AS-Level

Topic : Permutation and Combination May 2013-May 2023

Answers

7 (i) S(10) R(14) P(6) 1 2 4 = 10C1×14C2×6C4= 13650 1 3 3 = 10C1×14C3×6C3= 72800 2 2 3 = 10C2×14C2×6C3= 81900 Total = 168350 or 168000	M1 M1 B1 A1	[4]	Summing 2 or more 3-factor options perms or combs Mult 3 combs or 4 combs with $\Sigma r=7$ 2 options correct, unsimplified Correct answer
(ii) 2! × 2! × 5!	M1 M1		$2! \times 2!$ oe, seen mult by an integer ≥ 1 , no division Mult by 5!, or 5! alone, seen mult by an integer ≥ 1 no division
= 480	A1	[3]	Correct answer
If M0 earned $\frac{2! \times 2!}{2! \times 2!}$ or $\frac{5!}{3!}$ or both, seen mult by an integer ≥ 1 Or $2! \times 2! \times 5!$ divided by a value	SCM1	R	
(iii) spaniels and retrievers in 4! ways gaps in 5P3 or $5 \times 4 \times 3$ ways = 1440	M1 M1 A1	[3]	4! seen multiplied by an integer >1 Mult by 5P3 oe Correct answer
If M0 earned $\frac{4!}{2! \times 2!} \text{ or } \frac{_5 P_3}{3!} \text{ or both, seen multiplied}$ by an integer > 1	SCM1		₅ C ₃ oe
$7! - 5! \times 3!$	M1		oe
$-\{(4! \times 2 \times 4 \times 3!) +$	M1		oe, e.g. $6 \times 5 \times 4 \times 4!$
$(4! \times 3 \times 4 \times 3!)$ } = 1440	A1	eY	
If M0 earned $3! \times 2! \times 2!$ used as a denominator in all 4 terms	SCM1		Marks cannot be earned from both methods.

(i)	H J O 1. 28 2 = 4C2×9C8×2C2 = 54 3 7 2 = 4C3×9C7×2C2 = 144 4 6 2 = 4C4×9C6×2C2 = 84	M1 M1 A1		Mult 3 combs, 2C2 may be implied $4Cx \times 9Cy \times 2Cz$ Summing 2 or 3 three-factor options 2 options correct unsimplified
	Total = 282 ways	A1	[4]	Correct answer
(ii)	$4! \times 6! \times 2! \times 3!$	M1		$4! \times 6! \times 2!$ oe seen multiplied by int
		M1		≥ 1 3! seen mult by int ≥ 1
	= 207360 (207000)	A1	[3]	Correct answer
(iii)	8 J and O trees in $8! = 40320$ ways 9 gaps \times 8 \times 7 \times 6	B1 M1		8! seen mult by int ≥ 1 no division 9P4 oe or 7P4 or 8P4 seen mult by int ≥ 1 no division
	= 121,927,680 (122,000,000)	A1	[3]	Correct answer
(i)	= 121,927,680 (122,000,000) SR 4C2×9C2×2C2×9C6	A1 M1	[3]	Correct answer
(i) (ii)			[3]	Correct answer
	SR $4C2\times9C2\times2C2\times9C6$ SR $\frac{4!\times6!\times2!}{4!\times6!\times2!}$ or $3!$ or both M1	M1	[3]	Correct answer
(ii)	SR $4C2 \times 9C2 \times 2C2 \times 9C6$ SR $\frac{4! \times 6! \times 2!}{4! \times 6! \times 2!}$ or $3!$ or both M1 SR1 $12! - 9!$ 4! SR2 $\frac{9P4}{4!}$ or $\frac{8!}{4!}$ or both	M1	[3]	Correct answer
(ii)	$SR \ 4C2 \times 9C2 \times 2C2 \times 9C6$ $SR \ \frac{4! \times 6! \times 2!}{4! \times 6! \times 2!} \text{ or } 3! \text{ or both M1}$ $SR1 \ 12! - 9! \ 4!$ $SR2 \ \frac{9P4}{4!} \text{ or } \frac{8!}{6! \ 2!} \text{ or both}$	M1 M1 M1	[3]	Correct answer

(i)	$4! \times 3! \times 5! \times 2! \times 4! = 829440$	B1 B1 B1	[3]	4!, 3!, 5!, 2 seen multiplied 1, not in denominator Mult by 4! Correct answer
(ii)	$8! \times 9 \times 8 \times 7 \times 6 \times 5 \times 4$ $= 2438553600 (2.44 \times 10^{9})$	B1 B1 B1	[3]	8! seen multiplied 1 Mult by ₉ P ₆ Correct answer
(iii)	8C3 × 5C3 × 2C2 = 560	B1 B1 B1	[3]	8C3 seen mult 5C3 seen mult Correct answer

(i)	$\frac{8!}{3!2!2!} = 1680$	M1 A1	2	8! Divided by at least one of 3!2!2! oe Correct answer
(ii)	5! = 120	M1 A1	2	5! Seen (not added, may be divided/multipled) Correct answer
(iii)	<u>5!4!</u> <u>3!2!2!</u>	B1 M1		5! Or 4! Seen in sum or product in numerator (denominator may by 1) $\frac{k5!4!}{3!2!2!}$ in a numerical expression
	= 120	A1	3	Correct final answer
(iv)	GG with AA, AE, EE, RA, RE, RT, TA, TE, = 8 ways GGG with A, E, R, T = 4 ways	M1 A1		Summing 2 options (could be lists) 1 correct option
	Total = 12 ways	A1	3	Correct answer

(i)	1663200	B1	[1]	
(ii)	M xxxxxxxx M	M1		9! or 9P9 seen
	Number of ways = $\frac{9!}{3!2!}$ = 30240	A1	[2]	Correct answer
(iii)	4 vowels together = $8! \times 4/2!2!$ = 40320	M1 M1		8!/2!2! seen mult by something 4 oe 4!/3! or 4C1 etc. seen mult by something
	1663200 – 40320 = 1622880	B1	[3]	Correct answer SC 7!/2!2! × 8P4 or 7! × 8P4/3! Or 7!/2!2! × 8P4/3! M1
(iv)	Exactly 2 Es 4C2 = 6 Exactly 3 Es 4C1 = 4 Total = 10 ways	M1 B1 A1	[3]	Summing 2 options One option correct Correct answer
	OR 5C2 = 10	M2 A1		M1 for k5C2 Correct ans

(i)	M 3	R 1	$O \\ 2 = 7C3 \times 5C1 \times 8C$	C2 = 4900	M1		Summing more than one 3term option involving combs (can be added)
	3	2	$1 = 7C3 \times 5C2 \times 8C$	C1 = 2800	M1		Mult 3 combs only (indep)
	2	2	$2 = 7C2 \times 5C2 \times 8C$	02 = 5880	A1		1 option correct unsimplified
	Tot	al =	13580		A1	4	Correct answer
(ii)	_		s in 4! ways		M1		4! seen mult by something
			ain in 3! ways ry in 2! ways		M1		Mult by 3! for racing or 2! for ordinary
	4! >	< 3! >	< 2 = 288		A1	3	Correct answer
(iii)	_		x x x x O s s s		M1		2! or 4! seen mult
	Res	st of l	y in 2! bikes in 4!	5	M1		Mult by 5 (ssssb)
			and spaces 5 groups in $6.5 = 240$	o ways	A1	3	Correct answer

(i) ((a)	6! (×) 4! OR (×) 4 × 3 ÷ 2!2!3! OR ÷ 2!3!	M1 M1		Seen in a single term expression as numerator Seen in a single term expression as numerator (denominator may be 1) Seen in a single term expression as denominator
		Total 720 ways	A1	4	Correct ans
(i) ((b)	$1*******3 = \frac{7!}{3!2!} = 420$ $3******1 = 420$ $3******3 = 420$	B1 M1		$\frac{7!}{3!2!}$ seen oe Attempting to evaluate and sum at least 2 of 1***3, 3***1, 3***3
		Total = 1260 ways	A1	3	Correct ans
(ii) ((a)	$5 \times 4 \times 3 = 60 \text{ ways } (^5P_3)$	M1 A1	2	⁵ P ₃ or ⁵ C ₃ ×3! (can be implied) Correct ans
(ii) ((b)	2** in 212, 213, 214, 216, 221, 223, 224, 226, 231, 232, 233, 234, 236, 241, 242, 243, 246	M1		Listing attempt starting with 2, at least 10 correct entries
		261, 262, 263, 264, 266 Total = 22 ways	A1	2	Correct ans
		Alternative Methods: $3 \times {}^{4}C_{1} + 2 \times {}^{5}C_{1}$	M1		$p \times {}^{4}C_{1} + q \times {}^{5}C_{1}$, oe $p + q > 2$
		OR ${}^{5}P_{2} + {}^{2}C_{1}$	OR M1		⁵ P ₂ seen
		OR ${}^{4}P_{2} + 2 \times {}^{4}P_{1} + {}^{2}C_{1}$	OR M1		Any 2 terms added

(i)	$5! \times 3!$ or $6!$	B1	5! or 3! or 6! oe seen mult or alone
000000	= 720	B1 2	Correct final answer
(ii)	3**4, 3**8, 4**8	M1 B1	considering at least 2 types of 4-figure options ending with 4 or 8 and starting with 3 or 4 One option correct unsimplified can be implied
	$= 5 \times 4 + 5 \times 4 + 5 \times 4 = 60$	A1 3	Correct final answer
(iii)	5, *5, **5,	M1	Appreciating that the number must end in 5 (can be implied)
	$=1+7+7^2$	M1	summing numbers ending in 5 with at least 2 different numbers of digits
	= 57	A1 3	

Y1(7) Y	(2(2)Y3	3(2)	B1		One unsimplified correct 3-factor product of
1 2		$= 7 \times 1 \times 1 = 7$			combinations
2 1		$= {}^{7}C_{2} \times {}^{2}C_{1} \times 1 = 42$	B1		A second unsimplified correct 3-factor product
		$= {}^{7}C_{2} \times 1 \times {}^{2}C_{1} = 42$	A		of combinations
3 1	1	$= {}^{7}C_{3} \times {}^{2}C_{1} \times {}^{2}C_{1} = 140$	M1		Summing 3 or 4 options allow perms, wrong
					combs but second numbers must sum to 5 etc.
Total = 2	231		A1	4	Correct answer
Question	า 10				

(i)	$\frac{6!}{2!} = 360$	B1 B1	2	6! Seen alone Dividing by 2! only
(ii)	$\frac{4!}{2!} \times \frac{4!}{3!}$ = 48	B1 B1	3	4! seen mult Dividing by 2! or 3! (Mult by 4 implied B1B1) Correct answer
(iii)	1N and 1A: N A xx in ${}^{3}C_{2}$ = 3 ways	M1 A1	2	³ C _x or ^x C ₂ seen alone Correct answer
(iv)	0 A : Nxxx = 1 way 2 As: NAAx in ${}^{3}C_{1} = 3$ ways 3 As: NAAA in 1 way	M1 M1		Finding ways with 0 or 2 or 3 As Summing 3 or 4 options
	Total = 8 ways	A 1	3	Correct answer

(a)	1^{*****3} or 3^{*****1} or 2^{*****2} = $6^5 \times 3$	M1 M1		Mult by 6 ⁵ (for middle 5 dice outcomes) Mult by 3 or summing 3 different combinations (for end dice outcomes)
	= 23328	A1	3	Correct answer accept 23 300
(b)	W J H 1 1 $7 = {}^{9}C_{1} \times {}^{8}C_{1} \times 1 = 72$ 1 7 $1 = {}^{9}C_{1} \times {}^{8}C_{7} \times 1 = 72$ 7 1 $1 = {}^{9}C_{7} \times {}^{2}C_{1} \times 1 = 72$ 1 3 $5 = {}^{9}C_{1} \times {}^{8}C_{3} \times 1 = 504$ mult by 3! 3 3 $3 = {}^{9}C_{3} \times {}^{6}C_{3} \times 1 = 1680$	M1 A1 A1 M1		Multiplying 3 combinations (may be implied) 1 unsimplified correct answer (72, 504, 1680, 216 or 3024) A 2 nd unsimplified different correct answer Summing options for 1,1.7 or 1,3,5 oe (mult by 3 or 3!) Summing at least 2 different options of the 3
	Total 4920	A1	6	Correct ans
	If no marks gained Listing all 10 different outcomes	SCM	11	If games replaced M1M1M1 max available If factorials used M0M1M1 max available

Question 12

Quest	1011 12			
(i)	6! ×5! = 86400	B1 B1 B1	3	6! oe seen multiplied by integer $k \ge 1$ 5! oe seen multiplied by integer $k \ge 1$ Correct final answer
(ii)	$6! \times 7 \times 6 \times 5 \times 4$	B1 B1		6! seen mult by integer $k \ge 1$ Mult by ${}^{7}P_{4}$ oe
	= 604800	B1	3	Correct final answer

Question 13

⁴⁸ C ₄₂	B1	48 seen in a single term combination oe
C43	B1	43 or 5 seen in a single term
		combination oe
	breP	Both can be mult by integer $k \ge 1$
= 1712304 (1710000)	B1 3	Correct final answer

(i)	W(8) M(5) 4 2 = ${}^{8}C_{4} \times {}^{5}C_{2} = 700$ 5 1 = ${}^{8}C_{5} \times {}^{5}C_{1} = 280$ 6 0 = ${}^{8}C_{6} \times {}^{5}C_{0} = 28$ Total = 1008	M1 M1 A1 A1	4	Mult 2 combs, ${}^{8}C_{x} \times {}^{5}C_{y}$ Summing 2 or 3 options 2 correct options unsimplified Correct answer
(ii)	M1 and MMWWW = ${}^{3}C_{2} \times {}^{8}C_{3} = 168$	M1		Summing 3 options
	M2 and MMWWW = ${}^{3}C_{2} \times {}^{8}C_{3} = 168$ Neither and MMMWWW = ${}^{3}C_{1} \times {}^{8}C_{3} =$	B1		One correct option
	56 Total = 392	A1	3	Correct answer
	OR total, no restrictions = ${}^5C_3 \times {}^8C_3 =$	M1		Subt 2 men together from no restrictions
	560 M1M2 and MWWW = ${}^{3}C_{1} \times {}^{8}C_{3} = 168$ 560 - 168 = 392	B1 A1		One correct of 560 or 168 Correct answer
(iii)	e.g. WWMWWW = 5! (women) × 4 = 480	M1 M1 A1	3	5! Seen mult by integer ≥ 1 Mult by 4 Correct answer

C				i e
(i)	W S D 1 1 $3 = 6 \times 4 \times^3 C_3 = 24$	M1		Listing at least 4 different options
	$1 3 1 = 6 \times {}^{4}C_{3} \times 3 = 72$	M1		Mult 3 (combs) together assume $6 = {}^{6}C_{1}$, $\Sigma r = 5$
	3 1 $1 = {}^{6}C_{3} \times 4 \times 3 = 240$ 1 2 $2 = 6 \times {}^{4}C_{2} \times {}^{3}C_{2} = 108$ 2 1 $2 = {}^{6}C_{2} \times 4 \times {}^{3}C_{2} = 180$	M1		Summing at least 4 different evaluated/unsimplified options >1
	2 2 $1 = {}^{6}C_{2} \times {}^{4}C_{2} \times 3 = 270$	B1		At least 3 correct unsimplified options
	Total = 894	A1	[5]	Correct answer
(ii)	$^{3}P_{2} \times ^{10}P_{8}$	B1		³ P ₂ oe seen multiplied either here or in (iii)
		Bl		$k^{10}P_x$ seen or k^yP_8 with no addition,
	= 10886400	B1	[3]	$k \ge 1$, $y > 8$, $x < 10$ Correct answer, nfww
(iii)	DSWSWSWSWD or DWSWSWSWSD D in ³ P ₂ ways = 6			If ³ P ₂ has not gained credit in (ii) may be awarded
	S in 4P_4 ways = 24	B1		⁴ P ₄ or ⁶ P ₄ oe seen multiplied or common in all terms (no division)
	W in 6 P ₄ = 360 Swap SW in 2 ways	B1		Mult by 2 (condone 2!)
	Total = 103680 ways	B1	[3]	Correct answer, 3sf or better, nfww
Questio	n 16			
	Total Control of the			

(a) (1)	N^{*****B} Number of ways = $\frac{5!}{3!}$ = 20	B1 B1 B1 3	5! Seen in num oe or alone mult by $k \ge 1$ 3! Seen in denom can be mult by $k \ge 1$ Correct final answer
(ii)	B(AAA)NNS Number of ways = $\frac{5!}{2!}$ or ${}^{5}P_{3}$ = 60	M1 M1 A1 3	5! seen as a num can be mult by $k \ge 1$ Dividing by 2! Correct final answer
(b)	$^{14}C_9$ total options = 2002 T and M both in $^{12}C_7$ = 792 Ans 2002 – 792 = 1210 OR Neither in $^{12}C_9$ = 220 One in $^{12}C_8$ = 495 Other in $^{12}C_8$ = 495	M1 B1 A1 3 M1 B1	14C ₉ or 14P ₉ in subtraction attempt 12C ₇ (792) seen Correct final answer Summing 2 or 3 options at least 1 correct condone 12P ₉ + 12P ₈ + 12P ₈ here only Second correct option seen accept another 495 or if M1 not awarded, any correct option

(a) (i)	9! 2!2!3!	B1	Dividing by 2!2!3!
	= 15120 ways	B1 [2]	Correct answer
(ii)	******* in $\frac{8!}{2!2!3!}$ = 1680 ways	B1	Correct ways end in 3
	********7 in $\frac{8!}{2!3!}$ = 3360 ways	В1	Correct ways end in 7
	Total even $= 15120 - 1680 - 3360$	M1	Finding odd and subt from 15120 or their (i)
	= 10080 ways OR	A1 [4]	
	********2 in 8!/2!3! = 3360 ways	B1	One correct way end in even
	*******6 in 8!/2!2!3! = 1680 ways	B1	correct way end in another even
	******* in 8!/2!2!2! = 5040ways	M1	Summing 2 or 3 ways
	Total = 10080 ways	A1	Correct answer
	OR		
	"15120" $\times 6/9 = 10080$	M2	Mult their (i) by 2/3 oe
		A2	Correct answer
(b)	T(3) S(6) G(14) 1	M1	Mult 3 (combinations) together
	1 3 1 in $3 \times {}^{6}C_{3} \times 14 = 840$		assume $6 = {}^{6}C_{1}$ etc
	$3 1 1 \text{ in } 1 \times 6 \times 14 = 84$	M1	Listing at least 4 different options
	2 2 1 in	M1	Summing at least 4 different
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	options At least 3 correct numerical
	$1 2 2 \text{ III } 3^{\wedge} \text{ C}_{2}^{\wedge} \text{C}_{2} = 4093$	ы	options
	Total ways = 13839 (13800)	A1 [5]	Correct answer

(a)	e.g. **(AAOOOI)**** $\frac{8!}{2!2!} \times \frac{6!}{2!3!} = 604800$	B1 M1 A1	3	8! (8 × 7!) or 6! seen anywhere, either alone or in numerator) Dividing by at least 3 of 2!2!2!3! (may be fractions added) Correct answer
(b)	C(7) E(6) A(4) 1 1 2 = $7 \times 6 \times {}^{4}C_{2} = 252$ 1 2 1 = $7 \times {}^{6}C_{2} \times 4 = 420$ 1 3 0 = $7 \times {}^{6}C_{3} \times 1 = 140$ 2 1 1 = ${}^{7}C_{2} \times 6 \times 4 = 504$ 2 2 0 = ${}^{7}C_{2} \times {}^{6}C_{2} \times 1 = 315$	M1		Mult 3 appropriate combinations together assume $6={}^6C_{1}$, $1={}^4C_0$ etc., $\Sigma r=4$, C&E both present
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1 M1*		At least 3 correct unsimplified products Listing at least 4 different correct options
	T. J. 1041	DM1	-	Summing at least 4 outcomes, involving 3 combs or perms, $\sum r=4$
	Total = 1841	A1	5	Correct answer
	DT F	o F		SC if CE removed, M1 available for listing at least 4 different correct options for remaining 2. DM1 for ${}^{7}C_{1} \times {}^{6}C_{1} \times (\text{sum of at least 4})$
	16			outcomes)
Que	stion 19			

(i)	Two in same taxi: ${}^{6}C_{2} \times {}^{4}C_{4} \times 2 \text{ or } {}^{6}C_{2} + {}^{6}C_{4}$ = 30	M1 M1	3	⁶ C ₄ or ⁶ C ₂ oe seen anywhere 'something' ×2 only or adding 2 equal terms Correct final answer
(ii)	MJS in taxi $({}^{5}C_{1} \times 2 \times 2) \times {}^{4}P_{4}$ = 480	M1 M1 M1	4	⁵ P ₁ , ⁵ C ₁ or 5 seen anywhere Mult by 2 or 4 oe Mult by ⁴ P ₄ oe eg 4! or 4× ³ P ₃ or can be part of 5! Correct final answer

P(no men) $\frac{{}^{9}C_{6}}{{}^{16}C_{6}} = \frac{84}{8008} = \frac{21}{2002} = \frac{3}{286}$	B1		⁹ C ₆ seen anywhere
= 0.0105	B1 B1	3	¹⁶ C ₆ seen as denom of fraction oe Correct final answer
OR $\frac{9}{16} \times \frac{8}{15} \times \frac{7}{14} \times \frac{6}{13} \times \frac{5}{12} \times \frac{4}{11} = 0.0105$	B1 B1 B1		$(9 \times 8 \times 7 \times 6 \times 5 \times 4)$ seen anywhere Correct unsimplified denom Correct final answer

(i)	5 (i) eg **(EEEE)*** Number of ways = $\frac{6!}{2!2!}$ = 180	M1 M1 A1	[3]	Mult by 6! oe Dividing by 2!2! oe Correct answer
(ii)	S*******T or T*******S Number of ways = $\frac{7!}{4!2!} \times 2$ = 210	M1 M1 A1	[3]	Mult by 7! Or dividing by one of 2! or 4! Mult by 2 Correct answer
(iii)	exactly one E in ⁶ C ₃ ways = 20	M1 M1 A1	[3]	⁶ C _x as a single answer ^x C ₃ as a single answer correct answer

(i)	$^{15}P_5$ = 360360	M1 A1	2	oe, can be implied Not ¹⁵ C ₅ Correct answer
(ii)	$5 \times 10 \times 4 \times 9 \times 3$ $= 5400$	M1 A1	2	Mult 5 numbers Correct answer
(iii)	M(5) F(10) 3 2 = ${}^{5}C_{3} \times {}^{10}C_{2} = 450 \text{ ways}$ 4 1 = ${}^{5}C_{4} \times {}^{10}C_{1} = 50$ 5 0 = ${}^{5}C_{5} \times {}^{10}C_{0} = 1$ Total = 501 ways	M1 M1 A1	3	Mult 2 combs, ${}^5C_x \times {}^{10}C_y$ Summing 2 or 3 two-factor options, $x + y = 5$ Correct answer
(iv)	(Couple) M(4) F(9) ManWife + 3 $0 = {}^{4}C_{3} \times {}^{9}C_{0} = 4$ ManWife + 2 $1 = {}^{4}C_{2} \times {}^{9}C_{1} = 54$ Total = 58	M1 M1	3	Mult 2 combs ${}^{4}C_{x}$ and ${}^{9}C_{y}$ Summing both options $x + y = 3$, gender correct Correct answer

(i)	7560 ways	B1	[1]	
(ii)	RxxxxxxxG in $\frac{7!}{4!}$	B1		7! alone seen in num or 4! alone in denom Must be in a fraction. $\frac{7!\times 2}{4!\times 2}$ gets full marks
	= 210 ways	B1	[2]	
(iii)	eg EEEExxxxx in $\frac{6!}{2!}$	B1		6! or 5! \times 6 seen in numerator or on own Can be 6! \times k but not 6! \pm k
	= 360 ways	B1	[2]	Can be of who out not of ± h
(iv)	1 R eg RVG or RVN or RGN = 3	B1	[1]	
(v)	no Rs eg VGN or 3C3 ways = 1	M1		Summing at least 2 options for R
	2 Rs eg RRV or 3C1 ways = 3 $Total = 7$	A1 A1	[3]	Correct outcome for no Rs or 2 Rs – evaluated
Question	24			
1				

(a) (i)	$\frac{10!}{2!3!} = 302400$	B1 [1]	Exact value only, isw rounding
(ii)	e.g. *W*****W*, **W*****W, W*****W**	M1	8! Seen mult or alone. Cannot be embedded (arrangements of other 8 letters).
	$\frac{8!}{3!}$ × 3(for the Ws)	M1	Dividing by 3! (removing repeated L's)
	51	M1	Mult by 3 (different W positions) may be sum of 3 terms
	= 20160	A1 [4]	
(b)	S(5) A(7) C(4) 1 3 2: $5 \times {}^{7}C_{3} \times {}^{4}C_{2} = 1050$	M1	Mult 3 combinations, 5C_x , 7C_y , 4C_z (not 5 x 7 x 4)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	2 correct options unsimplified
	(Outcomes : Options)	M1	Summing only 3 or 4 correct outcomes involving combs or perms
	Total = 3990	A1 [4]	

(a) (i)	$9 \times 9 \times 8$	M1	M1	Logical listing attempt
	= 648	A1	[3]	
	OR $900 - 28 \times 9 = 648$			
(ii)	$(7 in 1 \times 8 \times 4 = 32 \text{ ways})$	M1		Listing #s starting with 7 or 9 and ending odd
	$8 \text{in } 1 \times 8 \times 5 = 40$	M1		
	9 in $1 \times 8 \times 4 = 32$	M1		
	Total 104 ways	A1	[4]	
(b)	R(6) T(5) D(4) 2 2 3 = ${}^{6}C_{2} \times {}^{5}C_{2} \times {}^{4}C_{3} = 600$ 2 3 2 = ${}^{6}C_{2} \times {}^{5}C_{3} \times {}^{4}C_{2} = 900$ 3 2 2 = ${}^{6}C_{3} \times {}^{5}C_{2} \times {}^{4}C_{2} = 1200$ Total = 2700	M1 M1 A1 A1	[4]	Mult 3 combs, ${}^{6}C_{x} \times {}^{5}C_{y} \times {}^{4}C_{z}$ Summing 2 or 3 three-factor outcomes can be perms, + instead of \times 2 options correct unsimplified
Question 2	26			

(i)	e.g. **5 in ${}^{3}P_{2}$ ways = 6 **7 in ${}^{3}P_{2}$ = 6 Total 12 AG OR listing 457, 547, 467, 647, 567, 657, 475, 745 465, 645, 675, 765 Total 12 AG	M1 M1 A1 M1 M1	[3]	Recognising ends in 5 or 7, can be implied Summing ends in 5 + ends in 7 oe Correct answer following legit working Listing at least 5 different numbers ending in 5 Listing at least 5 different numbers ending in 7
(ii)	1 digit in 2 ways 2 digits in *5 or *7 = ${}^{3}P_{1} \times 2 = 6$ 4 digits in ***5 or ***7 = ${}^{3}P_{3} \times 2 = 12$ Total ways = 32	M1 A1 A1	[3]	Consider at least 3 options with different number of digits. If no working, must be 3 or 4 from 2, 6, 12, 12 One option correct from 1, 2 or 4 digits

total ways ${}^{10}C_5=252$	M1		$^{10}C_5 - \dots$ or $252 - \dots$
MW together e.g. $(MW)^{***}$ in ${}^{8}C_{3}$ ways = 56 MW not together = $252 - 56$ = 196 ways	B1 A1	[3]	252 and 56 seen, may be unsimplified
OR 1 2 ⁸ C ₄ + ⁸ C ₅ 2 ⁸ C ₄ = 2x70=140; ⁸ C ₅ = 56	M1 B1	[2]	2 ⁿ C ₄ + ⁿ C ₅ 140 and 56 seen may be unsimplified
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1		2 °C ₅
$2 {}^{9}C_{5} = 2 \times 126 = 252; {}^{8}C_{5} = 56$ $2 {}^{9}C_{5} - {}^{8}C_{5} = 196$	M1 B1 A1		252 and 56 seen, may be unsimplified

(i)	e.g. (OAEE)(CPNHGN) or cv $\frac{4!}{2!} \times \frac{6!}{2!} \times 2 = 8640$	M1 M1 A1	[3]	4!/2! or 6!/2! seen anywhere All multiplied by 2 oe
(ii)	First Method Total ways = 10!/2!2! = 907200 EE together in 9!/2! ways = 181440 EE not together = 907200 - 181440 = 725760 OR Second Method C P N H G N O A in 8!/2! ways Insert E in 9 ways Insert 2nd E in 8 ways, ÷ 2 Total = 8!/2!×9×8 ÷ 2 = 725760	B1 M1 M1 A1 B1 M1 M1	[4]	Total ways together correct EE together attempt alone Considering total – EE together 8!/2! Seen Interspersing an E, x n where n=7,8,9. Condone additional factors. Mult by 9×8(÷2), ⁹ C ₂ or ⁹ P ₂ only oe
(iii)	First Method EN** in 6C_2 ways = 15 different ways EENN in 1 way Total 16 ways OR Second Method Listing with at least 8 different correct options Listing all correct options Total = 15 different ways EENN in 1 way Total 16 ways	M1 M1 A1 B1 A1 M1 M1 A1 B1 A1	[5]	6C_x or yC_2 seen alone or mult by $k>1$, $x<6$, $y>2$ $(1x1x)^6C_2$ seen strictly alone or added to their EENN only Value stated or implied by final answer correct value stated Award 16 SRB2 if no method is present

5 (a)	e.g. $P*N*P*P*L$ = $\frac{5!}{3!} \times \frac{{}^{6}P_{4}}{2!}$ = 3600	M1 M1 M1 A1	[4]	Mult by 5! in num Dividing by 3! or 2! Mult by ⁶ P ₄ oe
(b) (i)	$^{7}C_{5} \times ^{5}C_{4} \times ^{2}C_{1} \times ^{2}C_{1}$	M1		Mult 4 combs of which three are correct
	= 420	A1	[2]	
(ii)	both in team	M1		Evaluating both in team and subtracting from (i)
	${}^{6}C_{4} \times {}^{4}C_{3} \times 2 \times 2 = 240$	M1		240 seen can be unsimplified ft their 420, their 240
	420 - 240 = 180 ways	A1		19
	OR			
	Bat in bowl out + bowl in bat out + both out	M1		summing 2 or 3 options not both in team
	$= {}^{6}C_{4} \times {}^{4}C_{3} \times 2 \times 2 + {}^{6}C_{5} \times {}^{4}C_{3} \times 2 \times 2 + {}^{6}C_{5} \times {}^{4}C_{4} \times 2 \times 2$	A1		2 or 3 options correct unsimplified
	= 60 + 96 + 24 = 180 ways	A1		Correct ans from correct working
	OR			
	Bat in bowl out + bat out	M1	400	As above, or bowl in bat out +
	$= 60 + {}^{6}C_{5} \times {}^{5}C_{4} \times 2 \times 2 = 60 + 120 = 180 \text{ ways}$	A1 A1	[3]	bowl out
Questio	n 30			

5(i)	$ ^{12}C_{1} + ^{12}C_{3} + ^{12}C_{5} + ^{12}C_{7} + ^{12}C_{9} + ^{12}C_{11} $	M1	Summing at least 4 12 C _x combinations with $x = \text{odd numbers}$
	12	A1	Correct unsimplified answer (can be implied by final answer)
	= 2048	A1	Correct answer
	Total:	3	
(ii)	7!×8P4	B1	7! seen alone or multiplied only (cupcakes ordered)
		M1	multiplying by ⁸ P ₄ o.e (placing brownies)
	= 8467200	A1	correct answer
	Total:	3	
(iii)	9! / (6! × 2!)	B1	9! oe seen alone or as numerator
		M1	dividing by at least one of 6!,2! (removing repeated shortbread or gingerbread biscuits) ignore 4! if present
	= 252	A1	correct answer
	Total:	3	

5(a)(i)	First digit in 2 ways	$2 \times 4 \times 3 \times 2$ or 2	$2 \times 4P3$	M1	$1, 2 \text{ or } 3 \times 4P3 \text{ OE as final answer}$
	Total = 48 ways			A1	
			Total:	2	
(a)(ii)	$2 \times 5 \times 5 \times 3$			M1 M1	Seeing 5 ² mult; this mark is for correctly considering the middle two digits with replacement Mult by 6; this mark is for correctly considering the first and last digits
	= 150 ways			A1	
			Totals:	3	
5(b)(i)	OO**** in ¹⁸ C ₄ way	78	PE	M1	18 C _x or the sum of five 2-factor products with $n = 14$ and 4, may be × by 2C2: $4C0 \times 14C4 + 4C1 \times 14C3 + 4C2 \times 14C2 + 4C3 \times 14C1 + 4C4$ (× 14C0)
	= 3060			A1	
		9	Totals:	2	
(b)(ii)	Choc 0 1 2	$6=1 \times {}^{16}C_6 = 5$ $5={}^4C_1 \times {}^{16}C_5 = 5$	Choc = 8008 0.2066 = 17472 0.4508 = 10920 0.2817	B1	The correct number of ways with one of 0, 1 or 2 chocs, unsimplified or any three correct number of ways of combining choc/oat/ginger, unsimplified
	Choc 0 0 0 1 1 1 2 2 2	Oats 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2	Ginger 6 5 4 5 4 3 4 3 2		
	Total = 36400 ways	24.8	atpre	M1	sum the number of ways with 0, 1 and 2 chocs and two must be totally correct, unsimplified OR sum the nine combinations of choc, ginger, oats, six must be totally correct, unsimplified
	Probability = 36400/	²⁰ C ₆		M1	dividing by ²⁰ C ₆ (38760) oe
	= 0.939 (910/969)			A1	
			Totals:	4	

	<i>EITHER</i> : Route 1 <i>A*******</i> in 9! / 2!2!5! = 756 ways	(*M1	Considering AA and BB options with values
	<i>B</i> ******* <i>B</i> in 9! / 4!5! = 126 ways	A1	Any one option correct
	756 + 126	DM1	Summing their AA and BB outcomes only
	Total = 882 ways	A1)	
	<i>OR1:</i> Route 2 $4^{*******}A$ in ${}^{9}C_{5} \times {}^{4}C_{2} = 756$ ways	(M1	Considering AA and BB options with values
1	$9^{*******}B$ in ${}^{9}C_{4} \times {}^{5}C_{5} = 126$ ways	A1	Any one option correct
7	756 + 126	DM1	Summing their AA and BB outcomes only
7	Γotal = 882	A1)	
	Total:	4	
	EITHER: (The subtraction method) As together, no restrictions 8! / 2!5! = 168	(*M1	Considering all As together – 8! seen alone or as numerator – condone × 4! for thinking A's not identical
	As together and Bs together $7! / 5! = 42$	M1	Considering all As together and all Bs together – 7! seen alone or numerator
		M1	Removing repeated Bs or Cs – Dividing by 5! either expression or 2! 1st expression only – OE
	Total 168 – 42	DM1	Subt their 42 from their 168 (dependent upon first M being awarded)
	= 126	A1)	
	OR1: As together, no restrictions ${}^{8}C_{5}$ x ${}^{3}C_{1} = 168$	(*M1	⁸ C₅ seen alone or multiplied
		M1	⁷ C ₅ seen alone or multiplied
	As together and Bs together ${}^{7}C_{5}$ x ${}^{2}C_{1} = 42$	M1	First expression x ³ C ₁ or second expression x ² C ₁
	Total 168 – 42	DM1	Subt their 42 from their 168 (dependent upon first M being awarded)
	= 126	A1)	
	OR2: (The intersperse method)	(M1	Considering all "As together" with Cs – Mult by 6!
	(AAAA)CCCCC then intersperse B and another B	M1	Removing repeated Cs – Dividing by 5!– [Mult by 6 implies M2]
		*M1	Considering positions for Bs – Mult by 7P2 oe –

'(a)	e.g. xxxxx =5! for the other children								(B1	5! OE seen alone or mult by integer $k \ge 1$, no addition
	Put y	Put y in 6 ways, then 5 then 4 for the youngest children								Mult by 6P3 OE
	Answ	ver 5! × 6	P3 = 144	400					B1)	Correct answer
	OR: total -	- 3 tog -	2 tog = 3	8! <i>–</i> 6!3	$! - 6! \times 2 \times 5 \times 3$	= 1440	00		(B1	$8! - 6! \times k \geqslant 1$ seen
									B1	6!3! or $6! \times 2 \times 5 \times 3$ seen subtracted
									B1)	Correct answer
								Total:	3	
(b)	D 2	W 2	M 1	=	6C2 × 4C2 × 1	=	90		B1	One correct unsimplified option
	3	1	1	=	6C3 × 4 × 1	=	80		M1	Summing 2 or more 3-factor options which can contain perms or 3 factors added. The 1 can be implied
	1	3	1	=	6 × 4C3 × 1	=	24		M1	Summing the correct 3 unsimplified outcomes only
	Tota	l=194 wa	ays	4					A1	
				<i>)</i>				Total:	4	

(c)	C 2	D 1	S 1	=	$^{26}C_2 \times 9 \times 5 \times 4! = 351000$	M1	summing 2 or more options of the form (2 1 1), (1 2 1), (1 1 2), can have perms, can be added
	1	2	1	=	$26 \times {}^{9}C_{2} \times 5 \times 4! = 112320$	M1	4 relevant products seen excluding 4! e.g. $26 \times 9 \times 8 \times 5$ or $26 \times {}^9P_2 \times 5$ for 2nd outcome, condone $26 \times 9 \times 5 \times 37$ as being relevant
	1	1	2	-	$26 \times 9 \times {}^{5}C_{2} \times 4! = 56160$	M1	mult all terms by 4! or 4!/2!
	Tota	al = 51	9 480			A1	
					Tota	ıl: 4	

	¹⁸ P ₅	M1	18 P _x or y P ₅ OE seen, $0 \le x \le 18$ and $5 \le y \le 18$, can be mult by $k \ge 1$
	= 1 028 160	A1	
)	EITHER: e.g. ***(CCCCC)*********** in 5!×14 ways	(B1	5! OE mult by $k \geqslant 1$, considering the arrangements of cars next to each other
	= 1680	B1	Mult by 14 OE, (or 14 on its own) considering positions within the line
	P (next to each other) = 1680/1 028 160	M1	Dividing by (i) for probability
	P(not next to each other) = $1 - 1680/1028160$	M1	Subtracting prob from 1 (or their '5! × 14' from (i))
	$= 0.998 \left(\frac{611}{612}\right) OE$	A1)	
	$\frac{ORI:}{\frac{5! \times 14!}{18!}} = 0.001634$	(B1	5! OE mult by $k \geqslant 1$ (on its own or in numerator of fraction) considering the arrangements of cars next to each other
	DT	B1	Multiply by 14!, (or 14! on its own) considering all ways of arranging spaces with 5 cars together
	10	M1	Dividing by 18!, total number of ways of arranging spaces
	1 – 0.001634	M1	Subtracting prob from 1 (or '5! × 14!' from 18!)
	= 0.998(366)	A1)	
	OR2: 4 together - 2×5!×14C12 = 21 840 3, 1, 1 - 3×5!×14C11 = 131 040 3, 2 - 2×5!×14C12 = 21 840 2,2,1 - 3×5!×14C11 = 131 040 2,1,1,1 - 4×5!×14C10 = 480 480 1,1,1,1,1 - 5!×14C9or14P5 = 240 240	(M1	Listing the six correct scenarios (only): 4 together; 3 together and 2 separate; 3 together and 2 together; two sets of 2 together and 1 separate; 5 separate.
		M1	Summing total of the six scenarios, at least 2 correct unsimplified
	Total = 1 026 480	A1	Total of 1 026 480
	10tal 1 020 400		
	1040 1020 400	M1	Dividing their 1 026 480 by their 6(i)
	1 026 480 ÷1 028160 = 0.998(366)		
	22	M1	
(iii)	1 026 480 ÷1 028 160 = 0.998 (366) R(5) W(4) B(3) Scenarios No. of ways	M1	
(iii)	R(5) W(4) B(3) Scenarios No. of ways 1 1 1 = 5 × 4 × 3 = 60 0 1 2 = 4 × ³ C ₂ = 12	M1 A1) 5	.00
(iii)		M1 A1) 5 B1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours
(iii)		M1 A1) 5 B1 M1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied)
(iii)		M1 A1) 5 B1 M1 A1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied) 2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$ Summing no more than 7 scenario totals containing at least 6 correct
(iii)		M1 A1) 5 B1 M1 A1 M1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied) 2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$ Summing no more than 7 scenario totals containing at least 6 correct
(iii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1) 5 B1 M1 A1 M1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied) 2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$ Summing no more than 7 scenario totals containing at least 6 correct
(iii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1) 5 B1 M1 A1 M1 A1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours Any of ${}^{5}C_{2}$ or ${}^{4}C_{2}$ or ${}^{3}C_{2}$ seen multiplied by $k > 1$ (can be implied) 2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$ Summing no more than 7 scenario totals containing at least 6 correct scenarios
(iii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1) 5 B1 M1 A1 M1 A1 M1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied) 2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$ Summing no more than 7 scenario totals containing at least 6 correct scenarios
(iii)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1) 5 B1 M1 A1 M1 A1 M1 M1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied) 2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$ Summing no more than 7 scenario totals containing at least 6 correct scenarios Seeing ${}^{412}C_3 - {}^2$, considering all selections of 3 cars Subt 5C_3 OE, removing only red selections

(a)(i)	EITHER: 3**, 4**, 6**, 8**	(M1	5P_2 or $^5C_2 \times 2!$ or 5×4 OE (considering final 2 digits)	
	options $4 \times 5 \times 4 = 80$	M1	Mult by 4 or summing 4 options (considering first digit)	
		A1)	Correct final answer	
	OR: Total number of values: $6 \times 5 \times 4 = 120$	(M1	Calculating total number of values (with subtraction seen)	
	Number of values less than 300: $2 \times 5 \times 4 = 40$	M1	Calculating number of unwanted values	
	Number of evens = $120 - 40 = 80$	A1)	Correct final answer	
G(a)(ii)	3**, 4**, 6**, 8** EITHER: options 4 × 6 × 4 (last)	3 (M1	6 linked to considering middle digit e.g. multiplied or in list	
	ATP	M1 Multiply an integer by 4 × 4 (condone × 16) (No additional figures present for both M's to be awarded)		
	= 96	A1)		
	OR: Total number of values $4 \times 6 \times 6 = 144$	(M1	Calculating total number of values (with subtraction seen)	
	Number of odd values $4 \times 6 \times 2 = 48$	M1	Calculating number of unwanted values	
	Number of evens = 144 – 48 = 96	A1)	. 111	
		3		
(b)(i)	252	B1	7 111	
b)(ii)	B (6)G(4)	1		
	5 0 in ${}^{6}C_{5}(\times {}^{4}C_{0}) = 6 \times 1 = 6$ 4 1 in ${}^{6}C_{4} \times {}^{4}C_{1} = 15 \times 4 = 60$	M1	Multiplying 2 combinations ${}^6\mathrm{C}_q \times {}^4\mathrm{C}_r$, $q+r=5$, or ${}^6\mathrm{C}_5$ seen alone	
	$ \begin{array}{ll} 4 & 1 \text{ in } {}^{6}C_{4} \times {}^{4}C_{1} = 15 \times 4 = 60 \\ 3 & 2 \text{ in } {}^{6}C_{3} \times {}^{4}C_{2} = 20 \times 6 = 120 \end{array} $	M1	Summing 2 or 3 appropriate outcomes, involving perm/comb, no extra outcomes.	
	Total = 186 ways	A1		
		3		

(a)(i)	⁴⁰ P ₅	M1	40 P _x or y P ₅ oe seen, can be mult by $k \ge 1$
	= 78 960 960	A1	
		2	
a)(ii)	not front row e.g. WEJ** in $3 \times 3! = 18$ ways	B1	3! seen mult by $k \geqslant 1$
	7 rows in 7 × 18= 126 ways	B1	mult by 7
	front row: e.g. *MA** in $4 \times 2 = 8$ ways	M1	attempt at front row arrangements and multiplying by the 7 other rows arrangements, need not be correct
	Total 126×8 = 1008	A1	
		4	
(b)	EITHER: e.g. *R** in ${}^{8}C_{3}$ ways = 56 ways *L** in ${}^{8}C_{3} = 56$ ways	(M1	Considering either R or L only in team
	**** in ⁸ C ₄ = 70 ways	M1*	Considering neither in team
		DM1	summing 3 scenarios
	Total 182 ways	A1)	
	OR1: No restrictions 10 C ₄ = 210 ways	(M1	$^{10}C_4$ – , Considering no restrictions with subtraction
	$*RL* = {}^{8}C_{2} = 28$	M1*	Considering both in team
	210 – 28	DM1	subt
	= 182 ways	A1)	
b)	OR2: R out in ${}^{9}C_{4} = 126$ ways L out in ${}^{9}C_{4} = 126$ ways	(M1	Considering either R out or L out
	Both out in ${}^{8}C_{4} = 70$	M1*	Considering both out
		DM1	Summing 2 scenarios and subtracting 1 scenario
	126 + 126 - 70 = 182 ways.	A1)	1.5
	4	4	

(i)	1 L: ${}^{6}C_{2} = 15$	B1	
		1	
(ii)	No L: ${}^{6}C_{3} = 20$ (1 L: ${}^{6}C_{2} = 15$)	M1	Either 0L or 2L correct unsimplified
	2 L: ⁶ C ₁ = 6	M1	Summing the 3 correct scenarios
	Total = 41	A1	
		3	

(i)	****E**** Other letters arranged in $\frac{8!}{2!3!}$	M1	Mult by 8! or \$P_8 oe (arrangements ignoring repeats)
	2!3! = 3360 ways	A1	Correct final answer www
	OR	M1	Correct numerator (161 280)
	$\frac{8 \times 7 \times 6 \times 5 \times 4 \times 4 \times 3 \times 2 \times 1}{4!2!} = 3360 \text{ ways}$	A1	Correct final answer www
	Total:	2	
(ii)	* * * * * * Arrangements other letters × ways Es inserted	M1	k mult by 6C_4 or 6P_4 oe (ways to insert Es ignoring repeats), k can = 1 or k mult by $\frac{5!}{2!}$
	$= \frac{5!}{2!} \times {}^{6}C_{4} \left(\frac{5!}{2!} \times {}^{6}\underline{P_{4}}_{4!} \right)$	M1	Correct unsimplified expression or $\frac{5!}{2!} \times {}^6P_4$
	= 900 ways	A1	Correct answer
	OR Total no of ways – no of ways with Es touching 9!/(4! × 2!) – or 7 560 –	M1	7560 unsimplified – k
	$\frac{6!}{2!} + {}^{6}P_{2} \times \frac{5!}{2!} + \frac{{}^{6}P_{2}}{2!} \times \frac{5!}{2!} + \frac{{}^{6}P_{3}}{2! \times \frac{5!}{2!}}$ $= 360 + 1800 + 900 + 3600 = 6660$	Mı	Attempting to find four ways of Es touching (4 Es, 3Es and a single, 2 lots of 2 Es, 2 Es and 2 singles)
	7 560 - 6 660 = 900	A1	Correct answer
(ii)	OR Adding the number of ways with the first E in the 1 st (E ₁), 2 nd (E ₂) or 3 rd (E ₃) position. 5!	M1	For any values for E_1 , E_2 and E_3
	$\frac{5!}{2!}$ (E ₁ + E ₂ + E ₃) where E ₁ = 10, E ₂ = 4, E ₃ = 1 $\frac{5!}{2!}$ (E ₁ + E ₂ + E ₃)	M1	For any two correct values of E_1 , E_2 and E_3
	600 + 240 + 60 = 900	A1	Correct answer
	Total:	3	
(iii)	EENN* in 3 ways	B1	Numerical value must be stated
	Total:	1	

EE *** with no N: 1 way	M1	Identifying the three different scenarios of EE, EEE or EEEE
EEN** 3C2 or listing 3 ways EENN* 3 ways from (iii)	A1	Total no of ways with two Es (7 or 3 + 3 + 1)
EEE** with no N: 3 ways EEEN* 3 ways EEENN 1 way	A1	Total no. of ways with 3 Es (7)
EEEE* no N 3 ways EEEEN 1 way Total 18 ways	A1	Correct answer stated
Method List containing ways with 2Es, 3Es and 4Es List containing at least 8 correct different ways List of all 18 correct ways Total 18	M1	At least 1 option listed for each of EE^^^, EEEE^
	A1	Ignore repeated options
	A1	Ignore repeated/incorrect options
	A1	Correct answer stated
Total:	4	

(a)(i)	(AAAIU) * * * * Arrangements of vowels/repeats × arrangements of (consonants & vowel group) =	M1	$k \times 5!$ (k is an integer, $k \ge 1$)
	5!×5! 3!	M1	$\frac{m}{3}$! (m is an integer, $m \ge 1$) Both Ms can only be awarded if expression is fully correct
	= 2400	A1	Correct answer
		3	
(a)(ii)	E.g. R * * * T * * * L . Arrangements of consonants RL, RS, $SL = {}^{3}P_{2} = 6$ Arrangements of remaining letters = $\frac{6!}{3!} = 120$	M1	$k \times \frac{6!}{3!}$ or $k \times {}^{3}P_{2}$ or $k \times {}^{3}C_{2}$ or $k \times 3!$ or $k \times 3 \times 2$ (k is an integer, $k \ge 1$), no irrelevant addition
	Total 120 × 6	M1	Correct unsimplified expression or $\frac{6!}{3!} \times {}^{3}C_{2}$
	= 720 ways	A1	Correct answer
5(b)	Method 1 N(2) R(8) Br(4) 1 2 1 = $2 \times {}^{8}C_{2} \times 4 = 224$	M1	Multiply 3 combinations, ${}^{2}C_{x} \times {}^{8}C_{y} \times {}^{4}C_{z}$. Accept ${}^{2}C_{1} = 2$ etc.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	3 or more options correct unsimplified
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Summing their values of 4 or 5 legitimate scenarios (no extra scenarios)
	Total = 366 ways	A1	Correct answer
	Method 2 ¹⁴ C ₄ – (2N2R or 1N3R or 4R or 3R1B or 2R2B or 1R3B or 4B)	M1	$^{\rm c14}{ m C_4}-k$ ' seen, k an integer from an expression containing $^{\rm 8}{ m C_x}$
	$1001 - (1 \times {}^{8}C_{2} + 2 \times {}^{8}C_{3} + {}^{8}C_{4} + {}^{8}C_{3} \times 4 + {}^{8}C_{2} \times {}^{4}C_{2} + 8 \times 4 + 1)$	A1	4 or more 'subtraction' options correct unsimplified, may be in a list
	1001 - (28 + 112 + 70 + 224 + 168 + 32 + 1)	M1	Their ¹⁴ C ₄ – [their values of 6 or more legitimate scenarios] (no extra scenarios, condone omission of final bracket)
	= 366	A1	Correct answer
		4	

⁷ (i)	$\frac{9!}{2!2!} = 90720$	B1	Must see 90720
		1	
(ii)	Method 1 ↑ * * * * * A	B1	5! seen multiplied (arrangement of consonants allowing repeats)
	No. arrangements of consonants × ways of inserting vowels =	B1	6P_4 oe (i.e. $6 \times 5 \times 4 \times 3$, $^6C_4 \times 4!$) seen mult (allowing repeats) no extra terms
	$\frac{5!}{2!} \times \frac{^{6}P_{4}}{2!}$	В1	Dividing by at least one 2! (removing at least one set of repeats)
	Answer $\frac{^{6}P_{4}}{2!} \times \frac{5}{2} = 10800$	B1	Correct final answer
		4	
(iii)	⁵ C ₃ = 10	M1	5C_x or 5P_x seen alone, $x = 2$ or 3
		A1	Correct final answer not from ⁵ C ₂
'(iv)	Method 1 Considering separate groups	2 M1	Considering two scenarios of MME or EEM or MMEE with attempt, may be probs or perms
	MME** = ${}^{5}C_{2}$ = 10 MEE** = ${}^{5}C_{2}$ = 10 MMEE* = ${}^{5}C_{1}$ = 5	M1	Summing three appropriate scenarios from the four need 5C_x seen in all of them
	$ME^{***} = {}^{5}C_{3} = 10 \text{ see (iii) } Total = 35$	A1	Correct final answer
	Method 2 Considering criteria are met if ME are chosen	M1	$^{7}C_{x}$ only seen, no other terms
		M1	^x C ₃ only seen, no other terms
	ME *** = ${}^{7}C_{3}$ = 35	A1	Correct final answer
	14	3	1.5

Method 1		
M M M M	M1	$k \times 5!$ (120) or $k \times 6P2$ (30), k is an integer ≥ 1 ,
No. ways men placed × No. ways women placed in gaps = $5! \times {}^6P_2$	M1	Correct unsimplified expression
= 3600	A1	Correct answer
Method 2		
Number with women together = $6! \times 2$ (1440) Total number of arrangements = $7!$ (5040)	M1	$6! \times 2$ or $7! - k$ seen, k is an integer $\geqslant 1$
Number with women not together = $7! - 6! \times 2$		Correct unsimplified expression
= 3600	A1	Correct answer
	3	

(i)	Total number of selections = ${}^{12}C_7 = 792$	B1	Seen as denominator of fraction
	Selections with boy included = ${}^{11}C_6$ or ${}^{12}C_7 - {}^{11}C_7 = 462$	M1	Correct unsimplified expression for selections with boy included seen as numerator of fraction
	Probability = 462/792 = 7/12 (0.583)	A1	Correct answer
(ii)	Method 1		
	Scenarios are: $2G + 5B$: ${}^{4}C_{2} \times {}^{8}C_{5} = 336$	B1	One unsimplified product correct
	$3G + 4B:$ ${}^{4}C_{3} \times {}^{8}C_{4} = 280$ $4G + 3B:$ ${}^{4}C_{4} \times {}^{8}C_{3} = 56$	M1	No of selections (products of $^nC_\tau$ and $^nP_\tau$) added for 2, 3 and 4 girls with no of girls and no of boys summing to 7
	Total = 672	A1	Correct total
	Probability = 672/792 (28/33) (0.848)	A1ft	Correct answer – 'total'/('total no of selections' from i)
	Method 2		
	$0G + 7B$ ${}^{4}C_{0} \times {}^{8}C_{7} = 8$	B1	One unsimplified no of selections correct
		M1	No of selections (products of $^{n}C_{r}$ and $^{n}P_{r}$) added for 0 and 1 girls with no of girls and no of boys summing to 7
	(12C ₇ – 120)/792 or 1 – 120/792	A1	792 – 120 = 672 or 1 – 120/792
	Probability = 672/792 (28/33) (0.848)	A1ft	'672' over '792' from i

(i)	11! 4!4!2!	M1	$\frac{11!}{4! \times k} or \frac{11!}{2! \times k}, k \text{ a positive integer}$
	= 34650	A1	Correct final answer
		2	
(ii)	Method 1		
	$P(SS) = \frac{4}{11} \times \frac{3}{10} = \frac{12}{110} \ (= 0.10911)$	B1	One of P(SS), P(PP) or P(II) correct, allow unsimplified
	$P(PP) = \frac{2}{11} \times \frac{1}{10} = \frac{2}{110} (= 0.01818)$ $P(II) = \frac{4}{11} \times \frac{3}{10} = \frac{12}{110} (= 0.10911) \frac{4}{11} \times \frac{3}{10}$	M1	Sum of probabilities from 3 appropriate identifiable scenarios (either by labelling or of form $\frac{4}{11} \times \frac{a}{b} + \frac{2}{11} \times \frac{c}{b} + \frac{4}{11} \times \frac{a}{b}$ where $a = 4$ or 3, $b = 11$ or 10, $c = 2$ or 1)
	Total = $\frac{26}{110} = \frac{13}{55}$ oe (0.236)	A1	Correct final answer
	Method 2		
	Total number of selections = ${}^{11}C_2 = 55$ Selections with 2 Ps = 1	B1	Seen as the denominator of fraction (no extra terms) allow unsimplified
	Selections with 2 Ss = ${}^{4}C_{2}$ = 6 Selections with 2 Is = ${}^{4}C_{2}$ = 6,	M1	Sum of 3 appropriate identifiable scenarios (either by labelling or values, condone use of permutations. May be implied by 2,12,12)
	Total selections with 2 letters the same = 13	A1	Correct final answer, without use of permutations
	Probability of 2 letters the same = $\frac{13}{55}$ oe (0.236)		
		3	

(i)	5! × 6! ×2	B1	k×5! or m ×6! (k , m integer, k , $m \ge 1$), no inappropriate addition
		B1	$n \times 5! \times 6!$ (<i>n</i> integer, $n \ge 1$), no inappropriate addition
	= 172800	B1	Correct final answer, isw rounding (www scores B3) All marks based on their final answer
		3	
(ii)	G G G G G No. ways girls placed × No. ways boys placed in gaps =	M1	$k \times 6!$ or $k \times {}^{7}P_{5}$ (k is an integer, $k \ge 1$) no inappropriate add. $({}^{7}P_{5} = 7 \times 6 \times 5 \times 4 \times 3 \text{ or } {}^{7}C_{5} \times 5!)$
	$6! \times {}^{7}P_{5}$	M1	Correct unsimplified expression
	= 1814400	A1	Correct exact final answer (ignore subsequent rounding)
		3	

Question 46

${}^{9}C_{4} \times {}^{5}C_{3} \times {}^{2}C_{2}$	B1	⁹ C ₄ or ⁹ C ₃ or ⁹ C ₂ seen (1st group)
=126 × 10 × 1	B1	^{5 or 7} C ₃ or ^{6 or 7} C ₄ or ^{6 or 5} C ₂ times an integer (2nd group)
=1260	B1	Correct answer
	3	

(i)	Scenarios are: 4V + 1C + 1DB:	$^{11}C_4 \times {}^5C_1 \times {}^4C_1$	M1	11 C _a × 5 C _b × 4 C _c , $a+b+c=6$,
	4V + 2C: 5V + 1C:	$^{11}C_4 \times ^5C_2$ $^{11}C_5 \times ^5C_1$	B1	2 correct unsimplified options
	6600 + 3300 + 2310	2	M 1	Add 2 or 3 correct scenarios only
	= 12210	13	Al	Correct answer
		Satures	4	
(ii)	4! × 3!	atpie	Ml	k multiplied by 3! or 4!, k an integer $\geqslant 1$
			Al	Correct unsimplified expression
	= 144		Al	Correct answer
			3	

(i)	<u>91</u> 2131	M1	9! alone on numerator, 2! and/or 3! on denominator
	= 30240	Al	Exact value, final answer
		2	
(ii)	$A \land \land$	B1	Final answer
		1	
(iii)	$M \wedge M \wedge \wedge \wedge \wedge \wedge \\ = \frac{7!}{3!} \times 7$	M1	7! in numerator, (considering letters not M)
		M1	Division by 3! only (removing repeated As)
	TPD	Ml	Multiply by 7 (positions of M-M)
	= 5880	Al	Exact value, final answer
	Method 2 (choosing letter between Ms)		
	$1 \times \frac{6!}{2!} \times 7 + 4 \times \frac{6!}{3!} \times 7$	M1	6! in sum of 2 expressions $a6! + b6!$
		Ml	Multiply by 7 in both expressions (positions of M-M)
	= 2520 + 3360	M1	$\frac{c}{2!} + \frac{d}{3!}$ seen (removing repeated As)
	= 5880	Al	Exact value
(iii)	Method 3		///
	(MAM) ^ ^ ^ ^ = 7!/2! = 2520	M1	7! in numerator (considering 6 letters + block)
	(MA'M) ^ ^ ^ ^ = 7!/3! × 4 = 840 × 4 = 3360	M1	Division by 2! and 3! seen in different terms
	Total = 2520 + 3360	M1	Summing 5 correct scenarios only
	= 5880	Al	Exact value
	3491	4	
(iv)	$M A^{=4}C_1 = 4$	B1	Final answer
		1	
(v)	$M ^{^{\circ}} ^{^{1}}C_{2} = 6$ $M M ^{^{\circ}} ^{^{1}}C_{1} = 4$	M1	Either option M M ^ or M ^ ^ correct, accept unsimplified
	M M A : = 1 M A A : = 1 $(M A_{\perp}^{4}C_{1} = 4)$	M1	Add 4 or 5 correct scenarios only
	Total = 16	Al	Value must be clearly stated
	Method 2		
	$M M^{5} = {}^{5}C_{1} = 5$	M1	Either option M M ^ or M ^ ^ correct, accept unsimplified
	$M ^{\land \land} = {}^{5}C_{2} = 10$	M1	Adding 2 or 3 correct scenarios only
	M A A = = 1 Total = 16	Al	Value must be clearly stated
		3	

(i) $M(8)$ $W(4)$ 4 2 in ${}^{8}C_{4} \times {}^{4}C_{2} = 420$ ways 5 1 in ${}^{8}C_{5} \times {}^{4}C_{1} = 224$ ways 6 0 in ${}^{8}C_{6} \times {}^{4}C_{0} = 28$ ways	B1	One unsimplified product correct
	M1	Summing the number of ways for 2 or 3 correct scenarios (can be unsimplified), no incorrect scenarios
Total 672 ways	Al	Correct answer
	3	
Total number of selections = ${}^{12}C_6 = 924$ (A)	M1	$^{12}C_x$ – (subtraction seen), accept unsimplified
Selections with males together = ${}^{10}C_4 = 210$ (B)	Al	Correct unsimplified expression
Total = (A) - (B) = 714	Al	Correct answer
Alternative method for question 4(ii)		
No males + Only male 1 + Only male 2 = ${}^{10}C_6 + {}^{10}C_5 + {}^{10}C_5$	M1	10 C _x + 2 x 10 C _y , $x \neq y$ seen, accept unsimplified
= 210 + 252 + 252	Al	Correct unsimplified expression
= 714	Al	Correct answer
Alternative method for question 4(ii)		111
Pool without male 1 + Pool without male 2 - Pool without either male	M1	$2 x^{11}C_x - {}^{10}C_x$
$= {}^{11}C_6 + {}^{11}C_6 - {}^{10}C_6$ = 462 + 462 - 210	Al	Correct unsimplified expression
= 714	Al	Correct answer
	3	

7(a)	${}^{6}C_{3} \times {}^{3}C_{2} \times {}^{1}C_{1}$	M1	$^6C_a\times^{6\text{-a}}C_b\times^{6\text{-a-b}}C_{6\text{-a-b}}$ seen oe $^{6\text{-a-b}}C_{6\text{-a-b}}$ can be implied by 1 or omission, condone use of permutations,
	= 20 × 3	Al	Any correct method seen no addition/additional scenarios
	= 60	Al	Correct answer
	Alternative method for question 7(a)		
	$\frac{{}^{6}P_{6}}{{}^{3}P_{3} \times {}^{2}P_{2} \times {}^{1}P_{1}} = \frac{6!}{3 \bowtie 2!}$	Ml	$^6\mathrm{P_6}$ / ($^n\mathrm{P}_n \ge k$) with $3 \ge n \ge 1$ and $6 \ge k$ an integer ≥ 1 , not $6!/1$
	$\frac{3}{9}$ $\frac{2}{9}$ $\frac{2}{9}$ $\frac{1}{9}$ $\frac{7}{9}$ $\frac{1}{9}$ $\frac{1}$	Al	Correct method with no additional terms
	= 60	Al	Correct answer
		3	
(b)(i)	$\frac{4!}{3!} \times \frac{3!}{2!} \times 2$	M1	A single expression with either $4!/3! \times k$ or $3!/2! \times k$, k a positive integer seen oe (condone 2 identical expressions being added)
		M1	Correctly multiplying <i>their</i> single expression by 2 or 2 identical expressions being added.
	= 24	Al	Correct answer
		3	

(b)(ii)	Total no of arrangements = $\frac{7!}{2!3!}$ = 420 (A)	B1	Accept unsimplified
	No with 2s together = $\frac{6!}{3!}$ = 120 (B)	B1	Accept unsimplified
	With 2s not together: their (A) – their (B)	M1	Subtraction indicated, possibly by their answer, no additional terms present
	= 300 ways	Al	Exact value www
	Alternative method for question 7(b)(ii)		
	3_7_7_7_8_		
	$\frac{5!}{3!} \times \frac{6 \times 5}{2}$	Bl	$k \ge 5!$ in numerator, k a positive integer
	3! 2	Bl	m x 3! In denominator, m a positive integer
		M1	Their 5!/3! multiplied by ⁶ C ₂ only (no additional terms)
	= 300 ways	Al	Exact value www
		4	

(9C ₄ =) 126	B1	
	1	
⁷ C ₂	B1	$^{7}C_{x}$ or $^{9}C_{2}$ (implied by correct answer) or $^{7}P_{x}$ or $^{7}P_{y}$, seen alone
= 21	B1	correct answer
	2	- 1 1
$_{C_{1}}(B_{1}B_{2}B_{3})C_{2}_{C_{3}}C_{4}_{C_{5}}C_{6}$	B1	3! or 6! seen alone or multiplied by k > 1 need not be an integer
3! × 6! × 7	B1	3! and 6! seen multiplied by k > 1, integer, no division
= 30240	B1	Exact value
Alternative method for question 8(iii)		5/
C1 (B1 B2 B3) C2 C3 C4 C5 C6	B1	3! or 7! seen alone or multiplied by k > 1 need not be an integer
3! × 7!	Bl	3! and 7! seen multiplied by k > or = 1, no division
= 30240	B1	Exact value
	3	
C ₁ _ C ₂ _ C ₃ _ C ₄ _ C ₅ _ C ₆	B1	6! or 4! X 6P2 seen alone or multiplied by k > 1, no division (arrangements of cars)
6! × 5P3 or 6! × 5 × 4 × 3 or 6! x 3! x10	B1	Multiply by 5P3 oe i.e. putting Bs in between 4 of the Cs OR multiply by 3! x n where n = 7, 8, 9, 10 (number of options)
= 43200	B1	Correct answer
	3	

(i)	$\frac{9!}{2!3!} = 30240$	B1	9! Divided by at least one of 2! or 3!
		Bl	Exact value
		2	
(ii)	DR: $\frac{7!}{2!2!}$ = 1260 DO: $\frac{7!}{3!}$ = 840	Bl	7! Seen alone or as numerator in a term, can be multiplied not + or –
		B1	One term correct, unsimplified
	Total = 2100	B1	Final answer
		3	

Question 53

(i)	$3A \ 2D \ 2M : {}^{6}C_{3} \times {}^{5}C_{2} \times {}^{4}C_{2} (= 1200)$ $4A \ 2D \ 1M : {}^{6}C_{4} \times {}^{5}C_{2} \times {}^{4}C_{1} (= 600)$ $3A \ 3D \ 1M : {}^{6}C_{3} \times {}^{5}C_{3} \times {}^{4}C_{1} (= 800)$	MI	${}^{6}C_{x} \times {}^{5}C_{y} \times {}^{4}C_{z}, x + y + z = 7$
		Al	2 correct products, allow unsimplified
		M1	Summing their totals for 3 correct scenarios only
	Total = 2600	Al	Correct answer $SC1 ^6C_3 \times ^5C_2 \times ^4C_1 \times ^9C_1 = 7200$
		4	
(ii)	⁷ C ₄ × 1	B1	⁷ C₃ or ⁷ C₄ seen anywhere
	35	B1	7 /
	2		

6! = 720	B1	Evaluated
	1	
Total no of arrangements: $\frac{9!}{2!3!} = 30240$	B1	Accept unevaluated
No with Ts together = $\frac{8!}{3!}$ = 6720	B1	Accept unevaluated
With Ts not together: 30 240 – 6720	M1	correct or $\frac{9!}{m} - \frac{8!}{n}, m, n$ integers > 1 or <i>their</i> identified total – <i>their</i> identified Ts together
23 520	A1	CAO
Alternative method for question 7(ii)		
$\frac{7!}{3!} \times \frac{8 \times 7}{2}$	B1	$7! \times (k>0)$ in numerator, cannot be implied by $^{7}P_{2}$, etc.
	B1	$3! \times (k > 0)$ in denominator
TPR	M1	$\frac{\textit{their 7!}}{\textit{their 3!}} \times {}^{8}\text{C}_{2}\text{or }{}^{8}\text{P}_{2}$
23 520	A1	CAO
	4	

	Number of arrangements = $\frac{7!}{3!}$ Probability = $\frac{their \frac{7!}{3!}}{their \frac{9!}{3!2!}} = \frac{840}{30240}$	M1	their identified number of arrangements with T at ends their identified total number of arrangements $ \frac{7!}{or \frac{m}{9!}}m, n \text{ integers} > 1 $
=	1/36 or 0.0278	A1	Final answer
	12	2	
	OOT_{-} ${}^{4}C_{2}=6$	M1	4C_x seen alone or 4C_x x $k \ge 1$, k an integer, $0 < x < 4$
C	${}^{4}C_{1}=4$ ${}^{4}C_{1}=4$ ${}^{4}C_{1}=4$ ${}^{4}C_{1}=4$ ${}^{4}C_{1}=4$	A1	${}^{4}C_{2} \times k, \ k = 1 \text{ oe or } {}^{4}C_{1} \times m, \ m = 1 \text{ oe alone}$
		M1	Add 3 or 4 identified correct scenarios only, accept unsimplified
C	(Total) = 15	A1	CAO, WWW Only dependent on 2nd M mark
		4	

(1)	$\frac{9!}{2!} = 181440$	B1	Exact value
		1	
(ii)	Total no of ways = $\frac{12!}{2!4!}$ = 9 979 200 (A)	B1	Accept unevaluated
	With Ss together = $\frac{11!}{4!}$ = 1 663 200 (B)	B1	Accept unevaluated
	With Ss not together = (B) – (A)	М1	Correct or $\frac{12!}{m} - \frac{8!}{n}$, m, n integers > 1 or <i>their</i> identified total – <i>their</i> identified Ss together
	8 316 000	A1	Exact value
	Alternative method for question 6(ii)		
	_T_E_E_P_L_E_C_H_A_E_	B1	$10! \times k$ in numerator k integer $\geqslant 1$
	$\frac{10!}{4!} \times \frac{11 \times 10}{2!}$	B1	$4! \times k$ in numerator k integer $\geqslant 1$
	$\frac{\textit{their} 10!}{\textit{their} 4!} \times {}^{11}\text{C}_2 \text{ or } {}^{11}\text{P}_2$	M1	OE
	8 316 000	A1	Exact value
		4	
(111)	SEEE:1	M1	6 C _x seen alone or times $K > 1$
	SEE_: ${}^{6}C_{1} = 6$ SE: ${}^{6}C_{2} = 15$ S: ${}^{6}C_{3} = 20$	B1	⁶ C ₃ or ⁶ C ₂ or ⁶ C₁ alone
	Add 3 or 4 correct scenarios	M1	No extras
	Total = 42	A1	777
	4	4	5/

³⁸ C _r or ⁿ C ₃₄	M1	Either expression seen OE, no other terms, condone x1
³⁸ C ₃₄	A1	Correct unsimplified OE
73815	A1	If M0, SCB1 ³⁸ C ₃₄ x k, k an integer
	3	

	9! 3!6!		9! Alone on numerator, $3! \times k$ or $6! \times k$ on denominator
	= 84	A1	
		2	
(b)	^ (B B B) ^ ^ ^ ^	M1	$\frac{7!}{6!} \times k$ or $7k$ seen, k an integer > 0
	$\frac{7!}{6!} \times \frac{8 \times 7}{2}$	M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n=7$, 8 or 9, m an integer > 0
		M1	n = 8 used in above expression
	= 196	A1	
	Alternative for question 4(b)		
	[Arrangements, blues together – Arrangements with blues together and reds together =] 9! 8!	M1	9! Seen alone or as numerator with subtraction
	2!6! 6!		
	= [252 – 56]	M1	8! Seen alone or as numerator in a second term and no other terms
		M1	All terms divided by 6! x k, k an integer
	= 196	A1	
		4	111
Ques	tion 58		PI

'(a)	$\frac{9!}{2!2!} = 90720$	В1
	4 4 5	1
(b)	<u>6!</u> <u>2!</u>	M1
	360 Satore	A1
		2

(c)	2 Es together = $\frac{8!}{2!}$ (= 20160)	
	Es not together = $90720 - 20160 = 70560$	
	$Probability = \frac{70560}{90720}$	
	$\frac{7}{9}$ or 0.778	
	Alternative method for question 7(c)	
	^^_^_^_	
	$\frac{7!}{2!} \times \frac{8 \times 7}{2} = 70560$	
	$7! \times k$ in numerator, k integer $\geqslant 1$, denominator $\geqslant 1$	
	Multiplying by 8C_2 OE	
	$Probability = \frac{70560}{90720}$	
	$\frac{7}{9}$ or 0.778	
(d)	Scenarios are: $\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Summing the number of ways for 3 or 4 correct scenarios	
	Total = 35	
Quest	tion 59	

(a)	8! 3!	SatpreP.co	M1
	6720		A1
			2

(b)	Total number = $\frac{10!}{2!3!}$ (302400) (A)	B1
	With Es together = $\frac{9!}{3!}$ (60480) (B)	B1
	Es not together = $their(A) - their(B)$	M1
	241920	A1
	Alternative method for question 6(b)	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$8! \times k$ in numerator, k integer ≥ 1 , denominator ≥ 1	B1
	$3! \times m$ in denominator, m integer ≥ 1	BI
	Their 8! Multiplied by 9C2 (OE) only (no additional terms)	M1
	241920	A1
		4
(c)	Scenarios: $E M M M$ $^{5}C_{0} = 1$ $E M M_{_}$ $^{5}C_{1} = 5$ $E M_{_}$ $^{5}C_{2} = 10$	MI
	Summing the number of ways for 2 or 3 correct scenarios	Mi
	Total = 16	A
		3

(a)	6!	М		
	720	A		
	Sature?			
b)	Total number: $\frac{9!}{3!2!}(30240)$	M		
	Number with Ls together = $\frac{8!}{3!}$ (6720)	M		
	Number with Ls not together = $\frac{9!}{3!2!} - \frac{8!}{3!}$	M		
	= 30 240 - 6720			
	23 520	A:		
	Alternative method for question 2(b)			
	$\frac{7!}{3!} \times \frac{8 \times 7}{2}$			
	7! × k in numerator, k integer ≥ 1	M		
	$8 \times 7 \times m$ in numerator or $8C2 \times m$, m integer ≥ 1	M		
	3! in denominator	Mi		
	23 520	A		
		4		

Scenarios: $2P \ 3V \ 2G$ $^{\$}C_2 \times ^{4}C_2 \times ^{6}C_3 = 28 \times 6 \times 20 = 3360$ $2P \ 4V \ 1G$ $^{\$}C_2 \times ^{4}C_1 \times ^{6}C_4 = 28 \times 4 \times 15 = 1680$ $3P \ 3V \ 1G$ $^{\$}C_3 \times ^{4}C_1 \times ^{6}C_3 = 56 \times 4 \times 20 = 4480$ $4P \ 2V \ 1G$ $^{\$}C_4 \times ^{4}C_1 \times ^{6}C_2 = 70 \times 4 \times 15 = 4200$ (M1 for $^{\$}C_r \times ^{4}C_r \times ^{6}C_r$ with $\sum r = 7$)	M1
Two unsimplified products correct	B1
Summing the number of ways for 3 or 4 correct scenarios	M1
Total: 13 720	A1
	4

Question 62

(a)	Total number of ways = $\frac{8!}{3!2!}$ (= 3360)	B1	Correct unsimplified expression for total number of ways
	Number of ways with V and E in correct positions = $\frac{6!}{2 \times 2!}$ (= 180)	В1	$\frac{6!}{2!\times 2!}$ alone or as numerator in an attempt to find the number of ways with V and E in correct positions. No \times , \pm
	Probability = $\frac{180}{3360} \left(= \frac{3}{56} \right)$ or 0.0536	B1 FT	Final answer from <i>their</i> $\frac{6!}{2 \times 2!}$ divided by <i>their</i> total number of ways
	Alternative method for question 5(a)		
	$\frac{1}{8} \times \frac{3}{7}$	M1	$\frac{a}{8} \times \frac{b}{7}$ seen, no other terms (correct denominators)
		M1	$\frac{1}{c} \times \frac{3}{d}$ seen, no other terms (correct numerators)
	$\frac{3}{56}$ or 0.0536	A1	
	12	3	
(b)	Rs together and Es together: 5! (120)	B1	Alone or as numerator of probability to represent the number of ways with Rs and Es together, no ×, +, –
	Es together: $\frac{6!}{2!} (= 360)$	B1	of ways with Es together, no ×, + or –
	Probability = $\frac{5!}{\frac{6!}{2!}}$	M1	$\frac{their 5!}{their \frac{6!}{2!}}$ seen
	$\frac{1}{3}$	A1	

(a)	Scenarios: 6W 0M ⁹ C ₆ = 84	M1	Correct number of ways for either 5 or 4 women, accept unsimplified
	5W 1M ${}^{9}C_{5} \times {}^{5}C_{1} = 126 \times 5 = 630$ 4W 2M ${}^{9}C_{4} \times {}^{5}C_{2} = 126 \times 10 = 1260$	M1	Summing the number of ways for 2 or 3 correct scenarios (can be unsimplified), no incorrect scenarios.
	Total = 1974	A1	
		3	
(b)	Total number of ways = ${}^{14}C_6$ (3003) Number with sister and brother = ${}^{12}C_4$ (495) Number required = ${}^{14}C_6$	M1	¹⁴ C ₆ – a value
	$^{12}C_4 = 3003 - 495$	M1	$^{12}C_x$ or nC_4 seen on its own or subtracted from <i>their</i> total, $x \le 6$, $n \le 13$
	2508	A1	

a)	${}^{9}C_{6} (\times {}^{3}C_{3})$	M1	${}^{9}C_{k} \times n, k = 6, 3, n = 1,2$ oe Condone ${}^{9}C_{6} + {}^{3}C_{3}, {}^{9}P_{6} \times {}^{3}P_{3}$	
	84	A1	Accept unevaluated.	
		2		
)	Number with 3 Baker children = ${}^{6}C_{2}$ or 15	B1	Correct seen anywhere, not multiplied or added	
	Total no of selections = ${}^{9}C_{5}$ or 126 Probability = $\frac{\text{number of selections with 3 Baker children}}{\text{total number of selections}}$	M1	Seen as denominator of fraction	
	$\frac{15}{126}$, 0·119	A1	OE, e.g. $\frac{5}{42}$	
	Alternative method for question 6(b)			
	$\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \left(\times \frac{6}{6} \right) \left(\times \frac{5}{5} \right) \times {}^{5}C_{3}$	B1	$^5\mathrm{C}_3$ (OE) or 10 seen anywhere, multiplied by fractions only, no added	
	10	M1	$\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \left(\times \frac{6}{6} \right) \left(\times \frac{5}{5} \right) \times k$, $1 \le k, k$ integer	
	$\frac{15}{126}$, 0·119	A1	OE, e.g. $\frac{5}{42}$	
		3		
c)	[Total no of arrangements = 9!] [Arrangements with men together = 8! × 2] Not together: 9! –	M1	9! - k or $362880 - k$, k an integer < 362 880	
	8!×2	B1	8! × 2(!) or 80 640 seen anywhere	
	282 240	A1	Exact value	
	Alternative method for question 6(c)			
	7! × 8 × 7	B1	$7! \times k$, k positive integer > 1	
	7!×8×7	M1	$m \times 8 \times 7$, $m \times {}^{8}P_{2}$, $m \times {}^{8}C_{2}$ m positive integer > 1	
	282 240	A1	Exact value	
		3		
)	71×2×7	M1	7! × k , k positive integer > 1 If 7! not seen, condone $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times (1) \times k$ or $7 \times 6! \times k$ only	
		M1	$m \times 2 \times 7$, m positive integer > 1	
	70 560	A1		
			1	

(a)	$\frac{8!}{2!}$	M1	$\frac{8!}{k} \equiv \frac{7 \times 8}{k}$, where $k \in \mathbb{N}$, $\frac{a!}{2(!)}$, where $a \in \mathbb{N}$
	20160	A1	
		2	

'(b)	Total number of ways: $\frac{10!}{2!3!}$ (= 302400) (A)	B1	Accept unsimplified
	With Ps together: $\frac{9!}{3!}$ (= 60 480) (B)	B1	Accept unsimplified
(c)	Probability = $\frac{\text{Number of ways Es at beginning and end}}{\text{Total number of ways}}$ Probability = $\frac{\frac{8!}{2!}}{\frac{10!}{2 \times 3!}} = \frac{20160}{302400}$	M1	$\frac{\left(\frac{8!}{k!}\right)}{\frac{10!}{k!l!}} 1 \leqslant k, l \in \mathbb{N} \leqslant 3, \text{FT denominator from 7(b) or correct}$
	$\frac{1}{15}$, 0·0667	A1	
(d)	Scenarios:	M1	5C_x seen alone, $1 \le x \le 4$
	$\begin{array}{lll} P \ E \ E \ & ^5C_0 = 1 \\ P \ E \ E \ & ^5C_1 = 5 \\ P \ E \ & ^5C_2 = 10 \\ P \ & ^5C_3 = 10 \end{array}$	M1	Summing the number of ways for 3 or 4 correct scenarios (can be unsimplified), no incorrect scenarios
	Total = 26	A1	
	Total 20	AI	

i(a)	<u>11!</u> 2!212!		11! alone as numerator. $2! \times m! \times n!$ on denominator, $m = 1, 2, n = 1, 2$. no additional terms, no additional operations.
	4989600	A1	Exact answer only.
		2	

Arrange the 7 letters CTEPILL = $\frac{7!}{2!}$	B1	$\frac{7!}{2!} \times k$ seen, k an integer > 1.
Number of ways of placing As in non-adjacent places = 8C_2 $\frac{7!}{2!} \times {}^8C_2$	M1	$m \times n(n-1)$ or $m \times^n C_2$ or $m \times^n P_2$, $n = 7, 8$ or $9, m$ as integer > 1 .
	M1	$\frac{7!}{p!} \times {}^{8}C_{2} \text{ or } \frac{7!}{p!} \times {}^{8}P_{2}, p \text{ integer} \geqslant 1, \text{ condone } 2520 \times 28.$
= 70560	A1	Exact answer only. SC B1 70560 from M0, M1 only.
Method 2 [Arrangements Rs at ends – Arrangements Rs at ends and A	s together]	
Total arrangements with R at beg. and end = $\frac{9!}{2!2!}$	M1	$\frac{9!}{2!m!}$ - k, 90720 > k integer > 1, m = 1, 2.
Arrangements with R at ends and As together = $\frac{8!}{2!}$ With As not together = $\frac{9!}{2!2!} - \frac{8!}{2!}$	B1	$s - \frac{8!}{2!}$, s an integer >1
2121 21	M1	$\frac{9!}{p} - \frac{8!}{q}$, p, q integers ≥ 1 , condone 90720 – 20160.
[90720 - 20160] = 70560	A1	Exact answer only. SC B1 70560 from M0, M1 only.
7 9/	4	

(c)

Method 1		
$R R A L_{-}$ $^{5}C_{2}$ $= 10$ $R R A L L_{-}$ $^{5}C_{1}$ $= 5$ $R R A A L$ $^{5}C_{1}$ $= 5$	M1	5C_x seen alone or $^5C_x \times k$, $2 \geqslant k \geqslant 1$, k an integer, $0 < x < 5$ linked to an appropriate scenario.
$RRAAL_{\perp} = 5$ $RRAALL = 1$	A1	5 C ₂ × k , $k = 1$ oe or 5 C ₁ × m , $m = 1,2$ oe alone. SC if 5 C _{x} not seen. B2 for 5 or 10 linked to the appropriate scenario WWW.
	1.5	Add outcomes from 3 or 4 identified correct scenarios only, accept unsimplified. ${}^2C_w \times {}^2C_x \times {}^2C_y \times {}^5C_z$, $w+x+y+z=6$ identifies w Rs, \times As and y Ls.
[Total =] 21		WWW, only dependent on 2nd M mark. Note: ${}^5C_2 + {}^5C_1 + {}^5C_1 + 1 = 21$ is sufficient for 4/4.
		SC not all (or no) scenarios identified. B1 $10+5+5+1$ DB1 = 21
Method 2 – Fixing RRAL first. N.B. No other scenarios can be present anywhere in solution.		
$R R A L ^{\wedge} = {}^{7}C_{2}$	M1	$^{7}C_{x}$ seen alone or $^{7}C_{x} \times k$, $2 \geqslant k \geqslant 1$, k an integer, $0 < x < 7$. Condone $^{7}P_{x}$ or $^{7}P_{x} \times k$, $2 \geqslant k \geqslant 1$, k an integer, $0 < x < 7$.
	M1	7 C ₂ × k , 2> k > loe
	A1	7 C ₂ × k , k = 10e no other terms.
[Total =] 21	A1	Value stated.

4

)	11! 2!3!	M1	11! alone on numerator – must be a fraction. $k! \times m!$ on denominator, $k = 1, 2, m = 1, 3, 1$ can be implied but cannot both = 1. No additional terms
	3326400	A1	Exact value only
		2	
)	8! = 40320	B1	Evaluate, exact value only
		1	
:)	$\frac{9!}{3!}$ ×7	M1	$\frac{9!}{3!} \times k$ seen, k an integer > 0, no +, - or ÷
		M1	7 × an integer seen in final answer, no +, - or ÷
	423360	A1	Exact value only
	Alternative method for Question 6(c)		
	${}^{9}C_{3} \times 7! \left(\times \frac{3!}{3!} \right)$	M1	$9C3 \times k$ seen, k an integer > 0 , no $+$ or $-$
	3!	M1	$7! \times k$ seen, , k an integer > 0 , no + or –
	423360	A1	Exact value only but there must be evidence of $\times \frac{3!}{3!}$
cont'	d Alternative method for Question 6(c)		
	Alternative method for Question o(c)		
	$3 \times 7 \times \frac{8!}{2!}$	M1	$3 \times \frac{8!}{2!} \times k$ seen, k an integer > 0, no + or –
		M1	$3 \times \frac{8!}{2!} \times k$ seen, k an integer > 0 , no $+$ or $ 7 \times$ an integer seen in final answer, no $+$, $-$ or \div
	$3\times7\times\frac{8!}{2!}$	M1	7 × an integer seen in final answer, no +, – or ÷
	$3 \times 7 \times \frac{8!}{2!}$ 423360	M1	7 × an integer seen in final answer, no +, – or ÷
	$3 \times 7 \times \frac{8!}{2!}$ 423360 Alternative method for Question 6(c)	M1 A1	$7 \times$ an integer seen in final answer, no +, - or ÷ Exact value only Product of correct five fractions × k seen, k an integer
	$3 \times 7 \times \frac{8!}{2!}$ 423360 Alternative method for Question 6(c)	M1 A1 M1 M1	$7 \times$ an integer seen in final answer, no +, - or ÷ Exact value only Product of correct five fractions × k seen, k an integer > 0, no + or - $7 \times$ 'total no of arrangements' × k seen, k an integer > 0,
	$3 \times 7 \times \frac{8!}{2!}$ 423360 Alternative method for Question 6(c) $7 \times \frac{2}{11} \times \frac{9}{10} \times \frac{8}{9} \times \frac{7}{8} \times \frac{1}{7} \times \text{total no. of arrangements}$	M1 A1 M1 M1	$7 \times$ an integer seen in final answer, no +, - or ÷ Exact value only Product of correct five fractions × k seen, k an integer > 0, no + or - $7 \times$ 'total no of arrangements' × k seen, k an integer > 0, no + or -
	$3 \times 7 \times \frac{8!}{2!}$ 423360 Alternative method for Question 6(c) $7 \times \frac{2}{11} \times \frac{9}{10} \times \frac{8}{9} \times \frac{7}{8} \times \frac{1}{7} \times \text{total no. of arrangements}$ 423360	M1 A1 M1 M1	$7 \times$ an integer seen in final answer, no +, - or ÷ Exact value only Product of correct five fractions × k seen, k an integer > 0, no + or - $7 \times$ 'total no of arrangements' × k seen, k an integer > 0, no + or -
	$3 \times 7 \times \frac{8!}{2!}$ 423360 Alternative method for Question 6(c) $7 \times \frac{2}{11} \times \frac{9}{10} \times \frac{8}{9} \times \frac{7}{8} \times \frac{1}{7} \times \text{total no. of arrangements}$ 423360 Alternative method for Question 6(c)	M1 A1 M1 A1	$7 \times$ an integer seen in final answer, no +, - or ÷ Exact value only Product of correct five fractions × k seen, k an integer > 0, no + or - $7 \times$ 'total no of arrangements' × k seen, k an integer > 0, no + or - Exact value only
	$3 \times 7 \times \frac{8!}{2!}$ 423360 Alternative method for Question 6(c) $7 \times \frac{2}{11} \times \frac{9}{10} \times \frac{8}{9} \times \frac{7}{8} \times \frac{1}{7} \times \text{total no. of arrangements}$ 423360 Alternative method for Question 6(c) $\text{No E between the Rs} \qquad -\frac{{}^{6}C_{3} \times 3 \times 7!}{3!} = 100800$ $1\text{E between the Rs} \qquad -\frac{{}^{6}C_{2} \times 3 \times 7!}{2!} = 226800$ $2\text{Es between the Rs} \qquad -\frac{{}^{6}C_{1} \times 3 \times 7!}{2!} = 90720$	M1 A1 M1 A1 M1 A1	$7 \times$ an integer seen in final answer, no +, - or ÷ Exact value only Product of correct five fractions × k seen, k an integer > 0, no + or - $7 \times$ 'total no of arrangements' × k seen, k an integer > 0, no + or - Exact value only Finding the correct number of ways for no, 1 or 2 Es between the Rs, accept unsimplified.

$E E R_{-}$ $^{6}C_{2} = 15$ $E E R R$ $^{6}C_{1} = 6$	M1	Identifying four correct scenarios only.
$E E R R_{-}$ ${}^{6}C_{1} = 6$ $E E E R_{-}$ ${}^{6}C_{1} = 6$ $E E E R R$ ${}^{6}C_{0} = 1$	B1	Correct number of selections unsimplified for 2 or more scenario.
	M1	Adding the number of selections for 3 or 4 identified correct scenarios only, accept unsimplified. ${}^{3}C_{x} \times {}^{2}C_{y} \times {}^{6}C_{z}$, $x+y+z=5$ correctly identifies x Es and y Rs
[Total =] 28	A1	WWW, only dependent upon 2nd M mark.
Alternative method for Question 6(d) – Fixing EER first. No other scenarios	can be pres	sent anywhere in solution.
$E E R ^{\wedge \wedge} = {}^{8}C_{2}$	M1	8C_x seen alone or $^8C_x \times k$, $, k = 1$ or 2, $0 < x < 8$ Condone 8P_x or $^8P_x \times k$, $k = 1$ or 2, $0 < x < 8$
	B1	8 C ₂ × k , $k = 1$ or 2 OE
	M1	$^{8}C_{2} \times k$, $k = 1$ OE and no other terms
[Total =] 28	A1	Value stated
	4	

(a)	<u>8!</u> <u>2!3!</u>	M1 $\frac{8!}{k \bowtie m!}$ $k = 1$ or 2, $m = 1$ or 3, not $k = m = 1$ no additional terms
	3360	Al
		2

(b) Method 1 Arrangements Rs at ends – Arrangements Rs at ends and Os together

[Os not together =] $\frac{6!}{3!}$ - 4!	M1	$\frac{6!}{k!} - m$, $1 \le k \le 3$, m an integer, condone $2 \times \left(\frac{6!}{k!}\right) - m$.
3		w-4! or $w-24$, w an integer Condone $w-2\times 4!$
96	A1	

 $Method\ 2$ identified scenarios R _ _ _ R, Arrangement No Os together + 2Os and a single O

${}^{4}C_{3} \times 3! + {}^{4}C_{2} \times 2 \times 3!$	M1 ${}^{4}C_{3} \times 3! + r \text{ or } 4 \times 3! + r \text{ or } {}^{4}P_{3} \times 3! + r, r \text{ an integer.}$ Condone $2 \times {}^{4}C_{3} \times 3! + r \cdot 2 \times 4 \times 3! + r \text{ or } 2 \times {}^{4}P_{3} \times 3! + r.$	
	M1 $q + {}^{4}C_{2} \times 3! \times k$ or $q + {}^{4}P_{2} \times 3! \times k$, $k = 1, 2, q$ an integer	
[24 + 72 =] 96	Al	
	3	

(c) Method 1 Identified scenarios

OORR ${}^{3}C_{2} \times {}^{2}C_{2} \times [{}^{3}C_{0}] = 3 \times 1 = 3$ ORR ${}^{3}C_{1} \times {}^{2}C_{2} \times {}^{3}C_{1} = 3 \times 1 \times 3 = 9$	B1	Outcomes for 2 identifiable scenarios correct, accept unsimplified.
ORR_ $C_1 \times C_2 \times C_1 = 3 \times 1 \times 3 = 9$ OOR_ ${}^3C_2 \times {}^2C_1 \times {}^3C_1 = 3 \times 2 \times 3 = 18$ OR_ ${}^3C_1 \times {}^2C_1 \times {}^3C_2 = 3 \times 2 \times 3 = 18$ OOOR ${}^3C_3 \times {}^2C_1 \times \left[{}^3C_0 \right] = 1 \times 2 = 2$	M1	Add 4 or 5 identified correct scenarios only values, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations.
Total 50	A1	All correct and added
Probability = $\frac{50}{8}$	M1	$\frac{their'50'}{\frac{8}{8}}$, accept numerator unevaluated

cont'd $\frac{50}{70}$ or 0.714		A1	
Method 2 Identif	ied outcomes		
	$C_1 \times^2 C_1 = 6$ $C_1 \times^2 C_1 = 6$	B1	Outcomes for 5 identifiable scenarios correct, accept unsimplified.
ORMW ORRM ORRW ORRT OROR OROT OROM OROW	$C_1 \times {}^{2}C_1 = 6$ $C_1 \times {}^{2}C_2 = 3$ $C_1 \times {}^{2}C_2 = 3$ $C_1 \times {}^{2}C_2 = 3$ $C_2 \times {}^{2}C_2 = 3$ $C_2 \times {}^{2}C_2 = 3$ $C_2 \times {}^{2}C_1 = 6$ $C_2 \times {}^{2}C_1 = 6$ $C_3 \times {}^{2}C_1 = 6$ $C_3 \times {}^{2}C_1 = 6$	M1	Add 9, 10 or 11 identified correct scenarios only values, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations.
Total 50		A1	All correct and added
Probability = $\frac{50}{8}$	TP	M1	$\frac{their'50'}{{}^8C_4}$, accept numerator unevaluated.
$\frac{50}{70}$ or 0.714	10	A1	
		5	
estion 69			

(a)	$\left[\frac{8!}{3!}\right] = 6720$	B1	NFWW, must be evaluated
		1	
(b)	L E D: With LED together: 6!	M1	$\frac{6!}{k}$ or $\frac{5!x6}{k}$ $k \ge 1$ and no other terms
	32	M1	$\frac{m}{2!}$, m an integer, $m \geqslant 5$
	360	A1	CAO
	410101	3	
(c)	Method using A _ D : Arrange the 6 letters RELESE = $\frac{6!}{3!}$ [= 120]	*M1	$\frac{6!}{3!} \times k \text{ seen, } k \text{ an integer} > 0$
	Multiply by number of ways of placing AD in non-adjacent places = their $120 \times {}^{7}P_{2}$ [= 5040]	*M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n = 6, 7$ or $8, m$ integer > 0
	[Probability =] $\frac{their 5040}{their 6720}$	DM1	Denominator = <i>their</i> (a) or correct, dependent on at le one M mark already gained.
	$\frac{5040}{6720}$ or $\frac{3}{4}$ or 0.75	Al	
	Alternative method for Question 3(c)	9-	
	Method using 'Total arrangements – Arrangements with A and D together':	*M1	Their $6720 - k$, k a positive integer
	Their 6720 $-\frac{7!\times 2}{3!}$ [= 5040]	*M1	$(m-)\frac{7 \times k}{3!}, k=1,2$

RRRRB ${}^{8}C_{4} \times {}^{4}C_{1} = 280$ BBBBR ${}^{8}C_{1} \times {}^{4}C_{4} = 8$ RRRRR ${}^{8}C_{5} = 56$	M1	$\begin{vmatrix} {}^8C_x \times {}^4C_y & \text{with } x + y = 5. \ x, y \text{ both integers, } 1 \leqslant x \leqslant 5, \\ 0 \leqslant y \leqslant 4 \text{ condone } {}^8C_1 \times 1 \end{vmatrix}$
RRRR $C_5 = 56$	A1	Two correct outcomes evaluated
	M1	Add 2 or 3 identified correct scenarios only (no additional terms, not probabilities)
[Total =] 344	A1	WWW, only dependent on 2nd M mark
	4	SC not all (or no) scenarios identified B1 280 + 8 + 56 DB1 344

Question 71

$^{23}C_{17}$	M1	23 C _x or y C ₁₇ or z C ₆ , x, y or z are integers no +, -, × or ÷.
100947	A1	CAO
	2	

Question 72

(a)	$^{5}P_{2} \times ^{7}P_{4}$ or $5 \times 4 \times 7 \times 6 \times 5 \times 4$	M1	${}^{5}P_{x} \times {}^{7}P_{y}, 1 \le x \le 4, 1 \le y \le 6$
	16 800	A1	
		2	

(b) Method 1 [Identify scenarios]

With A and no 5: $8 \times {}^6P_4$ or $(1 \times 4 \times 6 \times 5 \times 4 \times 3) \times 2$ or $4C1 \times 2! \times 6P4 = !880$ With 5 and no A: ${}^4P_2 \times 4 \times {}^6P_3$ or $(4 \times 3 \times 1 \times 6 \times 5 \times 4) \times 4$ or $4P2 \times 6C3 \times !! = 5760$ With A and 5: $8 \times 4 \times {}^6P_3$ or $(4 \times 1 \times 1 \times 6 \times 5 \times 4) \times 8$ or $4C1 \times 2! \times 6C3 \times !! = 3840$		One number of ways correct, accept unsimplified. Add 2 or 3 identified correct scenarios only, accept unsimplified.
[Total =] 12 480	A1	CAO

Method 2 [total number of codes – number of codes with no A or 5]

No A or 5: $(4 \times 3) \times (6 \times 5 \times 4 \times 3) = 4320$	M1	$^4P_2 \times ^6P_4$ or $^4C_2 \times ^6C_4$ seen, accept unsimplified.
Required number = $their$ (a) – $their$ 4320	M1	Their 5(a) (or correct) – their (No A or 5) value.
12 480	A1	1.5

Method 3 [subtracting double counting]

Without 5 [subdateting double counting]					
With A ${}^4P_1 \times {}^7P_4 \times 2$ or ${}^4C_1 \times 2 \times {}^7C_4 \times 4! = 6720$ With $5 {}^5P_2 \times {}^6P_3 \times 4$ or ${}^5C_2 \times 2 \times {}^6C_3 \times 4! = 9600$ With A and $5 = {}^4P_1 \times {}^6P_3 \times 8$ or $4C1 \times 2! \times 6C3 \times 4! \times 8 = 3840$	M1	One outcome correct, accept unsimplified.			
Required number = 6720 + 9600 - 3840	M1	Adding 'with a' to 'with 5' and subtracting 'A and 5'.			
12 480	A1	CAO			
	3				

(c) Method 1 – number of successful codes divided by total

$(1 \times) 3 \times {}^5P_2$	M1	$3 \times {}^{5}P_{n}$, $n = 2, 3$. Condone $3 \times {}^{5}C_{2}$, no + or –.
Probability = $\frac{their 3 \times 5P2}{their 16 800}$	M1	Probability = $\frac{their 60}{their 16 800}$.
$\frac{1}{280}$, 0.00357	A1	

Method 2 – product of probabilities of each part of code

$\frac{1}{5} \times \frac{1}{4} \times \frac{1}{7} \times \frac{3}{6} \left(\times \frac{5}{5} \times \frac{4}{4} \right) \text{ or } \frac{1}{5} \times \frac{1}{4} \times \frac{3 \times 5P2}{7P4}$	M1	$\frac{1}{5} \times \frac{1}{4} \times k$ where $0 < k < 1$ for considering letters.
	M1	$t \times \frac{1}{7} \times \frac{3}{6}$ or $t \times \frac{3 \times 5P2}{7P4}$ where $0 < t < 1$.
1 280	A1	CAO
	3	

(a)	9! 3!	M1	$\frac{9!}{e!}$, $e = 2, 3$
	60 480	A1	
		2	
(b)	$\frac{7!}{3!} \times 2 \times 6$	М1	$\frac{7!}{3!} \times k$ seen, k an integer > 0.
		М1	$\frac{m!}{n!} \times 2 \times q$ $7 \le m \le 9, 1 \le n \le 3, 1 \le q \le 8$ all integers.
		M1	$\frac{m!}{n!} \times p \times 6 7 \leqslant m \leqslant 9, \ 1 \leqslant n \leqslant 3, \ 1 \leqslant p \leqslant 2 \ \text{all integers}.$ (Accept 3P2 for 6) If M0 M0 M0 awarded, SC M1 for $t \times 12$, t an integer $\geqslant 20$, $\frac{5!}{3!}$.
	10 080	A1	Exact value.

a)	$^{11}C_5 \times ^4C_1$	M1	$^{11}C_5 \times ^4C_1$ condone $^{11}P_5 \times ^4P_1$ no +, -, × or ÷.
	1848	A1	CAO as exact.
		2	
(b)	Method 1 [Identifying scenarios]		
	[Neither selected =] $^{13}C_6$ [= 1716] [Only Jane selected =] $^{13}C_5$ [= 1287] [Only Kate selected =] $^{13}C_5$ [= 1287]	M1	Either $^{13}C_6$ seen alone or $^{13}C_5$ seen alone or \times 2 (condone $^{13}P_n$, $n = 5,6$).
	[Total =] 1716 + 1287 + 1287	M1	Three correct scenarios only added, accept unsimplified (values may be incorrect).
	4290	A1	
	Method 2 [Total number of selections – selections with Jane and Kate both picked]		
	$^{15}C_6 - ^{13}C_4 [= 5005 - 715]$	M1	$^{15}\text{C}_6 - k$, k a positive integer < 5005, condone $^{15}\text{P}_6$.
		M1	$m - {}^{13}\text{C}_4$, m integer > 715, condone $n - {}^{13}\text{P}_4$, n > 17 160.
	4290	A1	7.77
	12	3	- /.5/
	24.sat	pr	SC Where the condition of $\mathbf{2(a)}$ is also applied in $\mathbf{2(b)}$, the final answer is 1512 SC M1 M1 A0 max. The method marks can be earned for the equivalent stages in each method. Method 1 $^4C_1 \times ^9C_5 + ^4C_1 \times ^9C_4 \times 2$ Method 2 $^4C_1 \times ^{11}C_5 - ^4C_1 \times ^9C_3$

Qu	estion / 5				
(a)	[8! =] 40 320	B1	Evaluated, exact value only.		
		1			
(b)	Method 1 [^^^R^^S^^]				
	7! × ⁸ C ₂ × 2	M1	$7! \times k$ seen, k an integer > 1 .		
		M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n = 7, 8$ or $9, m$ an integer > 1 .		
	282 240	A1	Exact value only. SC B1 for final answer 282 240 WWW.		
	Method 2 [Total number of arrangements – Arrangements with R & S toget	her]			
	9! – 8! × 2	M1	9! – k, k an integer < 362 880.		
		M1	$m-8! \times n$, m an integer > 40 320, $n=1,2$.		
	282 240	A1	Exact value only. SC B1 for final answer 282 240 WWW.		
		3			
(c)	⁹ C ₅ [× ⁴ C ₄]	M1	${}^9C_x[\times^{9-x}C_{9-x}]$ $x = 4, 5$. Condone \times 1 for ${}^{9-x}C_{9-x}$. Condone use of P.		
	126	A1	www		
		2			
(d)	[Number of ways with Raman and Sanjay together on back row =] $^{7}C_{3}$ [Number of ways with Raman and Sanjay together on front row =] $^{7}C_{2}$	M1	${}^{7}C_{x}$ seen, $x = 3$ or 2.		
	[Total =] 35 + 21	M1	Summing two correct scenarios.		
	56	A1	Evaluated – may be seen used in probability. If M0 scored, SC B1 for 56 WWW.		
	Probability = $\frac{their 56}{their (c)} = \frac{56}{126}, \frac{4}{9}, 0.444$	B1 FT	FT their 56 from adding 2 or more scenarios in numerate and their (c) or correct as denominator.		
		4			

(a)	$^{5}C_{1} \times ^{7}C_{4}$	M1	$^{7}C_{4} \times k$, k integer $\geqslant 1$ Condone $^{5}P_{1}$ for M1 only
	175	A1	0.
;(b)	2B 1G 2A ${}^{3}C_{2} \times {}^{4}C_{1} \times {}^{5}C_{2} = 120$ 2B 2G 1A ${}^{3}C_{2} \times {}^{4}C_{2} \times {}^{2}C_{1} = 90$ 2B 3G ${}^{3}C_{2} \times {}^{4}C_{2} = 12$	2 M1	${}^3C_x \times {}^4C_y \times {}^5C_z$, $x + y + z = 5$, x,y,z integers $\geqslant 1$ Condone use of permutations for this mark
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	B1	2 appropriate identified outcomes correct, allow unsimplified
	$3B 2G \qquad {}^{\prime}C_3 \times C_2 = 0$	М1	Summing <i>their</i> values for 4 or 5 correct identified scenarios only (no repeats or additional scenarios), condone identification by unsimplified expressions
	[Total =] 248	A1	Note: Only dependent upon M marks
		4	
5(c)	$8! \times 3! \times {}^5P_2$	M1	$8! \times m$, m an integer $\geqslant 1$ Accept $8 \times 7!$ for $8!$
		M1	$3! \times n$, n an integer > 1
		M1	$p \times {}^5\text{P}_2, p \times {}^5\text{C}_2 \times 2, p \times 20, p \text{ an integer} > 1$ If extra terms present, maximum 2/3 M marks available
	4838400	A1	Exact value required
		4	

(a)	$^{12}C_5 \times ^{7}C_4 \ [\times \ ^{3}C_{3}]$	M1	12 C _r × q, r = 3, 4, 5 q a positive integer > 1, no + or		
		M1			
	Alternative method for question 7(a)				
	12!	M1	12! ÷ by a product of three factorials.		
	5≽3≽4!	M1	<u>n!</u> 5⅓3¼4!		
	[792 × 35 =] 27 720	A1	CAO		
		3			
(b)	4! (Lizo) × 6! (Kenny) × 2! (Martin) × 2! (Nantes)	M1	Product involving at least 3 of 4!, 6!, 2!, 2!		
	× 3! (orders of K, M and N)	M1	$w \times 3!$, w integer > 1.		
	414 720	A1	WWW CAO		
		3			
(c)	$^{7}C_{4}$ (adults) \times $^{4}C_{1} \times$ $^{3}C_{1}$	M1	$^{7}C_4 \times b$, b integer > 1 no + or – .		
	420	A1			
		2			
(d)	K not L ${}^5C_3 \times {}^8C_3 = 560$ L not K ${}^5C_3 \times {}^8C_3 = 560$ L and K ${}^5C_2 \times {}^8C_3 = 560$	M1	8 C ₃ (or 8 P ₃)× c for one of the products or 5 C ₃ (or 5 P ₃)× c , positive integer >1 for first 2 products only.		
		M1	Add 2 or 3 correct scenarios only values, no additional incorrect scenarios, no repeated scenarios. Accept unsimplified.		
	[Total or Difference=] 1680	A1			
	Alternative method for question 7(d)				
	Total no of ways – neither L nor K Total = ${}^{7}C_{4} \times {}^{8}C_{3} = 1960$	M1	${}^8C_3 \times c$, c a positive integer >1.		
	Neither K nor L = ${}^{5}C_{4} \times {}^{8}C_{3} = 280$	M1	Subtracting the number of ways with neither from their total number of ways.		
	[Total or Difference=] 1680	A1	/ * /		
'(d)	Alternative method for question 7(d)				
	Subtracting K and L from sum of K and L	M1	${}^{8}C_{3} \times c$, c a positive integer >1.		
	K ${}^{6}C_{3} \times {}^{8}C_{3} = 1120$ L ${}^{6}C_{3} \times {}^{8}C_{3} = 1120$ L and K ${}^{5}C_{2} \times {}^{8}C_{3} = 560$ 1120 + 1120 - 560 = 1680	tpre P MI	Subtracting number of ways with both from sum of number of ways with K and number of ways with L.		
	[Total or Difference=] 1680	A1			
		3			

(a)	$\left[\frac{9!}{2!2!} = \right] 90720$	B1	
		1	
(b)	Method 1 Arrangements Cs at ends – Arrangements Cs at ends and Os to	ogether	
	[Os not together =] $\frac{7!}{2!}$ - 6! [= 2520 – 720]	M1	$\frac{w!}{2!} - y, w = 6, 7 y \text{ an integer.}$
			Condone $2 \times \left(\frac{w!}{2!}\right) - y$.
		M1	a-6! or $a-720$, a an integer resulting in a positive answer.
	1800	A1	
	Method 2 identified scenarios R ^ ^ ^ R		
	[Os not together =] $5! \times \frac{6 \times 5}{2!}$ =	M1	$5! \times b, b \text{ integer} > 1.$
	21	M1	$c \times \left(\frac{6 \times 5}{2!} \text{ or } {}^6\text{C}_2\text{ or } \frac{{}^6P_2}{2!} \text{ or } 15\right)$, $c \text{ integer} > 1$.
	1800	A1	
		3	

(c)	$\begin{bmatrix} CCO & {}^{5}C_{1} = 5 \\ CC & {}^{5}C_{2} = 10 \\ OOC & {}^{5}C_{1} = 5 \end{bmatrix}$	B1	Correct outcome/value for 1 identified scenario. Accept unsimplified. WWW	
	OOC $\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Add 5 or 6 values of appropriate scenarios only, no additional incorrect scenarios, no repeated scenarios. Accept unsimplified. Condone use of permutations.	
	[Total =] 50	A1		
		3		
(d)	Both Os in group without a C ${}^5C_2 \times {}^3C_2 = 30$ One O in a C group, one not ${}^5C_1 \times {}^4C_2 = 30$	B1	A correct scenario calculated accurately. Accept unsimplified.	
		M1	Add 3 or 4 correct scenario values, no incorrect scenarios, accept repeated scenarios. Accept unsimplified.	
	[Total =] 80	A1		
	Alternative method for question 6(d)			
	$\begin{array}{c} CCO \ O^{\wedge \wedge \wedge \wedge \wedge} = {}^{5}C_{2} = 10 \\ CC^{\wedge} \ O^{\wedge \wedge} \ O^{\wedge \wedge} = {}^{5}C_{1} \times {}^{4}C_{2} = 30 \\ CC^{\wedge} \ OO^{\wedge \wedge \wedge} = {}^{5}C_{1} \times {}^{4}C_{1} = 20 \end{array}$	B1	A correct scenario calculated accurately. Accept unsimplified.	
	Total ways of making three groups $\frac{{}^{9}C_{6} \times {}^{6}C_{3}}{2 \times 2 \times 3} = 140$ 140 – (their 10+ their 30+ their 20)	M1	Total subtract 2 or 3 correct scenario values, no incorrect scenarios. Accept unsimplified.	
	80	A1		
		3		
Ou	estion 79			
(a)			M1 $g_{C} \times h$ $g = 12 \cdot 13 \cdot h = 1 \cdot 2$	

(a)	$^{12}C_4 \times 2$	M1	$g_{C_4 \times h}$ $g = 12, 13, h = 1,2$		
	990	A1			
	Alternative method for question 2(a)				
	[total – both on – neither on] ${}^{14}C_5$ – (${}^{12}C_3 + {}^{12}C_5$) = [2002 – 220 – 792]	M1	a = 12, 13 and k = 13, 14		
	990	A1			
		2			
(b)	[Mrs Lan plus] $2W \ 2M \ ^7C_2 \times ^6C_2 = 315$	M1	$^{7}C_{r} \times ^{6}C_{4r}$ for $r = 2, 3$ or 4		
		B1	Outcome for one identifiable scenario correct, accept unevaluated		
	322	M1	Add outcomes for 3 identifiable correct scenarios Note: if scenarios not labelled, they may be identified by seeing ${}^{7}C_{r} \times {}^{6}C_{s} r + s = 4$ to imply r women and s men for both B & M marks only		
	[Total =] 560	A1			
		4			

(a)	5!	M1	k! where $k = 5$, 6 or 7 Condone × 1 OE
	120	A1	
		2	
(b)	[Total no of ways =] $\frac{8!}{2!3!}$ [= 3360]	М1	$\frac{8!}{a!b!}$, $a=1,2$ $b=1,3$ $a\neq b$
	[With 3Es together =] $\frac{6!}{2!}$ [= 360]	M1	$\frac{6!}{c!}$, $c = 1,2$ seen in an addition/subtraction
	[With 3Es not together] = 3360 – 360	M1	$\frac{8!}{d!e!} - \frac{6!}{f!}$ where $d, f = 1, 2 \& e = 1, 3$
	3000	A1	
		4	

(a)	9! 2!2!	M1	$\frac{h!}{2!\times j!}$, $h = 7, 8, 9; j = 1, 2$
	90720	A1	
		2	
(b)	Arrangements with 5 letters between As + Arrangements with 6 lette	rs between	As + Arrangements with 7 letters between As
	With gap of 5: $\frac{7!}{2!} \times 3$ [= 7560]	M1	$\frac{7!}{2!} \times k$, k positive integer $1 < k < 7$
	With gap of 6: $\frac{7!}{2!} \times 2 = 5040$] With gap of 7: $\frac{7!}{2!} \times 1 = 2520$]	M1	Add their no of ways for 3 identified correct scenarios, no additional incorrect scenarios, accept unsimplified.
	[Total no = $\frac{7!}{2!} \times 6 =$] 15120	A1	
		3	

$\begin{array}{llllllllllllllllllllllllllllllllllll$	B1	Correct no of ways for 4 correctly identified scenarios, accept unsimplified.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Add no of ways for 5 or 6 identified correct scenarios, no additional incorrect scenarios, no repeated scenarios, accept unsimplified.
[Total no of ways not containing more Ts than As =] = $40+10+5+20+10+1$ [=86]	A1	All correct and added
B. 1.13. 86	M1	their 86
Probability = $\frac{86}{{}^{9}C_{5}}$		9C5 or their identified total accept numerator unevaluated
$\frac{86}{126}, \frac{43}{63}, 0.683$	A1	
Method 2: Subtracting no of ways with more Ts from total		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	Correct no of ways for 2 correctly identified scenarios, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations
	M1	Add no of ways for 2 or 3 correct scenarios and subtract fron their total no of ways All correct and subtracted
Total no of ways with more Ts than As =40 ${}^{9}C_{5} - 40 = 86$	A1	C
Park 1 11 2 86	M1	their 86
Probability = $\frac{86}{{}^{9}C_{s}}$		9C5 or their identified total accept numerator unevaluated

(c)	$\frac{43}{63}$, 0.683	A1	
		5	

(a)	7!	M1	$\frac{7!}{b!\times c!} b, c = 1,2$ $7! \times \frac{2!}{2!} \times \frac{2!}{2!} \text{ oe, no further terms present.}$
	5040	A1	
		2	

(b) Method 1 for first 3 marks: Arrangements of 6 letters including Ls between As

$5! \times 5 \times 2$	M1	$5! \times d$, d integer > 1
	M1	$e! \times f \times g$, $e = 5, 6, 7; f = 1, 5; g = 1, 2; f \neq g, 1 can be implicit.$
1200	A1	
Method 2 for first 3 marks: Number of arrangements of	of LL^^^^ – numb	per of arrangements with the Ls split by an A
$6! \times 2 - 5! \times 2$	M1	$6! \times 2 - h \ h$ an integer $1 < h < 1440$
	M1	$k-5! \times 2$ k an integer $k > 240$
1200	A1	
Method 3 for first 3 marks: Alternative approaches to	Method 1	
$^{\land}$ A $^{\land}$ $^{\land}$ $^{\land}$ A 5 P ₁ \times 1 P ₁ \times 5 P ₅ \times 1 P ₁ = 600	M1	LL treated as a single unit.
	M1	

'(b) Final 2 marks of Question 7(b)

[Total number of arrangements =] $\left[\frac{9!}{2!2!}\right]$ = $\left[\frac{90720}{90720}\right]$	В1	Accept unsimplified. May be seen as denominator of probability.
Probability = $\frac{1200}{90720}$, $\frac{5}{378}$, 0.0132	B1 FT	$\frac{\textit{their}1200}{\textit{their}90720} \text{ unsimplified B1 FT if } \textit{their}1200 \text{ and } \textit{their}90720$ supported by work in this part.
	5	/~/

(a)	5M0W ⁸ C ₅ [× ⁷ C ₀] = 56 4M1W ⁸ C ₄ × ⁷ C ₁ = 490 3M2W ⁸ C ₃ × ⁷ C ₂ = 1176	M1	${}^{8}C_{x} \times {}^{7}C_{5:x}$ for $x = 1, 2, 3, 4,$ or 5		
		B1	Outcome for 4M1W or 3M2W correct and identified, accept unsimplified.		
			Add 3 values of appropriate scenarios, no incorrect scenarios, no repeated scenarios, accept unsimplified. Addition may be implied by final answer.		
	[Total =] 1722	A1	Value stated WWW.		
	Alternative method for Question 6(a)				
	$2M3W ^{8}C_{2} \times {}^{7}C_{3} = 980$ $1M4W ^{8}C_{1} \times {}^{7}C_{4} = 280$ $0M5W ^{8}C_{0} \times {}^{7}C_{5} = 21$	M1	${}^{8}C_{x} \times {}^{7}C_{5:x}$ for $x = 1, 2, 3, 4, \text{ or } 5$		
		B1	Outcome for 2M3W or 1M4W correct and identified, accept unsimplified.		
	[Total = ${}^{15}C_5 - (980 + 280 + 21)$] 3003 - (980 + 280 + 21)	M1	Subtract 3 values of appropriate scenarios from <i>their</i> identified total or correct, no incorrect scenarios, no repeated scenarios, accept unsimplified.		
	[Total =] 1722	A1	Value stated WWW.		
		4			
(b)	$^{15}\text{C}_3 \times ^{12}\text{C}_5 [\times ^{7}\text{C}_7] [= 455 \times 792]$	M1	15 C _r × q, r = 3, 5, 7; q a positive integer >1		
		M1	$^{15}C_s \times ^{15 \cdot s}C_t[\times ^{15 \cdot s \cdot t}C_u] s = 3,5,7; t = 3,5,7 \neq s; u = 3,5,7 \neq s,t$		
	360360	A1	Final answer. If A0 awarded SC B1 for final answer 360360.		
		3			

(c)	Method 1: Total number of arrangements with AB together – Arrangements with AB and FG together
	Method 1. I otal number of arrangements with AD together - Arrangements with AD and I o together

$6! \times 2 - 5! \times 2 \times 2$		$a! \times 2! \times b$, $a = 5$, 6; $b = 1,2$ seen.		
[=1440-480]	M1	Either $6! \times 2 - c$, $1 < c < 1440$ or $d - 5! \times 2 \times 2$, $1440 < d$		
960 Method 2: arrangements with AB together with F and G not tog 2 × 4! × 5 × 4				
		2 × 4! × e, e positive integer >1		
	M1	$f \times 5 \times 4$, f positive integer >1 condone $f \times 20$, $f \times {}^5C_2$, f positive integer >1		

A1 3

Question 84

960

Method 1: Arrangements with 3 Es together – arrangements with 3 Es together and 2 Ds together

7! -6!	B1 $\frac{7!}{2!}$ - e, e a positive integer (including 0).	
	M1 $f-6!, f>6!$	
	M1 $\frac{7!}{a!b!} - \frac{6!}{c!d!}$, $a,c = 1, 2$ and $b,d = 1, 3$.	
1800	A1	
Method 2: Identified scenarios ^ EEE ^ ^ ^		
$5 \times \frac{6 \times 5}{2}$	B1 5! $\times j$, j a positive integer ($j = 1$ may be implied).	
2	M1 $\frac{k!}{m!} \times \frac{6 \times 5}{2}, \frac{k!}{m!} \times {}^{6}C_{2}, \frac{k!}{m!} \times \frac{{}^{6}P_{2}}{2} \text{ or } k! \times \frac{7 \times 6}{n},$ k a positive integer (k = 1 may be implied), $m = 1, 2, n = 1, 2, 3.$	
	M1 $k \times \frac{m \times (m-1)}{n}$ k a positive integer > 1, $m = 10, 9, 8, 7, 6$ and $n = 1, 2$.	
1800	A1	

'(b) First 2 marks: Method 1 - Number of arrangements with 2 Ds in one position with 4 letters in between - repeats allowed

7! × 4 × 2	M1	$7! \times s$, $s = positive integer > 1$.
	M1	t! × 4 × 2, t = 8, 7, 6. Condone t! × 8.

First 2 marks: Method 2 - Picking 2Ds, arranging 4 letters from remaining letters between and then arranging terms

$^{7}P_{4} \times 4 \times 2!$	M1	$^{7}P_{4} \times a \times b!$, $1 \le a \le 6$ and $b = 1, 2, 3$.
	M1	$^{7}P_{c} \times 4 \times 2!, c = 3, 4, 5.$

First 2 marks: Method 3 – Identified scenarios involving Es between Ds

D ^ ^ ^ ^ D E E E = ${}^{4}C_{4} \times 4! \times 4! \times 2! = 1152$ D E ^ ^ ^ D E E ^ = ${}^{4}C_{3} \times 4! \times 4! \times 3 \times 2! = 13824$	M1	1 identified scenario value correct.
DEE $^{\wedge}$ DE $^{\wedge}$ C ₃ × 4! × 4! × 3 × 2! = 13824 DE E $^{\wedge}$ DE $^{\wedge}$ DE $^{\wedge}$ C ₁ × 4! × 3 × 2! = 20736 DE E E $^{\wedge}$ D $^{\wedge}$ C ₁ × 4! × 4! × 2! = 4608	M1	4 appropriate scenarios added, no incorrect.

'(b)	Final 3	marks	for	Methods	1, 2	and	:
------	---------	-------	-----	---------	------	-----	---

8 8			
40	0320	A1	If A0 scored, SC B1 for 40320 WWW.
[7]	Total number of arrangements =] [9!=] 362880	B1	Accept unsimplified. May be seen as denominator of probability.
Pi	robability = $\frac{40320}{362880} = \frac{1}{9}$	B1FT	their 40320 their 362880, accept unsimplified. B IFT if their 40320 and their 362880 supported by work in this part. Condone their 362880 supported by calculation in 7(a).
		5	
c) Se D D	cenarios DE _	B1	1 correct unsimplified outcome/value for one identified scenario excluding DDEEE. Note: 4C_1 cannot be used for 4C_3 .
D	DEEE _ 'C ₁ 4 DDE _ 'C ₂ 6 DDEE _ 'C ₁ 4 DDEEE ['C ₀] 1	M1	Add values of 6 appropriate scenarios, no additional, incorrec or repeated scenarios. Accept unsimplified.
[7]	Total =] 25	A1	
		3	

(a) Method 1: Total number of arrangements – number of arrangements with Cs together

· ·				
$\frac{10!}{2!4!} - \frac{9!}{4!} [75600-15120]$	M1 $\frac{10!}{a!b!}$ - c, $a \neq b$, $a = 1, 2, b = 1, 4$, with c being a positive integer			
	M1 $d - \frac{e!}{4!}$, $e = 8, 9, 10$, with d being a positive integer.			
= 60480	A1 Exact value only. SC B1 for final answer 60480 www.			
Method 2: Arrangements ^ ^ C ^ C ^ ^ ^ ^ ^				
$\frac{8!}{4!} \times \frac{9 \times 8}{2}$	M1 $\frac{8!}{4!} \times f$ seen, with f being a positive integer.			
	M1 $g \times \frac{9 \times 8}{h}$, with g being a positive integer, $h = 1, 2$. $g \times {}^{9}C_{2}$ and $g \times {}^{9}P_{2}$ are acceptable.			
= 60480	A1 Exact value only. SC B1 for final answer 60480 www.			
2,	3			
$ \begin{array}{c} AC^{\wedge \wedge}C^{\wedge \wedge}A \\ \frac{6!}{2!} \times 4 \end{array} $	M1 $\frac{6!}{2!} \times s$, with s being a positive integer.			
2!	M1 $\frac{t!}{r!} \times 4$, $r = 1, 2, 3$ and $t = 8, 7, 6$.			
1440	A1			
Alternative Method for Question 7(b)				
$\frac{4 \times {}^6 P_3 \times 3!}{2!}$	M1 $\frac{^6P_3}{2!} \times k$, with k being a positive integer.			
	M1 $4 \times 3! \times \frac{^{6}P_{m}}{n!}$, $m = 2, 3$ and $n = 1, 2, 3$.			
1440	A1			
	3			

(c)	Scenarios $AA = - $	B1	Correct number of ways for identified scenarios of 2 or 3 As, accept unsimplified, www.		
		M1	Add 3 values for 2, 3 and 4 As, no additional, incorrect or repeated scenarios. Accept unsimplified.		
	25	A1			
	Alternative Method 2 for Question 7(c)				
	Scenarios: AAC_{-} $^{4}C_{2} = 6$ AA_{-} $^{4}C_{3} = 4$	В1	Correct total number of ways for identified scenarios of 2 or 3 As accept unsimplified, www (e.g., both values for AAC^^ and AA^^^ shown would be fine for 2As).		
	$AAAC - ^{4}C_{1} = 4$ $AAA - ^{4}C_{2} = 6$ $AAAAC - ^{1}AAAA - ^{4}C_{2} = 6$	M1	Add 6 values of appropriate scenarios only, no additional, incorrect or repeated scenarios. Accept unsimplified.		
	25	A1			

Que	estion 86		
(a)	$\begin{array}{lll} S + 4C + 2R & ^{6}C_{1} \times ^{8}C_{4} \times ^{11}C_{2} \left[= 6 \times 70 \times 55 \right] = 23\ 100 \\ S + 5C + 1R & ^{6}C_{1} \times ^{8}C_{5} \times ^{11}C_{1} \left[= 6 \times 56 \times 11 \right] = 3696 \\ S + 6C \left[+ 0R \right] & ^{6}C_{1} \times ^{8}C_{6} \left[\times ^{11}C_{0} \right] \left[= 6 \times 28 \right] = 168 \end{array}$		${}^{6}C_{e} \times {}^{8}C_{f} \times {}^{11}C_{g}$, with $e + f + g = 7$ seen.
			Correct outcome/value for 1 identified scenario, accept unsimplified, www.
	GAT	M1	Add values of 3 correct scenarios. No incorrect scenarios, no repeated scenarios. Condone ${}^6\mathrm{C}_e \times {}^8\mathrm{C}_f \times {}^{11}\mathrm{C}_g$, with $e+f+g=7$ to identify S, C, R.
	[Total =] 26964	A1	cao
		4	
(b)	2! × 3! × 4! × 6	M1	$2! \times 3! \times 4! \times k$, k an integer > 0. 1 can be implied.
	=1728	A1	If A0 scored SC B1 for 1728 www.
		2	
(c)	Method 1		
	6! × 7 × 6 × 5	M	1 $6! \times k$, k an integer > 0. 1 can be implied.
		M	1 $\frac{m!}{a! \times b!} \times 7 \times n \times r$; $6 \le m \le 9$; $a = 1, 2$; $b = 1, 4$; $1 \le n, r \le 6, n \ne r$.

$6! \times 7 \times 6 \times 5$	M1	$6! \times k$, k an integer > 0. 1 can be implied.
	M1	$\frac{m!}{a! \times b!} \times 7 \times n \times r; 6 \le m \le 9; a = 1, 2; b = 1, 4; \\ 1 \le n, r \le 6, n \ne r.$
	M1	$\frac{m!}{a! \times b!} \times 7 \times 6 \times 5; 6 \leqslant m \leqslant 9; a = 1, 2; b = 1, 4.$
151 200		Condone 151 000. If A0 scored SC B1 for 151 200 www.
Method 2		

$6! \times {}^{7}P_{3}$	M1	$6! \times k$, k an integer > 0. 1 can be implied.
	M1	$\frac{m!}{a! \times b!} \times {}^{7}P_{q}, \text{ or } \frac{m!}{a! \times b!} \times {}^{7}C_{q} \times q! ; 6 \le m \le 9; a = 1, 2$ $b = 1, 4; 1 \le q \le 6.$
	M1	$\frac{m!}{a! \times b!} \times {}^{7}P_{3}, \text{ or } \frac{m!}{a! \times b!} \times {}^{7}C_{3} \times 3! ; 6 \le m \le 9; a = 1, 2$ $b = 1, 4.$
151 200	A1	Condone 151 000. If A0 scored SC B1 for 151 200 www.

Method 3	
$6! \times 35 \times 3!$	M1 6! $\times k$, k an integer > 0 . 1 can be implied.
	M1 $\frac{m!}{a! \times b!} \times 35 \times q!$; $6 \le m \le 9$; $a = 1, 2$; $b = 1, 4$; $1 \le q \le 3$.
	M1 $\frac{m!}{a! \times b!} \times 35 \times 6$; $6 \le m \le 9$; $a = 1, 2$; $b = 1, 4$.
151 200	A1 Condone 151 000. If A0 scored SC B1 for 151 200 www.
Method 4	
$\begin{array}{l} 9! - 713! - {}^{3}P_{2} \times 6! \times 7 \times 6 \\ \text{Dr} \\ 9! - 713! - 3! \times 7! \times 6 \\ = 362880 - 30240 - 181440] \end{array}$	M1 $9! - 7!r! - q$, r an integer > 1 , q an integer ≤ 0 . 0 and I may be implied.
	M1 $\frac{s!}{a! \times b! \times c!} - 7!3! - q; s = 8, 9; a = 1, 2; b = 1, 3; c = 1$ q an integer $\geqslant 0$. 0 and 1 may be implied.
	M1 $\frac{s!}{a! \times b! \times c!} - 7!3! - {}^{3}P_{2} \times 6! \times 6 \times 7, 6 \leqslant s \leqslant 9,$ or $\frac{s!}{a! \times b! \times c!} - 7!3! - 3! \times 7! \times 6, 6 \leqslant s \leqslant 9.$ $a = 1, 2 b = 1, 3 c = 1, 4. 1 \text{ may be implied.}$
151 200	A1 Condone 151 000. If A0 scored SC B1 for 151 200 www.
197	4
stion 87	
6C3 × 8C3	M1 ${}^{6}C_{3} \times h$ or $c \times {}^{8}C_{3}$ seen h c integers ≥ 1 (1 may be

(a)	⁶ C ₃ × ⁸ C ₃	M1	6 C ₃ × b or c × 8 C ₃ seen. b , c integers $\geqslant 1$ (1 may be implied).
	1120	A1	
		2	
)	Method 1		
	0 brothers $[^{3}C_{0}] \times ^{11}C_{6}$ 462 1 brother $^{3}C_{1} \times ^{11}C_{5}$ 1386 2 brothers $^{3}C_{2} \times ^{11}C_{4}$ 990	B1	${}^{3}C_{x} \times {}^{11}C_{6-x}$, with $x = 1$ or 2 seen.
		M1	Add values of 3 correct scenarios, (may be identified by the appropriate calculations) no incorrect/repeated scenarios, condone use of permutations.
	2838	A1	Only dependent on the M mark. SC B1 for the correct calculation or 2838 seen WWW.
	Method 2		0.
	¹⁴ C ₆ - ¹¹ C ₃	B1	$^{14}C_6 - d$, where d a positive integer.
	3003 – 165		e^{-11} C ₃ , where e is a positive integer >165.
	= 2838	A1	
		3	

Que	Stion oo		
(a)	$\left[\frac{8!}{2!3!}\right] 3360$	B1	
		1	
(b)	6! 2121	M1	$\frac{6!}{2!f!}; f = 1, 2, 3.$
	180	A1	
		2	
(c)	$ \left[P(OOO CC) = \frac{P(OOO \cap CC)}{P(CC)} = \right] $ $ \frac{5!}{\frac{7!}{3!}} $	M1	$\frac{-g}{g}$ a positive integer, $g \neq 3360$, 1. Condone numerator of $\frac{5!}{3360g}$.
	$=\frac{120}{840},\frac{1}{7},0.143$	A1	
	840 7	3	If M0 scored SC B1 for $\frac{1}{7}$ WWW.