SATPREP

DERIVATIVES

On problems 1-4, find the critical points of each function, and determine whether they are relative maximums or relative minimums by using the Second Derivative Test whenever possible.

1. $f(x)=x^{3}-3 x^{2}+3$
2. $f(x)=x+\frac{4}{x}$
3. $f(x)=\sin x-\cos x, 0 \leq x \leq 2 \pi$
4. $f(x)=2 \sin x+\cos (2 x), 0 \leq x \leq 2 \pi$
5. Suppose that the function f has a continuous second derivative for all x and that $f(-1)=2, f^{\prime}(-1)=-3, f^{\prime \prime}(-1)=5$. Let g be a function whose derivative is given by $g^{\prime}(x)=\left(x^{4}-6 x^{3}\right)\left(3 f(x)+2 f^{\prime}(x)\right)$ for all x.
(a) Write an equation of the line tangent to the graph of f at the point where $x=-1$.
(b) Does g have a local maximum or a local minimum at $x=-1$? Justify your answer.
6. Conside the curve given by $x^{2}+4 y^{2}=7+3 x y$.
(a) Show that $\frac{d y}{d x}=\frac{3 y-2 x}{8 y-3 x}$.
(b) Show that there is a point P with x-coordinate 3 at which the line tangent to the curve at P is horizontal. Find the y-coordinate of P.
(c) Find the value of $\frac{d^{2} y}{d x^{2}}$ at the point P found in part (b). Does the curve have a local maximum, a local minimum, or neither at point P ? Justify your answer.

On problems $7-8$, the graph of the derivative, f^{\prime}, of a function f is shown.
(a) On what interval(s) is f increasing or decreasing? Justify your answer.
(b) At what value(s) of x does f have a local maximum or local minimum? Justify your answer.
7.

8.

9. The graph of the second derivative, $f^{\prime \prime}$, of a function f is shown. State the x-coordinates of the inflection points of f. Justify your answer.

TURN->>>
10. The function h is defined by $h(x)=f(g(x))$, where f and g are the functions whose
graphs are shown below.

(a) Evaluate $h(2)$.
(b) Estimate $h^{\prime}(1)$.
(c) Is the graph of the composite function h increasing or decreasing at $x=3$? Show your reasoning.
(d) Find all values of x for which the graph of h has a horizontal tangent. Show your reasoning.
11. For what values of a and b does the function $f(x)=x^{3}+a x^{2}+b x+2$ have a local maximum when $x=-3$ and a local minimum when $x=-1$?
12. Sketch the graph of a function $f(x)$ that meets all of the following criteria:

1) The domain of f is $(-\infty, 0) \cup(0, \infty)$.
2) $f(-x)=-f(x)$
3) For $x>0, f(x)=0$ only at $x=1$.
4) For $x>0, f^{\prime}(x)=0$ only at $x=2$.
5) For $x>0, f^{\prime \prime}(x)=0$ only at $x=3$.
6) $\lim _{x \rightarrow 0^{+}} f(x)=\infty$
7) $\lim _{x \rightarrow \infty} f(x)=0$

Answers to Worksheet on Second Derivative Test

1. Rel. max. at $(0,3)$, rel. min. at $(2,-1)$
2. Rel. max. at $(-2,-4)$, rel. min. at $(2,4)$
3. Rel. max. at $\left(\frac{3 \pi}{4}, \sqrt{2}\right)$, rel. min. at $\left(\frac{7 \pi}{4},-\sqrt{2}\right)$
4. Rel. min. at $\left(\frac{\pi}{2}, 1\right)$ and $\left(\frac{3 \pi}{2},-3\right)$, rel. max. at $\left(\frac{\pi}{6}, \frac{3}{2}\right)$ and $\left(\frac{5 \pi}{6}, \frac{3}{2}\right)$
5. (a) $y-2=-3(x+1)$
(b) Local minimum at $x=-1$ because $g^{\prime}(-1)=0$ and $g^{\prime \prime}(-1)=7>0$.
6. (a) $2 x+8 y \frac{d y}{d x}=3 y+3 x \frac{d y}{d x}$
(b) $y=2$

$$
(8 y-3 x) \frac{d y}{d x}=3 y-2 x
$$

(c) Local max. since $\frac{d y}{d x}=0$ and $\frac{d^{2} y}{d x^{2}}=-\frac{2}{7}$
7. (a) incr. on $(-\infty, 0) \cup(3, \infty)$; decr. on $(0,3) \quad$ (b) Rel. max. at $x=0$, rel. min. at $x=3$
8. (a) decr. on $(-\infty,-1) \cup(3,5)$; incr. on $(-1,3) \cup(5, \infty)$
(b) Rel. min. at $x=-1, x=5$; rel. max. at $x=3$
9. $x=1$ and $x=7$
10. (a) 3.4
(b) $\frac{1}{4}$
(c) decr.
(d) 2, 0.25, 4
11. $a=6, b=9$
12.

