- 1 For the geometric sequence with first two terms given, find b and c: **a** 2, 6, b, c, **b** 10, 5, b, c, **c** 12, −6, b, c, 2 Find the 6th term in each of the following geometric sequences: **a** 3, 6, 12, 24, **b** 2, 10, 50, **c** 512, 256, 128, **3** Find the 9th term in each of the following geometric sequences: **c** $\frac{1}{16}, -\frac{1}{8}, \frac{1}{4}, -\frac{1}{2}, \dots$ **d** a, ar, ar^2, \dots **b** 12, 18, 27, **a** 1, 3, 9, 27, 4 **a** Show that the sequence 5, 10, 20, 40, is geometric. **b** Find u_n and hence find the 15th term. **a** Show that the sequence $12, -6, 3, -\frac{3}{2}, \dots$ is geometric. 5 **b** Find u_n and hence write the 13th term as a rational number. Show that the sequence $8, -6, 4.5, -3.375, \dots$ is geometric. Hence find the 10th term as a 6 decimal. 7 Show that the sequence 8, $4\sqrt{2}$, 4, $2\sqrt{2}$, is geometric. Hence show that the general term of the sequence is $u_n = 2^{\frac{7}{2} - \frac{1}{2}n}$. 8 Find k given that the following are consecutive terms of a geometric sequence: **b** k, 3k, 20 - kk, k+8, 9ka 7, k, 28 **9** Find the general term u_n of the geometric sequence which has: **a** $u_4 = 24$ and $u_7 = 192$ **b** $u_3 = 8$ and $u_6 = -1$ **d** $u_3 = 5$ and $u_7 = \frac{5}{4}$ $u_7 = 24$ and $u_{15} = 384$ a Find the first term of the sequence 2, 6, 18, 54, which exceeds 10000. 10 **b** Find the first term of the sequence 4, $4\sqrt{3}$, 12, $12\sqrt{3}$, which exceeds 4800.
 - Find the first term of the sequence 12, 6, 3, 1.5, which is less than 0.0001.

Answer

1 a
$$b = 18$$
, $c = 54$ b $b = 2\frac{1}{2}$, $c = 1\frac{1}{4}$
c $b = 3$, $c = -1\frac{1}{2}$
2 a 96 b 6250 c 16
3 a 6561 b $\frac{19683}{64}$ c 16 d ar^8
4 a $u_1 = 5$, $r = 2$ b $u_n = 5 \times 2^{n-1}$, $u_{15} = 81920$
5 a $u_1 = 12$, $r = -\frac{1}{2}$
b $u_n = 12 \times (-\frac{1}{2})^{n-1}$, $u_{13} = \frac{3}{1024}$
6 $u_1 = 8$, $r = -\frac{3}{4}$, $u_{10} \approx -0.6006774902$
7 $u_1 = 8$, $r = \frac{1}{\sqrt{2}}$ Hint: $u_n = 2^3 \times (2^{-\frac{1}{2}})^{n-1}$
8 a $k = \pm 14$ b $k = 2$ c $k = -2$ or 4
9 a $u_n = 3 \times 2^{n-1}$ b $u_n = 32 \times (-\frac{1}{2})^{n-1}$
c $u_n = 3 \times (\pm\sqrt{2})^{n-1}$ d $u_n = 10 \times (\pm\sqrt{2})^{1-n}$
10 a $u_9 = 13122$ b $u_{14} = 2916\sqrt{3} \approx 5050.7$
c $u_{18} \approx 0.00009155$

