AS-Level

Topic: Binomial & Geometric Distribution

May:2013-May:2023

Answers

Question 1

(i) (0.8	$(8)^n < 0.001$	M1		Eqn or inequ involving 0.8^n or 0.2^n and 0.001 or 0.999
n >	30.9	M1		Trial and error or logs (can be implied)
n =	: 31	A1	[3]	Correct answer
				MR 0.01, max available M1M1A0
(ii) μ=	$= 120 \times 0.2 = 24$ $= 120 \times 0.2 \times 0.8 = 19.2$	B1		24 and 19.2 or $\sqrt{19.2}$ seen
σ^2	$= 120 \times 0.2 \times 0.8 = 19.2$	M1		Standardising with or without cc, must have sq
	(22.5 24)			rt in denom
P($x < 33) = P \times \left(z < \frac{32.5 - 24}{\sqrt{19.2}} \right)$	M1		Continuity correction 32.5 or 33.5
	= P(z < 1.9398)			
	= 0.974	A1	[4]	Correct answer
Questio	n 2	I		
1				

(i)	p = 4/9 or 5/9 P(at least 2) = 1 - P(0, 1) = 1 - $(5/9)^5$ - $(4/9)(5/9)^4$ ₅ C ₁	B1 M1		Binomial term ${}_{5}C_{x}p^{x}(1-p)^{5-x}$ seen
	= 0.735	A1	[3]	Correct answer
(ii)	$np = 96 \ npq = 32 \ p = P \ (\le k)$	M1		Using $np = 96 npq = 32$ to obtain eqn in 1 variable
	$p = 2/3 \ q = 1/3 \ n = 144$ k = 6	A1 A1ft		1/3 or $2/3$ seen or implied Correct k ft $k = 9p$
	n = 144	A1	[4]	correct n

(i)	$X \sim \text{Bin} (12, 0.2)$	B1 B1 B1	[3]	Bin or B 12 0.2 or 1/5
(ii)	$ P(X=3,4,5) = 0.2^{3}0.8^{9}_{12}C_{3} + 0.2^{4}0.8^{8}_{12}C_{4} + 0.2^{5}0.8^{7}_{12}C_{5} $	M1		Bin expression with any p
	= 0.23622 + 0.13287 + 0.05315 $= 0.422$	A1ft A1	[3]	Correct unsimplified expression, their p Correct answer
(iii)	P(X=0) < 0.01	M1	[3]	Statement involving $P(X = 0)$ and 0.01 can be implied
	$0.8^n < 0.01$ n = 21	M1 A1		Equn involving '0.8', 0.01 or 0.99 Correct answer

(i) $(p =)0.85$ P(< 12) = 1 - P(12, 13, 14) $= 1 - [(0.85)^{12}(0.15)^{2}_{14}C_{12} + (0.85)^{13}(0.15)_{14}C_{13} + (0.85)^{14}]$ = 1 - 0.6479	B1 M1		(p =)0.85 oe seen anywhere Summing 2 or 3 consistent bin probs, any $p < 1$, $n = 14$ (or summing 12 or 13 consistent bin probs)
= 0.352	A1	3	Correct answer
(ii) $(0.85)^n \ge 0.1$	M1		Eqn or inequality in 0.85 (or 0.15), n , 0.1 , n as a power
$n \le 14.2$ $n = 14$	M1 A1	3	Attempt to solve (can be implied) if n a power Correct answer – must be equals, not approx.
			MR allowed for 0.01, M1M1A0 max.

Question 5

$X \sim B(19, 0.12)$	M1		Any binomial term ${}^{19}C_x p^x (1-p)^{19-x}$, 0
$P(X < 4) = P(0, 1, 2, 3)$ $= (0.88)^{19} + {}^{19}C_{1}(0.12)^{1}(0.88)^{18} + {}^{19}C_{1}(0.12)^{1}(0.88)^{18} + {}^{19}C_{1}(0.12)^{1}(0.88)^{18} + {}^{19}C_{1}(0.88)^{18} + {}^{19}C_{1}(0.88)^{1$	M1		Any binomial term ${}^{n}Cx(0.12 \text{ or } 0.88)^{x}(0.88 \text{ or }$
$^{19}\text{C}_2(0.12)^2(0.88)^{17} + ^{19}\text{C}_3(0.12)^3(0.88)^{16}$	M1		$(0.12)^{n-x}$ P(0, 1, 2, 3) binomial expr with at least 2
= 0.813	A1	4	consistent terms Correct answer

Ouestion 6

(i)	constant / given p, independent trials, fixed / given no. of trials, only two	B1		Any one correct
	outcomes	B1	2	Any 3 correct
(ii)	$P(x \ge 3) = 1 - P(0, 1, 2)$	M1		Any binomial expression $p^r(1-p)^{18-r}$ ¹⁸ C _r seen
	= 1 - $[(0.85)^{18} + (0.85)^{17}(0.15) \times 18 + (0.85)^{16}(0.15)^2 \times {}^{18}C_2]$	M1		1 - P(0, 1, 2), any n,p,q
	= 0.520	A1	3	Correct answer

(i)	$\max = 12$ P(12) = $(0.7)^{12}$ = 0.0138	B1 B1	2	(Implied by P(12) with power 12) Accept 0.014
(ii)	P(fewer than 10) = 1-P (10, 11, 12) = $1 - {}^{12}C_{10} \times (0.7)^{10}(0.3)^2 - 12 \times (0.7)^{11}(0.3)$ - $(0.7)^{12}$	M1		Binomial term ${}^{12}C_r(0.7)^r(0.3)^{12-r}$ or ${}^{12}C_r(p)^r(q)^{12-r}$, $0.99 \le p+q \le 1.00$
	= 1 - 0.2528 = 0.747	A1 A1	3	Correct unsimplified expression oe Correct answer

Question 9

(i)	1.2 = 15p $p = 0.08Var = npq = 15 \times 0.08 \times 0.92 = 1.104$	M1		Attempt to find p using $1.2 = 15p$
	AG	A1	2	Correct answer
(ii)	$P(0, 1, 2) = (0.92)^{15} + {}^{15}C_{1}(0.08)(0.92)^{14} + {}^{15}C_{2}(0.08)^{2}(0.92)^{13} = 0.887$	M1 M1 A1	3	Binomial expression $^{15}C_xp^x(1-p)^{15-x}$ $0Correct unsimplified expression for P(0, 1, 2)Correct answer$
(iii)	P(at least 1 faulty screw) = $1 - P(0) = 1 - (0.92)^{15}$	M1		Attempt at $P(0)$ or $1 - P(0)$
	= 0.7137	A1		Rounding to 0.71
	P(at least 1 faulty screw in 7 packets) = ${}^{8}C_{7}(0.713)^{7}(0.2863)$	M1		Binomial expression ${}^{8}C_{7}p^{7}(1-p)$ 0
	= 0.216	A1	4	Correct answer

Question 10

$$P(3, 4, 5) = M1 \qquad \text{Bin expression of form} \ ^{10}\text{C}_x(p)^x (1-p)^{10-x}$$

$$= 0.222 \qquad \text{A1} \qquad \text{Bin expression of form} \ ^{10}\text{C}_x(p)^x (1-p)^{10-x}$$

$$= 0.222 \qquad \text{A1} \qquad \text{Bin expression of form} \ ^{10}\text{C}_x(p)^x (1-p)^{10-x}$$

$$= 0.222 \qquad \text{A1} \qquad \text{Correct unsimplified answer accept}$$

$$= 0.222 \qquad \text{A1} \qquad \text{Correct answer}$$

$$= 0.222 \qquad \text{A1} \qquad \text{Correct answer}$$

$$p = 0.76$$
P(fewer than 10) = 1 - P(10, 11)
$$= 1 - (0.76)^{10}(0.24)^{11}C_{10} - (0.76)^{11}$$

$$= 1 - 0.219$$

$$= 0.781$$
M1
Any binomial term
$${}^{11}C_xp^x(1-p)^{1I-x}, \ 0
Any binomial term
$${}^{11}C_xp^x(1-p)^{1I-x}, \ 0
Any binomial term
$${}^{11}C_x(0.76)^x(0.24)^{n-x}$$

$$1 - P(10, 11) \text{ oe binomial expression Correct answer}$$$$$$

(i)	$p = 0.66X \sim B(15, 0.66)$ P(at least 14) = P(14, 15) =	M1	Bin term 15 C _x $p^x(1-p)^{15-x}$ seen any p
	P(at least 14) = P(14, 15) = ${}^{15}C_{14} (0.66)^{14} (0.34) + (0.66)^{15}$	M1	Unsimplified correct expression for P(14,15)
	= 0.0171	A1 [3]	
(ii)	$(0.87)^{n} < 0.04$	M1	Eqn involving 0.87, power of n, 0.04 only
		M1	Solving by logs or trial and error(can be implied).
	n=24	A1 [3]	Must be exponential equation

Question 13

P (throwing a 4) = $(1 - 0.4) / 4$ = 0.15	M1 A1	Sensible attempt to find P(1) Correct answer
P(at most 1) = P(0, 1) or 1 – P(2, 3) = $(0.85)^3 + {}^3C_1 (0.15) (0.85)^2$	M1 M1	A binomial term with ${}^{3}C_{n}$ oe any p Binomial expression with ${}^{3}C_{n}$ P(0, 1) or $1 - P(2, 3)$ p = 0.15 or 0.85
= 0.939	A1 [5]	
Question 14		

(i)	$p = 1/3$ $P(\geqslant 2) = 1 - P(0, 1) = 1 - (2/3)^4 - {}^{4}C_{1}(1/3)(2/3)^3$ or $P(2,3,4) = {}^{4}C_{2}(1/3)^{2}(2/3)^{2} + {}^{4}C_{3}(1/3)^{3}(2/3) + (1/3)^4$ $= \frac{11}{27}, 0.407$	M1 M1 A1	[3]	Bin term ${}^4C_xp^x(1-p)^{4-x}$ $0Correct unsimplified answer$
(ii)	P(sum is 5) = P(1, 1, 1, 2) ×4 = $(1/3)^4 \times 4$ = $\frac{4}{81}$, 0.0494	M1 M1 A1	[3]	1, 1, 1, 2 seen or 4 options Mult by (1/3) ⁴

(i)	$0.9 \times 0.95 \times 0.85 \times 0.1 = 0.0727$	B1	[1]	
(ii)	P(0, 1, 2)	M1		Bin term ${}^{12}C_x(p)^x(1-p)^{12-x}p$
	= $(0.9)^{12} + {}^{12}C_1 (0.1)(0.9)^{11} + {}^{12}C_2 (0.1)^2 (0.9)^{10}$	M1		$< 1, x \neq 0$ Bin expression $p = 0.1$ or $0.9, n = 12, 2$ or 3 terms
	= 0.889	A1	[3]	12, 2 of 5 terms
(iii)	$X \sim B(50, 0.85)$	M1		50 × 0.85 seen oe can be implied
	Expectation = 50×0.85 (= 42.5) Var = $50 \times 0.85 \times 0.15$ (= 6.375)	A1	[2]	Correct unsimplified mean and var

$\dot{s}(i)$	constant probability (of completing)	B1	Any one condition of these two
	independent trials/events	B1	The other condition
	Totals:	2	
(ii)	$P(5, 6, 7) = {}^{7}C_{5}(0.7)^{5}(0.3)^{2} + {}^{7}C_{6}(0.7)^{6}(0.3)^{1} + (0.7)^{7}$	M1 A1	Bin term ${}^{7}C_{x}(0.7)^{x}(0.3)^{7-x}$, $x \neq 0, 7$ Correct unsimplified answer (sum) OE
	= 0.647	A1	
	Total:	3	
(iii)	P(0, 1, 2, 3, 4) = 1 - their ' 0.6471' = 0.3529	M1	Find P(\leq 4) either by subtracting their (ii) from 1 or from adding Probs of 0,1,2,3,4 with n =7 (or 10) and p = 0.7
	$P(3) = {}^{10}C_3(0.3529)^3(0.6471)^7$	M1	$^{10}C_3$ (their 0.353) 3 (1 – their 0.353) 7 on its own
	= 0.251	A1	

Question 17

i(i)	p = 0.07	B1	
	$P(2) = {}^{20}C_2(0.07)^2(0.93)^{18}$	M1	Bin term ${}^{20}C_x p^x (1-p)^{20-x}$ their p
	= 0.252	A1	
	Total:	3	
(ii)	P(at least 1 cracked egg)=1-(0.93) ²⁰ =1-0.2342	M1	Attempt to find P(at least1 cracked egg) with their p from (i) allow $1-P(0,1)$ OE
	= 0.766	A1	Rounding to 0.766
	Total:	2	
(iii)	$(0.7658)^{n} < 0.01$	M1	Eqn or inequal containing (their 0.766) ⁿ or (their 0.234) ⁿ , together with 0.01 or 0.99
	n = 18	A1	
	Total:	2	

x	-3	0	5	32	B1	At least 3 different correct values of X (can be unsimplified)
Prob	1/6	1/2	1/6	1/6	В1	Four correct probabilities in a Probability Distribution table
					B1	Correct probs with correct values of X
					3	

3(i)	p = 0.207	B1	
		1	
(ii)	$Var = 30 \times 0.207 \times 0.793 = 4.92$	B1	
		1	
(iii)	$P(\geqslant 2) = 1 - P(0, 1)$	M1	
	$= 1 - (0.793)15 - {15 \choose 1} (0.207)(0.793)14$	M1	1 - P(0, 1) seen $n = 15 p = $ any prob
	= 0.848	A1	
		3	

(i)	$P(4) + P(5) = {}^{5}C_{4} \left(\frac{1}{4}\right)^{4} \left(\frac{3}{4}\right)^{1} + {}^{5}C_{5} \left(\frac{1}{4}\right)^{5} \left(\frac{3}{4}\right)^{0}$	M1	One binomial term, with $p < 1$, $n=5$, $p+q=1$
	= 0.014648 + 0.00097656	M1	Add 2 correct unsimplified binomial terms
	$= 0.0156 \text{ or } \frac{1}{64}$	A1	
		3	
(ii)	$1 - P(0) > 0.995$: $0.75^n < 0.005$	M1	Equation or inequality involving 0.75 ⁿ and 0.005 or 0.25 ⁿ and 0.995
	$n\log 0.75 < \log 0.005$ n > 18.4:	M1	Attempt to solve <i>their</i> exponential equation using logs, or trial and error May be implied by their answer
	n = 19	A1	
	3	3	-
ii)	$p = 0.25, n = 160: \text{ mean} = 160 \times 0.25 (= 40)$ variance = 160 x 0.25 x 0.75 (=30)	B1	Correct unsimplified mean and variance
	$P(X < 50) = P\left(Z < \frac{49.5 - 40}{\sqrt{30}}\right)$	M1	Use standardisation formulae must include square root.
	$1(3 - 30)$ $1(2 - \sqrt{30})$	M1	Use continuity correction ±0.5 (49.5 or 50.5)
	= P(Z < 1.734) = 0.959	A1	Correct final answer
		4	

(i)	z = 0.674	В1	z value ±0.674
	$0.674 = \frac{03}{\sigma}$	M1	±Standardising with 0 and equating to a z-value
	σ = 4.45	A1	Correct answer www ie not ignoring a minus sign
	Total:	3	
ii)	P(0, 1)	M1	Any bin of form ${}^{8}C_{x}(0.75)^{x} (0.25)^{8-x}$ any x
	$= (0.75)^8 + {}^8C_1(0.25)(0.75)^7$	M1	Correct unsimplified answer, may be implied by numerical values
	0.1001+ 0.2670 = 0.367	A1	Correct answer
	Method 2 $1 - P(8,7,6,5,4,3,2) = 1 - (0.25)^8 - {}^8C_1(0.75)(0.25)^7$	M1	Any bin of form ${}^{8}C_{x}(0.75)^{x}(0.25)^{8-x}$ any x
	$ ^{8}C_{2}(0.75)^{6}(0.25)^{2}$	M1	Correct unsimplified answer
	= 0.367	A1	Correct answer
	Total:	3	

Ouestion 22

'(i)	Method 1 P(< 11) = 1 - P(11, 12, 13)	M1	Binomial expression of form $^{13}C_x$ $(p)^x(1-p)^{13-x}$, $0 < x < 13$, 0
	$=1-{}^{13}\mathrm{C}_{11}(0.6)^{11}(0.4)^2-{}^{13}\mathrm{C}_{12}(0.6)^{12}(0.4)-(0.6)^{13}$	M1	Correct unsimplified answer
	= 0.942	A1	CAO
	Method 2 P(< 11) = P(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)	M1	Binomial expression of form ${}^{13}C_x$ $(p)^x(1-p)^{13-x}$ $0 < x < 13$, 0
	$= (0.4)^{13} + {}^{13}C_1(0.4)^{12}(0.6) + \dots + {}^{13}C_{10}(0.4)^3(0.6)^{10}$	M1	Correct unsimplified answer
	= 0.942	A1	CAO
	4	3	
(ii)	$\mu = 130 \times 0.35 = 45.5$ var = $130 \times 0.35 \times 0.65 = 29.575$	B1	Correct unsimplified mean and var (condone $\sigma^2 = 29.6$, $\sigma = 5.438$)
	$P(\ge 50) = P\left(z > \frac{49.5 - 45.5}{\sqrt{29.575}}\right) = P(z > 0.7355)$	M1	Standardising, using $\pm \left(\frac{x - their \text{ mean}}{their \sigma}\right)$, $x = \text{value to standardise}$ 49.5 or 50.5 seen in \pm standardisation equation
	$=1-\Phi(0.7355)$	М1	Correct final area
	= 1 - 0.7691	М1	
	= 0.231	A1	Correct final answer
		5	

(i)	$P(4, 5, 6) = {}^{15}C_4(0.22)^4(0.78)^{11} + {}^{15}C_5(0.22)^5(0.78)^{10} +$	M1	One binomial term ${}^{15}\text{C}_{x}p^{x}(1-p)^{15-x} \ \ 0$
	¹⁵ C ₆ (0.22) ⁶ (0.78) ⁹	A1	Correct unsimplified expression
	= 0.398	A1	Correct answer
		3	
(ii)	$\mu = 145 \times 0.22 = 31.9$ $\sigma^2 = 145 \times 0.22 \times 0.78 = 24.882$	B1	Correct unsimplified mean and variance
	$P(x > 26) = P\left(z > \frac{26.5 - 31.9}{\sqrt{24.882}}\right) = P(z > -1.08255)$	M1	Standardising must have sq rt
		M1	25.5 or 26.5 seen as a cc
	$=\Phi(1.08255)$	M1	Correct area Φ , must agree with their μ
	= 0.861	A1	Correct final answer accept 0.861, or 0.860 from 0.8604 not from 0.8599
		5	

$z_1 = \pm \frac{90 - 120}{24} = -\frac{5}{4}, \ z_2 = \pm \frac{140 - 120}{24} = \frac{5}{6}$	М1	At least one standardisation, no cc, no sq rt, no sq using 120 and 24 and either 90 or 140
$=\Phi\left(\frac{20}{24}\right)-\Phi\left(-\frac{30}{24}\right)$	A1	-5/4 and 5/6 unsimplified
$= \Phi(0.8333) - (1 - \Phi(1.25))$ = 0.7975 - (1 - 0.8944) or 0.8944 - 0.2025 = 0.6919	M1	Correct area $\Phi - \Phi$ legitimately obtained and evaluated from phi(their z_2) – phi (their z_1)
= 0.692 AG	A1	Correct answer obtained from 0.7975 and 0.1056 oe to 4sf or 0.6919 seen www
15	4	1.0

Method 1		
Probability = P(2, 3, 4) = $0.692^2(1 - 0.692)^2 \times {}^4C_2 + 0.692^3(1 - 0.692) \times {}^4C_3 + 0.692^4$	M1	Any binomial term of form $4C_x p^x (1-p)^{4-x}$, $x \neq 0$ or 4
	B1	One correct bin term with $n = 4$ and $p = 0.692$,
= 0.27256 + 0.40825 + 0.22931	M1	Correct unsimplified expression using 0.692 or better
= 0.910	A1	Correct answer
Method 2:		
1 – P(0, 1) =	M1	Any binomial term of form $4C_x p^x (1-p)^{4-x}$, $x\neq 0$ or 4
$1 - 0.692^{0}(1 - 0.692)^{4} \times {}^{4}C_{0} - 0.692^{1}(1 - 0.692)^{3} \times {}^{4}C_{1}$	B1	One correct bin term with $n = 4$ and $p = 0.692$
= 1 - 0.00899 - 0.0808757	M1	Correct unsimplified expression using 0.692 or better
= 0.910	A1	Correct answer
	4	

Method 1		
$P(3) + P(4) + P(5) = {}^{5}C_{3} \ 0.75^{3} \times 0.25^{2} +$	M1	One binomial term ${}^5C_{xp}p^x(1-p)^{5\cdot x}$, $x \neq 0$ or 5, any p
⁵ C ₄ 0.75 ⁴ × 0.25 ¹ + ⁵ C ₅ 0.75 ⁵ × 0.25 ⁰	M1	Correct unsimplified expression
= 0.26367 + 0.39551 + 0.23730 = 0.896 (459/512)	A1	Correct final answer, allow 0.8965 (isw) but not 0.897 alone
Method 2		
$1 - P(0) - P(1) - P(2) = 1 - {}^{5}C_{0} \ 0.75^{0} \times 0.25^{5}$	M1	One binomial term ${}^5C_xp^x(1-p)^{5\cdot x}$, $x \neq 0$ or 5, any p
$- {}^{5}C_{1} \ 0.75^{1} \times 0.25^{4} - {}^{5}C_{2} \ 0.75^{2} \times 0.25^{3}$	M1	Correct simplified expression
= 1 - 0.00097656 - 0.014648 - 0.087891 = 0.896 (459/512)	A1	Correct final answer, allow 0.8965 (isw) but not 0.897 alone
	3	
Method 1		
P(C,C) + P(C,C') + P(C',C) 0.8 × 0.9	1	Unsimplified prob completed on both days
$0.8 \times 0.1 + 0.2 \times 0.6$	N	Unsimplified prob $0.8 \times a + 0.2 \times b$, $a = 0.1$ or 0.4 , $b = 0.6$ or 0.4
= 0.92 oe	I	1 Correct final answer
Method 2		
$1 - P(C',C') = 1 - 0.2 \times 0.4$	1	Unsimplified prob completed on no days
	N	11 $1 - 0.2 \times a$, $a = 0.1$ or 0.4 allow unsimplified
= 0.92	I	Correct final answer

(i)	$ \begin{vmatrix} 1 - (P(7) + P(8) + P(9)) \\ = 1 - ({}^{9}C_{7} \ 0.8^{7} \times 0.2^{2} \ + {}^{9}C_{8} \ 0.8^{8} \times 0.2^{1} + {}^{9}C_{9} \ 0.8^{9} \times 0.2^{0}) \end{vmatrix} $	M1	Any binomial term of form ${}^{9}C_{x}p^{x}(1-p)^{9-x}, x \neq 0$
		M1	Correct unsimplified expression
	= 1 - (0.3019899 + 0.3019899 + 0.1342177) = 0.262	A1	Correct answer
		3	
(ii)	Mean = $200 \times 0.8 = 160$: var = $200 \times 0.8 \times 0.2 = 32$	B1	Both unsimplified
	$P(X > 166) = P(Z > \frac{166.5 - 160}{\sqrt{32}})$	M1	Standardise, $z = \pm \frac{x - their 160}{\sqrt{their 32}}$ with square root
		М1	166.5 or 165.5 seen in attempted standardisation expression
	= P(Z > 1.149) = 1 - 0.8747	М1	1 – a Φ-value, correct area expression, linked to final answer
	= 0.125	A1	Correct final answer
		5	
(iii)	np = 160, nq = 40: both > 5 (so normal approx. holds)	B1	Both parts required
		1	

(1)	$P(4, 5, 6) = {}^{6}C_{4}0.35^{4}0.65^{2} + {}^{6}C_{5}0.35^{5}0.65^{1} + 0.35^{6}$	M1	Binomial term of form ${}^6C_x p^x (1-p)^{6-x} 0 any p, x \neq 6,0$
		A1	Correct unsimplified answer
	= 0.117	A1	
		3	
(ii)	$1 - 0.65^n > 0.95$ $0.65^n < 0.05$	M1	Equation or inequality involving '0.65" or 0.35" and '0.95 or 0.05'
	$n > \frac{\log 0.05}{\log 0.65} = 6.95$	M1	Attempt to solve <i>their</i> exponential equation using logs or Trial and Error.
	n = 7	A1	CAO
		3	
(iii)	Mean = 0.35×100 = 35 Variance = 0.35×0.65×100 = 22.75	B1	Correct unsimplified np and npq,
	$P\left(z > \frac{39.5 - 35}{\sqrt{22.75}}\right) = P(z > 0.943)$	M1	Substituting <i>their</i> μ and σ (condone σ^2) into the ±Standardisation Formula with a numerical value for '39.5'.
	10	M1	Using continuity correction 39.5 or 40.5
	= 1-0.8272	M1	Appropriate area Φ from standardisation formula P(z>) in final solution, (>0.5 if z is -ve, <0.5 if z is +ve)
	= 0.173	A1	Final answer
		5	

(i)	$P(0, 1, 2) = (0.66)^{14} + {}^{14}C_1(0.34)(0.66)^{13} + {}^{14}C_2(0.34)^2(0.66)^{12}$	M1	Binomial term of form ${}^{14}C_xp^x(1-p)^{14-x}$ $0 any p, x \ne 14,0$
	= 0.0029758 + 0.02146239 + 0.071866	A1	Correct unsimplified answer
	= 0.0963	A1	Correct answer
	12	3	
(ii)	Mean = $600 \times 0.34 = 204$, Var = $600 \times 0.34 \times 0.66 = 134.64$	B1	Correct unsimplified np and npq (or sd = 11.603 or Variance = 3366/25)
	$P(< 190) = P\left(z < \frac{189.5 - 204}{\sqrt{134.64}}\right) = P(z < -1.2496)$	M1	Substituting their μ and σ , (no σ^2 or $\sqrt{\sigma}$) into the Standardisation Formula with a numerical value for '189.5'. Condone \pm standardisation formula
	(134.64)	М1	Using continuity correction 189.5 or 190.5 within a Standardisation formula
	$=1-\Phi$ (1.2496)	M1	Appropriate area Φ from standardisation formula P(z<) in final solution, (<0.5 if z is -ve, >0.5 if z is +ve)
	= 1 - 0.8944 = 0.106	A1	Correct final answer
		5	

(i)	P(at most 7) = 1 – P(8, 9, 10) = 1 – 10 C8(0.35) 8 (0.65) 2 – 10 C9(0.35) 9 (0.65) 1 – (0.35) 10	M1	Use of normal approximation M0 Binomial term of form ${}^{10}\text{C}_xp^x(1-p)^{10-x}$ $0 any p, x \neq 10,0$				
	[= 1 - 0.004281 - 0.0005123 - 0.00002759]	A1	Correct unsimplified (or individual terms evaluated) answer seen Condone 1 – A + B + C leading to correct solution				
	= 0.995	B1	B1 not dependent on previous marks.				
	Alternative method for question 3(i)	Alternative method for question 3(i)					
	P(at most 7) = P(0,1,2,3,4,5,6,7)	M1	Binomial term of form 10 C _x $p^x(1-p)^{10-x}$ $0 any p, x \ne 10,0$				
	= $(0.65)^{10} + {}^{10}\text{C1}(0.35)^{1}(0.65)^{9} + + {}^{10}\text{C7}(0.35)^{7}(0.65)^{3}$	A1	Correct unsimplified answer or individual terms evaluated seen				
	= 0.995	B1					
		3					
(ii)	$ 1 - (0.65)^n > 0.99 0.01 > (0.65)^n $	М1	Equation or inequality with $(0.65)^n$ and 0.01 or $(0.35)^n$ and 0.99 only (Note $1-0.99$ is equivalent to 0.01 etc.)				
	n > 10.69	M1	Solving their $a^n = c$, $0 < a,c < 1$ using logs or Trial and Error If answer inappropriate, at least 2 trials are required for Trial and Error M mark				
	smallest $n = 11$	A1	CAO				
		3					

Question 30

i(i)	(P > 12) = P(13, 14, 15)	M1	Binomial term of form ${}^{15}\text{C}_{x}p^x(1-p)^{15-x}$ $0 any p, x \neq 15,0$
	$= {}^{15}\mathrm{C}_{13}(0.65)^{13}(0.35)^2 + {}^{15}\mathrm{C}_{14}(0.65)^{14}(0.35)^1 + (0.65)^{15}$	A1	Correct unsimplified answer
	= 0.0617	A1	SC if use np and npq with justification give $(12.5 - 9.75)/\sqrt{3.41}$ M1 1–F(1.489) A1 0.0681 A0
		3	727
(ii)	mean = $250 \times 0.65 = 162.5$ variance = $250 \times 0.65 \times 0.35 = 56.875$	B1	Correct unsimplified np and npq
	$P(< 179) = P(z < \frac{178.5 - 162.5}{\sqrt{56.875}}) = P(z < 2.122)$	M1	Substituting their μ and σ (condone σ^2) into the Standardisation Formula with a numerical value for '178.5'. Continuity correct not required for this M1. Condone \pm standardisation formula
	Using continuity correction 178.5 or 179.5	M1	
	= 0.983	A1	Correct final answer
		4	

(a)	$P(0, 1, 2) = {}^{6}C_{0} \ 0.3^{0} \ 0.7^{6} + {}^{6}C_{1} \ 0.3^{1} \ 0.7^{5} + {}^{6}C_{2} \ 0.3^{2} \ 0.7^{4}$	M1	Binomial term of form ${}^6\mathrm{C}_x p^x (1-p)^{6-x}$ $0 any p, x \neq 6,0$
	0.1176 + 0.3025 + 0.3241	A1	Correct unsimplified answer
	0.744	A1	Correct final answer
		3	
(b)	P(support neither choir) = $1 - (0.3 + 0.45) = 0.25$	M1	0.25^n seen alone, $1 < n \le 6$
	P(6 support neither choir) = 0.25^6 = 0.000244 or $\frac{1}{4096}$	A1	Correct final answer
		2	

(i)	$P(8, 9, 10) = {}^{10}C_8 \ 0.66^8 \ 0.34^2 + {}^{10}C_9 \ 0.66^9 \ 0.34^1 + 0.66^{10}$	M1	Correct binomial term, ${}^{10}C_a \ 0.66^a (1-0.66)^b$ $a+b=10, \ 0 < a,b < 10$
		A1	Correct unsimplified expression
	0.284	B1	CAO
		3	
(ii)	$np = 0.66 \times 150 = 99$ $npq = 0.66 \times (1 - 0.66) \times 150 = 33.66$	B1	Accept evaluated or unsimplified μ , σ^2 numerical expressions, condone $\sigma = \sqrt{33.66} = 5.8017$ or 5.802 CAO
	$P(X > 84) = P\left(Z > \frac{84.5 - 99}{\sqrt{33.66}}\right)$	М1	\pm Standardise, $\frac{x-their 99}{\sqrt{their 33.66}}$, condone σ^2 , x a value
		M1	84.5 or 83.5 used in <i>their</i> standardisation formula
	(=P(Z>-2.499))	M1	Correct final area
	0.994	A1	Final answer (accept 0.9938)
	10'		SC if no standardisation formula seen, B2 $P(Z > -2.499) = 0.994$
		5	
Ques	tion 33		

(i)	$1 - (^{10}\text{C}_2\ 0.42^{8}\ 0.58^{2} + {}^{10}\text{C}_9\ 0.42^{9}\ 0.58^{1} + 0.42^{10})$	M1	Binomial term of form ${}^{10}\text{C}_a p^a (1-p)^b \ 0$
		A1	Correct unsimplified expression
	0.983	A1	
		3	
(ii)	$1 - P(0) > 0.995 0.58^n < 0.005$	M1	Equation or inequality involving 0.58 ⁿ or 0.42 ⁿ and 0.995 or 0.005
	$n > \frac{\log 0.005}{\log 0.58}$ $n > 9.727$	M1	Attempt to solve using logs or Trial and Error. May be implied by their answer (rounded or truncated)
	n = 10	A1	CAO
		3	

(a)	$\begin{vmatrix} 1 - P(6, 7, 8) \\ = 1 - ({}^{8}C_{6} \ 0.7^{6} 0.3^{2} + {}^{8}C_{7} \ 0.7^{7} 0.3^{1} + 0.7^{8}) \end{vmatrix}$	М1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}, 0$
	= 1 - 0.55177	A1	Correct unsimplified expression, or better
	= 0.448	A1	
	Alternative method for question 5(a)		
	$\begin{array}{l} P(0,1,2,3,4,5) \\ = 0.3^8 + {}^8{\rm C}_1 0.7^1 0.3^7 + {}^8{\rm C}_2 0.7^2 0.3^6 + {}^8{\rm C}_3 0.7^3 0.3^5 + \\ {}^8{\rm C}_4 0.7^4 0.3^4 + {}^8{\rm C}_5 0.7^5 0.3^3 \end{array}$	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}, 0$
		A1	Correct unsimplified expression, or better
	= 0.448	A1	
		3	
(b)	Mean = $120 \times 0.7 = 84$ Var = $120 \times 0.7 \times 0.3 = 25.2$	B1	Correct mean and variance, allow unsimplified
	P(more than 75) = P $\left(z > \frac{75.5 - 84}{\sqrt{25.2}}\right)$	M1	Substituting their μ and σ into the ±standardising formula (any number), not σ^2 , not $\sqrt{\sigma}$
	///	M1	Using continuity correction 75.5 or 74.5
	P(z>-1.693)	M1	Appropriate area Φ , from final process, must be a probability
	= 0.955	A1	Allow 0.9545 < <i>p</i> ≤ 0.955
		5	

Question 35

(a)	$0.22^3 = 0.0106$	B1
		1
(b)	$P(2, 3, 4) = {}^{16}C_2 \ 0.22^2 \ 0.78^{14} + {}^{16}C_3 \ 0.22^3 \ 0.78^{13} + {}^{16}C_4 \ 0.22^4 \ 0.78^{12}$	M1
	0.179205 + 0.235877 + 0.216221	A1
	0.631	A1
		3

(a)	$ \begin{array}{l} 1 - P(10, 11, 12) \\ = 1 - [^{12}C_{10}0.72^{10}0.28^2 + ^{12}C_{11}0.72^{11}0.28^1 + 0.72^{12}] \end{array} $	M1
	1-(0.19372+0.09057+0.01941)	A1
	0.696	A1
		3
(b)	$0.28^3 \times 0.72 = 0.0158$	B1
		1

$1 - P(8, 9, 10) = 1 - \left[{}^{10}C_8 0.64^8 0.36^2 + {}^{10}C_9 0.64^9 0.36^1 + 0.64^{10} \right]$	M
1-(0.164156+0.064852+0.11529)	M
0.759	A

Question 37

(a)	$0.65^7 + {}^7C_1 \ 0.65^6 \ 0.35^1 + {}^7C_2 \ 0.65^5 \ 0.35^2$	M1	Binomial term of form ${}^{7}C_{x}$ $p^{x}(1-p)^{7-x}$, $0 , any p, x \neq 0, 7$
	0.049022 + 0.184776 + 0.29848	A1	Correct unsimplified answer
	0.532	A1	
	HR	3	
(b)	Mean = $142 \times 0.35 = 49.7$ Variance = $142 \times 0.35 \times 0.65 = 32.305$	B1	Correct unsimplified np and npq (condone $\sigma = 5.684$ evaluated)
	$P(X > 40) = P(z > \frac{40.5 - 49.7}{\sqrt{32.305}})$	M1	Substituting <i>their</i> μ <i>and</i> σ (no $\sqrt{\sigma}$ or σ^2) into \pm standardisation formula with a numerical value for '40.5'
	P(z > -1.619)	M1	Using either 40.5 or 39.5 within a ±standardisation formula
		M1	Appropriate area Φ , from standardisation formula $P(z >)$ in final solution, must be probability
	0.947	A1	Correct final answer
		5	

(a)	$\left(\frac{5}{6}\right)^8$ Satores	M1	$p^{\$}$, $0 , no x, + or -$
	0.233	A1	
		2	
(b)	36	B1	
		1	
(c)	$P(X=10) + P(X=11) = \left(\frac{35}{36}\right)^9 \frac{1}{36} + \left(\frac{35}{36}\right)^{10} \frac{1}{36}$	M1	OE, unsimplified expression in form $\ p^9q+p^{10}q$, $p+q=1$, no $ imes$
	0.0425	A1	
		2	

(a)	$1 - \left(\frac{5}{6}\right)^{5}$ or $\frac{1}{6} + \frac{5}{6} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{2} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{3} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{4} \times \frac{1}{6}$	M1	$1 - p^{n} = 5.6$ or $p + pq + pq^{2} + pq^{3} + pq^{4} (+ pq^{5})$ 0
	$0.598, \frac{4651}{7776}$	A1	
		2	
(b)	$(1 - P(0, 1, 2))$ $1 - \left(\left(\frac{5}{6}\right)^{10} + {}^{10}C_1\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^9 + {}^{10}C_2\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)^8\right)$	M1	10 C _x $p^x (1-p)^{10-x}$, $0 , any p, x \neq 0, 10$
	1 - (0.1615056 + 0.3230111 + 0.290710)	A1	Correct expression, accept unsimplified, condone omission of final bracket
	0.225	A1	$0.2247 , WWW$
		3	

Question 40

(a)	$P(X > 6) = 0.75^6$	M1	$p^n, n = 6, 7 0$
	$0.178, \frac{729}{4096}$	A1	0·17797
		2	
(b)	$1 - P(0, 1, 2) = 1 - (0.75^{10} + {}^{10}C_1 \ 0.25^1 \ 0.75^9 + {}^{10}C_2 \ 0.25^2 \ 0.75^8)$	M1	Binomial term of form 10 C _x $p^x (1-p)^{10-x}$, $0 , any p, x \neq 0, 10$
	1 - (0.0563135 + 0.1877117 + 0.2815676)	A1	Correct unsimplified expression
	0.474	A1	$0.474 \leqslant p \leqslant 0.4744$
	19	3	

(a)	$\left[\left(\frac{4}{5} \right)^7 \frac{1}{5} = \right] \frac{16384}{390625} \text{ or } 0.0419[43]$	B1	Evaluated, final answer.
		1	
(b)	$1 - \left(\frac{4}{5}\right)^5 \text{ or } \frac{1}{5} + \frac{4}{5} \times \frac{1}{5} \left(\frac{4}{5}\right)^2 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5} + \left(\frac{4}{5}\right)^4 \times \frac{1}{5}$	M1	$1 - p^{n} n = 5,6$ or $p + pq + pq^{2} + pq^{3} + pq^{4} (+pq^{5})$ $0 Sum of a geometric series may be used.$
	$\frac{2101}{3125}$ or $0.672[32]$	A1	Final answer.
	Alternative method for question 1(b)		
	[P(at least 1 three scored in 5 throws) =] $\left(\frac{1}{5}\right)^5 + {}^5C_4\left(\frac{1}{5}\right)^4 \left(\frac{4}{5}\right) + {}^5C_3\left(\frac{1}{5}\right)^3 \left(\frac{4}{5}\right)^2 + {}^5C_2\left(\frac{1}{5}\right)^2 \left(\frac{4}{5}\right)^3 + {}^5C_4\left(\frac{1}{5}\right) \left(\frac{4}{5}\right)^4$	M1	$(p)^5 + {}^5\mathrm{C}_4(p)^4(q) + {}^5\mathrm{C}_3(p)^3(q)^2 + {}^5\mathrm{C}_2(p)^2(q)^3 + {}^5\mathrm{C}_1(p)(q)^4$ or $(p)^6 + {}^6\mathrm{C}_5(p)^5(q) + {}^6\mathrm{C}_4(p)^4(q)^2 + {}^6\mathrm{C}_3(p)^3(q)^3 + {}^6\mathrm{C}_2(p)^2(q)^4 + {}^6\mathrm{C}_1(p)(q)^5, \ 0 At least first, last and one intermediate term is required to show pattern of terms if not all terms stated.$
	2101 3125 or 0.672[32]	A1	Final answer.

(a)	[Possible cases: 1 1 2, 1 2 1, 2 1 1] Probability = $\left(\frac{1}{6}\right)^3 \times 3$	M1	$\left(\frac{1}{6}\right)^3 \times k$, where k is an integer.
	(6)	M1	Multiply a probability by 3, not +, – or ÷
	$\frac{1}{72}$	A1	Accept $\frac{3}{216}$ or 0.0138 or 0.0139
		3	
(b)	$P(18) = \left(\frac{1}{6}\right)^3 \left[= \frac{1}{216} \right]$	B1	
	P(18 on 5th throw) = $\left(\frac{215}{216}\right)^4 \times \frac{1}{216}$	M1	$(1-p)^4 p$, $0 < their p < 1$
	0.00454	A1	
	PR	3	

(a)	$[(0.7)^3 =]0.343$	B1	Evaluated WWW			
	Alternative method for Question 5(a)					
	$[(0.15)^3 + {}^3C_1(0.15)^2(0.55) + {}^3C_2(0.15)(0.55)^2 + (0.55)^3 =] \ 0.343$	Bl	Evaluated WWW			
		1				
(b)	$1 - (0.85^9 + {}^9C_10.15^10.85^8 + {}^9C_20.15^20.85^7)$ $[1 - (0.231617 + 0.367862 + 0.259667)]$	M1	One term: ${}^{9}C_{x}p^{x}(1-p)^{9-x}$ for $0 < x < 9$, any 0			
	[1 - (0.231017 + 0.307802 + 0.233007)]	Al	Correct expression, accept unsimplified.			
	0.141	A1	$0.1408 \le \text{ans} \le 0.141$, award at most accurate value.			
	Alternative method for Question 5(b)		5/			
	${}^{9}C_{3}0.15^{3}0.85^{6} + {}^{9}C_{4}0.15^{4}0.85^{5} + {}^{9}C_{5}0.15^{5}0.85^{4} + {}^{9}C_{6}0.15^{6}0.85^{3} + \\ {}^{9}C_{7}0.15^{7}0.85^{2} + {}^{9}C_{8}0.15^{8}0.85 + 0.15^{9}$	M1	One term: ${}^{9}C_{x}p^{x}(1-p)^{9-x}$ for $0 < x < 9$, any 0			
		A1	Correct expression, accept unsimplified.			
	0.141	Al	$0.1408 \leqslant \text{ans} \leqslant 0.141$, award at most accurate value.			
		3				
i(c)	Mean = $[60 \times 0.15 =]9$ Variance = $[60 \times 0.15 \times 0.85 =]7.65$	В1	Correct mean and variance, allow unsimplified. (2.765 $\leq \sigma \leq$ 2.77 imply correct variance)			
	$[(X \ge 12) =] P(Z > \frac{11.5 - 9}{\sqrt{7.65}})$	M1	Substituting <i>their</i> mean and variance into \pm standardisation formula (any number for 11.5), not σ^2 or $\sqrt{\sigma}$			
			Using continuity correction 11.5 or 12.5 in <i>their</i> standardisation formula.			
	$1 - \Phi(0.9039) = 1 - 0.8169$	M1	Appropriate area Φ , from final process, must be probability.			
	0.183	A1	Final AWRT			
		5				

(a)	6	B1	WWW
		1	
(b)	$\left(\frac{5}{6}\right)^3 \frac{1}{6} + \left(\frac{5}{6}\right)^4 \frac{1}{6} + \left(\frac{5}{6}\right)^5 \frac{1}{6} + \left(\frac{5}{6}\right)^6 \frac{1}{6}$	M1	$p^{3}(1-p) + p^{4}(1-p) + p^{5}(1-p) + p^{6}(1-p), 0$
	0.300 (0.2996)	Al	At least 3s.f. Award at most accurate value.
	Alternative method for Question 1(b)		
	$\left(\frac{5}{6}\right)^3 - \left(\frac{5}{6}\right)^7$	M1	$p^3 - p^7, 0$
	0.300 (0.2996)	A1	At least 3s.f. Award at most accurate value.
		2	
.(c)	$1 - \left(\frac{5}{6}\right)^9$	M1	$1 - p^n$, $0 , n = 9, 10$
	0.806	A1	

$1 - P(10, 11, 12) = 1 - ({}^{12}C_{10} 0.6^{10} 0.4^2 + {}^{12}C_{11} 0.6^{11} 0.4^1 + {}^{12}C_{12} 0.6^{12} 0.4^0)$	M1	One term: ${}^{12}C_x p^x (1-p)^{12-x}$ for $0 \le x \le 12$, any p allowed
[= 1 - (0.063852 + 0.017414 + 0.0021768)]	A1	Correct unsimplified expression, or better.
[1 - 0.083443] = 0.917	A1	AWRT
Alternative method for Question 6(a)		
P $(0,1,2,3,4,5,6,7,8,9) = {}^{12}C_00.6^00.4^{12} + {}^{12}C_10.6^10.4^{11} + \dots {}^{12}C_90.6^9$	M1	One term: ${}^{12}C_x p^x (1-p)^{12-x}$ for $0 < x < 12$, any p allowed
$ \begin{bmatrix} 0.4^{\circ} \\ [= 0.000016777 + 0.00030199 + 0.0024914 + 0.012457 + 0.042043 + \\ 0.10090 + 0.17658 + 0.22703 + 0.21284 + 0.14189] \end{bmatrix} $	A1	Correct unsimplified expression with at least the first two and last terms
0.917	A1	WWW, AWRT
	3	
[Mean =] 0.6 ×150 [= 90]; [Variance =] 0.6 ×150 ×0.4 [= 36]	В	Correct mean and variance. Accept evaluated or unsimplified
$P(X < 81) = P\left(Z < \frac{80.5 - 90}{6}\right)$	M	Substituting <i>their</i> mean and variance into \pm standardisation formula (with a numerical value for 80.5), allow σ^2 , $\sqrt{\sigma}$, but not $\mu \pm 0.5$
3	M	Using continuity correction 80.5 or 81.5
Φ(-1.5833)=1-0.9433	M	Appropriate area Φ, from final process, must be probability
0.0567	Al	1 AWRT
		5

(a)	$ \left[P(0,1,2) = \right]^{10} C_0 0.16^0 0.84^{10} + {}^{10} C_1 0.16^1 0.84^9 + {}^{10} C_2 0.16^2 0.84^8 $	M1	One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 \le x \le 10$, any p .
	[= 0.17490 + 0.333145 + 0.28555]	A1	Correct unsimplified expression, or better.
	0.794	A1	$0.7935 , mark at most accurate. If M0 scored, SC B1 for final answer 0.794.$
		3	
(b)	$(0.84)^7 0.16$	M1	$(1-p)^7 p$, 0
	0.0472	A1	0.0472144 to at least 3sf.
		2	
(c)	$4 \times 0.0472 \times (1 - 0.0472)^3$	M1	$4 \times q(1-q)^3$, $q = their$ (b) or correct.
	0.163	A1	$0.163 \leqslant p \leqslant 0.1634$, mark at most accurate from <i>their</i> probability to at least 3sf.
		2	

(a)	$\left(\frac{3}{4}\right)^6 \frac{1}{4}$	M1	$(1-p)^6 p, 0$
	0.0445, 729 16384	A1	
		2	
(b)	$\left(\frac{3}{4}\right)^9$	M1	$\left(\frac{3}{4}\right)^n \text{ or } p^n, \ 0$
	0.0751, <u>19683</u> <u>262144</u>	A1	
		2	

Question 48

(a) $\left[\left(\frac{5}{6} \right)^7 \times \frac{1}{6} = \right] 0.0465, \frac{78125}{1679616}$	B1	$0.0465 \leqslant p < 0.04652$
TP	1	
(b) $P(X < 6) = 1 - \left(\frac{5}{6}\right)^5 \text{ or } \frac{1}{6} + \left(\frac{5}{6}\right)\left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^2 \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^3 \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^4 \left(\frac{1}{6}\right)$	M1	$1 - p^n$, $0 , n = 4, 5, 6 or sum of 4, 5 or 6 terms p \times (1 - p)^n for n = 0, 1, 2, 3, 4(5).$
0.598, <u>4651</u> 7776	A1	
	2	
[Probability of total less than 4 is] $\frac{3}{36}$ or $\frac{1}{12}$	B1	SOI
$ [1 - P(0, 1, 2)] = 1 - ({}^{10}C_0 \left(\frac{1}{12}\right)^0 \left(\frac{11}{12}\right)^{10} + {}^{10}C_1 \left(\frac{1}{12}\right)^1 \left(\frac{11}{12}\right)^9 + {}^{10}C_2 \left(\frac{1}{12}\right)^2 \left(\frac{11}{12}\right)^8) $	M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$, for $0 < x < 10$, $0 .$
1 - (0.418904 + 0.380822 + 0.155791)	A1 FT	Correct expression. Accept unsimplified.
0.0445	A1	$0.04448 \leqslant p \leqslant 0.0445$
12	4	7.5

(a)	$ [P(10, 11, 12) =] $ $^{12}C_{10} 0.72^{10} 0.28^2 + ^{12}C_{11} 0.72^{11} 0.28^1 + ^{12}C_{12} 0.72^{12} 0.28^0 $	M1	One term ${}^{12}C_x p^x (1-p)^{12-x}$, for $0 \le x \le 12$, $0 \le p \le 1$.		
	= 0.193725 + 0.0905726 + 0.0194084	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.		
	0.304	B1	Final answer $0.3036 .$		
	Alternative method for question 5(a)	'			
	$ [1 - P(0,1,2,3,4,5,6,7,8,9) =] $ $ 1 - (^{12}C_00.72^00.28^{12} + ^{12}C_10.72^10.28^{11} + ^{12}C_20.72^20.28^{10} +$	M1	One term ${}^{12}C_x p^x (1-p)^{12-x}$, for $0 \le x \le 12$, $0 \le p \le 1$.		
	${}^{12}C_30.72^30.28^9 + {}^{12}C_40.72^40.28^8 + {}^{12}C_50.72^50.28^7 + \\ {}^{12}C_60.72^60.28^6 + {}^{12}C_70.72^70.28^5 + {}^{12}C_80.72^80.28^4 + \\ {}^{12}C_90.72^90.28^3)$	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.		
	0.304	B1	Final answer $0.3036 \le p \le 0.304$.		
		3			
(b)	Mean = $[0.52 \times 90 =]46.8$, var = $[0.52 \times 0.48 \times 90] = 22.464$	B1	46.8 and 22.464 or 22.46 seen, allow unsimplified, $(4.739 < \sigma \le 4.740$ imply correct variance).		
	$[P(X<40)=]P\left(z<\frac{39.5-46.8}{\sqrt{22.464}}\right)$	M1	Substituting <i>their</i> mean and <i>their</i> variance into \pm standardisation formula (any number for 39.5), not σ^2 , $\sqrt{\sigma}$.		
			Using continuity correction 39.5 or 40.5 in <i>their</i> standardisation formula.		
	= [P(Z<-1.540)]=1-0.9382	M1	Appropriate area Φ , from final process, must be probability.		
	0.0618	A1	$0.06175 \leqslant p \leqslant 0.0618$		
		5			

Qui	Stion 30				
(a)	$a = P(1 \text{ head}) = 0.7 \times (0.5)^3 + 0.3 \times (0.5)^3 \times 3 = \frac{1}{5}$	B1	Clear statement of unevaluated correct calculation $=\frac{1}{5}$. AG		
	$b = 0.7 \times 0.5^3 \times 3 + 0.3 \times 0.5^3 \times 3 = \frac{3}{8}$	M1	Clear statement of unevaluated calculation for either b or c		
	$c = 0.7 \times 0.5^3 \times 3 + 0.3 \times 0.5^3 = \frac{3}{10}$	A1	For either b or c correct		
	$\left[orc = \frac{27}{40} - b \right]$	B1 FT	their b + their $c = \frac{27}{40}$		
		4			
b)	$\left[E(X) = \frac{3 \times 0 + 16 \times 1 + 30 \times 2 + 24 \times 3 + 7 \times 4}{80} = \right] \frac{176}{80} \text{ or } 2.2$	B1 FT	Correct or accept unsimplified calculation using <i>their</i> values for b and c seen (sum of probabilities = 1)		
		1			
c)	$[P(0, 1, 2) =]^{10}C_0 \ 0.2^{0} \ 0.8^{10} \ + {}^{10}C_1 \ 0.2^{1} \ 0.8^{9} \ + {}^{10}C_2 \ 0.2^{2} \ 0.8^{8}$	M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$, for $0 < x < 10, 0 < p < 1$		
	0.107374 + 0.268435 + 0.301989	A1	Correct expression, accept unsimplified leading to final answer		
	0.678	B1	0.677 < <i>p</i> ≤ 0.678		
	Alternative method for question 4(c)				
	$ \begin{bmatrix} 1 - \left[^{10}C_{10} \cdot 0.2^{10} 0.8^0 + ^{10}C_9 \cdot 0.2^9 0.8^1 + ^{10}C_8 \cdot 0.2^8 0.8^2 + ^{10}C_7 \cdot 0.2^7 0.8^3 + ^{10}C_6 \cdot 0.2^6 0.8^4 + ^{10}C_5 \cdot 0.2^5 0.8^5 + ^{10}C_4 \cdot 0.2^4 0.8^6 + ^{10}C_3 \cdot 0.2^3 0.8^7 \right] $		One term ${}^{10}C_x \ p^x (1-p)^{10-x}$, for $0 < x < 10, 0 < p < 1$		
		A1	Correct expression, accept unsimplified		
	0.678	B1	0.677		
		4			
i)	$0.8^6 \times 0.2 + 0.8^7 \times 0.2 = 0.0524288 + 0.041943$	M1	$p^{l} \times (1-p) + p^{m} \times (1-p), l = 6, 7$ $m = l + 1, 0$		
	0.0944	A1	$0.09437 \le p \le 0.0944$		

Question 51

Question 51		
$[P(0, 1, 2) =] {}^{10}C_0 \ 0.1^0 \ 0.9^{10} \ + {}^{10}C_1 \ 0.1^1 \ 0.9^9 \ + {}^{10}C_2 \ 0.1^2 \ 0.9^8$	M1	One term ${}^{10}C_x p^x (1-p)^{10-x}, 0$
= 0.348678+0.38742+0.19371	A1	Correct expression, accept unsimplified.
0.930	B1	$0.9298 \leqslant p \leqslant 0.9303$
Alternative method for Question 5(a)		60
$ \begin{aligned} [1 - P(3, 4, 5, 6, 7, 8, 9, 10) &= 1 - (^{10}C_3 \ 0.9^7 \ 0.1^3 \ +^{10}C_4 \ 0.9^6 \ 0.1^4 \ +^{10}C_5 \\ 0.9^5 \ 0.1^5 \ +^{10}C_6 \ 0.9^4 \ 0.1^6 \ +^{10}C_7 \ 0.9^3 \ 0.1^7 \ +^{10}C_8 \ 0.9^2 \ 0.1^8 \ +^{10}C_9 \ 0.9^1 \ 0.1^9 \\ +^{10}C_{10} \ 0.9^0 \ 0.1^{10}) \end{aligned} $	M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$, 0
	A1	Correct expression, accept unsimplified.
0.930	B1	$0.9298 \leqslant p \leqslant 0.9303$
	3	

Question 52

$[1 - P(10, 11, 12) =]$ $1 - (^{12}C_{10}, 0.9^{10}, 0.1^{2} + ^{12}C_{11}, 0.9^{11}, 0.1^{1} + ^{12}C_{12}, 0.9^{12}, 0.1^{0})$	M1	One term ${}^{12}C_x p^x (1-p)^{12-x}$, for $0 \le x \le 12$, $0 \le p \le 1$
= 1 - (0.230128 + 0.376573 + 0.282430)	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.
0.111	В1	Mark the final answer at the most accurate value, $0.1108 WWW.$

$\begin{split} &[P(3,4,7) = 1 - P(0,1,2,8)] \\ &= 1 - ({}^8C_0 \ 0.48^0 \ 0.52^8 + {}^8C_1 \ 0.48^1 \ 0.52^7 \\ &+ {}^8C_2 \ 0.48^2 \ 0.52^6 + {}^8C_8 \ 0.48^8 \ 0.52^0) \end{split}$	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}$, for $0 < x < 8, 0 < p < 1$
= 1 - (0.00534597 + 0.039478 + 0.127544 + 0.0028179)	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.
0.825	B1	Mark the final answer at the most accurate value. $0.8248 \le p \le 0.825$ WWW.

[P(X > 17) = P(18, 19, 20) =] $^{20}C_{18}(0.8)^{18}(0.2)^{2} + ^{20}C_{19}(0.8)^{19}(0.2)^{1}$	M1	One term ${}^{20}C_x(p)^x(1-p)^{20-x}, 0 .$	
$+ {}^{20}C_{20} (0.8)^{20}$ = 0.13691 + 0.05765 + 0.01153	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer.	
0.206	B1	Mark the final answer at the most accurate value $0.206 \le R$ 0.2061.	
Method 2 for Question 3(a)			
$[P(X>17) = 1 - P(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17) =]$ $1 - (^{20}C_0 (0.8)^0 (0.2)^{20} + ^{20}C_1 (0.8)^1 (0.2)^{19}$	M1	One term ${}^{20}C_x(p)^x(1-p)^{20-x}, 0 .$	
$ + {}^{20}C_{2} (0.8)^{2} (0.2)^{18} + + {}^{20}C_{16} (0.8)^{16} (0.2)^{4} $ $ + {}^{20}C_{17} (0.8)^{17} (0.2)^{3}) $	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer. If answer correct, condone omission any 15 of the 16 middle terms.	
$= 1 - (1.048 \times 10^{-14} + 8.389 \times 10^{-13} +3.188 \times 10^{11} + + 0.2182 + 0.2054)$			
0.206	B1	Mark the final answer at the most accurate value $0.206 < 0.2061$. Condone omission of brackets.	
	3		
$\left[\left(0.8 \right)^4 \left(0.2 \right) = \right] 0.08192, \frac{256}{3125}$	B1	Accept $\frac{8192}{100000}$ OE.	
	1		
stion 55 Method 1			
$[P(X < 6) = P(X \le 5) = 11 - 0.8^{5}]$		M1 $1 - 0.8^r, r = 5, 6.$	

Question 55		
(a) Method 1		
$[P(X < 6) = P(X \le 5) =] 1 - 0.8^{5}$	M1	$1 - 0.8^r$, $r = 5, 6$.
= 0.672	A1	
Method 2		
$[P(X < 6) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) =]$ $\frac{1}{5} + \frac{4}{5} \times \frac{1}{5} + \left(\frac{4}{5}\right)^2 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5} + \left(\frac{4}{5}\right)^4 \times \frac{1}{5}$	M1	Condone an extra term $(\frac{4}{5})^5 \times \frac{1}{5}$. First, last and one of the 3 middle terms implies M1.
= 0.672	A1	1.5
4	2	0.1/
(b) Method 1		C
$[1 - P(0, 1, 2)]$ = 1 - (\frac{12}{C_0}(0.8)^{12} + \frac{12}{C_1}(0.2)(0.8)^{11} + \frac{12}{C_2}(0.2)^2(0.8)^{10})	M1	One term $^{12}C_x(p)^x(1-p)^{12-x}$, $0 .$
[= 1 - (0.06872 + 0.20615 + 0.28347)]	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer. Correct unsimplified expression or better.
= 0.442	B1	0.411
Method 2		
$ \begin{array}{l} \hbox{ [P(3,4,5,6,7,8,9,10,11,12) =]} \\ \hbox{ 12C}_3\ (0.2)^3\ (0.8)^9 + {}^{12}$C}_4\ (0.2)^4\ (0.8)^8 + \ldots + {}^{12}$C}_{11}\ (0.2)^{11}\ (0.8)^1 + {}^{12}$C}_{12}\ (0.2)^{12} \\ \hbox{ [= 0.23622 + 0.13288 + \ldots + 1.966 \times 10^{-7} + 4.096 \times 10^{-9}]} \end{array} $	M1	One term ${}^{12}C_x(p)^x(1-p)^{12-x}$, $0 .$
	A1	Correct expression, accept unsimplified, leading to final answer. Accept first, last and 8 of the middle terms.
=0.442	B1	$0.411 .$
	3	

(c)	$(0.2)^5 \times 5!$	M1	$(0.2)^5 \times s$, s a positive integer. 1 may be implied.
		M1	$t \times 5!$ where $0 < t < 1$.
	$=0.0384, \frac{24}{625}$	A1	
	Alternative Method for Question 7(c)		
	$\frac{{}^{5}C_{1} \times {}^{4}C_{1} \times {}^{3}C_{1} \times {}^{2}C_{1} \times {}^{[1}C_{1}]}{({}^{5}C_{1})^{5}}$	M1	$({}^5C_1)^5$ or 5^5 as denominator.
		M1	${}^5C_1 \times {}^4C_1 \times {}^3C_1 \times {}^2C_1 \times [{}^1C_1]$ or 5! as numerator.
	$=0.0384, \frac{24}{625}$	A1	
		3	

