Permutations \& Combinations

Multiplication Rule

If one event can occur in m ways, a second event in n ways and a third event in r, then the three events can occur in $m \times n \times r$ ways.

Example Erin has 5 tops, 6 skirts and 4 caps from which to choose an outfit.
In how many ways can she select one top, one skirt and one cap?

Solution: Ways $=5 \times 6 \times$
4

Repetition of an Event

If one event with n outcomes occurs r times with repetition allowed, then the number of ordered arrangements is n^{r}

Example 1 What is the number of arrangements if a die is rolled
(a) 2 times? $6 \times 6 \quad=6^{2}$
(b) 3 times ? $6 \times 6 \times 6=6^{3}$
(b) r times ? $6 \times 6 \times 6 \times \ldots \ldots=6^{r}$

Repetition of an Event

Example 2

(a) How many different car number plates are possible
soluth 3 Ietters followed by $26 \times 26 \times 26 \times 10 \times 1$ digits? $^{26} \times 10=26^{3} \times 10^{3}$
(b) How many of these number plates begin with ABC
? Solution: $1 \times 1 \times 1 \times 10 \times 10 \times 10=10^{3}$
(c) If a plate is chosen at random, what is the probability that it begins with ABC?

Solution:

$$
\frac{10^{3}}{26^{3} \times 10^{3}}=\frac{1}{26^{3}}
$$

Factorial Representation

$n!=n(n-1)(n-2) \ldots \ldots \ldots . .3 \times 2 \times 1$
For example 5! = 5.4.3.2.1 \quad Note $0!=1$

Example
a) In how many ways can 6 people be arranged in a row?

Solution : 6.5.4.3.2.1=6!
b) How many arrangements are possible if only 3 of them are chosen?

Solution: 6.5.4 = 120

Arrangements or Permutations

Distinctly ordered sets are called arrangements or permutations.

The number of permutations of n objects taken r at a time is given by:

$$
{ }^{n} \mathbf{P}_{\mathrm{r}}=\frac{n!}{(\mathbf{n}-r)!}
$$

where
$\mathrm{n}=$ number of objects
$r=$ number of positions

Arrangements or Permutations

Eg 1. A maths debating team consists of 4 speakers.
a) In how many ways can all 4 speakers be arranged in a row for a photo? Solution : 4.3.2.1 $=4!\quad$ or ${ }^{4} P_{4}$
b) How many ways can the captain and vice-captain be chosen?

Solution : $4.3=12$ or ${ }^{4} \mathrm{P}_{2}$

Arrangements or Permutations

Eg 2. A flutter on the horses
There are 7 horses in a race.
a) In how many different orders can the horses finish?

Solution: 7.6.5.4.3.2.1 $=7$! or ${ }^{7} \mathrm{P}_{7}$
b) How many trifectas $\left(1^{\text {st }}, 2^{\text {nd }}\right.$ and $\left.3^{\text {rd }}\right)$ are possible?

Solution: 7.6.5 = 210 or ${ }^{7} \mathrm{P}_{3}$

Permutations with Restrictions

Eg. In how many ways can 5 boys and 4 girls be arranged on a bench if
a) there are no restrictions? Solution : 9! or ${ }^{9} \mathrm{P}_{9}$
c) boys and girls alternate?

Solution : A boy will be on each end
BGBGBGBGB $=5 \times 4 \times 4 \times 3 \times 3 \times 2 \times 2 \times 1 \times 1$

$$
=5!\times 4!\text { or } \quad{ }^{5} P_{5} \times{ }^{4} P_{4}
$$

Permutations with Restrictions

Eg. In how many ways can 5 boys and 4 girls be arranged on a bench if
c) boys and girls are in separate groups? Solution : Boys \& Girls or Girls \& Boys

$$
\begin{aligned}
& =5!\times 4!+4!\times 5!=5!\times 4!\times 2 \\
& \text { or }{ }^{5} P_{5} \times{ }^{4} P_{4} \times 2
\end{aligned}
$$

d) Anne and Jim wish to stay together?

Solution : (AJ) _------

$$
=2 \times 8!\text { or } 2 \times{ }^{8} \mathrm{P}_{8}
$$

Arrangements with Repetitions

 If we have n elements of which ${ }^{x}$ are alike of one kind, y are alike of another kind, z are alike of another kind,............ then the number of ordered selections or permutations is given by:

$$
\frac{n!}{x!y!z!}
$$

Arrangements with Repetitions

Eg. 1 How many different arrangements of the word PARRAMATTA are possible?

Solution :
P
AAAA
R R
M
T T

10 letters but note repetition (4 A's, 2 R's, 2 T's)

No. of 10!
arrangements $=4!2!2$!

$$
=37800
$$

Arrangements with Restrictions

Eg 1. How many arrangements of the letters of the word REMAND are possible if:
a) there are no restrictions? Solution : $\quad{ }^{6} \mathrm{P}_{6}=$
they begin with RE ?

Solution : $\mathrm{RE}-{ }_{-},-={ }^{4} \mathrm{P}_{4}=24$ or 4 !
c) they do not begin with RE?

Solution : Total $-(b)=6!-4!=696$

Arrangements with Restrictions

Eg 1. How many arrangements of the letters of the word REMAND are possible if:
d) they have RE together in order?

Solution: (RE) _ _ _ _ ${ }^{5} \mathrm{P}_{5}=120$ or 5 !
e) they have REM together in any order? Solution: (REM) $-\ldots-=^{3} P_{3} \times{ }^{4} P_{4}=144$
f) R, E and M are not to be together? Solution: Total - (e) = 6!-144 = 576

Arrangements with Restrictions

Eg 2. There are 6 boys who enter a boat with 8 seats, 4 on each side. In how many ways can
a) they sit anywhere?

Solution :
${ }^{8} \mathrm{P}_{6}$
b) two boys A and B sit on the port side and another boy W sit on the starboard side?

Solution: $\quad A \& B={ }^{4} P_{2}$

$$
\mathbf{W}={ }^{4} \mathbf{P}_{1}
$$

Others $={ }^{5} \mathrm{P}_{3}$

$$
\text { Total }={ }^{4} \mathbf{P}_{2} \times{ }^{4} \mathbf{P}_{1} \times{ }^{5} \mathbf{P}_{3}
$$

Arrangements with Restrictions

Eg 3. From the digits 2, 3, 4, 5, 6
a) how many numbers greater than 4000 can be formed?
Solution: 5 digits (any) $={ }^{5} \mathrm{P}_{5}$
4 digits (must start with digit ≥ 4) $={ }^{3} \mathrm{P}_{1} \times{ }^{4} \mathrm{P}_{3}$

$$
\text { Total }={ }^{5} P_{5}+{ }^{3} P_{1} \times{ }^{4} P_{3}
$$

b) how many 4 digit numbers would be even?

Even $($ ends with 2,4 or 6$)=\ldots{ }^{3} P_{1}$

$$
={ }^{4} \mathrm{P}_{3} \times{ }^{3} \mathrm{P}_{1}
$$

Circular Arrangements

Circular arrangements are permutations in which objects are arranged in a circle.

Consider arranging 5 objects (a, b, c, d, e) around a circular table. The arrangements

abcde
bcdea
cdeab
deabc
eabcd
are different in a line, but are identical around a circlo

Circular Arrangements

To calculate the number of ways in which n objects can be arranged in a circle, we arbitrarily fix the position of one object, so the remaining ($\mathrm{n}-1$) objects can be arranged as if they were on a straight line in ($n-1$)! ways.
i.e. the number of arrangements $=(n-1)$! in a circle

Circular Arrangements

Eg 1. At a dinner party 6 men and 6 women sit at a round table. In how many ways can they sit if:
a) there are no restrictions Solution :

$$
(12-1)!=11!
$$

b) men and women alternate

Solution :

$$
(6-1)!\times 6!=5!\times 6!
$$

Circular Arrangements

Eg 1. At a dinner party 6 men and 6 women sit at a round table. In how many ways can they sit if:
c) Ted and Carol must sit together

Solution: $(T C) \&$ other $10=2!\times 10!$
d) Bob, Ted and Carol must sit together

Solution : $(B T C) \&$ other $9=3!\times 9!$

Circular Arrangements

Eg 1. At a dinner party 6 men and 6 women sit at a round table. In how many ways can they sit if:
d) Neither Bob nor Carol can sit next to Ted. Solution : Seat 2 of the other 9 people next to Ted in (9×8) ways or ${ }^{9} P_{2}$

Then sit the remaining 9 people (including Bob and Carol) in 9! ways
Ways $=(9 \times 8) \times 9!$ or $\quad{ }^{9} P_{2} \times 9!$

Circular Arrangements

Eg 2. In how many ways can 8 differently coloured beads be threaded on a string?

Solution :

As necklace can be turned over, clockwise and anti-clockwise arrangements are the same

$$
=(8-1)!\div 2=7!\div 2
$$

Unordered Selections

The number of different combinations (i.e. unordered sets) of r objects from n distinct objects is represented by :

No. of $\quad=$ number of permutations
Combinations
arrangements of robjects
and is denoted by

$$
{ }^{n} C_{r}=\frac{{ }^{n} \mathbf{P}_{\mathbf{r}}}{\mathbf{r}!}=\frac{n!}{r!(n-\bar{r})!}
$$

Combinations

Eg 1. How many ways can a basketball team of 5 players be chosen from 8 players?

Solution :

${ }^{8} \mathrm{C}_{5}$

Combinations

Eg 2. A committee of 5 people is to be chosen from a group of 6 men and 4 women. How many committees are possible if a) there are no restrictions? Solution :
b) one particular person must be chosen on the committee?

Solution: $1 \times{ }^{9} \mathbf{C}_{4}$

c) one particular woman must be excluded from the committee?

Solution: $\quad{ }^{9} \mathrm{C}_{5}$

Combinations

Eg 2. A committee of 5 people is to be chosen from a group of 6 men and 4 women. How many committees are possible if:
d) there are to be 3 men and 2 women?

Solution: Men \& Women $={ }^{6} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{2}$
e) there are to be men only?

Solution: ${ }^{6} \mathrm{C}_{5}$
f) there is to be a majority of women?

Solution :

3 Women \& 2 men Or 4 Women \& 1 man

$$
={ }^{4} \mathbf{C}_{3} \times{ }^{6} \mathbf{C}_{2}+{ }^{4} \mathbf{C}_{4} \times{ }^{6} \mathrm{C}_{1}
$$

Combinations

Eg 3. In a hand of poker, 5 cards are dealt from a regular pack of 52 cards.
(i) What is the total possible number of hands if there are no restrictions?

Solution :
${ }^{52} \mathrm{C}_{5}$

Combinations

Eg 3. In a hand of poker, 5 cards are dealt from a regular pack of 52 cards.
ii) In how many of these hands are there:
a) 4 Kings?

Solution: ${ }^{4} \mathrm{C}_{4} \times{ }^{48} \mathrm{C}_{1}$ or 1×48
b) 2 Clubs and 3 Hearts?

Solution: ${ }^{13} \mathrm{C}_{2} \times{ }^{13} \mathrm{C}_{3}$

Combinations

Eg 3. In a hand of poker, 5 cards are dealt from a regular pack of 52 cards.
ii) In how many of these hands are there:
c) all Hearts?

Solution :
${ }^{13} \mathrm{C}_{5}$
d) all the same colour?

Solution: Red or Black ${ }^{26} \mathrm{C}_{5}+{ }^{26} \mathrm{C}_{5}=2 \times{ }^{26} \mathrm{C}_{5}$

$$
=
$$

Combinations

Eg 3. In a hand of poker, 5 cards are dealt from a regular pack of 52 cards.
ii) In how many of these hands are thora.
e) four of the same kind? Solution :

$$
{ }^{4} \mathrm{C}_{4} \times{ }^{48} \mathrm{C}_{1} \times 13=1 \times 48 \times 13
$$

f) 3 Aces and two Kings?

Solution: ${ }^{4} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{2}$

Further Permutations and Combinations

Eg. 1 If 4 Maths books are selected from 6 different Maths books and 3 English books are chosen from 5 different English books, how many ways can the seven books be arranged on a shelf:
a) If there are no restrictions?

Solution: ${ }^{6} \mathrm{C}_{4} \times{ }^{5} \mathrm{C}_{3} \times 7$!
c) If the 4 Maths books remain together?

Solution : $=(\text { MMMM })^{\ldots}$ _

$$
={ }^{6} \mathrm{P}_{4} \times{ }^{5} \mathrm{C}_{3} \times 4 \text { ! or }\left({ }^{6} \mathrm{C}_{4} \times 4!\right) \times{ }^{5} \mathrm{C}_{3} \times 4!
$$

Further Permutations and Combinations

Eg. 1 If 4 Maths books are selected from 6 different Maths books and 3 English books are chosen from 5 different English books, how many ways can the seven books be arranged on a shelf if:
c) a Maths book is at the beginning of the shelf?

Solution :

$$
\begin{aligned}
& =M \\
& =6 \times{ }^{5} C_{3} \times{ }^{5} C_{3} \times 6!
\end{aligned}
$$

Further Permutations and Combinations

Eg. 1 If 4 Maths books are selected from 6 different Maths books and 3 English books are chosen from 5 different English books, how many ways can the seven books be arranged on a shelf if:
d) Maths and English books alternate

Solution : = MEMEMEM

$$
={ }^{6} \mathrm{P}_{4} \times{ }^{5} \mathrm{P}_{3}
$$

Further Permutations and Combinations

Eg. 1 If 4 Maths books are selected from 6 different Maths books and 3 English books are chosen from 5 different English books, how many ways can the seven books be arranged on a shelf if:
e) A Maths is at the beginning and an English book is in the middle of the shelf.

Solution :

$$
\begin{aligned}
& M_{-} E_{-} \\
= & 6 \times 5 \times{ }^{5} C_{3} \times{ }^{4} C_{2} \times 5!
\end{aligned}
$$

Further Permutations and Combinations

Eg 2. (i) How many different 8 letter words are possible using the letters of the word SYLLABUS?

Solution: 2 S's \& 2 L's

Words =

$$
\begin{array}{r}
2!\times 2! \\
=\quad 10080
\end{array}
$$

Further Permutations and Combinations

 SYLLABUS = 10080 permutations(ii) If a word is chosen at random, find the probability that the word:
a) contains the two S 's together

Solution: (SS) ___ (Two L's)
Words $=\frac{7!}{2!}=2520 \quad$ Prob $=\frac{2520}{10080}=\frac{1}{4}$
b) begins and ends with L

Solution: $\mathrm{L}_{\text {_ }}$ _ _ _ L (Two S's)
Words $=\frac{6!-}{2!}=360 \quad$ Prob $=\frac{360}{10080}=\frac{1}{28}$

