A-Level

Topic Sampling and Estimation

May 2013-May 2023

Answers

Question 1

(i)	$\bar{x} = 930/15 = (62)$ z = 1.751	B1 B1			
	$62' \pm z \times \frac{12}{\sqrt{15}}$	M1	Any z		
	= 56.6 to 67.4 (3 sf)	A1 4	Must be an interval		
(ii)	92% of such intervals will contain μ	B1 1	Accept P(This interval contains μ) = 0.92		
(iii)	Each possible sample of this size is equally likely	B1 1	Each member of pop equally likely to be chosen		
[Total: 6]					
Question 2					

(i)	$est(\mu) = 9750/150 = (65)$	B1	
	est(μ) = 9750/150 = (65) est(σ^2) = $\frac{1}{149}$ (647500 - $\frac{9750^2}{150}$)	M1	Correct subst. in correct formula
	= 92.3 (3 s.f.)	A1 [3]	3
(ii)	z = 2.326	B1	
	$65' \pm z \times \frac{\sqrt{92.28188'}}{\sqrt{150}}$	M1	Any z
	= 63.2 to 66.8 (3 s.f.)	A1 [3]	(Use of 'biased' can still score here)
(iii)	0.02^2	M1	Allow M1 for 0.02 seen
	= 0.0004 o.e.	A1 [2]	

[Total: 8]

(i)	$est(\mu) = 2005/200 = (10.025)$ $est(\sigma^2) = \frac{1}{99} 20175 - \frac{2005^2}{200})$ $= 0.376 (3 sf)$	B1 M1 A1 [3]	Correct subst in correct formula
(ii)	$ \frac{10-10.025'}{\sqrt{\frac{0.376256'}{50}}} $ $ 1 - \Phi(`0.288') $ = 0.387 (3 sf)	M1 M1 A1 [3]	Allow without $\sqrt{\ }$, but $\div\sqrt{50}$ essential (Use of 'biased' variance can still score fully in (ii))

Question 4

$Est(\mu) = 1.8775 \text{ or } 1.88 \text{ (3 sf)}$	B1	7%	Accept 751/400 (not 150.2/80)
$Est(\sigma^2) = \frac{80}{79} \left(\frac{820.24}{80} - 1.8775^2 \right)$	M1		Correct subt'n in correct formula 1/79 (820.24 – 150.2 ² /80)
= 6.81316 or 6.81 (3 sf)	A1		1777 (820.24 – 130.2760)
z = 1.96	B1		Seen
"1.8775" $\pm z \times \sqrt{\frac{"6.81316"}{80}}$	M1		
= 1.31 to 2.45 (3 sf)	A1	6	Must be an interval. NB use of biased var can still score A1.

(i)	est (μ) = 2866 or 2870 (3 s.f.) est (σ^2) = $\frac{1}{49}$ (410900000 - $\frac{143300^2}{50}$) (= 4126.53) = 4130 (3 sf)	B1 M1 A1 [3]	Accept 143300/50 o.e. Correct subst in correct formula
(ii)	H ₀ : Pop mean (or μ) = 2850 H ₁ : Pop mean (or μ) \neq 2850 $\frac{143300}{50} - 2850$ $\frac{\sqrt{4126.53'}}{\sqrt{50}}$ = 1.761 '1.761' < 1.96 No evidence mean distance changed	B1 M1 A1 M1 A1f	Both. Not just 'mean' Allow '4126.53' without $\sqrt{\ }$, but must have all $\sqrt{50}$ Or correct c.v. (2867.81) for alt method For valid comparison of z values, areas or c.v. Dep 1.96; ft their 1.761 If H_1 : $\mu > 2850$ and c.f. 1.645, max B0M1A1M1A0 (c.v. for 1 tail test 2864.94)

$$z = 2.576$$
 $2 \times z \times \frac{0.17}{\sqrt{n}} = 0.2$ oe

M1 Seen (accept 2.574 to 2.579)

Allow without '2 ×' OR with incorrect z

M1 Attempt to arrange equ of correct form (with correct z and '2×' into the form n= or $\sqrt{n} = 0.2$

Question 7

$$p = 0.56$$
 B1 Used
'0.56' $\pm z \times \sqrt{\frac{0.56 \times 0.44}{100}}$ M1 Equation of correct form condone just +ve or -ve Must be z
 $z = 2.17$, or 2.169 or 2.171 B1 O.452 to 0.668 (3 s.f.) A1 [4] Seen Must be an interval

(i)
$$p = \frac{184}{400}$$
 or 0.46 B1 Used $z = 1.96$ B1 Seen M1 Using expression of correct form $= 0.411$ to 0.509 A1 [4] Must be an interval (ii) 0.5 within CI Claim not supported or not justified B1 $\sqrt[4]{}$ [1] Both needed. No contradictions. If their (i) $z \times \sqrt{\frac{"0.46"(1-"0.46")}{400}} = 0.05$ M1 Allow M1 for $z \times \sqrt{\frac{"0.46"(1-"0.46")}{400}} = 0.1$ $z = 2.006$ A1 $\Phi(`2.006`) = 0.9775$ A1 [4]

$$\frac{\Sigma x}{8} = \frac{2006}{8} = 250.75 \text{ or } 251 \text{ (3 s.f.)}$$
B1
Any equivalent form
$$(\Sigma x^2 = 503274)$$

$$\frac{8}{7} \left(\frac{"503274"}{8} - "250.75"^2 \right)$$
M1
For use of formula of correct form
$$= 38.5 \text{ o.e. (accept } 6.204^2)$$
A1 [3] cao (as final answer)

Question 10

(i)	$0.25(1+4+9) - 1.5^{2}$ (=1.25 AG)	B1	[1]	
(ii)	$\frac{1.4 - 1.5}{\sqrt{\frac{5}{4} \div 300}} \tag{= -1.549}$	M1		$\frac{1.4 - \frac{1}{600} - 1.5}{\sqrt{\frac{5}{4} \div 300}} \tag{= -1.523}$
	$\Phi(\text{``-1.549''}) = 1 - \Phi(\text{``1.549''})$ = 0.0607 (3 sf)	M1 A1	[3]	$\Phi(\text{``-1.523''}) = 1 - \Phi(\text{``1.523''})$ = 0.0639 (3 sf)
(iii)	Large sample or large n (\overline{X} (approx) normally distr) or Central Limit Theorem	B1	[1]	
	3	[To	tal: 5]	/5/

$\frac{70}{69} \times 2.70 = 2.73913$	M1A1	
$3.61 \pm z \sqrt{\frac{"2.73913"}{70}}$	M1	or $3.61 \pm z \sqrt{\frac{2.70}{69}}$ M2A1(implied)
		without $\frac{70}{69}$: $3.61 \pm z \sqrt{\frac{2.70}{70}}$ M0A0M1
z = 1.96	B1	z = 1.96 B1
3.22 to 4.00 (3 sf)	A1 [5]	3.23 to 3.99(4.00) (3 sf) A1 Answer must be an interval
	[Total: 5]	

	[Total: 4]	
2.035) $\Phi(\text{``-2.035''}) = 1 - \Phi(\text{``2.035''})$ = 0.021 or 2.1%	M1 A1 [4]	Correct area consistent with their working
$\frac{436-483.2}{\sqrt{537.92}}$ or $\frac{436-483.2}{23.2}$ (=-	M1	or $\frac{\frac{436}{8} - 60.4}{8.2/\sqrt{8}}$ standardising (no mixed methods)
N(483.2, 537.92) or N(483.2, 23.2 ²)	B1	or $\frac{8.2}{\sqrt{8}}$ or $\frac{8.2^2}{8}$ seen or implied

(i)	Est $(\mu) = \frac{7220}{80}$ or 90.25	B1		Accept 90.3
	$\operatorname{Est}(\sigma^2) = \frac{80}{79} \left(\frac{656060}{80} - \left(\frac{7220}{80} \right)^2 \right)$	M1		$\frac{1}{79} \left(656060 - \frac{7220^2}{80} \right)$
	$= 56.3924 \text{ or } \frac{4455}{79}$	A1		-111
	z = 2.17	B1		Accept 56.4
	$\frac{7220}{80} \pm z \times \sqrt{\frac{56.3924}{80}}$	M1		Expression of correct form
	= 88.4 to 92.1 (3 sf)	A1	[6]	Must be an interval (N.B. biased var gives 88.4 to 92.1 scores possible B1M0A0B1M1A1)
(ii)	Pop normal No	B1 B1dep	[2]	X normal or full definition of pop normal SR B1 for "no" and relevant reference to normal

Question	14			
(i)	$Var(P_s) = \frac{\frac{33}{150} \times \frac{150 - 33}{150}}{150}$ $z = 2.576$ (= 0.001144)	M1 B1		Seen. Accept 2.574 to 2.579
	$\frac{33}{150} \pm z\sqrt{0.001144}$	M1		Expression of correct form. Any z
	= 0.133 to 0.307 (3 sf)	A1	4	Must be an interval
(ii)	$\frac{19035}{150} \ (= 126.9 = 127(3sf))$	B1		
	$\frac{150}{149} \left(\frac{4054716}{150} - \left(\frac{19035}{150} \right)^2 \right) \text{ o.e.}$	M1		For use of a correct formula
	= 11001.17 or 11000(3 sf)	A1	3	
(iii)	4-digit nos. each digit 0-9 Ignore nos > 9526 Ignore repeats	B1 B1 B1	3	Some valid way of generating 4 digit random nos from valid method from valid method SR If zero score, full explanation of method for drawing numbers out of a hat can score B1. NB Systematic sampling follows the scheme with first B1 for some way of generating a random starting point.
Question	15			
(1:	508) - 20.16 (20.2)		A 20	

(i)	$\left(\frac{1508}{50}\right) = 30.16 (30.2)$	В1		Allow any form
	$\frac{50}{49} \left(\frac{51825}{50} - \left(30.16^{2} \right) \right)$	M1		(129.46367)
	= 129 (3 sf) Or 130	A1	[3]	
(ii)	(1.5 × '30.16' + 10) = 55.24	B1ft		ft their 30.16
	$(1.5^2 \times `129`)$	M1		$1.5^2 \times$ their(129) with nothing added at any stage
	= 291 (3 sf)	A1ft	[3]	Allow 290
		Total	6	
Q				

(i)	$Var(p_s) = \frac{0.22 \times (1 - 0.22)}{100}$	M1	pq/100
	$\left(=\frac{429}{250000}\text{or}0.001716\right)$		
	$0.22 \pm z \sqrt{\frac{429}{250000}}$	M1	Expression of correct form with their variance Any z (must be a z value) accept one side only
	z = 2.17 or $2.168/9$ or 2.171	В1	Seen
	0.13(0) to 0.31(0) (2 sf)	A1 [4]	Must be an interval
(ii)	'2' × (1 – 0.97) × 0.97 = 0.0582	M1 A1 [2]	
	ATP	Total 6	

Question 17

(i)
$$4200/80 (=52.5)$$
 $= \frac{80}{79} \left(\frac{229\ 000}{80} - {}^{1}52.5 {}^{12} \right) (= 107.595)$ $= 108\ (3\ sf)$ M1 $= 108\ (3\ sf)$ M1 $= 108\ (3\ sf)$ M1 $= 108\ (3\ sf)$ Correct form – must be z-value – allow one side only $= 2.326\ 49.8\ to\ 55.2$ B1 $= 108\ (3\ sf)$ Seen $= 108\ (3\ sf)$ R1 $= 108\ (3\ sf)$ Seen $= 108\ (3\ sf)$

(i)	$34 2.2^2 + 1.3^2 + 2.6^2 (=13.29)$	B1 B1	[2]	Accept 13.3 or 3.65 ² Allow at early stage
(ii)	$\frac{33-34'}{\sqrt{\frac{13.29'}{70}}} \qquad (=-2.295)$ $\frac{35-34'}{\sqrt{\frac{13.29'}{70}}} \qquad (=2.295)$ $\Phi(2.295') - \Phi(-2.295')$	M1 M1		correct standardisation method for either For attempt to use tables to find the probability between two z values ,may be implied by next line
	$= \Phi('2.295') - (1 - \Phi('2.295')) \text{ oe}$ $= 0.978 (3 \text{ sf})$	M1 A1	[4]	For a correct method to find the area between their two z values
		[Tota	1: 6]	

(i)	est $\mu = 2.087$ est $\sigma^2 = \frac{100}{99} \left(\frac{435.57}{100} - 2.087^2 \right)$	B1 M1		allow 2.09 1/99 (435.57 – 208.7 ² /100)
	= 0.000132(3232) or 131/990000	A1	[3]	without $\frac{100}{99}$: 0.000131 M0A0
(ii)	E(Y-X) = 2.12 - 2.087 (= 0.033)	B1		or 2.12 – 2.087 – 0.01 for Y – X – 0.01 < 0 allow 2.09 for 2.087
	Var(Y-X) = 0.000144 + `0.00013232` = 0.000276(32)	M1 A1	-0	or $\sqrt{(0.012^2 + `0.00013232`)}$ M1 = 0.016623 A1
	$\frac{0.01 - 0.033'}{\sqrt{0.00027632'}} $ (= -1.384)	M1		
	$\Phi(\text{`-1.384'}) = 1 - \Phi(\text{`1.384'})$	M1		correct area/prob consistent with their working
	= 0.0832	A1	[6]	SR use of biased var (0.000131) in (i) and (ii) scores in (ii) B1M1 A1 for 0.000275 and M1M1 A1 for 0.0827 (6/6 available)

(i)	0.4 or 2/5 or 26/65	B1	[1]	no recovery in (ii) for the B mark
(ii)	" 0.4 " $+z \times \sqrt{\frac{0.4 \times 0.6}{65}} = 0.516$ oe	M1		or " 0.4 " $-z \times \sqrt{\frac{0.4 \times 0.6}{65}} = 0.284$ or
	$z = \left(0.116 \times \sqrt{\frac{65}{0.4 \times 0.6}}\right) = 1.909$	A1		$z \times \sqrt{\frac{0.4 \times 0.6}{65}} = 0.116$ oe
	$(\Phi(1.909) = 0.97(18))$ 2 ('0.97' - 1) $\alpha = 94$	M1 A1	[4]	for fully correct method to find α from their z allow 94.36 or 94.4 or 94.374

Question 22

(i)	N(352,) Variance = 2.9		B1 B1	[2]	no recovery in (ii) for each B mark accept $sd = \sqrt{2.9} = 1.70(29)$ stated
(ii)	$\frac{354 - 352}{\sqrt{2.9}}$	(= 1.174)	M1		with their mean and var Or $\frac{354.05 - 352}{\sqrt{2.9}}$ or correct restart (= 1.204)
	1 – Φ('1.174')		M1		(accept sd/var mix)1 - Φ('1.204')
	= 0.120 (3 sf)		A1	[3]	= 0.114 (3 sf) Incorrect cc can score M1M1A0

(i)
$$\frac{3420}{60} (= 57)$$

$$\frac{60}{59} \left(\frac{195200}{60} - 57^{2} \right) = 4.41 (3 \text{ sf})$$
(ii) $\frac{3420}{59} (= 4.40678)$

$$= 4.41 (3 \text{ sf})$$
M1

$$z = 2.326$$

$$z = 2.326$$

$$z = 2.326$$
B1

$$z = 2.326$$
B1

$$z = 2.326 (= 57)$$
B1

$$z = 2.326$$

(i)	$\frac{6}{\sqrt{120}}$ oe seen	B1	Or 6 ² /120 oe seen
	$\frac{30-29}{\left(\frac{6}{\sqrt{120}}\right)} \tag{= 1.826}$	M1	± Allow without √120. No sd/var mix
	$P(z > '1.826') = 1 - \Phi('1.826')$ = 0.034 (2 sf)	M1 A1 [4]	Correct tail consistent with their working 0.0339
(ii)	No n is large ($\geqslant 30$)	B1	1 st B1 for either comment
	Sample mean is (appr) normally distrib or The CLT applies oe	B1 [2]	2 nd B1 for'No'with 2 nd comment (No mark for 'No' alone)

20000	01: =0			
(i)	$Est(\mu) = \frac{14910}{150} \qquad (=99.4)$	B1		
	$\operatorname{Est}(\sigma^2) = \frac{150}{149} \left(\frac{1525000}{150} - "99.4"^2 \right)$	M1		Allow M1 if $\frac{150}{149}$ omitted
	= 288.228	A1		
	z = 2.576	B1		Accept 2.574–2.579
	"99.4" $\pm z \times \sqrt{288.228 \div 150}$	M1		Any z
	CI = 95.8 to 103 (3 sf)	A1	[6]	(NB Use of biased Var can score 5/6 max)
(ii)	100 lies within this CI	D4 A	F1.7	
	Hence yes	B1√	[1]	Both needed, ft their CI
(iii)	To avoid bias or	Di	(1)	On any aminulant
	Necessary to enable statistical inference	B1	[1]	Or any equivalent

(i)	$\lambda = 3.9$ $e^{-3.9} \times \frac{3.9^4}{4!}$ $= 0.195$	B1 M1 A1	[3]	M1 allow any λ SR Combination method B1 for λ =1.6 AND λ =2.3 used in combination method (at least 3 combinations) M1 All correctly combined and added
(ii)	$\overline{X} \sim N(1.6, \frac{1.6}{75})$	B1 B1	[2]	B1 for N(1.6,)stated B1 for Var = $\frac{1.6}{75}$ stated SR, not stated but all implied in (iii): B1
(iii)	$\frac{1.7-1.6}{\sqrt{\frac{1.6}{75}}} (= 0.685)$ $1 - \Phi("0.685")$ $= 0.247 (3 sf)$	M1 M1 A1	[3]	For standardising (using their values or correct values .Ignore cc Correct area consistent with their working Accept use of $1/2n$ correction leading to 0.233. NB Use of Poisson sum Po(120) and N(120,120) with μ =127.5 leads to 0.247, or 0.233 with cc
(iv)	X not normally distr. So CLT needed	B1	[1]	Not "it"

Question 27

$192.4 \pm z \sqrt{\frac{43.6}{150}}$	M1	Allow $\frac{43.6}{\sqrt{150}}$ Allow one side for M1
z = 2.326 to 2.329 191 to 194 (3 sf)	B1 A1 [3]	Condone √(43.6/149) oe CWO

(i)	Pop too big or takes too long oe or testing destroys articles oe	B1	[1]	or too expensive oe or pop inaccessible oe
(ii) (a)	$z = 1.96$ $65.7 \pm z \times \frac{\sqrt{15}}{10}$ $= 64.9 \text{ to } 66.5 \text{ (3 sf)}$	B1 M1 A1	[3]	seen Expression of correct form (must be 'z' must be 65.7) Must be an interval
(b)	CI does not include 64.7 Probably has affected (or increased) mean bounce ht.	B1√	[1]	allow 64.7 not within CI both needed. ft their CI ft 65.7/64.7 mix

$\frac{6.2}{\sqrt{50}}$ or $\frac{6.2^2}{50}$	B1		seen or implied
$\frac{51-53}{6.2 \div \sqrt{50}}$ (= -2.281)	M1		allow without $\div\sqrt{50}$
$P(z > '-2.281') = \phi('2.281')$ = 0.989 (3 sf)	M1 A1	[4]	for finding correct area consistent with working as final answer

Question 30

(i)
$$((0.5672 + 0.6528) \div 2)$$
 $= 0.61$ B1 [1] (ii) $(0.61' + z \sqrt{\frac{(0.61'\times(1-'0.61')}{350}} = 0.6528$ M1 oe $z = 0.0428 \times \sqrt{\frac{700}{(0.61'\times(1-'0.61')})}$ oe M1 correct rearrangement of correct equn, ft '0.61' $= 2.321$ A1 A1 ft [4] ft their z (dep on both Ms)

(i)	Each employee has an equal chance of being chosen	B1	[1]	oe
(ii)	Est $(\mu) = 4$ Est $(\sigma^2) = \frac{10}{9} (\frac{199.22}{10} - 4^{12})$	B1 M1		sub in correct formula attempted
	= 4.36 (3 sf)	A1	[3]	working may not be seen
(iii)	Distances travelled by all employees at the firm	B1	[1]	oe

(i)	est(μ) = 3.4 est(σ^2)= $\frac{100}{99} (\frac{1356}{100} - 3.4^2)$ = 2.02(0202)	B1 M1 A1		1 / 99 (1356 – 340 ² /100) or 200/99
	z = 1.96	B1		
	$3.4 \pm z \times \sqrt{\frac{2.020202}{100}}$ = 3.12 to 3.68 (3 sf)	M1 A1	[6]	correct working only allow from unbiased or biased variance
(ii)	Mean should be 3	B1*		stated or implied
	CI does not include 3 Machine probably not working properly	DB1√	[2]	√ their CI or evidence that

	$\frac{11.8-11}{1.6+\sqrt{n}} = 1.645$		M1		M1 for $\frac{11.8-11}{1.6 \div \sqrt{n}} = \text{any } z$
	$\frac{11.8-11}{1.6 \div \sqrt{n}} = 1.96$				allow var / sd mix for 1.6 but need \sqrt{n}
	n = 10.8 n = 15.4	(allow 11) (allow 15)	B1 B1		B1 for each correct z
			A1		for both
	Possible values are 11,	12, 13, 14, 15	Ã1	[5]	not for just $11 \le n \le 15$ oe
Question	34	Satpre	90.		•
(a)	$63 \pm z \times \frac{9}{\sqrt{2}}$	M1	B1	Express	sion of correct form any z

(a)	$63 \pm z \times \frac{9}{\sqrt{100}}$	M1	B1	Expression of correct form, any z
	z = 1.645 61.5 to 64.5 (3 sf)	B1 A1	[3]	Seen Must be an interval
(b) (i)	$z = \frac{1.96}{2} \tag{= 0.98}$	M1		Allow $\frac{\text{any }z}{2}$
	Φ ("0.98") (= 0.8365) "0.8365" - (1 - "0.8365") (= 0.673)	M1		
	$\alpha = 67.3 \text{ (3 sf)}$	A1	[3]	Allow 67 from correct working
(ii)	$4=(2x'z'x'\sigma')/\sqrt{n}$ $n=200$	M1 A1	[2]	Attempt to solve equ of correct form SR B1 for $n = 100$

$\left(\frac{508}{8}\right) = 63.5$	B1		
$(\Sigma x^2 = 32360.12)$			
$\frac{8}{7} \left(\frac{32360.12'}{8} - 63.5'^2 \right)$	M1		oe
= 14.6 (3 sf) or 2553/175	A1	[3]	From correct working

Question 36

3(i)	$\frac{53-52}{6.1 \div \sqrt{75}} \qquad (= 1.420)$	M1	
	$\frac{51-52}{6.1 \div \sqrt{75}} \qquad (=-1.420)$	M1	or -"1.420" seen
	Ф("1.420") – Ф("–1.420")	M1	
	= 0.844 (3 sfs)	A1	
	Total:	4	
(ii)	Need to assume \overline{X} (approx.) normally distributed	B1	or X not stated to be normally distributed
Questio	n 37		111
1			

$Var(Ps) = \frac{0.3(1-0.3)}{120} (= 0.00175)$	M1	Attempt correct values in correct formula
$0.3 \pm z \sqrt{"0.00175"}$	M1	must be a z-value, not a prob
z = 1.645	B1	0.
CI = 0.231 to 0.369 (3 sf)	A1	

(i)	$\overline{x} = 6.7/200 \ (= 67/2000 = 0.0335)$	B1	
	$s^2 = \frac{200}{199} \times \left(\frac{0.2312}{200} - 0.0335^{\circ 2}\right)$	M1	$s^2 = \frac{0.2312}{200} - 0.0335^2 $ M0
	= 0.0000339(2) = 27/796000	A1	= 0.00003375 A0
	Total:	3	
(ii)	H_0 : Pop mean level = 0.034 H_1 : Pop mean level \neq 0.034	B1	not just "mean", but allow just "μ"
	$\frac{"030335" - 0.034}{\sqrt{"0.00003392"}}$ $\frac{\sqrt{200}}{\sqrt{200}}$	М1	must have $\sqrt{200}$ $\frac{0.0335 - 0.034}{\sqrt{0.00003375^{\circ}} \sqrt{200}}$ M1
	$=-1.21(4) (3 \text{ sfs}) (-1.22 \leftrightarrow -1.21)$	A1	= -1.217 (3 sfs) A1
	Comp with $z = -1.645$ (or 0.1124>0.05)	M1	0.112 > 0.05 valid comparison z or areas
	No evidence that (mean) pollutant level has changed, accept H_0 (if correctly defined)	A1FT	correct conclusion no contradictions SR: One tail test: B0 , M1A1 as normal, M1 (comparison with 1.282 consistent signs) A0

10×0.46^2 (= 2.116) or $\frac{0.46}{\sqrt{10}}$	В1	SOI
Total mass of ore $\sim N(70, 2.116)$ or $\sim N\left(7, \left(\frac{0.46}{\sqrt{10}}\right)^2\right)$	В1	
$\pm \frac{71 - 70"}{\sqrt{2.116"}} \text{ or } \pm \frac{7.1 - 7.0"}{0.46/\sqrt{10}} (= 0.687)$	M1	correct, using their sd or $\sqrt{\text{(their var)}}$ e.g. allow $\frac{71-^{10}}{4.6}$ for M1
1 – φ("0.687")	M1	for correct area consistent with their working
= 0.246 (3 sf)	A1	

Question 40

2(i)	z = 1.751	B1	
	$\frac{103}{200} \pm z \sqrt{\frac{\frac{168}{200} \times (1 - \frac{163}{200})}{200}}$ oe	M1	all correct except for recognisable value of z , allow for on side only
	= 0.453 to 0.577 (3 sf) as final answer	A1	must be an interval
	Total:	3	
(ii)	0.08 oe 8%, 8/100	B1	

Question 41

573, 43 (or 043), 289	B1B1B1 Ignore incorrect numbers. But allow other correct use of to (i.e. 573, 650, 431)	able
	(1.6. 575, 656, 151)	

3(i)	Est (μ) = 923/400 or 2.3075 or 2.31 (3 sf)	B1	
	$Est(\sigma^2) = \frac{400}{399} \left(\frac{3170}{400} - 2.3075^{\circ 2} \right) OE$	M1	
	= 2.60696 or 2.61 (3 sf)	A1	(Note: Biased Var= 2.600 scores M0)
	Total:	3	
(ii)	H ₀ : Pop mean (or μ) = "2.31" or "2310" H ₁ : Pop mean (or μ) > "2.31" or "2310"	B1 FT	
	$\pm \frac{2.6 - 2.310^{\circ}}{\sqrt{2.60696 + 50}} = 1.27$	M1 A1	Standardising using their values, Accept 1.28
	Comp 1.645 (OE)	M1	Valid comparison z values or areas
	No evidence that incomes in the region greater	A1 FT	OE FT their z. No contradictions (No FT for 2 tail test – max score B0 M1 A1 M1 for comp 1.96 A0) Note: Accept alternative CV method

$\frac{0.801 \times (1 - 0.801)}{2000} \qquad (= 0.0000797)$	M1	
$0.801 \pm z \times \sqrt{0.0000797}$	M1	Allow any z-value
z = 1.96		
0.784 to 0.818 (3 sf)	A1	As final answer. Must be an interval Allow 0.783 to 0.819

Question 44

(a)	$7.1 \pm z \times \sqrt{\frac{2.6}{75}}$	M1	Expression of correct form must be z (note MR var = 2.6 ² can score M1) seen
	z = 1.751	B1	
	6.77 to 7.43 (3 sfs)	A1	Must be an interval
	Total:	3	
(b)	0.043	M 1	Allow 0.08 ³ for M1
	= 0.000064	A1	
	Total:	2	
(c)	e.g. Particular day or time of day	B1	Allow "Not random"
Questi	ion 45		

ŀ(i)	$300.1 \pm z \times \frac{0.9}{\sqrt{75}}$	M1	allow any value of z
	z = 2.576	B1	allow 2.574 to 2.579
	299.83 to 300.37 (2 dps)	A1	answer must be seen to 2 dps need an interval
		3	
(ii)	CI includes 300 so claim supported or justified or probably true	B1 FT	or equivalent FT from CI in (i)

$\frac{\frac{153}{200} + z \times \sqrt{\frac{\frac{153}{200} \times \frac{200 - 153}{200}}{200}} = 0.835$ $(Var(P_s) = 0.000898875)$ (s.d. 0.02998)	M1	
z = 2.335	A1	allow 2.33 or 2.34
$2\Phi(z)-1$	M1	or equivalent method indep
$\alpha = 98$	A1	allow 98.0 but not e.g. 98.04

(i)	$4820 \pm z \times \frac{1420}{\sqrt{125}}$	M1	Must be a z value
	z = 2.326	B1	Accept 2.326 - 2.329
	4524/4525 to 5115/5116 or 4520 to 5120 (3 sf)	A1	Must be an interval
(ii)	$\overline{x} = 4840$	B1	or width = 280 or half width = 140
	$4840 + 1.96 \times \frac{1420}{\sqrt{n}} = 4980 \text{OE}$	M1	or $140 = 1.96 \times \frac{1420}{\sqrt{n}}$ OE
	n = 395	A1	CAO must be an integer

'(i)	$\bar{x} = 11.83$	B1	
	$11.83 \pm z \ \frac{0.1}{\sqrt{10}}$	M1	any z
	z = 2.576	B1	accept 2.574 to 2.579
	[11.75 to 11.91]	A1	or equiv. Accept 11.7 to 11.9
		4	
(ii)	No because pop normal (so \overline{X} normally distr)	B1	
		1	
(iii)	11.7 not within CI	B1FT	
	3	1	
(iv)	No because 95% CI is narrower than 99% CI	B1	OE
	41,5101	1	
(v)	Σx^2 (= 1399.67)	M1	attempted
	Est(σ^2) = $\frac{10}{9} \left(\frac{"1399.67"}{10} - \left(\frac{"118.3"}{10} \right)^2 \right)$ OE	M1	correct sub of their Σ s into correct formula
	= 0.0201 (3 sf) or 181/9000	A1	
		3	

$\frac{5 - 4.9}{\frac{2.21}{\sqrt{75}}}$	(= 0.392)	M1	Correct stand'n. Must have √75
1 – Φ("0.392")		M1	Correct area consistent with working
= 0.348 (3 sfs)		A1	

Question 50

$\frac{\frac{8}{64} \times (1 - \frac{8}{64})}{64} \qquad (= \frac{7}{4096} \text{ or } 0.00171)$	M1	OE, e.g. $\frac{\frac{1}{8} \times \frac{7}{8}}{64}$
$2 \times z \sqrt{"\frac{7}{4096}"} = 0.130$	M1	Correct equation using their variance
z = 1.572	A1	
φ("1.572") (= 0.942) (0.942 – (1 – 0.942) = 0.884)	M1	2ф(their z) -1
α=88	A1	CAO
	5	

Ouestion 51

:(i)	213, 165, 73, 196 Allow 073	B1	For 3-digit no, < 265, consisting of three consecutive integers from given digits, backwards or forward. (73 or 073 counts as a 3-digit no.)
	h. satpreP.	B1	For another three such. Other answers may be valid. If other method used, method must be clear
		2	
(ii)	$\frac{510}{25} = \frac{102}{5}$ or 20.4	B1	
	$\frac{25}{24} \left[\frac{13225}{25} - \left(\frac{102}{5} \right)^2 \right]$	M1	$\frac{1}{24} \left(13225 - \frac{510^2}{25} \right)$
	118 (3 sf) or $\frac{2821}{24}$	A1	
		3	
(iii)	(Average) weekly earnings of all students in Amy's year	B1	Not 'All students in Amy's year'
		1	

(i)	$Est(\mu) = 495.9$	B1	Accept 496
	Est(σ^2) = $\frac{10}{9} (\frac{2459283}{10} - 495.9^{2})$	M1	Attempt Σx^2 and subst in correct formula (1/9("2459283" – "4959" ² /10)). May be implied by correct answer
	= 12.8 (3 sf) or 383/30	A1	(Note: Biased var "11.49" scores M0 A0)
		3	
(ii)	H ₀ : $\mu = 505$ H ₁ : $\mu < 505$ $\frac{75660 - 505}{150}$ $\frac{150}{3.6 \div \sqrt{150}}$	B1	Allow 'Pop mean' but not just 'mean'
	= -2.04	M1	Correct stand'n; must have √150. No sd/var mixes. Condone sample SD (3.58/3.39) Accept standardisation of totals ((75660-75750)/44.091) Accept CV method
		A1	Accept +2.04 (Note: if valid area comparison done 0.0207/0.0206 or 0.979 needed for A1)
	comp z = -2.054	M1	Valid comparison of z's or area (0.0207/6>0.02; 0.979(3)<0.98)
	No evidence (at 2%) that machine pkts mean mass < 505	A1ft	oe No contradictions. SC Two tail test can score B0 M1 A1 M1 for comparison with 2.326 A0 (max 3/5)
(iii)	Large sample, so sample mean approx normally distr'd	B1	Allow just 'Sample is large' or 'n is large' n>30

Question 53

(i)	$52 \pm z \times \frac{65}{\sqrt{15}}$	M1	Expression of the correct form. Any z
	z = 1.96	B1	Seen or used
	48.7 to 55.3 (3 sf)	A1	Must be an interval
		3	
(ii)	Narrower because more information or because $\frac{\sigma}{\sqrt{n}}$ smaller	B1	oe Accept 'sample size is larger' 'more employees' 'width inversely proportional to sq root of n' 'if n increases width decreases' '95% CI is 49.7 to 54.3' or similar. No contradictions
	7	1	-0'/

(i)	$\frac{20}{100} \pm z \times \sqrt{\frac{0.2 \times (1 - 0.2)}{100}}$	M1	Any z
	z = 1.881 or 1.882	B1	
	= 0.125 to 0.275	A1	
		3	
(ii)	$\frac{1}{6}$ is within this range No evidence of bias concerning 2	B1ft	Both statements needed

$est(\mu)$ (= 153.2 ÷ 75) = 2.04 (3 sf)	B1	
$est(\sigma^2) = \frac{75}{74} (\frac{340.24}{75} - "2.04267"^2)$ oe	M1	
= 0.369 (3 sf)	A1	Accept 0.368
	3	

$\frac{12.2 - 12}{2.5 / \sqrt{n}}$	M1	Standardisation. Allow cc. need correct form incl sqrt
(=) 1.96	B1	Correct z
$\sqrt{n} = 1.96 \times 2.5 \div 0.2$	M1	Rearrange equation in n or sqrt n with numerical z to the stage n= or sqrt n = allow arithmetical slips only
n = 600	A1	accept 601 SR whole number ans from 595 to 605 can score full marks if fully justified
	4	

(i)	$176 \pm z \times \frac{7.2}{\sqrt{200}}$	M1	need correct form must be z
	z = 2.24	B1	allow 2.241 and 2.242
	175 to 177	A1	cwo
		3	
(ii)	Sample random	B1	oe. both words essential
		1	

Question 58

(i)	z = 1.96	B1	seen
	$330.1 \pm z \times \frac{4.8}{\sqrt{180}}$	M1	Must be of correct form. Any z
	= 329.4 to 330.8 (1 dp)	A1	Must be to 1 dp. Must be an interval.
		3	
(ii)	Yes, because vol of all cans not stated to be normal	B1	Or Yes, population not stated to be normal
		1	
Question 59			

-(i)	$\overline{x} = \frac{420}{50} = 8.4$	B1	
	$s^2 = \frac{50}{49} \left(\frac{27530}{50} - \left(\frac{420}{50} \right)^2 \right)$	M1	Or 1/49(27530 – (420) ² /50)
	= 489.8(36)	A1	Must see ≥ 4 sf
		3	
(ii)	$\Phi^{-1}(0.9377) = 1.536$	B1	
	$\frac{5 - 8.4^{\circ}}{\sqrt{\frac{490}{n}}} = -1.536$	M1	Attempting to standardise – must have correct form
	$n = \left(\frac{1.536}{3.4}\right)^2 \times 490 \tag{= 100.0048}$	M1	Attempting numerical expression for n or \sqrt{n} (must have used a 'z' value) may be implied by answer
	n = 100	A1	No errors seen. Must be whole number
		4	

(i)	z = 2.326	B1	
	$62.3 \pm z \frac{13.2}{\sqrt{200}}$	M1	Any z. Expression of correct form. Must be a 'z'
	60.1 to 64.5 (3 sfs)	A1	Must be an interval
		3	
(ii)	Yes, because pop not (given to be) normal, or pop distribution unknown	B1	No contradictions
		1	

$\frac{50}{49} \left(\frac{4361}{50} - \overline{x}^2 \right) = 9.62$	M1	or $\left(\frac{4361}{49} - \frac{(\Sigma x)^2}{50 \times 49}\right) = 9.62$ BOD regarding symbols used
$\overline{x}^2 = \frac{4361}{50} - 9.62 \times \frac{49}{50} = 77.7924$	A1	$(\Sigma x)^2 = 4361 \times 50 - 9.62 \times 50 \times 49 = 194481$ or $\Sigma x = 441 \ (\Sigma x)$ or (\overline{x}) must be correctly identified
$\bar{x} = 8.82 \text{ (3 sf)}$	A1	SC use of 'biased' leading to 8.81 B1
	3	

Question 62

$0.6 \pm z \sqrt{\frac{0.4 \times 0.6}{100}}$	M1	Recognisable value of z
z = 2.326	B1	2.326 to 2.329
0.486 to 0.714 (3 sf)	A1	Must be an interval
	3	2

Question 63

(i)	$Est(\mu) = 1.85$	B1	
	Est(σ^2) = $\frac{50}{49} \left(\frac{175.25}{50} - 1.85^{12} \right)$	M1	Allow $\sqrt{\frac{50}{49} \left(\frac{175.25}{150} - 1.85^{2}\right)}$ or 0.0290 for M1
	$= 0.0842 (3 sf) \text{ or } \frac{33}{392}$	A1	Cao If $\frac{50}{49}$ omitted (giving var = 0.0825 or sd = 0.287) M0A0
		3	
(ii)	H ₀ : Pop mean time = 1.9 (h) H ₁ : Pop mean time < 1.9 (h)	B1	Allow '\mu' but not just 'mean'
	$\pm \frac{1.85 - 1.9}{\sqrt{\frac{0.0842'}{50}}}$	M1	$\pm \frac{1.85 - 1.9}{\frac{0.290}{\sqrt{50}}}$ Accept totals method (92.5–95) / $\sqrt{4.21}$
	= -1.22	A ₁	= -1.22
	comp z = -1.645	M1	Or other valid comparison 0.888 or 0.889 < 0.95 OR 0.111 or 0.112>0.05
	No evidence that mean time < 1.9 h	A1	FT their z. Correct conclusion. No contradictions If $\frac{50}{49}$ not used in (1): var = 0.8225, sd = 0.907, cr = 1.17 can score all marks in (ii) Note- 2 tail test can score B0 M1 A1 M1 (comparison with 1.96) A0 (no ft) max3/5
		5	

(i)	Normal with mean 372	B1	
	$sd = \frac{54}{\sqrt{36}}$	M1	or variance = $\frac{54^2}{36}$ M1
	(= 9)	A1	(= 81) A1
		3	
(ii)	Pop normal	B1	Allow X is normal
		1	

(i)	Biased towards people Excludes people who do	who like tennis on't like tennis	B1	or other sensible
			1	
(ii)	Obtain a list of all peop	le in the town	B1	
	Use random numbers		B1	or, e.g. pick numbers from a hat or other sensible
			2	
(iii)	$Var(p) = \frac{\frac{47}{350}(1 - \frac{47}{350})}{350} $ (=	= 0.000332152)	M1	
	z = 1.645		B1	
	$\frac{47}{350} \pm z \sqrt{\frac{\frac{47}{350}(1 - \frac{47}{350})}{350}}$		M1	Must be a z value
	0.104 to 0.164 (3 sf)		A1	Must be an interval
			4	
(iv)	1.25×1.645 (= 2.056)		M1	or $1.25 \times \text{their width} \div 2 \div \text{their } \sqrt{\frac{\frac{47}{350}(1-\frac{47}{350})}{350}}$ (Complete method)
	Φ('2.056')	(= 0.980)	M1	Attempt Φ (their z)
	x = 96 (2 sf)		A1	Allow 0.96 (2 sf) CWO
			3	
_	stion 66			Di l

(i)	Assume population is normally distributed	B1	
	$\overline{x} = 25.9$	B1	Allow $\frac{259}{10}$
	z=2.17	B1	
	$^{1}25.9^{1}\pm z\times\frac{3}{\sqrt{10}}$	M1	Must have correct form and z .
	23.8 to 28.0 (3 sf)	A1	CWO
		5	
(ii)	0.03 ² (=0.0009)	B1	
		1	

(i)	$est(\mu) = \frac{25110}{50}$ (= 502.2)	В1	
	$\operatorname{est}(\sigma^2) = \frac{50}{49} \left(\frac{12610300}{50} - \frac{25110}{50} \right)^2 \left(= \frac{50}{49} \times \frac{58}{50} = 1.1836 \right)$	M1	OE
	1.18 (3 sf) or $\frac{58}{49}$	A1	Accept SD = 1.0879
	z = 2.054 or 2.055	B1	
	$502.2 \pm z \times \frac{\sqrt{1.1836'}}{\sqrt{50}}$	М1	Must be of correct form.
	501.9 to 502.5 (1dp)	A1	CWO. Must be in interval. SC accept use of biased variance (1.16) for M1 A1
		6	
(ii)	More confident or z would be greater, Hence wider.	B1	OE Reason needed
		1	
Ques	tion 68		

$2 \times z \times \frac{3.2}{10} = 1.25$	M1	OE Allow without '2 ×'
z = 1.953	A1	SOI
φ('their 1.953') (= 0.9746)	M1	///
= 1 - 2(1 - '0.9746') = 0.9492	M1	OE
$\alpha = 94.9 \text{ or } 95$	A1	cwo
	91101	

C		
5(a)	$p = \frac{70}{500} \text{ or } 0.14$	B1
	z = 2.576	B1
	"0.14" $\pm z \times \sqrt{\frac{"0.14"(1-"0.14")}{500}}$	M1
	0.100 to 0.180	A1
		4
(b)	0.1666 is within confidence interval Belief supported or justified	B1
		1
(c)	$z \times \sqrt{\frac{"0.14"(1-"0.14")}{500}} = 0.02$	M1
	z = 1.289	A1
	$\Phi(`1.289") = 0.9013$	M1
	$\alpha = \text{`}0.9013\text{'} - (1 - \text{`}0.9013\text{'})$	M1
	80.3% (3 sf)	A1
		5
Ques	etion 70	

Est $\mu = 15.56$	B1
Est $\sigma^2 = \frac{100}{99} \left(\frac{29004}{100} - "15.56"^2 \right)$	M1
or $=\frac{1}{99}\left(29004 - \frac{1556^2}{100}\right)$	
48.4105 = 48.4 (3 sf)	A1
	2

(a)	$\frac{\Sigma x}{7} = \frac{34.7}{7} = 4.9571 \text{ or } 4.96 \text{ (3 sf)}$	B1
	$(\Sigma x^2 = 175.15)$	
	$\boxed{\frac{7}{6} \left(\frac{"175.15"}{7} - "4.9571"^2 \right)}$	M1
	0.523 (3 sf)	A1
		3
(b)	$^{1}4.96'\pm z \times \sqrt{\frac{0.523}{7}}$	M1
	(FT their mean and standard deviation)	
	z = 1.96	B1
	4.42 to 5.49 (3 sf)	A1
		3

(a)	$\frac{\frac{102}{250} \times \frac{250 - 102}{250}}{250} = (= 0.000966144)$ $\frac{102}{250} \pm z\sqrt{0.00096614}$	
	z = 1.645	
	Confident Interval is 0.357 to 0.459 (3 sf)	
	TPRA	
(b)	Estimate of mean $\left(\frac{50460}{250}\right) = 201.84	
	$\frac{250}{249} \left(\frac{19854200}{250} - \left(\frac{50460}{250} \right)^2 \right) \text{ or } \frac{1}{249} \left(19854200 - \frac{50460^2}{250} \right)$	
	Estimate of variance = 38 832.75 dollars ² or 38 800 (3 sf)	
	SatpreP.	20
(c)	e.g. Every house doesn't have an equal chance of being selected or most houses have no chance of being selected.	
		10

(a)	$\frac{56}{300} \pm z \times \sqrt{\frac{\frac{56}{300} \times \frac{244}{300}}{300}}$	M1
	z = 2.054 or 2.055	B1
	0.14(0) to 0.233 (3sf) or 0.141 to 0.233 (3sf)	A1
		3
(b)	$\frac{1}{6}$ (= 0.167) This is within confidence interval, so no reason to believe die is biased.	B1 FT
		1

(a)	Est(μ) = $\frac{4820}{60}$ or $\frac{241}{3}$ or 80.3 (3 sf)	B1	
	$Est(\sigma^2) = \frac{60}{59} \left(\frac{392050}{60} - \left(\frac{4820}{60} \right)^2 \right)$	M1	Use of biased (80.72) score M0 A0.
	82.0904 $\left(\frac{14530}{177}\right)$ to 82.635 or SD = 9.0604 to 9.0904 (3sf)	A1	
	z = 2.326	B1	
	$\frac{4820}{60} \pm z \times \sqrt{\frac{82.0904}{60}}$	M1	Expression of the correct form – must be z value.
	77.6 to 83.1 (3 sf)	A1	CWO Use of biased 77.6 to 83.0(3) can score B1M1A1 (max 4/6).
		6	
(b)	Population distribution of times unknown	B1	Accept 'not normal'.
		1	

(a)	$\frac{4509}{90}$ [= 50.1]	B1	
	$\frac{90}{89} \left(\frac{225950}{90} - 50.1^2\right) \text{ or } \frac{1}{89} \left(225950 - \frac{4509^2}{90}\right)$	M1	Attempted. Use of biased = 0.5455 scores M0A0
	491/890 or 0.552 (3 sf)	A1	
		3	
(b)	$50.1' \pm z \sqrt{\frac{491}{890}}$	M1	Expression of the correct form, allow any z-value but must be a z-value
	z = 2.326	B1	Accept 2.326 to 2.329
	49.9 to 50.3 (3 sf)	A1	FT from biased variance. Must be an interval.
		3	
(c)	Population of masses is unknown	B1	Accept population of masses is not normal
		1	
(d)	1 - 0.98	M1	0.02 seen
	$0.02 \div 2 = 0.01$	A1	As final answer
		2	
Ques	stion 76		
i(a)	7570 B	i	

i(a)	est $(\mu) = \frac{7570}{100} (= 75.7)$	B1	
	$\operatorname{est}(\sigma^2) = \frac{100}{99} \left(\frac{\sum h^2}{100} - 75.7^{12} \right) \text{ or } \frac{1}{99} \left(588050 - \frac{7570^2}{100} \right)$ $100 \left(588050 - 75.7^{12} \right)$	M1	Attempted (Note: Biased variance (150.01) scores M0)
	$=\frac{100}{99}\left(\frac{588050}{100}-'75.7'^{2}\right) [=151.525]$		
	= 152 (3 sf)	A1	Or $\frac{15001}{99}$
		3	
(b)	$^{\circ}75.7^{\circ} \pm z\sqrt{\frac{^{\circ}151.525^{\circ}}{100}}$	M1	For expression of correct form. Must be a z value. Condone just + or just
	z = 2.576	B1	Accept 2.574 to 2.579
	72.5 to 78.9	A1 FT	FT biased variance only Must be an interval
		3	
i(c)	0.994	В1	
	0.961 (3 sf)	B1	
		2	

$\frac{3820}{100} [= 38.2]$	B1	
$\frac{100}{99} \left(\frac{182200}{100} - 38.2^{2} \right) \text{ or } \frac{1}{99} \left(182200 - \frac{3820^{2}}{100} \right)$	M1	Use of biased (362.76) scores M0
$= \frac{12092}{33} \text{ or } 366.424 \text{ or } 366 (3 \text{ sf})$	A1	Accept SD=19.1422 or 19.1(3sf)
$'38.2' \pm z \times \sqrt{\frac{'366.424'}{100}}$	M1	Expression of the correct form must be a z-value.
z = 1.881 or 1.882	B1	Seen.
34.6 to 41.8 (3 sf)	A1	Allow use of biased giving (34.6,41.8) Must be an interval.
TPA	6	

(a)	$\pm \frac{123 - 125}{\frac{6}{\sqrt{40}}} \ [= -2.108]$	M1	Must have √40 No standard deviation/variance mix. Ignore any continuity correction attempts for this mark.
	$P(z < -2.108') = 1 - \Phi(2.108')$	M1	For correct probability area consistent with <i>their</i> working.
	= 0.0175 or 0.0176 (3 sf)	A1	
		3	
(b)	No, population is normal	B1	Need both.
		1	

(a)	est $\mu = 14$ accept $\frac{560}{40}$	B1	
	est $\sigma^2 = \frac{40}{39} \left(\frac{7850}{40} - 14^2 \right)$ or $\frac{1}{39} \left(7850 - \frac{560^2}{40} \right)$	M1	
	0.25641 or 0.256 (3sf)	A1	Accept $\frac{10}{39}$ Without $\frac{40}{39}$ i.e. biased: est $\sigma^2 = 0.25$ M0 A0.
		3	

$est(p) = 0.2 accept \frac{15}{75}$	B1	SOI
$2 \times z \times \sqrt{\frac{0.2 \times 0.8}{75}} = 0.162$	M1	Expression of the correct form. Condone missing 2x.
$z \left[= 0.081 \times \sqrt{\frac{75}{0.2 \times 0.8}} \right] = 1.754$	A1	Correct z. Condone 3sf accuracy.
$\Phi(`1.754`) = 0.96[03]$ $`0.96' - (1 - `0.96`)$	M1	OE. Using their z to find alpha.
$\alpha = 92$	A1	Following correct working.
	5	

Question 81

cept standardising

(a)	$0.25 \pm z \sqrt{\frac{0.25 \times 0.75}{140}}$	M1	Expression of correct form (allow M1 for just one side stated). Must be a <i>z</i> -value.
	z = 2.054 or 2.055	B1	
	0.175 to 0.325 (3sf)	A1	Must be an interval.
		3	
(b)	$\begin{array}{l} 0.90\times0.95\times0.01 \\ +\ 0.90\times0.05\times0.99 \\ +\ 0.10\times0.95\times0.99 \end{array}$	M1 M1	M1 for one correct triple product. M1 for all correct and added.
	0.147	A1	SC If zero scored award B1 for a 2 or 3 term expression of the form 0.90×0.95 [×c] OE. $(0 < c \le 1)$
		3	

(a)	E.g. Bias towards students who play instruments or only music students or e.g. the six will possibly be friends/have similar music preferences	B1	OE Or any reason that some are excluded e.g. because it is lunchtime or because the music building is chosen or any suggestion that opinions may not be independent. Note: 'not representative of all students' needs qualifying
		1	
(b)	28, 119, 207	B1	B1 for 28, 119 (condone 028).
		B1	B1 for 207 and only 3 values stated.
		2	

Question 84

~			
(a)	$\frac{20.5}{40} = 0.5125$	B1	Accept 0.513 or $\frac{41}{80}$. Condone $\frac{20.5}{40}$.
	$\frac{40}{39} \left(\frac{10.728}{40} - (0.5125)^2 \right) \text{ or } \frac{1}{39} \left(10.728 - \frac{20.50^2}{40} \right)$	M1	Biased variance (0.005544 or $\frac{887}{160000}$) scores M0 A0.
	0.0056859 or 0.00569 (3 sf) or $\frac{887}{156000}$	A1	CAO
		3	
(b)	$[11 \times '0.5125' + 0.5]) = 6.1375 \text{ or } \frac{491}{80} \text{ or } 6.14 \text{ (3sf)}$	B1 FT	FT their 0.5125
	11 ² × '0.0056859'	M1	With nothing added. Using <i>their</i> variance in (a) (no sd/var confusion)
	0.688 (3sf)	A1	CAO
	74.	3	

$est \mu = 14 \ accept \ \frac{560}{40}$	B1	
est $\sigma^2 = \frac{40}{39} \left(\frac{7850}{40} - 14^2 \right)$ or $\frac{1}{39} \left(7850 - \frac{560^2}{40} \right)$	M1	
0.25641 or 0.256 (3sf)	A1	Accept $\frac{10}{39}$ Without $\frac{40}{39}$ i.e. biased: est $\sigma^2 = 0.25$ M0 A0.
	3	

$est(p) = 0.2 accept \frac{15}{75}$	B1	SOI
$2 \times z \times \sqrt{\frac{0.2 \times 0.8}{75}} = 0.162$	M1	Expression of the correct form. Condone missing $2x$.
$z \left[= 0.081 \times \sqrt{\frac{75}{0.2 \times 0.8}} \right] = 1.754$	A1	Correct z. Condone 3sf accuracy.
$\Phi(1.754') = 0.96[03]$ 0.96' - (1 - 0.96')	M1	OE. Using their z to find alpha.
$\alpha = 92$	A1	Following correct working.
	5	

Question 87

est(p) = 0.4	B1	
$(0.4'+z\sqrt{\frac{0.4\times(1-0.4')}{500}}[=0.445]$	M1	OE Use of their 0.4 in a correct expression
$z \left[= 0.045 \div \sqrt{\frac{0.4 \times (1 - 0.4)}{500}} \right] = 2.054$	A1	Condone 2.053 and 2.05
0.98 - (1 - 0.98)	M1	
96% confidence	A1	CWO, must be integer
	5	

(a)	Est $(\mu) = \frac{1199}{6}$ or 199.833 or 200 or $\frac{2398}{12}$ [mm]	B1	Accept in any form
	Est $(\sigma^2) = \frac{12}{11} \left(\frac{479226}{12} - \frac{'1199'^2}{6} \right) \text{ or } \frac{1}{11} \left('479226' - \frac{'2398'^2}{6} \right)$	M1	Use of their values in correct formula (may be implied)
	= 2.33 (3 sf) [mm ²]	A1	Accept $\frac{7}{3}$
		3	
(b)	Small sample	B1	Accept not 'not representative' unless qualified.
		1	

(a)	$\frac{13+a}{5}$	B1	Accept $\frac{2+3+3+5+a}{5}$. Do not ignore subsequent working
		1	
(b)	$\frac{5}{4} \left(\frac{47 + a^2}{5} - \left(\frac{13 + a}{5} \right)^2 \right) = 4 \text{ or } \frac{1}{4} \left(47 + a^2 - \frac{\left(13 + a \right)^2}{5} \right) = 4$	M1	Use of correct formula using <i>their</i> value from (a), in terms of a , and equate to 4
	$2a^2 - 13a - 7 = 0$	A1	Any correct three-term quadratic equation rearranged to a form ready to solve
	a = 7	A1	Condone the other value of $a\left(-\frac{1}{2}\right)$
		3	

Question 90

$\frac{1300 + \frac{1}{200} - 1250}{\frac{480}{10}} \text{ or } \frac{1300 - 1250}{\frac{480}{10}} [= 1.042]$	M1 Allow with incorrect of Must have 10 Accept totals method	r omitted continuity correction
1 – Φ('1.042')	M1 For area consistent wit	h <i>their</i> values
0.149 (3 s.f.)	A1	
	3	

(a)	$72.3 \pm z \sqrt{\frac{64.3}{50}}$	M1	Expression of correct form (allow only one side for M1). Must be a z value
	z = 1.751	B1	Accept 1.75 if nothing better seen
	CI is 70.3 to 74.3 metres (3 s.f.)	A1	Allow without units Must be an interval
	atplet	3	
(b)	Not random sample	B1	Need 'random' or 'not representative/biased because' OE
		1	

Quo.	50011 72		
(a)	Est(μ) = $\frac{2520}{200}$ [= 12.6]	B1	OE
	Est(σ^2) = $\frac{200}{199} \left(\frac{31582}{200} - 12.6^{\circ 2} \right)$ or $\frac{1}{199} \left(31852 - \frac{2520^2}{200} \right)$	M1	Allow M1 if $\frac{200}{199}$ omitted
	$= 0.5025 \text{ or } 0.503 \text{ or } \frac{100}{199}$	A1	CWO or $\sigma = 0.7088$ or 0.709
	z = 1.96	B1	
	$^{\circ}12.6^{\circ} \pm z \times \sqrt{^{\circ}0.5025^{\circ} \pm 200}$	M1	For expression of correct form Any z but must be z
	CI = 12.5 to 12.7 (3 sf)	A1	CWO Must be an interval Note: Use of biased can score maximum B1 M1 A0 B1 M1 A0
		6	
(b)	$0.95 \times 40 = 38$	B1	Give at early stage
		1	
Que	stion 93		

Question 75		
$\frac{62.1}{10} = 6.21$	B1	OE
$[\Sigma x^{2} = 387.05]$ $\frac{10}{9} \left(\frac{their '387.05'}{10} - \left(their '6.21' \right)^{2} \right)$ or $\frac{1}{9} \left(\frac{their '387.05'}{10} - \frac{\left(their '6.21' \right)^{2}}{10} \right)$	Mı	Can be implied. Accept alternative methods (e.g. working mean of 6). Biased 0.1409 M0.
$= 0.157 \text{ (3 sf) or } \frac{1409}{9000}$	A1	
22.0	3	

(a)	$45 \pm z \times \frac{6}{\sqrt{200}}$	M1	For expression of correct form, any z. Accept one side of interval for M1.
	z = 1.96	B1	Must be seen.
	44.2 to 45.8 (3 sf)	A1	Must be an interval.
		3	
(b)	$z \times \frac{11}{\sqrt{200}} = 2$	M1	Or = 4 for M1
	z = 2.571	A1	Accept 3sf if nothing better seen.
	$\phi(their '2.571') = 0.9949$ and their '0.9949' $- (1 - their '0.9949') [= 0.9898]$	M1	OE For area consistent with their values. Must be seen.
	$\alpha = 99.0 (3 \text{ sf})$	A1	Allow 99. cwo Final answer of 0.99 scores A0.
		4	4

(a)	Est $\mu = 25.6$ or $\frac{2048}{80}$ or $\frac{128}{5}$	B1	
	Est $\sigma^2 = \frac{80}{79} \left(\frac{52760}{80} - \left(\frac{2048}{80} \right)^2 \right)$ or $\frac{1}{79} \left(52760 - \frac{2048^2}{80} \right)$	M1	Substitution into a correct formula. Biased 4.14 scores M0.
	$= 4.19 (3 sf) or \frac{1656}{395}$	A1	
		3	
(b)	$25.6' + z\sqrt{\frac{4.19'}{80}} = 26.0$	M1	Use of correct equation with their values.
	z = 1.748 or 1.747	A1	Accept 3sf. FT Biased z = 1.758.
	$(\Phi(1.748') = 0.960) \cdot 0.960' - (1 - 0.960')$	M1	Correct area using their values.
	$\alpha = 92.0 \text{ or } 91.9$	A1	Allow 92 . FT Biased 92.1. A final answer of 0.92 or 0.919 scores A0.
		4	
Oues	stion 96		

Que	30011 70		
(a)	For X , $\mu = 2 \sigma^2 = 1.6$		
	Mean = 2	B1	
	Variance = $\frac{1.6}{160}$ or $\frac{1}{100}$ or 0.01	В1	Accept $Var = 0.1^2$ (accept sd=0.1 if clearly identified).
	Normal	B1	
		3	
(b)	$\pm \frac{1.8 - \frac{1}{320} - '2'}{\sqrt{'0.01'}} \text{ or } \pm \frac{1.8 - '2'}{\sqrt{'0.01'}} [= -2.03 \text{ or } -2]$ or $\pm (287.5 - '320') / \sqrt{'256'} \text{ or } \pm (288 - '320') / \sqrt{'256'} [= -2.03 \text{ or } -2]$	M1	Allow with wrong continuity correction. M1 can be implied by correct final answer or for -2.03 / -2.0 or 0.9788 / 0.9772 seen.
	$\phi(`-2.03') = 1 - \phi(`2.03')$	M1	Correct area consistent with their values. M1 can be implied by correct final answer.
	= 0.0212 or 0.0228 (3 sf)	A1	
		3	

(a)	$45 \pm z \times \frac{6}{\sqrt{200}}$	M1	For expression of correct form, any z . Accept one side of interval for M1.
	z = 1.96	B1	Must be seen.
	44.2 to 45.8 (3 sf)	A1	Must be an interval.
		3	
(b)	$z \times \frac{11}{\sqrt{200}} = 2$	M1	Or = 4 for M1
	z = 2.571	A1	Accept 3sf if nothing better seen.
	$\phi(their '2.571') = 0.9949$ and their '0.9949' – $(1 - their '0.9949')$ [= 0.9898]	M1	OE For area consistent with their values. Must be seen.
	$\alpha = 99.0 (3 \text{ sf})$	A1	Allow 99. cwo Final answer of 0.99 scores A0.
		4	
Quest	tion 98	21	

Question 90		
$\frac{62.1}{10} = 6.21$	B1	OE
$[\Sigma x^2 = 387.05]$ $\frac{10}{9} \left(\frac{their '387.05'}{10} - \left(their '6.21' \right)^2 \right)$	M1	Can be implied. Accept alternative methods (e.g. working mean of 6). Biased 0.1409 M0.
or $\frac{1}{9} \left(\frac{their '387.05'}{10} - \frac{(their '6.21')^2}{10} \right)$		
$= 0.157 (3 \text{ sf}) \text{ or } \frac{1409}{9000}$	A1	
12	3	

(a)	$\left[\frac{49}{140} = 0.35\right]$		
	$0.35 \pm z \sqrt{\frac{0.35(1-0.35)}{140}}$	M1	Use of formula of correct form, ft <i>their</i> $\frac{49}{140}$, any z (not a probability).
	z = 2.326	B1	Accept 2.326 to 2.329.
	Confidence interval = 0.256 to 0.444 (3 sf)	A1	Must be an interval.
		3	
(b)	Find a smaller percentage confidence interval/ lower level of confidence	B1	ISW if 2 reasons given. Just saying 'use smaller z' oe B0. Accept a correct example e.g. 90% (even if not qualified with statement).
		1	

$\overline{x} = 1700/50 = 34$	B1	
$\operatorname{Est}(\sigma^2) = \frac{50}{49} \left(\frac{59050}{50} - 34^2 \right) \text{ or } \frac{1}{49} \left(59050 - \frac{1700^2}{50} \right)$	M1	Est(σ^2) = $\frac{59050}{50} - 34^2$ biased scores M0.
$= 25.5 (3 sf) or \frac{1250}{49}$	A1	= 25 scores A0.
	3	

Question 101

•			
(a)	z = 1.645	B1	
	$z \times \frac{\sqrt{\frac{x}{100} \times (1 - \frac{x}{100})}}{100} = 0.07896$	M1	OE. Equation of correct form. Accept $p = x/100$. Any z . Allow missing factor of 2.
	$[x(100-x) = 100^3 \times 0.07896^2 \pm 1.645^2]$ $x^2 - 100x + 2304 = 0$	A1	Any correct (likely scalar multiple) three-term quadratic equation in x or p with simplified coefficients. Accept $p^2 - p + 0.2304 = 0$ or $p(1-p) = 0.2304$.
	x = 36 or 64	A1	
		4	
(b)	$0.1^2 = 0.01$	B1	Accept either.
		1	

Question 102

Ques	tion 102		
(a)	180, 227	B1	One correct. Ignore incorrect numbers.
		B1	Both correct and no extra numbers seen. (Allow other correct use of list of digits).
		2	
(b)	These numbers are not independent of the previous numbers	B1	Already used these numbers, so therefore not random. Does not include numbers not in the list, therefore not
	OR		random (not random or biased needs a reason).
	Only a finite number of digits used		
		1	

Question 103

Est $(\mu) = 3.25 = 13/4$ or $1625/500$	B1	
$\operatorname{Est}(\sigma^2) = \frac{500}{499} \left(\frac{5663.5}{500} - "3.25"^2 \right) \text{ or } \frac{1}{499} \left(5663.5 - \frac{1625^2}{500} \right)$	M1	Expression of correct form.
= 0.766 (3 sf) or 1529/1996	A1	Biased variance of 0.7645 scores M0A0.
	3	

$0.23 \pm z \times \sqrt{\frac{0.23 \times (1 - 0.23)}{200}}$	M1	Expression of correct form. Any z , but $z = 0.8328$ scores B0M0.
z = 1.811 or 1.812	B1	
0.176 to 0.284 (3 sf)	A1	Must be an interval.
	3	

$\frac{5}{4} \left(\frac{1+2^2+6^2+1+a^2}{5} - \left(\frac{1+2+6+1+a}{5} \right)^2 \right) = \frac{11}{2}$ or $\frac{1}{4} \left((42+a^2) - \frac{(10+a^2)}{5} \right) = \frac{11}{2}$	M1*	OE attempted or e.g., $\frac{42+a^2}{5} - \left(\frac{10+a}{5}\right)^2 = \frac{22}{5}$. Allow use of biased i.e., without $\frac{5}{4}$.
$4a^2 - 20a + 0 = 0$ or $a^2 - 5a + 0 = 0$	DM1	Two- or three-term quadratic equation in a , with at least two terms correct.
a = 5	A1	Ignore $a = 0$, if seen.
	3	

(a)	$z \times \sqrt{\frac{11.2}{n}} = 1.4076 \div 2$	M1	Any z , but must be a z .
	z = 1.881 or 1.882	B1	
	$[n = \left(\frac{1.881}{0.7038}\right)^2 \times 11.2]$ $n = 80$	A1	Must be a whole number.
		3	
(b)	Jan, Feb and March not typical of whole year.	B1	Or, e.g., weather is different at different times of year.
		1	
(c)	$0.94^3 \times 0.06 \times 4$	M1	
	= 0.199 (3 sf)	A1	
		2	