Markscheme

November 2023

Mathematics: applications and interpretation

Standard level

Paper 1

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2023

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2023

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final A1 in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award A1 for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full $\boldsymbol{F T}$ is available in subsequent parts)

3 Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read
If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the $M R$ stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

7 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to a "correct" level of accuracy (e.g 3 sf) in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 e^{2 x} \times e^{3 x}$ should be simplified to $4 e^{5 x}$, and $4 e^{2 x} \times e^{3 x}-e^{4 x} \times e^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.

10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) (i) $T=0.799 G+2.14 \quad(=0.798803 \ldots G+2.13972 \ldots)$ A1A1

Note: Award $\boldsymbol{A 1}$ for correct values of a and $b, \boldsymbol{A 1}$ for an equation using these correct values.
(ii) $\quad(r=) 0.996(=0.996247 . .$.

A1
(there is a very) strong positive linear correlation R1
Note: If r is missing award AORO.
(b) attempt to substitute 17 into their regression equation
0.798803...(17) + 2.13972...
15.7 (mins) ($=15.7193 \ldots$...)

A1
[2 marks]

(c) EITHER

using the T on G regression line cannot (always) reliably make a prediction for G

OR

equation is for Time on Gradient, not Gradient on Time R1
OR
this estimate is an extrapolation R1
OR
there is no reason to assume this new hill has constant gradient
2. (a) (upper bound $=$) $0.525(\mathrm{~m})$
(lower bound $=$) $0.515(\mathrm{~m})$
Note: Accept an answer in interval notation or written as an inequality.
(b) METHOD 1 Convert REC to linear metres
attempt to convert REC to metres using their lower bound
$440 \times 0.515(=226.6) \quad$ OR $\quad 280 \times 0.515(=144.2)$ seen
attempt to use the formula for the volume of a right pyramid
$(V=) \frac{1}{3}(440 \times 0.515)^{2}(280 \times 0.515)$
$2470000\left(\mathrm{~m}^{3}\right)\left(2468106.051 \ldots, 2.47 \times 10^{6}\right)$

METHOD 2 Convert REC to cubic metres

attempt to use the formula for the volume of a right pyramid

$$
(V=) \frac{1}{3}(440)^{2}(280)(=18069333.33 \ldots)
$$

attempt to convert 1 cubic REC to cubic metres using their lower bound
$\left(1\right.$ cubic REC $=$) 0.515^{3}
$(V=) \frac{1}{3}(440)^{2}(280) \times(0.515)^{3}$
$2470000\left(\mathrm{~m}^{3}\right) \quad\left(2468106.051 \ldots, 2.47 \times 10^{6}\right)$
3.
(a) $x=0$

Note: Answer must be an equation; an answer of " 0 " or "the y-axis" is awarded $\boldsymbol{A O}$.
(b) $\quad\left(g^{\prime}(x)=\right)-8 x^{-2}+x \quad$ A1A1A1

Note: Award $\boldsymbol{A} 1$ for -8 seen, $\boldsymbol{A} 1$ for $x^{-2}\left(\right.$ or $\left.\frac{1}{x^{2}}\right)$ and $\boldsymbol{A 1}$ for second term being x. Award at most A1A1A0 if additional terms are seen.
(c) $x>2$ OR $(2, \infty)$ OR $2<x<\infty$

A1A1
Note: Award $\boldsymbol{A 1}$ for 2 seen and award $\boldsymbol{A 1}$ for correct inequality.
4. (a) $(4,8)$

A1
[1 mark]
(M1)
(M1) their gradient into the equation of a straight line
$y-8=-\frac{4}{5}(x-4) \quad$ OR $\quad 8=-\frac{4}{5}(4)+c \quad$ OR $\quad c=11.2$
$y-8=-\frac{4}{5}(x-4) \quad(y=-0.8 x+11.2,4 x+5 y-56=0)$
A1
[3 marks]
(c) (i) attempt to find one distance from a farm to any closest vertex
finding a correct distance from at least two distinct vertices
A1
7.58968..., 4.472135.. $(\sqrt{20}), 5.830951 \ldots(\sqrt{34})$
$\left(\frac{9}{11}, \frac{116}{11}\right)$ (is furthest)
A1

A1
[4 marks] [Total 8 marks]

$$
(\mathrm{A} \hat{B} \mathrm{C}=) 41^{\circ}+\left(180^{\circ}-112^{\circ}\right), 41^{\circ}+\left(90^{\circ}-22^{\circ}\right)
$$

$\mathrm{ABC}=109^{\circ}$
(b) $\mathrm{A} \hat{\mathrm{C}} \mathrm{B}=49^{\circ}$ (may be seen in part (a))
attempt to substitute into the sine rule (or equivalent)
$\frac{\mathrm{AC}}{\sin 109^{\circ}}=\frac{100}{\sin 49^{\circ}}$
$\mathrm{AC}=125(\mathrm{~km})(=125.282 \ldots)$

A1
[4 marks] [Total 6 marks]
6. (a) setting $h(x)=1$

$$
\left(h^{-1}(1)=\right) 17
$$

(b) $\quad x>\frac{1}{2}$

Note: Award $\boldsymbol{A 1}$ for $\frac{1}{2}$ seen, $\boldsymbol{A 1}$ for completely correct answer.
7.
(a) $2.36=a(3)^{2}+b(3)+c \quad$ OR $\quad 2.36=9 a+3 b+c$

A1
[1 mark]
(b) finding other equations to solve simultaneously

$$
\begin{aligned}
& 5=a(10)^{2}+b(10)+c \text { AND } 7.16=a(17)^{2}+b(17)+c \\
& \text { OR } 5=100 a+10 b+c \text { AND } 7.16=289 a+17 b+c
\end{aligned}
$$

any one coefficient in equation correct
$f(x)=-0.00490 x^{2}+0.441 x+1.08$
Note: Condone the 2 sf answer for the coefficient of x^{2} i.e. -0.0049 .

$$
\begin{aligned}
& \left(f(x)=-0.00489795 \ldots x^{2}+0.440816 \ldots x+1.08163 \ldots\right) \\
& \left(f(x)=-\frac{6}{1225} x^{2}+\frac{108}{245} x+\frac{53}{49}\right)
\end{aligned}
$$

Note: Award at most (M1)(A1)A0 if answer is not expressed as an equation.
(c) attempt to substitute 80 into their equation
$5>4$ OR therefore the ball will go over the fence
Note: Do not award AOR1; their value must be seen to credit a correct conclusion.
(d) setting their equation equal to zero, graph
(M1)
$0=-0.00489795 \ldots x^{2}+0.440816 \ldots x+1.08163 \ldots$ OR $f(x)=0$
92.4 (92.3902...) (m)
8. (a) $\left(r^{\prime}(-1)=\right)-8$

A2 [2 marks]
(b) $\frac{1}{8}$ seen
$y-6=\frac{1}{8}(x+1) \quad$ OR $y=0.125 x+6.13$ (6.125) OR
$y=\frac{x}{8}+\frac{49}{8}$ OR $\quad x-8 y+49=0$
(c) attempt to find coordinates of point B
e.g. ($-5.02,5.50$) $O R \quad(1.02,6.25)$ seen
attempt to substitute into distance formula
$\left(d=\sqrt{(-1+5.02076 \ldots)^{2}+(6-5.49740 \ldots)^{2}}\right)$
$(d=) 4.05(\mathrm{~km})(4.05205 \ldots)$
(M1)
(M1)

A1
[3 marks] [Total 7 marks]
9. (a)

Statement	True (\checkmark)
A higher percentage of students in Class B received a grade less than 70 on the exam than Class A.	\checkmark
The data for Class B is normally distributed.	
More students in Class A received a grade greater than 90 on the exam than Class B.	
The interquartile range for Class A is less than the interquartile range for Class B.	\checkmark

Note: Award AOAO if three or four statements are selected.
(b) EITHER
$\mathrm{H}_{0}: \mu_{1}=\mu_{2} \quad \boldsymbol{A 1}$
$\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}$
A1
OR
$\mathrm{H}_{0}: \mu_{\mathrm{A}}=\mu_{\mathrm{B}}$ A1
$\mathrm{H}_{1}: \mu_{\mathrm{A}} \neq \mu_{\mathrm{B}}$A1

Note: Accept an equivalent statement in words, but must include reference to "population mean" / "mean for class A and class B" for the A1 to be awarded.

Do not accept an imprecise "the means are equal".
(c) $\quad p$-value $=0.111(0.110700 \ldots)$

A2
[2 marks]
(d) $0.111>0.05$

R1
there is insufficient evidence to reject H_{0}
A1
Note: Do not award ROA1. The answer to part (d) MUST follow through if hypotheses are incorrect/reversed etc., the answer to part (d) must reflect this in order for the A1 to be credited.
10. (a)

A1A1
Note: Award A1 for completing first set of branches, A1 for completing second set of branches.
[2 marks]
(b) attempt to multiply along the branches
$\frac{1}{2} \times \frac{2}{3}$
$=\frac{1}{3}(=0.333 \ldots)$
A1
[2 marks]
(c) EITHER

$$
\frac{\frac{1}{2}}{\frac{1}{2}+\left(\frac{1}{2} \times \frac{1}{3}\right)}
$$

M1A1

Note: Award M1 for recognizing conditional probability, A1 for correct substitution.

$$
\begin{aligned}
& \text { OR } \\
& \qquad \frac{\frac{1}{2}}{1-\frac{1}{3}}
\end{aligned}
$$

Note: Award M1 for recognizing conditional probability, A1 for correct substitution.

THEN

$=\frac{3}{4}$ A1
11. (a) evidence of using binomial distribution

Note: Evidence is $X \sim \mathrm{~B}(5,0.65)$ or binomial with $n=5, p=0.65$.

$$
0.181(0.181146 \ldots)
$$

(b) attempt to find the probability of taking a taxi, (or not taking a taxi);
$\mathrm{P}($ take taxi $)=0.35 \times 0.45, \mathrm{P}($ not take taxi $)=0.65+0.35 \times 0.55$

0.1575 or 0.8425 seen

EITHER

correct use of binomial distribution with their probability

$$
\begin{equation*}
X \sim \mathrm{~B}(5,0.1575), \quad X=0 \quad \mathrm{OR} \quad X \sim \mathrm{~B}(5,0.8425), X=5 \tag{A1}
\end{equation*}
$$

OR

$$
\begin{equation*}
(1-0.1575)^{5} \text { OR }(0.8425)^{5} \text { seen } \tag{A1}
\end{equation*}
$$

THEN

0.424 ($0.424472 \ldots$) A1
12. (a)

A1

	Artist 1	Artist 2	Artist 3	Artist 4	Artist 5	Artist 6	Artist 7	Artist 8
Rank - social media followers	4	3	6	5	7	2	8	1
Rank - albums sold in first week	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	1

[1 mark]
(b) $\quad\left(r_{s}=\right) 0.595$ (0.595238...)

A2
[2 marks]
(c) $\left(\mathrm{H}_{1}:\right)$ In the population, there is a positive monotonic relationship between the number of social media followers and the number of albums sold in the first week.
(d) $0.595<0.643$

R1
there is insufficient evidence to reject H_{0}
A1
Note: Do not award R0A1.

Markscheme

November 2023

Mathematics: applications and interpretation

Standard level

Paper 1

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2023
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2023
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies $\mathbf{A 3}, \boldsymbol{M} 2$ etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final A1 in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award A1 for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full $\boldsymbol{F T}$ is available in subsequent parts)

3 Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the $\boldsymbol{M R}$ stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

7 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to a "correct" level of accuracy (e.g 3 sf) in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 e^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.

10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) (i) $T=0.552 G+6.36 \quad(=0.552139 \ldots G+6.35703 \ldots)$

Note: Award $\boldsymbol{A 1}$ for correct values of a and $b, \boldsymbol{A 1}$ for an equation using these correct values.
(ii) $\quad(r=) 0.994(=0.993910 \ldots) \quad$ A1
there is a (very) strong positive linear correlation
Note: If r is missing award AORO.
(b) attempt to substitute 13 into their regression equation $T=0.552139 \ldots(13)+6.35703 \ldots$
13.5 (mins) (=13.5348...)

A1
[2 marks]

(c) EITHER

using the T on G regression line cannot (always) reliably make a prediction for G

OR

equation is for Time on Gradient not Gradient on Time. \quad R1
OR
this estimate is an extrapolation
R1
OR
there is no reason to assume this new hill has constant gradient

R1
[1 mark] [Total 7 marks]
2. (a) (upper bound $=$) $0.525(\mathrm{~m})$
(lower bound $=$) $0.515(\mathrm{~m})$
Note: Accept an answer in interval notation or written as an inequality.
(b) METHOD 1 Convert REC to linear metres
attempt to convert REC to metres using their lower bound
$440 \times 0.515(=226.6) \quad$ OR $280 \times 0.515(=144.2)$ seen
attempt to use the formula for the volume of a right pyramid
(M1)
$(V=) \frac{1}{3}(440 \times 0.515)^{2}(280 \times 0.515)$
$2470000\left(\mathrm{~m}^{3}\right)\left(2468106.051 \ldots, 2.47 \times 10^{6}\right)$

METHOD 2 Convert REC to cubic metres

attempt to use the formula for the volume of a right pyramid

$$
(V=) \frac{1}{3}(440)^{2}(280)(=18069333.33 \ldots)
$$

attempt to convert 1 cubic REC to cubic metres using their lower bound
(1 cubic REC $=$) 0.515^{3}

$$
\begin{align*}
& (V=) \frac{1}{3}(440)^{2}(280) \times(0.515)^{3} \tag{A1}\\
& 2470000\left(\mathrm{~m}^{3}\right) \quad\left(2468106.051 \ldots, 2.47 \times 10^{6}\right)
\end{align*}
$$

3.

(a) $\quad x=0$

Note: Answer must be an equation; an answer of "0" or "the y-axis" is awarded $\boldsymbol{A} \boldsymbol{O}$.
[1 mark]
(b) $\quad\left(f^{\prime}(x)=\right)-16 x^{-2}+\frac{x}{4}$

A1A1A1

Note: Award A1 for -16 seen, $\boldsymbol{A 1}$ for $x^{-2}\left(\right.$ or $\left.\frac{1}{x^{2}}\right)$ and $\boldsymbol{A 1}$ for second term being $\frac{x}{4}$. Award at most A1A1A0 if additional terms are seen.
[3 marks]
(c) $x>4$ OR $(4, \infty)$ OR $4<x<\infty$

A1A1
Note: Award A1 for 4 seen and award $\boldsymbol{A 1}$ for correct inequality.
4. (a) $(4,8)$

A1
[1 mark]
(b) attempt to find the gradient of AC
$\frac{13-3}{8-0}, \frac{10}{8},\left(\frac{5}{4}\right),(1.25)$
attempt to substitute their coordinates and the negative reciprocal of their gradient into the equation of a straight line
$y-8=-\frac{4}{5}(x-4) \quad \mathbf{O R} \quad 8=-\frac{4}{5}(4)+c \quad$ OR $\quad c=11.2$
$y-8=-\frac{4}{5}(x-4) \quad(y=-0.8 x+11.2,4 x+5 y-56=0)$
(c) (i) attempt to find one distance from a farm to any closest vertex M1 finding a correct distance from at least two distinct vertices 7.58968... 4.472135.. $(\sqrt{20}), 5.830951 \ldots(\sqrt{34})$ $\left(\frac{9}{11}, \frac{116}{11}\right)$ (is furthest)
(ii) 7.59 (km) (=7.58968...)

A1
$(\mathrm{RST}=) 38^{\circ}+\left(180^{\circ}-120^{\circ}\right), 38^{\circ}+\left(90^{\circ}-30^{\circ}\right)$
R $\hat{S} T=98^{\circ}$
(b) RTYS $=52^{\circ} \quad$ (may be seen in part (a))
(A1)
attempt to substitute into the sine rule (or equivalent)
$\frac{\mathrm{RT}}{\sin 98^{\circ}}=\frac{150}{\sin 52^{\circ}}$
$\mathrm{RT}=189(\mathrm{~km})(=188.500 \ldots)$
6. (a) setting $h(x)=1$

$$
\left(h^{-1}(1)=\right) 17
$$

(b) $\quad x>\frac{1}{2}$

Note: Award $\boldsymbol{A 1}$ for $\frac{1}{2}$ seen, $\boldsymbol{A 1}$ for completely correct answer.
7.
(a) $2.82=a(3)^{2}+b(3)+c \quad$ OR $\quad 2.82=9 a+3 b+c$

A1
[1 mark]
(b) finding other equations to solve simultaneously

$$
\begin{aligned}
& 4.25=a(6)^{2}+b(6)+c \text { AND } 5.30=a(9)^{2}+b(9)+c \\
& \text { OR } 4.25=36 a+6 b+c \text { AND } 5.30=81 a+9 b+c
\end{aligned}
$$

any one coefficient in equation correct

$$
\begin{aligned}
& f(x)=-0.0211 x^{2}+0.667 x+1.01 \\
& \left(f(x)=-0.0211111 \ldots x^{2}+0.666666 \ldots x+1.01\right) \\
& \left(f(x)=-\frac{19}{900} x^{2}+\frac{2}{3} x+\frac{101}{100}\right)
\end{aligned}
$$

A1

Note: Award at most (M1)(A1)A0 if answer is not expressed as an equation.
(c) attempt to substitute 30 into their equation
$(f(30)=) 2.01$ A1
$2.01>1.8$ OR therefore the discus will go over the wall R1
Note: Do not award A0R1; their value must be seen to credit a correct conclusion.
(d) setting their equation equal to zero $\mathbf{O R}$ graph with the zero indicated
$0=-0.0211111 \ldots x^{2}+0.666666 \ldots x+1.01 \ldots$ OR $f(x)=0$
33.0 (33.0275...) (m)
8. (a) $\left(r^{\prime}(-2)=\right)-14$

A2
[2 marks]
(b) $\frac{1}{14}$ seen
$y-16=\frac{1}{14}(x+2) \quad$ OR $y=0.0714 x+16.1 \quad(y=0.0714285 \ldots x+16.1428 \ldots) \quad \mathbf{O R}$
$y=\frac{x}{14}+\frac{113}{7}$ OR $x-14 y+226=0$
[2 marks]
(c) attempt to find coordinates of point G
(M1)
e.g. $(-7.53997 \ldots, 15.6042 \ldots)$ OR ($0.539978 \ldots, 13.1814 \ldots)$ seen
attempt to substitute into distance formula
$\left(d=\sqrt{(-2+7.53997 \ldots)^{2}+(16-15.6042 \ldots)^{2}}\right)$
$(d=) 5.55(\mathrm{~km})(5.55409 \ldots)$
9. (a)

Statement	True (\checkmark)
The data for Class A is normally distributed.	
A higher percentage of students in Class A received a grade less than 70 on the exam, than in Class B.	\checkmark
More students in Class B received a grade greater than 90 on the exam than in Class A.	
The interquartile range for Class B is less than the interquartile range for Class A.	\checkmark

Note: Award AOAO if three or four statements are selected.
(b) EITHER

$\mathrm{H}_{0}: \mu_{1}=\mu_{2}$	A1
$\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}$	A1
OR	
$\mathrm{H}_{0}: \mu_{\mathrm{A}}=\mu_{\mathrm{B}}$	A1
$\mathrm{H}_{1}: \mu_{\mathrm{A}} \neq \mu_{\mathrm{B}}$	$\boldsymbol{A 1}$
: Accept an equivalent statement in words, but must include reference to	
"population mean" / "mean for class A and class B" for the $\boldsymbol{A 1}$ to be awarded.	
Do not accept an imprecise "the means are equal".	

(c) p-value $=0.0952(0.0952085 \ldots) \quad$ A2
[2 marks]
(d) $0.0952>0.05$ R1
there is insufficient evidence to reject H_{0} A1

Note: Do not award R0A1. The answer to part (d) MUST follow through from their hypotheses seen in part (b) and their p-value seen in part (c); if hypotheses are incorrect/reversed, etc., the answer to part (d) must reflect this in order for the $\boldsymbol{A 1}$ to be credited.
10. (a)

Note: Award A1 for completing first set of branches, $\boldsymbol{A} 1$ for completing second set of branches.
(b) attempt to multiply along the branches

$$
\begin{aligned}
& \frac{2}{3} \times \frac{1}{2} \\
& =\frac{1}{3}(=0.333 \ldots)
\end{aligned}
$$

(c) EITHER

$$
\frac{\frac{1}{3}}{\frac{1}{3}+\left(\frac{2}{3} \times \frac{1}{2}\right)}
$$

Note: Award M1 for recognizing conditional probability, A1 for correct substitution.

$$
\begin{aligned}
& \text { OR } \\
& \qquad \begin{array}{l}
\frac{1}{3} \\
1-\frac{1}{3}
\end{array} \quad \text { M1A1 }
\end{aligned}
$$

Note: Award M1 for recognizing conditional probability, A1 for correct substitution.

$$
\begin{aligned}
& \text { THEN } \\
& =\frac{1}{2}
\end{aligned}
$$

11. (a) evidence of using binomial distribution

Note: Evidence is $X \sim \mathrm{~B}(5,0.72)$ or binomial with $n=5, p=0.72$.

$$
0.293 \quad(0.292626 \ldots)
$$

(b) attempt to find the probability of taking a bus, (or not taking a bus);
$\mathrm{P}($ take bus $)=0.28 \times 0.42, \mathrm{P}($ not take bus $)=0.72+0.28 \times 0.58$
0.1176 or 0.8824 seen

EITHER

correct use of binomial distribution with their probability

$$
\begin{equation*}
X \sim \mathrm{~B}(5,0.1176), \quad X=0 \quad \text { OR } \quad X \sim \mathrm{~B}(5,0.8824), X=5 \tag{A1}
\end{equation*}
$$

OR

$$
(1-0.1176)^{5} \text { OR }(0.8824)^{5} \text { seen }
$$

THEN

0.535 ($0.534967 \ldots$..) A1
[4 marks]
[Total 6 marks]
12. (a)

A1

	Artist 1	Artist 2	Artist 3	Artist 4	Artist 5	Artist 6	Artist 7	Artist 8
Rank - social media followers	4	3	6	5	7	2	8	1
Rank - albums sold in first week	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	1

(b) $\quad\left(r_{s}=\right) 0.595(0.595238 \ldots)$

A2
[2 marks]
(c) (H_{1} :) In the population, there is a positive monotonic relationship between the number of social media followers and the number of albums sold in the first week.

A1
[1 mark]
(d) $0.595<0.643$

R1
there is insufficient evidence to reject H_{0}
A1
Note: Do not award R0A1.

Markscheme

May 2023

Mathematics: applications and interpretation

Standard level

Paper 1

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2023
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2023
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award A1 for the final mark (condone the incorrect further working)
2.	35			
72	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award A0 for the final mark (and full FT is available in subsequent parts)	

Implied marks
Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these $\boldsymbol{F T}$ rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to a "correct" level of accuracy (e.g 3 sf) in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) attempt to substitute into percentage error formula
$\left|\frac{53632000-55625000}{55625000}\right| \times 100$
3.58 (\%) (3.58292...(\%))

A1

Note: Award (M1)AO for a final answer of $-3.58(\%)$ or 0.0358 .
(b) (i) 278000000

A1
(ii) $2.78 \times 10^{8} \quad$ A1A1

Note: Award $\boldsymbol{A 1}$ for correct mantissa, consistent with their answer in part (b)(i). Award A1 for a correct exponent, consistent with their answer in part (b)(i). Award AOAO for answers such as 27.8×10^{7}.
2. (a) METHOD 1 (use of financial app in GDC)
$N=5 \quad$ OR $\quad N=20$
$I \%=1.2 \quad I \%=1.2$
$P V= \pm 520 \quad P V= \pm 520$
$P / Y=1 \quad P / Y=4$
$C / Y=4 \quad C / Y=4$
(M1)(A1)
Note: Award $\boldsymbol{M} \mathbf{1}$ for evidence of using the financial app on the calculator, $\boldsymbol{A} \mathbf{1}$ for all correct entries.
(\$) 552.11
Note: Award at most (M1)(A1)A0 if correct answer is not given to two decimal places.

METHOD 2 (use of formula)

attempt to substitute into compound interest formula
$520 \times\left(1+\frac{1.2}{100 \times 4}\right)^{5 \times 4}$
(\$) 552.11
Note: Award at most (M1)(A1)A0 if correct answer is not given to two decimal places.
(b) EITHER
$N=5$
$I \%=43.5$ (43.4772...(\%))
$P V= \pm 520$
$F V=\mp 30$
(M1)(A1)A1

Note: Award $\boldsymbol{M 1}$ for evidence of using the finance app on the calculator, $\boldsymbol{A 1}$ for all correct entries, $\boldsymbol{A} 1$ for correct final answer. Condone missing -/+ sign if the correct final answer is seen.

OR

$$
\begin{array}{ll}
30=520\left(1-\frac{r}{100}\right)^{5} \text { (or equivalent) } & \text { (M1)(A1) } \\
(r=) 43.5 \%(43.477 \ldots \%) & \boldsymbol{A 1}
\end{array}
$$

Note: Award $\boldsymbol{M 1}$ for using the compound interest formula, A1 for correct substitutions and for equating to 30, A1 for correct final answer. Accept ($r=$) -43.5%.
Award M1A1AO for a final answer of 56.5%.
3. (a) (i) 38 (s) A1
(ii) 32 (s) A1
(iii) 42 (s) A1
(iv) 10 (s) A1

Note: Accept a tolerance of ± 0.5 for parts (a)(i)-(iii).
[4 marks]
(b) $1.5 \times \mathrm{IQR}$
$(32-1.5 \times 10=) 17(\mathrm{~s})$
A1
$14<17$, therefore it is an outlier $\quad \boldsymbol{R 1}$
Note: Do not award the $\boldsymbol{R 1}$ unless an explicit comparison of 14 and their 17 is seen.
e.g. $14<17$

14 is outside the interval [17,57].
4. (a)

Athlete	A	B	C	D	E	F	G	H
Age rank	7	6	3	5	4	2	8	1
Time rank	3.5	2	3.5	6	7	8	1	5

Note: Award A1 for each correct row.
(b) $r_{s}=-0.671(-0.670670 \ldots)$

Note: Only follow through from an incorrect table provided the ranks are all between 1 and 8.
Award $\boldsymbol{A 1}$ for -0.67 OR for the omission of the negative sign, e.g. 0.671 (0.670670...) or 0.67
(c) (A value of $r_{S}=-0.671$) indicates a negative correlation between a person's age and
the best time they take to run 100 m .

R1
Note: Condone any comment that includes "weak" or "strong" etc. Accept an interpretation in words, but only if there is a general link described and not a rule: "The older a person gets, the faster they tend to run". Answer must be in context.
(d) Award R1 for any sensible reason:

The correlation, such that it is, is unlikely to be linear for this type of data.
Spearman's CC is less sensitive to outliers
Sung-Jin is not sure the data is drawn from a bivariate normal distribution
There are outliers/extreme data
Same time for two athletes with significantly different ages
5. (a) $34+p$

A1
[1 mark]
(b) attempt to substitute into the mean formula, equating to 4.5
($p=$) 10
Note: Do not award the final $\boldsymbol{A 1}$ if final answer is not an integer.
Award (M1)AOA1 for an unsupported answer of $(p=) 10$.
6. (a) $0.565\left(0.564655 \ldots, \frac{131}{232}, 56.4655 \ldots \%\right)$

A1A1
Note: Award $\boldsymbol{A 1}$ for correct numerator, $\boldsymbol{A 1}$ for correct denominator.
(b) 11.0 (11.0212...)

A2
Note: Award A1 for a final answer of 11 if no unrounded answer is seen.
(c) EITHER
$11.0>9.488(11.0212 \ldots>9.488)$
R1
OR
$0.0263<0.05(0.0263264 \ldots<0.05)$

THEN

EITHER

(there is significant evidence to) reject H_{0}
OR
(there is significant evidence that) the (food) quality and the type of meal are not independent
Note: Do not award ROA1.
Award $\boldsymbol{R 1}$ for $\chi_{\text {calc }}^{2}>\chi_{\text {crit }}^{2}$, provided the calculated value is explicitly seen in part (b).
Accept " p-value < significance level" provided their p-value is seen and their p-value is between 0 and 1 .
7. (a) attempt to find gradient of CD
gradient of $\mathrm{CD}=\frac{1}{3}$ therefore perpendicular gradient $\mathrm{CD}=-3$
$y-1.5=-3(x-5.5)$ OR $1.5=-3(5.5)+c \quad$ M1
Note: Award $\boldsymbol{M 1}$ for substituting the gradient and midpoint into equation of line, provided further work is seen leading to a correct answer.
$y=-3 x+18$
AG
(b)

perpendicular bisector AD: a vertical line with x intercept 2.5
A1
Note: The perpendicular bisector should not go beyond the intersection point (should not enter site B).
(c) attempt to solve simultaneous equations: $3 y=2 x-1.5$ and $y=-3 x+18 \quad$ (M1)
$(5.05,2.86) \quad((5.04545 \ldots, 2.86363 \ldots)) \boldsymbol{A 1}$
Note: Accept $x=5.05$ (5.04545...), $y=2.86$ (2.86363...) in place of coordinates.
Accept $(5.05,2.87)$ and $(5.05,2.85)$ for using their 3 sf or $4 \mathrm{sf} x$-value to find y from any of the two equations.
8. (a) EITHER
$\frac{4}{3} \pi(3.4)^{3}$
multiplying their volume by $\frac{4}{5}$
(M1)

OR
$\frac{4}{3} \pi(3.4)^{3}$
(A1)
Subtracting $\frac{1}{5}$ of their volume
(M1)
$\left(\frac{4}{3} \pi(3.4)^{3}-\frac{1}{5} \times \frac{4}{3} \pi(3.4)^{3}\right)$
Note: The $\boldsymbol{M} \mathbf{1}$ can be awarded for a final answer of $32.9272 \ldots$ seen without working.

THEN

$132 \mathrm{~cm}^{3}$ (131.708 $\ldots \mathrm{cm}^{3}$)
A1
[3 marks]
(b) $\pi \times 3 \times 11$
103.672... $\left(\mathrm{cm}^{2}\right)$ OR $33 \pi\left(\mathrm{~cm}^{2}\right)$
$104\left(\mathrm{~cm}^{2}\right)$
A1
[2 marks]
9. (a) $X \sim \mathrm{~N}\left(4,0.25^{2}\right)$

EITHER
correct probability expression
$\mathrm{P}(X<3.7)$
Note: Accept a weak or strict inequality, and any label instead of X, e.g. length or L.
OR
normal curve with vertical line, left of mean, labelled 3.7, and shaded region

THEN

0.115 ($0.115069 \ldots, 11.5 \%$)

Note: Award M1AO for 0.12 if no previous working.
(b) EITHER

Correct probability expression
$(\mathrm{P}(X<k)=0.7 \quad$ OR $\quad \mathrm{P}(X>k)=0.3$
Note: Accept a weak or strict inequality, and any label instead of X e.g., length or L.

Question 9 continued

OR

normal curve with vertical line to the right of the mean and shaded region, correctly labelled either 0.3 or 0.7

THEN
($k=$) 4.13 (4.13110...)
Note: Award M1AO for 4.1 if no previous working.
(c) EITHER
correct probability equation
(M1)
$\mathrm{P}($ length $<4+m)=0.8 \quad$ OR $\quad \mathrm{P}($ length $<4-m)=0.2$
Note: Accept any letter instead of "length" e.g., X or L.

OR

normal curve with vertical lines symmetrical about the mean line with a correct indication of an area of 0.6 or 0.2 or 0.8

THEN

0.210 ($0.210405 \ldots$)

Note: Award (M1)AO for an answer of 3.7895 or 4.2105 seen without working.
10. (a) METHOD 1 correct sketch with some indication of maximum point

0.921 (seconds) $\left(0.921052 \ldots, \frac{35}{38}\right)$

METHOD 2
correct substitution into equation for line of symmetry
$(t=)-\frac{8.75}{2 \times-4.75}$
0.921 (seconds) $\left(0.921052 \ldots, \frac{35}{38}\right)$

METHOD 3

equating the correct derivative to 0
$-9.5 t+8.75=0$
0.921 (seconds) $\left(0.921052 \ldots, \frac{35}{38}\right)$

Note: Award M1AO for a final answer of 0.92 seen with no working.
(b) METHOD 1
correct sketch with some indication of x-intercept

Note: May be seen in part (a).

Question 10 continued

METHOD 2

setting the equation to zero
$-4.75 t^{2}+8.75 t+1.5=0$
2 (seconds)
A1

Note: If both roots are given, with or without working, award (M1)AO.
(c) METHOD 1
correct sketch of quadratic function and a straight line in approximate correct position
(M1)

1.88 (seconds) (1.87577...(seconds))

METHOD 2

setting the equation equal to 1.2
$-4.75 t^{2}+8.75 t+1.5=1.2$
1.88 (seconds) (1.87577...(seconds))

Note: Award (M1)AO if $-0.0336702 \ldots$ seen as (part of) a final answer.
Award M1A0 for answer of 1.9 seen without working.
(d) Award $\mathbf{R 1}$ for each sensible reason, in the context of the question:

R1R1
e.g.

The model ignores air resistance (or wind)
The model treats the ball as a point
The model assumes gravity is constant
The model assumes that the ball continues to follow the trajectory even after hitting the ground
This model ignores the bouncing back of the ball after hitting the ground
Note: Do not accept generic criticisms of any mathematical model, such as:
There are assumptions being made
Models are never accurate / It is only a model
11. (a) (i)

A1A1A1
Note: Award A1 for correct shape (curve must be smooth) in the second quadrant only, $\boldsymbol{A 1}$ for asymptotic behaviour, $\boldsymbol{A 1}$ for minimum point in approximately correct position AND left-most point around $(-5,76)$ (allow a tolerance of half a square for these two points).
(ii) $\quad-0.941(-0.941035 \ldots)$
(b) $-2.45(-2.44651 \ldots),-0.252(-0.252412), 2.70 \quad(2.69892 \ldots)$

Note: Award $\boldsymbol{A} 2$ for all three correct, $\boldsymbol{A 1}$ for two correct and $\boldsymbol{A} 0$ otherwise.
Award at most $\boldsymbol{A 1}$ if additional solutions are seen.
Award A1A0 for a final answer given as coordinates $(-2.45,20)$, $(-0.252,20),(2.70,20)$ or $(2.7,20)$.
Award $\mathbf{A 1 A 0}$ for three correct answers given in 2 sf .

$$
\text { (c) } \quad x=0
$$

A1
[4 marks]
A2
[2 marks]
A1
[1 mark]
Total [7 marks]
12. (a) $0.15+0.2+k+0.16+2 k+0.25=1$
$k=0.08$
(b) $(-4 \times 0.15)+(-3 \times 0.2)+(-1 \times 0.08)+(0 \times 0.16)+(1 \times 0.16)+(4 \times 0.25)$
$=-0.12 \quad$ A1
$\mathrm{E}(X) \neq 0$ therefore the game is not fair $\boldsymbol{R 1}$
Note: Do not award $\mathbf{A O R 1}$ without an explicit value for $\mathrm{E}(X)$ seen. The $\boldsymbol{R} 1$ can be awarded for comparing their $\mathrm{E}(X)$ to zero provided working is shown.
13. (a) attempt at using the trapezoidal rule
area $=\frac{1}{2}(3+2(8+19)+42)$
$=49.5\left(\mathrm{~m}^{2}\right)$
(b) recognition of need to integrate (e.g. reverse power rule or integral symbol) (M1)
$\int 3 x^{2}+4 \mathrm{~d} x=x^{3}+4 x+c$
(A1)(A1)
Note: Award A1 for each correct term.
$f(x)=x^{3}+4 x+3$
Note: Award A1 for simplified correct answer including the value of c. Accept a value of c of 3.005 or 3.025 or 2.975 for using the non-integer x-values and their corresponding y-values.
(c) METHOD 1
forming expression for sum of integral and deconstructing the trapezoid into
a rectangle and triangle
$\int_{0}^{3} x^{3}+4 x+3 \mathrm{~d} x(=47.25)+42 \times 1+\frac{1}{2} \times 2 \times 42(=84)$
$=131\left(\mathrm{~m}^{2}\right)(131.25)$

METHOD 2

forming expression for sum of integral and trapezoid
$\int_{0}^{3} x^{3}+4 x+3 \mathrm{~d} x(=47.25)+\frac{1}{2} \times 4 \times 42(=84)$
$=131\left(\mathrm{~m}^{2}\right)(131.25)$
Note: Award (A1) for their integral with the correct limits added to 84 or their 47.25 added to 84 .

Markscheme

May 2023

Mathematics: applications and interpretation

Standard level

Paper 1

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2023
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2023
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award A1 for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full FT is available in subsequent parts)

3

Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M} \boldsymbol{R}$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to a "correct" level of accuracy (e.g 3 sf) in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a)

	Event		Rank	
Country	Long Jump (m)	High Jump (m)	Long Jump Rank	High Jump Rank
Germany	7.64	2.11	1	$\mathbf{1}$
France	7.52	2.08	2	$\mathbf{2}$
Estonia	7.49	1.84	3	$\mathbf{1 0}$
Canada	7.44	2.02	4	$\mathbf{4 . 5}$
Netherlands	7.33	2.05	5	$\mathbf{3}$
Ukraine	7.28	2.02	6	$\mathbf{4 . 5}$
Algeria	7.22	1.90	7	$\mathbf{8}$
Austria	7.11	1.87	8	$\mathbf{9}$
Grenada	6.98	1.99	9	$\mathbf{6}$
Japan	6.64	1.96	10	$\mathbf{7}$

Note: Award A1 for ranking of tied heights, A1 for correct ranking of non-tied heights.
(b) $\quad\left(r_{s}=\right) 0.541 \quad(0.541035 \ldots)$

Note: Award A2 for an answer of 0.539 ($0.539393 \ldots$...) from use of the formula for Spearman's rank correlation coefficient when data has tied ranks.
[2 marks]
$\begin{array}{ll}\text { (c) moderate (correlation) } & \text { A1 } \\ \text { as long jump ranking increases, high jump ranking will (likely) increase } & \text { A1 }\end{array}$
2. (a) attempt to calculate $\mathrm{AH} B$ using 33 OR use of alternate angles
e.g., 180-(33+130) OR $90-(33+40)$ OR $57-40$
$17\left({ }^{\circ}\right)$
(b) attempt to use sine rule
$\frac{\mathrm{BH}}{\sin \left(130^{\circ}\right)}=\frac{156}{\sin \left(17^{\circ}\right)}$
$(\mathrm{BH}=) 409(\mathrm{~m})(408.736 \ldots)$
Note: If radians are used, answer is 151 (150.922...); award at most (M1)(A1)AO.

3. (a) $N=24$
$I=4$
$P V= \pm 1000$
$P M T= \pm 100$
$P / Y=12$
$C / Y=12$
(M1)(A1)

Note: Award M1 for an attempt to use a financial app in their technology (i.e. at least three entries seen, but not necessarily correct).
Approaches that use the compound interest formula receive no marks.
Award A1 for correct values of $P V$ and $P M T$ (signs must be the same) and a correct value of N.
$F V=(\$) 3577.43$

Note: Award at most (M1)(A1)A0 if the final answer is negative or not rounded to 2 dp .
(b) $\quad N=36.5(36.4689 \ldots)$
$N=37$ (months)
Note: Allow $\boldsymbol{F T}$ from incorrect GDC inputs seen in part (a) for the first $\boldsymbol{A 1}$ providing that $P V$ and $F V$ have opposite signs and the resulting value of N is positive.
[2 marks]
[Total: 5 marks]
4.
(a) $\mathrm{H}_{0}: \mu_{b}=\mu_{m}$ A1
$\mathrm{H}_{1}: \mu_{b}>\mu_{m}$ A1

Note: Accept equivalent statements in words such as "the mean score of bilingual people equals the mean score of monolingual people".
[2 marks]
(b) 0.119 ($0.119395 \ldots$)

A2
[2 marks]
(c) $0.119395 \ldots>0.05 \quad(11.9395 \ldots \%>5 \%)$
(fail to reject H_{0}) there is insufficient evidence to suggest that bilingual people have better memory retention than monolingual people

Note: Do not award ROA1.
The answer to part (c) MUST be consistent with their hypotheses and their p-value.
[2 marks]
[Total: 6 marks]
5. (a) 2
(b) attempt to substitute their part (a) and point (3, -1) into the slope-intercept form or point-slope form of an equation

$$
\begin{aligned}
& -1=2 \times 3+c \quad \text { OR } \quad y+1=2(x-3) \\
& y=2 x-7
\end{aligned}
$$

Note: Equation must be in the form $y=m x+c$ for $\boldsymbol{A} 1$ to be awarded.

Question 5 continued

(c) METHOD 1

 attempt to show that P does not lie on L_{2}e.g. $-\frac{1}{2}(3)-\frac{5}{2}$ OR graph showing L_{2} and P in approximate correct locations
$-1 \neq-\frac{1}{2}(3)-\frac{5}{2}(-1 \neq-4)$ OR $(3,-1)$ does not lie on the graph of L_{2}
hence L_{2} is not the normal line to $f(x)$ at point P

METHOD 2

attempt to find the equation of the normal line at $(3,-1)$
$\left(-1=-\frac{1}{2}(3)+c \quad\right.$ OR $\left.\quad y+1=-\frac{1}{2}(x-3)\right)$
the normal line is $y=-\frac{1}{2} x+\frac{1}{2}$
hence L_{2} is not the normal line to $f(x)$ at point P

METHOD 3

attempt to find the intersection of L_{1} and L_{2}
Intersection of $y=2 x-7$ and $y=-\frac{1}{2} x-\frac{5}{2}$ is $(1.8,-3.4)$
$x=1.8 \neq 3 \quad$ OR $\quad y=-3.4 \neq-1$
hence L_{2} is not the normal line to $f(x)$ at point P

Note: Accept equivalent written arguments provided values are seen.
Methods 1 and 2 are independent of the answers in (a) and (b) but FT marks can be given for Method 3 .
6. (a) attempt to set up a direct variation equation that includes a constant, k, or the calculation of a constant using 12.3 and 50
e.g., $d=k v^{2} \quad$ OR $\quad 12.3=k \times 50^{2}$
$(k=) 0.00492\left(\frac{1}{203.252 \ldots}\right)$
$d=0.00492 v^{2} \quad$ OR $\quad d=\frac{v^{2}}{203}$

A1

[2 marks]
(b) substituting 33 for d in their part (a)
(A1)

$$
33=0.00492 \times v^{2} \quad \text { OR } \quad 33=\frac{v^{2}}{203.252 \ldots}
$$

$$
(v=) 81.9\left(\mathrm{~km} \mathrm{~h}^{-1}\right) \quad\left(81.8982 \ldots\left(\mathrm{~km} \mathrm{~h}^{-1}\right)\right)
$$

(c) Award R1 for a reasonable variable that exists after the brakes are applied such as:

- road material
- weather conditions
- condition/type of brakes
- weight/type of vehicle
- gradient/incline of road
- traction
- wind resistance
- friction

Note: Do not accept a variable that refers to the timing of the brakes being applied such as:

- slow reaction time
- inexperienced driver

7. (a) $(k=) 15$

A1
[1 mark]

(b) EITHER

attempt to sketch the function $V(x)$ with indication of maximum

OR

recognition of setting the derivative to 0
e.g. $V^{\prime}(x)=0$

THEN

$$
(x=) 6(\mathrm{~cm})
$$

Note: Award (M1)AO for the maximum given as a coordinate pair.
(c) 44 or 26 seen
attempting to adjust the constant(s) in the given volume formula
volume of second box $=(44-2 x)(26-2 x)(x)$
$($ New maximum volume $=) 2730 \mathrm{~cm}^{3} \quad\left(2726.13 \ldots \mathrm{~cm}^{3}\right)$
Note: Units must be seen to award the final A1. Award (A1)(M1)AO for the maximum given as a coordinate pair.
8. (a) attempt to substitute 5000 for G
$0.301 p=\log _{10} 5000$
($p=$) 12.3 (bits) (12.2889 \ldots)
(b) $\quad(G=) 10^{0.301 p}$ OR $\quad 2^{p}$

A1
[1 mark]
(c) attempt to substitute 28 for p in given equation or $G(p)$
$0.301 \times 28=\log _{10} G \quad$ OR $\quad(G=) 10^{0.301 \times 28}$
$(G=) 2.68 \times 10^{8}\left(2.67916 \ldots \times 10^{8}\right)$
A1A1

Note: Award A1 for 2.68, A1 for 10^{8}. Award M1A1AO for a correct final answer not written in scientific notation or written incorrectly in scientific notation (e.g., 268000000 or 26.8×10^{7} or 2.68 E 08).
(d) if a password has an entropy of $\mathbf{0}$ (bits), then the password can be guessed in one try / then the password is known R1

Note: Reference must be made to both entropy and number of guesses/password known for $\boldsymbol{R 1}$ to be awarded.
Do not accept "no password" as this contradicts the context.
9. (a) attempt to substitute $h=10$ and at least two different values of y into the trapezoidal rule
(M1)

$$
\begin{aligned}
& \frac{10}{2}((0+0)+2(3+8+9)) \\
& =200\left(\mathrm{~cm}^{2}\right)
\end{aligned}
$$

(b) (i) $\quad \int_{0}^{40} 0.04 x^{2}-0.001 x^{3} \mathrm{~d} x$ OR $\int_{0}^{40} y \mathrm{~d} x$

A1A1

Note: Award A1 for a correct integral (including dx), A1 for correct limits in the correct location.
(ii) $213.33\left(\mathrm{~cm}^{2}\right)$

A2

Note: Answer must be given to 2 decimal places to award A2. Award A1A0 for a correct answer given to an incorrect accuracy of at least 3 significant figures, e.g. $213\left(\mathrm{~cm}^{2}\right)$.
[4 marks]
(c) attempt to substitute their parts (a) and (b)(ii) into percentage error formula

$$
\left|\frac{213.333 \ldots-200}{213.333 \ldots}\right| \times 100
$$

$$
=6.25(\%) \quad(6.24999 \ldots(\%))
$$

Note: Award (M1)AO for a final answer of $-6.25(\%)$ or 0.0625 .
10. (a) (i) METHOD 1
attempt to find change in height of the ball using gradient
$\frac{a}{0.43}=(-) 0.045$
$a=(-) 0.045 \times 0.43$
$a=(-) 0.0194(\mathrm{~m})(0.01935(\mathrm{~m}))$

METHOD 2

attempt to find height at back of home plate
horizontal distance to the front of the home plate $=16.6666 \ldots$ (m)
height at the back of the home plate $=-0.045(16.6666 \ldots+0.43)+2$
(=1.23065 (m))
Note: The M1 can be awarded for $16.6666 \ldots+0.43$ seen at some point.

$$
\begin{aligned}
& (a=1.25-1.23065 \ldots) \\
& (a=)(-) 0.0194(\mathrm{~m}) \quad(0.01935(\mathrm{~m}))
\end{aligned}
$$

(ii) $1.25-0.01935=1.23065$ (may be seen in part (a)(i))
$0.53<1.23065<1.24$
therefore a strike AG

Note: Do not award AOR1.

Question 10 continued

(b) METHOD 1

indication of $d=96$ in the function $h(d)$ or its graph
EITHER
$(h(96)=)-0.01(96)^{2}+1.04(96)+0.66$
OR

THEN

$(h(96)=) 8.34(\mathrm{~m})$
$8.34>5$ so the ball will go over the wall.

METHOD 2

indication of $h=5$ in the function $h(d)$ or its graph
EITHER
$5=-0.01 d^{2}+1.04 d+0.66$

OR

THEN

$d=99.6(\mathrm{~m})(99.6445 \ldots(\mathrm{~m}))(d=4.35548 \ldots(\mathrm{~m})$ may also be seen $)$
$96<99.6445 \ldots$ so the ball will go over the wall.
A1
11. (a) $\quad 14.55(\mathrm{~cm})$ to $14.65(\mathrm{~cm})$

A1A1

Note: Award A1 for each value. Accept $14.55 \leq \mathrm{AC}<14.65$.
(b) attempt to use Pythagorean theorem OR trig ratio to find slant height
a correct expression for either the upper or lower bound

$$
\begin{aligned}
& \sqrt{14.55^{2}-10^{2}} \text { OR } \sqrt{14.65^{2}-10^{2}} \text { OR } \\
& \sin \left(46.5844 \ldots . .{ }^{\circ}\right)=\frac{A H}{14.55} \text { OR } \sin \left(46.9533 \ldots .^{\circ}\right)=\frac{\mathrm{AH}}{14.65}
\end{aligned}
$$

(lower bound =) 10.6 (cm) (10.5689...) AND
(upper bound $=$) $10.7(\mathrm{~cm}) \quad(10.7061 \ldots$)

Question 11 continued

(c) METHOD 1
attempt to find the maximum angle measure of the post using trigonometry
e.g. $\cos \theta=\frac{10}{10.7061 \ldots}$ OR $\frac{\sin \theta}{3.82393 \ldots}=\frac{\sin \left(90^{\circ}\right)}{10.7061 \ldots}$

Note: Accept an inequality.
$(\theta=) 20.9\left({ }^{\circ}\right) \quad\left(20.9265 \ldots\left({ }^{\circ}\right)\right)$
and hence the post is safe AG

Note: Use of radians gives an answer of 0.365 ($0.365237 \ldots$); award at most (M1)AO since this value cannot be directly compared to 22°.

Award at most (M1)AO for an angle calculated using their lower bound from part (b).

METHOD 2

attempt to find the longest slant height for angle to be a maximum of 22°
e.g. $\cos \left(22^{\circ}\right)=\frac{10}{x}$

$$
(x=10.7853 \ldots)
$$

$$
10.7061 \ldots<10.7853 . .
$$

and hence the post is safe AG

Note: A comparison to their upper bound from part (b) is required for $\boldsymbol{A 1}$ to be awarded. Use of radians gives an unreasonable answer of -10.0003... ; award at most (M1)AO.
12. (a) attempt to find the difference between 75.7 and 67.3
(b) recognition of normal distribution that includes 72
e.g., sketch of normal distribution curve with 72 labelled to the right of the mean OR Normal CDF calculation using 72
0.132 ($0.131559 \ldots, 13.2 \%, 13.1559 \ldots \%$)
(c) METHOD 1 (Comparing areas above and below the mean) $\mathrm{P}(67.3$ < speed < 74) OR Normal CDF(67.3, 74, 67.3, 4.2) OR sketch of normal distribution with 67.3 and 74 labelled and shaded between
area of region between mean and q is at least 0.445 ($0.444670 \ldots$)
Hence no more than 0.375 ($0.375329 \ldots$) between mean and p R1

The region between p and q is not symmetrical

METHOD 2 (Comparing areas in the tails)

attempt to calculate probability that speed $<p$ and speed $>q$ with $q=74$
P (speed <74) $=0.944670 \ldots$
$\mathrm{P}($ speed $<p)=(0.944670 \ldots-0.82=) 0.124670 \ldots$
$\mathrm{P}($ speed $>q)=(1-0.944670 \ldots=) 0.0553295 \ldots$
if $q \geq 74$, then $\mathrm{P}($ speed $>q) \leq 0.0553295$ and $\mathrm{P}($ speed $<p) \geq 0.124670$ so
$\mathrm{P}($ speed $>q)$ will never equal $\mathrm{P}($ speed $<p)$
the region between p and q is not symmetrical

Question 12 continued

METHOD 3 (Assumption of symmetry comparing speeds)

attempt to calculate area below q assuming distribution is symmetrical
e.g. $\mathrm{P}($ speed $<q)=0.82+1 / 2 \times 0.18 \quad(0.91)$

EITHER

($q=$) 72.9 (72.9311...) A1
$72.9<74$ so 74 would not be in the region $\boldsymbol{R 1}$
the region between p and q is not symmetrical AG

OR
P (speed $<74)=0.945 \quad(0.944670 \ldots) \quad$ A1
$0.945>0.91$ so 74 would not be in the region $\boldsymbol{R 1}$
the region between p and q is not symmetrical AG

METHOD 4 (Assumption of symmetry comparing areas)
attempt to calculate symmetrical area with 74 as a boundary

P (67.3<speed<74) OR Normal CDF(67.3, 74, 67.3, 4.2)

EITHER

0.889 (0.889340...)

A1
$0.889>0.82$ so 74 would not be in the region $\boldsymbol{R 1}$
the region between p and q is not symmetrical AG

OR
0.445 (0.444670...)
$0.445>0.82 \div 2$ so 74 would not be in the region $\boldsymbol{R 1}$
the region between p and q is not symmetrical AG
13. diagram showing (approximately) correct directions (and order) for the 315° and 045° (A1)

Note: Values do not need to be seen on the diagram to award the A1.
recognizing right angle triangle
correct expression to find second angle in triangle
e.g. $\arctan \left(\frac{6}{8}\right)$ OR $\arctan \left(\frac{8}{6}\right)$
correct expression to find bearing
e.g. $\arctan \left(\frac{6}{8}\right)+135^{\circ}$ OR $360^{\circ}-\left(\arctan \left(\frac{8}{6}\right)+135^{\circ}\right)$
$=172^{\circ}\left(171.869 \ldots{ }^{\circ}\right)$

Question 13 continued

METHOD 2

diagram showing (approximately) correct directions (and order) for the 315° and 045° (these may be shown in reverse as the return journey)

finding the lengths marked $A P, B P, C Q$ and $B Q$ in the diagram
$\mathrm{AP}=\mathrm{BP}=8 \frac{\sqrt{2}}{2}=5.6568 \ldots$
$\mathrm{CQ}=\mathrm{BQ}=6 \frac{\sqrt{2}}{2}=4.2426 \ldots$
Note: This may be done using a vector approach.
using $\tan \theta^{\circ}=\frac{\mathrm{AP}-\mathrm{CQ}}{\mathrm{PB}+\mathrm{BQ}}$ or equivalent to find the direction of AC
correct expression to find bearing
$180^{\circ}-\arctan \left(\frac{8 \frac{\sqrt{2}}{2}+6 \frac{\sqrt{2}}{2}}{8 \frac{\sqrt{2}}{2}-6 \frac{\sqrt{2}}{2}}\right)$
$=172^{\circ} \quad\left(171.869 \ldots{ }^{\circ}\right)$

Markscheme

November 2022

Mathematics: applications and interpretation

Standard level

Paper 1

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2022
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2022
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies $\mathbf{A 3}, \boldsymbol{M 2}$ etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award $\boldsymbol{A 1}$ for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	0.468111.. (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full $\boldsymbol{F T}$ is available in subsequent parts)

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through ($\boldsymbol{F T}$) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the $M R$ stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate \boldsymbol{A} marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 e^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) $\quad \sin (\mathrm{B} \hat{\mathrm{S}})=\frac{218}{1200} \quad \mathrm{OR} \quad \frac{\sin (\mathrm{B} \hat{\mathrm{S}} \mathrm{K})}{218}=\frac{\sin \left(90^{\circ}\right)}{1200}$

Note: Award $\boldsymbol{M 1}$ for a correct trig formula. Accept other variables representing BŜK .

$$
(\mathrm{B} \hat{\mathrm{~S}} \mathrm{~K}=) 10.5^{\circ}(10.4668 \ldots)
$$

Note: Award A1 for the radian answer, $0.182681 \ldots$. Award M1AO if the candidate finds the correct angle of elevation but then uses it to find a complementary angle as their final answer.
(b) $\mathrm{SB}^{2}+218^{2}=1200^{2} \mathrm{OR} \cos (10.4668 \ldots)=\frac{\mathrm{SB}}{1200} \mathrm{OR} \tan (10.4668 \ldots)=\frac{218}{\mathrm{SB}} \mathrm{OR}$

$$
\frac{\mathrm{BS}}{\sin \left(79.5331 \ldots .^{\circ}\right)}=\frac{1200}{\sin \left(90^{\circ}\right)}
$$

(c) 1.18×10^{3}

A1A1
Note: Award A1 for 1.18
Award A1 for 10^{3}
Accept their rounded answer to part (b).
Award AOAO for answers of the type: 11.8×10^{2}.
[2 marks] Total [6 marks]
2. (a) use of the $n^{\text {th }}$ term of an arithmetic sequence formula
$u_{15}=85+(15-1) \times 30$
505
(b) use of the sum of n terms of an arithmetic sequence formula
(M1)
$S_{15}=\frac{15}{2}(85+505) \quad$ OR $\frac{15}{2}(2 \times 85+(15-1) \times 30)$
4430 (4425)
(c) $\frac{4425}{15}$ OR $85+(8-1) \times 30$

295
Note: Accept 295.333... from use of 3sf value from part (b).
3. (a) 1.8 (m)

A1
[1 mark]
(b) EITHER
$\frac{-10.8}{2(-3.6)}$
(M1)

OR
$-7.2(t)+10.8=0$
OR
sketch indicating maximum
(M1)
THEN
($t=$) 1.5 seconds A1

Note: Award (M1)AO for $(1.5,9.9)$ seen.

(c) EITHER

$0=-3.6 t^{2}+10.8 t+1.8$
OR
sketch indicating a root

THEN

($t=$) 3.16 seconds (3.15831...)
Note: Award at most M1AO if $-0.158(-0.158312 .$.$) is part of the final answer unless$ clearly rejected.
4. (a) The favourite breakfast/berry (of adults) is independent of (their) income (level). A1
(b) $\quad \chi^{2}=2.27(2.26821 \ldots)$

A2
[2 marks]
(c) EITHER
$2.27<7.78$ OR $2.27<$ critical value R1
OR
$0.687>0.1 \quad$ (using p-value)

THEN

(Do not reject H_{0})
Insufficient evidence (at the 10\% significance level) that the favourite berry depends on income level.

A1
Note: Do not award ROA1. Accept " $\chi^{2 "}$ " in place of their " 2.27 ", provided an answer was seen in part (b). Their conclusion must be consistent with their χ^{2} (or a correct p-value) and their hypothesis.
5. (a) $71 \mathrm{e}^{-0.0514(16)}+23$
$54.2{ }^{\circ} \mathrm{C}(54.1956 \ldots)$
A1
[2 marks]
(b) $\quad T=23$

Note: Condone $y=23$.
(c) $23{ }^{\circ} \mathrm{C}$

A1
[1 mark]
(d) $50=71 \mathrm{e}^{-0.0514(k)}+23$
(M1)

$$
k=18.8\left(\frac{-5000}{257} \ln \left(\frac{27}{71}\right), 18.8101 \ldots\right)
$$

Note: Award M1 for a sketch showing a point of intersection between the exponential function and $y=50$.
[2 marks]
6.
(a) $\quad\left(\mathrm{H}_{1}:\right) \mu_{1} \neq \mu_{2}$

A1
Note: Accept an equivalent statement in words referring to μ_{1} and μ_{2} as defined in the question.
[1 mark]
(b) 0.97652 ($0.976516 \ldots$...)

A2
[2 marks]
(c) $0.97652>0.05(0.977>0.05)$

R1
Annabelle's conclusion is correct.
A1
Note: Do not award R0A1. Answer must reference Annabelle's conclusion; do not accept an answer, without context, of "fail to reject H_{0} " for the $\boldsymbol{A 1}$ mark.
7. (a) $I \%=7.5$
$P V=\mp 800$
$P M T=\mp 500$
$F V= \pm 10000$
$P / Y=12$
$C / Y=12$

(M1)(A1)

Note: Award $\boldsymbol{M} \mathbf{1}$ for an attempt to use a financial app in their technology (e.g. at least four rows seen, but not necessarily correct), award $\boldsymbol{A 1}$ for $\mathrm{PMT}=-500$ or PMT $=500$, with same sign to PV and opposite sign to FV .
17.3070...
(A1)
($k=$) 18
A1
Note: Award (MO)(AO)(AO)AO for a final answer of 17 with no working. The final answer must be an integer.
[4 marks]
(b) $10389-(18 \times 500+800)$ OR $10389-(9800)$
(A1)(M1)
Note: Award (A1) for 10389 (10389.38...) seen. Award (M1) for subtraction of their $(18 \times 500+800)$ from FV. FT from their value of k. Award AOM1AO for $10000-(18 \times 500+800)$. Do not award the final $\boldsymbol{A 1 F T}$ if their answer is negative.

589 EUR
A1
Note: Final answer must be to the nearest euro.
8. (a) $\mathrm{P}(T<55)$
0.0912 (0.0912112...)
A1

Note: Award M1 for a correct calculator notation such as normal cdf $(0,55,59,3)$ or normal $\operatorname{cdf}\left(-1^{99}, 55,59,3\right)$.
(b) correct use of expected value
$8.6=20 \times p \quad$ OR $\quad(p=) 0.43$ seen
(M1)
EITHER
correct probability statement
(M1)
$\mathrm{P}(T>t)=0.43$ OR $\mathrm{P}(T<t)=0.57$
OR
t indicated on sketch to communicate correct area

THEN

($t=$) 59.5 (seconds) (59.5291...)
A1

Total [5 marks]
9. (a) $0.5 \times 0.1+0.4 \times 0.4+0.1 \times 0.5$
(M1)(M1)(M1)
Note: Award $\boldsymbol{M} \mathbf{1}$ for 0.5×0.1 or $0.1 \times 0.5, \boldsymbol{M} \mathbf{1}$ for $0.4 \times 0.4, \boldsymbol{M} \mathbf{1}$ for adding three correct products.
0.26

A1
[4 marks]
(b) $0=-8 \times 0.5+4 \times 0.4+0.1 \mathrm{k}$ (M1)(M1)

Note: Award $\boldsymbol{M 1}$ for correct substitution into the formula for expected value, award M1 for the expected value formula equated to zero.
($k=$) 24 (points)
A1
10. (a) $m=1-2.5 \log _{10}(0.0525)$
$=4.20$ (4.19960...)
(b) attempt to solve $7=1-2.5 \log _{10}(b)$
(M1)
Note: Accept a sketch from their GDC as an attempt to solve $7=1-2.5 \log _{10}(b)$.

$$
b=0.00398 \quad(0.00398107 \ldots)
$$

(c) $\frac{0.0525}{0.00398107}$

$$
=13.2(13.1874 \ldots)
$$

11. (a) $4.5=2(r)^{3-1}$ M1
$r= \pm 1.5$,
R1
(Some x-values are negative or direction from house changes each day) $r=-1.5$
Note: Award MOROAG for a verification approach $4.5=2(-1.5)^{3-1}$.
(b) $\quad 2(-1.5)^{6-1}$

EITHER

$$
(-15.2,0)(-15.1875 \ldots, 0)
$$A1

OR$x=-15.2 \mathrm{~km}$A1
OR
15.2 km west (of the origin) A1

Note: Award (M1)AO for an answer of " $-15.2(\mathrm{~km})$ " without indicating that it is the x-value.
(c) choosing $r=1.5$

$$
\frac{2\left((1.5)^{7}-1\right)}{1.5-1}
$$

Note: Award $\boldsymbol{M 1}$ for an attempt at a substituted GP formula with $n=7$. Award AOM1AO for substitution of $r=-1.5$, with $n=7$ (this can be implied from a final answer of 14.4687...).
12. (a) 78

A1
[1 mark]
(b) (i) 65

A1
(ii) EITHER
(period =) 16 (could be seen on sketch)
(M1)
$b=\frac{2 \pi}{16} \quad$ OR $\quad b=\frac{360^{\circ}}{16}$
$(b=) 0.393\left(0.392699 \ldots, \frac{\pi}{8}\right)$ OR $(b=) 22.5^{\circ}$
A1

OR
$143=65 \sin (4 b)+78$
$(\sin (4 b)=1)$
$\left(4 b=\frac{\pi}{2} \quad\right.$ OR $\left.\quad 4 b=90^{\circ}\right)$
($b=$) $0.393\left(0.392699 \ldots, \frac{\pi}{8}\right)$ OR $(b=) 22.5^{\circ}$
A1
[3 marks]
(c) 13

Note: Apply follow through marking only if their final answer is positive.
(d) $\quad(b=) 0.196 \quad\left(0.196349 \ldots, \frac{\pi}{16}\right) \quad \mathbf{O R} \quad(b=) 11.3^{\circ}\left(11.25^{\circ}\right)$

A1
13. (a) $0=20-\frac{980}{t^{2}} \quad$ OR $\quad \frac{\mathrm{d} P}{\mathrm{~d} t}=0$

Note: Accept equivalent information presented in a labelled sketch.
($h=$) 7 hours
A1
Note: Award M1AO for an answer of (7, 280).
(b) recognition of need to integrate (e.g. reverse power rule or integral symbol) (M1)

$$
\begin{align*}
& P(t)=20 t+\frac{980}{t}(+c) \\
& 328=20 \times 5+\frac{980}{5}+c \tag{M1}
\end{align*}
$$

Note: Award (M1) for substitution of $P=328$ and $t=5$ into their $P(t)$. A constant of integration must be seen (can be implied by a correct answer).

$$
\begin{array}{ll}
c=32 & \text { A1 } \\
P(7)=20 \times 7+\frac{980}{7}+32 & \text { M1 }
\end{array}
$$

Note: Award $\boldsymbol{M} \mathbf{1}$ for substituting 7 and their 32 into their $P(t)$.
Do not award the final \boldsymbol{M} mark if their substituted values do not lead to 312 .

312 NOK

Markscheme

May 2022

Mathematics: applications and interpretation

Standard level

Paper 1

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2022
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2022
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\mathbf{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies $\mathbf{A 3}$, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award $\boldsymbol{A 1}$ for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full $\boldsymbol{F T}$ is available in subsequent parts)

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate \boldsymbol{A} marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 e^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) attempt to substitute into length of arc formula

$$
\begin{aligned}
& \frac{140^{\circ}}{360^{\circ}} \times 2 \pi \times 56 \\
& 137 \mathrm{~cm} \quad\left(136.833 \ldots, \frac{392 \pi}{9} \mathrm{~cm}\right)
\end{aligned}
$$

(b) subtracting two substituted area of sectors formulae

$$
\begin{equation*}
\left(\frac{140^{\circ}}{360^{\circ}} \times \pi \times 56^{2}\right)-\left(\frac{140^{\circ}}{360^{\circ}} \times \pi \times 10^{2}\right) \quad \text { OR } \frac{140^{\circ}}{360^{\circ}} \times \pi \times\left(56^{2}-10^{2}\right) \tag{A1}
\end{equation*}
$$

$$
3710 \mathrm{~cm}^{2} \quad\left(3709.17 \ldots \mathrm{~cm}^{2}\right)
$$

2. (a) $\left(\frac{17+25}{130}=\right) \frac{42}{130}\left(\frac{21}{65}, 0.323076 \ldots\right)$
(b) $\left(\frac{17}{17+25}=\right) \frac{17}{42}(0.404761 \ldots)$

A1A1

Note: Award A1 for correct numerator and $\boldsymbol{A 1}$ for correct denominator. Award A1AO for working of $\frac{17 / 130}{\text { their answer to (a) }}$ if followed by an incorrect answer.
[2 marks]
(c) $\frac{41}{130} \times \frac{40}{129}$

A1M1

Note: Award $\boldsymbol{A 1}$ for two correct fractions seen, $\boldsymbol{M 1}$ for multiplying their fractions.

$$
=\frac{1640}{16770} \approx 0.0978\left(0.0977936 \ldots, \frac{164}{1677}\right)
$$

3. (a) $\sin \theta=\frac{2.1}{2.8} \quad$ OR $\quad \tan \theta=\frac{2.1}{1.85202 \ldots}$
$(\theta=) 48.6^{\circ}\left(48.5903 \ldots{ }^{\circ}\right) \quad$ A1
[2 marks]
(b) METHOD 1

$$
\begin{equation*}
\sqrt{2.8^{2}-2.1^{2}} \quad \text { OR } \quad 2.8 \cos (48.5903 \ldots) \quad \text { OR } \frac{2.1}{\tan (48.5903 \ldots)} \tag{M1}
\end{equation*}
$$

Note: Award M1 for attempt to use Pythagorean Theorem with 2.1 seen or for attempt to use cosine or tangent ratio.
1.85 (m) (1.85202...)

Note: Award the M1A1 if 1.85 is seen in part (a).
($6.4-1.85202 \ldots$)
4.55 m (4.54797...)
(A1)
Note: Award $\boldsymbol{A 1}$ for 4.55 or equivalent seen, either as a separate calculation or in Pythagorean Theorem.
$\sqrt{(4.54797 \ldots)^{2}+2.1^{2}}$
5.01 m (5.00939...m)

METHOD 2

attempt to use cosine rule
$\left(c^{2}=\right) 2.8^{2}+6.4^{2}-2(2.8)(6.4) \cos (48.5903 \ldots)$
(A1)(A1)
Note: Award A1 for $48.5903 \ldots{ }^{\circ}$ substituted into cosine rule formula, $\boldsymbol{A} 1$ for correct substitution.

$$
(c=) 5.01 \mathrm{~m}(5.00939 \ldots \mathrm{~m})
$$

A1
[4 marks]
(c) camera 1 is closer to the cash register (than camera 2 and both cameras are at the same height on the wall)

R1
the larger angle of depression is from camera 1
A1
Note: Do not award R0A1. Award R0AO if additional calculations are completed and used in their justification, as per the question. Accept " $1.85<4.55$ " or " $2.8<5.01$ " as evidence for the $\boldsymbol{R 1}$.
4. (a) $(\mathrm{pH}=)-\log _{10}\left(1.3 \times 10^{-5}\right)$
4.89 (4.88605...)

A1 [2 marks]
(b) EITHER
calculating pH
$(\mathrm{pH}=)-\log _{10}\left(10 \times 1.3 \times 10^{-5}\right)$
3.89 (3.88605...)
($3.89<4.89$, therefore) the unknown liquid is more acidic (than coffee).
Note: Follow through within the part for the final A1. A correct conclusion must be supported by a mathematical justification linking the C-value to the pH level to earn the final A1; a comparison of C-values only earns MOAOAO.

OR
referencing the graph
The graph of $y=-\log _{10}(x)$ shows that as the value of x increases, the value of y decreases.

Since the C-value (x-value) of the unknown liquid is larger than that of the coffee, the pH level (y-value) is lower.

R1
The unknown liquid is more acidic (than coffee).
A1
Note: Follow through within the part for the final A1. A correct conclusion must be supported by a mathematical justification linking the C-value to the pH level to earn the final A1; a comparison of C-values only earns MOROAO.
[3 marks]
Total [5 marks]
5. (a) $(\mathrm{E}(X)=) 10 \times 0.8$

8 (people)
(b) recognition of binomial probability
0.0881 (0.0880803...)

A1
[2 marks]
(c) 0.8 and 6 seen OR 0.2 and 3 seen
attempt to use binomial probability
(A1)
0.121 ($0.120873 . .$.)
6. (a) EITHER
attempt to substitute 3, 4 and 7 into area of a trapezoid formula
(M1)
$(A=) \frac{1}{2}(7+4)(3)$

OR

given line expressed as an integral
$(A=) \int_{-1}^{2}(6-x) \mathrm{d} x$
OR
attempt to sum area of rectangle and area of triangle
$(A=) 4 \times 3+\frac{1}{2}(3)(3)$

THEN

16.5 (square units)

A1A1
Note: Award A1 for the limits $x=-1, x=2$ in correct location. Award $\boldsymbol{A} 1$ for an integral of the quadratic function, $\mathrm{d} x$ must be included. Do not accept " y " in place of the function, given that two equations are in the question.

(ii) 9.75 (square units)

(c) $16.5-9.75$
6.75 (square units)
7. (a) $(88-62) \times 1.5$ OR 26×1.5 seen anywhere OR 39 seen anywhere (M1) 62-39
23 A1
$25>23 \quad$ R1
so is not an outlier AG
(b) The median score for the evening class is higher than the median score
for the morning class.

A1

THEN

but the scores are more spread out in the evening class than in the morning class A1
OR
the scores are more inconsistent in the evening class A1
OR
the lowest scores are in the evening class A1
OR
the interquartile range is lower in the morning class A1
OR
the lower quartile is lower in the evening class A1

Note: If an incorrect comparison is also made, award at most A1A0.
Award $\mathbf{A 0}$ for a comparison that references "the mean score" unless working is shown for the estimated means of the data sets, calculated from the mid-points of the 4 intervals. The estimated mean for the morning class is 71.375 and the estimated mean for the evening class is 70.5.
8. (a) $\quad\left(\mathrm{H}_{1}:\right) \mu_{1}-\mu_{2} \neq 0 \quad\left(\mu_{1} \neq \mu_{2}\right)$

Note: Accept an equivalent statement in words, however reference to "population mean" must be explicit for $\boldsymbol{A} \mathbf{1}$ to be awarded.
(b) 0.0778 (0.0778465...) A2

Note: Award A1 for an answer of $0.0815486 \ldots$ from not using a pooled estimate of the variance.
[2 marks]
(c) (i) $0.0778<0.1 \quad$ R1
reject the null hypothesis A1
Note: Do not award ROA1.
(ii) there is (significant evidence of) a difference between the (population) mean reaction times

A1
Note: Their conclusion in (c)(ii) must match their conclusion in (c)(i) to earn A1. Award $\mathbf{A O}$ if their conclusion refers to mean reaction times in the sample.
9. (a) Accept any one of the following (or equivalent): one minimum and one maximum point three x-intercepts or three roots (or zeroes) one point of inflexion

Note: Do not accept "S shape" as a justification.
(b) (i) $\quad(d=)-5$

A1
(ii) $8=a+b+c$
$4=8 a+4 b+2 c$
$0=27 a+9 b+3 c$
Note: Award A2 if all three equations are correct.
Award A1 if at least one is correct. Award A1 for three correct equations that include the letter " d ".
(iii) $\quad a=2, b=-12, c=18$
(c) equating found expression to zero
$0=2 t^{3}-12 t^{2}+18 t-5$
$t=0.358216 \ldots, 1.83174 \ldots, 3.81003 \ldots$
(so total time in debt is $3.81003 \ldots-1.83174 \ldots+0.358216 \approx$)
2.34 (2.33650 ...) years
10. (a) sketch of normal curve with shaded region to the right of the mean and correct values

0.0921 ($0.0920950 \ldots$)

A1
[2 marks]
(b) EITHER
($\mathrm{P}(x<172))$
0.906200...
(0.906200...-0.68)
0.226200...

OR

$(\mathrm{P}(163<x<172))$
0.406200...
$0.5-(0.68-0.406200 \ldots)$ OR $0.5+(0.68-0.406200 \ldots)$
0.226200... OR 0.773799..

OR

(A1)(A1)

Note: Award A1 for a normal distribution curve with a vertical line on each side of the mean and a correct probability of either 0.406 or 0.274 or 0.906 shown, A1 for a probability of 0.226 seen.

THEN

($k=$) $158 \mathrm{~g}(157.867 \ldots \mathrm{~g}) \quad$ A1
11. (a) $\left(f^{\prime}(x)=\right) 2 x+\frac{3}{x^{2}}$

Note: Award $\boldsymbol{A 1}$ for $2 x, \boldsymbol{A 1}$ for $+\frac{3}{x^{2}}$ OR $+3 x^{-2}$.
(b) attempt to substitute 1 into their part (a)

$$
\left(f^{\prime}(1)=\right) 2(1)+\frac{3}{1^{2}}
$$

5
(c) EITHER
$5=2 x+\frac{3}{x^{2}}$

OR
sketch of $y=f^{\prime}(x)$ with line $y=5$

three points of intersection marked on this graph
(and it can be assumed no further intersections occur outside of this window)

THEN

there are two other tangent lines to $f(x)$ that are parallel to L
Note: The final $\boldsymbol{A 1}$ can be awarded provided two solutions other than $x=1$ are shown OR three points of intersection are marked on the graph.

Award M1A1A1 for an answer of " 3 lines" where L is considered to be parallel with itself (given guide definition of parallel lines), but only if working is shown.
12. (a) $\quad(x=)-\frac{4.48}{2(-1.6)} \quad \mathrm{OR}$ coordinates of maximum point $(1.4,3.136)$

$$
x=1.4
$$

(b) METHOD 1
the cart is centred in the archway when it is between $x=0.6$ and $x=2.2$,
where $y \geq 2.112(\mathrm{~m})$ (which is greater than 2) $\boldsymbol{R 1}$
the archway is tall enough for the crate A1

Note: Do not award ROA1.
METHOD 2
the height of the archway is greater or equal to 2.0 between $x=0.557385 \ldots$ and $x=2.24261 \ldots$
width of this section of archway =
$(2.24261 \ldots-0.557385 \ldots=) 1.68522 \ldots(\mathrm{~m})$ (which is greater than 1.6)
the archway is wide enough for the crate
Note: Do not award ROA1.
13. (a) METHOD 1 - (with $F V=4000$)

EITHER
$\mathrm{N}=10$
$\mathrm{I}=1.5$
$\mathrm{FV}=4000$
$\mathrm{P} / \mathrm{Y}=1$
$\mathrm{C} / \mathrm{Y}=1$
(A1)(M1)
Note: Award $\boldsymbol{A} \mathbf{1}$ for (3.5-2 =) 1.5 seen and $\boldsymbol{M} \mathbf{1}$ for all other entries correct.

OR
$4000=A(1+0.015)^{10}$
(A1)(M1)
Note: Award A1 for 1.5 or 0.015 seen, $\boldsymbol{M 1}$ for attempt to substitute into compound interest formula and equating to 4000 .

THEN

($\mathrm{PV}=$) $\$ 3447$ A1
Note: Award $\boldsymbol{A} \mathbf{0}$ if not rounded to a whole number or a negative sign given.

Question 13 continued
METHOD 2 - (With FV including inflation)
calculate FV with inflation
4000×1.02^{10}
(A1)
($=4875.977 \ldots$...)

EITHER

$4000 \times 1.02^{10}=\mathrm{PV} \times 1.035^{10}$
OR
$\mathrm{N}=10$
I $=3.5$
$\mathrm{FV}=4875.977 \ldots$
$\mathrm{P} / \mathrm{Y}=1$
$C / Y=1$
Note: Award M1 for their FV and all other entries correct.

THEN

($\mathrm{PV}=$) $\$ 3457$ A1
Note: Award $\mathbf{A O}$ if not rounded to a whole number or a negative sign given.

METHOD 3 - (Using formula to calculate real rate of return)
(real rate of return =) 1.47058...(\%)

EITHER

$4000=\mathrm{PV} \times 1.0147058 \ldots{ }^{10}$
OR
$\mathrm{N}=10$
$\mathrm{I}=1.47058 \ldots$
$\mathrm{FV}=4000$
$\mathrm{P} / \mathrm{Y}=1$
$\mathrm{C} / \mathrm{Y}=1$
Note: Award M1 for all entries correct.

THEN

($\mathrm{PV}=$) \$3457 A1

Question 13 continued
(b) METHOD 1 - (Finding the future value of the investment using PV from part (a))
$\mathrm{N}=10$
I=3.5
PV=3446.66...(from Method 1) OR 3456.67...(from Methods 2, 3)
$\mathrm{P} / \mathrm{Y}=1$
$\mathrm{C} / \mathrm{Y}=1$
(M1)
Note: Award M1 for interest rate 3.5 and answer to part (a) as PV.

```
( \(\mathrm{FV}=\) ) \$4861.87 OR \$4875.97
(A1)
```

so payment required (from TVM) will be \$294 OR \$295 A1
Note: Award $\mathbf{A O}$ if a negative sign given, unless already penalized in part (a).

METHOD 2 - (Using FV)
$\mathrm{N}=10$
I=3.5
$\mathrm{PV}=-1000$
$\mathrm{FV}=4875.977 \ldots$
$\mathrm{P} / \mathrm{Y}=1$
$\mathrm{C} / \mathrm{Y}=1$
(A1)(M1)
Note: Award $\boldsymbol{A 1}$ for $\mathrm{I}=3.5$ and $\mathrm{FV}= \pm 4875.977 \ldots$, M1 for all other entries correct and opposite PV and FV signs.
($\mathrm{PMT}=$) $\$ 295$ (295.393)
A1
Note: Correct 3sf answer is 295, however accept an answer of 296 given that the context supports rounding up. Award $\boldsymbol{A O}$ if a negative sign given, unless already penalized in part (a).

Markscheme

May 2022

Mathematics: applications and interpretation

Standard level

Paper 1

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2022
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2022
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award A1 for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full $\boldsymbol{F T}$ is available in subsequent parts)

Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the $M R$ stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. height of triangle at roof $=1.35-0.9=0.45$

Note: Award A1 for 0.45 (height of triangle) seen on the diagram.
slant height $=\sqrt{0.45^{2}+0.45^{2}}$ OR $\quad \sin \left(45^{\circ}\right)=\frac{0.45}{\text { slant height }}$
$=\sqrt{0.405}(0.636396 \ldots, 0.45 \sqrt{2})$
Note: If using $\sin \left(45^{\circ}\right)=\frac{0.45}{\text { slant height }}$ then (A1) for angle of 45°, (M1) for a correct trig statement.
area of one rectangle on roof $=\sqrt{0.405} \times 0.9 \quad(=0.572756 \ldots)$
area painted $=(2 \times \sqrt{0.405} \times 0.9=2 \times 0.572756 \ldots)$
$1.15 \mathrm{~m}^{2}\left(1.14551 \ldots \mathrm{~m}^{2}, 0.81 \sqrt{2} \mathrm{~m}^{2}\right)$
2. (a) $\sqrt{3.2^{2}+4.5^{2}+5.8^{2}}$
(b) $\mathrm{FAO}=\sin ^{-1}\left(\frac{5.8}{8.00812 \ldots}\right)$ OR $\cos ^{-1}\left(\frac{5.52177 \ldots}{8.00812 \ldots}\right)$ OR $\tan ^{-1}\left(\frac{5.8}{5.52177 \ldots}\right)$ 46.4° (46.4077....)
(a) 1.2 metres
A1
(b) $-4.8 t^{2}+21 t+1.2=0$
($t=) 4.43 \mathrm{~s}(4.431415 \ldots \mathrm{~s})$
Note: If both values for t are seen do not award the $\boldsymbol{A 1}$ mark unless the negative is explicitly excluded.
[2 marks]
(c) $\quad 0 \leq t \leq 4.43 \quad \mathrm{OR} \quad[0,4.43]$

A1A1
Note: Award A1 for correct endpoints and A1 for expressing answer with correct notation. Award at most A1A0 for use of x instead of t.
4. (a) midpoint $(1,2.5)$

A1

$$
m_{A B}=\frac{6-(-1)}{8-(-6)}=\frac{1}{2}
$$

(M1)A1
Note: Accept equivalent gradient statements including using midpoint.

$$
m_{\perp}=-2
$$

Note: Award M1 for finding the negative reciprocal of their gradient.

$$
y-2.5=-2(x-1) \quad \text { OR } \quad y=-2 x+\frac{9}{2} \quad \text { OR } \quad 4 x+2 y-9=0
$$

A1
[5 marks]
(b) substituting $x=-6$ into their equation from part (a)
(M1)
$y=-2(-6)+\frac{9}{2}$
$y=16.5$
Note:Award M1AO for $(-6,16.5)$ as their final answer.
5.
(a) $x+y+z=600$

A1
$15 x+10 y+12 z=7816 \quad$ A1
$x=2 y$
Note: Condone other labelling if clear, e.g. a (adult), c (child) and s (student). Accept equivalent, distinct equations e.g. $2 y+y+z=600$.
(b) $x=308, y=154, z=138$

Note: Award A1 for all three correct values seen, A1 for correctly labelled as x, y or z. Accept answers written in words: e.g. 308 adult tickets.
6. (a) $\frac{1}{2}(0.6+0+2(1.2+1.2))$

Note: Award $\boldsymbol{A} 1$ for evidence of $h=1, \boldsymbol{M 1}$ for a correct substitution into trapezoidal rule (allow for an incorrect h only). The zero can be omitted in the working.

$$
2.7 \mathrm{~m}^{2}
$$

(b) $\int_{-1}^{2} \frac{-x^{3}-3 x^{2}+4 x+12}{10} \mathrm{~d} x$ OR $\int_{-1}^{2} f(x) \mathrm{d} x$

Note: Award M1 for using definite integration with correct limits.
$2.925 \mathrm{~m}^{2}$
Note: Question requires exact answer, do not award final A1 for 2.93 .
(c) 9-2.925

Note: Award M1 for 9 seen as part of a subtraction.

$$
=6.08 \mathrm{~m}^{2}(6.075)
$$

A1
[2 marks] [Total 7 marks]
7. (a) H_{0} : The die is fair OR P (any number) $=\frac{1}{6}$ OR probabilities are equal H_{1} : The die is not fair OR $\mathrm{P}($ any number $) \neq \frac{1}{6}$ OR probabilities are not equal A1
(b) 5

A1
[1 mark]
(c) 10
(d) $(p$-value $=) 0.287(0.28724163 \ldots)$

A2
[2 marks]
(e) $0.287>0.05$

EITHER
Insufficient evidence to reject the null hypothesis
A1
OR
Insufficient evidence to reject that the die is fair
A1
Note: Do not award R0A1. Condone "accept the null hypothesis" or "the die is fair". Their conclusion must be consistent with their p-value and their hypothesis.
(a) 50%

A1
Note: Do not accept 0.5 or $\frac{1}{2}$
[1 mark]
(b) $0.0478(0.0477903 \ldots, 4.78 \%)$

A2
[2 marks]
(c) $\quad \mathrm{P}(X<k)=0.98 \quad$ OR $\quad \mathrm{P}(X>k)=0.02$

Note: Award (M1) for a sketch with correct region identified.

$$
506 \mathrm{~g}(506.161 \ldots)
$$

9. (a) $f^{\prime}(x)=-2 x^{-2}+6 x \quad$ OR $\quad f^{\prime}(x)=-\frac{2}{x^{2}}+6 x$

Note: Award A1 for $6 x$ seen, and (M1) for expressing $\frac{1}{x}$ as x^{-1} (this can be implied from either x^{-2} or $\frac{2}{x^{2}}$ seen in their final answer), $\boldsymbol{A 1}$ for $-\frac{2}{x^{2}}$. Award at most A1(M1)A0 if any additional terms are seen.
(b) finding gradient at $x=1$

$$
\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=1}=4
$$

finding the perpendicular gradient
$m_{\perp}=-\frac{1}{4}$

$$
2=-\frac{1}{4}(1)+c \quad \text { OR } \quad y-2=-\frac{1}{4}(x-1)
$$

Note: Award $\boldsymbol{M} \mathbf{1}$ for correctly substituting $x=1$ and $y=2$ and their m_{\perp}.

$$
x+4 y-9=0
$$

Note: Do not award the final $\boldsymbol{A 1}$ if the answer is not in the required form. Accept integer multiples of the equation.
10. (a)

Note: Award A1 for both missing probabilities correct.
(b) multiplying along branches and then adding outcomes

$$
\begin{aligned}
& \frac{3}{7} \times \frac{2}{6}+\frac{4}{7} \times \frac{3}{6} \\
& =\frac{18}{42}\left(=\frac{3}{7} \approx 0.429(42.9 \%)\right)
\end{aligned}
$$

A1
[2 marks]
(c) use of conditional probability formula

$$
\begin{aligned}
& \frac{\left(\frac{3}{7} \times \frac{2}{6}\right)}{\left(\frac{3}{7}\right)} \\
& =\frac{6}{18}\left(=\frac{1}{3}\right)\left(\frac{252}{756}, 0.333,33.3 \%\right)
\end{aligned}
$$

11. (a) $\log _{10} 100=a-3$
(M1)
$a=5$

A1
[2 marks]
(b) EITHER

$$
\begin{aligned}
& N=10^{5-M} \\
& =\frac{10^{5}}{10^{M}}\left(=\frac{100000}{10^{M}}\right)
\end{aligned}
$$

(M1)

OR
$100=\frac{b}{10^{3}}$
(M1)

THEN

$b=100000\left(=10^{5}\right) \quad$ A1

$$
\text { (c) } 0.001<N<100000\left(10^{-3}<N<10^{5}\right) \quad \text { A1A1 }
$$

Note: Award A1 for correct endpoints and $\boldsymbol{A} 1$ for correct inequalities/interval notation.
(d) $\quad N=\frac{10^{5}}{10^{7.2}}(=0.0063095 \ldots)$
(M1)
length of time $=\frac{1}{0.0063095 \ldots}=10^{2.2}$
$=158$ years
12. (a) METHOD 1
(when $t=2$)
$\frac{\mathrm{d} P}{\mathrm{~d} t}=-4 \quad$ OR $\quad \frac{\mathrm{d} P}{\mathrm{~d} t}<0$ (equivalent in words) OR $\quad 3(2)^{2}-8(2)=-4$

METHOD 2
sketch with $t=2$ indicated in 4th quadrant $\mathbf{O R} t$-intercepts identified
therefore P is decreasing
(b) $\quad(P(t)=) t^{3}-4 t^{2}(+c)$

A1A1
$4=1^{3}-4(1)^{2}+c$
Note: Award M1 for substituting $(1,4)$ into their equation with $+c$ seen.

$$
\begin{aligned}
& c=7 \\
& P(t)=t^{3}-4 t^{2}+7
\end{aligned}
$$A1

13. (a) use of geometric sequence with $r=0.85$

M1

EITHER

$(0.85)^{6}(1.8)$ OR $0.678869 \ldots$ OR $\quad(0.85)^{5}(1.53) \quad$ A1
$=0.68 \mathrm{~m}$
$=68 \mathrm{~cm}$
AG

OR

$(0.85)^{6}(180)$ OR $(0.85)^{5}(153) \quad$ A1
$=68 \mathrm{~cm}$ AG
continued...

Question 13 continued

(b) EITHER
$(0.85)^{n}(1.8)>0.1 \quad$ OR $\quad(0.85)^{n-1}(1.53)>0.1$
(M1)
Note: If $1.8 \mathrm{~m}\left(\right.$ or 180 cm) is used then (M1) only awarded for use of n in $(0.85)^{n}(1.8)>0.1$. If 1.53 m (or 153 cm) is used then (M1) only awarded for use of $n-1$ in $(0.85)^{n-1}(1.53)>0.1$.

17

OR
$(0.85)^{17}(1.8)=0.114 \mathrm{~m}$ and $(0.85)^{18}(1.8)=0.0966 \mathrm{~m}$
17
OR
solving $(0.85)^{n}(1.8)=0.1$ to find $n=17.8$
17 A1
Note: Evidence of solving may be a graph OR the "solver" function OR use of logs to solve the equation. Working may use cm .
(c) EITHER
distance (in one direction) travelled between first and fourth bounce
$=\frac{(1.8 \times 0.85)\left(1-0.85^{3}\right)}{1-0.85}(=3.935925)$
recognizing distances are travelled twice except first distance
$1.8+2(3.935925)$
$=9.67 \mathrm{~m}(9.67185 \ldots \mathrm{~m})$
OR
distance (in one direction) travelled between drop and fourth bounce
$=\frac{(1.8)\left(1-0.85^{4}\right)}{1-0.85}(=5.735925)$
recognizing distances are travelled twice except first distance
2(5.735925)-1.8
$=9.67 \mathrm{~m}(9.67185 \ldots \mathrm{~m})$
OR
distance (in one direction) travelled between first and fourth bounce $(0.85)(1.8)+(0.85)^{2}(1.8)+(0.85)^{3}(1.8) \quad(=3.935925 \ldots)$
recognizing distances are travelled twice except first distance
$1.8+2(0.85)(1.8)+2(0.85)^{2}(1.8)+2(0.85)^{3}(1.8)$
$=9.67 \mathrm{~m}(9.67185 \ldots \mathrm{~m})$
Note: Answers may be given in cm.

Markscheme

November 2021

Mathematics: analysis and approaches

Standard level

Paper 1

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2021
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2021
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies $\mathbf{A 3}, \boldsymbol{M} 2$ etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	5.65685... (incorrect decimal value)	No. Last part in question.	Award A1 for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full FT is available in subsequent parts)

3 Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the $\mathbf{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate \boldsymbol{A} marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

No calculator is allowed. The use of any calculator on this paper is malpractice and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

Section A

1. (a) (i) setting $f(x)=0$
$x=1, x=-3(\operatorname{accept}(1,0),(-3,0))$ A1
(ii) METHOD 1
$x=-1 \quad$ A1
substituting their x-coordinate into f (M1)
$y=8$
$(-1,8)$

METHOD 2
attempt to complete the square
$-2\left((x+1)^{2}-4\right)$
$x=-1, y=8$
$(-1,8)$
(b) $\quad h=-1$
$k=8$
2. recognition that $y=\int \cos \left(x-\frac{\pi}{4}\right) \mathrm{d} x$
$y=\sin \left(x-\frac{\pi}{4}\right)(+c)$
substitute both x and y values into their integrated expression including c
$2=\sin \frac{\pi}{2}+c$
$c=1$
$y=\sin \left(x-\frac{\pi}{4}\right)+1$
3. (a) (i) $x=3 \quad \boldsymbol{A 1}$
(ii) $y=-2 \quad$ A1
(b) (i) $\quad(-2,0) \quad$ (accept $x=-2) \quad$ A1
(ii) $\quad\left(0, \frac{4}{3}\right) \quad$ (accept $y=\frac{4}{3}$ and $f(0)=\frac{4}{3}$)

Question 3 continued.
(c)

Note: Award A1 for completely correct shape: two branches in correct quadrants with asymptotic behaviour.
4. (a) valid approach to find $\mathrm{P}(R)$
tree diagram (must include probabilty of picking box) with correct required probabilities
OR $\mathrm{P}\left(R \cap B_{1}\right)+\mathrm{P}\left(R \cap B_{2}\right)$ OR $\mathrm{P}\left(R \mid B_{1}\right) \mathrm{P}\left(B_{1}\right)+\mathrm{P}\left(R \mid B_{2}\right) \mathrm{P}\left(B_{2}\right)$
$\frac{5}{7} \cdot \frac{1}{2}+\frac{4}{7} \cdot \frac{1}{2}$
$\mathrm{P}(R)=\frac{9}{14}$
(b) events A and R are not independent, since $\frac{9}{14} \cdot \frac{1}{2} \neq \frac{5}{14}$ OR $\frac{5}{7} \neq \frac{9}{14}$ OR $\frac{5}{9} \neq \frac{1}{2}$ OR an explanation e.g. different number of red balls in each box

Note: Both conclusion and reasoning are required. Do not split the A2.
5. (a) $f^{\prime}(4)=6$
(b) $f(4)=6 \times 4-1=23$
(c) $\quad h(4)=f(g(4))$

$$
h(4)=f\left(4^{2}-3 \times 4\right)=f(4)
$$

$$
h(4)=23
$$

(d) attempt to use chain rule to find h^{\prime}

$$
\begin{aligned}
& f^{\prime}(g(x)) \times g^{\prime}(x) \text { OR }\left(x^{2}-3 x\right)^{\prime} \times f^{\prime}\left(x^{2}-3 x\right) \\
& \begin{aligned}
h^{\prime}(4) & =(2 \times 4-3) f^{\prime}\left(4^{2}-3 \times 4\right) \\
& =30
\end{aligned}
\end{aligned}
$$

$$
y-23=30(x-4) \text { OR } y=30 x-97
$$

6. (a) METHOD 1
attempt to write all LHS terms with a common denominator of $x-1$
$2 x-3-\frac{6}{x-1}=\frac{2 x(x-1)-3(x-1)-6}{x-1}$ OR $\frac{(2 x-3)(x-1)}{x-1}-\frac{6}{x-1}$
$=\frac{2 x^{2}-2 x-3 x+3-6}{x-1}$ OR $\frac{2 x^{2}-5 x+3}{x-1}-\frac{6}{x-1}$
$=\frac{2 x^{2}-5 x-3}{x-1}$

METHOD 2

attempt to use algebraic division on RHS
correctly obtains quotient of $2 x-3$ and remainder -6
$=2 x-3-\frac{6}{x-1}$ as required.

Question 6 continued.
(b) consider the equation $\frac{2 \sin ^{2} 2 \theta-5 \sin 2 \theta-3}{\sin 2 \theta-1}=0$
$\Rightarrow 2 \sin ^{2} 2 \theta-5 \sin 2 \theta-3=0$

EITHER

attempt to factorise in the form $(2 \sin 2 \theta+a)(\sin 2 \theta+b)$
Note: Accept any variable in place of $\sin 2 \theta$.
$(2 \sin 2 \theta+1)(\sin 2 \theta-3)=0$
OR
attempt to substitute into quadratic formula
$\sin 2 \theta=\frac{5 \pm \sqrt{49}}{4}$
THEN
$\sin 2 \theta=-\frac{1}{2}$ or $\sin 2 \theta=3$
Note: Award $\boldsymbol{A 1}$ for $\sin 2 \theta=-\frac{1}{2}$ only.
one of $\frac{7 \pi}{6}$ OR $\frac{11 \pi}{6} \quad$ (accept 210 or 330)
$\theta=\frac{7 \pi}{12}, \frac{11 \pi}{12}$ (must be in radians)
Note: Award AO if additional answers given.

Section B

7. (a) (i) valid approach to find turning point ($v^{\prime}=0,-\frac{b}{2 a}$, average of roots)

$$
\begin{aligned}
& 4-6 t=0 \quad \text { OR } \quad-\frac{4}{2(-3)} \quad \text { OR } \quad \frac{-\frac{2}{3}+2}{2} \\
& t=\frac{2}{3} \text { (s) }
\end{aligned}
$$

(ii) attempt to integrate v

$$
\int v \mathrm{~d} t=\int\left(4+4 t-3 t^{2}\right) \mathrm{d} t=4 t+2 t^{2}-t^{3}(+c)
$$

Note: Award $\boldsymbol{A 1}$ for $4 t+2 t^{2}$, A1 for $-t^{3}$.
attempt to substitute their t into their solution for the integral
distance $=4\left(\frac{2}{3}\right)+2\left(\frac{2}{3}\right)^{2}-\left(\frac{2}{3}\right)^{3}$
$=\frac{8}{3}+\frac{8}{9}-\frac{8}{27}$ (or equivalent)
$=\frac{88}{27}(\mathrm{~m})$

Question 7 continued.
(b)

valid approach to solve $4+4 t-3 t^{2}=0$ (may be seen in part (a))
$(2-t)(2+3 t)$ OR $\frac{-4 \pm \sqrt{16+48}}{-6}$
correct x - intercept on the graph at $t=2$
Note: The following two \boldsymbol{A} marks may only be awarded if the shape is a concave down parabola. These two marks are independent of each other and the (M1).
correct domain from 0 to 3 starting at $(0,4)$
Note: The 3 must be clearly indicated.
vertex in approximately correct place for $t=\frac{2}{3}$ and $v>4$

Question 7 continued.
(c) recognising to integrate between 0 and 2, or 2 and 3 OR $\int_{0}^{3}\left|4+4 t-3 t^{2}\right| \mathrm{d} t$

$$
\begin{aligned}
& \int_{0}^{2}\left(4+4 t-3 t^{2}\right) \mathrm{d} t \\
& =8 \\
& \int_{2}^{3}\left(4+4 t-3 t^{2}\right) \mathrm{d} t \\
& =-5 \\
& \text { valid approach to sum the two area } \\
& \int_{0}^{2} v \mathrm{~d} t-\int_{2}^{3} v \mathrm{~d} t \text { OR } \int_{0}^{2} v \mathrm{~d} t+\int_{2}^{3} v \mathrm{~d} t \mid
\end{aligned}
$$A1

valid approach to sum the two areas (seen anywhere)
total distance travelled $=13(\mathrm{~m})$
8. (a) $f\left(\frac{2}{3}\right)=4$ OR $a^{\frac{2}{3}}=4$

$$
\begin{equation*}
a=4^{\frac{3}{2}} \text { OR } a=\left(2^{2}\right)^{\frac{3}{2}} \text { OR } a^{2}=64 \text { OR } \sqrt[3]{a}=2 \quad \text { A1 } \tag{M1}
\end{equation*}
$$

$$
a=8
$$

(b) $\quad f^{-1}(x)=\log _{8} x$

Note: Accept $f^{-1}(x)=\log _{a} x$.
Accept any equivalent expression for f^{-1} e.g. $f^{-1}(x)=\frac{\ln x}{\ln 8}$.
(c) correct substitution
$\log _{8} \sqrt{32}$ OR $8^{x}=32^{\frac{1}{2}}$
correct working involving log/index law
$\frac{1}{2} \log _{8} 32$ OR $\frac{5}{2} \log _{8} 2$ OR $\log _{8} 2=\frac{1}{3}$ OR $\log _{2} 2^{\frac{5}{2}}$ OR $\log _{2} 8=3$ OR $\frac{\ln 2^{\frac{5}{2}}}{\ln 2^{3}}$ OR $2^{3 x}=2^{\frac{5}{2}}$
$f^{-1}(\sqrt{32})=\frac{5}{6}$

Question 8 continued.
(d) (i) METHOD 1
equating a pair of differences
$u_{2}-u_{1}=u_{4}-u_{3}\left(=u_{3}-u_{2}\right)$
$\log _{8} p-\log _{8} 27=\log _{8} 125-\log _{8} q$
$\log _{8} 125-\log _{8} q=\log _{8} q-\log _{8} p$
$\log _{8}\left(\frac{p}{27}\right)=\log _{8}\left(\frac{125}{q}\right), \log _{8}\left(\frac{125}{q}\right)=\log _{8}\left(\frac{q}{p}\right)$
$\frac{p}{27}=\frac{125}{q}$ and $\frac{125}{q}=\frac{q}{p}$
$27, p, q$ and 125 are in geometric sequence

Note: If candidate assumes the sequence is geometric, award no marks for part (i). If $r=\frac{5}{3}$ has been found, this will be awarded marks in part (ii).

METHOD 2

expressing a pair of consecutive terms, in terms of d
$p=8^{d} \times 27$ and $q=8^{2 d} \times 27$ OR $q=8^{2 d} \times 27$ and $125=8^{3 d} \times 27$
two correct pairs of consecutive terms, in terms of d
$\frac{8^{d} \times 27}{27}=\frac{8^{2 d} \times 27}{8^{d} \times 27}=\frac{8^{3 d} \times 27}{8^{2 d} \times 27} \quad$ (must include 3 ratios)
all simplify to 8^{d}

27, p, q and 125 are in geometric sequence

Question 8 continued.
(ii) METHOD 1 (geometric, finding r)
$u_{4}=u_{1} r^{3}$ OR $125=27(r)^{3}$
$r=\frac{5}{3}$ (seen anywhere)
$p=27 r$ OR $\frac{125}{q}=\frac{5}{3}$
$p=45, q=75$

METHOD 2 (arithmetic)
$u_{4}=u_{1}+3 d \quad$ OR $\quad \log _{8} 125=\log _{8} 27+3 d$
$d=\log _{8}\left(\frac{5}{3}\right)$ (seen anywhere)
$\log _{8} p=\log _{8} 27+\log _{8}\left(\frac{5}{3}\right)$ OR $\log _{8} q=\log _{8} 27+2 \log _{8}\left(\frac{5}{3}\right)$
$p=45, q=75$

METHOD 3 (geometric using proportion)
recognizing proportion
$p q=125 \times 27$ OR $q^{2}=125 p$ OR $p^{2}=27 q$
two correct proportion equations
attempt to eliminate either p or q
$q^{2}=125 \times \frac{125 \times 27}{q}$ OR $p^{2}=27 \times \frac{125 \times 27}{p}$
$p=45, q=75$

Special note: In this question if candidates use the word 'gradient' in
their reasoning. e.g. gradient is positive, it must be clear whether this is the gradient of f or the gradient of f^{\prime} to earn the \boldsymbol{R} mark.
9. (a) f increases when $p<x<0$
f increases when $f^{\prime}(x)>0$ OR f^{\prime} is above the x-axis

Note: Do not award AOR1.

(b) $x=0$
(c) (i) f is minimum when $x=p$
because $f^{\prime}(p)=0, f^{\prime}(x)<0$ when $x<p$ and $f^{\prime}(x)>0$ when $x>p$
(may be seen in a sign diagram clearly labelled as f^{\prime})
OR because f^{\prime} changes from negative to positive at $x=p$
OR $f^{\prime}(p)=0$ and slope of f^{\prime} is positive at $x=p$
Note: Do not award A0 R1
(ii) $\quad f$ has points of inflexion when $x=q, x=r$ and $x=t$
f^{\prime} has turning points at $x=q, x=r$ and $x=t$
OR
$f^{\prime \prime}(q)=0, f^{\prime \prime}(r)=0$ and $f^{\prime \prime}(t)=0$ and f^{\prime} changes from increasing to decreasing or vice versa at each of these x-values (may be seen in a sign diagram clearly labelled as $f^{\prime \prime}$ and f^{\prime})

Note: Award $\boldsymbol{A} \mathbf{0}$ if any incorrect answers are given. Do not award AOR1.

Question 9 continued.

(d) recognizing area from p to t (seen anywhere)
$\int_{p}^{t}\left|f^{\prime}(x)\right| \mathrm{d} x$
recognizing to negate integral for area below x-axis
$\int_{p}^{0} f^{\prime}(x) \mathrm{d} x-\int_{0}^{t} f^{\prime}(x) \mathrm{d} x$ OR $\int_{p}^{0} f^{\prime}(x) \mathrm{d} x+\int_{t}^{0} f^{\prime}(x) \mathrm{d} x$
$\int_{m}^{n} f^{\prime}(x) \mathrm{d} x=f(n)-f(m)$ (for any integral)
$f(0)-f(p)-[f(t)-f(0)] \quad$ OR $\quad f(0)-f(p)+f(0)-f(t)$

$$
\begin{equation*}
2 f(0)-[f(t)+f(p)]=20,2 f(0)-4=20 \tag{A1}
\end{equation*}
$$

$$
f(0)=12
$$

Markscheme

May 2021

Mathematics: applications and interpretation

Standard level

Paper 1

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2021
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2021
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies $\mathbf{A 3}, \boldsymbol{M} 2$ etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award $\boldsymbol{A 1}$ for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full $\boldsymbol{F T}$ is available in subsequent parts)

Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . OR.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate \boldsymbol{A} marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) $\pi \approx 3+\frac{1}{6+\frac{13}{16}}$

$$
\begin{aligned}
& =3.14678 \ldots\left(\frac{343}{109}, 3 \frac{16}{109}\right) \\
& =3.1468
\end{aligned}
$$

Note: Award $\boldsymbol{A 1}$ for correct rounding to 4 decimal places.
Follow through within this part.
[2 marks]
(b) $\left|\frac{3.1468-\pi}{\pi}\right| \times 100$
(M1)
Note: Award $\boldsymbol{M 1}$ for substitution of their final answer in part (a) into the percentage error formula. Candidates should use the exact value of π from their GDC.

$$
=0.166(\%)(0.165754 \ldots)
$$

A1
[2 marks]
Total [4 marks]
2. (a) 14

A1
[1 mark]
(b) $\frac{14+15+\ldots}{10}$
$=13.1$
(c) 2.21 (2.21133...)
(M1)
A1
[2 marks]
A1
[1 mark]
3. (a) $\frac{1}{2} \times 4 \times \pi \times 6^{2}+\pi \times 6^{2} \quad$ OR $3 \times \pi \times 6^{2}$
(M1)(A1)(M1)
Note: Award M1 for use of surface area of a sphere formula (or curved surface area of a hemisphere), $\boldsymbol{A 1}$ for substituting correct values into hemisphere formula, $\boldsymbol{M} \mathbf{1}$ for adding the area of the circle.

$$
=339 \mathrm{~mm}^{2}(108 \pi, 339.292 \ldots)
$$

A1
[4 marks]
(b) $\frac{339.292 \ldots}{240}$
$=1.41(\mathrm{~g})\left(\frac{9 \pi}{20}, 0.45 \pi, 1.41371 \ldots\right)$
4. (a) $L(40)=1.50 \times 40-5$

$$
=\$ 55
$$

(b) $70=1.50 x-5$
$(x=) 50$ litres
(c) $1.30 x$
$1.30 x<1.50 x-5$
Note: Award $\boldsymbol{M 1}$ for a graph showing two intersecting linear functions, provided one function has a y-intercept of 0 and the other function has a negative y-intercept.
(minimum value of $k=$) 25
Note: Accept $x>25$.
5. (a) every point in the shaded region is closer to tower T4

Note: Specific reference must be made to the closeness of tower T4.
(b) $(-9,1)$

A1A1
Note: Award A1 for each correct coordinate. Award at most A0A1 if parentheses are missing.
[2 marks]
(c) correct use of gradient formula
e.g. $(m=) \frac{5-3}{-9--13}\left(=\frac{1}{2}\right)$
taking negative reciprocal of their m (at any point)
edge gradient $=-2$
A1
[3 marks]
6. (a) EITHER
H_{0} : The population mean weight of eggs from (her/the) black geese is equal to/the same as the population mean weight of eggs from (her/the) white geese.

OR

H_{0} : The population mean weight of eggs from (her/the) black geese is not less than the population mean weight of eggs from (her/the) white geese.

A1

Note: Reference to the "population mean weight" must be explicit for the $\boldsymbol{A 1}$ to be awarded. The term "population" can be implied by use of "all" or "on average" or "generally" when relating to the weight of eggs e.g. "the mean weight of eggs for all (her/the) black geese".
Award $\boldsymbol{A O}$ if reference is made to the mean weights from the sample or the table. Award $\boldsymbol{A O}$ for a null hypothesis written in symbolic form.
[1 mark]
(b) p-value $=0.177$ (0.176953...) A2

Note: Award A1 for an answer of $0.18221 \ldots$, from "unpooled" settings on GDC.
[2 marks]

(c) $\begin{array}{ll}0.177>0.1 & \text { R1 } \\ \text { (insufficient evidence to reject } \mathrm{H}_{0} \text {) } & \\ & \text { Arriane's claim is not supported by the evidence }\end{array}$	A1

Note: Accept $p>0.1$ or $p>$ significance level provided p is explicitly seen in part (b).
Award $\boldsymbol{A 1}$ only if reference is specifically made to Arriane's claim.
Do not award R0A1.
7. (a) EITHER
$50=100 \mathrm{e}^{-1 \times p} \quad$ OR $\quad 0.5=\mathrm{e}^{-1 \times p}$
OR

THEN

$0.693(0.693147 \ldots, \ln 2)$
A1
[2 marks]
(b) $\quad R(1.5)=100 \mathrm{e}^{-0.693147 \ldots \times 1.5}$
(M1)
35.4 (\%) (35.3553...)

A1
[2 marks]
(c) $\quad R(t)>0 \quad \mathrm{OR} \quad R(t)$ has a horizontal asymptote

R1
[1 mark]
(d) Award A1 for one reasonable limitation of the domain:

A1
small values of t produce unrealistic results
$R(0)=100 \%$
large values of t are not possible people do not live forever model is not valid at small or large values of t

The reason should focus on the domain $t \geq 0$. Do not accept answers such as:
recollection varies for different people memories are discrete not continuous the nature of the information will change how easily it is recalled emotional/physical stress can affect recollection/concentration
Note: Do not accept $t \geq 0$ as this is a limitation that has been given in the question.
8. (a) (i) attempt to find u_{20} using an arithmetic sequence
(M1)
e.g. $u_{1}=500$ and $d=100$ OR $u_{20}=500+1900$ OR $500,600,700, \ldots$
(Charlie ran) 2400 m
A1
(ii) $\quad(r=) 1.02$
(A1)
attempt to find u_{20} using a geometric sequence
(M1)
e.g. identifying $u_{1}=500$ and a value for r OR $500 \times r^{19}$ OR $500,510,520.2, \ldots$
(Daniella ran) 728 m (728.405...)
A1
[5 marks]
(b) $500 \times 1.02^{n-1}>500+(n-1) \times 100$

(M1)

attempt to solve inequality

> (M1)
$n>184.215 \ldots$
$n=185$

Total [8 marks]

9. attempt to find any relevant maximum value

$$
\text { largest sides are } 56.5 \text { and } 82.5
$$

attempt to substitute into area of a triangle formula
$\frac{1}{2} \times 56.5 \times 82.5 \times \sin \left(102.5^{\circ}\right)$
$=2280\left(\mathrm{~m}^{2}\right)(2275.37 \ldots)$

A1

Total [5 marks]
10. (a)

t	1	2	3	4	5	6
$\mathrm{P}(T=t)$	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$
$(0.027777 \ldots)$	$(0.083333 \ldots)$	$(0.138888 \ldots)$	$(0.194444 \ldots)$	(0.25)	$(0.305555 \ldots)$	

Note: Award $\boldsymbol{A 1}$ if three to five probabilities are correct.
(b) (i) $\frac{32}{36}\left(\frac{8}{9}, 0.888888 \ldots, 88.9 \%\right)$
(A1)
(ii) use of conditional probability
(M1)
e.g. denominator of 32 OR denominator of $0.888888 \ldots$, etc.
$\frac{11}{32}(0.34375,34.4 \%)$
A1
[3 marks]
(c) $\frac{1 \times 1+3 \times 2+5 \times 3+\ldots+11 \times 6}{36}$
$=\frac{161}{36}\left(4 \frac{17}{36}, 4.47,4.47222 \ldots\right)$
(M1)

A1
[2 marks]
Total [7 marks]
11. (a) $I=\frac{k}{d^{2}}$
$4=\frac{k}{1.5^{2}}$
$I=\frac{9}{d^{2}}$
Note: The $\boldsymbol{A G}$ line must be seen for the second $\boldsymbol{M 1}$ to be awarded.
Award no marks for substituting 1.5 and 4 into $I=\frac{9}{d^{2}}$ (i.e., working backwards).
[2 marks]
(b)

A1A1

Note: Award A1 for correct general shape (concave up) with no I-intercept, passing through the marked point ($1.5,4$); the point must be labelled with either the coordinates or the values 1.5 and 4 on the x and y axes. Award A1 for the curve showing asymptotic behavior (i.e. I tends to 0 , as d tends to infinity), extending to at least $d=6$; the curve must not cross nor veer away from the horizontal asymptote.
[2 marks]
(c) $1.5 \times 10^{-6} \geq \frac{9}{d^{2}}$

Note: Award (M1) for a correct inequality.
$d \geq 2450$ (m) (2449.48...)
A1
Note: Award AO for $d=2450$.
12. (a) (i) $A=\frac{1}{2} \times 6 \times q+\frac{1}{2} \times 8 \times p+48 \quad$ OR $A=\frac{1}{2}(p+6)(q+8) \quad O R$

$$
A=3 q+4 p+48
$$

(ii) valid attempt to link p and q, using tangents, similar triangles or other method
eg. $\tan \theta=\frac{8}{p}$ and $\tan \theta=\frac{q}{6} \quad$ OR $\quad \tan \theta=\frac{p}{8}$ and $\tan \theta=\frac{6}{q} \quad$ OR $\quad \frac{8}{p}=\frac{q}{6}$
correct equation linking p and q
eg. $p q=48 \quad \mathbf{O R} \quad p=\frac{48}{q} \quad \mathbf{O R} \quad q=\frac{48}{p}$
substitute $p=\frac{48}{q}$ into a correct area expression
eg. $(A=) \frac{1}{2} \times 6 \times q+\frac{1}{2} \times 8 \times \frac{48}{q}+48 \quad$ OR $\quad(A=) \frac{1}{2}\left(\frac{48}{q}+6\right)(q+8)$
$A=3 q+\frac{192}{q}+48$
Note: The $\boldsymbol{A} G$ line must be seen with no incorrect, intermediate working, for the final $\boldsymbol{M} \mathbf{1}$ to be awarded.
[4 marks]
(b) $\frac{-192}{q^{2}}+3$

A1A1

Note: Award A1 for $\frac{-192}{q^{2}}, \boldsymbol{A 1}$ for 3. Award A1A0 if extra terms are seen.
(c) (i) $\frac{-192}{q^{2}}+3=0$
(ii) $q=8 \mathrm{~cm}$

A1
[2 marks]
13. (a) $l^{\prime}(50)=-0.2 \times 50+9$
$=-1 \quad$ A1
the curve is decreasing at $\theta=50^{\circ}$.
Note: For the final A1, follow through within this question part for their $l^{\prime}(50)$ value.
Award $\boldsymbol{A} \boldsymbol{O}$ for an answer of "decreasing" with no work shown.
(b) recognition of need to integrate (e.g. reverse power rule or integral symbol or integrating at least one term correctly)
$l(\theta)=-0.1 \theta^{2}+9 \theta(+c)$
$205.5=-0.1 \times(40)^{2}+9 \times(40)+c$
Note: Award $\boldsymbol{M 1}$ for correct substitution of $\theta=40^{\circ}$ and $l=205.5$. A constant of integration must be seen (can be implied by a correct answer).
$c=5.5$
$(l(\theta)=)-0.1 \theta^{2}+9 \theta+5.5$
A1
Note: Accept any variable in the working, but for the final A1, the variable θ must be used in the expression.

Markscheme

May 2021

Mathematics: applications and interpretation

Standard level

Paper 1

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2021
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2021
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies $\mathbf{A 3}, \boldsymbol{M} 2$ etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award $\boldsymbol{A 1}$ for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full $\boldsymbol{F T}$ is available in subsequent parts)

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the $M R$ stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . OR.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate \boldsymbol{A} marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 e^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) (i) 23 mg

A1
(ii) $\quad 1-0.85$ OR $\frac{23-19.55}{23}$ OR 0.15 15 (\%)
(b) $23(0.85)^{10}$
$4.53 \mathrm{mg}(4.52811 \ldots)$
(M1)
A1
[2 marks]
Total [5 marks]

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{(140-20)^{2}+(15-5)^{2}+250^{2}} \quad(=\sqrt{77000}) \\
& =277 \mathrm{~m}(10 \sqrt{770}, 277.488 \ldots)
\end{aligned}
$$

(b) attempt at substitution in the midpoint formula
$\left(\frac{140+20}{2}, \frac{15+5}{2}, \frac{0+250}{2}\right)$
$(80,10,125)$
A1
[2 marks]
(c) 125 m
3. $2 \times 90 \times 34(=6120)$ AND $2 \times 42 \times 34(=2856)$
$90 \times 42(=3780)$
$r=21$
$\pi \times 21^{2} \quad(=441 \pi, 1385.44 \ldots)$
(M1)
use of curved surface area formula
(M1)
$21 \pi \times 90(=1890 \pi, 5937.61 \ldots)$
(A1)
$20100 \mathrm{~cm}^{2}$ (20079.0...)

A1
4. (a) 25°

A1
[1 mark]
(b) $\mathrm{AC}=\frac{380}{\tan 25^{\circ}}$ OR $\mathrm{AC}=\sqrt{\left(\frac{380}{\sin 25^{\circ}}\right)^{2}-380^{2}}$ OR $\frac{380}{\sin 25^{\circ}}=\frac{\mathrm{AC}}{\sin 65^{\circ}}$
$\mathrm{AC}=815 \mathrm{~m}(814.912 \ldots)$
(c) METHOD 1
attempt to find AB
$\mathrm{AB}=\frac{380}{\tan 40^{\circ}}$
$=453 \mathrm{~m}$ (452.866...)
$\mathrm{BC}=814.912 \ldots-452.866 \ldots$
$=362 \mathrm{~m}$ (362.046...)
A1

METHOD 2

attempt to find HB
$\mathrm{HB}=\frac{380}{\sin 40^{\circ}}$
591 m ($=591.175 \ldots$...)
$\mathrm{BC}=\frac{591.175 \ldots \times \sin 15^{\circ}}{\sin 25^{\circ}}$
$=362 \mathrm{~m}$ (362.046...)
(d) $362.046 \ldots \times 4$
$=1450 \mathrm{mh}^{-1}$ (1448.18 ...)
5. (a) (i) 2

A1
A1
A1
[3 marks]
(b) EITHER

Each of these percentages represent approximately 25% of the employees.

OR

The diagram is not explicit enough to show what is happening at the quartiles regarding 6 and 11 / we do not have the data points

OR
Discrete data not clear how to interpret "fewer".

THEN

Hence, Paul is not correct (OR no such inference can be made).
A1
Note: Do not award ROA1.
6. (a) gradient $\mathrm{AB}=\frac{4}{12}\left(\frac{1}{3}\right)$
midpoint $\mathrm{AB}:(8,22)$
gradient of bisector $=-\frac{1}{\text { gradient } \mathrm{AB}}=-3$
perpendicular bisector: $22=-3 \times 8+b$ OR $(y-22)=-3(x-8)$
perpendicular bisector: $y=-3 x+46$
(b) attempt to solve simultaneous equations
$x+4=-3 x+46$
(10.5, 14.5)

A1
[2 marks]
7. (a) $(f(-7)=) 8$ and $(f(7)=) 1$
(A1)
range is $f(x) \leq 1, f(x) \geq 8$
A1A1
Note: Award at most A1A1A0 if strict inequalities are used.
(b) EITHER
sketch of f and $y=0$ or sketch of f^{-1} and $x=0$
(M1)
OR
finding the correct expression of $f^{-1}(x)=\frac{-2-5 x}{x-2}$
(M1)

OR
$f^{-1}(0)=\frac{-2-5(0)}{0-2}$
OR
$f(x)=0$

A1
[2 marks]
Total [5 marks]
8. (a) (let $\mu_{\mathrm{c}}=$ population mean for chinchilla rabbits, $\mu_{\mathrm{s}}=$ population mean for sable rabbits)
$\mathrm{H}_{0}: \mu_{\mathrm{c}}=\mu_{\mathrm{s}}$
A1
$\mathrm{H}_{1}: \mu_{\mathrm{c}}>\mu_{\mathrm{s}}$

Note: Accept an equivalent statement in words, must include mean and reference to "population mean" / "mean for all chinchilla rabbits" for the first A1 to be awarded.
Do not accept an imprecise "the means are equal".
(b) p-value $=0.0408(0.0408065 \ldots)$

Note: Award A1 for an answer of $0.041565 \ldots$, from "unpooled" settings on GDC.
(c) $0.0408<0.05$.
(there is sufficient evidence to) reject (or not accept) H_{0}
(there is sufficient evidence to suggest that chinchilla rabbits are heavier than sable rabbits)
Note: Do not award R0A1. Accept 'accept H_{1} '.
9. (a) $135^{\circ} \times \frac{12 \pi}{360^{\circ}}$
14.1 (m) (14.1371...)
(b) evidence of splitting region into two areas
$135^{\circ} \times \frac{\pi 6^{2}}{360^{\circ}}-\frac{6 \times 6 \times \sin 135^{\circ}}{2}$
Note: Award M1 for correctly-substituting into area of sector formula, M1 for evidence of substituting into area of triangle formula.
42.4115...-12.7279...
$29.7 \mathrm{~m}^{2}$ (29.6835...)

A1
10. (a) METHOD 1
$N=5$
$I \%=2.75$
$P V=-1500$
$N=10$
$I \%=2.75$
$P V=-1500$
$P M T=0$
$P M T=0$
$P / Y=1$
$P / Y=2$
$C / Y=2$
$C / Y=2$
(M1)(A1)
Note: Award $\boldsymbol{M} \mathbf{1}$ for an attempt to use a financial app in their technology, A1 for all entries correct.

METHOD 2

$1500\left(1+\frac{2.75}{2 \times 100}\right)^{2 \times 5}$
(M1)(A1)
1719.49 euro

A1
[3 marks]
(b) METHOD 1
$N=5$
OR
$N=20$
$P V= \pm 1500$
$P V= \pm 1500$
$F V=\mp 2250$
$F V=\mp 2250$
$P M T=0$
$P M T=0$
$P / Y=1$
$P / Y=4$
$C / Y=4$
$C / Y=4$
(M1)(A1)

Note: Award $\boldsymbol{M 1}$ for an attempt to use a financial app in their technology, $\boldsymbol{A} 1$ for all entries correct. $P V$ and $F V$ must have opposite signs.

METHOD 2

$$
1500\left(1+\frac{r}{4 \times 100}\right)^{4 \times 5}=2250 \quad \text { OR }\left(1+\frac{r}{4 \times 100}\right)^{4 \times 5}=1.5 \quad \text { (M1)(A1) }
$$

Note: Award $\boldsymbol{M 1}$ for substitution in compound interest formula, $\boldsymbol{A 1}$ for correct substitution and for equating to 2250 (if using LHS equation) or to 1.5 (if using RHS equation).

$$
r=8.19 \quad(8.19206 \ldots)
$$

Note: Accept $r=8.19 \%$.
Accept a trial and error method which leads to $r=8.19$.
11. (a) $\left(\frac{74+97+91+86+112}{5}\right)=92$

A1
[1 mark]
(b) (i) 4

A1
(ii) $\chi_{\text {calc }}^{2}=8.54(8.54347 \ldots)$ OR p-value $=0.0736(0.0735802 \ldots) \quad$ A2
$8.54<9.49$ OR $0.0736>0.05 \quad$ R1
therefore there is insufficient evidence to reject H_{0} A1
(i.e. the data satisfies the model)

Note: Do not award R0A1. Accept "accept" or "do not reject" in place of "insufficient evidence to reject".
Award the $\boldsymbol{R} \mathbf{1}$ for comparing their p-value with 0.05 or their χ^{2} value with 9.49 and then $\boldsymbol{F T}$ their final conclusion.
12. (a) 3

Note: Accept $(3,0)$ seen.

(b) METHOD 1

$0=4 a-2 b+c, 0=9 a+3 b+c,-\frac{25}{2}=\frac{1}{4} a+\frac{1}{2} b+c$
(i) 2
(ii) $\quad-2$
(iii) -12

Note: Award the (M1)(A1) if at least one correct value is seen. Do not apply FT form part (a) if workings are not shown.

METHOD 2

$-12.5=a(0.5+2)(0.5-3)$
(M1)
A1

$$
\begin{aligned}
& 0=2 \times(3)^{2}+3 b+c \\
& 0=2 \times(-2)^{2}+(-2) b+c
\end{aligned}
$$

(ii) $\quad b=-2$
(iii) $c=-12$
(c) $\quad x=0.5$

Note: Do not $\boldsymbol{F T}$ from their part (b), this is a contradiction with the diagram.

A1

[1 mark]
Total [7 marks]
13. (a) recognition of need to integrate (eg reverse power rule or integral symbol)
$P(x)=-0.8 x^{2}+48 x(+c)$
$260=-0.8 \times(15)^{2}+48 \times(15)+c$
Note: Award M1 for correct substitution of $x=15$ and $P=260$. A constant of integration must be seen (can be implied by a correct answer).
$c=-280$
$P(x)=-0.8 x^{2}+48 x-280$
A1
[5 marks]
(b) profit will decrease (with each new car produced)

A1
EITHER
because the profit function is decreasing / the gradient is negative / the rate of change of P is negative

OR
$\int_{30}^{50}-1.6 x+48(\mathrm{~d} x)=-320$ $R 1$

OR
evidence of finding $P(30)=440$ and $P(50)=120$
R1
Note: Award at most R1A0 if $P(30)$ or $P(50)$ or both have incorrect values.

Markscheme

Specimen paper

Mathematics: applications and interpretation

Standard level

Paper 1

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies $\boldsymbol{M 2}$, \boldsymbol{A} 3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (i.e. there is no working expected), then FT marks should be awarded if appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- Exceptions to this rule will be explicitly noted on the markscheme.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question

- If the question becomes much simpler because of the $M R$, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- The MR penalty can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

8 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. There are two types of accuracy errors, and the final answer mark should not be awarded if these errors occur.

- Rounding errors: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

9 Calculators

A GDC is required for this examination, but calculators with symbolic manipulation features/ CAS functionality are not allowed.

Calculator notation

The subject guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

1. (a) 210 g
(b) 240 g

A1
[1 mark]
(c) 240-190
$=50 \mathrm{~g}$
(d) $240+1.5 \times(50)$

M1
$=315 \mathrm{~g}$
A1
[2 marks]

Total [6 marks]

2. (a) $(d=)-250$
(b) $\quad\left(u_{16}=\right) 6800+(16-1)(-250)$

M1
($¥ 3050$
(c) $\quad\left(S_{16}=\right)\left(\frac{16}{2}\right)(2 \times 6800+(16-1)(-250)) \times 2$

M1M1

Note: Award M1 for correct substitution into arithmetic series formula.
Award M1 for multiplication by 2 seen.
OR
$\left(S_{16}=\right)\left(\frac{16}{2}\right)(6800+3050) \times 2$
M1M1

Note: Award $\boldsymbol{M 1}$ for correct substitution into arithmetic series formula. Award M1 for multiplication by 2 seen.
(¥)158000 (157600)
A1
[3 marks]
3. (a) discrete
[1 mark]
(b) $\frac{24+60+3 k+40+15+6}{88+k}=2$

M1A1
(M1)
A1
[4 marks]
(c) systematic A1
[1 mark]
4. (a) 20
(b) $n=20$

A1
[1 mark]
A1
Note: Follow through from part (a).
[1 mark]
(c)

(M1)A1A1
Note: Award (M1) for reflection in the line $P=A$, award $\mathbf{A 1}$ for endpoint at (20, 25), award $\boldsymbol{A 1}$ for passing through $(16,16)$.
(d) when the perimeter is 8 , the area is 4

A1
[1 mark]
Total [6 marks]
5. (a) (i) 1750

A1
(ii) $1350+400(1.25)^{-5}$
$=1480$
Note: Accept 1481.
(b) $1400=1350+400(1.25)^{-t}$
9.32 (days (9.31885...) (days))
(c) 1350

A1
Note: Accept 1351 as a valid interpretation of the model as $P=1350$ is an asymptote.
[1 mark]
Total [6 marks]
6. (a) number of salad meals per week is independent of a person's position in the university

A1
Note: Accept "not associated" instead of independent.
(b) 0.0201 (0.0201118...)

A2
[2 marks]
(c) $0.0201<0.05$
the null hypothesis is rejected
A1
[2 marks]

Note: Award (R1) for a correct comparison of their p-value to the test level, award (A1) for the correct interpretation from that comparison.
Do not award (RO)(A1).
7. (a) $\frac{3-1}{7-3}$
$=0.5$
A1
[2 marks]
(b) $y-2=-2(x-5)$
(A1)(M1)
Note: Award (A1) for their -2 seen, award (M1) for the correct substitution of $(5,2)$ and their normal gradient in equation of a line.

$$
2 x+y-12=0
$$

A1
[3 marks]
(c) every point in the cell is closer to E than any other snow shelter A1
[1 mark]

Total [6 marks]

8. (a) $10 \log _{10}\left(6.4 \times 10^{-3} \times 10^{12}\right)$
(M1)
$=98.1(\mathrm{~dB})(98.06179 \ldots)$
A1
[2 marks]
(b) $112=10 \log _{10}\left(S \times 10^{12}\right)$
$0.158\left(\mathrm{Wm}^{-2}\right)\left(0.158489 \ldots\left(\mathrm{Wm}^{-2}\right)\right)$
(M1)
A1
[2 marks]
Total [4 marks]
9. (a) (i) $\mu_{1}-\mu_{2}=0$

A1
(ii) $\mu_{1}-\mu_{2} \neq 0$

A1
Note: Accept equivalent statements in words.
(b) $0.296(0.295739 \ldots)$
(c) $0.296>0.1$
fail to reject the null hypothesis, there is no difference between the mean height of male and female students

A1
Note: Award (R1) for a correct comparison of their p-value to the test level, award (A1) for the correct interpretation from that comparison.
Do not award R0A1.
[2 marks]

Total [6 marks]

10. (a) $A=\int_{0}^{2}(6-3 x)(4+x) \mathrm{d} x$

A1A1
Note: Award $\boldsymbol{A} 1$ for the limits $x=0, x=2$. Award $\boldsymbol{A} 1$ for an integral of $f(x)$.
(b) 28

A1
[1 mark]
(c) $28=0.5 \times a \times 10$

M1
$5.6\left(\frac{28}{5}\right)$
A1
[2 marks]
11. volume $=240\left(\pi \times 8.4^{2}-\frac{1}{2} \times 8.4^{2} \times 0.872664 \ldots\right)$

M1 M1 M1

Note: Award M1 $240 \times$ area , award M1 for correctly substituting area sector formula, award M1 for subtraction of their area of the sector from area of circle.

$$
=45800(=45811.96071)
$$

12. (a) $\frac{4}{18}\left(\frac{2}{9}\right)$
(b) $-3 \times \frac{1}{18}+(-1) \times \frac{4}{18}+0 \times \frac{3}{18}+\ldots+5 \times \frac{7}{18}$

Note: Award (M1) for their correct substitution into the formula for expected value.

$$
=1.83\left(\frac{33}{18}, 1.83333 \ldots\right)
$$

(c) $2 \times \frac{1}{18} \times \frac{3}{18}$

Note: Award (M1) for $\frac{1}{18} \times \frac{3}{18}$, award (M1) for multiplying their product by 2 .

$$
=\frac{1}{54}\left(\frac{6}{324}, 0.0185185 \ldots, 1.85 \%\right)
$$

13. (a) $\frac{6}{15}\left(0.4, \frac{2}{5}\right)$

A1
[1 mark]
(b) $\quad \mathrm{P}(X=8)$

Note: Award (M1) for evidence of recognizing binomial probability. eg, $\mathrm{P}(X=8), X \sim \mathrm{~B}\left(20, \frac{6}{15}\right)$.

$$
0.180 \text { (0.179705...) }
$$

(c) $\quad \mathrm{P}($ male $)=\frac{9}{15}(0.6)$

$$
\mathrm{P}(X \leq 9)=0.128(0.127521 \ldots)
$$

(M1)A1
Note: Award (M1) for evidence of correct approach eg, $\mathrm{P}(X \leq 9)$.
[3 marks]
14. (a) $\frac{\sin \mathrm{CA} B}{6}=\frac{\sin 15^{\circ}}{4.5}$
(M1)(A1)
$\mathrm{C} \hat{A} \mathrm{~B}=20.2^{\circ}(20.187415 \ldots)$
A1
Note: Award (M1) for substituted sine rule formula and award (A1) for correct substitutions.
(b) $\mathrm{C} \hat{\mathrm{B}}=20.2+15=35.2^{\circ}$

A1
(let X be the point on $B D$ where Ollie activates the sensor)
$\tan 35.18741 \ldots=\frac{1.8}{\mathrm{BX}}$
(M1)

Note: Award A1 for their correct angle CBB. Award M1 for correctly substituted trigonometric formula.
$\mathrm{BX}=2.55285 \ldots$
A1
5-2.55285...
$=2.45(\mathrm{~m})(2.44714 \ldots)$

