Circle theorems

There are four theorems on angles in circles that you should know. First you need to learn some words.

- The straight line AB is a **chord**.
- The curved line AB (in bold) is an arc.
- The chord AB divides the circle into two segments the major segment (shaded) and the minor segment (unshaded).
- AĈB is the angle **subtended** by AB at C.
- ABCD is a cyclic quadrilateral.

Theorem 1

The angle subtended at the centre of a circle is twice the angle subtended at the circumference.

$$\widehat{AOB} = 2 \times \widehat{ACB}$$

Theorem 2

Angles subtended by an arc in the same segment of a circle are equal.

$$A\widehat{X}B = A\widehat{Y}B = A\widehat{Z}B$$

The proof of this theorem is given in the section on proof.

(a) Given $\widehat{ABO} = 50^{\circ}$, find \widehat{BCA} .

Triangle OBA is isosceles (OA = OB).

- \therefore OÂB = 50°
- \therefore BOA = 80° (angle sum of a triangle)
- $\widehat{BCA} = 40^{\circ}$ (angle at the centre)

(b) Given $\widehat{BDC} = 62^{\circ}$ and $\widehat{DCA} = 44^{\circ}$ find \widehat{BAC} and ABD.

 $\widehat{BDC} = \widehat{BAC}$ (both subtended by arc BC)

 $\widehat{BAC} = 62^{\circ}$

 $D\widehat{C}A = A\widehat{B}D$ (both subtended by arc DA)

 $\widehat{ABD} = 44^{\circ}$

Exercise 1

Find the angles marked with letters. A line passes through the centre only when point O is shown.

1.

3.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

16.

Theorem 3

The opposite angles in a cyclic quadrilateral add up to 180° (the angles are supplementary).

$$\hat{A} + \hat{C} = 180^{\circ}$$
 $\hat{B} + \hat{D} = 180^{\circ}$

Find a and x. $a = 180^{\circ} - 81^{\circ}$

(opposite angles of a cyclic quadrilateral)

$$\therefore a = 99^{\circ}$$

$$x + 2x = 180^{\circ}$$

(opposite angles of a cyclic quadrilateral)

$$3x = 180^{\circ}$$

$$\therefore x = 60^{\circ}$$

The angle in a semicircle is a right angle.

In the diagram, AB is a diameter. $\widehat{ACB} = 90^{\circ}$.

Find b given that AOB is a diameter.

$$A\widehat{C}B = 90^{\circ}$$
 (angle in a semicircle)
∴ $b = 180^{\circ} - (90 + 37)^{\circ}$
= 53°

Exercise 2

Find the angles marked with a letter.

