SATPREP

Assignment: *Kinematics*

A particle moves along a horizontal line. Its position function is s(t) for $t \ge 0$. For each problem, find the velocity function v(t) and the acceleration function a(t).

1)
$$s(t) = -t^3 + 30t^2 - 225t$$

2)
$$s(t) = -t^3 + 23t^2 - 120t$$

A particle moves along a horizontal line. Its position function is s(t) for $t \ge 0$. For each problem, find the displacement of the particle and the distance traveled by the particle over the given interval.

3)
$$s(t) = -t^2 + 6t + 27$$
; $1 \le t \le 9$

4)
$$s(t) = -t^2 + 13t - 12$$
; $3 \le t \le 7$

A particle moves along a horizontal line. Its position function is s(t) for $t \ge 0$. For each problem, find the times t when the particle changes directions, the intervals of time when the particle is moving left and moving right, the times t when the acceleration is 0, and the intervals of time when the particle is slowing down and speeding up.

$$5) \ s(t) = t^3 - 23t^2 + 120t$$

$$6) \ s(t) = t^3 - 10t^2$$

7)
$$s(t) = t^3 - 16t^2 + 64t$$

8)
$$s(t) = -t^3 + 30t^2 - 225t$$

Answers to Assignment: Kinematics

1)
$$v(t) = -3t^2 + 60t - 225$$
, $a(t) = -6t + 60$

2)
$$v(t) = -3t^2 + 46t - 120$$
, $a(t) = -6t + 46$

3) Displacement: -32

Distance traveled: 40

4) Displacement: 12

Distance traveled: $\frac{25}{2}$ = 12.5

- 5) Changes direction at: $t = \left\{ \frac{10}{3}, 12 \right\}$, Moving left: $\frac{10}{3} < t < 12$, Moving right: $0 \le t < \frac{10}{3}, t > 12$ Acceleration zero at: $t = \left\{ \frac{23}{3} \right\}$, Slowing down: $0 \le t < \frac{10}{3}, \frac{23}{3} < t < 12$, Speeding up: $\frac{10}{3} < t < \frac{23}{3}, t > 12$
- 6) Changes direction at: $t = \left\{ \frac{20}{3} \right\}$, Moving left: $0 < t < \frac{20}{3}$, Moving right: $t > \frac{20}{3}$ Acceleration zero at: $t = \left\{ \frac{10}{3} \right\}$, Slowing down: $\frac{10}{3} < t < \frac{20}{3}$, Speeding up: $0 < t < \frac{10}{3}$, $t > \frac{20}{3}$
- 7) Changes direction at: $t = \left| \frac{8}{3}, 8 \right|$, Moving left: $\frac{8}{3} < t < 8$, Moving right: $0 \le t < \frac{8}{3}, t > 8$ Acceleration zero at: $t = \left| \frac{16}{3} \right|$, Slowing down: $0 \le t < \frac{8}{3}, \frac{16}{3} < t < 8$, Speeding up: $\frac{8}{3} < t < \frac{16}{3}$, t > 8
- 8) Changes direction at: $t = \{5, 15\}$, Moving left: $0 \le t < 5$, t > 15, Moving right: 5 < t < 15Acceleration zero at: $t = \{10\}$, Slowing down: $0 \le t < 5$, 10 < t < 15, Speeding up: 5 < t < 10, t > 15

