SATPREP

Assignment: Binomial Theorem

1. Write out the following binomial expansions.

(i)
$$(x+1)^4$$

(ii)
$$(1+x)^7$$

(iii)
$$(x+2)^5$$

(iv)
$$(2x+1)^6$$

(v)
$$(2x-3)^4$$

(vi)
$$(2x+3y)^3$$

(vii)
$$\left(x-\frac{2}{x}\right)^3$$

(viii)
$$\left(x + \frac{2}{x^2}\right)^4$$

(ix)
$$\left(3x^2 - \frac{2}{x}\right)^5$$

In these expansions, find the coefficient of these terms. 2.

(i)
$$x^5 \text{ in } (1+x)^8$$

(iii)
$$x^4 \text{ in } (1-x)^{10}$$

(iii)
$$x^6$$
 in $(1+3x)^{12}$

(iv)
$$x^7$$
 in $(1-2x)^{15}$

(iv)
$$x^7 \text{ in } (1-2x)^{15}$$
 (v) $x^2 \text{ in } \left(x^2 + \frac{2}{x}\right)^{10}$

- Find the first three terms, in descending powers of x, in the expansion 3. of $\left(2x-\frac{2}{x}\right)^4$.
- Find the first three terms, in ascending powers of x, in the expansion $(2 + kx)^6$. 4.
- Find the first three terms, in ascending powers of x, in the expansion 5. $(1-2x)^6$.
 - (ii) Hence find the coefficients of x and x^2 in the expansion of $(4-x)(2-4x)^6$.
- (i) Find the first three terms, in descending powers of x, in the expansion 6. $\left(4x-\frac{k}{2}\right)^6$.
 - (ii) Given that the value of the term in the expansion which is independent of x is 240, find possible values of k.
- Find the first three terms, in descending powers of x, in the expansion of 7. $\left(x^2-\frac{1}{x}\right)^6$.
 - (ii) Find the coefficient of x^3 in the expansion of $\left(x^2 \frac{1}{x}\right)^6$.

- 8. (i) Find the first three terms, in descending powers of x, in the expansion of $\left(x \frac{2}{x}\right)^5$.
 - (ii) Hence find the coefficient of x in the expansion of $\left(4 + \frac{1}{x^2}\right)\left(x \frac{2}{x}\right)^5$.
- 9. (i) Show that $(2+x)^4 = 16 + 32x + 24x^2 + 8x^3 + x^4$ for all x.
 - (ii) Find the values of x for which $(2+x)^4 = 16 + 16x + x^4$.
- 10. The first three terms in the expansion of $(2 + ax)^n$, in ascending powers of x, are $32 40x + bx^2$. Find the values of the constants n, a and b.
- 11. (i) Find the first three terms in the expansion of $(2 x)^6$ in ascending powers of x.
 - (ii) Find the value of k for which there is no term in x^2 in the expansion of $(1 + kx)(2 x)^6$.
- 12. (i) Find the first three terms in the expansion of $(1 + ax)^5$ in ascending powers of x.
 - (ii) Given that there is no term in x in the expansion of $(1 2x)(1 + ax)^5$, find the value of the constant a.
 - (iii) For this value of a, find the coefficient of x^2 in the expansion of (1 2x) $(1 + ax)^5$.

Answer

1. (i)
$$x^4 + 4x^3 + 6x^2 + 4x + 1$$

(ii)
$$1+7x+21x^2+35x^3+35x^4$$

 $+21x^5+7x^6+x^7$

(iii)
$$x^5 + 10x^4 + 40x^3 + 80x^2 + 80x + 32$$

(iv)
$$64x^6 + 192x^5 + 240x^4 + 160x^3 + 60x^2 + 12x + 1$$

(v)
$$16x^4 - 96x^3 + 216x^2 - 216x + 81$$

(vi)
$$8x^3 + 36x^2y + 54xy^2 + 27y^3$$

(vii)
$$x^3 - 6x + \frac{12}{x} - \frac{8}{x^3}$$

(viii)
$$x^4 + 8x + \frac{24}{x^2} + \frac{32}{x^5} + \frac{16}{x^8}$$

(ix)
$$243x^{10} - 810x^7 + 1080x^4 - 720x + \frac{240}{x^2} - \frac{32}{x^5}$$

(iv)
$$-823680$$

3.
$$16x^4 - 64x^2 + 96$$

4.
$$64 + 192kx + 240k^2x^2$$

5. (i)
$$1-12x+60x^2$$

6. (i)
$$4096x^6 - 6144kx^3 + 3840k^2$$

(ii)
$$\pm \frac{1}{4}$$

7. (i)
$$x^{12} - 6x^9 + 15x^6$$

(ii)
$$-20$$

8. (i)
$$x^5 - 10x^3 + 40x$$

9. (ii)
$$x = 0, -1 \text{ and } -2$$

9. (ii)
$$x = 0, -1 \text{ and } -2$$

10. $n = 5, a = -\frac{1}{2}, b = 20$
11. (i) $64 - 192x + 240x^2$
(ii) 1.25

11. (i)
$$64 - 192x + 240x^2$$

12. (i)
$$1 + 5ax + 10a^2x^2$$

(iii)
$$a = \frac{2}{5}$$

(iii)
$$-2.4$$