AS-Level

Topic : Data Representation

May : 2013-May :2023

Answer

Question 1

(i) $(40,0),(50,12)$ etc. up to $(90,144)$

(ii) 80 weigh less than 67.2 kg $c=67.2$
(iii) freqs $12,22,30,28,52$

$$
\begin{aligned}
& \text { mean } \mathrm{wt}=(45 \times 12+55 \times 22+62.5 \\
&\times 30+67.5 \times 28+80 \times 52) \\
& / 144 \\
&= 9675 / 144 \\
&= 67.2 \mathrm{~kg} \\
& \operatorname{Var}\left(45^{2} \times 12+55^{2} \times 22+\right. \\
& 62.5^{2} \times 30+67.5^{2} \times 28+80^{2} \times \\
&52) / 144 \\
&-(9675 / 144)^{2}=127.59 \\
& \mathrm{sd}=11.3, \text { allow } 11.2
\end{aligned}
$$

B1 [2] All points correct, sensible scale (not 12), polygon or smooth curve

Subt 64 from 144
[2]
Accept anything between 67 and 68 ft from incorrect graph frequencies attempt not cf Correct freqs
Using mid points attempt, i.e. $44.5,45,45.5$, in correct mean formula, unsimplified, no cfs, condone 1 error.

Correct mean

Substituting their mid-pts squared (may be class widths, lower or upper bound) in correct var

A1

Axes, (cf) and labels (kg), uniform scales from at least $0-140$ and $40.5-69.5$ either way round
formula even with cfs with their mean ${ }^{2}$
[6]

Question 2
(i)

Stem	leaf
0	1468
1	034445556666788
2	01578
3	1
4	5
5	7

Key $1 \mid 4$ represents $\$ 140$
(ii)

Median $=160$
$\mathrm{LQ}=140 \mathrm{UQ}=210$
IQ range $=\mathrm{UQ}-\mathrm{LQ}$
$=70$
(iii)
$1.5 \times \mathrm{IQ}$ range $=105$
Lower outlier is below 35
Upper outlier is above 315
Outliers 10, 450, 570

Question 3

$$
\begin{aligned}
& \bar{x}=50+81.4 / 22=53.7 \\
& \operatorname{var}=671 / 22-3.7^{2}=16.81(16.8) \\
& \begin{array}{c}
16.81=\Sigma x^{2} / 22-53.7^{2} \\
\quad=63811(63800)
\end{array}
\end{aligned}
$$

OR
$\Sigma x-22 \times 50=81.4(\Sigma x=1181.4)$
$\Sigma x^{2}-100 \Sigma x+22 \times 50^{2}=671$
$\Sigma x^{2}=671+118140-55000=63811$
$\operatorname{Var}=\Sigma x^{2} / 22-(\Sigma x / 22)^{2}=16.81$

Correct stem condone a space under the 1

Correct leaves must be single digits and one line for each stem value or 2 lines each stem value

Correct key must have $\$$, ft 2 special

Subt their LQ from their UQ
[3] Correct answer cwo
Mult their IQ range by 1.5 can be implied
Correct limits ft their IQ range and quartiles
[3] Correct outliers

Attempt to find variance using coding in both, correct formula Correct answer using their var and their mean with uncoded formula for both
correct answer
expanded eqn with 22×50 seen
expanded eqn with 2 or 3 terms correct
correct answer
correct answer

Question 4

(i) $|$| females: med $\$ 22700$ | | | |
| :--- | :--- | :--- | :--- |
| LQ \$21700 | UQ \$24 000 | | |
| males | | | |
| (ii) | | | |
| females | | | |

B1
B1

B1

B1

B1

2] Any 2 correct
[2] All correct

Uniform scale and labels must see Salary, \$000

Correct graph for females ft their quartiles. Line not through box
[3] Correct graph for males

Question 5

(i)	$\begin{array}{l}\mathrm{sd}^{2}=1957.5 / 30-(234 / 30)^{2} \\ \mathrm{sd}=2.1\end{array}$	M 1
(ii)	$\begin{array}{l}\mathrm{A} 1 \\ 86=234 / 30+c \\ c=78.2\end{array}$	M 1
A 1		

Question 6

bars are not touching oe

Area not rep by frequency, not used fd, not labelled fd

B1 Sensible reason involving not touching, no gaps, class boundaries, group data not continuous (may be the negative)

B1 $2 \quad$ Must be frequency density oe. Wrong height not sufficient.
(Best 2 reasons awarded)

Question 7

4 (i)

Question 8

$$
\begin{aligned}
& \Sigma(x-5)=116-18 \times 5 \\
& =26 \\
& \frac{\Sigma(x-5)^{2}}{18}-\left(\frac{26}{18}\right)^{2}=\frac{967}{18}-\left(\frac{58}{9}\right)^{2} \\
& \Sigma(x-5)^{2}=257
\end{aligned}
$$

OR coded mean $=58 / 9-5=1.444$ $\Sigma(x-5)=1.444 \times 18=26$

$$
\Sigma(x-5)^{2}=\Sigma x^{2}-10 \Sigma x+25 \times 18
$$

$$
=967-1160+450=257
$$

Obtaining Σx and subtracting 18×5
Correct answer
Subst in correct var formula all coded vals Subst in correct var formula all uncoded

Correct answer

Subtracting 5 from true mean and mult by 18 Correct answer

Expanding $\Sigma(x-5)^{2} 3$ terms needed
Any 2 terms correct
Correct answer

Question 9
(i)

Adults		Children
	4	3
86543	5	4
74321	6	1278
8431	7	27
	8	13469
	9	25

B1 Single stem and key correct - including adults, children and seconds
key $3|5| 4$ represents 53 seconds for adults and 54 seconds for children
(ii) Two from:

Children's estimates more spread out Adults estimates lower
Adults are symmetrical whereas children are skewed

Right hand leaves correct shape

B1 3 Left hand leaves correct shape

Question 10

Question 11

7 (i) class widths $5,15,15,25,20$

$$
\mathrm{fd}=\frac{24}{5}, \frac{9}{15}, \frac{21}{15}, \frac{15}{25}, \frac{42}{20}
$$

fd

$$
=4.8,0.6,1.4,0.6,2.1
$$

(ii) mean $=$
$\frac{(3 \times 24+13 \times 9+28 \times 21+48 \times 15+70.5 \times 42)}{111}$
$=40.2$ errors

Using mid points using (Σ their $\mathrm{f} x$) / their 111
A1 3
correct answer
B1
B1
B1* $3 \begin{aligned} & \mathrm{ft} \text { any or both wrong quartile ranges if } \\ & \text { sensible }\end{aligned}$

Question 12

4

Key 14 represents 14 glasses (of water)
(ii) $\mathrm{LQ}=20 \mathrm{Med}=26 \mathrm{UQ}=37$

SC No values stated
3 quartiles on diagram in correct relative positions End points of attached whiskers not through box correct relative to quartiles

B1	Correct stem (or reversed order)
B1	Correct leaves, ordered in numerical sequence,

B1 3 Key must include 'glasses' or similar drinking item

B1 Correct median
B1
Correct quartiles
Correct on diagram ft any wrong med or quartiles.
Linear scale based upon 3 quartiles plotted
B1 Correct end points of attached whiskers not through box
B1 5

B2
B1

Question 13

(i) $0.7-2.4+2.2-0.5+6.3+4.9+0+0.3$ $=11.5$
(ii) $\left(0.7^{2}+2.4^{2}+2.2^{2}+0.5^{2}+6.3^{2}+4.9^{2}+\right.$ 0.3^{2})
$=75.13$ (75.1)
(iii) mean $=63.4375$

Variance $=75.13 / 8-(11.5 / 8)^{2}$
$=7.32$
OR mean $=507.5 / 8=63.4375$
$\operatorname{Var}=32253 / 8-63.4375^{2}=7.32$

B1 1

B1 $\mathbf{1}$
BI^
M1
Al 3

A1
ft $62+$ their (i) $/ 8$ their(ii) $/ 8-((\mathrm{i}) / 8)^{2}$
correct answer
subst in correct variance or standard deviation formula
correct answer - allow 6.62, 6.93-7.04, 7.2607.325

Marks can be awarded in (i) or (ii) if not 'contradicted' by further working

Question 14

6 (i)

ht	<10.5	<15.5	<20.5	<25.5	<30.5
CF	22	54	132	172	200

(ii) 72% less, i.e. 144 less than ht h.
$h=22.5 \mathrm{~cm}$
(iii) var $=\left(7^{2} \times 22+13^{2} \times 32+18^{2} \times 78+23^{2} \times 40\right.$
$\left.+28^{2} \times 28\right) / 200-18.39^{2}$
$=74870 / 200-18.39^{2}$
$=374.35-18.39^{2}$
$=36.1579$
$\mathrm{sd}=6.01$

Attempt at upper end points either 10 or 10.5 or 11 at least 4 upper end points

A1 4 All correct, i.e. points joined up from (3.5, $0)$ to $(10.5,22)$....to $(30.5,200)$ Straight lines or curve

144 used can be implied single value in range 21 to 23 inclusive Using mid points attempt 7 ± 0.5 in correct var formula incl - mean 2

B1 At least 4 correct midpoints
A1 3 Correct ans
At least 4 CFs correct seen on graph

Labels correct, i.e. all of ht, cm, cf
var romura met - mean

Question 15

4 (i) median $\mathrm{A}=0.52$
$\mathrm{LQ}=0.41$

$$
\mathrm{UQ}=0.79
$$

(ii)

frong units

2 correct boxes ft (i) OK if superimposed

2 pairs correct whiskers lines up to box not inside

3 Correct unitorm scale need at least 4 values on it. No scale no marks unless perfect A and B with all 10 values shown, in which case score B1B1B0

Question 16

$$
\begin{array}{rl|ll|l}
\text { mean }= & (5+(-2)+12+7+(-3)+2+(-6) & \text { B1 } & & \\
& +4+0+8) / 10 & & \\
= & 2.7 \\
\text { var }= & \left(5^{2}+(-2)^{2}+\ldots+8^{2}\right) / 10-2.7^{2}= & \text { M1 } & & \begin{array}{l}
\text { Subst in correct var formula must have } \\
- \text { mean }^{2}
\end{array} \\
& 35.1-2.7^{2} & \text { A1 } & \mathbf{3} & \begin{array}{l}
\text { Correct answer }
\end{array}
\end{array}
$$

Question 17

Question 18

		B1 $B 1{ }^{\wedge}$ B1 B1 4	$\mathrm{LQ}=2.6 \mathrm{med}=3.8-3.85, \mathrm{UQ}=6.4-6.6$ Correct quartiles and median on graph ft linear from 2-10 End whiskers correct not through box Label need seconds and linear 2-10 axis or can have 5 values on boxplot no line provided correct
(ii)	$\begin{aligned} & 1.5 \times \mathrm{IQR}=1.5 \times 3.8=5.7 \\ & \mathrm{LQ}-5.7=-\mathrm{ve}, \mathrm{UQ}+5.7=12.1 \text { i.e. }>10 \end{aligned}$ So no outliers AG	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Attempt to find $1.5 \times I Q R$ and add to UQ or subt from LQ OR compare $1.5 \times \mathrm{IQR}$ with gap 3.6 between UQ and max 10 Correct conclusion from correct working need both

Question 19

Question 20

Question 21

Question 22

$$
\begin{aligned}
& \text { coded mean }=0.3 \text { oe } \\
& \begin{aligned}
\text { sd } & =\sqrt{\frac{96.1}{250}-(0.3)^{2}} \\
& =0.543
\end{aligned}
\end{aligned}
$$

Alt: $\Sigma(t-2.5)^{2}$ expanded

$$
\begin{aligned}
\Sigma t^{2} & =2033.6 \\
\mathrm{sd} & =\sqrt{\frac{2033.6}{250}-2.8^{2}} \\
& =0.543
\end{aligned}
$$

B1		$\Sigma(t-2.5)=75 \mathrm{~B} 0$ until $\div 250$
M1		Subst in variance formula both terms coded
A1	3	Correct answer
Or		
B1		
M1		Substituting their Σt^{2} from expanded 3-term A1
	3	expression, 250 and 2.8 in variance formula

Question 23

Question 24

$$
\begin{aligned}
& \sum x-100 n=216 \\
& 2416-100 n=216 \\
& n=22 \\
& \text { OR } \\
& \frac{2416}{n}=\frac{216}{n}+100 \\
& n=22
\end{aligned}
$$

Question 25

Question 26

Question 29

(i)	$\Sigma x=862$	B1	1	Must be stated or replaced in (ii) Can see (i) and (ii) in any order
(ii)	$\begin{aligned} & 362 / 10+a=86.2 \\ & a=50 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	86.2 ± 36.2 seen oe Correct answer, nfww

Question 28
(i) $\quad 1845 / 9(=205)$
$c=2205-205=2000$
OR $\Sigma x=2205 \times 9(=19845)$
$\Sigma x-\Sigma c=1845$
$\Sigma c=19845-1845=18000$
$c=2000$
(ii)

$$
\begin{aligned}
& \text { var }=\frac{477450}{9}-205^{2} \\
& =11025 \\
& \text { OR var }=\frac{43857450}{9}-2205^{2} \\
& =11025 \\
& \text { new total }=2120.5 \times 10=21205 \\
& \text { new price }=21205-19845 \\
& =1360
\end{aligned}
$$

(iii)

Question 29

(i)
(ii)

Accept (1845 \pm anything)/ 9

For 2205×9 seen
[2] For $\frac{477450}{9}-(\text { their coded mean })^{2}$

For their $\Sigma x^{2} / 9-2205^{2}$ where Σx^{2} is obtained from expanding $\Sigma(x-c)^{2}$ with $2 c \Sigma x$ seen

Attempt at new total

B1

B1

B1 [3]

B1 [2]

Labels 'time' and 'seconds', 'boys' and 'girls' on correct plots and scaled line

One box and whisker all correct on graph paper - ignore boy or girl label

Second box and whisker all correct (on graph paper and ignore boy/girl label) on SAME scaled line.

Any 2 comments - MUST be a comparison

Question 30

(i)

Key 3| $1 \mid 5$ represents 13 kph for Bronlea and 15 kph for Rogate
(ii)
median Bronlea $=23 \mathrm{~km}$ per hour
IQ range Rogate $=23-7$
$=16$
(iii)

Rogate is less windy than Bronlea

Question 31
(i)
(ii) $\left\lvert\, \begin{aligned} & \text { cf } 16,56,104,130,160 \\ & \text { median } \$ 59 \\ & \text { IQR }=82-43 \\ & =\$ 39\end{aligned}\right.$
(ivi) $\left\lvert\, \begin{aligned} & 160-149 \\ & =11 \\ & \text { OR } 115 \text { is mid pt of last interval so \# of } \\ & \text { shoppers is } 30 / 2=15(\text { can be implied }) \\ & \text { mean }=(15 \times 16+40 \times 40+60 \times 48+80 \times 26+ \\ & 115 \times 30) / 160 \\ & =10250 / 160=\$ 64.1=\$ 64.1\end{aligned}\right.$
(ive 150

B1
B1
B1
B1

B1 [5]

B1 [1]

Correct single stem Correct ordered leaves Bronlea Correct ordered leaves Rogate

Correct overall shape

Single key must have both towns and units consistent with their values

Units not necessary
Subt their LQ <14 from their $U Q>14$ from Rogate leaf

Not a comparison of a statistic but interpretation of information

Attempt at cf table (up to 160) no graph needed accept $\%$ cf but give final
linear scale minimum 0 to 160 and 0 to 120

Attempt to plot points at $(30,16),(50$, $56),(70,104),(90,130),(140,160)$ up to 2 errors can have a polygon

All points correct from their scale and joined up, with $(0,0)$ as well accept 57-60 or ft their graph if used lb , midpts instead of ub or assume linear interpolation.

Subt a (sensible) LQ from a sensible UQ (generous)
Ans ft need a cf graph and UQ 80-84, LQ

41-46
Subtracting from 160 can be implied Correct answer accept 9-16

Using $\Sigma x f / 160$ with mid-points

Question 32

Question 33

(i)	cw $5,5,10,20,40$ fd $8,6,1.8,1.7,0.2$	M1 M1 A1 B1 B1	[5]	cw either 4 or 5 etc fd or scaled freq [$\mathrm{f} /$ their cw attempt] fd may be $\div 1000$ Correct heights seen accurately on diagram Correct bar ends, accurately plotted on axis Labels fd and capacity (thousands) Correct horizontal scale required. Vertical scale linear from 0
(ii)	$\begin{aligned} & (5 \times 40+10 \times 30+17.5 \times 18+32.5 \times 34+62.5 \times 8) / 130 \\ & =2420 / 130=18.6 \text { thousand } \end{aligned}$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \end{array}$	[2]	$\Sigma \mathrm{f} x / 130$ where x is mid point attempt (value within class, not end pt or cw)
(iii)	median group $=8-12$ thousand LQ group $=3-7$ thousand	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \mathbf{B 1} \\ \mathbf{B} \end{array}$		Thousands not needed

Question 34

(i) | Factory A | | Factory B |
| ---: | ---: | :--- |
| | | 3 |
| 988743 | 158 | 24789 |
| 53111 | 6 | 4468 |
| | | |
| | | |

Key: 9 | $4 \mid 2$ represents 0.049 g for factory A and 0.042 g for factory B
(ii) median factory $B=0.048 \mathrm{~g}$

$$
\mathrm{IQR}=\mathrm{UQ}-\mathrm{LQ}=0.055-0.04
$$

$$
=0.015
$$

(iii)
generally heavier in factory A Masses more spread out in factory B

M1 B1		Attempt at ordering factory B Correct stem
B1		Correct leaves factory A
B1		Correct leaves factory B
B1	[5]	Correct key need factory A and factory B and units
B1		using their key i.e. $48,0.48$ etc or correct
M1		Subt their LQ from their UQ for factory B
A1	[3]	
B1		oe
B1	[2]	must refer to context, e.g. mass

Question 35

Question 36

Question 37

Question 38

(i)	med $=3.2$	B1	Accept 3.2 ± 0.05
	$\begin{aligned} & \mathrm{UQ}=3.65 \leqslant \mathrm{uq} \leqslant 3.7 \mathrm{LQ}=2.55 \leqslant \mathrm{lq} \leqslant 2.6 \\ & \mathrm{IQR}=1.05 \leqslant \mathrm{iqr} \leqslant 1.15 \end{aligned}$	M1 A1	UQ - LQ, UQ greater than their 'median', LQ less than their 'median' Correct answer from both LQ and UQ in given ranges
	Total:	3	
(ii)	$134-24=110$	B1	Accept $108 \leqslant n \leqslant 112, n$ an integer
2(iii)	$200-12=188$ less than length l Total:	1 M1	188 seen, can be implied by answer in range, mark on graph.
	$l=4.5 \mathrm{~cm}$	A1	Correct answer accept $4.4 \leqslant l \leqslant 4.5$
	Total:	2	

Question 39

Question 40

1(i)	EITHER: $\frac{\sum x}{30}-k=\frac{315}{30}=10.5$	(M1	Dividing 315 by ± 30 and + or - from 50.5 need both and no more
	$k=5.5-10.5=40$	A1)	Correct answer from correct working
	OR: $\sum x=50.5 \times 30=1515,1515-30 k=315$	(M1	Mult by 50.5 by 30 and + or -315 and dividing by ± 30 need all these
	$k=40$	A1)	Correct answer from correct working. 1200 gets M0
	Total:	2	
(ii)	EITHER: $\operatorname{var}=4022 / 30-10.5^{2}(=23.817)$	(M1	Subst in correct coded variance formula
	sd $=4.88$	A1)	
	OR: $\begin{aligned} & \sum_{\mathrm{Var}} x^{2}-2\left(47222 / 30-50.5^{2}(=23.817)\right. \end{aligned}$	(M1	Expanding with $\pm 40 \Sigma x$ and $\pm 30(40)^{2}$ seen
	$\mathrm{sd}=4.88$	A1)	
	Total:	2	

Question 41

(i)

(i)		B1	Stem, digits 5, 7, 9 can be missing here, can be upside down
	$\begin{array}{l\|l} 0 & 22569 \\ 1 & 000223347788 \end{array}$	B1	All leaves in correct order increasing from stem, (5,7 and 9 can be missing), condone commas
	$\begin{array}{l\|l} 2 & 88 \\ 3 & 458 \\ 4 & 4 \\ 5 & \end{array}$	B1	Reasonable shape, requires all values of the stem, only one line for each stem and leaves must be lined up. Can be upside down or sideways. No commas. Condone one 'leaf' error.
	$\begin{array}{r\|l\|l} 6 & 5 & \\ 7 & & \\ 8 & 28 \\ 9 & & \\ 10 & 4 & \text { key } 2 \end{array} 8 \text { means } 28 \text { medals }$	B1	Correct key must state 'medals' or have 'medals' in leaf heading or title
;(ii)	$\begin{aligned} & \mathrm{Med}=17 \\ & \mathrm{LQ}=10 \mathrm{UQ}=35 \end{aligned}$	4 B1	Median correct
		B1	LQ and UQ correct
		B1	Uniform scale from 2 to 104 (need 3 identified points min) and label including medals (can be in title)
	1 1 1 1 1 1 1 1 \mid $\mid c$ 1 0 10 20 30 40 50 60 70 80 90 100 110	B1 FT	Correct box med and quartiles on diagram, FT their values
	Number of medals	B1	Correct end-whiskers from ends of box but not through box
		5	

Question 42

$\Sigma(\mathrm{x}-45)=1218-20 \times 45=318$	B1	
$\frac{\Sigma(x-45)^{2}}{20}-\left(\frac{\Sigma(x-45)}{20}\right)^{2}=4.2^{2}$	M1	Fully correct substitution in the correct coded variance formula with their $\Sigma(x-45)$ OR valid method for $\Sigma x^{2}=74529\left(4.2^{2}=\frac{\Sigma x^{2}}{20}-\left(\frac{1218}{20}\right)^{2}\right)$ and expanding $\Sigma(x-45)^{2}$ correctly $\Sigma^{2}-90 \Sigma x+20 \times 45^{2}=' 74529 '-90 \times 1218+40500=5409$
$\Sigma(x-45)^{2}=5409$	A1	3

Question 43

Question 44

EITHER:$(\Sigma x=) 11.5 n=27+10 n$	(M1	Expanding brackets and forming a three term equation involving 27 and at least one term in n, without x
	M1	$10 n$ or $11.5 n$ seen in expression without x ($1.5 n=27$ implies M2)
$n=18$	A1)	
OR:$11.5=\frac{27}{n}+10$	(M1	Dividing coded sum by n and forming a three term equation involving 11.5 and at least one term in n, without x
	M1	$27 / n$ seen in expression without x ($1.5=\frac{27}{n}$ implies $\mathbf{M} 2$)
$n=18$	A1)	
	3	

Question 45

1 (i)	$\frac{(48.7 \times 12+38.1 \times 7)}{19}$	M1	Accept unsimplified (may be separate calculations)
	$=44.8$	A1	
		2	
(ii)	$7.65^{2}=\frac{\Sigma x^{2}}{12}-48.7^{2} \quad \Sigma x^{2}=29162.55$	M1	Substitution in one correct variance formula
	$4.2^{2}=\frac{\Sigma y^{2}}{7}-38.1^{2} \quad \Sigma y^{2}=10284.75$	A1	One Σx^{2} or Σy^{2} correct (can be rounded to 4 sf))
	$\begin{aligned} & \text { Combined var }=\frac{(29162.55+10284.75)}{19}-44.79^{2} \\ & =\frac{39447.3}{19}-44.79^{2} \end{aligned}$	M1	Using their Σx^{2} and Σy^{2} and their $\mathbf{4}(\mathbf{i})$ in the variance formula
	Combined $\sigma=8.37$ or 8.36	A1	
		4	

Question 46

Question 48

	800				9			
				g1				
	600							
	400							
	400							
	200							
	0	-						
				5		10		15
				TIME	MINU			
t	0	3	4	5	6	8	10	14
cf	0	120	300	500	660	770	850	900

Median value: 4.8 (minutes)

M1 A1 Attempt to plot cumulative frequencies at ucb and all points joined between $\left(3, y_{1}\right)$ and $\left(14, y_{2}\right)$. Cf table not required.

Linear scales starting at $(0,0)$ and axes labelled cf and time in mins, all points correct; (allow straight lines or curves)

M1 450 seen in median attempt on increasing CF graph (independent);

Question 49

4(i)	Mean $=(30 \times 1500+21 \times 2400) / 51$	M1	Multiply by 30 and 21 , summing and dividing total by 51 $\left(\frac{45000+50400}{51}\right)$
	$=1870(1870.59)$	A1	correct answer (to 3sf)
	Total:	2	
(ii)		M1	One correct substitution into a correct variance formula
		A1	Correct Σx_{F}^{2} (rounding to 690000002 sf)
	$160^{2}=\frac{\Sigma x_{L}^{2}}{21}-2400^{2} \text { so } \Sigma x_{L}^{2}=121497600$	A1	Correct $\sum x_{L}{ }^{2}$ (rounding to 1210000003 sf)
	$\text { New var }=\frac{69087000+121497600}{51}-1870.588^{2}=237853$	M1	using ' $\Sigma x_{F}{ }^{2}{ }^{\prime}+$ ' $\Sigma x_{L}{ }^{2}$ dividing by 51 and subtracting ' i ' squared. (Correct ' $\Sigma x_{F}^{2,}+{ }^{\prime}{ }^{\prime} \Sigma x_{L}{ }^{2}=190584$ 600)
	New sd $=488$	A1	Correct answer accept anything between 486 and 490
	Total:	5	

Question 50

Question 51

;(i)	$a=40$	B1	
		1	
i(ii)	$\begin{aligned} & \text { Mean }=\frac{0.5 \times 14+1.5 \times 46+3.5 \times 102+7.5 \times \text { their } 40+20 \times 40}{242} \\ & =\frac{1533}{242} \end{aligned}$	M1	Numerator: 5 products with at least 3 acceptable mid-points \times appropriate frequency FT (i). Denominator: 242 CAO $\frac{1533}{242}$ implies M1, but if FT an unsimplified expression required
	$=6 \frac{81}{242} \text { or } 6.33$	A1	CAO (6.3347 \ldots r rounded to 3 or more SF)
		2	
(iii)	$\mathrm{fd}=14,46,34,\left(\frac{\text { their }(i)}{5}=\right) 8,2$	M1	Attempt at $\mathrm{fd}[\mathrm{f} /$ (attempt at cw$)]$ or scaled freq
		A1FT	Correct heights seen on diagram with linear vertical scale from $(x, 0)$ FT their $\frac{a}{5}$ only
		B1	Correct bar widths (1:1:3:5:20) at axis, visually no gaps, with linear horizontal scale from $(0, y)$, first bar starting at $(0,0)$
		B1	Labels (time, mins, and $\mathrm{fd}(\mathrm{OE})$ seen, some may be as a title) and a linear scale with at least 3 values marked on each axis. (Interval notation not acceptable)
		4	

Question 52

(i)	38	B1	
		$\mathbf{1}$	
(ii)	Median $=38.5$	B1	CAO
	IQR $=40-38$	$\mathbf{M 1}$	$39<\mathrm{UQ}<45-36<\mathrm{LQ} \leqslant 38$
	$=2$	A1	If M0 awarded SCB1 for both $\mathrm{UQ}=40$ or 40.5 and $\mathrm{LQ}=38$ or 37.75 seen
		$\mathbf{3}$	

Question 53

(ii)	$1.5 \times \mathrm{IQR}=48$ Method 1 $\mathrm{LQ}-48=- \text { ve, }(\text { i.e. }<0) \mathrm{UQ}+48=98 \text { (i.e. }>70 \text {) }$		M1	Attempt to find $1.5 \times$ their IQR and add to UQ or subt from LQ
	hence no outliers		A1	Correct conclusion from correct working, need both ends. No need to state comparisons.
(i)	Method 2 $\mathrm{LQ}-5=13(<48) 70-\mathrm{UQ}=20(<48)$		M1	Compare their $1.5 \times \mathrm{IQR}(=48)>$ gap (20) between UQ and max 70 or LQ and min 5
	Hence no outliers		A1	Correct conclusion from correct working, need both ends. No need to state comparisons
	$\mathrm{LQ}=18, \mathrm{Median}=25, \mathrm{UQ}=50$		2 B1	median correct
			B1	LQ and UQ correct
			B1	Quartiles and median plotted as box graph with linear scale min 3 values
	1 1 \mid 0 20 40 60 Distance km 80		B1ft	Whiskers drawn to correct end points with linear scale, not thr' box, not joining at top or bottom of box. Ft their UQ and LQ. Whiskers must be with ruler If scale non-linear or non-existent SCB1 if all 5 data values (quartiles and end points) have values shown and all are correct numerically and fulfil the 'box' and 'whiskers ruled line' requirements
			B1	Label to include 'distance or travelled' and 'km,' allow 'total km', linear scale, numbered at least $5-70$.
			5	

Question 54

$\Sigma(x-10)=186-12 \times 10=66$	B1	Correct answer
$\frac{\Sigma(x-10)^{2}}{12}-\left(\frac{\Sigma(x-10)}{12}\right)^{2}=4.5^{2}$	M1	Consistent substituting in the correct coded variance formula OR Valid method for Σx^{2} then expanding $\Sigma(x-10)^{2}, 3$ terms with at least 2 correct
$\Sigma(x-10)^{2}=606$	B1	Correct answer
	$\mathbf{3}$	

Question 55

(i)		B1	Correct stem, up or down
		B1	Correct Anvils labelled on left, leaves in order from right to left and lined up vertically, no commas
		B1	Correct Brecons labelled on same diagram on right hand side in order from left to right and lined up vertically, no commas
		B1	Correct key, not split, both teams, at least one with cm
		4	
ii)	Median $=173$	B1	Correct median (or Q2)
	$\begin{aligned} & \mathrm{LQ}=169 ; \mathrm{UQ}=181 \\ & \mathrm{IQR}=181-169 \end{aligned}$	M1	Either $\mathrm{UQ}=181 \pm 4$, or $\mathrm{LQ}=169 \pm 4$ and evaluating $\mathrm{UQ}-\mathrm{LQ}$
	$=12$	A1	Correct answer from 181 and 169 only
		3	
(iii)	$\begin{aligned} & \sum x=1923+166+172+182(=2443) \\ & \sum x^{2}=337221+166^{2}+172^{2}+182^{2}(=427485) \end{aligned}$	M1	Correct unsimplified expression for $\sum x$ and $\sum x^{2}$, may be implied
	$\text { Mean }=\frac{\sum x}{14}=\frac{2443}{14}=174.5$	M1	Correct unsimplified mean
	Variance $=\frac{\sum x^{2}}{14}-\left(\frac{\sum x}{14}\right)^{2}=\frac{427485}{14}-\left(\frac{2443}{14}\right)^{2}$	M1	Correct unsimplified variance using 14 , their Σx and their Σx^{2}, not using 1923 and/or 337221
	S d $=9.19$	A1	Correct answer
		4	

Question 56

Question 57

(i)	$\frac{15.5 \times 12+910}{12+20}$	M1	Unsimplified total age divided by their total members (not 12, 20 or 2)
	$=34.25$ or $341 / 4$ (years)	A1	Correct exact answer (isw rounding), oe (34 years 3 months)
		2	
(ii)	Considering Juniors: $\text { variance }=\frac{\sum x^{2}}{12}-15.5^{2}=1.2^{2}$	M1	$\frac{\sum x^{2}}{k}-15.5^{2}=1.2^{2}, k=12 \text { or } 20$
	$\sum x^{2}=2900.28$	A1	Answer wrt 2900
	Considering whole group: $\begin{aligned} & \sum z^{2}=\sum x^{2}+\sum y^{2}=2900.28+42850=45750 \\ & \text { Variance }=\frac{\sum z^{2}}{32}-\mu^{2}=\frac{\text { their } 45750}{12+20}-(\text { their } 34.25)^{2} \\ & \\ & (=256.63) \end{aligned}$	M1	Their $45750>42850\left(\operatorname{not} 85700\right.$ or rounding to $\left.1.8 \times 10^{9}\right)$ in correct variance or std deviation formula (Σx^{2} and addition may not be seen)
	$\mathrm{s} \mathrm{d}=16.0$ (2)	A1	Correct final answer, condone 16.03
		4	

Question 58

(i)
(ii)

Question 59

(i)	$\begin{aligned} & \sigma^{2}=\frac{\sum(x-c)^{2}}{n}-\left(\frac{\sum(x-c)}{n}\right)^{2} \\ & 3.2^{2}=\frac{3099.2}{40}-\left(\frac{\sum(x-c)}{40}\right)^{2} \end{aligned}$	M1	Use correct formula with values substituted
	$\begin{aligned} & \left(\frac{\sum(x-c)}{40}\right)^{2}=67.24: \\ & \sum(x-c)=40 \times \sqrt{67.24} \end{aligned}$	M1	Rearrange to make their $\left(\frac{\sum(x-c)}{40}\right)^{2}$ the subject, unsimplified.
	$=328$	A1	Exact value, cao
		3	
(ii)	$\begin{aligned} & \sum x-40 c=\text { their }(\mathbf{i}) \\ & \text { Mean }=\frac{\text { their }(\mathbf{i})}{40}+50 \\ & =58.2 \end{aligned}$	B1FT	FT their (i)
		1	

Question 60

(i)	Dolphins	5	Sharks	B1	Correct stem can be upside down, ignore extra values,
	$\begin{array}{r} 95532 \\ 5 \\ 53 \\ 2 \end{array}$		9	B1	Correct Dolphin must be on LHS,
		6	$\begin{aligned} & 468 \\ & 01247 \end{aligned}$	B1	Correct Sharks on either LHS or RHS of back-to-back. Alignment \pm half a space, no late entries squeezed in, no crossing out if shape is changed. Condone a separate RHS stem-and-leaf diagram
		8	04	B1FT	Correct single key for their single diagram, need both teams identified and ' kg ' stated at least once here or in leaf headings or title.
			Key: $3\|6\| 4$ means 63 kg for Dolphins and 64 kg for Sharks		
				4	
(ii)	$\begin{aligned} & \text { Median }=72 \\ & \mathrm{LQ}=65, \mathrm{UQ}=80, \end{aligned}$			B1	$72<\mathrm{UQ}<82-62<\mathrm{LQ}<72$
	$\mathrm{IQR}=80-65$			M1	nfww
	$=15$			A1	$\mathrm{SCB1}$ if M0 scored for $\mathrm{LQ}=65$ and $\mathrm{UQ}=80$
				3	

Question 61

'(i)	Thaters School ${ }^{\text {a }}$	B1	Correct stem can be upside down, ignore extra values,
	$\begin{array}{llllllll\|l\|lll} \hline & & & & & & 8 & 3 & & & & \\ & & & & & 8 & 3 & 4 & 5 & 7 & \\ 8 & 8 & 7 & 6 & 4 & 2 & 5 & 3 & 6 & 6 \end{array}$	B1	Correct Thaters School labelled on left, leaves in order from right to left and lined up vertically, no commas
	$\begin{array}{lll\|l\|llll} 6 & 2 & 1 & 6 & 1 & 4 & 6 & 9 \\ & & 5 & 7 & 3 & 5 & 8 & \\ & & & 8 & 3 & & & \end{array}$	B1	Correct Whitefay Park School labelled on same diagram on right hand side in order from left to right and lined up vertically, no commas
	Key 8 4 5 represents 48 minutes for Thaters School and 45 minutes for Whitefay Park School.	B1	FT Correct key for their diagram, need both teams identified and 'minutes' stated at least once here or in leaf headings or title. SC If 2 separate diagrams drawn, SCB1 if both keys meet these criteria
		4	
(ii)	$\begin{aligned} & \mathrm{LQ}=50 \\ & \mathrm{UQ}=61.5 \end{aligned}$	B1	Both quartiles correct
	IQ range $=61.5-50=11.5$	B1	FT $61 \leqslant \mathrm{UQ} \leqslant 62-48 \leqslant L \mathrm{~L} \leqslant 52$
		2	
(iii)	$\begin{aligned} & \Sigma(x-60)^{2}=(-15)^{2}+(-13)^{2}+(-7)^{2}+(-4)^{2}+(-4)^{2}+1^{2}+4^{2}+6^{2}+ \\ & 9^{2}+13^{2}+23^{2}+15^{2}+18^{2} \end{aligned}$	M1	Summing squares with at least 5 correct unsimplified terms
	$=1856$	A1	Exact value
		2	
'(iv)	$\begin{aligned} \mathrm{Var} & =\text { mean of coded squares }-(\text { coded mean })^{2} \\ & =\frac{\sum(x-60)^{2}}{13}-\left(\frac{\sum(x-60)}{13}\right)^{2} \end{aligned}$	M1	Using two coded values in correct formula (variance or sd)
	$\begin{aligned} \text { Var } & =\frac{\text { their } 1856}{13}-\left(\frac{46}{13}\right)^{2} \\ & =130 \end{aligned}$	A1	Correct answer SC if correct variance obtained by another method give SCB1
		2	

Question 62

(i)	Advantage: comment referring to spread or range or shape	B1	Comments referring to quartiles, IQR, Range, median, shape, skewness, data distribution, spread score B1 Any comments with reference to mean or standard deviation or any other 'disadvantage' will score B0 Comments referring to ' 5 -value plot', comparison with another data set, overview or ease of drawing/plotting/reading require an appropriate advantage statement.
	Disadvantage: comment referring to limited data information provided	B1	Comments referring to no individual data, no information about the number of values, unable to calculate mean, standard deviation, variance and mode score B1 Any comments with reference to median, shape or any other 'advantage' will score B0 Comments referring to 'size of data set' or 'average' require an appropriate disadvantage statement. Comments referring to outliers are ignored in all cases (as outliers are not in the syllabus content) unless supported by an appropriate advantage / disadvantage statement. If comments not clearly identified, assume first comment is the advantage.
		2	
5(ii)	Not mean as data skewed by one large value	B1	Comment which identifies 768 (or 'a very large number') as the problem. Condone the use of 'outlier'
	Not mode as frequencies all the same	B1	Comment which indicates that no mode exists (e.g. all the data is different, there is no repeated number, all the values are different)
	Median	B1	Median identified as choice, dependent upon statements for mean and mode being given, even if incorrect or very general.
	SC: Mean is identified as most suitable		
	Not mode as frequencies all the same	SCB1	Comment which indicates that no mode exists
	Not median as not all values used	SCB1	Comment which indicates limitation of median e.g. median is not in middle of range.
		3	
iii)(a)	$\mathrm{LQ}=256$ or $256.5 \mathrm{Med}=280 \mathrm{UQ}=329$ Min $190 \max 375$	B1	Median, UQ and LQ values seen, may not be identified or identified correctly. (Not read from box plot unless value stated)
		B1	FT Median and quartiles plotted in box on graph, linear scale
		B1	Correct end points, whiskers from ends of box but not through box, not at top or bottom of box
		B1	Uniform scale from 190 to 375 (need at least 3 linear identified points min) and labelled 'time' and 'minutes' (can be in title) No time axis or time axis with no scale attempt, Max B1B0B0B0
		4	
i(iii)(b)	$\mathrm{IQR}=$ their $329-$ their $256=73$ or 72.5	B1	FT Must follow through only from their stated values (condone if correct quartiles stated here), not reading from graph.
		1	

Question 63

(i)	$\Sigma(t-120)=-25+6-3+15+0+5-6-1+16=7$	M	$1 \begin{aligned} & \text { Attempt to sum both }(t-120) \text { and }(t-120)^{2} \text { Correct ans using } \\ & \Sigma t-9 \times 120 \text { and } \Sigma(t-120)^{2} \text { M1A1 }\end{aligned}$
	$\begin{aligned} & \Sigma(t-120)^{2}=25^{2}+6^{2}+3^{2}+15^{2}+0^{2}+5^{2}+6^{2}+1^{2}+16^{2} \\ & =1213 \end{aligned}$	A1	1 Both correct, www, SC correct ans no working B1B1
			2
(ii)	$\operatorname{Var}=\frac{\Sigma(t-120)^{2}}{9}-\left(\frac{\Sigma(t-120)}{9}\right)^{2}=\frac{\text { their } 1213}{9}-\left(\frac{\text { their } 7}{9}\right)^{2}$	M1	1 Using two coded values in correct formula including finding $\sum t$ from 7 etc
	$=134(2)$	A1	1 Correct answer SC if correct variance obtained by another method from raw data give SCB1
			2
Median Maths $=40$		M1	Indication of finding medians, such as mark on graph or reference marks to 700 pupils, condone poor terminology such as 'mean'
Median English $=55$		A1	Both values correct, condone 54<English<56 but 54, 56 get A0
Median of English is larger than median of Maths		B1	Correct statement, median must be referenced within answer. No credit if statement references 'means'
Range Maths is 100 or IQ range Maths $=80-12=68$		M1	Evidence of finding either both ranges or both IQ ranges i.e. see a minus
Range English is 60 or IQ range English $=62-42=20$		A1	Both ranges or IQR correct
Maths marks have more spread then English marks		B1	Correct conclusion. Accept standard deviation but must see some figures
		6	

Question 64

;(i)	Correct labels and scales	B1	Axes labelled 'cumulative frequency' (or cf) and 'time (or t) [in] \min (utes)', linear scales from 0 to 90 and 0 to 200 with at least 3 values marked on each axis.
	7 correctly plotted points above upper boundaries joined in a curve or line segments	B1	$\begin{aligned} & (0,0) ;(10,16) ;(20,50) ;(30,106) ;(50,146) ;(70,176) \text {; } \\ & (90,200) \end{aligned}$
		2	
(ii)	29	B1	$28 \leqslant$ median $\leqslant 30$
		1	
(iii)	120 seen	M1	For seeing 120 in a calculation or marked on the graph
	37	A1FT	$36 \leqslant$ Ans $\leqslant 39$ or FT from their graph SC1 unsupported answer in range
		2	
(iv)	Frequencies 163456403024	B1	Seen. Allow unsimplified
	Est. Mean $=\frac{5 \times 16+15 \times 34+25 \times 56+40 \times 40+60 \times 30+80 \times 24}{200}$	M1	At least 4 correct midpoints $(5,15,25,40,60,80)$ used in a calculation
	$\frac{7310}{200}$	M1	Summing products of their 6 mid-points (not lower or upper bound or class width) \times their frequencies $/ 200$ (or their $\sum \mathrm{f}$), unsimplified
	36.55	A1	Accept 36.6
		4	

Question 65

(i)	Median $=51$ $\mathrm{UQ}=57.5, \mathrm{LQ}=40$	B1	
	$\mathrm{IQR}=\mathrm{UQ}-\mathrm{LQ}$	$\mathbf{M 1}$	$55 \leqslant \mathrm{UQ} \leqslant 62-38 \leqslant \mathrm{LQ} \leqslant 45$
17.5	$\mathbf{A 1}$	NFWW	
	$\mathbf{3}$		
(ii)	Result will be disproportionately affected by 110	B1	Affected by an extreme/large value There is a large outlier \ldots contains outliers such as $110 \ldots$ Not 'mean affected by extreme values'

Question 66

(i)	0.5	2.4	3	1.4	0.4

		width e.g. $\left(\frac{10}{20}, \frac{10}{19}\right.$ or $\left.\frac{10}{19.5}\right)$ may be read from graph using their scale, 3 SF or exact
All heights correct on graph.	A1	
Bar ends of $9.5,29.5,39.5,59.5,89.5$	B1	
Axes labelled: Frequency density (fd) and speed $/ \mathrm{km} \mathrm{h}^{-1}($ or appropriate title). Linear scales $9.5 \leqslant$ horizontal axis $\leqslant 89.5,0$ \leqslant vertical axis $\leqslant 3,5$ bars with no gaps	B1	
	$\mathbf{4}$	

(ii)
$\frac{19.5 \times 10+34.5 \times 24+44.5 \times 30+54.5 \times 14+74.5 \times 12}{\text { their } 90}$
$=\frac{195+828+1335+763+894}{90}$
$=\frac{4015}{90}$ or $\frac{803}{18}$
$44 \frac{11}{18}$ or $44.6\left(\mathrm{~km} \mathrm{~h}^{-1}\right)$
M1 Uses at least 4 midpoint attempts (e.g. 19.5 ± 0.5). Allow unsimplified expression.
A1 Final answer not an improper fraction NFWW

Question 67

(i)	$\sum x=60 \times 20 \quad=1200$	B1	
	$\frac{\sum x^{2}}{20}-60^{2}=4^{2}$	M1	Correct variance formula used, condone $=4$
	$\sum x^{2}=3616 \times 20=72320$	A1	Exact value
		3	
(ii)	$\begin{aligned} & \sum x=1200+550=1750 \\ & \sum x^{2}=72320+40500=112800 \end{aligned}$	M1	Summing both values of $\sum x$ and $\sum x^{2}$
	$\text { Mean }=\frac{\text { their } 1750}{30}=58.3$	B1FT	FT their $1750($ not 550 or 1200$) /$ their $(20+10)$, accept unsimplified
	Variance $=\frac{\text { their } 112820}{30}-\left(\frac{\text { their } 1750}{30}\right)^{2} \quad(=357.89)$	M1	substitute their Σx and Σx^{2} into correct variance formula
	s.d. $=18.9$	A1	
		4	

Question 68

;(i)	$156-55=99$	B1	$98 \leqslant$ answer <100
		1	
(ii)	90% of $160=144$	M1	144 seen, may be marked on graph
	$(\mathrm{L}=) 22$	A1	
		2	
(iii)	$\begin{aligned} & \text { Median }=15.6 \\ & \mathrm{UQ}=18.8, \mathrm{LQ}=12.7 \end{aligned}$	B1	$15.5<$ median < 15.8
	$\mathrm{IQR}=18.8-12.7$	M1	$18.5<\mathrm{UQ}<19-12.5<\mathrm{LQ}<13$
	6.1	A1	$6.0 \leqslant \mathrm{IQR} \leqslant 6.2$
		3	
(iv)	The Median higher for Ransha (1st set of data)	B1	Any correct comparison of central tendency, must mention median
	IQR lower for Ransha (1st set of data)	B1	Any correct comparison of spread, must refer to IQR
		2	

Question 69

!(i)	$\begin{aligned} & \sigma^{2}=\frac{\sum(x-c)^{2}}{n}-\left(\frac{\sum(x-c)}{n}\right)^{2} \\ & 3.2^{2}=\frac{3099.2}{40}-\left(\frac{\sum(x-c)}{40}\right)^{2} \end{aligned}$	M1	Use correct formula with values substituted
	$\begin{aligned} & \left(\frac{\sum(x-c)}{40}\right)^{2}=67.24 \\ & \sum(x-c)=40 \times \sqrt{67.24} \end{aligned}$	M1	Rearrange to make their $\left(\frac{\sum(x-c)}{40}\right)^{2}$ the subject, unsimplified.
	$=328$	A1	Exact value, cao
		3	
(ii)	$\begin{aligned} & \sum x-40 c=\text { their }(\mathbf{i}) \\ & \text { Mean }=\frac{\text { their }(\mathbf{i})}{40}+50 \\ & =58.2 \end{aligned}$	B1FT	FT their (i)
		1	

Question 70

(i)	Dolphins	5678	Sharks	B1	Correct stem can be upside down, ignore extra values,
	$\begin{array}{r} 95532 \\ \\ 5 \end{array}$			B1	Correct Dolphin must be on LHS,
			$\begin{array}{llll} 4 & 6 & 8 & \\ 0 & 1 & 2 & 4 \end{array}$	B1	Correct Sharks on either LHS or RHS of back-to-back. Alignment \pm half a space, no late entries squeezed in, no crossing out if shape is changed. Condone a separate RHS stem-and-leaf diagram
			04	B1FT	Correct single key for their single diagram, need both teams identified and ' kg ' stated at least once here or in leaf headings or title.
			Key: $3\|6\| 4$ means 63 kg for Dolphins and 64 kg for Sharks		
				4	
(ii)	$\begin{aligned} & \text { Median }=72 \\ & \mathrm{LQ}=65, \mathrm{UQ}=80, \end{aligned}$			B1	$72<\mathrm{UQ}<82-62<\mathrm{LQ}<72$
	$\mathrm{IQR}=80-65$			M1	nfww
	$=15$			A1	SCB 1 if M0 scored for $\mathrm{LQ}=65$ and $\mathrm{UQ}=80$
				3	

Question 71

(c) \begin{tabular}{l|r|l}

Midpoints: 4.75, 12, 17, 25 \& M1 \& | At least 3 correct midpoints used |
| :--- |
| (39449.4375 implies M1) |

\hline Var $=\frac{4.75^{2} \times 15+12^{2} \times 48+17^{2} \times 66+25^{2} \times 21}{150}-15.295^{2}$ \& M1 \& | Using midpoints ± 0.5 in correct var formula, including |
| :--- |
| subtraction of their μ^{2}. |

\hline$=29.1$ \& $\mathbf{A 1}$ \&

\hline \& $\mathbf{3}$ \&
\end{tabular}

Question 72

	KEY $1\|4\| 2$ means $\$ 41000$ for A and $\$ 42000$ for B Correct stem	B1
	Correct A on LHS	B1
	Correct B on same diagram	B1
	Correct key for their diagram, both companies identified and correct units	B1
		4
(b)	Median $=[\$] 42000$	B1
	$\begin{aligned} & \mathrm{LQ}=[\$] 35000 \\ & \mathrm{UQ}=[\$] 52000 \end{aligned}$	B1
	$\mathrm{IQR}=[\$] 17000$ (FT if $49000 \leqslant \mathrm{UQ} \leqslant 53000-32000 \leqslant \mathrm{LQ} \leqslant 41000$)	B1 FT
		3
i(c)	Sum of given 11 numbers is 433000	M1
	Sum of 12 numbers, including new $=38500 \times 12=462000$	M1
	Difference $=$ new salary $=[\$] 29000$	A1
		3

Question 73

$\sum x-50 n=144$	B1
$50 n+144=944$	M1
$n=16$	A1
	3

Question 74

Question 75

(a)	Class widths: $10,5,15,20,10$	M1
	Frequency density $=$ frequency/their class width: $1.8,4.8,2,1,0.8$	M1
	All heights correct on diagram (using a linear scale)	A1
	Correct bar ends	B1
	Bar ends: $10.5,15.5,30.5,50.5,60.5$	B1
		5
b)	11-15 and 31-50	B1
	Greatest IQR $=50-11=39$	B1
		2
(c)	$\text { Mean }=\frac{18 \times 5.5+24 \times 13+30 \times 23+20 \times 40.5+8 \times 55.5}{100}=\frac{2355}{100}=23.6$	B1
	$\operatorname{Var}=\frac{18 \times 5.5^{2}+24 \times 13^{2}+30 \times 23^{2}+20 \times 40.5^{2}+8 \times 55.5^{2}}{100}-\text { mean }^{2}$	M1
	$\frac{77917.5}{100}-\text { mean }^{2}=224.57$	A1
	Standard deviation $=15.0$ (FT their variance)	A1 FT
		4

Question 76

Question 77

KEY 6|3|2 means 36 cm (snow) in Dados and 32 cm (snow) in Linva
c)

On average
The amoun
astion 78

Question 78

(c)

Frequencies: 1236582816	B1	Correct frequencies seen
Mean $=\frac{10 \times 12+25 \times 36+35 \times 58+50 \times 28+80 \times 16}{150}$	B1	At least 4 correct midpoints seen and used
$\frac{120+900+2030+1400+1280}{150}$	M1	Correct formula with their midpoints (not upper boundary, lower boundary, class width or frequency density).
$38.2,38 \frac{1}{5}$	A1	
Variance $=\frac{12 \times 10^{2}+36 \times 25^{2}+58 \times 35^{2}+28 \times 50^{2}+16 \times 80^{2}}{150}-$ mean 2 $=\frac{1200+22500+71050+70000+102400}{150}-$ mean 2	M1	Substitute their midpoints and frequencies (condone use of cumulative frequency) in correct variance formula, must have - their mean ${ }^{2}$
(Standard deviation $=\sqrt{321.76}$) $=17.9$	A1	
	$\mathbf{6}$	

Question 79

Question 80

;(a) \quad Mean height $=\frac{\Sigma x+\Sigma y}{6+11}=\frac{1050+1991}{6+11}=\frac{3041}{17}$

178.9	A1	Allow $178.88,178 \frac{15}{17}, 179$
	$\mathbf{2}$	

(b)

$\frac{\Sigma x^{2}+\Sigma y^{2}}{6+11}=\frac{193700+366400}{6+11}$	M1	Use of appropriate formula with values substituted, accept unsimplified.
Sd $^{2}=\frac{560100}{17}$-their $178.88^{2}[=948.289]$	M1	Appropriate variance formula using their mean ${ }^{2}$, accept unsimplified expression.
Standard deviation $=30.8$	A1	Accept 30.7
	$\mathbf{3}$	

Question 81

(a)	60	B1	Accept 60 or 61. No decimals
		1	
(b)	65% of $160=104$	M1	$0.65 \times 160(=104)$ seen unsimplified or implied by use on graph
	136 (cm)	A1	Use of graph must be seen. SCB1 correct value (136 only) if neither 104 nor use of graph are evident
		2	
(c)	$\begin{aligned} & \mathrm{UQ}: 150 \mathrm{LQ}: 76 \\ & \mathrm{IQR}=150-76=74[\mathrm{~cm}] \end{aligned}$	M1	$\mathrm{UQ}-\mathrm{LQ} ; 148 \leqslant \mathrm{UQ} \leqslant 152 ; 74 \leqslant \mathrm{LQ} \leqslant 78$.
		A1	Must be from 150-76
		2	

Question 82

'(a)	Includes all data					B1	Reference to either including all/raw data or further statistical processes are possible that cannot be found using data from box-and-whisker, eg frequency, mean, mode or standard deviation not only median, IQR, range or spread which can be found from both.
						1	
'(b)	Amazons		Giants			B1	Correct stem can be upside down, ignore extra values
	$\begin{array}{rr} & \\ & 8 \\ 4 & 2 \end{array}$	$\begin{aligned} & 17 \\ & 18 \end{aligned}$				B1	Correct Amazons labelled on left, leaves in order from right to left and lined up vertically (less than halfway to next column), no commas or other punctuation.
	$\begin{array}{lll} 8 & 6 & 0 \\ 5 & 2 & 1 \end{array}$	$\begin{aligned} & 19 \\ & 20 \end{aligned}$				B1	Correct Giants labelled on same diagram, leaves in order and lined up vertically (less than halfway to next column), no commas or other punctuation.
	5 Key: $1\|18\| 2$ mea	Key: $1\|18\| 2$ means 181 cm for Amazons and 182 cm for Giants				B1	Correct single key for their diagram, need both teams identified and ' cm ' stated at least once here or in leaf headings or title. SC for if 2 separate diagrams drawn, award SCB1 if both keys meet these criteria (Max B1, B0, B0, B1)
						4	
'(c)	$\begin{aligned} & {[\mathrm{UQ}=202(\mathrm{~cm}), \mathrm{LQ}=182(\mathrm{~cm})]} \\ & {[\mathrm{IQR}=] 202-182=20(\mathrm{~cm})} \end{aligned}$					M1	$201 \leqslant$ UQ $\leqslant 205-181 \leqslant L Q \leqslant 184$
						A1	www
	1 (2						

(d) | $\left[\begin{array}{l}{\left[\Sigma_{11}=2132\right.} \\ \left.\Sigma_{15}=191.2 \times 15=2868\right]\end{array}\right.$ | B1 | Both Σ_{11} and Σ_{15} found. Accept unevaluated. |
| :--- | ---: | :--- |
| their $2868=$ their $2132+(180+185+190)+h$ | M1 | Forming an equation for the height using their Σ_{11} and Σ_{15}. |
| $181(\mathrm{~cm})$ | A1 | |

Alternative method for Question 7(d)

$\left[\begin{array}{l}\Sigma_{15}=191.2 \times 15=2868 \\ \left.\Sigma_{15}=2687+h\right]\end{array}\right.$	B1	Σ_{15} found using the mean and raw data methods. Accept unevaluated.
their $2868=$ their $2687+h$	M1	Forming an equation for the height using their Σ_{15} expressions.
$181(\mathrm{~cm})$	A1	

Alternative method for Question 7(d)

$\left[\Sigma_{15}=2687+h\right.$		
$\left.\frac{\Sigma_{15}}{15}=191.2\right]$	B1	Σ_{15} found using raw data method and statement on calculating new mean. Accept unevaluated.
$\frac{\text { their } 2687+h}{15}=191.2$	M1	Forming an equation for the height using their Σ_{15} expressions
$181(\mathrm{~cm})$	A1	
	$\mathbf{3}$	N.B. All methods can be presented as a logical numerical argument which can be condoned if clear.

Question 83

(a)

(b)	Mean $=\left[\frac{16 \times 5+54 \times 15+78 \times 30+32 \times 50+20 \times 80}{200}\right]$ $=\frac{80+810+2340+1600+1600}{200}$	M1	Uses at least 4 midpoint attempts (e.g. $5 \pm 0.5)$. Accept unsimplified expression, denominator either correct or their frequencies
$\left[\frac{6430}{200}=\right] 32 \frac{3}{20}$ or 32.15	A1	Accept 32.2	
(c)	A value in correct UQ $(40-60)-$ a value in correct LQ $(10-20)$	$\mathbf{2}$	M1
Greatest possible value is $60-10=50$	A1	Condone 49.9	
	$\mathbf{2}$		

Question 84

Key: $6|2| 3$ means 26 m for Lakeview and 23 m for Riverside
(b)

Question 85

Question 86

Question 87

Key: $8|7| 2$ means 78 kg for Rebels and 72 kg for Sharks
(b)

(b)	Median $=84(\mathrm{~kg}$)	B1	
	$[\mathrm{UQ}=93, \mathrm{LQ}=80] 93-80$	M1	$95 \leqslant \mathrm{UQ} \leqslant 89-79 \leqslant L \mathrm{~L} \leqslant 82$
	$[\mathrm{IQR}=] 13 \mathrm{~kg})$	A1	WWW
		3	
(c)	Box and whisker with end points 75 and 102	B1	Whiskers drawn to correct end points not through box, not joining at top or bottom of box.
	Median and quartiles plotted as found in (b)	B1 FT	Quartiles and median plotted as box graph.
		2	
(d)	e.g. Average weight of Rebels is higher than average weight of Sharks	B1	Acceptable answers refer to: Range, skew, central tendency within context. E.g. range of Rebels is greater $\mathbf{B 0}$. Range of weights of the rebels is greater $\mathbf{B 1}$. Simple value comparison insufficient.
		1	

Question 88

(a) $\left.\left\lvert\, \begin{array}{l}{\left[\frac{\sum x}{40}-k=\frac{\sum(x-k)}{40}\right.} \\ 40 \times 34 \\ 520\end{array}\right.\right]$
$\frac{40 \times 34}{40}-k=\frac{520}{40}$
$k[=34-13]=21$

$\operatorname{Var}=\left[\frac{\Sigma(x-k)^{2}}{40}-\left(\frac{\Sigma(x-k)}{40}\right)^{2}\right]=\frac{9640}{40}-\left(\frac{520}{40}\right)^{2}=\left[241-13^{2}=\right]$	$\mathbf{M 1}$	Values substituted into an appropriate variance formula, accept unsimplified.
72	$\mathbf{A 1}$	
	$\mathbf{2}$	

Question 89

(a)							$\begin{gathered} \text { M1 } \\ \hline \text { A1 } \end{gathered}$	At least 4 frequency densities calculated All heights correct on graph
	$\begin{aligned} & \text { Class } \\ & \text { Width } \end{aligned}$	30	15	20	10	25		
	Frequency Density	0.7	2	3.4	8.6	1.8	B1	Bar ends at $0.5,30 \cdot 5,45 \cdot 5,65.5,75.5,100.5$ (at axis), 5 bars drawn, condone 0 in first bar $0.5 \leqslant$ time axis $\leqslant 100.5$, linear scale with at least 3 values indicated.
							B1	Axes labelled: Frequency density (fd), time (t) and mins (or appropriate title). Linear fd scale, with at least 3 values indicated $0 \leqslant \mathrm{fd}$ axis $\leqslant 8 \cdot 6$
							4	
(b)	66-75						B1	Condone 65.5-75.5
							1	
(c)	Distribution is not symmetrical						B1	Or skewed, ignore nature of skew
							1	

Question 90

(a)	$\left[\frac{123.4}{20}=\right] 6.17$	B1	$\text { Accept } 6 \mathrm{~m} 17 \mathrm{~cm}, \frac{1234}{200} .$
		1	
(b)	$\frac{10 \text { th }+11 \text { th }}{2}=\frac{5.4+5.5}{2}=5.45(\mathrm{~m})$	B1	Accept 5 m 45 cm .
		1	
(c)	The mean is unduly influenced by an extreme value, 19.4.	B1	Comment must be within context.
		1	

Question 91

Question 92

Question 93

$\sum x-\sum 200=\sum(x-200)$	B1	Forming a correct 3-term (linear) equation from $\sum x, \sum 200$ and $\sum(x-200)$. Accept $6846-200 n=446$ OE. Condone 1 sign error.
$\sum 200=200 n$	B1	SOI
$[200 n=6846-446=6400] n=32$	B1	WWW
	3	

Question 94

	Standard deviation $=15.2$	A1	wWw, allow 15.16[3...]
		$\mathbf{3}$	
(c)	$30-40$	$\mathbf{B 1}$	
		$\mathbf{1}$	
(d)	Stays the same, data still in same intervals	B1	Frequencies unchanged
		$\mathbf{1}$	

Question 95

$\sum x-50 \times 20=35 ; \sum x=1035$ or $\bar{x}=\frac{35}{50}+20=\frac{1035}{50}[=20.7]$	B1	Correct value for $\sum x$ or \bar{x}.
$\frac{25036}{50}-\left(\frac{\sum x}{50}\right)^{2}=\frac{25036}{50}-\left(\frac{1035}{50}\right)^{2}$	M1	$\frac{25036}{50}-\left(\right.$ their $\left.\left(\frac{\sum x}{50}\right)^{2}\right)$
72.23	A1	Exact answer only SC B1 for 72.23 with no substitution in formula.
	$\mathbf{3}$	

Question 96

Question 97

(a) $\quad \mathrm{Cw}$

M1 At least 4 frequency densities calculated $\frac{f}{c w} \operatorname{eg} \frac{32}{20}\left(\right.$ condone $\frac{f}{c w \pm 0.5}$ if unsimplified $)$, accept unsimplified, may be read from graph using their scale no lower than $1 \mathrm{~cm}=\mathrm{fd} 1$

A1 All bar heights correct on graph, using their suitable linear scale with at least 3 values indicated, no lower than $1 \mathrm{~cm}=\mathrm{fd} 2$.

B1 Bar ends at [0,] 20, 40, 50, 60, 100 (at axis), 5 bars drawn $0 \leqslant$ time axis $\leqslant 100$, linear scale with at least 3 values indicated.

B1 Axes labelled frequency density (fd), time (t) and minutes (mins, m) or appropriate title. (Axes may be reversed).
(b)

Midpoints 1030455580	B1	At least 4 correct midpoints seen (check data table).
$\begin{aligned} & {[\text { Mean }=43.2 \text { given }]} \\ & {[\operatorname{Var}=] \frac{32 \times 10^{2}+46 \times 30^{2}+96 \times 45^{2}+52 \times 55^{2}+24 \times 80^{2}}{250}-43.2^{2}} \\ & \text { Or } \\ & \frac{32(10-43.2)^{2}+46(30-43.2)^{2}+96(45-43.2)^{2}}{\quad+52(55-43.2)^{2}+24(80-43.2)^{2}} \\ & 250 \end{aligned}$	M1	Appropriate variance formula with their 5 midpoints (not upper bound, lower bound, class width, frequency density, frequency or cumulative frequency). Condone 1 frequency error. If correct midpoints seen accept $\begin{aligned} & \left\{\frac{3200+41400+194400+157300+153600}{250} \text { or } \frac{549900}{250}\right\} \\ & -\left\{43.2^{2} \text { or } 1866.24\right\} \end{aligned}$
$\begin{aligned} & =\left[\frac{549900}{250}-43.2^{2}=333.36\right] \\ & \mathrm{Sd}=18.3 \end{aligned}$	A1	www, final answer 18.25814887 to at least 3SF. If M0 earned SC B1 for final answer 18.25814887 to at least 3SF.
	3	

Question 98

Question 99

Question 100

(a)	Median $=99$ [minutes]	B1	
	[IQR =] 106-83	M1	$105 \leqslant \mathrm{UQ} \leqslant 112-82 \leqslant L Q \leqslant 87$.
	23 [minutes]	A1	www. If M0 scored SC B1 for 23 www.
		3	
(b)	The times for the Cheetahs are faster than the times for the Panthers	B1	Correct statement comparing central tendency in context.
	The times for the Cheetahs are more spread than the times for the Panthers	B1	Correct statement comparing range/IQR in context.
		2	
(c)	[Total time including Kenny $=99 \times 20=$] 1980	B1	Accept unsimplified.
	[Kenny's time $=$] 1980-1862	M1	For their 1980 - their 1862.
	$=118$ [minutes]	A1	Accept 1 hour 58 mins .
	Alternative Method for Question 4(c)		
	$\begin{aligned} & \frac{1862+\text { their Kenny's time }}{20}=99 \\ & {[\text { Kenny's time }=99 \times 20-1862]} \end{aligned}$	B1	$\frac{1862+\text { their } \text { Kenny's time }}{20}=99 \text { seen. }$
		M1	For their 99×20 - their 1862 .
	$=118$ [minutes]	A1	Accept 1 hour 58 mins.
		3	

Question 101

(c) Examples: \quad B1 \mid Must refer to company B, may be implied by appropriate Mean less appropriate than median because of extreme value for company B
[at $\$ 3090$].
No, extreme value in company B. use of $\$ 3090$.
Must include an indication that the mean is not appropriate.
No contradictory statements can be present, e.g. acceptable comment with 'but mean could be used for company A'. Condone reference to $\$ 309$.

Question 102

(a)	$\begin{aligned} & \mathrm{Var}=\left[\frac{\Sigma(x-q)^{2}}{50}-\left(\frac{\Sigma(x-q)}{50}\right)^{2}=\right] \frac{14235}{50}-\left(\frac{700}{50}\right)^{2} \\ & {[=284.7-196=88.7]} \end{aligned}$	M1	$\frac{14235}{a}-\left(\frac{700}{a}\right)^{2} ; \text { where } a=49,50,51$
	$[\mathrm{sd}=\sqrt{88.7}=] 9.42$	A1	9.4180677 rounded to at least 3 SF .
		2	
(b)	$\begin{aligned} & \sum x-50 q=700 \\ & {[2865-50 q=700]} \end{aligned}$	M1	Forming equation with $\Sigma x, 50 q$ and 700.
	$q=43.3,43 \frac{3}{10}$	A1	If M0 scored, SC B1 for 43.3 WWW.
		2	

Question 103

