SAT PREP

Formulae of derivative

Rules	Function	Derivative
Multiplication by constant	cf	cf'
Power Rule	x^{n}	$n x^{n-1}$
Sum Rule	$f+g$	$\mathrm{f}^{\prime}+\mathrm{g}^{\prime}$
Difference Rule	$\mathrm{f}-\mathrm{g}$	$\mathrm{f}^{\prime}-\mathrm{g}^{\prime}$
Product Rule	fg	$f g^{\prime}+f^{\prime} \mathrm{g}$
Quotient Rule	f/g	$\left(f^{\prime} g-g^{\prime} f\right) / g^{2}$
Reciprocal Rule	1/f	$-f^{\prime} / f^{2}$
Chain Rule (as "Composition of Functions").	$\mathrm{f}^{\circ} \mathrm{g}$	$\left(f^{\prime} \circ \mathrm{g}\right) \times \mathrm{g}^{\prime}$
Chain Rule (using ${ }^{\prime}$)	$f(g(x))$	$\mathrm{f}^{\prime}\left(\mathrm{g}(\mathrm{x}) \mathrm{g}^{\prime}(\mathrm{x})\right.$
Chain Rule (using $\frac{d}{d x}$)	$\frac{d y}{d x}$	$\frac{d y}{d u} \frac{d u}{d x}$

