01	M1	Valid comparison. (comparison with 0.99 can recover previous M1 A1 for 0.9470)
	No evidence (at 1% level) to reject H ₀ Claim not justified	A1ft	No contradictions
		5	
ii)	H ₀ not rejected oe	B1	
		1	36
ii)	$P(X \ge 4)$ = "0.05297" - ${}^{9}C_{3} \times 0.9^{6} \times 0.1^{3}$	M1	or $1-(0.9^9 + 9 \times 0.9^8 \times 0.1 + {}^9C_2 \times 0.9^7 \times 0.1^2 + {}^9C_3 \times 0.9^6 \times 0.1^3)$
	= 0.00833	A1	Note: 0.05297 and 0.00833 both needed in (i) or (iii) to justify CV
	Hence crit value is 4	B1	Allow without working. Or in (i) May be implied by attempt at $P(X < 4)$ below
	B(9,0.5) P(X < 4)	M1	stated or implied
	$= 0.5^9 + 9 \times 0.5^8 \times 0.5 + {}^9C_2 \times 0.5^7 \times 0.5^2 + {}^9C_3 \times 0.5^6 \times 0.5^3$	M1	Attempt $P(X < 4)$ with $p = 0.5$
	P(Type II) = 0.254 (3 sf)	A1	
		6	

icstion			
7(i)	Po(1.0)	B1	Seen or implied
	$e^{-1}\left(1+1+\frac{1^2}{2}\right)$	M1	Allow any λ . Allow one end error.
	= 0.920 (3 sfs)	A1	
		3	
7(ii)	$P(X > 3) = 1 - e^{-1.5} (1 + 1.5 + \frac{1.5^2}{2} + \frac{1.5^3}{3!})$	M1	Allow any λ . Allow one end error
	= 0.0656	A1	
		2	
(iii)(a)	Incorrectly concluding that more absences than usual when there are not oe	B1	In context
	19	1	
iii)(b)	H ₀ : $\lambda = 1.5$ (or 0.3) H ₁ : $\lambda > 1.5$ (or 0.3)	B1	Or μ Both
	$P(X > 4) = \text{``0.0656''} - e^{-1.5} \times \frac{1.5^4}{4!}$ = 0.0186 (3 sf)	M1	or $1 - e^{-1.5} (1 + 1.5 + \frac{1.5^2}{2} + \frac{1.5^3}{3!} + \frac{1.5^4}{4!})$
	P(Type I) = 0.0186 or 0.0185	A1ft	Ft their $P(X > 4)$ if less than 0.05
		3	
(iii)(c)	P(X>3) = "0.0656"	B1ft	Ft their (ii)
	0.0656 > 0.05	M1	
	No evidence of more than usual male absences	A1ft	Ft their P(X>3). Correct conclusion. No contradictions.

(i)	$\frac{14 - 14.2}{\frac{3.1}{\sqrt{50}}} \tag{= -0.456}$	M1	For stand'n; must have √50
	1 – Φ("0.456")	M1	for area consistent with their working
	= 0.324 (3 sfs)	A1	
		3	
(ii)	No because <i>n</i> large	B1	Accept n > 30
		1	
(iii)	H ₀ : $\mu = 14.2$ H ₁ : $\mu < 14.2$	B1	or 'pop mean', but not just 'mean'
	$\frac{13.5 - 14.2}{\frac{3.1}{\sqrt{100}}}$	M1	For stand'n; must have √100
	=-2.258	A1	
	comp -2.054 (or -2.055)	M1	Valid comparison of z values or areas (0.0119 < 0.02)
	There is evidence (at 2% level) that mean mass in this area < 14.2	A1ft	Ft their z. Correct conclusion no contradictions
		5	

(i)	H_0 : $\mu = 51$ H_1 : $\mu < 51$	B1	Or popn mean
	$\overline{x} = \frac{7480}{150} = 49.8667 = 49.9$	B1	
	$s^{2} = \frac{150}{149} \left(\frac{380000}{150} - \left(\frac{748}{15} \right)^{2} \right)$ = 46.9620 = 47.0 or s = 6.85	M1	Correct subst in s^2 or $\sqrt{s^2}$ formula Biased var scores M0
	$\frac{49.8667-51}{\sqrt{\frac{546.962}{150}}}$ allow $\frac{49.9-51}{\sqrt{\frac{547}{150}}}$	M1	Allow 49.8667 to 49.9 in numerator Need sqrt 150
	= (-) 2.025 = (-) 1.965	A1	Accept 2.02 or 2.03 Accept -2.0264 -1.9651 provided correct working
	comp z = 1.96	M1	or comp $1 - \phi(2.025)$ with 0.025
	There is evidence that μ < 51	A1 ft	no contradictions biased var B1B1M0M1A0M1A1ft (max 5/7)
			accept cv method $x_{crit} = 49.9028 M1A1 $ 49 867 < 49.9 M1A1

(ii)	$\frac{\overline{x}-51}{\frac{6.856}{\sqrt{150}}} = -1.96$	M1	Need 51 and sqrt 150 and correct form
	$\overline{x} = 51 - 1.097 = 49.9$ Rejection region is $\overline{x} < 49.9$	A1	This may have been found in part (i)
	$\frac{\frac{49.9-49}{6.856}}{\sqrt{150}} (= 1.608 \text{ to } 1.614)$	M1	Need 49 and sqrt 150 and correct form
	$P(\overline{x} > 49.9 \mid \mu = 49) = 1 - \Phi(`1.608")$	M1	
	P(Type II error) = 0.0539	A1	Allow 0.0533 to 0.0539
		5	

i)	$H_0: p = \frac{1}{3}$ $H_1: p < \frac{1}{3}$	B1	
		1	
)	0.0084 < 0.01	B1	Allow P(N \leq 36) < 0.01 or 1%
	There is evidence that p has decreased	B1 dep	Allow 'p has decreased' or $p < \frac{1}{3}$
		2	
iii)	150	B1	/
	3	1	5

(i)	H_0 : $p = 0.15$ H_1 : $p < 0.15$ (N(60 × 0.15, 60 × 0.15 × 0.85))	B1	Accept H ₀ : $\mu = 9$ H ₁ : $\mu < 9$ Use of Normal approximation: $(N(0.15, \frac{0.15 \times 0.85}{60}))$
	= N(9, 7.65)		= N(0.15, 0.002125)
	$\frac{6.5-9'}{\sqrt{7.65'}}$	M1	For standardising (or $\frac{\frac{6}{80} + \frac{9.5}{80} - 0.15'}{\sqrt{0.002125'}} = -0.904$) Allow wrong or no cc
	= -0.904	A1	Accept ±
	'0.904' < 1.282	M1	Valid comparison of z values or $\phi('-0.904')=0.183>0.1$ ft their 0.904
	No evidence train late less often	A1ft	Use of Bin (60,0.15) to give Pr (< = 6) = 0.1848 M1A1 Valid comparison with 0.1 M1 Conclusion A1ft
		5	
(ii)	$0.1 + z \times \sqrt{\frac{0.1 \times 0.9}{60}} = 0.150$	M1	For $\sqrt{(0.1 \times 0.9 / 60)}$ seen
	16	M1	for $0.1 + z \times = 0.150$ or $2z = 0.1$
	z = 1.291	A1	
	φ('1.291') (= 0.90(16))	M1	for correct method to find α
	$\alpha = 80$	A1ft	ft their z. Must be a +ve non-zero integer < 100
		5	
Question 62			
(i) $\hat{\alpha} = 126$	R1		

(i)	$\hat{\mu} = \frac{126}{70}$ or $\frac{9}{5}$ or 1.8 oe	B1	
	$\sum x^2 f = 286$	B1	Seen or implied
	Est(σ^2) = $\frac{70}{69} (\frac{\Sigma x^2 f}{70} - '1.8'^2)$	M1	oe attempted
	= 0.858 or 296 / 345	A1	Note: Final answer for var 0.846 (biased) and no working implies B1 for 286
(ii)	H ₀ : μ = 1.9 H ₁ : μ < 1.9	4 B1	Or 'pop mean'; not just 'mean'
	$\frac{1.8-1.9}{\sqrt{\frac{70.838^{\circ}}{70}}}$	М1	Standardise with their values from (i). Must have sqr 70. No SD / Var mix
	=-0.903	A1	Accept ±
	0.903 < 1.645	M1	comp 1.645 allow comp 1.96 if H_1 : $\mu \neq 1.9$ or comp 1 – ϕ ('0.903')=0.182 or 0.183 with 0.05 (or 0.025 if H_1 : $\mu \neq 1.9$)
	No evidence that mean no courts in S is less than in N	A1ft	No contradictions. ft their 0.903, but not comp 1.96 i.e. no ft for a 2 tail test Accept cv method: cv = 1.718 M1A1 1.718 < 1.8 M1 conclusion A1 (cv centred on 1.8 gives 1.982 M1A1 and M1 for 1.982 > 1.9 A1 conclusion)
		5	
(iii)	Type II because H ₀ was not rejected	B1ft	ft their conclusion, i.e. if H_0 rejected, 'Type I because H_0 rejected' B1 Answer must be consistent with their conclusion. No conclusion in (ii) will score B0
		1	

(i)	Test is for "difference" oe	B1	Test is not for 'increase' or 'decrease' oe No contradictions
		1	
(ii)	0.05	B1	
	Conclude mean time is different when it is not	B1	oe, in context
		2	
(iii)	Assume $\sigma = 6.4$	B1	
	H_0 : pop mean = 91.4 H_1 : pop mean \neq 91.4	B1	Allow μ , but not 'mean'
	$\overline{x} = \frac{568.5}{6} \ (= 94.75)$	B1	
	'94.75'-91.4 64 √6	M1	Must have √6
	= 1.282 cv of $z = 1.96$	A1	
	`1.282` < 1.96	M1	Valid comparison or comp $\phi(``1.282")$ with $0.975\ 0.9(001) < 0.975$ or 0.0999 (or $0.1) > 0.025$ consistent use of one tail test can score M1 for comparison with 1.645 oe but not A1ft oe. No contradictions. ft their z.
	No evidence mean time different	A1 ft	CV method x = 96.52 M1 A1 94.75 < 96.52 M1 Conc A1
		7	
Que	stion 64		
	1 22	Di	

$H_0: \lambda = 32$ $H_1: \lambda < 32$	B1	Accept 'population mean' (μ)
<i>X</i> ∼N(32, 32)	B1	seen or implied
$\frac{21.5-32}{\sqrt{32}}$	M1	Standardise with their values. Allow with no or wrong cc
=-1.856 cv of $z = -2.054$ (or -2.055 or -2.053)	A1	
'1.856' < 2.054	M1	Valid comparison or comp φ("1.856") with 0.98 i.e. 0.9682 < 0.98 oe
No evidence that fewer accidents at B than at A	A1f	No contradictions Note Use of CV method x = 20.38 M1 A1 comparison 21.5 > 20.38 M1 conc A1
	6	

(i)	$H_0: p = \frac{1}{4}$	B1	
	$H_1: p > \frac{1}{4}$		
	$^{10}C_{6}(\frac{1}{4})^{6}(\frac{3}{4})^{4}+{}^{10}C_{7}(\frac{1}{4})^{7}(\frac{3}{4})^{3}+{}^{10}C_{8}(\frac{1}{4})^{8}(\frac{3}{4})^{2}+$	M1	Correct terms, allow one term incorrect or omitted or extra
	$10(\frac{1}{4})^9(\frac{3}{4}) + (\frac{1}{4})^{10}$		or summing all correct terms from 0 to 5 allow one term incorrect or omitted or extra
	= 0.0197	A1	or 0.9803
	comp '0.0197' with 0.01	M1	Valid comparison with 0.01
			or valid comparison with 0.99
	No evidence to conclude $p > \frac{1}{4}$	A1	FT No contradictions Use of two-tail test can score BOM1A1M1(comparison with 0.005) A0
		5	
(ii)	${}^{10}C_{7}(\frac{1}{4})^{7}(\frac{3}{4})^{3} + {}^{10}C_{8}(\frac{1}{4})^{8}(\frac{3}{4})^{2} + 10(\frac{1}{4})^{9}(\frac{3}{4}) + (\frac{1}{4})^{10}$	M1	Their $P(X \ge 6) - {}^{10}C_6 (0.25)^6 (0.75)^4$
	P(Type I) = 0.00351 (3 sf)	A1	Accept 0.00348 to 0.00351
	19	2	
(iii)	C.R is $X \ge 7$ P(Type II) = $1 - P(X \ge 7 \mid p = \frac{3}{5}) =$	M1	May be implied
	$1 - ({}^{10}\text{C7}(\frac{3}{5})^7(\frac{2}{5})^3 + {}^{10}\text{C8}(\frac{3}{5})^8(\frac{2}{5})^2 + 10(\frac{3}{5})^9(\frac{2}{5}) + (\frac{3}{5})^{10})$	M1	Accept $1 - P(X \ge 8 \mid p = \frac{3}{5})$ or $1 - P(X \ge 6 \mid p = \frac{3}{5})$
	= 0.618	A1	

H₀: Pop mean = 20 H₁: Pop mean ≠ 20		B1	Accept µ
$\frac{\Sigma x}{6}$	$(=\frac{126.9}{6}=21.15)$	M1	Attempted or 126.9 and 11.64 attempted
121.15'-20 1.94 6		M1	Must have $\sqrt{6}$ or $\frac{120-126.9}{\sqrt{11.64}}$ no mixed method
= 2.022		A1	
2(1 - φ('2.022')) 2 (1 - '0.9784)' = 0.0432)		M1	FT 2×(1-'.9784')
$\alpha = 4.32 (3 \text{ sf})$		A1	FT Allow 4.3 or 4, if correct working seen, or clearly implied, as far as 0.0216 FT their z, no error seen One-tail test scores maximum 3/6
		6	

•	1,000 00 00 00 1		
(i)	Max no. of passengers plane can take oe	B1	oe e.g. No of passengers who bought tickets
		1	
(ii)	$\lambda = 3.2$	B 1	
	$e^{-3.2}(\frac{3.2^3}{3!} + \frac{3.2^4}{4!} + \frac{3.2^5}{5!})$	M1	Any λ . Allow one end error
	= 0.5146 = 0.515 (3 sfs)	A1	SR Use of Bin(640,0.005) scores B1 (only) for 0.516
		3	
(iii)	n > 50	B1	Accept n is large
	<i>np</i> = 1.6, which is < 5 or p=0.005 which is <0.1	B1	Allow $np = 3.2$
		2	
(iv)	H ₀ : Pop mean (for 5 days) = 8 H ₁ : Pop mean (for 5 days) < 8	B1	or Pop mean (for 1 day) = 1.6 Pop mean (for 1 day) < 1.6 Allow λ or μ but not just 'mean'
	$e^{-8}(1+8+\frac{8^2}{2!})$	M1	Any λ (\neq 1.6) No end errors. Accept use of Bin(1600,0.005) P(0,1,2)=0.0136
	= 0.0138	A1	
	Comp 0.025	M1	Valid comparison
	Evidence that mean no. failing to arrive has decreased	A1	FT their '0.0138' or '0.0136'. No contradictions
		5	
Que	stion 68		
i(i)	$H_0: p = 0.1$	B1	

(i)	H_0 : $p = 0.1$ H_1 : $p < 0.1$	B1	
	13	1	- / .5 /
i)	B(40, 0.1) stated or implied by use of	B1	e.g. by ${}^{40}C_x$ or $0.9^p \times 0.1^q$ $(p+q=40)$
	$0.9^{40} + 40 \times 0.9^{39} \times 0.1$	M1	Correct working (if seen). If working not seen, M1 may be implied by 0.0805
	= 0.0805	A1	
ii)	z = 1.645	3 B1	seen
	$\frac{6}{80} \pm z \sqrt{\frac{\frac{6}{80} \times \frac{(80 - 6)}{80}}{80}}$	M1	Formula of correct form. Must be a 'z'
	= 0.0266 to 0.123 (3 sfs)	A1	Allow 0.03 to 0.12 or better Must be an interval
		3	
v)	10% (or manufacturer's claim) is within CI Hence no reason to question claim	B1	FT Allow '10% is within CI, accept claim' oe Must include both parts. No contradictions. FT their CI Note if CI is centred on 0.1 allow ft 0.075 is within CI, accept claim
		1	

(i)	$Est(\mu) = 1.85$	B1	
	Est(σ^2) = $\frac{50}{49} \left(\frac{175.25}{50} - 1.85^2 \right)$	M1	Allow $\sqrt{\frac{50}{49} \left(\frac{175.25}{150} - 1.85^{2}\right)}$ or 0.0290 for M1
	$= 0.0842 (3 \text{ sf}) \text{ or } \frac{33}{392}$	A1	Cao If $\frac{50}{49}$ omitted (giving var = 0.0825 or sd = 0.287) M0A0
		3	
(ii)	H ₀ : Pop mean time = 1.9 (h) H ₁ : Pop mean time < 1.9 (h)	B1	Allow '\mu' but not just 'mean'
	$\pm \frac{1.85 - 1.9}{\sqrt{\frac{0.0842'}{50}}}$	M1	$\pm \frac{1.85 - 1.9}{\frac{0.290'}{\sqrt{50}}}$ Accept totals method (92.5–95) / $\sqrt{4.21}$
	=-1.22	A1	=-1.22
	comp z = -1.645	M1	Or other valid comparison 0.888 or 0.889 < 0.95 OR 0.111 or 0.112>0.05
	No evidence that mean time < 1.9 h	A1	FT their z. Correct conclusion. No contradictions If $\frac{50}{49}$ not used in (1): var = 0.8225, sd = 0.907, cr = 1.17 can score all marks in (ii) Note- 2 tail test can score B0 M1 A1 M1 (comparison with 1.96) A0 (no ft) max3/5
		5	
Que	stion 70		
(*)			

(i)	H_0 : $P(6) = \frac{1}{6}$ H_1 : $P(6) < \frac{1}{6}$	В1	
	$\left(\frac{5}{6}\right)^{30} + 30\left(\frac{1}{6}\right) \times \left(\frac{5}{6}\right)^{29} + {}^{30}C_2\left(\frac{1}{6}\right)^2 \times \left(\frac{5}{6}\right)^{28}$	M1	Allow one term incorrect, omitted or extra
	= 0.103	A1	- / .5
	'0.103' > 0.05	M1	CO.
	No evidence (at 5% level) that die biased	A1ft	oe No contradictions
		5	
(ii)	$(\frac{5}{6})^{30} + 30(\frac{1}{6}) \times (\frac{5}{6})^{29}$	M1	
	P(Type I) = 0.0295	A1	
		2	

Assume sd still 4.8 or is unchar	aged B1	or Assume the 150 times can be treated as a random sample / are independent
H ₀ : Pop mean = 26.5 H ₁ : Pop mean > 26.5	B1	Allow '\mu' but not just 'mean'
$\frac{27.5 - 26.5}{\frac{4.8}{\sqrt{150}}}$	M1	Standardise, with √ Accept CV method
= 2.552	A1	
Comp with z-value '2.552' > 2.326	M1	or comp $1 - \Phi(`2.552`)$ with 0.01 $1 - 0.9946 = 0.0054 < 0.01$
There is evidence time has incre	eased A1ft	oe No contradictions (2 tail test scores max. B1 B0 M1 A1 M1 (for comparison with 2.576) A0 no ft)
	6	

!(ii)	No because pop is normal so distr of \overline{X} is normal	B1	Condone just 'No because pop is normal'
		1	

(i)	H ₀ : Pop mean=546 H ₁ : Pop mean>546	B1	Both. Allow just μ , but not just 'mean'
	$\frac{581 - 546}{\frac{120}{\sqrt{40}}}$	M1	Standardising. Need $\frac{120}{\sqrt{40}}$
	=1.845 allow 1.844	A1	Allow 1.84 or 1.85 AWRT
	1.845<1.96	M1	OE. Or area comparison 0.0325>0.025 or large probabilities
	No evidence that mean weekly income has increased	A1FT	No contradictions. If H_1 : \neq , and 2.241 used, max B0M1A1M1A0
		5	
	$\frac{a - 546}{\frac{120}{\sqrt{40}}} = 1.96$	M1	Standardise to find a. Need $\frac{120}{\sqrt{40}}$ and 546 and a value of z
	a = 583.19	A1	Allow 583 to 3sf
	$\frac{^{1583.19} - 595}{\frac{120}{\sqrt{40}}} (= -0.622)$	M1	Standardise. Need $\frac{120}{\sqrt{40}}$ and 595
	φ('-0.622')=1 - φ('0.622')	M1	Consistent area
	0.267	A1	/ / /
		5	
Que	estion 73	5	
201	ume trains are independent OR probability of being on time is	R1 Mu	st be in context

Assume trains are independent OR probability of being on time is constant	B1	Must be in context
H ₀ : P(on time)=0.92 H ₁ : P(on time)<0.92	B1	Both. Allow 'p' or π
$\frac{1 - \\ \left(^{20}\text{C}_{17} \times 0.92^{17} \times 0.08^3 + ^{20}\text{C}_{18} \times 0.92^{18} \times 0.08^2 + 20 \times 0.92^{19} \times 0.08 + 0.92^{20} \right)}{}$	M1	Allow one end error Must have 1 –
=0.0706 (3 sf)	A1	
Compare with 0.05	M1	Valid comparison needed
No evidence that percentage less than 92%	A1FT	OE No contradictions. Method using normal approximation: If the first B1B1 is earned then: $CV - 1.566 \left(\text{from} \frac{16.5 - 20 \times 0.92}{\sqrt{20 \times 0.92 \times 0.08}}, \text{with continuity correction} \right)$ or $CV = 1.978 \text{ (without continuity correction)}$ $comp \ z = 1.645$ No evidence that % decreased (1.566) or evidence that % decreased (1.978) is awarded SC2 after B marks
	6	

(i)	H ₀ : Pop mean (or λ or μ) is 1.1 H ₁ : Pop mean (or λ or μ) is more than 1.1	B1	
	$P(X \ge 4) = 1 - e^{-1.1} \left(1 + 1.1 + \frac{1.1^2}{2} + \frac{1.1^3}{3!} \right)$	M1	Correct expression for either $P(X \ge 4)$ or $P(X \ge 5)$
	0.0257	A1	Correct value of either $P(X \ge 4)$ or $P(X \ge 5)$
	$P(X \ge 5) = 0.0257 - e^{-1.1} \times \frac{1.1^4}{4!} = 0.00544$	В1	B1 for the other value (Note use of $P(X < 4) = 0.9743$ and $P(X < 5) = 0.99456$ can score only if comparison with 0.99 seen)
	0.00544 < 0.01 < 0.0257	M1	OE stated (valid comparison)
	There is evidence mean has increased	B1	SC $P(X \ge 6) = 0.000968$ M1A1 Conclusion B1
	16	6	
(ii)	Concluding mean has increased when it has not	B1	In context
	'0.00544'	B1FT	FT their $P(X \ge 5)$, dep < 0.01
		2	
(iii)	$e^{-7.0} \left(1 + 7 + \frac{7^2}{2} + \frac{7^3}{3!} + \frac{7^4}{4!} \right)$	M1	Correct expression for $P(X \le 4 \mid \lambda = 7.0)$
	0.173 (3 sf)	A1	
		2	

		0	
(i)(a)	Assume standard deviation for the region is 7.1	B1	Or standard deviation is same as for whole population OE
	$\frac{63.2 - 65.2}{\frac{7.1}{\sqrt{n}}} = -2.182$	M1	Attempt to find correct equation (accept +2.182)
	$n = \{-2.182 \times 7.1 \div (-2)\}^2$	A1	Any correct expression for n or \sqrt{n} . SOI
	n = 60	A1	CWO. Must be an integer
		4	
(i)(b)	H_0 : population mean (or μ) = 65.2 H_1 : population mean (or μ) < 65.2	B1	Not just 'mean'
	2.182 > 1.751	M1	Or valid area comparison.
	There is evidence that animals are shorter in this region	A1	CWO. No contradictions
		3	
!(ii)	Population unknown or population not given as normal		Allow population not normal. Accept distribution of X unknown.

(a)	$P(X \le n)$ $(n \le 20)$ attempted, using B(20, 0.95)	M1	OE
	$P(X \le 17)$ or $P(X \le 16)$ attempted, using B(20, 0.95)	M1	OE
	$(P(X \le 17)) = 0.0755 \text{ and } (P(X \le 16)) = 0.0159$	A1	OE (0.925 and 0.984) both correct
	Rej region is $X \le 16$ or $X < 17$	A1	Dependent on M1M1 and previous answers correct to at least 0.075/0.076 and 0.016 or 0.92/0.93 and 0.98 Correct unsupported answers of 0.0755 and 0.0159 OE scores M1 M1 A0
		4	
(b)	0.0159	B1	FT their rejection region, from Binomial in a , if $P(X \text{ in rejection region}) < 0.025$
	FR	1	
(c)	Use of B(20, 0.7)	M1	
	$P(X > 16 \mid p = 0.7)$	M1	Correct method using B(20, 0.7)
	= 0.107	A1	
		3	
Ques	stion 77		
(2)	1504 188	R1	

(a)	est $(\mu) = 37.6$ or $\frac{1504}{40}$ or $\frac{188}{5}$	В1	
	est $(\sigma^2) = \frac{40}{39} \left[\frac{57760}{40} - 37.6^2 \right] = 31.0154 = \frac{2016}{65}$	M1	Correct substitution in any correct formula $\frac{1}{39} \left[57760 - \frac{1504^2}{40} \right]$
	= 31.(0) (3 sf)	A1	Accept $\frac{2016}{65}$ or $31\frac{1}{65}$
		3	
(b)	H ₀ : Pop mean (or μ) = 39.2 H ₁ : Pop mean (or μ) < 39.2	B1	Both. Not just 'mean'
	$\frac{\frac{'37.6'-39.2}{\sqrt{31.0154'}}}{\sqrt{40}}$	M1	Allow use of biased variance (30.2), must have $\sqrt{40}$
	=-1.817	A1	SC FT use of biased = -1.840 for A1
	'1.817' > 1.645 OE	M1	Valid comparison 'their 1.817' with 1.645 or valid area comparison $0.0346 < 0.05$ OE
	There is evidence that mean time has decreased	A1FT	FT their 1.817; in context, not definite, no contradictions SC For 2 tail test: H_1 : $\mu \neq 39.2$ and comp 1.96, max B0M1A1M1A0 (no FT for final mark)
		5	

•		
'(a)	Later customers might spend times different from first ones	B1
		1
(b)	0.02	B1
	Concluding that $\mu \neq 6.0$, when actually $\mu = 6.0$	B1
		2
(c)	H_0 : $\mu = 6.0$ H_1 : $\mu \neq 6.0$	B1
	6.8-6.0	M1
	$\sqrt{\frac{4.8}{50}}$	
	2.582	A1
	comp 2.326	M1
	Evidence that $\mu \neq 6.0$	A1
		5
(d)	Population distribution unknown	B1
		1
Ques	stion 79	
Η ₀ : λ =	= 104 (or 5.2)	B1

H_0 : $\lambda = 104$ (or 5.2) H_1 : $\lambda > 104$ (or 5.2)	B1
N(104, 104) stated or implied	B1
$\frac{124.5 - 104}{\sqrt{104}}$	M1
2.010	A1
2.010 > 1.96	M1
There is evidence that λ has increased	A1
	6

(a)	E(X) = 2	B1
	$0.2 \times 1 + 0.4 \times 2^2 + 0.2 \times 3^2 + 0.1 \times 4^2 - 2^2$ (= 1.2) AG	B1
		2
(b)	$\frac{a-2}{\sqrt{1.2 \div 200}} = \phi^{-1}(0.9)$	M1
	$\sqrt{1.2 \div 200}$ (M1 for LHS, M1 for RHS)	M1
	$a = 2 + \sqrt{1.2 \div 200} \times 1.282$	M1
	2.10 (3 sf)	A1
		4
(c)	Yes, because X is not normally distributed.	B1
		1
(d)	H_0 : pop mean = 2 H_1 : pop mean < 2	B1
	$\frac{1.86 - 2}{\sqrt{1.2 \div 200}}$	M1
	1.807	A1
	comp z = 1.645	M1
	There is evidence that the spinner is biased so that mean is less than 2	A1
		5

(a)	H_0 : Proportion = 0.05 H_1 : Proportion > 0.05	B1
		1
(b)	$1 - (0.95^{25} + 25 \times 0.95^{24} \times 0.05 + {}^{25}C_2 \times 0.95^{23} \times 0.05^2 + {}^{25}C_3 \times 0.95^{22} \times 0.05^3)$	M1
	Completely correct expression	A1
	0.0341	A1
		3
(c)	Туре ІІ	B1
	Will conclude proportion not increased	B1
		2

(a)	$(1^2 + 2^2 + 3^2 + 4^2 + 5^2) \div 5 - 3^2 (= 2 \text{ AG})$	B1
		1
(b)	N(3, 2)	M1
	$\frac{2.6 - "3"}{\sqrt{\frac{2}{40}}} (= -1.789)$	M1
	$\Phi(\text{``-1.789''}) = 1 - \Phi(\text{``1.789''})$	M1
	0.0367 to 0.0368	A1
		4
(c)	Concluding that spinner is unbiased when it is biased	B1
		1

Question 83

(a)	Assume standard deviation unchanged or standard deviation = 0.08	B1
	Assume yields normally distributed	B1
		2
(b)	H ₀ : Population mean yield (or μ) = 0.56 H ₁ : Population mean yield (or μ) > 0.56	B1
	$\frac{0.61 - 0.56}{\frac{0.08}{\sqrt{10}}}$	M1
	1.976	A1
	Comp 1.96	M1
	There is evidence that mean yield has increased	A1
	15/15/15/	5

i(a)	$\frac{40-38.4}{\underline{6.9}} = 1.270 \frac{38-38.4}{\underline{6.9}} = -0.3175$	M1
	$\sqrt{30}$ $\sqrt{30}$	A1
		A1
	$\Phi(1.270') - (1 - \phi(0.3175')$	M1
	= 0.523 (3 sf) or 0.522	A1
		5

(b)(i)	2-tail because looking for 'change', not decrease or increase	B1
		1
(b)(ii)	H ₀ : Population mean journey time (or μ) = 38.4 H ₁ : Population mean journey time (or μ) \neq 38.4	B1
	$\frac{40.2 - 38.4}{\frac{6.9}{\sqrt{30}}}$	M1
	= 1.429	A1
	'1.429' < 1.645	M1
	There is no evidence that mean journey time has changed.	A1 FT
(b)(iii)	Yes, because population distribution unknown.	B1
	12h 00'	1

(a)	$\sqrt{2.1}$ or 1.45 (3 sf)	B1
		1
(b)	$\lambda = 4.2$	B1
	$1 - e^{-4.2}(1 + 4.2)$	M1
	= 0.922 (3 sf)	A1
	TPRA	3
(c)	$\lambda = 6.3$	M1
	$e^{-6.3} \left(\frac{6.3^5}{5!} + \frac{6.3^6}{6!} + \frac{6.3^7}{7!} \right)$	
	= 0.455 (3 sf)	A1
		2
(d)	H_0 : $\lambda = 6.3$ H_1 : $\lambda < 6.3$	B1
	$P(X \le 2) = e^{-6.3} \left(1 + 6.3 + \frac{6.3^2}{2!} \right)$	M1
	= 0.0498 or 0.0499	A1
	'0.0498' < 0.1	M1
	There is evidence that mean number of absences has decreased.	A1 FT
		5
(e)	H ₀ rejected	*B1 FT

DB1 FT

2

Hence Type I error possible

o(a)	H_0 : P(contains offer) = $\frac{1}{3}$	B1
	H_1 : P(contains offer) $<\frac{1}{3}$	
	P(0,1 or 2 offers in 20 H ₀) = $\left(\frac{2}{3}\right)^{20} + 20 \left(\frac{2}{3}\right)^{19} \left(\frac{1}{3}\right) + {}^{20}C_2 \left(\frac{2}{3}\right)^{18} \left(\frac{1}{3}\right)^2$	M1
	= 0.0176 (3sf)	A1
	'0.0176' < 0.1	M1
	(Reject H ₀) No evidence (at 10% level) to support manufacturers claim	A1 FT
(b)	$1 - P(X \le 3)$	5 M1
	$=1-\left[\left(\frac{6}{7}\right)^{20}+20\left(\frac{6}{7}\right)^{19}\left(\frac{1}{7}\right)+{}^{20}C_{2}\left(\frac{6}{7}\right)^{18}\left(\frac{1}{7}\right)^{2}+{}^{20}C_{3}\left(\frac{6}{7}\right)^{17}\left(\frac{1}{7}\right)^{3}\right]$	A1
	= 0.318 (3sf)	A1
		3
(c)	Concluding that prop is 1 in 3 when it is actually less(1 in 7)	B1
		1

$est(\mu) = \frac{1850}{200}$ or 9.25	B1
$est(\sigma^2) = \frac{200}{199} \left(\frac{17850}{200} - \left(\frac{1850}{200} \right)^2 \right) \text{ or } \frac{1}{199} \left(17850 - \frac{1850^2}{200} \right)$	M1
$= 3.71 \text{ or } 3.7060 \text{ or } \frac{1475}{398}$	A1
H ₀ : $\mu = 8.9$ H ₁ : $\mu \neq 8.9$	B1
$\frac{\frac{1850}{200} - 8.9}{\sqrt{\frac{"3.706"}{200}}}$	M1
= 2.57(3sf) (or using areas 0.00507 - 0.0051)	A1
2.24 < 2.57 or 0.00507 < 0.0125	M1
(Reject H_0) There is evidence that μ is not 8.9	A1 FT
	8

Que.			
i(a)	H_0 : population proportion = 0.08 OE H_1 : population proportion > 0.08 OE	B1	Allow ' $p = 0.08$ ' etc.
	$P(X \ge 4) = 1 - P(X \le 3) = 1 - (0.92^{25} + 25 \times 0.92^{24} \times 0.08 + {}^{25}C_2 \times 0.92^{23} \times 0.08^2 + {}^{25}C_3 \times 0.92^{22} \times 0.08^3)$	M1	Allow 1 – (one term omitted or extra or wrong).
	0.135 (3 sf)	A1	
	0.135 > 0.05	M1	Valid comparison. Note: '0.865'<0.95 can score M1 A1 and can recover previous M1 A1 for 0.865.
	There is no evidence that proportion owning Chantor has increased	A1 FT	In context. Not definite, e.g. not 'Proportion not increased'. No contradictions.
		5	
(b)	H ₀ was not rejected.	*B1 FT	Ho was rejected (consistent with (a)).
	Hence Type II might have been made.	DB1 FT	Туре I еггог.
		2	
5(c)	$P(X \ge 5) = 1 - P(X \le 4)$ = 1 - \(\begin{pmatrix} (1 - 0.1351) + \frac{25}{5}C_4 \times 0.92^{21} \times 0.08^4 \end{pmatrix} [= 0.0451]	*M1	Attempted. Note: If critical region method used in (a) marks can be awarded here.
	0.0451 < 0.05	A1	Comparison of 0.045[1] with 0.05. Note: If critical region method used in (a) marks can be awarded here.
	P(Type I error) = 0.0451 or 0.0452	A1	Dependent on M1* only. SC Unsupported answers score: B1 for 0.0451<0.05 and B1 for final answer 0.0451 only.
		3	

(a)	One-tail because investigating whether "higher"	B1	OE. Must have both parts.
	SatpreP	1	
(b)	H ₀ : Population mean (or μ) in city same as for others H ₁ : Population mean (or μ) in city greater than for others	B1 FT	If (a) two-tail: Ho: Pop mean (or μ) in city same as for others. H ₁ : Pop mean (or μ) in region different from others.
	2.41 > 2.326 or 0.008 < 0.01 or 0.992 > 0.99	M1	If (a) two-tail: 2.41 < 2.576 or 0.992 < 0.995.
	There is evidence that buildings are higher [on average].	A1 FT	In context, not definite. No contradictions. If (a) two-tail: There is no evidence that the [average] height of buildings is different.
		3	

(a)(i)	H_0 : $\lambda = 2.4$ H_1 : $\lambda > 2.4$	B1	Accept λ or μ Accept 2.4 or 0.8 (per year)
		1	
(a)(ii)	$1 - e^{-2.4} \left(1 + 2.4 + \frac{2.4^2}{2} + \frac{2.4^3}{3!} + \frac{2.4^4}{4!}\right)$	M1	Any λ ; allow one end error
	0.0959 (3 sf)	A1	SC unsupported answer 0.0959 scores B1 only not M1A1
	0.0959 > 0.05	M1	Valid comparison Use of 0.9041 < 0.95 can recover either M1A1 or B1
	There is evidence that Jane's claim not justified or There is insufficient evidence to support Jane's claim	A1 FT	OE. In context, not definite, e.g. not 'Jane is wrong', no contradictions. Condone omission of Jane.
		4	
3(b)	Mean not constant so Poisson model not valid	B1	
	16	1	

)	Conclude (mean) (journey) time has not decreased when in fact it has.	B1	OE in context
		1	
)	H ₀ : Pop mean (or μ) = 1.4 H ₁ : Pop mean (or μ) < 1.4	B1	May be seen in (a)
	$\frac{1.36 - 1.4}{\frac{0.12}{\sqrt{50}}}$	M1	Accept totals method $\frac{68-70}{\sqrt{50}\times0.12}$ No mixed methods or no standard deviation/variance mixes
	-2.357 or - 2.36	A1	Correct z or correct area if used
	-2.357 < -1.96 or 0.0092 < 0.025 or 0.9908 > 0.975 Or CV method 1.36 < 1.367	M1	valid comparison
	There is evidence that (mean) (journey) times have decreased	A1 FT	in context not definite no contradictions NB use of two tail test scores max B0M1A1M1A0 no for two tail test
		5	
(c)	H ₀ was rejected OE	*B1 FT	FT H ₀ was accepted OE
	Type I	DB1 FT	FT Type II
		2	

(a)	Conclude that (population) mean time has changed (or is not 42.4) although μ has not changed (or is still 42.4)	B1	OE. In context.
		1	
(b)	H ₀ : population mean (or μ) = 42.4 H ₁ : population mean (or μ) \neq 42.4	B1	Not just 'mean'. (could be seen in (a))
	$\pm \frac{45.6 - 42.4}{\sqrt{38.2 \div 20}}$	M1	For standardising (must have $\sqrt{20}$)
	± 2.315	A1	
	2.240 < '2.315'	M1	For valid comparison (accept 2.241) or $P(z > 2.315) = 0.0103 < 0.0125$ oe
	There is evidence that μ or mean time has changed	A1 FT	FT their z In context, not definite. No contradictions. Note: Accept correct alternative methods SC: One tail test no FT. Can score B0 M1 A1 M1 (comparison with 1.96) A0 (maximum 3 out of 5)
		5	
Que	stion 93		
		-	

(a)	$egin{aligned} \mathbf{H_0}: p = rac{1}{4} \ \mathbf{H_1}: p eq rac{1}{4} \end{aligned}$	В1	or H ₀ : $\mu = 25$ or H ₁ : $\mu \neq 25$
		1	///
(b)	$N\left(25,\frac{75}{4}\right)$	B1	SOI. Allow B1 for $N\left(25, \frac{75}{4}\right)$ or $N(0.25, 0.001875)$ SOI.
	$\pm \frac{15.5 - 25}{\sqrt{\frac{75}{4}}} \text{ or } \frac{\frac{15.5}{100} - 0.25}{\sqrt{\frac{0.25 \times 0.75}{100}}}$	M1	Standardise with <i>their</i> N(25,) Allow with no or wrong continuity correction.
	±-2.194 (2.19)	A1	
	-2.326 < -2.194 or 0.0141 > 0.01 or 0.9859 < 0.99	M1	For valid comparison (accept 2.326 to 2.329)
	No evidence to reject that the probability is $\frac{1}{4}$	A1 FT	OE must be in context and not definite, e.g. not 'Claim untrue'. No contradictions. FT <i>their z</i> ; dependent on two-tailed test (one-tailed test can score B1 M1 A1 M1 A0) SC for use of Binomial B(100,0.25) P = 0.0111 for B1 and then comparison with 0.01 and correct conclusion for B1, maximum 2 out of 5 marks.
		5	

i(a)	Not representative (of all students in the school)	B1	OE idea of 'not being representative' e.g. different grades in the school have different characteristics/proportions Don't accept 'not random' or 'biased' without further explanation.
		1	
(b)	H ₀ : P(not correct uniform) = 0.15 H ₁ : P(not correct uniform) < 0.15	B1	Allow "p"
		1	
(c)	Any two probs attempted using B(50,0.15)	M1	
	$P(X \le 3) = 0.85^{50} + 50 \times 0.85^{49} \times 0.15 + {}^{50}C_2 \times 0.85^{48} \times 0.15^2 + {}^{50}C_3 \times 0.85^{47} \times 0.15^3$	M1	Attempt the tail probability P(0,1,2,3) with B(50,0.15) must be added.
	$P(X \le 4) = 0.04605 + {}^{50}C_4 \times 0.85^{46} \times 0.15^4$	M1	OE. Their $P(X \le 3) + P(X = 4)$ or $P(0,1,2,3,4)$ with $B(50,0.15)$ must be added.
	$P(X \le 3) = 0.0460 \text{ or } 0.0461 [<0.05]$ $P(X \le 4) = 0.112 \text{ or } [>0.05]$	A1	Both correct. OR if P(X \le 4) not seen; P(4)=0.06606 and 0.06606>0.05 and P(X \le 3)=0.0460 scores M1 A1
	P(Type I) = 0.0460 or 0.0461 (3 sf)	A1	Dependent on second M1. SC If M1M1M1A0 scored allow A1FT for incorrect $P(X \le 3)$ as long as <0.05
		5	
(d)	4 is outside critical region (\leq 3) OE or P($X \leq 4$) = 0.112 which is > 0.05	M1	FT working from (c).
	No evidence that proportion not wearing the correct uniform has decreased (Accept Ho)	A1	In context not definite, e.g. not 'Proportion has not decreased'. No contradiction.
		2	
(e)	Not rejected H ₀	*B1 FT	FT If Reject H₀ in (d)
	Type II	DB1 FT	FT Type I
	13.	2	

(a)	H_0 : $\mu = 64.6$ H_1 : $\mu < 64.6$	B1	Allow population mean, not just 'mean'.
	$[\pm] \frac{63.5 - 64.6}{5.2 \div \sqrt{100}}$	M1	Standardising. Must have $\sqrt{100}$.
	[±]-2.115	A1	Accept -2.12 (3sf)
	'2.115' > 1.96 or '-2.115' < -1.96 [do not accept H ₀]	M1	Valid comparison (0.0172 < 0.025 for area comparison).
	There is evidence that μ < 64.6	A1 FT	Not definite, e.g. not ' μ < 64.6'. in context. No contradictions. Accept critical value method leading to 63.5 < 63.58 or 64.6 > 64.52.
		5	
'(b)	$\frac{m - 64.6}{5.2 + \sqrt{100}} = -1.96$	M1	Finding the critical value using N $\left(64.6, \frac{5.2}{\sqrt{100}}\right)$ and a z value.
	m = 63.5808	A1	
	$\frac{63.5808 - 62.7}{5.2 \div \sqrt{100}} [= 1.694]$	M1	Standardising using N $\left(62.7, \frac{5.2}{\sqrt{100}}\right)$ and a critical value.
	1 – Φ('1.694')	M1	For area consistent with their values.
	0.0451	A1	Accept answers that round to 0.045.
		5	

(a)(i)	Po(0.025)	B1	For Poisson and correct parameter.
	n = 2500 > 50, np = 0.025 < 5	B1	Must show 2500 and 0.025. Accept p = $\frac{1}{100000}$ < 0.1 in place of $np = 0.025 < 5$.
	'SatpreP'	2	
(a)(ii)	$1 - e^{-0.025}$	M1	Allow any λ . FT <i>their</i> (a)(i) if normal; must have continuity correction.
	0.0247 (3sf)	A1	Must be from Poisson. Unsupported correct answer scores B1 instead of M1 A1.
		2	
i(b)	H_0 : $p = 0.3$ H_1 : $p < 0.3$	B1	
	$0.7^{28} + 28 \times 0.7^{27} \times 0.3 + {}^{28}C_2 \times 0.7^{26} \times 0.3^2 + {}^{28}C_3 \times 0.7^{25} \times 0.3^3 + {}^{28}C_4 \times 0.7^{24} \times 0.3^4$	M1	Use of B(28, 0.3). Addition of terms must be intended. Allow one term wrong or omitted or extra.
	0.0474	A1	Unsupported correct answer scores B1 instead of M1 A1.
	0.0474 > 0.02 [Not reject H ₀]	M1	Valid comparison.
	No evidence that suspicion is true.	A1 ft	Not definite e.g. not 'Suspicion is not true', in context, no contradictions.
			SC use of N(8.4, 5.88) leading to $0.054 > 0.2$ OE can score B1 only for comparison and correct conclusion. Correct hypotheses with p will also score B1.
		5	

(a)	H_0 : $P(0) = \frac{1}{10}$	B1	Accept p.
	H_1 : $P(0) < \frac{1}{10}$		
		1	
(b)	For B(30,0.1)	M1	Used not just stated.
	$P(X=0) = 0.9^{30} [= 0.0424] [< 0.1]$	M1	
	$P(X=0 \text{ or } 1) = 0.9^{30} + 30 \times 0.9^{29} \times 0.1 = 0.184 [>0.1]$	B1	Accept 0.184 or 0.183.
	Rejection region is 0 zeros	A1	Dependent on M1 M1 and at least one comparison, no errors seen. SC One unsupported correct answer 0.0424/0.184(or 0.183) and correct rejection region scores B1; with comparison with 0.1 scores B2. Two unsupported correct answers 0.0424 and 0.184(or 0.183) and correct rejection region scores B2 or if with one comparison with 0.1 scores B3.
		4	
(c)	0.0424	B1	FT <i>their</i> (b) must have a critical region (only follow though Binomial), dependent on answer < 0.1.
		1	
(d)	$Bin(30, \frac{1}{40})$	B1	SOI
	$1 - 0.975^{30}$	M1	FT their rr and with Bin(30, 1/40)).
	0.532 (3dp)	A1	SC Unsupported correct answer scores B2 only.
		3	
(e)	Not concluding that the probability is less than $\frac{1}{10}$, when in fact it is.	B1	In context.
		1	

(a)	Fireworks are destroyed when tested.	B1	
	Satpre	1	
(b)	H ₀ : Pop mean time lasted (or μ) = 30 H ₁ : Pop mean time lasted (or μ) < 30	B1	Not just 'mean'.
	$\pm \frac{29 - 30}{\frac{5}{\sqrt{100}}}$	M1	For standardising. Must have $\sqrt{100}$. Use of totals N(3000,2500) giving $\frac{(2900-3000)}{\sqrt{2500}}$ scores M1. No mixed methods.
	±-2	A1	
	-2 > -2.326 [Do not reject H ₀]	M1	Accept -2.326 to -2.329. Valid comparison or area comparison 0.0228>0.01 or 0.9772<0.99. Accept CR method 28.837<29 or 30.163>30.
	There is not enough evidence that mean time lasted is less than 30 seconds OR Not enough evidence to support the inspector's suspicion	A1 FT	In context (if used need mean or time / condone average instead of mean), not definite, e.g. not 'mean time lasted is not less than 30 seconds'. No contradictions. Note 2 tailed test can score B0 M1 A1 M1 (comparison with 2.574–2.579) A0 (no FT).
		5	
(c)	Yes. Because population distribution is unknown [condone not Normal].	B1	Both needed. Condone X for parent population.
		1	

(a)	H_0 : $\mu = 64.6$ H_1 : $\mu < 64.6$	B1	Allow population mean, not just 'mean'.
	$[\pm] \frac{63.5 - 64.6}{5.2 \div \sqrt{100}}$	M1	Standardising. Must have $\sqrt{100}$.
	[±]-2.115	A1	Accept -2.12 (3sf)
	'2.115' > 1.96 or '-2.115' < -1.96 [do not accept H ₀]	M1	Valid comparison (0.0172 < 0.025 for area comparison).
	There is evidence that μ < 64.6	A1 FT	Not definite, e.g. not ' μ < 64.6'. in context. No contradictions. Accept critical value method leading to 63.5 < 63.58 or 64.6 > 64.52.
		5	
'(b)	$\frac{m - 64.6}{5.2 \div \sqrt{100}} = -1.96$	M1	Finding the critical value using N $\left(64.6, \frac{5.2}{\sqrt{100}}\right)$ and a z value.
	m = 63.5808	A1	
	$\frac{63.5808 - 62.7}{5.2 \div \sqrt{100}} [= 1.694]$	M1	Standardising using N $\left(62.7, \frac{5.2}{\sqrt{100}}\right)$ and a critical value.
	1 – Ф('1.694')	M1	For area consistent with their values.
	0.0451	A1	Accept answers that round to 0.045.
		5	
-	stion 100		
(a)(i)	Pa(0.025)	D1	For Doisson and someon normator

(a)(i)	Po(0.025)	B1	For Poisson and correct parameter.
	n = 2500 > 50, np = 0.025 < 5	B1	Must show 2500 and 0.025. Accept $p = \frac{1}{100000} < 0.1$ in place of $np = 0.025 < 5$.
	4	2	
(a)(ii)	1 - e ^{-0.025}	M1	Allow any λ . FT their (a)(i) if normal; must have continuity correction.
	0.0247 (3sf)	A1	Must be from Poisson. Unsupported correct answer scores B1 instead of M1 A1 .
		2	
(b)	H_0 : $p = 0.3$ H_1 : $p < 0.3$	B1	
	$0.7^{28} + 28 \times 0.7^{27} \times 0.3 + {}^{28}C_2 \times 0.7^{26} \times 0.3^2 + {}^{28}C_3 \times 0.7^{25} \times 0.3^3 + {}^{28}C_4 \times 0.7^{24} \times 0.3^4$	M1	Use of B(28, 0.3). Addition of terms must be intended. Allow one term wrong or omitted or extra.
	0.0474	A1	Unsupported correct answer scores B1 instead of M1 A1.
	0.0474 > 0.02 [Not reject H ₀]	M1	Valid comparison.
	No evidence that suspicion is true.	A1 ft	Not definite e.g. not 'Suspicion is not true', in context, no contradictions.
			SC use of N(8.4, 5.88) leading to $0.054 > 0.2$ OE can score B1 only for comparison and correct conclusion. Correct hypotheses with p will also score B1.
		5	

(a)

H₀: $\mu = 25.5$ H₁: $\mu < 25.5$

23.7 - 25.5

	$5.2 \div \sqrt{40}$		
	= -2.189	A1	
	'2.189' < 2.326	M1	For valid comparison
			For two-tailed test: allow compare 2.576 if H_1 : $\mu \neq$ 25.5
	[Accept H ₀] No evidence that mean time has decreased	A1 FT	In context, not definite, no contradictions FT their 2.189 but no FT for two-tailed test N.B. Use of two-tailed test can score max B0 M1 A1 M1 A0 Condone use of critical value method (23.59 M1 A1 and 23.7 > 23.59 M1 A1 correct conclusion or 25.612 M1 A1 and 25.5 < 25.612 M1 A1 with correct conclusion)
	A TRE	5	
(b)	No, because H ₀ was not rejected	B1 FT	FT their conclusion in (a)
		1	
Que	stion 102		
B(30	$0, \frac{1}{5}) \to N(60,48)$	B1	SOI
$\frac{45.5}{\sqrt{2}}$	Table 1	M1	Condone with wrong or no continuity correction
= -2.	093	A1	7 /
'2.09	3' > 1.96	M1	Valid comparison Note: φ('–2.093') (= 0.0182), 0.0182< 0.025
[Evidence to reject H_0] There is evidence that $P(\text{landing on blue}) \neq \frac{1}{5}$		A1 FT	Allow 'There is evidence that the spinner is biased.' In context, not definite, no contradictions Condone critical values method (critical value 46.42 M1 A1 and 45.5 < '46.42' M1 for valid comparison A1 for correct conclusion)

B1

M1 Must have $\sqrt{40}$

SC: 0.0182 unsupported: 0.0182 < 0.025

5

And there is evidence that the spinner is biased. In context, not definite B1 only

(a)	Batteries unusable after testing or Population too big or too costly or too time consuming to use the whole population oe	B1	
		1	
(b)	H_0 : $\mu = 150$ H_1 : $\mu < 150$	B1	Or population mean = 150; not just 'mean' = 150
	$\frac{147 - 150}{\sqrt{225} \div \sqrt{120}}$	M1	Allow with continuity correction Need $\sqrt{120}$
	-2.191	A1	Condone – 2.19
	-2.191 < -2.054 [or -2.055]	M1	OE. For valid comparison with 2.054 or 2.055 Or 0.0143 (or 0.0142) < 0.02 For two tail test allow comp -2.326 OE if H_1 : $\mu \neq 150$ (can score B0M1A1M1A0 max 3/5)
	[Reject Ho] There is evidence that the (mean) life of type <i>B</i> is less than type <i>A</i> (or less than 150)	A1 FT	In context, not definite with no contradictions Accept critical value method 147.19 M1A1 147 < 147.19 M1 conclusion A1 Or 150 > 149.81
		5	
c)	$147 \pm z \times \frac{15}{\sqrt{120}}$	M1	Expression of correct form must be a z value
	z = 1.881 [or 1.882]	B1	
	144 to 150 (3 s.f.)	A1	Must be an interval Incorrect z value can only score M1B0A0
		3	

(a)	Conclude more than 10% of the students are left handed when this is not true	B1	OE. Must be in context (accept use of <i>p</i>). Need the context of one tail test.
	3	1	
(b)	$\frac{1 - (0.9^{20} + 20 \times 0.9^{19} \times 0.1 + {}^{20}C_{2} \times 0.9^{18} \times 0.1^{2} + {}^{20}C_{3} \times 0.9^{17} \times 0.1^{3} + {}^{20}C_{4} \times 0.9^{16} \times 0.1^{4})}{0.9^{16} \times 0.1^{4})}$	M2	M2: fully correct M1: attempt $1 - P(X = 0, 1, 2, 3, 4)$; allow $1 - P(X = 0, 1, 2, 3, 4, 5)$ or $1 - P(X = 0, 1, 2, 3)$ need $1 - \dots$ the method mark cannot be implied
	0.0432 (3 s.f.)	A1	If M0 awarded allow SC B2 for 0.0432
		3	
(c)	$0.7^{20} + 20 \times 0.7^{19} \times 0.3 + {}^{20}C_2 \times 0.7^{18} \times 0.3^2 + {}^{20}C_3 \times 0.7^{17} \times 0.3^3 + {}^{20}C_4 \times 0.7^{16} \times 0.3^4$	M1	Attempt to find $P(\leqslant 4)$ using $B(20,0.3)$ Allow one end error The method mark cannot be implied
	0.238 or 0.237 (3 s.f.)	A1	If M0 awarded allow SC B1 for 0.238 or 0.237
		2	

(a)	H ₀ : Pop mean = 4.6 [or 9.2] H ₁ : Pop mean < 4.6 [or 9.2]	B1	or $\lambda = 4.6$ or μ (Not just 'mean') or $\lambda < 4.6$
		1	
(b)	Use of Poisson with $\lambda = 9.2$	B1	SOI
	$P(X \le 3) = e^{-9.2}(1 + 9.2 + \frac{9.2^2}{2} + \frac{9.2^3}{3!}) = 0.0184 \text{ or } 0.018 [< 0.02]$	M1	At least one of these attempted correct λ (with Poisson expression seen not implied)
	$P(X \le 4) = 0.0184 + e^{-9.2} \times \frac{9.2^4}{4!} = 0.0486 \text{ or } 0.049 \text{ [> 0.02]}$	*A1	Both correct SC Use of $\lambda = 4.6$ scores B1 for P(X = 0) = 0.01[0][1] and P(X \leq 1) = 0.056[3]only
	$CR \text{ is } X \leqslant 3$	DA1	From CWO and at least one comparison seen SC If M0 awarded allow *B1 for both 0.018 and 0.049 or better and DB1 for correct critical region from CWO and at least one comparison seen.
		4	
(c)	5 is not in critical region OR P(X \leq 5) =0.104 > 0.02 so [not reject H ₀] no evidence that number of cars arriving is now fewer	M1 A1 FT	For a comparison (i.e. 5 > 3) OE In context, not definite No contradictions e.g. not 'No. of cars arriving is not fewer' ft <i>their</i> critical region if used (but must be from Poisson and integers)
		2	
(d)	No, because H ₀ was not rejected	B1 FT	OE, FT their (c)
		1	
(e)	N(276, 276)	B1	SOI
	$\frac{300.5 - 276}{\sqrt{276}} \ [= 1.475]$	M1	Standardising with <i>their</i> values Allow with wrong or no continuity correction
	$1 - \phi(`1.475`) = 0.0701 (3 \text{ s.f.})$	A1	SC Use of Poisson: B1 for answer 0.0727 (3 sf)
		3	V /

H ₀ : Pop mean height = 2.3 H ₁ : Pop mean height > 2.3	B1	Not just 'mean' Allow μ
$\frac{2.4 - 2.3}{\frac{0.4}{\sqrt{60}}}$	M1	For standardising, must have $\sqrt{60}$
1.936 or 1.937 or 1.94	A1	
'1.936' < 1.96	M1	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
[Do not reject H_0] No evidence that (mean) height (with fertiliser) is more than without	A1 FT	FT their z In context, not definite. E.g. not 'Mean height is not greater' with no contradictions No FT for 2 tail test (max B0 M1 A1 M1 A0 3/5) Accept critical values method 2.401 (M1 A1) 2.4 < 2.401 (M1) Condone 2.299 (M1 A1) < 2.3 (M1) A1 conclusion
	5	

(a)	H_0 : pop mean run time = 28.2 mins H_1 : pop mean run time < 28.2 mins	B1	Allow 'μ'. Not 'mean journey time'
		1	
(b)	$\frac{27 - 28.2}{4/\sqrt{40}} \ [= -1.897]$	M1	For standardising Must have √40
	$\Phi(< -1.897') = 1 - \Phi(-1.897')$	M1	For correct area consistent with these values
	0.0289 (3 sf)	A1	
		3	
(c)	H ₀ is not rejected so	M1	
	Type II error can be made and Type I error cannot be made	A1	Both needed (accept 'only a Type II error could be made')
		2	

Question 108

H_0 : P(correct) = $\frac{1}{6}$	B1	Allow $p = \frac{1}{6}$
H_1 : P(correct) $> \frac{1}{6}$		Allow $p > \frac{1}{6}$
$1 - ({}^{15}C_4 \times (\frac{5}{6})^{11} \times (\frac{1}{6})^4 + {}^{15}C_3 \times (\frac{5}{6})^{12} \times (\frac{1}{6})^3 + {}^{15}C_2 \times (\frac{5}{6})^{13} \times (\frac{1}{6})^2 + 15 \times (\frac{5}{6})^{14} \times \frac{1}{6} + (\frac{5}{6})^{15})$	M1	Expression must be seen Allow one end error
0.0898 or 0.0897 (3 sf)	A1	SC if M0 scored allow SCB1 for 0.0898 or 0.0897
0.0898 < 0.1	M1	Valid comparison For valid comparison with 0.9 (0.9102 > 0.9 seen the previous M1and A1 can be recovered
[Reject H ₀] There is evidence (at the 10% level) that Arvind can predict scores	FTA1	Not definite, e.g. not 'He can predict' or 'Claim true' In context and no contradictions
satpre?	5	

(a)	H_0 : $P(red) = 0.2 H_1$: $P(red) < 0.2$	B1	Allow H_0 : $p = 0.2 H_1$: $p < 0.2$.
	$P(X \le 4) = 0.8^{40} + 40 \times 0.8^{39} \times 0.2 + {}^{40}C_2 \times 0.8^{38} \times 0.2^2 + {}^{40}C_3 \times 0.8^{37} \times 0.2^3 + {}^{40}C_4 \times 0.8^{36} \times 0.2^4$	M1	For full expression seen. Allow one term omitted, incorrect or extra.
	0.0759	A1	SC 0.0759 without working B1.
	their '0.0759' > 0.05	M1	Valid comparison (from binomial probs) of their $P(X \le 4)$ with 0.05.
	[Do not reject H_0]. Not enough evidence that it lands on red fewer times than if it were fair or not enough evidence to suggest that the spinner is biased	A1 FT	FT their 0.0759. In context, not definite, no contradictions.
		5	

(b)	$P(X \le 3) = 0.0759 - {}^{40}C_4 \times 0.8^{36} \times 0.2^4$	M1	OE Attempted. Must be using $B(40, 0.2)$. Method could be implied by correct answer here.
	= 0.0285 or 0.0284	*A1	
	Largest value of r is 3	DA1	
		3	

(a)	H ₀ : Population mean time (or μ) = 32.5 H ₁ : Population mean time (or μ) < 32.5	B1	Not just "mean".
	$\pm \frac{31.8 - 32.5}{3.1 \div \sqrt{50}}$	M1	Must have $\sqrt{50}$. Could be implied.
	$=\pm -1.597$	A1	
	'-1.597' < -1.406 [or '1.597' > 1.406]	M1	Valid comparison of their z_{calc} with ± 1.406 . or $0.0551 < 0.08$ (or $0.0552 < 0.08$).
	[reject H ₀]	A1 FT	In context, not definite, no contradictions.
	There is evidence that [population] [mean] time has decreased		Note: Accept critical value method 31.88 (31.9) M1 A1 and 31.8 < 31.88 M1 conclusion A1.
		5	
(b)	$\frac{a - 32.5}{3.1 \div \sqrt{50}} = -1.406$	M1	Standardise with 32.5 and $\sqrt{50}$ and z value on RHS.
	a = 31.88 or 31.9	A1	May be seen in part (a). Can score M1A1 here as well using a similar approach to (a).
	$\frac{their'31.88 - 31.5}{3.1 \div \sqrt{50}}$ [= 0.8668 to 0.8760]	M1	Standardise with <i>their</i> cv and mean = 31.5. Must have $\sqrt{50}$.
	1 – Φ(*0.8668')	М1	For area consistent with their working.
	= 0.190 to 0.193 (3 sf)	A1	
		5	

H_0 : Population mean length = 10.3 cm H_1 : Population mean length < 10.3 cm	B1	or $\mu = 10.3$ (not just 'mean'). $\mu < 10.3$
$\pm \frac{9.8 - 10.3}{2.6 / \sqrt{100}}$	M1	If \pm 1.923 (or 0.0272) seen allow M1 implied.
=-1.923	A1	Accept ± . Accept 3sf.
-1.923 > -2.054 or -2.055	M1	OE For a valid comparison. Or compare $1-\phi(`1.923``)$ with 0.02 e.g. $0.0272>0.02$ Use of CV $9.8>9.766$ scores M1 A1 for 9.766 and M1 for comparison.
[Not reject H ₀] No evidence that [mean] length has decreased	A1 FT	FT their z. No contradictions, not definite, in context.
	5	

 $1 - \Phi(`0.8668')$

= 0.190 to 0.193 (3 sf)

(a)	H_0 : Population mean = 7.2 or 2.4 H_1 : Population mean < 7.2 or 2.4	B1	or λ or $\mu = 7.2$ or 2.4 (Not just 'mean'). or λ or $\mu < 7.2$ or 2.4
		1	
(b)	λ = 7.2	B1	SOI
	$[P(X \le 2)] = e^{-7.2} \left(1 + 7.2 + \frac{7.2^2}{2} \right) \text{ or } e^{-7.2} (1 + 7.2 + 25.92)$ or $0.0007465 + 0.0053754 + 0.01935 [= 0.0255]$ $[P(X \le 3)] = {}^{1}0.0255 + e^{-7.2} \times \frac{7.2^3}{3!} \text{ or } {}^{1}0.0255 + e^{-7.2} (62.21)$ or ${}^{1}0.0255 + 0.04644 [= 0.0719]$	M1	Both expressions needed, allow any λ If $\lambda \neq 7.2$ allow P(X \leqslant n) for 2 consecutive values of n with P(X \leqslant n) < 0.05 and P(X \leqslant n + 1) > 0.05.
	P(Type I) = 0.02547 or 0.0255 (3 sf)	B1	1
		3	+
(c)	$3 > 2$ or $P(X \le 3) > 0.05$ or '0.0719' > 0.05	M1	
	[Not reject H_0] No evidence that [mean] number of faults has decreased	A1 FT	No contradictions. In context, not definite.
		2	
(d)	$\begin{array}{c} 1-e^{-1.5}(1+1.5+1.5^2 \ / \ 2) \ or \ 1-e^{-1.5}(1+1.5+1.125) \\ or \ 1-(0.2231+0.3347+0.2510) \end{array}$	M1	Must see expression. FT their CR in (b).
	= 0.191 (3 sf)	A1	
		2	
Oue	estion 113		1 1
(a)	H ₀ : Population mean time (or μ) = 32.5 H ₁ : Population mean time (or μ) < 32.5	B1	Not just "mean".
	$\pm \frac{31.8 - 32.5}{3.1 \div \sqrt{50}}$	M1	Must have $\sqrt{50}$. Could be implied.
	$=\pm -1.597$	A1	i
	'-1.597' < -1.406 [or '1.597' > 1.406]	M1	Valid comparison of their z_{calc} with ± 1.406 . or $0.0551 < 0.08$ (or $0.0552 < 0.08$).
	[reject H_0] There is evidence that [population] [mean] time has decreased	227 70000 7000 7000 7000	In context, not definite, no contradictions. Note: Accept critical value method 31.88 (31.9) M1 A1 and 31.8 < 31.88 M1 conclusion A1.
		5	
(b)	$\frac{a - 32.5}{3.1 \div \sqrt{50}} = -1.406$	M1	Standardise with 32.5 and $\sqrt{50}$ and z value on RHS.
	a = 31.88 or 31.9	A1	May be seen in part (a). Can score M1A1 here as well using a similar approach to (a).
	$\frac{their'31.88 - 31.5}{3.1 \div \sqrt{50}}$ [= 0.8668 to 0.8760]	M1	Standardise with <i>their</i> cv and mean = 31.5. Must have $\sqrt{50}$.
		J	

M1 For area consistent with their working.

A1

(a)	H_0 : $P(red) = 0.2 H_1$: $P(red) < 0.2$	B1	Allow H_0 : $p = 0.2 H_1$: $p < 0.2$.
	$P(X \le 4) = 0.8^{40} + 40 \times 0.8^{39} \times 0.2 + {}^{40}C_2 \times 0.8^{38} \times 0.2^2 + {}^{40}C_3 \times 0.8^{37} \times 0.2^3 + {}^{40}C_4 \times 0.8^{36} \times 0.2^4$	M1	For full expression seen. Allow one term omitted, incorrect or extra.
	0.0759	A1	SC 0.0759 without working B1.
	their '0.0759' > 0.05	M1	Valid comparison (from binomial probs) of their $P(X \le 4)$ with 0.05.
	[Do not reject H_0]. Not enough evidence that it lands on red fewer times than if it were fair or not enough evidence to suggest that the spinner is biased	A1 FT	FT their 0.0759. In context, not definite, no contradictions.
		5	

(b)	$P(X \le 3) = 0.0759 - {}^{40}C_4 \times 0.8^{36} \times 0.2^4$	M1	OE Attempted. Must be using $B(40, 0.2)$. Method could be implied by correct answer here.
	= 0.0285 or 0.0284	*A1	
	Largest value of r is 3	DA1	
	10'	3	
Ques	stion 115		
(a)	He is expecting a decrease (in μ)	В	1 OE

(a)	He is expecting a decrease (in μ)	B1	OE
		1	
(b)	-2.02 < -1.96	M1	For valid comparison. Allow 2.02 > 1.96 or 0.0217 < 0.025 or 0.9783 > 0.975
	(Reject H_0) There is evidence to suggest that this year's (mean) time is less than 25	A1	OE (such as evidence to support Akash's belief), in context, not definite. No contradictions.
		2	
(c)	$1 - \Phi(2.14) = 0.0162$	M1	
	1.62	A1	Allow 1.62% or 1.6 or 1.6%.
	$\alpha \geqslant 1.62 \text{ (3 sf)}$	A1ft	FT their 1.62 . Allow $\alpha \geqslant 1.62\%$ or 1.6 or 1.6%. Condone >.
		3	
(d)	24.8-m 3.9+10	M1	For standardising.
	$\frac{24.8-m}{3.9+10} = -1.645$	M1	Equate <i>their</i> standardised value to -1.645 (signs must be consistent).
	m = 25.4 (3 sf)	A1	
		3	

·(a)	$e^{-5.7}(1+5.7+\frac{5.7^2}{2!})$ or $e^{-5.7}(1+5.7+16.245)$ or $0.003346+0.01907+0.05436$	M1	Allow one end error. Must see this expression.
	= 0.0768 (3 sf)	A1	SC B1 for unsupported answer of 0.0768.
		2	
(b)	$e^{-0.9}(1+0.9+\frac{0.9^2}{2!})$	M1	Attempted; allow one end error (must see expression).
	$= 1 - e^{-0.9}(1 + 0.9 + \frac{0.9^2}{2!}) = 1 - e^{-0.9}(1 + 0.9 + 0.405) = 1 - (0.4066 + 3659 + 0.1647)$	A1	Correct expression $P(X \ge 3)$ no end errors (must see expression).
	= 0.0629 (3 sf)	A1	SC B2 for unsupported answer of 0.0629.
		3	

(a)	H_0 : Pop mean no. people = 3.03 or 1.01 (per 20 min) H_1 : Pop mean no. people > 3.03 or 1.01 (per 20 min)	B1	These must not just be 'mean', but allow just ' λ ' or ' μ '.
	Use of Po(3.03)	M1	
	$= 1 - e^{-3.03}(1 + 3.03 + \frac{3.03^2}{2} + \frac{3.03^3}{3!} + \frac{3.03^4}{4!} + \frac{3.03^5}{5!})$ $= 1 - e^{-3.03}(1 + 3.03 + 4.5905 + 4.6364 + 3.5120 + 2.128)$ $= 1 - (0.04832 + 0.1464 + 0.2218 + 0.2240 + 0.1697 + 0.1028)$	M1	Allow incorrect λ . Allow one end error. Must see Poisson expression used.
	= 0.0870 (3sf) [0.0869727]	A1	Allow 0.087.
	0.0870 > 0.05	M1	For a valid comparison.
	(Do not reject H_0) Insufficient evidence to believe (mean) number of people has increased	A1FT	Conclusion stated must be in context, not definite and include no contradictions (e.g. not 'mean number people has not increased').
		6	If only $P(x = 6)$ award max 2/6 (single term not valid).
			SC No working B1 B2 M1 A1. Award maximum 5/6.
	"0.0869727" $-e^{-3.03} \times \frac{3.03^6}{6!}$	M1	OE. Must see Poisson expression (may be in part (a)).
	or $0.869727 - e^{-3.03}(1.0748)$		
	or 0.869727 – 0.05193		
	or $1 - e^{-3.03} (1 + 3.03 + \frac{3.03^2}{2} + \frac{3.03^3}{3!} + \frac{3.03^4}{4!} + \frac{3.03^5}{5!} + \frac{3.03^6}{6!})$		
	0.0350 or 0.0351	A1	Accept 0.035. SC no working seen, award B1 for 0.0350, 0.0351 or 0.035.
		2	
	Concluding that the (mean) number of people (using the path per 20 mins in the evening) has increased when it has not	B1	OE. Conclusion must be in context.
	3	1	
	A value for the true mean	B1	Allow without context for this mark.
	Number of people using the path per 20 mins in the evening.	B1	Condone equivalent comment on three randomly choser 20-minute periods.
		2	

-	SHOII 118	1	
(a)	$\overline{x} = 1700/50 = 34$	B1	
	Est(σ^2) = $\frac{50}{49} \left(\frac{59050}{50} - 34^2 \right)$ or $\frac{1}{49} \left(59050 - \frac{1700^2}{50} \right)$	M1	Est(σ^2) = $\frac{59050}{50} - 34^2$ biased scores M0.
	$= 25.5 (3 \text{ sf}) \text{ or } \frac{1250}{49}$	A1	= 25 scores A0.
		3	
(b)	H₀: Population mean time = 32.4 H₁: Population mean time ≠ 32.4	B1	Not just 'mean' but allow just 'μ'.
	$\frac{34 - 32.4}{\frac{\sqrt{25.5'}}{\sqrt{50}}}$	M1	Must have $\sqrt{50}$ and not 50. FT <i>their</i> mean and var. Can be implied.
	= 2.24 (3 sf)	A1	or $P(\overline{T} > 34) = 0.0125$. SC use of biased var (25) $z = 2.26$ or $p = 0.0119$, allow M1A1.
	°2.24° < 2.326	M1	Or 0.0125 > 0.01 for a valid comparison.
	[Not reject H_0] Insufficient evidence that (mean) time has changed	A1FT	In context, not definite, e.g. not 'Time not changed'. No contradictions. Note: accept CV method x_{cri} = 34.06 for M1A1. Compares 34 < 34.06 for M1, conclusion for A1. Condone x = 32.34 M1A1: compares 32.4 > 32.34 for M1, conclusion for A1.
		5	SC for using a one-tail method. Award max 3/5 (B0 M1 A1 M1 A0).
Que	stion 119		
6(a)	$(1-\frac{1}{3})^{10}$	M1	
	= 0.0173 (3 sf)	A1	No working scores SC B1.
		2	
	0180		1000

5(a)	$(1-\frac{1}{3})^{10}$		M1	
	= 0.0173 (3 sf)		A1	No working scores SC B1.
			2	
5(b)	$1 - (1 - p)^{10} = 0.8926$	4	M1	Accept $1 - q^{10} = 0.8926$. Equation must be in p or in q but not both.
	$1 - p = 0.1074^{0.1}$	[0.800]	M1	For valid attempt to solve their (binomial) equation in p^{10} or q^{10} .
	p = 0.200 (3 sf) or 0.2		A1	
			3	

(a)	Est $(\mu) = 3.25 = 13/4$ or $1625/500$	B1	
	Est(σ^2) = $\frac{500}{499} (\frac{5663.5}{500} - 3.25^2)$ or $\frac{1}{499} (5663.5 - \frac{1625^2}{500})$	M1	Expression of correct form.
	= 0.766 (3 sf) or 1529/1996	A1	Biased variance of 0.7645 scores M0A0.
		3	
(b)	H ₀ : Pop mean (or μ) = '3.25' H ₁ : Pop mean (or μ) \neq '3.25'	B1FT	Not just 'mean'. FT their 3.25 .
	$\frac{2.95-"3.25"}{\sqrt{"0.766"\div60}}$	M1	Standardising with their values. Must have $\sqrt{60}$.
	= -2.655	A1	Or $P(\overline{X} < 2.95) = 0.0039$ or 0.00396 or 0.00397 . SC FT their biased $est(\sigma^2)$, i.e. 0.7645 to give $z = 2.658$ A1.
	'2.655' > 2.576 or '-2.655' < -2.576	M1	For valid comparison, e.g. 0.0039 or 0.00396 or 0.00397 < 0.005, or 0.0078 < 0.01, or 0.00792 < 0.01 .
	$\begin{tabular}{ll} [Reject H_0] \\ There is evidence that (mean) mass in (country B) is different (from country A). \\ \end{tabular}$	A1FT	OE. Must be in context and not definite, e.g., not 'Mean mass is not different', No contradictions. Context needs either 'mass' or 'countries' OE.
			SC, Use of one-tail test. '2.655' > 2.326 or 0.0039 < 0.01 M1A0 (Max B0M1A1M1A0 3/5).
			Accept critical value method. Either: Xcrit=2.959 M1A1 2.95<2.959 M1A1FT with correct conclusion, or Xcrit=3.241 M1A1 3.25>3,241 M1A1FT with correct conclusion.
		5	/

(a)	H_0 : $\lambda = 7.6$ [or 1.9] H_1 : $\lambda < 7.6$ [or 1.9]	B1	Or Population mean = 7.6 or μ (not just 'mean'). Or Population mean < 7.6 or μ .
		1	
(b)	Mean = 7.6	B1	Seen.
	$P(X \le 2) = e^{-7.6} (1 + 7.6 + \frac{7.6^2}{2})$ [= 0.0188 or 0.0187]	M1	OE.
	$P(X \le 3) = e^{-7.6} (1 + 7.6 + \frac{7.6^2}{2} + \frac{7.6^3}{3!}) $ [= 0.0554 or 0.0553]	M1	OE. Expression must be seen in at least one probabilit calculation.
	0.0188 or 0.0187 and 0.0554 or 0.0553	A1	A1 for both values.
	Critical region is $X \le 2$	A1	Dep on both M marks. SC No Poisson expression seen in either prob scores I for 0.0188 or 0.0187 and B1 for 0.0554 or 0.0553 and B1 for CR.
	$P(\text{Type I error}) = P(X \le 2) = 0.0188 \text{ or } 0.0187 \text{ (3 sf)}$	B1FT	FT their $P(X \le 2)$ or their CR.
	TPA	6	
'(c)	Concluding that the (mean) no. of accidents has reduced when it has not.	B1	OE. Must be in context. Accept: 'It is believed that the booklet has helped to improve safety when actually it has not'.
		1	
'(d)	3 not in critical region.	M1	FT their CR or $P(X \le 3) = 0.0554 > 0.05$.
	No evidence mean number of accidents has decreased.	A1FT	In context. Camnot be a definite statement, e.g., 'mean number accidents has not decreased'.
		1	

Assume SD still = 5.2	B1	OE i.e. 'Assume the SD remains unchanged'.
H_0 : $\mu = 24.0 H_1$: $\mu > 24.0$	B1	Or population mean; not just mean.
$\frac{25.8-24.0}{\frac{5.2}{\sqrt{50}}}$	M1	For standardising (could be implied). Must have $\sqrt{50}$.
= 2.448	A1	Or $P(\overline{X} > 25.8) = 0.0071$.
'2.448' > 2.326	M1	Or $0.0071 < 0.01$. For valid comparison.
[Reject H_0] There is evidence that (mean) amount of wheat is greater.	A1FT	OE. FT their $z_{\rm calc}$. In context, not definite, eg not 'Mean amount of wheat is greater' No contradictions CV method: CV= 25.71 M1A1 25.71<25.8 M1 A1FT or CV=24.09 M1 A1 24.09>24 M1 A1FT.
	6	