SATPREP

Applications of Sine and Cosine Rule

1. The following diagram shows a triangle with sides $5 \mathrm{~cm}, 7 \mathrm{~cm}, 8 \mathrm{~cm}$.

Find
(a) the size of the smallest angle, in degrees;
(b) the area of the triangle.
2. The diagrams below show two triangles both satisfying the conditions

(a) Calculate the size of A $\hat{C} B$ in Triangle 2.
(b) Calculate the area of Triangle 1.
3. In the triangle $\mathrm{PQR}, \mathrm{PR}=5 \mathrm{~cm}, \mathrm{QR}=4 \mathrm{~cm}$ and $\mathrm{PQ}=6 \mathrm{~cm}$.

Calculate

(a) the size of $\mathrm{P} \hat{\mathrm{Q}} \mathrm{R}$;
(b) the area of triangle $P Q R$.
4. A triangle has sides of length $4,5,7$ units. Find, to the nearest tenth of a degree, the size of the largest angle.
5. Two boats A and B start moving from the same point P. Boat A moves in a straight line at $20 \mathrm{~km} \mathrm{~h}^{-1}$ and boat B moves in a straight line at $32 \mathrm{~km} \mathrm{~h}^{-1}$. The angle between their paths is 70°.

Find the distance between the boats after 2.5 hours.
6. In a triangle $\mathrm{ABC}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=3 \mathrm{~cm}$ and the area of the triangle is $4.5 \mathrm{~cm}^{2}$. Find the two possible values of the angle BAC.
7. The diagram shows a vertical pole PQ , which is supported by two wires fixed to the horizontal ground at A and B.

$$
\begin{aligned}
& \mathrm{BQ}=40 \mathrm{~m} \\
& \mathrm{PBQ}=36^{\circ} \\
& \mathrm{BAQQ}=70^{\circ} \\
& \mathrm{ABQ}=30^{\circ}
\end{aligned}
$$

Find

(a) the height of the pole, PQ ;
(b) the distance between A and B.
8. The following diagram shows a pentagon ABCDE , with $\mathrm{AB}=9.2 \mathrm{~cm}, \mathrm{BC}=3.2 \mathrm{~cm}, \mathrm{BD}$ $=7.1 \mathrm{~cm}, \mathrm{AED}=110^{\circ}, \mathrm{A} \hat{D E}=52^{\circ}$ and $\mathrm{ABD}=60^{\circ}$.

(a) Find AD.
(b) Find DE.
(c) The area of triangle BCD is $5.68 \mathrm{~cm}^{2}$. Find $\mathrm{D} \hat{\mathrm{B}} \mathrm{C}$.
(d) Find AC.
(e) Find the area of quadrilateral ABCD .
9. (a) Let $y=-16 x^{2}+160 x-256$. Given that y has a maximum value, find
(i) the value of x giving the maximum value of y;
(ii) this maximum value of y.

The triangle XYZ has $\mathrm{XZ}=6, \mathrm{YZ}=x, \mathrm{XY}=z$ as shown below. The perimeter of triangle XYZ is 16 .

(b) (i) Express z in terms of x.
(ii) Using the cosine rule, express z^{2} in terms of x and $\cos Z$.
(iii) Hence, show that $\cos Z=\frac{5 x-16}{3 x}$.

Let the area of triangle XYZ be A.
(c) Show that $A^{2}=9 x^{2} \sin ^{2} Z$.
(d) Hence, show that $A^{2}=-16 x^{2}+160 x-256$.
(e) (i) Hence, write down the maximum area for triangle XYZ.
(ii) What type of triangle is the triangle with maximum area?
10. The diagram below shows a quadrilateral $\mathrm{ABCD} . \mathrm{AB}=4, \mathrm{AD}=8, \mathrm{CD}=12, \mathrm{~B} \hat{\mathrm{C}} \mathrm{D}=25^{\circ}$, $B A \hat{D}=\theta$.

(a) Use the cosine rule to show that $\mathrm{BD}=4 \sqrt{5-4 \cos \theta}$.

Let $\theta=40^{\circ}$.
(b) (i) Find the value of $\sin C \hat{B} D$.
(ii) Find the two possible values for the size of $C \hat{B} D$.
(iii) Given that CBD is an acute angle, find the perimeter of ABCD .
(c) Find the area of triangle ABD.

Answers :

1. (a) The smallest angle is opposite the smallest side.

$$
\begin{aligned}
\cos \theta & =\frac{8^{2}+7^{2}-5^{2}}{2 \times 8 \times 7} \\
& =\frac{88}{112}=\frac{11}{14}=0.7857
\end{aligned}
$$

Therefore, $\theta=38.2^{\circ}$
(b) Area $=\frac{1}{2} \times 8 \times 7 \times \sin 38.2^{\circ}$

$$
=17.3 \mathrm{~cm}^{2}
$$

2.

(a) $\frac{\sin (\mathrm{ACB})}{20}=\frac{\sin 50^{\circ}}{17}$

$$
\begin{aligned}
\Rightarrow \sin (\mathrm{ACB})= & \frac{20 \sin 50^{\circ}}{17}=0.901 \\
\mathrm{~A} \hat{C} B>90^{\circ} \Rightarrow & \mathrm{ACB}=180^{\circ}-64.3^{\circ}=115.7^{\circ} \\
& \mathrm{A} \hat{\mathrm{C} B}=116(3 \mathrm{sf})
\end{aligned}
$$

(b) In Triangle 1, ACB $=64.3^{\circ}$
$\Rightarrow \mathrm{BAAC}=180^{\circ}-\left(64.3^{\circ}+50^{\circ}\right)$
$=65.7^{\circ}$
Area $=\frac{1}{2}(20)(17) \sin 65.7^{\circ}=155\left(\mathrm{~cm}^{2}\right)(3 \mathrm{sf})$
3. (a) Evidence of using the cosine rule
$e g \cos \mathrm{P} \hat{\mathrm{Q}}=\frac{p^{2}+r^{2}-q^{2}}{2 p r}, q^{2}=p^{2}+r^{2}-2 p r \cos \mathrm{P} \hat{\mathrm{Q}} \mathrm{R}$

Correct substitution
eg $\frac{4^{2}+6^{2}-5^{2}}{2 \times 4 \times 6}, 5^{2}=4^{2}+6^{2}-2 \times 4 \times 6 \cos Q$

$$
\begin{aligned}
\cos \mathrm{PQ} R & =\frac{27}{48}=0.5625 \\
\mathrm{PQ} R & =55.8^{\circ}(0.973 \text { radians })
\end{aligned}
$$

(b) Area $=\frac{1}{2} p r \sin \mathrm{P} \hat{\mathrm{Q}}$

For substituting correctly $\frac{1}{2} \times 4 \times 6 \sin 55.8$

$$
=9.92\left(\mathrm{~cm}^{2}\right)
$$

4. Note: Award (M1) for identifying the largest angle.
$\cos \alpha=\frac{4^{2}+5^{2}-7^{2}}{2 \times 4 \times 5}$
$=-\frac{1}{5}$
$\Rightarrow \alpha=101.5^{\circ}$

OR Find other angles first

$\beta=44.4^{\circ}$	$\gamma=34.0^{\circ}$
$\Rightarrow \alpha=101.6^{\circ}$	

Note: Award (C3) if not given to the correct accuracy.
5.

OR
$2.5 \times 20=50$
$2.5 \times 32=80$
$d^{2}=50^{2}+80^{2}-2 \times 50 \times 80 \times \cos 70^{\circ}$
$d=78.5 \mathrm{~km}$
6. \quad Area of a triangle $=\frac{1}{2} \times 3 \times 4 \sin A$
$\frac{1}{2} \times 3 \times 4 \sin A=4.5$
$\sin A=0.75$
$A=48.6^{\circ}$ and $A=131^{\circ}$ (or 0.848, 2.29 radians)
Note: Award (C4) for 48.6° only, (C5) for 131° only.
7. (a) $\frac{P Q}{40}=\tan 36^{\circ}$

$$
\Rightarrow \mathrm{PQ} \approx 29.1 \mathrm{~m}(3 \mathrm{sf})
$$

(b)

Note: Award (M1) for correctly substituting.
$\Rightarrow \mathrm{AB}=419 . \mathrm{m}(3 \mathrm{sf})$
8. (a) Evidence of choosing cosine rule
$e g a^{2}=b^{2}+c^{2}-2 b c \cos A$
Correct substitution

$$
e g(\mathrm{AD})^{2}=7.1^{2}+9.2^{2}-2(7.1)(9.2) \cos 60^{\circ}
$$

$$
(\mathrm{AD})^{2}=69.73
$$

$$
\mathrm{AD}=8.35(\mathrm{~cm})
$$

(b) $180^{\circ}-162^{\circ}=18^{\circ}$

Evidence of choosing sine rule
Correct substitution
$e g \frac{\mathrm{DE}}{\sin 18^{\circ}}=\frac{8.35}{\sin 110^{\circ}}$

$$
\mathrm{DE}=2.75(\mathrm{~cm})
$$

(c) Setting up equation
$e g \frac{1}{2} a b \sin C=5.68, \frac{1}{2} b h=5.68$

Correct substitution
eg $5.68=\frac{1}{2}(3.2)(7.1) \sin \mathrm{DBC}, \frac{1}{2} \times 3.2 \times h=5.68,(h=3.55)$
$\sin \mathrm{DBC}=0.5$
DBC 30° and/or 150°
(d) Finding $\mathrm{A} \hat{\mathrm{B}} \mathrm{C}\left(60^{\circ}+\mathrm{D} \hat{\mathrm{B}} \mathrm{C}\right)$

Using appropriate formula
$e g(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2},(\mathrm{AC})^{2}=(\mathrm{AB})^{2}+(\mathrm{BC})^{2}-2(\mathrm{AB})$
(BC) $\cos \mathrm{ABC}$
Correct substitution (allow $\boldsymbol{F T}$ on their seen ABC)
$e g(A C)^{2}=9.2^{2}+3.2^{2}$

$$
\mathrm{AC}=9.74(\mathrm{~cm})
$$

(e) For finding area of triangle ABD

Correct substitution Area $=\frac{1}{2} \times 9.2 \times 7.1 \sin 60^{\circ}$

$$
=28.28 \ldots
$$

Area of $\mathrm{ABCD}=28.28 \ldots+5.68$

$$
=34.0\left(\mathrm{~cm}^{2}\right)
$$

9. (a) METHOD 1

Note: \quad There are many valid algebraic approaches to this problem (eg completing the square, using $x=\frac{-b}{2 a}$). Use the following mark allocation as a guide.
(i) Using $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$

$$
\begin{aligned}
-32 x+160 & =0 \\
x & =5
\end{aligned}
$$

(ii) $y_{\max }=-16\left(5^{2}\right)+160(5)-256$

$$
y_{\max }=144
$$

METHOD 2

(i) Sketch of the correct parabola (may be seen in part (ii))
(ii) $y_{\max }=144$
(b) (i) $z=10-x \quad(\operatorname{accept} x+z=10)$
(ii) $z^{2}=x^{2}+6^{2}-2 \times x \times 6 \times \cos Z$
(iii) Substituting for z into the expression in part (ii)

Expanding $100-20 x+x^{2}=x^{2}+36-12 x \cos Z$

Simplifying $12 x \cos Z=20 x-64$
Isolating $\cos Z=\frac{20 x-64}{12 x}$
$\cos Z=\frac{5 x-16}{3 x}$
Note: Expanding, simplifying and isolating may be done in any order, with the final A1 being awarded for an expression that clearly leads to the required answer.
(c) Evidence of using the formula for area of a triangle
$\left(A=\frac{1}{2} \times 6 \times x \times \sin Z\right)$
$A=3 x \sin Z\left(A^{2}=\frac{1}{4} \times 36 x^{2} \times \sin ^{2} Z\right)$
$A^{2}=9 x^{2} \sin ^{2} Z$
(d) Using $\sin ^{2} Z=1-\cos ^{2} Z$

Substituting $\frac{5 x-16}{3 x}$ for $\cos Z$
for expanding $\left(\frac{5 x-16}{3 x}\right)^{2}$ to $\left(\frac{25 x^{2}-160 x+256}{9 x^{2}}\right)$
for simplifying to an expression that clearly leads to the required answer
$e g \mathrm{~A}^{2}=9 x^{2}-\left(25 x^{2}-160 x+256\right)$

$$
A^{2}=-16 x^{2}+160 x-256
$$

(e) (i) 144 (is maximum value of A^{2}, from part (a))

$$
A_{\text {max }}=12
$$

(ii) Isosceles
10. (a) For correct substitution into cosine rule

$$
\mathrm{BD}=\sqrt{4^{2}+8^{2}-2 \times 4 \times 8 \cos \theta}
$$

For factorizing $16, \mathrm{BD}=\sqrt{16(5-4 \cos \theta)}$

$$
=4 \sqrt{5-4 \cos \theta}
$$

(b) (i) $\mathrm{BD}=5.5653 \ldots$

$$
\begin{aligned}
& \frac{\sin C \hat{B} D}{12}=\frac{\sin 25}{5.5653} \\
& \sin C \hat{B} D=0.911 \quad \text { (accept } 0.910, \text { subject to } \boldsymbol{A P} \text {) }
\end{aligned}
$$

(ii) $\mathrm{C} \hat{\mathrm{BD}}=65.7^{\circ}$

$$
\begin{aligned}
\text { Or } \mathrm{CBD} & =180-\text { their acute angle } \\
& =114^{\circ}
\end{aligned}
$$

(iii) $\quad \mathrm{BD} \mathrm{C}=89.3^{\circ}$

$$
\begin{aligned}
& \begin{aligned}
\frac{\mathrm{BC}}{\sin 89.3}= & \frac{5.5653}{\sin 25} \text { or } \frac{\mathrm{BC}}{\sin 89.3}=\frac{12}{\sin 65.7} \text { (or cosine rule) } \\
\qquad \mathrm{BC} & =13.2 \quad(\text { accept } 13.17 \ldots) \\
\text { Perimeter } & =4+8+12+13.2 \\
& =37.2
\end{aligned}
\end{aligned}
$$

(c) Area $=\frac{1}{2} \times 4 \times 8 \times \sin 40^{\circ}$

$$
=10.3
$$

