AS-Level

Topic: Normal Distribution

May: 2013-May: 2023

Answers

Question 1

(i)
$$P(tall) = P\left(z > \frac{70 - 50}{16}\right) = P(z > 1.25)$$
 M1 $+ ve/-ve$ Standardising no cc no sq rt no sq $= 1 - 0.8944$ $= 0.106$ A1 [2] Correct answer

(ii) $P(short) = (1 - 0.1056)/3$ M1 Subt their (i) from 1 or their (i) and multiplying by $\frac{1}{3}$ or $\frac{2}{3}$ Rounding to 0.298, only ft for $\frac{(1 - (i))}{3}$ $\pm z - 0.53$ $\pm z - value$ rounding to 0.53, condone ± 0.24 Standardising with their z value (not a probability), no cc sq rt etc. $x = 41.5$ A1 [5] Correct answer

Question 2

(i)
$$P(x < 440)$$

 $= P\left(z < \frac{440 - 445}{3.6}\right) = 1 - \Phi (1.389)$ M1 Standardising no cc no sq or sq rt Correct area $(1 - \Phi)$ oe (indep)

Ans = 0.0824 A1 [3] Rounding to correct answer accept 0.0825

(ii) $z = 1.881$ M1 ± 1.88 or 1.881 or 1.882 or 1.555 seen \pm
 $\frac{c}{3.6} = 1.881$ M1 Equation with $\pm c/3.6$ or $2c/3.6$ only $= z$ or prob (can be implied)

 $c = 6.77$ A1 [3] Correct answer accept 6.78

$$z = 1.452$$

$$1.452 = \frac{20 - \mu}{\mu/5}$$

$$\mu = 15.5$$
B1
Rounding to ± 1.45

$$\frac{20 - \mu}{\mu/5} \text{ or } \frac{20 - 5\sigma}{\sigma} \text{ seen oe}$$
B1
[3] rounding to correct answer

4 (a)	$P(y < 0) = P\left(z < \frac{0 - \mu}{\mu/2}\right)$ $= P(z < -2)$	M1 A1		Standardising containing 0 (can be implied) and μ only $z < -2$ seen
	= 1 - 0.9772 = 0.0228	A1	[3]	Correct answer
(b)	P(x > 2.1) = 253/8000 = 0.031625 $P(x < 2.1) = 0.968375 = \Phi(z)$	M1		1 – their 253/8000 used to obtain a <i>z</i> -value
	$z = 1.857$ or 1.858 or 1.859 = $\frac{2.1 - 2.04}{\sigma}$	A1		Rounded to 1.86 seen
	$\sigma = 0.0323$	M1		Solving for σ using their z val must be a z val
	- DE	A1	[4]	Correct answer

Question 5

$np = 350 \times 1/7 (= 50)$ $npq = 350 \times 1/7 \times 6/7 (= 42.857)$	B1 M1		Correct unsimplified <i>np</i> and <i>npq</i> standardising, with or without cc, must have sq rt
$P(x = 47) = P\left(z > \frac{46.5 - 50}{\sqrt{42.857}}\right) =$ $P(z > -0.5346)$	M1 M1		continuity correction 46.5 or 47.5 correct area ie > 0.5 must be a Φ
P(z > -0.5346) = 0.704	A1	[5]	correct answer

(a)
$$P(X < q + 82) = 0.72$$
 $z = 0.583$

$$\frac{\pm q}{7.4} \text{ or } \frac{\pm 2q}{7.4} = z \text{ or probabilty (o.e.)}$$
M1 Rounding to $\pm 0.58 \text{ or } \pm 0.15 \text{ seen}$

$$\frac{1}{2} = 4.31$$
A1 3 correct answer

M1 Standardising, no cc, no sq, no sq rt

M2 Standardising attempt some μ/σ allow cc, sq rt, sq
Can be implied

M3 Standardising attempt some μ/σ allow cc, sq rt, sq
Can be implied

M4 $\pm 0.580 \text{ seen (accept } \pm 0.58)$ substituting to eliminate μ or σ , arriving at numerical solution, any z value or probability not dependent

M4 both answers correct, accept 2.9

Question 8

(i)
$$P(4, 5, 6) = (0.22)^4(0.78)^48C4 + (0.22)^5(0.78)^38C5 + (0.22)^6(0.78)^28C6$$

M1 Sin term with ${}_8C_r p^r (1-p)^{8-r}$ seen $r \neq 0$ any $p < 1$ Summing 2 or 3 bin probs $p = 0.22$, $n = 8$

Correct answer

(ii) $prob = 0.13$ $prob = 0.13$ $prob = 0.13$ $prob = 0.13 = 30$ $prob = 0.13 = 30$ $prob = 0.13 = 30 = 0.13 = 30$ $prob = 0.13 = 0.13 = 0.13$

P($30 < x < 50$) = P

$$\left(\frac{30.5 - 39}{\sqrt{33.93}} < z < \frac{49.5 - 39}{\sqrt{33.93}}\right)$$

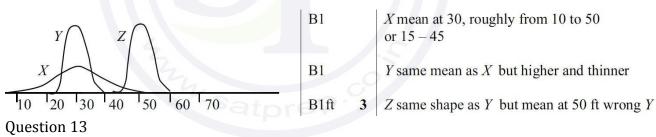
M1 Standardising a value need sq rt

$$\left(\frac{30.5 - 39}{\sqrt{33.93}} < z < \frac{49.5 - 39}{\sqrt{33.93}}\right)$$

M1 Cont correction $30.5 / 31.5$ or $48.5 / 49.5$ only

$$P(-1.4592 < z < 1.8026) = 0.9643 + 0.9278 - 1 = 0.892$$

M1 Correct area $0 = 0.964 = 0.928 = 0.964 = 0.928 = 0.964 = 0.928 = 0.964 = 0.928 = 0.964 = 0.928 = 0.964 = 0.928 = 0.964 = 0.928 = 0.964 = 0.928 = 0.964 = 0.928 = 0.964 = 0.928 = 0.964 = 0.928 = 0.964 = 0.928 = 0.964 = 0.928 = 0.964 = 0.928 = 0.964 = 0.928 =$


+ ... +300C49 etc.) B1B1

(i)
$$z = 0.878$$
 $\frac{190 - 160}{\sigma} = 0.878$ $M1$ $\pm 0.878, 0.88, rounding to 0.88 seen $(190 - 160)/\sigma = something$ $M1$ $\sigma = 34.2$ $M1$ [3] Correct answer $M1$ Using $1 - P(0), 1 - P(0, 1), P(1,2 ... 12) \text{ or } P(2, ... 12) \text{ with } p = 0.19 \text{ or } 0.81, \text{ terms must be evaluated to get the } M1$ $M1$ [2] Correct answer accept 0.92$

			1
$P(x < -2.4) = P\left(z < \frac{-2.4 - 1.5}{3.2}\right)$	M1		Standardising no cc can have sq
= P(z < -1.219)	M1		Correct area, i.e. < 0.5
= 1 - 0.8886 = 0.111	A1	[3]	Correct answer rounding to 0.111

Question 11

	-1.406	B1		Rounding to ± 1.41 seen
<u>c -</u>	$\frac{-14.2}{3.6} = -1.406$	M1		Standardising allow sq rt no cc
	9.14	A 1	3	Correct answer
(ii) P	$\left(\frac{15-14.2}{3.6}\right) < z < \left(\frac{16-14.2}{3.6}\right)$	M1		2 attempts at standardising no cc no sq rt
	$\Phi(0.5) - \Phi(0.222)$	M1		Subt two Φs (indep mark)
100	0.6915 – 0.5879 0.1036	A1		Needn't be entirely accurate, rounding to 0.10
	t least 2) = $1 - P(0, 1)$ - $(0.8964)^7 - (0.8964)^6 (0.1036)_7 C_1$	M1		Binomial term with ${}_{7}C_{r}p^{r}(1-p)^{7-r}$ seen $r \neq 0$ any $p < 1$
= 1	-0.8413	M1		1 - P(0), $1 - P(1)$, $1 - P(0, 1)$ seen their p
=0	.159	A1	6	Correct answer accept 3sf rounding to 0.16

(i)	z = -1.282	B1	Rounding to \pm 1.28 seen
	$-1.282 = \frac{t - 6.5}{1.76}$	M1	Standardising, no cc, no sq or sq rt, $z \neq \pm 0.9, \pm 0.1$
	t = 4.24	A1 3	Correct answer, accept 4.25
(ii)	P(z < 1) = 0.8413	M1	z = 1 used to find a probability
	P(within 1sd of mean) = $2\Phi - 1$ = 0.6826	B1	correct prob, accept answer rounding to 0.66, 0.67, 0.68, not from wrong working. If quoted, then implies first M1.
	$P(8, 9) = {}^{9}C_{8}(0.6826)^{8}(0.3174) + (0.6826)^{9}$	M1 M1	Binomial term $p^r(1-p)^{9-r}{}^9C_r$, 9C_r must be seen Binomial expression for P(8)+P(9), any p
	= 0.167	A1 5	Correct ans

(i)
$$np = 252 \times 1/7 = 36$$
, $npq = 252 \times 1/7 \times 6/7 = 30.857$ B1 Unsimplified 36 and 30.857 seen, oe

$$P\left(z < \left(\frac{29.5 - 36}{\sqrt{30.857}}\right)\right) + P\left(z > \left(\frac{44.5 - 36}{\sqrt{30.857}}\right)\right) \quad \text{M1} \quad \text{any standardising, sq rt needed any continuity correction either 29.5, 30.5, 43.5, }$$

$$= P(z < -1.170) + P(z > 1.530) \quad \text{M1} \quad \text{correct area } 2 - (\Phi_1 + \Phi_2)$$

$$= 0.184 \quad \text{A1} \quad \text{5} \quad \text{correct answer}$$

(ii) $np \text{ and } nq \text{ are both } > 5 \quad \text{B1} \quad \text{1} \quad \text{must have both}$

(i)	$z = -0.842$ $P(x > 1.35) = P\left(z > \frac{1.35 - 1.9}{\sigma}\right)$ $-0.842 = -0.55/\sigma$	B1 M1		\pm rounding to 0.84 seen $\pm \frac{1.35 - 1.9}{\sigma}$ = a prob or a z-value NOT 0.8 or 0.2 allow a 1
	σ = 0.653	A1	3	Correct answer from correct working
(ii)	$P(x < 2) = P\left(z < \frac{2 - 1.9}{0.6532}\right)$ = P (z < 0.1531)	M1		\pm standardising no continuity correction their σ
	= 0.561	A1	2	Correct answer
(iii)	$X \sim N(160, 32)$ P(162.5 < x < 173.5) = $P\left(\frac{162.5 - 160}{\sqrt{32}} < z < \frac{173.5 - 160}{\sqrt{32}}\right)$	B1		Unsimplified 160 and 32 seen
	(,02)	M1		Standardising need sq rt
	P(0.442 < z < 2.386)	M1 M1		Any of 162.5, 163.5, 172.5, 173.5 seen
	$= \Phi(2.386) - \Phi(0.442)$ = 0.9915 - 0.6707	A1		$\Phi_2 - \Phi_1$ oe One correct Φ to 3sf
	= 0.321	A1	6	Correct answer accept 0.320

$1.751 = \frac{12 - \mu}{\sigma}$	B1	Rounding to ± 1.75 seen
$0.468 = \frac{9 - \mu}{\sigma}$	B1	±0.468 seen
	M1	An eqn with a z-value, μ and σ no $\sqrt{\sigma}$, no σ^2
σ = 2.34	M1	Sensible attempt to eliminate μ or σ by substitution or subtraction, need a value
$\mu = 7.91$	A1 5	correct answers

P(21.6 <
$$x$$
 < 28.7)
$$= P\left(\left(\frac{21.6 - 24}{4.7}\right) < z < \left(\frac{28.7 - 24}{4.7}\right)\right)$$
M1 Standardising; no cc, no sq rt One rounding to Φ (0.841 or 0.695)
$$= P(-0.5106 < z < 1) = \Phi(1) - \Phi(-0.5106)$$
M1 $\Phi_1 + \Phi_2 - 1$

$$= 0.8413 - (1 - 0.6953)$$

$$= 0.537 (0.5366)$$
A1 4 Correct answer

Question 19

(i)
$$P(<1.2) = P\left(z < \frac{1.2 - 1.9}{0.55}\right) = P(z < -1.2727)$$
 | M1 | Standardising for wt 1.2 or 2.5, no cc, sq, sq rt May be awarded in (ii) if not attempted in (i) Accept 0.102 | First correct proportion seen |

A1 | Standardising for wt 1.2 or 2.5, no cc, sq, sq rt May be awarded in (ii) if not attempted in (i) Accept 0.102 |

First correct proportion seen |

A1 | Second correct proportion seen |

A1 | Second correct proportion seen |

A2 | Second correct proportion seen |

A3 | Second correct proportion 1 - their previous 2 proportions or correct attempt for remaining proportion |

A3 | Second correct proportion 1 - their previous 2 proportions |

A3 | Second correct proportion 1 - their previous 2 proportions |

A3 | Second correct proportion 1 - their previous 2 proportions |

A4 | Second correct proportion 1 - their previous 2 proportions |

A5 | Second correct proportion 1 - their previous 2 proportions |

A6 | Second correct proportion 1 - their previous 2 proportions |

A6 | Second correct proportion 1 - their previous 2 proportions |

A6 | Second correct proportion 1 - their previous 2 proportions |

A6 | Second correct proportion 1 - their previous 2 proportions |

A6 | Second correct proportion 1 - their previous 2 proportions |

A7 | Second correct proportion 1 - their previous 2 proportions |

A6 | Second correct proportion 1 - their previous 2 proportions |

A7 | Second correct proportion 1 - their previous 2 proportions |

A7 | Second correct proportion 1 - their previous 2 proportions |

A8 | Second correct proportion 1 - their previous 2 proportions |

A8 | Second correct proportion 1 - their previous 2 proportions |

A8 | Second correct proportion 1 - their previous 2 proportions |

A8 | Second correct proportion 1 - their previous 2 proportions |

A8 | Second correct proportion 1 - their 2 previous correct proportions |

A8 | Second correct proportion 1 - their 2 previous correct proportions |

A8 | Second correct proportion 1 - their 2 previous correct proportions |

A8 | Seco

$$z = -2.326$$
 B1 ± 2.325 to ± 2.33 seen Standardising and = or < their z, no cc, sq, sq rt $\sigma = 4.30$ A1 3 Correct ans

Question 20

(i)
$$P(4, 5, 6) = (0.75)^4 (0.25)^4 \times {}^8C_4 + (0.75)^5 (0.25)^3 \times {}^8C_5 + (0.75)^6 (0.25)^2 \times {}^8C_6$$
 $= 0.606$

(ii) $np = 160 \times 0.75 = 120$ $npq = 30$
 $P(>114) = P\left(z > \left(\frac{114.5 - 120}{\sqrt{30}}\right)\right)$
 $= P(z > -1.004)$
 $= \Phi(1.004) = 0.842$

M1 Bin term $p^r(1-p)^{8-r} \times {}^8C_r$ seen any p

Correct unsimplified answer

M1 Correct ans

Unsimplified mean and var correct

M1 Standardising, need sq rt

Cont correction either 114.5 or 113.5

Correct area consistent with their working

A1 5 Correct ans

(iii) np and nq both > 5

B1 1 Need both

(i)
$$z_1 = \frac{70 - 66.4}{5.6} = 0.6429$$
 M1 Standardising one variable, no cc, no sq rt $z_2 = \frac{72.5 - 66.4}{5.6} = 1.089$ M1 Correct area $\Phi_2 - \Phi_1$ Correct answer rounding to 0.12 $= 0.1221$ M1 Subt from 66.4 Correct answer ft their 0.1221 (ii) $66.4 - 59.2 = 7.2$ M1 Subt from 66.4 Correct answer (iii) $z = 0.674$ M1 $z = 0.674$ M1 $z = 0.674$ M1 Subt from 66.4 Standardising with a z-value no cc no sq rt $\frac{67.5 - \mu}{4.92} = 0.674$ M1 Standardising with a z-value no cc no sq rt A1 3 Correct answer

Question 23

(i)	$P(large) = 1 - \Phi\left(\frac{29 - 21.7}{6.5}\right)$ $= 1 - \Phi(1.123) = 1 - 0.8692$ $= 0.1308$ $P(0,1) = (0.8692)^{8/} + {}^{8}C_{1}(0.1308)(0.8692)^{7}$	M1 M1 A1		Standardising no cc no sq rt Correct area $1 - \Phi$ Rounding to 0.13 Any bin term with ${}^{8}C_{x}p^{x}(1-p)^{8-x}$ 0
	= 0.718	M1 A1	[6]	Any oil term with $C_x p(1-p) = 0$ Summing bin P(0) + P(1) only with $n = 8$, oe Correct ans
(ii)	$= 1 - (0.8692)^n > 0.98$ $(0.8692)^n < 0.02$ Least number = 28	M1 M1 A1	[3]	eq/ineq involving their (0.8692) ⁿ or (0.1308) ⁿ , 0.02 or 0.98 oe with or without a 1 solving attempt (could be trial and error) – may be implied by their answer correct answer

$\mu = 300 \times 0.072 = 21.6, \ \sigma^2 = 20.0448$	B1	300×0.072 seen and
		$300 \times 0.072 \times 0.928$ seen or implied
$P(x < 18) = P\left(z < \frac{17.5 - 21.6}{\sqrt{20.0448}}\right)$	M1	$(\sigma = 4.4771, \sigma^2 = 20(.0))$ oe ±Standardising, their mean/var, with
$\sqrt{20.0448}$	IVII	sq root
	M1	Cont corr 17.5 or 18.5
=P(z < -0.9157)		
= 1 - 0.8201	M1	Correct area 1 - Φ
= 0.180	A1 [5]	Answer wrt 0.180, nfww

$$z = 1.136$$

$$1.136 = \frac{195 - \mu}{22}$$

$$\mu = 170$$
B1
$$\pm 1.136 \text{ seen, not } \pm 1.14,$$
M1
Standardising, no cc no sq rt, equated to their z not 0.128 or 0.872
A1 [3] Correct answer, nfww

(a) (i)	prob = $p\left(z < \frac{30 - 35.2}{4.7}\right)$ = $P(z < -1.106)$ = $1 - 0.8655 = 0.1345$ $0.1345 \times 52 = 6.99$	M1 M1 A1 A1	4	Standardising no sq rt no cc no sq $1-\Phi$ Correct ans rounding to 0.13 Correct final answer accept 6 or 7 if 6.99 not seen but previous prob 0,1345 correct
(ii)	$\Phi(t) = 0.648 \qquad z = 0.380$ $0.380 = \frac{t - 35.2}{4.7}$ $t = 37.0$	B1 M1	3	0.648 seen standardising allow cc, sq rt,sq, need use of tables not 0.148, 0.648, 0.352, 0.852 correct answer rounding to 37.0
(b)	$\frac{7 - \mu = -0.8\sigma}{\sigma} \text{so} 7 - \mu = -0.8\sigma$	B1 B1		± 0.8 seen ± 0.44 seen
	$\frac{10 - \mu}{\sigma} = 0.44$ so $10 - \mu = 0.44\sigma$	M1 M1		An eqn with z-value, μ and σ no sq rt no cc no sq Sensible attempt to eliminate μ or σ by subst or subtraction, need at least one value
	$\mu = 8.94$ $\sigma = 2.42$	A1	5	Correct answers
Question				

(i)	$P(5, 6, 7) = {}^{8}C_{5}(0.68)^{5}(0.32)^{3} + {}^{8}C_{6}(0.68)^{6}(0.32)^{2} + {}^{8}C_{7}(0.68)^{7}(0.32)$ $= 0.722$	M1 M1 A1 A1 [4]	Binomial term ${}^8C_x p^x (1-p)^{8-x}$ seen $0Summing 3 binomial termsCorrect unsimplified answerCorrect answer$
(ii)	np = 340, npq = 108.8	B1	Correct (unsimplified) mean and var
	$P(x > 337) = P\left(z > \frac{337.5 - 340}{\sqrt{108.8}}\right)$	M1 M1	standardising with sq rt must have used 500 cc either 337.5 or 336.5
	= P(z > -0.2396) = 0.595	M1 A1 [5]	correct area (> 0.5) must have used 500 correct answer
(iii)	np(340) > 5 and $nq(160) > 5$	B1 [1]	must have both or at least the smaller, need numerical justification

P(x < 3.273) = 0.5 - 0.475 = 0.025	M1	Attempt to find z-value using tables in reverse
z = -1.96	A1	±1.96 seen
$\frac{3.2 - \mu}{0.714} = -1.96$	M1	Solving their standardised equation <i>z</i> -value not nec
$\mu = 4.60$ s	A1 [4]	Correct ans accept 4.6

(i)	$P(0, 1, 2) = (0.92)^{19} + {}^{19}C_1(0.08)(0.92)^{18} + {}^{19}C_2(0.08)^2(0.92)^{17}$	M1 M1		Binomial term ${}^{19}C_xp^x(1-p)^{19-x}$ seen $0Correct unsimplified expression$
	= 0.809	A1	3	Correct answer (no working SC B2)
(ii)	P(at least 1) = 1 - P(0) = 1 - P(0.92) ⁿ > 0.90 0.1 > $(0.92)^n$ n > 27.6	M1 M1		Eqn with their 0.92 ⁿ , 0.9 or 0.1, 1 not nec Solving attempt by logs or trial and error, power eqn with one unknown power
	Ans 28	A1	3	Correct answer, not approx., \approx , \geqslant , $>$, \leqslant , $<$
(iii)	$np = 1800 \times 0.08 = 144$ $npq = 132.48$	B1		correct unsimplified np and npq seen accept 132.5, 132, 11.5, awrt 11.51
	P(at least 152) = P $\left(z > \left(\frac{151.5 - 144}{\sqrt{132.48}}\right)\right)$	M1 M1		standardising, with $$ cont correction 151.5 or 152.5 seen
	= P(z > 0.6516) $= 1 - 0.7429$ $= 0.257$	M1	5	correct area $1 - \Phi$ (probability)
(iv)	Use because 1800 ×0.08 (and 1800 × 0.92 are both) > 5	B1	1	$1800 \times 0.08 > 5$ is sufficient $np > 5$ is sufficient if clearly evaluated in (iii) If $npq > 5$ stated then award B0

(i)	z = 1.127	B1		\pm 1.127 seen accept rounding to \pm 1.13
	$1.127 = \frac{136 - 125}{\sigma}$ $\sigma = 9.76$	M1 A1	3	Standardising no cc no sq rt, with attempt at z (not ± 0.8078 , ± 0.5517 , ± 0.13 , ± 0.87) Correct ans
(ii)	P(131 <x<141)=p <math="">(\frac{131-125}{9.76}<z<<math>\frac{141-125}{9.76}) = $\Phi(1.639) - \Phi(0.6147)$ = $0.9493 - 0.7307$ = 0.2186</z<<math></x<141)=p>	M1 M1 M1		Standardising once with their sd, no $\sqrt{,^2}$, allow cc Correct area $\Phi 2 - \Phi 1$ Mult by 170, P<1
	Number = $0.2186 \times 170 = 37$ or 38 or awrt 37.2	A1	4	Correct answer, nfww

(a) (i)	P (x > 3900) = P $\left(z > \frac{3900 - 4520}{560}\right)$ = P(z > -1.107) = $\Phi(1.107)$ = 0.8657 Number of days = 365 × 0.0.8657 = 315 or 316 (315.98)	M1 M1 A1 B1√	4	Standardising no cc no sq rt no sq
(ii)	$z = 1.165$ $1.165 = \frac{8000 - m}{560}$ $m = 7350 (7347.6)$	B1 M1	3	± 1.165 seen Standardising eqn allow sq, sq rt, cc, must have z-value eg not 0.122, 0.878, 0.549, 0.810. Correct answer rounding to 7350
(iii)	$P(0, 1) = (0.878)^{6} + {}^{6}C_{1}(0.122)^{1}(0.878)^{5}$ $= 0.840 \text{ accept } 0.84$ Normal approx. to Binomial. M0, M0, A0	M1 M1 A1	3	Binomial term ${}^{6}C_{x}p^{x}(1-p)^{6-x}$ $0 seenCorrect unsimplified expressionCorrect answer$
(b)	$P(< 2\mu) = P\left(z > \frac{2\mu - \mu}{\sigma}\right) = P(z < 1.5)$ = 0.933	M1 M1	3	Standardising with μ and σ Attempt at one variable and cancel Correct answer

(i)	let P(2, 4, 6) all = p then P(1, 3, 5) all = $2p$ 3p + 6p = 1 p = 1/9 so prob (3) = $2/9$ (0.222)	M1 M1 A1 [3]	Using P(even) = 2P(odd) or vice versa oe Summing P(odd+ even) or P(1, 2, 3, 4, 5, 6) = 1 Correct answer
(ii)	$P(5, 5, 6) = 2/9 \times 2/9 \times 1/9 \times {}^{3}C_{2}$	M1 M1	Mult three probs together Mult by 3 oe ie summing 3 options
	= 4/243 (0.0165)	A1 [3]	Correct answer
(iii)	$\mu = 100 \times 1/3 = 33.3, \ \sigma = 100 \times 1/3 \times 2/3 = 22.2$	B1	Unsimplified 100/3 and 200/9 seen
	$P(x \le 37) = P\left(z \le \frac{37.5 - \frac{100}{3}}{\sqrt{\frac{200}{9}}}\right) = P(z \le 0.8839)$	M1 M1 M1	Standardising need sq rt 36.5 or 37.5 seen correct area using their mean
	= 0.812	A1 [5]	Correct answer
Ques	tion 33		
700	= 00 147/20 00 40	3.51	1.47/20

(i)	$\overline{x} = 80 - 147/30 = 80 - 4.9$ = 75.1	M1 A1	For –147/30 oe seen Correct answer
	$sd = \sqrt{\frac{952}{30} - \left(\frac{147}{30}\right)^2} = \sqrt{7.72}$	M1	$952/30 - (\pm \text{ their coded mean})^2$
	sd = 2.78	A1 [4]	Correct answer
(ii)	$P(x > 160) = P\left(z > \frac{160 - 148.6}{18.5}\right)$	M1	Standardising no cc no sq rt
	= P(z > 0.616) $= 1 - 0.7310$	M1	$1-\Phi$
	= 0.269	A1 [3]	Correct answer

$\mu = 54.1$ $z = -1.11$	B1 B1	Stated or evaluated Accept rounding to ± 1.1
$-1.11 = \frac{50.9 - 54.1}{\sigma}$	M1	Standardising no cc no sq rt
σ = 2.88	A1 [4]	Correct answer

(i)	z = -1.645	B1	± 1.64 to 1.65 seen
	$z = -1.645$ $-1.645 = \frac{0.9 - m}{0.35}$	M1	Standardising with a z-value accept $(0.35)^2$ Correct answer
	m = 1.48	A1 3	
(ii)	$P(<2) = P\left(z < \frac{2 - 1.476}{0.35}\right)$	M1	Standardising no sq , FT <i>their m</i> , no cc
	= P(z < 1.50) = 0.933	M1 A1	Correct area i.e. F Accept correct to 2sf here
	$ Prob = (0.9332)^4 \\ = 0.758 $	M1 A1 5	Power of 4, from attempt at $P(z)$ Correct answer
(iii)	$P(t > 0.6\mu) = P\left(z > \frac{0.6\mu - \mu}{\mu/3}\right)$ = P(z > -1.2) = 0.885	M1 M1 A1 3	Standardising attempt with 1 or 2 variables Eliminating μ or σ
Ques	rtion 36		Correct final answer

(i)	${}^{12}C_8 (0.65)^8 (0.35)^4 + {}^{12}C_9 (0.65)^9 (0.35)^3 + {}^{12}C_{10} (0.65)^{10} (0.35)^2$	M1 M1		Bin term with ${}^{12}C_{\tau}p^{\tau}(1-p)^{12-\tau}$ seen $r\neq 0$ any $p<1$ Summing 2 or 3 bin probs $p=0.65$ or 0.35 , $n=12$
	= 0.541	A1	[3]	
(ii)	$P(\overline{RRRR}) = 0.35 \times 0.35 \times 0.35 \times 0.65$	M1		Mult 4 probs either $(0.35)^3(0.65)$ or $(0.65)^3(0.35)$
	= 0.0279	A1	[2]	
(iii)	P(7) = 0.2039 (unsimplified)	B1		$^{12}C_7 (0.65)^7 (0.35)^5$
	Mean = 250×'0.2039' (= 50.9798) Var = 250×'0.2039' × '(1 – 0.2039)' (= 40.5851)	B1		Correct unsimplified np and npq using 'their 0.2039' but not 0.65 or 0.35
	$P(>54) = P\left(\frac{54.5 - 50.9798}{\sqrt{40.5851}}\right)$	M1		Standardising need sq rt – must be from working with 54
	= P(z > 0.5526)	M1		cc either 53.5 or 54.5
	$= 1 - \Phi(0.5526) = 1 - 0.7098$	M1		correct area $<$ 0.5 i.e. $1-\Phi$ - must be from working with 54
	= 0.290	A1	[6]	

(i)
$$z = 1.015$$

 $1.015 = \frac{70 - 69}{\sigma}$ M1 Standardising

(ii) $58 + 9 = 67$ M1 $58 + 9$ seen or implied (or 69-58 or 69-9)

P(>67) = P($z > \frac{67 - 69}{0.9852}$) M1 Standardising $\pm z$ no cc allow their sd (must be +ve)

Alt. 1 69-58 = 11, P(>9)=P($z > \frac{9 - 11}{0.9852}$)

Alt. 2 69-9 = 60, P(>58) = P($z > \frac{58 - 60}{0.9852}$)

M1 Correct prob area

M1 Multiply their prob (from use of tables) by 300

M1 Multiply their prob (from use of tables) by 300

M1 Standardising $\pm z$ no cc allow their sd (must be +ve)

Alt. 2 69-9 = 60, P(>58) = P($z > \frac{58 - 60}{0.9852}$)

M1 Correct prob area

M1 Multiply their prob (from use of tables) by 300

A1 [5] - accept 293 or 294 from fully correct working

(i)
$$0.72$$
 | B1 [1] |

(ii) $np = 180 \times 0.72, npq = 180 \times 0.72 \times 0.28$ | $X \sim N(129.6, 36.288)$ | $P(x > 115) = P\left(z > \frac{115.5 - 129.6}{\sqrt{36.288}}\right)$ | $P(z > -2.341)$ | $P($

(i)
$$P(x < 3.0) = P\left(z < \frac{3.0 - 2.6}{0.25}\right)$$
 $+ P(z < 1.6) = 0.945$ M1 Standardising no sq rt no cc Correct area i.e. prob > 0.5 legit

(ii) $X \sim B(500, 0.9452) \sim N(472.6, 25.898)$ M1 500×0.9452 and 500×0.9452 and 500×0.9452 are both > 5

(iii) $S = 1 - 0.9125 = 0.0875$ M1 $S = 1 - 0.9125 = 0.0875$ M1 $S = 1 - 0.9452$ are both > 5

(iii) $S = 1 - 0.9452$ and $S = 1 - 0.9452$ are both > 5

(iii) $S = 1 - 0.9452$ and $S = 1 - 0.9452$ are both > 5

(iii) $S = 1 - 0.9452$ and $S = 1 - 0.9452$ are both > 5

(iii) $S = 1 - 0.9452$ and $S = 1 - 0.9452$ are both > 5

(iii) $S = 1 - 0.9452$ and $S = 1 - 0.9452$ are both > 5

(i)	$P(2) = {}^{7}C_{2}(0.1)^{2}(0.9)^{5}$ = 0.124	M1 A1	[2]	Bin term ${}^{7}C_{2}p^{2}(1-p)^{5}$ 0
(ii)	$(0.15)^{1}(0.1)^{2}(0.75)^{2} \times 5!/2!2!$	M1		Mult probs for options, $(0.15)^a(0.1)^b(0.75)^c$ where $a + b + c$ sum to 5
	= 0.0253 or 81/3200	M1 A1	[3]	Mult by 5!/2!2! oe
(iii)	mean = 365×0.15 (= 54.75 or 219/4) Var = 365× 0.15×0.85 (= 46.5375 or 3723/80)	B1		Correct unsimplified mean and var, oe
	$P(x > 44) = P\left(z > \frac{44.5 - 54.75}{\sqrt{46.5375}}\right)$ $= P(z > -1.5025)$	M1 M1 M1		± Standardising need sq rt cc either 44.5 (or 43.5) Φ
	= 0.933	A1	[5]	Correct answer accept 0.934

(i)	$P(\text{small}) = P\left(z < \frac{95 - 150}{50}\right)$	M1		± standardising using 95, no cc, no sq, no sq rt
	= P(z < -1.1) $= 1 - 0.8643$ $= 0.136$	M1 A1	[3]	1 - Φ (in final answer)
(ii)	$z = 1.282$ $1.282 = \frac{x - 150}{50}$ $x = 214 \text{ g}$	B1 M1 A1	[3]	\pm rounding to 1.28 Standardised eqn in their z allow cc
(iii)	P(small) = 0.1357, P(large) = 0.1357 symmetry $P(\text{medium}) = 1 - 0.1357 \times 2 = 0.7286 \text{ AG}$	B1	[1]	Correct answer legit obtained
(b)	Expected cost per banana = 0.1357×10 + 0.1357×25 + 0.7286×20 = 19.3215 cents Total cost of 100 bananas = 1930 (cents) (\$19.30)	*M1 DM1 A1	[3]	Attempt at multiplying each 'prob' by a price and summing Mult by 100

(i)	$P(< 4.5) = P\left(z < \frac{4.5 - 4.2}{0.6}\right) = P(z < 0.5)$	M1		Standardising once no cc no sq no sq rt
	= 0.6915 $P(<3.5) = P\left(z < \frac{3.5 - 4.2}{0.6}\right) = P(z < -1.167)$ = 1 - 0.8784 = 0.1216	M1		$\Phi_1 - (1 - \Phi_2) [P_1 - P_2, 1 > P_1 > 0.5, 0.5 > P_2 > 0]$ oe
	0.6915 - 0.1216 = 0.570	A1	[3]	
(ii)	z = 1.175	B1		±1.17 to 1.18 seen
	$1.175 = \frac{t - 4.2}{0.6}$	M1		Standardising no cc, allow sq, sq rt with z – value (not ±0.8106, 0.5478, 0.4522, 0.1894, 0.175 etc.)
	<i>t</i> = 4.91	A1	[3]	Correct answer from $z = 1.175$ seen (4sf)
(iii)	$(0.88)^n < 0.003$	M1		Inequality or eqn in 0.88, power correctly placed using n or $(n\pm1)$, 0.003 or $(1-0.003)$ oe
	$n > \lg (0.003)/\lg (0.88)$ n > 45.4	M1		Attempt to solve by logs or trial and error (may be implied by answer)
	n = 46	A1	[3]	Correct integer answer
Ques	tion 45	'		

Ques	CIOII IO			
(i)	Bin (7, 0.8) P(6, 7) = ${}^{7}C_{6}(0.8)^{6}(0.2)^{1}+(0.8)^{7}$ = 0.577	M1 M1 A1	[3]	$^{7}C_{n}$ p ⁿ $(1-p)^{7-n}$ seen Correct unsimplified expression for P(6,7)
(ii)	mean = $100 \times 0.2 = 20$ Var = $100 \times 0.2 \times 0.8 = 16$ P(at most 30) = $P\left(z < \frac{30.5 - 20}{\sqrt{16}}\right)$	B1 M1 M1 M1		Correct unsimplified mean and var $Standardising \ must \ have \ sq\ rt, \ their \ \mu, \ variance \ cc \ either \ 29.5 \ or \ 30.5 \\ Correct \ area \ \Phi \ , \ from \ final \ process$
	= P(z < 2.625) = 0.996	A1	[5]	

(i)	$P(<1) = P\left(z < \frac{1-1.04}{0.017}\right) = P(z < -2.353)$	M1		Standardising no cc, no $$ or sq
	= 1 - 0.9907 = 0.0093	M1 A1	[3]	1 – Φ (final process)
(ii)	expected number $1000 \div 1.04 = 961$ or 962	B1	[1]	Or anything in between
(iii)	z = -1.765	B1		± 1.76 to 1.77
	$-1.765 = \frac{1-\mu}{0.017}$	M1		Standardising must have a z-
	=1.03	A1	[3]	value, allow √ or sq
(iv)	expected number = $1000 \div 1.03 = 971$ or 970	B1√	[1]	Or anything in between, ft their (iii)

 Question
 M1
 ± 0.674 seen

 $begin{align*} & begin{align*} & be$

Question 48

(a)(i)	$0.674 = \frac{8.8 - \mu}{\sigma} \implies 0.674\sigma = 8.8 - \mu$	B1	±0.674 seen
	$-0.935 = \frac{7.7 - \mu}{\sigma} \implies -0.935\sigma = 7.7 - \mu$	B1	±0.935 seen (condone ±0.934)
		M1	An eqn with a z-value, μ and σ allow sq rt, sq cc
		M1	sensible attempt to eliminate μ or σ by substitution or subtraction
	$\sigma = 0.684$ $\mu = 8.34$	A1	correct answers (from -0.935)
	Total:	5	
(a)(ii)	$P(<8.2) = P\left(z < \frac{8.2 - 7.9}{0.44}\right)$	M1	Standardising no cc no sq rt no sq
		M1	Correct area ie Φ, final solution
	= P(z < 0.6818) = 0.7524	A1	Correct prob rounding to 0.752
	$P(3) = {}^{5}C_{3} (0.7524)^{3} (0.2476)^{2}$	M1	Binomial 5C_x powers summing to 5, any p , $\Sigma p = 1$
	= 0.261	A1	
	Total:	5	
(b)	$P(< 1.5\mu) = P\left(z < \frac{1.5\mu - \mu}{\mu}\right) = P(z < 0.5)$	*M1	standardising with μ and $\sigma(\sigma)$ may be replaced by μ)
	14	DM1	just one variable
	= 0.692	A1	
	Total:	3	C

$np = 160 \times 0.1 (16) \ npq = 160 \times 0.1 \times 0.9 (14.4)$	B1	Correct unsimplified np and npq
$P(>17) = P\left(z > \frac{17.5 - 16}{\sqrt{14.4}}\right) = P(z > 0.3953)$	M1	Standardising need √
	M1	16.5 or 17.5 seen in standardised eqn for continuity correction
= 1 - 0.6536	M1	Correct area from their mean $(1 - \Phi)$, final solution
= 0.346	A1	
Total:	5	

l(a)	$P(x > 0) = P\left(z > \pm \frac{0 - \mu}{\sigma}\right)$ $= P\left(z > \frac{-\mu}{\mu/1.5}\right) \text{ or } P\left(z > \frac{-1.5\sigma}{\sigma}\right)$	M1	$\pm {\rm Standardising},$ in terms of μ and/or σ with 0 in numerator, no continuity correction, no \vee
	= P(z > -1.5)	A1	Obtaining z value of ± 1.5 by eliminating μ and σ , SOI
	= 0.933	A1	
	Total:	3	
(b)	z = -1.151	B1	$\pm z$ value rounding to 1.1 or 1.2
	$-1.151 = \frac{70 - 120}{s}$	M1	\pm Standardising (using 70) equated to a z-value, no cc, no squaring, no $$
	$\sigma = 43.4 \text{ or } 43.5$	A1	
	Totals:	3	

$np = 270 \times 1/3 = 90, npq = 270 \times 1/3 \times 2/3 = 60$	B1	Correct unsimplified np and npq, SOI
$P(x>100) = P(z>\frac{99.5-90}{\sqrt{60}}) = P(z>1.2264)$	M1 M1	±Standardising using 100 need sq rt Continuity correction, 99.5 or 100.5 used
= 1 - 0.8899	M1	Correct area $1 - \Phi$ implied by final prob. < 0.5
= 0.110	A1	
Т	otal: 5	///
Question 52		///

i(i)	42.20	М1	Standardising, not square root of σ , not σ^2
'(1)	$(z=)\frac{4.2-3.9}{\sigma}$	WII	Standardising, not square root of b, not b
	z = 0.916 or 0.915	B1	Accept $0.915 \leqslant \pm z \leqslant 0.916$ seen
	σ = 0.328	A1	Correct final answer (allow 20/61 or 75/229)
	Total:	3	
(ii)	z = 4.4 - 3.9/their 0.328 or $z = 3.4 - 3.9$ /their 0.328 = 1.5267 = -1.5267	M1	Standardising attempt with 3.4 or 4.4 only, allow square root of σ , or σ^2
	$\Phi = 0.9364$	A1	$0.936 \leqslant \Phi \leqslant 0.937 \text{ or } 0.063 \leqslant \Phi \leqslant 0.064 \text{ seen}$
	$Prob = 2\Phi - 1 = 2(0.9364) - 1$	M1	Correct area $2\Phi - 10E$ i.e. $\Phi = -(1 - \Phi)$, linked to final solution
	= 0.873	A1	Correct final answer from $0.9363 \leqslant \Phi \leqslant 0.9365$
	Total:	4	
(iii)	dividing (0.5) by a larger number gives a smaller z-value or more spread out as sd larger or use of diagrams	*B1	No calculations or calculated values present e.g. (σ =)0.656 seen Reference to spread or z value required
	Prob is less than that in (ii)	DB1	Dependent upon first B1
	Total:	2	

(a)(i)	z = 0.674	B1	rounding to ± 0.674 or 0.675
	$0.674 = \frac{6.8 - \mu}{0.25\mu}$	M1	standardising, no cc, no sq rt, no sq. σ may still be present on RHS
		M1	subst and sensible solving for μ must collect terms, no z-value needed can be 0.75 or 0.7734 need a value for μ
	$\mu = 5.82$	A1	
	Total:	4	
i(a)(ii)	$P(X < 4.7) = P(z < \frac{4.7 - 5.819}{1.4548})$	M1	± standardising no cc, no sq rt, no sq unless penalised in (a)(i)
	$= \phi(-0.769) = 1 - 0.7791$	M1	correct side for their mean i.e. 1-φ (final solution)
	= 0.221	A1	
	Total:	3	
6(b)	$P(<15.75) = P\left(z < \frac{15.75 - 16}{0.2}\right) = 1 - P(z < 1.25) = 1 - 0.8944 = 0.1056$ and $P(>16.25) = 0.1056$ by sym	*M1	Standardising for 15.75 or 16.25 no cc no sq no sq rt unless penalised in (a)(i) or (a)(ii)
	P(usable) = 1 - 0.2112 = 0.7888	B1	2ф– 1 OE for required prob, (final solution)
	Usable rods=1000 × 0.7888 =	DM1	Mult their prob by 1000 dep on recognisable attempt to standardise
	788 or 789	A1	
	Total:	4	
Quest	cion 54		

'(i)	$P(t > 6) = P\left(z > \frac{6 - 5.3}{2.1}\right) = P(z > 0.333)$	M1	Standardising, no continuity correction, no sq. no sq rt
	= 1 - 0.6304	M1	Correct area 1 – Φ (< 0.5), final solution
	= 0.370 or 0.369	A1	-0.
	Sato	3	
(ii)	z = 1.645	B1	± 1.645
	$1.645 = \frac{x - 5.3}{2.1}$	M1	Standardising, no continuity correction, allow sq, sq rt. Must be equated to a z-value
	x = 8.75 or 8.755 or 8.7545	A1	
		3	
(iii)	n = 10, p = 0.05	M1	Bin term ${}^{10}C_x p^x (1-p)^{10-x}$
	$P(0, 1, 2) = (0.95)^{10} + {}^{10}C_1(0.05)(0.95)^9 + {}^{10}C_2(0.05)^2(0.95)^8$	M1	Correct unsimplified answer
	= 0.988 (0.9885 to 4 sf)	A1	
		3	
(iv)	P(misses bus) = P(t < 0)	*M1	Seeing t linked to zero
	$= P\left(z < \frac{0 - 5.3}{2.1}\right) = P(z < -2.524) = 1 - \Phi(2.524)$	DM1	Standardising with $t = 0$, no continuity correction, no sq. no sq rt
	=1-0.9942		
	= 0.0058	A1	
		3	

(i)	$P(>65) = P\left(z > \frac{65 - 61.4}{12.3}\right) = P(z > 0.2927)$	M1	Standardising no continuity correction, no square or square root, condone \pm standardisation formula
		M1	Correct area (< 0.5)
	= 1 - 0.6153 = 0.385	A1	
		3	
(ii)	P(<65) = 0.6153 so P(< k) = 0.25 + 0.6153 = 0.8653	B1	
	z = 1.105	B1	$z = \pm 1.105$ seen or rounding to 1.1
	$1.105 = \frac{k - 61.4}{12.3}$	M1	standardising allow \pm , cc, sq rt, sq. Need to see use of tables backwards so must be a z-value, not $1-z$ value.
	k = 75.0	A1	Answers which round to 75.0. Condone 75 if supported.
		4	
(iii)	$2.326 = \frac{97.2 - \mu}{\sigma}$	B1	± 2.326 seen (Use of critical value)
	$-0.44 = \frac{55.2 - \mu}{\sigma}$	B1	± 0.44 seen
		M1	An equation with a <i>z</i> -value, μ , σ and 97.2 or 55.2, allow $\sqrt{\sigma}$ or σ^2
		M1	Algebraic elimination μ or σ from <i>their</i> two simultaneous equations
	$\mu = 61.9$ $\sigma = 15.2$	A1	both correct answers
		5	
Jue	stion 56		
(i)	EITHER: P(> 2) = 1 - P(0, 1, 2)	(M1	Binomial term of form 30 C _x $p^x(1-p)^{30-x}$, $0 \le p \le 1$ any p

5(i)	EITHER: P(> 2) = 1 - P(0, 1, 2)	(M1	Binomial term of form ${}^{30}C_x p^x (1-p)^{30-x}$, $0 \le p \le 1$ any p
	$= 1 - (0.96)^{30} - {}^{30}C_1(0.04)(0.96)^{29} - {}^{30}C_2(0.04)^2(0.96)^{28} (= 1 - 0.2938 0.3673 0.2219)$	A1	Correct unsimplified answer
	= 1-0.883103 = 0.117 (0.116896)	A1)	
	OR: P(> 2) = P(3,4,5,6,30)	(M1	Binomial term of form ${}^{30}C_x p^x (1-p)^{30-x}$, $0 any p$
	$= {}^{30}C_3(0.04)^3(0.96)^{27} + {}^{30}C_4(0.04)^4(0.96)^{26} + \dots + (0.04)^{30}$	A1	Correct unsimplified answer
	= 0.117	A1)	
i(ii)	$np = 280 \times 0.1169 = 32.73, npq = 280 \times 0.1169 \times 0.8831 = 28.9$	3 M1 FT	Correct unsimplified np and npq , FT their p from (i),
	$P(\geqslant 30) = P\left(z > \frac{29.5 - 32.73}{\sqrt{28.9}}\right) = P(z > -0.6008)$	M1	Substituting their μ and σ (\sqrt{npq} only) into the Standardisation Formula
		M1	Using continuity correction of 29.5 or 30.5
		M1	Appropriate area Φ from standardisation formula $P(z>)$ in final solution
	= 0.726	A1	
		5	

(i)	$P(<570) = P\left(z < \frac{570 - 500}{91.5}\right) = P(z < 0.7650)$ = 0.7779	M1	Standardising for either 570 or 390, no cc, no sq, no $$
	$P(<390) = P\left(z < \frac{390 - 500}{91.5}\right) = P(z < -1.202)$	A1	One correct z value
	= 1 - 0.8853 = 0.1147	A1	One correct Φ, final solution
	Large: 0.222 (0.2221) Small: 0.115 (0.1147)	A1	Correct small and large
	Medium: 0.663 (0.6632)	A1FT	Correct Medium rounding to 0.66 or ft 1 – (their small + their large)
		5	
'(ii)	$1.645 = \left(\frac{x - 500}{91.5}\right)$	B1	± 1.645 seen (critical value)
		M1	Standardising accept cc, sq, sq rt
	x = 651	A1	650 ≤ Ans ≤ 651
		3	
(iii)	P(x > 610) = 0.1147 (symmetry)	M1	Attempt to find upper end prob $x > 610$ or $\Phi(x)$, ft their $P(<390)$ from (i)
	$0.3 + 0.1147 = 0.4147 \Rightarrow \Phi(x) = 0.5853$	M1	Adding 0.3 to <i>their</i> $P(x > 610)$ or subt 0.5 from $\Phi(x)$ or $0.8853 - 0.3$
	z = 0.215 or 0.216	M1	Finding $z = \Phi^{-1}(0.5853)$
	$0.215 = \frac{k - 500}{91.5}$	M1	Standardising and solving, accept cc, sq, sq rt
	k = 520	A1	
		5	/ / /

3(i)	$P(4) + P(5) = {}^{5}C_{4} \left(\frac{1}{4}\right)^{4} \left(\frac{3}{4}\right)^{1} + {}^{5}C_{5} \left(\frac{1}{4}\right)^{5} \left(\frac{3}{4}\right)^{0}$	M1	One binomial term, with $p < 1$, $n=5$, $p+q=1$
	= 0.014648 + 0.00097656	M1	Add 2 correct unsimplified binomial terms
	$= 0.0156 \text{ or } \frac{1}{64}$	A1	
		3	
(ii)	$1 - P(0) > 0.995$: $0.75^n < 0.005$	M1	Equation or inequality involving 0.75" and 0.005 or 0.25" and 0.995
	$n\log 0.75 < \log 0.005$ n > 18.4:	M1	Attempt to solve <i>their</i> exponential equation using logs, or trial and error May be implied by their answer
	n = 19	A1	
		3	
(iii)	p = 0.25, n = 160: mean = 160 x 0.25 (= 40) variance = 160 x 0.25 x 0.75 (=30)	B1	Correct unsimplified mean and variance
	$P(X < 50) = P\left(Z < \frac{49.5 - 40}{\sqrt{30}}\right)$	M1	Use standardisation formulae must include square root.
	√30)	M1	Use continuity correction ±0.5 (49.5 or 50.5)
	= P(Z < 1.734) = 0.959	A1	Correct final answer
		4	

	$P(X > 410) = 225/6000 = 0.0375$ $P\left(Z > \frac{410 - 400}{\sigma}\right) = 0.0375 : 0.9625$	M1	Use $1 - 225/6000 = 0.9625$ to find z value
8	z value = ± 1.78	A1	z value: ± 1.78
	$\frac{10}{\sigma} = 1.78$	M1	$(410-400)/\sigma = their z$ (must be a z value)
	$\sigma = 5.62$	A1	
		4	
(ii)	We need $P(Z < -1.5)$ and $P(Z > 1.5)$	M1	Attempt at P(Z < -1.5) or P(Z > 1.5) 1 – Φ (1.5) seen
I	$\Phi(-1.5) + 1 - \Phi(1.5)$ = 2 - 2\Phi(1.5)	М1	Or equivalent expression with values
	$=2-2\times0.9332=0.1336$ (0.134)	A1	Correct to 3sf
8	Number expected = 500 × 0.1336 = 66.8: 66 or 67 packets	B1ft	0.1336 used or FT their 4sf probability times 500, (not 0.9625 or 0.0375) rounded or truncated
		4	

5(i)	$z_1 = \pm \frac{4.1 - 5.7}{0.8} = -2$ $z_2 = \pm \frac{5 - 5.7}{0.8} = -0.875$	M1	At least one standardising no cc no sq rt no sq using 5.7 and 0.8 and either 4.1 or 5
	P(Toffee Apple) = $P(d < 5.0) - P(d < 4.1)$ = $P(z < -0.875) - P(z < -2)$ = $\Phi(-0.875) - \Phi(-2)$ = $\Phi(2) - \Phi(0.875)$	M1	Correct area $\Phi - \Phi$ legitimately obtained – need 2 negative z-values or 2 positives – not one of each
	= 0.9772 - 0.8092 = 0.168 (or 0.1908 - 0.0228)	A1	Correct final answer
	Total:	3	
(ii)	$np = 250 \times 0.168 = 42$, $npq = 34.944$	B1ft	Correct unsimplified mean and var – ft their prob for (i) providing $(0 Implied by \sigma = \sqrt{34.944} = 5.911$
	$P(<50) = P\left(z < \frac{49.5 - 42}{\sqrt{34.944}}\right) = P(z < 1.2687)$	M1	± Standardising using 50, their mean and sd; must have sq rt.
	$1(30) - 1\left(2 < \frac{1}{\sqrt{34.944}}\right) - 1(2 < 1.2087)$	M1	49.5 or 50.5 seen as a cc
	$=\Phi(1.2687)$	M1	Correct area Φ (> 0.5 for + z and < 0.5 for -z)in their final answer
	= 0.898	A1	Correct final answer
	Total:	5	

i)	z = 0.674	B1	z value ± 0.674
	$0.674 = \frac{03}{\sigma}$	M1	±Standardising with 0 and equating to a z-value
	$\sigma = 4.45$	A1	Correct answer www ie not ignoring a minus sign
	Total:	3	
)	P(0, 1)	M1	Any bin of form ${}^{8}C_{x}(0.75)^{x}(0.25)^{8-x}$ any x
	$= (0.75)^8 + {}^{8}C_1(0.25)(0.75)^7$	M1	Correct unsimplified answer, may be implied by numerical values
	0.1001+ 0.2670 = 0.367	A1	Correct answer
	Method 2 $1 - P(8,7,6,5,4,3,2) = 1 - (0.25)^8 - {}^8C_1(0.75)(0.25)^7 - \dots$	M1	Any bin of form ${}^{8}C_{x}(0.75)^{x}(0.25)^{8-x}$ any x
	$ ^{8}C_{2}(0.75)^{6}(0.25)^{2}$	M1	Correct unsimplified answer
	= 0.367	A1	Correct answer
	Total:	3	

Que	stion 62	3	
(i)	Method 1 P(< 11) = 1 – P(11, 12, 13)	M1	Binomial expression of form $^{13}C_x$ $(p)^x(1-p)^{13-x}$, $0 < x < 13$, 0
	$=1-{}^{13}C_{11}(0.6)^{11}(0.4)^2-{}^{13}C_{12}(0.6)^{12}(0.4)-(0.6)^{13}$	M1	Correct unsimplified answer
	= 0.942	A1	CAO
	Method 2 P(< 11) = P(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)	M1	Binomial expression of form ${}^{13}C_x$ $(p)^x (1-p)^{13-x}$ $0 < x < 13, 0 < p < 1$
	$= (0.4)^{13} + {}^{13}C_{1}(0.4)^{12}(0.6) + \dots + {}^{13}C_{10}(0.4)^{3}(0.6)^{10}$	M1	Correct unsimplified answer
	= 0.942	A1	CAO
	3	3	-0'
(ii)	$\mu = 130 \times 0.35 = 45.5$ var = $130 \times 0.35 \times 0.65 = 29.575$	B1	Correct unsimplified mean and var (condone $\sigma^2 = 29.6$, $\sigma = 5.438$)
	$P(\ge 50) = P\left(z > \frac{49.5 - 45.5}{\sqrt{29.575}}\right) = P(z > 0.7355)$	M1	Standardising, using $\pm \left(\frac{x - their \text{ mean}}{their \sigma}\right)$, $x = \text{value to standardise}$ 49.5 or 50.5 seen in \pm standardisation equation
	$=1-\Phi(0.7355)$	M1	Correct final area
	= 1 - 0.7691	M1	
	= 0.231	A1	Correct final answer
		5	
(iii)	$1 - (0.65)^n > 0.98 \text{ or } 0.02 > (0.65)^n$	M1	Eqn or inequality involving, 0.65 ⁿ and 0.02 or 0.35 ⁿ and 0.98
	n > 9.08	M1	Attempt to solve their eqn or inequality by logs or trial and error
	n = 10	A1	CAO
		3	

3(i)	z = -1.282	B1	±1.282 seen
	$-1.282 = \frac{440 - \mu}{9}$	M1	\pm Standardisation equation with 440, 9 and μ , equated to a z-value, (not 1 – z-value or probability e.g. 0.1841, 0.5398, 0.6202, 0.8159)
	$\mu = 452$	A1	Correct answer rounding to 452, not dependent on B1
		3	
(ii)	P(z > 1.8) = 1 - 0.9641 = 0.0359	B1	
	Number = 0.0359 × 150 = 5.385	M1	$p \times 150, 0$
	(Number of cartons =) 5	A1FT	Accept either 5 or 6, not indicated as an approximation, e.g. \sim , about FT their $p \times 150$, answer as an integer
		3	

Question 64

i (i)	$P(4, 5, 6) = {}^{15}C_4(0.22)^4(0.78)^{11} + {}^{15}C_5(0.22)^5(0.78)^{10} +$	M1	One binomial term $^{15}C_x p^x (1-p)^{15-x} \ 0$
	¹⁵ C ₆ (0.22) ⁶ (0.78) ⁹	A1	Correct unsimplified expression
	= 0.398	A1	Correct answer
		3	
(ii)	$\mu = 145 \times 0.22 = 31.9$ $\sigma^2 = 145 \times 0.22 \times 0.78 = 24.882$	B1	Correct unsimplified mean and variance
	$P(x > 26) = P\left(z > \frac{26.5 - 31.9}{\sqrt{24.882}}\right) = P(z > -1.08255)$	M1	Standardising must have sq rt
		M1	25.5 or 26.5 seen as a cc
	$=\Phi(1.08255)$	M1	Correct area Φ , must agree with their μ
	= 0.861	A1	Correct final answer accept 0.861, or 0.860 from 0.8604 not from 0.8599
	3	5	1.51

l(a)	$z_1 = 2.4$	B1	± 2.4 seen accept 2.396
	$z_2 = -0.5$	B1	± 0.5 seen
	$2.4 = \frac{36800 - \mu}{\sigma}$	M1	Either standardisation eqn with z value, not 0.5082, 0.7565, 0.0082, 0.6915, 0.3085, 0.6209, 0.0032 or any other probability
	$-0.5 = \frac{31000 - \mu}{\sigma}$	M1	Sensible attempt to eliminate μ or σ by substitution or subtraction from their 2 equations (z-value not required), need at least 1 value stated
	$\sigma = 2000$ $\mu = 32000$	A1	Both correct answers
		5	
(b)	$P(X < 3\mu) = P\left(z < \frac{3\mu - \mu}{(4\mu/3)}\right)$ or $P = \left(z < \frac{(9\sigma/4) - (3\sigma/4)}{\sigma}\right)$	M1	Standardise, in terms of one variable, accept σ^2 or $\sqrt{\sigma}$
	$P\left(z < \frac{6}{4}\right)$	M1	$\frac{6}{4}$ or $\frac{6}{4\sigma}$ seen
	= 0.933	A1	Correct final answer
		3	

(i)	$z_1 = \pm \frac{90 - 120}{24} = -\frac{5}{4}, \ z_2 = \pm \frac{140 - 120}{24} = \frac{5}{6}$	M1	At least one standardisation, no cc, no sq rt, no sq using 120 and 24 and either 90 or 140
	$=\Phi\left(\frac{20}{24}\right)-\Phi\left(-\frac{30}{24}\right)$	A1	-5/4 and 5/6 unsimplified
	$= \Phi(0.8333) - (1 - \Phi(1.25))$ = 0.7975 - (1 - 0.8944) or 0.8944 - 0.2025 = 0.6919	M1	Correct area $\Phi - \Phi$ legitimately obtained and evaluated from phi(their z_2) – phi (their z_1)
	= 0.692 AG	A1	Correct answer obtained from 0.7975 and 0.1056 oe to 4sf or 0.6919 seen www
		4	
(ii)	Method 1		
	Probability = P(2, 3, 4) = $0.692^2(1 - 0.692)^2 \times {}^4C_2 + 0.692^3(1 - 0.692) \times {}^4C_3 + 0.692^4$	M1	Any binomial term of form $4C_x p^x (1-p)^{4-x}$, $x \neq 0$ or 4
	PR	B1	One correct bin term with $n = 4$ and $p = 0.692$,
	= 0.27256 + 0.40825 + 0.22931	M1	Correct unsimplified expression using 0.692 or better
	= 0.910	A1	Correct answer
	Method 2:		
	1 - P(0, 1) =	M1	Any binomial term of form $4C_x p^x (1-p)^{4-x}$, $x \neq 0$ or 4
	$1 - 0.692^{0}(1 - 0.692)^{4} \times {}^{4}C_{0} - 0.692^{1}(1 - 0.692)^{3} \times {}^{4}C_{1}$	B1	One correct bin term with $n = 4$ and $p = 0.692$
	= 1 - 0.00899 - 0.0808757	M1	Correct unsimplified expression using 0.692 or better
	= 0.910	A1	Correct answer
		4	/ - /

o(i)	$P(X>1800) = 0.96$, so $P(Z>\frac{1800-2000}{\sigma}) = 0.96$	B1	± 1.75 seen
	$\Phi(\frac{200}{\sigma}) = 0.96$ $\frac{200}{\sigma} = 1.751$	M1	$z=\pm \frac{1800-2000}{\sigma}$, allow cc, allow sq rt, allow sq equated to a z-value
	$\sigma = 114$	A1	Correct final answer www
		3	
(ii)	Mean = $300 \times 0.2 = 60$ and variance = $300 \times 0.2 \times 0.8 = 48$	B1	Correct unsimplified mean and variance
	$P(X < 70) = P(Z > \frac{69.5 - 60}{\sqrt{48}})$	M1	$Z = \pm \frac{x - their 60}{\sqrt{their 48}}$
	$=\Phi(1.371)$	M1	69.5 or 70.5 seen in an attempted standardisation expression as cc
	=0.915	A1	Correct final answer
		4	
(iii)	np = 60, $nq = 240$: both > 5, (so normal approximation holds)	B1	Both parts evaluated are required
		1	

'(a)(i)	$P(X < 4) = P\left(Z < \frac{4 - 3.24}{0.96}\right)$	M1	±Standardisation formula, no cc, no sq rt, no square
	= P(Z < 0.7917) = 0.7858	A1	0.7855 or $p = 0.786$ Cao (implies M1A1 awarded), may be seen used in calculation
	their 0.7858 × 365 = 286 (or 287)	B1ft	Their probability × 365 provided 4sf probability <u>seen</u> . FT answer rounded or truncated to nearest integer. No approximation notation used.
		3	
(a)(ii)	$P(X < k) = P(Z < \frac{k - 3.24}{0.96}) = 0.8$	B1	$(z=) \pm 0.842$ seen
	$\frac{k - 3.24}{0.96} = 0.842$	M1	$z = \pm \frac{k - 3.24}{0.96}$, allow cc, sq rt or square equated to a z-value (0.7881, 0.2119, 0.158, 0.8, 0.2 etc. are not acceptable)
	k = 4.05	A1	Correct final answer, www
	AT PR	3	
(a)(iii)	P(-1.5 < Z < 1.5) =	M1	$\Phi(z=1.5)$ or $\Phi(z=-1.5)$ seen used or $p=0.9332$ seen
	$\Phi(1.5) - \Phi(-1.5) = 2\Phi(1.5) - 1$ = 2 × 0.9332 - 1 oe	M1	Correct final area expression using their probabilities
	= 0.866	A1	Correct final answer
'(b)	$P(Y>0) = P\left(Z > \frac{0-\mu}{\sigma}\right) \equiv P\left(Z > \frac{0-\mu}{3\mu/4}\right) \text{ or }$ $P\left(Z > \frac{0-\left(\frac{4\sigma}{3}\right)}{\sigma}\right)$	3 M1	$\pm Standardisation$ attempt in terms of one variable no sq rt or square, condone ± 0.5 as cc
	= P(Z > -4/3)	A1	Correct unsimplified standardisation, no variables
	= 0.909	A1	Correct final answer
	"Sature!	3	

·(a)	$P(X < 29.4) = P(Z < \frac{29.4 - 31.4}{\sqrt{3.6}})$	M1	Standardise, no cc, must have sq rt.
	= P(Z < -1.0541)		
	= 1-0.8540	M1	Obtain 1 – prob
	= 0.146	A1	Correct final answer
		3	
(b)	$P(X < 12) = \frac{42}{400} = 0.105 \text{ and } P(X > 19) = \frac{58}{400} = 0.145$	M1	Equi with pi,0 and a 2 value. Throw ee, wrong sign, out not vo of
	400		σ^2
	$\frac{12-\mu}{\sigma} = -1.253$	B1	Any form with z value rounding to ± 1.25
	$\frac{19-\mu}{\sigma} = 1.058$	B1	Any form with z value rounding to ± 1.06
	$12 - \mu = -1.253\sigma$ $19 - \mu = 1.058\sigma$	M1	Solve 2 equations in μ , σ eliminating to 1 unknown
	$7 = 2.307\sigma$ or $36.455 + 2.307\mu = 0$ oe		
	$\mu = 15.8, \sigma = 3.03$	A1	Correct answers
		5	

(i)	$\begin{vmatrix} 1 - (P(7) + P(8) + P(9)) \\ = 1 - ({}^{9}C_{7} \ 0.8^{7} \times 0.2^{2} \ + {}^{9}C_{8} \ 0.8^{8} \times 0.2^{1} + {}^{9}C_{9} \ 0.8^{9} \times 0.2^{0}) \end{vmatrix}$	M1	Any binomial term of form ${}^{9}C_{x}p^{x}(1-p)^{9-x}, x \neq 0$
		M1	Correct unsimplified expression
	= 1 - (0.3019899 + 0.3019899 + 0.1342177) = 0.262	A1	Correct answer
		3	
(ii)	Mean = $200 \times 0.8 = 160$: var = $200 \times 0.8 \times 0.2 = 32$	B1	Both unsimplified
	$P(X > 166) = P(Z > \frac{166.5 - 160}{\sqrt{32}})$	M1	Standardise, $z = \pm \frac{x - their 160}{\sqrt{their 32}}$ with square root
		M1	166.5 or 165.5 seen in attempted standardisation expression
	= P(Z > 1.149) = 1 - 0.8747	M1	1 – a Φ -value, correct area expression, linked to final answer
	= 0.125	A1	Correct final answer
	THE	5	
(iii)	np = 160, $nq = 40$: both > 5 (so normal approx. holds)	B1	Both parts required
		1	
Ques	stion 71		

(i)	$P(X<132) = P\left(Z < \frac{132 - 140}{12}\right) = P(Z < -0.6667)$	M1	Using \pm standardisation formula, no continuity correction, not σ^2 or $\sqrt{\sigma}$
	=1-0.7477	M1	Appropriate area Φ from standardisation formula $P(z<)$ in final solution
	= 0.252 awrt	A1	Condone linear interpolation = 0.25243
		3	
(ii)	P(time>k) = 0.675, z = -0.454	B1	±0.454 seen
	$\frac{k - 140}{12} = -0.454$	M1	An equation using the standardisation formula with a z-value (not $1-z$), condone σ^2 or $\sqrt{\sigma}$
	k = 135, 134.6, 134.55	A1	B0M1A1 max from -0.45
		3	

(i)	$P(79 < X < 91) = P\left(\frac{79 - 85}{6.8} < Z < \frac{91 - 85}{6.8}\right)$ $= P(-0.8824 < Z < 0.8824)$	M1	Using ± standardisation formula for either 79 or 91, no continuity correction
	$= \Phi(0.8824) - \Phi(-0.8824)$ = 0.8111 - (1 - 0.8111)	M1	Correct area ($\Phi - \Phi$) with one +ve and one –ve z-value or $2\Phi - 1$ or $2(\Phi - 0.5)$
	= 0.622	A1	Correct answer
		3	
(ii)	z = -1.751	B1	± 1.751 seen
	$-1.751 = \frac{t - 85}{6.8}$	M1	An equation using \pm standardisation formula with a z-value, condone σ^2 or $\sqrt{\sigma}$
	t = 73.1	A1	Correct answer
		3	

(i)	$P(<700) = P\left(z < \frac{700 - 830}{120}\right) = P(z < -1.083)$	M1	Using \pm standardisation formula, no continuity correction, not σ^2 or $\sqrt{\sigma}$
	=1-0.8606	M1	Appropriate area Φ from standardisation formula P(z<) in final probability solution, (<0.5 if z is -ve, >0.5 if z is +ve)
	= 0.1394	A1	Correct final probability rounding to 0.139
	Expected number of female adults = 430 × their 0.1394 = 59.9 So 59 or 60	B1	FT their 3 or 4 SF probability, rounded or truncated to integer
		4	
'(ii)	P(giraffe $< 830+w$) = 95% so $z = 1.645$	B1	±1.645 seen (critical value)
	$\frac{\left(830+w\right)-830}{120} = \frac{w}{120} = 1.645$	M1	An equation using the standardisation formula with a <i>z</i> -value (not $1-z$), condone σ^2 or $\sqrt{\sigma}$ not 0.8519, 0.8289
	w = 197	A1	Correct answer
		3	
(iii)	P(male > 950) = 0.834, so $z = -0.97$	B1	± 0.97 seen
	$\frac{950 - 1190}{\sigma} = -0.97$	M1	Using \pm standardisation formula, condone continuity correction, σ^2 or $\sqrt{\sigma}$, condone equating with non z-value not 0.834, 0.166
	σ = 247	A1	Condone $-\sigma = -247$. www.
		3	-111
Ques	tion 74		

(i)	P(h < 148) = 0.67	B1	$z = \pm 0.44 \text{seen}$
	$\frac{h - 148}{8} = 0.44$	M1	$z\text{-value} = \pm \frac{(h-148)}{8}$
	151.52 ≈ 152	A1	CAO
	4.	3	
(ii)	$P(144 < X < 152) = P\left(\frac{144 - 148}{8} < Z < \frac{152 - 148}{8}\right)$	M1	Using \pm standardisation formula for either 144 or 152, $\mu = 148$, $\sigma = 8$ and no continuity correction, allow σ^2 or $\sqrt{\sigma}$
	$= P\left(-\frac{1}{2} < Z < \frac{1}{2}\right) = 0.6915 - (1 - 0.6915) = 2 \times 0.6915 - 1$	M1	Correct final area legitimately obtained from $phi(their z_2) - phi(their z_1)$
	= 0.383	A1	Final probability answer
	0.383 × 120 = 45.96 Accept 45 or 46 only	B1FT	Their prob (to 3 or 4 sf) \times 120, rounded to a whole number or truncated
		4	

(i)(a)	$P(0, 1, 2) = {}^{6}C_{0} \ 0.3^{0} \ 0.7^{6} + {}^{6}C_{1} \ 0.3^{1} \ 0.7^{5} + {}^{6}C_{2} \ 0.3^{2} \ 0.7^{4}$	M1	Binomial term of form ${}^6C_{xp}^{x}(1-p)^{6-x}$ $0 any p, x \neq 6,0$
	0.1176 + 0.3025 + 0.3241	A1	Correct unsimplified answer
(i)(a) (i)(b) (i)(i)(b) (ii)(ii)	0.744	A1	Correct final answer
		3	
'(i)(b)	P(support neither choir) = $1 - (0.3 + 0.45) = 0.25$	M1	0.25^n seen alone, $1 < n \le 6$
	P(6 support neither choir) = 0.25^6	A1	Correct final answer
	$= 0.000244 \text{ or } \frac{1}{4096}$		
		2	
7(ii)	Mean = $240 \times 0.25 = 60$ Variance = $240 \times 0.25 \times 0.75 = 45$	B1FT	Correct unsimplified $240p$ and $240pq$ where p = their P(support neither choir) or 0.25
	$P(X<50) = P\left(Z < \frac{49.5 - 60}{\sqrt{45}}\right) = P(Z<-1.565)$	M1	Substituting <i>their</i> μ and σ (condone σ^2) into the \pm Standardisation Formula with a numerical value for '49.5'.
	10	M1	Using continuity correction 49.5 or 50.5 within a standardisation expression
	1 – 0.9412	M1	Appropriate area Φ from standardisation formula P(z<) in final solution, (< 0.5 if z is -ve, > 0.5 if z is +ve)
	0.0588	A1	Correct final answer
		5	

i(i)	$P(X < 45) = P\left(Z < \frac{45 - 40}{8}\right)$ $= P(Z < 0.625)$	M1	\pm Standardise, no continuity correction, σ^2 or $\sqrt{\sigma}$, formula must be seen
	0.734(0)	A1	CAO
	satpre	2	
(ii)	1 - 2(1 - (i)) = 2(i) - 1 = 2((i) - 0.5)	M1	Use result of part (i) or recalculated to find area OE
	0.468	A1ft	0 < FT from (i) < 1 or correct.
		2	
(iii)	P(X < 10) = 48/500 = 0.096 $z = -1.305$	B1	$z = \pm 1.305$
	P(X > 24) = 76/500 = 0.152 $z = 1.028$	B1	$z = \pm 1.028$
	$10 - \mu = -1.305\sigma$ $24 - \mu = 1.028\sigma$	M1	Form 1 equation using 10 or 24 with μ , σ , z -value. Allow continuity correction, not σ^2 , $\sqrt{\sigma}$
	$14 = 2.333\sigma$	M1	OE Solve two equations in σ and μ to form equation in one variable
	$\sigma = 6.[00], \mu = 17.8[3]$	A1	CAO, WWW
		5	

·(i)	$P(8, 9, 10) = {}^{10}C_8 \ 0.66^8 \ 0.34^2 + {}^{10}C_9 \ 0.66^9 \ 0.34^1 + 0.66^{10}$	M1	Correct binomial term, ${}^{10}C_a$ 0.66 ${}^{a}(1-0.66)^{b}$ $a+b=10, 0 < a,b < 10$
		A1	Correct unsimplified expression
	0.284	B1	CAO
		3	
	0.284	B1 3	CAO

(ii)	$np = 0.66 \times 150 = 99$ $npq = 0.66 \times (1 - 0.66) \times 150 = 33.66$	B1	Accept evaluated or unsimplified μ , σ^2 numerical expressions, condone $\sigma = \sqrt{33.66} = 5.8017$ or 5.802 CAO
	$P(X > 84) = P\left(Z > \frac{84.5 - 99}{\sqrt{33.66}}\right)$	M1	\pm Standardise, $\frac{x - their 99}{\sqrt{their 33.66}}$, condone σ^2 , x a value
		M1	84.5 or 83.5 used in <i>their</i> standardisation formula
	(=P(Z>-2.499))	M1	Correct final area
	0.994	A1	Final answer (accept 0.9938) SC if no standardisation formula seen, B2 $P(Z > -2.499) = 0.994$
		5	

Ouestion 78

(i)	$P(46 < X < 53) = P\left(\frac{46 - 49.2}{2.8} < Z < \frac{53 - 49.2}{2.8}\right)$	M1	Using \pm standardisation formula for either 46 or 53, no continuity correction, σ^2 or $\sqrt{\sigma}$
	P(-1.143 < Z < 1.357)	A1	Both standardisations correct unsimplified
	$\Phi(1.357) + \Phi(1.143) - 1$ = 0.9126 + 0.8735 - 1	M1	Correct final area
	0.786	A1	Final answer
	Satnre	4	

(ii)	$\frac{t - 49.2}{2.8} = -1.406$	B1	±1.406 seen
		M1	An equation using \pm standardisation formula with a z-value, condone σ^2 or $\sqrt{\sigma}$
	45.3	A1	
		3	
(iii)	P(X < 46) = 0.1265	M1	Calculated or ft from (i)
	$P(2PB < 46) = 3(1 - 0.1265)0.1265^{2}$	M1	$3(1-p)p^2$, 0
	0.0419	A1	
		3	

3(a)	$P(X > 87) = P\left(Z > \frac{87 - 82}{\sigma}\right) = 0.22$	M1	Using \pm standardisation formula, not σ^2 , not $\sqrt{\sigma}$, no continuity correction	
	$P\left(Z < \frac{5}{\sigma}\right) = 0.78$	B1	AWRT ±0.772 seen B0 for ±0.228	
	$\left(\frac{5}{\sigma}\right) = 0.772$			
	$\sigma = 6.48$	A1		
		3		
3(b)	$P\left(-\frac{4}{\sigma} < Z < \frac{4}{\sigma}\right) = P\left(-0.6176 < Z < 0.6176\right)$	M1	Using ± 4 used within a standardisation formula (SOI), allow σ^2 , $\sqrt{\sigma}$ and continuity correction	
		M1	Standardisation formula applied to both <i>their</i> ±4	
	$\Phi = 0.7317$ Prob = $2\Phi - 1 = 2(0.7317) - 1$	M1	Correct area $2\Phi - 1$ oe linked to final solution	
	= 0.463	A1		
		4		
Question 80				
(a)	1 - P(6, 7, 8)	M1	One term ${}^{8}C$ $n^{x}(1-n)^{8-x}$ $0 < n < 1, x \ne 0$	

(a)	$\begin{vmatrix} 1 - P(6, 7, 8) \\ = 1 - ({}^{8}C_{6} \ 0.7^{6}0.3^{2} + {}^{8}C_{7} \ 0.7^{7}0.3^{1} + 0.7^{8}) \end{vmatrix}$	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}, 0$
	=1-0.55177	A1	Correct unsimplified expression, or better
	= 0.448	A1	
	Alternative method for question 5(a)		5
	$\begin{array}{ c c c c c c }\hline P(0,1,2,3,4,5)\\ = 0.3^8 + {}^8C_10.7^10.3^7 + {}^8C_20.7^20.3^6 + {}^8C_30.7^30.3^5 + \\ {}^8C_40.7^40.3^4 + {}^8C_50.7^50.3^3 \end{array}$	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}, 0$
		A1	Correct unsimplified expression, or better
	= 0.448	A1	
		3	
(b)	Mean = $120 \times 0.7 = 84$ Var = $120 \times 0.7 \times 0.3 = 25.2$	B1	Correct mean and variance, allow unsimplified
	P(more than 75) = P $\left(z > \frac{75.5 - 84}{\sqrt{25.2}}\right)$	M1	Substituting <i>their</i> μ and σ into the \pm standardising formula (any number), not σ^2 , not $\sqrt{\sigma}$
		M1	Using continuity correction 75.5 or 74.5
	P(z>-1.693)	M1	Appropriate area Φ , from final process, must be a probability
	= 0.955	A1	Allow 0.9545
		5	

(a)	$P(X < 21) = P\left(z < \frac{21 - 15.8}{4.2}\right) = \Phi(1.238)$	M1
	0.892	A1
		2
(b)	$z = \pm 0.674$	B1
	$\frac{k - 15.8}{4.2} = 0.674$	M1
	18.6	A1
		3

(a)	$\frac{1}{\frac{1}{4}} = 4$	В1
		1
(b)	$\frac{9}{64}$ (= 0.141)	B1
		1
(c)	$P(X < 6) = 1 - \left(\frac{3}{4}\right)^5$ $GTT desire and desire $	M1
	(FT their probability/mean from part (a))	
	0.763	A1
		2
(d)	Mean = $80 \times 0.25 = 20$ Var = $80 \times 0.25 \times 0.75 = 15$	M1
	P(more than 25) = P $\left(z > \frac{25.5 - 20}{\sqrt{15}}\right)$	M1
	P(z > 1.42)	M1
	1 - 0.9222	M1
	0.0778	A1
		5

(a)	$P(X < 25) = P(z < \frac{25-40}{12}) = P(z < -1.25)P(X < 25) = P(z <)$	M1
	1 - 0.8944	M1
	0.106	A1
		3
(b)	0.8944 divided by 3 (M1 for 1 - their (a) divided by 3)	M1
	0.298 AG	A1
		2
(c)	0.2981 gives z = 0.53	B1
	$\frac{h-40}{12} = 0.53$	M1
	h = 46.4	A1
		3
	stion 84	1

(a)	$ \begin{vmatrix} 1 - P(10, 11, 12) \\ = 1 - [^{12}C_{10} 0.72^{10} 0.28^2 + {}^{12}C_{11} 0.72^{11} 0.28^1 + 0.72^{12}] \end{vmatrix} $	M1
	1 - (0.19372 + 0.09057 + 0.01941)	A1
	0.696	A1
		3
(b)	$0.28^3 \times 0.72 = 0.0158$	B1
	7 C°	1
(c)	Mean = $100 \times 0.72 = 72$ Var = $100 \times 0.72 \times 0.28 = 20.16$	M1
	P(less than 64) = P $\left(z < \frac{63.5 - 72}{\sqrt{20.16}}\right)$	M1
	(M1 for substituting their μ and σ into \pm standardisation formula with a numerical value for '63.5')	
	Using either 63.5 or 64.5 within a ±standardisation formula	M1
	Appropriate area Φ , from standardisation formula $P(z <)$ in final solution = $P(z < -1.893)$	M1
	0.0292	A1
		5

(a)	$P(56 < X < 66) = P\left(\frac{56 - 62}{5} < z < \frac{66 - 62}{5}\right)$ $= P(-1.2 < z < 0.8)$	M1	Using \pm standardisation formula at least once, no $\sqrt{\sigma}$ or σ^2 , allow continuity correction
	$\Phi(0.8) + \Phi(1.2) - 1$ = 0.7881 + 0.8849 - 1	M1	Appropriate area Φ , from standardisation formula in final solution
	0.673	A1	
		3	
(b)	z=1.127	B1	±(1.126 – 1.127) seen, 4 sf or more
	$\frac{60t - 62}{5} = 1.127$ $60t = 5.635 + 62 = 67.635$	M1	z-value = $\pm \frac{(60t - 62)}{5}$ condone z-value = $\pm \frac{(t - 62)}{5}$ no continuity correction, condone $\sqrt{\sigma}$ or σ^2
	t = 1.13	A1	CAO
	19	3	
Ques	tion 86		Using + standardisation formula

(a)	$P(X > 11.3) = P(z > \frac{11.3 - 10.1}{1.3}) = P(z > 0.9231)$	M1	Using \pm standardisation formula, no $\sqrt{\sigma}$ or σ^2 , continuity correction
	1 – 0.822	M1	Appropriate area Φ , from standardisation formula $P(z>)$ in final solution
	0·178	A1	0.1779
		3	
(b)	z = -0.674	B1	±0.674 seen (critical value)
	$\frac{t - 10.1}{1.3} = -0.674$	M1	An equation using \pm standardisation formula with a z-value, condone $\sqrt{\sigma}$ or σ^2 , continuity correction.
	t = 9.22	A1	AWRT. Only dependent on M1
		3	
(c)	$P(8.9 < X < 11.3) = 1 - 2 \times their 3(a)$ $\equiv 2(1 - their 3(a)) - 1$ $\equiv 2(0.5 - their 3(a))$ $= 0.644$	B1 FT	FT from their $3(a) < 0.5$ or correct, accept unevaluated probability OE
	Number of days = 90×0.644 = 57.96	M1	$90 \times their p$ seen, 0
	So 57 (days)	A1 FT	Accept 57 or 58, not 57·0 or 58·0, no approximation/rounding stated FT must be an integer value

(a)	$P(X > 4.2) = P(z > \frac{4.2 - 3.5}{0.9})$ = P(z > 0.7778)	M1	Using \pm standardisation formula, no $\sqrt{\sigma}$ or σ^2 , continuity correction
	1-0.7818	M1	Appropriate area Φ , from standardisation formula $P(z>\dots)$ in final solution
	0.218	A1	
		3	
(b)	z = -1.282	B1	±1.282 seen (critical value)
	$\frac{t-3.5}{0.9} = -1.282$	M1	An equation using ±standardisation formula with a z-value, condone $\sqrt{\sigma}$, σ^2 and continuity correction
	t = 2.35	A1	AWRT, only dependent on M mark
		3	
i(c)	$P(2.8 < X < 4.2) = 1 - 2 \times their 5(a)$ $\equiv 2(1 - their 5(a)) - 1$ $\equiv 2(0.5 - their 5(a))$ $= 0.5636$	B1 FT	FT from <i>their</i> 5(a) < 0.5 or correct Accept unevaluated probability OE Accept 0·564
	Number of days = $365 \times 0.5636 = 205.7$	M1	365 × their p
	So, 205 (days)	A1 FT	Accept 205 or 206, not 205·0 or 206·0 no approximation/rounding stated FT must be an integer value

			I must be an integer value
Ques	tion 88		
i(a)	$P\bigg(\bigg(\frac{85 - 96}{18}\bigg) < z < \bigg(\frac{100 - 96}{18}\bigg)\bigg)$	M1	Use of \pm standardisation formula once with appropriate values substituted, no continuity correction, not σ^2 or $\sqrt{\sigma}$.
	$P(-0.6111 < z < 0.2222)$ $= \Phi(0.2222) + \Phi(0.6111) - 1$ $= 0.5879 + 0.7294 - 1$	M1	Appropriate area Φ , from final process, must be probability. Use of $(1-z)$ implies M0.
	0.317	A1	Final answer which rounds to 0·317.
		3	
(b)	$z = \pm 1.175$	B1	$1.17 \le z \le 1.18 \text{ or } -1.18 \le z \le -1.17$
	$-1.175 = \frac{t - 96}{18}$	M1	An equation using ±standardisation formula with a z-value, condone σ^2 , $\sqrt{\sigma}$ or continuity correction. E.g. equating to 0.88, 0.12, 0.8106, 0.1894, 0.5478, 0.4522, ±0.175 or ±2.175 implies M0.
	74·85 or 74·9	A1	74·85 \left\(t \left\) 74·9
		3	

(a)	$z_1 = \frac{4 - \mu}{\delta} = -1.378$	B1	$1.378 \leqslant z_1 \le 1.379 \text{ or } -1.379 \leqslant z_1 \leqslant -1.378$
	$z_2 = \frac{10 - \mu}{\sigma} = 0.842$	B1	$0.841 \leqslant z_2 \leqslant 0.842 \text{ or } -0.842 \leqslant z_2 \leqslant -0.841$
	Solve to find at least one unknown: $\frac{4-\mu}{\sigma} = -1.378$	M1	Use of ±standardisation formula once with μ , σ , a z-value and 4 or 10, allow continuity correction, not σ^2 or $\sqrt{\sigma}$
	$\frac{10-\mu}{\sigma} = 0.842$	M1	Use either the elimination method or the substitution method to solve two equations in μ and σ .
	$\sigma = 2.70 \ \mu = 7.72$	A1	$2.70 \le \sigma \le 2.71 \ 7.72 \le \mu \le 7.73$
		5	
(b)	$\Phi(2) - \Phi(-2) = 2\Phi(2) - 1$	M1	Identifying 2 and –2 as the appropriate z-values
	2×their 0.9772 – 1	B1	Calculating the appropriate area from stated phis of z-values which must be \pm the same number
	0.9544 or 0.9545	A1	Accept AWRT 0.954
	0.9544 × 800 = 763.52 763 or 764	B1 FT	FT <i>their</i> 4SF (or better) probability, final answer must be positive integer
		4	
Ques	etion 90		
Г	72]	170/7/	180 -180 < 7 < 170 seen

$P(X>1.1) = \frac{72}{2000} (=0.036)$ $z = \pm 1.798$	В1	$1.79 < z \le 1.80, -1.80 \le z < -1.79$ seen
$\frac{1.1 - 1.04}{\sigma} = 1.798$	B1	1.1 and 1.04 substituted in \pm standardisation formula, allow continuity correction, not σ^2 or $\sqrt{\sigma}$
$\left[\frac{0.06}{\sigma} = 1.798\right]$	M1	Equate their \pm standardisation formula to a z-value and to solve for the appropriate area leading to final answer (expect $\sigma < 0.5$). $\left(\text{Accept} \pm \frac{0.06}{\sigma} = z - \text{value} \right)$
$\sigma = 0.0334$	A1	$0.03335 \le \sigma \le 0.0334$. At least 3 3s.f.
	4	

$\left[P\left(\left(\frac{25.2 - (25.5 + 0.50)}{0.4}\right) < z < \left(\frac{25.2 - (25.2 - 0.50)}{0.4}\right)\right)\right]$ $= P\left(-\frac{0.5}{0.4} < z < \frac{0.5}{0.4}\right)$	M1	Use of \pm Standardisation formula once; no continuity correction, $\sigma^2, \sqrt{\sigma}$
$\boxed{\left[=2\Phi(1.25)-1\right]}$	A1	For AWRT 0.8944 SOI
$=2\times0.8944-1$	M1	Appropriate area $2\Phi-1$ OE, from final process, must be probability
0.7888	A1	Accept AWRT 0.789
Number of rods = 0.7888×500 = 394 or 395	BIFT	Correct or FT <i>their</i> 4SF (or better) probability, final answer must be positive integer, not 394.0 or 395.0, no approximation/rounding stated, only 1 answer
	5	

(a)	$P(X > 43.2) = P(Z > \frac{43.2 - 41.2}{3.6}) = P(Z > 0.5556)$	M1	Use of \pm Standardisation formula once, allow continuity correction, not $\sigma^2, \sqrt{\sigma}$.
	$1 - \Phi(0.5556) = 1 - 0.7108$	M1	Appropriate area Φ , from final process, must be probability.
	0.289	A1	AWRT
		3	
(b)	Probability = $1 - their$ (a) = $1 - 0.2892 = 0.7108$	B1FT	1 – their (a) or correct.
	0.7108 × 365 = 259.4 259, 260	B1FT	FT their 4SF (or better) probability, final answer must be positive integer.
		2	
(c)	$z = \pm 1.645$	B1	CAO, critical z value.
	$\frac{t - 41.2}{3.6} = -1.645$	M1	Use of ±standardisation formula with μ , σ equated to a z-value, no continuity correction, allow σ^2 , $\sqrt{\sigma}$.
	t = 35.3	A1	
		3	

(a)	$[P(X > 28.6) =] P(Z > \frac{28.6 - 32.2}{9.6})$ $[= P(Z > -0.375)]$	M1	28.6, 32.2 and 9.6 substituted appropriately in \pm Standardisation formula once, allow continuity correction of \pm 0.05, no σ^2 , $\sqrt{\sigma}$.
	$[\Phi(their 0.375) =] their 0.6462$	M1	Appropriate numerical area, from final process, must be probability, expect > 0.5.
	0.646	A1	AWRT
		3	
b)	$z = \pm 0.842$	B1	$0.841 \le z \le 0.842$ or $-0.842 \le z \le -0.841$ seen.
	$\frac{t - 32.2}{9.6} = 0.842$	M1	Substituting 32.2 and 9.6 into \pm standardisation formula, no continuity correction, allow σ^2 , $\sqrt{\sigma}$, must be equated to a z-value.
	t = 40.3	A1	40.28 ≤ <i>t</i> ≤ 40.3 WWW
		3	
(c)	$P\left(-\frac{15}{9.6} < Z < \frac{15}{9.6}\right)$ $P(-1.5625 < Z < 1.5625)$	M1	Identifying at least one of $\frac{15}{9.6}$ and $-\frac{15}{9.6}$ as the appropriate z-values or substituting <i>their</i> (32.2 ± 15) into ± Standardisation formula once, necontinuity correction, σ^2 nor $\sqrt{\sigma}$. Condone ±1.563 for M1 .
	$[2 \Phi(\frac{15}{9.6}) - 1]$	Sato	p = 0.941 AWRT SOI
	$= 2 \times 0.9409 - 1$	M1	Appropriate area $2\Phi-1$ oe, (eg $1-2\times0.0591$, $2\times(0.9409-0.5)$ or $0.9409-0.0591$), from final process, must be probability >0.5 .
	0.882	A1	
		4	

(a)(i)	$P(X > 142) = P\left(Z > \frac{142 - 125}{24}\right)$	M1	Substitution of correct values into the \pm Standardisation formula, allow continuity correction, not $\sigma^2, \sqrt{\sigma}$.
	[=P(Z>0.7083)=]I-0.7604	M1	Appropriate numerical area Φ , from final process, must be probability, expect $p < 0.5$.
	0.2396	A1	$0.239 \le p \le 0.240$ to at least 3sf.
	Their 0.2396 × 365 [= 87.454]	M1	FT their 4sf (or better) probability.
	87 or 88	A1 FT	Final answer must be positive integer, no indication of approximation/rounding, only dependent on previous M mark. SC B1 FT for <i>their</i> 3sf probability × 365 = integer value, condone 0.24 used.
		5	
(a)(ii)	$P(0, 1) = 0.7604^{10} + {}^{10}C_1 \times 0.2396^1 \times 0.7604^9$	M1	One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10$, any p .
	[= 0.064628 + 0.20364]		Correct unsimplified expression using <i>their</i> probability to at least 3sf from (a)(i) or correct.
	0.268	A1	AWRT, WWW.
	TP	3	
'(b)	$z = \pm 1.282$	B1	Correct value only, critical value.
	$\frac{t - 125}{24} = -1.282$	М1	Use of \pm Standardisation formula with correct values substituted, allow continuity correction, σ^2 , $\sqrt{\sigma}$, to form an equation with a z -value and not probability.
	t = 94.2	A1	AWRT, condone AWRT 94.3. Not dependent on B mark.
		3	
Que	stion 95		111
		I v	

(a)	$P(46 < X < 62) = P\left(\frac{46 - 55}{6} < Z < \frac{62 - 55}{6}\right)$	M1	46 or 62, 55 and 6 substituted into \pm standardisation formula once. Condone 6^2 and continuity correction ± 0.5
	$= P\left(-1.5 < Z < \frac{7}{6}\right)$	B1	Both standardisation values correct, accept unsimplified
	$ \left[= \Phi\left(\frac{7}{6}\right) - (1 - \Phi(1.5)) \right] = 0.8784 + (0.9332 - 1) $	M1	Calculating the appropriate area from stated Φs of z-values, must be probabilities.
	0.812	A1	0.8115
	atp	6 4	
(b)	$z = \pm 0.674$	B1	CAO, critical z-value
	$\frac{36-42}{\sigma} = -0.674$	M1	36 and 42 substituted in \pm standardisation formula, no continuity correction, not σ^2 , $\sqrt{\sigma}$, equated to a z-value
	$\sigma = 8.9[0]$	A1	WWW. Only dependent on M.
		3	
(c)	P(male < 46) = 1-their $0.9332 = 0.0668$	M1	FT value from part (a) or Correct: $1 - \Phi\left(\frac{46 - 55}{6}\right)$, condone continuity correction, σ^2 , $\sqrt{\sigma}$, and probability found. Condone unsupported correct value stated.
	P(female < 46) = P($Z < \frac{46-42}{their 8.90}$)[= $\Phi(0.449)$] = 0.6732	M1	46, 42 and their 4(b) σ (or correct σ) substituted in \pm standardisation formula, condone continuity correction, σ^2 , $\sqrt{\sigma}$, and probability found Condone $\frac{4}{their 8.90}$.
	P(both) = 0.0668 ×0.6732	M1	Product of <i>their</i> 2 probabilities (0 < both < 1) Not 0.25 or <i>their</i> final answer to 4(a) used.
	0.0450 or 0.0449	A1	$0.0449 \le p \le 0.0450$
		4	1

(a)	$[P(142 < X < 205)] = P\left(\frac{142 - 170}{25} < z < \frac{205 - 170}{25}\right)$	M1	Use of \pm standardisation formula once substituting 170, 25 and either 142 or 205 appropriately Condone 25^2 and continuity correction ± 0.5 .
	P(-1.12 < z < 1.4)	A1	Both correct. Accept unsimplified.
	$\Phi(1.4) - (1 - \Phi(1.12)) = 0.9192 + 0.8686 - 1$	M1	Calculating the appropriate area from stated phis of <i>z</i> -values.
	0.788	A1	AWRT, not from wrong working
		4	
(b)	P(X > 205) = 1 - 0.9192 = 0.0808	B1 FT	Correct or FT from part 5(a).
	$(0.0808 \times 0.30 + their 0.788 \times 0.24) \times 20000$	M1	Correct or their $0.0808 \times 0.30 \times k + their \ 0.788 \times 0.24 \times k$, k positive integer.
	[\$]4266.24	A1	4265 < income ≤ 4270, not from wrong working
		3	
(c)	$[P(Z > \frac{w-182}{20}) = 0.72]$	B1	$0.5828 \leqslant z \leqslant 0.583 \text{ or } -0.583 \leqslant z \leqslant -0.5828 \text{ seen.}$
	$\frac{w - 182}{20} = -0.583$	M1	182 and 20 substituted in \pm standardisation formula, no continuity correction, not σ^2 , $\sqrt{\sigma}$, equated to a z-value.
	w=170	A1	170 ≤ w < 170.35
		3	
Que	estion 97		
(a)	[P(10, 11, 12) =] M1	One term	$^{12}C_x p^x (1-p)^{12-x}$, for $0 < x < 12, 0 < p < 1$.

(a)	$[P(10, 11, 12) =]$ ${}^{12}C_{10}0.72^{10}0.28^2 + {}^{12}C_{11}0.72^{11}0.28^1 + {}^{12}C_{12}0.72^{12}0.28^0$	М1	One term ${}^{12}C_x p^x (1-p)^{12-x}$, for $0 \le x \le 12$, $0 \le p \le 1$.			
	= 0.193725 + 0.0905726 + 0.0194084	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.			
	0.304	B1	Final answer $0.3036 .$			
	Alternative method for question 5(a)					
	$ [1 - P(0,1,2,3,4,5,6,7,8,9) =] $ $ 1 - (^{12}C_0,0.72^0,0.28^{12} + ^{12}C_1,0.72^1,0.28^{11} + ^{12}C_7,0.72^2,0.28^{10} +$	M1	One term ${}^{12}C_x p^x (1-p)^{12-x}$, for $0 < x < 12, 0 < p < 1$.			
	${}^{12}C_3 0.72^3 0.28^9 + {}^{12}C_4 0.72^4 0.28^8 + {}^{12}C_5 0.72^5 0.28^7 + \\ {}^{12}C_6 0.72^6 0.28^6 + {}^{12}C_7 0.72^7 0.28^5 + {}^{12}C_8 0.72^8 0.28^4 + \\ {}^{12}C_9 0.72^9 0.28^3)$	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.			
	0.304	B1	Final answer $0.3036 .$			
		3				
(b)	Mean = $[0.52 \times 90 =]46.8$, var = $[0.52 \times 0.48 \times 90] = 22.464$	B1	46.8 and 22.464 or 22.46 seen, allow unsimplified, $(4.739 \le \sigma \le 4.740 \text{ imply correct variance}).$			
	$[P(X<40)=]P\left(z<\frac{39.5-46.8}{\sqrt{22.464}}\right)$	M1	Substituting <i>their</i> mean and <i>their</i> variance into \pm standardisation formula (any number for 39.5), not σ^2 , $\sqrt{\sigma}$.			
		М1	Using continuity correction 39.5 or 40.5 in <i>their</i> standardisation formula.			
	= [P(Z<-1.540)]=1-0.9382	M1	Appropriate area Φ , from final process, must be probability.			
	0.0618	A1	$0.06175 \leqslant p \leqslant 0.0618$			
		5				

(a)	$[P(1.98 < X < 2.03) =]P(\frac{1.98 - 2.02}{0.03} < z < \frac{2.03 - 2.02}{0.03})$ $[= P(-1.333 < z < 0.333)]$	M1	Use of \pm standardisation formula once with 2.02, 0.03 and either 1.98 or 2.03 substituted appropriately. Condone 0.03 ² and continuity correction \pm 0.005, not $\sqrt{0.03}$.
	$ = \Phi(0.333) - (1 - \Phi(1.333))] $ $= 0.6304 + 0.9087 - 1 $	M1	Calculating the appropriate probability area from <i>their</i> z-values. (or $0.6304 - 0.09121$ or $(0.9087 - 0.5) + (0.6304 - 0.5)$ etc)
	0.539	A1	0.539 ≤ z < 0.5395 Only dependent upon 2nd M mark. If M0 scored SC B1 for 0.539 ≤ z < 0.5395.
		3	
(b)	$[P(X>2.6) = \frac{134}{5000} = 0.0268]$ $[P(X<2.6) = 1 - 0.0268 =] 0.9732$	B1	$0.9732 \text{ or } \frac{4866}{5000} \text{ or } \frac{2433}{2500} \text{ seen.}$
	$\frac{2.6-2.55}{\sigma}$ = 1.93	M1	Use of \pm standardisation formula with 2.6 and 2.55 substituted, no σ^2 , $\sqrt{\sigma}$ or continuity correction.
		M1	Their standardisation formula with values substituted equated to z-value which rounds to ± 1.93 .
	$\sigma = 0.0259$	A1	AWRT 0.0259 or $\frac{5}{193}$. If M0 earned, SC B1 for correct final answer.
	10	4	
Que	estion 99		M1 6, 5,2, 1,5 substituted into ± standardisation

(a)	$P(X < 6) = P(Z < \frac{6-5.2}{1.5}) = P(Z < 0.5333)$	M1	$6, 5.2, 1.5$ substituted into \pm standardisation formula, condone 1.5^2 , continuity correction ± 0.5
	0.703	A1	
		2	
(b)	$z_1 = \frac{3 - \mu}{\sigma} = -1.329$ $z_2 = \frac{8 - \mu}{\sigma} = 0.878$	B1	$1.328 < z_1 \le 1.329 \text{ or}$ $-1.329 \le z_1 < -1.328$
	$z_2 = \frac{8 - \mu}{\sigma} = 0.878$	B1	$0.877 < z_2 \le 0.878$ or $-0.878 \le z_2 < -0.877$
	Solve to find at least one unknown: $\frac{3-\mu}{\sigma} = -1.329$ $8-\mu$ 0.879	M1	Use of the \pm standardisation formula once with μ , σ , a =-value (not 0.8179, 0.7910, 0.5367, 0.5753, 0.19, 0.092 etc.) and 3 or 8, condone continuity correction but not σ^2 or $\sqrt{\sigma}$
	$\frac{8-\mu}{\sigma} = 0.878$	M1	Use either the elimination method or the substitution method to solve their two equations in μ and σ
	$\sigma = 2.27, \mu = 6.01$	A1	$2.26 \le \sigma \le 2.27, 6.01 \le \mu \le 6.02$
		5	
(c)	$[P(Z<-1)+P(Z>1)] \Phi(1)-\Phi(-1)=$	M1	Identify 1 and -1 as the appropriate z-values.
	$= 2 - 2 \Phi(1)$ $= 2 - 2 \times 0.8413$	M1	Calculating the appropriate area from stated phis of z -values which must be \pm the same number
	0.3174	A1	Accept AWRT 0.317
	Number of leaves: 2000 × 0.3174 = 634.8 so 634 or 635	B1 FT	FT their 4 s.f. (or better) probability, final answer must be positive integer no approximation or rounding stated
		4	

Mean = $80 \times 0.32 = 25.6$, var = $80 \times 0.32 \times 0.68 = 17.408$	B1	25.6 and 17.4[08] seen, allow unsimplified. 4.172 implies correct variance.
$P(X < 20) = P(Z < \frac{19.5 - 25.6}{\sqrt{17.408}}) = P(Z < -1.462)$	M1	Substituting <i>their</i> 25.6 and 17.408 into \pm standardisation formula (any number for 19·5), not σ^2 , $\sqrt{\sigma}$.
	M1	Using continuity correction 19·5 or 20·5 in <i>their</i> standardisation formula.
$= [1 - \Phi(1.462)] = 1 - 0.9282$	M1	Appropriate area Φ , from final process, must be probability. (Expect final ans < 0.5). Note: the correct final answer may imply M1 from use of calculator.
0.0718	A1	$0.0718 \leqslant p \leqslant 0.0719$
	5	

$[P(X > 1.11) =]P(Z > \frac{1.11 - 1.04}{0.06}) = P(Z > 1.167)$	M1	1.11, 1.04 and 0.06 substituted into \pm Standardisation formula, no continuity correction not 0.06 ² or $\sqrt{0.06}$
= 1 - 0.8784	M1	1-their~0.8784 as final answer, must be probability. (Expect final ans <0.5).
0.122	A1	$0.1216 \le p \le 0.122$ SC M0 M1 B1 for 0.122 with no standardisation formula.
	3	

Question 102

$[P(X \le w) = P(Z \le \frac{w - 1.04}{0.06}) = 0.81]$	B1	$0.8775 < z \le 0.878 \text{ or } -0.878 \le z < -0.8775 \text{ seen.}$
$\frac{w - 1.04}{0.06} = 0.878$	M1	1.04 and 0.06 substituted in \pm standardisation formula, no continuity correction, not σ^2 , $\sqrt{\sigma}$, equated to a z-value.
w = 1.09	A1	$1.09 \leqslant w \leqslant 1.093$
	3	

(a)	$[P(X<54.8)] = P(Z < \frac{54.8 - 55.6}{1.2})$	M1	Use of \pm standardisation formula, with 54.8, 55.6 and 1.2 substituted. condone $1.2^2, \sqrt{1.2}$ or continuity correction of 54.75 or 54.85
	[= P(Z < -0.6667)] = 1 - 0.7477	M1	Appropriate area Φ, from final process, must be probability.
	= 0.2523	A1	$0.252 \leqslant p \leqslant 0.2525$ If A0 scored S CB1 for $0.252 \leqslant p \leqslant 0.2525$
	[Expected number =] 400×0.2523 =100.92 100 or 101	B1 FT	FT <i>their</i> 4SF (or better) probability from a normal calculation. Must be a single integer answer.
		4	/ / /
(b)	$[P(-\frac{1}{2} < Z < \frac{1}{2}) = \Phi(\frac{1}{2}) - \Phi(-\frac{1}{2}) =]$ $2\Phi(\frac{1}{2}) - 1$ $= 2 \times their 0.6915 - 1$	M1	{Both $\frac{1}{2}$ and $-\frac{1}{2}$ seen as z-values or appropriate use of $+\frac{1}{2}$ or $-\frac{1}{2}$ } and {no other z-values in part}. Condone $\frac{56.2 - 55.6}{1.2}$ and $\frac{55[.0] - 55.6}{1.2}$ seen as z-values.
	or their $0.6915 - (1 - their 0.6915)$ or $2 \times (0.6915 - 0.5)$	atom	Calculating the appropriate area from stated phis of z-values which must be \pm the same number.
	0.383	A1	$0.3829 \leqslant z \leqslant 0.383$ If A0 scored SC B1 for $0.3829 \leqslant z \leqslant 0.383$
		3	

(a)	$ \begin{bmatrix} 1 - P(10, 11, 12) =] \\ 1 - (^{12}C_{10} \ 0.9^{10} \ 0.1^{2} + ^{12}C_{11} \ 0.9^{11} \ 0.1^{1} + ^{12}C_{12} \ 0.9^{12} \ 0.1^{0}) $	M1	One term $^{12}C_x p^x (1-p)^{12-x}$, for $0 \le x \le 12$, $0 \le p \le 1$
	= 1 - (0.230128 + 0.376573 + 0.282430)	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.
	0.111	B1	Mark the final answer at the most accurate value, $0.1108 WWW.$
i(b)	[Mean = 80×0.9 =] 72, [Variance = $80 \times 0.9 \times 0.1$] = 7.2	В1	72 and 7.2 seen, allow unsimplified. May be seen in standardisation formula. $(2.683 \le \sigma < 2.684 \text{ imply correct variance}).$
	$P(X > 69) = P(Z > \frac{69.5 - 72}{\sqrt{7.2}})$	M1	Substituting <i>their</i> mean and \sqrt{their} variance into \pm standardisation formula (any number for 69·5), not <i>their</i> 7.2, not \sqrt{their} 2.683
		M1	Using continuity correction 69·5 or 68·5 in <i>their</i> standardisation formula.
	$[= P(Z > -0.9317) =]$ $\Phi(0.9317)$	M1	Appropriate area Φ , from final process, must be probability.
	0.824	A1	$0.8239 \le p \le 0.8243 \text{ WWW}.$
		5	
i(c)	np = 72, $nq = 8$ Both greater than 5, [so approximation is valid]	B1	np, nq evaluated accurately. both np & nq referenced correctly. > 5 or greater than 5 seen.
		1	
Que	stion 105		

(a)	$\begin{aligned} & [P(3,4,7) = 1 - P(0,1,2,8)] \\ &= 1 - (^8C_0\ 0.48^0\ 0.52^8 + ^8C_1\ 0.48^1\ 0.52^7 \\ &+ ^8C_2\ 0.48^2\ 0.52^6 + ^8C_8\ 0.48^8\ 0.52^0) \end{aligned}$	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}$, for $0 < x < 8, 0 < p < 1$
	= 1 - (0.00534597 + 0.039478 + 0.127544 + 0.0028179)	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.
	0.825	B1	Mark the final answer at the most accurate value. $0.8248 \le p \le 0.825$ WWW.
(b)	[Mean = $0.52 \times 125 =]65$, [var = $0.52 \times 0.48 \times 125 =]31.2$	B1	65 and 31.2 seen, allow unsimplified. May be seen in standardisation formula. (5.585 < $\sigma \le$ 5.586 imply correct variance).
	$[P(X > 72) =]P(Z > \frac{72.5 - 65}{\sqrt{31.2}}) [= P(Z > 1.343)]$	M1	Substituting <i>their</i> 65 and \sqrt{their} 31.2 into ±standardisation formula (any number for 72·5), not <i>their</i> 31.2, \sqrt{their} 5.586.
		M1	Using continuity correction 72.5 or 71.5 in <i>their</i> standardisation formula. Note $\frac{\pm 7.5}{\sqrt{31.2}}$ or $\frac{\pm 7.5}{5.586}$ seen gains M2 BOD
	= 1 - 0.9104	M1	Appropriate area Φ , from final process, must be probability.
	0.0896	A1	$0.0896 \leqslant p \leqslant 0.0897 \text{ WWW}.$
		5	

(a)	$P(X<132) = P(Z<\frac{132-125.4}{18.6}) = P(Z<0.3548)$	M1	Use of \pm standardisation formula with 132 and 125.4 substituted, condone continuity correction 132 \pm 0.5 and use of 18.6 ² , $\sqrt{18.6}$	
	0.639	A1	$0.6385 If M0 scored, SC B1 for 0.6385$	
		2		
(b)	$\frac{108-117}{\sigma} = -1.175$	B1	$1.1749 < z \le 1.175 \text{ or } -1.175 \le z < -1.1749$	
	σ	M1	108 and 117 substituted in \pm standardisation formula, no continuity correction, not σ^2 , $\sqrt{\sigma}$, equated to a z-value.	
	$\sigma = 7.66$	A1	$7.659 \leqslant \sigma \leqslant 7.66$ If M0 scored, SC B1 for $7.659 \leqslant \sigma \leqslant 7.66$	
		3		
(c)	$P(-1.5 < Z < 1.5)$ $[\Phi(1.5) - \Phi(-1.5)]$ $[= 2\Phi(1.5) - 1]$ $= 2 \times their 0.9332 - 1$ or their 0.9332 - (1 - their 0.9332) or 2×(their 0.9332 - 0.5)	M1	{Both 1.5 and -1.5 seen as z-values or appropriate use of 1.5 or -1.5} and {no other z-values in part}.	
		M1 Calculating the appropriate area from stated phis of z-values which must be \pm the same number. Condone their 0.0668 as $(1 - their\ 0.9332)$.		
	0.8664	A1	Accept answers wrt 0.866 If A0 scored SC B1 for answers wrt 0.866	
	$0.8664^3 = 0.650[36]$	B1 FT	FT their 4SF (or better) probability, accept final answers to 3SF.	
		4	. 111	
Que	stion 107		M1 Use of + standardisation formula with 74, 62,3 and 8.4	

(a)	$[P(X < 74) =] P(Z < \frac{74 - 62.3}{8.4}) [= P(Z < 1.393)]$	M1	Use of \pm standardisation formula with 74, 62.3 and 8.4 substituted appropriately, not 8.4^2 , not $\sqrt{8.4}$, no continuity correction.
	= 0.918	A1	0.918 $\leq p \leq$ 0.9185.
	2	2	0.
(b)	$[P(50 < X < 74) = P]\left(\frac{50 - 62.3}{8.4} < Z < \frac{74 - 62.3}{8.4}\right)$ $[P(-1.464 < Z < 1.393)]$	M1	Use of \pm standardisation formula with both 74 (may be seen in 6(a) if <i>their</i> value seen) & 50, 62.3 and 8.4 substituted appropriately. Condone use of 8.4^2 , $\sqrt{8.4}$ and continuity correction ± 0.5 (73.5 or 74.5 and 49.5 or 50.5).
	$ [\Phi(1.464) + \Phi(1.393) - 1] $ $ 0.9285 + 0.9182 - 1 $	M1	Calculating the appropriate probability area from stated Φ of z-values (leading to <i>their</i> final answer > 0.5) but not symmetrical values.
	= 0.847	A1	$0.8465 \le p < 0.8475$. SC B1 for $0.8465 \le p < 0.8475$ if M0A0 awarded.
	$(0.8467)^4 = 0.514$	B1 FT	Accept $0.513 \le p \le 0.514$. FT (their 4-figure p) ⁴ , $0 .$
		4	
(c)	$z_1 = \frac{36 - \mu}{\sigma} = -0.739$ 54 - \(\mu\)	B1	$-0.740 < z_1 < -0.738 \text{ or } 0.738 < z_1 < 0.740$.
		B1	$z_2 = \pm 1.282$ (critical value).
	$z_2 = \frac{54 - \mu}{\sigma} = 1.282$		Use of the ±standardisation formula once with μ , σ and a z-value (not 0.23, 0.77, 0.90, 0.10, ±0.261, ±0.282). Condone continuity correction ±0.5, not σ^2 , $\sqrt{\sigma}$.
	Solve, obtaining values for μ and σ $\mu = 42.6$, $\sigma = 8.91$	M1	Solve using the elimination method, substitution method or other appropriate approach to obtain values for both μ and σ .
		A1	$42.58 \le \mu \le 42.6$, $8.90 \le \sigma \le 8.91$.
		5	

Mean = $120 \times 0.4 = 48$ Var = $120 \times 0.4 \times 0.6 = 28.8$	B1	48 and $28\frac{4}{5}$, 28.8 seen, allow unsimplified.
$P(36 \le X \le 54) = P(\frac{35.5 - 48}{\sqrt{28.8}} < Z < \frac{54.5 - 48}{\sqrt{28.8}})$	M1	$(5.366 \leqslant \sigma \leqslant 5.367 \text{ or } \frac{12\sqrt{5}}{5} \text{ implies correct variance}).$ Substituting <i>their</i> μ and σ into one \pm standardisation formula (any number for 35.5 or 54.5), condone σ^2 and $\sqrt{\sigma}$.
γ26.6 γ26.6	M1	Using continuity correction 35.5, 36.5 or 53.5, 54.5 once in <i>their</i> standardisation formula. Note: $\frac{\pm 12.5}{\sqrt{28.8}}$ or $\frac{\pm 6.5}{\sqrt{28.8}}$ seen gains M2 BOD.
[= P(-2.3292 < Z < 1.211) =] 0.8871 + 0.9900 - 1	M1	Appropriate area Φ , from final process. Must be a probability. Expect final answer > 0.5 . Note: correct final answer implies this M1.
= 0.877	A1	$0.877 \le p < 0.8772$.
	5	

i(a)	$\left[P(X < 16) = P\left(Z < \frac{16 - 28}{\sigma} \right) = 0.1 \right]$ $\frac{16 - 28}{\sigma} = -1.282$	B1	±1.282 seen, cao – critical value.		
		M1	Use of the \pm standardisation formula with 16, 28, σ and a z-value (not 0.1, 0.9, 0.282, 0.5398, 0.8159) equated to a z-value. Condone continuity correct \pm 0.5, not σ^2 , $\sqrt{\sigma}$. Condone $\pm \frac{12}{\sigma} = -1.282$.		
	$\sigma = 9.36$	A1			
		3			
(b)	$ \begin{bmatrix} 1 - P(0, 1, 2) = \end{bmatrix} 1 - (^{12}C_0(0.1)^0 (0.9)^{12} + ^{12}C_1(0.1)^1 (0.9)^{11} + ^{12}C_2 \\ (0.1)^2 (0.9)^{10}) \\ [1 - (0.2824 + 0.3766 + 0.2301)] $	M1	One term ${}^{12}C_x(p)^x(1-p)^{12-x}$, $0 . x \ne 0,1,2.$		
		A1	Correct expression, accept unsimplified, no terms omitted le to final answer.		
	0.111	B1	0.1108699 rounded to at least 3SF.		
	Alternative Method for Question 6(b)				
	$\begin{array}{l} P(3,4,5,6,7,8,9,10,11,12) = {}^{12}C_3\left(0.1\right)^3\left(0.9\right)^9 + {}^{12}C_4\left(0.1\right)^4\left(0.9\right)^8 + \\ \dots + {}^{12}C_{11}\left(0.1\right)^{11}\left(0.9\right)^1 + {}^{12}C_{12}\left(0.1\right)^{12}\left(0.9\right)^0 \\ \left[0.08523 + 0.02131 + \dots + 1.08 \times 10^{-10} + 1 \times 10^{-12}\right] \end{array}$	M1	One term ${}^{12}C_x (p)^x (1-p)^{12-x}, 0$		
		A1	Correct expression, accept unsimplified, no terms omitted leading to final answer.		
	0.111	B1	0.1108699 rounded to at least 3SF.		
		3			
(c)	$ \begin{bmatrix} P(-1.3 < Z < 1.3) \\ = 2 \Phi(1.3) - 1 \\ = 2 \times 0.9032 - 1 \end{bmatrix} $	B1	Identifying at least one of -1.3 or 1.3 as the appropriate z-valu		
		M1	Calculating the appropriate probability area from 2 symmetrical z-values (leading to their final answer, expect > 0.5).		
	$=0.806, \frac{504}{625}$	A1	$0.8064, 0.806 \leqslant p < 0.8065$.		
	[In 365 days 0.8064×365] = 294 or 295	B1 FT	Strict FT <i>their</i> at least 4-figure probability (not z-value). Final answer must be positive integer, no approximation or rounding stated.		
		4			

$[P(15.4 < X < 16.8)] = P(\frac{15.4 - 16.5}{0.6} < Z < \frac{16.8 - 16.5}{0.6})$ $[= P(-1.833 < Z < 0.5)]$	M1 Use of \pm standardisation formula once with 16.5, 0.6 and either 15.4 or 16.8 substituted.
$[=\Phi(0.5) + \Phi(1.833) - 1 =]$ $0.6915 + 0.9666 - 1$	M1 Calculating the appropriate probability area (leading to their final answer, expect > 0.5). $0.6915 - (1 - 0.9666)$ or $(0.6915 - 0.5) + (0.9666 - 0.5)$ OE are alternatives.
= 0.658	A1 $0.658 \le p < 0.6585$. If A0 scored, SC B1 for $0.658 \le p < 0.6585$.
[Expected number =] 0.6581 × 150 = 98, 99	B1 FT FT their 4SF (or better) probability from a normal calculation. Must be a positive single integer answer. No approximation notation.
	4
$\left[P\left(Z > \frac{17.1 - 18.4}{\sigma}\right) = 0.72\right]$ $\frac{17.1 - 18.4}{\sigma} = -0.583$	B1 $0.5825 < z \le 0.583 \text{ or } -0.583 \le z < -0.5825 \text{ seen.}$
	M1 Use of the ± standardisation formula with 17.1, 18.4, σ and a z-value (not 0.28, 0.72, 0.4175, 0.2358, 0.7642, 0.6103, 0.3897,). Condone continuity correct ± 0.05, not σ^2 , $\sqrt{\sigma}$.
$\sigma = 2.23$	A1 AWRT
	3
[Mean = $120 \times 0.72 =$] 86.4 [Var = $120 \times 0.72 \times 0.28 =$] 24.192	86.4, $84\frac{2}{5}$ and $24\frac{24}{125}$, 24.192 to at least 3SF seen, allow unsimplified. May be seen in standardisation formula. (4.918 $\leqslant \sigma \leqslant 4.919$ implies correct variance) Incorrect notation is penalised.
$P(X < 80) = P(Z < \frac{79.5 - 86.4}{\sqrt{24.192}})$	M1 Substituting their mean (not 18.4) and their positive 4.9185 into \pm standardisation formula (any number for 79.5), condone their 4.918^2 and \sqrt{their} 4.918.
	W1 Using continuity correction 79.5 or 80.5 in <i>their</i> standardisation formula.
$[P(Z<-1.4029) = 1-\Phi(1.403)]$ 1 - 0.9196	M1 Appropriate area Φ , from final process, must be a probability. Expect final answer < 0.5 . Note: correct final answer implies this M1.
0.0804	A1 0.0803 ≤ p ≤ 0.0804
	5

(a)	$P(Z > \frac{20 - 14.6}{5.2}) = P(Z > 1.03846)$	M1	Use of \pm standardisation formula with 20, 14.6 and 5.2 not σ^2 , not $\sqrt{\sigma}$, no continuity correction.
	1 – 0.8504	М1	Calculating the appropriate probability area (leading to their final answer).
	0.150	A1	0.1496, 0.149 $. Only dependent on the 2nd M mark so M0M1A1 possible. SC B1 for 0.149 if M0M0A0 awarded.$
	[250 × their 0.1496 =] 37, 38	B1 FT	Strict FT <i>their</i> at least 4-figure probability seen anywhere (give BOD if they go on to use 0.150). Final answer must be positive integer, no approximation or rounding stated.
		4	
(b)	$z_1 = \frac{14.5 - \mu}{\sigma} = -0.842$ $z_2 = \frac{18.5 - \mu}{\sigma} = -0.44$	B1	$-0.843 < z_1 < -0.841$ or $0.841 < z_1 < 0.843$.
		B1	$-0.441 < z_2 < -0.439 \text{ or } 0.439 < z_2 < 0.441$.
		M1	Use of the \pm standardisation formula once with μ , σ and a z-value (not 0.20, 0.80, 0.67, 0.23, 0.5793, 0.7881, 0.7486, 0.591 or 1-z i.e. 0.158 etc.). Condone continuity correction \pm 0.05, not σ^2 , $\sqrt{\sigma}$.
	Solve, obtaining values for μ and σ . $\mu = 22.9$, $\sigma = 9.95$	M1	Solve using the elimination method, substitution method or other appropriate approach to obtain values for both μ and σ .
		A1	AWRT 22.9, 9.95 .
		5	