AS-Level

${\bf Topic: Probability}$

May 2013-May 2023

Answers

Question 1

(a) $P(W_2) = P(W_1W_2) + P(L_1W_2)$ = $0.3 \times 0.6 + 0.7 \times 0.15$ = 0.285	B1 M1		0.3×0.6 alone as num or denom of a fraction Attempt at $P(W_2)$ as sum of two 2-factor options seen anywhere
$P(W_1 W_2) = \frac{P(W_1 \cap W_2)}{P(W_2)} = \frac{0.18}{0.285}$	A1		Correct unsimplified $P(W_2)$ as num or denom of a fraction
$=0.632, \frac{12}{19}$	A1	[4]	Correct answer
(b) $x+4$ oe seen	B1		Seen anywhere
$\frac{10}{15} \times \frac{7}{x+4} = \frac{7}{18}$	M1		Mult two probabilities, one containing x and equating to $\frac{7}{18}$
x = 8	A1 A1	[4]	Correct unsimplified equation Correct answer

P(at least 2) = P(2, 3) or 1 - P(0, 1)	M1	Summing, or 1–, two different three-factor prob expressions, ${}_{3}\mathrm{C}_{2}$ not needed
$= \frac{5}{12} \times \frac{4}{11} \times \frac{7}{10} \times {}_{3}C_{2} + \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10}$	M1 M1	12, 11, 10 seen or implied in denominator Mult a prob by ${}_{3}C_{2}$ or ${}_{3}C_{1}$ oe
$=\frac{4}{11}(0.364)$	A1 [4]	Correct answer
OR $\frac{(_5C_3) + (_5C_2 \times _7C_1)}{_{12}C_3}$	M1	₅ C ₃ seen added in numerator
$_{12}\mathrm{C}_{3}$	M1	₅ C ₂ seen mult alone or in numerator
	M1	₁₂ C ₃ seen in denom
	A1	Correct answer

$$P(Q) = \frac{4}{36} \text{ or } P(S) = \frac{1}{2}$$

$$P(Q \cap S) = \frac{2}{36} \text{ or } P(S|Q) = \frac{1}{2} \text{ or}$$

$$P(Q|S) = \frac{2}{18}$$

$$P(Q \cap S) = P(Q) \times P(S) \text{ or}$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(Q|S) = \frac{2}{18}$$

$$P(Q \cap S) = P(Q) \times P(S) \text{ or}$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

$$P(S|Q) = P(S) \text{ or } P(Q|S) = P(Q)$$

(i)	$P(T,B) = \frac{5}{12} \times \frac{2}{10} = \frac{1}{12} (0.0833)$	M1 A1	[2]	Mult their $P(T)$ by $2/9$ or $2/10$ only Correct answer
(ii)	$P(C_S \cap C_A) = \frac{7}{12} \times \frac{4}{10} = \frac{28}{120} (0.2333)$	M1		Mult their $P(C_S)$ by 3/9 or 4/10 seen as num or denom of a fraction
	$P(C_A) = \frac{7}{12} \times \frac{4}{10} + \frac{5}{12} \times \frac{3}{10} = \frac{43}{120} (0.3583)$	M1		Summing 2 two-factor products to find $P(C_A)$ seen anywhere
	$P(C_S C_A) = \frac{P(C \cap C)}{P(C_A)} = \frac{28/120}{43/120}$	A1		Correct unsimplified $P(C_A)$ seen as num or denom of a fraction
	$=\frac{28}{43}(0.651)$	A1	[4]	Correct answer
(iii)	x 0 1 2 Prob 7/24 19/40 7/30	В1		x = 0, 1, 2, can be implied from table or working
	P(X=0) = P(T, B) + P(T, T)	M1		1 or 2 two-factor products, denoms 12 and 10 or 12 and 9, implied if ans is correct
	$= \frac{5}{12} \times \frac{2}{10} + \frac{5}{12} \times \frac{5}{10} = \frac{7}{24} (0.292)$	A1		One correct unsimplified
	$P(X=2) = P(C, C) = \frac{7}{12} \times \frac{4}{10} = \frac{28}{120} (0.233)$	B1		One other correct unsimplified
	$P(X=1) = 1 - 7/24 - 28/120 = \frac{19}{40} (0.475)$	B1ft	[5]	Third correct ft 1 – P(2 of their probs))

(i)	number of balls in B is 5+ P(Y) = $x/(x+6)$ AG	x+1=x+6	B1	[1]	Sensible reason
(ii)	box A	box B	В1		both correct for box A
	W _	$\frac{6}{x+6}$ W			
	8/10	<i>Y</i>	B1		1 correct
	2/10 Y	$\frac{5}{x+6}$ W	B1		1 correct
		PR			
	19	$\frac{x+1}{x+6}$ Y	B1	[4]	1 correct
(iii)	$P(W_B) = \frac{6}{x+6} = \frac{1}{3}$		M1		their $\frac{6}{x+6} = 1/3$ or $x/x+6 = 2/3$
	x = 12 AG		A1	[2]	Verification or solving legit
(iv)	$P(Y) = \frac{8}{10} \times \frac{12}{18} + \frac{2}{10} \times \frac{13}{18}$		M1		Attempt at P(, Y) involving 2 two-factor fractions, seen anywhere.
	$=\frac{61}{90}$		A1		Correct P(Y) seen as num or denom of a fraction
	$P(= (AY BY) = \frac{P(AY \cap P(Y))}{P(Y)}$ $= \frac{2}{10} \times \frac{13}{18} / \frac{61}{90}$	satpre	B1	0.	$(2/10) \times (13/18)$ seen as num or denom of a fraction
	$=\frac{13}{61}(0.213)$		A1	[4]	Correct answer

Ques	11011 0	1		
(i)	P(same) = P(1, 1) + P(3, 3) + P(5, 5)	M1		Summing 3 two-factor options
	$= \frac{2}{9} \times \frac{1}{8} + \frac{4}{9} \times \frac{3}{8} + \frac{3}{9} \times \frac{2}{8}$	M1		Multiplying terms by one less in the numerator or denominator
	=5/18(0.278)	A1	3	Correct answer
	Alt. method: $\frac{2C2+4C2+3C2}{9C2}$ or $\frac{2\times 1+3\times 4+2\times 3}{9C2\times 2}$ oe			M1 for numerator, M1 for denominator, A1 correct answer
(ii)	$P(5,\overline{5}) + P(\overline{5},5)$	M1 M1		Mult 2 probs whose numerators sum to 9 o.e. Summing 2 options or mult by 2 (may be 4 options)
	$= \frac{3}{9} \times \frac{6}{8} + \frac{6}{9} \times \frac{3}{8} = \frac{36}{72} = \frac{1}{2} \text{ or } 0.5$	A1	3	Correct answer
	Alt. method: $\frac{6C1 \times 3C1 (\times 2)}{9C2 (\times 2)} oe$			M1 for numerator, M1 for denominator, A1 correct answer
(iii)	$P(5 \cap \overline{5}) = \frac{3}{9} \times \frac{6}{8} = \frac{1}{4}$	M1		Attempt at P(5 and not 5) seen as numerator or denominator of a fraction
	$P(\overline{5}) = \frac{1}{4} + \frac{6}{9} \times \frac{5}{8} = 48/72 = 0.6666$	M1		Attempt at P(not 5) sum of 2 two-factor terms seen anywhere
	$P(5_1 \overline{5}_2) = \frac{1/4}{48/72} = 3/8$	A1		Correct P($\overline{5}$) as numerator or denominator in fraction
	= 0.375	A1	4	Correct answer
(iv)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1		Values 0, 1, 2 seen in table with at least 1 prob
	$P(0) = P(\overline{5}, \overline{5}) = \frac{6}{9} \times \frac{5}{8} = 30/72 $ (5/12) (0.4166)	B1		Correct P(0) unsimplified
	P(1) = 0.5 from part (ii)			
	P(2) = 6/72 (1/12) (0.0833) from part (i)	B1ft	3	If $x=0,1,2(,3)$ ft $\Sigma p = 1$, no -ve values, all probabilities <1

(i)	options (3, 4, 4,) or (4, 3, 4) or (4, 4, 3) Probs (4/10 × 6/9 × 5/8) ×3C1 = 360/720	M1 M1		Summing three 3-factor options oe $10 \times 9 \times 8$ seen in denom
	$= \frac{1}{2} AG$	A1	[3]	Correct answer
	$OR \frac{{}_{6}C_{2} \times_{4} C_{1}}{{}_{10}C_{3}} = \frac{1}{2} AG$	M1 M1 A1		One of 6C2 or 4C1 seen in num 10C3 in denom Correct answer
(ii)		B1	[4]	9, 10, 11, 12 only seen
sum Prob	9 10 11 12 24/720 216/720 360/720 120/720	B1		One correct prob other than P(11), with or without replacement
	$P(3, 3, 3) = 4/10 \times 3/9 \times 2/8 = 24/720 (1/30)$ $P(3, 3, 4) = 4/10 \times 3/9 \times 6/8 \times 3C1$	B1		Another correct prob
	= $216/720 (3/10)$ P(4, 4, 4) = $6/10 \times 5/9 \times 4/8 = 120/720(1/6)$	B1		Σ all 4 probs = 1
(iii)	$P(R) = 0.5 P(S) = 0.4 P(R \cap S) = 120/720$	B1 M1	[3]	$P(R \cap S) = 120/720 (1/6)$ Numerical attempt to compare $P(R \text{ and } S)$
	$P(R \cap S) = 120/720 \neq P(R) \times P(S)$ Not indep	A1ft		with $P(R) \times P(S)$ provided $P(R \cap S) \neq 1/5$ Correct conclusion ft wrong $P(R \cap S) \neq 1/5$, $P(S)$ correct
(iv)	$P(R \cap S) \neq 0$ or there is an overlap between R and S (34,4) Not exclusive $\sum xf/\sum f$	B1ft	[1]	Correct answer following correct reasoning ft wrong non zero $P(R \cap S)$

(i)
$$P(C \cap < 50) = 0.35 \times 0.2 = 0.07$$

B1 [1]

(ii) $P(C \mid < 50) = \frac{P(C \cap < 50)}{P(< 50)}$

M1 [4] Summing three 2-factor products seen anywhere (can omit the 1)

$$= \frac{0.35 \times 0.2}{0.25 \times 0.3 + 0.35 \times 0.2 + 0.4(\times 1)}$$

A1 0.545 (unsimplified) seen as num or denom of a fraction

$$= \frac{0.07}{0.545}$$

M1 Attempt at $P(C \cap < 50)$ as 2-factor prodonly seen as num or denom of a fraction

$$= 0.128 (14/109)$$

A1 Correct answer

C											
(i)	(i) if throw H then smallest score is 2 $P(T, 1) = 1/2 \times 1/4 = 1/8 \text{ AG}$					s 2		B1 B1	2	Or equivalent	
(ii)	(ii) P(3) from two dice = 2/16 seen					B1		From (1, 2) and (2, 1)			
P(H, 3) = $1/2 \times 2/16 = 2/32$ P(T, 3) = $1/2 \times 1/4 = 1/8$ So P(3) = $6/32 = 3/16$ AG		M1 A1 A1	4	Summing P(H, 3) and P(T, 3) One correct Correct answer must see clear reasoning							
(iii)											
X	1	2	3	4	5	6	7	8	B1		One correct prob
Prob		5/32		7/32		3/32			B1 B1	3	A second correct prob A third correct prob
(iv) $P(Q \cap R) = 0$ or 'if you throw a tail you can't get a 7'					ail y	ou	M1		Stating $P(Q \cap R) = 0$ or implying by words		
	Y	es they	are	exclusi	ve				Aldep	2	Dep on previous M
Ques	tion	10							ı		
either 55/90 (11/18) or 95/160 (19/32) seen									B1		oe
		118 – 6		0.6 × 3	55/9	0			M1		0.6 mult by 55/90 seen as num / denom

either 55/90 (11/18) or 95/160 (19/32) seen	B1	oe
$P(M \text{ and } 18 - 60) = 0.6 \times 55/90$ = 0.367 (11 / 30)	M1	0.6 mult by 55/90 seen as num / denom of a fraction
$P(18-60) = 0.6 \times 55/90 + 0.4 \times 95/160$ (= 29/48 or 0.604)	M1	Summing 2 two-factor products seen anywhere
$P(M \mid 18 - 60) = \frac{P(M \cap 18 - 60)}{P(18 - 60)}$	Al C	Correct unsimplified answer seen as num/denom of a fraction
= 88/145 (0.607)	A1 5	Correct answer

(i)	$P(B \text{ champ}) = 0.7 \times 0.7 = 0.49$	B1	1	
(ii)	P (B champ) = $P(WW) + P(WLW) + P(LWW)$ = $(0.7 \times 0.7) + (0.7 \times 0.3 \times 0.7) +$ $(0.3 \times 0.7 \times 0.7)$	M1		Summing at least 2 options, at least one of which is 3-factor
	= 0.49 + 0.147 + 0.147	B1		0.147 seen, unsimplified
	=0.784	A1	3	Correct answer
(iii)	$P(T2 T) = \frac{P(T2 \cap T)}{P(T)}$	M1		Attempt P(T2∩T) seen anywhere sum of 2 terms
	$= \frac{0.3 \times 0.3 + 0.7 \times 0.3 \times 0.3}{0.216}$ $= 0.708$	A1 M1 A1	4	Correct unsimplified num of a fraction Dividing by their $(1 - (ii))^{h}$ oe Correct answer

(i)	$P(RR) = 0.6 \times 0.7 = 0.42$ $P(AA) = 0.4 \times 0.75 = 0.3$ P(2 sets in match) = 0.72	B1 B1 B1√	3	Only 2 factors Only 2 factors ft previous answers
(ii)	$\frac{P(A \text{ wins and } 2 \text{ sets})}{P(2 \text{ sets})} = \frac{P(AA)}{P(2 \text{ sets})}$ $= \frac{0.3}{0.72} = \frac{5}{12} (0.417)$	B1√ B1√	2	Correct num or correct denom of a fraction ft their (i) Correct answer ft their or recovered AA/their or recovered (i)

(i) $P(X \text{ and } P) = \frac{1}{4} \times \frac{4}{9} = \frac{1}{9}$	M1		Mult a playground prob with a P prob
$P(Y \text{ and } P) = \frac{1}{4} \times \frac{2}{12} = \frac{1}{24}$	A1		One correct prob
$P(Z \text{ and } P) = \frac{1}{2} \times \frac{1}{16} = \frac{1}{32}$	M1		Summing at least two 2-factor probs
$P(P) = \frac{53}{288} = 0.184$	A1	4	Correct answer
(ii) $P(Y \mid C) = \frac{P(Y \cap C)}{P(C)}$	M1		Attempt at $P(Y \cap C)$ as numerator of a fraction
$\frac{\frac{1}{4} \times \frac{1}{12}}{\frac{1}{4} \times \frac{1}{12} + \frac{1}{2} \times \frac{4}{16}}$	M1		Attempt at $P(C)$ in form of summing two 2-factor products, seen anywhere
$\frac{1}{4} \times \frac{1}{12} + \frac{1}{2} \times \frac{4}{16}$	A1	G ^C	Correct unsimplified $P(C)$ seen anywhere
$=\frac{\frac{1}{48}}{\frac{7}{48}}=\frac{1}{7}$	A1	4	Correct answer

(a) (i) P(X=3) = P(GRR) + P(RGR)2 2 1 2 2 1

$$\frac{2}{4} \times \frac{2}{3} \times \frac{1}{2} + \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}$$

$$\frac{1}{3}$$
 AG

M1 Mult 3 probs

M1 Summing 2 options

A1 3 Correct working with appropriate justification

and fraction sequencing

(ii)

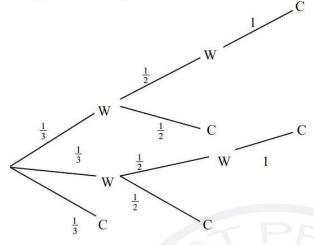
X	2	3	4
Prob	$\frac{1}{6}$	1/3	$\frac{1}{2}$

$$P(X=2) = P(RR) = \frac{2}{4} \times \frac{1}{3} = \frac{1}{6}$$

$$P(X=4) = 1 - \left(\frac{1}{6} + \frac{1}{3}\right) = \frac{1}{2}$$

Or P(GGRR) + P(RGGR) + P(GRGR)

$$= \left(\frac{2}{4} \times \frac{1}{3} \times \frac{2}{2} \times \frac{1}{1}\right) \times 3 = \frac{1}{2}$$


Values 2, 3, 4 only in table Condone X=0,1 if P(X)=0 stated

B1 One correct prob other than (i)

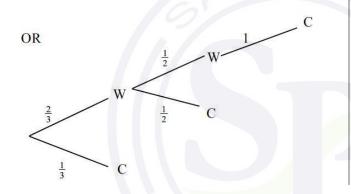
B1√ 3 Second correct prob ft 1 – their previous 2 probs

$P(3O at least 2O) = \frac{5}{11}$	A1	4	Answer evaluated
P(at least 2O) = $\frac{5}{7} \times \frac{5}{7} \times \frac{2}{7} \times {}^{3}C_{2} + \left(\frac{5}{7}\right)^{3}$	M1 A1		Attempt at P(at least 2O) sum of 3 or 4 t factor options Correct unsimplified seen anywhere
Misread – with replacement MR–1 applied to first Accuracy Mark earned $P(3O) = \frac{5}{7} \times \frac{5}{7} \times \frac{5}{7} = \frac{125}{343}$	M1 A1		Attempt at P(OOO) one three factor optinot added Correct unsimplified num of a fraction
P(3O at least 2O) = $\frac{{}^{2}C_{0}}{{}^{2}C_{1} + {}^{2}C_{0}} = \frac{1}{3}$	A1 A1	5	Correct unsimplified answer seen anywle Correct answer evaluated
No more than 1 Yellow = ${}^{2}C_{1} + {}^{2}C_{0}$	M1	.0	Attempt at combinations for no more the yellow. Condone omission of +2C0
$\frac{\text{Alternative 2}}{\text{No Yellow}} = {}^{2}\text{C}_{0}$	M1 A1		Attempt at combinations for 0 yellow of added Correct unsimplified num of a fraction
P(3O at least 2O) = $\frac{{}^{5}C_{3}}{{}^{5}C_{2} \times {}^{2}C_{1} + {}^{5}C_{3}} = \frac{1}{3}$	A1 A1	5	Correct unsimplified answer seen anywle Correct answer evaluated
At least 2 Orange = ${}^5C_2 \times {}^2C_1 + {}^5C_3$	M1		Attempt at combinations for at least 2 or condone omission of +5C ₃
	A1		added Correct unsimplified num of a fraction
Alternative 1 $\overline{3}$ Orange = ${}^{5}C_{3}$	M1		Attempt at combinations for 3 orange of
7 $P(30 \mid \text{at least 2O}) = \frac{2}{7} \div \frac{6}{7} = \frac{1}{3}(0.333)$	A1	5	Correct answer evaluated
$= \frac{2}{7} \times \frac{5}{6} \times \frac{4}{5} + \frac{5}{7} \times \frac{2}{6} \times \frac{4}{5} + \frac{5}{7} \times \frac{4}{6} \times \frac{2}{5} + \frac{2}{7}$ $= \frac{6}{7}$	M1		Attempt at P(at least 2O) sum 3 or 4 threfactor options Correct unsimplified answer seen anywl
$P(OOY) + \frac{2}{7}$			
$= \frac{5}{7} \times \frac{4}{6} \times \frac{3}{5} = \frac{2}{7}$ $P(\text{at least 2O}) = P(\text{YOO}) + P(\text{OYO}) + P($	A1		Correct unsimplified num of a fraction
P(3 orange) = P(OOO)	M1		Atttempt at P(OOO) one three-factor op not added
P(at least 2O)			

4 (i) W = wrong, C = correct

M1 3 branches first qn and 2 by 2 for second qn only

M1 One branch twice for third qn or two branches twice with 0 and 1 seen on branches


B1 Any two of $\frac{1}{3}$, $\frac{1}{2}$ and 1 seen as probs

A1 4 Probs all correct and sensible labels NB SR for 4 outcomes instead of 3, M1 B1 only

M1 2 branches first qn and 1 by 2 for second qn only

M1 One branch once for third qn or two branches with 0 and 1 seen on branches

Any two of $\frac{1}{3}$ or $\frac{2}{3}$, $\frac{1}{2}$ and 1 seen as probs Probs all correct and sensible labels

(ii)

X	1	2	3
Prob	1	1	Salpre

$$P(1) = P(C) \text{ say } = \frac{1}{3}$$

$$P(2) = P(WC) = \frac{1}{6} \quad P(WC) = \frac{1}{6} \text{ total } P(2)$$

$$= \frac{1}{3}$$

$$P(3) = P(WWC) = \frac{1}{6} P(WWC) =$$

$$\frac{1}{6} \text{ total } P(3) = \frac{1}{3}$$

 $E(X) = 1 \times \frac{1}{3} + 2 \times \frac{1}{3} + 3 \times \frac{1}{3} = 2$

B1 1, 2, 3 seen only oe

B1

A1

B1

B₁

2 correct probs

3 correct probs

B1 $\sqrt[4]{4}$ Correct answer ft their probs provided $0.999 \le \Sigma p \le 1$

$$P(8) = P(H 44) + P(T 24) + P(T 42)$$

$$= \frac{1}{3} \times \frac{1}{16} + \frac{2}{3} \times \frac{1}{16} + \frac{2}{3} \times \frac{1}{16}$$

$$= \frac{5}{48}$$

$$= \frac{5}{48}$$

$$P(H | 8) = \frac{P(H \cap 8)}{P(8)}$$

$$= \frac{\frac{1}{48}}{\frac{5}{48}} = \frac{1}{5}$$

$$A1 = \frac{1}{48} \text{ oe seen as num or denom of a fraction}$$

$$A1 = \frac{1}{48} \text{ oe seen as num or denom of a fraction}$$

$$A1 = \frac{1}{48} \text{ oe seen as num or denom of a fraction}$$

$$A1 = \frac{1}{48} \text{ oe seen as num or denom of a fraction}$$

$$A1 = \frac{1}{48} \text{ oe seen as num or denom of a fraction}$$

$$A1 = \frac{1}{48} \text{ oe seen as num or denom of a fraction}$$

(i)							All values may be decimals or %
		Kitchen mess	Kitchen not mess	Total	В1		2 probabilities correct
	On time	1/10	1/10		B1		2 further probabilities correct
	Not on time	1/2		4/5			
	Total	3/5	4/10	y	B1	[3]	2 further probabilities correct
(ii)	P(not on time given kitchen mess) = $\frac{1/2}{3/5}$ = 5/6 o.e.					[2]	A cond prob fraction seen (using corresponding combined outcomes and total) FT from their values, 3sf or better, <1, 3/5ft<1

(i)	P(2Es 1O) = $\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times {}^{3}C_{2} = \frac{3}{5}$ (0.6) OR P(2Es 1O) = $\frac{{}^{3}C_{2} \times {}^{2}C_{1}}{{}^{5}C_{3}} = \frac{6}{10}$	M1 M1 A1 3	$5\times4\times3$ seen in denom Mult a prob by ${}^{3}C_{2}$ oe Correct answer ${}^{3}C_{x}$ or ${}^{y}C_{2}$ or ${}^{2}C_{1}$ oe seen mult by $k \ge 1$ in num	
	= 0.6	M1 A1	⁵ C ₃ seen in denom Correct answer	
	OR 241, 247, 261, 267, 461, 467 = 6 options 124 126 127 146 147 167 246 247 267 467 Prob = 6/10	M1 M1	List at least 3 of 241, 247, 261, 267, 461, 467 5C_3 or list to get all 10 options in denom see below Correct answer	
(ii)	124 126 127 146 147 167 246 247 267 467 s 1 2 4 P(S = s) 6/10 3/10 1/10	M1 A1 B1 B1 B1	Attempt at listing with at least 7 correct All correct and no others or all 60 1, 2, 4 only seen in top row Any two correct All correct	

Question 19

(ii)
$$(1-x)0.9 + x \times 0.24 = 0.801$$

$$x = 0.15$$
(iii)
$$P(\geqslant 100 \text{ times given } \leqslant 3 \text{ views})$$

$$P(\geqslant 100 \text{ times } \cap \geqslant 3 \text{ views})$$

$$P(\geqslant 3 \text{ views})$$

$$\frac{P(\geqslant 100 \text{ times } \cap \geqslant 3 \text{ views})}{P(\geqslant 3 \text{ views})} =$$

$$\frac{0.85 \times 0.1}{0.85 \times 0.1 + 0.15 \times 0.76 \text{ or } 1 - 0.801}$$

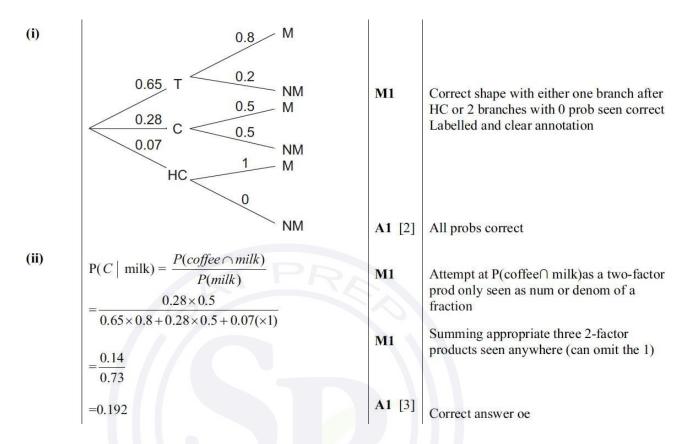
$$= 0.427$$
M1 Eqn with sum of two 2-factor probs = 0.801
Correct equation
Correct answer

M1 0.85 \times 0.1 seen on its own as num or denom of a fraction
A1 (0.85 \times p_1 + 0.15 \times p_2) \text{ or } 1 - 0.801
seen anywhere
Correct unsimplified $P(\geqslant 3 \text{ views})$ as num or denom of a fraction
Correct answer

(i)	$P(A) = \frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{1}{3} = \frac{4}{9}$ $P(B) = \frac{27}{36} = \frac{3}{4}$	M1 M1 B1 M1	Sensible attempt at $P(A)$ Sensible attempt at $P(B)$ correct $P(A \cap B)$ Cf $P(A \cap B)$ with $P(A) \times P(B)$ need at least 1 correct
	$P(A \cap B) = \frac{12}{36} = \frac{1}{3}$ $P(A) \times P(B) = \frac{4}{9} \times \frac{3}{4} = \frac{1}{3}$ Independent as $P(A \cap B) = P(A) \times P(B)$	A1 [5]	Correct conclusion following all correct working
(ii)	Not mutually exclusive because $P(A \cap B)$ $\neq 0$ Or give counter example e.g. 1 and 6	B1√ [1]	ft their $P(A \cap B)$

	Of give counter example e.g. 1 and 6						
Ques	Question 22						
(i)	$P(S) = \frac{3}{16}$ $P(T) = \frac{4}{16}$	M1		Sensible attempt at P(S)			
	$P(T) = \frac{4}{16}$	M1		Sensible attempt at $P(T)$			
	$\mathbf{p}(\mathbf{SOT}) = \frac{2}{2}$	B1		Correct $P(S \cap T)$			
	$P(S \cap T) = \frac{2}{16}$ $P(S) \times P(T) = \frac{3}{64} \neq \frac{2}{16}$	M1		comp $P(S) \times P(T)$ with $P(S \cap T)$ (their			
	$F(3) \wedge F(1) = \frac{1}{64} + \frac{1}{16}$	1411		values), evaluated values			
	Not independent	A1	5	Correct conclusion following all correct working			
(ii)	not exclusive since $P(S \cap T) \neq 0$ Or counter example e.g. 1 and 3			FT their $P(S \cap T)$, not obtained from $P(S) \times P(T)$, with value and statement.			
	Or $P(SUT) \neq P(S) + P(T)$ with values	B1 [∧]	1				

(i)	$P(X) = \frac{20}{28} \left(\frac{5}{7}\right) (0.714), 71.4\%$	B1	1	oe
(ii)	$P(F) = \frac{20}{28} \times \frac{1}{4} \times \frac{8}{28} \times \frac{6}{10} = \frac{7}{20}$	M1		Summing two 2-factor probs created by One of ½ or ¾ multiplied by 20/28 or 8/28
		A1	2	Added to $4/10$ or $6/10 \times$ altn population prob Correct answer
(iii)	$P(X F) = \frac{5/28}{7/20} = \frac{25}{49}(0.510)$	M1		Their unsimplified country X probability (5/28) as num or denom of a fraction Or (their fair hair population) ÷ (total fair hair pop)
	TPR	A1	2	Correct answer


Question 24

(i)	$\frac{1}{4}$	B 1	1	
(ii)	$\left(\frac{3}{4}\right)^4 \left(\frac{1}{4}\right) = \frac{81}{1024} = 0.0791$	M1 A1	2	Expression of form $p^4(1-p)$ only, p = 1/4 or $3/4Correct answer$
(iii)	P(all diff) = $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times 4!$ = $\frac{3}{32}$ (0.0938) OR $1 \times \frac{3}{4} \times \frac{2}{4} \times \frac{1}{4} = \frac{3}{32}$	M1 M1 A1	3	4! on numerator seen mult by $k \ge 1$ or $3 \times 2 \times 1$ on num oe, must be in a fraction. 4^4 on denom or 4^3 on denom with the $3 \times 2 \times 1$ Correct answer

(i)	P(Abroad given camping) $= \frac{P(A \cap C)}{P(A \cap C) + P(H \cap C)}$ $= \frac{0.35 \times 0.15}{0.35 \times 0.15 + 0.65 \times 0.4}$ $= \frac{0.0525}{0.3125}$	M1 A1 M1 A1		Attempt at $P(A \cap C)$ seen alone anywhere Correct answer seen as num or denom of a fraction Attempt at $P(C)$ seen anywhere Correct unsimplified answer seen as num or denom of a fraction
	= 0.168	A1	5	Correct answer
(ii)	$(0.65)^{n} < 0.002$	M1		Eqn with 0.65 or 0.35, power <i>n</i> , 0.002 or 0.998
	$n > \lg (0.002)/\lg (0.65)$	M1		Attempt to solve their eqn by logs or trial and error need a power
	n=15	A1	3	Correct answer

(i)	$P(R) [(1, 4), (2,5), (3,6), (4,7), (5,8)] \times 2/64$ = 10/64	M1 A1	2	List of at least 4 different options or possibility space diagram Correct answer
(ii)	$P(S) = [(3,8)(3,7)(4,8)(4,7)(4,6)(4,5)(5,8) (5,7)(5,6)(6,8)(6,7)(7,8)] \times 2 + (5,5)(6,6)(7,7)(8,8) = 28/64$	M1	2	List of at least 14 different options or ticks oe from possibility space Correct answer
(iii)	$P(R \cap S) = 4/64$ $4/64 \neq 10/64 \times 28/64$ Events are not independent	B1 M1	3	Comparing their $P(R \cap S)$ with (i) ×(ii) with values Correct answer

(i)		Wears specs	Not wears specs	Total			
	RH	6	19	25	B1		One correct row or col including total
	Not RH	2	3	5			other than the Total row/column
	Total	8	22		B1	[2]	All correct
(ii)	P(X)=2	5/30, P(Y) =	= 8/30		M1		P(X) or $P(Y)$ from their table or correct from question (denom 30) oe
	3 (5	(Y) = 25/30 = $6/30 = 1/5$		00/900 = 2/9 $0(Y)$	M1		Comparing their $P(X) \times P(Y)$ (values substituted) with their evaluated $P(X \cap Y)$ – not $P(X) \times P(Y)$
	Not inde	pendent			A1	[3]	

Question 29

(i)	P (cup of coffee) = $0.6 \times 0.9 + 0.4 \times 0.3$ = 0.66	M1 A1 [2]	Summing two 2-factor probabilities Correct answer accept 0.660
(ii)	P(Not on time no cup of coffee)	M1	0.4×0.7 seen as num or denom of a fraction
	$= \frac{P(\text{noton time} \cap \text{no cup})}{P(\text{no cup})} = \frac{0.4 \times 0.7}{1 - 0.66}$	M1	Attempt at P(no cup) as $0.1 \times p_1 + 0.7 \times p_2$ or as $1 - (i)$ seen anywhere
	$=\frac{0.28}{0.34}=0.824$	A1 [3]	,

(i)	64/250, 0.256	B1	[1]	oe
(ii)	190/250, 0.76(0)	B1	[1]	oe

(iii)
$$P(X) = 80/250 = 8/25$$
 M1 attempt at $P(X)$
 $P(Y) = 100/250 = 2/5$ M1 attempt at $P(Y)$
 $P(X \cap Y) = 32/250 = 16/125$ B1 oe

 $P(X) \times P(Y) = \frac{8}{25} \times \frac{2}{5} = \frac{16}{125}$ M1 comparing $P(X) \times P(Y)$ and $P(X \cap Y)$ so long as independence has not been assumed

Since $P(X) \times P(Y) = P(X \cap Y)$ therefore independent [5] correct answer with all working correct

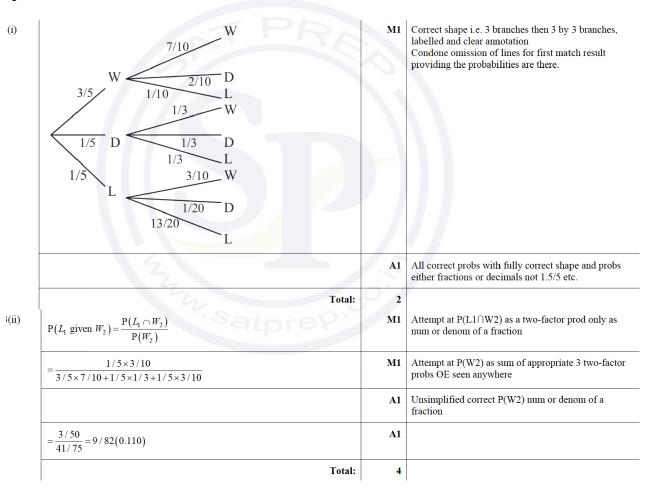
$P(C \text{ given L}) = \frac{P(C \cap L)}{P(L)}$	M1		$P(C \cap L)$ seen as num or denom of a fraction
$= \frac{0.65 \times 0.1}{0.65 \times 0.1 + 0.3 \times 0.15 + 0.05 \times 0.6}$	A1		Correct unsimplified $P(C \cap L)$ as numerator
= 0.065	M1		Summing three 2-factor products seen anywhere
= 0.14	A1		0.14 (unsimplified) seen as num or denom of a fraction
$=0.464, \frac{13}{28}$	A1	[5]	oe
Question 32			

(i)	$P(B, B) = 1/4 \times 2/5$	M1		Multiplying two different probs
	= 1/10	A1	[2]	
(ii)	P(X=1) = P(R,R) + P(B,B) = 3/4 × 4/5 + 1/10 = 14/20 (7/10)	M1 M1 A1	[3]	Finding P(R, R) (=3/5) Summing two options
(iii)	P(B B)	M1		their (i) seen as num or denom of a fraction
	$= \frac{P(B \cap B)}{P(B)} = \frac{1/10}{3/4 \times 1/5 + 1/4 \times 2/5}$	M1		$3/4 \times p_1 + 1/4 \times p_2$ seen anywhere
		A1		1/4 (unsimplified) seen as num or denom of a fraction, www
	= 2/5	A1	[4]	

5(i)	$P(2) = P(0,2) = 2/10 \times 4/6$								Mult 2 probs seen (or complete listing of all options)
	= 2/15 AG								Correct answer legit obtained
							Total:	2	
5(ii)	x	0	1	2	3	5		B1	Correct values for x in table. Any additional values must have $P(x)=0$ stated
	P(X=x)	2/30	5/30	4/30	13/30	6/30			
					***			B1	One correct prob other than P(2) or P(3)
								B1	Correct P(3)
								B1	All correct
							Total:	4	
(iii)	P(Al Sum	$3) = \frac{P(}{}$	$A1 \cap Sun$ $P(Sum 3)$	$\left(\frac{13}{13}\right) = \frac{5}{13}$	10×4/6 13/30	8		M1	Attempt at P(A1∩ Sum 3) as num or denom of a fraction, can be by counting
						F		M1	Their P(3) from (ii) as num or denom of a fraction
	= 10/13(0.7	769)						A1	
			1/6	0			Total:	3	
Ques	tion 34						ı		

$\frac{{}^{12}C_3 \times {}^{28}C_4}{{}^{40}C_7}$	M1	Using combinations with attempt to evaluate 2 terms in num. and 1 in denom.
	M1	Correct numerator or denominator unsimplified
= 0.242	A1	
OR		///
$P(GGG) = \frac{12}{40} \times \frac{11}{39} \times \frac{10}{38} \times \frac{28}{37} \times \frac{27}{36} \times \frac{26}{35} \times \frac{25}{34} \times {}^{7}C_{3}$	M1	Multiplying 3 green probs with 4 non-green probs, without replacement
74.	M1	Multiplying by ⁷ C ₃
= 0.242	A1	
Total:	3	

·(i)	$P(S) = 0.65 \times 0.6 + 0.35 \times 0.75$	M1	Summing two 2-factor probs or 1 – (sum of two 2-factor probs)
	= 0.653 (261/400)	A1	
	Total:	2	
(ii)	$P(Std L) = \frac{P(Std \cap L)}{P(L)} = \frac{0.35 \times 0.25}{1 - 0.6525} = 0.0875/0.3475$	M1	'P(Std)' \times 'P(L/Std)' as num of a fraction. Could be from tree diagram in 3(i).
		M1	Denominator (1 - their (i)) or their (i) or 0.65×0.4 (or 0.6) + 0.35×0.25 (or 0.75) = $0.26+0.0875$ or P(L) from their tree diagram
	= 0.252 (35/139)	A1	
	Total:	3	


P(6) = 0.3	B1	SOI
P(sum is 9) = P(3, 6) + P(4, 5) + P(5, 4) + P(6, 3)	M1	Identifying the four ways of summing to 9 (3,6), (6,3) (4,5) and (5,4)
$= (0.03 + 0.02) \times 2$	M1	Mult 2 probs together to find one correct prob of (3,6), (6,3) (4,5) or (5,4) unsimplified
= 0.1	A1	OE
Total:	4	

Question 37

(i)	$P(H) = P(BH) + P(SH) = 0.6 \times 0.05 + 0.4 \times 0.75$	M1	Summing two 2-factor probs using 0.6 with 0.05 or 0.95, and 0.4 with 0.75 or 0.25
	$= 0.330 \text{ or } \frac{33}{100}$	A1	Correct final answer accept 0.33
	Total:	2	
(ii)	$P(S H) = \frac{P(S \cap H)}{P(H)} = \frac{0.4 \times 0.75}{0.33} = \frac{0.3}{0.33}$	M1 FT	Their $\frac{P(S \cap H)}{P(H)}$ unsimplified, FT from (i)
	$=\frac{10}{11}$ or 0.909	A1	
	Total:	2	
iii)	$Var (B) = 45 \times 0.6 \times 0.4$ $Var (S) = 45 \times 0.4 \times 0.6$	B1	One variance stated unsimplified
	Variances same	B1	Second variance stated unsimplified and at least one variance clearly identified, and both evaluated or showing equal or conclusion made SR B1 – Standard Deviation calculated Fulfil all the criteria for the variance method but calculated to Standard Deviation
	Total:	2	
(iv)	$ \begin{aligned} &1 - P(0, 1) \\ &= 1 - \left[(0.6)^{10} + {}^{10}C_1(0.4)(0.6)^9 \right] = 1 - 0.0464 \\ &OR \\ &P(2, 3, 4, 5, 6, 7, 8, 9, 10) \\ &= {}^{10}C_2(0.4)^2(0.6)^8 + \dots + {}^{10}C_9(0.4)^9(0.6) + (0.4)^{10} \end{aligned} $	M1 M1	
	= 0.954	A1	
	Total:	3	

P(score is 6) = P(3, 3)	M1	Realising that score 6 is only P(3, 3)
$r^2 = 1/36$ r = 1/6	A1	Correct ans [SR B2 $r = 1/6$ without workings]
P(2, 3) + P(3, 2) = 1/9 qr + rq = 1/9	M1	Eqn involving qr (OE) equated to 1/9 (r may be replaced by their 'r value')
q/6 + q/6 = 1/9	M1	Correct equation with their 'r value' substituted
q = 1/3	A1	Correct answer seen, does not imply previous M's
p = 1 - 1/6 - 1/3 = 1/2	B1 FT	FT their p + their r + their q =1 , 0
Total:	6	

l(i)	$4 \times 5.5 + 3x + 90 = 8 \times 29$	M1	An expression to work out total cost of individual items = $8 \times \text{mean}$, x may be implied.
	112 + 3x = 232 x = 40	A1	Correct complete unsimplified expression / calculation
	(Cost = \$)40	A1	Units not required
	Total:	3	
(ii)	sd = 0 so all cost the same	M1	Must see comment interpreting sd = 0, OE
	shirts cost $4 \times \$26 = \104 AG	A1	See $4 \times \$26$, $\$130 - \26 OE. Must have a final value of $\$104$ stated
	Total:	2	

P(R) = 4/36 = 1/9	M1	Attempt at P(R) by probability space diag or listing more than half the options, must see a prob, just a list is not enough
P(T) = P(O, E) + P(E, O) = 1/4 + 1/4 = 1/2 OR P(R T) = 1/9	M1	Attempt at $P(T)$ or $P(R T)$ involving more than half the options
$P(R \cap T) = P(3, 4) + P(4, 3) = 2/36 = 1/18 \text{ OR } P(R T) = 1/9$	B1	Value stated, not from $P(R) \times P(T)$ e.g. from probability space diagram
As $P(R) \times P(T) = P(R \cap T)$ OR as $P(R \mid T) = P(R)$	M1	Comparing product values with $P(R \cap T)$, or comparing $P(R T)$ with $P(R)$
The events are independent.	A1	Correct conclusion must have all probs correct
Total:	5	

Pass	M1	Correct shape
0.85 Pass 0.65 Pass 0.35 Fail	A1	All correct labels and probabilities
$P(F \mid P) = \frac{P(F \cap P)}{P(P)}$	2 M1	P(P) consistent with their tree diagram seen anywhere
$= \frac{0.15 \times 0.65}{0.85 + 0.15 \times 0.65} \text{ or } \frac{0.15 \times 0.65}{1 - 0.15 \times 0.35}$	A1	Correct unsimplified $P(P)$ seen as num or denom of a fraction
$=\frac{0.0975}{0.9475}$	M1	$P(F \cap P)$ found as correct product or consistent with their tree diagram seen as num or denom of a fraction
$=\frac{39}{379}=0.103$	A1	-0.
- 20:	4	

l(i)	$P(4, 2H) = \frac{1}{4} \times {}^{4}C_{2} \times (\frac{1}{3})^{2} (\frac{2}{3})^{2}$	M1	Multiplying their 2H expression by 1/4 [P(4)]
	4 2 3 3	M1	Remaining factor is $(\frac{1}{3})^2(\frac{2}{3})^2$ [or $\frac{4}{81}$] multiplied by integer value
			$k \geqslant 1 \text{ OE}$
	$=\frac{2}{27} (0.0741)$	A1	
		3	
(ii)	P(3, 3H) = $\frac{1}{4} \times (\frac{1}{3})^3 = \frac{1}{108} (0.00926)$	B1	
		1	
(iii)	$P(1, 1H) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12} (0.08333)$	M1	Correct expression for 1 of P(1, 1H), P(2, 2H), P(4, 4H) Unsimplified (or better)
	$P(2, 2H) = \frac{1}{4} \times (\frac{1}{3})^2 = \frac{1}{36} (0.02778)$	M1	Summing their values for 3 or 4 appropriate outcomes for the 'game' with no additional outcomes.
	$P(3, 3H) = \frac{1}{4} \times (\frac{1}{3})^3 = \frac{1}{108} (0.009259)$		
	$P(4, 4H) = \frac{1}{4} \times (\frac{1}{3})^4 = \frac{1}{324} (0.003086)$		
	$Prob = \frac{10}{81} \ (0.123)$	A1	
		3	
Ques	stion 44		
-22		n. l	

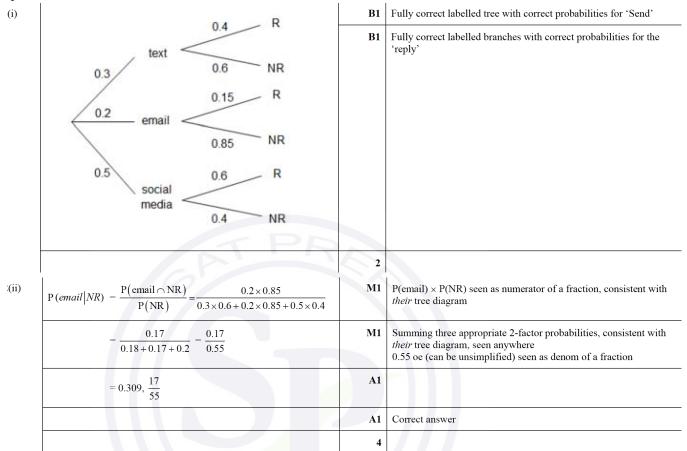
5(i)	GNS	B1	Must see at least 4 probs correct including one with an x in, correct shape
	$ \begin{array}{c c} & x \\ \hline 0.82 & E \\ \hline 0.82 & I-x & \text{Not GNS} \\ \hline 0.9 & \text{GNS} \\ \hline 0.1 & \text{Not GNS} \end{array} $	B1	Shape, clear labels/annotation and all probs correct
		2	
(ii)	$0.82x + 0.18 \times 0.9 = 0.285$	M1	Eqn with x in , two 2-factors on one side
	x = 0.15	A1	
		2	
(iii)	$P(E \mid notGNS) = \frac{P(E \cap notGNS)}{P(notGNS)}$	M1	Attempt at P(E∩not GNS) seen as num or denom of fraction
		M1	Attempt at P(not GNS) seen anywhere
	$=\frac{0.82\times0.85}{1-0.285}=0.975$	A1	Correct answer
		3	

	(10/160 =) 1/16, 0.0625	B1	OE
		1	
	(90/160) = 9/16, 0.5625	B1	OE
		1	
)	P(red/hatchback) = P(red hatchback) / P(hatchback) = 40/160 / 90/160	M1	Appropriate probabilities in a fraction
	= 4/9	A1	OE
			Altn method: Direct from table M1 for $40/a$ or $b/90$, a $\neq 160$ A1 for $40/90$ oe
		2	
3(iv)	EITHER: $P(\text{red}) \times P(\text{hatchback}) = \frac{72}{160} \times \frac{90}{160} \neq \frac{40}{160}$	(M1	Use correct approach with appropriate probabilities substituted
	Not independent	A1)	Numerical comparison and conclusion stated
	OR: $P(\text{red/hatchback}) = 40/90 \text{ and } \frac{40}{90} \neq \frac{72}{160}$	(M1	Use correct approach with appropriate probabilities substituted
	Not independent	A1)	Numerical comparison and conclusion stated
		2	

i)	(1-x) and 0.45 (or 0.3)	B1	Seen, either on tree diagram or elsewhere
	Beginners: $0.7 \times x + {}^{\circ}0.45^{\circ} \times {}^{\circ}(1-x)^{\circ} = 0.5$ Or Advanced: ${}^{\circ}0.3^{\circ} \times x + 0.55 \times {}^{\circ}(1-x)^{\circ} = 0.5$ Or $0.7 \times x + {}^{\circ}0.45^{\circ} \times {}^{\circ}(1-x)^{\circ} = {}^{\circ}0.3^{\circ} \times x + 0.55 \times {}^{\circ}(1-x)^{\circ}$	M1	One of the three correct probability equations
	x = 0.2 oe	A1	Correct answer
	Total:	3	
i)	$P(M \mid A) = \frac{P(M \cap A)}{P(A)} = \frac{0.2 \times 0.3}{0.5}$	M1	${}^s\!i^*\times 0.3$ as num or denom of a fraction
	P(A) 0.5	M1	0.5 (or $(1 - \text{`i'}) \times 0.55 + \text{`i'} \times 0.3$ unsimplified) seen as denom of a fraction
	$=0.12\left(\frac{3}{25}\right)$	A1	Correct answer
	Total:	3	

(i)	Method 1	B1	Seen, accept unsimplified
	$P(M \cap H) = \frac{3}{4} \times \frac{3}{5} = \frac{9}{20} (0.45)$		
	$P(F \text{ or } M \cap H) = \frac{1}{4} + \frac{9}{20} = \frac{14}{20}$	M1	Numerical attempt at $P(F) + P(M \cap H)$
	4 20 20	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) OE	A1	Correct final answer
	Method 2 $P(M \cap H') = \frac{3}{4} \times \frac{2}{5} = \frac{6}{20} (0.3)$	B1	Seen, accept unsimplified
	$P(F \text{ or } M \cap H) = 1 - P(M \cap H')$	M1	Numerical attempt at $1 - P(M \cap H')$
	$=1-\frac{3}{4}\times\frac{2}{5}$	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) OE	A1	Correct final answer
(ii)	Method 1 $(P(M) \times P(H) =) \frac{3}{4} \times their \frac{13}{20} = \frac{39}{80}$ $(P(M \cap H) =) \frac{3}{4} \times \frac{3}{5} = 0.45$	M1	Unsimplified, or better, legitimate numerical attempt at $P(M) \times P(H)$ and $P(M \cap H)$ Descriptors $P(M \cap H)$ and $P(M) \times P(H)$ seen, correct numerical evaluation and comparison, conclusion stated
	$\frac{39}{80}$ (0.4875) \neq 0.45, not independent	A1	
	Method 2 $P(M H) = \frac{P(M \cap H)}{P(H)} = \frac{\frac{9}{20}}{\text{their } \frac{13}{20}} = \frac{9}{13}$ $P(M) = \frac{3}{4}$	MI	Unsimplified, or better, numerical attempt at $P(H)$ and $P(M \cap H)$, $P(M)$
	$\frac{9}{13} \neq \frac{3}{4}$, not independent	A1	Descriptors $P(M \cap H)$, $P(H)$ and $P(M)$ OR $P(M H)$ and $P(M)$ seen, numerical evaluation and comparison, conclusion stated Any appropriate relationship can be used, the M is awarded for an unsimplified, or better, numerical attempt at the terms required, the A mark requires the correct descriptors, numerical evaluation and comparison and the conclusion
		2	

i(i)	$P(SLL) = (0.3)(0.55)(0.55) = 0.09075 \left(\frac{363}{4000}\right)$	M1	P(SLL), P(SRR), P(SSL) or P(SSR) seen
	P(SRR) = $(0.3)(0.15)(0.15) = 0.00675 \left(\frac{27}{4000}\right)$	A1	Two correct options 0.09075 or 0.00675 can be unsimplified
	Total = ${}^{3}C_{1} \times P(SLL) + {}^{3}C_{1} \times P(SRR)$ = $0.27225 + 0.02025$	M1	Summing 6 prob options not all identical
	Prob = 0.293 accept 0.2925 (\frac{117}{400})	A1	Correct answer
		4	
(ii)	$P(SSS \mid all \ same \ dir^n) = \frac{P(SSS \ and \ same \ dir^n)}{P(same \ direction)}$	B1	$(0.3)^3$ oe seen on its own as num or denom of a fraction
		M1	Attempt at P(SSS+LLL+RRR) seen anywhere
	$= \frac{0.3 \times 0.3 \times 0.3}{(0.15)^3 + (0.55)^3 + (0.3)^3}$	A1	$(0.15)^3 + (0.55)^3 + (0.3)^3$ oe seen as denom of a fraction
	$=0.137\left(\frac{108}{787}\right)$	A1	Correct answer
		4	
Ques	tion 49	Mil	Multiply 2 probs together and summing two 2-factor probs. unsimplified.


(i)	$P(RB) + P(BR) = \frac{4}{12} \times \frac{8}{11} + \frac{8}{12} \times \frac{4}{11}$ oe				M1	Multiply 2 probs together and summing two 2-factor probs, unsimplified, condone replacement
	$P(\text{diff colours}) = \frac{64}{132} \left(\frac{1}{3} \right)^{-1}$	$(\frac{6}{3})(0.485)$	be		A1	Correct answer
	Method 2 $1 - P(BB) - P(RR) = 1 - \frac{4}{12} \times \frac{3}{11} - \frac{8}{12} \times \frac{7}{11}$ $P(diff colours) = \frac{64}{132} \left(\frac{16}{33}\right) \text{ oe}$ Method 3 $P(diff colours) = \frac{\binom{4}{12} \times \binom{8}{11}}{\binom{12}{12}}$ $= \frac{16}{33}$		M1	Multiply 2 probs together and subtracting two 2-factor probs from 1, unsimplified, condone replacement		
			A1	Correct answer		
			M1	Multiply 2 combs together and dividing by a combination		
			A1	Correct answer		
					2	
(ii)	Number of red socks Prob	0 14 33	1 16 33	2 3 33	B1	Prob distribution table drawn, top row correct, condone additional values with $p=0$ stated
			33	55	B1	P(0) or P(2) correct to 3sf (need not be in table)
					В1	
						An proof correct to 551, condone P(0) and P(2) swapped it correct
(iii)	$E(X) = 1 \times \frac{16}{33} + 2 \times \frac{3}{33} = \frac{16}{33} + \frac{6}{33} = \frac{22}{33} \left(\frac{2}{3}\right)$				B1ft	ft their table if 0, 1, 2 only, 0
					1	

Ques	tion 50			
(i)	R 3/8	Second Ball R 2/8 B 5/8 Y 1/8 R 3/8 B 4/8 1/8	В1	Fully correct labelled tree and correct probabilities for 'First Ball'
			B1	Correct probabilities (with corresponding labels) for 'Second Ball'
			2	
(ii)	$P(RR) + P(BB) = 3/8 \times 2/8 + 5/8 \times 4/8 =$	3/32 + 5/16	M1	Correct unsimplified expression from their tree diagram, $\Sigma p = 1$ on each branch
	= 13/32 (0.406)		A1	Correct answer
			2	
i(iii)	$P(RB) = 3 / 8 \times 5 / 8 = 15/64$		M1	$P(\text{1st ball red}) \times P(\text{2nd ball blue})$ from their tree diagram seen unsimplified as numerator or denominator of a fraction Allow $\Sigma p \neq 1$ on each branch
	$P(B) = 3/8 \times 5/8 + 5/8 \times 4/8 = 35/64$		M1	Correct unsimplified expression for P(B) from their tree diagram seen as denominator of a fraction. Allow $\Sigma p \neq 1$ on each branch
	$P(R B) = P(RB) / P(B) = (15/64) \div (35/64)$	4) = 3/7 (0.429)	A1	Correct answer
	4		3	5

$P(SS) = \frac{4}{11} \times \frac{3}{10} = \frac{12}{110} \ (= 0.10911)$	B1	One of P(SS), P(PP) or P(II) correct, allow unsimplified
$P(PP) = \frac{2}{11} \times \frac{1}{10} = \frac{2}{110} \ (= 0.01818)$ $P(II) = \frac{4}{11} \times \frac{3}{10} = \frac{12}{110} \ (= 0.10911) \frac{4}{11} \times \frac{3}{10}$	M1	Sum of probabilities from 3 appropriate identifiable scenarios (either by labelling or of form $\frac{4}{11} \times \frac{a}{b} + \frac{2}{11} \times \frac{c}{b} + \frac{4}{11} \times \frac{a}{b}$ where $a = 4$ or 3, $b = 11$ or 10 , $c = 2$ or 1)
$Total = \frac{26}{110} = \frac{13}{55} \text{ oe } (0.236)$	A1	Correct final answer

(i)	52/160 = 13/40, 0.325	B1	oe
		1	
i)	P(boy) = 96/160: P(Music) = 52/160 P(boy and Music) = 40/160	M1	Use of $P(B) \times P(M) = P(B \cap M)$, appropriate probabilities used
	$96/160 \times 52/160 \neq 40/160$: Not independent	A1	Numerical comparison and conclusion stated
		2	
(iii)	Method 1		
	P(not Music/girl) = P(not Music and girl)/P(girl) (27/160) / (64/160)	M1	Appropriate probabilities in a fraction
	$=\frac{27}{64}$	A1	Correct answer www implies method
	Method 2		
	Direct from table	M1	27/a or b/64, a ≠ 160
	$\frac{27}{64}$	A1	Correct answer www implies method
		2	
v)	$P(B M) \times P(B NM) \times P(G NM)$ or $P(G M) \times P(B NM) \times P(B NM)$	M1	One scenario identified with 3 probs multiplied
	40/160 × 56/159 × 52/158 or 12/160 × 56/159 × 55/158	A1	One scenario correct (ignore multiplying factor)
	× 3! × 3!/2!	B1	Both multiplying factors correct
	0.17387 0.02759 P = 0.17387 + 0.02759	M1	Both cases attempted and added (multiplying factor not required), accept unsimplified
	= 0.201	A1	Correct answer, oe
	Note: If score in this part is 0, award SCB1 for $\frac{1}{160} \times \frac{1}{159} \times \frac{1}{158} \times k$, for positive integer k , seen		5

(i)	$0.6 \times 0.2 + 0.4 \times 0.32$	M1	Addition of 2 two-factor terms $0.6 \times a + 0.4 \times b$
	$=0.248, \frac{31}{125}$	A1	CAO
		2	
(ii)	Method 1		
	$P(GS Not Red socks) = \frac{0.4 \times 0.68}{1 - (i)}$	B1	Correct [unsimplified] numerator seen in fraction
		M1	1 – their (i) as denominator in fraction
	$=0.362, \frac{17}{47}$	A1	
	Method 2		
	$P(GS Not Red socks) = \frac{0.4 \times 0.68}{0.6 \times 0.8 + 0.4 \times 0.68}$	B1	Correct [unsimplified] numerator seen in fraction
		M1	Correct or (their (i))' as denominator in fraction
	$=0.362, \frac{17}{47}$	A1	
		3	

$P(S) = \frac{1}{2}$	B1	
$P(T) = \frac{16}{36} \left(\frac{4}{9}\right)$	B1	
$P(S \cap T) = \frac{10}{36} \left(\frac{5}{18} \right)$	M1	$P(S \cap T)$ found by multiplication scores M0 M1 awarded if <i>their</i> value is identifiable in their sample space diagram or Venn diagram or list of terms or probability distribution table (oe)
$P(S \mid T) = \frac{10}{16} \text{ or } P(T \mid S) = \frac{10}{18}$ $P(S \mid T) \neq P(S) \text{ or } P(T \mid S) \neq P(T) \text{ so not independent}$	A1	Either 18/36, 10/16,P(S) and P($S T$) seen in workings and correct conclusion stated, www Or 16/36, 10/18, P(T) and P(T S) seen in workings and correct conclusion stated, www
	4	

(i)			5/9	T	B1	First pair of branches labels and probs correct (6/7 and 1/7 or rounding to 0.857 and 0.143)
	6/7	T	4/9			(Labelling must be logicallye.g. (T and T) or (T and Not T) would be acceptable)
	0//		4/9	c	B1	Either of second top pair or bottom of branches labels and probs correct
	1/7	C	6/9	T		
			3/9	C	B1	Both second pairs of branches labels and probs correct. No additional / further branches.
					3	
(ii)	No of toffees				B1	P(1) correct
	taken (T)	0	1	2	B1	P(0) or P(2) correct
	prob	$\frac{3}{63}$, 0.0476(2)	$\frac{30}{63}$, 0.476(2)	$\frac{30}{63}$, 0.476(2)	B1	FT Correct values in table, any additional values of T have stated probability of zero. For FT $\Sigma p = 1$,
					3	_ ///
(iii)	$E(X) = \frac{90}{63} \ (\frac{10}{7})$) (1.43)			B1	Not FT
					1	
(iv)	$P(1^{st} C 2^{nd} T) =$	$P(C \cap T) = -$	$\frac{1}{7} \times \frac{6}{9}$	$=\frac{\frac{6}{63}}{63}$	B1	$P(C \cap T)$ attempt seen as numerator of a fraction, consistent with <i>their</i> tree diagram or correct
	1(1 5 2 1)	P(T)	$\frac{1}{7} \times \frac{6}{9} + \frac{6}{7} \times \frac{5}{9}$	$=\frac{\overline{63}}{\overline{36}}$ $\overline{63}$	M1	Summing 2 appropriate two-factor probabilities, consistent with <i>their</i> tree diagram or correct seen anywhere
			4.5	atpr	A1	$\frac{36}{63}$ oe or correct unsimplified expression seen as numerator or denominator of a fraction
	$\frac{1}{6}$ oe				A1	Final answer
					4	

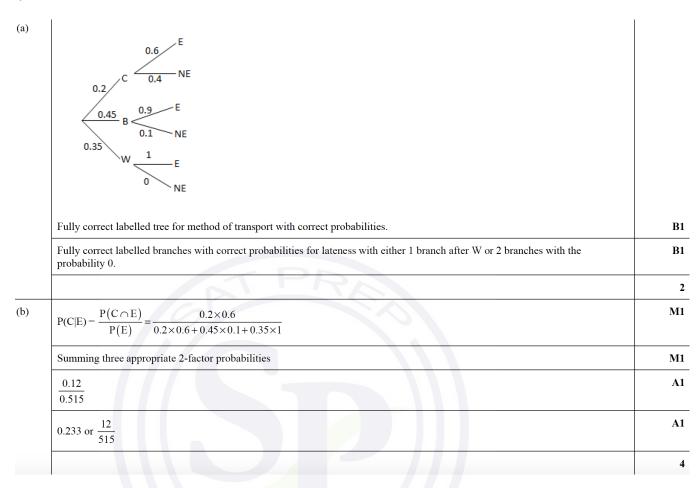
Jameel: P(plum) = $\frac{5}{8}$, Rosa: P(plum) = $\frac{x}{x+6}$	M1	Their 2 probabilities for P(plum) multiplied and equated to 1/4
$\frac{5}{8} \times \frac{x}{x+6} = \frac{1}{4}$	A1	Correct equation oe
$8^x + 6^4$		
(x=) 4	A1	SC correct answer with no appropriate equations i.e. common sense B1
	3	

$P(X) = \frac{3}{36} \left(\frac{1}{12} oe \right)$	B1	
$P(Y) = \frac{12}{36} \left(\frac{1}{3} oe \right)$	B1	
$P(X \cap Y) = \frac{1}{36}$	M1	Independent method to find $P(X \cap Y)$ without multiplication, either stated or by listing or circling numbers on a probability space diagram. OR condititional prob with a single fraction numerator
$P(X) \times P(Y) = P(X \cap Y)$, independent	A1	Numerical comparison and conclusion, www
- Dr	4	

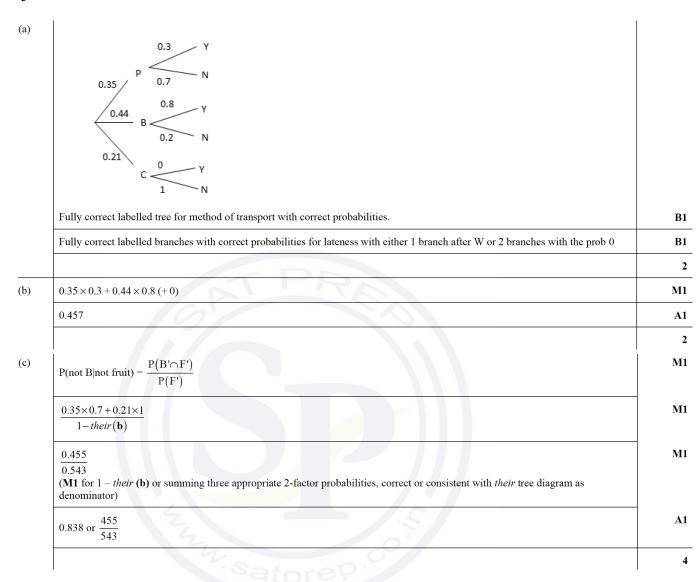
Question 59

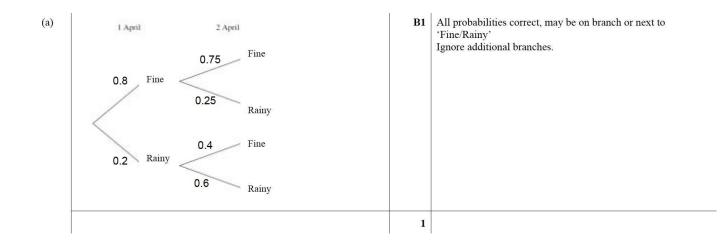
(i)	$\frac{120}{300} = 0.4$	B1	OE
		1	

(ii)	P(male) × P(not piano) = $\frac{160}{300} \times \frac{225}{300} \left(\frac{8}{15} \times \frac{3}{4} \right) = \frac{2}{5}$	M1	$P(M) \times P(P')$ seen Can be unsimplified but the events must be named in a product
	As P(male \cap not piano) also = $\frac{120}{300} = \frac{2}{5}$	A1	Numerical comparison and correct conclusion
	The events are Independent		


Question 60

(i)	$\frac{120}{300} = 0.4$	B1	OE
		1	
(ii)	P(male) × P(not piano) = $\frac{160}{300} \times \frac{225}{300} \left(\frac{8}{15} \times \frac{3}{4} \right) = \frac{2}{5}$	M1	$P(M) \times P(P')$ seen Can be unsimplified but the events must be named in a product
	As P(male \cap not piano) also = $\frac{120}{300} = \frac{2}{5}$	A1	Numerical comparison and correct conclusion
	The events are Independent		


(i)	$0.4x + 0.6 \times 2x = 0.36 \text{ or } 0.4(1-x) + 0.6(1-2x) = 0.64$	M1	0.4a + (1 - 0.4)b = 0.36 or 0.64 , a,b terms involving x
	$ \begin{array}{c} 1.6x = 0.36 \\ x = 0.225 \end{array} $	A1	Fully justified by algebra AG
		2	


(ii)	P(H L') =	M1	Correct numerical numerator of a fraction. Allow unsimplified.
	$\frac{0.4(1-x)}{1-0.36} = \frac{0.4 \times (1-0.225)}{0.64} = \frac{0.4 \times 0.775}{0.4 \times 0.775 + 0.6 \times 0.55}$		
		M1	Denominator 0.36 or 0.64. Allow unsimplified.
	$\frac{31}{64}$ or 0.484	A1	
		3	

(a)			B1	Both correct probs, box A
(a)	Box A	Box B		
		$\frac{10}{15}$ Red	B1	2 probs correct for box B
		15	B1	All correct probs for box B
	7 Red			
	$\frac{7}{8}$	$\frac{5}{15}$		
		Blue $\frac{9}{15}$ Red		
	1	15		
	$\frac{1}{8}$ Blue <			
		$\frac{6}{15}$ Rlue		-111
		15 Blue		
			3	
(b)	$\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{9}{15}$		M1	Two 2 factor terms added, correct or FT their 6(a).
	$=\frac{44}{120} \left[\frac{11}{30} \text{ or } 0.367 \right]$	3	A1	OE
	$=\frac{120}{120} \left[\frac{30}{30} \text{ or } 0.367 \right]$) ·
		Sature	2	
(c)	$P(A \text{ blue } B \text{ blue}) = \frac{P}{P}$	$(A blue \cap B blue)$	M1	their $\frac{1}{8} \times \frac{6}{15}$ seen as numerator or denom of fraction
		,		8 15
	$= \frac{\frac{1}{8} \times \frac{6}{15}}{\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{6}{15}} = \frac{\frac{1}{20}}{\frac{4}{12}}$			
	$=\frac{\frac{3}{7}}{\frac{5}{2}} \times \frac{1}{5} \times \frac{6}{15} = \frac{\frac{26}{41}}{\frac{41}{15}}$	<u>1</u>		
	8 15 8 15 12	0		
			M1	their $\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{6}{15}$ seen
			M1	their $\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{6}{15}$ seen as denominator
	$=\frac{6}{41}$ or 0.146		A1	
	41			
			4	

(a)	$\frac{56}{500}$ or $\frac{14}{125}$ or 0.112	B1
	Satpres	1
(b)	$P(D S) = \frac{P(D \cap S)}{P(S)} = \frac{120}{280}$	M1
	$\frac{120}{280}$ or $\frac{3}{7}$	A1
		2
!(c)	$P(hockey) = \frac{220}{500} = 0.44$	M1
	$P(\text{Amos or Benn}) = \frac{242}{500} = 0.484$	
	$P(\text{hockey} \cap A \text{ or } B) = \frac{104}{500} = 0.208$	
	$P(H) \times P(A \cup B) = P(H \cap (A \cup B))$ if independent	
	$\frac{220}{500} \times \frac{242}{500} = \frac{1331}{6250}$ so not independent	A1
		2

(b)	$0.8 \times 0.75 + 0.2 \times 0.4 \ \ (= 0.6 + 0.08)$	M1	Correct or FT from <i>their</i> diagram unsimplified, all probabilities $0 . Partial evaluation only sufficient when correct. Accept working in 4(b) or by the tree diagram.$
	0.68, $\frac{17}{25}$	A1	From supporting working
		2	
(c)	$0.8 \times 0.75 \times 0.25 + 0.8 \times 0.25 \times 0.6$	M1	$\begin{vmatrix} a \times b \times c + a \times 1 - b \times d, \ 0 < c, \ d \le 1, \\ a, \ b \text{ consistent with } \textit{their} \text{ tree diagram or correct, no additional terms} \end{vmatrix}$
	0.15 + 0.12	A1	At least one term correct, accept unsimplified
	0.27	A1	Final answer
	TPA	3	
(d)	$P(Y) = their (c) + 0.2 \times 0.4 \times 0.25 + 0.2 \times 0.6 \times 0.6$ (= 0.362)	B1 FT	their (c) + $e \times f \times g + e \times (1-f) \times h$, $0 < g$, $h \le 1$, e , f consistent with their tree diagram, or correct
	$P(X Y) = \frac{their(c)}{their P(Y)} = \frac{0.27}{0.362}$	M1	their 4(c) (or correct)/their previously calculated and identified P(Y) or a denominator involving 3 or 4 3-factor probability terms consistent with <i>their</i> tree diagram & third factor 0
	$0.746, \frac{373}{500} \text{ or } \frac{135}{181}$	A1	(0.7458)
		3	
Que	stion 67		

(a)					R	ed			M	Complete outcome space or or listing A and B outcomes
			1	2	3	4	5	6		or listing A∩B outcomes
		1	2	3	4	5	6	7		
		2	3	4	5	6	7	8	prep	
	Blue	3	4	5	6	7	8	9		
	BI	4	5	6	7	8	9	10		
		5	6	7	8	9	10	11		
		6	7	8	9	10	11	12		
	P(A∩	$B) = \frac{3}{3}$	5 6						A	With evidence
									0	
(b)	P(A) >	(P(B)	$=\frac{1}{3}\times$	10 36					M	Their $\frac{1}{3}$ × their $\frac{10}{36}$ seen
	5/54 ≠ 3	5 36 sc	not in	idepen	dent				A	$\frac{5}{54}, \frac{5}{36}$, P(A) × P(B) and P(A\cap B) seen in workings and correct conclusion stated Condone $\frac{5}{36}$ being stated in (a)

)(i)	$\left[\frac{104+31}{400}\right] = \frac{135}{400}, \frac{27}{80}, 0.3375$	B1	Evaluated, exact value.		
		1			
(ii)	Method 1				
	$P(M) = \frac{180}{400}, 0.45 \text{ P(S)} = \frac{135}{400}, 0.3375 \text{ P(}M \cap S) = \frac{31}{400}, 0.0775$ $\frac{180}{400} \times \frac{135}{400} = \frac{243}{1600}, 0.151875 \neq \frac{31}{400} \text{ so NOT independent}$	M1	Their $P(M) \times their P(S)$ seen, accept unsimplified.		
		A1	$P(M)$, $P(S)$ and $P(M \cap S)$ notation seen, numerical comparison and correct conclusion, WWW.		
	Method 2				
	$P(M \cap S) = \frac{31}{400} P(S) = \frac{135}{400} P(M) = \frac{180}{400}$ $P(M S) = \frac{\frac{31}{400}}{\frac{135}{400}} = \frac{31}{135}, 0.2296 \neq \frac{180}{400} \text{ so NOT independent}$	M1	$[P(M S) =] \frac{their P(M \cap S)}{their P(S)} $ (oe) seen, accept unsimplified.		
		A1	$P(M)$, $P(S)$ and $P(M \cap S)$ notation seen, numerical comparison and correct conclusion, WWW.		
		2			
(i)	Method 1 [1 – P(0,1,2)]				
	$= 1 - ({}^{10}C_0 0.3^0 0.7^{10} + {}^{10}C_1 0.3^1 0.7^9 + {}^{10}C_2 0.3^2 0.7^8)$	M1	10 C _x p ^x $(1-p)^{10-x}$ for $0 < x < 10, 0 < p < 1$, any p .		
	= 1 - (0.028248 + 0.121061 + 0.233474)	A1	Correct expression, accept unsimplified, condone omission of final bracket, condone recovery from poor notation.		
	= 0.617	A1	Accept $0.61715 \le p \le 0.61722$, WWW.		
	Method 2 [P(3,4,5,6,7,8,9,10) =]	1.5			
	¹⁰ C ₃ 0·3 ³ 0·7 ⁷ + ¹⁰ C ₄ 0·3 ⁴ 0·7 ⁶ + ¹⁰ C ₅ 0·3 ⁵ 0·7 ⁵	M1	10 C _x p ^x $(1-p)^{10-x}$ for $0 < x < 10, 0 < p < 1$, any p .		
	$\begin{array}{l} + {}^{10}\text{C}_6 0.3^6 0.7^4 + {}^{10}\text{C}_7 0.3^7 0.7^3 + {}^{10}\text{C}_8 0.3^8 0.7^2 \\ + {}^{10}\text{C}_9 0.3^9 0.7^1 + {}^{10}\text{C}_{10} 0.3^{10} 0.7^0 \end{array}$	A1	Correct unsimplified expression.		
	= 0.617	A1	Accept $0.61715 \le p \le 0.61722$, WWW.		
		3			
)(ii)	[p = 0·3] Mean = 0·3 × 90 = 27; variance = 0·3 × 90 × 0·7 = 18·9	B1	Correct mean and variance, allow unsimplified. Condone $\sigma = 4.347$ evaluated.		
	$P(X < 32) = P\left(z < \frac{31.5 - 27}{\sqrt{18.9}}\right)$	M1	Substituting <i>their</i> μ and σ (not σ^2 , $\sqrt{\sigma}$) into the ±standardisin formula with a numerical value for '31.5'.		
	V10.2 /	M1	Using either 31·5 or 32·5 within a ±standardising formula with numerical values for <i>their</i> μ and σ (condone σ^2 , $\sqrt{\sigma}$).		
	$=\Phi(1.035)$	M1	Appropriate area Φ , from standardisation formula $P(z <)$ if final solution, must be probability.		
	= 0.850	A1	Allow $0.8495 , final answer WWW.$		

!(a)	$0.2[\times1] + 0.45 \times 0.4 + 0.35 \times 0.3$	M1	$0.2 \times 1] + 0.45 \times b + 0.35 \times c, b = 0.4, 0.6 c = 0.3, 0.7$
	0·485 or $\frac{97}{200}$	A1	
		2	
!(b)	$P(Y \overline{H}) = \frac{P(Y \cap \overline{H})}{P(\overline{H})} = \frac{0.35 \times 0.7}{1 - their(\mathbf{a})} = \frac{0.245}{0.515}$	B1	0.35×0.7 or 0.245 seen as numerator or denominator of fraction.
		M1	0.515 or $1 - their$ (a) or $[0.3 \times 0 +] 0.45 \times d + 0.35 \times e$, where $d = their b'$, $e = their c'$ seen as denominator of fraction.
	0·476 or 49/103	A1	$0.4757 \leqslant p \leqslant 0.476$
		3	

(a)(i)	$\frac{40}{800}$ or $\frac{1}{20}$ or 0.05	B1	
		1	
(a)(ii)	$\frac{177}{223 + 177 + 40}$	M1	Their 223 + 177 + 40 seen as denominator of fraction in the final answer, accept unsimplified
	177/440 or 0.402	A1	CAO
	Alternative method for Question 7(a)(ii)		
	$P(G \mid S) = \frac{P(G \cap S)}{P(S)} = \frac{\frac{177}{800}}{\frac{223 + 177 + 40}{800}} = \frac{\frac{177}{800}}{\frac{440}{800}} = \frac{\frac{177}{800}}{\frac{11}{20} \text{ or } 0.55}$	M1	Their $P(S)$ seen as denominator of fraction in the final answer, accept unsimplified
	177/440 or 0.402	A1	CAO
		2	
(b)(i)	$P(0, 1, 2) = {}_{^{10}\text{C}_0} (0.35)^0 (0.65)^{^{10}} + {}^{10}\text{C}_1 (0.35)^1 (0.65)^9 + {}^{10}\text{C}_2 (0.35)^2 (0.65)^8$	M1	One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 \le x \le 10$, any $0 \le p \le 1$
	0.013463 + 0.072492 + 0.17565	A1	Correct unsimplified expression, or better
	0.262	A1	
		3	
(b)(ii)	Mean = 120×0.35 [= 42] Variance = $120 \times 0.35 \times 0.65$ [= 27.3]	B1	Correct mean and variance seen, allow unsimplified
	$P(X>32) = P(Z > \frac{32.5 - 42}{\sqrt{27.3}}) = P(Z > -1.818)$	M1	Substituting <i>their</i> mean and variance into \pm standardisation formula (any number), condone σ^2 or $\sqrt{\sigma}$
		M1	Using continuity correction 31.5 or 32.5
	$\Phi(1.818)$	M1	Appropriate area Φ , from final process, must be probability
	0.966	A1	$0.965 \leqslant p \leqslant 0.966$
		5	

(a)	P(not late) = $0.4 \times 0.45 + 0.35 \times 0.3 + 0.25 \times (1 - x)$ or P(late) = $0.4 \times 0.55 + 0.35 \times 0.7 + 0.25x$	M1	$0.4 \times p + 0.35 \times q + 0.25 \times r,$ p = 0.45, 0.55, q = 0.3, 0.7 and r = (1 - x), x
	0.18 + 0.105 + 0.25 (1 - x) = 0.48 or $0.22 + 0.245 + 0.25x = 0.52$	Al	Linear equation formed using sum of 3 probabilities and 0.48 or 0.52 as appropriate. Accept unsimplified.
	x = 0.22	A1	Final answer
		3	
(b)	$ \begin{bmatrix} P(train late) = \frac{P(train \cap late)}{P(late)} \\ = \frac{0.35 \times 0.7}{1 - 0.48} \text{ or } \frac{0.35 \times 0.7}{0.4 \times 0.55 + 0.35 \times 0.7 + 0.25 \times their 0.22} $	В1	0.35×0.7 or 0.245 seen as numerator of fraction
		M1	P(late) seen as a denominator with <i>their</i> probability as numerator (Accept $\frac{their\ p}{0.52}$ or $\frac{their\ p}{0.22 + 0.245 + 0.25 \times their\ 0.22}$)
	$= 0.471 \text{ or } \frac{49}{104}$	Al	
	16	3	
Que	stion 72		
(a)	PP		ct labelled tree diagram for each pair of

(a)	0.3 PP	B1	Fully correct labelled tree diagram for each pair of branches clearly identifying written and practical, pass and fail for each intersection (no additional branches)
	0.8 W1 P 0.3 P P	В1	'One written test' branch all probabilities (or %) correct
	0.8 0.7 PF W2 P 0.7 PF	В1	'Two written tests' branch all probabilities (or %) correct, condone additional branches after W2F with probabilities 1 for PF and 0 for PP
	12	3	
(b)	$ [P(W1P) \times P(PP) + P(W1F) \times P(W2P) \times P(PP)] $ $0.8 \times 0.3 + 0.2 \times 0.6 \times 0.3 $	M1	Consistent with their tree diagram or correct
	$0.276 \text{ or } \frac{69}{250}$	A1	
		2	
(c)	$P(W1 P) = \frac{P(W1 \cap \text{Practical})}{P(\text{getting place})} = \frac{0.8 \times 0.3}{\text{their}(b)} \left[= \frac{0.24}{0.276} \right]$	M1	Correct expression or FT their (b)
	20/23 or 0.87[0]	Al	
		2	

(a)	Probabilities: $\frac{x+1}{x+10}$, $\frac{9}{x+10}$, $\frac{x}{x+10}$, $\frac{10}{x+10}$	B1	One probability correct in correct position.
		B1	Another probability correct in correct position.
		B1	Other two probabilities correct in correct positions.
		3	
(b)	$\frac{4}{10} \times their \frac{10}{x+10}$	M1	Method consistent with their tree diagram.
	$\frac{4}{x+10}$	A1	AG
		2	

(c)	$\frac{4}{x+10} = \frac{1}{6}$ $x+10 = 24, x=14$	B1	Find value of <i>x</i> . Can be implied by correct probabilities in calculation.
	$P(ARed BRed) = P(ARed \cap BRed) \div P(BRed)$ $\frac{6}{4} \times their \frac{x+1}{x} = \frac{6}{4} \times \frac{15}{x} = \frac{3}{4}$	B1 FT	$\frac{6}{10} \times their \frac{x+1}{x+10}$ as numerator or denominator of fraction.
	$\frac{\frac{6}{10} \times their}{\frac{6}{10} \times their} \frac{x+1}{x+10} + \frac{4}{10} \times their}{\frac{x}{x+10} + \frac{1}{10} \times their} \frac{x}{x+10} = \frac{\frac{6}{10} \times \frac{15}{24}}{\frac{6}{10} \times \frac{15}{24} + \frac{4}{10} \times \frac{14}{24}} = \frac{\frac{3}{8}}{120}$	M1	$\frac{6}{10} \times their \frac{x+1}{x+10} + \frac{4}{10} \times their \frac{x}{x+10}$ seen anywhere.
		A1 FT	Seen as denominator of fraction.
	45, 0.616[4]	A1	If B0 M0: SC B1 for $\frac{\frac{3}{8}}{\frac{73}{120}}$ or $\frac{0.375}{0.6083}$ SC B1 $\frac{45}{73}$ or 0.616.
		5	

(a)	$\frac{82}{180}, \frac{41}{90}, 0.456$	B1	RAI
		1	
(b)	$\left[P(M D) = \frac{P(M \cap D)}{P(D)}\right] = \frac{\frac{11}{180}}{\frac{20}{180} + \frac{11}{180}} \text{ or } \frac{0.6011}{0.1722}$	M1	Their identified $\frac{P(M\cap D)}{P(D)}$ or from data table $\frac{11}{20+11}$, accept unsimplified, condone × 180.
	$\frac{11}{31}$, 0.355	A1	Final answer.
		2	
(c)	$P(F) = \frac{100}{180}, \frac{5}{9}, 0.5556$ OE $P(G) = \frac{82}{180}, \frac{41}{90}0.4556$ OE	М1	Their identified $P(F) \times their$ identified $P(G)$ or correct seen, can be unsimplified.
	$P(F \cap G) = \frac{38}{180}, \frac{19}{90}, 0.2111 \text{ OE}$ $P(F) \times P(G) = \frac{100}{180} \times \frac{82}{180} = \frac{41}{162}, 0.2531 \text{ OE } \left[\neq \frac{38}{180} \right]$ Not independent	A1	$\frac{41}{162}, \frac{38}{180}, P(F \cap G) \text{ and } P(F) \times P(G) \text{ seen with correct conclusion, WWW. Values and labels must be seen.}$

$\left[P(T B') = \frac{P(T \cap B')}{P(B')}\right]$	M1	$0.45 \times a + 0.35 \times b + 0.2[\times 1], a = 0.7, 0.3b = 0.4, 0.6$, seen anywhere.
$P(B') = 0.45 \times 0.7 + 0.35 \times 0.4 + 0.2 \times 1$ $= 0.655, \frac{131}{200}$	A1	Correct, accept unsimplified.
$P(T \cap B') = 0.35 \times 0.4 = 0.14, \frac{7}{50}$	M1	Seen as numerator or denominator of a fraction.
$P(T \mid B') = \frac{their \ 0.14}{their \ 0.655}$	M1	Values substituted into conditional probability formula correctly. Accept unsimplified. Denominator sum of 3 two-factor probabilities (condone omission of 1 from final factor). If clearly identified, condone from incomplete denominator.
$0.214, \frac{28}{131}$	A1	If 0 marks awarded, SC B1 0.214 WWW.
	5	

(a)	[Probability of lemon = $\frac{3}{15} = \frac{1}{5}$]	В1	0.0524288 rounded to more than 3SF if final answer				
	$\left[\left(\frac{4}{5} \right)^6 \times \frac{1}{5} = \right] \frac{4096}{78125}, 0.0524$						
		1					
(b)	$\left(1-\frac{1}{5}\right)^6$	M1	or $\left(\frac{4}{5}\right)^6$. FT their $\frac{1}{5}$ or correct. From final answer				
			Condone $\left(\frac{4}{5}\right)^5 \operatorname{or}\left(\frac{1}{5}\right) \times \left(\frac{4}{5}\right)^5 + \left(\frac{4}{5}\right)^6$				
	$\frac{4096}{15625}$, 0.262	A1	0.262144 rounded to more than 3SF				
	Alternative method for question 6(b)						
	[1-P(1,2,3,4,5,[6])=]	M1	From final answer				
	$1 - \left(\frac{1}{5} + \frac{4}{5} \times \frac{1}{5} + \left(\frac{4}{5}\right)^2 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5} + \left(\frac{4}{5}\right)^4 \times \frac{1}{5} + \left(\frac{4}{5}\right)^5 \times \frac{1}{5}\right)$		Condone omission of $\left(\frac{4}{5}\right)^3 \times \frac{1}{5}$				
	$\frac{4096}{15625}$, 0.262	A1	0.262144 rounded to more than 3SF				
		2					
(c)	$\frac{10}{15} \times \frac{9}{14} \times \frac{8}{13}$	M1	$\frac{a}{15} \times \frac{a-1}{14} \times \frac{a-2}{13}$, no additional terms				
	$\frac{24}{91}$, 0·264	A1	0.263736 rounded to more than 3SF				
	Alternative method for question 6(c)						
	$\frac{3}{15} \times \frac{2}{14} \times \frac{1}{13} + 3 \times \frac{3}{15} \times \frac{2}{14} \times \frac{7}{13} + 3 \times \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} + \frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}$	M1	[3Ls + 2Ls1S + 1L2Ss + 3Ss] Condone one numerator error. Condone no multiplications seen if tree diagram complete with probabilities on each branch, scenarios listed and attempt at evaluation				
	$\frac{24}{91}$, 0·264	A1	0.263736 rounded to more than 3SF				
	Alternative method for question 6(c)						
	$1 - \left(\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13} + 3 \times \frac{5}{15} \times \frac{4}{14} \times \frac{10}{13} + 3 \times \frac{5}{15} \times \frac{10}{14} \times \frac{9}{13}\right)$	M1	1 – P(3,2,1 oranges) Condone one numerator error.				
	$\frac{24}{91}$, 0·264	A1	0.263736 rounded to more than 3SF				
	Alternative method for question 6(c)						
	10C ₃ 15C ₃	M1					
	$\frac{24}{91}$, 0·264	A1	0.263736 rounded to more than 3SF				
		2					

(a)	$[P(>2) = 1 - P(0,1,2) =]$ $1 - ({}^{7}C_{0} \ 0.18^{0} \ 0.82^{7} + {}^{7}C_{1} \ 0.18^{1} \ 0.82^{6} + {}^{7}C_{2} \ 0.18^{2} \ 0.82^{5})$	M1	One term ${}^{7}C_{x} p^{x} (1-p)^{7-x}, 0$
	= 1 - (0.249285 + 0.383048 + 0.252251) = 1 - 0.88458	A1	Correct unsimplified expression or better Condone omission of brackets if recovered
	0.115	B1	WWW. $0.115 \le p < 0.1155$ not from wrong working
		3	
(b)	[P(at least 1 day of rain) = $1 - P(0) = 1 - (0.82)^7 =]0.7507$	В1	AWRT 0.751 seen
	[P(exactly 2 periods) =] $0.7507^2 \times (1 - 0.7507) \times 3$	M1	FT their $1-p^7$ or their 0.7507 if identified, not 0.18, 0.82 Accept $\times^3 C_r$, $r=1,2$ or $\times^3 P_1$ for $\times 3$ Condone $\times 2$
	0.421	A1	Accept $0.421 \le p \le 0.4215$ SC B1 if $0/3$ scored for final answer only $0.421 \le p \le 0.4215$
		3	

(a)	1st 2nd 3rd	B1	First and second jumps correct with probabilities and outcomes identified.
	0.3 S 0.3 S 0.7 F 0.1 S 0.8 F 0.1 S 0.3 S 0.7 F 0.9 F 0.9 F 0.1 S	В1	Third jump correct with probabilities and outcomes identified.
		2	
(b)	SFF 0.2×0.7×0.9 = 0.126 FSF 0.8×0.1×0.7 = 0.056 FFS 0.8×0.9×0.1 = 0.072	М1	Two or three correct 3 factor probabilities added, correct or FT from part 6(a) . Accept unsimplified.
	[Total = probability of 1 success =] $0.254 \left(\frac{127}{500}\right)$	A1	Accept unsimplified.
	[Probability of at least 1 success = $1 - 0.8 \times 0.9 \times 0.9 =]0.352 \left(\frac{44}{125}\right)$	B1 FT	Accept unsimplified.
	P(exactly 1 success at least 1 success)= $\frac{their 0.254}{their 0.352}$	M1	Accept unsimplified.
	0.722, 127/176	A1	0.7215
		5	
(c)	$ 0.8 \times 0.9 \times 0.9 \times 0.1 \times 0.3 \times 0.3 = 0.005832 $ [FFFSSS] $ 0.2 \times 0.3 \times 0.3 \times 0.7 \times 0.9 \times 0.9 = 0.010206 $ [SSSFFF]	M1	$a \times b \times c \times d \times e \times f$ FT from their tree diagram. Either a , b and c all = 0.8 or 0.9 (at least one of each) and d , e and f all = 0.1 or 0.3 (at least one of each). Or a , b , c = 0.2 or 0.3 (at least one of each) and d , e , f = 0.7 or 0.9 (at least one of each).
		A1	Either correct. Accept unsimplified.
	[Total =] 0.0160[38]	A1	
	3	3	7.5

	$\left[\left[\left(\frac{5}{6} \right)^7 \times \frac{1}{6} = \right] 0.0465, \frac{78125}{1679616} \right]$	B1	$0.0465 \leqslant p < 0.04652$
		1	
b)	$P(X < 6) = 1 - \left(\frac{5}{6}\right)^{5} \text{ or } \frac{1}{6} + \left(\frac{5}{6}\right)\left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^{2} \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^{3} \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^{4} \left(\frac{1}{6}\right)$	M1	$1 - p^n$, $0 , n = 4, 5, 6 or sum of 4, 5 or 6 terms p \times (1 - p)^n for n = 0, 1, 2, 3, 4(5).$
	$0.598, \frac{4651}{7776}$	A1	
		2	
e)	[Probability of total less than 4 is] $\frac{3}{36}$ or $\frac{1}{12}$	B1	SOI
		M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$, for $0 < x < 10$, $0 .$
	1 - (0.418904 + 0.380822 + 0.155791)	A1 FT	Correct expression. Accept unsimplified.
	0.0445	A1	$0.04448 \leqslant p \leqslant 0.0445$
		4	

(a) YYY: $\frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} = \frac{60}{1320}, \frac{1}{22}$	M1	Either $12 \times 11 \times 10$ in denominator or $a \times (a-1) \times (a-2)$, $a = 5, 4, 3$ in numerator seen in at least one expression.
OOO: $\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} = \frac{24}{1320}, \frac{1}{55}$ RRR: $\frac{3}{12} \times \frac{2}{11} \times \frac{1}{10} = \frac{6}{1320}, \frac{1}{220}$	A1	One expression $\frac{a}{12} \times \frac{a-1}{11} \times \frac{a-2}{10}$, $a = 5, 4, 3$ (consistent in expression). Correct order of values in the numerator is essential.
	M1	$\frac{5}{12} \times \frac{4}{d} \times \frac{3}{e} + \frac{4}{12} \times \frac{3}{d} \times \frac{2}{e} + \frac{3}{12} \times \frac{2}{d} \times \frac{1}{e}, \text{ either } d = 11, e = 10 \text{ or } d = 12, e = 12.$ Condone $\frac{1}{22} + \frac{1}{55} + \frac{1}{220} \text{ OE}$
$[Total =] \frac{90}{1320}, \frac{3}{44}, 0.0682$	A1	0.06818. Dependent only upon the second M mark.

Alternative method for question 7(a)

	YYY: $\frac{^{5}C_{3}}{^{12}C_{3}} = \frac{10}{220}, \frac{1}{22}$	M1	Either 12 C ₃ in denominator or a C ₃ in numerator seen in at least one expression.
	OOO: $\frac{^{4}C_{3}}{^{12}C_{3}} = \frac{4}{220}, \frac{1}{55}$	A1	One expression $\frac{{}^{a}C_{3}}{{}^{12}C_{3}}$ $a = 5, 4, 3$
	RRR: $\frac{{}^{3}C_{3}}{{}^{12}C_{3}} = \frac{1}{220}$	M1	$\frac{{}^{5}C_{3}}{{}^{12}C_{3}} + \frac{{}^{4}C_{3}}{{}^{12}C_{3}} + \frac{{}^{3}C_{3}}{{}^{12}C_{3}}$ Condone $\frac{1}{22} + \frac{1}{55} + \frac{1}{220}$ OE
	$[Total =] \frac{90}{1320}, \frac{3}{44}, 0.0682$	A1	0.06818. Dependent only upon the second M mark.
		4	
(b)	[P(YYY all same colour) =] $\frac{60}{1320} \div \frac{90}{1320}$	M1	$\frac{\text{their P(YYY) or } \frac{60}{1320} \text{ or } \frac{1}{22}}{\text{their } 7(a) \text{ or } \frac{90}{1320} \text{ or } \frac{3}{44}}$
	$\frac{2}{3}$, 0.667	A1	OE
		2	7 4 7

In each method, the M mark requires the scenarios to be identifiable. This may be implied by a list of scenarios and then the calculations which will be assumed to be in the same order.

A correct value/expression will be condoned as identifying the connected scenario.

7 0		
Method 1		
$[1 - \text{no orange} =]1 - \frac{8}{12} \times \frac{7}{11} \times \frac{6}{10} \text{ or } 1 - \frac{{}^{8}\text{C}_{3}}{{}^{12}\text{C}_{3}} = 1 - \frac{14}{55}$	В1	$\frac{8}{12} \times \frac{7}{11} \times \frac{6}{10} \text{or} \frac{{}^{8}C_{3}}{{}^{12}C_{3}} \text{ seen, condone } \frac{336}{1320} \text{or} \frac{56}{220} \text{ only, not}$ OE.
	M1	$1 - \frac{f}{12} \times \frac{g}{d} \times \frac{h}{e}$
		Either $d = 11$, $e = 10$ or $d = 12$, $e = 12$ or $1 - \frac{{}^8C_3}{{}^{12}C_3}$.
		Condone $1 - \frac{14}{55}$ OE (not $\frac{41}{55}$).
<u>41</u> 55	A1	$0.745 \le p \le 0.74545$ If M0 scored SC B1 $0.745 \le p \le 0.74545$.

(c) Method 2

$\left(\frac{4}{-1} \times \frac{3}{-1} \times \frac{2}{-1} + \frac{4}{-1} \times \frac{5}{-1} \times \frac{4}{-1} + \right)$	B1	P(1 O)or P(2 O) correct, accept unsimplified.
$P(1 O) = \begin{pmatrix} \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} + \frac{4}{12} \times \frac{5}{11} \times \frac{4}{10} + \\ 2 \times \frac{4}{12} \times \frac{5}{11} \times \frac{3}{10} \end{pmatrix} \times 3 = \frac{672}{1320}$	M1	3 correct scenarios added, with at least one 3-term product of form $\frac{f}{12} \times \frac{g}{d} \times \frac{h}{e}$ seen, either $d = 11$, $e = 10$ or $d = 12$, $e = 12$.
$P(2O) = \frac{4}{12} \times \frac{3}{11} \times \frac{8}{10} \times 3 = \frac{288}{1320}$ $P(3O) = \frac{24}{1320}$		
$[Total =] \frac{984}{1320} = \frac{41}{55}, 0.745$	A1	$0.745 \leqslant p \leqslant 0.74545$ If M0 scored SC B1 0.745 $\leqslant p \leqslant 0.74545$.

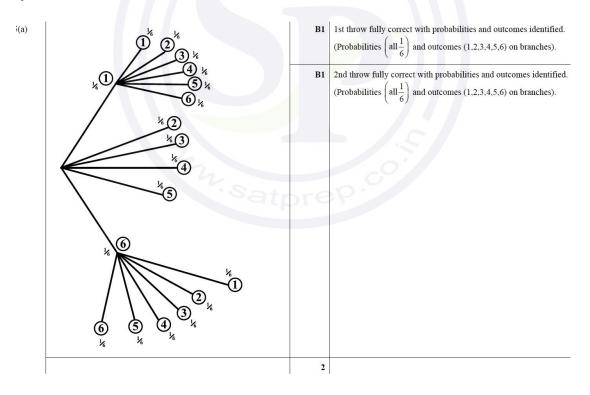
Method 3

O Y R = ${}^{4}C_{1} \times {}^{5}C_{1} \times {}^{3}C_{1}$ O R R = ${}^{4}C_{1} \times {}^{3}C_{2}$	= 60 = 12	В1	Number of ways either 1 or 2 orange sweets obtained correctly (112 or 48). Accept unsimplified Note ${}^4C_1 \times {}^8C_2 = 112$ or ${}^4C_2 \times {}^8C_1 = 48$ are correct alternatives.
O Y Y = ${}^{4}C_{1} \times {}^{5}C_{2}$ O O Y = ${}^{4}C_{2} \times {}^{5}C_{1}$ O O R = ${}^{4}C_{2} \times {}^{3}C_{1}$	= 40 = 30 = 18	M1	3 correct scenarios (1, 2 or 3 orange sweets) added on numerator, denominator ¹² C ₃
$O O O = {}^4C_3$ Total	= 4 = 164		
$Prob = \frac{164}{^{12}C_3}$		PE	
$\frac{984}{1320} = \frac{41}{55}, 0.745$	10	A1	$0.745 \le p \le 0.74545$ If M0 scored SC B1 0.745 $\le p \le 0.74545$.

'(c) Method 4

B1	$P(R \land \land) = \frac{17}{110}$ or $P(Y \land \land) = \frac{17}{66}$. Accept unsimplified.
M1	3 correct scenarios added, with at least one 3-term product of form $\frac{f}{12} \times \frac{g}{d} \times \frac{h}{e}$ seen, either $d = 11$, $e = 10$ or $d = 12$, $e = 12$.
A1	$0.745 \leqslant p \leqslant 0.74545$
	M1

(a)	$0.6 + 0.4 \times 0.3 = 0.72$ or $1 - 0.4 \times 0.7 = 0.72$	B1	Clear identified calculation AG
		1	
(b)	$0.72 \times (0.4 + 0.6 \times 0.2)$	M1	$0.72 \times u, 0 < u < 1$
		M1	$\mathbf{v} \times (0.4 + 0.6 \times 0.2)$, or $\mathbf{v} \times (1 - 0.6 \times 0.8) \ 0 < \mathbf{v} \le 1$ no additional terms SC B1 for $0.72 \times (0.4 + 0.12)$ or $0.72 \times (1 - 0.48)$
	0.3744	A1	WWW. Condone 0.374. SC B1 for 0.3744 only
		3	
	Alternative method for question 6(b)		
	[p(P1P2) + p(F1P1P2) + p(P1F2P2) + p(F1P1F2P2)] =	M1	Any two terms unsimplified and correct
	$0.6 \times 0.4 + 0.4 \times 0.3 \times 0.4 + 0.6 \times 0.6 \times 0.2 + 0.4 \times 0.3 \times 0.6 \times 0.2$	M1	Summing 4 appropriate scenarios by listing or on a tree diagram SC B1 for 0.24 + 0.048 + 0.072 + 0.0144
	0.3744	A1	WWW. Condone 0.374. SC B1 for 0.3744 only
		3	
(c)	$P(\text{fails first or second level} \text{finishes game}) = \frac{P(\text{fails first or second level} \cap \text{finishes game})}{\textit{their}(\mathbf{b})}$	M1	Either $0.6 \times 0.6 \times 0.2$ or $0.4 \times 0.3 \times 0.4$ seen Condone 0.072 or 0.048 if seen in (b)
	Numerator = P(S SF) + P(FS S) = $0.6 \times 0.6 \times 0.2 + 0.4 \times 0.3 \times 0.4 = 0.072 + 0.048 = 0.12$	A1	Both correct accept unsimplified expression. No additional terms
	Required probability = $\frac{0.12}{their(\mathbf{b})}$		Their sum of two 3-term probabilities as numerator
	ineir(u)		their (b) or correct
	$0.321 \text{ or } \frac{25}{78}$	A1	0.3205
		4	
Qu	estion 82		


(a)	[P(SR TR) + P(SW TR) =] $\frac{3}{8} \times \frac{2}{7} + \frac{5}{8} \times \frac{3}{7}$	M1	$\frac{3}{8} \times \frac{2}{7} + k$ or $l + \frac{5}{8} \times \frac{3}{7}$ $0 < k, l < 1$
	$=\frac{21}{56},\frac{3}{8},0.375$	A1	SC B1 for $\frac{3}{8}$ with no explanation.
		2	///
(b)	[RRWR, WRRR, WRWR] $\frac{3}{8} \times \frac{2}{7} \times \frac{5}{6} \times \frac{1}{5} + \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} \times \frac{1}{5} + \frac{5}{8} \times \frac{3}{7} \times \frac{4}{6} \times \frac{2}{5}$	M1	$\frac{m}{8} \times \frac{n}{7} \times \frac{o}{6} \times \frac{q}{5} 1 \leqslant m, n, o, q \leqslant 5, \ m \neq n \neq o \neq q$
	$ \begin{bmatrix} =\frac{1}{56} + \frac{1}{56} + \frac{1}{14} \end{bmatrix} $	A1	Probability for one scenario correct, accept unsimplified.
		M1	Adding probabilities for 3 correct scenarios and no incorrect.
	$=\frac{180}{1680},\frac{3}{28},0.107$	A1	Or 0.1071428 to 4SF or better. SC B1 for 3/28 with inadequate explanation.
(c)	$[P(S \text{ first disc R} T2) =] \frac{\frac{30}{1680}}{\frac{3}{28}} = \frac{\frac{1}{56}}{\frac{3}{28}}$	M1	their $P(RRWR)$ or $\frac{3}{8} \times \frac{2}{7} \times \frac{5}{6} \times \frac{1}{5}$ their $P(\mathbf{b})$ - must be a prob or $\frac{3}{28}$
	$\frac{1}{6}$, 0.167	A1	
		2	

(a)	$0.2 \times x + 0.1 \times 2x + 0.7 \times 0.25 = 0.235$	M1	$0.2 \times x + 0.1 \times 2x + 0.7 \times 0.25$ or $0.2x + 0.2x + 0.175$ seen.
		M1	Equating <i>their</i> 3 term expression (2 terms involving <i>x</i>) to 0.235
	x = 0.15	A1	
		3	
(b)	$ \left[P(car not late) = \frac{P(car and not late)}{P(not late)} \right] $ $ \frac{0.1 \times (1 - 0.3)}{1 - 0.235} $	M1	$0.1 \times (1-2 \times their x)$ or 0.1×0.7 as numerator and $0.2 \times (1-their x) + 0.1 \times (1-2 \times their x) + 0.7 \times 0.75$ with values substituted or $1-0.235$ or 0.765 as denominator of fraction. Condone $0.2 \times (1-their x) + 0.1 \times (1- \times their x) + 0.7 \times 0.75$ as denominator consistent with $1(a)$.
	$\left[\frac{0.07}{0.765} = \right] 0.0915, \frac{70}{765}, \frac{14}{153}$	A1	0.091503267 to at least 3SF. If M0 scored SC B1 for 0.091503267 to at least 3SF.
		2	

(a) Method 1: Scenarios identified ignoring unbiased coin

$P(BH_1 BT_2) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16}$	M1	All 3 different calculations seen unsimplified.		
$P(BT_1 BH_2) = \frac{3}{4} \times \frac{1}{4} = \frac{3}{16}$				
$P(BH_1 BH_2) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$				
$\frac{3}{16} + \frac{3}{16} + \frac{1}{16} = \frac{7}{16}$	A1	Clear identification of all scenarios , linked probabilities and sum. AG		

(b)	$\left[P(A B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{2} \times \frac{1}{4} \times \frac{1}{4}}{\frac{7}{16}} = \frac{\frac{1}{32}}{\frac{7}{16}}$	M1	Their identified P(HHH) or correct as numerator and their identified P(B) or correct as denominator. Either numerical expression acceptable.
	$=\frac{1}{14}$, 0.0714	A1	Accept 0.071428 rounded to at least 3SF.
		2	

(b)	5 comes from 1+4 or 5: 6 comes from 1+5 7 comes from 1+6 or 6+1 8 comes from 6+2 9 comes from 6+3	$P(5) = \frac{1}{6} \times \frac{1}{6} + \frac{1}{6} = \frac{7}{36}$ $P(6) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$ $P(7) = \frac{1}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{6} = \frac{2}{36}$ $P(8) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$ $P(9) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$	В1	P(5) or P(7) identified and correct unsimplified, accept if supported by correct scenarios shown or from tree diagram .
	$P(A) = \frac{7}{36} + \frac{1}{36} + \frac{2}{36} + \frac{1}{36} + \frac{1}{36}$		M1	Adding only the values from 5 correct scenarios.
	$=\frac{12}{36}=\frac{1}{3}$		A1	Scenarios identified (may be on tree diagram in 5(a)), all probabilities seen, WWW AG.
			3	
(c)	$P(B) = \frac{1}{3}, P(A \cap B) = \frac{6}{36}$		M1	Both identified and evaluated, consistent with <i>their</i> tree diagram or correct.
	$P(A)P(B) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$ $\frac{6}{36} \neq \frac{1}{9}, \text{ so not independent}$	ATP	A1	$P(A)\times P(B) \ seen \ and \ evaluated, \ all \ notation \ present \ and \ correct.$ Correct conclusion WWW.
		9/	2	1.01
(d)	$P(B \mid A') = \frac{P(B \cap A')}{P(A')} = \frac{their \frac{6}{36}}{\frac{2}{3}}$		B1	$\frac{6}{36}$ oe as numerator of a fraction.
	$P(A)$ $\frac{2}{3}$		M1	$\frac{\textit{their} \frac{6}{36} \text{ or } \textit{correct}}{\textit{their} 1 - \frac{1}{3} \text{ or } \textit{correct}} \text{ seen, consistent with } \textit{their} \text{ tree diagram.}$
	$\frac{1}{4}$, 0.25		A1	
			3	///

$(1-x) \times 0.7 \times 0.9 = 0.36$	M1	$(1-x) \times a \times b = 0.36$, $a = 0.7$ or 0.3 , $b = 0.9$ or 0.1
	Patpre	$(1-x)\times0.7\times0.9=0.36$, $(1-x)\times0.63=0.36$, $0.63-0.63x=0.36$ or $1-x=\frac{0.36}{0.63}$ seen. Condone recovery from omission of brackets.
$x = \frac{3}{7}$	A1	Accept 0.428571 to at least 3 sf. Condone 0.4285 rounding to 0.429. If M0 awarded, SC B1 for $x = \frac{3}{7}$ or 0.428571 to at least 3 sf.
	3	

$P(A) = \frac{1}{2}, P(B) = \frac{8}{24} = \frac{1}{3},$	В1	Both stated, accept unsimplified.
$P(A \cap B) = \frac{1}{6}$	M1	Evidence that independence properties not used.
$P(A) \times P(B) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ so events are independent	A1	Evaluated and conclusion stated. $P(A) \times P(B)$ and $P(A \cap B)$ seen.
	3	

Que	stion 88				
(a)	$P(A) = \frac{10}{36}$ $P(B) = \frac{24}{36}$	B1	Accept P(A) = $\frac{10}{36}, \frac{5}{18}, 0.278$ and P(B) = $\frac{24}{36}, \frac{2}{3}, 0.667$.		
	$P(A \cap B) = \frac{8}{36}$	В1			
	$\frac{10}{36} \times \frac{24}{36}$	M1	Their $P(A) \times their P(B)$ seen numerically, $0 \le their P(A), P(B) \le 1$.		
	$= \frac{5}{27}, 0.185 \left[\neq \frac{8}{36} \right]$ Events are not independent	A1 FT	Multiplication evaluated correctly and compared with intersection that is not a product of multiplication, conclusion stated, notation $P(A)$, $P(B)$ and $P(A \cap B)$ used.		
		4			
i(b)	$ \left[P(B A') = \frac{P(B \cap A')}{P(A')} = \right] $ $ \frac{16}{36} \left(1 - \frac{10}{36}\right) $	M	$[P(B \cap A') =]\frac{16}{36}, 0.4444$ or <i>their</i> P(B) – <i>their</i> P(A \cap B) seen as numerator or denominator of conditional probability fraction.		
	$\left[1-\frac{10}{36}\right]$	M			
	$=\frac{8}{13}$	A	1 Final answer $\frac{16}{26}, \frac{8}{13}, 0.6153846$ to at least 3SF.		
	Alternative Method for Question 5(b): Direct from outcome tables				
	$\left[P(B A') = \frac{\text{Number of outcomes}(B \cap A')}{\text{Number of outcomes}(A')} = \right]$	M	[Number of outcomes $(B \cap A') =]16$ seen as numerator or denominator of conditional probability fraction.		
	$\frac{16}{26}$	M	[Number of outcomes $(A') =]26$ seen as denominator of conditional probability fraction.		
		A	11 Final answer $\frac{16}{26}, \frac{8}{13}, 0.6153846$ to at least 3SF.		
			3		