
SATPREP

Worksheet – Vector Equations and Planes

- **1** For A(-1, 2, 3), B(2, 0, -1) and C(-3, 2, -4) find:
 - a the equation of the plane defined by A, B and C
 - **b** the measure of angle CAB
 - r, given that D(r, 1, -r) is a point such that angle BDC is a right angle.
- **2** a Find where the line through L(1, 0, 1) and M(-1, 2, -1) meets the plane with equation x 2y 3z = 14.
 - **b** Find the shortest distance from L to the plane.
- **3** Given A(-1, 2, 3), B(1, 0, -1) and C(1, 3, 0), find:
 - a the normal vector to the plane containing A, B and C
 - **b** D, the fourth vertex of parallelogram ACBD
 - the coordinates of the foot of the perpendicular from C to the line AB.
- 4 Show that the line $x-1=\frac{y+2}{2}=\frac{z-3}{4}$ is parallel to the plane 6x+7y-5z=8 and find the distance between them.
- Consider the lines with equations $\frac{x-3}{2} = y-4 = \frac{z+1}{-2}$ and x = -1+3t, y = 2+2t, z = 3-t.
 - a Are the lines parallel, intersecting or skew? Justify each answer.
 - **b** Determine the cosine of the acute angle between the lines.
- **6** For A(2, -1, 3) and B(0, 1, -1), find:
 - a the vector equation of the line through A and B, and hence
 - **b** the coordinates of C on AB which is 2 units from A.
- 7 Find the equation of the plane through A(-1, 2, 3), B(1, 0, -1) and C(0, -1, 5). If X is (3, 2, 4), find the angle that AX makes with this plane.
- 8 a Find all vectors of length 3 units which are normal to the plane x y + z = 6.
 - **b** Find a unit vector parallel to $\mathbf{i} + r\mathbf{j} + 3\mathbf{k}$ and perpendicular to $2\mathbf{i} \mathbf{j} + 2\mathbf{k}$.
 - The distance from A(-1, 2, 3) to the plane with equation 2x y + 2z = k is 3 units. Find k.

9

Use vector methods to determine the measure of angle QDM given that M is the midpoint of PS of the rectangular prism.

- 10 P(-1, 2, 3) and Q(4, 0, -1) are two points in space. Find:
 - **a** \overrightarrow{PQ} **b** the angle that \overrightarrow{PQ} makes with the X-axis.

Answer:

1 a
$$14x + 29y - 4z = 32$$
 b \ddots $dots$ \ddots \ddots

2 a They do not meet, the line is parallel to the plane.

b
$$\frac{16}{\sqrt{14}}$$
 units

3 a
$$\mathbf{n} = [5, -1, 3]$$
 b $D(-1, -1, 2)$ **c** $(\frac{1}{6}, \frac{5}{6}, \frac{2}{3})$

4
$$\frac{31}{\sqrt{110}}$$
 units

5 a intersecting **b**
$$\frac{10}{3\sqrt{14}}$$
 units

6 a
$$[x, y, z] = [2, -1, 3] + t[-2, 2, -4], t \in \mathcal{R}$$

b
$$\left(2 - \frac{2}{\sqrt{6}}, -1 + \frac{2}{\sqrt{6}}, 3 - \frac{4}{\sqrt{6}}\right)$$
 and $\left(2 + \frac{2}{\sqrt{6}}, -1 - \frac{2}{\sqrt{6}}, 3 + \frac{4}{\sqrt{6}}\right)$

7
$$4x + 2y + z = 3$$
, $= 64.12^{\circ}$

8 a
$$[\sqrt{3}, -\sqrt{3}, \sqrt{3}]$$
 and $[-\sqrt{3}, \sqrt{3}, -\sqrt{3}]$

b
$$\frac{1}{\sqrt{74}}$$
 i $+\frac{8}{\sqrt{74}}$ **j** $+\frac{3}{\sqrt{74}}$ **k** or $-\frac{1}{\sqrt{74}}$ **i** $-\frac{8}{\sqrt{74}}$ **j** $-\frac{3}{\sqrt{74}}$ **k**

Zh. satprep.co.

$$k = -7 \text{ or } 11$$

$$26.4^{\circ}$$

10 a
$$\overrightarrow{PQ} = [5, -2, -4]$$
 b $\div 41.8^{\circ}$