## Markscheme

## November 2023

## Mathematics: analysis and approaches

## Higher level

## Paper 2

© International Baccalaureate Organization 2023
All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2023

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2023
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

## Instructions to Examiners

## Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

## Using the markscheme

## 1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

## 2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award MO followed by $\boldsymbol{A 1}$, as $\boldsymbol{A}$ mark(s) depend on the preceding $\boldsymbol{M}$ mark(s), if any.
- Where $\boldsymbol{M}$ and $\boldsymbol{A}$ marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more $\boldsymbol{A}$ marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1. If A1 marks are on separate lines, they are assumed to be dependent and hence AOA1 is unlikely to be awarded. However, where such marks are independent (e.g. the markscheme is presenting them in sequence, but in the solution one does not lead directly to the other) this should be communicated via a note, and hence AOA1 (for example) can be awarded.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A} G$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal
approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

|  | Correct <br> answer seen | Further <br> working seen | Any FT issues? | Action |
| :--- | :---: | :--- | :--- | :--- |
| 1. | $8 \sqrt{2}$ | $5.65685 \ldots$ <br> (incorrect <br> decimal value) | No. <br> Last part in question. | Award A1 for the final mark <br> (condone the incorrect further <br> working) |
| 2. | $\frac{35}{72}$ | $0.468111 \ldots$ <br> (incorrect <br> decimal value) | Yes. <br> Value is used in <br> subsequent parts. | Award $\boldsymbol{A O}$ for the final mark <br> (and full FT is available in <br> subsequent parts) |

## 3 Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

## 4 Follow through marks (only applied after an error is made)

Follow through ( $F T$ ) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further $\boldsymbol{A}$ marks can be awarded for work which uses the error, but $\boldsymbol{M}$ marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version
- If the error leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FTmarks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".


## Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an $\boldsymbol{M}$ mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.


## Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.


## 7 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, $\boldsymbol{M}$ marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.


## 8 Format and accuracy of answers

Final answers will generally not need to restate the variable and/or units to be considered correct. To help examiners, the markscheme will include variables and units, where appropriate. However, their omission from a candidate's final answer should only be penalized if explicitly instructed in a markscheme note.

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, , the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to a "correct" level of accuracy (e.g 3 sf ) in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an $\boldsymbol{A}$ mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate $\boldsymbol{A}$ marks do NOT need to be simplified.

## 9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.

## 10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

## Section A

1. (a) $\mathrm{BV}=\sqrt{(6-3)^{2}+(8-4)^{2}+(0-9)^{2}}$
$=10.2956 \ldots$
$=10.3(=\sqrt{106})$
Note: Award $\boldsymbol{S C}\left(\mathbf{A O} \mathbf{)} \mathbf{A 1}\right.$ for $\mathrm{BV}=\left(\begin{array}{c}-3 \\ -4 \\ 9\end{array}\right)$ where a candidate has misinterpreted notation.
[2 marks]
(b) METHOD 1
$\mathrm{BV}=\mathrm{VC}$ AND $\mathrm{BC}=8$ (seen anywhere)
attempt to use the cosine rule on triangle BVC for any angle
Note: Recognition must be shown in context either in terms of labelled sides or in side lengths.

$$
\begin{aligned}
& \cos B \hat{V} C=\frac{10.2 \ldots{ }^{2}+10.2 \ldots .^{2}-8^{2}}{2 \times 10.2 \ldots \times 10.2 \ldots} \text { OR } \\
& 8^{2}=10.2 \ldots .^{2}+10.2 \ldots{ }^{2}-2 \times 10.2 \ldots \times 10.2 \ldots \cos B \hat{V} C
\end{aligned}
$$

$B \hat{V} C=0.798037 \ldots$
BV̂C $=0.798$ (accept $45.7^{\circ}$ )

Note: If no working shown, award (AO)(M1)(AO)AO for BV̂C $=0.80$ (or $46^{\circ}$ ) (2sf).

## METHOD 2

let $M$ be the midpoint of $B C$
$\mathrm{BM}=4$ (seen anywhere)
attempt to use sine or cosine in triangle BMV or CMV
$\arcsin \frac{4}{\sqrt{106}}$ OR $\frac{\pi}{2}-\arccos \frac{4}{\sqrt{106}}$ OR 0.399018
$B \hat{V} \mathrm{C}=0.798037 \ldots$
BV̂C $=0.798\left(\right.$ accept $\left.45.7^{\circ}\right)$

Note: If no working shown, award (AO)(M1)(AO)AO for BV̂C=0.80 (or $\left.46^{\circ}\right)(2 s f)$.

## METHOD 3

$\overrightarrow{\mathrm{VC}}=\left(\begin{array}{c}3 \\ -4 \\ -9\end{array}\right)$ and $\overrightarrow{\mathrm{VB}}=\left(\begin{array}{c}3 \\ 4 \\ -9\end{array}\right)$
attempt to use the cosine formula for an angle using two vectors representing the edges of triangle BVC
$\cos \mathrm{B} \hat{\mathrm{V}}=\frac{3(3)-4(4)-9(-9)}{\sqrt{3^{2}+(-4)^{2}+(-9)^{2}} \sqrt{3^{2}+4^{2}+(-9)^{2}}}\left(=\frac{74}{106}\right)$
$B \hat{V} C=0.798037 \ldots$
BV̂C $=0.798$ (accept $45.7^{\circ}$ )

Note: If no working shown, award (AO)(M1)(AO)AO for BV̂C=0.80 (or $\left.46^{\circ}\right)(2 s f)$.

## METHOD 4

$\overrightarrow{\mathrm{VC}}=\left(\begin{array}{c}3 \\ -4 \\ -9\end{array}\right)$ and $\overrightarrow{\mathrm{VB}}=\left(\begin{array}{c}3 \\ 4 \\ -9\end{array}\right)$
attempt to use the cross product formula for an angle using two vectors representing the edges of triangle BVC
$\sin B \hat{V} C=\frac{\left(\left.\left(\begin{array}{c}72 \\ 0 \\ 24\end{array}\right) \right\rvert\,\right.}{\sqrt{3^{2}+(-4)^{2}+(-9)^{2}} \sqrt{3^{2}+4^{2}+(-9)^{2}}}\left(=\frac{\sqrt{5760}}{106}\right)$
$\mathrm{BV} \mathrm{C}=0.798037 \ldots$
BV̂C $=0.798$ (accept $45.7^{\circ}$ )

Note: If no working shown, award (AO)(M1)(AO)AO for BV̂C $=0.80$ (or $46^{\circ}$ ) (2sf).
Award $\boldsymbol{S C}\left(\mathbf{A} \mathbf{1} \mathbf{( M 1 ) ( A O )} \mathbf{A} \boldsymbol{O}\right.$ for area $=\frac{1}{2}\left|\left(\begin{array}{c}72 \\ 0 \\ 24\end{array}\right)\right|=\frac{\sqrt{5760}}{2}(=37.9)$ where a candidate has misinterpreted notation.
2. (a)


A1A1A1
Note: Award marks as follows:
A1 for approximately correct roots, in the intervals $-2<x<-1$ and $2<x<3$.
A1 for y -intercept AND local minimum in approximately correct positions. Allow for $y$ intercept $-3.5<y<-2.5$, and for local minimum $0.5<x<1.5,-5<y<-4$.
A1 for approximately correct endpoints, with the left end in the intervals
$-4.5<x<-3.5,7.5<y<8.5$ and the right end in the intervals $2.5<x<3.5,6.5<y<7.5$
[3 marks]
(b) $\quad k=\frac{1}{2}$
$c=-3$ (accept translate/shift 3 (units) down)
3. (a) use of sector area formula to find area of at least one sector

$$
\begin{aligned}
& \frac{1}{2} \times 5.2 \times 100-\frac{1}{2} \times 5.2 \times r^{2} \text { OR } 10^{2} \pi-\frac{1}{2} 10^{2} \times(2 \pi-5.2)-\left(\pi r^{2}-\frac{1}{2} \times(2 \pi-5.2) \times r^{2}\right) \\
& \text { (area) }=260-2.6 r^{2}
\end{aligned}
$$

Note:There are many different ways to find the area of the "C". In all methods, the $\boldsymbol{A}$ mark is awarded for working which leads directly to the $\boldsymbol{A} \boldsymbol{G}$.
Many candidates are working with rounded intermediate values. Award the $\boldsymbol{A}$ mark to correct work with values that round to the 3sf value of 260 and the 2 sf value of 2.6 eg 259.99-2.6015 $r^{2}$.
[2 marks]
(b) (i) $260-2.6 r^{2}=64$

$$
\begin{align*}
& r=8.68243 \ldots  \tag{A1}\\
& =8.68(\mathrm{~cm})\left(\frac{14 \sqrt{65}}{13} \text { exact }\right)
\end{align*}
$$

(ii) $10 \times 5.2$ OR $8.68 \ldots \times 5.2$
substituting their value of $r$ into $10 \times 5.2+r \times 5.2+2(10-r)$ (or equivalent)

$$
\text { Perimeter }=10 \times 5.2+8.68 \ldots \times 5.2+2(10-8.68 \ldots)(=52+45.1486 \ldots+2.63513 \ldots)
$$

$$
=99.7837 \ldots
$$

$$
=99.8(\mathrm{~cm})
$$

4. (a) recognizing at rest when $\frac{\mathrm{d} s}{\mathrm{~d} t}=0 \mathrm{OR}_{s}$ is a minimum
$q=5.73553 \ldots$

$$
=5.74
$$

Note: If no working shown, award (M1)AO for $q=5.7$ (2sf).
[2 marks]
(b) METHOD 1
recognizing that integral of $v(t)$ is required
(M1)

$$
\begin{equation*}
\int_{0}^{5.73 \ldots \ldots}|v(t)| \mathrm{d} t \text { OR } \int_{0}^{5.73 \ldots . .}\left|\frac{\mathrm{d}}{\mathrm{~d} t} s(t)\right| \mathrm{d} t \text { OR }\left|\int_{0}^{5.73 \ldots} v(t) \mathrm{d} t\right| \mathrm{OR}-\int_{0}^{5.73 \ldots} v(t) \mathrm{d} t \tag{A1}
\end{equation*}
$$

Note:Condone absence of $\mathrm{d} t$.
Only accept $\left|\int_{0}^{q} v(t) \mathrm{d} t\right|$ if their value of $q$ does not result in the particle changing direction in the first $q$ seconds.

$$
\begin{aligned}
& =7.68302 \ldots \\
& =7.68(\mathrm{~m})
\end{aligned}
$$

Note: Special Cases:
Award a maximum of (M1)(A1FT)A0FT if the candidate obtains $q=1.62320 \ldots$ in part (a), and uses that value to find the total distance to be 3.38302... (3.37644... from 3sf).

Award (M1)(A0)A1 if the candidate writes $\int_{0}^{5.73 . . .} v(t) \mathrm{d} t$ followed by the correct answer.

## METHOD 2

recognition that total distance travelled is the difference between the initial displacement and the displacement at minimum
initial displacement is $3.38302 \ldots$...AND at minimum is -4.3
total distance travelled $=3.38302 \ldots-(-4.3)$
$=7.68302 \ldots$
$=7.68(\mathrm{~m})$
Note: If no working shown, award (M1)(AO)AO for 7.7 (2sf).
5. $\mathrm{E}(X)=k+2 k^{2}+3 a+4 k^{3}=2.3$
$k+k^{2}+a+k^{3}=1$

Note: The first two $\boldsymbol{A}$ marks are independent of each other.

EITHER (finding intersections of functions)
attempt to make $a$ the subject in both of their equations
$a=1-k-k^{2}-k^{3}$ and $a=\frac{1}{3}\left(2.3-k-2 k^{2}-4 k^{3}\right)$
use of graph or table to attempt to find intersection
OR (solving algebraically)
attempt to solve their equations algebraically to find a cubic in $k$
$k^{3}-k^{2}-2 k+0.7=0$ OR $3\left(1-k-k^{2}-k^{3}\right)=2.3-k-2 k^{2}-4 k^{3}$ (or equivalent)
attempt to solve their cubic in $k$

## THEN

$a=0.552839 \ldots$ OR $k=0.315870 \ldots$ (other solutions to cubic are $k=-1.18538 \ldots, 1.86951 \ldots$ ) $a=0.553$

Note: If no working shown, award (A1)(A1)(M1)(M1)AO for $a=2.44587 \ldots$ OR $a=-10.8987 \ldots$ and award (AO)(AO)(M1)(M1)AO for $a=0.55$ (2sf).
6. (a) $5.75=25 p(1-p)$

$$
p=0.641421 \ldots, 0.358578 \ldots
$$

$p=0.641,0.359\left(=\frac{5 \pm \sqrt{2}}{10}\right)$

## A1A1

## [3 marks]

(b) $\quad \operatorname{Var}(Y)=(-2)^{2} \operatorname{Var}(X)(=4 \operatorname{Var}(X))$
$=23$
7. (a) (i) $\quad(9!=) 362880$

Note: Accept 9! or 363000.
(ii) attempt to consider girls as a single object

Note: Accept 30200.
[3 marks]
(b) METHOD 1
recognition of the two different cases for 2 girls and 3 girls
exactly 2 girls is ${ }^{6} C_{3} \times{ }^{3} C_{2}=60$ and exactly 3 girls $\left({ }^{3} C_{3} \times\right)^{6} C_{2}=15$
total $(=60+15)=75$

## METHOD 2

recognition of the three different cases: total choices, 1 girl and no girls
total choices ${ }^{9} C_{5}=126$, one girl case ${ }^{3} C_{1} \times{ }^{6} C_{4}=45$, no girl case ${ }^{6} C_{5}=6$
total $(=126-45-6)=75$
8. (a) $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}1 \\ 1-p \\ -1\end{array}\right)$

$$
\overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}
p \\
-p \\
2
\end{array}\right)
$$

attempt to evaluate their $\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}$ by use of formula or determinant
$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}2(1-p)-p \\ -(2+p) \\ -p-p(1-p)\end{array}\right)$ OR $(2(1-p)-p) \boldsymbol{i}-(2+p) \boldsymbol{j}+(-p-p(1-p)) \boldsymbol{k}$

$$
\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}
2-3 p \\
-2-p \\
p^{2}-2 p
\end{array}\right)
$$

(b) $|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|^{2}$
$=(2-3 p)^{2}+(-2-p)^{2}+\left(p^{2}-2 p\right)^{2}\left(=p^{4}-4 p^{3}+14 p^{2}-8 p+8\right)$
attempt to find minimum of their $|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|^{2}$
6.75257... OR $p=0.3264 \ldots$
$\min$ value is 6.75

Question 8 continued
(c) METHOD 1
valid attempt to find area $=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|$ using their answer to part b)
area $=\frac{1}{2} \sqrt{6.75257 \ldots}$
$=1.299285$...
$=1.30\left(\right.$ units $\left.^{2}\right)$
9. (a) attempt to use recursive formula $y_{n}=y_{n-1}+0.1\left(\frac{4-y_{n-1}}{10}\right)$

| $n$ | $x_{n}$ | $y_{n}$ |
| :---: | :---: | :---: |
| 0 | 0 | 2 |
| 1 | 0.1 | 2.02 |
| 2 | 0.2 | 2.0398 |
| 3 | 0.3 | $2.05940 \ldots$ |
| 4 | 0.4 | $2.07880 \ldots$ |
| 5 | 0.5 | $2.09801 \ldots$ |

$$
\begin{aligned}
& y_{1}=2.02 \\
& y_{5}=2.098
\end{aligned}
$$

Note: Accept any answer which rounds to the correct 4sf value.
Award no marks for a final answer of 2.1 or 2.10 with no working.

Question 9 continued

## (b) METHOD 1

Note: Condone absence of absolute value signs throughout

$$
\begin{align*}
& \int \frac{\mathrm{d} y}{4-y}=\int \frac{\mathrm{d} x}{10}  \tag{M1}\\
& -\ln |4-y|=\frac{x}{10}(+c)
\end{align*}
$$

## EITHER

substituting initial conditions $x=0, y=2$ to find the value of $c$
$(-\ln 2=0+c \Rightarrow) c=-\ln 2$
$-\ln |4-y|=\frac{x}{10}-\ln 2 \Rightarrow \ln \frac{|4-y|}{2}=-\frac{x}{10}$
$|4-y|=2 \mathrm{e}^{-\frac{x}{10}}$
OR
$|4-y|=\mathrm{e}^{-\frac{x}{10}-c}$ (so $4-y= \pm \mathrm{e}^{-c} \mathrm{e}^{-\frac{x}{10}}$ )
$4-y=A \mathrm{e}^{-\frac{x}{10}}$
substituting initial conditions $x=0, y=2$ to find the value of $A$
$2=A \mathrm{e}^{0} \Rightarrow A=2$

## THEN

$$
y=4-2 \mathrm{e}^{-\frac{x}{10}}
$$

Note: Candidates may use $-\int \frac{\mathrm{d} y}{y-4}=\int \frac{\mathrm{d} x}{10}$ and correctly obtain $|y-4|=2 \mathrm{e}^{-\frac{x}{10}}$ leading to $4-y=2 \mathrm{e}^{-\frac{x}{10}}$ after consideration of the boundary conditions. In this case, the absence of absolute value signs should not be condoned until the sign has been resolved.

## Question 9 continued

## METHOD 2

attempt to rearrange and find an integrating factor M1

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{1}{10} y=\frac{4}{10} \text { so IF } \mathrm{e}^{\int \frac{1}{10} \mathrm{~d} x}=\mathrm{e}^{\frac{1}{10} x} \\
& \mathrm{e}^{\frac{1}{10} x} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{1}{10} \mathrm{e}^{\frac{1}{10} x} y=\frac{4}{10} \mathrm{e}^{\frac{1}{10} x} \\
& \mathrm{e}^{\frac{1}{10} x} y=4 \mathrm{e}^{\frac{1}{10} x}(+c)
\end{aligned}
$$

Note: Award A1 for LHS and A1 for RHS.

$$
\begin{array}{ll}
\text { substituting initial conditions } x=0, y=2 \text { to find the value of } c & \text { M1 } \\
\left(2 \mathrm{e}^{0}=4 \mathrm{e}^{0}+c \Rightarrow\right) c=-2 & \text { A1 } \\
\mathrm{e}^{\frac{1}{10} x} y=4 \mathrm{e}^{\frac{1}{10} x}-2 & \\
y=4-2 \mathrm{e}^{-\frac{x}{10}} & \boldsymbol{A G}
\end{array}
$$

(c) absolute error $=2.0980199 \ldots-\left(4-2 e^{-0.05}\right)=0.000478749 \ldots$

$$
=0.000479\left(=4.79 \times 10^{-4}\right)
$$

Note: Accept $0.000459\left(=4.59 \times 10^{-4}\right)$ from use of 4 sf value.

## Section B

10. (a) recognizing probabilities sum to 1

> (M1)

$$
\begin{aligned}
& 0.288+\mathrm{P}(94.6<X<98.1)+0.434=1 \\
& \mathrm{P}(94.6<X<98.1)=0.278
\end{aligned}
$$

Note: If no working shown, award (M1)AO for $\mathrm{P}(94.6<X<98.1)=0.28$ (2sf).
[2 marks]
(b) METHOD 1
recognizing the need to use inverse normal with 0.288 , ( $1-0.434$ ) or 0.434
(M1)
Note: Accept use of calculator notation eg invNorm $(0.288)(=0.559236 \ldots)$.
$\mu+\operatorname{invNorm}(0.288) \sigma=94.6, \mu+\operatorname{invNorm}(1-0.434) \sigma=98.1$ (or equivalent)
(A1)(A1)
attempt to solve their equations in two variables using the GDC (that involve either $z$-values or 'invNorm' rather than probabilities)

$$
\begin{aligned}
& \mu=97.2981 \ldots, \sigma=4.82468 \ldots \\
& \mu=97.3, \sigma=4.82
\end{aligned}
$$

Note: Condone use of different variables throughout, but do not award the final $\boldsymbol{A 1}$ if they do not clearly identify which variable is their mean and standard deviation.

## METHOD 2

use of inverse normal to find at least one $z$-score for $\mathrm{P}(Z<z)=0.288$ or $\mathrm{P}(Z<z)=1-0.434$
$z_{1}=-0.559236 \ldots$ OR $\quad z_{2}=0.166199 \ldots$
$\frac{94.6-\mu}{\sigma}=-0.559236 \ldots, \frac{98.1-\mu}{\sigma}=0.166199 \ldots$ (or equivalent)
attempt to solve their equations (that involve $z$-values rather than probabilities)
$\mu=97.2981 \ldots, \sigma=4.82468 \ldots$
$\mu=97.3, \quad \sigma=4.82$
Note: Award marks as appropriate for work seen in part (a).

Note: If no working shown, award (M1)(AO)(AO)(M1)AO for $\mu=97, \sigma=4.8$ (2sf).

Question 10 continued
(c) (i) recognition of Binomial distribution
(M1)

$$
\begin{aligned}
& X \sim \mathrm{~B}(100,0.434) \\
& \mathrm{P}(X=34)=0.0133198 \ldots \\
& =0.0133
\end{aligned}
$$

Note: If no working shown, award (M1)AO for $\mathrm{P}(X=34)=0.013$ (2sf).
(ii) $\mathrm{P}(X<49)=0.848218 \ldots$... (seen anywhere)
recognition of conditional probability
Note: recognition must be shown in context, either in symbols eg $\mathrm{P}(X=34 \mid X<49)$, or in words eg P ( 34 plants|less than 49 plants), not only as $\mathrm{P}(A \mid B)$.

$$
\begin{align*}
& (\mathrm{P}(X=34 \mid X<49)=) \frac{\mathrm{P}(X=34)}{\mathrm{P}(X<49)} \text { OR } \frac{\mathrm{P}(X=34)}{\mathrm{P}(X \leq 48)}\left(=\frac{0.0133198 \ldots}{0.848218 \ldots}\right)  \tag{A1}\\
& =0.0157033 \ldots \\
& \mathrm{P}(X=34 \mid X<49)=0.0157
\end{align*}
$$

Note: Exception to FT: If the candidate finds $\mathrm{P}(X \leq 49)(=0.890474 \ldots)$ and uses that to calculate $\mathrm{P}(X=34 \mid X \leq 49)=0.0149581 \ldots$ award (AO)(M1)(A1)AO.

Note: If no working shown, award (AO)(M1)(AO)AO for $\mathrm{P}(X=34 \mid X<49)=0.016$ (2sf).

Question 10 continued
(d) $\mathrm{Q}_{1}=96.19 \mathrm{OR}^{2} \mathrm{Q}_{3}=101.01$ (may be seen on a labelled diagram with areas indicated)
$\mathrm{P}(96.19<F<101.01)=0.5 \mathrm{OR} \mathrm{P}(F<96.19)=0.25 \mathrm{OR} \mathrm{P}(F<101.01)=0.75$ (or equivalent)

## EITHER

attempt to find $d$ using graph or table

## OR

$1-2 \mathrm{P}\left(Z<-\frac{2.41}{d}\right)=0.5$ OR $\mathrm{P}\left(Z<-\frac{2.41}{d}\right)=0.25$ OR $\mathrm{P}\left(Z<\frac{2.41}{d}\right)=0.75$
OR $\mathrm{P}\left(-\frac{2.41}{d}<Z<\frac{2.41}{d}\right)=0.5$ (or equivalent)
$-\frac{2.41}{d}=-0.674489 \ldots$ OR $\frac{2.41}{d}=0.674489 \ldots$

## THEN

3.57307...

$$
d=3.57
$$

Note: Accept 3.56 using 96.2 or 101.

Note: If no working shown, award (AO)(M1)AO for $d=3.6$ (2sf).
11. (a) (vertical asymptote equation) $x=-3$

Note: Accept $2 x+6=0$ or equivalent.
(b) $(2,0)$ and $(12,0)$

A1A1

Note: Award $\boldsymbol{A} 1$ for $(2,0)$ and $\boldsymbol{A} 1$ for $(12,0)$.
Award $\boldsymbol{A 1 A O}$ if only $x$ values are given.
[2 marks]
(c) METHOD 1

$$
\begin{aligned}
& a=\frac{1}{2} \\
& \text { attempt at 'long division' on } \frac{x^{2}-14 x+24}{2 x+6} \\
& \frac{x^{2}-14 x+24}{2 x+6} \\
& =\frac{1}{2} x-\frac{17}{2}\left(+\frac{\ldots}{2 x+6}\right) \\
& b=-\frac{17}{2}
\end{aligned}
$$

Note: Accept $y=\frac{1}{2} x-\frac{17}{2}$.
continued...

Question 11 continued

## METHOD 2

$$
a=\frac{1}{2} \quad \text { A1 }
$$

$$
\begin{equation*}
\frac{x^{2}-14 x+24}{2 x+6} \equiv \frac{1}{2} x+b+\frac{c}{2 x+6} \tag{A1}
\end{equation*}
$$

$x^{2}-14 x+24 \equiv \frac{1}{2} x(2 x+6)+b(2 x+6)+c$
attempt to equate coefficients of $x$ :
$-14=3+2 b$
$b=-\frac{17}{2}$
Note: Accept $y=\frac{1}{2} x-\frac{17}{2}$.

## METHOD 3

$$
\begin{align*}
& a=\frac{1}{2} \\
& \frac{x^{2}-14 x+24}{2 x+6}-\frac{1}{2} x \equiv \frac{-17 x+24}{2 x+6} \tag{A1}
\end{align*}
$$

attempt to find the limit of $f(x)-a x$ as $x \longrightarrow \infty$

$$
\begin{aligned}
b & =\lim _{x \rightarrow \infty} \frac{-17 x+24}{2 x+6} \\
& =-\frac{17}{2}
\end{aligned}
$$

Note: Accept $y=\frac{1}{2} x-\frac{17}{2}$.
continued...
(d)

two branches with approximately correct shape (for $-50 \leq x \leq 50$ )

Note: For this A1 the graph must be a function.
their vertical and oblique asymptotes in approximately correct positions with both branches showing correct asymptotic behaviour to these asymptotes

Note: Award A1 for vertical asymptote and behaviour and A1 for oblique asymptote and behaviour.
If only top half of the graph seen only award $\boldsymbol{A 1 A O}$ if both asymptotes and behaviour are seen.
their axes intercepts in approximately the correct positions A1

Note: Points of intersection with the axes and the equations of asymptotes do not need to be labelled. Ignore incorrect labels.
(e) $\quad(-10-5 \sqrt{3}=)-18.6602 \ldots$. OR $(-10+5 \sqrt{3}=)-1.33974 \ldots$. seen anywhere
attempt to write the range using at least one value in an interval or an inequality in $y$ or $f(x)$
$y \leq-18.7, y \geq-1.34$
A1A1
Note: Award A1 for each inequality. Award A1A0 for strict inequalities in both.
Do not award FT from (d).
Accept equivalent set notation.
[4 marks]
(f) $\quad(-10-2 \sqrt{31}=)-21.1355 \ldots$. OR $(-10+2 \sqrt{31}=) 1.13552 \ldots$. seen anywhere
$x<-21.1,-3<x<1.14$
A1A1A1
Note: Award A1 for $x<-21.1, \boldsymbol{A 1}$ for correct endpoints of a single interval -3 and 1.14 and $\boldsymbol{A 1}$ for $-3<x<1.14$.
Do not award FT from (d).
Accept equivalent set notation.
12. (a) attempt to set at least two components of $L$ and $M$ equal
$1+2 s=9+4 t$
$2+3 s=9+t$
$-3+6 s=11+2 t$
attempt to solve two of their equations simultaneously
$s=2$ OR $t=-1$

## EITHER

substitute $s=2$ and $t=-1$ into remaining component e.g. $-3+6(2)=11+2(-1)$

## OR

recognition that $2^{\text {nd }}$ and $3^{\text {rd }}$ equations are equivalent

## THEN

position vector of $A$ is $\left(\begin{array}{l}5 \\ 8 \\ 9\end{array}\right)$
Note: Accept a row vector and/or coordinates.
The final $\boldsymbol{A} \mathbf{1}$ is independent of $\boldsymbol{R 1}$.
(b) METHOD 1
attempt to substitute at least one line into the equation of the plane
(M1)

$$
\begin{aligned}
& \left(\begin{array}{c}
1+2 s \\
2+3 s \\
-3+6 s
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)=2(2+3 s)-1(-3+6 s)=7 \\
& \left(\begin{array}{c}
9+4 t \\
9+t \\
11+2 t
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)=2(9+t)-1(11+2 t)=7
\end{aligned}
$$

## METHOD 2

consideration the direction of one line and a point on that line
direction $\left(\begin{array}{l}2 \\ 3 \\ 6\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=0$ AND point $\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=7\left(\right.$ or $\left.\left(\begin{array}{l}5 \\ 8 \\ 9\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=7\right)$
direction $\left(\begin{array}{l}4 \\ 1 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=0$ AND point $\left(\begin{array}{c}9 \\ 9 \\ 11\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=7\left(\right.$ or $\left.\left(\begin{array}{l}5 \\ 8 \\ 9\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=7\right)$

## METHOD 3

consideration of direction of both lines

## EITHER

$$
\left(\begin{array}{l}
2 \\
3 \\
6
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)=0 \text { and }\left(\begin{array}{l}
4 \\
1 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)=0 \text { (hence } L \text { and } M \text { are parallel to the plane) }
$$

## OR

$$
\left(\begin{array}{l}
2 \\
3 \\
6
\end{array}\right) \times\left(\begin{array}{l}
4 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{c}
0 \\
20 \\
-10
\end{array}\right)=k\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right) \text { (hence } L \text { and } M \text { are parallel to the plane) }
$$

## THEN

$$
\left(\begin{array}{l}
5 \\
8 \\
9
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)=7 \mathrm{OR}\left(\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)=7 \text { OR }\left(\begin{array}{c}
9 \\
9 \\
11
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)=7
$$

## Question 12 continued

(c) (i) position vector of point on the line is $(\boldsymbol{r}=)\left(\begin{array}{c}-3 \\ 12 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)\left(=\left(\begin{array}{c}-3 \\ 12+2 \lambda \\ 2-\lambda\end{array}\right)\right)$
attempt to substitute position vector into equation of plane $\Pi$
(M1)
meets $\Pi$ when $\left(\begin{array}{c}-3 \\ 12+2 \lambda \\ 2-\lambda\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=7$
$2(12+2 \lambda)-(2-\lambda)=7$
$22+5 \lambda=7$
$\lambda=-3$
position vector of $\left(\boldsymbol{r}=\left(\begin{array}{c}-3 \\ 12 \\ 2\end{array}\right)-3\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)\right)\left(\begin{array}{c}-3 \\ 6 \\ 5\end{array}\right)=\left(\begin{array}{c}-3 \\ 6 \\ 5\end{array}\right)$
Note: Accept a row vector and/or coordinates.
(ii) METHOD 1
attempt to find $\overrightarrow{\mathrm{BC}}$ using $\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OB}}$
$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OB}}=\left(\begin{array}{c}-3 \\ 6 \\ 5\end{array}\right)-\left(\begin{array}{c}-3 \\ 12 \\ 2\end{array}\right)=\left(\begin{array}{c}0 \\ -6 \\ 3\end{array}\right)$
attempt to use distance formula to find $|\overrightarrow{\mathrm{BC}}|$
$|\overrightarrow{\mathrm{BC}}|=\sqrt{(-6)^{2}+3^{2}}$
$=6.71(=\sqrt{45}=3 \sqrt{5})$

## METHOD 2

recognition that $\left.|\overrightarrow{\mathrm{BC}}|=3 \times\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right) \right\rvert\,$
attempt to use distance formula to find $\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)$

$$
|\overrightarrow{\mathrm{BC}}|=3 \sqrt{2^{2}+(-1)^{2}}
$$

$=6.71(=\sqrt{45}=3 \sqrt{5})$

## Question 12 continued

(d) let $\mathrm{B}^{\prime}$ be the image of B

## METHOD 1

$\overrightarrow{\mathrm{OB}^{\prime}}=\left(\begin{array}{c}-3 \\ 12 \\ 2\end{array}\right)+\mu\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)$
recognition that $\mu=2 \lambda(=-6)$ OR $|\mathrm{BC}|=\left|\mathrm{CB}^{\prime}\right|$ (may be seen in a diagram)

$$
\overrightarrow{\mathrm{OB}^{\prime}}=\left(\begin{array}{c}
-3 \\
0 \\
8
\end{array}\right)
$$

so coordinates are $\mathrm{B}^{\prime}(-3,0,8)$

## METHOD 2

$$
\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{CB}^{\prime}}=\left(\begin{array}{c}
0 \\
-6 \\
3
\end{array}\right)
$$

Note: This may come from $\overrightarrow{\mathrm{BC}}=-3 \sqrt{5} \boldsymbol{n}$ using the unit normal vector $\boldsymbol{n}=\frac{1}{\sqrt{5}}\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)$

$$
\begin{aligned}
& \overrightarrow{\mathrm{OB}^{\prime}}=\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{CB}^{\prime}} \text { OR } \overrightarrow{\mathrm{OB}^{\prime}}=\overrightarrow{\mathrm{OB}}+2 \overrightarrow{\mathrm{BC}} \text { OR } \overrightarrow{\mathrm{OB}^{\prime}}=2 \overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OB}} \\
& =\left(\begin{array}{c}
-3 \\
6 \\
5
\end{array}\right)+\left(\begin{array}{c}
0 \\
-6 \\
3
\end{array}\right) \quad \mathrm{OR}\left(\begin{array}{c}
-3 \\
12 \\
2
\end{array}\right)+2\left(\begin{array}{c}
0 \\
-6 \\
3
\end{array}\right) \mathrm{OR}\left(\begin{array}{c}
-6 \\
12 \\
10
\end{array}\right)-\left(\begin{array}{c}
-3 \\
12 \\
2
\end{array}\right) \\
& \overrightarrow{\mathrm{OB}^{\prime}}=\left(\begin{array}{c}
-3 \\
0 \\
8
\end{array}\right)\left(\text { so coordinates are } \mathrm{B}^{\prime}(-3,0,8)\right)
\end{aligned}
$$

## Markscheme

## November 2023

## Mathematics: analysis and approaches

## Higher level

## Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2023

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2023
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

## Instructions to Examiners

## Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

## Using the markscheme

## 1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

## 2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A}$ mark(s) depend on the preceding $\boldsymbol{M}$ mark(s), if any.
- Where $\boldsymbol{M}$ and $\boldsymbol{A}$ marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more $\boldsymbol{A}$ marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1. If A1 marks are on separate lines, they are assumed to be dependent and hence AOA1 is unlikely to be awarded. However, where such marks are independent (e.g. the markscheme is presenting them in sequence, but in the solution one does not lead directly to the other) this should be communicated via a note, and hence AOA1 (for example) can be awarded.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A} G$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal
approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A} 1$ in the first part. Examples:

|  | Correct <br> answer seen | Further <br> working seen | Any FT issues? | Action |
| :--- | :---: | :--- | :--- | :--- |
| 1. | $8 \sqrt{2}$ | $5.65685 \ldots$ <br> (incorrect <br> decimal value) | No. <br> Last part in question. | Award A1 for the final mark <br> (condone the incorrect further <br> working) |
| 2. | $\frac{35}{72}$ | $0.468111 \ldots$ <br> (incorrect <br> decimal value) | Yes. <br> Value is used in <br> subsequent parts. | Award $\boldsymbol{A O}$ for the final mark <br> (and full FT is available in <br> subsequent parts) |

## 3 Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

## 4 Follow through marks (only applied after an error is made)

Follow through ( $F T$ ) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further $\boldsymbol{A}$ marks can be awarded for work which uses the error, but $\boldsymbol{M}$ marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version
- If the error leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FTmarks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".


## Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the $\boldsymbol{M R}$ stamp to indicate that this has been a misread and do not award the first mark, even if this is an $\boldsymbol{M}$ mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.


## Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.


## 7 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, $\boldsymbol{M}$ marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.


## 8 Format and accuracy of answers

Final answers will generally not need to restate the variable and/or units to be considered correct. To help examiners, the markscheme will include variables and units, where appropriate. However, their omission from a candidate's final answer should only be penalized if explicitly instructed in a markscheme note.

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, , the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to a "correct" level of accuracy (e.g 3 sf ) in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an $\boldsymbol{A}$ mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate $\boldsymbol{A}$ marks do NOT need to be simplified.

## 9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.

## 10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

## Section A

1. (a) $\mathrm{BV}=\sqrt{(6-3)^{2}+(8-4)^{2}+(0-9)^{2}}$
$=10.2956 \ldots$
$=10.3(=\sqrt{106})$
Note: Award $\boldsymbol{S C}\left(\mathbf{A O} \mathbf{)} \mathbf{A 1}\right.$ for $\mathrm{BV}=\left(\begin{array}{c}-3 \\ -4 \\ 9\end{array}\right)$ where a candidate has misinterpreted notation.
[2 marks]
(b) METHOD 1
$\mathrm{BV}=\mathrm{VC}$ AND $\mathrm{BC}=8$ (seen anywhere)
attempt to use the cosine rule on triangle BVC for any angle
Note: Recognition must be shown in context either in terms of labelled sides or in side lengths.

$$
\begin{aligned}
& \cos B \hat{V} C=\frac{10.2 \ldots{ }^{2}+10.2 \ldots .^{2}-8^{2}}{2 \times 10.2 \ldots \times 10.2 \ldots} \text { OR } \\
& 8^{2}=10.2 \ldots .^{2}+10.2 \ldots{ }^{2}-2 \times 10.2 \ldots \times 10.2 \ldots \cos B \hat{V} C
\end{aligned}
$$

$B \hat{V} C=0.798037 \ldots$
BV̂C $=0.798$ (accept $45.7^{\circ}$ )

Note: If no working shown, award (AO)(M1)(AO)AO for BV̂C=0.80 (or $\left.46^{\circ}\right)(2 \mathrm{sf})$.

## METHOD 2

let $M$ be the midpoint of $B C$
$\mathrm{BM}=4$ (seen anywhere)
attempt to use sine or cosine in triangle BMV or CMV
$\arcsin \frac{4}{\sqrt{106}}$ OR $\frac{\pi}{2}-\arccos \frac{4}{\sqrt{106}}$ OR 0.399018
$B \hat{V} \mathrm{C}=0.798037 \ldots$
BV̂C $=0.798\left(\right.$ accept $\left.45.7^{\circ}\right)$

Note: If no working shown, award (AO)(M1)(AO)AO for BV̂C=0.80 (or $\left.46^{\circ}\right)(2 s f)$.

## METHOD 3

$\overrightarrow{\mathrm{VC}}=\left(\begin{array}{c}3 \\ -4 \\ -9\end{array}\right)$ and $\overrightarrow{\mathrm{VB}}=\left(\begin{array}{c}3 \\ 4 \\ -9\end{array}\right)$
attempt to use the cosine formula for an angle using two vectors representing the edges of triangle BVC
$\cos \mathrm{B} \hat{\mathrm{V}}=\frac{3(3)-4(4)-9(-9)}{\sqrt{3^{2}+(-4)^{2}+(-9)^{2}} \sqrt{3^{2}+4^{2}+(-9)^{2}}}\left(=\frac{74}{106}\right)$
$B \hat{V} C=0.798037 \ldots$
BV̂C $=0.798$ (accept $45.7^{\circ}$ )

Note: If no working shown, award (AO)(M1)(AO)AO for BV̂C=0.80 (or $\left.46^{\circ}\right)(2 s f)$.

## METHOD 4

$\overrightarrow{\mathrm{VC}}=\left(\begin{array}{c}3 \\ -4 \\ -9\end{array}\right)$ and $\overrightarrow{\mathrm{VB}}=\left(\begin{array}{c}3 \\ 4 \\ -9\end{array}\right)$
attempt to use the cross product formula for an angle using two vectors representing the edges of triangle BVC
$\sin B \hat{V} C=\frac{\left(\left.\left(\begin{array}{c}72 \\ 0 \\ 24\end{array}\right) \right\rvert\,\right.}{\sqrt{3^{2}+(-4)^{2}+(-9)^{2}} \sqrt{3^{2}+4^{2}+(-9)^{2}}}\left(=\frac{\sqrt{5760}}{106}\right)$
$\mathrm{BV} \mathrm{C}=0.798037 \ldots$
BV̂C $=0.798$ (accept $45.7^{\circ}$ )

Note: If no working shown, award (AO)(M1)(AO)AO for BV̂C $=0.80$ (or $46^{\circ}$ ) (2sf).
Award $\boldsymbol{S C}\left(\mathbf{A} \mathbf{1} \mathbf{( M 1 ) ( A O )} \mathbf{A} \boldsymbol{O}\right.$ for area $=\frac{1}{2}\left|\left(\begin{array}{c}72 \\ 0 \\ 24\end{array}\right)\right|=\frac{\sqrt{5760}}{2}(=37.9)$ where a candidate has misinterpreted notation.
2. (a)


A1A1A1
Note: Award marks as follows:
A1 for approximately correct roots, in the intervals $-2<x<-1$ and $2<x<3$.
A1 for y -intercept AND local minimum in approximately correct positions. Allow for $y$ intercept $-3.5<y<-2.5$, and for local minimum $0.5<x<1.5,-5<y<-4$.
A1 for approximately correct endpoints, with the left end in the intervals
$-4.5<x<-3.5,7.5<y<8.5$ and the right end in the intervals $2.5<x<3.5,6.5<y<7.5$
[3 marks]
(b) $\quad k=\frac{1}{2}$
$c=-3$ (accept translate/shift 3 (units) down)
3. (a) use of sector area formula to find area of at least one sector

$$
\begin{aligned}
& \frac{1}{2} \times 5.2 \times 100-\frac{1}{2} \times 5.2 \times r^{2} \text { OR } 10^{2} \pi-\frac{1}{2} 10^{2} \times(2 \pi-5.2)-\left(\pi r^{2}-\frac{1}{2} \times(2 \pi-5.2) \times r^{2}\right) \\
& (\text { area })=260-2.6 r^{2}
\end{aligned}
$$

Note:There are many different ways to find the area of the " $C$ ". In all methods, the $\boldsymbol{A}$ mark is awarded for working which leads directly to the AG.
Many candidates are working with rounded intermediate values. Award the $\boldsymbol{A}$ mark to correct work with values that round to the 3 sf value of 260 and the 2 sf value of 2.6 eg 259.99-2.6015 $r^{2}$.
[2 marks]
(b) (i) $260-2.6 r^{2}=64$

$$
\begin{align*}
& r=8.68243 \ldots  \tag{A1}\\
& =8.68(\mathrm{~cm})\left(\frac{14 \sqrt{65}}{13} \text { exact }\right)
\end{align*}
$$

(ii) $10 \times 5.2$ OR $8.68 \ldots \times 5.2$
substituting their value of $r$ into $10 \times 5.2+r \times 5.2+2(10-r)$ (or equivalent)
Perimeter $=10 \times 5.2+8.68 \ldots \times 5.2+2(10-8.68 \ldots)(=52+45.1486 \ldots+2.63513 \ldots)$
= 99.7837...
$=99.8(\mathrm{~cm})$
4. (a) recognizing at rest when $\frac{\mathrm{d} s}{\mathrm{~d} t}=0 \mathrm{OR}_{s}$ is a minimum
$q=5.73553 \ldots$

$$
=5.74
$$

Note: If no working shown, award (M1)AO for $q=5.7$ (2sf).
[2 marks]
(b) METHOD 1
recognizing that integral of $v(t)$ is required
(M1)

$$
\begin{equation*}
\int_{0}^{5.73 \ldots}|v(t)| \mathrm{d} t \text { OR } \int_{0}^{5.73 \ldots \ldots}\left|\frac{\mathrm{~d}}{\mathrm{~d} t} s(t)\right| \mathrm{d} t \text { OR }\left|\int_{0}^{5.73 . \ldots} v(t) \mathrm{d} t\right| \mathrm{OR}-\int_{0}^{5.73 \ldots \ldots} v(t) \mathrm{d} t \tag{A1}
\end{equation*}
$$

Note:Condone absence of $\mathrm{d} t$.
Only accept $\left|\int_{0}^{q} v(t) \mathrm{d} t\right|$ if their value of $q$ does not result in the particle changing direction in the first $q$ seconds.

$$
\begin{aligned}
& =7.68302 \ldots \\
& =7.68(\mathrm{~m})
\end{aligned}
$$

Note: Special Cases:
Award a maximum of (M1)(A1FT)A0FT if the candidate obtains $q=1.62320 \ldots$ in part (a), and uses that value to find the total distance to be 3.38302... (3.37644... from 3sf).

Award (M1)(AO)A1 if the candidate writes $\int_{0}^{5.73 . . .} v(t) \mathrm{d} t$ followed by the correct answer.

## METHOD 2

recognition that total distance travelled is the difference between the initial displacement and the displacement at minimum
initial displacement is $3.38302 \ldots$...AND at minimum is -4.3
total distance travelled $=3.38302 \ldots-(-4.3)$
$=7.68302$...
$=7.68$ ( m )
Note: If no working shown, award (M1)(AO)AO for 7.7 (2sf).
5. $\mathrm{E}(X)=k+2 k^{2}+3 a+4 k^{3}=2.3$
$k+k^{2}+a+k^{3}=1$

Note: The first two $\boldsymbol{A}$ marks are independent of each other.

EITHER (finding intersections of functions)
attempt to make $a$ the subject in both of their equations
$a=1-k-k^{2}-k^{3}$ and $a=\frac{1}{3}\left(2.3-k-2 k^{2}-4 k^{3}\right)$
use of graph or table to attempt to find intersection
OR (solving algebraically)
attempt to solve their equations algebraically to find a cubic in $k$
$k^{3}-k^{2}-2 k+0.7=0$ OR $3\left(1-k-k^{2}-k^{3}\right)=2.3-k-2 k^{2}-4 k^{3}$ (or equivalent)
attempt to solve their cubic in $k$

## THEN

$a=0.552839 \ldots$ OR $k=0.315870 \ldots$ (other solutions to cubic are $k=-1.18538 \ldots, 1.86951 \ldots$ ) $a=0.553$

Note: If no working shown, award (A1)(A1)(M1)(M1)AO for $a=2.44587 \ldots$ OR $a=-10.8987 \ldots$ and award (AO)(AO)(M1)(M1)AO for $a=0.55$ (2sf).
6. (a) $5.75=25 p(1-p)$

$$
p=0.641421 \ldots, 0.358578 \ldots
$$

$p=0.641,0.359\left(=\frac{5 \pm \sqrt{2}}{10}\right)$

## A1A1

## [3 marks]

(b) $\quad \operatorname{Var}(Y)=(-2)^{2} \operatorname{Var}(X)(=4 \operatorname{Var}(X))$
$=23$
7. (a) (i) $\quad(9!=) 362880$

Note: Accept 9! or 363000.
(ii) attempt to consider girls as a single object

Note: Accept 30200.
[3 marks]
(b) METHOD 1
recognition of the two different cases for 2 girls and 3 girls
exactly 2 girls is ${ }^{6} C_{3} \times{ }^{3} C_{2}=60$ and exactly 3 girls $\left({ }^{3} C_{3} \times\right)^{6} C_{2}=15$
total $(=60+15)=75$

## METHOD 2

recognition of the three different cases: total choices, 1 girl and no girls
total choices ${ }^{9} C_{5}=126$, one girl case ${ }^{3} C_{1} \times{ }^{6} C_{4}=45$, no girl case ${ }^{6} C_{5}=6$
total $(=126-45-6)=75$
8. (a) $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}1 \\ 1-p \\ -1\end{array}\right)$

$$
\overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}
p \\
-p \\
2
\end{array}\right)
$$

attempt to evaluate their $\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}$ by use of formula or determinant
$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}2(1-p)-p \\ -(2+p) \\ -p-p(1-p)\end{array}\right)$ OR $(2(1-p)-p) \boldsymbol{i}-(2+p) \boldsymbol{j}+(-p-p(1-p)) \boldsymbol{k}$

$$
\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}
2-3 p \\
-2-p \\
p^{2}-2 p
\end{array}\right)
$$

(b) $|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|^{2}$
$=(2-3 p)^{2}+(-2-p)^{2}+\left(p^{2}-2 p\right)^{2}\left(=p^{4}-4 p^{3}+14 p^{2}-8 p+8\right)$
attempt to find minimum of their $|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|^{2}$
6.75257... OR $p=0.3264 \ldots$
$\min$ value is 6.75

Question 8 continued
(c) METHOD 1
valid attempt to find area $=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|$ using their answer to part b)
area $=\frac{1}{2} \sqrt{6.75257 \ldots}$
$=1.299285$...
$=1.30\left(\right.$ units $\left.^{2}\right)$
9. (a) attempt to use recursive formula $y_{n}=y_{n-1}+0.1\left(\frac{4-y_{n-1}}{10}\right)$

| $n$ | $x_{n}$ | $y_{n}$ |
| :---: | :---: | :---: |
| 0 | 0 | 2 |
| 1 | 0.1 | 2.02 |
| 2 | 0.2 | 2.0398 |
| 3 | 0.3 | $2.05940 \ldots$ |
| 4 | 0.4 | $2.07880 \ldots$ |
| 5 | 0.5 | $2.09801 \ldots$ |

$$
\begin{aligned}
& y_{1}=2.02 \\
& y_{5}=2.098
\end{aligned}
$$

Note: Accept any answer which rounds to the correct 4sf value.
Award no marks for a final answer of 2.1 or 2.10 with no working.

Question 9 continued

## (b) METHOD 1

Note: Condone absence of absolute value signs throughout

$$
\begin{align*}
& \int \frac{\mathrm{d} y}{4-y}=\int \frac{\mathrm{d} x}{10}  \tag{M1}\\
& -\ln |4-y|=\frac{x}{10}(+c)
\end{align*}
$$

## EITHER

substituting initial conditions $x=0, y=2$ to find the value of $c$
$(-\ln 2=0+c \Rightarrow) c=-\ln 2$
$-\ln |4-y|=\frac{x}{10}-\ln 2 \Rightarrow \ln \frac{|4-y|}{2}=-\frac{x}{10}$
$|4-y|=2 \mathrm{e}^{-\frac{x}{10}}$
OR
$|4-y|=\mathrm{e}^{-\frac{x}{10}-c}$ (so $4-y= \pm \mathrm{e}^{-c} \mathrm{e}^{-\frac{x}{10}}$ )
$4-y=A \mathrm{e}^{-\frac{x}{10}}$
substituting initial conditions $x=0, y=2$ to find the value of $A$
$2=A \mathrm{e}^{0} \Rightarrow A=2$

## THEN

$$
y=4-2 \mathrm{e}^{-\frac{x}{10}}
$$

Note: Candidates may use $-\int \frac{\mathrm{d} y}{y-4}=\int \frac{\mathrm{d} x}{10}$ and correctly obtain $|y-4|=2 \mathrm{e}^{-\frac{x}{10}}$ leading to $4-y=2 \mathrm{e}^{-\frac{x}{10}}$ after consideration of the boundary conditions. In this case, the absence of absolute value signs should not be condoned until the sign has been resolved.

## Question 9 continued

## METHOD 2

attempt to rearrange and find an integrating factor M1

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{1}{10} y=\frac{4}{10} \text { so IF } \mathrm{e}^{\int \frac{1}{10} \mathrm{~d} x}=\mathrm{e}^{\frac{1}{10} x} \\
& \mathrm{e}^{\frac{1}{10} x} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{1}{10} \mathrm{e}^{\frac{1}{10} x} y=\frac{4}{10} \mathrm{e}^{\frac{1}{10} x} \\
& \mathrm{e}^{\frac{1}{10} x} y=4 \mathrm{e}^{\frac{1}{10} x}(+c)
\end{aligned}
$$

Note: Award A1 for LHS and A1 for RHS.

$$
\begin{array}{ll}
\text { substituting initial conditions } x=0, y=2 \text { to find the value of } c & \text { M1 } \\
\left(2 \mathrm{e}^{0}=4 \mathrm{e}^{0}+c \Rightarrow\right) c=-2 & \text { A1 } \\
\mathrm{e}^{\frac{1}{10} x} y=4 \mathrm{e}^{\frac{1}{10} x}-2 & \\
y=4-2 \mathrm{e}^{-\frac{x}{10}} & \boldsymbol{A G}
\end{array}
$$

(c) absolute error $=2.0980199 \ldots-\left(4-2 e^{-0.05}\right)=0.000478749 \ldots$

$$
=0.000479\left(=4.79 \times 10^{-4}\right)
$$

Note: Accept $0.000459\left(=4.59 \times 10^{-4}\right)$ from use of 4 sf value.

## Section B

10. (a) recognizing probabilities sum to 1

$$
\begin{aligned}
& 0.288+\mathrm{P}(94.6<X<98.1)+0.434=1 \\
& \mathrm{P}(94.6<X<98.1)=0.278
\end{aligned}
$$

Note: If no working shown, award (M1)AO for $\mathrm{P}(94.6<X<98.1)=0.28$ (2sf).
(b) METHOD 1
recognizing the need to use inverse normal with 0.288 , ( $1-0.434$ ) or 0.434
Note: Accept use of calculator notation eg invNorm $(0.288)(=0.559236 \ldots)$.
$\mu+\operatorname{invNorm}(0.288) \sigma=94.6, \mu+\operatorname{invNorm}(1-0.434) \sigma=98.1$ (or equivalent)
(A1)(A1)
attempt to solve their equations in two variables using the GDC (that involve either $z$-values or 'invNorm' rather than probabilities)
$\mu=97.2981 \ldots, \sigma=4.82468 \ldots$
$\mu=97.3, \sigma=4.82$
Note: Condone use of different variables throughout, but do not award the final $\boldsymbol{A 1}$ if they do not clearly identify which variable is their mean and standard deviation.

## METHOD 2

use of inverse normal to find at least one $z$-score for $\mathrm{P}(Z<z)=0.288$ or $\mathrm{P}(Z<z)=1-0.434$
$z_{1}=-0.559236 \ldots$ OR $\quad z_{2}=0.166199 \ldots$
$\frac{94.6-\mu}{\sigma}=-0.559236 \ldots, \frac{98.1-\mu}{\sigma}=0.166199 \ldots \quad$ (or equivalent)
attempt to solve their equations (that involve $z$-values rather than probabilities)
$\mu=97.2981 \ldots, \sigma=4.82468 \ldots$
$\mu=97.3, \sigma=4.82$

Note: Award marks as appropriate for work seen in part (a).

Note: If no working shown, award (M1)(AO)(AO)(M1)AO for $\mu=97, \sigma=4.8$ (2sf).

Question 10 continued
(c) (i) recognition of Binomial distribution
(M1)

$$
\begin{aligned}
& X \sim \mathrm{~B}(100,0.434) \\
& \mathrm{P}(X=34)=0.0133198 \ldots \\
& =0.0133
\end{aligned}
$$

Note: If no working shown, award (M1)AO for $\mathrm{P}(X=34)=0.013$ (2sf).
(ii) $\mathrm{P}(X<49)=0.848218 \ldots$ (seen anywhere)
recognition of conditional probability
Note: recognition must be shown in context, either in symbols eg $\mathrm{P}(X=34 \mid X<49)$, or in words eg $\mathrm{P}(34$ plants |less than 49 plants $)$, not only as $\mathrm{P}(A \mid B)$.

$$
\begin{align*}
& (\mathrm{P}(X=34 \mid X<49)=) \frac{\mathrm{P}(X=34)}{\mathrm{P}(X<49)} \text { OR } \frac{\mathrm{P}(X=34)}{\mathrm{P}(X \leq 48)}\left(=\frac{0.0133198 \ldots}{0.848218 \ldots}\right)  \tag{A1}\\
& =0.0157033 \ldots \\
& \mathrm{P}(X=34 \mid X<49)=0.0157
\end{align*}
$$

Note: Exception to FT: If the candidate finds $\mathrm{P}(X \leq 49)(=0.890474 \ldots)$ and uses that to calculate $\mathrm{P}(X=34 \mid X \leq 49)=0.0149581 \ldots$ award (AO)(M1)(A1)AO.

Note: If no working shown, award (AO)(M1)(AO)AO for $\mathrm{P}(X=34 \mid X<49)=0.016$ (2sf).

Question 10 continued
(d) $\mathrm{Q}_{1}=96.19 \mathrm{OR}^{2} \mathrm{Q}_{3}=101.01$ (may be seen on a labelled diagram with areas indicated)
$\mathrm{P}(96.19<F<101.01)=0.5 \mathrm{OR} \mathrm{P}(F<96.19)=0.25 \mathrm{OR} \mathrm{P}(F<101.01)=0.75$ (or equivalent)

## EITHER

attempt to find $d$ using graph or table

## OR

$1-2 \mathrm{P}\left(Z<-\frac{2.41}{d}\right)=0.5$ OR $\mathrm{P}\left(Z<-\frac{2.41}{d}\right)=0.25$ OR $\mathrm{P}\left(Z<\frac{2.41}{d}\right)=0.75$
OR $\mathrm{P}\left(-\frac{2.41}{d}<Z<\frac{2.41}{d}\right)=0.5$ (or equivalent)
$-\frac{2.41}{d}=-0.674489 \ldots$ OR $\frac{2.41}{d}=0.674489 \ldots$

## THEN

3.57307...

$$
d=3.57
$$

Note: Accept 3.56 using 96.2 or 101.

Note: If no working shown, award (AO)(M1)AO for $d=3.6$ (2sf).
11. (a) (vertical asymptote equation) $x=-3$

Note: Accept $2 x+6=0$ or equivalent.
(b) $(2,0)$ and $(12,0)$

A1A1

Note: Award A1 for $(2,0)$ and $\boldsymbol{A 1}$ for $(12,0)$.
Award $\boldsymbol{A 1 A O}$ if only $x$ values are given.
[2 marks]
(c) METHOD 1

$$
\begin{aligned}
& a=\frac{1}{2} \\
& \text { attempt at 'long division' on } \frac{x^{2}-14 x+24}{2 x+6} \\
& \frac{x^{2}-14 x+24}{2 x+6} \\
& =\frac{1}{2} x-\frac{17}{2}\left(+\frac{\ldots}{2 x+6}\right) \\
& b=-\frac{17}{2}
\end{aligned}
$$

Note: Accept $y=\frac{1}{2} x-\frac{17}{2}$.
continued...

Question 11 continued

## METHOD 2

$$
a=\frac{1}{2} \quad \text { A1 }
$$

$$
\begin{equation*}
\frac{x^{2}-14 x+24}{2 x+6} \equiv \frac{1}{2} x+b+\frac{c}{2 x+6} \tag{A1}
\end{equation*}
$$

$x^{2}-14 x+24 \equiv \frac{1}{2} x(2 x+6)+b(2 x+6)+c$
attempt to equate coefficients of $x$ :
$-14=3+2 b$
$b=-\frac{17}{2}$
Note: Accept $y=\frac{1}{2} x-\frac{17}{2}$.

## METHOD 3

$$
\begin{align*}
& a=\frac{1}{2} \\
& \frac{x^{2}-14 x+24}{2 x+6}-\frac{1}{2} x \equiv \frac{-17 x+24}{2 x+6} \tag{A1}
\end{align*}
$$

attempt to find the limit of $f(x)-a x$ as $x \longrightarrow \infty$

$$
\begin{align*}
b & =\lim _{x \rightarrow \infty} \frac{-17 x+24}{2 x+6}  \tag{M1}\\
& =-\frac{17}{2}
\end{align*}
$$

Note: Accept $y=\frac{1}{2} x-\frac{17}{2}$.
continued...
(d)

two branches with approximately correct shape (for $-50 \leq x \leq 50$ )

Note: For this A1 the graph must be a function.
their vertical and oblique asymptotes in approximately correct positions with both branches showing correct asymptotic behaviour to these asymptotes

Note: Award A1 for vertical asymptote and behaviour and A1 for oblique asymptote and behaviour.
If only top half of the graph seen only award $\boldsymbol{A 1 A O}$ if both asymptotes and behaviour are seen.
their axes intercepts in approximately the correct positions A1

Note: Points of intersection with the axes and the equations of asymptotes do not need to be labelled. Ignore incorrect labels.
(e) $\quad(-10-5 \sqrt{3}=)-18.6602 \ldots$. OR $(-10+5 \sqrt{3}=)-1.33974 \ldots$. seen anywhere
attempt to write the range using at least one value in an interval or an inequality in $y$ or $f(x)$
$y \leq-18.7, y \geq-1.34$
A1A1
Note: Award A1 for each inequality. Award A1A0 for strict inequalities in both.
Do not award FT from (d).
Accept equivalent set notation.
[4 marks]
(f) $\quad(-10-2 \sqrt{31}=)-21.1355 \ldots$. OR $(-10+2 \sqrt{31}=) 1.13552 \ldots$. seen anywhere (A1)
$x<-21.1,-3<x<1.14$
A1A1A1
Note: Award A1 for $x<-21.1, \boldsymbol{A 1}$ for correct endpoints of a single interval -3 and 1.14 and $\boldsymbol{A 1}$ for $-3<x<1.14$.
Do not award FT from (d).
Accept equivalent set notation.
12. (a) attempt to set at least two components of $L$ and $M$ equal
$1+2 s=9+4 t$
$2+3 s=9+t$
$-3+6 s=11+2 t$
attempt to solve two of their equations simultaneously
$s=2$ OR $t=-1$

## EITHER

substitute $s=2$ and $t=-1$ into remaining component e.g. $-3+6(2)=11+2(-1)$

## OR

recognition that $2^{\text {nd }}$ and $3^{\text {rd }}$ equations are equivalent

## THEN

position vector of $A$ is $\left(\begin{array}{l}5 \\ 8 \\ 9\end{array}\right)$
Note: Accept a row vector and/or coordinates.
The final $\boldsymbol{A} \mathbf{1}$ is independent of $\boldsymbol{R 1}$.
(b) METHOD 1
attempt to substitute at least one line into the equation of the plane
(M1)

$$
\begin{aligned}
& \left(\begin{array}{c}
1+2 s \\
2+3 s \\
-3+6 s
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)=2(2+3 s)-1(-3+6 s)=7 \\
& \left(\begin{array}{c}
9+4 t \\
9+t \\
11+2 t
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)=2(9+t)-1(11+2 t)=7
\end{aligned}
$$

## METHOD 2

consideration the direction of one line and a point on that line
direction $\left(\begin{array}{l}2 \\ 3 \\ 6\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=0$ AND point $\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=7\left(\right.$ or $\left.\left(\begin{array}{l}5 \\ 8 \\ 9\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=7\right)$
direction $\left(\begin{array}{l}4 \\ 1 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=0$ AND point $\left(\begin{array}{c}9 \\ 9 \\ 11\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=7\left(\right.$ or $\left.\left(\begin{array}{l}5 \\ 8 \\ 9\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=7\right)$

## METHOD 3

consideration of direction of both lines

## EITHER

$$
\left(\begin{array}{l}
2 \\
3 \\
6
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)=0 \text { and }\left(\begin{array}{l}
4 \\
1 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)=0 \text { (hence } L \text { and } M \text { are parallel to the plane) }
$$

## OR

$$
\left(\begin{array}{l}
2 \\
3 \\
6
\end{array}\right) \times\left(\begin{array}{l}
4 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{c}
0 \\
20 \\
-10
\end{array}\right)=k\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right) \text { (hence } L \text { and } M \text { are parallel to the plane) }
$$

## THEN

$$
\left(\begin{array}{l}
5 \\
8 \\
9
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)=7 \mathrm{OR}\left(\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)=7 \text { OR }\left(\begin{array}{c}
9 \\
9 \\
11
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)=7
$$

## Question 12 continued

(c) (i) position vector of point on the line is $(\boldsymbol{r}=)\left(\begin{array}{c}-3 \\ 12 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)\left(=\left(\begin{array}{c}-3 \\ 12+2 \lambda \\ 2-\lambda\end{array}\right)\right)$
attempt to substitute position vector into equation of plane $\Pi$
(M1)
meets $\Pi$ when $\left(\begin{array}{c}-3 \\ 12+2 \lambda \\ 2-\lambda\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=7$
$2(12+2 \lambda)-(2-\lambda)=7$
$22+5 \lambda=7$
$\lambda=-3$
position vector of $\left(\boldsymbol{r}=\left(\begin{array}{c}-3 \\ 12 \\ 2\end{array}\right)-3\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)=\left(\begin{array}{c}-3 \\ 6 \\ 5\end{array}\right)=\left(\begin{array}{c}-3 \\ 6 \\ 5\end{array}\right)\right.$
Note: Accept a row vector and/or coordinates.
(ii) METHOD 1
attempt to find $\overrightarrow{\mathrm{BC}}$ using $\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OB}}$
$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OB}}=\left(\begin{array}{c}-3 \\ 6 \\ 5\end{array}\right)-\left(\begin{array}{c}-3 \\ 12 \\ 2\end{array}\right)=\left(\begin{array}{c}0 \\ -6 \\ 3\end{array}\right)$
attempt to use distance formula to find $|\overrightarrow{\mathrm{BC}}|$
$|\overrightarrow{\mathrm{BC}}|=\sqrt{(-6)^{2}+3^{2}}$
$=6.71(=\sqrt{45}=3 \sqrt{5})$

## METHOD 2

recognition that $\left.|\overrightarrow{\mathrm{BC}}|=3 \times\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right) \right\rvert\,$
attempt to use distance formula to find $\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)$

$$
|\overrightarrow{\mathrm{BC}}|=3 \sqrt{2^{2}+(-1)^{2}}
$$

$=6.71(=\sqrt{45}=3 \sqrt{5})$

Question 12 continued
(d) let $\mathrm{B}^{\prime}$ be the image of B

## METHOD 1

$\overrightarrow{\mathrm{OB}^{\prime}}=\left(\begin{array}{c}-3 \\ 12 \\ 2\end{array}\right)+\mu\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)$
recognition that $\mu=2 \lambda(=-6)$ OR $|\mathrm{BC}|=\left|\mathrm{CB}^{\prime}\right|$ (may be seen in a diagram)

$$
\overrightarrow{\mathrm{OB}^{\prime}}=\left(\begin{array}{c}
-3 \\
0 \\
8
\end{array}\right)
$$

so coordinates are $\mathrm{B}^{\prime}(-3,0,8)$

## METHOD 2

$$
\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{CB}^{\prime}}=\left(\begin{array}{c}
0 \\
-6 \\
3
\end{array}\right)
$$

Note: This may come from $\overrightarrow{\mathrm{BC}}=-3 \sqrt{5} \boldsymbol{n}$ using the unit normal vector $\boldsymbol{n}=\frac{1}{\sqrt{5}}\left(\begin{array}{c}0 \\ 2 \\ -1\end{array}\right)$

$$
\begin{align*}
& \overrightarrow{\mathrm{OB}^{\prime}}=\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{CB}^{\prime}} \text { OR } \overrightarrow{\mathrm{OB}^{\prime}}=\overrightarrow{\mathrm{OB}}+2 \overrightarrow{\mathrm{BC}} \text { OR } \overrightarrow{\mathrm{OB}^{\prime}}=2 \overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OB}}  \tag{M1}\\
& =\left(\begin{array}{c}
-3 \\
6 \\
5
\end{array}\right)+\left(\begin{array}{c}
0 \\
-6 \\
3
\end{array}\right) \quad \mathrm{OR}\left(\begin{array}{c}
-3 \\
12 \\
2
\end{array}\right)+2\left(\begin{array}{c}
0 \\
-6 \\
3
\end{array}\right) \mathrm{OR}\left(\begin{array}{c}
-6 \\
12 \\
10
\end{array}\right)-\left(\begin{array}{c}
-3 \\
12 \\
2
\end{array}\right) \\
& \left.\overrightarrow{\mathrm{OB}^{\prime}}=\left(\begin{array}{c}
-3 \\
0 \\
8
\end{array}\right) \text { (so coordinates are } \mathrm{B}^{\prime}(-3,0,8)\right)
\end{align*}
$$

## Markscheme

May 2023

## Mathematics: analysis and approaches

## Higher level

## Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2023
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2023
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

## Instructions to Examiners

## Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

## Using the markscheme

## 1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

## 2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A}$ mark(s) depend on the preceding $\boldsymbol{M}$ mark(s), if any.
- Where $\boldsymbol{M}$ and $\boldsymbol{A}$ marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more A marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies $\mathbf{A 3}, \boldsymbol{M} 2$ etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final A1 in the first part.

Examples:

|  | Correct <br> answer seen | Further <br> working seen | Any FT issues? | Action |
| :--- | :--- | :--- | :--- | :--- |
| 1. | $8 \sqrt{2}$ | $5.65685 \ldots$ <br> (incorrect <br> decimal value) | No. <br> Last part in question. | Award A1 for the final mark <br> (condone the incorrect further <br> working) |
| 2. | $\frac{35}{72}$ | 0.468111... <br> (incorrect <br> decimal value) | Yes. <br> Value is used in <br> subsequent parts. | Award $\boldsymbol{A O}$ for the final mark <br> (and full FT is available in <br> subsequent parts) |

## 3 Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

## 4 Follow through marks (only applied after an error is made)

Follow through ( $F T$ ) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further $\boldsymbol{A}$ marks can be awarded for work which uses the error, but $\boldsymbol{M}$ marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".


## Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the $M R$ stamp to indicate that this has been a misread and do not award the first mark, even if this is an $\boldsymbol{M}$ mark, but award all others as appropriate.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.


## 6 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.


## 7 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, $\boldsymbol{M}$ marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.


## 8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an $\boldsymbol{A}$ mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate $\boldsymbol{A}$ marks do NOT need to be simplified.

## 9 Calculators

A GDC is required for this paper, but if you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.

## 10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

## Section A

1. (a) $a=1.93258 \ldots, b=7.21662 \ldots$
$a=1.93, b=7.22$
A1A1
[2 marks]
(b) attempt to substitute $d=20$ into their equation
height $=45.8683 \ldots$
height $=45.9(\mathrm{~cm})$ A1
[2 marks]

## 2. METHOD 1

attempt to substitute into cosine rule
$154^{2}=150^{2}+90^{2}-2(150)(90) \cos \mathrm{A} \hat{\mathrm{PB}} \quad \mathrm{OR} \cos \mathrm{A} \hat{\mathrm{PB}}=\frac{150^{2}+90^{2}-154^{2}}{2(150)(90)}$
$\mathrm{APB}=75.2286 \ldots{ }^{\circ}$ OR 1.31298$\ldots$ radians
$\mathrm{APB}=75.2^{\circ}$ OR 1.31 radians
valid approach to find $\theta$
$\theta=\frac{180^{\circ}-\mathrm{APB}}{2}$ OR $\theta=\frac{180^{\circ}-75.2286 \ldots{ }^{\circ}}{2}(=52.3856 \ldots) \mathrm{OR}$
$\theta=\frac{\pi-1.31298 \ldots}{2}(=0.914302 \ldots)$
valid approach to express $h$ in terms of $\theta$
$\sin \theta=\frac{h}{150} \quad$ OR $h=150 \sin 52.3856 \ldots \circ$
$h=118.820 \ldots$
$h=119$ ( m )

## METHOD 2

attempts to find either the distance between the buildings or the difference in height between the buildings in terms of $\theta$
distance between the buildings is $(150+90) \cos \theta$ and the difference in height between the buildings is $(150-90) \sin \theta$
uses Pythagoras and attempts to solve for $\theta$
$(60 \sin \theta)^{2}+(240 \cos \theta)^{2}=154^{2}$
$\theta=0.914302 \ldots\left(=52.3856 \ldots{ }^{\circ}\right)$
$\frac{h}{150}=\sin (0.914302 \ldots)$
$h=118.820 \ldots$
$h=119$ (m)
3. (a) evidence of attempting to find correct area under normal curve

$$
\mathrm{P}(W>210) \text { OR sketch }
$$

$\mathrm{P}(W>210)=0.115069 \ldots$
$\mathrm{P}(W>210)=0.115$
(b) recognizing $\mathrm{P}(W<w)=1-\mathrm{P}(w<W<210)-\mathrm{P}(W>210)$
$\mathrm{P}(W<w)=1-0.8-0.115069 \ldots$
$\mathrm{P}(W<w)=0.084930 \ldots$
$\mathrm{P}(W<w)=0.0849$

## [2 marks]

(c) evidence of attempting to use inverse normal function
$w=197.136 \ldots$
$w=197$ (grams)
(d) recognition of binomial distribution

$$
\begin{aligned}
& X \sim \mathrm{~B}(10,0.0849302 \ldots) \\
& \mathrm{P}(X=1)=0.382076 \ldots \\
& \mathrm{P}(X=1)=0.382
\end{aligned}
$$

A1
4. attempt to use the binomial expansion of $(x+h)^{8}$
${ }^{8} C_{0} x^{8} h^{0}+{ }^{8} C_{1} x^{7} h^{1}+{ }^{8} C_{2} x^{6} h^{2}+\ldots$
$a=8 h\left(\right.$ accept $\left.{ }^{8} C_{1} h\right)$
$b=28 h^{2}\left(\right.$ accept $\left.{ }^{8} C_{2} h^{2}\right) \quad$ A1
$d=70 h^{4}\left(\right.$ accept $\left.{ }^{8} C_{4} h^{4}\right)$ A1
recognition that there is a common ratio between their terms
$8 h \times r=28 h^{2}$ OR $28 h^{2} \times r=70 h^{4}$ OR $8 h \times r^{2}=70 h^{4}$ correct equation in terms of $h$
$\frac{28 h^{2}}{8 h}=\frac{70 h^{4}}{28 h^{2}}$ (or equivalent)
$h=1.4$
5. (a) recognize that acceleration is zero when $v^{\prime}(t)=0$ OR at a local maximum on the graph of $v$

$$
\begin{aligned}
& t_{1}=0.394791 \ldots \\
& t_{1}=0.395\left(=\arctan \left(\frac{5}{12}\right)\right) \text { (seconds) }
\end{aligned}
$$

[2 marks]
(b) recognition that $v=0$
sketch OR $t=4.71238 \ldots$ OR $t=10.9955 \ldots$
$t_{2}=10.9955 \ldots$
$t_{2}=11.0\left(=\frac{7 \pi}{2}\right)$
(c) $\int_{t_{1}}^{t_{2}}|v| \mathrm{d} t$ OR $\int_{0.394791 \ldots}^{10.9955 \ldots}|v| \mathrm{d} t$ OR $\int_{0.394791 . . .}^{4.71238 . \ldots} v \mathrm{~d} t+\int_{4.71238 \ldots}^{10 . .955 \ldots}|v| \mathrm{d} t(=6.53806 \ldots+1.29313 \ldots)$

OR $\int_{0.397791 . .}^{4.71238 \ldots} v \mathrm{~d} t-\int_{4.71233 \ldots}^{10 . .9955 \ldots} v \mathrm{~d} t(=6.53806 \ldots-(-1.29313 \ldots))$
distance $=7.83118 \ldots$
$=7.83(\mathrm{~m})$
6. (a) METHOD 1
the general point on $L$ has coordinates ( $\lambda, 2-2 \lambda, 4-2 \lambda$ )
substitutes this general point into both $\Pi_{1}$ and $\Pi_{2}$
$2 \lambda-(2-2 \lambda)+2(4-2 \lambda)(=2 \lambda-2+2 \lambda+8-4 \lambda)$ A1
$=6$
$4 \lambda+3(2-2 \lambda)-(4-2 \lambda)(=4 \lambda+6-6 \lambda-4+2 \lambda)$ A1
$=2$
so the vector equation of $L$ can be written as $r=\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ -2\end{array}\right)$
Note: Award (M1)AOAO for correct verification using a specific value of $\lambda$.
continued...

## Question 6 continued

## METHOD 2

substitutes $(0,2,4)$ into both $\Pi_{1}$ and $\Pi_{2}$ and shows that
$0-2+8=6$ and $0+6-4=2$
hence $(0,2,4)$ lies in both $\Pi_{1}$ and $\Pi_{2}$

## EITHER

attempts to find $\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right) \times\left(\begin{array}{c}4 \\ 3 \\ -1\end{array}\right)$
$=\left(\begin{array}{c}-5 \\ 10 \\ 10\end{array}\right)$

## OR

attempts to find $\left(\begin{array}{c}1 \\ -2 \\ -2\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)$ and $\left(\begin{array}{c}1 \\ -2 \\ -2\end{array}\right) \cdot\left(\begin{array}{c}4 \\ 3 \\ -1\end{array}\right)$
$(2+2-4)=0$ and $(4-6+2)=0$

## THEN

(so $\left(\begin{array}{c}1 \\ -2 \\ -2\end{array}\right)$ is perpendicular to both normal vectors)
so the vector equation of $L$ can be written as $r=\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ -2\end{array}\right)$
Note: Award $\boldsymbol{M} 1$ for substituting $x=0$ (or $y=2$ or $z=4$ ) into $\Pi_{1}$ and $\Pi_{2}$ and solving simultaneously, for example, solving $-y+2 z=6$ and $3 y-z=2$. Award A1 for $y=2$ and $z=4$, for example.

## Question 6 continued

## METHOD 3

attempts row reduction to obtain eg,
$x+\frac{z}{2}=2$ and $y-z=-2$
substitutes $x=\lambda$ into $x+\frac{z}{2}=2$, solves for $z$ and obtains $z=4-2 \lambda$ A1
substitutes $z=4-2 \lambda$ into $y-z=-2$, solves for $y$ and obtains $y=2-2 \lambda$
so the vector equation of $L$ can be written as $r=\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ -2\end{array}\right)$

## METHOD 4

attempts to solve $2 x-y+2 z=6$ and $4 x+3 y-z=2$
for example, $x=\lambda, y=2-2 \lambda, z=4-2 \lambda$
so the vector equation of $L$ can be written as $r=\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ -2\end{array}\right)$
Note: Only award marks for convincing use of a GDC.

## Question 6 continued

## (b) EITHER

the position vector for point P nearest to the origin is perpendicular to the direction of $L$

$$
\begin{align*}
& \left(\begin{array}{c}
\lambda \\
2-2 \lambda \\
4-2 \lambda
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-2 \\
-2
\end{array}\right)=0  \tag{M1}\\
& \lambda-2(2-2 \lambda)-2(4-2 \lambda)=0  \tag{A1}\\
& 9 \lambda-12=0 \tag{A1}
\end{align*}
$$

## OR

let $s$ be the distance from the origin to a point P on $L$, then

$$
\begin{equation*}
s^{2}=\lambda^{2}+(2-2 \lambda)^{2}+(4-2 \lambda)^{2} \tag{A1}
\end{equation*}
$$

attempts to find $\lambda$ such that $\frac{\mathrm{d}\left(s^{2}\right)}{\mathrm{d} \lambda}=0$
either $\frac{\mathrm{d}\left(s^{2}\right)}{\mathrm{d} \lambda}=18 \lambda-24(=0)$ or a graph of $s^{2}$ versus $\lambda$
Note: Award as above for use of $s=\sqrt{\lambda^{2}+(2-2 \lambda)^{2}+(4-2 \lambda)^{2}}$.

## THEN

$\lambda=\frac{4}{3}$
$\mathrm{P}\left(\frac{4}{3},-\frac{2}{3}, \frac{4}{3}\right)(\mathrm{P}(1.33,-0.667,1.33)$
7. attempts to express $x$ in terms of $\tan y$
$x=\tan y+2$
let $V$ be the volume of the solid
correctly uses $V=\pi \int_{a}^{b} x^{2} \mathrm{~d} y$
Note: Award MO for $V=\pi \int_{a}^{b}(\arctan (x-2))^{2} d y$
$V=\pi \int_{0}^{\frac{\pi}{3}}(\tan y+2)^{2} \mathrm{~d} y\left(=\pi \int_{0}^{1.0472 \ldots}(\tan y+2)^{2} \mathrm{~d} y\right)$
$=24.0213 \ldots$
$=24.0 \quad(=\pi(4 \ln 2+\pi+\sqrt{3}))$
Note: GDC in degrees gives 13.3
8. (a) EITHER
attempts to find the $y$-coordinate of either the local minimum point or the local maximum point

## OR

attempts to find the discriminant of $2 x-5=y\left(x^{2}-3\right)\left(y x^{2}-2 x+(5-3 y)=0\right)$
$\Delta=4-4 y(5-3 y)\left(=4-20 y+12 y^{2}\right)$

## THEN

$y=1.43425 \ldots$ (local min.) and $y=0.232408 \ldots$ (local max.)
(A1)(A1)
$g(x) \leq 0.232$ OR $g(x) \geq 1.43\left(g(x) \leq \frac{-\sqrt{13}+5}{6}\right.$ OR $\left.g(x) \geq \frac{\sqrt{13}+5}{6}\right)$
Note: Accept other valid notations such as interval notation.
(b) $\frac{2|x|-5}{x^{2}-3} \geq 0$ (since $\cos t<0$ for $\left.\frac{\pi}{2}<t \leq \pi\right)$
attempts to solve graphically or algebraically

$$
x \leq-\frac{5}{2} \text { OR }-\sqrt{3}<x<\sqrt{3}(-1.73<x<1.73) \text { OR } x \geq \frac{5}{2}
$$

## 9. METHOD 1

10 numbers of the form $3 n, 10$ numbers of the form $(3 n-1)$ and 10 numbers of the form ( $3 n-2$ ) ( may be seen anywhere)
considers one of the following two cases of forming a sum divisible by 3
case 1 :
chooses 3 numbers of the form $3 n$ or chooses 3 numbers of the form $(3 n-1)$ or chooses 3 numbers of the form ( $3 n-2$ )
${ }^{10} C_{3}+{ }^{10} C_{3}+{ }^{10} C_{3}\left(=3 \times{ }^{10} C_{3}=3 \times 120=360\right)$ ways
case 2:
chooses 1 number of the form $3 n$ and chooses 1 number of the form ( $3 n-1$ ) and chooses 1 number of the form ( $3 n-2$ )
${ }^{10} C_{1} \times{ }^{10} C_{1} \times{ }^{10} C_{1}\left(=\left({ }^{10} C_{1}\right)^{3}=10^{3}=1000\right)$ ways OR $\frac{{ }^{30} C_{1} \times{ }^{20} C_{1} \times{ }^{10} C_{1}}{3!}(=1000)$ ways
total number of ways is $3 \times{ }^{10} C_{3}+{ }^{10} C_{1} \times{ }^{10} C_{1} \times{ }^{10} C_{1}(=360+1000)$ $=1360$

## METHOD 2

total number of ways of choosing 3 numbers (without restriction) is ${ }^{30} C_{3}=4060$
attempts to find the total number of ways of choosing 3 numbers whose sum is not divisible by 3
chooses 2 numbers from one group and chooses 1 number from another group eg chooses 2 numbers of the form $3 n$ and chooses 1 number of the form $3 n-1$
$3!\times{ }^{10} C_{2} \times{ }^{10} C_{1}=2700$
Note: Award (M1) for any integer multiple of ${ }^{10} C_{2} \times{ }^{10} C_{1}$.
total number of ways is $4060-2700$
$=1360$

## Section B

10. (a) $7.8=\frac{2 \pi}{\text { period }}$
(M1)
$\frac{2 \pi}{7.8}=0.805536 \ldots$
period $=0.806\left(=\frac{20 \pi}{78}\right)$
[2 marks]
(b) METHOD 1
(i) amplitude $=\frac{\max -\min }{2}$
$\frac{1.8-1}{2}$
$a=-0.4$
(ii) $\quad b=1.4$

## METHOD 2

attempt to form two simultaneous equations in $a$ and $b$
$H(0)=1 \Rightarrow a+b=1, H\left(\frac{\pi}{7.8}\right)=1.8 \Rightarrow-a+b=1.8$
$a=-0.4, b=1.4$

Question 10 continued
(c) EITHER

$$
\begin{equation*}
\frac{5}{\text { period }}=6.207 \ldots<6 \frac{1}{2} \tag{A1}
\end{equation*}
$$

OR
consideration of number of maximums on graph in first 5 seconds

## OR

maximums when $t=0.403,1.21,2.01,2.82,3.62,4.43$

## THEN

6 times
(d) recognizing that $H(t)=1.5$

Question 10 continued
(e) finding second time height is 1.5 metres
$t=0.571757 \ldots$
in each period, height is greater than 1.5 metres for $0.337978 \ldots$ seconds
Note: Award (M1)(A1) for total time 2.02787...seen.
multiplying their value by 6 and divide by 5

$$
\frac{0.337978 \ldots \times 6}{5} \text { OR } \frac{2.02787 \ldots}{5}
$$

$=0.405574$.
$\mathrm{P}($ height is greater than 1.5 m$)=0.406$
11. (a) attempts to form a numerator involving a product of two terms involving $y$ and a denominator involving a product of two terms involving $r+y$
$\frac{y(y-1)}{(r+y)(r+y-1)}=\frac{1}{3}$
attempts to remove the fractions and expand the brackets
$3 y^{2}-3 y=y^{2}+2 r y-y+r^{2}-r$
$2 y^{2}-2 r y-2 y+r-r^{2}=0$
$2 y^{2}-2(r+1) y+r-r^{2}=0$
AG

## [4 marks]

(b) attempts to solve for $y$

$$
\begin{align*}
& y=\frac{2(r+1) \pm \sqrt{4(r+1)^{2}-8\left(r-r^{2}\right)}}{4}  \tag{A1}\\
& y=\frac{2(r+1) \pm \sqrt{12 r^{2}+4}}{4} \\
& y=\frac{(r+1) \pm \sqrt{3 r^{2}+1}}{2}
\end{align*}
$$

(since $r, y \in \mathbb{Z}^{+}$) and $\frac{(r+1)-\sqrt{3 r^{2}+1}}{2}<0$ for $r>1$
Note: Award the R1 for stating that number of balls cannot be negative, or similar.
Note: Accept $y>0$

$$
\text { so } y=\frac{(r+1)+\sqrt{3 r^{2}+1}}{2}
$$

## Question 11 continued

(c) attempts to find a pair of positive integer values eg by using a table

Note: Award $\mathbf{M 0}$ if numbers are not positive integers.
1 red ball and 2 yellow balls ( $r=1$ and $y=2$ )
4 red balls and 6 yellow balls ( $r=4$ and $y=6$ )
Note: Award A1 for one solution and A2 for another.
15 red balls and 21 yellow balls ( $r=15$ and $y=21$ ) is the next solution.
(d) attempts to form a numerator involving a product of three terms involving $y$ and a denominator involving a product of three terms that includes a $(y+10)$ term
$\mathrm{P}(Y Y Y)=\frac{y(y-1)(y-2)}{(y+10)(y-1+10)(y-2+10)}\left(=\frac{y(y-1)(y-2)}{(y+10)(y+9)(y+8)}\right)$
Note: Award A1 for a correct numerator and A1 for a correct denominator.
(e) $\quad \mathrm{P}($ new $Y Y Y)=\frac{(y+1)(y)(y-1)}{(y+1+10)(y+10)(y-1+10)}\left(=\frac{(y+1)(y)(y-1)}{(y+11)(y+10)(y+9)}\right)$
equates their answer for $\mathrm{P}($ new $Y Y Y)$ to $2 \times$ their answer for part (d)

$$
\frac{2 y(y-1)(y-2)}{(y+10)(y+9)(y+8)}=\frac{(y+1)(y)(y-1)}{(y+11)(y+10)(y+9)}
$$

attempts to solve for $y$
Note: Award (M1) for attempting to write the above expression as

$$
\frac{2(y-2)}{y+8}=\frac{y+1}{y+11} .
$$

$y=4$
12. (a) attempts to use $y_{1}=y_{0}+h \times f\left(x_{0}, y_{0}\right)$

$$
\begin{aligned}
& y_{1}=2+0.1 \times \frac{1^{2}+3(2)^{2}}{2} \\
& =2.65
\end{aligned}
$$

Note: Award (M1)AO for 2.35 .
(b) let $y=v x$

$$
\begin{align*}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}  \tag{A1}\\
& v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{x^{2}+3 v^{2} x^{2}}{v x^{2}} \\
& x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1+2 v^{2}}{v}
\end{align*}
$$

attempt to separate variables $x$ and $v$

$$
\int \frac{v}{2 v^{2}+1} \mathrm{~d} v=\int \frac{1}{x} \mathrm{~d} x
$$

$$
\frac{1}{4} \ln \left(2 v^{2}+1\right)=\ln x+C
$$

Note: Condone the absence of $C$ to this stage.

Question 12 continued

## EITHER

$\frac{1}{4} \ln \left(\frac{2 y^{2}}{x^{2}}+1\right)=\ln x+C$
when $x=1, y=2 \Rightarrow C=\frac{1}{4} \ln 9$
Note: Award M1 for attempting to find their value of $C$.
$\frac{1}{4} \ln \left(\frac{2 y^{2}}{x^{2}}+1\right)=\ln x+\frac{1}{4} \ln 9$
$\left(\frac{2 y^{2}}{x^{2}}+1\right)^{\frac{1}{4}}=\sqrt{3} x$

OR
$\ln \left(\frac{2 y^{2}}{x^{2}+1}\right)=\ln \left(x^{4}\right)+\ln C$
$\frac{2 y^{2}}{x^{2}}+1=C x^{4}$
when $x=1, y=2 \Rightarrow C=9$

## THEN

$$
\frac{2 y^{2}}{x^{2}}+1=9 x^{4}
$$

A1

$$
y=x \sqrt{\frac{9 x^{4}-1}{2}}
$$

Question 12 continued
(c) $y=2.71422 \ldots$
$y=2.71$
(d) EITHER
the graph of $y=x \sqrt{\frac{9 x^{4}-1}{2}}$ is concave up (for $1 \leq x \leq 1.1$ )
OR
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0($ for $1 \leq x \leq 1.1)$ A1

Note: Allow positive curvature, opening upwards, increasing first derivative.

## THEN

hence the tangent drawn using Euler's method gives an underestimate of the true value, so the value of $y$ when $x=1.1$ is greater than the approximate value found in part (a)

Note: Only award R1 if there is reference to tangent (in words or in a diagram).

Question 12 continued
(e) EITHER

Note: Award the first $\boldsymbol{A}$ mark for a correct graph seen in part (d).
correct graph of $\frac{\mathrm{d} y}{\mathrm{~d} x}$


## OR

correct graph of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$


## THEN

$x=0.655996 \ldots$
$x=0.656$
A1

## Question 12 continued

(f) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$ (seen anywhere)

Note: Award (A1) for equivalent answers (seen anywhere) such as $\frac{-x^{4}+x^{2} y^{2}+6 y^{4}}{x^{2} y^{3}}=0$ or $-x^{4}+x^{2} y^{2}+6 y^{4}=0$.

## EITHER

divides $-x^{4}+x^{2} y^{2}+6 y^{4}(=0)$ through by $y^{4}$
$-\frac{x^{4}}{y^{4}}+\frac{x^{2}}{y^{2}}+6(=0)$
$m=\frac{y}{x} \Rightarrow-\frac{1}{m^{4}}+\frac{1}{m^{2}}+6(=0)$
$6 m^{4}+m^{2}-1(=0)$
$\left(3 m^{2}-1\right)\left(2 m^{2}+1\right)=0$
$m= \pm \frac{1}{\sqrt{3}}\left(m^{2}=-\frac{1}{2}\right)$

## OR

divides $-x^{4}+x^{2} y^{2}+6 y^{4}(=0)$ through by $x^{2} y^{2}$

$$
\begin{align*}
& -\frac{x^{2}}{y^{2}}+1+6 \frac{y^{2}}{x^{2}}(=0)  \tag{M1}\\
& m=\frac{y}{x} \Rightarrow-\frac{1}{m^{2}}+1+6 m^{2}(=0)  \tag{M1}\\
& 6 m^{4}+m^{2}-1(=0) \\
& \left(3 m^{2}-1\right)\left(2 m^{2}+1\right)=0 \\
& m= \pm \frac{1}{\sqrt{3}}\left(m^{2}=-\frac{1}{2}\right)
\end{align*}
$$

Question 12 continued

## OR

attempts to factorize $-x^{4}+x^{2} y^{2}+6 y^{4}(=0)$
$-\left(x^{2}-3 y^{2}\right)\left(x^{2}+2 y^{2}\right)(=0)$
attempts to solve their factorized equation
$\Rightarrow y= \pm \frac{1}{\sqrt{3}} x\left(y^{2}=-\frac{1}{2} x^{2}\right)$

## THEN

$y=\frac{1}{\sqrt{3}} x$ (and so $m=\frac{1}{\sqrt{3}}$ )
as $x>0, y>0$ (or equivalent reasoning/justification)
Note: Award $\boldsymbol{R 1}$ for $y=\frac{1}{\sqrt{3}} x$ (and so $m=\frac{1}{\sqrt{3}}$ ) as $y \neq-\frac{1}{\sqrt{3}} x$ and $x^{2}+2 y^{2}=0$ for $x=0$ and $y=0$ only.

# Markscheme 

## May 2023

# Mathematics: analysis and approaches 

## Higher level

## Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2023
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2023
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

## Instructions to Examiners

## Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

## Using the markscheme

## 1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

## 2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award MO followed by $\boldsymbol{A 1}$, as $\boldsymbol{A}$ mark(s) depend on the preceding $\boldsymbol{M}$ mark(s), if any.
- Where $\boldsymbol{M}$ and $\boldsymbol{A}$ marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more $\boldsymbol{A}$ marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A} G$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part.

Examples:

|  | Correct <br> answer seen | Further <br> working seen | Any FT issues? | Action |
| :--- | :--- | :--- | :--- | :--- |
| 1. | $8 \sqrt{2}$ | $5.65685 \ldots$ <br> (incorrect <br> decimal value) | No. <br> Last part in question. | Award $\boldsymbol{A 1}$ for the final mark <br> (condone the incorrect further <br> working) |
| 2. | $\frac{35}{72}$ | 0.468111... <br> (incorrect <br> decimal value) | Yes. <br> Value is used in <br> subsequent parts. | Award $\boldsymbol{A O}$ for the final mark <br> (and full FT is available in <br> subsequent parts) |

## 3 Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

## 4 Follow through marks (only applied after an error is made)

Follow through ( $F T$ ) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further $\boldsymbol{A}$ marks can be awarded for work which uses the error, but $\boldsymbol{M}$ marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FTmarks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".


## Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an $\boldsymbol{M}$ mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.


## Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, $\boldsymbol{M}$ marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.


## 8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an $\boldsymbol{A}$ mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate $\boldsymbol{A}$ marks do NOT need to be simplified.

## 9 Calculators

A GDC is required for this paper, but if you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.

## 10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

## Section A

1. (a) Let N be North
$\mathrm{NJD}=34^{\circ}$ OR D $\mathrm{JL}=56^{\circ}$ (must be labelled or indicated in diagram):
JD̂L=99 $\left(^{\circ}\right)$
Note: Accept $\frac{11 \pi}{20}, 1.73$ (radians).
(b) attempt to apply the sine rule
$\frac{\mathrm{DL}}{\sin 56^{\circ}}=\frac{500}{\sin 99^{\circ}}$ OR $\frac{\mathrm{DL}}{\sin 0.977384 \ldots}=\frac{500}{\sin 1.72787 \ldots}$
419.685...
$\mathrm{DL}=420(\mathrm{~km})$
Note: Award M1A1AO for $261(\mathrm{~km})$ from use of degrees with GDC set in radians (with or without working).
2. (a) attempt to substitute $g$ into $f$

$$
(f \circ g)(x)=2 \tan x-\tan ^{3} x
$$

(b)


Note: A1 for approximately correct odd function passing through the origin with a maximum above $y=1$ and a minimum below $y=-1$.
$\boldsymbol{A 1}$ for endpoints at $x= \pm 1$ and $y$ in the intervals $[0.6,0.8]$ and $[-0.8,-0.6$ ]
A1 for maximum in approximately correct position and labelled $(0.685,1.09)$ AND minimum in approximately correct position and labelled $(-0.685,-1.09)$. For approximate position, allow $-0.8 \leq x \leq-0.6$,
$-1.2 \leq y \leq-1$ for minimum and $0.6 \leq x \leq 0.8,1 \leq y \leq 1.2$ for maximum. If the candidate gives the coordinates of extrema below their sketch, only award this mark if extrema are marked in the correct interval (eg by a dot).
3. (a) recognising to find $y(25)$
$y(25)=-0.6 \times 25^{2}+23 \times 25+110$
$=310$ (children)
(b) recognizing $x$ on $y$ is required
$0.0935114 \ldots$ and $7.43053 \ldots$
$x=0.0935 y+7.43$
(c) attempt to substitute their answer to part (a) into their regression equation for either $x$ or $y$
$x=0.0935114 \ldots \times 310+7.43053 \ldots(=36.4190 \ldots)$
36 (accept 37 or 36.4)
Note: Award (M1)A1FT for $x=37$ found from using $y=9.39 x-41.5$.
Award (M1)AOFT for a correct $\boldsymbol{F T}$ answer that lies outside [15,46].

## 4. METHOD 1

$$
Q_{1}=31.86 \text { OR } Q_{3}=32.14
$$

recognition that the area under the normal curve below $Q_{1}$ or above $Q_{3}$ is 0.25 OR the area between $Q_{1}$ and $Q_{3}$ is 0.5 (seen anywhere including on a diagram)

## EITHER

equating an appropriate correct normal CDF function to its correct probability ( 0.25 or 0.5 or 0.75) (A2)

## OR

$z=-0.674489 \ldots$ OR $z=0.674489 \ldots$ (seen anywhere)
$-0.674489 \ldots=\frac{31.86-32}{\sigma}$ OR $0.674489 \ldots=\frac{32.14-32}{\sigma}$

## THEN

0.207564...
$\sigma=0.208(\mathrm{~mm})$

## METHOD 2

recognition that the area under the normal curve below $Q_{1}$ or above $Q_{3}$ is 0.25 OR the area between $Q_{1}$ and $Q_{3}$ is 0.5 (seen anywhere including on a diagram)
$z=-0.674489 \ldots$ OR $z=0.674489 \ldots$
$\left(Q_{1}=\right) 32-0.674489 \ldots \sigma$ OR $\left(Q_{3}=\right) 32+0.674489 \ldots \sigma$
$\left(Q_{3}-Q_{1}=\right) 2 \times 0.674489 \ldots \sigma$
$2 \times 0.674489 \ldots \sigma=0.28$
0.207564...
$\sigma=0.208(\mathrm{~mm})$
5. product of a binomial coefficient, a power of $a x^{3}$ and a power of $b$ seen (M1) evidence of correct term chosen
for $n=8: r=2$ (or $r=6$ ) OR for $n=10: r=2$ (or $r=8$ )
correct equations (may include powers of $x$ )
${ }^{8} C_{2} a^{2} b^{6}=448\left(28 a^{2} b^{6}=448 \Rightarrow a^{2} b^{6}=16\right),{ }^{10} C_{2} a^{2} b^{8}=2880\left(45 a^{2} b^{8}=2880 \Rightarrow a^{2} b^{8}=64\right)$
attempt to solve their system in $a$ and $b$ algebraically or graphically
$b=2 ; a=\frac{1}{2}$
A1A1

Note: Award a maximum of (M1)(A1)A1A1(M1)A1AO for $b= \pm 2$ and/or $a= \pm \frac{1}{2}$.
6. (a) attempt to use De Moivre's theorem
$\left(\cos \frac{11 \pi}{18}+\mathrm{i} \sin \frac{11 \pi}{18}\right)^{n}=\cos \frac{11 \pi n}{18}+\mathrm{i} \sin \frac{11 \pi n}{18}\left(=\mathrm{e}^{\frac{11 \pi n}{18}}\right)$ OR $\cos \left(110^{\circ} n\right)+\mathrm{i} \sin \left(110^{\circ} n\right)$

## EITHER

attempt to consider imaginary part
$\sin \frac{11 \pi n}{18}=-1$ OR $\sin \left(110^{\circ} n\right)=-1$
OR
attempt to consider argument of -i
$\mathrm{e}^{\frac{11 \pi n}{18} \mathrm{i}}=\mathrm{e}^{\frac{3 \pi_{\mathrm{i}}}{2}}$

## THEN

$\frac{11 \pi n}{18}=\frac{3 \pi}{2}, \frac{7 \pi}{2}\left(, \frac{11 \pi}{2}\right) \ldots\left(=\frac{3 \pi}{2}+2 \pi k, k \in \mathbb{Z}\right) \mathrm{OR}$
$110^{\circ} n=270^{\circ}, 630^{\circ}\left(, 990^{\circ}\right) \ldots\left(=270^{\circ}+360^{\circ} k, k \in \mathbb{Z}\right)$
$11 n=27,63,99, \ldots$
$n=9$

## Question 6 continued

(b) EITHER
$z^{10}=\mathrm{e}^{10\left(\frac{11 \pi_{i}}{18}\right)}\left(=\mathrm{e}^{\frac{55 \pi}{9} \mathrm{i}}=\mathrm{e}^{\frac{\pi}{9} \mathrm{i}}\right)$ OR $\arg \left(z^{10}\right)=\frac{\pi}{9}$ OR $\arg \left(z^{10}\right)=20^{\circ}$
Note: Accept equivalent arguments given in any interval, in degrees or radians.
recognising that the difference between $\arg \left(z^{10}\right)$ and $\arg (z)$ is needed
$\arg \left(z^{10}\right)-\arg (z)=\frac{\pi}{9}-\frac{11 \pi}{18}=-\frac{\pi}{2}$

OR
recognising that $z^{10}=z^{9} \times z$
$z^{9}=\mathrm{e}^{9\left(\frac{11 \pi_{i}}{18}\right)}\left(=\mathrm{e}^{\frac{11 \pi \pi_{\mathrm{i}}}{2}}=\mathrm{e}^{\frac{3 \pi_{\mathrm{i}}}{2}}\right)$ OR $\arg \left(z^{9}\right)=\frac{3 \pi}{2}$ or $-\frac{\pi}{2}$ OR $\arg \left(z^{9}\right)=270^{\circ}$ or $-90^{\circ}$
Note: Accept equivalent arguments given in any interval, in degrees or radians.

## THEN

a rotation $\frac{3 \pi}{2}$ OR $-\frac{\pi}{2}$ OR equivalent angle about the origin.
Note: Accept correct answer given in degrees.
Accept $\frac{\pi}{2}$ clockwise or $\frac{11 \pi}{2}$ or $\frac{(4 k-1) \pi}{2}$ for $k \in \mathbb{Z}$.
The centre must be stated to gain the final $\boldsymbol{A 1}$.
7. (a)


Note: award A1 for branch correctly labelled $1-p$
award A1 for branches correctly labelled 0.95 and 0.05
award $\boldsymbol{A O}$ for $G^{\prime}$ branch labelled $p^{\prime}$
award $\boldsymbol{A} \boldsymbol{O}$ for $G^{\prime}$ branch labelled $q$ unless explicitly defined as $1-p$

Question 7 continued
(b) METHOD 1
recognizing conditional probability
$\mathrm{P}\left(G^{\prime} \mid p o s\right)$ OR $\mathrm{P}(G \mid p o s)$
$\frac{0.02(1-p)}{0.95 p+0.02(1-p)}\left(=\frac{18}{150}\right)$ OR $\frac{0.95 p}{0.95 p+0.02(1-p)}\left(=\frac{132}{150}\right)$
Note: Award A1 for a correct numerator and A1 for a correct denominator.
$p=0.133738$
$p=0.134$

## METHOD 2

attempt to set up a system of equations ( $S=$ sample size)
$p(0.95 S)=132$ and $(1-p)(0.02 S)=18$
attempt to solve for $p$ or $S$
$\frac{0.95 p}{0.02(1-p)}=\frac{132}{18}$
OR $S=p S+(1-p) S=\frac{132}{0.95}+\frac{18}{0.02}=138.947 \ldots+900=1038.94 \ldots$
$p=0.133738 \ldots$
$p=0.134$

## METHOD 3

attempt to find the number of parrots with the gene and the number without number of parrots with the gene $\approx \frac{132}{0.95}=138.947 \ldots$ AND
number of parrots without the gene $\approx \frac{18}{0.02}=900$
number of parrots in the sample $\approx 138.947 \ldots+900=1038.94 \ldots$
attempt to find proportion of sample with the gene
$p \approx \frac{138.947 \ldots}{1038.94 \ldots}=0.133738 \ldots$
$p=0.134$
8. direction vector of the line is $\left(\begin{array}{c}3 \\ 2 \\ -1\end{array}\right)$ (seen anywhere)
normal vector of the plane is $\left(\begin{array}{c}4 \\ \cos \alpha \\ \sin \alpha\end{array}\right)$ (seen anywhere)

## EITHER

correct scalar product $12+2 \cos \alpha-\sin \alpha$ (seen anywhere)
one correct magnitude (seen anywhere)
$\sqrt{16+\cos ^{2} \alpha+\sin ^{2} \alpha}(=\sqrt{17}), \sqrt{9+4+1}(=\sqrt{14})$
recognizing angle between normal and direction vector is $\frac{\pi}{2}-\alpha$ (seen anywhere)

Note: angle $\frac{\pi}{2}-\alpha$ may be implied by use of $\sin \alpha$ on the RHS of the step below
attempt to substitute into the formula for the angle between two vectors to form an equation in $\alpha$
$12+2 \cos \alpha-\sin \alpha=\sqrt{17} \sqrt{14} \cos \left(\frac{\pi}{2}-\alpha\right)$ OR $12+2 \cos \alpha-\sin \alpha=\sqrt{17} \sqrt{14} \sin \alpha$

## OR

correct expression for the magnitude of the vector product
$\left|\left(\begin{array}{c}2 \sin \alpha+\cos \alpha \\ -4-3 \sin \alpha \\ 3 \cos \alpha-8\end{array}\right)\right|\left(=\sqrt{(2 \sin \alpha+\cos \alpha)^{2}+(-4-3 \sin \alpha)^{2}+(3 \cos \alpha-8)^{2}}\right)$ (seen anywhere)
one correct magnitude (seen anywhere)
$\sqrt{16+\cos ^{2} \alpha+\sin ^{2} \alpha}(=\sqrt{17}), \sqrt{9+4+1}(=\sqrt{14})$
recognizing angle between normal and direction vector is $\frac{\pi}{2}-\alpha$ (seen anywhere)
Note: angle $\frac{\pi}{2}-\alpha$ may be implied by use of $\cos \alpha$ on the RHS of the step below
attempt to substitute into the formula for the angle between two vectors to form an equation in $\alpha$
$\sqrt{(2 \sin \alpha+\cos \alpha)^{2}+(-4-3 \sin \alpha)^{2}+(3 \cos \alpha-8)^{2}}=\sqrt{17} \sqrt{14} \sin \left(\frac{\pi}{2}-\alpha\right)$ OR
$\sqrt{(2 \sin \alpha+\cos \alpha)^{2}+(-4-3 \sin \alpha)^{2}+(3 \cos \alpha-8)^{2}}=\sqrt{17} \sqrt{14} \cos \alpha$

## THEN

$\alpha=0.932389 \ldots$
$\alpha=0.932$
Note: Award maximum (A1)(A1)(A1)(A1)(M1)(M1)AO for a correct answer given in degrees $\alpha=54.4219 . . .{ }^{\circ}$.
9. Assume $p^{2}-8 q-11=0,(p, q \in \mathbb{Z})$

Note: This M1 is dependent on the assumption of truth (implied by "assume" or "suppose that ... is true".)
Subsequent marks should be awarded independently.

## EITHER

$$
p^{2}=8 q+11(=2(4 q+5)+1) \text { so } p^{2} \text { odd } \Rightarrow p \text { odd }
$$

OR
$p$ even $\Rightarrow p^{2}-8 q=11$ even which is a contradiction so $p$ is odd
Note: This $\boldsymbol{R 1}$ should be awarded for any valid reason to conclude that $p$ must be odd.

## THEN

$p=2 k+1(, k \in \mathbb{Z})$
$(2 k+1)^{2}=8 q+11$
$4 k^{2}+4 k+1=8 q+11$
$4 k^{2}+4 k=8 q+10$
$2 k^{2}+2 k=4 q+5$ or equivalent with one side odd and one side even
a contradiction as LHS is even and RHS is odd
Note: This R1 is dependent on all previous marks.
Accept correct variations such as work based on $p=2 k-1$.
therefore, if $p, q \in \mathbb{Z}$ then $p^{2}-8 q-11 \neq 0$

## Section B

10. (a) recognition that $45=10+10+$ arc length
arc length $=25(\mathrm{~cm})$
$25=12 \theta$
$\theta=2.08$ correct to 3 significant figures
(b)

Note: There are many different ways to dissect the cross-section to determine its area. In all approaches, candidates will need to find $w$ or $\frac{w}{2}$. Award the first three marks for work seen anywhere.

## EITHER

evidence of using the cosine rule OR sine rule
$w^{2}=12^{2}+12^{2}-2 \cdot 12 \cdot 12 \cos (2.08)$ OR $\frac{w}{\sin (2.08)}=\frac{12}{\sin (0.530796 \ldots)}$
$w=20.6977 \ldots$ or $\frac{w}{2}=10.3488 \ldots$
OR
using trig ratios in a right triangle with angle $\frac{2.08}{2}$ and side length $\frac{w}{2}$
$\sin \left(\frac{2.08}{2}\right)=\frac{\frac{w}{2}}{12}$
$w=20.6977 \ldots$ or $\frac{w}{2}=10.3488 \ldots$
Note: Accept $w=20.7179 \ldots$ from use of $\frac{\theta}{2}=\frac{25}{24}$.

Question 10 continued

## THEN

Let the points A, B, C, D, E, F, G, H lie on the figure as follows:


## EITHER

(segment $\mathrm{AHB}=$ ) sector OAB - triangle OAB
$=\frac{1}{2} \times 12^{2} \times 2.08-\frac{1}{2} \times 12^{2} \times \sin 2.08(=149.76-62.8655 \ldots=86.8944 \ldots)$
valid approach to find total cross-sectional area (seen anywhere)
sector OAB - triangle OAB + rectangle CDBA
$=86.8944 \ldots+10 w(=86.8944 \ldots+206.977 \ldots)$

Note: Use of $\theta=\frac{25}{12}$ throughout leads to segment $\mathrm{OAB}=87.2517 \ldots$ and cross-sectional area $=87.2517 \ldots+207.179 \ldots$.

## OR

trapezium CGOA (= rectangle CGOE + triangle EOA)
$=\frac{1}{2} \times(10+(10-12 \cos (1.04))) \times \frac{20.6977 \ldots}{2}(=72.0557)$
valid approach to find total cross-sectional area (seen anywhere)
$2 \times$ trapezium CGOA + sector OAB
$=2(72.0557 \ldots)+\frac{1}{2} \times 12^{2} \times 2.08(=144.111 \ldots+149.76)$

Note: Use of $\theta=\frac{25}{12}$ leads to area of trapezium CGOA $=72.2154 \ldots$ and cross-sectional area $=144.430 \ldots+150$.

## OR

$2 x$ area of trapezium CGOA ( $=$ area of rectangle CDFE $+2 x$ triangle EOA)
$20.6977 \ldots \times(10-12 \cos (1.04))+2 \times \frac{1}{2} \times 12 \cos (1.04) \times 12 \sin (1.04)$
(=81.2458... $+62.8655 \ldots$...)
valid approach to find total cross-sectional area (seen anywhere)
$2 x$ trapezium CGOA + sector OAB
$=144.111 \ldots+\frac{1}{2} \times 12^{2} \times 2.08(=144.111 \ldots+149.76)$

Note: Use of $\theta=\frac{25}{12}$ leads to 2 x area of trapezium CGOA $=144.430 \ldots$ and cross-sectional area $=144.430 \ldots+150$.

## THEN

area of cross-section $=293.871$... $(294.430 \ldots$ from exact answer)
$=294\left(\mathrm{~cm}^{2}\right)$

A1
continued...

## (c) METHOD 1

-4.71976... volume of gutter $=176323$ OR 176658 (OR $600 \times$ their area) (seen
anywhere)
recognising rainfall can be represented by an integral
$\int_{0}^{60} R^{\prime}(t) \mathrm{d} t\left(=\frac{250}{2} \sin \left(\frac{2 \times 60}{5}\right)+3000 \times 60\right)$
Note: Accept any 60 second interval or any interval which is a multiple of 5 seconds (one period) scaled up to 60 seconds e.g. $12 \int_{0}^{5} R^{\prime}(t) \mathrm{d} t$.
rainfall over 60 seconds $=180000\left(\mathrm{~cm}^{3}\right) \quad$ A1
the gutter will overflow because the rainfall > gutter volume A1

## METHOD 2

volume of gutter $=176323$ OR 176658 (OR $600 \times$ their area) (seen anywhere)
recognition that cosine has a minimum value of -1
$R^{\prime}(t) \geq-1 \times 50+3000\left(\mathrm{~cm}^{3} \mathrm{~s}^{-1}\right)$
rainfall over 60 seconds $\geq 177000$
the gutter will overflow because the rainfall > gutter volume

## METHOD 3

volume of gutter $=176323$ OR 176658 (OR $600 \times$ their area) (seen anywhere)
recognising rainfall can be represented by an integral
attempt to solve $60>58.8$ OR $\int_{0}^{T} R^{\prime}(t) \mathrm{d} t=176658$
time to reach overflow point $=58.7875 \ldots$ OR 58.8990...
the gutter will overflow because $60>58.8$ OR $60>58.9$
11. (a) $\mathrm{E}(X)=\int_{0}^{2} \frac{6 x}{\pi \sqrt{16-x^{2}}} \mathrm{~d} x$

Note: Condone the absence of $\mathrm{d} x$.
Accept $\int_{0}^{2} x f(x) \mathrm{d} x$
attempt to integrate $\frac{6 x}{\pi \sqrt{16-x^{2}}}$ using inspection/substitution
$-\frac{6}{2 \pi} \int-2 x\left(16-x^{2}\right)^{-\frac{1}{2}} \mathrm{~d} x$ or let $u=16-x^{2}$
$-\frac{6}{2 \pi}\left[2\left(16-x^{2}\right)^{\frac{1}{2}}\right]_{0}^{2}$ OR $\frac{6}{\pi}\left[-u^{\frac{1}{2}}\right]_{16}^{12}$
Note: For this A1 condone absent or incorrect limits.
attempt to substitute their limits and evaluate
$\frac{24}{\pi}-\frac{6}{\pi} \sqrt{12}\left(=\frac{12}{\pi}(2-\sqrt{3})\right)$
Note: The substitution $\sin \theta=\frac{x}{4}$ may also be used, leading to

$$
\frac{24}{\pi} \int_{0}^{\frac{\pi}{6}} \sin \theta \mathrm{~d} \theta=\frac{24}{\pi}[-\cos \theta]_{0}^{\frac{\pi}{6}}=\frac{24}{\pi}\left(1-\cos \frac{\pi}{6}\right) . \text { Award marks as }
$$

appropriate and accept $\frac{24}{\pi}\left(1-\cos \frac{\pi}{6}\right)$ for the final $\boldsymbol{A 1}$.
(b) $\int_{0}^{0.5} f(x) \mathrm{d} x\left(=\int_{0}^{0.5} \frac{6}{\pi \sqrt{16-x^{2}}} \mathrm{~d} x\right)$
$P(X<0.5)=0.239358 \ldots$
$=0.239$

Question 11 continued
(c) EITHER
recognition $P$ (at least one success after $n$ trials) $=1-P$ (no successes after $n$ trials)
$1-(1-0.239 \ldots)^{n} \geq 0.99$
$n=16.8321 \ldots$
Note: Use of 0.239 results in $n=16.8612 \ldots$

## OR

recognition that $Y \sim \mathrm{~B}(n, 0.239 \ldots)$
If $n=16 \mathrm{P}$ (at least one success after $n$ trials) $=0.987443 \ldots$
and if $n=17 \mathrm{P}$ (at least one success after $n$ trials $)=0.990448 \ldots$
Note: Use of 0.239 results in the values $0.987348 \ldots$ and $0.990371 \ldots$

## THEN

17 trials
(d) recognition that $Y \sim \mathrm{~B}(10$, their part b))

B $(10,0.239 \ldots)$
$\mathrm{P}(X=3)=0.242430 \ldots$
$=0.242$

Question 11 continued
(e) 8
(f) (i) $n-2$
A1
(ii) $\quad{ }^{n} C_{3}$ (ways of 3 successes in $n$ trials)

$$
\begin{equation*}
\frac{n-2}{{ }^{n} C_{3}} \tag{M1}
\end{equation*}
$$

Attempt to solve their $\frac{n-2}{{ }^{n} C_{3}}>0.05$ OR $\frac{6}{n(n-1)}>0.05$ (or equivalent)
Note: Accept an equation.

$$
\begin{align*}
& n=11.4658 \ldots \text { OR } \\
& \text { table values } n=11, \frac{n-2}{{ }^{n} C_{3}}=0.0545454 \ldots \text { and } n=12, \frac{n-2}{{ }^{n} C_{3}}=0.0454545 \ldots \tag{A1}
\end{align*}
$$

$n=11$
12.

Note: Penalise only once for an answer not given to six significant figures in parts (a), c(ii) and (d)(ii).
(a) attempt to use Euler's method
$y_{n+1}=y_{n}+0.03\left(\frac{x_{n}^{2} y_{n}-y_{n}}{x_{n}{ }^{2}+1}\right), y_{1}=3+0.03\left(\frac{0-3}{0+1}\right)$
$y_{1}=2.91$
at least one correct further intermediate value given to at least 3 significant figures

| $y_{0}$ | 3 |
| :--- | :--- |
| $y_{1}$ | 2.91 |
| $y_{2}$ | $2.82285 \ldots$ |
| $y_{3}$ | $2.73877 \ldots$ |
| $y_{4}$ | $2.65793 \ldots$ |
| $y_{5}$ | $2.58046 \ldots$ |

$y(0.15) \approx y_{5}=2.58046160 \ldots$
$=2.58046$
Note: Award final $\boldsymbol{A 1}$ for the correct answer seen as the last line in a table.
If the table goes beyond this value and the correct answer is not explicitly identified award maximum (M1)(A1)(A1)AO

## Question 12 continued

(b) (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=-3$

## (ii) METHOD 1

attempt to use quotient (or product) rule on

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2} y-y}{x^{2}+1}\left(=\left(x^{2}+1\right)^{-1}\left(x^{2} y-y\right)\right) \tag{M1}
\end{equation*}
$$

attempt to use product rule and implicit differentiation on $x^{2} y$

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2} y-y\right)=x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+(2 x) y-\frac{\mathrm{d} y}{\mathrm{~d} x} \text { (seen anywhere) } \\
& =3 \quad\left(\text { when } x=0, y=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-3\right) \\
& \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\left(x^{2}+1\right)\left(x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+(2 x) y-\frac{\mathrm{d} y}{\mathrm{~d} x}\right)-\left(x^{2} y-y\right)(2 x)}{\left(x^{2}+1\right)^{2}} \\
& \text { OR } \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\left(x^{2}+1\right)^{-1}\left(x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+(2 x) y-\frac{\mathrm{d} y}{\mathrm{~d} x}\right)-2 x\left(x^{2}+1\right)^{-2}\left(x^{2} y-y\right) \\
& \left.\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=3 \text { (when } x=0, y=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-3\right)
\end{aligned}
$$

## METHOD 2

$$
\left(x^{2}+1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2} y-y
$$

attempt to use product rule and implicit differentiation

$$
2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(x^{2}+1\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+(2 x) y-\frac{\mathrm{d} y}{\mathrm{~d} x}
$$

Note: Award $\boldsymbol{A 1}$ for LHS and $\boldsymbol{A 1}$ for RHS

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=3 \quad\left(\text { when } x=0, y=3, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-3\right)
$$

Question 12 continued
(c) (i) $3-3 x+\frac{x^{2}}{2!}(3)+\frac{x^{3}}{3!}(9)+\ldots\left(=3-3 x+\frac{3}{2} x^{2}+\frac{3}{2} x^{3}+\ldots\right)$

Note: Award $\boldsymbol{A 1}$ for first three terms, $\boldsymbol{A 1}$ for fourth term
(ii) $y(0.15)=2.58881125 \ldots$
$=2.58881$

## Question 12 continued

(d) (i) EITHER
attempt to separate variables
$\int \frac{1}{y} \mathrm{~d} y=\int \frac{x^{2}-1}{x^{2}+1} \mathrm{~d} x \quad$ OR $\int \frac{1}{y} \mathrm{~d} y=\int\left(1-\frac{2}{x^{2}+1}\right) \mathrm{d} x$
$\ln y=x-2 \arctan x+c$
Note: Award A1 for $\ln y$ or $\ln |y|, \boldsymbol{A 1}$ for $x-2 \arctan x$.
Condone missing $+c$ at this stage.

## OR

attempt to use integrating factor
$\frac{\mathrm{d} y}{\mathrm{~d} x}-y\left(1-\frac{2}{x^{2}+1}\right)=0$
$\mathrm{IF}=\mathrm{e}^{\int-\left(1-\frac{2}{x^{2}+1}\right) d x}=\mathrm{e}^{-x+2 \arctan x}$

## THEN

$\ln y=x-2 \arctan x+c$ OR $y=A \mathrm{e}^{x-2 \arctan x}$
attempt to find $c$ or $A$ using $x=0, y=3$
$\ln 3=0-2 \arctan 0+c$ OR $3=A \mathrm{e}^{0-2 \arctan 0}$
$c=\ln 3$ OR $A=3$

Note: This A1 should not be awarded if a correct value of $c$ or $A$ is preceded by incorrect working.

$$
y=\mathrm{e}^{x-2 \arctan x+\ln 3}\left(=3 \mathrm{e}^{x-2 \arctan x}\right)
$$

Question 12 continued
(ii) $y(0.15)=2.58786288 \ldots$
$=2.58786$
(e) the graph of $y=f(x)$ is concave up $\mathrm{OR} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0$ (for $0 \leq x<1$ )

Note: Allow positive curvature, opening upwards, increasing first derivative.
hence tangents used (in Euler's method) give an underestimate,
so the approximate value for $y$ when $x=1.5$ is less than the actual value.

Note: R1 is dependent on A1, as well as reference to tangents, in words or on a diagram.

## Markscheme

## November 2022

## Mathematics: analysis and approaches

## Higher level

## Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2022
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2022
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

## Instructions to Examiners

## Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding $\boldsymbol{M}$ marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

## Using the markscheme

## 1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

## 2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A}$ mark(s) depend on the preceding $\boldsymbol{M}$ mark(s), if any.
- Where $\boldsymbol{M}$ and $\boldsymbol{A}$ marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more $\boldsymbol{A}$ marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies $\mathbf{A 3}, \boldsymbol{M} 2$ etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $A G$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final $\boldsymbol{A} 1$ in the first part.

Examples:

|  | Correct <br> answer <br> seen | Further <br> working <br> seen | Any FT <br> issues? | Action |
| :--- | :--- | :--- | :--- | :--- |
| 1. | $8 \sqrt{2}$ | 5.65685... <br> (incorrect <br> decimal <br> value) | No. <br> Last part in <br> question. | Award A1 for <br> the final mark <br> (condone the <br> incorrect further <br> working) |
| 2. | $\frac{35}{72}$ | $0.468111 \ldots$ <br> (incorrect <br> decimal <br> value) | Yes. <br> Value is <br> used in <br> subsequent <br> parts. | Award $\boldsymbol{A O}$ for <br> the final mark <br> (and full $\boldsymbol{F T}$ is <br> available in <br> subsequent <br> parts) |

## 3 Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or implied by subsequent working/answer.

## 4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further $\boldsymbol{A}$ marks can be awarded for work which uses the error, but $\boldsymbol{M}$ marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates
fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these $\boldsymbol{F T}$ rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read
If a candidate incorrectly copies values or information from the question, this is a mis-read
$(M R)$. A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an $\boldsymbol{M}$ mark, but award all others as appropriate.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M} \boldsymbol{R}$ leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.


## 6 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.


## 7 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000
- Do not accept final answers written using calculator notation. However, $\boldsymbol{M}$ marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.


## 8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an $\boldsymbol{A}$ mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$.
However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.
Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate $\boldsymbol{A}$ marks do NOT need to be simplified.

## 9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.

## 10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first"

## Section A

1. (a) $1.01206 \ldots, 2.45230 \ldots$

$$
a=1.01, b=2.45(1.01 x+2.45)
$$

(b) $0.981464 \ldots$
$r=0.981$
Note: A common error is to enter the data incorrectly into the GDC, and obtain the answers $a=1.01700 \ldots, b=2.09814 \ldots$ and $r=0.980888 \ldots$ Some candidates may write the 3 sf answers, ie. $a=1.02, b=2.10$ and $r=0.981$ or 2 sf answers, ie. $a=1.0, b=2.1$ and $r=0.98$. In these cases award AOAO for part (a) and $\boldsymbol{A} \boldsymbol{O}$ for part (b). Even though some values round to an accepted answer, they come from incorrect working.
(c) correct substitution of 78 into their regression equation
$81.3930 \ldots, 81.23$ from 3 sf answer

81
2. (a) $(0.708519 \ldots, 0.639580 \ldots)$
$(0.709,0.640)(x=0.709, y=0.640)$
A1A1
(b) 1.09885...

$$
x=1.10 \text { (accept }(1.10,0)) \quad \text { A1 }
$$

(c) METHOD 1
$\int_{0}^{2}|f(x)| d x$
4.61117...
area $=4.61$

METHOD 2
$-\int_{1.09885 . . .}^{2} f(x) d x$ OR $\int_{1.09885 \ldots}^{2}|f(x)| d x$ OR $4.17527 \ldots$
(A1)
$\int_{0}^{1.09885 \ldots} f(x) d x-\int_{1.09885 \ldots}^{2} f(x) d x$ OR $0.435901 \ldots+4.17527 \ldots$
(A1)
4.61117...
area $=4.61$
3. $\quad 86.4=50 r^{3}$
$r=1.2\left(=\sqrt[3]{\frac{86.4}{50}}\right)$ seen anywhere
$\frac{50\left(1.2^{n}-1\right)}{0.2}>33500$ OR $250\left(1.2^{n}-1\right)=33500$
attempt to solve their geometric $S_{n}$ inequality or equation
sketch OR $n>26.9045, n=26.9$ OR $S_{26}=28368.8$ OR $S_{27}=34092.6$ OR algebraic manipulation involving logarithms

$$
n=27 \text { (accept } n \geq 27 \text { ) }
$$

4. recognition that initial population is 15000 (seen anywhere)
$P(0)=15000$ OR $0.11 \times 15000$ OR $0.89 \times 15000$
population after $11 \%$ decrease is $15000 \times 0.89(=13350)$
recognizing that $t=8$ on 1 January 2022 (seen anywhere)
substitution of their value of $t$ for 1 January 2022 and their value of $P(8)$ into the model
$15000 \times 0.89=15000 \mathrm{e}^{8 k}$ OR $13350=15000 \mathrm{e}^{8 k}$
$k=\frac{\ln 0.89}{8}(-0.014566)$
substitution of $t=2041-2014(=27)$ and their value for $k$ into the model
$P(27)=15000 e^{-0.0145 \ldots \times 27}$
10122.3...
$P(27)=10100(10122)$
5. 

Note: Do not award any marks if there is clear evidence of adding instead of multiplying, for example ${ }^{9} C_{r}+(a x)^{9-r}+(1)^{r}$.
valid approach for expansion (must be the product of a binomial coefficient with $n=9$ and a power of $a x$ )
${ }^{9} C_{r}(a x)^{9-r}(1)^{r}$ OR ${ }^{9} C_{9-r}(a x)^{r}(1)^{9-r}$ OR ${ }^{9} C_{0}(a x)^{0}(1)^{9}+{ }^{9} C_{1}(a x)^{1}(1)^{8}+\ldots$
recognizing that the term in $x^{6}$ is needed
$\frac{\text { Term in } x^{6}}{21 x^{2}}=k x^{4}$ OR $r=6$ OR $r=3$ OR $9-r=6$
correct term or coefficient in binomial expansion (seen anywhere)
${ }^{9} C_{6}(a x)^{6}(1)^{3}$ OR ${ }^{9} C_{3} a^{6} x^{6}$ OR $84\left(a^{6} x^{6}\right)(1)$ OR $84 a^{6}$

## EITHER

correct term in $x^{4}$ or coefficient (may be seen in equation)
$\frac{{ }^{9} C_{6}}{21} a^{6} x^{4}$ OR $4 a^{6} x^{4}$ OR $4 a^{6}$
Set their term in $x^{4}$ or coefficient of $x^{4}$ equal to $\frac{8}{7} a^{5} x^{4}$ or $\frac{8}{7} a^{5}$ (do not accept other powers of $x$ )
$\frac{{ }^{9} C_{3}}{21} a^{6} x^{4}=\frac{8}{7} a^{5} x^{4}$ OR $4 a^{6}=\frac{8}{7} a^{5}$

Question 5 continued

## OR

correct term in $x^{6}$ or coefficient of $x^{6}$ (may be seen in equation)
$84 a^{6} x^{6}$ OR $84 a^{6}$
Set their term in $x^{6}$ or coefficient of $x^{6}$ equal to $24 a^{5} x^{6}$ or $24 a^{5}$
(do not accept other powers of $x$ )
$84 a^{6} x^{6}=24 a^{5} x^{6}$ OR $\quad 84 a=24$

## THEN

$$
a=\frac{2}{7} \approx 0.286(0.285714 \ldots)
$$

Note: Award $\boldsymbol{A} \boldsymbol{O}$ for the final mark for $a=\frac{2}{7}$ and $a=0$.
6. (a) $\int_{0}^{b} a x e^{x} \mathrm{~d} x=1$ (seen anywhere)
attempt to use integration by parts (either way around)

$$
\begin{align*}
& {\left[a x \mathrm{e}^{x}\right]_{0}^{b}-\int_{0}^{b} a \mathrm{e}^{x} \mathrm{~d} x(=1)}  \tag{A1}\\
& {\left[a x \mathrm{e}^{x}\right]_{0}^{b}-\left[a \mathrm{e}^{x}\right]_{0}^{b}(=1)}
\end{align*}
$$

Note: Condone incorrect or absent limits up to this point.

$$
a b \mathrm{e}^{b}-a \mathrm{e}^{b}+a=1
$$

$$
a=\frac{1}{b \mathrm{e}^{b}-\mathrm{e}^{b}+1}
$$

(b) $\int_{0}^{m} x \mathrm{e}^{x} \mathrm{~d} x=\frac{1}{2}$

$$
\begin{aligned}
& {\left[x \mathrm{e}^{x}\right]_{0}^{m}-\left[\mathrm{e}^{x}\right]_{0}^{m}=\frac{1}{2}} \\
& m \mathrm{e}^{m}-\mathrm{e}^{m}+1=\frac{1}{2}
\end{aligned}
$$

$$
m=0.768039 \ldots
$$

$$
m=0.768
$$

7. (a) METHOD 1
attempt to use scalar product or formula for angle between two vectors
$\boldsymbol{u} \cdot \boldsymbol{v}=\cos \frac{1}{n}+\sin \frac{1}{n}$ (seen anywhere)
$\cos \theta=\frac{\cos \frac{1}{n}+\sin \frac{1}{n}}{\sqrt{2} \sqrt{\left(\cos ^{2} \frac{1}{n}+\sin ^{2} \frac{1}{n}\right)}}\left(=\frac{\cos \frac{1}{n}+\sin \frac{1}{n}}{\sqrt{2}}\right)$

## METHOD 2

attempt to use an Argand diagram showing two complex numbers in the first quadrant with the angle between them marked as $\theta$
$\arg (\boldsymbol{u})=\frac{\pi}{4}\left(\operatorname{accept} 45^{\circ}\right.$ or $\left.\arctan (1)\right)$ and $\arg (\boldsymbol{v})=\frac{1}{n}$
$\cos \theta=\cos \left|\frac{\pi}{4}-\frac{1}{n}\right|$

Question 7 continued
(b) use of $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$

## EITHER

$$
\begin{equation*}
(\cos \theta \rightarrow) \frac{1}{\sqrt{2}} \tag{A1}
\end{equation*}
$$

## OR

$$
\begin{equation*}
(v \rightarrow) i \tag{A1}
\end{equation*}
$$

## THEN

the limit is $\frac{\pi}{4}$
Note: Accept $45^{\circ}$. Do not accept rounded values such as 0.785 .

## 8. EITHER

$\left(\frac{\mathrm{d} V}{\mathrm{~d} h}=\right) 10 \pi h-\pi h^{2}$
Note: This $\boldsymbol{A} 1$ may be implied by the value $\frac{\mathrm{d} V}{\mathrm{~d} h}=76.5616 \ldots$.
attempt to use chain rule to find a relationship between $\frac{\mathrm{d} h}{\mathrm{~d} t}, \frac{\mathrm{~d} V}{\mathrm{~d} t}$ and $\frac{\mathrm{d} V}{\mathrm{~d} h}$
$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} h}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}\left(=\frac{1}{\left(\frac{\mathrm{~d} V}{\mathrm{~d} h}\right)} \times \frac{\mathrm{d} V}{\mathrm{~d} t}\right)$

## OR

attempt to differentiate $V=5 \pi h^{2}-\frac{1}{3} \pi h^{3}$ throughout with respect to $t$
$\frac{\mathrm{d} V}{\mathrm{~d} t}=10 \pi h \frac{\mathrm{~d} h}{\mathrm{~d} t}-\pi h^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}$
continued...

Question 8 continued

## THEN

$$
\begin{equation*}
\left(10 \pi h-\pi h^{2}\right) \frac{\mathrm{d} h}{\mathrm{~d} t}=2 \text { OR } \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{2}{10 \pi h-\pi h^{2}} \tag{A1}
\end{equation*}
$$

Note: Award this A1 if the correct expression is seen with their $h$ already substituted.
attempt to solve $200=5 \pi h^{2}-\frac{1}{3} \pi h^{3}$
$h=4.20648 \ldots$
Note: This (M1)(A1) can be awarded independently of all previous marks, and may be implied by the value $\frac{\mathrm{d} V}{\mathrm{~d} h}=76.5616 \ldots$ Ignore extra values of $h-3.24$ and 14.0.
$\frac{\mathrm{d} h}{\mathrm{~d} t}=0.0261227 \ldots$
$\frac{\mathrm{d} h}{\mathrm{~d} t}=0.0261\left(\mathrm{cms}^{-1}\right)$
9. (a) (i) attempt to use the cosine rule

$$
\mathrm{AC}=\sqrt{2^{2}+4^{2}-2(2)(4) \cos \alpha}(=\sqrt{20-16 \cos \alpha}=2 \sqrt{5-4 \cos \alpha})
$$

(ii) $\mathrm{AC}=\sqrt{6^{2}+8^{2}-2(6)(8) \cos \beta}(=\sqrt{100-96 \cos \beta}=2 \sqrt{25-24 \cos \beta})$
(iii) $5-4 \cos \alpha=25-24 \cos \beta$
$\alpha=\arccos (6 \cos \beta-5)$
(b) attempt to find the sum of two triangle areas using $A=\frac{1}{2} a b \sin C$

Note: Do not award this M1 if the triangle is assumed to be right angled.

$$
\begin{equation*}
\text { Area }=\frac{1}{2}(8) \sin \alpha+\frac{1}{2}(48) \sin \beta \tag{A1}
\end{equation*}
$$

attempt to express the area in terms of one variable only

$$
\begin{align*}
& =4 \sqrt{1-(6 \cos \beta-5)^{2}}+24 \sin \beta \text { or } 4 \sin (\arccos (6 \cos \beta-5))+24 \sin \beta \mathrm{OR}  \tag{M1}\\
& 4 \sin \alpha+24 \sqrt{1-\left(\frac{5+\cos \alpha}{6}\right)^{2}} \text { or } 4 \sin \alpha+24 \sin \left(\arccos \left(\frac{5+\cos \alpha}{6}\right)\right)
\end{align*}
$$

Max area $=19.5959 \ldots$
$=19.6$

## Section B

10. 

Note: Do not penalize for inclusion or non-inclusion of endpoints for probabilities using a normal distribution. For example, for $\mathrm{P}(T<55 \mid T>40)$ accept $\mathrm{P}(T \leq 55 \mid T>40), \mathrm{P}(T \leq 55 \mid T \geq 40)$, etc.
(a) recognising to find $\mathrm{P}(T>40)$
$\mathrm{P}(T>40)=0.574136 \ldots$
$\mathrm{P}(T>40)=0.574$
(b) attempt to multiply four independent probabilities using their $\mathrm{P}(T>40)$ and $\mathrm{P}(T<40)$
$(1-p)^{3} \cdot p$ OR $(1-0.574136 \ldots)^{3} \cdot 0.574136 \ldots$ OR $(0.425863 \ldots)^{3} \cdot 0.574136 \ldots$
0.0443430...
$0.0443,0.0444$ from 3 sf values

Question 10 continued
(c) (i) recognizing conditional probability

$$
\mathrm{P}(T<55 \mid T>40)
$$

Note: Award (M1) for an expression or description in context. Accept $\mathrm{P}(T>40 \mid T<55)$ but do not accept just $\mathrm{P}(A \mid B)$.

$$
\begin{align*}
& \frac{\mathrm{P}(40<T<55)}{\mathrm{P}(T>40)}  \tag{A1}\\
& \frac{0.461944 \ldots}{0.574136 \ldots} \tag{A1}
\end{align*}
$$

$\mathrm{P}(T<55 \mid T>40)=0.804590 \ldots$
$=0.805$
(ii) recognizing binomial probability

$$
X \sim \mathrm{~B}(n, p)
$$

$$
n=10 \text { and } p=0.804589 \ldots
$$

$0.0242111 \ldots, 0.0240188 \ldots$ using $p=0.805$
$\mathrm{P}(X=5)=0.0242$

Question 10 continued
(d) Let $\mathrm{P}(T<a)=x$
recognition that probabilities sum to 1 (seen anywhere)

## EITHER

expressing the three regions in one variable
$x+0.904+2 x$ OR $\mathrm{P}(T<a)+0.904+2 \mathrm{P}(T<a)$ OR $\frac{1}{2} \mathrm{P}(T>b)+0.904+\mathrm{P}(T>b)$
OR $x$ and $2 x$ correctly indicated on labelled bell diagram
$\mathrm{P}(T<a)+0.904+2 \mathrm{P}(T<a)=1$ OR $\frac{1}{2} \mathrm{P}(T>b)+0.904+\mathrm{P}(T>b)=1$ (or equivalent)

## OR

expressing either $\mathrm{P}(T<a)$ or $\mathrm{P}(T>b)$ only in terms of $\mathrm{P}(a \leq T \leq b)$
$(\mathrm{P}(T<a)=) \frac{1}{3}(1-\mathrm{P}(a \leq T \leq b))$ OR $(\mathrm{P}(T>b)=) \frac{2}{3} \cdot(1-\mathrm{P}(a \leq T \leq b))$
$x=\frac{1}{3}(1-0.904)(=0.032)$ OR $\mathrm{P}(T>b)=\frac{2}{3}(1-0.904)(=0.064)$

## THEN

$\mathrm{P}(T<a)=0.032$
$a=22.18167 \ldots$
$a=22.2$ (accept 22.1)
11. (a) attempt to use product rule

$$
f^{\prime}(x)=3 \mathrm{e}^{2 x}+2 \mathrm{e}^{2 x}(3 x-4)\left(=\mathrm{e}^{2 x}(6 x-5)\right)
$$

Note: Award A1 for 2 out of 3 of $3 \mathrm{e}^{2 x}, 6 x \mathrm{e}^{2 x}$ and $-8 \mathrm{e}^{2 x}$ seen or implied.
(b) $f^{\prime}(x)=1$
$x=0.86299 \ldots$
$x=0.863$
$y=-7.92719 \ldots$
$y=-7.93$
(0.863,-7.93)
(c) $\quad x$-intercept is at $\frac{4}{3}(1.33)$
attempt to use formula for volume of revolution
Note: Award (M1) for an integral involving $\pi$ and $(f(x))^{2}$. Condone use of $2 \pi$ and incorrect or absent limits.

$$
\begin{equation*}
\pi \int_{0}^{\frac{4}{3}}\left(\mathrm{e}^{2 x}(3 x-4)\right)^{2} \mathrm{~d} x \tag{A1}
\end{equation*}
$$

Note: This (A1) can be awarded if the $\mathrm{d} x$ is omitted.
$=164.849$...
$=165$

Question 11 continued
(d) (i) attempt to compose functions in the correct order

$$
\begin{aligned}
& (f \circ g)(0)=f(g(0))=f(1) \\
& =-7.38905 \ldots \\
& =-7.39\left(=-\mathrm{e}^{2}\right)
\end{aligned}
$$

(ii) attempt to use the chain rule

$$
(f \circ g)^{\prime}(0)=f^{\prime}(g(0)) g^{\prime}(0)
$$

Note: For this (M1) to be awarded, multiplication of two derivatives should be seen or implied.

$$
\begin{align*}
& =2 f^{\prime}(1)(=2 \times 7.38905 \ldots)  \tag{A1}\\
& =14.7781 \ldots \\
& =14.8\left(=2 \mathrm{e}^{2}\right)
\end{align*}
$$

12. 

(a) $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}k-1 \\ -4 \\ -2\end{array}\right), \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}4 \\ -2 \\ -1\end{array}\right)$
(b) METHOD 1
$k-1=2 \times 4 \quad$ M1
$k=9 \quad$ AG

## METHOD 2

in order by $y$ or $z$-ordinate, the points are $(k,-2,1),(5,0,2)(1,2,3)$
$k-5=5-1$
M1
$k=9$

Question 12 continued
(c) (i) attempt to set up a vector equation using a point, a parameter and a direction vector

$$
r=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+\lambda\left(\begin{array}{c}
4 \\
-2 \\
-1
\end{array}\right) \text { (or equivalent) }
$$

Note: "r=" or equivalent must be seen for $\boldsymbol{A 1}$.

Question 12 continued

## (ii) METHOD 1

point on line $L_{1}$ has coordinates $(1+4 \lambda, 2-2 \lambda, 3-\lambda)$
attempt to use a different parameter for $L_{2}$
$\frac{x-1}{2}=\frac{y}{3}=1-z=\mu$ or $r=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+\mu\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)$
point on line $L_{2}$ has coordinates $(1+2 \mu, 3 \mu, 1-\mu)$
Note: This $\boldsymbol{A 1}$ may be implied by $\boldsymbol{r}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+\mu\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)$.
$1+4 \lambda=1+2 \mu$
$2-2 \lambda=3 \mu$
$3-\lambda=1-\mu$
any two of the above equations
attempt to solve two simultaneous equations with two parameters
eg $\lambda=0.25, \mu=0.5$ or $\lambda=1.6, \mu=-0.4$ or $\lambda=-2, \mu=-4$
substitute into third equation or solve a different pair of simultaneous equations
obtain contradiction eg $3-0.25 \neq 1-0.5$ or $1+4(1.6) \neq 1+2(-0.4)$ or $2-2(-2) \neq 3(-4)$ (so the lines do not intersect)

Note: Do not award this $\mathbf{R 1}$ if it is based on incorrect values.
lines are not parallel
so lines are skew

## METHOD 2

point on line $L_{1}$ has coordinates $(1+4 \lambda, 2-2 \lambda, 3-\lambda)$
attempt to use the equation of $L_{2}$ to generate at least two equations in $\lambda$
if the two lines intersect,
$\frac{(1+4 \lambda)-1}{2}=\frac{2-2 \lambda}{3}\left(\Rightarrow 2 \lambda=\frac{2-2 \lambda}{3}\right)$
$\frac{(1+4 \lambda)-1}{2}=1-(3-\lambda)(\Rightarrow 2 \lambda=\lambda-2)$
$\frac{2-2 \lambda}{3}=1-(3-\lambda) \Rightarrow\left(\frac{2-2 \lambda}{3}=\lambda-2\right)$
any two of the above equations
attempt to solve at least one equation in $\lambda$
one of $\lambda=\frac{1}{4}, \lambda=-2, \lambda=\frac{8}{5}$ seen
substitute into second equation or solve second equation
obtain contradiction eg $\lambda=\frac{1}{4} \neq-2$ or $2\left(\frac{1}{4}\right) \neq \frac{1}{4}-2$ (so the lines do not intersect)

Note: Do not award this $\boldsymbol{R 1}$ if it is based on incorrect values. lines are not parallel
so lines are skew

## METHOD 3

attempt to use a find Cartesian equation for $L_{1}$
$\frac{x-1}{4}=\frac{y-2}{-2}=\frac{z-3}{-1}$
attempt to isolate one variable in both equations
$L_{1}: z=\frac{1-x}{4}+3=\frac{y-2}{2}+3 \quad L_{2}: z=\frac{1-x}{2}+1=\frac{-y}{3}+1 \quad$ OR
$L_{1}: y=\frac{1-x}{2}+2=2(z-3)+2 \quad L_{2}: y=\frac{3(x-1)}{2}=3(1-z) \quad \mathrm{OR}$
$L_{1}: x=1-2(y-2)=1-4(z-3) \quad L_{2}: x=\frac{2 y}{3}+1=1-2(z-1)$
attempt to solve for each of the other two variables
e.g. $\frac{1-x}{2}+1=\frac{1-x}{4}+3$ and $\frac{-y}{3}+1=\frac{y-2}{2}+3$
$x=-7, y=-1.2$ OR $x=2, z=1.4$ OR $y=1.5, z=5$
obtain contradiction eg $z=5 \neq 1.4$ OR $y=1.5 \neq-1.2$ OR $x=2 \neq-7$
(so the lines do not intersect)
Note: Do not award this R1 if it is based on incorrect values.
lines are not parallel
so lines are skew

## Question 12 continued

(d) (i) METHOD 1
attempt to find cross product of two of $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{BC}}$ or their opposites
$e g \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}0 \\ k-9 \\ 18-2 k\end{array}\right)\left(=(k-9)\left(\begin{array}{c}0 \\ 1 \\ -2\end{array}\right)\right)$
attempt to substitute their cross product and a point into the equation of a plane
$(k-9) y+2(9-k) z=2(k-9)+6(9-k)$
$(k-9) y+2(9-k) z=36-4 k(\Rightarrow y-2 z=-4$ since $k \neq 9)$

## METHOD 2

attempt to find vector equation of $\Pi$ and write $x, y$ and $z$ in parametric form
$\boldsymbol{r}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}k-1 \\ -4 \\ -2\end{array}\right)+\mu\left(\begin{array}{c}4 \\ -2 \\ -1\end{array}\right) \Rightarrow x=1+\lambda(k-1)+4 \mu, y=2-4 \lambda-2 \mu$,
$z=3-2 \lambda-\mu$ or equivalent
attempt to eliminate both parameters to work towards Cartesian form
$(k-9) y+2(9-k) z=36-4 k(\Rightarrow y-2 z=-4$ since $k \neq 9)$

## (ii) METHOD 1

attempt to find the equation of the line through $(0,0,0)$ perpendicular to the plane

## EITHER

$(\boldsymbol{r}=) t\left(\begin{array}{c}0 \\ 1 \\ -2\end{array}\right)$
attempt to find the point where the line and plane intersect
$t+4 t+4=0$
$t=-\frac{4}{5}$
OR
$(\boldsymbol{r}=) t(k-9)\left(\begin{array}{c}0 \\ 1 \\ -2\end{array}\right)$
attempt to find the point where the line and plane intersect
$t(k-9)^{2}+4 t(k-9)^{2}+4(k-9)=0$
$t=-\frac{4}{5(k-9)}$

## THEN

so the point on the plane closest to the origin is $(0,-0.8,1.6)$

## METHOD 2

choose a point on the plane ( $p, q, r$ )
$q-2 r+4=0$ OR $q(k-9)-2 r(k-9)+4(k-9)=0 \Rightarrow q=2 r-4$
distance to the origin is $\sqrt{p^{2}+(2 r-4)^{2}+r^{2}}$
since $p$ is independent of $r$, distance is minimised when $p=0$
attempt to find the value of $r$ for which their $\sqrt{(2 r-4)^{2}+r^{2}}$ is minimised
$r=1.6$
so the point on the plane closest to the origin is $(0,-0.8,1.6)$

## METHOD 3

attempt to find a vector from the origin to the closest point on the plane

## EITHER

$(\boldsymbol{r}=) t\left(\begin{array}{c}0 \\ 1 \\ -2\end{array}\right)$
distance to the origin $=\left(\frac{4}{\sqrt{1^{2}+(-2)^{2}}}=\frac{4}{\sqrt{5}}\right)=\frac{4 \sqrt{5}}{5}$
$t= \pm \frac{4}{5}$
check in equation of plane $y-2 z=-4$ to get $t=-\frac{4}{5}$
OR
$(\boldsymbol{r}=) t(k-9)\left(\begin{array}{c}0 \\ 1 \\ -2\end{array}\right)$
distance to the origin $=\left(\frac{4}{\sqrt{1^{2}+(-2)^{2}}}=\frac{4}{\sqrt{5}}\right)=\frac{4 \sqrt{5}}{5}$
$t= \pm \frac{4}{5(k-9)}$
check in equation of plane $y-2 z=-4$ to get $t=-\frac{4}{5(k-9)}$

## THEN

so the point on the plane closest to the origin is $(0,-0.8,1.6)$

## Markscheme

May 2022

## Mathematics: analysis and approaches

## Higher level

## Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2022
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2022
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

## Instructions to Examiners

## Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding $\boldsymbol{M}$ marks.
R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

## Using the markscheme

## 1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

## 2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as $\boldsymbol{A}$ mark(s) depend on the preceding $\boldsymbol{M}$ mark(s), if any.
- Where $\boldsymbol{M}$ and $\boldsymbol{A}$ marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more $\boldsymbol{A}$ marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A} G$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part.

Examples:

|  | Correct <br> answer <br> seen | Further <br> working seen | Any FT issues? | Action |
| :---: | :---: | :--- | :--- | :--- |
| 1. | $8 \sqrt{2}$ | $5.65685 \ldots$ <br> (incorrect <br> decimal value) | No. <br> Last part in <br> question. | Award $\boldsymbol{A 1}$ for the final mark <br> (condone the incorrect further <br> working) |
| 2. | $\frac{35}{72}$ | 0.468111... <br> (incorrect <br> decimal value) | Yes. <br> Value is used in <br> subsequent parts. | Award $\boldsymbol{A O}$ for the final mark <br> (and full FT is available in <br> subsequent parts) |

## 3 Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

## 4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further $\boldsymbol{A}$ marks can be awarded for work which uses the error, but $\boldsymbol{M}$ marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This
includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".


## 5 Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an $\boldsymbol{M}$ mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . OR .


## 7 <br> Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000.
- Do not accept final answers written using calculator notation. However, $\boldsymbol{M}$ marks and intermediate $\boldsymbol{A}$ marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.


## 8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an $\boldsymbol{A}$ mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate A marks do NOT need to be simplified.

## 9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

## Section A

1. (a) EITHER
uses the cosine rule

$$
\mathrm{AB}^{2}=5^{2}+5^{2}-2 \times 5 \times 5 \times \cos 1.9
$$

## OR

uses right-angled trigonometry
AB
$\frac{2}{5}=\sin 0.95$

## OR

uses the sine rule
$\alpha=\frac{1}{2}(\pi-1.9)(=0.6207 \ldots)$
$\frac{\mathrm{AB}}{\sin 1.9}=\frac{5}{\sin 0.6207 \ldots}$

## THEN

$\mathrm{AB}=8.1341 \ldots$
$\mathrm{AB}=8.13(\mathrm{~m})$

## Question 1 continued

(b) let the shaded area be $A$

## METHOD 1

Attempt at finding reflex angle
AÔB $=2 \pi-1.9(=4.3831 \ldots)$
substitution into area formula
$A=\frac{1}{2} \times 5^{2} \times 4.3831 \ldots$ OR $\left(\frac{2 \pi-1.9}{2 \pi}\right) \times \pi\left(5^{2}\right)$
$=54.7898 \ldots$
$=54.8\left(\mathrm{~m}^{2}\right)$

## METHOD 2

let the area of the circle be $A_{C}$ and the area of the unshaded sector be $A_{U}$

$$
\begin{align*}
& A=A_{C}-A_{U} \\
& A=\pi \times 5^{2}-\frac{1}{2} \times 5^{2} \times 1.9(=78.5398 \ldots-23.75) \tag{A1}
\end{align*}
$$

## 2. METHOD 1

recognises that $g(x)=\int\left(3 x^{2}+5 \mathrm{e}^{x}\right) \mathrm{d} x$
(M1)
$g(x)=x^{3}+5 \mathrm{e}^{x}(+C)$
Note: Award A1 for each integrated term.
substitutes $x=0$ and $y=4$ into their integrated function (must involve $+C$ )
$4=0+5+C \Rightarrow C=-1$
$g(x)=x^{3}+5 \mathrm{e}^{x}-1$

## METHOD 2

attempts to write both sides in the form of a definite integral

$$
\begin{equation*}
\int_{0}^{x} \mathrm{~g}^{\prime}(t) \mathrm{d} t=\int_{0}^{x}\left(3 t^{2}+5 \mathrm{e}^{t}\right) \mathrm{d} t \tag{A1}
\end{equation*}
$$

$$
g(x)-4=x^{3}+5 \mathrm{e}^{x}-5 \mathrm{e}^{0}
$$

Note: Award A1 for $g(x)-4$ and A1 for $x^{3}+5 \mathrm{e}^{x}-5 \mathrm{e}^{0}$.
3. $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)=0.68$
substitution of $\mathrm{P}(A) \cdot \mathrm{P}(B)$ for $\mathrm{P}(A \cap B)$ in $\mathrm{P}(A \cup B)$
$\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A) \mathrm{P}(B)(=0.68)$
substitution of $3 \mathrm{P}(B)$ for $\mathrm{P}(A)$
$3 \mathrm{P}(B)+\mathrm{P}(B)-3 \mathrm{P}(B) \mathrm{P}(B)=0.68$ (or equivalent)

Note: The first two marks are independent of each other.
attempts to solve their quadratic equation
$\mathrm{P}(B)=0.2,1.133 \ldots\left(\frac{1}{5}, \frac{17}{15}\right)$
$\mathrm{P}(B)=0.2\left(=\frac{1}{5}\right)$

Note: Award $\boldsymbol{A 1}$ if both answers are given as final answers for $\mathrm{P}(B)$.
4. (a) 0.28 (s)
(b) $\quad \mathrm{IQR}=0.35-0.27(=0.08)(\mathrm{s})$
substituting their IQR into correct expression for upper fence
$0.35+1.5 \times 0.08(=0.47)(\mathrm{s})$
$0.46<0.47$
so 0.46 (s) is not an outlier
(c) EITHER
the median is closer to the lower quartile (positively skewed)
OR
the distribution is positively skewed
OR
the range of reaction times below the median is smaller than the range of reaction times above the median

Note: These are sample answers from a range of acceptable correct answers.
Award R1 for any correct statement that explains this.
Do not award $\boldsymbol{R 1}$ if there is also an incorrect statement, even if another statement in the answer is correct. Accept a correctly and clearly labelled diagram.

## (d) EITHER

the distribution for 'not sleeping well' is centred at a higher reaction time

## OR

the median reaction time after not sleeping well is equal to the upper quartile reaction time after sleeping well
OR
$75 \%$ of reaction times are <0.35 seconds after sleeping well, compared with $50 \%$ after not sleeping well

## OR

the sample size of 9 is too small to draw any conclusions

Note: These are sample answers from a range of acceptable correct answers. Accept any relevant correct statement that relates to the median and/or quartiles shown in the box plots. Do not accept a comparison of means.

Do not award $\boldsymbol{R 1}$ if there is also an incorrect statement, even if another statement in the answer is correct
Award RO to "correlation does not imply causation".
5. (a) recognises the need to find the value of $t$ when $v=0$

$$
\begin{aligned}
& t=1.5707 \ldots\left(=\frac{\pi}{2}\right) \\
& t=1.57\left(=\frac{\pi}{2}\right) \text { (s) }
\end{aligned}
$$

(b) recognises that $a(t)=v^{\prime}(t)$

$$
\begin{aligned}
& t_{1}=2.2627 \ldots, t_{2}=2.9573 \ldots \\
& t_{1}=2.26, t_{2}=2.96(\mathrm{~s})
\end{aligned}
$$

Note: Award M1A1AO if the two correct answers are given with additional values outside $0 \leq t \leq 3$.
(c) speed is greatest at $t=3$
$a=-1.8377 \ldots$
$a=-1.84\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
6. attempts to express $x^{2}$ in terms of $y$

$$
V=\pi \int_{h}^{4} 36\left(1-\frac{(y-4)^{2}}{16}\right) \mathrm{d} y
$$

Note: Correct limits are required.

Attempts to solve $\pi \int_{h}^{4} 36\left(1-\frac{(y-4)^{2}}{16}\right) \mathrm{d} y=285$ for $h$

> Note: Award $\boldsymbol{M} \mathbf{1}$ for attempting to solve $36 \pi\left(\frac{h^{3}}{48}-\frac{h^{2}}{4}+\frac{8}{3}\right)=285$ or equivalent for $h$.

$$
h=0.7926 \ldots
$$

$$
h=0.793(\mathrm{~cm})
$$

7. (a) (as $\lim _{x \rightarrow 0} x^{2}=0$, the indeterminate form $\frac{0}{0}$ is required for the limit to exist)

$$
\begin{array}{ll}
\Rightarrow \lim _{x \rightarrow 0}(\arctan (\cos x)-k)=0 & \text { M1 } \\
\arctan 1-k=0(k=\arctan 1) & \boldsymbol{A 1} \\
\text { so } k=\frac{\pi}{4} & \boldsymbol{A G}
\end{array}
$$

Note: Award M1AO for using $k=\frac{\pi}{4}$ to show the limit is $\frac{0}{0}$.

Question 7 continued
(b) $\lim _{x \rightarrow 0} \frac{\arctan (\cos x)-\frac{\pi}{4}}{x^{2}}\left(=\frac{0}{0}\right)$

$$
\begin{equation*}
=\lim _{x \rightarrow 0} \frac{\frac{-\sin x}{1+\cos ^{2} x}}{2 x} \tag{A1A1}
\end{equation*}
$$

Note: Award A1 for a correct numerator and A1 for a correct denominator. recognises to apply l'Hôpital's rule again

$$
=\lim _{x \rightarrow 0} \frac{\frac{-\sin x}{1+\cos ^{2} x}}{2 x}\left(=\frac{0}{0}\right)
$$

Note: Award MO if their limit is not the indeterminate form $\frac{0}{0}$.

## EITHER

$$
=\lim _{x \rightarrow 0} \frac{\frac{-\cos x\left(1+\cos ^{2} x\right)-2 \sin ^{2} x \cos x}{\left(1+\cos ^{2} x\right)^{2}}}{2}
$$

Note: Award A1 for a correct first term in the numerator and $\boldsymbol{A 1}$ for a correct second term in the numerator.

## OR

$$
\lim _{x \rightarrow 0} \frac{-\cos x}{2\left(1+\cos ^{2} x\right)-4 x \sin x \cos x}
$$

Note: Award A1 for a correct numerator and A1 for a correct denominator.

## THEN

substitutes $x=0$ into the correct expression to evaluate the limit
Note: The final A1 is dependent on all previous marks.

$$
=-\frac{1}{4}
$$

8. Rachel: $R \sim \mathrm{~N}\left(56.5,3^{2}\right)$
$\mathrm{P}(R \geq 60)=0.1216 \ldots$
Sophia: $S \sim \mathrm{~N}\left(57.5,1.8^{2}\right)$
P $(S \geq 60)=0.0824 \ldots$
recognises binomial distribution with $n=5$
let $N_{R}$ represent the number of Rachel's throws that are longer than 60 metres
$N_{R} \sim \mathrm{~B}(5,0.1216 \ldots)$
either $\mathrm{P}\left(N_{R} \geq 1\right)=0.4772 \ldots$ or $\mathrm{P}\left(N_{R}=0\right)=0.5227 \ldots$
let $N_{S}$ represent the number of Sophia's throws that are longer than 60 metres
$N_{S} \sim \mathrm{~B}(5,0.0824 \ldots)$
either $\mathrm{P}\left(N_{S} \geq 1\right)=0.3495 \ldots$ or $\mathrm{P}\left(N_{S}=0\right)=0.6504 \ldots$.

## EITHER

uses $\mathrm{P}\left(N_{R} \geq 1\right) \mathrm{P}\left(N_{S}=0\right)+\mathrm{P}\left(N_{S} \geq 1\right) \mathrm{P}\left(N_{R}=0\right)$
$\mathrm{P}($ one of Rachel or Sophia qualify $)=(0.4772 \ldots \times 0.6504 \ldots)+(0.3495 \ldots \times 0.5227 \ldots)$
OR
uses $\mathrm{P}\left(N_{R} \geq 1\right)+\mathrm{P}\left(N_{S} \geq 1\right)-2 \times \mathrm{P}\left(N_{R} \geq 1\right) \times \mathrm{P}\left(N_{S} \geq 1\right)$
$\mathrm{P}($ one of Rachel or Sophia qualify $)=0.4772 \ldots+0.3495 \ldots-2 \times 0.4772 \ldots \times 0.3495 \ldots$

## THEN

$=0.4931 \ldots$
$=0.493$

Note: $\boldsymbol{M}$ marks are not dependent on the previous $\boldsymbol{A}$ marks.
9. (a) $9 \times 9 \times 8 \times 7 \times 6 \times 5\left(=9 \times{ }^{9} P_{5}\right)$
$=136080\left(=9 \times \frac{9!}{4!}\right)$
Note: Award M1AO for $10 \times 9 \times 8 \times 7 \times 6 \times 5\left(={ }^{10} P_{6}=151200=\frac{10!}{4!}\right)$.

Note: Award M1AO for ${ }^{9} P_{6}=60480$

## (b) METHOD 1

## EITHER

every unordered subset of 6 digits from the set of 9 non-zero digits can be arranged in exactly one way into a 6 -digit number with the digits in increasing order.

OR
${ }^{9} C_{6}(\times 1)$

## THEN

$=84$

## METHOD 2

## EITHER

removes 3 digits from the set of 9 non-zero digits and these 6 remaining digits can be arranged in exactly one way into a 6 -digit number with the digits in increasing order.

## OR

${ }^{9} C_{3}(\times 1)$

## THEN

$=84$

## Section B

10. (a) (i) 32 (cm)
(ii) $\quad h_{A}(0)=\sin (6)+27$
$=26.7205$...
$=26.7(\mathrm{~cm})$
(b) attempts to solve $h_{A}(t)=h_{B}(t)$ for $t$
$t=4.0074 \ldots, 4.7034 \ldots, 5.88332 \ldots$
$t=4.01,4.70,5.88$ (weeks)
(c) $\quad h_{A}(t)-h_{B}(t)=\sin (2 t+6)+t-5$

## EITHER

for $t>6, t-5>1$
and as $\sin (2 t+6) \geq-1 \Rightarrow h_{A}(t)-h_{B}(t)>0$

## OR

the minimum value of $\sin (2 t+6)=-1$
so for $t>6, h_{A}(t)-h_{B}(t)=t-6>0$

## THEN

hence for $t>6$, Plant A was always taller than Plant B

Question 10 continued
(d) recognises that $h_{A}{ }^{\prime}(t)$ and $h_{B}{ }^{\prime}(t)$ are required
attempts to solve $h_{A}{ }^{\prime}(t)=h_{B}{ }^{\prime}(t)$ for $t$
$t=1.18879 \ldots$ and 2.23598... OR 4.33038... and 5.37758 ... OR 7.47197 ... and 8.51917...

Note: Award full marks for $t=\frac{4 \pi}{3}-3, \frac{5 \pi}{3}-3,\left(\frac{7 \pi}{3}-3, \frac{8 \pi}{3}-3, \frac{10 \pi}{3}-3, \frac{11 \pi}{3}-3\right)$. Award subsequent marks for correct use of these exact values.
1.18879... $<t<2.23598 \ldots$ OR $4.33038 \ldots<t<5.37758 \ldots$ OR
7.47197... $<t<8.51917$...
attempts to calculate the total amount of time

$$
\begin{aligned}
& 3(2.2359 \ldots-1.1887 \ldots)\left(=3\left(\left(\frac{5 \pi}{3}-3\right)-\left(\frac{4 \pi}{3}-3\right)\right)\right) \\
& =3.14(=\pi)(\text { weeks })
\end{aligned}
$$

11. (a) let $\phi$ be the required angle (bearing)

## EITHER

$$
\begin{equation*}
\phi=90^{\circ}-\arctan \frac{1}{2}(=\arctan 2) \tag{M1}
\end{equation*}
$$

Note: Award M1 for a labelled sketch.

## OR

$\cos \phi=\frac{\binom{0}{1} \cdot\binom{4}{2}}{\sqrt{1} \times \sqrt{20}}\left(=0.4472 \ldots,=\frac{1}{\sqrt{5}}\right)$
$\phi=\arccos (0.4472 \ldots)$

## THEN

$063^{\circ}$
Note: Do not accept $063.4^{\circ}$ or $63.4^{\circ}$ or $1.10^{c}$.
(b) Method 1
let $\left|\boldsymbol{b}_{\boldsymbol{A}}\right|$ be the speed of $A$ and let $\left|\boldsymbol{b}_{\boldsymbol{B}}\right|$ be the speed of $B$
attempts to find the speed of one of $A$ or $B$

$$
\left|\boldsymbol{b}_{\boldsymbol{A}}\right|=\sqrt{(-6)^{2}+2^{2}+4^{2}} \text { or }\left|\boldsymbol{b}_{\boldsymbol{B}}\right|=\sqrt{4^{2}+2^{2}+(-2)^{2}}
$$

Note: Award MO for $\left|\boldsymbol{b}_{\boldsymbol{A}}\right|=\sqrt{19^{2}+(-1)^{2}+1^{2}}$ and $\left|\boldsymbol{b}_{\boldsymbol{B}}\right|=\sqrt{1^{2}+0^{2}+12^{2}}$.

$$
\left|\boldsymbol{b}_{\boldsymbol{A}}\right|=7.48 \ldots(=\sqrt{56})\left(\mathrm{km} \mathrm{~min}^{-1}\right) \text { and }\left|\boldsymbol{b}_{\boldsymbol{B}}\right|=4.89 \ldots(=\sqrt{24})\left(\mathrm{km} \mathrm{~min}^{-1}\right) \quad \boldsymbol{A 1}
$$

$\left|\boldsymbol{b}_{\boldsymbol{A}}\right|>\left|\boldsymbol{b}_{\boldsymbol{B}}\right|$ so $A$ travels at a greater speed than $B$

Question 11 continued

## Method 2

attempts to use speed $=\frac{\text { distance }}{\text { time }}$
$\operatorname{speed}_{A}=\frac{\left|r_{A}\left(t_{2}\right)-r_{A}\left(t_{1}\right)\right|}{t_{2}-t_{1}}$ and speed ${ }_{B}=\frac{\left|r_{B}\left(t_{2}\right)-r_{B}\left(t_{1}\right)\right|}{t_{2}-t_{1}}$
for example:
$\operatorname{speed}_{A}=\frac{\left|r_{A}(1)-r_{A}(0)\right|}{1}$ and speed ${ }_{B}=\frac{\left|r_{B}(1)-r_{B}(0)\right|}{1}$
speed $_{A}=\frac{\sqrt{(-6)^{2}+2^{2}+4^{2}}}{1}$ and speed ${ }_{B}=\frac{\sqrt{4^{2}+2^{2}+2^{2}}}{1}$
$\operatorname{speed}_{A}=7.48 \ldots(2 \sqrt{14})$ and speed $_{B}=4.89 \ldots(\sqrt{24})$
$\operatorname{speed}_{A}>\operatorname{speed}_{B}$ so $A$ travels at a greater speed than $B$

## Question 11 continued

(c) attempts to use the angle between two direction vectors formula

$$
\begin{align*}
& \cos \theta=\frac{(-6)(4)+(2)(2)+(4)(-2)}{\sqrt{(-6)^{2}+2^{2}+4^{2}} \sqrt{4^{2}+2^{2}+(-2)^{2}}}  \tag{A1}\\
& \cos \theta=-0.7637 \ldots\left(=-\frac{7}{\sqrt{84}}\right) \text { or } \theta=\arccos (-0.7637 \ldots)(=2.4399 \ldots)
\end{align*}
$$

attempts to find the acute angle $180^{\circ}-\theta$ using their value of $\theta$
$=40.2^{\circ}$

Question 11 continued
(d) (i) for example, sets $\boldsymbol{r}_{\boldsymbol{A}}\left(t_{1}\right)=\boldsymbol{r}_{\boldsymbol{B}}\left(t_{2}\right)$ and forms at least two equations
$19-6 t_{1}=1+4 t_{2}$
$-1+2 t_{1}=2 t_{2}$
$1+4 t_{1}=12-2 t_{2}$
Note: Award MO for equations involving $t$ only.

## EITHER

attempts to solve the system of equations for one of $t_{1}$ or $t_{2}$

$$
t_{1}=2 \text { or } t_{2}=\frac{3}{2}
$$

## OR

attempts to solve the system of equations for $t_{1}$ and $t_{2}$
$t_{1}=2$ and $t_{2}=\frac{3}{2}$

## THEN

substitutes their $t_{1}$ or $t_{2}$ value into the corresponding $\boldsymbol{r}_{\boldsymbol{A}}$ or $\boldsymbol{r}_{\boldsymbol{B}}$
$\mathrm{P}(7,3,9)$
Note: Accept $\overrightarrow{\mathrm{OP}}=\left(\begin{array}{l}7 \\ 3 \\ 9\end{array}\right)$. Accept 7 km east of $\mathrm{O}, 3 \mathrm{~km}$ north of O and 9 km
above sea level.

Question 11 continued
(ii) attempts to find the value of $t_{1}-t_{2}$
$t_{1}-t_{2}=2-\frac{3}{2}$
0.5 minutes ( 30 seconds)

Question 11 continued

## (e) EITHER

attempts to find $\boldsymbol{r}_{\boldsymbol{B}}-\boldsymbol{r}_{\boldsymbol{A}}$
$\boldsymbol{r}_{B}-\boldsymbol{r}_{A}=\left(\begin{array}{c}-18 \\ 1 \\ 11\end{array}\right)+t\left(\begin{array}{c}10 \\ 0 \\ -6\end{array}\right)$
attempts to find their $D(t)$
$D(t)=\sqrt{(10 t-18)^{2}+1+(11-6 t)^{2}}$

## OR

attempts to find $\boldsymbol{r}_{A}-\boldsymbol{r}_{\boldsymbol{B}}$
$\boldsymbol{r}_{A}-\boldsymbol{r}_{\boldsymbol{B}}=\left(\begin{array}{c}18 \\ -1 \\ -11\end{array}\right)+t\left(\begin{array}{c}-10 \\ 0 \\ 6\end{array}\right)$
attempts to find their $D(t)$
$D(t)=\sqrt{(18-10 t)^{2}+(-1)^{2}+(-11+6 t)^{2}}$
Note: Award MOMOAO for expressions using two different time parameters.

## THEN

either attempts to find the local minimum point of $D(t)$ or attempts to find the value of $t$ such that $D^{\prime}(t)=0$ (or equivalent)
$t=1.8088 \ldots\left(=\frac{123}{68}\right)$
$D(t)=1.01459 \ldots$
minimum value of $D(t)$ is $1.01\left(=\frac{\sqrt{1190}}{34}\right)(\mathrm{km})$
12. (a) rate of growth (change) of the (marsupial) population (with respect to time)

Note: Do not accept growth (change) in the (marsupials) population per year.
(b) METHOD 1
attempts implicit differentiation on $\frac{\mathrm{d} P}{\mathrm{~d} t}=k P-\frac{k P^{2}}{N}$ by expanding $k P\left(1-\frac{P}{N}\right)$
$\frac{\mathrm{d}^{2} P}{\mathrm{~d} t^{2}}=k \frac{\mathrm{~d} P}{\mathrm{~d} t}-2 \frac{k P}{N} \frac{\mathrm{~d} P}{\mathrm{~d} t}$
$=k \frac{\mathrm{~d} P}{\mathrm{~d} t}\left(1-\frac{2 P}{N}\right)$
$\frac{\mathrm{d} P}{\mathrm{~d} t}=k P\left(1-\frac{P}{N}\right)$ and so $\frac{\mathrm{d}^{2} P}{\mathrm{~d} t^{2}}=k^{2} P\left(1-\frac{P}{N}\right)\left(1-\frac{2 P}{N}\right)$

## METHOD 2

attempts implicit differentiation (product rule) on $\frac{\mathrm{d} P}{\mathrm{~d} t}=k P\left(1-\frac{P}{N}\right)$
$\frac{\mathrm{d}^{2} P}{\mathrm{~d} t^{2}}=k \frac{\mathrm{~d} P}{\mathrm{~d} t}\left(1-\frac{P}{N}\right)+k P\left(-\left(\frac{1}{N}\right) \frac{\mathrm{d} P}{\mathrm{~d} t}\right)$
substitutes $\frac{\mathrm{d} P}{\mathrm{~d} t}=k P\left(1-\frac{P}{N}\right)$ into their $\frac{\mathrm{d}^{2} P}{\mathrm{~d} t^{2}}$
$\frac{\mathrm{d}^{2} P}{\mathrm{~d} t^{2}}=k\left(k P\left(1-\frac{P}{N}\right)\right)\left(1-\frac{P}{N}\right)+k P\left(-\left(\frac{1}{N}\right) k P\left(1-\frac{P}{N}\right)\right)$
$=k^{2} P\left(1-\frac{P}{N}\right)^{2}-k^{2} P\left(1-\frac{P}{N}\right)\left(\frac{P}{N}\right)$
$=k^{2} P\left(1-\frac{P}{N}\right)\left(1-\frac{P}{N}-\frac{P}{N}\right)$
so $\frac{\mathrm{d}^{2} P}{\mathrm{~d} t^{2}}=k^{2} P\left(1-\frac{P}{N}\right)\left(1-\frac{2 P}{N}\right)$

Question 12 continued
(c) $\frac{\mathrm{d}^{2} P}{\mathrm{~d} t^{2}}=0 \Rightarrow k^{2} P\left(1-\frac{P}{N}\right)\left(1-\frac{2 P}{N}\right)=0$
$P=0, \frac{N}{2}, N$
Note: Award A1 for $P=\frac{N}{2}$ only.
uses the second derivative to show that concavity changes at $P=\frac{N}{2}$ or the first derivative to show a local maximum at $P=\frac{N}{2}$

## EITHER

a clearly labelled correct sketch of $\frac{\mathrm{d}^{2} P}{\mathrm{~d} t^{2}}$ versus $P$ showing $P=\frac{N}{2}$ corresponding to a local maximum point for $\frac{\mathrm{d} P}{\mathrm{~d} t}$


OR
a correct and clearly labelled sign diagram (table) showing $P=\frac{N}{2}$ corresponding to a local maximum point for $\frac{\mathrm{d} P}{\mathrm{~d} t}$

Question 12 continued

## OR

for example, $\frac{\mathrm{d}^{2} P}{\mathrm{~d} t^{2}}=\frac{3 k^{2} N}{32}(>0)$ with $P=\frac{N}{4}$ and $\frac{\mathrm{d}^{2} P}{\mathrm{~d} t^{2}}=-\frac{3 k^{2} N}{32}(<0)$ with $P=\frac{3 N}{4}$
showing $P=\frac{N}{2}$ corresponds to a local maximum point for $\frac{\mathrm{d} P}{\mathrm{~d} t}$
so the population is increasing at its maximum rate when $P=\frac{N}{2}$
(d) substitutes $P=\frac{N}{2}$ into $\frac{\mathrm{d} P}{\mathrm{~d} t}$
$\frac{\mathrm{d} P}{\mathrm{~d} t}=k\left(\frac{N}{2}\right)\left(1-\frac{\frac{N}{2}}{N}\right)$
the maximum value of $\frac{\mathrm{d} P}{\mathrm{~d} t}$ is $\frac{k N}{4}$

## Question 12 continued

(e) METHOD 1
attempts to separate variables

$$
\int \frac{N}{P(N-P)} \mathrm{d} P=\int k \mathrm{~d} t
$$

attempts to write $\frac{N}{P(N-P)}$ in partial fractions form
$\frac{N}{P(N-P)} \equiv \frac{A}{P}+\frac{B}{(N-P)} \Rightarrow N \equiv A(N-P)+B P$
$A=1, B=1$
$\frac{N}{P(N-P)} \equiv \frac{1}{P}+\frac{1}{(N-P)}$
$\int\left(\frac{1}{P}+\frac{1}{(N-P)}\right) \mathrm{d} P=\int k \mathrm{~d} t$
$\Rightarrow \ln P-\ln (N-P)=k t(+C)$
Note: Award $\boldsymbol{A 1}$ for $-\ln (N-P)$ and $\boldsymbol{A 1}$ for $\ln P$ and $k t(+C)$. Absolute value signs are not required.
attempts to find $C$ in terms of $N$ and $P_{0}$
when $t=0, P=P_{0}$ and so $C=\ln P_{0}-\ln \left(N-P_{0}\right)$
$k t=\ln \left(\frac{P}{N-P}\right)-\ln \left(\frac{P_{0}}{N-P_{0}}\right)\left(=\ln \left(\frac{\frac{P}{N-P}}{\frac{P_{0}}{N-P_{0}}}\right)\right)$
so $k t=\ln \frac{P}{P_{0}}\left(\frac{N-P_{0}}{N-P}\right)$

## Question 12 continued

## METHOD 2

attempts to separate variables M1

$$
\int \frac{1}{P\left(1-\frac{P}{N}\right)} \mathrm{d} P=\int k \mathrm{~d} t
$$

attempts to write $\frac{1}{P\left(1-\frac{P}{N}\right)}$ in partial fractions form
$\frac{1}{P\left(1-\frac{P}{N}\right)} \equiv \frac{A}{P}+\frac{B}{1-\frac{P}{N}} \Rightarrow 1 \equiv A\left(1-\frac{P}{N}\right)+B P$

$$
A=1, B=\frac{1}{N}
$$

$\frac{1}{P\left(1-\frac{P}{N}\right)} \equiv \frac{1}{P}+\frac{1}{N\left(1-\frac{P}{N}\right)}$
$\int \frac{1}{P}+\frac{1}{N_{N}\left(1-\frac{P}{N}\right)} \mathrm{d} P=\int k \mathrm{~d} t$
$\Rightarrow \ln P-\ln \left(1-\frac{P}{N}\right)=k t(+C)$
Note: Award $\boldsymbol{A} 1$ for $-\ln \left(1-\frac{P}{N}\right)$ and $\boldsymbol{A} 1$ for $\ln P$ and $k t(+C)$. Absolute value signs are not required.

Question 12 continued

$$
\ln \left(\frac{P}{1-\frac{P}{N}}\right)=k t+C \Rightarrow \ln \left(\frac{N P}{N-P}\right)=k t+C
$$

attempts to find $C$ in terms of $N$ and $P_{0}$
when $t=0, P=P_{0}$ and so $C=\ln \left(\frac{N P_{0}}{N-P_{0}}\right)$

$$
\begin{aligned}
& k t=\ln \left(\frac{N P}{N-P}\right)-\ln \left(\frac{N P_{0}}{N-P_{0}}\right)\left(=\ln \left(\frac{\frac{P}{N-P}}{\frac{P_{0}}{N-P_{0}}}\right)\right) \\
& k t=\ln \frac{P}{P_{0}}\left(\frac{N-P_{0}}{N-P}\right)
\end{aligned}
$$

## Question 12 continued

## METHOD 3

lets $u=\frac{1}{P}$ and forms $\frac{\mathrm{d} u}{\mathrm{~d} t}=-\frac{1}{P^{2}} \frac{\mathrm{~d} P}{\mathrm{~d} t}$
multiplies both sides of the differential equation by $-\frac{1}{P^{2}}$ and makes the above substitutions
$-\frac{1}{P^{2}} \frac{\mathrm{~d} P}{\mathrm{~d} t}=k\left(\frac{1}{N}-\frac{1}{P}\right) \Rightarrow \frac{\mathrm{d} u}{\mathrm{~d} t}=k\left(\frac{1}{N}-u\right)$
$\frac{\mathrm{d} u}{\mathrm{~d} t}+k u=\frac{k}{N}$ (linear first-order DE)
$\mathrm{IF}=\mathrm{e}^{\int k \mathrm{~d} t}=\mathrm{e}^{k t} \Rightarrow \mathrm{e}^{k t} \frac{\mathrm{~d} u}{\mathrm{~d} t}+k \mathrm{e}^{k t} u=\frac{k}{N} \mathrm{e}^{k t}$
$\frac{\mathrm{d}}{\mathrm{d} t}\left(u \mathrm{e}^{k t}\right)=\frac{k}{N} \mathrm{e}^{k t}$
$u \mathrm{e}^{k t}=\frac{1}{N} \mathrm{e}^{k t}(+C)\left(\frac{1}{P} \mathrm{e}^{k t}=\frac{1}{N} \mathrm{e}^{k t}(+C)\right)$
attempts to find $C$ in terms of $N$ and $P_{0}$
when $t=0, P=P_{0}, u=\frac{1}{P_{0}}$ and so $C=\frac{1}{P_{0}}-\frac{1}{N}\left(=\frac{N-P_{0}}{N P_{0}}\right)$
$\mathrm{e}^{k t}\left(\frac{N-P}{N P}\right)=\frac{N-P_{0}}{N P_{0}}$
$\mathrm{e}^{k t}=\left(\frac{P}{N-P}\right)\left(\frac{N-P_{0}}{P_{0}}\right)$
$k t=\ln \frac{P}{P_{0}}\left(\frac{N-P_{0}}{N-P}\right)$

Question 12 continued
(f) substitutes $t=10, P=3 P_{0}$ and $N=4 P_{0}$ into $k t=\ln \frac{P}{P_{0}}\left(\frac{N-P_{0}}{N-P}\right)$

$$
\begin{aligned}
& 10 k=\ln 3\left(\frac{4 P_{0}-P_{0}}{4 P_{0}-3 P_{0}}\right)(=\ln 9) \\
& k=0.220\left(=\frac{1}{10} \ln 9,=\frac{1}{5} \ln 3\right)
\end{aligned}
$$

## Markscheme

May 2022

## Mathematics: analysis and approaches

## Higher level

## Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2022
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2022
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

## Instructions to Examiners

## Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding $\boldsymbol{M}$ marks.
R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

## Using the markscheme

## 1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

## 2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as $\boldsymbol{A}$ mark(s) depend on the preceding $\boldsymbol{M}$ mark(s), if any.
- Where $\boldsymbol{M}$ and $\boldsymbol{A}$ marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more $\boldsymbol{A}$ marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A} G$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part.

Examples:

|  | Correct <br> answer <br> seen | Further <br> working seen | Any FT issues? | Action |
| :---: | :---: | :--- | :--- | :--- |
| 1. | $8 \sqrt{2}$ | $5.65685 \ldots$ <br> (incorrect <br> decimal value) | No. <br> Last part in <br> question. | Award $\boldsymbol{A 1}$ for the final mark <br> (condone the incorrect further <br> working) |
| 2. | $\frac{35}{72}$ | 0.468111... <br> (incorrect <br> decimal value) | Yes. <br> Value is used in <br> subsequent parts. | Award $\boldsymbol{A O}$ for the final mark <br> (and full FT is available in <br> subsequent parts) |

## 3 Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

## 4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further $\boldsymbol{A}$ marks can be awarded for work which uses the error, but $\boldsymbol{M}$ marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This
includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".


## 5 Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an $\boldsymbol{M}$ mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . OR .


## 7 <br> Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000.
- Do not accept final answers written using calculator notation. However, $\boldsymbol{M}$ marks and intermediate $\boldsymbol{A}$ marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.


## 8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an $\boldsymbol{A}$ mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate A marks do NOT need to be simplified.

## 9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

## Section A

1. (a) EITHER
recognising that half the total frequency is 10 (may be seen in an ordered list or indicated on the frequency table)

OR
$5+1+4=3+x$
OR
$\sum f=20$

## THEN

$x=7$

Question 1 continued
(b) METHOD 1
1.58429...
1.58 A2

## METHOD 2

## EITHER

$\sigma^{2}=\frac{5 \times(2-4.3)^{2}+1 \times(3-4.3)^{2}+4 \times(4-4.3)^{2}+3 \times(5-4.3)^{2}+7 \times(6-4.3)^{2}}{20}(=2.51)$

OR
$\sigma^{2}=\frac{5 \times 2^{2}+1 \times 3^{2}+4 \times 4^{2}+3 \times 5^{2}+7 \times 6^{2}}{20}-4.3^{2} \quad(=2.51)$

## THEN

$\sigma=\sqrt{2.51}=1.58429 \ldots$
$=1.58$
2. (a) valid approach to find area of segment by finding area of sector - area of triangle
$\frac{1}{2} r^{2} \theta-\frac{1}{2} r^{2} \sin \theta$
$\frac{1}{2}(2)^{2} \theta-\frac{1}{2}(2)^{2} \sin \theta$
area $=2 \theta-2 \sin \theta$
(b) EITHER
area of logo $=$ area of rectangle - area of segments

$$
5 \times 4-2 \times(2 \theta-2 \sin \theta)=13.4
$$

## OR

area of one segment $=\frac{20-13.4}{2}(=3.3)$
$2 \theta-2 \sin \theta=3.3$

## THEN

$\theta=2.35672 \ldots$
$\theta=2.36$ (do not accept an answer in degrees)
Note: Award (M1)(A1)AO if there is more than one solution.
Award (M1)(A1FT)AO if the candidate works in degrees and obtains a final answer of $135.030 \ldots$
3. (a) $0.41+k-0.28+0.46+0.29-2 k^{2}=1 \mathrm{OR} k-2 k^{2}+0.01=0.13$ (or equivalent)

$$
2 k^{2}-k+0.12=0
$$

(b) one of 0.2 OR 0.3
$k=0.3$
reasoning to reject $k=0.2$ eg $\mathrm{P}(1)=k-0.28 \geq 0$ therefore $k \neq 0.2$ R1
(c) attempting to use the expected value formula
$\mathrm{E}(X)=0 \times 0.41+1 \times(0.3-0.28)+2 \times 0.46+3 \times\left(0.29-2 \times 0.3^{2}\right)$
$=1.27$
Note: Award M1A0 if additional values are given.
4. (a) recognizing at rest $v=0$

$$
\begin{aligned}
& t=3.34692 \ldots \\
& t=3.35 \text { (seconds) }
\end{aligned}
$$

Note: Award (M1)AO for any other solution to $v=0$ eg $t=-0.205$ or $t=6.08$.
(b) recognizing particle changes direction when $v=0$ OR when $t=3.34692 \ldots$
$a=-4.71439 \ldots$
$a=-4.71\left(\mathrm{~ms}^{-2}\right)$
A2
[3 marks]
(c) distance travelled $=\int_{0}^{6}|v| \mathrm{d} t \mathrm{OR}$

$$
\begin{align*}
& \int_{0}^{3.34 . \ldots}\left(\mathrm{e}^{\sin (t)}+4 \sin (t)\right) \mathrm{d} t-\int_{3.34 . . .}^{6}\left(\mathrm{e}^{\sin (t)}+4 \sin (t)\right) \mathrm{d} t(=14.3104 \ldots+6.44300 \ldots)  \tag{A1}\\
= & 20.7534 \ldots \\
= & 20.8 \text { (metres) } \\
& \text { [A1) } \\
& \text { Total [7 marks] }]
\end{align*}
$$

5. (a) METHOD 1

## EITHER

one of $\mathrm{P}(A)=x+0.16 \mathrm{OR} \mathrm{P}(B)=x+0.36$
OR


## THEN

attempt to equate their $\mathrm{P}(A \cap B)$ with their expression for $\mathrm{P}(A) \times \mathrm{P}(B)$
$\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B) \Rightarrow x=(x+0.16) \times(x+0.36)$
$x=0.24$

## METHOD 2

attempt to form at least one equation in $\mathrm{P}(A)$ and $\mathrm{P}(B)$ using independence
$\left(\mathrm{P}\left(A \cap B^{\prime}\right)=\mathrm{P}(A) \times \mathrm{P}\left(B^{\prime}\right) \Rightarrow\right) \mathrm{P}(A) \times(1-\mathrm{P}(B))=0.16 \mathrm{OR}$
$\left(\mathrm{P}\left(A^{\prime} \cap B\right)=\mathrm{P}\left(A^{\prime}\right) \times \mathrm{P}(B) \Rightarrow\right)(1-\mathrm{P}(A)) \times \mathrm{P}(B)=0.36$
$\mathrm{P}(A)=0.4$ AND $\mathrm{P}(B)=0.6$
$\mathrm{P}(A \cap B)=\mathrm{P}(A) \times \mathrm{P}(B)=0.4 \times 0.6$
$x=0.24$

Question 5 continued
(b) METHOD 1
recognising $\mathrm{P}\left(A^{\prime} \mid B^{\prime}\right)=\mathrm{P}\left(A^{\prime}\right)$
$=1-0.16-0.24$
$=0.6$

## METHOD 2

$\mathrm{P}(B)=0.36+0.24(=0.6)$
$\mathrm{P}\left(A^{\prime} \mid B^{\prime}\right)=\frac{\mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)}{\mathrm{P}\left(B^{\prime}\right)} \quad\left(=\frac{0.24}{0.4}\right)$
$=0.6$
6. (a) attempt to replace $x$ with $-x$

$$
f(-x)=2^{-x}-\frac{1}{2^{-x}}
$$

## EITHER

$$
=\frac{1}{2^{x}}-2^{x}=-f(x)
$$

## OR

$$
=-\left(2^{x}-\frac{1}{2^{x}}\right)(=-f(x))
$$

Note: Award M1AO for a graphical approach including evidence that either the graph is invariant after rotation by $180^{\circ}$ about the origin or the graph is invariant after a reflection in the $y$-axis and then in the $x$-axis (or vice versa).
so $f$ is an odd function
(b) attempt to find at least one intersection point
$x=-1.26686 \ldots, x=0.177935 \ldots, x=3.06167 \ldots$
$x=-1.27, x=0.178, x=3.06$
$-1.27 \leq x<-1$,
$0.178 \leq x<3$, ..... A1
$x \geq 3.06$ ..... A1
7. (a) $|\boldsymbol{a}|=\sqrt{12^{2}+(-5)^{2}}(=13)$
$2 \leq|\boldsymbol{a}+\boldsymbol{b}| \leq 28$ (accept min 2 and max 28)
Note: Award (A1)AO for 2 and 28 seen with no indication that they are the endpoints of an interval.
(b) recognition that $\boldsymbol{p}$ or $\boldsymbol{b}$ is a negative multiple of $\boldsymbol{a}$

$$
\begin{aligned}
& \boldsymbol{p}=-2 \hat{\boldsymbol{a}} \text { OR } \boldsymbol{b}=-\frac{15}{13} \boldsymbol{a}\left(=-\frac{15}{13}\binom{12}{-5}\right) \\
& \boldsymbol{p}=-\frac{2}{13}\binom{12}{-5}\left(=\binom{-1.85}{0.769}\right)
\end{aligned}
$$

(c) METHOD 1
$\boldsymbol{q}$ is perpendicular to $\binom{12}{-5}$
$\Rightarrow \boldsymbol{q}$ is in the direction $\binom{5}{12}$
$\boldsymbol{q}=k\binom{5}{12}$
$(|\boldsymbol{q}|=) \sqrt{(5 k)^{2}+(12 k)^{2}}=15$
$k=\frac{15}{13}$
$q=\frac{15}{13}\binom{5}{12}\left(=\binom{\frac{75}{13}}{\frac{180}{13}}=\binom{5.77}{13.8}\right)$

Question 7 continued

## METHOD 2

$\boldsymbol{q}$ is perpendicular to $\binom{12}{-5}$
attempt to set scalar product $\boldsymbol{q} \cdot \boldsymbol{a}=0$ OR product of gradients $=-1$
$12 x-5 y=0$
$(|\boldsymbol{q}|=) \sqrt{x^{2}+y^{2}}=15$
attempt to solve simultaneously to find a quadratic in $x$ or in $y$

$$
\begin{aligned}
& x^{2}+\left(\frac{12 x}{5}\right)^{2}=15^{2} \mathrm{OR}\left(\frac{5 y}{12}\right)^{2}+y^{2}=15^{2} \\
& \boldsymbol{q}=\binom{\frac{75}{13}}{\frac{180}{13}}\left(=\binom{5.77}{13.8}\right)
\end{aligned}
$$

Note: Award A1 independently for each value. Accept values given as $x=\frac{75}{13}$ and $y=\frac{180}{13}$ or equivalent.
8. (a) product of roots $=\frac{2 k+9}{k}$
(b) recognition that the product of the roots will be negative

$$
\begin{align*}
& \frac{2 k+9}{k}<0 \\
& \text { critical values } k=0,-\frac{9}{2} \text { seen }  \tag{A1}\\
& -\frac{9}{2}<k<0 \tag{A1}
\end{align*}
$$

9. (a) $6 \times 5$ !
$=720$ ( accept $6!)$
(b) METHOD 1
(Peter apart from girls, in an end seat) ${ }^{8} P_{4}(=1680)$ OR
(Peter apart from girls, not in end seat) ${ }^{7} P_{4}(=840)$
case 1: Peter at either end
$2 \times{ }^{8} P_{4}(=3360)$ OR $2 \times{ }^{8} C_{4} \times 4!(=3360)$
case 2: Peter not at the end
$8 \times{ }^{7} P_{4}(=6720) \mathrm{OR} 8 \times{ }^{7} C_{4} \times 4!(=6720)$
Total number of ways $=3360+6720$
$=10080$

## METHOD 2

(Peter next to girl, in an end seat) $4 \times{ }^{8} P_{3}(=1344)$ OR
(Peter next to one girl, not in end seat) $2 \times 4 \times{ }^{7} P_{3}(=1680)$ OR
(Peter next to two girls, not in end seat) $4 \times 3 \times{ }^{7} P_{2}(=504)$
case 1: Peter at either end
$2 \times 4 \times{ }^{8} P_{3}(=2688)$
case 2: Peter not at the end
$8\left(2 \times 4 \times{ }^{7} P_{3}+4 \times 3 \times{ }^{7} P_{2}\right)(=17472)$
Total number of ways $={ }^{10} P_{5}-(2688+17472)$
$=10080$

## Section B

10. (a)

correct shape (concave down) within the given domain $1 \leq x \leq 2$
$(1,0)$ and $(2, \sqrt{3})(=(2,1.73))$
Note: The coordinates of endpoints may be seen on the graph or marked on the axes.

Question 10 continued
(b) (i) interchanging $x$ and $y$ (seen anywhere)
$x=\sqrt{y^{2}-1}$
$x^{2}=y^{2}-1$
$y=\sqrt{x^{2}+1}$
$f^{-1}(x)=\sqrt{x^{2}+1}$
(ii) $0 \leq x \leq \sqrt{3}$ OR domain $[0, \sqrt{3}](=[0,1.73]) \quad$ A1
$1 \leq y \leq 2$ OR $1 \leq f^{-1}(x) \leq 2$ OR range $[1,2] \quad$ A1
[5 marks]
continued...

Question 10 continued
(c) (i) attempt to substitute $x=\sqrt{y^{2}+1}$ into the correct volume formula
(M1)

$$
\begin{aligned}
& V=\pi \int_{0}^{h}\left(\sqrt{y^{2}+1}\right)^{2} \mathrm{~d} y\left(=\pi \int_{0}^{h}\left(y^{2}+1\right) \mathrm{d} y\right) \\
& =\pi\left[\frac{1}{3} y^{3}+y\right]_{0}^{h} \\
& =\pi\left(\frac{1}{3} h^{3}+h\right)
\end{aligned}
$$

Note: Award marks as appropriate for correct work using a different variable e.g.

$$
\begin{equation*}
\pi \int_{0}^{h}\left(\sqrt{x^{2}+1}\right)^{2} \mathrm{~d} x \tag{M1}
\end{equation*}
$$

(ii) attempt to substitute $h=\sqrt{3}(=1.732 \ldots)$ into $V$
$V=10.8828 \ldots$

$$
V=10.9\left(\mathrm{~m}^{3}\right)(=2 \sqrt{3} \pi)\left(\mathrm{m}^{3}\right)
$$

Question 10 continued
(d) METHOD 1

$$
\begin{align*}
& \text { time }=\frac{10.8828 \ldots}{0.4}\left(=\frac{2 \sqrt{3} \pi}{0.4}\right)  \tag{M1}\\
& =27.207 \ldots \\
& =27.2(=5 \sqrt{3} \pi)(s) \tag{A1}
\end{align*}
$$

Question 10 continued
(e) attempt to find the height of the tank when $V=5.4414 \ldots(=\sqrt{3} \pi)$
$\pi\left(\frac{1}{3} h^{3}+h\right)=5.4414 \ldots(=\sqrt{3} \pi)$
$h=1.1818$...
attempt to use the chain rule or differentiate $V=\pi\left(\frac{1}{3} h^{3}+h\right)$ with respect to $t$
$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} h}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1}{\pi\left(h^{2}+1\right)} \times \frac{\mathrm{d} V}{\mathrm{~d} t}$ OR $\frac{\mathrm{d} V}{\mathrm{~d} t}=\pi\left(h^{2}+1\right) \frac{\mathrm{d} h}{\mathrm{~d} t}$
attempt to substitute their $h$ and $\frac{\mathrm{d} V}{\mathrm{~d} t}=0.4$
$\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{0.4}{\pi\left(1.1818 \ldots{ }^{2}+1\right)}=0.053124 \ldots$
$=0.0531\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
11. (a) $\mathrm{P}(C<61)$
$=0.365112 \ldots$
$=0.365$
A1
[2 marks]
(b) recognition of binomial eg $X \sim \mathrm{~B}(12,0.365 \ldots)$
$\mathrm{P}(X=5)=0.213666 \ldots$
$=0.214$
A1

Question 11 continued
(c) (i) Let $C M$ represent 'chocolate muffin' and $B M$ represent 'banana muffin' $\mathrm{P}(B<61)=0.0197555 \ldots$

## EITHER

$\mathrm{P}(C M) \times \mathrm{P}(C<61 \mid C M)+\mathrm{P}(B M) \times \mathrm{P}(B<61 \mid B M)$ (or equivalent in words)

## OR

tree diagram showing two ways to have a muffin weigh < 61

## THEN

$(0.6 \times 0.365 \ldots)+(0.4 \times 0.0197 \ldots)$
$=0.226969 \ldots$
$=0.227$
(ii) recognizing conditional probability

Note: Recognition must be shown in context either in words or symbols, not just $\mathrm{P}(A \mid B)$.

$$
\begin{align*}
& \frac{0.6 \times 0.365112 \ldots}{0.226969 \ldots}  \tag{A1}\\
& =0.965183 \ldots \\
& =0.965
\end{align*}
$$

Question 11 continued
(d) METHOD 1
$\mathrm{P}(C M) \times \mathrm{P}(C<61 \mid C M)+\mathrm{P}(B M) \times \mathrm{P}(B<61 \mid B M)=0.157$
$(0.6 \times \mathrm{P}(C<61))+(0.4 \times 0.0197555 \ldots)=0.157$
$\mathrm{P}(C<61)=0.248496 \ldots$
attempt to solve for $\sigma$ using GDC
Note: Award (M1) for a graph or table of values to show their $\mathrm{P}(C<61)$ with a variable standard deviation.
$\sigma=1.47225$...
$\sigma=1.47$ ( g )

Question 11 continued

## METHOD 2

$$
\begin{align*}
& \mathrm{P}(C M) \times \mathrm{P}(C<61 \mid C M)+\mathrm{P}(B M) \times \mathrm{P}(B<61 \mid B M)=0.157  \tag{M1}\\
& (0.6 \times \mathrm{P}(C<61))+(0.4 \times 0.0197555 \ldots)=0.157 \\
& \mathrm{P}(C<61)=0.248496 \ldots \\
& \text { use of inverse normal to find } z \text { score of their } \mathrm{P}(C<61) \\
& z=-0.679229 \ldots \\
& \text { correct substitution } \\
& \frac{61-62}{\sigma}=-0.679229 \ldots \\
& \sigma=1.47225 \ldots \\
& \sigma=1.47 \text { (g) }
\end{align*}
$$

12. (a) attempt to use Euler's method
$x_{n+1}=x_{n}+0.1 ; \quad y_{n+1}=y_{n}+0.1 \times \frac{\mathrm{d} y}{\mathrm{~d} x}$, where $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}-2 x^{2}}{x^{2}}$
correct intermediate $y$-values
3.7,4.63140...,5.92098...,7.79542...

Note: A1 for any two correct $y$-values seen
$y=10.6958 \ldots$
$y=10.7$
Note: For the final A1, the value 10.7 must be the last value in a table or a list, or be given as a final answer, not just embedded in a table which has further lines.
(b) $\quad y=v x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}$
replacing $y$ with $v x$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ with $v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}$
$x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{2}-2 x^{2} \Rightarrow x^{2}\left(v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}\right)=v^{2} x^{2}-2 x^{2}$
$v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=v^{2}-2 \quad($ since $x>0)$
$x \frac{\mathrm{~d} v}{\mathrm{~d} x}=v^{2}-v-2$

## Question 12 continued

(c) (i) attempt to separate variables $v$ and $x$
$\int \frac{\mathrm{d} v}{v^{2}-v-2}=\int \frac{\mathrm{d} x}{x}$
$\int \frac{\mathrm{d} v}{(v-2)(v+1)}=\int \frac{\mathrm{d} x}{x}$
attempt to express in partial fraction form
$\frac{1}{(v-2)(v+1)} \equiv \frac{A}{v-2}+\frac{B}{v+1}$
$\frac{1}{(v-2)(v+1)}=\frac{1}{3}\left(\frac{1}{v-2}-\frac{1}{v+1}\right)$
$\frac{1}{3} \int\left(\frac{1}{v-2}-\frac{1}{v+1}\right) \mathrm{d} v=\int \frac{\mathrm{d} x}{x}$
$\frac{1}{3}(\ln |v-2|-\ln |v+1|)=\ln |x|(+c)$
Note: Condone absence of modulus signs throughout.

## EITHER

attempt to find $c$ using $x=1, y=3, v=3$
$c=\frac{1}{3} \ln \frac{1}{4}$
$\frac{1}{3}(\ln |v-2|-\ln |v+1|)=\ln |x|+\frac{1}{3} \ln \frac{1}{4}$
expressing both sides as a single logarithm
$\ln \left|\frac{v-2}{v+1}\right|=\ln \left(\frac{|x|^{3}}{4}\right)$

## OR

expressing both sides as a single logarithm
$\ln \left|\frac{v-2}{v+1}\right|=\ln \left(A|x|^{3}\right)$
attempt to find $A$ using $x=1, y=3, v=3$
$A=\frac{1}{4}$

## THEN

$\left|\frac{v-2}{v+1}\right|=\frac{1}{4} x^{3}($ since $x>0)$
substitute $v=\frac{y}{x}$ (seen anywhere)
$\frac{\frac{y}{x}-2}{\frac{y}{x}+1}=\frac{1}{4} x^{3}($ since $y>2 x)$
$\left(\Rightarrow \frac{y-2 x}{y+x}=\frac{1}{4} x^{3}\right)$
attempt to make $y$ the subject
$y-\frac{x^{3} y}{4}=2 x+\frac{x^{4}}{4}$
$y=\frac{8 x+x^{4}}{4-x^{3}}$

Question 12 continued
(ii) actual value at $y(1.5)=27.3 \quad$ A1
(iii) gradient changes rapidly (during the interval considered) OR the curve has a vertical asymptote at $x=\sqrt[3]{4}(=1.5874 \ldots)$ R1
[12 marks]
Total [19 marks]

## Markscheme

## November 2021

## Mathematics: analysis and approaches

## Higher level

## Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2021
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2021
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

## Instructions to Examiners

## Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding $\boldsymbol{M}$ marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

## Using the markscheme

## 1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

## 2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as $\boldsymbol{A}$ mark(s) depend on the preceding $\boldsymbol{M}$ mark(s), if any.
- Where $\boldsymbol{M}$ and $\boldsymbol{A}$ marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more $\boldsymbol{A}$ marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies $\mathbf{A 3}, \boldsymbol{M} 2$ etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part.

Examples:

|  | Correct <br> answer <br> seen | Further <br> working seen | Any FT issues? | Action |
| :---: | :---: | :--- | :--- | :--- |
| 1. | $8 \sqrt{2}$ | $5.65685 \ldots$ <br> (incorrect <br> decimal value) | No. <br> Last part in <br> question. | Award $\boldsymbol{A 1}$ for the final mark <br> (condone the incorrect further <br> working) |
| 2. | $\frac{35}{72}$ | 0.468111... <br> (incorrect <br> decimal value) | Yes. <br> Value is used in <br> subsequent parts. | Award $\boldsymbol{A O}$ for the final mark <br> (and full FT is available in <br> subsequent parts) |

## 3 Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

## 4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further $\boldsymbol{A}$ marks can be awarded for work which uses the error, but $\boldsymbol{M}$ marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This
includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".


## Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an $\boldsymbol{M}$ mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.


## Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . OR.


## Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, $\boldsymbol{M}$ marks and intermediate $\boldsymbol{A}$ marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.


## 8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an $\boldsymbol{A}$ mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate $\boldsymbol{A}$ marks do NOT need to be simplified.

## 9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

## Section A

1. (a) use of GDC to give
$r=0.883529 \ldots$
$r=0.884$
Note: Award the (M1) for any correct value of $r, a, b$ or $r^{2}=0.780624 \ldots$
seen in part (a) or part (b).
(b) $\quad a=1.36609 \ldots, b=64.5171 \ldots$
$a=1.37, b=64.5$
(c) attempt to find their difference
$5 \times 1.36609 \ldots$ OR $1.36609 \ldots(h+5)+64.5171 \ldots-(1.36609 \ldots h+64.5171 \ldots)$
6.83045...
$=6.83$ ( 6.85 from 1.37)
the student could have expected her score to increase by 7 marks.
Note: Accept an increase of $6,6.83$ or 6.85 .
(d) Lucy is incorrect in suggesting there is a causal relationship.

This might be true, but the data can only indicate a correlation.
Note: Accept 'Lucy is incorrect as correlation does not imply causation' or equivalent.
(e) no effect

## 2. EITHER

attempt to use cosine rule
$12^{2}+\mathrm{AB}^{2}-2 \times 12 \times \cos 25^{\circ} \times \mathrm{AB}=7^{2}$ OR $\mathrm{AB}^{2}-21.7513 \ldots \mathrm{AB}+95=0$
at least one correct value for $A B$
$\mathrm{AB}=6.05068 \ldots \mathrm{OR} \mathrm{AB}=15.7007 \ldots$
using their smaller value for $A B$ to find minimum perimeter
$12+7+6.05068 \ldots$
OR
attempt to use sine rule
$\frac{\sin \mathrm{B}}{12}=\frac{\sin 25^{\circ}}{7}$ OR $\sin \mathrm{B}=0.724488 \ldots$ OR $\hat{B}=133.573 \ldots{ }^{\circ}$ OR $\hat{B}=46.4263 \ldots{ }^{\circ}$
at least one correct value for $\hat{C}$
$\hat{C}=21.4263 \ldots{ }^{\circ}$ OR $\hat{C}=108.573 \ldots{ }^{\circ}$
using their acute value for $\hat{C}$ to find minimum perimeter
$12+7+\sqrt{12^{2}+7^{2}-2 \times 12 \times 7 \cos 21.4263 \ldots}$ OR $12+7+\frac{7 \sin 21.4263 \ldots .^{\circ}}{\sin 25^{\circ}}$

## THEN

25.0506...
minimum perimeter $=25.1$.
3. (a) recognize that the variable has a Binomial distribution
$X \sim \mathrm{~B}(30,0.05)$
attempt to find $\mathrm{P}(X \geq 1)$
$1-\mathrm{P}(X=0)$ OR $1-0.95^{30}$ OR $1-0.214638 \ldots$ OR $0.785361 \ldots$
Note: The two $\boldsymbol{M}$ marks are independent of each other.

$$
\mathrm{P}(X \geq 1)=0.785
$$

(b) recognition of conditional probability
$\mathrm{P}(X \leq 2 \mid X \geq 1)$ OR $\mathrm{P}($ at most 2 defective $\mid$ at least 1 defective $)$
Note: Recognition must be shown in context either in words or symbols but not just $\mathrm{P}(A \mid B)$.
$\frac{\mathrm{P}(1 \leq X \leq 2)}{\mathrm{P}(X \geq 1)}$ OR $\frac{\mathrm{P}(X=1)+\mathrm{P}(X=2)}{\mathrm{P}(X \geq 1)}$
$\frac{0.597540 \ldots}{0.785361 \ldots}$ OR $\frac{0.812178 \ldots-0.214638 \ldots}{0.785361 \ldots}$ OR $\frac{0.338903 \ldots+0.258636 \ldots}{0.785361 \ldots}$
$=0.760847$...
$\mathrm{P}(X \leq 2 \mid X \geq 1)=0.761$
4. (a) attempt to find the area of either shaded region in terms of $r$ and $\theta$

Note: Do not award M1 if they have only copied from the booklet and not applied to the shaded area.

Area of segment $=\frac{1}{2} r^{2} \theta-\frac{1}{2} r^{2} \sin \theta$
Area of triangle $=\frac{1}{2} r^{2} \sin (\pi-\theta)$
correct equation in terms of $\theta$ only
$\theta-\sin \theta=\sin (\pi-\theta)$
$\theta-\sin \theta=\sin \theta$
$\theta=2 \sin \theta$
Note: Award a maximum of M1A1A0A0A0 if a candidate uses degrees
(i.e., $\frac{1}{2} r^{2} \sin \left(180^{\circ}-\theta\right)$ ), even if later work is correct.

Note: If a candidate directly states that the area of the triangle is
$\frac{1}{2} r^{2} \sin \theta$, award a maximum of M1A1AOA1A1.
(b) $\quad \theta=1.89549 \ldots$
$\theta=1.90$
Note: Award $\boldsymbol{A O}$ if there is more than one solution. Award $\boldsymbol{A} \boldsymbol{O}$ for an answer in degrees.
5. (a) $u_{1}=S_{1}=\frac{2}{3} \times \frac{7}{8}$

$$
\begin{equation*}
=\frac{14}{24}\left(=\frac{7}{12}=0.583333 \ldots\right) \tag{M1}
\end{equation*}
$$

(b) $\quad r=\frac{7}{8}(=0.875)$
substituting their values for $u_{1}$ and $r$ into $S_{\infty}=\frac{u_{1}}{1-r}$
$=\frac{14}{3}(=4.66666 \ldots)$
A1
(c) attempt to substitute their values into the inequality or formula for $S_{n}$
$\frac{14}{3}-\sum_{r=1}^{n} \frac{2}{3}\left(\frac{7}{8}\right)^{r}<0.001$ OR $S_{n}=\frac{\frac{7}{12}\left(1-\left(\frac{7}{8}\right)^{n}\right)}{\left(1-\frac{7}{8}\right)}$
attempt to solve their inequality using a table, graph or logarithms (must be exponential)

Note: Award (MO) if the candidate attempts to solve $S_{\infty}-u_{n}<0.001$.
correct critical value or at least one correct crossover value
63.2675 $\ldots$ OR $S_{\infty}-S_{63}=0.001036 \ldots$ OR $S_{\infty}-S_{64}=0.000906 \ldots$

OR $S_{\infty}-S_{63}-0.001=0.0000363683 \ldots$ OR $S_{\infty}-S_{64}-0.001=-0.0000931777 . .$.
least value is $n=64$
6. (a) METHOD 1
$(p+q)^{3}-3 p q(p+q) \equiv p^{3}+q^{3}$
attempts to expand $(p+q)^{3}$
$p^{3}+3 p^{2} q+3 p q^{2}+q^{3}$
$(p+q)^{3}-3 p q(p+q) \equiv p^{3}+3 p^{2} q+3 p q^{2}+q^{3}-3 p q(p+q)$
$\equiv p^{3}+3 p^{2} q+3 p q^{2}+q^{3}-3 p^{2} q-3 p q^{2}$
$\equiv p^{3}+q^{3}$
Note: Condone the use of equals signs throughout.

## METHOD 2

$$
(p+q)^{3}-3 p q(p+q) \equiv p^{3}+q^{3}
$$

attempts to factorise $(p+q)^{3}-3 p q(p+q)$
$\equiv(p+q)\left((p+q)^{2}-3 p q\right)\left(\equiv(p+q)\left(p^{2}-p q+q^{2}\right)\right)$
$\equiv p^{3}-p^{2} q+p q^{2}+p^{2} q-p q^{2}+q^{3}$
$\equiv p^{3}+q^{3}$
Note: Condone the use of equals signs throughout.

## METHOD 3

$$
p^{3}+q^{3} \equiv(p+q)^{3}-3 p q(p+q)
$$

attempts to factorise $p^{3}+q^{3}$
$\equiv(p+q)\left(p^{2}-p q+q^{2}\right)$
$\equiv(p+q)\left((p+q)^{2}-3 p q\right)$
$\equiv(p+q)^{3}-3 p q(p+q)$
Note: Condone the use of the equals sign throughout.
(b)

Note: Award a maximum of A1MOAOA1MOAO for $m=-95$ and $n=8$ found by using $\alpha, \beta=\frac{5 \pm \sqrt{17}}{4}(\alpha, \beta=0.219 \ldots, 2.28 \ldots)$.
Condone, as appropriate, solutions that state but clearly do not use the values of $\alpha$ and $\beta$.
Special case: Award a maximum of A1M1AOA1MOAO for $m=-95$ and $n=8$ obtained by solving simultaneously for $\alpha$ and $\beta$ from product of roots and sum of roots equations.
product of roots of $x^{2}-\frac{5}{2} x+\frac{1}{2}=0$
$\alpha \beta=\frac{1}{2}$ (seen anywhere)
considers $\left(\frac{1}{\alpha^{3}}\right)\left(\frac{1}{\beta^{3}}\right)$ by stating $\frac{1}{(\alpha \beta)^{3}}(=n)$
Note: Award $\boldsymbol{M} \mathbf{1}$ for attempting to substitute their value of $\alpha \beta$ into $\frac{1}{(\alpha \beta)^{3}}$.
$\frac{1}{(\alpha \beta)^{3}}=\frac{1}{\left(\frac{1}{2}\right)^{3}}$
$n=8$
sum of roots of $x^{2}-\frac{5}{2} x+\frac{1}{2}=0$
$\alpha+\beta=\frac{5}{2}$ (seen anywhere)
considers $\frac{1}{\alpha^{3}}+\frac{1}{\beta^{3}}$ by stating $\frac{(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)}{(\alpha \beta)^{3}}\left(\left(\frac{\alpha+\beta}{\alpha \beta}\right)^{3}-\frac{3(\alpha+\beta)}{(\alpha \beta)^{2}}\right)(=-m)$
Note: Award $\boldsymbol{M} \mathbf{1}$ for attempting to substitute their values of $\alpha+\beta$ and $\alpha \beta$ into their expression. Award MO for use of $(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$ only.
$=\frac{\left(\frac{5}{2}\right)^{3}-\left(\frac{3}{2}\right)\left(\frac{5}{2}\right)}{\frac{1}{8}}(=125-30=95)$
$m=-95$
$\left(x^{2}-95 x+8=0\right)$
7. (a) recognises that $\int_{0}^{m} \arccos x \mathrm{~d} x=0.5$
$m \arccos m-\sqrt{1-m^{2}}-(0-\sqrt{1})=0.5$
$m=0.360034 \ldots$
$m=0.360$
(b) METHOD 1
attempts to find at least one endpoint (limit) both in terms of $m$ (or their $m$ ) and $a$
$\mathrm{P}(m-a \leq X \leq m+a)=0.3$

$$
\begin{equation*}
\int_{0.36034+\ldots-a}^{0.360034+\ldots a} \arccos x \mathrm{~d} x=0.3 \tag{A1}
\end{equation*}
$$

Note: Award (A1) for $\int_{m-a}^{m+a} \arccos x \mathrm{~d} x=0.3$.
$\left[x \arccos x-\sqrt{1-x^{2}}\right]_{0.3600344 . \ldots-a}^{0.360034 . \ldots a}$
attempts to solve their equation for $a$
Note: The above (M1) is dependent on the first (M1).

$$
\begin{aligned}
& a=0.124861 \ldots \\
& a=0.125
\end{aligned}
$$

## METHOD 2

$$
\int_{-a}^{a} \arccos |x-0.360034 \ldots| \mathrm{d} x(=0.3)
$$

Note: Only award (M1) if at least one limit has been translated correctly.

Note: Award (M1)(A1) for $\int_{-a}^{a} \arccos |x-m| \mathrm{d} x(=0.3)$.
attempts to solve their equation for $a$

$$
\begin{aligned}
& a=0.124861 \ldots \\
& a=0.125
\end{aligned}
$$

## METHOD 3

## EITHER

$$
\int_{-a}^{a} \arccos (x+0.360034 \ldots) \mathrm{d} x(=0.3)
$$

Note: Only award (M1) if at least one limit has been translated correctly.

Note: Award (M1)(A1) for $\int_{-a}^{a} \arccos (x+m) \mathrm{d} x(=0.3)$.

## OR

$$
\begin{equation*}
\int_{2(0.360034 . \ldots)-a}^{2(0.360034 . . .)+a} \arccos (x-0.360034 \ldots) \mathrm{d} x(=0.3) \tag{M1}
\end{equation*}
$$

Note: Only award (M1) if at least one limit has been translated correctly.

Note: Award (M1)(A1) for $\int_{2 m-a}^{2 m+a} \arccos (x-m) \mathrm{d} x(=0.3)$.

## THEN

attempts to solve their equation for $a$
Note: The above (M1) is dependent on the first (M1).

$$
\begin{aligned}
& a=0.124861 \ldots \\
& a=0.125
\end{aligned}
$$

8. (a) METHOD 1
attempts to differentiate implicitly including at least one application of the product rule

$$
\begin{aligned}
& u=x y, v=\ln (x y), \frac{\mathrm{d} u}{\mathrm{~d} x}=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right) \frac{1}{x y} \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=1-\left[\frac{x y}{x y}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)+\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right) \ln (x y)\right]
\end{aligned}
$$

Note: Award (M1)A1 for implicitly differentiating $y=x(1-y \ln (x y))$ and obtaining

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=1-\left[\frac{x y}{x y}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)+x \frac{\mathrm{~d} y}{\mathrm{~d} x} \ln (x y)+y \ln (x y)\right] .
$$

$\frac{\mathrm{d} y}{\mathrm{~d} x}=1-\left[\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)+\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right) \ln (x y)\right]$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=1-\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)(1+\ln (x y))$
$\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)(1+\ln (x y))=1$

## METHOD 2

$y=x-x y \ln x-x y \ln y$
attempts to differentiate implicitly including at least one application of the product rule
$\frac{\mathrm{d} y}{\mathrm{~d} x}=1-\left(\frac{x y}{x}+\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right) \ln x\right)-\left(\frac{x y}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right) \ln y\right)$
or equivalent to the above, for example

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=1-\left(x \ln x \frac{\mathrm{~d} y}{\mathrm{~d} x}+(1+\ln x) y\right)-\left(y \ln y+x\left(\ln y \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)\right)
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=1-x \frac{\mathrm{~d} y}{\mathrm{~d} x}(\ln x+\ln y+1)-y(\ln x+\ln y+1)
$$

or equivalent to the above, for example

$$
\begin{align*}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=1-x \frac{\mathrm{~d} y}{\mathrm{~d} x}(\ln (x y)+1)-y(\ln (x y)+1) \\
& \frac{\mathrm{d} y}{\mathrm{~d} x}+\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)(1+\ln (x y))=1
\end{align*}
$$

## METHOD 3

attempt to differentiate implicitly including at least one application of the product rule
$u=x \ln (x y), v=y, \frac{\mathrm{~d} u}{\mathrm{~d} x}=\ln (x y)+\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right) \frac{x}{x y}, \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=1-\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x} \ln (x y)+y \ln (x y)+\frac{x y}{x y}\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)\right)$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=1-x \frac{\mathrm{~d} y}{\mathrm{~d} x}(\ln (x y)+1)-y(\ln (x y)+1)$
$\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)(1+\ln (x y))=1$

## METHOD 4

lets $w=x y$ and attempts to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ where $y=x-w \ln w$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=1-\left(\frac{\mathrm{d} w}{\mathrm{~d} x}+\frac{\mathrm{d} w}{\mathrm{~d} x} \ln w\right)\left(=1-\frac{\mathrm{d} w}{\mathrm{~d} x}(1+\ln w)\right)$
$\frac{\mathrm{d} w}{\mathrm{~d} x}=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=1-\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y+\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right) \ln (x y)\right)\left(=1-\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)(1+\ln (x y))\right)$
$\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)(1+\ln (x y))=1$

## (b) METHOD 1

substitutes $x=1$ into $y=x-x y \ln (x y)$
$y=1-y \ln y \Rightarrow y=1$
substitutes $x=1$ and their non-zero value of $y$ into $\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)(1+\ln (x y))=1$
$2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=0\right)$
equation of the tangent is $y=1$

## METHOD 2

substitutes $x=1$ into $\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y\right)(1+\ln (x y))=1$
$\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}+y\right)(1+\ln (y))=1$

## EITHER

correctly substitutes $\ln y=\frac{1-y}{y}$ into $\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}+y\right)(1+\ln (y))=1$
$\frac{\mathrm{d} y}{\mathrm{~d} x}\left(1+\frac{1}{y}\right)=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \quad(y=1)$
OR
correctly substitutes $y+y \ln y=1$ into $\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}+y\right)(1+\ln (y))=1$
$\frac{\mathrm{d} y}{\mathrm{~d} x}(2+\ln y)=0 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \quad(y=1)$
THEN
substitutes $x=1$ into $y=x-x y \ln (x y)$
$y=1-y \ln y \Rightarrow y=1$
equation of the tangent is $y=1$

## Section B

9. (a) $12=\frac{2 \pi}{b}$ OR $b=\frac{2 \pi}{12} \quad$ A1

$$
b=\frac{\pi}{6} \quad A G
$$

(b) $\quad a=\frac{6.8-2.2}{2}$ OR $a=\frac{\mathrm{max}-\mathrm{min}}{2}$
$=2.3(\mathrm{~m}) \quad$ A1
(c) $d=\frac{6.8+2.2}{2}$ OR $d=\frac{\mathrm{max}+\mathrm{min}}{2}$
$=4.5(\mathrm{~m})$

Question 9 continued.
(d) METHOD 1
substituting $t=4.5$ and $H=6.8$ for example into their equation for $H$
$6.8=2.3 \sin \left(\frac{\pi}{6}(4.5-c)\right)+4.5$
attempt to solve their equation
$c=1.5$

## METHOD 2

using horizontal translation of $\frac{12}{4}$

$$
\begin{align*}
& 4.5-c=3  \tag{A1}\\
& c=1.5
\end{align*}
$$

## METHOD 3

$H^{\prime}(t)=(2.3)\left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{6}(t-c)\right)$
attempts to solve their $H^{\prime}(4.5)=0$ for $c$
(2.3) $\left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{6}(4.5-c)\right)=0$
$c=1.5$
(e) attempt to find $H$ when $t=12$ or $t=0$, graphically or algebraically
$H=2.87365 \ldots$
$H=2.87(\mathrm{~m})$

Question 9 continued.
(f) attempt to solve $5=2.3 \sin \left(\frac{\pi}{6}(t-1.5)\right)+4.5$
times are $t=1.91852 \ldots$ and $t=7.08147 \ldots,(t=13.9185 \ldots, t=19.0814 \ldots)$
total time is $2 \times(7.081 \ldots-1.919 \ldots)$
10.3258...
$=10.3$ (hours)
Note: Accept 10.
(g) METHOD 1
substitutes $t=\frac{11}{3}$ and $H=6.8$ into their equation for $H$ and attempts to solve for $c$
$6.8=2.3 \sin \left(\frac{\pi}{6}\left(\frac{11}{3}-c\right)\right)+4.5 \Rightarrow c=\frac{2}{3}$
$H(t)=2.3 \sin \left(\frac{\pi}{6}\left(t-\frac{2}{3}\right)\right)+4.5$

## METHOD 2

uses their horizontal translation $\left(\frac{12}{4}=3\right)$
$\frac{11}{3}-c=3 \Rightarrow c=\frac{2}{3}$
$H(t)=2.3 \sin \left(\frac{\pi}{6}\left(t-\frac{2}{3}\right)\right)+4.5$
10. (a) (i)

Note: In part (a), penalise once only, if correct values are given instead of correct coordinates.

$$
\text { attempts to solve } x^{2}-x-12=0
$$

$(-3,0)$ and $(4,0)$
(ii) $\left(0, \frac{4}{5}\right)$
(b) $\quad x=\frac{15}{2}$

Note: Award $\boldsymbol{A} \boldsymbol{O}$ for $x \neq \frac{15}{2}$.
Award $\boldsymbol{A 1}$ in part (b), if $x=\frac{15}{2}$ is seen on their graph in part (d).
(c) METHOD 1
$(a x+b)(2 x-15) \equiv x^{2}-x-12$
attempts to expand $(a x+b)(2 x-15)$
$2 a x^{2}-15 a x+2 b x-15 b \equiv x^{2}-x-12$
$a=\frac{1}{2}$
equates coefficients of $x$
$-1=-\frac{15}{2}+2 b$
$b=\frac{13}{4}$
$\left(y=\frac{x}{2}+\frac{13}{4}\right)$

## METHOD 2

attempts division on $\frac{x^{2}-x-12}{2 x-15}$
$\frac{x}{2}+\frac{13}{4}+\ldots$
$a=\frac{1}{2}$
$b=\frac{13}{4}$
$\left(y=\frac{x}{2}+\frac{13}{4}\right)$

## METHOD 3

$a=\frac{1}{2}$
$\frac{x^{2}-x-12}{2 x-15} \equiv \frac{x}{2}+b+\frac{c}{2 x-15}$
$x^{2}-x-12 \equiv \frac{(2 x-15) x}{2}+(2 x-15) b+c$
equates coefficients of $x$ :
$-1=-\frac{15}{2}+2 b$
$b=\frac{13}{4}$
$\left(y=\frac{x}{2}+\frac{13}{4}\right)$

## METHOD 4

attempts division on $\frac{x^{2}-x-12}{2 x-15}$
$\frac{x^{2}-x-12}{2 x-15}=\frac{x}{2}+\frac{\frac{13 x}{2}-12}{2 x-15}$
$a=\frac{1}{2}$
$\frac{\frac{13 x}{2}-12}{2 x-15}=\frac{13}{4}+\ldots$
$b=\frac{13}{4}$
$\left(y=\frac{x}{2}+\frac{13}{4}\right)$
(d)

two branches with approximately correct shape ( for $-30 \leq x \leq 30$ )
their vertical and oblique asymptotes in approximately correct positions with both branches showing correct asymptotic behaviour to these asymptotes
their axes intercepts in approximately the correct positions A1
Note: Points of intersection with the axes and the equations of asymptotes are not required to be labelled.
(e) (i) attempts to split into partial fractions:

$$
\begin{aligned}
& \frac{2 x-15}{(x+3)(x-4)} \equiv \frac{A}{x+3}+\frac{B}{x-4} \\
& 2 x-15 \equiv A(x-4)+B(x+3)
\end{aligned}
$$

$$
A=3
$$

$B=-1$
$\left(\frac{3}{x+3}-\frac{1}{x-4}\right)$
(ii) $\int_{0}^{3}\left(\frac{3}{x+3}-\frac{1}{x-4}\right) \mathrm{d} x$
attempts to integrate and obtains two terms involving ' n '

$$
=[3 \ln |x+3|-\ln |x-4|]_{0}^{3}
$$

$=3 \ln 6-\ln 1-3 \ln 3+\ln 4$
$=3 \ln 2+\ln 4(=\ln 8+\ln 4)$
$=\ln 32(=5 \ln 2)$
Note: The final $\boldsymbol{A 1}$ is dependent on the previous two $\boldsymbol{A}$ marks.
11. (a) (i) attempts to find either $\overrightarrow{\mathrm{AB}}$ or $\overrightarrow{\mathrm{AC}}$
$\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}-3 \\ -2 \\ 0\end{array}\right)$ and $\overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}-2 \\ 1 \\ -7\end{array}\right)$
(ii) METHOD 1
attempts to find $\overrightarrow{A B} \times \overrightarrow{A C}$
$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}14 \\ -21 \\ -7\end{array}\right)$

## EITHER

equation of plane is of the form $14 x-21 y-7 z=d \quad(2 x-3 y-z=d)$
substitutes a valid point e.g $(3,0,0)$ to obtain a value of $d$
$d=42(d=6)$
OR
attempts to use $\boldsymbol{r} \cdot \boldsymbol{n}=\boldsymbol{a} \cdot \boldsymbol{n}$

$$
\begin{align*}
& \boldsymbol{r} \cdot\left(\begin{array}{c}
14 \\
-21 \\
-7
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
14 \\
-21 \\
-7
\end{array}\right)\left(\boldsymbol{r} \cdot\left(\begin{array}{c}
14 \\
-21 \\
-7
\end{array}\right)=42\right)  \tag{M1}\\
& \boldsymbol{r} \cdot\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right)\left(\boldsymbol{r} \cdot\left(\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right)=6\right)
\end{align*}
$$

THEN
$14 x-21 y-7 z=42(2 x-3 y-z=6)$

## METHOD 2

equation of plane is of the form $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)+s\left(\begin{array}{c}-3 \\ -2 \\ 0\end{array}\right)+t\left(\begin{array}{c}-2 \\ 1 \\ -7\end{array}\right)$
attempts to form equations for $x, y, z$ in terms of their parameters
$x=3-3 s-2 t, y=-2 s+t, z=-7 t$
eliminates at least one of their parameters
for example, $2 x-3 y=6-7 t(\Rightarrow 2 x-3 y=6+z)$
$2 x-3 y-z=6$
(b) METHOD 1
substitutes $r=\left(\begin{array}{c}0 \\ -2 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ into their $\Pi_{1}$ and $\Pi_{2}$ (given)
$\Pi_{1}: 2 \lambda-3(-2+\lambda)-(-\lambda)=6$ and $\Pi_{2}: 3 \lambda-(-2+\lambda)+2(-\lambda)=2$
Note: Award (M1)AO for correct verification using a specific value of $\lambda$.
so the vector equation of $L$ can be written as $r=\left(\begin{array}{c}0 \\ -2 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$

## METHOD 2

## EITHER

attempts to find $\left(\begin{array}{c}2 \\ -3 \\ -1\end{array}\right) \times\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)$
$=\left(\begin{array}{c}-7 \\ -7 \\ 7\end{array}\right)$
OR
$\left(\begin{array}{c}2 \\ -3 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)=(2-3+1)=0$ and $\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)=(3-1-2)=0$
THEN
substitutes $(0,-2,0)$ into $\Pi_{1}$ and $\Pi_{2}$
$\Pi_{1}: 2(0)-3(-2)-(0)=6$ and $\Pi_{2}: 3(0)-(-2)+2(0)=2$
so the vector equation of $L$ can be written as $r=\left(\begin{array}{c}0 \\ -2 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$

## METHOD 3

attempts to solve $2 x-3 y-z=6$ and $3 x-y+2 z=2$
for example, $x=-\lambda, y=-2-\lambda, z=\lambda$

Note: Award $\boldsymbol{A 1}$ for substituting $x=0$ (or $y=-2$ or $z=0$ ) into $\Pi_{1}$ and $\Pi_{2}$ and solving simultaneously. For example, solving $-3 y-z=6$ and $-y+2 z=2$ to obtain $y=-2$ and $z=0$.
so the vector equation of $L$ can be written as $r=\left(\begin{array}{c}0 \\ -2 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$
(c) (i) substitutes the equation of $L$ into the equation of $\Pi_{3}$

$$
\begin{aligned}
& 2 \lambda+2 \lambda=3 \Rightarrow 4 \lambda=3 \\
& \lambda=\frac{3}{4}
\end{aligned}
$$

(ii) P has coordinates $\left(\frac{3}{4},-\frac{5}{4},-\frac{3}{4}\right)$

A1
(d) (i) normal to $\Pi_{3}$ is $n=\left(\begin{array}{c}2 \\ 0 \\ -2\end{array}\right)$

Note: May be seen or used anywhere.
considers the line normal to $\Pi_{3}$ passing through $\mathrm{B}(0,-2,0)$
$\boldsymbol{r}=\left(\begin{array}{c}0 \\ -2 \\ 0\end{array}\right)+\mu\left(\begin{array}{c}2 \\ 0 \\ -2\end{array}\right)$

## EITHER

finding the point on the normal line that intersects $\Pi_{3}$ attempts to solve simultaneously with plane $2 x-2 z=3$
$4 \mu+4 \mu=3$
$\mu=\frac{3}{8}$
point is $\left(\frac{3}{4},-2,-\frac{3}{4}\right)$

OR
$\left(\left(\begin{array}{c}2 \mu \\ -2 \\ -2 \mu\end{array}\right)-\left(\begin{array}{c}\frac{3}{4} \\ -\frac{5}{4} \\ -\frac{3}{4}\end{array}\right)\right) \cdot\left(\begin{array}{c}2 \\ 0 \\ -2\end{array}\right)=0$
$4 \mu-\frac{3}{2}+4 \mu-\frac{3}{2}=0$
$\mu=\frac{3}{8}$

OR
attempts to find the equation of the plane parallel to $\Pi_{3}$ containing $\mathrm{B}^{\prime}(x-z=3)$ and solve simultaneously with $L$
$2 \mu^{\prime}+2 \mu^{\prime}=3$
$\mu^{\prime}=\frac{3}{4}$

THEN
so, another point on the reflected line is given by
$\boldsymbol{r}=\left(\begin{array}{c}0 \\ -2 \\ 0\end{array}\right)+\frac{3}{4}\left(\begin{array}{c}2 \\ 0 \\ -2\end{array}\right)$
$\Rightarrow \mathrm{B}^{\prime}\left(\frac{3}{2},-2,-\frac{3}{2}\right)$
(ii) EITHER
attempts to find the direction vector of the reflected line using their $P$ and $B^{\prime}(M 1)$
$\overrightarrow{\mathrm{PB}^{\prime}}=\left(\begin{array}{c}\frac{3}{4} \\ -\frac{3}{4} \\ -\frac{3}{4}\end{array}\right)$
OR
attempts to find their direction vector of the reflected line using a vector approach
$\overrightarrow{\mathrm{PB}^{\prime}}=\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{BB}^{\prime}}=-\frac{3}{4}\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)+\frac{3}{2}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$

## THEN

$\boldsymbol{r}=\left(\begin{array}{c}\frac{3}{2} \\ -2 \\ -\frac{3}{2}\end{array}\right)+\lambda\left(\begin{array}{c}\frac{3}{4} \\ -\frac{3}{4} \\ -\frac{3}{4}\end{array}\right)$ (or equivalent)

$$
\text { Note: Award } \boldsymbol{A} \boldsymbol{O} \text { for either ' } \boldsymbol{r}=\text { ' or ' }\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\text { ' not stated. Award } \boldsymbol{A} \boldsymbol{O} \text { for ' } L \text { ' }=\text { '. }
$$

# Markscheme 

## May 2021

# Mathematics: analysis and approaches 

## Higher level

## Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2021
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2021
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

## Instructions to Examiners

## Abbreviations

## M Marks awarded for attempting to use a correct Method.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding $\boldsymbol{M}$ marks.
R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

## Using the markscheme

## 1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

## 2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as $\boldsymbol{A}$ mark(s) depend on the preceding $\boldsymbol{M}$ mark(s), if any.
- Where $\boldsymbol{M}$ and $\boldsymbol{A}$ marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more $\boldsymbol{A}$ marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

|  | Correct <br> answer seen | Further <br> working seen | Any FT issues? | Action |
| :--- | :--- | :--- | :--- | :--- |
| 1. | $8 \sqrt{2}$ | $5.65685 \ldots$ <br> (incorrect <br> decimal value) | No. <br> Last part in question. | Award $\boldsymbol{A 1}$ for the final mark <br> (condone the incorrect further <br> working) |
| 2. | $\frac{35}{72}$ | $0.468111 \ldots$ <br> (incorrect <br> decimal value) | Yes. <br> Value is used in <br> subsequent parts. | Award $\boldsymbol{A O}$ for the final mark <br> (and full $\boldsymbol{F T}$ is available in <br> subsequent parts) |

## Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

## 4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further $\boldsymbol{A}$ marks can be awarded for work which uses the error, but $\boldsymbol{M}$ marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these $\boldsymbol{F T}$ rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".


## Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an $\boldsymbol{M}$ mark, but award all others as appropriate.

- If the question becomes much simpler because of the $M R$, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.


## 6 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.


## Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, $\boldsymbol{M}$ marks and intermediate $\boldsymbol{A}$ marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.


## 8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an $\boldsymbol{A}$ mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 e^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate $\boldsymbol{A}$ marks do NOT need to be simplified.

## 9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.

## 10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

## Section A

1. (a) (i) $a=0.805084 \ldots$ and $b=2.88135 \ldots$
$a=0.805$ and $b=2.88$
A1A1

A1
[3 marks]
(b) $\quad a$ represents the (average) increase in waiting time ( 0.805 mins ) per additional customer (waiting to receive their coffee)
(c) attempt to substitute $x=7$ into their equation
8.51693...
8.52 (mins)

A1
[2 marks]
Total [6 marks]
2. (a) attempt to use $u_{1}+(n-1) d=0$
(M1)
$60-2.5(k-1)=0$
$k=25$
A1
[2 marks]

## (b) METHOD 1

attempting to express $S_{n}$ in terms of $n$ (M1)
use of a graph or a table to attempt to find the maximum sum (M1)
$=750$
A1

## METHOD 2

## EITHER

recognizing maximum occurs at $n=25$
(M1)
$S_{25}=\frac{25}{2}(60+0), S_{25}=\frac{25}{2}(2 \times 60+24 \times-2.5)$
(A1)

## OR

attempting to calculate $S_{24}$
$S_{24}=\frac{24}{2}(2 \times 60+23 \times-2.5)$

$$
(A 1)
$$

## THEN

$=750$
3. (a) EITHER
$\mathrm{P}(S)+\mathrm{P}(T)+\mathrm{P}\left(S^{\prime} \cap T^{\prime}\right)-\mathrm{P}(S \cap T)=1$ OR $\mathrm{P}(S \cup T)=\mathrm{P}\left(\left(S^{\prime} \cap T^{\prime}\right)^{\prime}\right)$
$0.7+0.2+0.18-\mathrm{P}(S \cap T)=1 \quad$ OR $\mathrm{P}(S \cup T)=1-0.18$

## OR

a clearly labelled Venn diagram
(M1)

## THEN

$\mathrm{P}(S \cap T)=0.08$ (accept $8 \%$ ) A1

Note: To obtain the M1 for the Venn diagram all labels must be correct and in the correct sections.
For example, do not accept 0.7 in the area corresponding to $S \cap T^{\prime}$.
[2 marks]
(b) EITHER
$\mathrm{P}\left(T \cap S^{\prime}\right)=\mathrm{P}(T)-\mathrm{P}(T \cap S)(=0.2-0.08) \mathrm{OR}$
$\mathrm{P}\left(T \cap S^{\prime}\right)=\mathrm{P}(T \cup S)-\mathrm{P}(S)(=0.82-0.7)$
OR
a clearly labelled Venn diagram including $\mathrm{P}(S), \mathrm{P}(T)$ and $\mathrm{P}(S \cap T)$
(M1)

## THEN

$=0.12$ (accept $12 \%$ )
A1
[2 marks]
(c) $\quad \mathrm{P}(G \cap T)=\mathrm{P}(T \mid G) \mathrm{P}(G)(0.25 \times 0.48)$
$=0.12$
(M1)
A1
[2 marks]

Question 3 continued
(d) METHOD 1

$$
\begin{aligned}
& \mathrm{P}(G) \times \mathrm{P}(T)(=0.48 \times 0.2)=0.096 \\
& \mathrm{P}(G) \times \mathrm{P}(T) \neq \mathrm{P}(G \cap T) \Rightarrow G \text { and } T \text { are not independent }
\end{aligned}
$$

## METHOD 2

$\mathrm{P}(T \mid G)=0.25 \quad$ A1
$\mathrm{P}(T \mid G) \neq \mathrm{P}(T) \Rightarrow G$ and $T$ are not independent R1
Note: Do not award AOR1.
[2 marks]
4. (a) attempting to find the vertex
$x=1$ OR $y=-5$ OR $f(x)=6(x-1)^{2}-5$
range is $y \geq-5$
[2 marks]
(b) METHOD 1
$(g \circ f)(x)=-\left(6 x^{2}-12 x+1\right)+c\left(=-\left(6(x-1)^{2}-5\right)+c\right)$
EITHER
relating to the range of $f$ OR attempting to find $g(-5)$
$5+c \leq 0$
OR
attempting to find the discriminant of $(g \circ f)(x)$
$144+24(c-1) \leq 0(120+24 c \leq 0)$
THEN
$c \leq-5$

A1
[4 marks]
(M1)
(A1)
(A1)
A1
[4 marks]
Total [6 marks]
5.
(a) $100=A_{0} \mathrm{e}^{0}$
A1
$A_{0}=100$
$50=100 \mathrm{e}^{-5730 k}$ OR $\mathrm{e}^{-5730 k}=\frac{1}{2}$
EITHER
$-5730 k=\ln \frac{1}{2}$
A1
$\ln \frac{1}{2}=-\ln 2$ OR $-\ln \frac{1}{2}=\ln 2$ A1
OR
$\mathrm{e}^{5730 k}=2 \quad \boldsymbol{A 1}$
$5730 k=\ln 2$ A1

## THEN

$k=\frac{\ln 2}{5730}$

AG
[1 mark]

Note: There are many different ways of showing that $k=\frac{\ln 2}{5730}$ which involve showing different steps. Award full marks for at least two correct algebraic steps seen.
(c) if $25 \%$ of the carbon- 14 has decayed, $75 \%$ remains ie, 75 units remain

$$
\begin{equation*}
75=100 \mathrm{e}^{-\frac{\ln 2 t}{5730} t} \tag{A1}
\end{equation*}
$$

## EITHER

using an appropriate graph to attempt to solve for $t$

## OR

manipulating logs to attempt to solve for $t$
$\ln 0.75=-\frac{\ln 2}{5730} t$
$t=2378.164 \ldots$

## THEN

$t=2380$ (years) (correct to the nearest 10 years)
6. (a) $\mathrm{E}(X)=(n+1) \int_{0}^{1} x^{n+1} \mathrm{~d} x$
$=(n+1)\left[\frac{x^{n+2}}{n+2}\right]_{0}^{1}$
A1
leading to $\mathrm{E}(X)=\frac{n+1}{n+2}$
(b) METHOD 1

$$
\begin{aligned}
& \text { use of } \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2} \\
& \operatorname{Var}(X)=(n+1) \int_{0}^{1} x^{n+2} \mathrm{~d} x-\left(\frac{n+1}{n+2}\right)^{2} \\
& =(n+1)\left[\frac{1}{n+3} x^{n+3}\right]_{0}^{1}-\left(\frac{n+1}{n+2}\right)^{2} \\
& =\frac{n+1}{n+3}-\left(\frac{n+1}{n+2}\right)^{2} \\
& =\frac{(n+1)(n+2)^{2}-(n+1)^{2}(n+3)}{(n+2)^{2}(n+3)}
\end{aligned}
$$

## EITHER

$$
=\frac{(n+1)\left(n^{2}+4 n+4-\left(n^{2}+4 n+3\right)\right)}{(n+2)^{2}(n+3)}
$$

## OR

$=\frac{\left(n^{3}+5 n^{2}+8 n+4\right)-\left(n^{3}+5 n^{2}+7 n+3\right)}{(n+2)^{2}(n+3)}$

## THEN

so $\operatorname{Var}(X)=\frac{n+1}{(n+2)^{2}(n+3)}$

Question 6 continued

## METHOD 2

$$
\text { use of } \operatorname{Var}(X)=\mathrm{E}(X-\mathrm{E}(X))^{2}
$$

$\operatorname{Var}(X)=(n+1) \int_{0}^{1}\left(x-\frac{n+1}{n+2}\right)^{2} x^{n} \mathrm{~d} x$
$=(n+1)\left[\frac{1}{n+3} x^{n+3}-\frac{2(n+1)}{(n+2)^{2}} x^{n+2}+\frac{n+1}{(n+2)^{2}} x^{n+1}\right]_{0}^{1}$
$=\frac{n+1}{n+3}-\left(\frac{n+1}{n+2}\right)^{2}$
$=\frac{(n+1)\left((n+2)^{2}-(n+1)(n+3)\right)}{(n+2)^{2}(n+3)}$

## EITHER

$$
=\frac{(n+1)\left(n^{2}+4 n+4-\left(n^{2}+4 n+3\right)\right)}{(n+2)^{2}(n+3)}
$$

OR

$$
\begin{equation*}
=\frac{\left(n^{3}+5 n^{2}+8 n+4\right)-\left(n^{3}+5 n^{2}+7 n+3\right)}{(n+2)^{2}(n+3)} \tag{A1}
\end{equation*}
$$

## THEN

$$
\text { so } \operatorname{Var}(X)=\frac{n+1}{(n+2)^{2}(n+3)}
$$

7. (a) Jack and Andrea finish in that order (as a unit) so we are considering the arrangement of 7 objects
$7!(=5040)$ ways A1
[2 marks]
(b) METHOD 1
the number of ways that Andrea finishes in front of Jack is equal to the number of ways that Jack finishes in front of Andrea
total number of ways is 8 !
$\frac{8!}{2}(=20160)$ ways

## METHOD 2

the other six runners can finish in $6!(=720)$ ways
when Andrea finishes first, Jack can finish in 7 different positions when Andrea finishes second, Jack can finish in 6 different positions etc

$$
\begin{equation*}
7+6+5+4+3+2+1(=28) \text { ways } \tag{A1}
\end{equation*}
$$

hence there are $(7+6+5+4+3+2+1) \times 6$ ! ways
$28 \times 6!(=20160)$ ways
8. $\frac{1+z}{1-z}=\frac{1+\cos \theta+\mathrm{i} \sin \theta}{1-\cos \theta-\mathrm{i} \sin \theta}$
attempt to use the complex conjugate of their denominator

$$
\begin{equation*}
=\frac{(1+\cos \theta+\mathrm{i} \sin \theta)(1-\cos \theta+\mathrm{i} \sin \theta)}{(1-\cos \theta-\mathrm{i} \sin \theta)(1-\cos \theta+\mathrm{i} \sin \theta)} \tag{A1}
\end{equation*}
$$

$\operatorname{Re}\left(\frac{1+z}{1-z}\right)=\frac{1-\cos ^{2} \theta-\sin ^{2} \theta}{(1-\cos \theta)^{2}+\sin ^{2} \theta}\left(=\frac{1-\cos ^{2} \theta-\sin ^{2} \theta}{2-2 \cos \theta}\right)$
Note: Award $\boldsymbol{M} \mathbf{1}$ for expanding the numerator and $\boldsymbol{A} \mathbf{1}$ for a correct numerator. Condone either an incorrect denominator or the absence of a denominator.
using $\cos ^{2} \theta+\sin ^{2} \theta=1$ to simplify the numerator
$\operatorname{Re}\left(\frac{1+z}{1-z}\right)=0$
9. (a) $1-t+t^{2}$

A1
Note: Accept $1,-t$ and $t^{2}$.
(b) $\sec x=\frac{1}{1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}(-\ldots)}\left(=\left(1-\frac{x^{2}}{2!}+\left(\frac{x^{4}}{4!}(-\ldots)\right)\right)^{-1}\right)$
$t=\cos x-1$ or $\sec x=1-(\cos x-1)+(\cos x-1)^{2}$
(M1)

$$
\begin{aligned}
& =1-\left(-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}(-\ldots)\right)+\left(-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}(-\ldots)\right)^{2} \\
& =1+\frac{x^{2}}{2}-\frac{x^{4}}{24}+\frac{x^{4}}{4}
\end{aligned}
$$

so the Maclaurin series for $\sec x$ up to and including the term in $x^{4}$ is $1+\frac{x^{2}}{2}+\frac{5 x^{4}}{24}$
$A G$

Note: Condone the absence of '...
(c) $\arctan 2 x=2 x-\frac{(2 x)^{3}}{3}+\ldots$

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(\frac{x \arctan 2 x}{\sec x-1}\right)=\lim _{x \rightarrow 0}\left(\frac{x\left(2 x-\frac{(2 x)^{3}}{3}+\ldots\right)}{\left(1+\frac{x^{2}}{2}+\frac{5 x^{4}}{24}\right)-1}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{2 x^{2}-\frac{8 x^{4}}{3}+\ldots}{\frac{x^{2}}{2}+\frac{5 x^{4}}{24}}\right) \\
& =\lim _{x \rightarrow 0}\left(\frac{2 x^{2}\left(1-\frac{4 x^{2}}{3}\right)}{\frac{x^{2}}{2}\left(1+\frac{5 x^{2}}{12}\right)}\right) \\
& =4
\end{aligned}
$$

Note: Condone missing 'lim' and errors in higher derivatives.
Do not award $\boldsymbol{M} 1$ unless $x$ is replaced by $2 x$ in arctan.

## Section B

10. (a) use of inverse normal to find $z$-score

$$
\begin{align*}
& z=2.0537 \ldots \\
& 2.0537 \ldots=\frac{82-75}{\sigma}  \tag{A1}\\
& \sigma=3.408401 \ldots \\
& \sigma=3.41
\end{align*}
$$

(b) evidence of identifying the correct area under the normal curve
$\mathrm{P}(T>80)=0.071193 \ldots$
$\mathrm{P}(T>80)=0.0712$
A1
[2 marks]
(c) recognition that $\mathrm{P}(80<T<82)$ is required
$P(T<82 \mid T>80)=\frac{\mathrm{P}(80<T<82)}{\mathrm{P}(T>80)}=\left(\frac{0.051193 \ldots}{0.071193 \ldots}\right)$
(M1)(A1)
$=0.719075 \ldots$
$=0.719$

Question 10 continued
(d) recognition of binomial probability
$X \sim \mathrm{~B}(64,0.071193 \ldots)$ or $\mathrm{E}(X)=64 \times 0.071193 \ldots$
$\mathrm{E}(X)=4.556353 \ldots$
$\mathrm{E}(X)=4.56$ (flights)
A1
[3 marks]
(e) $\mathrm{P}(X>6)=P(X \geq 7)=1-\mathrm{P}(X \leq 6)$
(M1)
$=1-0.83088 \ldots$
(A1)
$=0.1691196 . .$.
$=0.169$
A1
11. (a) attempt to use $V=\pi \int_{a}^{b}(f(x))^{2} \mathrm{~d} x$
(M1)
$V=\pi \int_{0}^{\ln 16}\left(\frac{k \mathrm{e}^{\frac{x}{2}}}{1+\mathrm{e}^{x}}\right)^{2} \mathrm{~d} x\left(V=k^{2} \pi \int_{0}^{\ln 16} \frac{\mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}} \mathrm{~d} x\right)$

## EITHER

applying integration by recognition
$=k^{2} \pi\left[-\frac{1}{1+\mathrm{e}^{x}}\right]_{0}^{\ln 16}$
OR
$u=1+\mathrm{e}^{x} \Rightarrow \mathrm{~d} u=\mathrm{e}^{x} \mathrm{~d} x$
attempt to express the integral in terms of $u$
when $x=0, u=2$ and when $x=\ln 16, u=17$
$V=k^{2} \pi \int_{2}^{17} \frac{1}{u^{2}} \mathrm{~d} u$
$=k^{2} \pi\left[-\frac{1}{u}\right]_{2}^{17}$

$$
\begin{equation*}
u=\mathrm{e}^{x} \Rightarrow \mathrm{~d} u=\mathrm{e}^{x} \mathrm{~d} x \tag{A1}
\end{equation*}
$$

when $x=0, u=1$ and when $x=\ln 16, u=16$
$V=k^{2} \pi \int_{1}^{16} \frac{1}{(1+u)^{2}} \mathrm{~d} u$
$=k^{2} \pi\left[-\frac{1}{1+u}\right]_{1}^{16}$
Note: Accept equivalent working with indefinite integrals and original limits for $x$.

## THEN

$=k^{2} \pi\left(\frac{1}{2}-\frac{1}{17}\right)$
so the volume of the solid formed is $\frac{15 k^{2} \pi}{34}$ cubic units $A G$

Note: Award (M1)(AO)(MO)(AO)(AO)(A1) when $\frac{15}{34}$ is obtained from GDC

## Question 11 continued

(b) a valid algebraic or graphical attempt to find $k$
(M1)

$$
\begin{aligned}
& k^{2}=\frac{300 \times 34}{15 \pi} \\
& k=14.7\left(=2 \sqrt{\frac{170}{\pi}}=\sqrt{\frac{680}{\pi}}\right)\left(\text { as } k \in \mathbb{R}^{+}\right)
\end{aligned}
$$

A1

Note: Candidates may use their GDC numerical solve feature.
[2 marks]
(c) (i) attempting to find $\mathrm{OA}=f(0)=\frac{k}{2}$

$$
\begin{align*}
& \text { with } k=14.712 \ldots\left(=2 \sqrt{\frac{170}{\pi}}=\sqrt{\frac{680}{\pi}}\right)  \tag{M1}\\
& \mathrm{OA}=7.36\left(=\sqrt{\frac{170}{\pi}}\right)
\end{align*}
$$

A1
(ii) attempting to find $\mathrm{BC}=f(\ln 16)=\frac{4 k}{17}$

$$
\begin{equation*}
\text { with } k=14.712 \ldots\left(=2 \sqrt{\frac{170}{\pi}}=\sqrt{\frac{680}{\pi}}\right) \tag{M1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{BC}=3.46\left(=\frac{8}{17} \sqrt{\frac{170}{\pi}}=\frac{8 \sqrt{10}}{\sqrt{17 \pi}}\right) \tag{A1}
\end{equation*}
$$

## Question 11 continued

(d) (i) EITHER
recognising to graph $y=f^{\prime}(x)$

Note: Award M1 for attempting to use quotient rule or product rule differentiation.
$f^{\prime}(x)=\frac{k \mathrm{e}^{\frac{x}{2}}\left(1-\mathrm{e}^{x}\right)}{2\left(1+\mathrm{e}^{x}\right)^{2}}$

for $x>0$ graph decreasing to the local minimum
A1
before increasing towards the $x$-axis

Question 11 continued
OR
recognising to graph $y=f^{\prime \prime}(x)$
(M1)
Note: Award $\boldsymbol{M 1}$ for attempting to use quotient rule or product rule differentiation.

$$
f^{\prime \prime}(x)=\frac{k \mathrm{e}^{\frac{x}{2}}\left(\mathrm{e}^{2 x}-6 \mathrm{e}^{x}+1\right)}{4\left(1+\mathrm{e}^{x}\right)^{3}}
$$


for $x>0$, graph increasing towards and beyond the $x$-intercept
recognising $f^{\prime \prime}(x)=0$ for maximum rate

## THEN

$$
x=1.76(=\ln (2 \sqrt{2}+3))
$$

Note: Only award $\boldsymbol{A}$ marks if either graph is seen.
(ii) attempting to find $f(1.76 \ldots)$
the cross-sectional radius at this point is $5.20\left(\sqrt{\frac{85}{\pi}}\right)(\mathrm{cm})$
12. (a) EITHER

$$
f(-x)=\arcsin \left(\frac{(-x)^{2}-1}{(-x)^{2}+1}\right)=\arcsin \left(\frac{x^{2}-1}{x^{2}+1}\right)=f(x)
$$

OR
a sketch graph of $y=f(x)$ with line symmetry in the $y$-axis indicated R1

## THEN

so $f(x)$ is an even function $A G$ [1 mark]
(b) as $x \rightarrow \pm \infty, f(x) \rightarrow \arcsin 1\left(\rightarrow \frac{\pi}{2}\right)$ A1
so the horizontal asymptote is $y=\frac{\pi}{2}$

## Question 12 continued

(c) (i) attempting to use the quotient rule to find $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{x^{2}-1}{x^{2}+1}\right)$

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{x^{2}-1}{x^{2}+1}\right)=\frac{2 x\left(x^{2}+1\right)-2 x\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}\left(=\frac{4 x}{\left(x^{2}+1\right)^{2}}\right)
$$

attempting to use the chain rule to find $\frac{\mathrm{d}}{\mathrm{d} x}\left(\arcsin \left(\frac{x^{2}-1}{x^{2}+1}\right)\right)$
let $u=\frac{x^{2}-1}{x^{2}+1}$ and so $y=\arcsin u$ and $\frac{\mathrm{d} y}{\mathrm{~d} u}=\frac{1}{\sqrt{1-u^{2}}}$
$f^{\prime}(x)=\frac{1}{\sqrt{1-\left(\frac{x^{2}-1}{x^{2}+1}\right)^{2}}} \times \frac{4 x}{\left(x^{2}+1\right)^{2}}$
$=\frac{4 x}{\sqrt{\left(x^{2}+1\right)^{2}-\left(x^{2}-1\right)^{2}}} \times \frac{1}{\left(x^{2}+1\right)}$
$=\frac{4 x}{\sqrt{4 x^{2}}} \times \frac{1}{\left(x^{2}+1\right)}$
$=\frac{2 x}{\sqrt{x^{2}}\left(x^{2}+1\right)}$
(ii) $\quad f^{\prime}(x)=\frac{2 x}{|x|\left(x^{2}+1\right)}$

## EITHER

for $x<0,|x|=-x$
so $f^{\prime}(x)=-\frac{2}{x^{2}+1}$
OR
$|x|>0$ and $x^{2}+1>0 \quad$ A1
$2 x<0, x<0$

## THEN

$f^{\prime}(x)<0$
Note: Award $\boldsymbol{R 1}$ for stating that in $f^{\prime}(x)$, the numerator is negative, and the denominator is positive.
so $t$ is decreasing for $x<0$
Note: Do not accept a graphical solution.

## Question 12 continued

(d) $x=\arcsin \left(\frac{y^{2}-1}{y^{2}+1}\right)$
$\sin x=\frac{y^{2}-1}{y^{2}+1} \Rightarrow y^{2} \sin x+\sin x=y^{2}-1$ A1

$$
\begin{equation*}
y^{2}=\frac{1+\sin x}{1-\sin x} \tag{A1}
\end{equation*}
$$

domain of $g$ is $x \in \mathbb{R}, x \geq 0$ and so the range of $g^{-1}$ must be $y \in \mathbb{R}, y \geq 0$
hence the positive root is taken (or the negative root is rejected)
Note: The $\boldsymbol{R 1}$ is dependent on the above $\boldsymbol{A 1}$.

$$
\text { so }\left(g^{-1}(x)=\right) \sqrt{\frac{1+\sin x}{1-\sin x}}
$$

Note: The final $\boldsymbol{A} \mathbf{1}$ is not dependent on $\boldsymbol{R 1}$ mark.
(e) domain is $-\frac{\pi}{2} \leq x<\frac{\pi}{2}$

Note: Accept correct alternative notations, for example, $\left\lfloor-\frac{\pi}{2}, \frac{\pi}{2}\left\lfloor\right.\right.$ or $\left\lfloor-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Accept $[-1.57,1.57[$ if correct to 3 s.f.

Question 12 continued
(f)


Note: A1 for correct domain and correct range and $y$-intercept at $y=1$
A1 for asymptotic behaviour $x \rightarrow \frac{\pi}{2}$
A1 for $x=\frac{\pi}{2}$
Coordinates are not required.
Do not accept $x=1.57$ or other inexact values.

# Markscheme 

## May 2021

# Mathematics: analysis and approaches 

## Higher level

## Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2021

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2021

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

## Instructions to Examiners

## Abbreviations

## M Marks awarded for attempting to use a correct Method.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

## Using the markscheme

## 1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

## 2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as $\boldsymbol{A}$ mark(s) depend on the preceding $\boldsymbol{M}$ mark(s), if any.
- Where $\boldsymbol{M}$ and $\boldsymbol{A}$ marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more $\boldsymbol{A}$ marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

|  | Correct <br> answer seen | Further <br> working seen | Any FT issues? | Action |
| :--- | :--- | :--- | :--- | :--- |
| 1. | $8 \sqrt{2}$ | $5.65685 \ldots$ <br> (incorrect <br> decimal value) | No. <br> Last part in question. | Award $\boldsymbol{A 1}$ for the final mark <br> (condone the incorrect further <br> working) |
| 2. | $\frac{35}{72}$ | $0.468111 \ldots$ <br> (incorrect <br> decimal value) | Yes. <br> Value is used in <br> subsequent parts. | Award $\boldsymbol{A O}$ for the final mark <br> (and full $\boldsymbol{F T}$ is available in <br> subsequent parts) |

## Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

## 4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further $\boldsymbol{A}$ marks can be awarded for work which uses the error, but $\boldsymbol{M}$ marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these $\boldsymbol{F T}$ rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".


## Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an $\boldsymbol{M}$ mark, but award all others as appropriate.

- If the question becomes much simpler because of the $M R$, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.


## 6 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.


## Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, $\boldsymbol{M}$ marks and intermediate $\boldsymbol{A}$ marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.


## 8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an A mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 e^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate $\boldsymbol{A}$ marks do NOT need to be simplified.

## 9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.

## 10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

## Section A

1. (a) $a=0.433156 \ldots, b=4.50265 \ldots$

$$
a=0.433, b=4.50
$$

(b) attempt to substitute $x=18$ into their equation
$y=0.433 \times 18+4.50$
$=12.2994 \ldots$

$$
=12.3
$$

(c) $\bar{x}=15, \bar{y}=11$
(d)


Note: Award marks as follows:
A1 for a straight line going through $(15,11)$
A1 for intercepting the y -axis between their $b \pm 1.5$ (when their line is extended), which includes all the data for $3.3 \leq x \leq 25.3$.

If the candidate does not use a ruler, award A0A1 where appropriate.
2.

Note: In this question, do not penalise incorrect use of strict inequality signs.
Let $X=$ mass of a bag of sugar
(a) evidence of identifying the correct area
$\mathrm{P}(X<995)=0.0765637 \ldots$
$=0.0766 \quad$ A1
$\begin{array}{ll}\text { (b) } & 0.0766 \times 100 \\ & \approx 8\end{array} \quad$ A1

Note: Accept 7.66 .
(c) recognition that $\mathrm{P}(X>1005 \mid X \geq 995)$ is required
$\frac{\mathrm{P}(X \geq 995 \cap X>1005)}{\mathrm{P}(X \geq 995)}$
$\frac{\mathrm{P}(X>1005)}{\mathrm{P}(X \geq 995)}$
(A1)
$\frac{0.07656 \ldots}{1-0.07656 \ldots}\left(=\frac{0.07656 \ldots}{0.9234 \ldots}\right)$
$=0.0829$
3. Amplitude is $\frac{110}{2}=55$
$a=-55$ A1
$c=65$ A1
$\frac{2 \pi}{b}=20$ OR $-55 \cos (20 b)+65=10$
$b=\frac{\pi}{10}(=0.314)$ A1
4. (a) recognising $v=0$

$$
\begin{aligned}
& t=6.74416 \ldots \\
& =6.74(\mathrm{sec})
\end{aligned}
$$

Note: Do not award A1 if additional values are given.
(b) $\int_{0}^{10}|v(t)| \mathrm{d} t$ OR $-\int_{0}^{6.74416 \ldots} v(t) \mathrm{d} t+\int_{6.74416 \ldots}^{9.08837 \ldots} v(t) \mathrm{d} t-\int_{9.08837 \ldots \ldots}^{10} v(t) \mathrm{d} t$

$$
\begin{aligned}
& =37.0968 \ldots \\
& =37.1(\mathrm{~m})
\end{aligned}
$$

(c) recognising acceleration at $t=7$ is given by $v^{\prime}(7)$
acceleration $=5.93430 \ldots$

$$
=5.93\left(\mathrm{~ms}^{-2}\right) \quad \text { A1 }
$$

## 5. METHOD 1

product of a binomial coefficient, a power of 3 (and a power of $x^{2}$ ) seen
evidence of correct term chosen
${ }^{n+1} C_{2} \times 3^{n+1-2} \times\left(x^{2}\right)^{2}\left(=\frac{n(n+1)}{2} \times 3^{n-1} \times x^{4}\right)$ OR $n-r=1$
equating their coefficient to 20412 or their term to $20412 x^{4}$

## EITHER

${ }^{n+1} C_{2} \times 3^{n-1}=20412$
OR
${ }^{r+2} C_{r} \times 3^{r}=20412 \Rightarrow r=6$

## THEN

$n=7$

## METHOD 2

$3^{n+1}\left(1+\frac{x^{2}}{3}\right)^{n+1}$
product of a binomial coefficient and a power of $\frac{x^{2}}{3}$ OR $\frac{1}{3}$ seen
evidence of correct term chosen
$3^{n+1} \times{ }^{n+1} C_{2} \times\left(\frac{x^{2}}{3}\right)^{2}\left(=3^{n-1} \frac{n(n+1)}{2} x^{4}\right)$
equating their coefficient to 20412 or their term to $20412 x^{4}$
$3^{n-1} \times \frac{n(n+1)}{2}=20412$
$n=7$

6 (a) attempt to find a vector perpendicular to $\Pi_{1}$ and $\Pi_{2}$ using a cross product
$\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right) \times\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)=(2-(-2)) \boldsymbol{i}+(1-3) \boldsymbol{j}+(-6-2) \boldsymbol{k}$
$=\left(\begin{array}{c}4 \\ -2 \\ -8\end{array}\right)\left(=2\left(\begin{array}{c}2 \\ -1 \\ -4\end{array}\right)\right)$
equation is $4 x-2 y-8 z=0(\Rightarrow 2 x-y-4 z=0)$
A1 [3 marks]
7. (a) recognition of the need to integrate $\frac{x}{\sqrt{\left(x^{2}+k\right)^{3}}}$

$$
\int \frac{x}{\sqrt{\left(x^{2}+k\right)^{3}}} \mathrm{~d} x(=1)
$$

EITHER
$u=x^{2}+k \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=2 x$ (or equivalent)
continued...

Question 7 continued
OR
$\int \frac{x}{\sqrt{\left(x^{2}+k\right)^{3}}} \mathrm{~d} x=\frac{1}{2} \int \frac{2 x}{\sqrt{\left(x^{2}+k\right)^{3}}} \mathrm{~d} x$
$=-\left(x^{2}+k\right)^{-\frac{1}{2}}(+c)$

## THEN

attempt to use correct limits for their integrand and set equal to 1

$$
\begin{aligned}
& {\left[-u^{-\frac{1}{2}}\right]_{k}^{16+k}=1 \text { OR }\left[-\left(x^{2}+k\right)^{-\frac{1}{2}}\right]_{0}^{4}=1} \\
& -(16+k)^{-\frac{1}{2}}+k^{-\frac{1}{2}}=1\left(\Rightarrow \frac{1}{\sqrt{k}}-\frac{1}{\sqrt{16+k}}=1\right) \\
& \sqrt{16+k}-\sqrt{k}=\sqrt{k} \sqrt{16+k}
\end{aligned}
$$

(b) attempt to solve $\sqrt{16+k}-\sqrt{k}=\sqrt{k} \sqrt{16+k}$
$k=0.645038 \ldots$
$=0.645$
A1
[2 marks] Total [7 marks]
8. (a) $(|z w|=) 16$ A1
(b) attempt to find $\arg (z)+\arg (w)$
continued...

Question 8 continued
(c) (i) $\quad z w \in \mathrm{Z} \Rightarrow \arg (z w)$ is a multiple of $\pi$
$\Rightarrow 1-2 k$ is a multiple of 5
$k=3$
(ii) $\quad z w=16(\cos (-\pi)+\mathrm{i} \sin (-\pi))$
$-16$
9. (a) $\tan \theta=\frac{50}{y-x} \mathrm{OR} \cot \theta=\frac{y-x}{50}$
$y=x+50 \cot \theta$
Note: $y-x$ may be identified as a length on a diagram, and not written explicitly.
(b) attempt to differentiate with respect to $t$
$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} x}{\mathrm{~d} t}-50(\operatorname{cosec} \theta)^{2} \frac{\mathrm{~d} \theta}{\mathrm{~d} t}$
A1
attempt to set speed of $B$ equal to double the speed of $A$
$2 \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{\mathrm{d} x}{\mathrm{~d} t}-50(\operatorname{cosec} \theta)^{2} \frac{\mathrm{~d} \theta}{\mathrm{~d} t}$
$\frac{\mathrm{d} x}{\mathrm{~d} t}=-50(\operatorname{cosec} \theta)^{2} \frac{\mathrm{~d} \theta}{\mathrm{~d} t}$
$\theta=\arctan 5\left(=1.373 \ldots=78.69 \ldots\right.$ ) OR $\operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta=1+\left(\frac{1}{5}\right)^{2}=\frac{26}{25}$
Note: This A1 can be awarded independently of previous marks.
$\frac{\mathrm{d} x}{\mathrm{~d} t}=-50\left(\frac{26}{25}\right) \times-0.1$
So the speed of boat A is $5.2\left(\mathrm{~ms}^{-1}\right)$
Note: Accept 5.20 from the use of inexact values.

## Section B.

10. (a) attempt to find the point of intersection of the graph of $f$ and the line $y=x$ (M1) $x=5.56619 \ldots$

$$
=5.57
$$

A1
(b) $\quad f^{\prime}(x)=-45 \mathrm{e}^{-0.5 x}$

A1
attempt to set the gradient of $f$ equal to -1
(M1)
$-45 \mathrm{e}^{-0.5 x}=-1$
Q has coordinates $(2 \ln 45,2)$ (accept $\left(-2 \ln \frac{1}{45}, 2\right)$
A1A1
Note: Award A1 for each value, even if the answer is not given as a coordinate pair.
Do not accept $\frac{\ln \frac{1}{45}}{-0.5}$ or $\frac{\ln 45}{0.5}$ as a final value for $x$. Do not accept 2.0 or 2.00 as a final value for $y$.
(c) attempt to substitute coordinates of Q (in any order)
into an appropriate equation

> (M1)
$y-2=-(x-2 \ln 45)$ OR $2=-2 \ln 45+c$
A1
equation of $L$ is $y=-x+2 \ln 45+2$
AG
continued...

Question 10 continued
(d) (i) $x=\ln 45+1(=4.81)$
(ii) appropriate method to find the sum of two areas using integrals of the difference of two functions

Note: Allow absent or incorrect limits.
$\int_{4.806 \ldots}^{5.566 \ldots}(x-(-x+2 \ln 45+2)) \mathrm{d} x+\int_{5.566 . \ldots}^{7.613 \ldots}\left(90 \mathrm{e}^{-0.5 x}-(-x+2 \ln 45+2)\right) \mathrm{d} x \quad$ (A1)(A1)
Note: Award A1 for one correct integral expression including correct limits and integrand.
Award A1 for a second correct integral expression including correct limits and integrand.
$=1.51965 \ldots$
$=1.52 \quad$ A1
[5 marks]
(e) by symmetry $2 \times 1.52$
$=3.03930 \ldots$
$=3.04$
A1
Note: Accept any answer that rounds to 3.0 (but do not accept 3).
11. (a) attempt to solve $4 x^{2}-1=0$ e.g. by factorising $4 x^{2}-1$
$p=\frac{1}{2}, q=-\frac{1}{2}$ or vice versa
A1
(b) attempt to use quotient rule or product rule

## EITHER

$$
f^{\prime}(x)=\frac{3\left(4 x^{2}-1\right)-8 x(3 x+2)}{\left(4 x^{2}-1\right)^{2}}\left(=\frac{-12 x^{2}-16 x-3}{\left(4 x^{2}-1\right)^{2}}\right)
$$

A1A1

Note: Award A1 for each term in the numerator with correct signs, provided correct denominator is seen.

## OR

$$
f^{\prime}(x)=-8 x(3 x+2)\left(4 x^{2}-1\right)^{-2}+3\left(4 x^{2}-1\right)^{-1}
$$

## Note: Award A1 for each term.

(c) attempt to find the local min point on $y=f^{\prime}(x)$ OR solve $f^{\prime \prime}(x)=0$
$x=-1.60$

A1
[2 marks]

Question 11 continued
(d)


Note: Award $\boldsymbol{A 1}$ for both vertical asymptotes with their equations, award $\boldsymbol{A 1}$ for horizontal asymptote with equation, award $\boldsymbol{A 1}$ for each correct branch including asymptotic behaviour, coordinates of minimum and maximum points (may be seen next to the graph) and values of axes intercepts.
If vertical asymptotes are absent (or not vertical) and the branches overlap as a consequence, award maximum A0A1A0A1A1.

Question 11 continued
e) $\quad x=-\frac{2}{3}(=-0.667)$
(oblique asymptote has) gradient $\frac{4}{3}(=1.33)$
appropriate method to find complete equation of oblique asymptote

$$
\begin{aligned}
& \frac{4}{3} x-\frac{8}{9} \\
& 3 x + 2 \longdiv { 4 x ^ { 2 } + 0 x - 1 } \\
& 4 x^{2}+\frac{8}{3} x \\
& -\frac{8}{3} x-1 \\
& -\frac{8}{3} x-\frac{16}{9} \\
& \frac{7}{9} \\
& y=\frac{4}{3} x-\frac{8}{9}(=1.33 x-0.889)
\end{aligned}
$$

Note: Do not award the final $\boldsymbol{A 1}$ if the answer is not given as an equation.
f) attempting to find at least one critical value $(x=-0.568729 \ldots, x=1.31872 \ldots)$ (M1)

$$
-\frac{2}{3}<x<-0.569 \quad \text { OR } \quad-0.5<x<0.5 \quad \text { OR } \quad x>1.32 \quad \text { A1A1A1 }
$$

Note: Only penalize once for use of $\leq$ rather than $<$.
12. (a) $\frac{1}{x(k-x)} \equiv \frac{a}{x}+\frac{b}{k-x}$
$a(k-x)+b x=1$
attempt to compare coefficients OR substitute $x=k$ and $x=0$ and solve
$a=\frac{1}{k}$ and $b=\frac{1}{k}$
$f^{\prime}(x)=\frac{1}{k x}+\frac{1}{k(k-x)}$
(b) attempt to integrate their $\frac{a}{x}+\frac{b}{k-x}$

$$
\begin{align*}
& f(x)=\frac{1}{k} \int\left(\frac{1}{x}+\frac{1}{k-x}\right) \mathrm{d} x  \tag{M1}\\
& =\frac{1}{k}(\ln |x|-\ln |k-x|)(+c)\left(=\frac{1}{k} \ln \left|\frac{x}{k-x}\right|(+c)\right)
\end{align*}
$$

A1A1

Note: Award A1 for each correct term. Award A1AO for a correct answer without modulus signs. Condone the absence of $+c$.

Question 12 continued
(c) attempt to separate variables and integrate both sides

M1
$5 k \int \frac{1}{P(k-P)} \mathrm{d} P=\int 1 \mathrm{~d} t$
$5(\ln P-\ln (k-P))=t+c$ A1

Note: There are variations on this which should be accepted, such as
$\frac{1}{k}(\ln P-\ln (k-P))=\frac{1}{5 k} t+c$. Subsequent marks for these variations should be awarded as appropriate.

## EITHER

attempt to substitute $t=0, P=1200$ into an equation involving $c$
$c=5(\ln 1200-\ln (k-1200))\left(=5 \ln \left(\frac{1200}{k-1200}\right)\right)$
$5(\ln P-\ln (k-P))=t+5(\ln 1200-\ln (k-1200))$
$\ln \left(\frac{P(k-1200)}{1200(k-P)}\right)=\frac{t}{5}$
$\frac{P(k-1200)}{1200(k-P)}=\mathrm{e}^{\frac{t}{5}}$
OR
$\ln \left(\frac{P}{k-P}\right)=\frac{t+c}{5}$
$\frac{P}{k-P}=A \mathrm{e}^{\frac{t}{5}}$
attempt to substitute $t=0, P=1200$ M1
$\frac{1200}{k-1200}=A$
$\frac{P}{k-P}=\frac{1200 \mathrm{e}^{\frac{t}{5}}}{k-1200}$ A1
continued...

Question 12 continued
THEN
attempt to rearrange and isolate $P$
$P k-1200 P=1200 k \mathrm{e}^{\frac{t}{5}}-1200 P \mathrm{e}^{\frac{t}{5}}$ OR $P k \mathrm{e}^{-\frac{t}{5}}-1200 P \mathrm{e}^{-\frac{t}{5}}=1200 k-1200 P$
OR $\quad \frac{k}{P}-1=\frac{k-1200}{1200 \mathrm{e}^{\frac{t}{5}}}$
$P\left(k-1200+1200 \mathrm{e}^{\frac{t}{5}}\right)=1200 k \mathrm{e}^{\frac{t}{5}}$ OR ${ }_{P}\left(k \mathrm{e}^{-\frac{t}{5}}-1200 \mathrm{e}^{-\frac{t}{5}}+1200\right)=1200 k \quad$ A1
$P=\frac{1200 k}{(k-1200) \mathrm{e}^{-\frac{t}{5}}+1200}$
AG
(d) attempt to substitute $t=10, P=2400$
$2400=\frac{1200 k}{(k-1200) \mathrm{e}^{-2}+1200}$
$k=2845.34 \ldots$
$k=2845$
Note: Award (M1)(A1)AO for any other value of $k$ which rounds to 2850
(e) attempt to find the maximum of the first derivative graph OR zero
of the second derivative graph OR that $P=\frac{k}{2}(=1422.67 \ldots)$
$t=1.57814 \ldots$
$=1.58$ (days)
Note: Accept any value which rounds to 1.6.

# Markscheme 

## Specimen paper

# Mathematics: analysis and approaches 

## Higher level

## Paper 2

## Instructions to Examiners

## Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding $\boldsymbol{M}$ marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.

## Using the markscheme

1 General
Award marks using the annotations as noted in the markscheme eg M1, A2.

## 2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as $\boldsymbol{A}$ mark(s) depend on the preceding $\boldsymbol{M}$ mark(s), if any.
- Where $\boldsymbol{M}$ and $\boldsymbol{A}$ marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A} 1$ for using the correct values.
- Where there are two or more $\boldsymbol{A}$ marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies $\boldsymbol{M 2}$, $\boldsymbol{A} 2$, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct working shown, award FT marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.


## Examples

|  | Correct answer seen | Further working seen | Action |
| :--- | :--- | :--- | :--- |
| 1. | $8 \sqrt{2}$ | $5.65685 \ldots$ <br> (incorrect decimal value) | Award the final $\boldsymbol{A 1}$ <br> (ignore the further working) |
| 2. | $\frac{1}{4} \sin 4 x$ | $\sin x$ | Do not award the final $\boldsymbol{A 1}$ |
| 3. | $\log a-\log b$ | $\log (a-b)$ | Do not award the final $\boldsymbol{A 1}$ |

## Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.


## Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (i.e. there is no working expected), then FT marks should be awarded if appropriate.

- Within a question part, once an error is made, no further $\boldsymbol{A}$ marks can be awarded for work which uses the error, but $\boldsymbol{M}$ marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- Exceptions to this rule will be explicitly noted on the markscheme.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.


## Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question

- If the question becomes much simpler because of the $M R$, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- The MR penalty can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.


## 6 <br> Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.


## $7 \quad$ Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).


## 8 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. There are two types of accuracy errors, and the final answer mark should not be awarded if these errors occur.

- Rounding errors: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.


## 9

## Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features/ CAS functionality are not allowed.

## Calculator notation

The subject guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

## Section A

1. (a) METHOD 1
$\begin{array}{lr}\text { attempt to use the cosine rule } & \text { (M1) } \\ \cos \theta=\frac{4^{2}+4^{2}-5^{2}}{2 \times 4 \times 4} \text { (or equivalent) } & \boldsymbol{A 1} \\ \theta=1.35 & \boldsymbol{A 1}\end{array}$
[3 marks]

## METHOD 2

attempt to split triangle AOB into two congruent right triangles
$\sin \left(\frac{\theta}{2}\right)=\frac{2.5}{4}$
$\theta=1.35$

A1
[3 marks]
(M1)
A1
A1
[3 marks]
Total [6 marks]
(M1)(A1)
A1
[3 marks]
continued...

Question 2 continued
(b) EITHER

$$
\begin{equation*}
2 P=P \times\left(1+\frac{5.5}{100 \times 4}\right)^{4 n} \text { OR } 2 P=P \times(\text { their }(a))^{m} \tag{M1}
\end{equation*}
$$

Note: Award (M1) for substitution into loan payment formula. Award (A1) for correct substitution.
OR
$\mathrm{PV}= \pm 1$
$\mathrm{FV}=\mp 2$
$\mathrm{I} \%=5.5$
$\mathrm{P} / \mathrm{Y}=4$
$\mathrm{C} / \mathrm{Y}=4$
$n=50.756 \ldots$
(M1)(A1)

OR
$\mathrm{PV}= \pm 1$
$\mathrm{FV}=\mp 2$
$\mathrm{I} \%=100($ their $(a)-1)$
$\mathrm{P} / \mathrm{Y}=1$
$\mathrm{C} / \mathrm{Y}=1$
(M1)(A1)

THEN
$\Rightarrow 12.7$ years
Laurie will have double the amount she invested during 2032
A1
[3 marks]
Total [6 marks]
3. (a) recognition of binomial
$X \sim \mathrm{~B}(5,0.7)$
attempt to find $\mathrm{P}(X \leq 3)$
M1
$=0.472(=0.47178)$
A1
[3 marks]
(b) recognition of 2 sixes in 4 tosses
$\mathrm{P}(3$ rd six on the 5 th toss $)=\left[\binom{4}{2} \times(0.7)^{2} \times(0.3)^{2}\right] \times 0.7(=0.2646 \times 0.7)$
$=0.185(=0.18522)$
A1
4. (a) $a=1.29$ and $b=-10.4$

A1A1
[2 marks]
(M1)
A2
[3 marks]
(M1)

A1

## Note: Accept 27.

[2 marks]

## Total [7 marks]

5. (a) use of a graph to find the coordinates of the local minimum $s=-16.513 \ldots$
maximum distance is 16.5 cm (to the left of O )
(b) attempt to find time when particle changes direction eg considering the first maximum on the graph of $s$ or the first $t$-intercept on the graph of $s^{\prime}$.
$t=1.51986 \ldots$
attempt to find the gradient of $s^{\prime}$ for their value of $t, s^{\prime \prime}(1.51986 \ldots)$
$=-8.92\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
6. (a) METHOD 1
attempting to use the expected value formula
$\mathrm{E}(X)=(1 \times 0.60)+(2 \times 0.30)+(3 \times 0.03)+(4 \times 0.05)+(5 \times 0.02)$
$\mathrm{E}(X)=1.59(\$)$
use of $\mathrm{E}(1.20 X+2.40)=1.20 \mathrm{E}(X)+2.40$
$\mathrm{E}(T)=1.20(1.59)+2.40$
$=4.31(\$)$

## METHOD 2

attempting to find the probability distribution for $T$
(M1)

| $t$ | 3.60 | 4.80 | 6.00 | 7.20 | 8.40 |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{P}(T=t)$ | 0.60 | 0.30 | 0.03 | 0.05 | 0.02 |

attempting to use the expected value formula
$\mathrm{E}(T)=(3.60 \times 0.60)+(4.80 \times 0.30)+(6.00 \times 0.03)+(7.20 \times 0.05)+(8.40 \times 0.02)$
$=4.31(\$)$
(b) METHOD 1
using $\operatorname{Var}(1.20 X+2.40)=(1.20)^{2} \operatorname{Var}(X)$ with $\operatorname{Var}(X)=0.8419$
$\operatorname{Var}(T)=1.21$

## METHOD 2

finding the standard deviation for their probability distribution found in part (a)
$\operatorname{Var}(T)=(1.101 \ldots)^{2}$
$=1.21$
Note: Award M1A1 for $\operatorname{Var}(T)=(1.093 \ldots)^{2}=1.20$.
7. attempting to find $\boldsymbol{r}_{\mathrm{B}}-\boldsymbol{r}_{\mathrm{A}}$ for example
$r_{\mathrm{B}}-\boldsymbol{r}_{\mathrm{A}}=\binom{3}{-6}+t\binom{-5}{4}$
attempting to find $\left|\boldsymbol{r}_{\mathrm{B}}-\boldsymbol{r}_{\mathrm{A}}\right|$
distance $d(t)=\sqrt{(3-5 t)^{2}+(4 t-6)^{2}}\left(=\sqrt{41 t^{2}-78 t+45}\right)$
using a graph to find the $d$-coordinate of the local minimum
the minimum distance between the ships is $2.81(\mathrm{~km})\left(=\frac{11 \sqrt{41}}{41}(\mathrm{~km})\right)$
A1
Total [5 marks]
8. substituting $w=2 \mathrm{i} z$ into $z^{*}-3 w=5+5 \mathrm{i}$ M1
$z^{*}-6 \mathrm{i} z=5+5 \mathrm{i}$
A1
let $z=x+y \mathrm{i}$
comparing real and imaginary parts of $(x-y \mathrm{i})-6 \mathrm{i}(x+y \mathrm{i})=5+5 \mathrm{i} \quad$ M1
to obtain $x+6 y=5$ and $-6 x-y=5 \quad$ A1
attempting to solve for $x$ and $y$ M1
$x=-1$ and $y=1$ and so $z=-1+\mathrm{i} \quad$ A1
hence $w=-2-2 \mathrm{i} \quad$ A1

## 9. METHOD 1

sketching the graph of $y=\frac{x^{2}}{x-3}\left(y=x+3+\frac{9}{x-3}\right)$
the (oblique) asymptote has a gradient equal to 1
and so the maximum value of $m$ is 1
consideration of a straight line steeper than the horizontal line joining
$(-3,0)$ and $(0,0) \quad$ M1
so $m>0$
R1
hence $0<m \leq 1$
A1

## METHOD 2

attempting to eliminate $y$ to form a quadratic equation in $X$
$x^{2}=m\left(x^{2}-9\right)$
$\Rightarrow(m-1) x^{2}-9 m=0$

## EITHER

attempting to solve $-4(m-1)(-9 m)<0$ for $m$

## OR

attempting to solve $x^{2}<0$ ie $\frac{9 m}{m-1}<0(m \neq 1)$ for $m$

## THEN

$\Rightarrow 0<m<1$A1
a valid reason to explain why $m=1$ gives no solutions eg if $m=1$,
$(m-1) x^{2}-9 m=0 \Rightarrow-9=0$ and so $0<m \leq 1$

## Section B

10. (a) attempt to use the symmetry of the normal curve
eg diagram, 0.5-0.1446
$\mathrm{P}(24.15<X<25)=0.3554 \quad$ A1
(b) (i) use of inverse normal to find z score
(M1)
$z=-1.0598$
correct substitution $\frac{24.15-25}{\sigma}=-1.0598$ $\sigma=0.802$

A1
(ii) $\mathrm{P}(X>26)=0.106$
(M1)A1
[5 marks]
(c) recognizing binomial probability
$\mathrm{E}(Y)=10 \times 0.10621$
$=1.06$
(d) $\mathrm{P}(Y=3)$
$=0.0655$
(M1)
A1
[2 marks]
(M1)
A1

A1
[3 marks]
11. (a) METHOD 1
using $I(t)=\mathrm{e}^{\int P(t) \mathrm{d} t} \quad$ M1
$\mathrm{e}^{\int \frac{1}{t+1} \mathrm{~d} t}$
$=e^{\ln (t+1)}$
A1
$=t+1$
AG

## METHOD 2

attempting product rule differentiation on $\frac{\mathrm{d}}{\mathrm{d} t}(x(t+1))$
M1
$\frac{\mathrm{d}}{\mathrm{d} t}(x(t+1))=\frac{\mathrm{d} x}{\mathrm{~d} t}(t+1)+x$
$=(t+1)\left(\frac{\mathrm{d} x}{\mathrm{~d} t}+\frac{x}{t+1}\right)$
A1
so $t+1$ is an integrating factor for this differential equation

## Question 11 continued

(b) attempting to multiply through by $(t+1)$ and rearrange to give

$$
\begin{aligned}
& (t+1) \frac{\mathrm{d} x}{\mathrm{~d} t}+x=10(t+1) \mathrm{e}^{-\frac{t}{4}} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t}(x(t+1))=10(t+1) \mathrm{e}^{-\frac{t}{4}} \\
& x(t+1)=\int 10(t+1) \mathrm{e}^{-\frac{t}{4}} \mathrm{~d} t \\
& \text { attempting to integrate the RHS by parts } \\
& =-40(t+1) \mathrm{e}^{-\frac{t}{4}}+40 \int \mathrm{e}^{-\frac{t}{4}} \mathrm{~d} t \\
& =-40(t+1) \mathrm{e}^{-\frac{t}{4}}-160 \mathrm{e}^{-\frac{t}{4}}+C
\end{aligned}
$$

Note: Condone the absence of $C$.

## EITHER

substituting $t=0, x=0 \Rightarrow C=200$
$x=\frac{-40(t+1) \mathrm{e}^{-\frac{t}{4}}-160 \mathrm{e}^{-\frac{t}{4}}+200}{t+1}$ A1
using $-40 \mathrm{e}^{-\frac{t}{4}}$ as the highest common factor of $-40(t+1) \mathrm{e}^{-\frac{t}{4}}$ and $-160 \mathrm{e}^{-\frac{t}{4}}$

## OR

using $-40 \mathrm{e}^{-\frac{t}{4}}$ as the highest common factor of $-40(t+1) \mathrm{e}^{-\frac{t}{4}}$ and $-160 \mathrm{e}^{-\frac{t}{4}}$ giving
$x(t+1)=-40 \mathrm{e}^{-\frac{t}{4}}(t+5)+C$ (or equivalent) M1A1
substituting $t=0, x=0 \Rightarrow C=200$

## THEN

$$
x(t)=\frac{200-40 \mathrm{e}^{-\frac{t}{4}}(t+5)}{t+1}
$$

$$
A G
$$

## Question 11 continued

(c)

graph starts at the origin and has a local maximum (coordinates not required) $\begin{aligned} & \text { A1 } \\ & \text { sketched for } 0 \leq t \leq 60 \\ & \text { correct concavity for } 0 \leq t \leq 60 \\ & \text { maximum amount of salt is } 14.6 \text { (grams) at } t=6.60 \text { (minutes) }\end{aligned}$ A1
A1A1
(d) using an appropriate graph or equation (first or second derivative)
amount of salt is decreasing most rapidly at $t=12.9$ (minutes)
(e) EITHER
attempting to form an integral representing the amount of salt that left the tank
$\int_{0}^{60} \frac{x(t)}{t+1} \mathrm{~d} t$
$\int_{0}^{60} \frac{200-40 \mathrm{e}^{-\frac{t}{4}}(t+5)}{(t+1)^{2}} \mathrm{~d} t$
OR
attempting to form an integral representing the amount of salt that entered the tank minus the amount of salt in the tank at $t=60$ (minutes)
amount of salt that left the tank is $\int_{0}^{60} 10 \mathrm{e}^{-\frac{t}{4}} \mathrm{~d} t-x(60)$

## THEN

$$
=36.7 \text { (grams) }
$$A2

12. (a) stating the relationship between cot and $\tan$ and stating the identity for $\tan 2 \theta$
(b) METHOD 1
attempting to substitute $\tan \theta$ for $x$ and using the result from (a)
LHS $=\tan ^{2} \theta+2 \tan \theta\left(\frac{1-\tan ^{2} \theta}{2 \tan \theta}\right)-1$
$\tan ^{2} \theta+1-\tan ^{2} \theta-1=0(=$ RHS $)$
so $x=\tan \theta$ satisfies the equation
attempting to substitute $-\cot \theta$ for $x$ and using the result from (a)
LHS $=\cot ^{2} \theta-2 \cot \theta\left(\frac{1-\tan ^{2} \theta}{2 \tan \theta}\right)-1$
$=\frac{1}{\tan ^{2} \theta}-\left(\frac{1-\tan ^{2} \theta}{\tan ^{2} \theta}\right)-1$
$\frac{1}{\tan ^{2} \theta}-\frac{1}{\tan ^{2} \theta}+1-1=0$ ( $=$ RHS $)$
so $x=-\cot \theta$ satisfies the equation

## METHOD 2

let $\alpha=\tan \theta$ and $\beta=-\cot \theta$
attempting to find the sum of roots
$\alpha+\beta=\tan \theta-\frac{1}{\tan \theta}$
$=\frac{\tan ^{2} \theta-1}{\tan \theta}$
$=-2 \cot 2 \theta$ (from part (a))
attempting to find the product of roots M1
$\alpha \beta=\tan \theta \times(-\cot \theta)$ A1
$=-1$
A1
the coefficient of $x$ and the constant term in the quadratic are $2 \cot 2 \theta$ and -1 respectively
hence the two roots are $\alpha=\tan \theta$ and $\beta=-\cot \theta$

Question 12 continued
(c) METHOD 1
$x=\tan \frac{\pi}{12}$ and $x=-\cot \frac{\pi}{12}$ are roots of $x^{2}+\left(2 \cot \frac{\pi}{6}\right) x-1=0$
Note: Award $\boldsymbol{R 1}$ if only $x=\tan \frac{\pi}{12}$ is stated as a root of $x^{2}+\left(2 \cot \frac{\pi}{6}\right) x-1=0$.

$$
x^{2}+2 \sqrt{3} x-1=0
$$

attempting to solve their quadratic equation
$x=-\sqrt{3} \pm 2$
$\tan \frac{\pi}{12}>0\left(-\cot \frac{\pi}{12}<0\right)$
so $\tan \frac{\pi}{12}=2-\sqrt{3}$

## METHOD 2

attempting to substitute $\theta=\frac{\pi}{12}$ into the identity for $\tan 2 \theta$
$\tan \frac{\pi}{6}=\frac{2 \tan \frac{\pi}{12}}{1-\tan ^{2} \frac{\pi}{12}}$
$\tan ^{2} \frac{\pi}{12}+2 \sqrt{3} \tan \frac{\pi}{12}-1=0$
attempting to solve their quadratic equation
$\tan \frac{\pi}{12}=-\sqrt{3} \pm 2 \quad$ A1
$\tan \frac{\pi}{12}>0$
so $\tan \frac{\pi}{12}=2-\sqrt{3}$
(d) $\tan \frac{\pi}{24}-\cot \frac{\pi}{24}$ is the sum of the roots of $x^{2}+\left(2 \cot \frac{\pi}{12}\right) x-1=0$
$=\frac{-2}{2-\sqrt{3}}$
attempting to rationalise their denominator
$=-4-2 \sqrt{3}$

