AS-Level

Discrete Random Variable

May: 2013- May: 2023

Answers

$ \begin{array}{c ccccc} x & 0 & 1 & 2 \\ \hline P(X=x) & 5/12 & 1/2 & 1/12 \end{array} $	B1	Values	0, 1, 2 seen in table with at least 1 prob		
$P(0) = P(\overline{5}, \overline{5}) = \frac{6}{9} \times \frac{5}{8} = 30/72 (5/12)$ (0.4166)	B1	Correct	t P(0) unsimplified		
P(1) = 0.5 from part (ii)					
P(2) = 6/72 (1/12) (0.0833) from part (i)	B1ft 3	If $x=0,1,2(,3)$ ft $\Sigma p = 1$, no -ve values, all probabilities <1			
Question 2 (i) options (3, 4, 4,) or (4, 3, 4) or (4, 4, 3) Probs (4/10 × 6/9 × 5/8) ×3C1 = 360/720 = ½ AG $OR \frac{6^{C_2} \times_4 C_1}{10^{C_3}} = \frac{1}{2} AG$	M M A M M A	[3] [3]	Summing three 3-factor options oe $10 \times 9 \times 8$ seen in denom Correct answer One of 6C2 or 4C1 seen in num 10C3 in denom Correct answer		
(ii) $\begin{array}{ c c c c c c }\hline sum & 9 & 10 & 11 & 12\\\hline Prob & 24/720 & 216/720 & 360/720 & 120/72\\\hline P(3,3,3) = 4/10 \times 3/9 \times 2/8 = 24/720 & (120/72) $	B B	1 [4]	9, 10, 11, 12 only seen One correct prob other than P(11), with or without replacement Another correct prob		
$P(4, 4, 4) = 6/10 \times 5/9 \times 4/8 = 120/720(10)$	1/6) B	1	Σ all 4 probs = 1		

(i)	(i) if throw H then smallest score is 2 $P(T, 1) = 1/2 \times 1/4 = 1/8 \text{ AG}$								B1 B1	2	Or equivalent
(ii) $P(3)$ from two dice = $2/16$ seen									B1		From (1, 2) and (2, 1)
	$P(H, 3) = 1/2 \times 2/16 = 2/32$ $P(T, 3) = 1/2 \times 1/4 = 1/8$ So P(3) = 6/32 = 3/16 AG								M1 A1 A1	4	Summing P(H, 3) and P(T, 3) One correct Correct answer must see clear reasoning
(iii)		_				_					
X	1	2	3	4	5	6	7	8	B1		One correct prob
Prob		5/32		7/32		3/32			B1 B1	3	A second correct prob A third correct prob

(i)	OR		$^{3}C_{2}/^{9}C_{5}$			M1 OR		Using combinations ${}^{a}C_{b} \times {}^{c}C_{d}/{}^{c}C_{f}$
ì	$\frac{{}^{6}C_{3} \times {}^{3}C_{2}}{{}^{6}C_{5} + {}^{6}C_{4} \times {}^{3}C_{1} + {}^{6}C_{3} \times {}^{3}C_{2} + {}^{6}C_{2} \times {}^{3}C_{3}}$ OR $3/9 \times 2/8 \times 6/7 \times 5/6 \times 4/5 \times {}^{5}C_{2} = 10/21$ $= 60/126 \text{ AG}$						2	Mult 5 probs with a ${}^{p}C_{q}$ If ${}^{5}C_{2}$ replace by 10, oe must be justified Legit method, as answer given
(ii)	Prob	0 2/42	1 15/42	2 20/42	3 5/42	В1		0, 1, 2, 3 only seen in table. Condone $x = 4,5$ in table if $P(x) = 0$ or blank and values in table for $x = 0,1,2,3$
	$P(0) = {}^{6}C_{5} / {}^{9}C_{5} = 6/126$ $P(1) = {}^{6}C_{4} \times {}^{3}C_{1} / {}^{9}C_{5} = 45/126$ $P(3) = {}^{6}C_{2} \times {}^{3}C_{3} / 126 = 15/126$							Any correct prob other than P(2) Any other correct prob $\Sigma P(x) = 1, 3 < n(x) < 6$

(i) A:P(H) = $2/3$, P(T) = $1/3$ B: P(H) = $1/4$, P(T) = $3/4$								Using some of 2/3, 1/3, 1/4 or 3/4 in a calculation involving prod of 3 probs		
P(1H) = P(HTT) + P(THT) + P(TTH) = $(2/3 \times 1/3 \times 3/4) + (1/3 \times 2/3 \times 3/4)$								Summing 3 options not all the same		
$+ (1/3 \times 1/3 \times 1/4) = 13/36 \text{ AG}$							3	Correct answer		
an.	x	0	1	2	3	B1		0, 1, 2, 3 seen for table no probs needed, table		
(ii)	P	3/36	13/36	16/36	4/36	ы		not absolutely necessary if calcs shown		
$P(0H) = P(TTT) = 1/3 \times 1/3 \times 3/4 = 1/12$								One prob correct other than (i) condone 0.083 for 0.0833		
$P(2H) = P(HHT) + P(HTH) + P(THH)$ = $(2/3 \times 2/3 \times 3/4) + (2/3 \times 1/3 \times 1/4)$ + $(1/3 \times 2/3 \times 1/4) = 4/9 \text{ not } 2/3 \times 2/3$								A second prob correct need 3 factors can be implied		
$P(3H) = P(HHH) = 2/3 \times 2/3 \times 1/4 = 1/9$							4	A third prob correct ft $23/36 - \Sigma$ their 2 probs		
(iii) $E(X) = 13/36 + 32/36 + 12/36$								Attempt to evaluate $\sum xp$ at least 3 vals of x in table		
		= 57/36	5 (19/12)	(1.58)		A1	2	Correct answer		
Quest	ion 6	5						7 1 1 1		

(i)	P(exactly 2) = $\frac{{}^{6}C_{2}}{{}^{8}C_{4}} = \frac{15}{70} = \frac{3}{14} AG$	M1	⁶ Cx / ⁸ Cx seen or ⁴ C ₂ mult by 4 fractions (last 2 can be implied)
	OR P(2) = $\frac{6}{8} \times \frac{5}{7} \times \frac{2}{6} \times \frac{1}{5} \times {}^{4}C_{2} = \frac{3}{14}$ AG	A1 2	Answer legit obtained
(ii)	x 2 3 4 Prob 3/14 8/14 3/14	B1 B1 B1√ 3	2, 3, 4 only in top line one correct prob other than P(2) third correct prob ft $\Sigma = 1$
(iii)	$Var(X) = \frac{12}{14} + \frac{72}{14} + \frac{48}{14} - 3^2$	M1	using $\Sigma x^2 p - 3^2$ (or their $\{E(X)\}^2$) must be evaluated
	$=\frac{3}{7} (0.429)$	A1 2	correct answer

(i)	P(1 V	$V) = 6/9 \times 3/4$	/8 + 3/9×6/8	3	M1	summing 2 two-factor probs (condone replacement) not ½×½ + ½ + ½ ½	
	= 1/	/ ₂ AG			A1 [2]	Correct answer, fully justified	
	OR $\frac{{}^6C_1}{{}^9C_1}$	$\frac{c^3 C_1}{C_2}$			M1	Using combinations consistent, correct format	
	$= \frac{1}{2} AG$				A1	Correct answer, fully justified	
(ii)	$P(\overline{W}, \overline{W}) = P(W, W) $	$= 3/9 \times 2/8 = 6/9 \times 5/8 = 6/9 \times 5/9 = 6/9 = 6/9 \times 5/9 = 6/$	6/72 (1/12) 30/72 (5/12		B1	Distribution table with 0,1,2 only	
	$\frac{1}{x}$	0	1	2	B1	$P(W,W)$ or $P(\overline{W},\overline{W})$ correct	
	Prob	1/12	1/2	5/12	B1 № [3]	$P(W,W) + P(\overline{W},\overline{W}) = 0.5$	
(iii)	E(X) = 16	/12 (4/3) (1	.33) isw		B1 [1]	Condone 1(.3) if correct working seen, nfww	

(i)	Spinner A											
			Í	1	2	3	3			B1	1	
		80	-3	(-2)	-1	0	0	Ì				
	Spinn B	er	-2	-1	0	(1)	1					
			-1	0	1	2	2					
			1	2	3	4	4					
(ii)	x	-2	-1	0	1	2	3	4	1	M1		Their values in (i) as the top line, seen listed in (ii) or used in part (iii)
	prob	1 16	$\frac{2}{16}$	4	3	3	1	$\frac{2}{16}$		M1		Attempt at probs seen evaluated, need at least 4 correct from their table
	pioo	16	16	16	3 16	3 16	$\frac{1}{16}$	16		A1	3	Correct table seen
(iii)	$E(X) = 1$ $Var(X) = ((-2)^2 + 2 + 3 + 12 + 9 + 32)/16 - 1^2$ $= \frac{62}{16} - 1$								M1 M1		Attempt at E(X) from their table if $\Sigma p = 1$ Evaluating $\Sigma x^2 p - [\text{their E}(X)]^2$ allow $\Sigma p \neq 1$ but all p 's ≤ 1	
		$=\left(\frac{2}{3}\right)$	$\left(\frac{23}{8}\right)$	2.875)						A1	3	Correct answer
	OR usi				+8+	4+0+	3 + 4	+ 18)	/16	M1		
	=	$\frac{46}{16} =$	2.875							M1 A1		
(iv)	$P(\text{even}) = \frac{5}{9}$	given	+ve)							M1 A1	2	Counting their even numbers and dividing by their positive numbers Correct answer
	OR P(e	ven gi	iven +	$-ve) = \frac{1}{1}$	$\left(\frac{5}{16}\right)$ $\left(\frac{9}{16}\right)$					M1		Using cond prob formula not P(E) × P(+ve) need fraction over fraction accept any of $\frac{5/16or6/16or9/16}{9/16or10/16or13/16}$
			$=\frac{5}{9}$	(0.556)					A1		Correct answer

(i)	0.4	0.4	4 <u>S</u>			M1		3 pairs S (bank, log in, success oe) and F oe seen no extra bits.
	0.6	F < 0.0		0.4	S	A1		Exactly 3 pairs, must be labelled
				0.6	A1	[3]	Correct diagram with all probs correct	
(ii)	x	0	1	2	3	B1		P(0) correct
	Prob	0.4		0.144	0.216	M1		Multiplying two of more factors of
						A1		0.4 and 0.6 One more correct prob
						B1	[4]	One more correct prob
(iii)	E(X) = 0.2		144 + 3× (0.216		M1		Using $\Sigma p_i x_i$
	= 1.176 (1	.18)			A1	[2]	Correct answer	
Ques	tion 11							
ı								

No of W	0	1	2	B1	0, 1, 2, seen in table with attempt at prob.
Prob	42/90	42/90	6/90		
P(0) = 8/10			v 9/0 v 7/9	M1	3-factor prob seen with different denoms.
$P(1W) = P(V \times 3)$ $= 42$		$) \times 3 = 2/10$	× 8/9 × 1/8	M1	Mult by 3
$P(2W) = P(V \times 3)$	Lawrence Control	\times 3 = 2/10	× 1/9 × 8/8	A1 4	All correct
= 6/9	00				

(i)	P(0) = 6/36, P(1) = 10/36, P(2) = 8/36	B1		Table oe seen with 0, 1, 2, 3, 4, 5 (6 if P(6) = 0)
	P(3) = 6/36, P(4) = 4/36, P(5) = 2/36	B1 M1 A1	[4]	Any three probs correct $\Sigma p = 1$ and at least 3 outcomes All probs correct
(ii)	mean score = $(0 \times 6 + 1 \times 10 + 16 + 18 + 16 + 10)/36$	M1		Using Σxp (unsimplified) on its own – condone
	= 70/36 (35/18, 1.94)	A1	[2]	$\sum p \text{ not} = 1$

(i)	$ \begin{array}{c c} x \\ \hline P(x) \\ 10k = 1 \end{array} $	1 k	2 2k	3 3k	4 4k	B1 M1	Probability Distribution Table, either k or correct numerical values Summing probs involving k to = 1, 3 or 4 terms
(ii)	k = 1/10 $E(X) = 1$ $Var(X) = 1$	/10 + 4/10	0 + 9/10 + /10 + 27/	+ 16/10 = 1 10 + 64/10	$\frac{3}{0-3^2}$	A1 [3] B1 M1 A1 [3]	Correct mean Correct method seen for var, their k and μ

	$[P(X=0)] = P(B, B) = 5/7 \times 4/6 = 10/21$	M1	Attempt to find P(0) or P(1) or P(2) can be seen as P(BB) etc. or table unsimplified
	$[P(X=1)] = P(G,B) + P(B,G) = 2/7 \times 5/6 \times 2$ = 10/21	A1	P(1) or P(BG)+P(GB) correct
	$[P(X=2)] = P(G, G) = 2/7 \times 1/6 = 1/21$	A1	P(0) or $P(2)$ correct must see X value
	E(X) = 0 + 10/21 + 2/21 = 4/7 (0.571)	B1√	Correct answer ft their probs P(1) and P(2)
	$Var(X) = 0 + 10/21 + 4/21 - (4/7)^{2}$ = 50/147 (0.340)	M1 A1 [6]	Attempt at $\Sigma x^2 p - [E(X)]^2$
Questi	on 15		

(i)	$P(1 \text{ T-shirt}) = \frac{{}^{3}C_{1} \times {}^{9}C_{2}}{{}^{12}C_{3}}$								Correct num unsimplified Correct denom unsimplified	
	= 27/55 AG							[3]	Answer given, so process needs to be convincing	
	OR $3/12 \times 9/11 \times 8/10 \times {}^{3}C_{1}$ oe = $27/55$ AG								Mult 3 probs diff denoms (not a/3 x b/4 x c/5) Mult by 3C_1 oe Answer given, so process needs to be convincing	
(ii)	X	X 0 1 2				B1			0, 1, 2, 3 only seen in top line (condone additional values if Prob stated as 0)	
	Prob	84/220	27/55	27/220	1/220				additional values if F100 stated as 0)	
								[4]	One correct prob, correctly placed in table One other correct prob, correctly placed in table One other correct prob ft $\Sigma p = 1$, 4 values in table	

diff	0	1	2	3	4	5	B 1		0, 1, 2, 3, 4, 5 seen in table
prob	6/36	10/36	8/36	6/36	4/36	2/36			heading or considering all different differences
					•	M1		Attempt at finding prob of any difference	
							A1		1 correct prob
Expect	ation =	(0+10+	16+18	+16+10))/36		M1		Probs summing to 1
-	=	70/36							
	=	= 1.94					A1	[5]	

Question 17

3(i)	$k(-2)^2$ is	s the sam	ne as k (2)	$)^2 = 4k$			B1	need to see $-2^2 k$, $2^2 k$ and $4k$, algebraically correct expressions OE
						Total:	1	
(ii)	x	-2	-1	2	4		B1	-2, -1 , 2 , 4 only seen in a table, together with at least one attempted probability involving k
	Prob	4 <i>k</i>	k	4 <i>k</i>	16k			
	4k+k+	4k + 16k	k = 1				M1	Summing 4 probs equating to 1. Must all be positive (table not required)
	k = 1/25	(0.04)					A1	cwo
						Total:	3	
(iii)	E(X) = -	-8k + -k	+ 8k + 64	4 <i>k</i> = 63 <i>k</i>			M1	using Σpx unsimplified. FT their k substituted before this stage, no inappropriate dividing
	= 63/25	(2.52)					A1	
						Total:	2	/ / /

x	-3	0	5	32	B1	At least 3 different correct values of X (can be unsimplified)
Prob	1/6	1/2	1/6	1/6	B1	Four correct probabilities in a Probability Distribution table
					B1	Correct probs with correct values of X
					3	
E(X) = -	-3/6 + 5/6	+ 32/6 = 3	34/6 = 17/3	(5.67)	M1	Subst their attempts at scores in correct formula as long as 'probs' sum to 1
Var(X)	= 9/6 + 25	6/6 + 1024	$6 - (34/6)^2$:	M1	Subst their attempts at scores in correct var formula
$=144\left(\frac{1298}{9}\right)$						Both answers correct
					3	

(i)	EITHER: $P(X=3) = P(RRB) = \frac{2}{6} \times \frac{1}{5} \times \frac{4}{4}$	(M1	probabilities in order $\frac{2}{p} \times \frac{1}{q} \times \frac{4}{r}$, $p, q, r \leqslant 6$ and $p \geqslant q \geqslant r, r \geqslant 4$, accept \times 1 as $\frac{4}{r}$.
	$=\frac{1}{15}$ AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
	OR1: $P(X=3) = P(RRB) = \frac{{}^{2}C_{2}}{{}^{6}C_{2}} \times \frac{{}^{4}C_{1}}{{}^{4}C_{1}}$	(M1	probabilities stated clearly, \times $\frac{^4C_1}{^4C_1}$ or \times 1 or \times $\frac{4}{4}$ included
	$=\frac{1}{15}$ AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
	OR2: $P(X=3) = P(RRB) = \frac{{}^{2}C_{1}}{{}^{6}C_{1}} \times \frac{{}^{1}C_{1}}{{}^{5}C_{1}} \times \frac{{}^{4}C_{1}}{{}^{4}C_{1}}$	(M1	probabilities in order $\frac{^2C_1}{^pC_1} \times \frac{^1C_1}{^qC_1} \times \frac{^4C_1}{^rC_1} p$, q , $r \le 6$ and $p \ge q \ge r$, $r \ge 4$ $(\times \frac{^4C_1}{^4C_1} \text{ or } \times 1 \text{ or } \times \frac{4}{4} \text{ acceptable})$
	= 1/15 AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
(ii)	$P(1) = P(B) = \frac{4}{6} \left(\frac{2}{3} = 0.667 \right)$	2 B1	Probability distribution table drawn with at least 2 correct x values and at least 1 probability. All probabilities $0 \le p < 1$.
	$P(2) = P(RB) = \frac{2}{6} \times \frac{4}{5} = \frac{4}{15} (= 0.267)$	B1	P(1) or P(2) correct unsimplified, or better, and identified.
	$P(3) = P(RRB) = \frac{2}{6} \times \frac{1}{5} \times \frac{4}{4} = \frac{1}{15} (= 0.0667)$	B1	All probabilities in table, evaluated correctly OE. Additional <i>x</i> values must have a stated probability of 0
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	12	3	

Question 20

p + q = 0.45	M1	Equation involving $\Sigma P(x) = 1$
0.15 + 2p + 1.2 + 6q = 3.05	M1	Equation using $E(X) = 3.05$
q = 0.2	M1	Solving simultaneous equations to one variable
p = 0.25	A1	Both answers correct
	4	

(i)	$\Sigma p = 1$: 0.2 + 0.1 + p + 0.1 + q = 1: p + q = 0.6	M1	Unsimplified sum of probabilities equated to 1
	$\Sigma px = 1.7$: $-0.4 + 0 + p + 0.3 + 4q = 1.7$:	M1	Unsimplified Sum of px equated to 1.7
	p + 4q = 1.8	M1	Solve simult. equations to find expression in p or q
	p = 0.2, q = 0.4	A1	
		4	
(ii)	$Var(X) = \sum px^2 - 1.7^2 = 4x0.2 + 1p + 9x0.1 + 16q - 1.7^2$ = 8.3 - 2.89	M1	Use correct unsimplified expression for variance
	= 5.41	A1	
		2	

5(i)	. ,	< 0.25 × 0.5 = < 0.25 × 0.5 +		× 0.5 + 0.6 ×	0.25 × 0.5 =	B1	0, 1, 2, 3 seen as top line of a pdf table OR attempting to evaluate P(0), P(1), P(2) and P(3)		
	0.425	$< 0.75 \times 0.5 + $ $< 0.75 \times 0.5 = $		× 0.5 + 0.6 ×	$0.75 \times 0.5 =$	M1	Multiply 3 probabilities together from 0.4 or 0.6, 0.25 or 0.75, 0.5 with or without a table		
	No of heads	0	1	2	3	M1	Summing 3 probabilities for P(1) or P(2) with or without a table		
	Prob	0.075	0.35	0.425	$ \begin{pmatrix} 0.425 & 0.15 \\ \left(\frac{17}{40}\right) & \left(\frac{3}{20}\right) \end{pmatrix} $	B1	One correct probability seen.		
		$\left(\frac{3}{40}\right)$	$\left(\frac{7}{20}\right)$	$\left(\frac{17}{40}\right)$		A1	All correct in a table		
					Total:	5			
(ii)	E(X) = 0.35	$E(X) = 0.35 + 2 \times 0.425 + 3 \times 0.15 = 1.65 \left(\frac{33}{20} \text{ oe}\right)$					Correct unsimplified expression for the mean using their table, $\sum p = 1$; can be implied by correct answer		
(ii)	Var(X) = 0.	$35 + 4 \times 0.42$	$25 + 9 \times 0.15$	$5 - 1.65^2$	P	M1	Correct unsimplified expression for the variance using their table and their mean 2 subtracted, $\sum \! p = 1$		
	$= 0.678 (0.6775) \left(\frac{271}{400} \text{ oe}\right)$						Correct answer		
			7		Total:	3			
Ques	stion 23								
l(i)		X	0	1	2	B1	Prob distribution table drawn, top row correct with at least one probability		

l(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	Prob distribution table drawn, top row correct with at least one probability $0 entered, condone additional values with p=0 stated$
	$P(0) = \frac{5}{7} \times \frac{4}{6} \times \frac{3}{5} = \frac{2}{7} (0.2857)$	B1	One probability correct (need not be in table)
	$P(1) = \frac{2}{7} \times \frac{5}{6} \times \frac{4}{5} \times {}^{3}C_{1} = \frac{4}{7} (0.5713)$	B1	Another probability correct (need not be in table).
	$P(2) = \frac{2}{7} \times \frac{1}{6} \times \frac{5}{5} \times {}^{3}C_{2} = \frac{1}{7} (0.1429)$	B1	Values in table, all probs correct (to 3SF) or 3 probabilities summing to 1
		4	
(ii)	$Var(X) = 1 \times \frac{4}{7} + 4 \times \frac{1}{7} - (\frac{6}{7})^2$ $= \frac{8}{7} - (\frac{6}{7})^2$	M1	Unsimplified correct numerical expression for variance or <i>their</i> probabilities from (i) $0 in unsimplified variance expression$
	$=\frac{20}{49}$ or 0.408	A1	Correct answer (0.40816) nfww Final answer does not imply the method mark
		2	

(i)	$P(RB) + P(BR) = \frac{4}{12} \times \frac{8}{11} + \frac{8}{12} \times \frac{4}{11}$ oe	M1	Multiply 2 probs together and summing two 2-factor probs, unsimplified, condone replacement
	P(diff colours) = $\frac{64}{132} \left(\frac{16}{33}\right) (0.485)$ oe	A1	Correct answer
	Method 2 $1 - P(BB) - P(RR) = 1 - \frac{4}{12} \times \frac{3}{11} - \frac{8}{12} \times \frac{7}{11}$	M1	Multiply 2 probs together and subtracting two 2-factor probs from 1, unsimplified, condone replacement
	$P(\text{diff colours}) = \frac{64}{132} \left(\frac{16}{33}\right) \text{ oe}$	A1	Correct answer
	Method 3 $P(\text{diff colours}) = \frac{\binom{4}{C_1} \times \binom{8}{C_1}}{\binom{12}{C_2}}$	M1	Multiply 2 combs together and dividing by a combination
	$=\frac{16}{33}$	A1	Correct answer
	6	2	
(ii)	Number of red socks012Prob $\frac{14}{33}$ $\frac{16}{33}$ $\frac{3}{33}$	В1	Prob distribution table drawn, top row correct, condone additional values with $p=0$ stated
		B1	P(0) or P(2) correct to 3sf (need not be in table)
		B1	All probs correct to 3sf, condone P(0) and P(2) swapped if correct
		3	
(iii)	$E(X) = 1 \times \frac{16}{33} + 2 \times \frac{3}{33} = \frac{16}{33} + \frac{6}{33} = \frac{22}{33} (\frac{2}{3})$	B1ft	ft their table if $0, 1, 2$ only, 0
	3	1	1.5

(i)	x	B1	-2, -1, 0, 1, 2, 3 seen as top line of a pdf table OR attempting to evaluate P(-2), P(-1), P(0), P(1), P(2), P(3),
	$P(X=x) \qquad \frac{2}{18} \frac{4}{18} \qquad \frac{5}{18} \frac{4}{18} \frac{2}{18} \frac{1}{18}$		
		B1	At least 4 probs correct (need not be in table)
		B1	All probs correct in a table
		3	
(ii)	$E(X) = \frac{-4 - 4 + 0 + 4 + 4 + 3}{18} = \frac{1}{6}$	M1	Correct unsimplified expression for the mean using their table, $\Sigma p=1, may be implied$
	$Var(X) = \frac{8+4+0+4+8+9}{18} - \left(\frac{1}{6}\right)^2$ =11/6-1/36 (1.8333 - 0.02778)	M1	Correct, unsimplified expression for the variance using their table, and their mean subtracted. Allow $\Sigma p \neq 1$
	= 65/36, (1.81)	Al	Correct answer
		3	

(i)		x	-2	-1	0	1	2	3	B1	-2, -1, 0, 1, 2, 3 seen as top line of a pdf table with at least 1 probability OR attempting to evaluate P(-2), P(-1), P(0), P(1), P(2),
		р	1/12	2 12	3 12	3 12	2 12	1/12		P(3) (condone additional values with p =0 stated)
									B1	At least 4 probs correct (need not be in table)
									B1	All probs correct in a table
									3	
(ii)	E(X)	$=\frac{-2\times 2}{2}$	1-1×2+	12	+2×2+	$\frac{1\times3}{}=0$	0.5		M1	Unsimplified expression for mean using <i>their</i> pdf table (or correct) with at least 2 non-zero values (may be seen in variance). Numerator terms may be implied by values.
	$Var(X) = \frac{(-2)^2 \times 1 + (-1)^2 \times 2 + 1^2 \times 3 + 2^2 \times 2 + 3^2 \times 1}{12} - (their 0.5)^2$									Unsimplified expression for variance using <i>their</i> pdf table (or correct) with at least 2 non-zero values and <i>their</i> E(X). Numerator terms may be implied by values. If $-k^2$ is seen for $(-k)^2$, the method must be confirmed by seeing value used correctly
	26/1	2 -1/4 =	23/12						A1	Correct final answer
					5				3	

Ques	cion 27		
(i)	6p + 0.1 = 1 p = 0.15	B1	Correct answer
		1	_\\\
(ii)	$Var(X) = 1 \times p + 1 \times 2p + 4 \times 2p + 16 \times 0.1 - 1.15^{2}$	M1	Correct unsimplified formula, their p substituted (allow 1 error)
	$0.15 + 0 + 0.3 + 1.2 + 1.6 - 1.15^{2}$ = 1.9275 = 1.93 (3sf)	A1	Correct answer
		2	

	1					1	I	
(i)	x	-1	1	2	3	B1	Probability distribution table with correct values of <i>x</i> , no additional values unless with probability 0 stated, at least one correct	
	p	k	k	4 <i>k</i>	9 <i>k</i>		probability including k	
	15k = 1,					M1	Equating $\Sigma p = 1$, may be implied by answer	
	$k = \frac{1}{15}$					A1	If 0 scored, SCB2 for probability distribution table with correct numerical probabilities.	
						3		
(ii)	Method 1							
	E(X) = 8k + 2	$27k = 35k = \frac{35}{15}$	$\frac{5}{5} = \frac{7}{3}$			B1FT	FT if 0< their k<1	
	$Var(X) = (k - 1)^{-1}$	$x(X) = (k + k + 16k + 81k) - (35k)^2$		$\operatorname{ar}(X) = (k+k+16k+81k) - (35k)^2$		M1	Correct formula for variance, in terms of k at least – must have '– mean ² '(ft).	
	$=1.16, \frac{52}{45}$			T	PR	A1		
	Method 2		9					
	$E(X) = \frac{8}{15} + \frac{1}{2}$	$(X) = \frac{8}{15} + \frac{27}{15} = \frac{35}{15} = \frac{7}{3}$		B1FT	FT if 0< their k<1			
	$Var(X) = \frac{1}{15}$	$\operatorname{ar}(X) = \frac{1}{15} + \frac{1}{15} + \frac{16}{15} + \frac{81}{15} - \left(\frac{7}{3}\right)^2$		$far(X) = \frac{1}{15} + \frac{1}{15} + \frac{16}{15} + \frac{81}{15} - \left(\frac{7}{3}\right)^2$		M1	Subst their values in correct var formula – must have '– mean²'(ft) (condone probs not summing to exactly 1)	
	= 1.16 (= 52/	(45)				A1	Using their values from (i)	
						3		

(a)									
(a)	-1	0	0	1					
	0	1	1	2					
	2	3	3	4					
	x		-1	0	1	2	3	4	
			-1					4	
	Probab	oility	$\frac{1}{12}$	$\frac{3}{12}$	$\frac{3}{12}$	$\frac{2}{12}$	$\frac{2}{12}$	$\frac{1}{12}$	
	Probabi.	lity dist	ribution t	able with	correct so	ores with a	t least one	probability	
	At least	4 proba	abilities co	orrect					
	All prob	abilitie	s correct						
	$E(X) = \frac{-1+0+3+4+6+4}{12} = \frac{16}{12} = \frac{4}{3}$								
					3				
	Var(X)	$=\frac{1+0}{}$	+3+8+1 12	$\frac{8+16}{}$ -	$\left(\frac{4}{3}\right)^2$				
	$\frac{37}{18} (= 2)$.06)							

	1						,	ı			
(a)		1	1	2	2	3		M1			
	1	1	1	2	2	3					
	2	2	2	2	2	3					
	3	3	3	3	3	3					
	$\frac{7}{15}$ AG										
								2			
(b)	x		1	2		3		B1			
	Probab	ility	2 15	<u>6</u> 15		7/15					
	P(1) or P(2) correct										
	3 rd probability correct, FT sum to 1										
								3			
(c)	$E(X) = \frac{2+12+21}{15} = \frac{35}{15} = \frac{7}{3}$										
	$Var(X) = \frac{1^2 \times 2 + 2^2 \times 6 + 3^2 \times 7}{15} - \left(\frac{7}{3}\right)^2$										
	$\frac{22}{45}(0.489)$										
								3			

x	0	1	221	0139						
Probability	1	15 56	30	10						
	56	56	56	56						
(B1 for probability distribution table with correct outcome values)										
$P(0) = \frac{3}{8} \times \frac{2}{7} \times \frac{1}{6} = \frac{1}{56}$										
$P(1) = \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} \times 3 = \frac{15}{56}$										
$P(2) = \frac{5}{8} \times \frac{4}{7} \times \frac{4}{7}$										
$P(3) = \frac{5}{8} \times \frac{4}{7} \times \frac{4}{7}$										
(M1 for denon	ninator 8×7×6	5)								
Any one proba	bility correct	(with correct o	utcome)							
All probabilitie	es correct									

(a)	Scenarios:						M1	One 3 factor probability with 3, 3, 5 as denominators
	HHT: $\frac{2}{3}$ HTH: $\frac{2}{3}$ THH: $\frac{1}{3}$	$\frac{2}{3} \times \frac{2}{3} \times \frac{1}{5}$ $\frac{2}{3} \times \frac{1}{3} \times \frac{4}{5}$ $\frac{2}{3} \times \frac{4}{5} \times \frac{2}{3} \times \frac{4}{5}$	$=\frac{8}{45}$				M1	3 factor probabilities for 2 or 3 correct scenarios added, no incorrect scenarios
	$Total = \frac{20}{43}$	$\frac{0}{5} = \frac{4}{9}$					A1	AG, Total of 3 products with clear context
							3	
(b)	x	0	1	2	3		B1	Probability distribution table with correct outcomes with at least one probability, allow extra outcome values if probability of zero stated'
	Prob.	$\frac{1}{45}$	$\frac{8}{45}$	$\frac{20}{45}$	$\frac{16}{45}$		B1	2 of P(0), P(1) and P(3) correct
			16				B1 FT	3 or 4 probabilities sum to 1 with P(2) correct
							3	
(c)	$Var(X) = \frac{8}{45} + \frac{80}{45}$			$(20+3^2\times$	$\frac{16}{15} - \left(\frac{32}{15}\right)^2$	2	M1	Substitute <i>their</i> attempts at scores in correct variance formula, must have '- mean ² ' (FT if calculated) (condone probs not summing to 1); must be at least 2 non-zero values
	$\frac{136}{225}$ or 0.	604					A1	
							2	

(a)	P(1 red)	$0 = \frac{5}{8} \times \frac{3}{7} \times$	$\frac{2}{6}$ ×3				M1	$\begin{vmatrix} \frac{a}{8} \times \frac{b}{7} \times \frac{c}{6} \times k \text{ or } \frac{5}{d} \times \frac{3}{e} \times \frac{2}{f} \times 3, 1 \leqslant a, b, c \leqslant 5, d, e, f \leqslant 8, a, b, c, \\ d, e, f, k \text{ all integers.} 1 < k \leqslant 3, \end{vmatrix}$		
	15 56						A1	AG, WWW		
	Alterna	Alternative method for question 2(a)								
	⁵ C ₁ × ³ / ₈ C ₃	C ₂					M1	M1 $\frac{{}^{a}C_{1} \times {}^{b}C_{2}}{{}^{8}C_{3}} \text{ or } \frac{{}^{5}C_{d} \times {}^{3}C_{e}}{{}^{8}C_{3}} \text{ or } \frac{{}^{5}C_{d} \times {}^{3}C_{e} \left(or {}^{a}C_{1} \times {}^{b}C_{2}\right)}{{}^{5}C_{3} \times {}^{3}C_{0} + {}^{5}C_{2} \times {}^{3}C_{1} + {}^{5}C_{1} \times {}^{3}C_{2} + {}^{5}C_{0} \times {}^{3}C_{3}},$ $a + b = 8, d + e = 3$		
	15 56						A1	AG, WWW, $\frac{15}{56}$ must be seen		
							2			
(b)	x Prob.	0	1 15	2	3		B1	Probability distribution table with correct outcomes with at least one probability less than 1, allow extra outcome values if probability of zero stated.		
		56	56	$\frac{56}{56} = \frac{10}{28}$	$\frac{10}{56} = \frac{5}{28}$		B1	2 of P(0), P(2) and P(3) correct		
		0.0179	0.268	0.536	0.179		B1 FT	4 th probability correct or FT sum of 3 or more probabilities = 1, with P(1) correct		
							3			

(c)	$Var(X) = \frac{(0^2 \times 1) + 1^2 \times 15 + 2^2 \times 30 + 3^2 \times 10}{56} - \left(\frac{15}{8}\right)^2$ $= \frac{15}{56} + \frac{120}{56} + \frac{90}{56} - \left(\frac{15}{8}\right)^2$	M1	Substitute <i>their</i> attempts at scores in correct variance formula, must have '- mean²' (FT if mean calculated) (condone probabilities not summing to 1 for this mark)
	$\frac{225}{448}$, 0·502	A1	
		2	

(a)	у	1	2	3	4		B1		1	2	3	4		
	prob	7	$\frac{5}{16}$	3	1			1	1	1	2	3		
		16	16	16	16	PR		2	1	2	1	2		
								3	2	1	3	1		
								4	3	2	1	4		
									obabil				ith correct scores with at least re values if probability of zero	
							B1	One p	robabil	lity (lir	ıked w	ith co	rrect score) correct	
							B1	2 more	e probs	(linke	ed with	corre	ect scores) correct	
							B1 FT	4 th pro	b corre	ect, FT	sum c	of 3 or	4 terms = 1	
							4							
(b)	P(2 even)	$=\frac{\frac{5}{16}}{\frac{6}{16}}$	Z	4			M1	100	their P(2)	P(2) + their	P(4)	seen o	or correct outcome space.	
	$\frac{5}{6}$ or 0.83	3			Sa	tpref	A1							
							2							

(a)	$0.6 \times 0.7 + 0.4(1 - x) = 0.58$ = 0.42 + 0.4(1 - x) = 0.58	M1	Equation of form $0.6 \times a + 0.4 \times b = 0.58$; a = 0.3, 0.7, b = x, (1 - x)						
		B1	Single correct product seen, condone 0·42, in an equation of appropriate form						
	x = 0.6	A1							
	Alternative method for question 2(a)								
	$0.6 \times 0.3 + 0.4x = 0.42 = 0.18 + 0.4x = 0.42$	M1	Equation of form $0.6 \times a + 0.4 \times b = 0.42$; a = 0.3, 0.7, b = x, (1 - x)						
		B1	Single correct product seen, condone 0·18, in an equation of appropriate form						
	x = 0.6	A1							
		3							
(b)	$(0.6 \times 0.3)^2$	M1	$(a \times b)^2$, $a = 0.6$, 0.4 and $b = 0.7$, 0.3 , x , $(1-x)$ or 0.18^2 , alone.						
	0.0324	A1							
	10	2							

l(a)	x 1 2 3 4 prob 4k 6k 6k 4k	B1	Table with \times values and one correct probability expressed in terms of k . Condone any additional \times values if probability stated as 0.
		B1	Remaining 3 probabilities correct expressed in terms of k – condone if the first correct probability is not in table.
		2	
(b)	$[4k + 6k + 6k + 4k = 1] k = \frac{1}{20} (= 0.05)$	B1	Correct value for k SOI. May be calculated in 4(a). SC B1 If denominator 20k used throughout.
	$E(X) = 1 \times \frac{4}{20} + 2 \times \frac{6}{20} + 3 \times \frac{6}{20} + 4 \times \frac{4}{20} = \frac{4}{20} + \frac{12}{20} + \frac{18}{20} + \frac{16}{20}$ (= 2.5)	Mı	Accept unsimplified expression. Condone $4k + 12k + 18k + 16k$. May be implied by use in Variance expression. Special ruling: Allow use of denominator $20k$.
	$Var(X) = 1^{2} \times \frac{4}{20} + 2^{2} \times \frac{6}{20} + 3^{2} \times \frac{6}{20} + 4^{2} \times \frac{4}{20} - \left(their 2\frac{1}{2}\right)^{2}$ $= (4 + 24 + 54 + 64) \times their 0.05 - \left(their 2.5\right)^{2}$ Or $(1 - 2.5)^{2} \times \frac{4}{20} + (2 - 2.5)^{2} \times \frac{6}{20} + (3 - 2.5)^{2} \times \frac{6}{20} + (4 - 2.5)^{2} \times \frac{4}{20}$	M1	Appropriate variance formula with <i>their</i> numerical probabilities using <i>their</i> $(E(X))^2$, accept unsimplified, with <i>their k</i> substituted. Special ruling: If denominator $20k$ used throughout, accept appropriate variance formula in terms of k .
	1.05	A1	AG, NFWW.
		4	

p + p + 0.1 + q + q = 1	B1	Sum of probabilities = 1
0.1 + 2q = 3(2p)	B1	Use given information
Attempt to solve two correct equations in p and q	M1	Either use of Substitution method to form a single equation in either p or q and finding values for both unknowns. Or use of Elimination method by writing both equations in same form (usually $ap + bq = c$) and $+$ or $-$ to find an equation in one unknown and finding values for both unknowns.
$p = \frac{1}{8}$ or 0.125 and $q = \frac{13}{40}$ or 0.325	A1	CAO, both WWW
	4	

(a)	X	-1	0	1	2	3	B1	Table with correct <i>X</i> values and at least one probability Condone any additional <i>X</i> values if probability stated as 0.
	P(X)	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{9}$	$\frac{3}{9}$	$\frac{2}{9}$	В1	2 correct probabilities linked with correct outcomes, may not be in table.
							В1	3 further correct probabilities linked with correct outcomes, may not be in table. SC if less than 2 correct probabilities seen, award SCB1 for sum of <i>their</i> 4 or 5 probabilities in table = 1
							3	
(b)	$\frac{\left[E(X):\right.}{\frac{-1+1+}{9}}$		0×2)+1×1 9	+ 2×3+3×	=		M1	May be implied by use in variance, accept unsimplified expression. FT <i>their</i> table if <i>their</i> 3 or more probabilities sum to 1 or 0.999
	1+0+1	$+(0^2\times2)$	$+1^{2} \times 1 + 2^{2} \times 9$ $-(their E(X))$		-(their E(X		M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table even if <i>their</i> 3 or more probabilities not summing to 1.
	E(X) =	$\frac{4}{3}$ or 1.33	and $Var(X$	$=\frac{16}{9}$ or 1.	78		Al	Answers for $E(X)$ and $Var(X)$ must be identified
							3	N.B. If method FT for M marks from <i>their</i> incorrect (b) , expressions for $E(X)$ and $Var(X)$ must be seen unsimplified with all probabilities <1

(a)	$P(X=3) = \frac{4}{7} \times \frac{3}{6} \times \frac{3}{5}$	M1	$\frac{m}{7} \times \frac{n}{6} \times \frac{o}{5}$ used throughout. condone use of $\frac{1}{2}$
	$\frac{6}{35}$	Al	AG. The fractions must be identified, e.g. P(NC, NC, C), may be seen in a tree diagram.
		2	

(b)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	В1	Table with <i>x</i> values and at least one probability Condone any additional <i>x</i> values if probability stated as 0.
	p 35 35 35 35 35	B1	One correct probability other than $X = 3$ linked to the correct outcome
		B1	Two further correct probabilities other than $X = 3$ seen linked to the correct outcome
		B1FT	All probabilities correct, or at least 4 probabilities summing to 1
		4	
'(c)	$[E(X) = 1 \times \frac{15}{35} + 2 \times \frac{10}{35} + 3 \times \frac{6}{35} + 4 \times \frac{3}{35} + 5 \times \frac{1}{35}]$ $E(X) = \frac{15 + 20 + 18 + 12 + 5}{35} \left[= \frac{70}{35} = 2 \right]$	M1	At least 4 correct terms FT their values in (a) with probabilities summing to 1 May be implied by use in Variance, accept unsimplified expression.
	$\operatorname{Var}(X) = \left[\frac{1^2 \times 15 + 2^2 \times 10 + 3^2 \times 6 + 4^2 \times 3 + 5^2 \times 1}{35} - 2^2 = \right]$ $\frac{15 + 40 + 54 + 48 + 25}{35} - 2^2$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$. FT <i>their</i> table accept probabilities not summing to 1.
	$\[= \frac{182}{35} - 4 \] = \frac{6}{5}$	A1	N.B. If method FT for M marks from <i>their</i> incorrect (b), expressions for $E(X)$ and $Var(X)$ must be seen unsimplified with all probabilities <1
		3	

(a)	p+q+0.65=1	B1	Sum of probabilities = 1.
	p+2q+0.15=0.55	B1	Use given information.
	Solve 2 linear equations	M1	Either a single expression with one variable eliminated formed or two expressions with both variables on the same side seen with at least one variable value stated.
	$p = 0.3, \frac{3}{10}, q = 0.05, \frac{1}{20}$	A1	CAO, both WWW If M0 with correct answers SC B1.
		4	
(b)	$Var(X) = their 0.3 + 4 \times their 0.05 + 9 \times 0.05 - 0.55^{2}$	M1	Appropriate variance formula including $(E(X))^2$, accept unsimplified.
	$0.6475 \left[\frac{259}{400} \right]$	A1	CAO (must be exact).
		2	
(c)	$1 - P(0, 1, 2) = 1 - ({}^{12}C_0 \ 0.3^0 \ 0.7^{12} + {}^{12}C_1 \ 0.3^1 \ 0.7^{11} + {}^{12}C_2 \ 0.3^2 \ 0.7^{10})$	M1	One correct term: ${}^{12}C_x p^x (1-p)^{12-x}$ for $0 < x < 12$, $0 .$
	1 - (0.01384 + 0.07118 + 0.16779)	A1FT	Correct unsimplified expression, or better in final answer. Unsimplified expression must be seen to FT <i>their p</i> from $6(a)$ or correct.
	0.747	A1	
		3	
(d)	$(0.95)^8 \times 0.05 = 0.0332 \text{ or } 0.95^8 - 0.95^9 = 0.0332$	B1	Evaluated.
		1	

(a)	For one yellow: YGG + GYG +GGY $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times 3 \times $	М1	$\frac{a}{9} \times \frac{b}{8} \times \frac{c}{7}$, $0 < a, b, c$ integers ≤ 5 , for one arrangement.
	9 8 7	М1	Their three-factor probability \times 3, 3C_1 , 3C_2 or 3P_1 , (or repeated adding) no additional terms.
	$\left[\frac{180}{504} = \frac{5}{14}\right]$	A1	AG. Convincingly shown, including identifying possible scenarios, may be on tree diagram WWW.
		3	
(b)	X	B1	Table with correct X values and one correct probability inserted appropriately. Condone any additional X values if probability stated as 0.
	504 504 504 504	B1	Second identified correct probability, may not be in table.
	$\begin{bmatrix} = \frac{1}{21}, \\ 0.0476 \end{bmatrix} \begin{bmatrix} = \frac{5}{14}, \\ 0.357 \end{bmatrix} \begin{bmatrix} = \frac{10}{21}, \\ 0.476 \end{bmatrix} \begin{bmatrix} = \frac{5}{42}, \\ 0.119 \end{bmatrix}$	B1	All probabilities identified and correct . SC if less than 2 correct probabilities or X value(s) omitted: SC B1 3 or 4 probabilities summing to one.
		3	
(c)	$[E(X) =] \frac{840}{504}, \frac{5}{3}, 1.67$	B1	OE Must be evaluated. SC B1 FT correct unsimplified expression from incorrect 3(b) using at least 3 probabilities, $0 .$
0	12	1	
Que	estion 42		
(-)			n n

(a)	x -1	0	1	2	3	B1		0	1	2	2	1
	$\frac{p}{12} = 0.0833$	$\frac{2}{12} = 0.167$	$\frac{4}{12} = 0.333$	$\frac{3}{12} = 0.25$	$\frac{2}{12} = 0.167$		-1	-1	0	1	1	
							0	0	1	2	2	
							1	1	2	3	3	
							substit	tuted, 0	$$			robability obability stated as 0.
						B1	2 corr	ect iden	tified p	robabili	ties.	
						B1	All pr	obabilit	ies corr	ect (acc	ept to 3st	f).
			3								abilities: unming t	
						3	.0					
(b)	$E(X) = -\frac{1}{12} + \frac{4}{12} + \frac$	$+\frac{6}{12} + \frac{6}{12} \left[= \frac{15}{12} \right]$		96	itpre	M1	expres	ssion.		se in Va m to 1 ±		ccept unsimplified
	$Var(X) = \frac{1}{12} + 0 + \frac{1}{12} + \frac{1}{12$	$-\frac{4}{12} + \frac{12}{12} + \frac{18}{12} - \frac{1}{12} + \frac{1}{12} - \frac{1}{12} + \frac{1}{12} - \frac{1}{12} - \frac{1}{12} + \frac{1}{12} - \frac{1}{1$	$-\left(\frac{15}{12}\right)^2$			M1	accept	probab	ilities r	ot sum	ning to 1	their $(E(X))^2$. FT In correct table.
	$\boxed{\left[\frac{35}{12} - \frac{25}{16} = \right] \frac{65}{48}, 1}$	1.35				A1	www	V				
						3						

(a)	X	-2	-1	0	1	2	B1	Table with correct X values and at least one probability $0 . Condone any additional X values if probability$
	P(X)	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{5}{16}$	$\frac{5}{16}$	$\frac{2}{16}$		stated as 0. No repeated X values.
		0.0625	0.1875	0.3125	0.3125	0.125	B1	3 correct probabilities linked with correct outcomes, may not be in table.
		0.0023	0.1673	0.3123	0.3123	0.123	В1	2 further correct probabilities linked with correct outcomes, may not be in table No repeated X values. SC if less than 3 correct probabilities seen, award SCB1 Sum of <i>their</i> probabilities, $0 , of 4,5 or 6 X values = 1 (condone summing to 1±0·01 or better).$
							3	
(b)	L		$0 + 5 \times 1 + 2$	$\times 0^2$ $+ \frac{5}{16}$ $\times 2 \times 4 - 0.25$		$\langle 2^2 - \left(\frac{1}{4}\right)$	M1	Appropriate variance formula using $(E(X))^2$ value, accept unsimplified. FT <i>their</i> table with at least 3 different X values even if probabilities not summing to $1, 0 . Condone 1 error providing all probabilities < 1 and 0.25^2 used$
	$\left[= \frac{5}{4} - \frac{1}{4} \right]$	$\frac{1}{16} = \left] \frac{19}{16},$	1.1875				A1	Condone 1.188 or 1.19 WWW
							2	

(a)	$k = \frac{1}{18} (4k)$	+ k +4k +9k	=18k=1)			B1	SOI
	<i>x</i> P(<i>X</i> = <i>x</i>)	-2 4 18	1 18	2 4 18	3 9 18	M1	Table with correct x values and at least one probability accurate using <i>their</i> k . Values need not be in order, lines may not be drawn, may be vertical, x and $P(X=x)$ may be omitted. Condone any additional X values if probability stated as 0 .
						A1	Remaining probabilities correct.
						3	
(b)	$\begin{bmatrix} E(X) = \frac{4 \times 1}{18} \\ \frac{-8 + 1 + 8 + 2}{18} \end{bmatrix}$		$\times 2 + 9 \times 3 = $			M1	-8k + k + 8k + 27k May be implied by use in Variance. Accept unsimplified expression. FT <i>their</i> table if probabilities sum to 1 or 0.999. SC B1 28k.
	$Var(X) = \frac{4}{18}$ $= \frac{16+1+16}{18}$	$4 \times (-2)^2 + 1 \times $ $+81 - \left(their\right)$	$\frac{1^2 + 4 \times 2^2 + 9}{18}$ $\frac{28}{18}$	0×3^2 – (their	$\cdot E(X))^2 = $	M1	$16k + k + 16k + 81k - (their \text{mean})^2$ FT their table even if probabilities not summing to 1. Note: If table is correct, $\frac{114}{18} - (their \text{E}(X))^2 \text{M1}$. SC B1 $114k - (their \text{mean})^2$.
	$E(X) = \frac{14}{9}, 1$	$\frac{5}{9}$, 1.56, Var	$r(X) = \frac{317}{81},$	$3\frac{74}{81}$, 3.91		A1	Answers for E(X) and Var(X) must be identified. $3.91 \le \text{Var}(X) \le 3.914$
						3	

(a)	x	2	3	4	5	6	B1	Table with correct X values and at least one probability. Condone any additional X values if probability stated as 0.
	p	$\frac{1}{36}$	$\frac{4}{36}$	$\frac{10}{36}$	$\frac{12}{36}$	$\frac{9}{36}$	B1	3 correct probabilities linked with correct outcomes. Accept 3 sf decimals.
		0.02778	0.1111	0.2778	0.3333	0.25	B1	2 further correct probabilities linked with correct outcomes. Accept 3 sf decimals.
							3	SC B1 for 5 probabilities $(0 that sum to 1 with less than 3 correct probabilities.$

If method FT from *their* incorrect (a), expressions for E(X) and Var(X) must be seen at the stage shown in **bold** (or less simplified) in the scheme with all probabilities < 1.

	$\left[E(X) = \frac{1 \times 2 + 4 \times 3 + 10 \times 4 + 12 \times 5 + 9 \times 6}{36} = \right] \frac{2 + 12 + 40 + 60 + 54}{36}$	M1	Accept unsimplified expression. May be calculated in variance. FT <i>their</i> table with 4 or more probabilities summing to $0.999 \leqslant \text{total} \leqslant 1 \ (0 .$
	$\left[\operatorname{Var}(X) = \frac{1 \times 2^2 + 4 \times 3^2 + 10 \times 4^2 + 12 \times 5^2 + 9 \times 6^2}{36} - \left(their \mathrm{E}(X) \right)^2 = \right]$ $\frac{1 \times 4 + 4 \times 9 + 10 \times 16 + 12 \times 25 + 9 \times 36}{36} - \left(their \frac{14}{3} \right)^2$ $\left[\frac{4 + 36 + 160 + 300 + 324}{36} - \left(their \frac{14}{3} \right)^2 \right]$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table with 3 or more probabilities $(0 which need not sum to 1 and the calculation in bold (or less simplified) seen.$
	$E(X) = \frac{168}{36}, \frac{14}{3}, 4.67$ $Var(X) = \frac{10}{9}, 1\frac{1}{9}, 1.11, \frac{1440}{1296}$	A1	Answers for E(X) and Var(X) must be identified. E(X) may be identified by correct use in Variance. Condone E, V, μ , σ^2 etc. If M0 earned SC B1 for identified correct final answers.
		3	
Que	stion 46		

(a)	$a = P(1 \text{ head}) = 0.7 \times (0.5)^3 + 0.3 \times (0.5)^3 \times 3 = \frac{1}{5}$	В1	Clear statement of unevaluated correct calculation $=\frac{1}{5}$. AG
	$b = 0.7 \times 0.5^{3} \times 3 + 0.3 \times 0.5^{3} \times 3 = \frac{3}{8}$ $c = 0.7 \times 0.5^{3} \times 3 + 0.3 \times 0.5^{3} = \frac{3}{10}$	M1	Clear statement of unevaluated calculation for either b or c
	$c = 0.7 \times 0.5^3 \times 3 + 0.3 \times 0.5^3 = \frac{3}{10}$	A1	For either b or c correct
	$\left[orc = \frac{27}{40} - b \right]$	B1 FT	their b + their $c = \frac{27}{40}$
	4.	4	
(b)	$E(X) = \frac{3 \times 0 + 16 \times 1 + 30 \times 2 + 24 \times 3 + 7 \times 4}{80} = \frac{176}{80} \text{ or } 2.2$	B1 FT	Correct or accept unsimplified calculation using their values for b and c seen (sum of probabilities = 1)
		1	
(c)	$[P(0, 1, 2) =]^{10}C_0 \ 0.2^0 \ 0.8^{10} \ + {}^{10}C_1 \ 0.2^1 \ 0.8^9 \ + {}^{10}C_2 \ 0.2^2 \ 0.8^8$	M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$, for $0 < x < 10, 0 < p < 1$
	0.107374 + 0.268435 + 0.301989	A1	Correct expression, accept unsimplified leading to final answer
	0.678	B1	0.677
	Alternative method for question 4(c)		
	$ \begin{bmatrix} 1 - [^{10}C_{10} \ 0 \cdot 2^{10}0.8^{9} + ^{10}C_{9} \ 0 \cdot 2^{9}0.8^{1} + ^{10}C_{8} \ 0 \cdot 2^{8}0.8^{2} + ^{10}C_{7} \ 0 \cdot 2^{7}0.8^{3} + ^{10}C_{6} \ 0 \cdot 2^{6}0.8^{4} + ^{10}C_{5} \ 0 \cdot 2^{5}0.8^{5} \\ + ^{10}C_{4} \ 0 \cdot 2^{4}0.8^{6} + ^{10}C_{3} \ 0 \cdot 2^{3}0.8^{7}] \end{bmatrix} $	M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$, for $0 < x < 10, 0 < p < 1$
		A1	Correct expression, accept unsimplified
	0.678	B1	0.677
		4	
(d)	$0.8^6 \times 0.2 + 0.8^7 \times 0.2 = 0.0524288 + 0.041943$	M1	$p^{l} \times (1-p) + p^{m} \times (1-p), l = 6, 7$ $m = l + 1, 0$
	0.0944	A1	$0.09437 \le p \le 0.0944$
		2	

(a) Method 1: Scenarios identified

Method 1. Scenarios identified		
[no of ways for score of 2 are] 222, 211, 212, 221, 122, 112, 121 [Total options = 64]	B1 7	7 correct scenarios identified, no incorrect.
[So $P(X=2) =]\frac{7}{4 \times 4 \times 4} = \frac{7}{64}$		$\frac{a}{4 \times 4 \times 4}$, $a = their$ number of correct identified cenarios > 4
	A1 /	Approach identified, WWW.
Method 2: P(2 on all spinners) + P(2 on two spinners and 1 on one	spinner) + P(2 o	on one spinner and 1 on two spinners)
$\left(\frac{1}{4}\right)^{3} + {}^{3}C_{2}\left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}\right) + {}^{3}C_{1}\left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}\right)$	B1 ($\left(\frac{1}{4}\right)^3 + {}^3C_2\left(or {}^3C_1\right)\left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}\right) + d$, $0 \le d \le 1$
	M1 ($\left(\frac{1}{4}\right)^3 + e\left(\frac{1}{4}\right)^3 + f\left(\frac{1}{4}\right)^3 \ 1 < e < 5 \text{ and } 1 < f < 5$
[So $P(X=2) = = \frac{7}{64}$	A1 A	Approach identified, WWW.
Method 3: P(1 or 2 on each spinner) – P(1 on all spinners)		
$\left(\frac{1}{2}\right)^3 - \left(\frac{1}{4}\right)^3$	B1	$\left(\frac{1}{2}\right)^3 - b \text{ seen}, \ 0 < b < 1$
19	M1	$\left(\frac{1}{2}\right)^3 - c^3 , 0 < c < \frac{1}{2}$
[So $P(X=2)=]$ $\frac{7}{64}$	A1	Approach identified, WWW.
	3	
$P(X=1) = \frac{1}{64}$	В1	P(X = 1) or $P(X = 4)$ correct. Condone answers not in probability distribution table if clearly identified.
$P(X=4) = \left[1 - \frac{1}{64} - \frac{7}{64} - \frac{19}{64} = \right] \frac{37}{64}$	B1 FT	All 4 probabilities summing to 1.
	2	
$P(Y=6) = \left[\left(\frac{3}{4} \right)^5 \times \frac{1}{4} = \right] 0.0593, \frac{243}{4096}$	В1	Accept 0.059326 to 4 or more SF.
13.1	1	
$\left(\frac{3}{4}\right)^4$	M1	$\left(\frac{3}{4}\right)^g$, $g = 4, 5$ or p^4 where 0
$=\frac{81}{256},0.316$	A1	Accept 0.316406to 4 or more SF.
Alternative method for Question 4(d)		-
$P(Y > 4) = 1 - P(Y < 4) = 1 - \left(\frac{1}{4} + \frac{3}{4} \times \frac{1}{4} + \left(\frac{3}{4}\right)^2 \times \frac{1}{4} + \left(\frac{3}{4}\right)^3 \times \frac{1}{4}\right)$	M1	Correct or $1 - \left(\frac{1}{4} + \frac{3}{4} \times \frac{1}{4} + \left(\frac{3}{4}\right)^2 \times \frac{1}{4} + \left(\frac{3}{4}\right)^3 \times \frac{1}{4} + \left(\frac{3}{4}\right)^4\right)$
$\left[=1-\frac{175}{256}\right]$		or $1 - (p + qp + q^2p + q^3p)$ where $0 and q = 1-p$
$=\frac{81}{256}$, 0.316	A1	Accept 0.316406to 4 or more SF.

)	$[P(17 \text{ or } 18) =] \frac{4}{216} = \frac{1}{54}, 0.0185(185)$	B1	May be seen used in calculation.		
	$P(X=6) = \left(\frac{53}{54}\right)^5 \cdot \frac{1}{54}$	M1	$p(1-p)^5$, 0		
	0.0169	A1	$0.01686If A0 scored SC B1 for 0.01686$		
		3			
	$[P(X < 8) =] \ 1 - \left(\frac{53}{54}\right)^7$	M1	$1 - \left(their\left(\frac{53}{54} \text{ or } 0.98148\right) \text{ or correct}\right)^r,$		
			$r = 7,8 \ 0 \le their \ p \le 1$		
	0.123	A1	$0.1225 \le p \le 0.123$		
	Alternative method for Question 3(b)				
	$P(X < 8) = \left[\left(\frac{1}{54} \right) + \left(\frac{53}{54} \right) \left(\frac{1}{54} \right) + \left(\frac{53}{54} \right)^2 \left(\frac{1}{54} \right) + \left(\frac{53}{54} \right)^3 \left(\frac{1}{54} \right) + \left(\frac{53}{54} \right)^4 \left(\frac{1}{54} \right) + \left(\frac{53}{54} \right)^5 \left(\frac{1}{54} \right) + \left(\frac{53}{54} \right)^6 \left(\frac{1}{54} \right) + \left(\frac{53}{54} \right)^5 \left(\frac{1}{54} \right) + \left(\frac{53}{54} \right)^6 \left(\frac{1}{54} \right) + \left(\frac{1}{54} \right)^6 \left(\frac{1}{54} \right) + \left($	M1	$q + pq + p^{2}q + p^{3}q + p^{4}q + p^{5}q \Big[+ p^{6}q \Big], p + q = 1, 0 < p, q < 1, $		
	0.123	A1	$0.1225 \leqslant p \leqslant 0.123$		
	0.120	2	0.1220 41 4 0.120		
ıe	estion 49	1			

$P(1H) = \frac{1}{2} \times \frac{3}{4} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{4} \times \frac{3}{4} + \frac{1}{2} \times \frac{3}{4} \times \frac{3}{4} = \frac{15}{32}$	B1	Table with correct X values and at least one probability. Condone any additional X values if probability stated as 0.
$P(2H) = \frac{1}{2} \times \frac{1}{4} \times \frac{1}{4} + \frac{1}{2} \times \frac{3}{4} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{4} \times \frac{3}{4} = \frac{7}{32}$	B1	P(1) or P(2) correct, need not be in table, accept unsimplified.
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	B1	4 correct probabilities linked with correct outcomes, may not be in table. Decimals correct to at least 3 SF.
32 32 32 32 0.28125 0.46875 0.21875 0.03125		SC B1 for 4 probabilities $(0 \le p \le 1)$ sum to 1 ± 0.005 with P(1) and P(2) incorrect.
151	3	5/2/

0.12 + p + q + 0.16 + 0.3 = 1	B1	Sum of probabilities = 1 $p + q = 0.42$ OE.
-0.24 - p + 0.5q + 0.16 + 0.6 = 0.28	B1	Form equation using $E(X) = 0.28$ -p + 0.5q = -0.24 OE. Accept unsimplified.
Attempt to solve <i>their</i> two equations in p and q	M1	Either Substitution method to form a single equation in either p or q and finding values for both unknowns. Or Elimination method by writing both equations in the same form (usually $ap + bq = c$) and $+$ or $-$ to find an equation in one unknown and finding values for both unknowns.
q = 0.12, p = 0.3	A1	CAO, both WWW. If M0 awarded SC B1 for both correct WWW.
	4	

!(a)	$0.6(0.5)^3 + 0.4(0.5)^3 \times 3$									Either $0.6(0.5)^3 + a$ or $b + 0.4(0.5)^3 \times (3 \text{ or }^3 \text{C}_1), 0 < a, b < 1 \text{ seen.}$
								M1	$0.6(0.5)^3 + 0.4(0.5)^3 \times d$ seen, $d = 1, 3$. Condone $0.075 + 0.05 \times d$, $d = 1, 3$.	
	= 0.225								A1	AG full supporting working required. Scenarios identified and linked to calculations.
									3	
(b)		х	0	1	2	3	4		B1	Either [P(2) =] 0.375, $\frac{3}{8}$
		P(X=x)	0.05	0.225	0.375	0.275	0.075			or $[P(3) =]0.275, \frac{11}{40}$ seen. Condone not in table if identified.
									B1 FT	Both values in table. FT P(2) + P(3) = 0.650 .
									2	
(c)	$ Var(X) = [1^2 \times]0.225 + 2^2 \times their \ 0.375 + 3^2 \times their \ 0.275 + 4^2 \times 0.075 - 2.1^2 $					0.275+	$4^2 \times 0.0$	075 – 2.1 ²	M1	Appropriate variance formula from their probability distribution table with at least 4 terms, $0 < their P(x) < 1$. Condone 4.41 for 2.1^2 . Condone mean clearly recalculated inaccurately. Or $0.225 + 4 \times their \ 0.375 + 9 \times their \ 0.275 + 16 \times 0.075 - 2.1^2$ Condone 2.1^2 for 4.41 .
	[5.4-2.	$.1^2$] = 0.99[0]						A1	If M0 awarded SC B1 for 0.99[0] WWW.
									2	
•	stion :	52								

(a)	$\left[P(HH) = \frac{1}{4}\right] [E(X) =] 4$	В1	
		1	• /.5/
(b)	$P(X=5) = \left(\frac{3}{4}\right)^4 \left(\frac{1}{4}\right) = 0.0791$	B1	81 1024
	satp	ra	P
(c)	$[P(X < 7) =]1 - \left(\frac{3}{4}\right)^{6}$ or $\frac{1}{4} + \frac{3}{4} \times \frac{1}{4} + \frac{3}{4}^{2} \times \frac{1}{4} + \dots + \frac{3}{4}^{5} \times \frac{1}{4}$	M1	$1-p^n$, $0 , n = 6, 7orp+p(1-p)+p(1-p)^2++p(1-p)^n, where n = 4, 5.$
	$=\frac{3367}{4096}, 0.822$	A1	Accept 0.82202148 to at least 3SF.
		2	

(a)	$[P(X=4) = 3P(X=2)]$ $4k(4+a) = 3 \times 2k(2+a)$ $16k + 4ak = 12k + 6ak$	M1	Using $P(X = 4) = 3P(X = 2)$ to form an equation in a and k .
	a = 2	A1	If M0 scored, SC B1 for $a = 2$ www.
	3k + 8k + 15k + 24k = 1	M1	Using sum of probabilities = 1 to form an equation in k : k(1+a) + 2k(2+a) + 3k(3+a) + 4k(4+a) = 1.
	$k = \frac{1}{50}$	A1	If M0 scored, SC B1 for $k = \frac{1}{50}$ www.
		4	
(b)	$ \begin{array}{ c c c c c c c c }\hline X & 1 & 2 & 3 & 4 \\\hline P(X) & \frac{3}{50}, 0.06 & \frac{8}{50}, 0.16 & \frac{15}{50}, 0.3 & \frac{24}{50}, 0.48 \\\hline \end{array} $	B1 FT	X 1 2 3 4 $P(X)$ $k(1+a)$ $2k(2+a)$ $3k(3+a)$ $4k(4+a)$ $0 for all outcomes, must be numerical.$
		1	
(c)	$Var(X) = \frac{3}{50} \times 1 + \frac{8}{50} \times 2^2 + \frac{15}{50} \times 3^2 + \frac{24}{50} \times 4^2 - 3.2^2$	M1	Correct formula for variance method from their probability distribution table, $0 \le their P(x) \le 1$. Accept $\frac{3+32+135+384}{50} - \frac{256}{25}$.
	$[=11.08-3.2^2=] 0.84[0], \frac{21}{25}$	A1	If M0 score SC B1 for 0.84 www.
		2	

Question 54 (a) $[3k+3k+8k=1,so]k = \frac{1}{14}$

	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1 FT	Table with correct values of x, and at least one correct probability linked with outcome. FT their k. Condone any additional X values if probability stated as 0. The outcomes in the table must be -2, 2 and 3. 2 further correct probabilities in table or 3 correct probabilities not in table linked to outcomes, or 3 correct FT probabilities in table using their k, or 3 incorrect probabilities summing to 1 in table if k not stated.				
	334						
	satpr	BY					ne below.
			P(x)	-2 3k	2 3k	3 8k	
		3		ı	1		
))	$ \left[E(X) = -2 \times \frac{3}{14} + 2 \times \frac{3}{14} + 3 \times \frac{8}{14} = \right] \\ -\frac{6}{14} + \frac{6}{14} + \frac{24}{14} $	I	vari FT	ance. their tab	ole with	3 proba	ssion. May be calculated in bilities summing to $0.999 \le \text{erms of } k$.
	$\left[\operatorname{Var}(X) = (-2)^2 \times \frac{3}{14} + 2^2 \times \frac{3}{14} + 3^2 \times \frac{8}{14} - \left(their \operatorname{E}(X) \right)^2 = \right]$ $4 \times \frac{3}{14} + 4 \times \frac{3}{14} + 9 \times \frac{8}{14} - \left(their \frac{12}{7} \right)^2$	1	FT whi	<i>their</i> tab ch need	ole with not sur	3 or mo n to 1, or	ala using <i>their</i> $(E(X))^2$ value re probabilities $(0 r in terms of k with an ted than shown.$
	$\[\frac{12+12+72}{14} - \left(their \frac{12}{7} \right)^2 \]$						
	$E(X) = \frac{12}{7}, 1.71, 1\frac{5}{7}$ $Var(X) = \frac{192}{49}, 3.92, 3\frac{45}{49}$		may V, µ	be identify, σ^2 , etc.	ntified t	y correc	X) must be identified. E(X) to use in Variance (condone) entified correct final answers
			-				

(a)	$[P(\text{no rain}) = 0.6 \times (0.8)^3 =] 0.3072, \frac{192}{625}$	В1	Exact value required
		1	
(b)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1	$a \times b \times c$ where $a, b = 0.6, 0.8, c = 0.2, 0.4, 0.7$. Condone including Wednesday with both 0.3 and 0.7 used.
	$=0.096[0], \frac{12}{125}$	A1	
		2	
(c)	$(RDDD) = 0.4 \times 0.3 \times 0.8 \times 0.8 = 0.0768, \frac{48}{625}$	В1	Correct probability for one clearly identified outcome evaluated accept unsimplified. A correct unsimplified expression is not sufficient.
	$P(DRDD) = 0.6 \times 0.2 \times 0.3 \times 0.8 = 0.0288, \frac{18}{625}$ $P(DDRD) = 0.6 \times 0.8 \times 0.2 \times 0.3 = 0.0288, \frac{18}{625}$	М1	Add 4 probability values, $0 , for appropriate identified scenarios. Accept unsimplified.$
	$P(DDDR) = 0.6 \times 0.8 \times 0.8 \times 0.2 = 0.0768, \frac{48}{625}$		Ways of identifying scenarios for this mark: Stating the days. All the unsimplified probability calculations exactly as stated in the mark scheme. Identifying the correct branches on a tree diagram and linking with the values.
			No repeated scenarios. No incorrect scenarios.
	$0.2112, \frac{132}{625}$	A1	Accept 0.211 If 0/3 scored SC B1 for 0.2112, \(\frac{132}{625}\).
		3	

a)	$[P(X=4) = (0.8)^{3}(0.2) =] 0.1024, \frac{64}{625}$	В	Condone 0.102.	
			1	
(b)	$P(X < 6) = 11 - 0.8^{5}$	M1	$1-0.8^d$, $d=5$, 6.	
	$=0.672, \frac{2101}{3125}$	A1	0.67232 to at least 3SF. If M0 awarded, SC B1 for $\frac{2101}{3125}$ or 0.67232 only.	
	Alternative Method for Question 4(b)			
	$[P(X < 6)] = J\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^2\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^3\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^4\left(\frac{1}{5}\right)$	M1	If answer correct, condone omission of 2 from 3 middle terms. Allow M1 for $\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right) \left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^2 \left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^3 \left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^4 \left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^5 \left(\frac{1}{5}\right$	
	$=0.672, \frac{2101}{3125}$	A1	0.67232 to at least 3SF. If M0 awarded, SC B1 for $\frac{2101}{3125}$ or 0.67232 only.	
(c)	$\left[P(X>0 X\neq 2) = \frac{P(X>0\cap X\neq 2)}{P(X\neq 2)} = \right]$	2 M1	$[P(X > 0 \cap X \neq 2) =] \frac{14}{25}, 0.56[0] \text{ seen as numerator of denominator of conditional probability fraction.}$	
	$= \frac{\frac{14}{25}}{\frac{19}{25}}$		$[P(X \neq 2) =] \frac{19}{25}$, 0.76[0] seen as denominator of conditional probability fraction.	
	$=\frac{14}{19}, 0.737$	A1	Final answer = $\frac{14}{19}$, 0.7368421 to at least 3SF. If A0, SC B1 for correct final answer www.	
	Alternative Method for Question 4(c)			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[Number of outcome $(X > 0 \cap X \neq 2) =]14$ seen as numerator or denominator of conditional probability fraction.	
		M1	[Number of outcome $(X \neq 2)$ =]19 seen as denominated of conditional probability fraction.	
	$P(X > 0 X \neq 2) = \frac{\text{Number of outcome}(X > 0 \cap X \neq 2)}{\text{Number of outcomes } X \neq 2} = \frac{14}{19}, 0.737$	A1	Final answer = $\frac{14}{19}$, 0.7368421 to at least 3SF.	
		3		
(d)	$[P(X>2) = 1 - P(0, 1, 2) \text{ with } p = \frac{6}{25}]$	M	1 One term ${}^{9}C_{x}(p)^{x}(1-p)^{9-x}, 0$	
	$1 - ({}^{9}C_{0} \left(\frac{19}{25}\right)^{9} + {}^{9}C_{1} \left(\frac{6}{25}\right)^{1} \left(\frac{19}{25}\right)^{8} + {}^{9}C_{2} \left(\frac{6}{25}\right)^{2} \left(\frac{19}{25}\right)^{7})$ $[1 - (0.08459 + 0.2404 + 0.3037)]$	A		
	0.371	В	1 $0.371 \le p < 0.3715$.	
	Alternative Method for Question 4(d)	1	,	
	$[P(X>2) = P(3,4,5,6,7,8,9) \text{ with } p = \frac{6}{25}]$	M	One term ${}^{9}C_{x}(p)^{x}(1-p)^{9-x}, 0$	
	${}^{9}C_{3}\left(\frac{6}{25}\right)^{3}\left(\frac{19}{25}\right)^{6} + {}^{9}C_{4}\left(\frac{6}{25}\right)^{4}\left(\frac{19}{25}\right)^{5} + \dots + {}^{9}C_{8}\left(\frac{6}{25}\right)^{8}\left(\frac{19}{25}\right)^{1} + {}^{9}C_{9}\left(\frac{6}{25}\right)^{9}$ $[0.2238 + 0.1060 + \dots + 7.529 \times 10^{-5} + 2.642 \times 10^{-6}]$	A	¹ ${}^{9}C_{3}(p)^{3}(1-p)^{6} + {}^{9}C_{4}(p)^{4}(1-p)^{5} + + {}^{9}C_{8}$ $(p)^{8}(1-p)^{1} + {}^{9}C_{9}(p)^{9}, 0Correct expression from their p, accept unsimplified, terms omitted leading to final answer.$	

Įuε	estion 57		
1)	$[P(X=3)=] \frac{3}{4} \times \left(\frac{1}{4}\right)^3 \times 4$	M1	$\frac{3}{4} \times \left(\frac{1}{4}\right)^3 \times q$; q a positive integer (1 may be implied).
	$=\frac{3}{64}$	A1	AG.
		2	
)	x 0 1 2 3 4	B1	Either $P(1) = \frac{27}{64}, 0.421875$
	$P(X=x) \frac{81}{256} \frac{27}{64} \frac{27}{128} \frac{3}{64} \frac{1}{256}$		or $P(2) = \frac{27}{128}$, 0.2109375 correct to at least 3SF. Condone not in table.
		B1 FT	Both values in table. FT P(1) + P(2) = $\frac{81}{128}$, 0.6328125.
		2	
	$[E(X) =] [0 \times \frac{81}{256}] + 1 \times their \frac{27}{64} + 2 \times their \frac{27}{128} + 3 \times \frac{12}{256} + 4 \times \frac{1}{256}$	M1	Correct method from <i>their</i> probability distribution table with at least 4 terms, $0 < their P(x) < 1$, accept partially evaluated.
	AT PF	3/	$= 0 + \frac{27}{64} + \frac{54}{128} + \frac{36}{256} + \frac{4}{256}$
	= 1	A1	
		2	
)	Mean = $96 \times \frac{67}{256} = 25.125$ Var = $96 \times \frac{67}{256} \times \frac{189}{256} = 18.549$	B1	25.125, 25 $\frac{1}{8}$ and 18.5493 to at least 3SF seen, allow unsimplified (4.3068 $\leq \sigma \leq$ 4.307 implies correct variance).
	$P(X < 20) = P(Z < \frac{19.5 - 25.125}{\sqrt{18.549}})$	M1	Substituting their μ and σ into \pm standardisation formul (any number for 19.5). Condone σ^2 and $\sqrt{\sigma}$.
		M1	Using continuity correction 19.5 or 20.5 in <i>their</i> standardisation formula. Note: $\frac{\pm 5.625}{\sqrt{18.549}}$ seen gains M2 BOD.
	$[=P(Z<-1.306)=1-\Phi (1.306)=]1-0.9042=$	M1	Appropriate area Φ , from final process. Must be a probability.
	0.0958	A1	$0.0957 \leqslant p \leqslant 0.0958$. SC B1 for $0.0957 \leqslant p \leqslant 0.0958$ if B1M0M0M1 scored
	·Satpre	5	