Markscheme

November 2023

Mathematics: applications and interpretation

Standard level

Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2023
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2023
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final A1 in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award $\boldsymbol{A 1}$ for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full $\boldsymbol{F T}$ is available in subsequent parts)

3 Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

7 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to a "correct" level of accuracy (e.g 3 sf) in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.

10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) $(a=) 6$ A1
$(b=) 5.14(5.14213 \ldots) \quad$ A1
$(c=) 3.32(3.32050 \ldots)$
(b) attempt to use the trapezoidal rule
$($ area $=) \frac{1}{2}(25)((1+1)+2(6+5.14213 \ldots+3.32050 \ldots))$
$($ area $=) 387\left(\mathrm{~cm}^{2}\right)(386.566 \ldots)$

A1
[3 marks]
(c) (i) $\quad \int_{0}^{100}\left(2 \sqrt{x}-\frac{x}{5}+1\right) \mathrm{d} x$

A1A1

Note: Award A1 for correct function seen within the integral and $\boldsymbol{A 1}$ for correct limits in the correct location and the inclusion of the $\mathrm{d} x$.
(ii) $433.3\left(\mathrm{~cm}^{2}\right)$

A2
[4 marks]
(M1)

A1
10.8 (\%) (10.7855...)

Note: Accept an answer of 10.7 from use of 387 from part (b).
2. (a) 25 (m)

A1
[1 mark]
(b) (i) recognition of need to use Pythagoras theorem
$\mathrm{BF}^{2}=20^{2}+25^{2}$
$(\mathrm{BF}=) 32.0(32.0156 \ldots, \sqrt{1025}, 5 \sqrt{41})(\mathrm{m})$
A1
(ii) correct use of trig ratio for $\mathrm{B} \hat{\mathrm{F}}$ M
$(\mathrm{BFM}=) \tan ^{-1}\left(\frac{25}{20}\right)$ or equivalent
$(\mathrm{BFM}=) 51.3(51.3401 \ldots)$

Note: Accept an answer of 51.4 from use of 3 sf answer to part (b)(i) and then either cosine rule or inverse sine.
[4 marks]
(c) attempt to use arc length formula

(M1)

(arc length $=$) $\frac{2 \times 51.3401 \ldots}{360} \times 2 \pi(32.0156 \ldots)$
(A1)
(arc length $=) 57.4(57.3755 \ldots)(\mathrm{m})$
Note: Accept 57.3 from use of 3 sf. values of their answers from parts (b)(i) and (b)(ii).
[3 marks]

(d) $34.0156 \ldots$ (seen anywhere)

use of area of sector formula
recognition of subtracting areas of two sectors
$($ area $=) \frac{102.680 \ldots}{360} \times \pi\left((34.0156 \ldots)^{2}-(32.0156 \ldots)^{2}\right)$
(area $=$) $118\left(\mathrm{~m}^{2}\right)(118.335 \ldots)$
(e) multiplying their area from part (d) by 0.12 or 12
$0.12(\mathrm{~m})$ seen OR $1183350\left(\mathrm{~cm}^{2}\right)$ seen
$118.335 \ldots \times 0.12$ OR 1183350×12
14.2 (14.2002 ...) m^{3} OR $14200000(14200236) \mathrm{cm}^{3}$ A1
[3 marks]
[Total 15 marks]
3. (a) (i) $150(\mathrm{~cm})$
(ii) attempt to substitute values in the mean formula with at least one mid-interval value multiplied by a corresponding frequency

$$
(\text { mean }=) 176(176.3)(\mathrm{cm})
$$

(b) 183 OR 168 seen

Note: These values may be seen in the working for part (c).

$$
(\mathrm{IQR}=183-168=) 15(\mathrm{~cm})
$$

(c) (upper bound =) $183+1.5 \times 15$ OR 205.5 seen

A1

$205.5>204$ OR 204-183<22.5 OR 204-22.5<183 R1
Laszlo's height is not an outlier
Note: Do not award R0A1.
(d) $\quad \mathrm{H}_{0}$: The heights of the students can be modelled by $\mathrm{N}\left(176,13.5^{2}\right)$
H_{1} : The heights of the students cannot be modelled by $\mathrm{N}\left(176,13.5^{2}\right)$
A1A1
Note: Award A1 for each correct hypothesis that includes a reference to normal distribution with a mean of 176 and a standard deviation of 13.5 (or variance of 13.5^{2}). "Correlation", "independence", "association", and "relationship" are incorrect.

Award at most A0A1 for correctly worded hypotheses that include a reference to a normal distribution but omit the distribution's parameters in one or both hypotheses. Award A0A1 for correct hypotheses that are reversed.
(e) (i) $\quad h \sim \mathrm{~N}\left(176,13.5^{2}\right)$
attempt to find normal probability in either correct range
$\mathrm{P}(170 \leq h<180)$ OR $\mathrm{P}(h \geq 190)$
recognition of multiplying either of their probabilities by 200
(M1)
$0.288137 \ldots \times 200$ OR $0.149859 \ldots \times 200$
$a=57.6$ (57.6274...), $b=30.0$ (29.9718...)
A1A1
(ii) $\mathrm{df}=4$
($p=$) 0.0166 (=0.0166282 \ldots)
comparing their p-value to $0.05 \quad$ R1
$0.0166<0.05$
Note: Accept p value of $0.0165(=0.0164693 \ldots)$ from using a and b to 3 sf .
(Reject H_{0}, There is sufficient evidence to say that) the data has not been drawn from the ($\mathrm{N}\left(176,13.5^{2}\right)$) distribution.
Note: Do not award ROA1.
The conclusion to part (e)(ii) MUST follow through from their hypotheses seen in part (d); if hypotheses are incorrect/reversed etc., the answer to part (e)(ii) must reflect this in order for the A1 to be credited.
4. (a) (i) attempt to find 15% or 85% of 285000

242250 (USD)
Note: Do not award $\boldsymbol{A 1}$ if answer is not given exact.
(ii) $\quad N=360$
$I \%=4$
$P V=(\pm) 242250$
$F V=0$
$P / Y=12$
$C / Y=12$
(M1)(A1)

Note: Award $\boldsymbol{M 1}$ for an attempt to use a financial app in their technology with at least two entries seen, award $\boldsymbol{A 1}$ for all entries correct.

$$
(P M T=) 1156.54(\mathrm{USD})
$$

Note: Do not award final $\boldsymbol{A 1}$ if answer is not given to 2 dp .
(b) 1156.54×360
(M1)
416354 (USD)

Note: Do not award A1 if answer is not given to the nearest dollar, unless already penalized in part (a)(ii).
(c) $\quad I \%=4$
$P V=(\pm) 242250$
$P M T=(\mp) 1300$
$F V=0$
$P / Y=12$
$C / Y=12$

Note: Award A1 for $P M T=(\mp) 1300$
$(N=) 292$
(d) METHOD 1
$N=291$
$I \%=4$
$P V=(\pm) 242250$
$P M T=(\mp) 1300$
$P / Y=12$
$F / Y=12$

Note: Award A1 for $N=291$ seen.
$(F V=) 871.91$ (871.908...)
valid attempt to find interest in final month (e.g. $N=1$ OR $P V=871.91$)
$N=1$
$I \%=4$
$P V=871.91$ (871.908...)
$F V=0$
$P / Y=12$
$F / Y=12$
$(P M T=) 874.82$ (USD)
Note: Do not award A1 if answer is not given correct to 2dp, unless already penalized previously.

METHOD 2

$N=292$
$I \%=4$
$P V=(\pm) 242250$
$P M T=(\mp) 1300$
$P / Y=12$
$F / Y=12$
Note: Award A1 for $N=292$ seen.
$(F V=) 425.185 \ldots \quad$ A1
$1300-425.185 \ldots$ (A1)
$(P M T=) 874.82$ (USD) A1
Note: Accept 874.81. Do not award A1 if answer is not given correct to 2dp, unless already penalized previously.
(e) $291 \times 1300+874.82$

Note: Accept 37180 (USD) from using the 2 dp . answer from part (b). Do not penalize for not rounding to nearest dollar if this has already been penalized in part (b).
5. (a) attempt to substitute 16 into the given formula
$\begin{array}{ll}n=20000-1000(16) \\ n & =4000\end{array}$
(b) multiplying their answer to part (a) by 16
(average monthly income =) 16×4000 64000 (EUR)
(c) $\quad R(x)=x(20000-1000 x)$ OR $R(x)=20000 x-1000 x^{2}$
(d) EITHER
attempt to find total costs (both fixed and variable) AND subtract from their 64000
$64000-(10000+10 \times 4000)$

OR

attempt to find total profit from mugs AND subtract fixed costs
$(16-10) \times 4000-10000$

THEN

$=14000$ (EUR)
(e) METHOD 1
attempt to subtract total costs in terms of x from their $R(x)$

$$
(P(x)=)\left(20000 x-1000 x^{2}\right)-(10000+10(20000-1000 x))
$$

correct intermediate step leading to given answer
(e.g. correct expansion of $10(20000-1000 x)$)
$P(x)=-1000 x^{2}+30000 x-210000$
Note: Do not award the $\boldsymbol{A 1}$ mark if the $\boldsymbol{A G}$ line is not stated.

METHOD 2

attempt to express profit per mug, and then subtract fixed monthly costs
$(P(x)=)(x-10)(20000-1000 x)-10000$
correct expansion leading to the given answer
$P(x)=-1000 x^{2}+30000 x-210000$
Note: Do not award the $\boldsymbol{A 1}$ mark if the $\boldsymbol{A G}$ line is not stated.
(f)
(i) $\quad\left(P^{\prime}(x)=\right)-2000 x+30000$

A1A1
Note: Award at most A1AO if additional terms are seen.
(ii) METHOD 1
$P^{\prime}(x)=0$ OR sketch of $P(x)$ OR use of $x=-\frac{b}{2 a}$
$x=15$ is the maximum, not 16
A1R1
hence salesman's price is not the optimum
AG
Note: Award A1 for $x=15$, and $\boldsymbol{R 1}$ for either comparing it to 16 OR making a statement that is some version of the $\boldsymbol{A G}$ line. It is possible to award $\boldsymbol{A 1 R O}$.

METHOD 2
$P^{\prime}(16)=-2000 \neq 0$
hence salesman's price is not the optimum
Note: Award $\boldsymbol{A 1}$ for finding an appropriate value, and $\boldsymbol{R 1}$ for comparing it to zero. It is possible to award $\boldsymbol{A 1 R 0}$. To award the $\boldsymbol{R 1}$ a statement that is some version of the $\boldsymbol{A G}$ line must also be given.

METHOD 3

finding $P(x)$ for any value from $14<x<16 \quad$ A1
comparing this value to their part (d) R1
hence salesman's price is not the optimum AG
Note: It is possible to award $\mathbf{A 1 R 0}$. To award the $R 1$ a statement that is some version of the $\boldsymbol{A} G$ line must also be given.
(g) substituting the expression for n into cost function, $C(n)$.
(cost $=$) $10-0.0001(20000-1000 x)=8+0.1 x$
substituting $C(x)$ into the total cost expression and subtracting for $R(x)$
$($ New $P(x)=) \quad\left(20000 x-1000 x^{2}\right)-(10000+(8+0.1 x)(20000-1000 x))$
$\left((\right.$ New $\left.P(x)=)-900 x^{2}+26000 x-170000\right)$
(h) 14.4 (EUR) $\left(14.4444 \ldots, \frac{130}{9}\right)$

A2

Markscheme

November 2023

Mathematics: applications and interpretation

Standard level

Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2023
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2023
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final A1 in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award $\boldsymbol{A 1}$ for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full $\boldsymbol{F T}$ is available in subsequent parts)

3 Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

7 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to a "correct" level of accuracy (e.g 3 sf) in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.

10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. $(\mathrm{a}) \quad(a=) 9$

A1
(b=) 7.63 (7.62741...) A1
$(c=) 4.71(4.71281 \ldots)$
(b) attempt to use the trapezoidal rule
$($ area $=) \frac{1}{2}(16)((1+1)+2(9+7.62741 \ldots+4.71281 \ldots))$
(area $=$) $357\left(\mathrm{~mm}^{2}\right)(357.443 \ldots)$
(c) (i) $\quad \int_{0}^{64}\left(4 \sqrt{x}-\frac{x}{2}+1\right) d x$

A1A1

Note: Award A1 for correct function seen within the integral and $\boldsymbol{A 1}$ for correct limits in the correct location and the inclusion of the $\mathrm{d} x$.
(ii) $\quad 405.3\left(\mathrm{~mm}^{2}\right)$

A2
[4 marks]
(M1)

A1

Note: Accept an answer of 11.9 from use of 357 from part (b).
2. (a) 45 (m)

A1
[1 mark]
(b) (i) recognition of need to use Pythagoras theorem

$$
\mathrm{BE}^{2}=32^{2}+45^{2}
$$

$$
(\mathrm{BE}=) 55.2(55.2177 \ldots, \sqrt{3049})(\mathrm{m})
$$

(ii) correct use of trig ratio for BEM
$(\mathrm{BEM}=) \tan ^{-1}\left(\frac{45}{32}\right)$ or equivalent $(\mathrm{BEM}=) 54.6(54.5829 \ldots)$

A1
[4 marks]
(c) attempt to use arc length formula
(arc length $=$) $\frac{2 \times 54.5829 \ldots}{360} \times 2 \pi(55.2177 \ldots)$
(d) $59.2177 \ldots$ (seen anywhere)
use of area of sector formula recognition of subtracting areas of two sectors
$($ area $=) \frac{109.165 \ldots}{360} \times \pi\left((59.2177 \ldots)^{2}-(55.2177 \ldots)^{2}\right)$
(area $=) 436\left(\mathrm{~m}^{2}\right)(436.068 \ldots)$
(e) multiplying their area from part (d) by 0.15 or 15
$0.15(\mathrm{~m})$ seen OR $4360688\left(\mathrm{~cm}^{2}\right)$ seen
3. (a) (i) 75 (minutes)
(ii) attempt to substitute values in the mean formula with at least one mid-interval value multiplied by a corresponding frequency

$$
(\text { mean }=) 88.2(88.15) \text { (minutes) }
$$

(b) 91.5 OR 84 seen

Note: These values may be seen in the working for part (c).

$$
(\mathrm{IQR}=91.5-84=) 7.5 \text { (minutes) }
$$

(c) (upper bound =) $91.5+1.5 \times 7.5$ OR 102.75 seen A1
$102.75>100$ OR $100-91.5<11.25$ OR $100-11.25<91.5$)
Star Feud is not an outlier R1 A1
Star Feud is not an out
(A1)

A1
[2 marks]
[3 marks]
(d) $\quad \mathrm{H}_{0}$: The running times of the movies can be modelled by $\mathrm{N}\left(88,6.75^{2}\right)$
H_{1} : The running times of the movies cannot be modelled by $\mathrm{N}\left(88,6.75^{2}\right)$
A1A1
Note: Award A1 for each correct hypothesis that includes a reference to normal distribution with a mean of 88 and a standard deviation of 6.75 (or variance of 6.75^{2}). "Correlation", "independence", "association", and "relationship" are incorrect.

Award at most A0A1 for correctly worded hypotheses that include a reference to a normal distribution but omit the distribution's parameters in one or both hypotheses.
Award A0A1 for correct hypotheses that are reversed.
(e) (i) $\quad T \sim \mathrm{~N}\left(88,6.75^{2}\right)$
attempt to find normal probability in either correct range $\mathrm{P}(85 \leq T<90)$ OR $\mathrm{P}(T \geq 95)$
recognition of multiplying either of their probabilities by 200
(M1)
$0.288137 \ldots \times 200$ OR $0.149859 \ldots \times 200$
$a=57.6$ (57.6274...), $b=30.0$ (29.9718...)
A1A1
(ii) $\mathrm{df}=4$
($p=$) 0.0166 ($=0.0166282 \ldots$...)
comparing their p-value to 0.05 R1 $0.0166<0.05$
Note: Accept p value of $0.0165(=0.0164693 \ldots)$ from using a and b to 3 sf .
(Reject H_{0}, There is sufficient evidence to say that) the data has not been drawn from the ($\mathrm{N}\left(88,6.75^{2}\right)$) distribution.
Note: Do not award R0A1.
The conclusion to part (e)(ii) MUST follow through from their hypotheses seen in part (d); if hypotheses are incorrect/reversed etc., the answer to part (e)(ii) must reflect this in order for the A1 to be credited.
4. (a) (i) attempt to find 25% or 75% of 285000

213750 (ZAR)
Note: Do not award $\boldsymbol{A 1}$ if answer is not given exact.
(ii) $\quad N=60$
$I \%=4.5$
$P V=(\pm) 213750$
$F V=0$
$P / Y=12$
$C / Y=12$
(M1)(A1)
Note: Award $\boldsymbol{M 1}$ for an attempt to use a financial app in their technology with at least two entries seen, award A1 for all entries correct.

$$
(P M T=) 3984.95 \text { (ZAR) }
$$

Note: Do not award final A1 if answer is not given to 2 dp .
(b) 3984.95×60

Note: Do not award A1 if answer is not given to the nearest rand, unless already penalized in part (a)(ii).
(c) $\quad I \%=4.5$
$P V=(\pm) 213750$
$P M T=(\mp) 4600$
$F V=0$
$P / Y=12$
$C / Y=12$
Note: Award $\mathbf{A 1}$ for $P M T=(\mp) 4600$.

$$
(N=) 52
$$

(d) METHOD 1

$$
\begin{aligned}
& N=51 \\
& I \%=4.5 \\
& P V=(\pm) 213750 \\
& P M T=(\mp) 4600 \\
& P / Y=12 \\
& F / Y=12 \\
& \hline
\end{aligned}
$$

Note: Award $\boldsymbol{A 1}$ for $N=51$ seen.

$$
\begin{aligned}
& (F V=) 704.156 \ldots \\
& \text { valid attempt to find interes } \\
& \begin{array}{l}
N=1 \\
I \%=4.5 \\
P V=704.16 \quad(704.156 \ldots) \\
F V=0 \\
P / Y=12 \\
F / Y=12
\end{array}
\end{aligned}
$$A1

valid attempt to find interest in final month (e.g. $N=1$ OR $P V=704.156 \ldots$)(M1)
$(P M T=) 706.80$ (ZAR)

Note: Do not award $\boldsymbol{A 1}$ if answer is not given correct to 2 dp , unless already penalized previously.

METHOD 2

$N=52$
$I \%=4.5$
$P V=(\pm) 213750$
$P M T=(\mp) 4600$
$P / Y=12$
$F / Y=12$
Note: Award $\boldsymbol{A 1}$ for $N=52$ seen.

$$
(F V=) 3893.20 \ldots \quad \text { A1 }
$$

4600-3893.20...
($P M T=$) 706.80 (ZAR)
Note: Do not award $\boldsymbol{A 1}$ if answer is not given correct to 2 dp , unless already penalized previously.
(e) $51 \times 4600+706.80$
235306.80
attempt to find difference between their value and their part (b) (239097-235306.80)

3790 (ZAR) A
Note: Do not penalize for not rounding to nearest rand if this has already been penalized in part (b).
[3 marks]
[Total 16 marks]
5. (a) attempt to substitute 16 into the given formula (M1)
$n=20000-1000(16)$
$n=4000$
A1
[2 marks]
(b) multiplying their answer to part (a) by 16
(average monthly income =) 16×4000 64000 (EUR)
(c) $\quad R(x)=x(20000-1000 x)$ OR $R(x)=20000 x-1000 x^{2}$
(d) EITHER
attempt to find total costs (both fixed and variable) AND subtract from their 64000
$64000-(10000+10 \times 4000)$

OR

attempt to find total profit from cases AND subtract fixed costs
$(16-10) \times 4000-10000$

THEN

$=14000$ (EUR)

(e) METHOD 1

attempt to subtract total costs in terms of x from their $R(x)$

$$
(P(x)=)\left(20000 x-1000 x^{2}\right)-(10000+10(20000-1000 x))
$$

correct intermediate step leading to given answer A1
(e.g. correct expansion of $10(20000-1000 x)$)
$P(x)=-1000 x^{2}+30000 x-210000$
Note: Do not award the $\boldsymbol{A 1}$ mark if the $\boldsymbol{A G}$ line is not stated.

METHOD 2

attempt to express profit per case, and then subtract fixed monthly costs
$(P(x)=)(x-10)(20000-1000 x)-10000$
correct expansion leading to the given answer
$P(x)=-1000 x^{2}+30000 x-210000$
Note: Do not award the $\boldsymbol{A 1}$ mark if the $\boldsymbol{A G}$ line is not stated.
(f) (i) $\quad\left(P^{\prime}(x)=\right)-2000 x+30000$

A1A1
Note: Award at most A1AO if additional terms are seen.
(ii) METHOD 1
$P^{\prime}(x)=0$ OR sketch of $P(x)$ OR use of $x=-\frac{b}{2 a}$
$x=15$ is the maximum, not 16
A1R1
hence salesman's price is not the optimum AG
Note: Award A1 for $x=15$, and $\boldsymbol{R 1}$ for comparing it to 16 OR making a statement that is some version of the $\boldsymbol{A G}$ line. It is possible to award $\mathbf{A 1 R O}$.

METHOD 2
$P^{\prime}(16)=-2000 \neq 0$
A1R1
hence salesman's price is not the optimum
AG

Note: Award $\boldsymbol{A 1}$ for finding an appropriate value, and $\boldsymbol{R 1}$ for comparing it to zero. It is possible to award $\boldsymbol{A 1 R 0}$. To award the $\boldsymbol{R 1}$ a statement that is some version of the $\boldsymbol{A G}$ line must also be given.

METHOD 3

finding $P(x)$ for any value from $14<x<16 \quad$ A1
comparing this value to their part (d) R1
hence salesman's price is not the optimum AG
Note: It is possible to award A1R0. To award the R1 a statement that is some version of the $\boldsymbol{A} G$ line must also be given.
(g) substituting the expression for n into cost function, $C(n)$.
(cost $=$) $10-0.0001(20000-1000 x)=8+0.1 x$
substituting $C(x)$ into the total cost expression and subtracting for $R(x)$
(New $P(x)=$) $\left(20000 x-1000 x^{2}\right)-(10000+(8+0.1 x)(20000-1000 x)) \quad$ A1
$\left((\right.$ New $\left.P(x)=)-900 x^{2}+26000 x-170000\right)$
[3 marks]
(h) 14.4 (EUR) $\left(14.4444 \ldots, \frac{130}{9}\right)$

Markscheme

May 2023

Mathematics: applications and interpretation

Standard level

Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2023
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2023
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award A1 for the final mark (condone the incorrect further working)
2.	35			
72	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award A0 for the final mark (and full FT is available in subsequent parts)	

Implied marks
Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these $\boldsymbol{F T}$ rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to a "correct" level of accuracy (e.g 3 sf) in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) attempt to use sine rule
$\frac{\sin \mathrm{ABO}}{25.9}=\frac{\sin 10^{\circ}}{6.36}$
45.0° (45.0036... $)$
Note: Accept an answer of 45° for full marks.
(b) $(\mathrm{O} \hat{\mathrm{A}} \mathrm{B}=) 124.996 \ldots$..
(A1)
attempt to use area of triangle formula (M1)
$\frac{1}{2} \times 25.9 \times 6.36 \times \sin \left(124.996 \ldots{ }^{\circ}\right)$ (A1)
$67.5 \mathrm{~m}^{2}\left(67.4700 \ldots \mathrm{~m}^{2}\right)$
A1
Note: Units are required. The final $\boldsymbol{A 1}$ is only awarded if the correct units are seen in their answer; hence award (A1)(M1)(A1)A0 for an unsupported answer of 67.5 . Accept $67.4670 \ldots \mathrm{~m}^{2}$ from use of 3 sf values.
Full follow through marks can be awarded for this part even if their OÂB is not obtuse, provided that all working is shown.
(c) attempt to use cosine rule
$(\mathrm{BK}=) \sqrt{12^{2}+6.36^{2}-2 \times 12 \times 6.36 \times \cos 45^{\circ}}$
8.75 (m) (8.74738...(m))

Note: Award (M1)(A1)(A0) for radian answer of 10.2 (m) (10.2109...(m)) with or without working shown.
continued...

Question 1 continued

(d) METHOD 1
attempt to use sine rule with measurements from triangle OKX
$\frac{\mathrm{OX}}{\sin 51.1^{\circ}}=\frac{22.2}{\sin 53.8^{\circ}}$
(A1)
$(\mathrm{OX}=) 21.4(\mathrm{~m})(21.4099 \ldots)(\mathrm{m})$
(21.4 (m) < $22.2(\mathrm{~m})$)

Odette is closer to the football / Khemil is further from the football
Note: For the final $\boldsymbol{A 1}$ to be given, 21.4 (21.4099...) must be seen. Follow through within question part for final $\boldsymbol{A 1}$ for a consistent comparison with their OX.

METHOD 2

sketch of triangle OXK with vertices, angles and lengths

51.1° is smallest angle in triangle OXK R1 opposite side (OX) is smallest length R1 therefore Odette is closest
(e) attempt to use length of arc formula
$\frac{135}{360} \times 2 \pi \times 12$
28.3(m) ($9 \pi, 28.2743 . .).(\mathrm{m})$
2. (a) recognizing arithmetic sequence (may be seen in part (b))
($\left.u_{12}=\right) 10+(12-1) \times 6$
76
(b) correct substitution into either arithmetic series formula
$\left(S_{15}=\right) \frac{15}{2}(2 \times 10+(15-1) \times 6) \quad$ OR $\quad\left(S_{15}=\right) \frac{15}{2}(10+94)$
780
A1
[2 marks]
(c) attempt to use either arithmetic series formula equated to 1000
$\frac{15}{2}(2 \times 10+(15-1) \times x)=1000 \quad$ OR $\quad \frac{15}{2}\left(10+u_{15}\right)=1000$ $x=8.09523 \ldots$
$x=9$
Note: Follow through within question part for final $\mathbf{A 1}$ for candidates correctly rounding their value of x up to the nearest integer. Award (MO)(AO)AO for a response of $x=8$ with no working shown.
(d) recognizing geometric sequence (may be seen in part (e))
$17.1 \times 0.95^{5-1}$
$13.9(\mathrm{~cm})(13.9280 \ldots)$
(e) correct substitution into geometric series formula
$\frac{17.1\left(1-0.95^{16}\right)}{1-0.95}$
191 (cm) (191.476...(cm))
(A1)

A1
[2 marks]
(M1)
$u_{0}=17.1 \times(0.95)^{0-1} \quad$ OR $17.1=0.95 x \quad$ OR $\frac{17.1}{0.95}$ (seen)
Note: Award (MO)AO for any attempt to find answer using 0.05 or 1.05 .
18 (cm)
3. (a) (i) 1200

A1
A1
[2 marks]
(b) $1200 \times k^{3}=18750$
$(k=) 2.5$ A1 [2 marks]
(c) $1200 \times 2.5^{1.5}$

4740 (4743.41...)
Note: Do not penalize if final answer is not given as an integer. Award (A1)AO for an answer of 3950 ($3949.14 \ldots$...) from use of 1.3 in the exponent, but only if working is shown.
(d) equating $P(t)$ and $S(t)$ OR equating each function to a common variable (M1) $1200 \times 2.5^{t}=5000 \times 1.65^{t} ; 1200 \times 2.5^{t}=x$ and $5000 \times 1.65^{t}=x$ $t=3.43$ (hours) (3.43456...)

A1
[2 marks]
continued...

Question 3 continued

(e) METHOD 1
$5000 \times 1.65^{t}=19000$
(M1)
($t=$) 2.66586... OR ($t-2=$) 0.66586... (seen)
multiplying by 60 seen to convert to minutes
($m=39.9521 \ldots$)
($m=$) 40 (minutes) OR 2 hours and 40 minutes

METHOD 2
equating an expression for $S(t)$ to 19000
expressing t as $2+\frac{m}{60}$
$5000 \times 1.65^{2+\frac{m}{60}}=19000$
$2+\frac{m}{60}=2.66586 \ldots$
($m=$) 40 (minutes) OR 2 hours and 40 minutes
Note: Award (M1)(A1)(M1)AO for an answer of $39.9521 \ldots$ or 39 with or without working.
[4 marks]
(f) EITHER (find volume of all bacteria)
multiplying total population of bacteria by the volume of bacterium
$1 \times 10^{-18} \times\left(5000 \times 1.65^{t}\right)$
setting expression equal to 2.1×10^{-5} and attempt to solve (e.g. sketch)
OR (find total number of bacteria to fill container)
attempting to find the total number of bacteria to fill container
$2.1 \times 10^{-5}=n \times 1 \times 10^{-18} \quad$ OR $\frac{2.1 \times 10^{-5}}{1 \times 10^{-18}} \quad$ OR $\quad 2.1 \times 10^{13}$
setting value equal to $S(t)$ and attempt to solve (e.g. sketch)
Note: If $\frac{2.1 \times 10^{-5}}{1 \times 10^{-18}}$ is seen but candidate has an incorrect total number of bacteria, the second (M1) can still be awarded for setting their incorrect value equal to $S(t)$ and attempting to solve.

THEN

$t=44.2$ (hours) (44.2480...) A1
4. (a) recognition of binomial distribution
e.g. $X \sim \mathrm{~B}(115,0.82) \mathrm{OR}$ binompdf($115,0.82,90)$ etc.
$((\mathrm{P}(X=90)=) 0.0535$ ($0.0535325 \ldots) \quad$ A2
Note: Award (M1)A1AO for an answer of 0.054 with or without working shown.
(b) selecting correct region of distribution
e.g. $\mathrm{P}(X \geq 95) \quad \mathbf{O R} 1-\mathrm{P}(X \leq 94) \mathbf{O R} 1$ - binomcdf($115,0.82,94)$
0.491 (0.491036...)

A1
[2 marks]
(c) substitution in the variance formula for binomial distribution
$115 \times 0.82 \times 0.18$
17.0 (16.974)

Note: Allow 17 for the final answer.
(d) METHOD 1
attempt to write an expression containing n inside the brackets of $P()$
including 0.3 or 0.7

$$
\mathrm{P}(X \geq n)<0.3 \quad \text { OR } \quad \mathrm{P}(X \leq n-1)>0.7
$$

$n=98$

METHOD 2

using binomcdf in GDC for at least two different values of n greater than 90 (M1)

EITHER

$(\mathrm{P}(X<97)=) 0.696683 \ldots$ AND $(\mathrm{P}(X<98)=) 0.778249 \ldots$ (seen)
OR
$(\mathrm{P}(X>97)=) 0.303316 \ldots$ AND $(\mathrm{P}(X>98)=) 0.221750 \ldots$ (seen)
(A1)

THEN

$n=98$

Question 4 continued

(e) (μ_{1} : population mean recovery time for new remedy)
(μ_{2} : population mean recovery time for old remedy)

$$
\mathrm{H}_{0}: \mu_{1}=\mu_{2} \quad\left(\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0\right)
$$

$\mathrm{H}_{1}: \mu_{1}<\mu_{2}\left(\mathrm{H}_{1}: \mu_{1}-\mu_{2}<0\right) \quad$ A1
Note: Accept an equivalent statement in words, must include mean and reference to "population mean", e.g. "mean for all patients on old remedy", for the first $\boldsymbol{A 1}$ to be awarded.

Do not accept an imprecise "the means are equal".
Award A0A1 for reversed hypotheses ($\mathrm{H}_{0}: \mu_{1}<\mu_{2}, \mathrm{H}_{1}: \mu_{1}=\mu_{2}$).
(f) 0.0620 ($0.0620061 \ldots$)

A2
Note: Allow 0.062 as final answer. Award $\boldsymbol{A 1}$ for an answer of 0.06 . Award $\boldsymbol{A 1}$ for an answer of $0.0527756 \ldots$ from use of unpooled setting.

Follow through from an incorrect alternative hypothesis as long as their p-value matches their alternative hypothesis.
[2 marks]
(g) $0.0620<0.1$
R1
(sufficient evidence to) reject H_{0}
A1
Note: Do not award ROA1. Accept " p-value is less than 0.1 " provided an answer was seen in part (f).
(h) the probability of obtaining results (at least as extreme) as those observed given that the null hypothesis is true
5.
(a) (i) $x-3$

A1
(ii) attempt to use 1200 to find width of park in terms of only x
(M1)
$\frac{1200}{x}$ (seen) OR $1200=x \times$ park width OR $1200=x \times($ garden width +4$)$
$\frac{1200}{x}-4$
A1
(iii) $\quad A=(x-3) \times\left(\frac{1200}{x}-4\right)$
$=1200-4 x-\frac{3600}{x}+12$ A1

Note: Award first A1FT for multiplying their garden length and width and second A1 for a simplified (parentheses removed) expression for A that leads to the given answer. The given answer must be shown for the second $\boldsymbol{A 1}$ mark to be awarded

$$
=1212-4 x-\frac{3600}{x}
$$

(b) setting $1212-4 x-\frac{3600}{x}=800$ (accept a sketch)
$x=9.64$ (9.64011...) (m) OR $x=93.4$ (93.3598 \ldots) (m)
(width $=$) 124 (124.479...) (m)
(width $=$) 12.9 (12.8534...) (m)
Note: To award the final $\boldsymbol{A 1}$ both values of x and both values of the width must be seen. Accept 12.8 for second value of width from candidate dividing 1200 by 3 sf value of 93.4.
(c) $\left(\frac{\mathrm{d} A}{\mathrm{~d} x}=\right)-4+\frac{3600}{x^{2}}$ OR $-4+3600 x^{-2}$

A1A1A1

Note: Award $\boldsymbol{A 1}$ for $-4, \boldsymbol{A 1}$ for +3600 , and $\boldsymbol{A 1}$ for x^{-2} or x^{2} in denominator.
[3 marks]
(d) setting their $\frac{\mathrm{d} A}{\mathrm{~d} x}$ equal to 0 OR sketch of their $\frac{\mathrm{d} A}{\mathrm{~d} x}$ with x-intercept highlighted M1
$(x=) 30(\mathrm{~m})$
Note: To award A1FT the candidate's value of x must be within the domain given in the problem $(3<x<300)$.

Question 5 continued

(e) EITHER

evidence of using GDC to find maximum of graph of $A=1212-4 x-\frac{3600}{x}$
OR
substitution of their x into A
OR
dividing 1200 by their x to find width of park and subtracting 3 from their x and
4 from the width to find park dimensions
Note: For the last two methods, only follow through if $3<$ their $x<300$.

THEN

($A=$) $972\left(\mathrm{~m}^{2}\right) \quad$ A1

Markscheme

May 2023

Mathematics: applications and interpretation

Standard level

Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2023
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2023
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.

R Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award MO followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and A1 for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A} G$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part.

Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award A1 for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	0.468111... (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full FT is available in subsequent parts)

3 Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through ($\boldsymbol{F T}$) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any $\boldsymbol{F T}$ marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these $\boldsymbol{F} \boldsymbol{T}$ rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

7 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate \boldsymbol{A} marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8
 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but if you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.

10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) $\frac{9.45-8.73}{1958-1708}$

$$
=0.00288\left(\frac{9}{3125}\right)
$$

(b) (i) the (mean) yearly change in (mean annual) temperature

Note: Accept equivalent statements, e.g. "rate of change of temperature".
(ii) ${ }^{\circ} \mathrm{C} /$ year OR degrees C per year

Note: Do not follow through from part (b)(i) into (b)(ii).
[2 marks]
(c) attempt to substitute point and gradient into appropriate formula
$8.73=0.00288 \times 1708+c \Rightarrow c=3.81096 \ldots$
or
$9.45=0.00288 \times 1958+c \Rightarrow c=3.81096$.
equation is $y=0.00288 x+3.81$
(d) attempt to substitute 2000 into their part (c) (M1)
$0.00288 \times 2000+3.81096 \ldots$
$=9.57\left({ }^{\circ} \mathrm{C}\right)(9.57096 \ldots)$

Question 1 continued
(e) (i) $y=0.00256 x+4.46(0.00255714 \ldots x+4.46454 \ldots)$
(M1)A1

Note: Award (M1)AO for answers that show the correct method, but are presented incorrectly (e.g. no " $y=$ " or truncated values etc.). Accept 4.465 as the correct answer to 4 sf .
(ii) 0.861 ($0.861333 \ldots$...)
(f) attempt to substitute 2000 into their part (e)(i)
$0.00255714 \ldots \times 2000+4.46454 \ldots$
$=9.58\left({ }^{\circ} \mathrm{C}\right)\left(9.57882 \ldots\left({ }^{\circ} \mathrm{C}\right)\right)$

Note: Award $\boldsymbol{A} 1$ for 9.57 from $0.00255714 \times 2000+4.46$.
[2 marks]
(g) cannot (always reliably) make a prediction of x from a value of y, when using a y on x line / regression line is not x on y
extrapolation
2. (a) $(a=) 0$ A1
(b) $(1.39,5.24) \quad((1.38672 \ldots, 5.24025 \ldots)$

A1A1

Note: Award A1 for each correct coordinate; do not accept 2 sf values. Award at most AOA1 if parentheses are missing. Accept $x=1.39, y=5.24$.

[2 marks]

(c) any value greater than $5.24025 \ldots \quad$ A1

Note: Accept a specific value OR a description of the correct interval for all values.
[1 mark]
continued...

Question 2 continued
(d) METHOD 1
attempt to relate gradient of function to graph of f
e.g. the function is increasing at $x=-4$
$m>0$

METHOD 2

attempt to find value of $f^{\prime}(-4)$
R1
$\left(=\frac{25}{8}=3.125\right)$
$m>0$
Note: The $\boldsymbol{A} 1$ can only be awarded if the correct value of $f^{\prime}(-4)$ or m is found

METHOD 3

attempt to substitute $(-4,-12.75)$ into equation of tangent

$$
\begin{array}{ll}
-12.75=m(-4)-\frac{1}{4} \text { so } m=3.125 & \boldsymbol{R 1} \\
m>0 & \boldsymbol{A 1}
\end{array}
$$

Note: Do not award ROA1.
[2 marks]
continued...

Question 2 continued
(e) (i) attempt to substitute $(0,-5)$ or $(3,4.5)$ into $g(x)$

$$
\begin{aligned}
& -5=k \times p^{0}-9 \\
& (k=) 4
\end{aligned}
$$A1

(ii) attempt to substitute $(3,4.5)$ and their part (e)(i) into $g(x)$

$$
\begin{aligned}
& 4.5=4 \times p^{3}-9 \\
& p^{3}=3.375 \\
& (p=) 1.5
\end{aligned}
$$A1

[4 marks]

(f) $y=-9$

Note: Award $\boldsymbol{A 1}$ for -9 seen, $\boldsymbol{A} 2$ for a completely correct equation.
Condone $g(x)=-9$
[2 marks]
(g) $\quad(x=) 4$
(M1)A1

Note: Award M1 for equating $f(x)$ to their $g(x)$
Award (M1)AO for the y-coordinate (11.25) as the answer or part of the answer (e.g. coordinates).

Award (M1)AO for an answer of ($x=$) $-2.39421 . .$.

Question 2 continued
(h) METHOD 1:
$f(-1)=0 \Rightarrow h(-1)=g(-1) \quad$ (This justification could be graphical.) \quad R1
yes A1

Note: Award $\boldsymbol{R 1}$ for any reasoning based on the fact that -1 is the x-intercept of f. Accept equivalent arguments in words. Do not award ROA1.

METHOD 2:

$$
g(-1)=-\frac{19}{3} \quad(-6.33333 \ldots)
$$

$$
h(x)=3 x-1+4 x^{-2}+4 \times 1.5^{x}-9
$$

$$
h(-1)=3(-1)-1+4(-1)^{-2}+4 \times 1.5^{-1}-9
$$

$$
h(-1)=-\frac{19}{3} \quad(-6.33333 \ldots)
$$

Note: Award R1 for showing that $g(-1)=-\frac{19}{3}$ and $h(-1)=-\frac{19}{3}$. Do not award ROA1.
3. (a) $\frac{18-4}{2}$
(a) $=7$

A1
[2 marks]
(b) $\frac{18+4}{2}$ OR $18-7$ OR $4+7$
(d) $=11$
(c) (time between high and low tide is) 6h15m OR 375 minutes
multiplying by 2
750 minutes
(d) EITHER
$\frac{360^{\circ}}{b}=750$
OR
$7 \cos (b \times 375)+11=4$
THEN
($b=0.48$
Note: Award $\boldsymbol{A 1 A O}$ for an answer of $\frac{2 \pi}{750}\left(=\frac{\pi}{375}=0.00837758 \ldots\right)$
[2 marks]
(e) equating their cos function to 6 or graphing their \cos function and 6
(M1)
$7 \cos (0.48 t)+11=6$
$\Rightarrow t=282.468 \ldots$ (minutes)
$=4.70780 \ldots$ (hr) OR 4 hr 42 mins ($4 \mathrm{hr} 42.4681 \ldots$ mins)
so the time is $10: 42$
A1

[4 marks]

continued...

Question 3 continued
(f) next solution is $t=467.531 \ldots$
467.531...-282.468...

185 (mins) (185.063...) A1
Note: Accept an (unsupported) answer of 186 (from correct 3 sf values for \boldsymbol{t})
[2 marks]
[Total: 15 marks]
4.
(a)

A1A1
Note: Award A1 for any one value correct, $\boldsymbol{A} 1$ for other three values correct. Accept percentage responses as equivalent forms on all branches.
[2 marks]
(b) (i) multiplication of two probabilities along the tree diagram
0.94×0.98
$=0.921(0.9212,92.1 \%, 92.12 \%)$
A1

Note: Do not accept the 2sf value for the final $\boldsymbol{A 1}$.
(ii) $(0.9212)^{2}$
$=0.849(0.848609 \ldots, 84.9 \%, 84.8609 \ldots \%)$

Note: Accept an answer of 0.848 (0.848241) from use of 3 sf answer from part (b)(i).

Question 4 continued
(c) (i) $0.94 \times 0.02+0.06 \times 0.29$
(A1)(M1)
Note:Award A1 for two correct products from their tree diagram seen, M1 for the addition of their two products.

$$
0.0362(3.62 \%)
$$

(ii) multiplying their part(c)(i) by 1300

$$
0.0362 \times 1300
$$

$$
47.1
$$A1

Note: accept the 2 sf value of 47 for the final $\boldsymbol{A 1}$
(d) $\quad p=0.02$ OR $p=0.98$
recognition of binomial probability with $n=20$
$\mathrm{P}(X=0)$ OR $\mathrm{P}(X=20)$
0.668 ($0.667607 \ldots$...)

Note: Award (A1)(M1)(M1)AO for an answer of 0.667 .
$0.98^{20}=0.668(0.667607 \ldots)$ is awarded full marks.
[4 marks]
(e) $\mathrm{P}(X \geq 3)$ OR $\mathrm{P}(X \leq 17)$
0.00707 ($0.00706869 \ldots$)

Note: Award (M1)AO for an answer of 0.00706 .
$\boldsymbol{F T}$ from their value of p in part (d)
[2 marks]
[Total: 17 marks]
5. (a) equating a volume of a half cylinder (or cylinder) to 0.8
$0.8=\frac{1}{2} \pi r^{2} l$
$l=\frac{1.6}{\pi r^{2}}$
Note: Do not accept decimal approximation of π for the $\boldsymbol{A 1}$ given the demand of question.
Condone the use of h for l for the M1
(b) calculating area in terms of r and l
$C=2 l r+\pi r^{2}+\pi r l$
area with l replaced by $\frac{1.6}{\pi r^{2}}$
apply costs to correct part of each surface M1
a correct substitution into an expression for C, leading to given answer
e.g. $(C=) 4.40 \times \pi r\left(\frac{1.6}{\pi r^{2}}\right)+4.40 \times 2 r\left(\frac{1.6}{\pi r^{2}}\right)+p \times \pi r^{2}$
($C=$) $7.04 r^{-1}+\frac{14.08}{\pi} r^{-1}+p \pi r^{2}$
Note: The $\boldsymbol{A} G$ line must be seen to award the final $\boldsymbol{A 1}$.
No incorrect working should be seen after the correct substitution

Question 5 continued
(c) EITHER

$$
\begin{equation*}
\left(\frac{\mathrm{d} C}{\mathrm{~d} r}=\right)-7.04 r^{-2}-\frac{14.08}{\pi} r^{-2}+2 p \pi r \tag{A1A1A1}
\end{equation*}
$$

OR
$-7.04 r^{-2}-4.48 r^{-2}+6.28 p r \quad\left(-7.04 r^{-2}-(4.48180 \ldots) r^{-2}+6.28318 \ldots p r\right)$
A1A1A1

OR

$$
-11.5 r^{-2}+6.28 p r \quad\left((-11.5218 \ldots) r^{-2}+6.28318 \ldots p r\right)
$$

Note: Award A1 for each correct term.
Award at most A1A1AO if extra terms are seen.
continued...

Question 5 continued

(d) recognition of setting $\frac{\mathrm{d} C}{\mathrm{~d} r}$ to zero
attempt to substitute 0.7 in for r in their derivative
$0=-7.04(0.7)^{-2}-\frac{14.08}{\pi} \times(0.7)^{-2}+2 p \pi \times 0.7$
$(p=)(\$) 5.35$ (per square metre) ((\$) 5.34621...)
Note: Accept $\$ 5.34$, as this will also lead to a radius of 0.7 (to 3 sf).
(e) attempt to calculate the cost of one container

$$
\begin{equation*}
(C=) 7.04(0.7)^{-1}+\frac{14.08}{\pi}(0.7)^{-1}+5.34621 \ldots \pi \times 0.7^{2} \tag{A1}
\end{equation*}
$$

Note: May be shown within a calculation of the cost of all containers.
($C=$) 24.6895...
$24.6895 \ldots \times 350$
= (\$) 8641
Note: Answer must be rounded to the nearest dollar to award the final $\boldsymbol{A 1}$. Accept answers between 8641 and 8645 (inclusive), due to rounding the value of p and/or the cost of one container to the nearest cent.
Award (M1)(A1)AO for an answer rounded to 3sf (e.g. (\$)8640) or to 2dp (e.g., (\$)8641.35).

Accept an answer of (\$)8638 from use of $\$ 5.34$ in their cost calculation.

Question 5 continued
(f) attempt to apply a discount of 8% to their part (e)

Note: the discount percentage will depend on their answer to part (e)
e.g. $8641.35 \ldots \times 0.92$ OR $8641.35 \ldots \times 0.08$
(\$)7950 ((\$)7950.04...)
A1
[2 marks]
[Total: 17 marks]

Markscheme

November 2022

Mathematics: applications and interpretation

Standard level

Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2022
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2022
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award $\boldsymbol{A 1}$ for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	0.468111.. (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full $\boldsymbol{F T}$ is available in subsequent parts)

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through ($\boldsymbol{F T}$) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the $M R$ stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (e.g. probability greater than $1, \sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate \boldsymbol{A} marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 e^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) continuous

A1
[1 mark]
(b) 160-50-62-14-8 (M1)
($k=$) 26
A1
[2 marks]
(c) (i) $20 \leq T<40$

A1
(ii) 30

A1
[2 marks]
(d) 33.5 minutes A2

Note: FT from their value of k and their mid-interval value. Follow through from part (c)(ii) but only if mid-interval value lies in their interval.
[2 marks]
(e) 112

A1
[1 mark]
(f) $\frac{22}{160}\left[0.138,0.1375,13.75 \%, \frac{11}{80}\right]$

A1A1
Note: Award A1 for correct numerator, A1 for correct denominator.
(g) 26 minutes

A1
[1 mark]
(h) 50-16

Note: Award M1 for both correct quartiles seen.

34 minutes

A1
[2 marks]
continued...

Question 1 continued
(i) correct substitution into outlier formula
$50+1.5 \times 34$
$=101 \quad$ A1
$92<101$ OR highest value on diagram <101 R1
not an outlier AG
Note: Award R1 for their correct comparison. Follow through from their part (h).
Award $\boldsymbol{R 0}$ if their conclusion is "it is an outlier", this contradicts Elsie's belief.
[3 marks]

(j) EITHER

the diagram is not symmetric or equivalent
e.g the median is not in the center of the box or
the lengths of the whiskers are (very) different or (positive or right) skew

OR

the mean and median are (very) different; A1
2. (a) (i) 19°
(ii) $\frac{\mathrm{BD}}{\sin 120^{\circ}}=\frac{40}{\sin 19^{\circ}}$
(M1)(A1)
Note: Award $\boldsymbol{M 1}$ for substituted sine rule for BCD, $\boldsymbol{A 1}$ for their correct substitution.

$$
(\mathrm{BD}=) 106 \mathrm{~m} \quad(106.401 \ldots)
$$

A1
[4 marks]
(b) METHOD 1 (cosine rule)

$$
\cos \mathrm{BAD}=\frac{85^{2}+85^{2}-106.401 \ldots{ }^{2}}{2 \times 85 \times 85}
$$

Note: Award M1 for substituted cosine rule, A1 for their correct substitution.
77.495

Note: Accept an answer of 77.149 from use of 3 sf answer from part (a). The final answer must be correct to five significant figures.

METHOD 2 (right angled trig/isosceles triangles)
$\sin \left(\frac{\mathrm{BAD}}{2}\right)=\frac{53.2008 \ldots}{85}$
(A1)(M1)
Note: Award A1 for 53.2008... seen. Award M1 for correctly substituted trig ratio. Follow through from part (a).
77.495...

Note: Use of 3 sf answer from part (a), results in 77.149.
(c) EITHER
$($ Area $=) \frac{1}{2} \times 85 \times 85 \times \sin \left(77^{\circ}\right)$
(M1)(A1)
Note: Award M1 for substituted area formula, A1 for correct substitution.
Award at most (M1)(A1)A0 if an angle other than 77° is used.

OR

$$
(\text { Area }=) \frac{1}{2} \times\left(2 \times 85 \times \sin \left(38.5^{\circ}\right)\right) \times\left(85 \times \cos \left(38.5^{\circ}\right)\right)
$$

Note: Award $\boldsymbol{M} \mathbf{1}$ for substituted area formula $A=\frac{1}{2} b h, \boldsymbol{A 1}$ for correct substitution.

$$
3520 \mathrm{~m}^{2} \text { (3519.91...) }
$$

Question 2 continued
(d) 85 m A1
[1 mark]
(e) $85+85+\frac{77}{360} \times 2 \pi \times 85$
(M1)(M1)
Note: Award $\boldsymbol{M} \mathbf{1}$ for correctly substituted into $\frac{\theta}{360} \times 2 \pi \times r, \boldsymbol{M} \mathbf{1}$ for addition of $A B$ and $A D$.

284 m (284.231...)
A1
[3 marks]
(f) $\frac{77}{360} \times \pi \times(85)^{2}-3519.91 \ldots$
(M1)(M1)
Note: Award $\boldsymbol{M} \mathbf{1}$ for correctly substituted area of sector formula, $\boldsymbol{M} \mathbf{1}$ for subtraction of their area from part (c).
$1330 \mathrm{~m}^{2}$ (1334.93...)
A1
3. (a) (i) B
(ii) F

A1
(b) correct substitution into the midpoint formula
$\frac{8+5}{2}$
$y=6.5$
Note: Answer must be an equation for the $\boldsymbol{A 1}$ to be awarded.
(c) \quad midpoint $=(5,7)$
correct use of gradient formula
$\frac{8-6}{7-3}$
gradient of $\mathrm{BC}=0.5$
negative reciprocal of gradient
perpendicular gradient $=-2$
$y-7=-2(x-5)$ (or $y=-2 x+17$)
(d) (i) attempt to find the intersection of two perpendicular bisectors (BC \& CD) (M1)

Note: This may be seen graphically or algebraically.

$$
6.5-7=-2(x-5) \quad \text { OR } \quad 6.5=-2 x+17
$$

Note: Accept equivalent methods using the perpendicular bisector of BD, $y-5.5=4(x-5)$ OR $y=4 x-14.5$

$$
x=5.25, y=6.5 \quad \text { OR } \quad(5.25,6.5)
$$

Note: The x-coordinate must be exact or expressed to at least 3 sf.
(ii) their correct substitution into distance formula

$$
\begin{aligned}
& \sqrt{(5.25-7)^{2}+(6.5-5)^{2}} \\
& =2.30 \mathrm{~km}\left(2.30488 \ldots, \frac{\sqrt{85}}{4}\right)
\end{aligned}
$$

4. (a) (i) $\quad(m=) 54(\%)$

A1
(ii) $\quad(n=) 14(\%)$
(iii) ($p=) 22(\%)$
(iv) $\quad(q=) 10(\%)$

Note: Based on their n, follow through for parts (i) and (iii), but only if it does not contradict the given information. Follow through for part (iv) but only if the total is 100%.

(b) 90 (\%)

Note: Award $\boldsymbol{A O}$ for a decimal answer.
(c) (i) $0.54\left(\frac{54}{100}, \frac{27}{50}, 54 \%\right)$
(ii) $\frac{54}{64}\left(0.844, \frac{27}{32}, 84.4 \%, 0.84375\right)$
(d) (i) recognizing Binomial distribution with correct parameters
$X \sim \mathrm{~B}(10,0.68)$
$(\mathrm{P}(X=5)=) 0.123$ (0.122940..., 12.3\%)
A1
(ii) $1-\mathrm{P}(X \leq 3)$ OR $\mathrm{P}(X \geq 4)$ OR $\mathrm{P}(4 \leq X \leq 10)$
0.984 (0.984497..., 98.4\%)

A1
(iii) $\quad(0.68)^{9} \times 0.32$
(M1)
recognition of two possible cases
$2 \times\left((0.68)^{9} \times 0.32\right)$
0.0199 (0.0198957..., 1.99\%)
(e) EITHER
the probability is not constant A1
OR
the events are not independent A1
OR
the events should be modelled by the hypergeometric distribution instead
5. (a) (i) $f^{\prime}(x)=\frac{-2 x}{50}+2\left(=\frac{-x}{25}+2,-0.04 x+2\right)$

A1A1

Note: Award $\mathbf{A 1}$ for each correct term. Award at most $\mathbf{A 0 A 1}$ if extra terms are seen.
(ii) $0=\frac{-x}{25}+2$ OR sketch of $f^{\prime}(x)$ with x-intercept indicated M1
$x=50$
A1
$y=80$
A1
$(50,80)$
Note: Award MOAOA1 for the coordinate $(50,80)$ seen either with no working or found from a graph of $f(x)$.
[5 marks]
(b)
(i) $\int_{0}^{70} \frac{-x^{2}}{50}+2 x+30 \mathrm{~d} x$

A1A1
Note: Award A1 for a correct integral, A1 for correct limits in the correct location. Award at most A0A1 if $\mathrm{d} x$ is omitted.
(ii) $\quad($ Area $=) 4710 \mathrm{~m}^{2}\left(4713.33 \ldots, \frac{14140}{3}\right)$
(c) (i) $\frac{11.4}{4713.33 \ldots} \times 100 \%$ OR $\quad\left|\frac{4701.93 \ldots-4713.33 \ldots}{4713.33 \ldots}\right| \times 100 \%$

Note: Award (M1) for their correct substitution into the percentage error formula.

$$
0.242 \% \quad(0.241867 \ldots \%)
$$

Note: Percentage sign is required. Accept $0.242038 \ldots \%$ if 4710 is used.
(ii) EITHER
reduce the width of the intervals (trapezoids) A1
OR
increase the number of intervals (trapezoids)
A1
Note: Accept equivalent statements. Award AO for the ambiguous answer "increase the intervals".
[3 marks]
continued...

Question 5 continued

(d) (i) width of the square is $70-x$ OR the length of the square is $\frac{-x^{2}}{50}+2 x+30$ (M1)
Note: Award (M1) for $70-x$ seen anywhere. Accept $\frac{-x^{2}}{50}+2 x+30$ but only if this expression is explicitly identified as a dimension of the square.
in term of x, equating the length to the width ED
$\frac{-x^{2}}{50}+2 x+30=70-x$
($x=14.7920 \ldots$ or 135.21)
($x=$) 14.8 m (14.7920...)
Note: Award MOMOAO for an unsupported answer of 15. Award at most M1M0AO for an approach which leads to $A^{\prime}(x)=0$. This will lead to a square base which extends beyond the east boundary of the property. Similar for any solution where F is not on the northern boundary, or GH is not on the east boundary.
(ii) EITHER
(70-14.7920...) $)^{2}$
(M1)
OR
(55.2079...) ${ }^{2}$

OR
$\left(\frac{-(14.7920 \ldots)^{2}}{50}+2(14.7920 \ldots)+30\right)^{2}$
THEN
(Area $=$) $3050 \mathrm{~m}^{2}$ (3047.92...)
Note: Follow through from part (d)(i), provided x is between 0 and 70 . Award at most M1A0 if their answer is outside the range of their [0, 4713.33...] from part (b).

Markscheme

May 2022

Mathematics: applications and interpretation

Standard level

Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2022
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2022
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\mathbf{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award A1 for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	0.468111... (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award AO for the final mark (and full FT is available in subsequent parts)

Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through ($\boldsymbol{F T}$) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate \boldsymbol{A} marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 e^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) (i) 0.58 (s) A1
(ii) $0.7-0.42$
(A1)(M1)
Note: Award $\boldsymbol{A 1}$ for correct quartiles seen, M1 for subtraction of their quartiles.
0.28 s

A1

[4 marks]
(b) 9 (people have reaction time ≤ 0.4) (A1)
31 (people have reaction time >0.4) A1 [2 marks]
(c) $(90 \% \times 40=) 36$ OR 4 (A1)
A1
[2 marks]
(d) (i) $\quad(a=) 6$ A1
(ii) $\quad(b=) 4$

A1
[2 marks]
(e) $0.6<t \leq 0.8$

A1
[1 mark]
(f) $\quad 0.55 \mathrm{~s}$
(g) the mean will increase
because the incorrect reaction times are moving from a lower interval to a higher interval which will increase the numerator of the mean calculation
the median will stay the same A1
because the median or middle of the data is greater than both intervals being changed
[2 marks]

A1

R1

Note: Do not award A1RO.
2. (a) (i) EITHER

$$
\begin{align*}
& 115.5=u_{1}+(3-1) \times d \quad\left(115.5=u_{1}+2 d\right) \\
& 108=u_{1}+(8-1) \times d \quad\left(108=u_{1}+7 d\right) \tag{M1}
\end{align*}
$$

Note: Award M1 for attempting to use the arithmetic sequence term formula, A1 for both equations correct. Working for M1 and A1 can be found in parts (i) or (ii).

$$
(d=-1.5)
$$

1.5 (cups/day)

Note: Answer must be written as a positive value to award A1.
OR

$$
(d=) \frac{115.5-108}{5}
$$

(M1)(A1)

Note: Award $\boldsymbol{M 1}$ for attempting a calculation using the difference between term 3 and term 8; $\boldsymbol{A 1}$ for a correct substitution.
($d=$) 1.5 (cups/day)
(ii) $\quad\left(u_{1}=\right) 118.5$ (cups)
A1
[4 marks]
(b) attempting to substitute their values into the term formula for arithmetic sequence equated to zero
$0=118.5+(n-1) \times(-1.5)$
($n=$) 80 days
Note: Follow through from part (a) only if their answer is positive.
(c) $\quad\left(t_{5}=\right) 625 \times 1.064^{(5-1)}$

Note: Award M1 for attempting to use the geometric sequence term formula; A1 for a correct substitution
\$ 801
A1
Note: The answer must be rounded to a whole number to award the final $\boldsymbol{A 1}$.

Question 2 continued

(d) (i) $\quad\left(S_{10}=\right)(\$) 8390$ (8394.39...)

A1
(ii) EITHER
the total cost (of dog food) R1
for 10 years beginning in 2021 OR 10 years before 2031 R1
OR
the total cost (of dog food) R1
from 2021 to 2030 (inclusive) OR from 2021 to (the start of) 2031 R1
[3 marks]
(e) EITHER

According to the model, the cost of dog food per year will eventually be too high to keep a dog.
OR
The model does not necessarily consider changes in inflation rate.
OR
The model is appropriate as long as inflation increases at a similar rate.
OR
The model does not account for changes in the amount of food the dog eats as it ages/becomes ill/stops growing.
OR
The model is appropriate since dog food bags can only be bought in discrete quantities.

Note: Accept reasonable answers commenting on the appropriateness of the model for the specific scenario. There should be a reference to the given context. A reference to the geometric model must be clear: either "model" is mentioned specifically, or other mathematical terms such as "increasing" or "discrete quantities" are seen. Do not accept a contextual argument in isolation, e.g. "The dog will eventually die".
3. (a) $\left(\frac{2+6}{2}, \frac{2+0}{2}\right)$
$(4,1)$
Note: Award $A 0$ if parentheses are omitted in the final answer.
(b) attempt to substitute values into gradient formula
$\left(\frac{0-2}{6-2}=\right)-\frac{1}{2}$
therefore the gradient of perpendicular bisector is 2
so $y-1=2(x-4) \quad(y=2 x-7)$

A1
[4 marks]
(c) identifying the correct equations to use:
$y=2-x$ and $y=2 x-7$
evidence of solving their correct equations or of finding intersection point graphically
(M1)
$(3,-1)$
A1
Note:Accept an answer expressed as " $x=3, y=-1$ ".
(d) attempt to use distance formula
$\mathrm{YZ}=\sqrt{(7-(-1))^{2}+(7-3)^{2}}$
$=\sqrt{80}(4 \sqrt{5})$
(e) METHOD 1 (cosine rule)
length of XZ is $\sqrt{80}(4 \sqrt{5}, 8.94427 \ldots)$
Note: Accept 8.94 and 8.9.
attempt to substitute into cosine rule
$\cos \mathrm{XY} \mathrm{Z}=\frac{80+32-80}{2 \times \sqrt{80} \sqrt{32}} \quad(=0.316227 \ldots)$
Note: Award $\boldsymbol{A 1}$ for correct substitution of $\mathrm{XZ}, \mathrm{YZ}, \sqrt{32}$ values in the cos rule.
Exact values do not need to be used in the substitution.
$(X \hat{Y} Z=) 71.6^{\circ} \quad\left(71.5650 \ldots{ }^{\circ}\right)$
Note: Last A1 mark may be lost if prematurely rounded values of XZ , YZ and/or XY are used.

Question 3 continued

METHOD 2 (splitting isosceles triangle in half)

length of XZ is $\sqrt{80}(4 \sqrt{5}, 8.94427 \ldots)$
Note: Accept 8.94 and 8.9.
required angle is $\cos ^{-1}\left(\frac{\sqrt{32}}{2 \sqrt{80}}\right)$
(M1)(A1)

Note: Award A1 for correct substitution of XZ (or YZ), $\frac{\sqrt{32}}{2}$ values in the cos rule.
Exact values do not need to be used in the substitution.
$(X \hat{Y} Z=) 71.6^{\circ}\left(71.5650^{\circ}\right)$
Note: Last A1 mark may be lost if prematurely rounded values of XZ, YZ and/or XY are used.
(f) $\quad($ area $=) \frac{1}{2} \sqrt{80} \sqrt{32} \sin 71.5650 \ldots \quad$ OR $\quad($ area $=) \frac{1}{2} \sqrt{32} \sqrt{72}$

$$
=24 \mathrm{~km}^{2}
$$

A1
[2 marks]
(g) Any sensible answer such as:

There might be factors other than proximity which influence shopping choices.
A larger area does not necessarily result in an increase in population.
The supermarkets might be specialized / have a particular clientele who visit even if other shops are closer.
Transport links might not be represented by Euclidean distances.
etc.
4. (a) (i) an attempt to find the amplitude

$$
\begin{aligned}
& \frac{61.8}{2} \text { OR } \frac{64.5-2.7}{2} \\
& (a=) 30.9 \mathrm{~m}
\end{aligned}
$$

Note: Accept an answer of ($a=$) -30.9 m .
(ii) $\quad\left(\right.$ period $\left.=\frac{60}{1.5}=\right) 40(\mathrm{~s})$
$\left((b=) \frac{360^{\circ}}{40}\right)$
($b=$) 9
Note:Accept an answer of $(b=)-9$.
(iii) attempt to find d

$$
\begin{aligned}
& (d=) 30.9+2.7 \text { OR } \quad \frac{64.5+2.7}{2} \\
& (d=) 33.6 \mathrm{~m}
\end{aligned}
$$

(b) 12×1.5 OR $\frac{12 \times 60}{40}$

18 (revolutions per ride)
(c) (i) $0 \leq t \leq 720$
(ii) $2.7 \leq h \leq 64.5$

Note: Award A1 for correct endpoints of domain and A1 for correct endpoints of range. Award $\boldsymbol{A 1}$ for correct direction of both inequalities.
(d) graph of $h(t)$ and $y=16.7 \quad$ OR $\quad h(t)=16.7$
6.31596... and 33.6840...
27.4 (s) (27.3680...)

Question 4 continued
(e) (i) d A1
(ii) EITHER
$d+30.9=65.2$
OR
$65.2-(61.8+2.7)=0.7$ (A1)
OR
3.4 (new platform height)
(A1)

THEN
 ($d=$) 34.3 m

5. (a) attempt to expand given expression
(M1)
$C=\frac{x k^{2}}{10}-\frac{3 x^{3}}{1000}$
$\frac{\mathrm{d} C}{\mathrm{~d} x}=\frac{k^{2}}{10}-\frac{9 x^{2}}{1000}$
M1A1

Note: Award M1 for power rule correctly applied to at least one term and A1 for correct answer.
[3 marks]
(b) equating their $\frac{\mathrm{d} C}{\mathrm{~d} x}$ to zero
(M1)
$\frac{k^{2}}{10}-\frac{9 x^{2}}{1000}=0$
$x^{2}=\frac{100 k^{2}}{9}$
$x=\frac{10 k}{3}$
(A1)
substituting their x back into given expression
$C_{\text {max }}=\frac{10 k}{30}\left(k^{2}-\frac{300 k^{2}}{900}\right)$
$C_{\text {max }}=\frac{2 k^{3}}{9}\left(0.222 \ldots k^{3}\right)$
(c) (i) substituting 20 into given expression and equating to 426
$426=\frac{20}{10}\left(k^{2}-\frac{3}{100}(20)^{2}\right)$
$k=15$
A1
(ii) 50

A1
[3 marks]
continued...

Question 5 continued
(d)

A1A1A1
Note: Award A1 for graph drawn for positive x indicating an increasing and then decreasing function, $\boldsymbol{A 1}$ for maximum labelled and $\boldsymbol{A 1}$ for graph passing through the origin and 86.6, marked on the x-axis or whose coordinates are given.
[3 marks]
(e) setting their expression for C to zero $\mathbf{O R}$ choosing correct x-intercept on their graph of C

$$
x_{\max }=86.6 \quad(86.6025 \ldots) \text { litres }
$$

Markscheme

May 2022

Mathematics: applications and interpretation

Standard level

Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2022
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2022
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies $\mathbf{A 3}, \boldsymbol{M} 2$ etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award $\boldsymbol{A 1}$ for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full $\boldsymbol{F T}$ is available in subsequent parts)

Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

4 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the $M R$ stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

6 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 e^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) EITHER
annual cycle for daylight length
R1
OR
there is a minimum length for daylight (cannot be negative)
R1
OR
a quadratic could not have a maximum and a minimum or equivalent
Note: Do not accept "Paula's model is better".
(b) (i) 4

A1
(ii) 12
(iii) $y=12$

A1A1
Note: Award A1 " $y=$ (a constant) " and A1 for that constant being 12.
(c) $\quad f(t)=-4 \cos (30 t)+12$ OR $f(t)=-4 \cos (-30 t)+12$

A1A1A1
Note: Award A1 for $b=30$ (or $b=-30$), A1 for $a=-4$, and A1 for $d=12$. Award at most A1A1A0 if extra terms are seen or form is incorrect. Award at most A1A1A0 if x is used instead of t.
(d) $10.5=-4 \cos (30 t)+12$

EITHER

$t_{1}=2.26585 \ldots, t_{2}=9.73414 \ldots$
(A1)(A1)
OR
$t_{1}=\frac{1}{30} \cos ^{-1} \frac{3}{8}$
$t_{2}=12-t_{1}$

THEN

9.73414...-2.26585...
7.47 ($7.46828 \ldots$) months ($0.622356 \ldots$ years)

Note: Award M1A1A1AO for an unsupported answer of 7.46. If there is only one intersection point, award M1A1A0A0.

Question 1 continued
(e) $\left|\frac{16-\left(16+\frac{14}{60}\right)}{16+\frac{14}{60}}\right| \times 100 \%$
(M1)(M1)

Note: Award $\boldsymbol{M} \mathbf{1}$ for correct values and absolute value signs, $\boldsymbol{M} \mathbf{1}$ for $\times 100$.
= 1.44\% (1.43737...\%)
2. (a) (i) 30 A1
(ii) 40
(b) arithmetic formula chosen
(i) $\quad w_{n}=20+(n-1) 10 \quad(=10+10 n)$

A1
(ii) $\quad l_{n}=30+(n-1) 10 \quad(=20+10 n)$

A1
[3 marks]
(c) (i) $740=30+(n-1) 10 \quad$ OR $740=20+10 n \quad$ M1
$n=72$
A1
144 tiles
AG
Note: The $\boldsymbol{A} \boldsymbol{G}$ line must be stated for the final $\boldsymbol{A 1}$ to be awarded.
(ii) $w_{72}=730$

A1
[3 marks]
(d) $(10 \times 20) \times 144$
$=28800$
(A1)
$2.88 \times 10^{4} \mathrm{~cm}^{2}$
A1
Note: Follow through within the question for correctly converting their intermediate value into standard form (but only if the pre-conversion value is seen).

Question 2 continued
(e) EITHER

1 square metre $=100 \mathrm{~cm} \times 100 \mathrm{~cm}$
(so, 50 tiles) and hence 10 packs of tiles in a square metre
(so each pack is $\frac{\$ 24.50}{10 \text { packs }}$)
OR
area covered by one pack of tiles is $(0.2 \mathrm{~m} \times 0.1 \mathrm{~m} \times 5=) 0.1 \mathrm{~m}^{2}$
24.5×0.1
THEN
$\$ 2.45$ per pack (of 5 tiles)
A1
[3 marks]
(f) $\frac{1.08 \times 144}{5}(=31.104)$
(M1)(M1)
Note: Award $\boldsymbol{M} \mathbf{1}$ for correct numerator, $\boldsymbol{M} \mathbf{1}$ for correct denominator.
32 (packs of tiles)
A1
[3 marks]
(g) $35+(32 \times 2.45)$
$\$ 113$ (113.4)
A1
[2 marks]
3. (a) (i) $\frac{370+472}{2}$

Note: This (M1) can also be awarded for either a correct Q_{3} or a correct Q_{1} in part (a)(ii).

$$
Q_{3}=421
$$

(ii) their part (a)(i) - their Q_{1} (clearly stated)

IQR $=(421-318=) 103$
(b) $\left(\mathrm{Q}_{3}+1.5(\mathrm{IQR})=\right) 421+(1.5 \times 103)$
$=575.5$
since $498<575.5$
R1
Netherlands is not an outlier A1
Note: The R1 is dependent on the (M1). Do not award R0A1.
(c) not appropriate ("no" is sufficient)

A1

as r is too close to zero / too weak a correlation
R1
[2 marks]
(d) (i) 6

A1
(ii) 4.5

A1
(iii) 4.5

A1

(e) (i) $r_{s}=0.683(0.682646 \ldots)$
(ii) EITHER
there is a (positive) association between the population size and the score

OR
there is a (positive) linear correlation between the ranks of the population size and the ranks of the scores (when compared with the PMCC of 0.249).
(f) lowering the top score by 20 does not change its rank so r_{s} is unchanged R1

Note: Accept "this would not alter the rank" or "Netherlands still top rank" or similar. Condone any statement that clearly implies the ranks have not changed, for example: "The Netherlands still has the highest score."
4. (a) (i) $\left(\frac{1}{2} \mathrm{AO} \mathrm{B}=\right) \arccos \left(\frac{4}{4.5}\right)=27.266 \ldots$
(M1)(A1)
$\mathrm{AO} \mathrm{B}=54.532 \ldots \approx 54.5^{\circ}(0.951764 \ldots \approx 0.952$ radians $)$
Note: Other methods may be seen; award (M1)(A1) for use of a correct trigonometric method to find an appropriate angle and then A1 for the correct answer.
(ii) finding area of triangle

EITHER

area of triangle $=\frac{1}{2} \times 4.5^{2} \times \sin (54.532 \ldots)$
Note: Award M1 for correct substitution into formula.
$=8.24621 \ldots \approx 8.25 \mathrm{~m}^{2}$
OR
$\mathrm{AB}=2 \times \sqrt{4.5^{2}-4^{2}}=4.1231 \ldots$
area triangle $=\frac{4.1231 \ldots \times 4}{2}$
$=8.24621 \ldots \approx 8.25 \mathrm{~m}^{2}$
finding area of sector
EITHER
area of sector $=\frac{54.532 \ldots}{360} \times \pi \times 4.5^{2}$
$=9.63661 \ldots \approx 9.64 \mathrm{~m}^{2}$

OR

area of sector $=\frac{1}{2} \times 0.9517641 . . \times 4.5^{2}$
$=9.63661 \ldots \approx 9.64 \mathrm{~m}^{2}$

THEN

area of segment $=9.63661 \ldots-8.24621 \ldots$
$=1.39 \mathrm{~m}^{2}$ (1.39040...)

A1
[8 marks]
continued...

Question 4 continued
(b) (i) $\pi \times 4.5^{2}$
$63.6 \mathrm{~m}^{2}\left(63.6172 \ldots \mathrm{~m}^{2}\right)$
(ii) METHOD 1

$$
\begin{aligned}
& 4 \times 1.39040 \ldots(5.56160) \\
& \text { subtraction of four segments from area of circle } \\
& =58.1 \mathrm{~m}^{2}(58.055 \ldots) \\
& \text { METHOD } 2 \\
& 4\left(0.5 \times 4.5^{2} \times \sin 54.532 \ldots\right)+4\left(\frac{35.4679}{360} \times \pi \times 4.5^{2}\right) \\
& =32.9845 \ldots+25.0707 \\
& =58.1 \mathrm{~m}^{2}(58.055 \ldots)
\end{aligned}
$$

(M1)
(c) sketch of $\frac{\mathrm{d} V}{\mathrm{~d} t}$ OR $\frac{\mathrm{d} V}{\mathrm{~d} t}=0.110363 \ldots$ OR attempt to find where $\frac{\mathrm{d}^{2} V}{\mathrm{~d} t^{2}}=0$ $t=1$ hour
(M1)
A1
[2 marks] [Total 15 marks]
5. (a) (let T be the number of passengers who arrive)

$$
\begin{aligned}
& (\mathrm{P}(T>72)=) \mathrm{P}(T \geq 73) \quad \text { OR } \quad 1-\mathrm{P}(T \leq 72) \\
& T \sim \mathrm{~B}(74,0.9) \text { OR } n=74 \\
& =0.00379(0.00379124 \ldots)
\end{aligned}
$$

Note: Using the distribution B $(74,0.1)$, to work with the 10% that do not arrive for the flight, here and throughout this question, is a valid approach.
(b) (i) 72×0.9
(ii) $n \times 0.9=72$

80
(c) METHOD 1

EITHER
when selling 74 tickets

	$T \leq 72$	$T=73$	$T=74$
Income minus compensation (I)	11100	10800	10500
Probability	$0.9962 \ldots$	$0.003380 \ldots$	$0.0004110 \ldots$

top row
A1A1
bottom row A1A1
Note: Award A1A1 for each row correct. Award A1 for one correct entry and $\boldsymbol{A} 1$ for the remaining entries correct.
$\mathrm{E}(I)=11100 \times 0.9962 \ldots+10800 \times 0.00338 \ldots+10500 \times 0.000411 \approx 11099 \quad$ (M1)A1

OR

income is $74 \times 150=11100$
(A1)
expected compensation is
$0.003380 \ldots \times 300+0.0004110 \ldots \times 600$ ($=1.26070 \ldots$...)
(M1)A1A1
expected income when selling 74 tickets is $11100-1.26070 \ldots$
$=11098.73$.. $(=\$ 11099)$

THEN

income for 72 tickets $=72 \times 150=10800$
so expected gain $\approx 11099-10800=\$ 299$

A1
continued...

Question 5 continued

METHOD 2

for 74 tickets sold, let C be the compensation paid out
$\mathrm{P}(T=73)=0.00338014 \ldots, \mathrm{P}(T=74)=0.000411098 .$.
A1A1
$\mathrm{E}(C)=0.003380 \ldots \times 300+0.0004110 \ldots \times 600(=1.26070 \ldots)$
(M1)A1A1
extra expected revenue $=300-1.01404 \ldots-0.246658 \ldots(300-1.26070 \ldots)$
(A1)(M1)
Note: Award A1 for the 300 and M1 for the subtraction.
$=\$ 299$ (to the nearest dollar)

METHOD 3

let D be the change in income when selling 74 tickets.

	$T \leq 72$	$T=73$	$T=74$
Change in income	300	0	-300

(A1)(A1)
Note: Award A1 for one error, however award A1A1 if there is no explicit mention that $T=73$ would result in $D=0$ and the other two are correct.

$$
\begin{array}{ll}
\mathrm{P}(T \leq 73)=0.9962 \ldots, \mathrm{P}(T=74)=0.000411098 \ldots & \text { A1A1 } \\
\mathrm{E}(D)=300 \times 0.9962 \ldots+0 \times 0.003380 \ldots-300 \times 0.0004110 & \text { (M1)A1A1 } \\
=\$ 299 & \text { A1 }
\end{array}
$$

Markscheme

November 2021

Mathematics: applications and interpretation

Standard level

Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2021
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2021
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General
Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies $\mathbf{A 3}, \boldsymbol{M} 2$ etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $\boldsymbol{A G}$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award $\boldsymbol{A 1}$ for the final mark (condone the incorrect further working)
2.	$\frac{35}{72}$	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full $\boldsymbol{F T}$ is available in subsequent parts)

Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the $M R$ stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate \boldsymbol{A} marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 e^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) (i) $\frac{560}{1280}\left(\frac{7}{16}, 0.4375\right)$

A1A1

Note: Award A1 for correct numerator, A1 for correct denominator.
(ii) $\frac{72}{1280}\left(\frac{9}{160}, 0.05625\right)$

A1A1
Note: Award A1 for correct numerator, A1 for correct denominator.
(iii) $\frac{153}{348}\left(\frac{51}{116}, 0.439655 \ldots\right)$

A1A1

Note: Award A1 for correct numerator, A1 for correct denominator.
(iv) $160+224+128+205+131$ OR $560+512-224$
(M1)
$\frac{848}{1280}\left(\frac{53}{80}, 0.6625\right)$
A1A1

Note: Award A1 for correct denominator (1280) seen, (M1) for correct calculation of the numerator, A1 for the correct answer.
(b) H_{0} : the variables are independent
H_{1} : the variables are dependent
A1
Note: Award A1 for both hypotheses correct. Do not accept "not correlated" or "not related" in place of "independent".
(c) 4

A1
[1 mark]
(d) (i) $\quad\left(\chi^{2}=\right) 23.3(23.3258 \ldots)$

A2
(ii) $0.000109(0.000108991 \ldots)$ OR 1.09×10^{-4} A1
(iii) EITHER
$23.3>13.277$ R1
OR
$0.000109<0.01$ R1

THEN

(there is sufficient evidence to accept H_{1} that) preferred device and age group are not independent

A1
Note: For the final A1 the answer must be in context. Do not award A1R0.
2. (a) $\frac{12669-12300}{12300} \times 100$

3\% A1
[2 marks]
(b) (i) $1.03 \quad$ A1

Note: Follow through from part (a).
(ii) $\left.\quad u_{n}=\right) 12300 \times 1.03^{n-1} \quad$ A1
(iii) $\quad\left(u_{11}=\right) 12300 \times 1.03^{10} \quad$ (M1)

16530 A1
Note: Answer must be to the nearest integer. Do not accept 16500 .
(c) $\quad\left(v_{n}=\right) 10380+600(n-1)$ OR $600 n+9780$

M1A1
Note: Award M1 for substituting into arithmetic sequence formula, A1 for correct substitution.
(d) $80 \times \frac{10}{2}(2(10380)+9(600))$
(M1)(M1)
Note: Award (M1) for multiplying by 80 and (M1) for substitution into sum of arithmetic sequence formula.
$\$ 10500000(\$ 10464000)$

A1
[3 marks]

Question 2 continued
(e) $12300 \times 1.03^{n-1}<10380+600(n-1)$ or equivalent

Note: Award $\boldsymbol{M 1}$ for equating their expressions from parts (b) and (c).

EITHER

graph showing $y=12300 \times 1.03^{n-1}$ and $y=10380+600(n-1)$
OR
graph showing $y=12300 \times 1.03^{n-1}-(10380+600(n-1))$
OR
list of values including, ($\left.u_{n}=\right) 17537$ and ($\left.v_{n}=\right) 17580$
OR
12.4953... from graphical method or solving numerical equality

Note: Award (M1) for a valid attempt to solve.

THEN

$(k=) 13 \quad$ A1 [3 marks]
(f) this will not guarantee enough places.

EITHER
A written statement that $u_{n}>v_{n}$, with range of n. R1
Example: "when $n=24$ (or greater), the number of applications will exceed the number of places again" (" $u_{n}>v_{n}, n \geq 24$ ").

OR
exponential growth will always exceed linear growth
Note: Accept an equivalent sketch. Do not award A1R0.
3. (a) (i) maximum $h=130$ metres

A1
A1
[2 marks]
(b) (i) $\quad(60 \div 12=) 5$ seconds

A1
(ii) $360 \div 5$
(M1)
Note: Award (M1) for 360 divided by their time for one revolution.

$$
=72^{\circ}
$$

(c) (i) (amplitude $=$) 40
(ii) $\quad\left(\right.$ period $\left.=\frac{360}{72}=\right) 5$

A1
[2 marks]
(d)

At least one minimum point labelled. Coordinates seen for any minimum points must be correct.
Correct shape with an attempt at symmetry and "concave up" evident as it approaches the minimum points. Graph must be drawn in the given domain.A1
continued...

Question 3 continued

4. (a) $\tan (\theta)=\frac{6}{10}$

$$
\begin{equation*}
(\theta=) 31.0^{\circ}\left(30.9637 \ldots{ }^{\circ}\right) \text { OR } 0.540(0.540419 \ldots) \tag{M1}
\end{equation*}
$$

(b) (i) $\quad(\mathrm{CV}=) 40 \tan (\theta) \quad \mathrm{OR} \quad(\mathrm{CV}=) 4 \times 6$

Note: Award (M1) for an attempt at trigonometry or similar triangles (e.g. ratios).
$(\mathrm{CV}=) 24 \mathrm{~m}$
(ii) $\quad(V=) \frac{1}{3} 80^{2} \times 24-\frac{1}{3} 60^{2} \times 18$

M1A1A1
Note: Award $\boldsymbol{M 1}$ for finding the difference between the volumes of two pyramids, $\boldsymbol{A} \mathbf{1}$ for each correct volume expression. The final $\boldsymbol{A 1}$ is contingent on correct working leading to the given answer.
If the correct final answer is not seen, award at most M1A1AO. Award MOA0AO for any height derived from $V=29600$, including 18.875 or 13.875 .

$$
(V=) 29600 \mathrm{~m}^{3}
$$

(c) METHOD 1
$\left(\frac{29600}{80}=\right) 370$ (days)
($370>366$) Joshua is correct
A1
(31
Note: Award AOAO for unsupported answer of "Joshua is correct". Accept $1.01 \ldots>1$ for the first $A 1$ mark.

METHOD 2

$$
80 \times 366=29280 \mathrm{~m}^{3} \text { OR } 80 \times 365=29200 \mathrm{~m}^{3} \quad \text { A1 }
$$

(29280 < 29600) Joshua is correct A1

Note: The second A1 can be awarded for an answer consistent with their result.

Question 4 continued
(d) height of trapezium is $\sqrt{10^{2}+6^{2}} \quad(=11.6619 \ldots)$
(M1)
area of trapezium is $\frac{80+60}{2} \times \sqrt{10^{2}+6^{2}} \quad(=816.333 \ldots)$
(M1)(A1)
$(S A=) 4 \times\left(\frac{80+60}{2} \times \sqrt{10^{2}+6^{2}}\right)+60^{2}$
Note: Award M1 for adding 4 times their (MNOP) trapezium area to the area of the (60×60) base.

$$
(S A=) 6870 \mathrm{~m}^{2}\left(6865.33 \mathrm{~m}^{2}\right)
$$

Note: No marks are awarded if the correct shape is not identified.
5. (a) (i) Let X be the random variable "distance from O ".

$$
\begin{aligned}
& X \sim \mathrm{~N}\left(10,3^{2}\right) \\
& \mathrm{P}(X<13)=0.841 \quad(0.841344 \ldots)
\end{aligned}
$$

(M1)A1
(ii) $\quad(\mathrm{P}(X>15)=) 0.0478(0.0477903)$

A1
[3 marks]
(b) $\mathrm{P}(X>15) \times \mathrm{P}(X>15)$
$=0.00228$ (0.00228391...)
(M1)
A1
[2 marks]
(c) $1-(0.8143)^{3}$
(M1)
A1
[2 marks]
(d) (i) METHOD 1
let Y be the random variable "number of points scored" evidence of use of binomial distribution
$Y \sim \mathrm{~B}(10,0.539949 \ldots)$
$(\mathrm{P}(Y \geq 5)=) 0.717$ (0.716650...).

METHOD 2

let Q be the random variable "number of times a point is not scored" evidence of use of binomial distribution $Q \sim \mathrm{~B}(10,0.460050 \ldots)$
$(\mathrm{P}(Q \leq 5)=) 0.717$ ($0.716650 \ldots)$
(ii) $\mathrm{P}(5 \leq Y<8)$
(M1)
0.628 ($0.627788 \ldots$...) A1

Note: Award M1 for a correct probability statement or indication of correct lower and upper bounds, 5 and 7.
(iii) $\frac{\mathrm{P}(5 \leq Y<8)}{\mathrm{P}(Y \geq 5)}\left(=\frac{0.627788 \ldots}{0.716650 \ldots}\right)$
0.876 ($0.876003 \ldots$) A1

Markscheme

May 2021

Mathematics: applications and interpretation

Standard level

Paper 2

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2021
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2021
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

Using the markscheme

1 General

Award marks using the annotations as noted in the markscheme eg M1, A2.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the $A G$ line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final $\boldsymbol{A 1}$ in the first part. Examples:

	Correct answer seen	Further working seen	Any FT issues?	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	No. Last part in question.	Award A1 for the final mark (condone the incorrect further working)
2.	35	$0.468111 \ldots$ (incorrect decimal value)	Yes. Value is used in subsequent parts.	Award $\boldsymbol{A O}$ for the final mark (and full FT is available in subsequent parts)

Implied marks

Implied marks appear in brackets e.g. (M1),and can only be awarded if correct work is seen or implied by subsequent working/answer.

Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

Mis-read

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread and do not award the first mark, even if this is an \boldsymbol{M} mark, but award all others as appropriate.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \boldsymbol{M} marks and intermediate A marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

8 Format and accuracy of answers

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \boldsymbol{A} mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, $\sqrt{\frac{25}{4}}$ should be written as $\frac{5}{2}$. An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, $\frac{10}{4}$ may be left in this form or written as $\frac{5}{2}$. However, $\frac{10}{5}$ should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. $4 e^{2 x} \times \mathrm{e}^{3 x}$ should be simplified to $4 \mathrm{e}^{5 x}$, and $4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}$ should be simplified to $3 \mathrm{e}^{5 x}$. Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so $x(x+1)$ and $x^{2}+x$ are both acceptable.

Please note: intermediate \boldsymbol{A} marks do NOT need to be simplified.

9 Calculators

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".

1. (a) convenience sampling
[1 mark]
(b) (i) 95%

A1
(ii) 1%

A1
(iii) 2%

A1
(iv) 98%
(c) (i) 0.95×0.02
0.019
(ii) $0.05 \times 0.01+0.95 \times 0.98$
(M1)(M1)
Note: Award $\boldsymbol{M} \mathbf{1}$ for summing two products and $\boldsymbol{M} \mathbf{1}$ for correct products seen.
0.932 (0.9315)

A1
(iii) recognition of conditional probability
$\frac{0.05 \times 0.01}{0.05 \times 0.01+0.95 \times 0.98}$
0.000537 (0.000536768...)

Note: Accept 0.000536 if 0.932 used.
(d) EITHER
sample may not be representative of population A1
OR
sample is not randomly selected

OR

unrealistic to think expected and observed values will be exactly equal

A1 A1
continued...

Question 1 continued

(e)

Note: Award A1 for rectangle and 3 labelled circles and 9 in centre region; A1 for 2, 40, 24; A1 for 18, 1, and 11.
(f) $18+9+1+11+2+40+24$

105
Note: Follow through from the entries on their Venn diagram in part (e). Working required for FT.
2. (a) use of cosine rule
$\mathrm{A} \hat{\mathrm{C}} \mathrm{B}=\cos ^{-1}\left(\frac{1005^{2}+1225^{2}-650^{2}}{2 \times 1005 \times 1225}\right)$
(b) use of sine rule
$\frac{\mathrm{DE}}{\sin 31.9980 \ldots .{ }^{\circ}}=\frac{210}{\sin 100^{\circ}}$
(c) METHOD 1
$180^{\circ}-\left(100^{\circ}+\right.$ their part (a)
(M1)
= 48.0019... OR 0.837791...
(A1)
substituted area of triangle formula
(M1)
$\frac{1}{2} \times 112.9937 \ldots \times 210 \times \sin 48.002^{\circ}$
$8820 \mathrm{~m}^{2}$ (8817.18...)
(A1)
A1

METHOD 2

$\frac{\text { CE }}{\sin (180-100-\text { their part }(a))}=\frac{210}{\sin 100}$
(M1)
($\mathrm{CE}=$) 158.472...
(A1)
substituted area of triangle formula

EITHER

$\frac{1}{2} \times 112.993 \ldots \times 158.472 \ldots \times \sin 100$
OR
$\frac{1}{2} \times 210 \ldots \times 158.472 \ldots \times \sin ($ their part (a))

THEN

$8820 \mathrm{~m}^{2}$ (8817.18...)

Question 2 continued

METHOD 3

$$
\begin{align*}
& \mathrm{CE}^{2}=210^{2}+112.993 \ldots{ }^{2}-(2 \times 210 \times 112.993 \ldots \times \cos (180-100-\text { their part }(a))) \text { (M1) } \\
& (\mathrm{CE}=) 158.472 \ldots \tag{A1}\\
& \text { substituted area of triangle formula } \\
& \\
& \\
& \begin{array}{l}
\text { (A1) } \\
\frac{1}{2} \times 112.993 \ldots \times 158.472 \ldots \times \sin 100 \\
\text { (M1) } \\
8820 \mathrm{~m}^{2}(8817.18 \ldots) \\
\end{array} \\
& \text { (A1) } \\
& \text { [5 marks] }
\end{align*}
$$

(d) 1005-210 OR 795
(A1)
equating answer to part (c) to area of a triangle formula (M1)
$8817.18 \ldots=\frac{1}{2} \times \mathrm{DF} \times(1005-210) \times \sin 48.002 \ldots$ 。
($\mathrm{DF}=$) 29.8 m (29.8473...)

A1
[4 marks]
3. (a) (i) recognition of arithmetic sequence with common difference 2 use of arithmetic sequence formula $14+2(20-1)$
52
(ii) use of arithmetic series formula
$\frac{14+52}{2} \times 20$
660
A1
[5 marks]
(b) $584+(584 \times 0.012) \quad$ OR $584 \times(1.012)^{1}$

591 (591.008)
Note: Award MOAO if incorrect r used in part (b), and $\boldsymbol{F T}$ with their r in parts (c) and (d).
(c) recognition of geometric sequence
equating their nth geometric sequence term to their 660
Note: Accept inequality.

METHOD 1

EITHER

$660=584 \times(1.012)^{x-1}$
A1
($x-1=$) 10.3 ($10.2559 \ldots$..)
$x=11.3$ (11.2559...)
A1
2030
A1

OR

$660=584 \times(1.012)^{x}$
A1
$x=10.3$ ($10.2559 \ldots$)
A1
2030 A1
continued...

Question 3 continued

METHOD 2

```
11 th term 658 (657.987...)
(M1)A1
12 th term 666 (665.883...)

Note: The last mark can be awarded if both their \(11^{\text {th }}\) and \(12^{\text {th }}\) correct terms are seen.
(d) 7 seen
(A1)

\section*{EITHER}
\(584\left(\frac{1.012^{7}-1}{1.012-1}\right)\)
multiplying their sum by 50

\section*{OR}
sum of the number of visitors for their \(r\) and their seven years
multiplying their sum by 50

\section*{OR}
\(29200\left(\frac{1.012^{7}-1}{1.012-1}\right)\)
(M1)(M1)

\section*{THEN}

212000 (211907.3...)
Note: Follow though from their \(r\) from part (b).
4. (a)


A1A1
Note: Award \(\boldsymbol{A 1}\) for a normal curve with mean labelled 6.1 or \(\mu, \boldsymbol{A 1}\) for indication of SD (0.5): marks on horizontal axis at 5.6 and/or 6.6 OR \(\mu-0.5\) and/or \(\mu+0.5\) on the correct side and approximately correct position.
(b) \(\quad X \sim \mathrm{~N}\left(6.1,0.5^{2}\right)\)
\(\mathrm{P}(5.5<X<6.5)\) OR labelled sketch of region
\(=0.673\) (0.673074...)
(c) \(\quad(\mathrm{P}(X<5.3)=) 0.0547992\)..
\(0.0547992 \ldots \times 80\)
\(=4.38\) (4.38393 ...)
(d) \(\quad 0.15 \quad\) OR \(\quad 0.85\)
\(\mathrm{P}(X>x)=0.15 \quad\) OR \(\quad \mathrm{P}(X<x)=0.85 \quad\) OR labelled sketch of region
6.62 ( \(6.61821 \ldots\) )
(e) \(\quad(\mathrm{P}(X>6.25)=) 0.382088 \ldots\)
(A1)
recognition of binomial
(M1)
e.g. \(\mathrm{B}(10,0.382088\)...)
0.0502 (0.0501768...)

A2
5. (a) evidence of splitting diagram into equilateral triangles
\[
\begin{aligned}
& \text { area }=6\left(\frac{1}{2} x^{2} \sin 60^{\circ}\right) \\
& =\frac{3 \sqrt{3} x^{2}}{2}
\end{aligned}
\]

Note:The \(\boldsymbol{A} \boldsymbol{G}\) line must be seen for the final \(\boldsymbol{A 1}\) to be awarded.
(b) total surface area of prism \(1200=2\left(3 x^{2} \frac{\sqrt{3}}{2}\right)+6 x h\)

Note: Award \(\boldsymbol{M 1}\) for expressing total surface areas as a sum of areas of rectangles and hexagons, and A1 for a correctly substituted formula, equated to 1200 .
\[
\begin{aligned}
& h=\frac{400-\sqrt{3} x^{2}}{2 x} \\
& \text { volume of prism }=\frac{3 \sqrt{3}}{2} x^{2} \times h \\
& =\frac{3 \sqrt{3}}{2} x^{2}\left(\frac{400-\sqrt{3} x^{2}}{2 x}\right) \\
& =300 \sqrt{3} x-\frac{9}{4} x^{3}
\end{aligned}
\]

Note:The \(\boldsymbol{A} \boldsymbol{G}\) line must be seen for the final \(\boldsymbol{A 1}\) to be awarded.
continued...

Question 5 continued
(c)


A1A1

Note: Award A1 for correct shape, A1 for roots in correct place with some indication of scale (indicated by a labelled point).
(d) \(\frac{\mathrm{d} V}{\mathrm{~d} x}=300 \sqrt{3}-\frac{27}{4} x^{2}\)

A1A1
Note: Award A1 for a correct term.
[2 marks]
(e) from the graph of \(V\) or \(\frac{\mathrm{d} V}{\mathrm{~d} x}\) OR solving \(\frac{\mathrm{d} V}{\mathrm{~d} x}=0\) \(x=8.77\) ( \(8.77382 \ldots\)...)
(M1)
A1
[2 marks]
continued...

Question 5 continued
(f) from the graph of \(V\) OR substituting their value for \(x\) into \(V\) (M1)
\[
V_{\max }=3040 \mathrm{~cm}^{3}(3039.34 \ldots) \quad \text { A1 }
\]

\section*{(g) EITHER}
wasted space / spheres do not pack densely (tesselate)
A1
OR
the model uses exterior values / assumes infinite thinness of materials and hence the modelled volume is not the true volume

\title{
Markscheme
}

\section*{May 2021}

\title{
Mathematics: applications and interpretation
}

\section*{Standard level}

\section*{Paper 2}

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-alicense/.
© Organisation du Baccalauréat International 2021
Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de I'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ ib-publishing/licensing/applying-for-a-license/.
© Organización del Bachillerato Internacional, 2021
Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales-, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/ applying-for-a-license/.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.
FT Follow through. The practice of awarding marks, despite candidate errors in previous parts, for their correct methods/answers using incorrect results.

\section*{Using the markscheme}

\section*{1 General}

Award marks using the annotations as noted in the markscheme eg M1, A2.

\section*{2 Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M} \operatorname{mark}(\mathrm{s})\), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, e.g. M1A1, this usually means \(\boldsymbol{M 1}\) for an attempt to use an appropriate method (e.g. substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where there are two or more \(\boldsymbol{A}\) marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies A3, M2 etc., do not split the marks, unless there is a note.
- The response to a "show that" question does not need to restate the \(\boldsymbol{A G}\) line, unless a Note makes this explicit in the markscheme.
- Once a correct answer to a question or part question is seen, ignore further working even if this working is incorrect and/or suggests a misunderstanding of the question. This will encourage a uniform approach to marking, with less examiner discretion. Although some candidates may be advantaged for that specific question item, it is likely that these candidates will lose marks elsewhere too.
- An exception to the previous rule is when an incorrect answer from further working is used in a subsequent part. For example, when a correct exact value is followed by an incorrect decimal approximation in the first part and this approximation is then used in the second part. In this situation, award FT marks as appropriate but do not award the final \(\boldsymbol{A 1}\) in the first part. Examples:
\begin{tabular}{|l|c|l|l|l|}
\hline & \begin{tabular}{l} 
Correct \\
answer seen
\end{tabular} & \begin{tabular}{l} 
Further \\
working seen
\end{tabular} & Any FT issues? & Action \\
\hline 1. & \(8 \sqrt{2}\) & \begin{tabular}{l}
\(5.65685 \ldots\) \\
(incorrect \\
decimal value)
\end{tabular} & \begin{tabular}{l} 
No. \\
Last part in question.
\end{tabular} & \begin{tabular}{l} 
Award \(\boldsymbol{A 1}\) for the final mark \\
(condone the incorrect further \\
working)
\end{tabular} \\
\hline 2. & \(\frac{35}{72}\) & \begin{tabular}{l}
\(0.468111 \ldots\) \\
(incorrect \\
decimal value)
\end{tabular} & \begin{tabular}{l} 
Yes. \\
Value is used in \\
subsequent parts.
\end{tabular} & \begin{tabular}{l} 
Award \(\boldsymbol{A O}\) for the final mark \\
(and full \(\boldsymbol{F T}\) is available in \\
subsequent parts)
\end{tabular} \\
\hline
\end{tabular}

\section*{Implied marks}

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or implied by subsequent working/answer.

\section*{4 Follow through marks (only applied after an error is made)}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) (e.g. incorrect value from part (a) used in part (d) or incorrect value from part (c)(i) used in part (c)(ii)). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if all the marks awarded in a subsequent part are for the answer or are implied, then FT marks should be awarded for their correct answer, even when working is not present.

For example: following an incorrect answer to part (a) that is used in subsequent parts, where the markscheme for the subsequent part is (M1)A1, it is possible to award full marks for their correct answer, without working being seen. For longer questions where all but the answer marks are implied this rule applies but may be overwritten by a Note in the Markscheme.
- Within a question part, once an error is made, no further \(\boldsymbol{A}\) marks can be awarded for work which uses the error, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks, by reflecting on what each mark is for and how that maps to the simplified version.
- If the error leads to an inappropriate value (e.g. probability greater than \(1, \sin \theta=1.5\), noninteger value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If the candidate's answer to the initial question clearly contradicts information given in the question, it is not appropriate to award any FT marks in the subsequent parts. This includes when candidates fail to complete a "show that" question correctly, and then in subsequent parts use their incorrect answer rather than the given value.
- Exceptions to these FT rules will be explicitly noted on the markscheme.
- If a candidate makes an error in one part but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the command term was "Hence".

\section*{Mis-read}

If a candidate incorrectly copies values or information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular misread. Use the \(M R\) stamp to indicate that this has been a misread and do not award the first mark, even if this is an \(\boldsymbol{M}\) mark, but award all others as appropriate.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (e.g. probability greater than \(1, \sin \theta=1.5\), non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- If a candidate uses a correct answer, to a "show that" question, to a higher degree of accuracy than given in the question, this is NOT a misread and full marks may be scored in the subsequent part.
- MR can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

\section*{Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If the command term is 'Hence' and not 'Hence or otherwise' then alternative methods are not permitted unless covered by a note in the mark scheme.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR.

\section*{Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation for example 1.9 and 1,9 or 1000 and 1,000 and 1.000 .
- Do not accept final answers written using calculator notation. However, \(\boldsymbol{M}\) marks and intermediate \(\boldsymbol{A}\) marks can be scored, when presented using calculator notation, provided the evidence clearly reflects the demand of the mark.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, some equivalent answers will generally appear in brackets. Not all equivalent notations/answers/methods will be presented in the markscheme and examiners are asked to apply appropriate discretion to judge if the candidate work is equivalent.

\section*{8 Format and accuracy of answers}

If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. If the level of accuracy is not stated in the question, the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

Where values are used in subsequent parts, the markscheme will generally use the exact value, however candidates may also use the correct answer to 3 sf in subsequent parts. The markscheme will often explicitly include the subsequent values that come "from the use of 3 sf values".

Simplification of final answers: Candidates are advised to give final answers using good mathematical form. In general, for an \(\boldsymbol{A}\) mark to be awarded, arithmetic should be completed, and any values that lead to integers should be simplified; for example, \(\sqrt{\frac{25}{4}}\) should be written as \(\frac{5}{2}\). An exception to this is simplifying fractions, where lowest form is not required (although the numerator and the denominator must be integers); for example, \(\frac{10}{4}\) may be left in this form or written as \(\frac{5}{2}\). However, \(\frac{10}{5}\) should be written as 2 , as it simplifies to an integer.

Algebraic expressions should be simplified by completing any operations such as addition and multiplication, e.g. \(4 e^{2 x} \times \mathrm{e}^{3 x}\) should be simplified to \(4 \mathrm{e}^{5 x}\), and \(4 \mathrm{e}^{2 x} \times \mathrm{e}^{3 x}-\mathrm{e}^{4 x} \times \mathrm{e}^{x}\) should be simplified to \(3 \mathrm{e}^{5 x}\). Unless specified in the question, expressions do not need to be factorized, nor do factorized expressions need to be expanded, so \(x(x+1)\) and \(x^{2}+x\) are both acceptable.

Please note: intermediate \(\boldsymbol{A}\) marks do NOT need to be simplified.

\section*{9 Calculators}

A GDC is required for this paper, but If you see work that suggests a candidate has used any calculator not approved for IB DP examinations (eg CAS enabled devices), please follow the procedures for malpractice.
10. Presentation of candidate work

Crossed out work: If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work unless an explicit note from the candidate indicates that they would like the work to be marked.

More than one solution: Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise. If the layout of the responses makes it difficult to judge, examiners should apply appropriate discretion to judge which is "first".
1. (a) Quota sampling
(b) 10 (hours)
(c) 15-7

A1
(M1)
[1 mark]

Note: Award M1 for 15 and 7 seen.
8
A1
[2 marks]
(d) indication of a valid attempt to find the upper fence
\(15+1.5 \times 8\)
27
A1
\(25<27\) (accept equivalent answer in words)
R1
Jason is correct A1

Note: Do not award R0A1. Follow through within this part from their 27, but only if their value is supported by a valid attempt or clearly and correctly explains what their value represents.
[4 marks]
(e) "negative" seen

Note: Strength cannot be inferred visually; ignore "strong" or "weak".
(f) correct substitution
\[
y=-1.54 \times 1.5+98.8
\]
96.5 (\%) (96.49)

A1
[2 marks]
(g) not reliable A1
extrapolation OR outside the given range of the data R1
Note: Do not award A1R0. Only accept reasoning that includes reference to the range of the data. Do not accept a contextual reason such as 1.5 hours is too short to read the book.

Question 1 continued
(h)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ Book } \\
\cline { 2 - 10 } & A & B & C & D & \(\mathbf{E}\) & F & G & H \\
\hline Rank - Number of pages & \(\mathbf{1}\) & 3 & 5 & 2 & 6 & 8 & 4 & 7 \\
\hline Rank - Top 50 Rating & \(\mathbf{1}\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{tabular}

Note: Award A1 for correct ranks for 'number of pages'. Award A1 for correct ranks for 'top 50 rating'.
(i) (i) 0.714 (0.714285...)

Note: FT from their table.
(ii) EITHER
there is a (strong/moderate) positive association between the number of pages and the top 50 rating.

OR
there is a (strong/moderate) agreement between the rank order of number of pages and the rank order top 50 rating.

OR
there is a (strong/moderate) positive (linear) correlation between the rank order of number of pages and the rank order top 50 rating.

Note: Follow through from their value of \(r_{s}\).
2. (a) \(4 \times \frac{360^{\circ}}{12}\) OR \(4 \times 30^{\circ}\)
(M1)
\(120^{\circ}\)
A1
[2 marks]
(b) substitution in cosine rule
\(\mathrm{AB}^{2}=10^{2}+6^{2}-2 \times 10 \times 6 \times \cos \left(120^{\circ}\right)\)
\(\mathrm{AB}=14 \mathrm{~cm}\)
Note: Follow through marks in part (b) are contingent on working seen.
(c) \(\theta=13 \times 6\)
\[
=78^{\circ}
\]
(d) substitution into the formula for arc length
\(l=\frac{78}{360} \times 2 \times \pi \times 10 \quad\) OR \(\quad l=\frac{13 \pi}{30} \times 10\)
\(=13.6 \mathrm{~cm}\left(13.6135 \ldots, 4.33 \pi, \frac{13 \pi}{3}\right)\)
(e) substitution into the area of a sector
\(A=\frac{78}{360} \times \pi \times 10^{2} \quad\) OR \(\quad l=\frac{1}{2} \times \frac{13 \pi}{30} \times 10^{2}\)
\(=68.1 \mathrm{~cm}^{2}\left(68.0678 \ldots, 21.7 \pi, \frac{65 \pi}{3}\right)\)
(f) 23
(M1)A1
A1
[2 marks]

> (M1)
[2 marks]
(M1)

A1
[3 marks]
-

A1
[1 mark]

Question 2 continued
(g) correct substitution
\(h=10 \cos \left(160^{\circ}\right)+13\)
\(=3.60 \mathrm{~cm}\) (3.60307...)
[2 marks]
(h) 10
(i) EITHER
\(10 \times \cos (\theta)+13=-10 \times \cos \left(\frac{\theta}{12}\right)+13\)
(M1)

OR
_,
(M1)
Note: Award \(\boldsymbol{M} \mathbf{1}\) for equating the functions. Accept a sketch of \(h(\theta)\) and \(g(\theta)\) with point(s) of intersection marked.

\section*{THEN}
\[
k=196^{\circ} \quad(196.363 \ldots)
\]

Note: The answer \(166.153 \ldots\) is incorrect but the correct method is implicit. Award (M1)AO.
[2 marks]
3. (a) EITHER
\(N=2\)
\(P V=-37000\)
\(I \%=6.4\)
\(P / Y=1\)
\(C / Y=4\)

Note: Award M1 for an attempt to use a financial app in their technology, award A1 for all entries correct.

OR
\(N=8\)
\(P V=-37000\)
\(I \%=6.4\)
\(P / Y=4\)
\(C / Y=4\)

Note: Award M1 for an attempt to use a financial app in their technology, award A1 for all entries correct.

OR
\(F V=37000 \times\left(1+\frac{6.4}{100 \times 4}\right)^{4 \times 2}\)
(M1)(A1)

Note: Award M1 for substitution into compound interest formula, (A1) for correct substitution.
\[
=42010 \text { AUD }
\]

Note: Award (M1)(A1)A0 for unsupported 42009.87.
(b) EITHER
\(P V=-37000\)
\(F V=50000\)
\(I \%=6.4\)
\(P / Y=1\)
\(C / Y=4\)
(M1)(A1)

Note: Award M1 for an attempt to use a financial app in their technology, award A1 for all entries correct. The final mark can still be awarded for the correct number of months (multiple of 3 ).

Question 3 continued
```

OR
$P V=-37000$
$F V=50000$
$I \%=6.4$
$P / Y=4$
$C / Y=4$
(M1)(A1)

```

Note: Award M1 for an attempt to use a financial app in their technology, award A1 for all entries correct.

\section*{OR}
\(50000<37000 \times\left(1+\frac{6.4}{100 \times 4}\right)^{4 \times n}\) OR \(\quad 50000<37000 \times\left(1+\frac{6.4}{100 \times 4}\right)^{n} \quad\) (M1)(A1)
Note: Award M1 for the correct inequality, 50000 and substituted compound interest formula. Allow an equation. Award A1 for correct substitution.

\section*{THEN}
\[
\begin{aligned}
& N=4.74 \text { (years) (4.74230...) OR } N=18.9692 \ldots \text { (quarters) } \\
& m=57 \text { months }
\end{aligned}
\]

Note: Award A1 for rounding their \(m\) to the correct number of months. The final answer must be a multiple of 3 . Follow through within this part.
(c) 150000 AUD

Question 3 continued
(d) (i) \(120 \times 1700-150000\)
\(=54000\) AUD A1
(ii) \(\quad N=120\)
\(P V=-150000\)
\(P M T=1700\)
\(F V=0\)
\(P / Y=12\)
\(C / Y=12\)

Note: Award \(\boldsymbol{M 1}\) for an attempt to use a financial app in their technology or an attempt to use an annuity formula or \(F V=0\) seen. If a compound interest formula is equated to zero, award \(\boldsymbol{M 1}\), otherwise award \(\boldsymbol{M O}\) for a substituted compound interest formula.
Award A1 for all entries correct in financial app or correct substitution in annuity formula, but award \(\boldsymbol{A O}\) for a substituted compound interest formula. Follow through marks in part (d)(ii) are contingent on working seen.
\[
r=6.46(\%)(6.45779 \ldots)
\]
(e) \(\quad N=60\)
\(I=6.46\) (6.45779...)
\(P V=-150000\)
\(P M T=1700\)
\(P / Y=12\)
\(C / Y=12\)
Note: Award \(\boldsymbol{M 1}\) for an attempt to use a financial app in their technology or an attempt to use an annuity formula. Award (M0) for a substituted compound interest formula. Award A1 for all entries correct. Follow through marks in part (e) are contingent on working seen.
\[
F V=86973 \text { AUD }
\]

A1
[3 marks]
(f) \(204000-(60 \times 1700+86973)\) OR 204000-188973

Note: Award M1 for \(60 \times 1700\). Award \(\boldsymbol{M 1}\) for subtracting their \((60 \times 1700+86973)\) from their (204000). Award at most M1M0 for their 204000 - ( \(60 \times 1700\) ) or MOMO for their 204000 - (86973). Follow through from parts (d)(i) and (e). Follow through marks in part (f) are contingent on working seen.

A1
4. (a) (i) evidence of correct probability
(ii) 0.0228 A1

Note: Answers should be given to 4 decimal place.
(b) (i) multiplying their probability by 1000 (M1) 451.7 A1
(ii) 510.5 A1
[3 marks]
Note: Answers should be given to 4 sf .
(c) \(\mathrm{H}_{0}\) : stopping distances can be modelled by \(\mathrm{N}\left(6.76,0.12^{2}\right)\)
\(\mathrm{H}_{1}\) : stopping distances cannot be modelled by \(\mathrm{N}\left(6.76,0.12^{2}\right)\) A1A1

Note: Award A1 for correct \(\mathrm{H}_{0}\), including reference to the mean and standard deviation. Award \(\boldsymbol{A} 1\) for the negation of their \(\mathrm{H}_{0}\).
(d) \(\quad 15.1\) or 22.8 seen
0.0727 ( \(0.0726542 \ldots, 7.27 \%\) ) A2
(e) \(0.05<0.0727\) R1
there is insufficient evidence to reject \(\mathrm{H}_{0}\) (or "accept \(\mathrm{H}_{0}\) ")
A1
Note: Do not award ROA1.
5. (a) (i) evidence of power rule (at least one correct term seen)
\[
\frac{\mathrm{d} y}{\mathrm{~d} x}=-0.3 x^{2}+1.6 x
\]
(ii) \(-0.3 x^{2}+1.6 x=0\)
\(x=5.33\left(5.33333 \ldots, \frac{16}{3}\right)\)
\[
y=-0.1 \times 5.33333 \ldots{ }^{3}+0.8 \times 5.33333 \ldots{ }^{2}
\]

Note: Award \(\boldsymbol{M} \mathbf{1}\) for substituting their zero for \(\frac{\mathrm{d} y}{\mathrm{~d} x}(5.333 \ldots)\) into \(y\).
\[
7.59 \text { m (7.58519...) }
\]

Note: Award MOAOMOAO for an unsupported 7.59.
Award at most M0A0M1A0 if only the last two lines in the solution are seen. Award at most M1A0M1A1 if their \(x=5.33\) is not seen.
[6 marks]
(b) \(\quad A=\frac{1}{2} \times 2((2.4+0)+2(6.4+7.2))\)
(A1)(M1)
Note: Award A1 for \(h=2\) seen. Award \(\boldsymbol{M 1}\) for correct substitution into the trapezoidal rule (the zero can be omitted in working).
\(=29.6 \mathrm{~m}^{2}\)

A1
[3 marks]
(c) (i) \(A=\int_{2}^{8}-0.1 x^{3}+0.8 x^{2} \mathrm{~d} x\) OR \(A=\int_{2}^{8} y \mathrm{~d} x\)

A1A1
Note: Award A1 for a correct integral, A1 for correct limits in the correct location. Award at most A0A1 if \(\mathrm{d} x\) is omitted.
(ii) \(A=32.4 \mathrm{~m}^{2}\)

Note: As per the marking instructions, \(\boldsymbol{F T}\) from their integral in part (c)(i).
Award at most A1FTA0 if their area is \(>48\), this is outside the constraints of the question (a \(6 \times 8\) rectangle).

\title{
Markscheme
}

\section*{Specimen paper}

\title{
Mathematics: applications and interpretation
}

\section*{Standard level}

\section*{Paper 2}

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a correct Method.
A Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
AG Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

1 General
Award marks using the annotations as noted in the markscheme eg M1, A2.

\section*{2 Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award MO followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, e.g. M1A1, this usually means \(\boldsymbol{M 1}\) for an attempt to use an appropriate method (e.g. substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where there are two or more \(\boldsymbol{A}\) marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies \(\boldsymbol{M 2}\), \(\boldsymbol{A}\) 3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct \(\boldsymbol{F T}\) working shown, award \(\boldsymbol{F T}\) marks as appropriate but do not award the final \(\boldsymbol{A 1}\) in that part.

\section*{Examples}
\begin{tabular}{|l|l|l|l|}
\hline & Correct answer seen & Further working seen & Action \\
\hline 1. & \(8 \sqrt{2}\) & \begin{tabular}{l}
\(5.65685 \ldots\) \\
(incorrect decimal value)
\end{tabular} & \begin{tabular}{l} 
Award the final \(\boldsymbol{A 1}\) \\
(ignore the further working)
\end{tabular} \\
\hline 2. & \(\frac{1}{4} \sin 4 x\) & \(\sin x\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline 3. & \(\log a-\log b\) & \(\log (a-b)\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline
\end{tabular}

\section*{Implied marks}

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{4 Follow through marks (only applied after an error is made)}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (i.e. there is no working expected), then FT marks should be awarded if appropriate.
- Within a question part, once an error is made, no further \(\boldsymbol{A}\) marks can be awarded for work which uses the error, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (e.g. probability greater than 1, use of \(r>1\) for the sum of an infinite GP, \(\sin \theta=1.5\), non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- Exceptions to this rule will be explicitly noted on the markscheme.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.

\section*{Mis-read}

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question
- If the question becomes much simpler because of the \(M R\), then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (e.g. probability greater than 1 , \(\sin \theta=1.5\), non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.
- The MR penalty can only be applied when work is seen. For calculator questions with no working and incorrect answers, examiners should not infer that values were read incorrectly.

\section*{6 Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.

\section*{\(7 \quad\) Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

8 Accuracy of Answers
If the level of accuracy is specified in the question, a mark will be linked to giving the answer to the required accuracy. There are two types of accuracy errors, and the final answer mark should not be awarded if these errors occur.
- Rounding errors: only applies to final answers not to intermediate steps.
- Level of accuracy: when this is not specified in the question the general rule applies to final answers: unless otherwise stated in the question all numerical answers must be given exactly or correct to three significant figures.

\section*{9 Calculators}

A GDC is required for this examination, but calculators with symbolic manipulation features/ CAS functionality are not allowed.

\section*{Calculator notation}

The subject guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.
1. (a) (i) \(\mathrm{N}=24\)
\(\mathrm{I} \%=14\)
\(\mathrm{PV}=-14000\)
\(\mathrm{FV}=0\)
\(\mathrm{P} / \mathrm{Y}=4\)
\(\mathrm{C} / \mathrm{Y}=4\)
(M1)(A1)
Note: Award \(\boldsymbol{M 1}\) for an attempt to use a financial app in their technology, award A1 for all entries correct. Accept PV \(=14000\).
(€)871.82 A1
(ii) \(4 \times 6 \times 871.82\)
(€) 20923.68
A1
(iii) 20923.68-14000
(€) 6923.68
(b) (i) \(0.9 \times 14000(=14000-0.10 \times 14000)\)
(€) 12600.00
(ii) \(\mathrm{N}=72\)
\(\mathrm{PV}=12600\)
PMT \(=-250\)
\(\mathrm{FV}=0\)
\(\mathrm{P} / \mathrm{Y}=12\)
\(\mathrm{C} / \mathrm{Y}=12\)
Note: Award M1 for an attempt to use a financial app in their technology, award A1 for all entries correct. Accept PV \(=-12600\) provided \(\mathrm{PMT}=250\).
12.56(\%)

A1
[5 marks]
continued...

Question 1 continued
(c) EITHER

Bryan should choose Option A
no deposit is required
Note: Award R1 for stating that no deposit is required. Award A1 for the correct choice from that fact. Do not award R0A1.

OR
Bryan should choose Option B
cost of Option A \((6923.69)>\) cost of Option B \((72 \times 250-12600=5400)\)
Note: Award R1 for a correct comparison of costs. Award A1 for the correct choice from that comparison. Do not award ROA1.
[2 marks]
(d) \(14000\left(1-\frac{25}{100}\right)^{6}\)
(M1)(A1)

Note: Award M1 for substitution into compound interest formula.
Award A1 for correct substitutions.
\(=2491.70\) (USD)
OR
\(\mathrm{N}=6\)
\(\mathrm{I} \%=-25\)
\(\mathrm{PV}= \pm 14000\)
\(\mathrm{P} / \mathrm{Y}=1\)
\(\mathrm{C} / \mathrm{Y}=1\)
Note: Award \(\boldsymbol{A 1}\) for \(\mathrm{PV}= \pm 14000, \boldsymbol{M 1}\) for other entries correct.
2491.70 (USD)
2. (a)


A1A1
Note: Award A1 for each correct pair of branches. Accept decimal or percentage responses as equivalent forms on branches.
(b) (i) \(\mathrm{P}(Y)=0.8 \times 0.1+0.2 \times 0.3\)
\[
=0.14
\]
(ii) \(\mathrm{P}(\operatorname{Star} \mid Y)=\frac{0.8 \times 0.1}{0.14}\)
\[
=0.571\left(\frac{4}{7}, 0.571428 \ldots\right)
\]

A1
[4 marks]
(c) the colours of the sweets are distributed according to manufacturer specifications

A1
[1 mark]
(d)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Colour & Brown & Red & Green & Orange & Yellow & Purple \\
\hline Expected Frequency & 12 & 20 & 16 & 16 & 8 & 8 \\
\hline
\end{tabular}

Note: Award A2 for all 6 correct expected values, A1 for 4 or 5 correct values, \(\boldsymbol{A} 0\) otherwise.
(e) 5

A1

A2
[2 marks]
continued...

Question 2 continued
(g) since \(0.469>0.05 \quad\) R1
fail to reject the null hypothesis. There is insufficient evidence to reject the manufacturer's specifications A1

Note: Award R1 for a correct comparison of their correct \(p\)-value to the test level, award A1 for the correct result from that comparison. Do not award R0A1.
3. (a) (i) \(0.909(0.909181 \ldots)\)

A2
(ii) (very) strong and positive

A1A1
Note: Award A1 for (very) strong A1 for positive.
(b) \(y=1.14 x+0.578(y=1.14033 \ldots x+0.578183 \ldots)\)

A1A1
Note: Award \(\boldsymbol{A 1}\) for \(1.14 x, \boldsymbol{A 1}\) for 0.578 . Award a maximum of \(\boldsymbol{A 1 A 0}\) if the answer is not an equation in the form \(y=m x+c\).
[2 marks]
(c) (i) \(1.14 \times 10+0.578\) M1
12.0 (11.9814...)

A1
(ii) no the estimate is not reliable A1
outside the known data range R1
OR
a score greater than 10 is not possible
R1
Note: Do not award A1RO.
(d)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Competitors & A & B & C & D & E & F & G & H \\
\hline Stan's rank & 7 & 8 & 6 & 4 & 2 & 4 & 1 & 4 \\
\hline Minsun's rank & 7 & 8 & 6 & 4.5 & 3 & 2 & 1 & 4.5 \\
\hline
\end{tabular}

Note: Award A1 for correct ranks for Stan. Award A1 for correct ranks for Minsun.
(e) (i) \(0.933(0.932673 \ldots)\)
(ii) Stan and Minsun strongly agree on the ranking of competitors.

Note: Award A1 for "strongly agree", A1 for reference to a rank order.
(f) decreasing the score to 9.1, does not change the rank of competitor G
4. (a) \(2(8 \times 4+3 \times 4+3 \times 8)\)
(b) \(\sqrt{8^{2}+4^{2}+3^{2}}\)
\((\mathrm{AG}=) 9.43(\mathrm{~cm})(9.4339 \ldots, \sqrt{89})\)
(c) \(-2 x+220=0\)
\(x=110\)
110000 (boxes)
(d) \(P(x)=\int-2 x+220 \mathrm{~d} x\)

Note: Award \(\boldsymbol{M 1}\) for evidence of integration.
\[
P(x)=-x^{2}+220 x+c
\]

Note: Award A1 for either \(-x^{2}\) or \(220 x\) award \(A 1\) for both correct terms and constant of integration.
\(1700=-(20)^{2}+220(20)+c\)
\(c=-2300\)
\(P(x)=-x^{2}+220 x-2300\)
(e) \(-x^{2}+220 x-2300=0 \quad\) M1
\(x=11.005\)
A1
11006 (boxes)
Note: Award \(\boldsymbol{M} \mathbf{1}\) for their \(P(x)=0\), award \(\mathbf{A 1}\) for their correct solution to \(x\).
Award the final \(\boldsymbol{A 1}\) for expressing their solution to the minimum number of boxes. Do not accept 11005 , the nearest integer, nor 11000 , the answer expressed to 3 significant figures, as these will not satisfy the demand of the question.
5. (a) (i) \(p(10)^{2}+q(10)=60\)
\(10 p+q=6(100 p+10 q=60)\)
(ii) \(p=1, q=-4\)

A1A1
Note: If \(p\) and \(q\) are both incorrect then award M1AO for an attempt to solve simultaneous equations.
(b) \((2,-4)\)

A1A1
Note: Award A1 for each correct coordinate.
Award A0A1 if parentheses are missing.
(c)

Distance (d)


Note: Award A1 for smooth quadratic curve on labelled axes and within correct window. Award \(\boldsymbol{A} 1\) for the curve passing through \((0,0)\) and \((10,60)\). Award \(\boldsymbol{A} 1\) for the curve passing through their vertex. Follow through from part (b).
(d) the graph indicates there are negative stopping distances (for low speeds)

Note: Award R1 for identifying that a feature of their graph results in negative stopping distances (vertex, range of stopping distances...).

Question 5 continued
(e) \(\begin{aligned} & 0.95 \times 20^{2}-3.92 \times 20 \\ & =302(\mathrm{~m})(301.6 \ldots)\end{aligned}\)
(M1)
A1
[2 marks]
(f) \(\quad\left|\frac{301.6-320}{320}\right| \times 100\)
\(=5.75(\%)\)
M1

A1
[2 marks]
(g) \(330=1.6 \times s+0.95 \times s^{2}-3.92 \times s\)

M1A1
Note: Award M1 for an attempt to find an expression including stopping distance (model B) and reaction distance, equated to 330 .
Award \(\mathbf{A 1}\) for a completely correct equation.
\(19.9\left(\mathrm{~ms}^{-1}\right)(19.8988 \ldots)\)```

