

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of **15** printed pages.

9709/11

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method Α mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. .
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	Identify correct term and obtain $6(kx)^2 \cdot \left(\frac{2}{x}\right)^2$	M1	Needs numerical coefficient or $\frac{4!}{2!2!}$, not ${}^{4}C_{2}$.
	Equate to 150 and obtain $k = \frac{5}{2}$	A1	Ignore $-\frac{5}{2}$
	Identify correct term $4(kx)^3 \cdot \left(\frac{2}{x}\right)$ with their value of k	M1	Needs numerical coefficient or $\frac{4!}{3!1!}$.
	Obtain coefficient 125	A1	Accept $125x^2$ as final answer.
		4	

Question	Answer	Marks	Guidance
2	Differentiate to obtain $2x + ax^{-2}$ or equivalent	B1	
	Equate first derivative to zero, substitute $x = -3$ and attempt value of a	M1	Must be an attempt at differentiation.
	Obtain $a = 54$	A1	
	Obtain $b=27$	A1	
	·satpre?	4	

Question	Answer	Marks	Guidance
3	Use correct sector area formula	M1	
	Obtain $\frac{1}{2} \times 15^2 \times \frac{2}{5}\pi - \frac{1}{2} \times x^2 \times \frac{2}{5}\pi = \frac{209}{5}\pi$ or equivalent	A1	
	Obtain $[x] = 4$	A1	AWRT 4.00.
	Use correct arc length formula twice	M1	
	Obtain $22 + \frac{38}{5}\pi$	A1	OE. Must be in terms of π . Like terms must be collected. Not from a rounded value of <i>x</i> .
		5	

Question	Answer	Marks	Guidance
4	Substitute for <i>y</i> (or <i>x</i>) in first equation and simplify	*M1	All terms to one side and brackets expanded.
	Obtain $10x^2 + 3kx - 40$ [= 0] (or $10y^2 + 11ky + k^2 - 360$ [=0])	A1	
	Attempt $b^2 - 4ac$ for 3-term quadratic involving k	DM1	Not in quadratic formula unless $b^2 - 4ac$ is isolated.
	Obtain $9k^2 + 1600$ (or $81k^2 + 14400$)	A1	
	$9k^2 + 1600 > 0$	A1 FT	FT for $ak^2 + b > 0$ with $a, b > 0$.
		5	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(a)	Attempt correct process for solving 3-term quadratic equation in \sqrt{x}	M1	Accept $8y^2 - 6y - 9 \rightarrow (2y - 3)(4y + 3)$, if $y = \sqrt{x}$ specified.
	Obtain at least $2\sqrt{x} - 3 = 0$ or equivalent	A1	Ignore $4\sqrt{x} + 3 = 0$.
	T PR.		SC B1 for $\sqrt{x} = \frac{1}{2}$ with no method shown for solving the 3-term quadratic.
	Conclude $x = \frac{9}{4}$ ignore $\frac{9}{16}$	A1	SC B1 if no method shown for solving the 3-term quadratic.
	Alternative Method for Q5(a)		
	$3\sqrt{x} = 4x - \frac{9}{2} \rightarrow 16x^2 - 45x + \frac{81}{4}$ o.e and attempt correct process to solve	M1	
	Obtain $x = \frac{9}{4}$ or $\frac{9}{16}$	A1	SC B1 if no method shown for solving the 3-term quadratic.
	$x = \frac{9}{4}$ ignore $\frac{9}{16}$	A1	SC B1 if no method shown for solving the 3-term quadratic.
	2	3	
	".satprep."		

9709/11

Question	Answer	Marks	Guidance
5(b)	Integrate to obtain form $k_1 x^2 + k_2 x^{\frac{3}{2}} + k_3 x$ where $k_1 k_2 k_3 \neq 0$	M1	
	Obtain correct $2x^2 - 2x^{\frac{3}{2}} + x$ or equivalent	A1	Allow unsimplified.
	Substitute $x = 4$ and $y = 11$ to attempt value of c	M1	Dependent on at least 2 correct terms involving <i>x</i> .
	Obtain $y = 2x^2 - 2x^{\frac{3}{2}} + x - 9$	A1	Must be simplified. Allow ' $f(x) =$ '. Allow y missing if y appears previously.
		4	

Question	Answer	Marks	Guidance
6(a)	State or imply centre of C_1 is $(-3, 5)$	B1	
	State or imply centre of C_2 is $(9, -4)$	B1	
	Attempt correct process for finding distance between centres	M1	
	Obtain 15	A1	
	Satpre?	4	

Question	Answer	Marks	Guidance
6(b)	R = 4 and $R = 8$	B1	
	Obtain least or greatest distance	B1 FT	$15' - R_1 - R_2$ or $15' + R_1 + R_2$.
	Obtain 3 and 27	B1 FT	$(15) - R_1 - R_2$ and $(15) + R_1 + R_2$.
		3	

Question	Answer	Marks	Guidance	
7(a)	Differentiate to obtain form $k_1(2x+1)^{-\frac{4}{3}}$	M1		
	Obtain correct $-8(2x+1)^{-\frac{4}{3}}$ or unsimplified equivalent	A1		
	Attempt equation of tangent at $\left(\frac{7}{2}, 6\right)$ with numerical gradient	M1	Gradient must come from a differentiated expression.	
	Obtain $y = -\frac{1}{2}x + \frac{31}{4}$ or equivalent of requested form	A1		
	5	4		
Satprep.				

Question	Answer	Marks	Guidance
7(b)	Integrate to obtain form $k_2(2x+1)^{\frac{2}{3}}$	M1	
	Obtain correct $9(2x+1)^{\frac{2}{3}}$ or unsimplified equivalent	A1	
	Use correct limits correctly to find area	M1	Substitute correct limits into an integrated expression. 36 – 9 minimum working required.
	Obtain 27	A1	SC B1 if M1 A1 M0 scored.
		4	

Question	Answer	Marks	Guidance
8(a)	Use $\tan^2 \beta = \frac{\sin^2 \beta}{\cos^2 \beta}$	B1	E.g. $\tan^2 \beta = \frac{\sin^2 \beta}{\cos^2 \beta}$ and then replaces $\sin^2 \beta$ with a^2 or $\cos^2 \beta$ with $1 - a^2$.
	$\cos\beta = -\sqrt{1-a^2}$	B1	
	Obtain $\frac{a^2}{1-a^2} + 3a\sqrt{1-a^2}$	B1	
		3	

Question	Answer	Marks	Guidance
8(b)	Use correct identity to obtain 3-term quadratic equation in $\sin \theta$	*M1	
	Obtain $\sin^2 \theta + 4\sin \theta + 1 = 0$	A1	
	Attempt to solve quadratic	DM1	At least as far as $\frac{-4\pm\sqrt{12}}{2}$. -15.5° implies attempt at solving quadratic.
	Obtain 195.5	A1	
	Obtain 344.5	A1FT	Following first answer; and no others for $0^{\circ} < \theta < 360^{\circ}$ but must be in 4 th quadrant. SC B1 for 3.41 [°] and 6.01 [°] .
		5	

Question	Answer	Marks	Guidance
9(a)	Differentiate to obtain $5+12x-9x^2$	B1	
	Attempt to find two critical values by solving quadratic equation or inequality	M1	
	Obtain values $-\frac{1}{3}$ and $\frac{5}{3}$	A1	SC B1 if no method for solving the quadratic.
	Conclude $x < -\frac{1}{3}, x > \frac{5}{3}$	A1FT	SC B1 if no method for solving the quadratic.
		4	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
9(b)	Equate first derivative to 9 and simplify to 3 term quadratic	*M1	
	Obtain $x = \frac{2}{3}$	A1	SC B1 for solving $5+12x-9x^2 = 9$ without simplifying to a 3-term quadratic.
	Use <i>x</i> -value and corresponding <i>y</i> -value to determine value of <i>k</i>	DM1	
	Obtain $k = \frac{28}{9}$	A1	SC B1 for $k = \frac{28}{9}$ from solving $5 + 12x - 9x^2 = 9$ without simplifying to a 3-term quadratic.
		4	

Question	Answer	Marks	Guidance
10(a)	State or imply that first 3 terms of GP are $5+d$, $5+4d$, $5+10d$	B1	
	Form equation $(5+4d)^2 = (5+d)(5+10d)$ or equivalent	M1	
	Obtain $d = 2.5$	A1	Ignore 0 as a solution. SC B1 Obtain $d = 2.5$ and 7.5, 15, 30 by trial and improvement www.
	Alternative Method for Question 10(a):		
	State or imply that first 3 terms of GP are $5+d$, $5+4d$, $5+10d$	B1	
	$(5+d)R = 5+4d \rightarrow d = \frac{5-5R}{R-4}, (5+d)R^2 = 5+10d \rightarrow R^2 - 3R + 2 = 0$	M1	OE Eliminates <i>d</i> .
	Obtain $d = 2.5$	A1	
		3	

Question	Answer	Marks	Guidance
10(b)	Use correct formula for sum of AP with their value of d	M1	
	Obtain or imply 7700	A1	
	State or imply GP is 7.5, 15, 30,	B1	
	Use correct formula for sum of GP with their common ratio	M1	
	Obtain $S_{77} - G_{10} = 27.5$	A1	
		5	

Question	Answer	Marks	Guidance
11(a)	Obtain $b=2$ and $c=\frac{3}{2}$	B1	
	Obtain $\frac{15}{2} - 2\left(x - \frac{3}{2}\right)^2$	B1	
	State range is $y \leq \frac{15}{2}$ or $f(x) \leq \frac{15}{2}$ with \leq given or clearly implied (not <)	B1 FT	Following <i>their</i> value of <i>a</i> .
	·SatoreP.	3	
11(b)	State that reflection is in <i>x</i> -axis	B 1	Accept transformations in any order.
	State or imply that translation is by $\begin{pmatrix} -\frac{3}{2} \\ \frac{15}{2} \end{pmatrix}$ or equivalent	B1 FT	Following <i>their</i> values of <i>a</i> and <i>c</i> in part (a). Accept transformations in any order.
		2	

Question	Answer	Marks	Guidance
11(c)	Sketch the correct graph appearing in second and third quadrants only	B1	
	State that each y-value is associated with a single x-value or equivalent	B 1	Accept passes the horizontal line test. Ignore passes the vertical line test.
		2	
11(d)	Sketch the correct graph with suitable labelling to distinguish the two curves	B1	Appearing in third and fourth quadrants only.
	Draw the line $y = x$	B1	See above; no need to label the line.
	Attempt correct process for finding the inverse function	M1	Allowing use of \pm and y so far.
	Obtain $\frac{3}{2} - \sqrt{\frac{15}{4} - \frac{1}{2}x}$ or equivalent	A1	Must involve <i>x</i> at the conclusion.
	2	4	
	Satprep.co		

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of 24 printed pages.

9709/12

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method Α mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. .
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1(a)	<i>a</i> =4	B1	Allow $4\sin(2x) + 3$ if values of <i>a</i> , <i>b</i> and <i>c</i> are not stated.
	<i>b</i> =2	B1	
	<i>c</i> = 3	B1	
		3	
1(b)(i)	5	B1	Ignore attempts at finding solutions.
	9	1	
1(b)(ii)	1	B1	Ignore attempts at finding solutions.
		1	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
2(a)	$\frac{20}{2} (2 \times -20 + (20 - 1) \times 5) \text{ or } \frac{20}{2} (-20 + 75)$	M1	Correct use of either S_{20} formula with $a = -20$ and $d = 5$.
	550	A1	
		2	
2(b)	$\frac{2k}{2}(-40+(2k-1)\times5) \text{ or } \frac{k}{2}(-40+(k-1)\times5)$	M1*	Correct use of S _n formula with $a = -20$, $d = 5$ and either k or 2k. This mark can be awarded for clear use of $\frac{n}{2}(a+l)$ when correct values of a and d are used.
	$\left[-40k + 10k^2 - 5k = -200k + 25k^2 - 25k \Rightarrow\right] 15k^2 - 180k = 0$	DM1	Equating their S_{2k} to $10 \times their S_k$ and reaching a 2-term quadratic or 2 term linear equation if <i>k</i> has been cancelled. Condone errors in simplification.
	k = 12	A1	Condone extra solution $k = 0$.
		3	

Question	Answer	Marks	Guidance
3(a)	$\left[f\left(2+h\right)=\right]2\left(2+h\right)^{2}-3$	B1	SOI
	$\frac{\left(2(2+h)^2 - 3\right) - 5}{(2+h) - 2} \left[= \frac{2h^2 + 8h}{h} \right]$	M1	$\frac{\left\{their\left(2(2+h)^2-3\right)\right\}-their5}{(2+h)-2}$ can be implied by the simplified expression or the correct answer. Their 5 must come from $2(2)^2-3$.
	2h+8 or 2(h+4)	A1	
		3	
3(b)	$h \rightarrow 0$, or chord [AB] \rightarrow tangent [at A]	B1	Either of these statements or any sight of $h = 0$.
	8	B1FT	Could come from anywhere except wrong working. Either correct or FT their linear expression from (a).
		2	

Question	Answer	Marks	Guidance
4(a)	15 or $\binom{6}{2} \times x^4 \left(\frac{3}{x^2}\right)^2$ or $x^6 \times \frac{6 \times 5}{2} \left(\frac{3}{x^3}\right)^2$	B1	OE May be in a list. Allow $\begin{pmatrix} 6\\ 4 \end{pmatrix}$.
	135	B1	Correct term must be identified if in a list. Allow $135x^0$.
		2	

Question	Answer	Marks	Guidance
4(b)	20 or $\binom{6}{3} \times x^3 \left(\frac{3}{x^2}\right)^3$ or $x^6 \times \frac{6.5.4}{3!} \left(\frac{3}{x^3}\right)^3$	B1	OE May be in a list.
	$=\frac{540}{x^3}$	B1	Identifying $\frac{1}{x^3}$ term. This can be implied by sight of 2160 as part of the constant term.
	4×540-5×135	M1	$4 \times their 540 - 5 \times their 135$
	1485	A1	Allow $1485x^0$.
		4	

Question	Answer	Marks	Guidance
5(a)(i)	$\left[f\left(-1\right)=\right]\frac{1}{3}$	B1	Condone 0.333.
		1	
5(a)(ii)		B1	For showing the correct mirror line.
		B1	For correct shape: the curves should intersect in the first square in the third quadrant. To the left of the point of intersection, the reflection is below the original and crosses the <i>x</i> -axis. To the right of the point of intersection, the reflection is to the right the original.
		2	

Question	Answer	Marks	Guidance		
5(a)(iii)	$\frac{2x+1}{2x-1} = y \implies 2x+1 = y(2x-1)$	M1*	Equating y to the given function and clearing of fractions. x and y may be interchanged at this stage.		
	2xy - 2x = y + 1	DM1	Condone ± errors during simplification.		
	$\frac{x+1}{2(x-1)}, \frac{-x-1}{2-2x}$	A1	Allow 'f ⁻¹ ' or 'y =' but NOT 'x =', nor fractions within fractions.		
	[Domain of f^{-1} is] $x < 1$	B1	Accept – $\infty < x < 1$ or (– ∞ , 1), condone [– ∞ , 1).		
	Alternative Method for Question 5(a)(iii)				
	$y = 1 + \frac{2}{2x - 1} \Longrightarrow y - 1 = \frac{2}{2x - 1}$	M1*	Equating y to the given function after division by $2x-1$. Isolating the term in x. x and y may be interchanged at this stage.		
	$2x = \frac{2}{y-1} + 1$	DM1	Condone ± errors during simplification.		
	$\frac{1}{x-1} + \frac{1}{2}$	A1	OE Allow 'f ⁻¹ 'or 'y =' but NOT 'x =', nor fractions within fractions.		
	[Domain of f^{-1} is] $x < 1$	B1	Accept – $\infty < x < 1$ or (– ∞ , 1), condone [– ∞ , 1).		
		4			

Question	Answer	Marks	Guidance	
5(b)	$gf\left(\frac{1}{4}\right) = -7$	B1		
	$\frac{2x+1}{2x-1} = -7$	M1	Equating $\frac{2x+1}{2x-1}$ to their $gf\left(\frac{1}{4}\right)$.	
	$[x=] \frac{3}{8}$	A1	OE	
	Alternative solution for Question 5(b)			
	$gf\left(\frac{1}{4}\right) = -7$	B1		
	$x = f^{-1}(-7)$	M1	$x = f^{-1}\left(\text{their } gf\left(\frac{1}{4}\right)\right)$	
	$[x=] \frac{3}{8}$	A1	OE	
	Z.	3		
Satprep.co				

Question	Answer	Marks	Guidance
6	[Perimeter =] $r + r\theta + r + 2r \times 2\theta + r + r\theta + r$ [= $4r + 6r\theta$]	B1	
	[Area =] $\frac{1}{2}r^2\theta + \frac{1}{2}(2r)^2 \times 2\theta + \frac{1}{2}r^2\theta$ [=5 $r^2\theta$]	B1	
	$4r+6r\theta=14$ and $5r^2\theta=10$	M1*	$ar+br\theta=14$ and $cr^2\theta=10$ where <i>a</i> , <i>b</i> and <i>c</i> are constants $\neq 0$. Terms may be uncollected.
	EITHER		
	$5r^2 \frac{14 - 4r}{6r} = 10 \text{ or } 4r + 6r \left(\frac{10}{5r^2}\right) = 14$	DM1	Eliminate θ to get an equation in <i>r</i> .
	$\left[\Rightarrow 2r^2 - 7r + 6 = 0 \Rightarrow\right] (r - 2)(2r - 3) = 0$	DM1	Factorise or other accepted method for solving their 3-term quadratic.
	OR		
	$5\left(\frac{14}{4+6\theta}\right)^2 \theta = 10 \text{ or } 4\left(\sqrt{\frac{10}{5\theta}}\right) + 6\left(\sqrt{\frac{10}{5\theta}}\right)\theta = 14$	DM1	Eliminate r to get an equation in θ .
	$[\Rightarrow 18\theta^2 - 25\theta + 8 = 0 \Rightarrow] (9\theta - 8)(2\theta - 1) = 0$	DM1	Factorise or other accepted method for solving their 3-term quadratic.
	Then		
	$r = 2$ and $\theta = 0.5$	B1	Condone extra answers $r = \frac{3}{2}$ and $\theta = \frac{8}{9}$.
		6	

Question	Answer	Marks	Guidance
7(a)	$-2((x \pm p)^2 \pm q) \text{ or } -2(x \pm p)^2 \pm q$	M1*	$p \neq 0.$
	$-2((x-2)^2 \pm q)$ or $-2(x-2)^2 \pm q$	DM1	
	$-2(x-2)^2 + 19$ and (2, 19)	A1	Accept $x = 2, y = 19$ or 2, 19.
		3	

Question	Answer	Marks	Guidance
7(b)	Method 1		
	$[x=]\pm 1$	B1*	Both <i>x</i> co-ordinates for the points of intersection.
	Subtract and attempt to integrate	M1*	
	$\left[\int \left(-2x^2+2\right) dx\right] - \frac{2}{3}x^3 + 2x$	B1*	Both terms correct.
	$\left(-\frac{2}{3}+2\right)-\left(\frac{2}{3}-2\right)$	M1	Apply <i>their</i> limits, one positive and one negative, obtained from equating the line and the curve to their integrated expression.
	$=\frac{8}{3}, 2\frac{2}{3}$	DB1	AWRT 2.67 WWW. Condone $\frac{-8}{3} \rightarrow \frac{8}{3}$. SC B1 for mistaking triangle for trapezium leading to $\frac{11}{3}$, i.e. a total of 2/5.
	Method 2		
	$[x=]\pm 1$	B1*	Both x co-ordinates for the points of intersection.
	Attempt to integrate and subtract	M1*	The second integral can be replaced with what is clearly their area of a trapezium.
	$\left\{\frac{-2x^3}{3} + \frac{8}{2}x^2 + 11x\right\} \left[-\right] \left\{\frac{8}{2}x^2 + 9x\right\}$	B 1*	OE All terms correct. The second integral can be replaced by $\frac{1}{2}(1+17) \times 2$ OE.

9709/12

Question	Answer	Marks	Guidance
7(b)	$\left\{ \left(\frac{-2}{3} + 4 + 11\right) - \left(\frac{2}{3} + 4 - 11\right) \right\} \left[-\right] \left\{ (4 + 9) - (4 - 9) \right\}$	M1	Apply <i>their</i> limits, one positive and one negative, obtained from equating the line and the curve, to <i>their</i> integrated expressions. If the trapezium has been used, the second integral can be replaced by <i>their</i> 18.
	$=\frac{8}{3}, 2\frac{2}{3}$	DB1	AWRT 2.67 WWW. Condone $\frac{-8}{3} \rightarrow \frac{8}{3}$.
	0	\sim	SC B1 for mistaking triangle for trapezium leading to $\frac{11}{3}$, i.e.
			a total of 2/5.
	Method 3		
	$[x=]\pm 1$	B1*	Both <i>x</i> co-ordinates for the points of intersection.
	Subtract and attempt to integrate	M1*	
	$-\frac{2}{3}(x-2)^3 - \frac{8}{2}x^2 + 10x$	B1*	All terms correct.
	$\left(\frac{2}{3} - 4 + 10\right) - (18 - 4 - 10)$	M1	Apply <i>their</i> limits, one positive and one negative, obtained from equating the line and the curve, to <i>their</i> integrated expression.
	$=\frac{8}{3}, 2\frac{2}{3}$	DB1	AWRT 2.67 WWW.

Question	Answer	Marks	Guidance
7(b)	Method 4		
	$[x=]\pm 1$	B1*	Both <i>x</i> co-ordinates for the points of intersection.
	Attempt to integrate and subtract	M1*	The second integral can be replaced with what is clearly <i>their</i> area of a trapezium.
	$\left\{-\frac{2}{3}(x-2)^3 + 19x\right\} \left[-\right] \left\{\frac{8}{2}x^2 + 9x\right\}$	B1*	All terms correct. The second integral can be replaced with $\frac{1}{2}(1+17) \times 2$ OE.
	$\left\{ \left(\frac{2}{3} + 19\right) - (18 - 19) \right\} \left[-\right] \left\{ (4 + 9) - (4 - 9) \right\}$	M1	Apply <i>their</i> limits, one positive and one negative, obtained from equating the line and the curve, to <i>their</i> integrated expression. If the trapezium has been used the second integral can be replaced with <i>their</i> 18 OE.
	$=\frac{8}{3}, 2\frac{2}{3}$	DB1	AWRT 2.67 WWW. Condone $\frac{-8}{3} \rightarrow \frac{8}{3}$. SC B1 for mistaking triangle for trapezium leading to $\frac{11}{3}$, i.e. a total of 2/5.
	Satarap:	5	

9709/12

Question	Answer	Marks	Guidance
8(a)	$\left(x - \left(-\frac{1}{2}p\right)\right)^2 + \left(y - (-1)\right)^2 \text{ OE}$	B1*	Allow $a = -\frac{1}{2}p$ and $b = -1$, or centre is $\left(-\frac{1}{2}p, -1\right)$.
	$\left(x - \left(-\frac{1}{2}p\right)\right)^{2} + \left(y - (-1)\right)^{2} = -q + 1 + \left(-\frac{1}{2}P\right)^{2} \text{ OE}$	DB1	
	T PR	2	
8(b)(i)	[Gradient of tangent =] $-\frac{1}{2}$	B1	OE SOI
	[Gradient of normal =] 2	M1	Use of $m_1m_2 = -1$ with <i>their</i> numeric tangent gradient.
	$\frac{y-3}{x-4} = 2 \ [y=2x-5]$	A1	OE ISW Allow $y = 2x + c$, $3 = 2 \times 4 + c \implies c = -5$.
		3	

Question	Answer	Marks	Guidance
8(b)(ii)	Method 1 for the first two marks:	·	
	$-1-3=2\left(-\frac{1}{2}p-4\right)$ or $-1=-p-5$	M1*	Using <i>their</i> stated centre or $\left(\frac{\pm p}{2}, \pm 1\right)$ in <i>their</i> equation of the
			normal.
	p = -4	A1	
	Method 2 for the first two marks:		
	$-1=2x-5 \Rightarrow x=2 \Rightarrow -\frac{1}{2}p=2$	M1*	Using their normal equation and <i>their</i> stated centre or $\left(\frac{\pm p}{2}, \pm 1\right)$.
	<i>p</i> = -4	A1	
	Method 3 for the first two marks:		
	$2x + 2y\frac{dy}{dx} + p + 2\frac{dy}{dx} = 0 \left[\Rightarrow p = -8 - 8\frac{dy}{dx} \right]$	M1*	
	$\left[\frac{dy}{dx} = -\frac{1}{2} \Rightarrow\right] p = -4$	A1	
·satpre?			

Question	Answer	Marks	Guidance		
8(b)(ii)	Method 1 for the last 3 marks:				
	$r^{2} = (4-2)^{2} + (3-(-1))^{2} [=20]$	M1*	Using (4, 3) and <i>their</i> centre or $\left(\frac{\pm their p}{2}, \pm 1\right)$ to find r^2 or r .		
	$-q + 1 + \frac{1}{4}p^2 = 20$	DM1	OE Using <i>their</i> expression for r^2 (from (a)) equated to <i>their</i> 20.		
	q = -15	A1			
	Method 2 for the last 3 marks:				
	$r = \frac{\left 2 - 2 - 10\right }{\sqrt{5}} \left[= \frac{10}{\sqrt{5}} \right]$	M1*	Using $(2,-1)$ and $x+2y-10=0$ (distance from a point to a line).		
	$-q+1+\frac{1}{4}p^{2} = \left(\frac{10}{\sqrt{5}}\right)^{2}$	DM1	OE Using <i>their</i> expression for r^2 equated to <i>their</i> $\left(\frac{10}{\sqrt{5}}\right)^2$.		
	<i>q</i> = -15	A1			
	Method 3 for the last 3 marks:				
	$4^{2} + 3^{2} + 4p + 6 + q = 0 \ [\Rightarrow 4p + q + 31 = 0]$ OR	M1*	Substituting $(4,3)$ into their circle equation.		
	$\left(4 - \left(-\frac{1}{2}p\right)\right)^2 + \left(3 - (-1)\right)^2 = -q + 1 + \left(-\frac{1}{2}p\right)^2$				
	4(-4) + q + 31 = 0	DM1	Substituting <i>their</i> $p = -4$.		
	<i>q</i> = -15	A1			

Question	Answer	Marks	Guidance
8(b)(ii)	Alternative Method for Question 8(b)(ii)		
	$4^{2} + 3^{2} + 4p + 6 + q = 0$ $x^{2} + (2x - 5)^{2} + px + 2(2x - 5) + q = 0 \text{ with } x = 4$ $x^{2} + \left(\frac{10 - x}{2}\right)^{2} + px + 2\left(\frac{10 - x}{2}\right) + q = 0 \text{ with } x = 4$ $\left(\frac{y + 5}{2}\right)^{2} + y^{2} + p\left(\frac{y + 5}{2}\right) + 2y + q = 0 \text{ with } y = 3$ $(10 - 2y)^{2} + y^{2} + p(10 - 2y) + 2y + q = 0 \text{ with } y = 3$ {Each of these $\Rightarrow 4p + q + 31 = 0$ }	M1*	Substituting (4, 3) into <i>their</i> circle equation, or replacing y with $2x-5$ from the normal equation, or replacing y with $\frac{10-x}{2}$ from the tangent equation, or replacing x with $\frac{y+5}{2}$ from the normal equation, or replacing x with $10-2y$ from the tangent equation, and using either $x=4$ or $y=3$ to form an equation in p and q.
	$\frac{5}{4}x^{2} + (p-6)x + 35 + q = 0 \implies (p-6)^{2} - 4 \times \frac{5}{4} \times (35 + q) = 0$ OR $5y^{2} - y(38 + 2p) + 100 + 10p + q = 0 \implies (38 + 2p)^{2} - 4 \times 5 \times (100 + 10p + q) = 0$ {Each of these $\Rightarrow p^{2} - 12p - 139 - 5q = 0$ }	M1*	Solving the tangent and circle equations simultaneously to form a quadratic equation in either x or y. Then using $b^2 - 4ac = 0$ on their quadratic to form an equation in p and q.
	Solving the equations simultaneously to find p or q	DM1	
	<i>p</i> = -4	A1	
	<i>q</i> = -15	A1	
		5	

Question	Answer	Marks	Guidance
9(a)	$\begin{bmatrix} \frac{1}{2}k^2 \times \frac{25}{4} - 2k \times \frac{5}{2} + 2 = \frac{1}{2} \\ \text{OR} \\ \frac{1}{2}k^2 \times \frac{25}{4} - 2k \times \frac{5}{2} + 2 = k \times \frac{5}{2} + \left(\frac{1}{2} - \frac{5}{2}k\right) \end{bmatrix}$ 25k ² - 40k + 12 [=0]	M1*	Using $\left(\frac{5}{2}, \frac{1}{2}\right)$ in the curve equation or equating the line and the curve and then using $x = \frac{5}{2}$ and $p = \frac{1}{2} - \frac{5}{2}k$. Simplify to get a three-term quadratic in <i>k</i> . Condone errors in simplification.
	$k = \frac{2}{5}$	A1	OE Condone inclusion of $k = \frac{6}{5}$.
	$\frac{1}{2} = \left(their\frac{2}{5}\right)\left(\frac{5}{2}\right) + p \implies p =$	DM1*	Using $\left(\frac{5}{2}, \frac{1}{2}\right)$ and <i>their k</i> in an equation in <i>p</i> . Either the line (as shown) or $4p^2 + 12p + 5 = 0$ are the most likely and solving for <i>p</i> .
	$p = -\frac{1}{2}$	A1	OE Condone inclusion of $p = -\frac{5}{2}$.
	$\frac{2}{25}x^2 - \frac{6}{5}x + \frac{5}{2} \left[=0\right] \left[4x^2 - 60x + 125 \left[=0\right]\right]$	DM1	Equating the line and curve using <i>their</i> k and p and simplify to get a three-term quadratic [= 0].
	$\left(\frac{25}{2},\frac{9}{2}\right)$	A1 A1	OE Accept $x = \frac{25}{2}, y = \frac{9}{2}$.
Question	Answer	Marks	Guidance
----------	---	-------	---
9(a)	Alternative Method for Question 9(a)		
	$\begin{bmatrix} \frac{1}{2}k^2 \times \frac{25}{4} - 2k \times \frac{5}{2} + 2 = k \times \frac{5}{2} + p \end{bmatrix}$ 4p ² +12p +5 [=0]	M1*	OE Using $\left(\frac{5}{2}, \frac{1}{2}\right)$ in the curve equation or equating the line and the curve and then using $x = \frac{5}{2}$ and $k = \frac{1}{5} - \frac{2}{5}p$. Simplify to get a three-term quadratic in p [= 0].
	$p = -\frac{1}{2} \text{ OE}$	A1	Condone inclusion of $p = -\frac{5}{2}$.
	$\frac{1}{2} = \left(\frac{5}{2}k\right) + \left(their - \frac{1}{2}\right) \implies k =$	DM1*	Using $\left(\frac{5}{2}, \frac{1}{2}\right)$ and <i>their p</i> in the line equation and solving for <i>k</i> .
	$k = \frac{2}{5}$	A1	OE Condone inclusion of $k = \frac{6}{5}$.
	$\frac{2}{25}x^2 - \frac{6}{5}x + \frac{5}{2}[=0] \left[4x^2 - 60x + 125[=0]\right]$	DM1	Equating the line and curve using <i>their</i> k and p and simplify to get a three-term quadratic [= 0].
	$\left(\frac{25}{2},\frac{9}{2}\right)$	A1 A1	OE Accept $x = \frac{25}{2}, y = \frac{9}{2}$.
		7	

Question	Answer	Marks	Guidance
9(b)	$\left[\frac{1}{2}k^{2}x^{2} - 2kx + 2 = kx + p \implies \frac{1}{2}k^{2}x^{2} - 3kx + 2 - p\right]$	M1*	Equate the original equations of the curve and the line and collect like terms; k and p must still be present.
	$9k^2 - 4 \times \frac{1}{2}k^2(2-p)$	DM1	Use of $b^2 - 4ac$ for their quadratic in <i>x</i> to give an expression in <i>k</i> and <i>p</i> . This expression can come from <i>their</i> equation in (a).
	$p < -\frac{5}{2}$	A1	
	9	3	

Question	Answer	Marks	Guidance	
10(a)	-18	B 1	SOI	
	$\frac{1}{18}$	M1	Use of $m_1m_2 = -1$ from $f'(x)$ with $x = 1$.	
	$\frac{y\left[-0\right]}{x-1} = \frac{1}{18}$	A1	OE ISW	
	2	3		

Question	Answer	Marks	Guidance
10(b)	$\begin{bmatrix} f(x) = \end{bmatrix} \begin{cases} 8(2x-3)^{\frac{4}{3}} \cdot \frac{1}{2} \cdot \frac{1}{\frac{4}{3}} \\ \frac{1}{2} \cdot \frac{1}{\frac{4}{3}} \end{cases} \begin{cases} -10x^{\frac{5}{3}} \cdot \frac{1}{5} \\ \frac{5}{3} \end{cases} \begin{bmatrix} +c \end{bmatrix}$ $\begin{bmatrix} 3(2x-3)^{\frac{4}{3}} - 6x^{\frac{5}{3}} + c \end{bmatrix}$	B1B1	B1 for each unsimplified {}. Can be implied by equivalent simplified or partly simplified versions.
	$0 = 3(2(1) - 3)^{\frac{4}{3}} - 6(1)^{\frac{5}{3}} + c \qquad [0 = 3 - 6 + c]$	M1	Use of $x=1$ and $y=0$ in <i>their</i> integrated $f'(x)$, defined as an expression with at least one correct power, which must contain $+c$.
	$\left[f(x) \text{ or } y=\right] 3(2x-3)^{\frac{4}{3}}-6x^{\frac{5}{3}}+3$	A1	Only condone $c = 3$ as their final answer if all coefficients have previously been simplified in a correct statement.
		4	
10(c)	$b^2 - 4ac = 128^2 - 4 \times 125 \times 192$ and stating "< 0" OR use of the quadratic formula and stating "No solutions" OR completing the square for the given quadratic and stating positive or > 0. OR sketch of the given quadratic and stating positive.	M1*	$b^2 - 4ac = -79616$ can be accepted in place of working.
	No turning points [in the original function.]	DM1	
	Decreasing because $f'(any positive x value) < 0$	A1	WWW e.g. $f'(1) = -18$.
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

This document consists of **17** printed pages.

9709/13

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method Α mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. .
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	a + 3d = 15 and $a + 7d = 25$	M1	Or forming any valid equations which can be used to find d or a .
	Finding <i>a</i> and $d\left[d=\frac{5}{2}, a=\frac{15}{2}\right]$	DM1	Or any valid method to find <i>a</i> using <i>their</i> d or d using <i>their a</i> or finding u_{30} directly from either u_4 or u_8 and <i>d</i> .
	$u_{30} = \frac{15}{2} + 29 \times \frac{5}{2} = 80$	A1	
	9	3	

Question	Answer	Marks	Guidance
2	$\cos\left(\frac{\pi}{6}\right) + \tan 2x + \frac{\sqrt{3}}{2} = 0 \implies \tan 2x = -\sqrt{3}$	M1	Making $\tan 2x$ the subject. $\tan 2x = 0$ is M0. Accept decimals and one sign error.
	$\Rightarrow 2x = -\frac{\pi}{3} \Rightarrow x = -\frac{\pi}{6}$	A1	May come from non-exact working. Ignore answers outside the given range.
	4	2	
	2		

Question	Answer	Marks	Guidance
3(a)	$x^{3}: \binom{5}{3} 3^{2} (-ax)^{3} \left[-10 \times 3^{2} \times a^{3}\right] \text{ or } x^{4}: \binom{5}{4} 3 (-ax)^{4} \left[5 \times 3 \times a^{4}\right]$	M1	Allow for either term, allow sign error and combination notation.
	$x^3: -90a^3$	A1	Allow in the full expansion.
	$x^4: 15a^4$	A1	Allow in the full expansion.
		3	

Question	Answer	Marks	Guidance	
3(b)	Coefficient of x^4 is $a \times their - 90a^3 + 7 \times their 15a^4$ $\left[=15a^4\right]$	M1	Must select two appropriate terms only.	
	$15a^4 = 240$	DM1	Reducing to a simple quartic equation in <i>a</i> .	
	$\Rightarrow a^4 = 16 \Rightarrow a = 2$	A1	A0 if $a = -2$ is given as a solution.	
		3		

Question	Answer	Marks	Guidance
4	Let $x = \sin^2 \theta$ $(2x+7)(2x-1) = 0$ or $(2\sin^2 \theta + 7)(2\sin^2 \theta - 1)$	M1	Or equivalent method.
	$\Rightarrow \sin^2 \theta = \frac{1}{2} \Rightarrow \sin \theta = [\pm] \frac{1}{\sqrt{2}}$	M1	Finding $\sin^2 \theta$ and then $\sin \theta$ (may be implied).
	$\theta = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$	A1 A1	A1 for any two correct values. A1 for all correct and no others within the range. For answers in radians, A1 only for all 4 angles. If no (correct) working, then SC B1 for all 4 solutions.
	Satore	4	

Question	Answer	Marks	Guidance
5(a)	Reflection [in] y-axis	B1 B1	B1 for reflection B1 mention of <i>y</i> -axis, OE. SC B2 for stretch, SF -1 , parallel to <i>x</i> -axis.
	Translation or shift $\begin{pmatrix} -1\\ 0 \end{pmatrix}$	B1*	B1 for 'translation' and a correct vector/description. Do not accept 'left'/'right'. If two translations then B0 and B0 for the order.
	Stretch, factor 2, parallel to y-axis	B2,1,0	B2 all correct OE. B1 any 2 parts correct. This can be at any point in the sequence.
	Correct order and three correctly named transformations only	DB1	If a fourth transformation is given this mark is not awarded and no marks are given for the two transformations of the same type, except where the reflection is described as a stretch. If any transformation is incorrectly named this cannot be given. If translation is not $\begin{pmatrix} -1\\0 \end{pmatrix}$ or $\begin{pmatrix} 1\\0 \end{pmatrix}$ then DB0 is given.
	Alternative Solution for first 3 marks		
	Translation or shift $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	B1*	B1 for 'translation' and correct vector/description.
	Reflection [in] y-axis	B1 B1	B1 for 'reflection', B1 for 'in y-axis'.
	Alternative solutions	9.	
	There are alternative solutions which can be marked in the same way e.g. the given stretch, translation $\begin{pmatrix} -4 \\ 0 \end{pmatrix}$, reflect in $x = -2.5$		
		6	

Question	Answer	Marks	Guidance	
5(b)	g(x) = 2f(-x-1) or $a = 2, b = -1, c = -1$	B1	First B1 for $a=2$ and no additional terms added to the function. a=-2 is B0.	
		B1	Second B1 for $b = -1$ and $c = -1$.	
		2		

Question	Answer	Marks	Guidance
6	$\frac{\frac{10(1-r^8)}{1-r}}{\frac{10(1-r^4)}{1-r}} = \frac{17}{16} \left[a\frac{(1-r^8)}{(1-r)} = \frac{17}{16} \times a\frac{(1-r^4)}{(1-r)}\right]$	M1*	OE, i.e. substituting p and q expressions into ratio $\frac{17}{16}$. $16 = a \frac{(1-r^4)}{(1-r)}, \ 17 = a \frac{(1-r^8)}{(1-r)}$ gets M0 unless recovered later.
	Simplifying to $16r^8 - 17r^4 + 1 = 0$ (or equivalent form)	DM1	Or $\frac{(1-r^8)}{(1-r^4)} = (1+r^4) = \frac{17}{16}.$
	$\left[\left(16r^4 - 1\right)\left(r^4 - 1\right) = 0\right] \Longrightarrow r = \pm \frac{1}{2}$	A1	Or $r^4 = \frac{1}{16} \implies r = \pm \frac{1}{2}$ (condone extra $r = \pm 1$ solution).
	$S_{\infty} = \frac{10}{1 - \left([\pm] \frac{1}{2} \right)}$	DM1	Use of correct sum to infinity formula with either of <i>their r</i> values providing $ r < 1$.
	$S_{\infty} = 20$ and $\frac{20}{3}$	A1	Allow 6.67 or better. A0 if there is only one or more than two S_{∞} values.
		5	

Question	Answer	Marks	Guidance
7(a)	Area of sector $BOF = \frac{1}{2} \times 20^2 \times (2\pi - 2.4)$ [= 776.63]	M1	Or combination of large semi-circle and small sector: $\frac{1}{2} \times 20^2 \times \pi + \frac{1}{2} \times 20^2 \times (\pi - 2.4).$
	Length $BD = DF = 2 \times 20 \sin 0.6$ or $\sqrt{20^2 + 20^2 - 2 \times 20 \times 20 \cos 1.2}$ [= 22.58]	M1*	Length of radius of small circles is acceptable for M1.
	Area of two semicircles = $\pi \times (20 \sin 0.6)^2 [= 400.64]$	DM1	
	Area of triangles = $2 \times \frac{1}{2} \times 20 \times 20 \sin 1.2$ [= 372.81]	M1	
	Total area = 1550 [cm ²]	A1	Expect 1550.09 but accept AWRT to 3sf.
		5	
7(b)	$\frac{1}{2}\pi r^2 = 50\pi \implies r = 10$	B1	May be seen as $20\sin\frac{\theta}{2}$, where $\theta = \frac{\pi}{3}$.
	$\Rightarrow \theta = \frac{\pi}{3}$	M1*	OE Finding θ using <i>their r</i> . Allow working in degrees.
	Arc length of sector $BOF = 20 \times \left(2\pi - their \frac{2\pi}{3}\right)$	DM1	
	Total perimeter = $20 \times \left(2\pi - their \frac{2\pi}{3}\right) + 2\pi \times their 10$	DM1	Dependent on the first dM1.
	$\frac{140\pi}{3}$ or $46\frac{2}{3}\pi$	A1	Must be a single exact term.
		5	

Question	Answer	Marks	Guidance
8(a)	$3(x-2)^2 + 2$ or $a = -2, b = 2$	B1 B1	
		2	
8(b)	2 or $k = 2$ or $k \ge 2$	B1FT	FT on <i>their a</i> . Do not accept $x = 2$ or $x \ge 2$.
	TPR	1	
8(c)	$3(x-2)^{2} + 14 - 12 = y \implies (x-2)^{2} = \frac{y-2}{3}$	M1	Using their completed square form.
	$x = [\pm]\sqrt{\frac{y-2}{3}} + 2$	DM1	
	$f^{-1}(x) = \sqrt{\frac{x-2}{3}} + 2$	A1	OE, e.g. $y = \frac{\sqrt{3x-6}}{3} + 2.$
		3	

Question	Answer	Marks	Guidance
8(d)	Finding $f^{-1}(29)$ [= 5]	M1	Or solving $f(x) = 29$ [using <i>their</i> completed square form, OE].
	Finding f^{-1} (<i>their</i> 5)	M1	Or solving $f(x) = their 5$.
	<i>x</i> =3	A1	If using $f(x)$ method, $x = 1$ must be discarded.
	Alternative solution for Question 8(d)		
	$3(3(x-2)^{2}+2)-2)^{2}+2=29$ using <i>their</i> completed square form	M1	Or $3(3x^2 - 12x + 14)^2 - 12(3x^2 - 12x + 14) + 14 = 29$. Allow if the '= 29' appears later in the working.
	Solving as far as $9(x-2)^4 = 9$ or $x^2 - 4x + 3 = 0$	DM1	OE Or $[27](x^4 - 8x^3 + 24x^2 - 32x + 15) = 0.$
	x = 3 only	A1	WWW Only dependent on the first M1.
		3	

Question	Answer	Marks	Guidance
9(a)	$y = x^3 - 3x + 3$ and $y = 2x^3 - 4x^2 + 3 \Longrightarrow x^3 - 4x^2 + 3x [= 0]$	M1	Reducing to 3-term cubic or quadratic if <i>x</i> cancelled.
	[x](x-1)(x-3)[=0]	DM1	Factorising the cubic or quadratic.
	$x = 0, 1 \text{ and } 3 \{x = 0 \text{ may be seen in the working}\}$	A1	SC B1 for $x = 1, 3$ only, with no M marks awarded.
		3	

Question	Answer	Marks	Guidance
9(b)	Attempt at integration of both functions. Can be before or after subtraction of the functions or integrals	M1	Expect integration of $\int ((x^3 - 3x + 3) - (2x^3 - 4x^2 + 3)) dx$ or $\int (-x^3 + 4x^2 - 3x) dx$. At this stage, subtraction can be done either way.
	$=\pm\left(-\frac{x^4}{4} + \frac{4x^3}{3} - \frac{3x^2}{2}\right) \text{ or } \pm\left\{\left(\frac{x^4}{4} - \frac{3}{2}x^2 + 3x\right) - \left(\frac{2}{4}x^4 - \frac{4}{3}x^3 + 3x\right)\right\}$	A1	OE \pm covers A1 being awarded to those who subtract the 'other' way.
	$= \left[\left(-\frac{81}{4} + \frac{108}{3} - \frac{27}{2} \right) - \left(-\frac{1}{4} + \frac{4}{3} - \frac{3}{2} \right) \right],$ or $\left(\frac{81}{4} - \frac{27}{2} + 9 \right) - \left(\frac{1}{4} - \frac{3}{2} + 3 \right) - \left\{ \left(\frac{81}{2} - \frac{108}{3} + 9 \right) - \left(\frac{1}{2} - \frac{4}{3} + 3 \right) \right\}$	DM1	OE Minimum required is $\left(\frac{63}{4} - \frac{7}{4}\right) - \left(\frac{27}{2} - \frac{13}{6}\right)$, i.e. four fractions. Correctly apply limits <i>their</i> 1 and 3. Do not allow if $x = 0$ used. Need at least one correct substitution in every bracket. If two integrals, need to see substitution into both. Allow one sign error only in each expression, if brackets are not shown.
	$=\frac{8}{3}$	A1	Accept if this comes from use of limits $f(1) - f(3)$ or $\int (x^3 - 4x^2 + 3x) dx$, if $\left \frac{-8}{3} \right $ used. Only dependent on the first method mark. Accept AWRT 2.67.

Question	Answer	Marks	Guidance
10(a)	Gradient of $AB = \frac{-5-3}{8-4} [=-2]$	M1*	
	Midpoint $AB = \left(\frac{8+4}{2}, \frac{-5+3}{2}\right) \left[\left(6, -1\right)\right]$	M1	
	Gradient of normal $= -\frac{1}{-2} \left[= \frac{1}{2} \right]$ and an attempt to find the required	DM1	Must be used to find equation of perpendicular through <i>their</i> $(6,-1)$.
	equation		
	Equation of perpendicular bisector is $y+1=\frac{1}{2}(x-6)$, so $y=\frac{1}{2}x-4$	A1	WWW AG – working involving the perpendicular bisector must be seen.
	Alternative Method for Question 10(a)		
	$AC^{2} = (a-4)^{2} + (b-3)^{2}, BC^{2} = (a-8)^{2} + (b+5)^{2}$ both expanded	M1*	
	Solving $AC = BC$ [= 10]	DM1	Only allow a single sign error.
	Eliminating a^2 and b^2	DM1	May be awarded before the previous DM1.
	$a = 2b + 8$, concluding $y = \frac{x}{2} - 4$	A1	www
	Patpre	4	

Question	Answer	Marks	Guidance
10(b)	Using the centre as $\left(a, \frac{1}{2}a - 4\right)$	M1	May see centre as $(2y + 8, y)$ OE. May be seen in an incorrect equation.
	$(4-a)^{2} + (3-0.5a+4)^{2} = 100$	M1	Sub in (4, 3) or (8, -5). Could use circle with (6, -1) and $r = \sqrt{80}$.
	$1.25a^2 - 15a - 35 = 0 \Rightarrow a^2 - 12a - 28 = 0 \text{ (or } b^2 + 2b - 15 = 0 \text{)}$	DM1	Obtain a 3-term quadratic in <i>their x</i> or <i>y</i> .
	$\left[(a-14)(a+2)=0 \right] \Rightarrow a=14, a=-2$	A1	Or $[(b-3)(b+5)=[0]] \Rightarrow b=3, b=-5.$
	$\Rightarrow (x-14)^{2} + (y-3)^{2} = 100 \text{ and } (x+2)^{2} + (y+5)^{2} = 100$	A1	
	Alternative Method 1 for the first 3 marks:		
	Make <i>a</i> or <i>b</i> the subject from a circle centre (a,b) using <i>A</i> or <i>B</i>	M1	E.g. $b = \sqrt{100 - (y - 3)^2} + 4$ from circle through <i>A</i> . These equations may have been found in part (a).
	Form an equation in <i>a</i> or <i>b</i> only	M1	Substitute <i>their a</i> or <i>b</i> into their second circle equation.
	Simplify to a quadratic in <i>a</i> or <i>b</i>	DM1	Expect $a^2 - 12a - 28 = 0$ or $b^2 + 2b - 15 = 0$, OE.
	Alternative Method 2 for the first 3 marks:	0	
	Obtaining <i>CM</i> (<i>C</i> , centre; <i>M</i> , mid-point of <i>AB</i>)	M1	Expect $\sqrt{80}$. Must be clear this is <i>CM</i> , not <i>AB</i> .
	Using the triangle CMT , where CT is parallel to the <i>x</i> -axis, to find the vertical distance of C from M , MT	DM1	Expect $MT = 4$.
	Using the triangle <i>CMT</i> , where <i>MT</i> is parallel to the <i>y</i> -axis, to find the horizontal distance of <i>C</i> from <i>M</i> , <i>CT</i>	DM1	Expect $CT = 8$.
		5	

9709/13

Question	Answer	Marks	Guidance
11(a)	$\frac{dy}{dx} = \frac{1}{2}kx^{-\frac{1}{2}} - 8x$	B1	
	$\frac{d^2 y}{dx^2} = -\frac{1}{4}kx^{-\frac{3}{2}} - 8$	B1	
	T PR	2	
11(b)	$x^{-\frac{1}{2}} - 8x = 0 \Rightarrow 1 - 8x^{\frac{3}{2}} = 0 \text{ or } x^{-1} = 64x^{2} \left[\Rightarrow x^{3} = \frac{1}{64} \text{ or } 8x^{\frac{3}{2}} = 1 \right]$ dy	M1	OE Award if working leads to $x = \frac{1}{4}$ WWW.
	Setting their $\frac{dy}{dx}$ to zero and solving, providing their only error(s) are incorrect coefficients		Squaring $x^{-\frac{1}{2}} - 8x^2 = 0$ to $x^{-1} - 64x^2 = 0$ gets M0.
	$x = \frac{1}{4}$ only	A1	If $x = 0$ included, A0 and max of 3/4. SC B1 only for $x = \frac{1}{4}$ only from squaring $x^{-\frac{1}{2}} - 8x^2 = 0$ directly to $x^{-1} - 64x^2 = 0$ (SC B1 replacing the M1A1).
	$y = \frac{11}{4}$	A1	SC B1 for $y = \frac{11}{4}$ from squaring $x^{-\frac{1}{2}} - 8x^2 = 0$ to $x^{-1} - 64x^2 = 0$.
	$\frac{d^2 y}{dx^2} = -\frac{1}{2}x^{-\frac{3}{2}} - 8$ which is negative, so maximum	B1 FT	WWW FT <i>their x</i> -value and <i>their</i> $\frac{d^2 y}{dx^2}$. No FT if $x=0$ is the only solution.
		4	

9709/13

Question	Answer	Marks	Guidance
11(c)	When $x = 1$, attempting to find $y = k - 2$ and gradient $= \frac{1}{2}k - 8$	M1*	OE SC B1 if both correct gradients only, or both correct <i>y</i> -coordinates only.
	Equation of tangent is $y-k+2 = \left(\frac{1}{2}k-8\right)(x-1)$	A1	OE, e.g. $y = \left(\frac{k}{2} - 8\right)x + \frac{k}{2} + 6$ or $y = \frac{k}{2}x - 8x + \frac{k}{2} + 6$.
	When $x = \frac{1}{4}$, attempting to find $y = \frac{1}{2}k + 1.75$ and gradient $= k - 2$	M1*	OE
	Equation of tangent is $y - \frac{1}{2}k - 1.75 = (k - 2)(x - 0.25)$	A1	OE, e.g. $y = (k-2)x + \frac{k}{4} + \frac{9}{4}$ or $y = kx - 2x + \frac{k}{4} + \frac{9}{4}$.
	Meet at $\left(\frac{1}{2}k - 8\right)(0.6 - 1) + k - 2 = (k - 2)(0.6 - 0.25) + \frac{1}{2}k + 1.75$	DM1	OE, e.g. $\left(\frac{k}{2} - 8\right) 0.6 + \frac{k}{2} + 6 = (k - 2)0.6 + \frac{k}{4} + \frac{9}{4}$.
	Equate two tangent equations and substitute $x = 0.6$		M0 if constants in both equations are the same.
	$\Rightarrow [-0.2k + k + 3.2 - 2 = 0.35k - 0.7 + 0.5k + 1.75] \Rightarrow 0.05k = 0.15 k = 3$	A1	
	3	6	.5
	[%] .satpre	p.0	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/11 May/June 2024

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance		
1(a)	$3(y-2)^2 - 27$ or $a = -2, b = -27$	B1 B1			
		2			
1(b)	$(x^2 - 2)^2 = 9$ leading to $x^2 - 2 = \pm 3$	M1	Must be x^2 unless substitution is clear.		
	$x^2 = -1$ or $x^2 = 5$	M1	Allow omission of -1 if ± 3 seen.		
	$x = \pm \sqrt{5}$	A1	B1 SC if M1M1 not awarded. Ignore $\pm i$, i, $-i$, $\sqrt{-1}$. Use of calculator with no working scores 0/3.		
	Alternative method for Question 1(b)				
	$3_x^4 - 12_x^2 - 15 = 0$ leading to $3(x^2 - 5)(x^2 + 1)[= 0]$	(M1)			
	$x^2 = -1$ or $x^2 = 5$	(M1)	Allow omission of -1 if factors seen. Factorising or other valid method.		
	$x = \pm \sqrt{5}$	(A1)	B1 SC if M1M1 not scored. Ignore $\pm i$, i, $-i$, $\sqrt{-1}$. Use of calculator with no working scores 0/3.		
	3	3			
	Satprep.co				

Question	Answer	Marks	Guidance
2(a)	{Stretch} {factor 3} { in y-direction}	B2,1,0	2 out of 3 scores B1.
	$\{\text{Translation}\} \begin{pmatrix} \{0\}\\ \{-2\} \end{pmatrix}$	B2,1,0	Accept shift.
	Alternative Method for Question 2(a)		
	$\{\text{Translation}\} \begin{pmatrix} \{0\}\\ \left\{-\frac{2}{3}\right\} \end{pmatrix}$	(B2,1,0)	2 out of 3 scores B1. Accept shift.
	{Stretch} {factor 3} { in y-direction}	(B2,1,0)	
		4	
2(b)	$\left[f(x)\right] = \{-3\sin x\} \{-2\}$	B1 B1	No marks awarded if extra terms seen.
		2	

Question	Answer	Marks	Guidance
3(a)	$20 \times 27 \times a^3 [=160]$	M1	Allow $6C3 \times 3^3 \times a^3 [=160]$. Accept $540a^3$ with no other working for M1.
	$[a] = \frac{2}{3}$	A1	Allow 0.667 AWRT. SC B1 is $a = \frac{2}{3}$ with no other working.
		2	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(b)	Coefficient of x^2 is $15 \times 81 \times \left(their \frac{2}{3}\right)^2 \left[= 540\right]$	B1 FT	May be in a list. 6C2 and 3 ⁴ must be evaluated but may be implied by later work. Condone 540 with no working.
	$160 \times 1 - 2 \times their 540$	M1	
	=-920	A1	Condone $-920x^3$.
		3	

Question	Answer	Marks	Guidance
4(a)	[k] = 4.00063	B 1	CAO
		1	
4(b)	[Gradient AE] = 6.3566	B1	САО
		1	
4(c)	Suggests that $[f(2)] = 6.25$	B1	САО
	Z,	1	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(a)	$\frac{\sin^2 x - \cos x - 1}{1 + \cos x} = \frac{1 - \cos^2 x - \cos x - 1}{1 + \cos x} \text{ or } \frac{-\cos^2 x - \cos x}{1 + \cos x}$	M1	For use of $\sin^2 x + \cos^2 x = 1$. Allow use of s, c, t or omission of x throughout.
	$=\frac{-\cos x (1+\cos x)}{1+\cos x}$	M1	For factorising.
	$=-\cos x$	A1	
		3	
5(b)	$-\frac{1}{2}\cos x = \frac{1}{4} \Rightarrow x = \cos^{-1}\left(-\frac{1}{2}\right)$	M1	
	$x = 120^{\circ}$ or $x = 240^{\circ}$	A1	
		A1 FT	FT for 360 – <i>their</i> answer. A1 A0 if extra solution(s) in range. SC B1 if answer in radians for both $\frac{2\pi}{3}, \frac{4\pi}{3}$.
		3	

Question	Answer	Marks	Guidance
6(a)		B 1	For curve in correct quadrant.
		B1	Fully correct including line $y = x$. Horizontal asymptote closer to x axis than vertical asymptote is to y axis.
		2	

9709/11

Question	Answer	Marks	Guidance
6(b)	$x = \frac{2}{y^2} + 4$ leading to $y^2(x-4) = 2$ or $y^2 = \frac{2}{(x-4)}$	M1	Allow <i>x</i> and <i>y</i> swapped around.
	$y^{2} = \frac{2}{(x-4)}$ leading to $y = [\pm] \sqrt{\frac{2}{x-4}}$ or $x = [\pm] \sqrt{\frac{2}{y-4}}$	M1	
	$\left[\mathbf{f}^{-1}\left(x\right)\right] = -\sqrt{\frac{2}{x-4}}$	A1	
		3	
6(c)	[x] = -2	B 1	
		1	
6(d)	Because f^{-1} is always negative and f is always positive or curves do not intersect	B1	Accept other correct answers e.g. 'f is only defined for positive values of x and f^{-1} is only defined for negative values of x' or 'domains do not overlap' or 'the y values cannot be the same' or 'the x values cannot be the same'.
	ź	1	

Question	Answer	Marks	Guidance
7(a)	Angle $\theta = \frac{\pi}{2} - \cos^{-1} \frac{10}{15}$ or $\sin^{-1} \frac{10}{15} = 0.7297$	B1	Condone working in degrees if converted to radians at the end. AG
		1	

Question	Answer	Marks	Guidance
7(b)	$BC = \sqrt{15^2 - 10^2} \left[= 11.18 \text{ or } 5\sqrt{5} \right]$	B 1	
	Arc $AB = 15 \times 0.7297 [= 10.9455]$	B1	
	Perimeter = their BC + their arc $AB + 25 + 5\pi$	M1	
	Perimeter = 62.8	A1	AWRT
	Area sector $AOB = \frac{1}{2} \times 15^2 \times 0.7297 [= 82.09]$	B1	
	Area = $\frac{1}{2} \times 10 \times their BC + their sector AOB + \frac{\pi}{4} \times 10^2$	M1	
	Area = 217	A1	AWRT
		7	

Question	Answer	Marks	Guidance
8(a)	2(4p-1)=25+13-p	*M1	
	$p = \frac{40}{9}$	A1	
	$d = \left(4 \times \frac{40}{9} - 1\right) - 25\left[= -\frac{74}{9}\right]$	DM1	Using <i>their p</i> to find <i>d</i> .
	$10^{\text{th}} \text{ term} = 25 + 9d = -49$	A1	
	Alternative Method for first 3 marks of Question 8(a)		
	d = 4p - 26, $d = 14 - 5p$, $p + 2d = -12$ Any two	(*M1)	Allow unsimplified or equivalent.
	Solving simultaneously to find p or d	(DM1)	
	$\left[p = \frac{40}{9}\right], \ d = -\frac{74}{9}$	(A1)	
		4	

9709/11

Question	Answer	Marks	Guidance
8(b)	$(4q-1)^2 = 25(13-q) \Rightarrow 16q^2 + 17q - 324[=0]$	M1	
	$(q-4)(16q+81)[=0]$ leading to $[\Rightarrow q=4]$	M1	Solve 3 term quadratic with real solutions.
	$[r=]\frac{3}{5}$	A1	Ignore $\frac{-17}{20}$.
	Sum to infinity $=\frac{25}{1-\frac{3}{5}} = \frac{125}{2}$	A1	Ignore extra solution. SC B1 if no method shown for solving quadratic.
	Alternative Method for Question 8(b)		
	$25r = 4q - 1$, $25r^2 = 13 - q$ leading to $100r^2 + 25r - 51 = 0$	(M1)	
	(5r-3)(20r+17)=0	(M1)	Solve 3 term quadratic with real solutions.
	$r = \frac{3}{5}$	(A1)	Ignore $\frac{-17}{20}$.
	Sum to infinity $=\frac{25}{1-\frac{3}{5}} = \frac{125}{2}$	(A1)	Ignore extra solution. SC B1 if no method shown for solving quadratic.
		4	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
9	Volume of cylinder = $\pi \times 1^2 \times \frac{7}{5} = \frac{7}{5}\pi$	B1	May be done using $\int_{1}^{2.4} 1$. This would be the only mark available if candidate integrates <i>y</i> .
	Volume under curve = $[\pi] \int \frac{1}{(5x-4)^3} dx$	M1	No further marks available if $\int y$.
	$= \left[\pi\right] \left\{ \frac{3}{5} \right\} \left\{ \left(5x - 4\right)^{\frac{1}{3}} \right\}$	B1 B1	Calculator used for integration scores no further marks.
	$= \left[\pi\right]\frac{3}{5}\left(8^{\frac{1}{3}}-1\right) \left[=\frac{3}{5}\pi\right]$	M1	Uses limits 1, 2.4 in an integral of y^2 .
	Volume = $\frac{7}{5}\pi - \frac{3}{5}\pi = \frac{4}{5}\pi$	A1	SC B1 if the only error is not showing substitution.
		6	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance	
10	$(x-3)^2 + y^2 = 18$ $y = mx - 9$ leading to $(x-3)^2 + (mx-9)^2 = 18$	M1	Finding equation of tangent and substituting into circle equation. Must be $mx-9$.	
	$x^{2} - 6x + 9 + m^{2}x^{2} - 18mx + 81 = 18$ leading to $(m^{2} + 1)x^{2} - (6 + 18m)x + 72[=0]$	M1	Brackets expanded and all terms collected on one side of the equation. May be implied in the discriminant. m cannot be numeric.	
	$(6+18m)^2 - 4(m^2+1) \times 72[=0]$	*M1	Use of $b^2 - 4ac$. Not in quadratic formula. <i>m</i> cannot be numeric, <i>c</i> must be numeric.	
	$36m^2 + 216m - 252[=0]$ [leading to $m^2 + 6m - 7 = 0$]	DM1	Simplifies to 3 term quadratic.	
	m = 1 or m = -7	A1	Condone no method for solving quadratic shown.	
	$m = 1$ leading to $2x^2 - 24x + 72 = 0$ leading to $x = 6$	DM1	Must be correct <i>x</i> for <i>their</i> quadratic.	
	$m = -7$ leading to $50x^2 + 120x + 72 = 0$ leading to $x = -\frac{6}{5}$	DM1	Must be correct <i>x</i> for <i>their</i> quadratic.	
	$(6,-3), \left(-\frac{6}{5},-\frac{3}{5}\right)$	A1		
32. satprep.co.				

Question	Answer	Marks	Guidance	
10	Alternative Method 1 for first 4 marks of Question 10			
	$\frac{ 3m-1(0)-9 }{\sqrt{m^2+1}}$	(M1)	Use of the formula for the length of a perpendicular from a point to a line.	
	$\frac{\left 3m-1(0)-9\right }{\sqrt{m^2+1}} = \sqrt{18}$	(M1)	Equates length of a perpendicular from a point to a line to the radius.	
	$(3_m - 9)^2 = 18(m^2 + 1)$	(M1)	Squares and clears the fraction.	
	$9 m^2 - 54 m + 81 = 0$ [leading to $m^2 + 6m - 7 = 0$]	(M1)		
	Alternative Method 2 for first 3 marks of Question 10			
	$(3 - x)(9 + 6x - x^2)^{-1/2} = m$	(M1)	OE Differentiates implicitly or otherwise and equates $\frac{dy}{dx}$ to <i>m</i> .	
	$(1+m^2) x^2 - 6(1+m^2)x + 9(1-m^2)[=0]$	(M1)	Brackets expanded and all terms collected on one side of the equation. May be implied in the discriminant.	
	$36(1+m^2)^2 - 4(1+m^2) \times 9(1-m^2)[=0]$	(M1)	Use of $b^2 - 4ac$.	
	satprek	8		
9709/11

Question	Answer	Marks	Guidance
11(a)	$\frac{dy}{dx} = -\frac{12}{x^4} + \frac{3}{x^2}$	B1	
	$\frac{dy}{dx} = -\frac{12}{x^4} + \frac{3}{x^2} = 0$ leading to $3x^4 - 12x^2 = 0$ or $-12 + 3x^2 = 0$	M1	Set = 0 or uses $<, \le$ and simplifies. Must be from $\frac{dy}{dx} = \frac{A}{x^4} + \frac{B}{x^2}$.
	$3x^2(x^2-4)=0$ leading to $x=\pm 2$ only	A1	SC B1 for $x=\pm 2$ if M0 scored.
	$-2 < x < 0$ and $0 < x < 2$ or (-2, 0) and (0, 2) or $-2 < x < 2$ and $x \neq 0$	B1FT	Allow and/or.
		B1FT	Allow $-2 \le x < 0$ and / or $0 < x \le 2$ but only B1B0 if 0 included in either or both. Allow [-2, 0) and (0, 2]. Allow B1B0 for $-2 < x < 2$ or (-2, 2). Must be from $\frac{dy}{dx} = \frac{A}{x^4} + \frac{B}{x^2}$.
		5	B marks only available if $\frac{dy}{dx} = \frac{A}{x^4} + \frac{B}{x^2}$.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
11(b)	[At $x = 1$] $y = 3$ and $m \tan = -9$	*M1	Using their $\frac{dy}{dx}$.
	$m \operatorname{norm} = -\frac{1}{-9} = \frac{1}{9}$	DM1	
	Equation of normal is $y - 3 = \frac{1}{9}(x - 1) \left[\text{leading to } y = \frac{1}{9}x + \frac{26}{9} \right]$	A1	
	At $x = -1, y = 1, m = -9$	M1	
	Equation of tangent is $y-1=-9(x+1)$ [leading to $y=-9x-8$]	A1	
	Meet when $\frac{1}{9}x + \frac{26}{9} = -9x - 8$ [leading to $x = -1.19512, \frac{-49}{41}$]	M1	Equates <i>their</i> tangent and <i>their</i> normal.
	Area = $\frac{1}{2} \times their 1.19512 \times their\left(\frac{26}{9} + 8\right)$	M1	If $\int y_2 - y_1$ is used integration must be correct and substitution shown.
	6.51	A1	AWRT Accept fraction wrt 6.51
	5	8	
	.satpre		

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/12 May/June 2024

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$240[x^2]$ or $80a^2[x^2]$	B1	May be seen in an expansion.
	$240 = 12 \times 80a^2$	M1	<i>Their</i> 240 equated to $12 \times their 80a^2$ which must contain a^2 .
	0.5	A1	OE Condone ± 0.5
		3	

Question	Answer	Marks	Guidance
2	Stretch factor 4 in <i>y</i> -direction/parallel to the <i>y</i> axis/vertically.	B1	Allow use of SF in place of factor. Allow in/on/along the y axis or 'the x axis is invariant.'
	Translation $\begin{pmatrix} 3\\0 \end{pmatrix}$ or 3 parallel to the <i>x</i> axis or in the <i>x</i> direction, allow horizontally. $\begin{pmatrix} 0\\-8 \end{pmatrix}$ or -8 parallel to the <i>y</i> axis or in the <i>y</i> direction, allow vertically.	B2	Condone 'Shift'. These translations can be combined as $\begin{pmatrix} 3 \\ -8 \end{pmatrix}$, this counts as 2 elements. Give priority to a correct vector over any incorrect wording. B2 for all 3 B1 for 2 out of 3
	Two translations, one in each direction, and a stretch only.	M1	Condone inaccurate terminology, such as up, down, left and right, if the intention is clear.
	Correct order of operations. The stretch which must be in the in the y direction must come before the translation in the y direction.	A1	Condone inaccurate terminology if the intention is clear but numerical values must be correct.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
2	Alternative Method for Question 2		
	Translation $\begin{pmatrix} 3\\0 \end{pmatrix}$ or 3 parallel to the <i>x</i> axis or in the <i>x</i> direction, allow horizontally. $\begin{pmatrix} 0\\-2 \end{pmatrix}$ or -2 parallel to the <i>y</i> axis or in the <i>y</i> direction, allow vertically.	(B2)	Condone 'Shift'. These translations can be combined as $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$, this counts as 2 elements. Give priority to a correct vector over any incorrect wording. B2 for all 3. B1 for 2 out of 3.
	Stretch factor 4 in <i>y</i> -direction/parallel to the <i>y</i> axis/vertically.	(B1)	Allow use of SF in place of factor. Allow in/on/along the y axis or "the x axis is invariant."
	Two translations, one in each direction, and a stretch only.	(M1)	Condone inaccurate terminology, such as transform, move, up, down, left and right, if the intention is clear.
	Correct order of operations. The stretch which must be in the in the y direction must come after the translation in the y direction.	(A1)	Condone inaccurate terminology if the intention is clear but numerical values must be correct.
	2	5	
Satprep.			

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3(a)	$7\frac{\sin\theta}{\cos\theta} \div \cos\theta + 12[=0] \left[\text{leading to } 7\frac{\sin\theta}{\cos\theta} + 12\cos\theta = 0 \right]$	M1*	OE Use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$.
	$7\sin\theta + 12(1-\sin^2\theta) [=0]$	DM1	Use of $s^2 + c^2 = 1$.
	$\Rightarrow 12\sin^2\theta - 7\sin\theta - 12 = 0$	A1	AG, WWW Condone use of s, c and t and/or omission of θ throughout working but the A1 is for cao.
		3	
3(b)	$\left[12\sin^2\theta - 7\sin\theta - 12 = 0 \text{ leading to}\right](4\sin\theta + 3)(3\sin\theta - 4)$	M1	
	$\sin\theta = -\frac{3}{4} \left[\text{ or } \frac{4}{3} \right]$	B1	OE, WWW Can be implied by a correct value for $\sin^{-1}\left(-\frac{3}{4}\right)$ e.g 48.6°.
	[<i>θ</i> =]228.6°,311.4°	B1	AWRT, WWW No others in the range $0^{\circ} \le \theta \le 360^{\circ}$. Ignore any answers outside this range. Condone 229°, 311°.
	·Satpre?	3	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(a)	$\left[\mathbf{f}^{-1}(x)=\right](x+1)^2$	B1	ISW Condone ' $y = $ '.
		1	
4(b)	$0 < g(x) \leq \frac{1}{2}$ or $g(x) > 0$ and $g(x) \leq \frac{1}{2}$ or $\left(0, \frac{1}{2}\right]$	B1	Do not allow $g(x) > 0, g(x) \le \frac{1}{2}$. Do not allow $g(x) > 0$ or $g(x) \le \frac{1}{2}$. Condone g or y in place of $g(x)$.
	g^{-1} does not exist because it is one to many or g^{-1} does not exist because it is not one to one. Or g^{-1} does not exist because g is not one to one or g^{-1} does not exist because g is many to one or g^{-1} does not exist because g fails the horizontal line test.	B1 2	g ⁻¹ can be replaced by 'It' throughout. A correct statement followed by any further incorrect explanation can be awarded B1.

9709/12

Question	Answer	Marks	Guidance
4(c)	$f\left(\frac{25}{16}\right) = \frac{1}{4}$	B1	SOI
	$\frac{1}{\left(\sqrt{x} - 1\right)^2 + 2} = \frac{1}{4}$	M1	Equating $\frac{1}{\left(\sqrt{x}-1\right)^2+2}$, or <i>their</i> 'simplified' version, to <i>their</i> f $\left(\frac{25}{16}\right)$.
	$\begin{bmatrix} \left(\sqrt{x}-1\right)^2 + 2 = 4 \text{ leading to} \end{bmatrix} \qquad \sqrt{x}-1 = \sqrt{2} \text{ leading to } x = \left(1 \pm \sqrt{2}\right)^2$ Or $\begin{bmatrix} x-2\sqrt{x}+1+2 = 4 \text{ leading to} \end{bmatrix} \qquad x-2\sqrt{x}-1 = 0 \text{ leading to } x = \left(1 \pm \sqrt{2}\right)^2$ Or $\begin{bmatrix} x-1=2\sqrt{x} \text{ leading to} \end{bmatrix} \qquad x^2-6x+1=0 \text{ leading to } x = \frac{6 \pm \sqrt{36-4}}{2}$	A1	Simplification as far as $x =$ Allow just + in the results because - can be disregarded at this stage. Can be implied by the final answer. Note: $x = 1 \pm \sqrt{2}$ scores A0.
	$3+2\sqrt{2}$	A1	Must discount the solution $3 - 2\sqrt{2}$.
	24. satprep.	, o `	

9709/12

Question	Answer	Marks	Guidance
5(a)	$[d=]\sin\theta-\tan\theta$	M1	For subtraction of <i>their</i> first term from <i>their</i> second term. Condone incorrect evaluation before subtraction.
	$\left[d=\right]\frac{\sqrt{2}}{2}-1$	A1	OE Sight of -0.29 AWRT can be awarded M1A1.
	$[S_{40} =]\frac{40}{2} (2 \times \tan \theta + 39 (\sin \theta - \tan \theta))$	M1	Use of a correct formula for S_{40} . Condone use of <i>their</i> , clearly identified, incorrect values for <i>a</i> and <i>d</i> for this mark.
	$390\sqrt{2} - 740$ or $\frac{780}{\sqrt{2}} - 740$	A1	ISW If A0 then sight of -188 AWRT, -188.5 or -189 should be awarded M1A1M1A0.
		4	
5(b)(i)	$r = \frac{\sin\theta}{\tan\theta} \qquad \left[= \cos\theta \right]$	B1	Condone omission of θ .
	$S_{\infty} = \frac{\tan\theta}{1 - \cos\theta}$ or $\frac{\sin\theta}{\cos\theta - \cos^2\theta}$ or $\frac{\tan^2\theta}{\tan\theta - \sin\theta}$	B1	ISW Do not allow fractions within fractions nor omission of θ .
	24	2	
	·satprev·		·

Question	Answer	Marks	Guidance
5(b)(ii)	$a = \sqrt{3}(1.73)$ and $r = \frac{1}{2}$	B1	OE, SOI.
	$[S_{10} =]\sqrt{3} \left(\frac{1 - \left(\frac{1}{2}\right)^{10}}{1 - \frac{1}{2}} \right)$	M1	This mark can be awarded for a correct formula with <i>their</i> values for <i>a</i> and <i>r</i> or $a = \tan \theta$ and $r = \frac{\sin \theta}{\tan \theta}$ or $\cos \theta$. Condone $\frac{1}{2}^{10}$.
	= 3.46	A1	AWRT Condone $\frac{1023\sqrt{3}}{512}$.
		3	Note: S ₉ gives the same answer but scores B1M0A0.

Question	Answer	Marks	Guidance
6(a)	$\frac{dy}{dx} = 2 - \frac{1}{2} \times 8x^{-\frac{1}{2}}$	B1	
	$2 - 4x^{-\frac{1}{2}} = 0$	M1	Equating <i>their</i> two term $\frac{dy}{dx}$, with at least one term correct, to 0.
	[A is] $(4,-8)$ or $x = 4, y = -8$	A1	
	[<i>B</i> is] (16,0) or $x = 16, y = 0$	B1	
		4	Note: Correct answers without use of $\frac{dy}{dx}$ can be awarded 4/4.

9709/12

Question	Answer	Marks	Guidance
6(b)	$[\pm] \frac{2x^2}{2} - \frac{8}{\frac{3}{2}}x^{\frac{3}{2}} \ [+C]$	B1	Seen correct in unsimplified form or better.
	$[\pm]\frac{x^2-32x}{3}$ or $\frac{(2x-32)^2}{12}[+C]$	B1	Seen correct in unsimplified form or better.
	Attempt to integrate, defined by at least one correct power in each expression, and then subtract.	M1	Multiplying by 3 before integration scores M0.
	$\left\{ \left(16^2 - \frac{8}{3} \cdot 16^{\frac{3}{2}}\right) - \left(4^2 - \frac{8}{3} \cdot 4^{\frac{3}{2}}\right) \right\} \left[-\right] \left\{ \left(\frac{16^2 - 32 \times 16}{3}\right) - \left(\frac{4^2 - 32 \times 4}{3}\right) \right\}$	M1	Use of <i>their x</i> values, > 0, from (a) as limits in <i>their</i> integrated expressions. Allow, for correct limits, sight of $\pm \left(\left\{ \left(-\frac{256}{3} \right) - \left(-\frac{80}{3} \right) \right\} \left[- \right] \left\{ \left(-\frac{256}{3} \right) - \left(-\frac{112}{3} \right) \right\} \right)$. If incorrect limits are used, then clear substitution must be seen.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(b)	Alternative Method 1 for first 4 marks of Question 6(b)		
	$\left[[\pm] \int 2x - 8x^{\frac{1}{2}} dx = \right] x^2 - \frac{8}{\frac{3}{2}} x^{\frac{3}{2}} [+C]$	(B1)	Seen correct in unsimplified form or better.
	[Area of triangle =] 48	(B1)	
	Attempt to integrate, defined by at least one correct power, and then subtract <i>their</i> triangle area.	(M1)	
	$\left\{ \left(16^2 - \frac{8}{\frac{3}{2}} \cdot 16^{\frac{3}{2}} \right) - \left(4^2 - \frac{8}{\frac{3}{2}} \cdot 4^{\frac{3}{2}} \right) \right\}$	(M1)	Use of <i>their x</i> values, > 0, from (a) as limits in <i>their</i> integrated expression. Allow sight of $\pm \left(\left\{ \left(-\frac{256}{3} \right) - \left(-\frac{80}{3} \right) \right\} \right)$. If incorrect limits are used, then clear substitution must be seen.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(b)	Alternative Method 2 for first 4 marks of Question 6(b)		
	Subtract and then integrate, defined by at least two correct powers. Condone functions being the wrong way round.	(M1)	If terms in x have not been combined use the first scheme.
	$\left[\pm\right] \left(\frac{4}{3 \times 2} x^2 - \frac{8}{3} x^{\frac{3}{2}} + \frac{32x}{3}\right)$	(B2,1,0)	B2 for 3 correct terms, B1 for any 2 correct terms.
	$\left[\pm\right]\left(\left(\frac{4}{3\times2}\times16^2 - \frac{8}{\frac{3}{2}}\times16^{\frac{3}{2}} + \frac{32\times16}{3}\right) - \left(\frac{4}{3\times2}\times4^2 - \frac{8}{\frac{3}{2}}\times4^{\frac{3}{2}} + \frac{32\times4}{3}\right)\right)$	(M1)	Use of <i>their x</i> values, >0, from (a) as limits in <i>their</i> integrated expression. Allow sight of $\pm \left(0 - \frac{32}{3}\right)$. If incorrect limits are used, then clear substitution must be seen.
	$\frac{32}{3}$, $10\frac{2}{3}$ or 10.7	(B1)	AWRT Allow $-\frac{32}{3}$ or $-\frac{32}{3}$ changed to $+\frac{32}{3}$ for this mark.
		(5)	Condone the inclusion of π for the first 4 marks but use of $\int y^2$ scores a maximum of B1 for the triangle.
	Satprep.	,0'	

Question	Answer	Marks	Guidance
7(a)	$(x-6)^{2} + (2a-x+a)^{2} = 18$	M1*	Replacing y with $2a - x$ in the circle equation, condone incorrect expansion before substitution.
	$2x^2 - 12x - 6ax + 9a^2 + 36 - 18[=0]$	A1	All terms collected on one side of the equation. May be implied by the discriminant.
	$(12+6a)^2 - 4 \times 2 \times (9a^2+18) [=0]$	DM1	Correct use of " $b^2 - 4ac$ " from <i>their</i> 3 term quadratic equation in x, with an x term of the form $(m + na)x$ with both m and $n \neq 0$.
	$-36a^2 + 144a[+0=0]$	A1	
	a = 0, a = 4	A1	
		5	
7(b)	[Centre is] $(6, -4)$ or [Point of intersection is] $(9, -1)$	B 1	
	[Gradient of diameter] =1	B 1	
	y+4 = x-6 or $y+1 = x-9$ [leading to $y = x-10$]	B1FT	FT on <i>their</i> point of intersection or <i>their</i> centre with an <i>x</i> co-ordinate of ± 6 and gradient = 1.
	3	3	
	".satprep.		

Question	Answer	Marks	Guidance
8(a)(i)	C $X\hat{C}E = \frac{\pi}{6}$ $C\hat{E}X = \frac{\pi}{3}$		
	$\frac{XE}{0.4} = \sin\frac{\pi}{6} \text{ or } \frac{XE}{0.4} = \cos\frac{\pi}{3} [XE = 0.2]$	M1	A correct trig expression involving <i>XE</i> . Do not condone a mixture of degrees and radians.
	Length $EF = 2 + 2 \times 0.2 = 2.4$	A1	AG
		2	

9709/12

Question	Answer	Marks	Guidance	
8(a)(ii)	$[CX =]0.4\cos\frac{\pi}{6} \text{ or } 0.4\sin\frac{\pi}{3} \text{ or } \sqrt{0.4^2 - 0.2^2}$	B1	OE, SOI Expect $\frac{\sqrt{3}}{5}$ or 0.3464.	
	$\left[\operatorname{Sector} = \right] \frac{1}{2} \times (0.4)^2 \times \frac{\pi}{3}$	B1	SOI Expect 0.0838 or $\frac{2\pi}{75}$. Allow use of $\frac{60}{360}\pi (0.4)^2$.	
	Either Area of their (rectangle + two triangles + two sectors) Or Area of their (trapezium + two sectors)	M1	Either implied by a correct answer or areas clearly labelled. Expect $0.6928 + 0.06928 + 0.1676$ or $\frac{2\sqrt{3}}{5} + \frac{\sqrt{3}}{25} + \frac{4\pi}{75}$. Or $0.7621 + 0.1676$ or $\frac{11\sqrt{3}}{25} + \frac{4\pi}{75}$.	
	0.930	A1	AWRT Condone $\frac{11\sqrt{3}}{25} + \frac{4\pi}{75}$.	
	ź	4		

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
8(b)	[Length $AD =$] $2 + 2r$	B1	Must be seen alone or part of a list and not part of a product.
	[Arc length =] $r \times \frac{\pi}{3}$	B1	May be implied by $r \times \frac{\pi}{3} \times 2$. Must be seen alone or part of a list.
	$[EF =]2 + 2r\sin\frac{\pi}{6} \text{ or } 2 + 2r\cos\frac{\pi}{3} \text{ or } 2 + r$	B1	Must be seen alone or part of a list and not part of a product.
	$[4+3r+\frac{2\pi r}{3}=6 \text{ leading to }] 0.393$	B1	AWRT Condone $\frac{6}{2\pi + 9}$. NB: Using $EF = 2.4$ gives 0.391.
		4	

9709/12

Question	Answer	Marks	Guidance
9(a)	$6(2x-3)^2 - 6x < 0 \text{ or} = 0$	B1*	Condone ≤ 0 . If $6(2x-3)^2$ only or $6(2x-3)^2 - 6$ is used, do not treat as a MR.
	$24x^{2} - 78x + 54 \text{ or } 4x^{2} - 13x + 9 \text{ or } (x - 1)(4x - 9)$ OR $6(2x - 3)^{2} < 6x \text{ leading to } (2x - 3) < \sqrt{x} \text{ leading to } 2x - \sqrt{x} - 3$	M1	Expanding brackets and collecting terms to arrive at a three term quadratic, only condone sign errors.
	$[x=]1, \frac{9}{4}$	B1	
	$1 < x < \frac{9}{4}$ or $x > 1$ and $x < \frac{9}{4}$ or $(1, \frac{9}{4})$	DB1FT	OE Condone consistent use of \leq and \geq or []. Do not allow $x > 1$ or $x < \frac{9}{4}$ nor $x > 1, x < \frac{9}{4}$. FT on <i>their</i> values coming from a correct initial statement.
		4	

Question	Answer	Marks	Guidance
9(b)	$\left[f(x) = \right] \left\{ \frac{6}{3 \times 2} (2x - 3)^3 \right\} \left\{ -\frac{6}{2} x^2 \right\} [+C]$	B1 B1	B1 for each {Correct integral}.
	$-1 = (-1)^3 - 3 \times 1^2 + C$	M1	f (x) = -1 equated to <i>their</i> integrated expression, defined by two terms with at least one correct power + C, with $x = 1$.
	$[f(x)]=(2x-3)^3 - 3x^2 + 3$	A1	CAO Only condone $C = 3$ as final answer if coefficients have been simplified earlier. Do not ISW if the result is of the form $y = mx + c$.
	Alternative method for Question 9(b)		
	$\left[f'(x) = 24x^2 - 78x + 54 \text{ leading to}\right] \left[f(x) = \right] 8x^3 - 39x^2 + 54x [+C]$	(B2,1,0)	B2 completely correct, B1 any two correct terms.
	-1 = 8 - 39 + 54 + C	(M1)	f(x) = -1 equated to <i>their</i> integrated expression, defined by three terms with at least one correct power + C, with $x = 1$.
	$[f(x)] = 3x^3 - 39x^2 + 54x - 24$	(A1)	Only condone $C = -24$ as final answer if coefficients have been simplified earlier. Do not ISW if the result is of the form $y = mx + c$.
	·Satpre?	4	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
10(a)	[x=]-2	B1	
	$\frac{dy}{dx} = k(5-2x)^{\frac{1}{2}} \left[= -2 \times \frac{3}{2}(5-2x)^{\frac{1}{2}} \right]$	M1*	OE Differentiating to get $k(5-2x)^{\frac{1}{2}}$ only.
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{\mathrm{d}t}{\mathrm{d}x} \text{ leading to}\right] -9 = \pm 5 \times \frac{\mathrm{d}t}{\mathrm{d}x}$	DM1	Correct statement linking <i>their</i> numerical expression for $\frac{dy}{dx}$ with $\frac{dt}{dx}$ and ± 5 .
	$\frac{5}{9}$ or 0.556 =	A1	AWRT
		4	

9709/12

Question	Answer	Marks	Guidance
10(b)	$k(5-2x)^{\frac{1}{2}} = -3$	M1	Equating <i>their</i> $\frac{dy}{dx}$ of the form $k(5-2x)^{\frac{1}{2}}$ to -3 .
	[B is] (2,6)	A1	
	Gradient $AB = m_1 = \frac{32-6}{-2-2}$, gradient of perpendicular $= -\frac{1}{m_1} = \frac{4}{26}$	M1*	For <i>A</i> , <i>y</i> must be 32. Clear use of $\frac{\text{difference in y co-ordinates}}{\text{difference in x co-ordinates}}$ for points <i>A</i> and <i>B</i> , condone inconsistent order, and using $m_1m_2 = -1$. If incorrect values or another complete method used, then working must be clear.
	Mid point is $\left(\frac{2-2}{2}, \frac{6+32}{2}\right) = (0, 19)$	M1*	Finding the midpoint of AB using A and B . If incorrect values used then all working must be clear. For A , y must be 32.
	$y - 19 = \frac{2}{13}(x - 0)$	DM1	Finding the equation of the perpendicular bisector using <i>their</i> midpoint and <i>their</i> perpendicular gradient.
	$2x-13y+247=0$ or \pm integer multiples of this.	A1	
	3	6	
	·satprep.		

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/13 May/June 2024

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	Correct second term $30x$ in expansion of $(1+3x)^{10}$	B1	WWW, may be implied later.
	Correct third term $+405x^2$	B1	Ignore subsequent terms, may be implied later.
	Multiply $(2-5x)$ by <i>their</i> $30x + 405x^2$ to obtain two x^2 terms only	M1	Expect $-150x^2, 810x^2$.
	Coefficient is 660	A1	Must be clearly identified. Allow final answer $660x^2$.
		4	

Question	Answer	Marks	Guidance
2(a)	State $(\frac{5}{3}\pi, 0)$ for point <i>A</i>	B1	Or exact equivalent. Allow $x = \frac{5}{3}\pi$ or exact equivalent.
	$x = \frac{19}{6}\pi$ for point <i>B</i>	B1	Or exact equivalent. May be implied in coordinate or vector form.
	y = -k for point <i>B</i>	B1	May be implied in coordinate or vector form.
	22	3	
2(b)	Solve at least as far as $\sin^{-1} 3t = k\pi$ with correct value for $\cos^{-1}\left(\frac{1}{2}\sqrt{2}\right)$	M1	Allow use of $\pi = 3.14$ Allow $\sin^{-1} 3t = 30$.
	$\sin^{-1} 3t = \frac{1}{6}\pi$ and hence $t = \frac{1}{6}$	A1	Or exact equivalent. Can use degrees if consistent.
		2	

Question	Answer	Marks	Guidance
3(a)	State $2r + r\theta = 65$ and $\frac{1}{2}r^2\theta = 225$	B1	
	Form a 3-term quadratic or cubic in r or θ or $r\theta$ from correct arc and sector formula	*M1	Condone sign errors.
	Solve <i>their</i> 3 term quadratic or cubic to obtain values of r or θ	DM1	Expect $2r^2 - 65r + 450 = (2r - 45)(r - 10)$ or $18\theta^2 - 97\theta + 72 = (9\theta - 8)(2\theta - 9)$.
	$r = 10$ and $\theta = 4.5$ ignore $r = 22.5$ and $\theta = \frac{8}{9}$, do not ignore $r = 0$	A1	B1 SC if no quadratic or cubic solution. If $r = 0$ included A0 or B0 SC.
		4	
3(b)	Use correct formula for area of triangle with clear use of angle being 2π – their θ	M1	Expect 1.783 or 102.2°, <i>their</i> θ must be reflex.
	48.9	A1	AWRT, WWW or a second answer. Or greater accuracy; condone absence of units.
		2	/

Question	Answer	Marks	Guidance
4(a)	Use identity $\tan \theta = \frac{\sin \theta}{\cos \theta}$	M1	
	Use identity $\cos^2 \theta = 1 - \sin^2 \theta$	M1	
	$\pm (5\sin^2\theta + 7\sin\theta - 6 = 0)$	A1	
		3	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(b)	Attempt solution of <i>their</i> 3 term equation and correct process to find at least 1 value of $\sin x$ or $\sin 2x$ or $\sin \theta$	M1	Expect $(5s-3)(s+2) = 0$, $s = 3/5$.
	x = 18.4	A1	Or greater accuracy. B1 SC if no solution to the quadratic.
	$x = 71.6$ or $(90 - their 18.4)$ or greater accuracy; and no other solutions for $0^{\circ} < x < 180^{\circ}$	A1FT	WWW B1 SC FT if no solution to the quadratic. B1 SC both correct in radians, 0.322, 1.25.
	9	3	

Question	Answer	Marks	Guidance
5(a)	Differentiate to obtain $4x + \frac{1}{2}x^{-2}$	B1	OE Condone '+c'.
	Equate first derivative to zero and solve $4x + \frac{K}{x^2} = 0$ as far as $x^3 = k$, K and k non- zero	M1	Not given if '+ c ' used.
	$x = -\frac{1}{2}$ and $y = \frac{9}{2}$	A1	OE B1 SC if no visible solution of the cubic.
	4. Sat	3	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(b)	Differentiate <i>their</i> first derivative, substitute <i>their x</i> value. Substitution may be implied by a correct inequality or correct value,	M1	Must differentiate one term correctly. Expect $4 - x^{-3} = 12$ at $x = \frac{-1}{2}$ Alternative: substitute values of x into $\frac{dy}{dx}$. One value $x < -\frac{1}{2}$ and one value $-\frac{1}{2} < x < 0$.
	conclude minimum	A1	Following correct work only
		2	
5(c)	State increasing	B1	
	with clear reference to first derivative always being positive [for $x > 0$]	B1	Dependent on first derivative being correct. It is not sufficient to substitute values of x .
		2	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2024

Question	Answer	Marks	Guidance
6(a)	Integrate to obtain form $k(5x-3)^{-1}$	*M1	OE
	$4(5x-3)^{-1}$	A1	Or unsimplified equivalent. Condone absence of $+c$ so far.
	Substitute $x = \frac{4}{5}$ and $y = -3$ to attempt value of <i>c</i>	DM1	DM0 for substituting $\left(-3,\frac{4}{5}\right)$.
	$y = 4(5x-3)^{-1} - 7$ allow f(x) or $f = 4(5x-3)^{-1} - 7$	A1	OE Condone $c = -7$ as the final answer providing $y = \text{ or } f(x) = \frac{4}{(5x-3)} + c$ OE is seen earlier. Attempts to write equation in $y = mx + c$ form scores A0. Do not ISW. Gains max 3/4.
		4	
6(b)	Carry out stretch by replacing x by $2x$ in <i>their</i> equation	M1	Award if given as the second transformation. Do not ignore sign errors.
	Carry out translation by replacing x by $x-2$ and y by $y-10$	M1	OE Award if given as the first transformation. Do not ignore sign errors.
	$y = \frac{4}{10x - 23} + 3$	A1	Or similarly simplified equivalent, WWW.
		3	

Question	Answer	Marks	Guidance
7(a)	5(3+9d) = 127.5	B1	OE
	<i>d</i> = 2.5	B1	
		2	
7(b)	Attempt to find either the first term or the last term in the set by considering $1.5 + 2.5(n-1) > 25$ or $1.5 + 2.5(n-1) < 100$ or equivalent equations	M1	Using <i>their d</i> . May be implied by correct answers.
	State or imply that 11th term or 26.5 is the first in the set	A1	
	State or imply that 40th term or 99 is the last in the set	A1	
	Either use $S_{40} - S_{10}$ Or use $\frac{1}{2}n(a+l)$ with correct results for <i>their</i> d Or use $\frac{1}{2}n[2a+(n-1)d]$ with correct results for <i>their</i> d	DM1	<i>Their</i> 40 and 10 from correct working with <i>their d</i> . Correct values 30, 26.5 and 99 respectively. Correct values 30, 26.5 and 2.5 respectively.
	Obtain 1882.5	A1	OE
		5	

May/June 2024

Question	Answer	Marks	Guidance
8	Substitute $x = 0$ and attempt solution of 3-term quadratic equation in y	M1	If $y = 0$ used can score a maximum of M0 A0 B1 M1 A0 A1FT DM1 A0, i.e. 4/8.
	-5 and 3	A1	B1 SC if no working to solve the quadratic.
	State or imply centre of circle is $(3, -1)$	B1	Condone errors which don't affect finding centre. May be implied by the correct final <i>y</i> coordinate.
	Attempt gradient of AC or BC	*M1	
	$-\frac{4}{3}$ or $\frac{4}{3}$	A1	
	State or imply gradient of tangent is $\frac{3}{4}$ or $-\frac{3}{4}$	A1FT	Following <i>their</i> gradient of radius. Only FT when previous 2 marks are M1 A0.
	Either solve simultaneous equations (of 2 tangent equations) to find x- coordinate Or Substitute y-value of centre into either tangent equation	DM1	
	$x = -\frac{16}{3}, y = -1$	A1	
	Alternative Method 1: for the 4th and 5th marks		
	Rearrange and differentiate the circle equation or differentiate implicitly	(M1)	Replaces the second M1.
	$\frac{dy}{dx} = \frac{3-x}{y+1} \text{ or } \frac{dy}{dx} = \frac{3-x}{\left(25-(x-3)^2\right)^{\frac{1}{2}}}$	(A1)	Replaces the second A1.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2024

Question	Answer	Marks	Guidance
8	Alternative Method 2: for the last 5 marks	_	
	$\widehat{ACP} = \widehat{MAP} = \tan^{-1}\frac{4}{3}$ or identifying similar triangles <i>PMA</i> and <i>AMC</i>	(M1A1)	C is the circle centre, P is intersection of the two tangents, M is intersection of PC and the y-axis.
	$\tan MAP = \frac{PM}{4}, \frac{4}{3} = \frac{PM}{4}, PM = \frac{16}{3}$ or use of similar triangles	(M1A1)	
	$P \text{ is } \left(\frac{-16}{3}, -1\right)$	(A1)	
	Alternative Method 3: for the last 5 marks		
	Pythagoras on triangle PAC , $PC^2 = PA^2 + AC^2$,	(M1)	Identifies the required 3 sides and sets up formula.
	$PC^{2} = (PM + 3)^{2}, PA^{2} = PM^{2} + 4^{2}, AC = \text{radius} = 5$	(A1)	Finds each side with two in terms of <i>PM</i> OE.
	$(PM+3)^2 = PM^2 + 4^2 + 5^2$ leads to $6PM = 32$, $PM = \frac{16}{3}$	(M1A1)	Sets up and solves equation.
	P is $\left(\frac{-16}{3}, -1\right)$	(A1)	
	·Satpre?	8	

Question	Answer	Marks	Guidance
9(a)	Differentiate to obtain form $kx^2(2x^3+10)^{-\frac{1}{2}}$	M1	OE
	$3x^2(2x^3+10)^{-\frac{1}{2}}$	A1	Or unsimplified equivalent.
	Substitute $x = 3$ in first derivative and evaluate to find gradient	*M1	Expect $\frac{27}{8}$.
	TPRA		Allow if first derivative of forms $k(2x^3 + 10)^{\frac{-1}{2}}$,
	6	5	$kx(2x^{3}+10)^{\frac{-1}{2}}$ or $kx^{2}(2x^{3}+10)^{\frac{-1}{2}}$.
	Attempt equation of tangent at $(3,8)$ with numerical gradient	DM1	Use of gradient of the normal is DM0.
	$[\pm](27x-8y-17)=0$ or integer multiples	A1	
		5	
9(b)	State or imply volume is $\pi \int (2x^3 + 10) dx$	B1	Implied if π appears only at the end. Do not allow an unsimplified: $\pi \int \left(\left(2x^3 + 10 \right)^{1/2} \right)^2$.
	Integrate to obtain $k_1x^4 + k_2x$ and evaluate using limits 1 and 3	M1	Where $k_1 k_2 \neq 0$.
	60π	A1	OE Allow from a correct integral and sight of limits. Allow numerical answers in the range 188-189.
		3	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

May/June 2024

Question	Answer	Marks	Guidance
10(a)	Substitute to obtain equation $9r^4 + 14r^2 - 8 = 0$	B1	OE
	Attempt solution of quadratic equation in r^2 to obtain at least one value of r or r^2	M1	Expect $(9r^2 - 4)(r^2 + 2)$.
	$r = \frac{2}{3}$ only	A1	SC B1 answer without working.
	T PRA	3	
10(b)	Substitute $a = 2$ and <i>their r</i> in correct formula and attempt to evaluate	M1	Expect $\frac{2\left(1-\left(\frac{2}{3}\right)^{20}\right)}{\left(1-\frac{2}{3}\right)}$ or $\frac{2\left(\left(\frac{2}{3}\right)^{20}-1\right)}{\left(\frac{2}{3}-1\right)}$.
	5.998	A1	AWRT and no other value.
		2	
10(c)	Identify $a_2 = \frac{4}{3}$ and common ratio as $\frac{8}{27}$.	B1 FT	Following <i>their r</i> provided $ r < 1$. May be implied in the sum to infinity. Allow $\left(\frac{2}{3}\right)^3$.
	Substitute <i>their</i> new a and r in correct formula for sum to infinity and evaluate	M1	r < 1 otherwise M0.
	$\frac{36}{19}$	A1	OE Accept 1.89 or better from 1.894736
		3	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2024

Question	Answer	Marks	Guidance
11(a)	Express $f(x)$ as: $a - (x - 3)^2$ or $a - (3 - x)^2$ where $a = \pm 19$ or ± 1	M1	OE If the form $-f(x) = (x^2 - 6x - 10)$ is used the form must be returned to $f(x) =$ Completed square form must give $-x^2$. Answers must come from completion of the square (not calculus or graphs).
	$19 - (3 - x)^2$ or $19 - (x - 3)^2$	A1	OE
	$f(x) \leq 19 \text{ or } y \leq 19 \text{ with } \leq, \text{not} <$ or $-\infty < f(x) \leq 19 \text{ or } -\infty \leq f(x) \leq 19$ or $(-\infty, 19] \text{ or } [-\infty, 19]$	A1 FT	Using <i>their</i> constant following the award of M1. SC B1 answer only or answer from a method not involving completion of the square.
		3	

Question	Answer	Marks	Guidance
11(b)	$g^{-1}(x) = \frac{1}{4}(x-k)$	B1	
	$g^{-1}f(x) = \frac{1}{4}(10 + 6x - x^2 - k) = 4x + k$	M1	OE May use <i>their</i> completed square form for $f(x)$.
	Simplify the quadratic equation obtained from $g^{-1}f(x) = g(x)$ provided k is present and apply $b^2 - 4ac = 0$ to this quadratic equation	*M1	Expect $x^2 + 10x - 10 + 5k = 0$.
	Obtain $100 - 4(5k - 10) = 0$ and hence $k = 7$	A1	
	Use <i>their k</i> to form and solve a quadratic in x	DM1	Allow if <i>their</i> quadratic has two solutions.
	(-5,-13) only	A1	SC B1 if no method seen.
	Alternative Method for first 4 marks		
	State $f(x) = gg(x)$	(B1)	
	gg(x) = 16x + 5k	(M1)	
	Apply $b^2 - 4ac = 0$ to quadratic equation obtained from $f(x) = gg(x)$	(*M1)	Provided k is present.
	100 - 4(5k - 10) = 0 and hence $k = 7$	(A1)	
	Satprev	6	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME 9709/12 February/March 2024

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method Α mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; **DM** or **DB** and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. .
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	Integrate to obtain $-2x^{-1}$	B1	OE
	Substitute limits correctly with clear indication seen that upper limit gives 0	M1	For integral of form $-k x^{-n}$, where $k > 0$, $n > 0$.
	Obtain $\frac{2}{3}$	A1	WWW Accept 0.667.
	TPR	3	

Question	Answer	Marks	Guidance
2(a)	State $(3\pi, -k)$	B1	
		1	
2(b)	Obtain equation of form $[y=]c \pm k \sin \frac{1}{2}x$	M1	Any non-zero <i>c</i> .
	Obtain correct equation $[y=]2-k\sin\frac{1}{2}x$	A1	OE
	State $(3\pi, 2+k)$	B1 FT	Following part (a), i.e. (<i>their x</i> , $2 - their y$).
	"Satore?	3	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3	Integrate to obtain form $k(4x+5)^{\frac{3}{2}}$	*M1	
	Obtain correct $\frac{1}{2}(4x+5)^{\frac{3}{2}}$	A1	Or (unsimplified) equivalent. Condone missing $+c$ so far.
	Substitute $x=1$, $y=9$ to form an equation in c	DM1	
	Obtain or imply $[y =]\frac{1}{2}(4x+5)^{\frac{3}{2}} - \frac{9}{2}$	A1	May be implied by $[a =]\frac{1}{2}(4(1)+5)^{\frac{3}{2}} - \frac{9}{2}$.
	Substitute $x=5$ to obtain $a=58$	A1	
		5	

4(a) Expand bracket to obtain 3 terms and use correct identity M1 θ may be missing or another symbol u Use identity $\frac{\sin \theta}{\theta} = \tan \theta$ M1 Does not require any further explanation θ may be missing or another symbol u	mbol used.
Use identity $\frac{\sin \theta}{\theta} = \tan \theta$ M1 Does not require any further explanation θ may be missing or another symbol u	
$\cos\theta$	planation. mbol used.
Conclude with $2\tan\theta$ A1 WWW AG	
SatpreP 3	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(b)	Attempt solution of $5\tan^3\theta = 2\tan\theta$ to obtain at least one value of $\tan\theta$	M1	SOI Can be awarded if $\tan \theta$ is cancelled and ignored.
	Obtain at least two of $0, \pm 32.3$	A1	Or greater accuracy. SC B1 if no method shown.
	Obtain all three values	A1	Or greater accuracy; and no others in $-90^{\circ} < \theta < 90^{\circ}$ range. Other units SC B1 only for all 3 angles. SC B1 if no method shown.
		3	

Question	Answer	Marks	Guidance
5	Differentiate to obtain form $kx(2x^2-5)^{-2}$	M1	
	Obtain correct $-12x(2x^2-5)^{-2}$	A1	OE
	Substitute (2, 1) to obtain gradient $-\frac{24}{9}$	A1	OE e.g. $-\frac{8}{3}$. Allow -2.67 .
	Apply negative reciprocal to <i>their</i> numerical gradient to obtain gradient of normal	*M1	Must have been some attempt at differentiation. Expect $\frac{3}{8}$
	Attempt equation of normal using <i>their</i> gradient of the normal and (2, 1)	DM1	Expect $y - 1 = \frac{3}{8}(x - 2)$.
	Obtain $3x - 8y + 2 = 0$ (allow multiples)	A1	Or equivalent of requested form e.g. $8y-3x-2=0$.
		6	

Question	Answer	Marks	Guidance
6	$\binom{4}{2}2^2(ax)^2, \binom{4}{3}2^{[1]}(ax)^3$	B1 B1	OE Expect $24a^2x^2$, $8a^3x^3$ (may be seen in an expansion).
	Multiply terms involving x^2 and x^3 by $5-ax$ to obtain x^3 term	*M1	Must find two products only (may be seen in an expansion).
	Equate coefficient of x^3 to 432 and solve for <i>a</i>	DM1	Ignore inclusion of x^3 at this stage.
	Obtain $a=3$ only	A1	
		5	

Question	Answer	Marks	Guidance
7(a)	Attempt substitution for <i>y</i> in quadratic equation	* <mark>M1</mark>	Or substitution for <i>x</i>
	Obtain $5x^2 + 30x + 75 - k = 0$ or $5y^2 - 20y + 50 - k = 0$	A1	OE e.g. $x^2 + 6x + 15 - \frac{k}{5}$ (all terms gathered together).
	Use $b^2 - 4ac = 0$ with <i>their a</i> , <i>b</i> and <i>c</i>	DM1	$^{\circ} = 0^{\circ}$ may be implied in subsequent working or the answer.
	Obtain $900-20(75-k)=0$ or equivalent and hence $k=30$	Al	obtaining $400 - 20(50 - k) = 0$ and $k = 30$.
	·satpreP	4	
7(b)	Substitute <i>their</i> value of k in equation from part (a) and attempt solution	M1	Expect $5x^2 + 30x + 45 = 0$ or $5y^2 - 20y + 20 = 0$.
	Obtain coordinates (-3, 2)	A1	SC B1 only $(-3, 2)$ without attempt at quadratic solution.
		2	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
8(a)	Substitute $n=10$ and $a=6$ into $u_n = a + (n-1)d$	*M1	Expect $6+9d = 19.5$ or equivalent.
	[d =]1.5	A1	
	Substitute $a=6$ and <i>their d</i> into correct formula for the sum of 100 terms	DM1	
	Obtain 8025	A1	
		4	
8(b)	Obtain $S = 48$	B1	
	Identify for S_E first term 12 and common ratio $\frac{1}{4}$	B1	
	Attempt sum to infinity, S_E , with at least one of first term and common ratio correct	M1	Only awarded if $ r < 1$.
	Obtain $S_E = 16$	A1	
		4	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
9(a)	Attempt to form expression for $gf(x)$	*M1	Expect $5((3x-2)^2 + k) - 1$; fg(x) is M0. Do not allow algebraic errors.
	Obtain $5(3x-2)^2 + 5k - 1$	A1	OE e.g. $45x^2 - 60x + 5k + 19$.
	<i>Their</i> $5k - 1 = 39$ or $5k - 1 \ge 39$	DM1	Or use $b^2 - 4ac = 0$ (must be '= 0', could be implied later) on $45x^2 - 60x + 5k + 19 - 39 \ge 0$ OE.
	Obtain $k=8$	A1	Do not accept $k \ge 8$.
		4	
9(b)	Obtaining $(3(5x-1)-2)^2 + their k$	M1	May simplify and/or use k at this stage; k may have come from an inequality in (a).
	Conclude $[fg(x)] \ge 8$ allow $[y] \ge 8$	A1 FT	OE Following <i>their</i> value of k ; must be \geq , not >. Allow an accurate written description.
		2	
9(c)	State $g^{-1}(x) = \frac{1}{5}(x+1)$	B1	OE $\frac{1}{5}(x+1)$ must be indicated as the inverse.
	$\left[h(x)=\right]7x+4$	B1B1	If $7x+4$ only, it must be clear that this is $h(x)$.
		3	

Question	Answer	Marks	Guidance
10(a)	Obtain gradient of relevant radius is -2	B1	
	Using $m_1m_2 = -1$ obtain the gradient of the tangent and use it to form a straight line equation for a line containing (-6, 9)	M1	m_1 must be from an attempt to find the gradient of the radius using the centre and the given point.
	Obtain $y = \frac{1}{2}x + 12$	A1	OE e.g. $y-9 = \frac{1}{2}(x+6)$.
		3	
10(b)	State or imply $(x+4)^2 + (y-5)^2 = 20$	B1	If $x^2 + y^2 - 2gx - 2fy + c = 0$ is used correctly with $(-g, -f) = (-4, 5)$ and $c = g^2 + f^2 - r^2$ then M1.
	Obtain $x^2 + y^2 + 8x - 10y + 21 = 0$	B1	A1 if above method used.
		2	
10(c)	Substitute $x=0$ in equation of circle to find y-values 3 and 7 or state C to $AB = 4$	B1	May be implied by $AB = 4$ or use of $ x$ -coordinate of $C $.
	Attempt value of θ either using cosine rule or via $\frac{1}{2}\theta$ using right-angled triangle	M1	Using their AB. If $\theta/2$ used, must be multiplied by 2.
	Obtain $\theta = 0.9273$	A1	Or greater accuracy. A correct answer implies the M1.
	alpier	3	

Question	Answer	Marks	Guidance
10(d)	Attempt arc length using $r\theta$ formula with <i>their</i> θ (not <i>their</i> $\theta/2$) and $r = \sqrt{20}$	M1	Expect 4.15.
	Obtain perimeter = 8.15 or greater accuracy	A1	Condone missing units or incorrect units.
	Attempt area using $\frac{1}{2}r^2(\theta - \sin\theta)$ formula or equivalent with <i>their</i> θ and $r = \sqrt{20}$	M1	If sector – triangle used, both formulae must be correct. If triangle <i>ACM</i> used, area must be multiplied by 2.
	Obtain area = 1.27 or greater accuracy	A1	Condone missing units or incorrect units.
		4	

Question	Answer	Marks	Guidance
11(a)	Differentiate to obtain $-\frac{4}{3}x^{-\frac{5}{3}} + x^{-\frac{4}{3}}$ or rewrite as a quadratic equation in $x^{-\frac{1}{3}}$ or $x^{\frac{1}{3}}$	B 1	Expect quadratic $2\left(x^{-\frac{1}{3}}\right)^2 - 3x^{-\frac{1}{3}} + 1$ OE Allow $2x^2 - 3x + 1$.
	Equate first derivative to zero and reach a solution for $x^{-\frac{1}{3}}$ or $x^{\frac{1}{3}}$ with no error in use of indices or complete square to find minimum point $2\left(a-\frac{3}{4}\right)^2 - \frac{1}{8}$ where $a = x^{-\frac{1}{3}}$	M1	Substitution SOI if dealt with correctly later
	Obtain $x = \frac{64}{27}$	A1	Or exact equivalent. SC B1 if no working shown. Ignore extra solution $x = 0$.
	$y = -\frac{1}{8}$ seen	B1	Or exact equivalent. Allow -0.125.
		4	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
11(b)	Recognise equation as quadratic in $x^{-\frac{1}{3}}$ or equivalent and attempt solution	M1	$2a^2 - 3a + 1[=0]$ where $a = x^{-\frac{1}{3}}$.
	Obtain $x^{-\frac{1}{3}} = 1$ and $x^{-\frac{1}{3}} = \frac{1}{2}$	A1	OE SC B1 if no M mark awarded.
	Obtain 1 and 8	A1	SC B1 if no M mark awarded.
	Integrate to obtain form $k_1 x^{\frac{1}{3}} + k_2 x^{\frac{2}{3}} + x$ or 2 out of 3 correct terms	*M1	Expect $6x^{\frac{1}{3}} - \frac{9}{2}x^{\frac{2}{3}} + x$.
	Obtain correct $6x^{\frac{1}{3}} - \frac{9}{2}x^{\frac{2}{3}} + x$	A1	No other terms from a second integral.
	Apply <i>their</i> limits correctly	DM1	Their limits must be from their working.
	[Obtain –0.5 and conclude area is] 0.5	A1	
		7	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

9709/11

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method Α mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). •
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$1+18x+135x^2$	B2, 1, 0	Accept 1, $18x$, $135x^2$ listed horizontally or vertically or $1x^0 + 18x + 135x^2$.
		2	
1(b)	Coefficient of x^2 is $135-7\times18+1=10$	M1 A1	3 products, allow $10x^2$. If full expansion given, like terms must be collected for M1.
	6	2	

Question	Answer	Marks	Guidance	
2	$cx^{2} + 3x - c = 2cx + 3$ leading to $cx^{2} + (3 - 2c)x - (c + 3)$ [=0]	M1	Forming a 3-term quadratic, all terms on one side.	
	$b^{2} - 4ac = (3 - 2c)^{2} + 4c(c + 3)$	M1	2nd M1 for $b^2 - 4ac$ correct for <i>their</i> <u>a</u> , b, c i.e. no sign errors.	
	$= 8c^2 + 9$	A1		
	> 0 [for all values of c] leading to B [Intersects for all values of c]	A1	WWW	
	24	4		
·satprep.				

Question	Answer	Marks	Guidance
3	$\frac{\mathrm{d}V}{\mathrm{d}x} = 3x^2$	B1	SOI
	$\frac{\mathrm{d}V}{\mathrm{d}t} \left[= \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} \right] = 3 \times 20^2 \times 0.01$	M1	Correct use of chain rule with $x = 20$ substituted into $\frac{dV}{dx}$.
	12	A1	
	6	3	

Question	Answer	Marks	Guidance
4(a)	$\left\{-(x-3)^2\right\} \ \{-1\}$	B1 B1	OE. Must be a quadratic e.g. $3x - 1$ B0 B0. SC B1 for correct use of generalised function notation.
		2	
4(b)	$\left\{-(x-3)^2\right\}$ $\{+1\}$	B1 B1	OE. Must be a quadratic. SC B1 for correct use of generalised function notation.
	2	2	
4(c)	$\{\text{Translation}\} \begin{pmatrix} \{0\}\\ \{2\} \end{pmatrix}$	B2, 1, 0	FT from (a) and (b) if a translation parallel to the y axis. B2 for fully correct, B1 with two elements correct. {} indicates different elements.
		2	

Question	Answer	Marks	Guidance
5(a)	$4\sin^2 x + 5\cos x + 2 [=0]$	*M1	Multiply by $\sin x$ (or writing as a single fraction) and using $\tan x = \frac{\sin x}{\cos x}$.
	$4(1-\cos^2 x)+5\cos x+2 [=0]$	DM1	Correctly obtaining a quadratic in $\cos x$ (allow sign errors).
	$4\cos^2 x - 5\cos x - 6 = 0$	A1	Condone missing x . Must be = 0 unless 0 appears on RHS earlier.
		3	
5(b)	$(4\cos x + 3)(\cos x - 2) = 0$	M1	Or use of formula or completing square.
	138.6°, 221.4°	A1 B1 FT	FT on 360° – 1st solution from quadratic in cos <i>x</i> . Use of radians (2.42) A0 but allow B1 FT for 2π : 1st solution if use of radians is clear. SC If M0 scored SC B1 B1 for correct final answer(s). If extra incorrect solutions in the range $0 \rightarrow 360^{\circ}$ are given award A1 B0.
		3	

Question	Answer	Marks	Guidance
6(a)	$k = \frac{2}{3}$	B1	Allow ACB = $\frac{2\pi}{3}$.
		1	
6(b)	Perimeter of shaded area $=2\pi r$	B1	
		1	

^{9709/11}

Question	Answer	Marks	Guidance
6(c)	Major sector $OAB = \frac{1}{2}r^2 \times \frac{4\pi}{3}$	*M1	Expect $\frac{2}{3}\pi r^2$. Finds area of any relevant sector or triangle. Can be embedded in segment formula.
	One or both segments = $[2] \times \left(\frac{1}{2}r^2 \times \frac{\pi}{3} - \frac{1}{2}r^2 \sin \frac{\pi}{3}\right)$	*M1	
	$= \left[2\right] \left(r^2 \frac{\pi}{6} - r^2 \frac{\sqrt{3}}{4}\right)$	A1	
	Shaded area $=\frac{2}{3}\pi r^2 - 2\left(\frac{1}{6}\pi r^2 - \frac{r^2\sqrt{3}}{4}\right)$	DM1	
	$= \frac{\pi r^2}{3} + \frac{r^2 \sqrt{3}}{2}$	A1	

Question	Answer	Marks	Guidance
6(c)	Alternative method for Question 6(c)		
	Sector $CAOB = [2] \times \frac{1}{2}r^2 their \frac{1}{3}\pi$	*M1	Expect [2] $\times \frac{1}{6}\pi r^2$. Can be embedded in segment formula.
	One or both segments = $[2] \times \left(\frac{1}{2}r^2 \times \frac{\pi}{3} - \frac{1}{2}r^2 \sin \frac{\pi}{3}\right)$	*M1	
	$= \left[2\right] \left(r^2 \frac{\pi}{6} - r^2 \frac{\sqrt{3}}{4}\right)$	A1	
	Shaded area = $\pi r^2 - \left\{ \frac{1}{3}\pi r^2 + 2\left(r^2\frac{\pi}{6} - r^2\frac{\sqrt{3}}{4}\right) \right\}$	DM1	
	$=\frac{\pi r^2}{3} + \frac{r^2\sqrt{3}}{2}$	A1	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(c)	Alternative method for Question 6(c)		
	Area of rhombus AOBC = $[2] \times \frac{1}{2}r^2 \sin \frac{\pi}{3}$	M1	Expect [2] $\times \frac{\sqrt{3}}{4}$. Can be embedded in segment formula.
	One or both segments = $[2] \times \left(\frac{1}{2}r^2 \times \frac{\pi}{3} - \frac{1}{2}r^2 \sin \frac{\pi}{3}\right)$	M1	
	$= \left[2\right] \left(r^2 \frac{\pi}{6} - r^2 \frac{\sqrt{3}}{4}\right)$	A1	
	Shaded area = $\pi r^2 - \left\{ \frac{\sqrt{3}}{2}r^2 - 4\left(r^2\frac{\pi}{6} - r^2\frac{\sqrt{3}}{4}\right) \right\}$	DM1	
	$= \frac{\pi r^2}{3} + \frac{r^2 \sqrt{3}}{2}$	A1	
		5	

Question	Answer	Marks	Guidance
7	a(1+r) = 15	B1	Accept $\frac{a(1-r^2)}{1-r} = 15$ for first B1.
	$\frac{a}{1-r} = \frac{125}{7}$	B1	
	$\frac{125}{7}(1-r)(1+r) = 15$	M1	Eliminate <i>a</i> .
	$1 - r^2 = \frac{105}{125}$	M1	
	$r^2 = \frac{4}{25}$ leading to $r = -\frac{2}{5}$	A1	Condone $\frac{2}{5}$ or $\pm \frac{2}{5}$.
	$a = \frac{125}{7} \times \frac{7}{5} = 25$	A1	Ignore 2nd answer.
	$3rd term = 25 \times \frac{4}{25} = 4$	A1	CAO

Question	Answer	Marks	Guidance
7	Alternative method for Question 7		
	a(1+r) = 15	B1	
	$\frac{a}{1-r} = \frac{125}{7}$	B1	
	$7(15-15r) = (125 - 125r)(1 - r^2)$	M1	
	$125r^3 - 125r^2 - 20r + 20 = 0$	M1	
	$r = \frac{-2}{5} [1, \frac{2}{5}]$	A1	Condone extra 'answer' of $r = 1$.
	a = 25	A1	Ignore 2nd answer.
	3rd term = 4	A1	CAO

Question	Answer	Marks	Guidance
7	Alternative method for Question 7		
	a(1+r)=15	B1	
	$\frac{a}{1-r} = \frac{125}{7}$	B1	
	$\frac{a}{1 - \left(\frac{15}{a} - 1\right)} = \frac{125}{7}$	M1	Eliminate <i>r</i> .
	$7a^2 - 250a + 1875 = 0$	M1	
	$a = 25, \left[\frac{75}{7}\right]$	A1	Condone extra 'answer' of $r = \left[\frac{75}{7}\right]$.
	$\mathbf{r} = \frac{-2}{5}$	A1	Ignore 2nd answer.
	3rd term = $25 \times \frac{4}{25} = 4$	A1	CAO
	123	7	
	SatpreP		
Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
8(a)	$u = 2x - 3$ leading to $2u^4 = u^2 + 1$ leading to $2u^4 - u^2 - 1 = 0$	B1	
	$(2u^{2}+1)(u^{2}-1)[=0]$	M1	Factors or formula or completing square must be shown.
	$u = \pm 1$ leading to $2x - 3 = \pm 1$ leading to $x = 1$ or 2	A1	
	(1, 2), (2, 2)	A1	Special case: If B1 M0 scored then SC B2 can be awarded for correct coordinates or SC B1 for correct <i>x</i> values only.
		4	Special case $2(2x-3)^4 = (2x-3)^2 + 1$ $32x^4 - 192x^3 + 428x^2 - 420x + 152 = 0$ x = 1, 2 finding both from a correct quartic SC B1 (1, 2), (2, 2) SC DB1 Special case: Trial and improvement without quartic. Both x values correct B1, both coordinates correct B2.

Question	Answer	Marks	Guidance	
8(b)	$\left\{\frac{(2x-3)^3}{3\times 2} + x\right\} [-] \left\{\frac{2(2x-3)^5}{5\times 2}\right\}$	B1 B1	Integrate the 2 functions.	
	$\left(\frac{1}{6}+2\right)-\left(-\frac{1}{6}+1\right)-\left\{\frac{1}{5}-\left(-\frac{1}{5}\right)\right\}$	M1	Apply <i>their</i> limits $1 \rightarrow 2$ (must be shown) to an integral. Some evidence of substitution. Minimum $(\frac{13}{6} - \frac{5}{6}) - (\frac{1}{5} + \frac{1}{5})$ or equivalent. Allow 1 sign error for 1st M1.	
	$\frac{4}{3} - \frac{2}{5}$	M1	Subtract (at some point) the 2 areas. Must subtract areas and not just integrals.	
	$\frac{14}{15}$	A1	Special case: If M0 for substitution of limits can award SC B1 for correct answer. Condone $-\frac{14}{15}$ if corrected.	
		.5	If subtraction is the wrong way round award B1 B1 M1 M1 A0. $\int y^2 dx$ or $\int x dy$ scores 0 /5. $\pi \int y dx$ used. Award B1 B1 M1 M1 A0.	
·satprep.				

Question	Answer	Marks	Guidance
8(b)	Alternative method for Question 8(b)		
	u = 2x - 3 $\int (u^2 + 1 - 2u^4) du$	B2,1,0	
	$\left\{\frac{1}{2}\right\}\left(\left\{\frac{1}{3}u^3+u\right\}-\left\{\frac{2}{5}u^5\right\}\right)$		
	$\frac{1}{2} \left(\left(\frac{1}{3} + 1 - \frac{2}{5} \right) - \left(\frac{-1}{3} - 1 + \frac{2}{5} \right) \right)$	M1	Applies limits $-1 \rightarrow 1$.
		M1	Subtract (at some point) the 2 areas.
	$\frac{1}{2} \left(\frac{14}{15} + \frac{14}{15} \right) \\ \frac{14}{15}$	A1	
		5	

Question	Answer	Marks	Guidance
9(a)	$(2x-3)^2+4$	B1 B1	Or $a = -3, b = 4$.
		2	

9709/11

Question	Answer	Marks	Guidance
9(b)	<i>their</i> $(2x-3)^2 + 4[<]8$ OR $4x^2 - 12x + 13[<]8$	*M1	Linking quadratic with 8.
	$(2x-3)^2 < 4$ leading to $-2 < 2x-3 < 2$ OR $4x^2 - 12x + 5 < 0$ leading to $(2x-1)(2x-5) < 0$	DM1	Simplify to 3-term quadratic and solve. Condone no method shown.
	$\frac{1}{2} < x < 2\frac{1}{2}$ leading to [LEAST] $p = \frac{1}{2}$, [GREATEST] $q = 2\frac{1}{2}$	A1	
		3	
9(c)	$gf(x) = 12x^2 - 36x + 40$	B1	OE gf(x) = $3(2x-3)^2 + 13$.
		1	
9(d)	$y = (2x-3)^2 + 4$ leading to $(2x-3)^2 = y - 4$ leading to $2x-3 = [\pm]\sqrt{y-4}$	*M1	
	$2x = 3[\pm]\sqrt{y-4}$ leading to $x = \frac{3}{2}[\pm]\frac{\sqrt{y-4}}{2}$	DM1	
	$h^{-1}(x) = \frac{3}{2} - \frac{\sqrt{x-4}}{2}$	A1	
		3	

Question	Answer	Marks	Guidance
10(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 \ \left[+c\right]$	B1	
	$3 \times 2^2 + c = 0$	M1	Substitute $x = 2$ and $\frac{dy}{dx} = 0$ into an integral (<i>c</i> must be present).
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 12$	A1	
		3	
10(b)	$y = x^3 - 12x \ [+k]$	B1 FT	FT on <i>their</i> non-zero c (dependent on c being found at some stage).
	$-10 = 2^3 - 12 \times 2 + k$	M1	Substitute $x = 2$, $y = -10$ (<i>k</i> present).
	$y = x^3 - 12x + 6$	A1	Must be $y = ($ unless $y = x^3 - 12x + k$ stated earlier $)$.
		3	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
10(c)	$3x^2 - 12 = 0$ [leading to $x = -2$]	M1	Set <i>their</i> two term $\frac{dy}{dx} = 0$. Expect $x = -2$. Ignore $x = 2$ given in addition.
	$y = (-2)^3 - 12 \times (-2) + 6 = 22$ leading to (-2, 22)	A1	
	When $x = -2$, $\frac{d^2 y}{dx^2} < 0$ (or -12) hence Maximum	A1	Can be from correct conclusion from $\frac{dy}{dx}$ sign diagram
			if $\frac{dy}{dx}$ calculated correctly. Do not allow concave downward for final A1. Can be awarded if the only error is incorrect or missing <i>y</i> -coordinate.
		3	
10(d)	At $x = 0$, $\frac{dy}{dx} = -12$, $y = 6$	M1	Both required. FT on <i>their</i> $\frac{dy}{dx}$ and <i>y</i> .
	y - 6 = -12x	A1	OE
	2	2	
	2	01	

Question	Answer	Marks	Guidance
11(a)	Gradient of $AB = -1$	B1	SOI
	Centre of circle = $(4, -1)$	B1	SOI
	Equation of <i>AB</i> is $y+1=-1(x-4)$ leading to $y=-x+3$	B1 FT	FT <i>their</i> centre with gradient –1.
		3	

9709/11

Question	Answer	Marks	Guidance	
11(b)	$(x-4)^{2} + (-x+3+1)^{2} = 40$	*M1	Substitute <i>their AB</i> into circle equation.	
	$2(x-4)^2 = 40$ OR $[2](x^2-8x-4)$ leading to	DM1	Forming and solving 3-term quadratic.	
	$\frac{8 \pm \sqrt{64 + 16}}{2} \text{ or } \frac{16 \pm \sqrt{256 + 64}}{4}$			
	$x = 4[\pm]\sqrt{20}$	A1	OE. No fractions.	
	$\left(4-\sqrt{20},-1+\sqrt{20}\right)$	A1	OE Special case: If M1 M0 scored then SCB2 can be awarded for correct coordinates or SCB1 for correct <i>x</i> values only. Ignore other coordinate	
		4		
11(c)	$y - their(-1 + \sqrt{20}) = 1\{x - their(4 - \sqrt{20})\}$	M1	OE	
	$y = x - 5 + 2\sqrt{20}$ or $y = x - 5 + \sqrt{80}$ or $y = x - 5 + 4\sqrt{5}$	A1		
	3	2		
Satprep.co				

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

9709/12

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method Α mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). •
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	[Coefficient of x^3 from $(3+2ax)^5 = 10 \times 9 \times 8a^3$ [= 720 a^3]	B1	May be seen in an expansion or with x^3 .
	[Coefficient of x^2 from $(2+ax)^6 = 15 \times 16 \times a^2$ [= 240 a^2]	B1	May be seen in an expansion or with x^2 .
	$their(10 \times 9 \times 8a^{3}) = 6 \times their(15 \times 16 \times a^{2})$ $[\Rightarrow 720a^{3} = 1440a^{2}]$	M1	OE Equating <i>their</i> <u>coefficient</u> of x^3 and $6 \times their$ <u>coefficient</u> of x^2 .
	<i>a</i> = 2	A1	Condone extra solution $a = 0$.
		4	

Question	Answer	Marks	Guidance
2	$[\tan^{-1} 4x =]\left(their - \frac{\pi}{6}\right) \pm \frac{\pi}{6} \left[\tan^{-1} 4x = \pm \frac{\pi}{3}, \pm 1.047 \text{ or } 0\right]$	M1	OE Evaluating $\left(-\cos^{-1}\frac{\sqrt{3}}{2}\right)$ in rad and adding or subtracting $\frac{\pi}{6}$. Allow working with both angles in degrees.
	$\left[4x = -\sqrt{3}, x = \right] - \frac{\sqrt{3}}{4}$	A1	Note: answer of $-0.43 \text{ or } \frac{\sqrt{3}}{4}$ implies M1
	Patpret	2	

Question	Answer	Marks	Guidance
3(a)	[Gradient of normal =] $\frac{-1}{\text{Their}\frac{11}{2}} \left[\frac{-1}{\frac{11}{2}} = -\frac{2}{11}\right]$	M1	Tangent gradient must come from $x = 2$ substituted into the given expression.
	$\frac{y-8}{x-2} = -\frac{2}{11}$ or $11y+2x=92$ or $y = -\frac{2x}{11} + \frac{92}{11}$	A1	OE
		2	
3(b)	$[y =]\left\{\frac{1}{2}x^2 \div 2\right\}\left\{+\frac{72}{x^3} \div -3\right\} \ [+c] \left[\frac{x^2}{4} - \frac{24}{x^3} + c\right]$	B1, B1	One mark for each correct unsimplified { }.
	$8 = \frac{1}{4} \times 4 - \frac{24}{8} + c$	M1	Substitution of $x = 2$, $y = 8$ into <i>their</i> integrated expression, defined by at least one correct power. Two terms and $+ c$ needed.
	$y = \left(\frac{1}{4} \text{ or } 0.25\right) x^2 - \frac{24}{x^3} + 10$	A1	Both coefficients must be simplified but allow x^{-3} . Condone $c = 10$ as line as long as either y or $f(x) =$ is seen elsewhere.
	4	4	C

	4		
Question	Answer	Marks	Guidance
4(a)	[Arc length =] $2 \times \frac{\pi}{3} \text{ or } \frac{60}{360} \times 2\pi \times 2$	B1	Finding one correct arc length – may be implied by correct final answer.
	[Perimeter =] 2π or 6.28	B1	AWRT
		2	

Question	Answer	Marks	Guidance
4(b)	[Area of one sector =] $\frac{1}{2} \times 2^2 \times \frac{\pi}{3}$ or $\frac{60}{360} \times \pi \times 2^2 \left[= \frac{2\pi}{3} \text{ or } 2.09 \right]$	B1	SOI AWRT
	[Area of triangle =] $\frac{1}{2} \times 2^2 \times \sin\left(\frac{\pi}{3}\right)$ or other valid method	B 1	AWRT Allow use of 60 °
	$\left[=\sqrt{3} \text{ or } 1.73\right]$		
	[Area of coin = 3 segments + triangle \Rightarrow] $3\left(\frac{2\pi}{3} - \sqrt{3}\right) + \sqrt{3}$ [= 2.82]	M1	OE Or 3 sectors – 2 triangles $\left(3 \times \frac{2\pi}{3} - 2 \times \sqrt{3}\right)$ or Sector + 2 segments $\left(\frac{2\pi}{3} + 2\left(\frac{2\pi}{3} - \sqrt{3}\right)\right)$
	$2\pi - 2\sqrt{3}$ or $2(\pi - \sqrt{3})$	A1	Must be one of these simplified versions but equivalent decimal answers can score B1B1M1
		4	

Question	Answer	Marks	Guidance
5(a)	$\frac{\cos\theta}{\sin\theta} = \frac{2 - \sin\theta}{\cos\theta} \text{ leading to } \cos^2\theta [\sin\theta] = \sin\theta (2 - \sin\theta) [\sin\theta]$	*M1	OE. Forming a correct equation in θ only using the terms of the GP and an attempt to clear fractions.
	$\cos^2 \theta + \sin^2 \theta = 2\sin \theta$ leading to $\sin \theta = \left[\frac{1}{2}\right]$	DM1	Correct use of $\cos^2 \theta + \sin^2 \theta = 1$ and attempt to solve for $\sin \theta$.
	$\left[\theta = \right] \frac{\pi}{6} \text{ or } 0.524$	A1	AWRT A0 for $\theta = 30^{\circ}$. Condone inclusion of $\frac{5\pi}{6}$ and/or
		3	

Question	Answer	Marks	Guidance
5(b)	$a = \frac{1}{2} r = \sqrt{3}$	B1	OE SOI Trigonometric values need to have been evaluated but allow decimal equivalents (0.5 and 1.73 AWRT)
	$S_{10} = \sin\left(their\frac{\pi}{6}\right) \left(\frac{1 - \left(their\sqrt{3}\right)^{10}}{1 - \left(their\sqrt{3}\right)}\right)$	M1	Use of a correct formula for S ₁₀ , with <i>their</i> value of θ . Their $\sqrt{3}$ needs to come from $\frac{\cos(their\theta)}{\sin(their\theta)}$ or $\frac{2-\sin(their\theta)}{\cos(their\theta)}$ OE
	$[S_{10} =]\frac{121}{\sqrt{3} - 1}$	A1	$\frac{-121}{1-\sqrt{3}}$ or 165 AWRT scores B1M1A0.
		3	

Question	Answer	Marks	Guidance
6(a)	$\frac{d}{dx}(x^2 - 8x + 5) = 0 \ [2x - 8 = 0]$	M1	Correct differentiation of x^2 and equating their $\frac{dy}{dx}$ to 0.
	Alternative method 1 for first mark of Question 6(a)		
	$y = (x-4)^2 - 11$	M1	Attempt to complete the square as far as $y = (x-4)^2 \pm k$.
	Alternative method 2 for first mark of Question 6(a)		
	$x = \frac{-b}{2a} = \frac{\pm 8}{2}$	M1	
	x = 4, y = -11	A1	Answers from $x = \frac{8 \pm \sqrt{64 - 20}}{2}$ leading to $x = 4 \pm \sqrt{11}$ scores M0A0
		2	
6(b)	x = (their x value from a) + 4 [=8]	B1 FT	Can be from finding the equation of the transformed curve, differentiating and putting $\frac{dy}{dx} = 0$.
	$y = \{(their \ y \text{ value from } a) \times 2\} + 1 [-21]$	B1 FT	Can be from putting $x = 8$ in the equation of the transformed curve.
	satpree	2	If B0B0 scored, SC B1 for sight of $(4, -22)$.

Question	Answer	Marks	Guidance
6(c)	$2(x^2-8x+5)$ or $2\{(x-4)^2-11\}$	B1	Can be implied if both transformations done together: $2((x-4)^2 - 8(x-4) + 5) + 1$ OE.
	$((x-4)^2 - 8(x-4) + 5) + 1 \text{ or } \{(x-4-4)^2 - their 11\} + 1$	M1	For the <i>x</i> translation, each <i>x</i> becomes $(x-4)$.
	T PD	M1	For the y translation of +1.
	$y = 2x^2 - 32x + 107$ or $a = 2, b = -32, c = 107$	A1	Evidence to support <i>their</i> answer may be in (b) but answer must be seen in (c).
		4	

Question	Answer	Marks	Guidance
7(a)	$(2x-1)(4x^{2}+2x-1) = 8x^{3}+4x^{2}-2x-4x^{2}-2x+1 = 8x^{3}-4x+1$	B1	AG Six correct terms leading to the correct answer.
		1	

Question	Answer	Marks	Guidance
7(b)	Starting with the LHS $\frac{\frac{\sin^2 \theta}{\cos^2 \theta} + 1}{\frac{\sin^2 \theta}{\cos^2 \theta} - 1} \left[= \frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta - \cos^2 \theta} \right]$	*M1	For use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$ in the numerator and denominator.
	$=\frac{1}{1-\cos^2\theta-\cos^2\theta}$ need to see clear evidence of this step	DM1	For use of $\sin^2 \theta + \cos^2 \theta = 1$ twice, in a correct expression, resulting in an expression in $\cos^2 \theta$.
	$=\frac{1}{1-2\cos^2\theta}$	A1	AG
	Alternative method 1 for Question 7(b)		
	Starting with the RHS $\frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta + \cos^2 \theta - 2\cos^2 \theta} \left[= \frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta - \cos^2 \theta} \right]$	*M1	For use of $\sin^2 \theta + \cos^2 \theta = 1$ twice.
	$=\frac{\frac{\sin^2 \theta}{\cos^2 \theta} + 1}{\frac{\sin^2 \theta}{\cos^2 \theta} - 1}$ need to see clear evidence of this step	DM1	Dividing throughout by $\cos^2 \theta$.
	$=\frac{\tan^2\theta+1}{\tan^2\theta-1}$	A1	AG

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(b)	Alternative method 2 for Question 7(b)		
	Starting with the LHS $\frac{\sec^2 \theta}{\sec^2 \theta - 2}$	*M1	For use of $1 + \tan^2 \theta = \sec^2 \theta$ twice.
	Clear statement $\Rightarrow \frac{1}{1 - 2\cos^2 \theta}$	DM1	AG For multiplying throughout by $\cos^2 \theta$ to give the RHS.
		A1	
	9	3	

Question	Answer	Marks	Guidance
7(c)	$\frac{1}{1-2\cos^2\theta} = 4\cos\theta \text{ leading to } 1 = 4\cos\theta (1-2\cos^2\theta)$ $\begin{bmatrix} 8\cos^3\theta - 4\cos\theta + 1 = 0 \end{bmatrix}$	B1	Replace LHS with RHS from (b) and clear fractions.
	$(2\cos\theta - 1)(4\cos^2\theta + 2\cos\theta - 1)[=0]$	*B1	Use of the expression from (a) with $x = \cos \theta$.
	$[x \text{ or } \cos \theta =]\frac{1}{2} \text{ and } \frac{-2 \pm \sqrt{4 + 16}}{8}$ OR 0.31, -0.81 AWRT	DB1	OE For all three values.
	[θ=]60°,72°,144°	B2,1,0	B2 for three correct answers only, B1 for two correct answers and no others (but allow 36° instead of 144°) in the given range or 3 correct answers plus other values in the given range. Ignore answers outside of the given range. Accept AWRT 72.0, 144.0. SC B1 for all 3 correct answers in radians and no others: $\frac{\pi}{3}, \frac{2\pi}{5}$ and $\frac{4\pi}{5}$.
		5	

Question	Answer	Marks	Guidance
8(a)	$y = (x+a)^2 - a$ leading to $(x+a)^2 = y \pm a$	*M1	x and y may be interchanged initially. Allow \pm errors for these method marks.
	$x = [\pm]\sqrt{y \pm a} \pm a$	DM1	
	Alternative method for first 2 marks of Question 8(a)		
	$x = (y+a)^2 - a$ leading to $y^2 + 2ay + a^2 - a - x = 0$	*M1	Allow \pm errors for this method mark.
	$y = \frac{-2a \pm \sqrt{4a^2 - 4(a^2 - a - x)}}{2}$	DM1	
	$[y \text{ or } f^{-1}(x) =] -\sqrt{x+a} - a$	A1	OE Must choose negative root.
		3	
8(b)(i)	$x \ge -a$	B1	Ignore infinity limit if included.
		1	
8(b)(ii)	y or $f^{-1}[(x)] \leqslant -a$	B1	Ignore negative infinity limit if included.
	Th. Salares	01	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
8(c)	$\left[gf\left(\frac{7}{2}\right) = \right] 2 \left(\left(x + \frac{7}{2}\right)^2 - \frac{7}{2} \right) - 1 \text{ or } 2x^2 + 4 \left(\frac{7}{2}\right) x + 2 \left(\frac{7}{2}\right)^2 - 2 \left(\frac{7}{2}\right) - 1 \left[= 0 \right] \right)$	B1	OE Alternatively, $\left[gf(x) = 0 \Rightarrow \right] f(x) = \frac{1}{2}$.
	$[x=] - \frac{7}{2} \pm 2 \text{ or } \frac{-14 \pm \sqrt{14^2 - 4 \times 2 \times \frac{33}{2}}}{4}$ $\left[\frac{-14 \pm \sqrt{64}}{4}\right] \text{ or factorising}$	M1	OE Solving their three term quadratic equation as far as two solutions or correctly selecting the negative root only. Alternatively, $\pm \sqrt{\frac{1}{2} + \frac{7}{2}} - \frac{7}{2}$.
	$[x=]-\frac{11}{2}$	A1	If B1M0 scored then award SCB1 for the correct final answer.
		3	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance	
9(a)	$2x^{\frac{1}{2}} + 13x^{-\frac{1}{2}} = 3x^{-\frac{1}{2}} + 12 \text{ all } \times x^{\frac{1}{2}} \implies x - 6x^{\frac{1}{2}} + 5 = 0$	*M1	OE Equating the two expressions in x and then multiplying each term by $x^{\frac{1}{2}}$ or by their substitution for $x^{\frac{1}{2}}$. Coefficients need to be retained but condone +/- sign errors. Allow $x^{\frac{1}{2}}$ replaced by x.	
	$\left(x^{\frac{1}{2}}-1\right)\left(x^{\frac{1}{2}}-5\right)$ [= 0] or [x=] $\frac{6\pm\sqrt{36-4\times1\times5}}{2}$	DM1	OE Solving their three-term quadratic.	
	Alternative method for first 2 marks of Question 9(a)			
	$2x^{\frac{1}{2}} + 13x^{-\frac{1}{2}} = 3x^{-\frac{1}{2}} + 12 \text{ all } \times x^{\frac{1}{2}} \text{ leading to } 2x + 10 = 12x^{\frac{1}{2}}$	*M1	Equating the two expressions in x and isolating their term in $x^{\frac{1}{2}}$.	
	$(2x+10)^{2} = 144x \text{ leading to } [4](x^{2}-26x+25)[=0]$ leading to $[4](x-25)(x-1) [=0] \text{ or } [x=] \frac{26 \pm \sqrt{676-4 \times 1 \times 25}}{2}$	DM1	OE Squaring both sides, rearranging and solving a three-term quadratic.	
	$x=1 \text{ and } 25$, $y=15 \text{ and } 12\frac{3}{5}$	A1, A1	A1 for both <i>x</i> -values and A1 for both y values. If M1DM0 scored then SCB1B1 is available for final answers.	
	Satpret	4	Answers without working score 0/4	

9709/12

Question	Answer	Marks	Guidance
9(b)	Area = $\int \left(3x^{-\frac{1}{2}} + 12\right) - \left(2x^{\frac{1}{2}} + 13x^{-\frac{1}{2}}\right) [dx] \left[= -2x^{\frac{1}{2}} + 12 - 10x^{-\frac{1}{2}} \right]$	M1	Attempt to integrate, defined by at least one correct fractional power, and subtract – condone the wrong way round.
	$= \left\{ -\frac{2x^{\frac{3}{2}}}{\frac{3}{2}} \right\} + 12x \left\{ -\frac{10x^{\frac{1}{2}}}{\frac{1}{2}} \right\}$	B1 B1	B1 for either { }. B1 for completely correct integration of their expression following through +/– sign errors from the subtraction.
	$\left(-\frac{4}{3}(their 25)^{\frac{3}{2}} + 12(their 25) - 20(their 25)^{\frac{1}{2}}\right) - \left(-\frac{4}{3}(their 1)^{\frac{3}{2}} + 12(their 1) - 20(their 1)^{\frac{1}{2}}\right)$	M1	OE Substitution of <i>their</i> positive limits from part (a) in <i>their</i> integrated expression, defined by at least one correct fractional power, and subtraction.

Question	Answer	Marks	Guidance
9(b)	Alternative method for first 4 marks of Question 9(b)		
	Area = $\int \left(3x^{-\frac{1}{2}} + 12 \right) [dx] - \int \left(2x^{\frac{1}{2}} + 13x^{-\frac{1}{2}} \right) [dx]$	M1	Attempt to integrate, defined by at least one correct fractional power, and subtract – condone the wrong way round.
	$= \left\{ \frac{3x^{\frac{1}{2}}}{\frac{1}{2}} + 12x \right\} \left[-1 \right] \left\{ \frac{2x^{\frac{3}{2}}}{\frac{3}{2}} + \frac{13x^{\frac{1}{2}}}{\frac{1}{2}} \right\}$	B1 B1	OE One mark for each correct expression.
	$\left(\left(6(their 25)^{\frac{1}{2}} + 12(their 25) \right) - \left(6(their 1)^{\frac{1}{2}} + 12(their 1) \right) \right) [-]$ $\left(\left(\frac{4}{3}(their 25)^{\frac{3}{2}} + 26(their 25)^{\frac{1}{2}} \right) - \left(\frac{4}{3}(their 1)^{\frac{3}{2}} + 26(their 1)^{\frac{1}{2}} \right) \right)$	M1	OE Substitution of <i>their</i> positive limits from part (a) in both of their integrated expressions, defined by at least one correct fractional power, and subtraction.
	$[Area =] \frac{128}{3}, 42\frac{2}{3}, 42.7$	A1	AWRT If M1B1B1M0 then SC B1 available for correct final answer. Condone negative answer if corrected.
		5	Condone the presence of π for the first 4 marks but use of $\int y^2$ scores 0/5
	".satpret		

Question	Answer	Marks	Guidance
10(a)	$\frac{dy}{dx} = \left\{\frac{5}{3}(4x-3)^{\frac{2}{3}}\right\} \left\{\times 4\right\} \left\{-\frac{20}{3}\right\}$	B2,1,0	B2 Three correct unsimplified { } and no others. B1 Two correct { } or three correct { } and an additional term e.g. + <i>c</i> . B0 More than one error.
	$\left[\frac{20}{3}(4x-3)^{\frac{2}{3}} - \frac{20}{3} = 0\right] \text{ leading to } (4x-3)^2 = k, \ k > 0 \text{ leading to } 4x-3 = \pm m$	M1	Equating <i>their</i> $\frac{dy}{dx}$ to 0 and using a valid method to arrive at 2 answers.
	$[4x-3=\pm 1]$ $[x=]\frac{1}{2},1$	A1	
	$\frac{d^2 y}{dx^2} = \frac{40}{9} (4x - 3)^{-\frac{1}{3}} \times 4$	B1	OE
	$\left[x = \frac{1}{2}\right] \frac{d^2 y}{dx^2} = \left(\frac{160}{9}\right) (4x - 3)^{-\frac{1}{3}} < 0 \text{or} -\frac{160}{9} \text{ or} -17.8 \text{so max}$	B1	If $\frac{d^2 y}{dx^2}$ evaluated the answers for both must be correct OR
	$[x=1]$ $\frac{d^2 y}{dx^2} = \left(\frac{160}{9}\right) (4x-3)^{-\frac{1}{3}} > 0$ or $\frac{160}{9}$ or 17.8 so min		Clear use of change in sign of $\frac{dy}{dx}$ correctly for both B1's.
			If B1M1A0B0B0 scored then SCB1 can be awarded for: $\frac{dy}{dx} = \left\{\frac{5}{3}(4x-3)^{\frac{2}{3}}\right\} - \left\{\frac{20}{3}\right\} \text{ leading to } (4x-3)^2 = 64 \text{ leading}$
	Satpre		to $x = -\frac{5}{4}, \frac{11}{4}$.
			$\begin{bmatrix} \frac{d^2 y}{dx^2} = \frac{10}{9} (4x - 3)^{-\frac{1}{3}}, x = -\frac{5}{4}, \frac{d^2 y}{dx^2} < 0 \text{ so max}, \\ 11 d^2 y$
			$x = \frac{1}{4}, \frac{a}{dx^2} > 0$ so min.
		6	

Question	Answer	Marks	Guidance
10(b)	$x < \frac{1}{2}, x > 1$	B1	Allow \leq and/or \geq . FT only from special case $x < -\frac{5}{4}$, $x > \frac{11}{4}$ Condone: $1 < x < \frac{1}{2}$.
		1	

Question	Answer	Marks	Guidance
11(a)	$\left(their \frac{7-4}{p-6} \right) \times \left(their \frac{18-7}{14-p} \right) = -1$ OR Scalar product leading to $(14-p)(6-p) - 33 = 0$	*M1	Their gradients must both come from $\frac{\text{Difference in the } ys}{\text{Difference in the } xs}$.
	$p^2 - 20p + 84 = 33$ leading to $p^2 - 20p + 51 = 0$ or $p^2 - 20p = -51$	A1	Clearing of fractions and collecting terms to arrive at the three-term quadratic. Allow integer multiples.
	Alternative method for first 2 marks of Question 11(a)		
	$(p-6)^{2} + (7-4)^{2} + (14-p)^{2} + (18-7)^{2} = (14-6)^{2} + (18-4)^{2}$ OR E.g. $(10-p)^{2} + 4^{2} = 4^{2} + 7^{2}$	*M1	For correct use of Pythagoras with <i>A</i> , <i>B</i> and <i>C</i> . OR For correct use of Pythagoras with the centre, B and one of the other two points.
	$2p^2 - 40p + 102[=0]$	A1	OE Collecting terms to arrive at the three-term quadratic.
	$[2](p-3)(p-17)$ or $\frac{20 \pm \sqrt{20^2 - 4 \times 51}}{2}$	DM1	OE Solving their three-term quadratic.
	<i>p</i> = 3	A1	If M1A1DM0 scored then SC B1 is available for final answer.
	² .SatoreP	4	

Question	Answer	Marks	Guidance
11(b)	[Midpoint or Centre is] (10, 11)	B1	SOI by final answer.
	$\frac{1}{2}\sqrt{(14-6)^2 + (18-4)^2} \text{ or } (18-their 11)^2 + (14-their 10)^2 \text{ or} (their 11-4)^2 + (their 10-6)^2 \qquad \left[r^2 = 65 \text{ or } r = \sqrt{65}\right]$	M1	Finding half of the length of <i>AC</i> or using their centre, which cannot be A, B or C, to find r^2 or <i>r</i> . Note: $r = 65$ is M0.
	$(x-10)^{2} + (y-11)^{2} = 65 \text{ or } x^{2} + y^{2} - 20x - 22y + 156 = 0$	A1	(x-6)(x-14)+(y-4)(y-18)=0 scores 3/3.
	0	3	
11(c)	$\frac{18 - their11}{14 - their10} \text{ or } \frac{their11 - 4}{their10 - 6} \text{ or } \frac{18 - 4}{14 - 6} \left[= \frac{7}{4} \right]$	*M1	Gradient of <i>their</i> centre, which cannot be A, B or C, from part (b), to A or C or the gradient of AC but working needed if incorrect centre. OR by clearly differentiating and substitution of (14,18).
	$y - 18 = -\frac{1}{their \frac{7}{4}}(x - 14)$	DM1	OE Using (14,18) and $-\frac{1}{their\frac{7}{4}}$ to form the equation of a straight line.
	4x + 7y - 182 = 0	A1	All terms on one side in any order. Allow multiples of this format by an integer only.
	· satpre?	3	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Published

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

9709/13

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column.
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$\begin{bmatrix} y \end{bmatrix} = \left\{ \frac{x^2}{2} \right\} \left\{ \frac{-3x^{\frac{1}{2}}}{\frac{1}{2}} \right\} \begin{bmatrix} +c \end{bmatrix}$	B1 B1	Any unsimplified correct form, ISW for extra terms, allow lists.
	1 = 8 - 12 + c	M1	Substitute (into an integrated expression) x = 4, y = 1. c must be present. Expect $c = 5$.
	$y = \frac{1}{2}x^2 - 6x^{\frac{1}{2}} + 5$, allow $f(x) =$	A1	Condone $c = 5$ as the final line so long as ' $y =$ ' present.
		4	

Question	Answer	Marks	Guidance
2(a)	$(0-3)^2 + (y-5)^2 = 40$	M1	OE. Substitute $x = 0$, may use $y^2 - 10y - 6 = 0$.
	$y = 5 \pm \sqrt{31}$	A1	OE. Must be surd form.
		2	
2(b)	${x^{2} + (y-5)^{2}} = {31}$ Allow $(x-0)^{2}$	B1FT B1FT	B1 FT for <i>their</i> 5 and B1 FT for <i>their</i> 31. Don't allow surd form.
	· Satpre?	2	
Question	Answer	Marks	Guidance
----------	--	----------------	---
3(a)	$5\cos^2\theta - \sin^2\theta + \cos\theta \ [=0]$	M1	Multiply by $\cos\theta$ and replace $\tan\theta$ by $\frac{\sin\theta}{\cos\theta}$.
	$5\cos^2\theta - \left(1 - \cos^2\theta\right) + \cos\theta \ [=0]$	M1	
	$6\cos^2\theta + \cos\theta - 1 = 0$	A1	Missing '= 0' can be condoned if '= 0' appears earlier.
		3	
3(b)	$(3\cos\theta - 1)(2\cos\theta + 1) = 0$	M1	Must have 3 term quadratic, expect $\cos \theta = \frac{1}{3}, -\frac{1}{2}$. Factors (OE) must be shown.
	$\theta = \{1.23\}; \{2.09 \text{ or } \frac{2\pi}{3}\}; \{5.05 \text{ and } 4.19 \text{ (allow } \frac{4\pi}{3})\}$	A1 A1 A1 FT	For A1 FT is for <u>both</u> 2π – 1st solutions.
		4	

Question	Answer	Marks	Guidance
4(a)(i)	$1+10x+40x^2$	B1	Ignore any additional terms (ISW). Allow x^0 or $1 x^0$ for the first term, allow lists.
	Satprep	1	
4(a)(ii)	$\{1\}\{-6ax\}\{+15a^2x^2\}$	B2, 1, 0	Ignore any additional terms (ISW). Allow x^0 or $1 x^0$ for the first term, allow lists.
		2	

Question	Answer	Marks	Guidance
4(b)	$15a^2 - 60a + 40 = -5$	M1 A1	Correct 3 products from <i>their</i> expansions for M1. Condone inclusion of x^2 for M1.
	[15](a-1)(a-3)[=0] OE	DM1	OE. Rearranging and solving a quadratic.
	a=1 and 3	A1	Special case: If M1 A1 DM0 scored then SC B1 can be awarded for correct answers.
		4	

Question	Answer	Marks	Guidance
5(a)	$\frac{5p}{2p+6} = \frac{8p+2}{5p}$	M1	OE. Setting up a valid relationship in terms of <i>p</i> .
	$9p^2 - 52p - 12$ [=0]	DM1	OE. Simplifying to a 3 term quadratic equation, only condone sign errors.
	$\left[(9p+2)(p-6) = 0 \right]$ leading to $p = \frac{-2}{9}$ and 6	A1	
		3	
5(b)	$a = 2\left(-\frac{2}{9}\right) + 6\left[=\frac{50}{9}\right]$	*M1	FT <i>their</i> $-\frac{2}{9}$, allow any negative non-integer.
	$r = -\frac{10}{9} \div \frac{50}{9} \left[= -\frac{1}{5} \right]$	*M1	Ft <i>their</i> $-\frac{2}{9}$, allow any negative non-integer.
	$S_{\infty} = \frac{50}{9} \div \left(1 - \frac{1}{5}\right) = \frac{125}{27}$	DM1 A1	Can only get DM1 if r < 1. Accept AWRT 4.63.
		4	

Question	Answer	Marks	Guidance	
6	$cx^{2} + 2x - 3 = 6x - c$ leading to $cx^{2} - 4x + (c - 3) = 0$	B1	3-term quadratic.	
	16 - 4c(c-3) = 0	*M1	Apply $b^2 - 4ac = 0$ ('= 0' may be implied in subsequent work). <i>Their</i> coefficients must be substituted correctly	
	$4c^2 - 12c - 16[=0]$ leading to $[4](c-4)(c+1)[=0]$ leading to $c = 4$ and -1	A1	Dependent on factorisation oe.	
	When $c = 4$, $4x^2 - 4x + 1 [= 0] [(2x-1)^2 = 0]$	DM1	OE. Substituting <i>their</i> $c = 4$ into <i>their</i> quadratic equation.	
	$x = \frac{1}{2}, y = -1$	A1	Both required.	
	When $c = -1$, $x^2 + 4x + 4 = 0$ $[(x+2)^2 = 0]$	DM1	OE. Substituting <i>their</i> $c = -1$ into <i>their</i> quadratic equation.	
	x = -2, y = -11	A1	Both required.	
	Alternative method for Question 6			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2cx + 2$	B1		
	2 <i>cx</i> +2=6	M1	Equating <i>the</i> ir curve gradient and 6.	
	$c = \frac{2}{x}$	A1	SOI	
	$2x^2 + 3x - 2 = 0$	DM1	Substitute $c = \frac{2}{x}$ into $cx^2 + 2x - 3 = 6x - c$. Simplify to 3-term quadratic.	

Question	Answer	Marks	Guidance
6	$(2x-1)(x+2)[=0] \to x = \frac{1}{2} \text{ or } -2$	A1	Dependent on factorisation. Both required.
	c = 4 and -1	A1	Both required, if DM0 given SC B1 for both.
	y = -1 and -11	A1	Both required, if DM0 given SC B1 for both. SC one correct (x , y). A1 only
		7	

r					
Question	Answer	Marks	Guidance		
7(a)	Range is $[y] > 1$	B 1	Allow f, $f(x)$, $(1,\infty)$, etc.		
		1			
7(b)	$y = \frac{3}{x-2} + 1$ leading to $y-1 = \frac{3}{x-2}$ leading to $(x-2)(y-1) = 3$	M1	Clearing the fraction.		
	$x - 2 = \frac{3}{y - 1}$	DM1	Reaching a stage which only requires one further operation.		
	$x = \frac{3}{y-1} + 2$ leading to $f^{-1}(x) = \frac{3}{x-1} + 2$	A1	OE. Slightly longer routes lead to $f^{-1}(x) = \frac{2x+1}{x-1}$.		
	[Domain is] $x > 1$	B1FT	Must use x FT <i>their</i> (a), must be a range.		
		4			

Question	Answer	Marks	Guidance
7(c)	gf $(x) = 2\left(\frac{3}{x-2}+1\right) - 2$ or $2\left(\frac{x+1}{x-2}\right) - 2$	M1	Substitute $f(x)$ into $g(x)$.
	$\frac{6}{x-2}$	A1	
	TPD	2	

Question	Answer	Marks	Guidance	
8(a)	$a = \frac{1}{2}$	B1		
	$b = \frac{\pi}{3}$	B1	$b=\frac{\pi}{3}+4n\pi, n \ge 0.$	
		2		
8(b)	x -coordinate = {4 p } {-8}	B1 B1	OE, e.g. $4(p-2)$.	
	y-coordinate = $-3q$	B 1		
		3		
·satprep·				

Question	Answer	Marks	Guidance
9(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-\frac{1}{2}} \rightarrow m = \frac{1}{2} \text{ at } x = 4$	B1	
	Equation of normal is $y-3 = -2(x-4)$	M1	Through (4, 3) with gradient $-\frac{1}{their m}$. (Dependent on differentiation used).
	y = -2x + 11	A1	Only acceptable answer.
	9	3	
9(b)	$\frac{\mathrm{d}y}{\mathrm{d}t} = their\frac{1}{2} \times 3$	M1	Correct use of the chain rule with a numerical gradient.
	$\frac{3}{2}$	A1	
		2	
9(c)	Required gradient $\left[=\frac{dy}{dx}\right] = -2$	B1FT	SOI. FT from <i>their</i> part (a) if a normal gradient has been found from $m_1m_2 = -1$ and differentiation.
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{\text{their normal gradient}} \times -5$	M1	Correct use of the chain rule . Allow method mark also for +5, must be numerical. <i>Their</i> normal gradient must come from $m_1m_2 = -1$ and differentiation in part(a) unless 'restarted' here.
	$\frac{5}{2}$	A1	
		3	

Question	Answer	Marks	Guidance
10(a)	Angle $ACO = 0.7$	B1	Don't allow AWRT 0.7 .
		1	
10(b)	[R =] 1.53 r	B1	Allow AWRT 1.53 <i>r</i> .
		1	
10(c)	Sector $OAB = \frac{1}{2}r^2 \times 2.8 \left[=1.4r^2\right]$	B1	
	Sector $CAB = \frac{1}{2} (their R)^2 \times 2 \times their 0.7$	*M1	
	$1.638 r^2$	A1	Allow AWRT 1.64 r^2 .
	$[2] \times \frac{1}{2}r^2 \sin(\pi - 1.4) \text{OR} [2] \times \frac{1}{2}r \times theirR\sin 0.7$	*M1	
	$2 \times 0.4927 r^2$	A1	Allow AWRT $0.98 r^2$ to $0.99 r^2$.
	$1.4r^2 - (their 1.638r^2 - their 0.985r^2)$	DM1	
	$0.747r^2$ to $0.748r^2$	A1	
	atpror	7	

Question	Answer	Marks	Guidance
10(c)	General guidance for alternative methods		
	Finding any useful sector area of the circle radius, r	B1	May be 'nested' in a segment.
	Finding the area of sector CAB	*M1A1	May be 'nested' in a segment.
	Finding the area of one useful triangle	*M1	May be 'nested' in a segment.
	Finding the total area of useful triangles	A1	May be 'nested' in a segment.
	A correct plan for the shaded area	DM1	
	$0.747r^2$ to $0.748r^2$	A1	
		7	

Question	Answer	Marks	Guidance
11(a)	$\frac{dy}{dx} = \left\{ -2 \times 2 \times (2x-1)^{-3} \times 2 \right\} + \{1\}$	B1B1	Expect $\frac{-8}{(2x-1)^3} + 1$.
	Substitute $x = \frac{3}{2}$ leading to $\frac{dy}{dx} = \frac{-8}{8} + 1 = 0$. Hence <i>x</i> -coordinate of <i>R</i> is $\frac{3}{2}$	DB1	AG. Or correct solution of $\frac{dy}{dx} = 0$.
	When $x = \frac{3}{2}, y = \frac{2}{4} + \frac{3}{2} = 2$	B1	Answer only is acceptable.
		4	

Question	Answer	Marks	Guidance
11(b)	y-coordinate of $P = 3$, y-coordinate of $Q = \frac{20}{9}$	B1	Both required.
	$\left\{\frac{2(2x-1)^{-1}}{-1\times 2}\right\} + \left\{\frac{1}{2}x^{2}\right\}$	B1 B1	Area below curve.
	$\left[\left(-\frac{1}{3}+2\right)-\left(-1+\frac{1}{2}\right)\right] = \frac{5}{3}-\left(-\frac{1}{2}\right)$	M1	Apply limits $1 \rightarrow 2$ to an integral. Expect $\frac{13}{6}$.
	$\frac{1}{2}\left(3 + \frac{20}{9}\right) = \frac{47}{18}$	M1	Area of trapezium, only allow errors in y-coordinate of Q .
	$\frac{47}{18} - \frac{13}{6} = \frac{4}{9}$	A1	Shaded region.
		6	
	Alternative method 1: Changes the award of the first M1		
	Their equation of line $PQ:[y = \frac{-7}{9}x + \frac{34}{9}]$. Integrating between 1 and 2.	M1	Must be some evidence of use of limits.
	Alternative method 2: Changes the award of the first M1, a B1 and the sec	cond M1	
	Combining line and curve: $\int \left(\frac{-16}{9}x + \frac{34}{9} - \frac{2}{(2x-1)^2}\right) dx$	M1	For area under the line if <i>their</i> $\frac{34}{9}$ is seen integrated correctly and limits used. Correct first and 3rd terms.
	$=\frac{-8}{9}x^{2} + \frac{34}{9}x + \frac{1}{(2x-1)}$	B1 B1	
	Use of limits on the whole integral	M1	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/11 May/June 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles	
---	--

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
1	$4\sin\theta + \tan\theta = 0 \Rightarrow 4\sin\theta + \frac{\sin\theta}{\cos\theta} [=0]$	M1	For use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$. BOD if θ missing.
	$\Rightarrow \sin\theta (4\cos\theta + 1) [= 0 \Rightarrow \sin\theta = 0 \text{ or }] \cos\theta = -\frac{1}{4}$	M1	WWW Factorise, not divide by $\sin\theta$ or $\tan\theta$. May see $\tan\theta(4\cos\theta+1)[=0]$ or $\sin\theta(4+\sec\theta)[=0]$.
	$\theta = 104.5^{\circ}$	A1	AWRT 1.82 rads A0. Ignore answers outside (0, 180°). If M1 M0, SC B1 for $\theta = 104.5^{\circ} \max 2/3$.
		3	

Question	Answer	Marks	Guidance
2(a)	$16 + 96x + 216x^2$	B2, 1, 0	ISW (higher powers of x). Terms may be in any order or presented as a list.
		2	
2(b)	$1 - 10x + 40x^2$	B2, 1, 0	ISW (higher powers of x). Terms may be in any order or presented as a list.
	3	2	
2(c)	$(16 \times 40) - (10 \times 96) + (1 \times 216)$	M1	<i>Their</i> 3 products which would give the term in x^2 (FT <i>their</i> values). Look for $640 - 960 + 216$.
	- 104	A1	Condone $-104x^2$.
		2	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3	{Stretch} {factor 2} {in y-direction}	B2, 1, 0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
	$\{\text{Translation}\} \begin{pmatrix} \{-6\} \\ \{0\} \end{pmatrix}$	B2, 1, 0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
	TPR	4	Transformations may be in either order.
<u> </u>			

Question	Answer	Marks	Guidance
4	$\frac{1}{2} \times 8^2 \times \theta = \frac{16\pi}{3} \implies \theta = \frac{\pi}{6}$	B1	SOI OE e.g. $\frac{2\pi}{12}$, 0.524(3s.f.) Use of degrees acceptable throughout provided conversion used in formulae for sector area and arc length.
	Arc length = $8 \times their \frac{\pi}{6}$ [= 4.1887]	M1	OE FT <i>their</i> θ . Look for $\frac{4\pi}{3}$.
	$[BC=] \ 2 \times 8 \sin\left(\frac{1}{2} \times their \frac{\pi}{6}\right) [= 4.1411]$	M1	Attempt to find <i>BC</i> or <i>BC</i> ² (see alt. methods below) FT <i>their</i> θ . Look for $16\sin\frac{\pi}{12}$ or $4\sqrt{6} - 4\sqrt{2}$.
	Perimeter = 8.33	A1	AWRT Must be combined into one term.

9709/11

May/June 2023

Question	Answer	Marks	Guidance
4	Alternative methods for Question 4: 2nd M1 mark (use normal scheme for	the other	marks)
	ALT 1 $BC^2 = 8^2 + 8^2 - 2 \times 8 \times 8 \cos\left(their \frac{\pi}{6}\right) \Rightarrow BC = 4.14$		ALT 1 Substitute into correct cosine rule. FT <i>their</i> θ Look for $128 - 64\sqrt{3}$
	ALT 2 $BC^{2} = (8 - 4\sqrt{3})^{2} + 4^{2} [\Rightarrow BC = 4.14]$		ALT 2 Find lengths 4 and $4\sqrt{3}$ then use Pythagoras in the left hand triangle.
	ALT 3 $\frac{BC}{\sin\left(\frac{\pi}{6}\right)} = \frac{8}{\sin\left(\frac{5\pi}{12}\right)} [\Rightarrow BC = 4.14]$		ALT 3 Substitute into correct sine rule.
	ź	4	

9709/11

Question	Answer	Marks	Guidance
5	$kx - k = -\frac{1}{2x} \Rightarrow 2kx^2 - 2kx + 1 [= 0]$ OR quadratic in $y: x = \frac{y+k}{k} \Rightarrow y = -\frac{1}{2\left(\frac{y+k}{k}\right)} \Rightarrow 2y^2 + 2ky + k = 0$	*M1	OE e.g. $kx^2 - kx + \frac{1}{2} [= 0]$, $x^2 - x + \frac{1}{2k} [= 0]$ Equate line and curve to form 3-term quadratic (all terms on one side).
	$b^{2} - 4ac[=0] \Rightarrow ([-]2k)^{2} - 4(2k)(1)[=0]$ or $4k^{2} - 8k [= 0 \Rightarrow 4k(k-2) = 0]$ OR using equation in $y: (2k)^{2} - 4(2)(k) = 0$	DM1	Use discriminant correctly with their a,b,c not in quadratic formula. DM0 if x still present. May see $k^2 - 4(k)\left(\frac{1}{2}\right) = 0$ or $1 - 4\left(\frac{1}{2k}\right) = 0$.
	k = 2 only	A1	If DM0 then $k = 2$, award A0 XP then B0 B0 Allow A1 even if divides by k to solve. If $k = 0$ also present but uses $k = 2$, award A1.
	$4x^{2} - 4x + 1 = 0 \left[\Rightarrow (2x - 1)^{2} = 0 \right] \Rightarrow x = \frac{1}{2}$	B1	
	$y = 2 \times \frac{1}{2} - 2 = -1$	B1	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5	Alternative method for Q5		
	$\frac{dy}{dx} = \frac{1}{2x^2}$ or $\frac{1}{2}x^{-2}$	*M1	Differentiate $-\frac{1}{2x}$ M0 for $2x^{-2}$. No errors.
	$[y=]\frac{1}{2x^2}x - \frac{1}{2x^2} = -\frac{1}{2x} \text{ or } \frac{1}{x} = \frac{1}{2x^2} [\Longrightarrow 2x^2 - x = 0]$	DM1	Sub <i>their</i> $\frac{dy}{dx}$ into equation of line or set gradient = k to form equation in x.
	$x = \frac{1}{2}$ only	A1	If DM0 then $x = \frac{1}{2}$, award A0XP then B0 B0.
	$y = \left[2 \times \frac{1}{2} - 2\right] = -1$	B1	
	<i>k</i> = 2	B1	
		5	

9709/11

Question	Answer	Marks	Guidance
6(a)	$2(2p-6) = p + \frac{p^2}{6} \Rightarrow \frac{p^2}{6} - 3p + 12[=0]$ OR $(2p-6) - \frac{p^2}{6} = p - (2p-6) \Rightarrow \frac{p^2}{6} - 3p + 12[=0]$ OR $\frac{1}{6}d^2 + d[=0]$	*M1	Correct method leading to formation of a 3-term quadratic in p (all terms on one side) or 2-term quadratic in d . OE e.g. $p^2 - 18p + 72[=0]$, $\frac{1}{2}p^2 - 9p + 36[=0]$.
	$p^{2} - 18p + 72[=0] \Rightarrow (p-6)(p-12)[=0] \text{ or } \frac{18 \pm \sqrt{(-18)^{2} - 4(1)(72)}}{2}$ OR $d\left(\frac{1}{6}d + 1\right)[=0] \Rightarrow d = -6$	DM1	Solve a 3-term quadratic in p by factorisation, formula or completing the square or solve a 2-term quadratic in d by factorisation.
	<i>p</i> = 12 only	A1	Since $p = 6$ gives $d = 0$. If *M1 DM0 then $p = 12$ only, award SC B1, max 2/3 marks. A0 XP if error in either factor and $p = 12$ only. p = 12 only by trial and improvement 3/3.
		3	

Question	Answer	Marks	Guidance
6(b)	For GP $r = \left[\frac{2p-6}{\frac{p^2}{6}}\right] = \frac{18}{24}\left[=\frac{3}{4}\right]$	B1	OE SOI.
	Sum to infinity = $\frac{24}{1-\frac{3}{4}} = 96$	B1 FT	FT <i>their</i> <u>value</u> of <i>p</i> if used correctly to find <i>r</i> (B0 if ' <i>p</i> ' used) provided $ r < 1$. e.g. $p = 18 \Rightarrow [S_{\infty} =] \frac{54}{1 - \frac{5}{9}} = 121.5$.

Question	Answer	Marks	Guidance	
7(a)	[Greatest =] 5	B1	No inequality required.	
	[Least =] -1	B 1	No inequality required.	
	ź	1.5	Condone $(-1,5)$ or equivalent.	
	24	2	7	
·satpre?				

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(b)		B1	One complete cycle starting and finishing at $y = 2$. Maximum and minimum in correct quadrants. Shape and curvature approximately correct.
		B1 FT	Maximum and minimum (indicated on y -axis with numbers or lines, or labelled on graph). FT <i>their</i> greatest and least values. Award B1 for 5 and -1 even if <i>their</i> values were incorrect in (a) .
		2	
7(c)	1	B1	www
		1	

Question	Answer	Marks	Guidance	
8(a)	$1 + \frac{2a}{7-a} = \frac{5}{2} \left[\Rightarrow \frac{2a}{7-a} = \frac{3}{2} \Rightarrow 7a = 21 \right] \Rightarrow a = \dots$	M1	OE Substitute $x = 7$ then solve for <i>a</i> via legitimate mathematical steps. Condone sign errors only.	
	OR $1 + \frac{2a}{7-a} = \frac{5}{2} \left[\Rightarrow (7-a) + 2a = \frac{5}{2} (7-a) \left[\Rightarrow 7a = 21 \right] \Rightarrow a = \dots$			
	<i>a</i> = 3	A1	If M0, SC B1 for $a = 3$ with no working.	
	$f(5) = 1 + \frac{2(their3)}{5 - their3} = 4 [\Rightarrow 4b - 2 = 4] \Rightarrow b = \dots$ OR gf(5) = $b \left(1 + \frac{2(their3)}{5 - their3} \right) - 2 [\Rightarrow 4b - 2 = 4] \Rightarrow b = \dots$	M1	Evaluate $f(5)$, either separately or within gf then solve for <i>b</i> via legitimate mathematical steps. Condone sign errors only. FT <i>their a</i> value.	
	$b = \frac{3}{2}$	A1	OE e.g. $\frac{6}{4}$, 1.5.	
		4		
8(b)	<i>x</i> > 1	B1	Accept $(1,\infty)$ or $\{*: *>1\}$ where * is any variable. B0 for $f^{-1}(x) > 1$ or $f(x) > 1$ or $y > 1$.	
	2	1		
2.satprep.				

9709/11

Question	Answer	Marks	Guidance
8(c)	EITHER $x-1 = \frac{6}{y-3} \left[\Rightarrow (y-3)(x-1) = 6 \right]$	*M1	OE $y-1 = \frac{6}{x-3} \Rightarrow (x-3)(y-1) = 6$.
	OR $x = 1 + \frac{6}{y-3} \implies x(y-3) = (y-3) + 6$		OE $y=1+\frac{6}{x-3} \Rightarrow y(x-3)=(x-3)+6$. Allow *M1 for use of <i>their</i> 3 from (a).
	$y-3 = \frac{6}{x-1}$ or $y(x-1) = 3x+3$	DM1	OE $x-3 = \frac{6}{y-1}$ or $x(y-1) = 3y+3$. Allow DM1 for use of <i>their</i> 3 from (a).
	$\left[\mathbf{f}^{-1}(x)\right] = 3 + \frac{6}{x-1}$	A1	OE Correct answer e.g. $\frac{3x+3}{x-1}$ ISW. Must be in terms of x.
			*M1 DM1 possible for ' a ' used, but A0 so max 2/3.
		3	

9709/11

Question	Answer	Marks	Guidance	
9(a)	$\frac{dV}{dh} = \frac{4}{3} \times 3(25+h)^2 \ [= 4900 \text{ when } h = 10]$	B1	Correct expression for $\frac{\mathrm{d}V}{\mathrm{d}h}$.	
	$\frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \implies their "4(25+10)^2 "\times \frac{\mathrm{d}h}{\mathrm{d}t} = 500 \implies \frac{\mathrm{d}h}{\mathrm{d}t} = \left[\frac{500}{4900}\right]$	M1	Use chain rule correctly to find a numerical expression for $\frac{dh}{dt}$. Accept e.g. $\frac{500}{2500 + 2000 + 400}$.	
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.102 \left[\mathrm{cms}^{-1}\right]$	A1	AWRT OE e.g. $\frac{5}{49}$ ISW.	
		3		
9(b)	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} \Longrightarrow 500 = their \ "4(25+h)^2 "\times 0.075$	*M1	SOI Use chain rule correctly to form equation in h .	
	$\left[\left(25+h\right)^2 = \frac{5000}{3}\right] \Rightarrow h = [15.8248\dots]$	DM1	Solve quadratic to find <i>h</i> . Exact value of <i>h</i> is $\sqrt{\frac{5000}{3}} - 25$ or $\frac{50\sqrt{6}}{3} - 25$ h + 25 = 40.82	
	$V = 69900 \text{ cm}^3$	A1	AWRT ISW Look for 698(88.5).	
	2	3		
Satprep.				

9709/11

Question	Answer	Marks	Guidance
10(a)	$[\pi] \int \frac{16}{(2x-1)^4} [dx] = [\pi] \int 16(2x-1)^{-4} [dx] = [\pi] \left(-\frac{16}{3 \times 2 \times (2x-1)^3} \right)$	*M1	Integrate y^2 (power incr. by 1 or div by <i>their</i> new power). M0 if more than 1 error or $-\frac{16}{6}x(2x-1)^{-3}$.
	$\left[\pi\right]\left(-\frac{16}{3\times2\times\left(2x-1\right)^3}\right)$	A1	OE e.g. $\left(-\frac{8}{3}(2x-1)^{-3}\right)$.
	$\left[\pi\right] \left(-\frac{16}{6 \times 8} + \frac{16}{6 \times 1}\right) \left[=\left[\pi\right] \frac{112}{48} = \left[\pi\right] \frac{7}{3}\right]$	DM1	Sub correct limits into <i>their</i> integral: $F\left(\frac{3}{2}\right) - F(1)$.
			Must see at least $\left(-\frac{1}{3}+\frac{8}{3}\right)$. Allow 1 sign error. Decimal: 2.33 π or 7.33.
	Volume of cylinder $\left[=\pi \times 1^2 \times \frac{1}{2}\right] = \frac{1}{2}\pi$ OR $[\pi] \int_{1}^{1.5} 1[dx] = \frac{1}{2}\pi$	B1	$\frac{1}{2}\pi$ or $\pm\pi\left(\frac{3}{2}-1\right)$ seen.
	Volume of revolution $\left[=\frac{7}{3}\pi - \frac{1}{2}\pi\right] = \frac{11}{6}\pi$	A1	A0 for 5.76 (not exact). If DM0 for insufficient substitution, or B0, SC B1 for $\frac{11}{6}\pi$.
	2	5	

9709/11

Question	Answer	Marks	Guidance
10(b)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] \left\{-8\left(2x-1\right)^{-3}\right\} \left\{\times 2\right\}$	B2, 1, 0	OE B1 for each correct element in {}.
	At <i>B</i> gradient = -2	B1	
	Eqn of tangent $y-1 = their "-2"\left(x-\frac{3}{2}\right)$ OR Eqn of normal $y-1 = their "\frac{1}{2}"\left(x-\frac{3}{2}\right)$	M1	SOI Following differentiation OE e.g. $y = -2x + 4$ or $y = \frac{1}{2}x + \frac{1}{4}$. (Must have $m_N = -\frac{1}{m_T}$ for M1).
	Tangent crosses <i>x</i> -axis at 2 or normal crosses <i>x</i> -axis at $-\frac{1}{2}$	A1	SOI For at least one intercept correct or correct integration.
	Area = $\frac{5}{4}$	A1	From intercepts: $\frac{1}{2} \times \frac{5}{2} \times 1 = \frac{5}{4}$ or $1 + \frac{1}{4} = \frac{5}{4}$,
			from lengths: $\frac{1}{2} \times \sqrt{5} \times \frac{\sqrt{5}}{2} = \frac{5}{4}$ or by integration.
		6	

	4	S	
Question	Answer	Marks	Guidance
11(a)	$6a^2 - 30a + 6a = 0 \ [\Rightarrow 6a(a-4) = 0]$	B1	Sub $x = a$ into $\frac{dy}{dx} = 0$. May see $a^2 - 5a + a = 0$.
	a = 4 only	B1	
		2	

9709/11

Question	Answer	Marks	Guidance
11(b)	$\frac{d^2 y}{dx^2} = 12x - 30$ or correct values of $\frac{dy}{dx}$ either side of $x = 4$	M1	Differentiate $\frac{dy}{dx}$ (mult. by power or dec. power by 1)
			M0 if no values of $\frac{dy}{dx}$, only signs.
	At $x = 4$, $\frac{d^2 y}{dx^2} > 0$.: minimum or $\frac{d^2 y}{dx^2} = 18$.: minimum	A1	WWW A0 XP if $a = 4$ obtained incorrectly in (a) Must see 'minimum'.
	or concludes minimum from $\frac{dy}{dx}$ values		If M0, SC B1 for 'minimum' from $\frac{dy}{dx}$ sign diagram.
		2	
11(c)	$[y =] \frac{6}{3}x^3 - \frac{30}{2}x^2 + 6(their a)x[+c]$	B1 FT	Expect $2x^3 - 15x^2 + 24x[+c]$. B1 poss. even if uses 'a' – no value in (a) – max 1/3.
	$-15 = 2(their "4")^{3} - 15(their "4")^{2} + 6(their "4")^{2} + c$	M1	Sub $x = their$ "4", $y = -15$ into integral (must incl + c) Look for $-15 = 128 - 240 + 96 + c$ [$\Rightarrow c = 1$].
	$y = 2x^3 - 15x^2 + 24x + 1$	A1	Coefficients must be correct and simplified. Need to see ' $y =$ ' or 'f(x) = ' in the working.
		3	
11(d)	$\frac{dy}{dx} = 6x^2 - 30x + 6(their "4")[=0]$	M1	OE Forming a 3-term quadratic using the given $\frac{dy}{dx}$
	If correct, $[6](x-1)(x-4)[=0]$ or $\frac{30 \pm \sqrt{(-30)^2 - 4(6)(24)}}{12}$		and solving by factorisation, formula or completing the square. Check for working in (b) .
	Coordinates (1,12)	A1	Allow $x = 1, y = 12$ (ignore $x = 4$ if present). If M0, award SC B1 for $(1,12)$.
		2	

9709/11

Question	Answer	Marks	Guidance
12(a)	$x^2 + (y-2)^2 = 100$	B1	OE e.g. $(x-0)^2 + (y-2)^2 = 10^2$ ISW.
		1	
12(b)	Gradient of radius = $\left[\frac{10-2}{6-0}\right] = \left[\frac{4}{3}\right]$ or gradient of tangent = $\frac{-3}{4}$	M1	OE SOI Use coordinates to find gradient of radius or differentiate to find m_T
	TPRA		e.g. $2x + 2(y-2)\frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} = \frac{-3}{4}$ at (6, 10)
	9	$\langle O \rangle$	$y = 2 + \sqrt{100 - x^2} \Rightarrow \frac{dy}{dx} = \frac{1}{2} (100 - x^2)^{-\frac{1}{2}} (-2x) = -\frac{3}{4}.$
	Equation of tangent is $y-10 = -\frac{3}{4}(x-6) \left[\Rightarrow y = -\frac{3}{4}x + \frac{29}{2} \right]$	A1	OE ISW Allow e.g. $\frac{58}{4}$.
		2	
12(c)	Coordinates of centre of circle Q are $\left(0, their \frac{29}{2}\right)$	M1	SOI From a linear equation in (b).
	Equation of circle Q is $x^2 + \left(y - their \frac{29}{2}\right)^2 = \left(\frac{5\sqrt{5}}{2}\right)^2 \left[=\frac{125}{4}\right]$	A1FT	OE e.g. $(x-0)^2 + (y-14.5)^2 = 31.25$ ISW.
	$x^{2} + (11-2)^{2} = 100 \Rightarrow x^{2} = 19 \text{ and } x^{2} + \left(11 - \frac{29}{2}\right)^{2} = \frac{125}{4} \Rightarrow x^{2} = 19$	B1	OE e.g. $x = [\pm]\sqrt{19}$, $x^2 - 19 = x^2 - 19$ Correct argument to verify both <i>y</i> -coords are 11
	OR e.g. $\frac{125}{4} - \left(y - \frac{29}{2}\right)^2 + \left(y - 2\right)^2 = 100 \implies 25y = 275 \implies y = 11$		ISW.
		3	

9709/11

Question	Answer	Marks	Guidance
12(d)	$x^{2} + \left(-\frac{3}{4}x + \frac{29}{2} - \frac{29}{2}\right)^{2} = \frac{125}{4} \left[\Rightarrow \frac{25}{16}x^{2} = \frac{125}{4} \Rightarrow x^{2} = 20 \right]$ or $y^{2} - 29y + 199 = 0$	M1	Substitute equation of <i>their</i> tangent into equation of <i>their</i> circle. May see $y = \sqrt{31.25 - x^2} + 14.5$.
	$x = \pm 2\sqrt{5}$ or $y = \frac{29 \mp 3\sqrt{5}}{2}$	A1	OE e.g. $x = \pm \sqrt{20}$ For 2 <i>x</i> -values or 2 <i>y</i> -values or correct (x, y) pair.
	$y\left[=\left(-\frac{3}{4}\times\pm\sqrt{20}\right)+\frac{29}{2}\right]=\frac{29\pm3\sqrt{5}}{2}$	A1	OE e.g. $\frac{58}{4} + \frac{3\sqrt{20}}{4}$, $\frac{58}{4} - \frac{3\sqrt{20}}{4}$ Correct (x, y) pairs.
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/12 May/June 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. .
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	$[y] = \frac{4}{-2}(x-3)^{-3+1}$ or $\frac{4}{-2(x-3)^{2}}[+c]$	B1	OE Allow $\frac{4}{-3+1}$ and $-3+1$ for the power.
	$5 = \frac{4}{-2} (4-3)^{-2} + c \text{ or } 5 = \frac{4}{-2(4-3)^{2}} + c \text{ leading to } c =$	M1	Correct use of $(4,5)$ to find <i>c</i> in an integrated expression (defined by the correct power and no extra <i>x</i> 's or terms).
	$y = \frac{-2}{(x-3)^2} + 7$ or $y = -2(x-3)^{-2} + 7$	A1	OE $-\frac{4}{2}$ must be simplified to -2. Condone c = 7 as their final line as long as either y or f(x) = is seen elsewhere. Do not ISW if the result is of the form y = mx+c.
		3	

Question	Answer	Marks	Guidance
2	[Coefficient of $x^4 = p =]15a^2$	B1	May be seen in an expansion or with x^4 .
	[Coefficient of $x^2 = q =$] 54 a^2	B1	May be seen in an expansion or with x^2 .
	Equating <i>their</i> p + <i>their</i> q to 276 leading to an equation in a^2 only	M1	No <i>x</i> terms and no extra terms. If <i>p</i> and <i>q</i> are not identified then it needs to be clear from the expansion that the appropriate coefficients are being used. $69 a^2 = 276$ implies the first 3 marks.
	$a = \pm 2$	A1	CAO
		4	
Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(a)	$4(x-3)^2$ seen or $a = 4$ and $b = -3$	B1	OE Award marks for the correct expression or their values
	-36 + p or $p - 36$ seen or $c = p - 36$	B1	<i>a</i> , <i>b</i> and <i>c</i> . Condone $4(x-3) + p - 36 = 0$ and $4\left(\frac{1}{4} - 9\right)$.
		2	
3(b)	$p-36 > 0$ leading to $p > 36$ or $24^2 - 4 \times 4p \langle 0 \Rightarrow p \rangle 36$ or $36 < p$	B1	Allow $(36, \infty)$ or $36 . Consider final answer only.$
	6	1	

Question	Answer	Marks	Guidance
4	$[8x^{6} + 215x^{3} - 27 = 0] \text{ leading to } (8x^{3} - 1)(x^{3} + 27)[=0]$ OR $\frac{-215 \pm \sqrt{215^{2} - 4.8 27}}{2.8} \text{ or } \frac{-215 \pm \sqrt{47089}}{2.8}$	M1	OE If a substitution is used then the correct coefficients must be retained. Condone substitution of $x = x^3$.
	$\frac{1}{8}$, -27	A1	Both correct values seen. SC: if M0 scored SC B1 is available for sight of $\frac{1}{8}$ and -27 OE
	$\frac{1}{2}$ or 0.5,-3	A1	SC: if M0SCB1 scored then SCB1 is available for the correct answers and no others. Do not ISW if answers given as a range.
		3	

May/June 2023

Question	Answer	Marks	Guidance
5	$\left[\int \left(10x^{\frac{1}{2}} - \frac{5}{2}x^{\frac{3}{2}}\right) = \right] \left\{\frac{10}{\frac{3}{2}}x^{\frac{3}{2}}\right\} \left\{-\frac{5}{2 \times \frac{5}{2}}x^{\frac{5}{2}}\right\} \left[=\frac{20}{3}x^{\frac{3}{2}} - x^{\frac{5}{2}}\right]$	B1 B1	B1 for contents of each { } then ISW.
	$= \left(their \frac{20}{3} \times 8 - 32 \right) [-0]$	M1	Using limit(s) correctly in an integrated expression (defined by one correct power). Minimum acceptable working is their $(\frac{160}{3} - 32)$.
	[Area of shaded region =] $\frac{64}{3}$, 21 $\frac{1}{3}$ or 21.3[333]	A1	Condone the presence of π for the first 3 marks. Condone using the limits the wrong way around for the M mark and if -21.3 is corrected to 21.3 allow the A mark. SC: if M0 scored SCB1 is available for correct final answer If $\int \left(10x^{\frac{1}{2}} - \frac{5}{2}x^{\frac{3}{2}}\right) = 21.3$ and no integration seen B1 only.
		4	

9709/12

Question	Answer	Marks	Guidance
6(a)	$\frac{1}{2}OA = x\cos\theta \text{ or } \frac{OA}{\sin(\pi - 2\theta)} = \frac{x}{\sin\theta} \text{ or}$ $OA^2 = x^2 + x^2 - 2x^2\cos(\pi - 2\theta) \text{ or}$ $x^2 = r^2 + x^2 - 2rx\cos\theta \text{ or other valid method.}$	*B1	Correct expression containing $\frac{1}{2}OA$, OA or OA^2 (allow p , <i>a</i> or <i>r</i> for OA) containing only terms with <i>x</i> and θ but not just $OA = 2x \cos \theta$. Do not condone $\sin \pi - 2\theta$ until missing brackets recovered or $\cos(180-2\theta)$ until it becomes $-\cos 2\theta$ etc.
	$OA = 2x\cos\theta$ leading to Arc length $= 2x\theta\cos\theta$	DB1	AG Complete correct method showing all necessary working. Condone $2x\cos\theta \times \theta$.
		2	If B0 but www then SCB1 for $OA = 2x\cos\theta$ leading to Arc length = $2x\theta\cos\theta$.
6(b)	Sector area = $\frac{1}{2} (2x\cos\theta)^2 \times \theta$	M1	OE Using sector formula with a correct OA. Condone $cos\theta^2$ for $cos^2\theta$ and missing brackets.
	Triangle area = $\frac{1}{2} \times 2x \cos \theta x \sin \theta$ OR $\frac{1}{2} x^2 \sin(\pi - 2\theta)$	M1	Using a correct triangle formula for the correct triangle. Condone missing brackets and 180 for π .
	[Area <i>APB</i> =] <i>Their</i> sector area – <i>their</i> triangle area	M1	Both expressions must be areas involving terms with x^2 and θ only. Condone missing brackets and 180 for π for the triangle. Condone calling the sector a segment.
	$[\operatorname{Area} APB =] \frac{1}{2} (2x \cos \theta)^2 \times \theta - \frac{1}{2} x^2 \sin(\pi - 2\theta)$ $[= x^2 (2\theta \cos^2 \theta - \frac{1}{2} \sin 2\theta) \text{ or } x^2 \cos \theta (2\theta \cos \theta - \sin \theta)]$	A1	OE A correct expression. Mark the first unsimplified result of subtraction and ISW any incorrect 'simplifications'.
		4	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(a)(i)	$\cos^2\theta + 2\sin\theta\cos\theta + \sin^2\theta = 1$ leading to $2\sin\theta\cos\theta = 0$ or $\sin 2\theta = 0$	*B1	Or arriving at $\cos \theta = 0$ or $\sin \theta = 0$ or $\tan \theta = 0$ after first expanding and www.
	$\left[\theta=\right] 0, \frac{\pi}{2}, \pi$	DB 2,1,0	 B2 for three correct answers only. B1 for two correct answers and one incorrect or 3 correct answers plus other values in the range. SC DB1 for correct 3 answers in degrees and no others. Ignore extras outside of the range and allow decimal equivalents.
	9	3	Verifying 3 answers rather than expanding and solving 0/3.
7(a)(ii)	$\cos 0 + \sin 0 = [1 + 0 =]1$ and $\cos \frac{\pi}{2} + \sin \frac{\pi}{2} [= 0 + 1] = 1$	B1	Checking both correct values. Do not allow solving an equation. Condone use of 90 degrees.
	$\cos\pi + \sin\pi [= -1 + 0] = -1$ or $\neq 1$	B1	www
		2	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(b)	$\frac{(\cos\theta - \sin\theta)\sin\theta + (\cos\theta + \sin\theta)(1 - \cos\theta)}{(\cos\theta + \sin\theta)(\cos\theta - \sin\theta)}$	M1	Correct common denominator and correct products in the numerator and no missing terms. Correct factors in the denominator can be implied by $\cos^2\theta - \sin^2\theta$. Condone brackets missing if recovered.
	$=\frac{\cos\theta\sin\theta-\sin^2\theta+\cos\theta-\cos^2\theta+\sin\theta-\sin\theta\cos\theta}{\cos^2\theta-\sin^2\theta}$	A1	
	$=\frac{\sin\theta+\cos\theta-\cos^2\theta-\sin^2\theta}{\cos^2\theta-\sin^2\theta}=\frac{\cos\theta+\sin\theta-1}{1-2\sin^2\theta}$	A1	AG Clear evidence of using $sin^2\theta + cos^2\theta = 1$ in either the numerator or denominator. Condone c, s and/or omission of θ . Working from both sides of the identity and correctly arriving at the same expression can score M1A1. A final statement is then required for the A1.
		3	

Question	Answer	Marks	Guidance
7(c)	$\frac{\cos\theta + \sin\theta - 1}{1 - 2\sin^2\theta} = 2(\cos\theta + \sin\theta - 1)$ leading to $1 = 2(1 - 2\sin^2\theta)$	*M1	Replacing LHS with the expression from (b) and attempting to simplify i.e. condone omission of $(\cos\theta + \sin\theta - 1) = 0$ at this stage. M0 for $0 = 2(1 - 2\sin^2\theta)$
	$k\sin^2\theta = 1 \text{ or } 3 \text{ leading to } \sin\theta = [\pm]\sqrt{\frac{1 \text{ or } 3}{k}}$ $\left[4\sin^2\theta = 1 \text{ leading to } \sin\theta = \pm \frac{1}{2}\right]$	DM1	Dividing by k and taking the square root of a positive value < 1. This mark can be implied by the solutions $\frac{1}{6}\pi, \frac{5}{6}\pi$.
	Solutions $0, \frac{1}{6}\pi, \frac{1}{2}\pi, \frac{5}{6}\pi$	A1	Allow 0, 0.524, 1.57, 2.62 AWRT. If M0 SCB1 for $(\cos\theta + \sin\theta - 1) = 0 \Rightarrow 0, \frac{1}{2}\pi$. If M0 SCB1 for all four correct answers and no others. Ignore answers outside of the range. Answers in degrees A0.
		3	

9709/12

Question	Answer	Marks	Guidance	
8(b)	$y = 3 + 2\sin\frac{1}{4}x$ leading to $\sin\frac{1}{4}x = \frac{y \pm 3}{2}$	M1	Attempting to arrive at an expression for $\sin \frac{1}{4}x$; condone \pm sign errors. Variables may be interchanged initially. M1 not implied by $x = \frac{y \pm 3}{2\sin \frac{1}{4}}$.	
	$x = 4\sin^{-1}\left(\frac{y-3}{2}\right)$ leading to $[f^{-1}(x) \text{ or } y =] 4\sin^{-1}\left(\frac{x-3}{2}\right)$	A1	ISW Must clearly be $\sin^{-1}\left(\frac{x-3}{2}\right)$ NOT $\frac{\sin^{-1}(x-3)}{2}$. Allow $\left(\frac{3-x}{-2}\right)$ but not $\div \frac{1}{4}$.	
		2		
8(c)		B1	Continuing given graph from y intercept to -2π . The correct shape needed between 0 and -2π , including starting to level off (gradient in the final two squares needs to be reducing) as -2π is approached. The y co-ordinate at- 2π must be in the correct square.	
	Yes it does have an inverse, because the graph is always increasing OR because it is one-one OR because it passes the horizontal line test OR it is not a many to one [function].	B1 FT	If there is no graph to the left of the y axis, no mark is available. FT an incorrect graph and if the answer is now 'No' provide an appropriate reason.	
		2		

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance	
8(d)	<pre>{ } indicates different elements throughout.</pre>			
	{Stretch} {factor 4} {in x-direction}	B2, 1, 0	B2 for fully correct, B1 with two elements correct.Condone use of 'sf' instead of factor and 'co-ordinates' stretched instead of graph stretched.Allow any mention of <i>x</i>-axis, horizontally or y-axis invariant.Wavelength or period increased by a factor of 4 for B2 or by 4 for B1.	
	{Stretch} {factor 2} {in y-direction}	B2, 1, 0	B2 for fully correct, B1 with two elements correct. Condone use of 'sf' instead of factor and 'co-ordinates' stretched instead of graph stretched. Allow any mention of <i>y</i> -axis, vertically or <i>x</i> -axis invariant. Allow y 'co-ordinates' doubled or amplitude doubled for B2.	
	$\{\text{Translation}\} \begin{pmatrix} \{0\}\\ \{3\} \end{pmatrix}$	B2, 1, 0	B2 for fully correct, B1 with two elements correct. Allow shift. Any mention of y axis, y-direction or vertically implies $\{0\}$, so shift by 3 vertically is B2, but shift by a factor of 3 vertically or a translation of 3 'up' is B1.	
	23. satprep	6	After scoring B2, B2 the final transformation can only be awarded B2 if the order is fully correct i.e. the translation must not be applied before the y stretch. If all correct except the order award B2B2B1.	

9709/12

Question	Answer	Marks	Guidance
9(a)	$\left[ar = 16, \frac{a}{1-r} = 100\right] \text{ leading to } a = \frac{16}{r} \text{ and } a = 100(1-r)$	B1	Rearranging two algebraic statements to give $a =$. These can be implied by a correct equation in one variable.
	$100(1-r)r = 16$ leading to $100r^2 - 100r + 16[=0]$	*M1	Using their two expressions and rearranging to get a 3-term quadratic expression with all of the terms on one side. Condone sign errors only.
	(5r-4)(5r-1) = 0 OR $\frac{25 \pm \sqrt{25^2 - 4.25.4}}{2.25}$ leading to $r = \left[\frac{4}{5} \text{ or } \frac{1}{5}\right]$	DM1	Condone $(5r-4)(5r-1)$ following $100r^2 - 100r + 16$.
	a = 20, a = 80	A1	SC: if DM0 scored SCB1 is available for sight of 20 and 80.
	Alternative Method for Question 9(a)		
	$\left[ar = 16, \frac{a}{1-r} = 100\right]$ leading to $r = \frac{16}{a}$ and $r = \frac{100-a}{100}$	B1	Rearranging two algebraic statements to give $r =$. These can be implied by a correct equation in one variable.
	$1600 = 100a - a^2$ leading to $a^2 - 100a + 1600 = 0$	*M1	Using their two expressions and rearranging to get a 3-term quadratic expression with all of the terms on one side. Condone sign errors and 160 instead of 1600 only.
	$(a-20)(a-80) = 0$ OR $\frac{100 \pm \sqrt{100^2 - 4.1600}}{2}$	DM1	
	a = 20, a = 80	A1	SC: if DM0 scored SCB1 is available for sight of 20 and 80.
		4	

Question	Answer	Marks	Guidance
9(b)	$r = \frac{4}{5}$, $\frac{1}{5}$	B 1	OE SOI
	$[u_n =] their 20 \times their \left(\frac{4}{5}\right)^{n-1} [v_n =] their 80 \times their \left(\frac{1}{5}\right)^{n-1}$	B1FT	2 expressions for the nth term FT <i>their</i> values from part (a) if $ r $ less than 1.
	Method 1 for final 2 marks		
	$20 \times \left(\frac{1}{5}\right)^{n-1} \times 4^{n-1}$	M1	Correctly separating the numerator and denominator of their $\left(\frac{4}{5}\right)^{n-1}$ or one correct step towards the solution eg $u_n = 80 \times \frac{4^{n-2}}{5^{n-1}}$.
	$u_n = \frac{1}{4} \times 80 \times \left(\frac{1}{5}\right)^{n-1} \times 4^{n-1} = 4^{n-2} \times 80 \times \left(\frac{1}{5}\right)^{n-1} = 4^{n-2} \times v_n$	A1	AG Given result clearly shown
	Method 2 for final 2 marks		
	$\frac{20 \times 0.8^{n-1}}{80 \times 0.2^{n-1}} = \frac{1}{4} \times 4^{n-1}$	M1	Dividing two nth terms of the correct format and simplifying their terms in r .
	$=4^{-1} \times 4^{n-1} = 4^{n-2}$	A1	AG
	arpior	4	

9709/12

Question	Answer	Marks	Guidance
10(a)	$(x-a)^{2} + \left(\frac{1}{2}x+6-3\right)^{2} = 20$ or using $x = 2y-12$	*M1	Obtaining an unsimplified equation in <i>x</i> or <i>y</i> only.
	$\frac{5}{4}x^2 + (3-2a)x + a^2 - 11[=0]$	A1	OE e.g. $5x^2 + 4(3-2a)x + 4a^2 - 44$ Rearranging to get a correct 3-term quadratic on one side. Condone terms not grouped together. $5y^2 - y(54+4a) + 133 + a^2 + 24$.
	$(3-2a)^2 - 4 \times \frac{5}{4} (a^2 - 11) [= 0]$	DM1	OE Using $b^2 - 4ac$ on <i>their</i> 3 term quadratic $[=0]$.
	Method 1 for final 2 marks		
	Using $a = 4$: $(3-8)^2 - 5(5) = 0$	A1	Clearly substituting $a = 4$.
	<i>a</i> = -16	B 1	Condone no method shown for this value.
	Method 2 for final 2 marks		
	$-a^{2} - 12a + 64 = 0 \implies (a - 4)(a + 16) = 0 \implies a = 4$	A1	AG Full method clearly shown.
	<i>a</i> = -16	B1	Condone no method shown for this value.
	v.satpre?	5	If M0, SCB1 available for substituting $a = 4$, finding P(2, 7) and verifying that $CP^2 = 20$.

Question	Answer	Marks	Guidance
10(b)	Centre (4, 3) identified or used or the point P is (2, 7)	B 1	
	: gradient of normal $= -2$	B1	SOI
	Forming normal equation using their gradient (not 0.5) and their centre or P	M1	Condone use of $(\pm 4, \pm 3)$.
	$\frac{y-3}{(x-4)} = -2$ or $y-7 = -2(x-2)$	A1	OE Condone $f(x) = .$
		4	

Question	Answer	Marks	Guidance
10(c)	Method 1 for Question 10(c)		
	Diameter: $y - 3 = \frac{1}{2}(x - 4)$ [leading to $y = \frac{1}{2}x + 1$]	*M1	Using gradient $\frac{1}{2}$ with their centre.
	Or $2(x-4)+2(y-3)\frac{dy}{dx} = 0$ [leading to $y = \frac{1}{2}x+1$]		By implicit differentiation.
	$(x-4)^{2} + \left(\frac{1}{2}x+1-3\right)^{2} = 20 \left[\frac{5}{4}x^{2}-10x=0\right]$	DM1	Obtaining an unsimplified equation in x or y only. $[y^2 - 6y + 5 = 0].$
	x = 0 or 8, $y = 1$ or 5 [(0, 1) and (8, 5)]	A1	Correct co-ordinates for both points. Condone no method shown for solution.
	Equations are $y-1 = -2x$ and $y-5 = -2(x-8)$	A1	2x + y = 1 and $2x + y = 21$.
	Method 2 for Question 10(c)		
	Coordinates of points at which tangents meet curve are $(4+4, 3+2) = (8, 5)$ and $(4-4, 3-2) = (0, 1)$	*M1 A1	Vector approach using their centre and gradient = 0.5 . Condone answers only with no working.
	Equations are $y-5 = -2(x-8)$ and $y-1 = -2x$	DM1 A1	Forming equations of tangents using <i>their</i> $(0, 1)$ and $(8, 5)$.
	Method 3 for Question 10(c)	.0	
	$(x-4)^{2} + (-2x+c-3)^{2} = 20$ $\begin{bmatrix} 5x^{2} + (4-4c)x + (c-3)^{2} - 4 = 0 \end{bmatrix}$	*M1	Obtaining an unsimplified equation in <i>x</i> only using equation of circle with $y = -2x + c$.
	$(4-4c)^{2} - 20((c-3)^{2} - 4)[=0]$ [leading to $-4c^{2} - 32c + 120c + 16 - 100 = 0$]	DM1	Using $b^2 - 4ac [= 0]$.

Question	Answer	Marks	Guidance	
10(c)	$4c^2 - 88c + 84[=0]$ [leading to $c^2 - 22c + 21 = 0$]	A1		
	c = 21 and $c = 1$ or $y = -2x + 21$ and $y = -2x + 1$	A1	Condone no method shown for solution.	
		4		

Question	Answer	Marks	Guidance
11(a)	$\frac{dy}{dx} = \left\{ k \frac{1}{2} (4x+1)^{-\frac{1}{2}} \right\} \{ \times 4 \} \{ -1 \}$	B 2,1,0	OE e.g. $2k(4x+1)^{-\frac{1}{2}}-1$ B2 Three correct unsimplified { } and no others. B1 Two correct { } or three correct { } and an additional term e.g. +5. B0 More than one error.
		2	
11(b)	$2k(4x+1)^{\frac{1}{2}} - 1 = 0$ leading to $(4x+1)^{\frac{1}{2}} = 2k$ or $\frac{2k}{(4x+1)^{\frac{1}{2}}} = 1$	M1	OE Equating their $\frac{dy}{dx}$ of the form $ak(4x+1)^{-\frac{1}{2}}-1$ where $a = 2$ or 0.5, to 0 and dealing with the negative power correctly including k not multiplied by $(4x+1)^{\frac{1}{2}}$.
	$x = \frac{4k^2 - 1}{4}$	A1	CAO OE simplified expression ISW.
		2	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
11(c)	$2 \times 10.5 (4x+1)^{-\frac{1}{2}} - 1 = 2$	M1	Putting k= 10.5 into their $\frac{dy}{dx}$ and equating to 2.
	$7 = (4x+1)^{\frac{1}{2}}$ leading to $4x+1 = 49$ leading to $x = 12$	A1	If M1 earned SCB1 available for $x = \frac{33}{64}$ from $a = \frac{1}{2}$.
	$y = [10.5\sqrt{4x+1} - x + 5 =]66.5$ [leading to (12, 66.5)]	A1	
	$y - 66.5 = -\frac{1}{2}(x - 12)$	A1	OE
		4	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/13 May/June 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

	Mathematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. .
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$\{\text{Translation}\} \begin{pmatrix} \{0\}\\ \{-2\} \end{pmatrix}$	B2, 1, 0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
	{Stretch} {[scale] factor 2} {parallel to x-axis}	B2, 1, 0	B2 for fully correct, B1 with two elements correct.
		4	Transformations can be in either order.

Question	Answer	Marks	Guidance
2	$x^{2}-6x+c>2$ leading to $(x-3)^{2}-9+c>2$	M1 A1	M1 for completion of the square with an equation or in equality with the '2'.
	$c > 11 - (x - 3)^2$ and $(x - 3)^2 \ge 0$	M1	SOI
	c>11	A1	
	Alternative Method 1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 6 = 0$	M1	M1 for differentiating and setting $\frac{dy}{dx} = 0$.
	<i>x</i> = 3	A1	
	When $x = 3$, $y = 9 - 18 + c$	M1	
	[-9+c>2] c>11	A1	
	Alternative Method 2		
	$x^{2}-6x+c>2$ leading to $x^{2}-6x+c-2[>0]$ then use of $b^{2}-4ac'$	M1	
	36-4(1)(c-2) < 0	M1 A1	OE Must be correct inequality for M1.
	c>11 SatpreP	A1	
		4	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3(a)	$x^{5} + 10x^{3} + 40x + \frac{80}{x} + \frac{80}{x^{3}} + \frac{32}{x^{5}}$ or $x^{5} + 10x^{3} + 40x + 80x^{-1} + 80x^{-3} + 32x^{-5}$	B2, 1, 0	B2, all terms correct, B1 5 terms correct. Terms must be simplified. Lists of terms allowed.
		2	
3(b)	<i>their</i> $40 \times a + (their \text{ coefficient of } x^{-1}) \times b = 0$	M1	Coefficients of a and b must be non-zero, allow x 's so long as they are dealt with correctly.
	$(their \text{ coefficient of } x^{-1}) \times a + (their \text{ coefficient of } x^{-3}) \times b = 80$	M1	Coefficients of a and b must be non-zero, allow x 's as long as they are dealt with correctly.
	a=2 $b=-1$	A1 A1	Dependent on both M marks, may be seen without working.
		4	

Question	Answer	Marks	Guidance
4(a)	$3\sin^2 x - 3\sin^2 x \cos^2 x - 4\cos^2 x \ [=0]$	M1	Replace $\tan^2 x$ with $\frac{\sin^2 x}{\cos^2 x}$ and multiply by $\cos^2 x$.
	$3(1-\cos^{2}x) - 3(1-\cos^{2}x)\cos^{2}x - 4\cos^{2}x \ [=0]$	M1	Replace $\sin^2 x$ by $1 - \cos^2 x$ twice.
	$3\cos^4 x - 10\cos^2 x + 3 = 0 \text{or} -3\cos^4 x + 10\cos^2 x - 3 = 0$	A1	Or multiple of these equations.
		3	

Question	Answer	Marks	Guidance
4(b)	$(3\cos^2 x - 1)(\cos^2 x - 3) = 0$	M1	OE, using <i>their</i> equation in the given form. Allow unusual notation if meaning is clear.
	$\cos x = \left[\pm\right] \frac{1}{\sqrt{3}}$	A1	SOI Answer only SC B1.
	54.7°,	A1	
	125.3°	A1 FT	Only other answer and must be from correct factorisation for A1. FT for 180° – <i>their</i> first answer . Answers only SC B1 , SC B1 FT .
		4	

Question	Answer	Marks	Guidance
5(a)	$(x-1)^{2} + (x-9+4)^{2} = 40$	M1	Substitute line into circle.
	$x^{2}-6x-7$ [=0] leading to $(x+1)(x-7)$ [=0]	M1	Simplify to 3-term quadratic and factorise OE.
	(-1, -10), (7, -2) or x = -1 and 7, y = -10 and -2	A1 A1	Answers only SC B1, SC B1 but must see a correct quadratic equation.
	· satpreP	4	

Question	Answer	Marks	Guidance
5(b)	[C is mid-point =] $\left(\frac{their x_1 + their x_2}{2}, \frac{their y_1 + their y_2}{2}\right)$	M1	Expect (3, -6).
	Radius = $\sqrt{(their \ x - their \ 3)^2 + (their \ y - their \ (-6))^2}$ OR their $\sqrt{((7 - (-1))^2 + (-2 - (-10))^2)/2}$	M1	Expect $\sqrt{32}$.
	$(x-3)^{2} + (y+6)^{2} = 32$	A1	OE
		3	

Question	Answer	Marks	Guidance
6(a)	$\frac{\frac{1}{2}r^{2}\theta}{r\theta} = \frac{76.8}{9.6} \text{ or } \frac{1}{2} \left(\frac{9.6^{2}}{\theta^{2}}\right) \theta = 76.8$	M1	Eliminate θ or r using correct formulae SOI.
	<i>r</i> = 16	A1	
	$\theta = 0.6$	A1	Accept 34.4°
	$\Delta OAB = \frac{1}{2} \times their \ 16^2 \times sin \ their \ 0.6$	M1	Allow Segment = $76.8 - \frac{1}{2} \times their \ 16^2 \times sin \ their \ 0.6.$ Expect 72.27.
	[Area = 76.8 - 72.27 =] 4.53	A1	AWRT
		5	
6(b)	$AB = 2 \times 16 \times \sin 0.3$ OR $AB^2 = 16^2 + 16^2 - 2 \times 16^2 \cos 0.6$	M1	Any valid method with <i>their</i> r, θ . Expect $AB = 9.46$.
	Perimeter = $9.6 + 9.46 = 19.1$	A1	AWRT
		2	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(a)	[y] < 2 OR [f(x)] < 2	B1	OE e.g. $f < 2, (-\infty, 2), -\infty < f[x] < 2$. Do not accept $x < 2$ or $f(x) \leq 2$.
		1	
7(b)	$y = 2 - \frac{5}{x+2}$ leading to $y(x+2) = 2(x+2) - 5$ leading to $xy + 2y = 2x - 1$	M1	or $\frac{5}{x+2} = 2 - y$ (allow sign errors).
	2y+1=2x-xy leading to $2y+1=x(2-y)$	DM1	or $\frac{5}{2-y} = x+2$ (allow sign errors).
	$x = \frac{2y+1}{2-y} \rightarrow f^{-1}(x) = \frac{2x+1}{2-x}$	A1	OE or $y = \frac{5}{2-x} - 2$.
	Domain is $x < 2$	B1 FT	FT on the numerical part of <i>their</i> range from part (a), including $x \neq 2$ not penalized. No FT for $x \in \mathcal{R}, x = k, x \neq k$.
		4	
7(c)	$fg(x) = 2 - \frac{5}{x+3+2}$	B1	
	$=\frac{2(x+5)-5}{x+5} \text{ or } \frac{2(x+5)}{x+5} - \frac{5}{x+5}$	M1	Use of <i>their</i> common denominator.
	$=\frac{2x+5}{x+5}$	A1	
		3	

Question	Answer	Marks	Guidance
8(a)	$r = \frac{a}{a+2}$	B1	OE SOI
	$\frac{a}{1 - \frac{a}{a+2}} = 264$	M1	Use of S∞ formula.
	$\frac{a(a+2)}{a+2-a} = 264 \text{ leading to } \frac{a(a+2)}{2} = 264 \text{ leading to } a^2 + 2a - 528 \ [=0]$	M1*	Process to a 3 term quadratic or a 3 term cubic. May contain terms on LHS and RHS.
	(a-22)(a+24) = 0	DM1	Attempt to solve.
	a = 22 (only)	A1	22 without working SC DB1 (dep on 2 nd M1).
		5	
8(b)	$d = \frac{6^2}{6+2} - 6 = -\frac{3}{2}$	B1	
	$\frac{n}{2} \left\{ 12 + (n-1)\left(\frac{-3}{2}\right) \right\} [<] - 480$	M1*	Forming an inequation with <i>their</i> numerical <i>d</i> . May use an equality.
	$[3](n^2-9n-640)[>0]$	A1	OE May contain terms on LHS and RHS.
	$[n=] \frac{9 \pm \sqrt{81 + 2560}}{2}$	DM1	OE. Expect 30.19 . Working for solution must be shown.
	31 only	A1	Must come from a correct first inequality (or an equality). 31 no working SC DB1 (dep on correct quadratic and correct inequality/equality).
		5	

9709/13

Question	Answer	Marks	Guidance
9(a)	$[y =] \{x\} \{+(x-1)^{-2}\} [+c]$	B1 B1	May be unsimplified.
	Sub $x = 0$, $y = 3$ leading to $3 = 0 + 1 + c$	M1	Substitution into an integral, expect $c = 2$.
	$y = x + (x-1)^{-2} + 2$ or $f(x) = x + (x-1)^{-2} + 2$	A1	$\frac{-2}{(-2)(x-1)^2}$ or $\frac{-2(x-1)^{-2}}{-2}$ must be simplified.
		4	
9(b)	[Gradient of tangent =] $f'(0) = 3$	B1	
	Equation of tangent is $y-3 = their$ gradient at $x = 0(x-0)$	M1*	Expect $y = 3x + 3$, normal gets M0.
	Intersection given by $3x + 3 = x + (x - 1)^{-2} + 2$	DM1	FT <i>their</i> equation from part (a).
	$2x+1 = \frac{1}{(x-1)^2} \rightarrow (2x+1)(x-1)^2 - 1 = 0$ or solve equation before given form reached and show solution ($x = 3/2$) satisfies given result	A1	WWW AG
	ź	4	
9(c)	Substitute $x = \frac{3}{2}$ leading to $(2x+1)(x-1)^2 - 1$ leading to $4 \times \frac{1}{4} - 1 = 0$. Hence $x = \frac{3}{2}$ If shown in (b) must be referenced here (in part (c))	B1	Evaluation of each bracket must be shown. Allow $\left(\frac{1}{2}\right)^2$ for second bracket. Solution of $(2x+1)(x-1)^2 - 1 = 0$ is acceptable.
	When $x = \frac{3}{2}$ $y = 7\frac{1}{2}$	B1	
		2	

9709/13

Question	Answer	Marks	Guidance
10(a)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right]\left\{9\right\} + \left\{-\frac{3}{2}\left(2x+1\right)^{1/2} \times 2\right\}$	B1, B1	Including '+c' makes the second term B0.
	$9-3(2x+1)^{1/2} = 0$ leading to $2x+1=9$	M1	Set differential to zero and solve by squaring SOI. Beware $9^2 - 3^2(2x+1) = 0$ M0A0.
	A PD		$2x+1=\sqrt{3} \text{ or } 2x+1=\pm 9 \text{ get M0.}$
	Max point = (4, 9)	A1	WWW $y = 9$ must come from original equation.
		4	
10(b)	When $x = 1\frac{1}{2}$, shows substitution or $\frac{dy}{dx} = 3$	M1	Substituting $x = 1\frac{1}{2}$ into their $\frac{dy}{dx}$.
	Gradient of <i>AB</i> is $\frac{5\frac{1}{2} - 3\frac{1}{2}}{1\frac{1}{2} - 7\frac{1}{2}} \left[= \frac{-1}{3} \right]$	M1	Substituting into a correct expression for m _{AB} .
	$-\frac{1}{3}x3 = -1$. [Hence <i>AB</i> is the normal]	A1	
	Alternative method for Question 10(b)	2.	
	When $x = 1\frac{1}{2}$ $\frac{dy}{dx} = 3$, [perpendicular gradient is -1/3]	M1	
	Perpendicular through A has equation $y = \frac{-x}{3} + 6$ which contains B(7.5,3.5)	M1 A1	
	reading to AD is a normal to the curve at A		
		3	

Question	Answer	Marks	Guidance
10(c)	$\left\{\frac{9x^2}{2}\right\} + \left\{\frac{-(2x+1)^{\frac{5}{2}}}{\frac{5}{2} \times 2}\right\}$	B1 B1	Integrating <i>y</i> with respect to <i>x</i> .
	$\left\{\frac{9}{2}7.5^2 - \frac{1}{5}(2 \times 7.5 + 1)^{2.5}\right\} - \left\{\frac{9}{2}1.5^2 - \frac{1}{5}(2 \times 1.5 + 1)^{2.5}\right\} \text{ or}$ $\left(\frac{9}{2} \times \frac{225}{4} - \frac{1024}{5}\right) - \left(\frac{81}{8} - \frac{32}{5}\right) \text{ or } \frac{1933}{40} - \frac{149}{40} \text{ or } 48.325 - 3.725$	M1	OE Apply limits 1½ to 7½ to an integral. Working must be seen. Expect 44.6.
	$\frac{1}{2}\left(5\frac{1}{2}+3\frac{1}{2}\right)\times 6 \text{ or } \int_{\frac{3}{2}}^{\frac{15}{2}} (\frac{-1}{3}x+6)dx =$	B1	SOI Area of trapezium. May be seen combined with the area under the curve integral.
	$\left(\frac{-1}{6} \times \left(\frac{15}{2}\right)^2 + 6 \times \frac{15}{2}\right) - \left(\frac{-1}{6} \times \left(\frac{3}{2}\right)^2 + 6 \times \frac{3}{2}\right) \text{ or } \frac{285}{8} - \frac{69}{8} [=27]$		
	[Shaded area = 44.6 – 27 =] 17.6	A1	SC B1 if no substitution of the limits seen.
	4	5	
	Satprep	.00	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
10(c)	Alternative method for Question 10(c)		
	$A = \int_{\frac{3}{2}}^{\frac{15}{2}} ((9x - (2x + 1)^{\frac{3}{2}}) - (\frac{-1}{3}x + 6)) dx = \int_{\frac{3}{2}}^{\frac{15}{2}} ((\frac{28}{3}x - (2x + 1)^{\frac{3}{2}} - 6) dx$	M1	Finding the equation of AB and subtracting from the equation of the curve.
	$=\left\{\frac{28}{3\times 2}x^2 - 6x\right\} + \left\{\frac{-(2x+1)^{\frac{5}{2}}}{\frac{5}{2}\times 2}\right\}$	A1 A1	
	$\frac{127}{10} - \frac{-49}{10}$	M1	Apply limits 1 ¹ / ₂ to 7 ¹ / ₂ to an integral. Working must be seen.
	17.6	A1	SC B1 if no substitution of limits seen.
		5	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/12 February/March 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2023 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

	Mathematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method Α mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). •
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •
Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$x^{2}-kx+2=3x-2k$ leading to $x^{2}-x(k+3)+(2+2k) = 0$	M1	3-term quadratic, may be implied in the discriminant.
	$b^{2}-4ac = (k+3)^{2}-8(1+k)$ (ignore '= 0' at this stage)	DM1	Cannot just be seen in the quadratic formula.
	$=(k-1)^2 \operatorname{accept} (k-1)(k-1)$	A1	Or use of calculus to show minimum of zero at $k = 1$ or sketch of $f(k) = k^2 - 2k + 1$.
	≥ 0 Hence will meet for all values of k	A1	Clear conclusion.
		4	

Question	Answer	Marks	Guidance
2	Stretch: $(2x)^2 - 2(2x) + 5$ or $(x-1)^2 + 4$ leading to $(2x-1)^2 + 4$	M1	Replacing x by $2x$.
	Reflection: $(-2x)^2 - 2(-2x) + 5$ or $(-2x-1)^2 + 4$	M1	Replacing x by $-x$. FT on <i>their</i> stretch.
	Stretch: $3\{(-2x)^2 - 2(-2x) + 5\}$ or $3\{(-2x-1)^2 + 4\}$	M1	Multiplying the whole function by 3. FT on <i>their</i> (stretch plus reflection).
	$12x^2 + 12x + 15$	A1	
		4	

Question	Answer	Marks	Guidance
3	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left\{\frac{1}{60}(3x+1) \times 2\right\} \times \{3\}$	B1 B1	May see $\frac{1}{60}(18x+6)$.
	$\frac{1}{10}(3x+1) = 1$	M1	Equate <i>their</i> $\frac{dy}{dx}$ to 1.
	x = 3	A1	
	6	4	

Question	Answer	Marks	Guidance
4(a)	$5.00 + 20 \times 0.02$ or $5.02 + 19 \times 0.02$	M1	Allow for $a = 5$, $n = 20$ with $d = 0.02$ only. a = 5, $n = 21$ (OE) with $d = 0.2$ gets M1 only.
	5.40	A1	
		2	
4(b)	$r = \frac{5.02}{5} = 1.004 \text{ or } \frac{251}{250}$	B1	
	$5.00 \times (their 1.004)^{20}$ or $5.02 \times (their 1.004)^{19}$	M1	Allow $a = 5, n = 20$.
	5.42	A1	Any correct rounding of 5.41557108.
		3	

Question	Answer	Marks	Guidance
5	$r^{2} = (7+2)^{2} + (12-5)^{2}$	B1	Expect 130, may use AC rather than r.
	Equation of circle is $(x+2)^{2} + (y-5)^{2} = 130$	B1 FT	OE FT <i>their</i> 130, may use distance <i>BC</i> rather than circle.
	$(x+2)^{2} + (-2x+21)^{2} = 130$	M1	Substitute $y = -2x + 26$ into a circle equation.
	$5x^2 - 80x + 315 = 0$ leading to $[5](x-9)(x-7)$	M1	Factorisation OE must be seen.
	<i>x</i> = 9	A1	With or without $x = 7$.
	y = 8 OR (9, 8)	A1	$y = 8 \operatorname{or}(9,8)$ only. Both A1's dependent on the first M1.
		6	

Question	Answer	Marks	Guidance
6	$7C1\left(\frac{x}{a}\right)^{6}\left(\frac{a}{x^{2}}\right) \text{ or } 7C6\left(\frac{x}{a}\right)^{6}\left(\frac{a}{x^{2}}\right) 7C2\left(\frac{x}{a}\right)^{5}\left(\frac{a}{x^{2}}\right)^{2} \text{ or } 7C5\left(\frac{x}{a}\right)^{5}\left(\frac{a}{x^{2}}\right)^{2}$	B1 B1	Coefficients $x^4 \& x$. Can be seen in an expansion.
	$\frac{\left(\frac{7}{a^5}\right)}{\left(\frac{21}{a^3}\right)} = 3$	М1	OE. Allow extraneous x^4 and x at this stage; numerator and denominator must be functions of <i>a</i> . Allow errors in evaluation of the combinations.
		A1	Completely correct.
	$a^2 = \frac{1}{9}$	A1	SOI (implied by $a = \frac{1}{3}$).
	$a = \pm \frac{1}{3}$	A1	Allow ± 0.333 .
		6	

Question	Answer	Marks	Guidance
7(a)	$\tan\theta\sin\theta = 1$ leading to $\sin^2\theta = \cos\theta$	M1	Use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and multiplication by $\cos \theta$.
	$1 - \cos^2\theta = \cos\theta$ or $\cos^2\theta + \cos\theta - 1 = 0$	M1	Use of trig identity to form a 3-term quadratic.
	$[\cos\theta=] \frac{-1\pm\sqrt{5}}{2}$	M1	Use of formula or completion of the square must be seen on a 3-term quadratic. Expect 0.6180.
	51.8°,	A1	Both A marks dependent on the 2nd M1.
	308.2°	A1 FT	FT for (360° – 1st soln), A0 if extra solutions in range. Radians 0.905 and 5.38, A1 only for both.
		5	
7(b)	$\frac{\tan\theta}{\sin\theta} - \frac{\sin\theta}{\tan\theta} = \frac{\sin\theta}{\sin\theta\cos\theta} - \frac{\sin\theta\cos\theta}{\sin\theta} = \frac{1}{\cos\theta} - \cos\theta$	M1	Use $\tan \theta = \frac{\sin \theta}{\cos \theta}$ twice with correct use of fractions.
	$=\frac{1-\cos^2\theta}{\cos\theta} = \frac{\sin^2\theta}{\cos\theta}$	M1	Use $1 - \cos^2 \theta = \sin^2 \theta$ with correct use of fractions.
	$= \tan \theta \sin \theta$	A1	WWW
		3	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
8(a)	$\tan BDC = \frac{4}{3}$ or $\sin BDC = \frac{4}{5}$ or $\cos BDC = \frac{3}{5}$ used to find ADC	M1	May use cosine rule or $CAD = \tan^{-1}\frac{4}{8}$.
	$BDC = 0.927[3] \rightarrow ADC = \pi - 0.927[3] [= 2.214 \text{ to } 2.215]$	A1	Allow degrees, 126.87, and 0.7048 π or 0.705 $\pi.$
	$Arc AC = 5 \times their 2.214$	M1	Use of $r\theta$ or $\frac{\theta}{360}.2\pi r$ Expect 11.07.
	$AC = \sqrt{8^2 + 4^2} or 2 \times 5 \times \sin 1.107$	M1	Expect 8.94.
	[Perimeter=11.07+8.94=]20.0	A1	Accept AWRT [20.01, 20.02].
		5	
8(b)	Sector $ACD = \frac{1}{2} \times 5^2 \times their 2.214$	M1	See use of $\frac{1}{2}r^2\theta$ or $\frac{\theta}{360}.\pi r^2$. Expect 27.7.
	Subtracting the area of $\triangle ADC = \frac{1}{2} \times 5 \times 4$ or $\frac{1}{2} 5^2 \sin their 2.214$ or	M1	Subtracting the area of $\triangle ADC$, expect -10 .
	$\frac{1}{2} \times 8 \times 4 - \frac{1}{2} \times 3 \times 4$	5.5	
	Shaded area = 27.7 - 10 = 17.7	A1	Accept AWRT [17.67, 17.68]. Correct answer cannot come from an angle of 2.215.
		3	

Question	Answer	Marks	Guidance
9(a)	$[y] \leqslant -1$	B1	Accept f or $f(x) \leq -1$, $-\infty < y \leq -1$, $(-\infty, -1]$. Do not accept $x \leq -1$.
		1	
9(b)	$y = -3x^{2} + 2$ rearranged to $3x^{2} = 2 - y$, leading to $x^{2} = \frac{2 - y}{3}$ or $y^{2} = \frac{2 - x}{3}$	M1	
	$x = [\pm] \sqrt{\frac{2-y}{3}} \rightarrow [f^{-1}(x)] = \{-\} \left\{ \sqrt{\frac{2-x}{3}} \right\}$	A1 A1	A1 for minus, A1 for $\sqrt{\frac{2-x}{3}}$, allow $-\sqrt{\frac{x-2}{-3}}$.
		3	
9(c)	$fg(x) = -3(-x^2 - 1)^2 + 2$	M1	SOI expect $-3x^4 - 6x^2 - 1$.
	$gf(x) = -(-3x^2 + 2)^2 - 1$	M1	SOI expect $-9x^4 + 12x^2 - 5$.
	$fg(x) - gf(x) + 8 = 0$ leading to $6x^4 - 18x^2 + 12$ [=0]	A1	OE
	$[6](x^2-1)(x^2-2)[=0]$ or formula or completion of the square	M1	Solving a 3-term quadratic equation in x^2 must be seen.
	$x = -1$, $-\sqrt{2}$ only these two solutions	A1	Allow $-\sqrt{1}$, $-1.41[4]$ Answers only SC B1 .
		5	

9709/12

Question	Answer	Marks	Guidance
10(a)	$-\frac{3}{2} = \frac{1}{2} + k$ leading to $k = -2$	B1	AG Need to see $4^{-\frac{1}{2}}$ evaluated as $\frac{1}{4^{\frac{1}{2}}}$ or better.
		1	
10(b)	$[y] = 2x^{\frac{1}{2}} - 2x [+c]$	M1 A1	Allow $\frac{x^{\frac{1}{2}}}{\frac{1}{2}} - 2x$.
	-1 = 4 - 8 + c	M1	Substitute $x = 4$, $y = -1$ (<i>c</i> present) Expect $c = 3$.
	$y = 2x^{\frac{1}{2}} - 2x + 3$ or $y = 2\sqrt{x} - 2x + 3$	A1	Allow if $f(x) = \text{ or } y = \text{ anywhere in the solution.}$
		4	
10(c)	$x^{-1/2} - 2 = 0$	M1	Set <i>their</i> $\frac{dy}{dx}$ to zero.
	$x = \frac{1}{4}$	A1	If $\left(\frac{1}{2}\right)^2 = \pm \frac{1}{4}$ max of M1A1 if $\left(\frac{1}{4}, 3\frac{1}{2}\right)$ seen.
	(1/4, 31/2)	A1	
	apror	3	

Question	Answer	Marks	Guidance
10(d)	$\frac{d^2 y}{dx^2} = -\frac{1}{2}x^{-\frac{3}{2}}$	B1	
	<0 (or -4) hence Maximum	DB1	WWW Ignore extra solutions from $x = -\frac{1}{4}$.
	T PRA	2	

Question	Answer	Marks	Guidance
11(a)	Gradient of $AB = \frac{2-(-1)}{5-2}$	M1	Expect 1, must be from $\Delta y / \Delta x$.
	Equation of AB is $y-2=1(x-5)$ or $y+1=1(x-2)$	A1	OE. Expect $y = x - 3$.
		2	

Question	Answer	Marks	Guidance
11(b)	$[\pi]\int x^2 dy = [\pi]\int (y^2 + 1)^2 dy = [\pi]\int (y^4 + 2y^2 + 1) dy$	M1	For curve: Attempt to square $y^2 + 1$ and attempt integration. Subtracting curve equation from line equation before squaring is M0. Integration before squaring M0.
	$\left[\pi\right]\left(\frac{y^5}{5} + \frac{2y^3}{3} + y\right)$	A2, 1, 0	
	$[\pi] \int (y+3)^2 dy = [\pi] \int (y^2 + 6y + 9) dy$	M1	For line: Attempt to square <i>their</i> $y + 3$ and attempt integration.
	$\left[\pi\right]\left(\frac{y^3}{3} + 3y^2 + 9y\right) \text{ or } \left[\pi\right]\left(\frac{\left(y+3\right)^3}{3}\right)$	A2, 1, 0	Not available for incorrect line equations.
	$\left[\pi\right]\left\{\frac{8}{3}+12+18-\left(-\frac{1}{3}+3-9\right)\right\} \text{ or } \left[\pi\right]\left\{\frac{32}{5}+\frac{16}{3}+2-\left(-\frac{1}{5}-\frac{2}{3}-1\right)\right\}$	DM1	Apply limits $-1 \rightarrow 2$ to either integral providing they have been awarded M1. Expect $15\frac{3}{5}$ [π] and/or 39[π]. Some evidence of substitution of both -1 and 2 must be seen. Dependent on at least one of the first 2 M1 marks.
	Volume = $[\pi](39 - 15\frac{3}{5})$	DM1	Appropriate subtraction. Dependent on at least one of the first 2 M1 marks.
	$= 23\frac{2}{5}\pi \text{ or } \frac{117}{5}\pi \text{ or awrt } 73.5[1327]$	A1	
		9	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/11 October/November 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

	Mathematics Specific Marking Principles		
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.		
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.		
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.		
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).		
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.		
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.		

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$(3x+2)(x-1)=2 \implies 3x^2-x-4 = 0$	M1	OE Multiply by denominator and obtain a quadratic.
	(3x-4)(x+1)[=0]	M1	Solve by factorising, formula or completing the square.
	$[x =] -1, \frac{4}{3}$	A1	Allow 1.33 If M1 M0, SC B1 possible for two correct answers.
		3	

Question	Answer	Marks	Guidance
2(a)	$12\left(\frac{1}{2} \times 6 - 1\right)^{-4} \left[=12(2)^{-4} = \frac{3}{4}\right]$	M1	Substitute $x = 6$ into $\frac{dy}{dx}$ SOI by gradient $\frac{3}{4}$ used.
	$y-4=\frac{3}{4}(x-6)$	A1	OE e.g. $y = \frac{3}{4}x - \frac{1}{2}$ or evaluates c in $y = \frac{3}{4}x + c$
	OR evaluates $c = -\frac{1}{2}$		using (6, 4) and gradient $\frac{3}{4}$. ISW
	ź	2	
	2. satpre	p.00'	

9709/11

Question	Answer	Marks	Guidance
2(b)	$[y=]\left(\frac{12\left(\frac{1}{2}x-1\right)^{-3}}{-3}\right) \div \frac{1}{2}\left[=-8\left(\frac{1}{2}x-1\right)^{-3}\right]$	B2, 1, 0	
	$4 = \frac{12 \times \left(\frac{1}{2} \times 6 - 1\right)^{-3}}{\frac{1}{2} \times -3} + c \left[\Rightarrow 4 = -8 \times 2^{-3} + c \right] \Rightarrow c = [5]$	M1	Must have $+c$. Substitute $y = 4$, $x = 6$ and solve for c in an integrated expression. May be unsimplified.
	$[y=]-8\left(\frac{1}{2}x-1\right)^{-3}+5$	A1	OE Must see ' $y =$ ' or 'f(x) = ' in the working.
		4	

Question	Answer	Marks	Guidance
3	$\frac{dy}{dx} = \frac{1}{2}ax^{-\frac{1}{2}} - 2$	B2, 1, 0	
	$0 = \frac{1}{2}a(9)^{-\frac{1}{2}} - 2 \implies \frac{a}{6} - 2 = 0 \implies a = [12]$	M1	Substitute $x = 9$ and $\frac{dy}{dx} = 0$ into <i>their</i> derivative and solve a linear equation for <i>a</i> .
	[a =]12	A1	
	$\left[y = their a \times (9)^{\frac{1}{2}} - 18 = \right] 18$	A1 FT	FT on <i>their a</i> .
		5	

9709/11

Question	Answer	Marks	Guidance
.4	Coefficient of x^2 in $\left(1+\frac{2}{p}x\right)^5$ is $10\left(\frac{2}{p}\right)^2 = \frac{10\times 2^2}{p^2} \left[=\frac{40}{p^2}\right]$	B1	Accept with x^2 present. Must evaluate 5C_2
	Coefficient of x^2 in $(1 + px)^6$ is $15(p)^2 [=15p^2]$	B1	Accept with x^2 present. Must evaluate 6C_2
	$\frac{40}{p^2} + 15p^2 = 70$	*M1	Forming an equation in p with <i>their</i> coefficients, the given 70, no x terms and no extra terms.
	$15p^4 - 70p^2 + 40 \ [=0] \text{ or } 3p^4 - 14p^2 + 8 \ [=0]$	DM1	Forming a 3-term equation in p (or another variable) with all terms on one side and <i>their</i> coefficients.
	$[5](p^{2}-4)(3p^{2}-2) = 0 \text{ or } \frac{70 \pm \sqrt{70^{2}-4(15)(40)}}{30} \text{ or }$ $\frac{14 \pm \sqrt{14^{2}-4(3)(8)}}{6}$	DM1	Attempt to solve 3-term quartic (or quadratic in another variable) by factorisation, formula or completing the square.
	$p = \pm 2, \ \pm \sqrt{\frac{2}{3}}$	A1	OE e.g. $\pm \frac{\sqrt{6}}{3}$ or AWRT ± 0.816 If *M1 DM1 DM0, allow SC B1 for 4 correct values.
	24	6	
	·satpreP·		

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(a)	$\left[2r+8=20 \Longrightarrow\right] r=6$	B1	
	Angle $AOB = \frac{8}{their 6}$	*M1	Expect $\frac{4}{3}$ OE (76.4°). M0 Assume triangle is equilateral.
	$AB = 2 \times 6 \sin their \frac{2}{3}$ or $\sqrt{6^2 + 6^2 - 2 \times 6^2 \cos their \frac{4}{3}}$	DM1	For 6 read <i>their</i> 6.
	or $AB = \frac{6}{\sin\left(\frac{\pi}{2} - their\frac{2}{3}\right)} \times \sin their\frac{4}{3}$		
	Perimeter = $[7.42 + 8 =] 15.4$	A1	AWRT
		4	
5(b)	Area $=\frac{1}{2} \times 6^2 \times their \frac{4}{3} - \frac{1}{2} \times 6^2 \times sin their \frac{4}{3}$ or Area $=\frac{1}{2} \times 6^2 \times their \frac{4}{3} - 2 \times \frac{1}{2} \left(6 \sin their \frac{2}{3} \right) \left(6 \cos their \frac{2}{3} \right)$	M1	Sector area – whole triangle area. For 6 read <i>their</i> 6. Sector area – 2(half triangle area).
	=[24-17.49=] 6.51	A1	AWRT
		2	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(a)	$\frac{\sin\theta - \cos\theta + \sin\theta + \cos\theta}{(\sin\theta + \cos\theta)(\sin\theta - \cos\theta)} \bigg[= \frac{\sin\theta - \cos\theta + \sin\theta + \cos\theta}{\sin^2\theta - \cos^2\theta} \bigg] = 1$	*M1	Use common denominator and equate to 1.
	$2\sin\theta \left[=\sin^2\theta - \cos^2\theta\right] = \sin^2\theta - \left(1 - \sin^2\theta\right)$	DM1	Multiply by common denominator and replace $\cos^2 \theta$ by $1 - \sin^2 \theta$.
	$2\sin^2\theta - 2\sin\theta - 1 = 0$	A1	OE In the given form.
	6	3	
6(b)	$[\sin\theta =]\frac{2\pm\sqrt{(-2)^2 - 4(2)(-1)}}{4} \left[=\frac{2\pm\sqrt{4+8}}{4} = \frac{1\pm\sqrt{3}}{2} \right]$	M1	Use formula or complete the square to solve a quadratic equation of the correct form.
	201.5° or 338.5°	A1 A1 FT	AWRT; A1 for either solution correct. A1 FT for 540 – (first value). If M0, allow SC B1 B1FT similarly.
		3	

Question	Answer	Marks	Guidance
7(a)	<i>r</i> = 0.8	B1	SOI
	$50 \times (their 0.8)^7 = 10.5$	M1	Evaluate 8 th or 9 th term in GP.
	$50 \times (their 0.8)^8 = 8.39$. Hence 9th impact required	A1	AG Two terms correct + conclusion (mention of 9 th impact or u_9 somewhere in the solution). Statement that one is <10 (and the other >10) is insufficient unless it mentions 9 th impact or u_9 .
	Alternative method for final two marks: Logarithm method		
	$50 \times (their 0.8)^{n} < 10 \Rightarrow (their 0.8)^{n} < 0.5$ $n \log(their 0.8) < \log 0.5$ $n > \frac{\log 0.5}{\log(their 0.8)} \Rightarrow [n >]7.2$	M1	
	n=8 hence 9 th impact required	A1	AG Need conclusion that mentions 9^{th} impact or u_9 .
		3	
7(b)	$\frac{50(1-(their 0.8)^{20})}{1-their 0.8}$	M1	OE Use of formula with <i>their r</i> SOI.
	=247 Satore	A1	Must be to the nearest mm (not 247.1).
		2	
7(c)	$\frac{50}{1-their 0.8}$	M1	Use of sum to infinity formula with <i>their r</i> SOI. Substituting a value of n into the sum formula MO.
	= 250	A1	
		2	

Question	Answer	Marks	Guidance
8(a)	$f'(x) = -3(-1)(4)(4x-p)^{-2} \left[= \frac{12}{(4x-p)^2} \right]$	B2, 1, 0	
	> 0 Hence increasing function	B1FT	Correct conclusion from <i>their</i> $f'(x)$.
	TPE	3	
8(b)	$y = 2 - \frac{3}{4x - p} \implies (y - 2)(4x - p) = -3$ or $4xy - py = 8x - 2p - 3$	M1	OE Form horizontal equation. Sign errors only, no missing terms.
			May go directly to $4y = p - \frac{1}{x-2}$ OE M1 M1
	$4xy - 8x = py - 2p - 3 \Longrightarrow 4x(y - 2) = p(y - 2) - 3$ or $4x = -\frac{3}{x - 2} + p$	M1	OE Factorise out $[4]x$ or $[4]y$.
	$x = \frac{p(y-2)-3}{4(y-2)} \left[\Rightarrow x = \frac{p}{4} - \frac{3}{4y-8} \right] \text{ or } \frac{-\frac{3}{x-2} + p}{4}$	M1	OE Make x (or y) the subject.
	$\left[f^{-1}(x) = \right]\frac{p}{4} - \frac{3}{4x - 8}$	A1	OE in correct form (must be in terms of x).
	52.00	4	
8(c)	[<i>p</i> =]8	B1	
		1	

Question	Answer	Marks	Guidance
9(a)	$\left(x-2\right)^2+5$	B1	
		1	
9(b)	$2\left(\left\{\left(x+1\right)^{2}\right\}+\left\{5\right\}\right)$	B2, 1, 0	
	TPF	2	
9(c)	[g(x)=] 2f(x+3) or k=2, h=3	B1	In correct form. B0 if contradiction.
		1	
9(d)	{Translation} $\left\{ \begin{pmatrix} -3\\ 0 \end{pmatrix} \right\}$	B2, 1, 0 FT	FT on their $x+3$ or $h=3$.
	{Stretch} {y direction, factor 2}	B2, 1, 0 FT	FT on their 2 or $k = 2$.
		4	

Question	Answer	Marks	Guidance
10(a)	$\pm \int (2x^{1/2} + 1) - \left(\frac{1}{2}x^2 - x + 1\right) dx \ [= \pm \int 2x^{1/2} - \frac{1}{2}x^2 + x dx]$	*M1	
	$\pm \left(\frac{4x^{3/2}}{3} + x - \left(\frac{x^3}{6} - \frac{x^2}{2} + x\right)\right) \text{ or } \pm \left(\frac{4x^{3/2}}{3} - \frac{x^3}{6} + \frac{x^2}{2}\right)$	B2, 1, 0	OE Coefficients may be unsimplified.
	$\pm \left(\frac{32}{3} - \frac{32}{3} + 8\right) \text{ or } \pm \left(\frac{44}{3} - 0 - \frac{20}{3} + 0\right)$	DM1	\pm (F(4) – F(0)) using <i>their</i> integral(s).
	=8	A1	Depends on all previous marks. If *M1 B2 DM0 and limits stated, SC B1 for +8
		5	
10(b)	Upper curve: $\frac{dy}{dx} = x^{-\frac{1}{2}}$. Lower curve: $\frac{dy}{dx} = x - 1$	M1 A1	Attempt at differentiating one function. A1 if both correct.
	At $x = 4$: gradient of upper curve $=\frac{1}{2}$, gradient of lower curve $=3$	M1	Evaluate two gradients using $x = 4$.
	$\alpha = \tan^{-1} 3 - \tan^{-1} \frac{1}{2} \left[= 71.57 - 26.57 \right]$	M1	Use inverse tan to find angles then subtract. OR find equations of both tangents then Pythagoras using a point on each e.g. on axes. OR cosine rule using intercepts or proportion.
	$[\alpha =]45^{\circ}$	A1	AWRT
		5	

Question	Answer	Marks	Guidance
11(a)	$x^{2} + (mx+10)^{2} = 20$ or $y^{2} + \left(\frac{y-10}{m}\right)^{2} = 20$ or $mx+10 = \sqrt{20-x^{2}}$	*M1	Substitute equation of line into equation of circle.
	$x^{2}(1+m^{2})+20mx+80 [=0] \text{ or} y^{2}(m^{2}+1)-20y+(100-20m^{2})[=0]$	A1	Collect terms into a 3 term quadratic.
	$(20m)^{2} - 4(1+m^{2}) \times 80[=0 \implies 80m^{2} - 320 = 0 \implies [80](m^{2} - 4) = 0]$ or $(-20)^{2} - 4(m^{2} + 1)(100 - 20m^{2})[=0 \implies [80](m^{4} - 4m^{2}) = 0]$	DM1	Use $b^2 - 4ac [= 0]$.
	$m=\pm 2$	A1	Two values for m .
		4	

Question	Answer	Marks	Guidance
11(b)	Method 1: Use of quadratic		
	$(1+2^{2})x^{2} \pm 20(2)x + 80 [= 0 \Longrightarrow 5x^{2} \pm 40x + 80 = 0]$ or $y^{2}(2^{2}+1) - 20y + (100 - 20(2^{2}))[= 0 \Longrightarrow [5](y^{2}-4y+4) = 0]$	M1	Sub <i>their</i> m into <i>their</i> quadratic in x or y or restart with <i>their</i> tangent equation and equation of circle.
	$[5](x\pm 4)^2 = 0 \implies x = \pm 4$ or $y = 2$	A1	Correct solutions or one correct pair (x, y) .
	(-4,2), (4,2)	A1	Two correct points with x and y paired correctly.
	Method 2: Using equation of normal		
	$2x+10 = -\frac{1}{2}x$ or $-2x+10 = \frac{1}{2}x$	M1	Equate tangent and normal and solve for x .
	$x = \pm 4$	A1	Two correct x -values or one correct pair (x, y) .
	(-4,2), (4,2)	A1	Two correct points with x and y paired correctly.
		3	

Question	Answer	Marks	Guidance
11(c)	Method 1: Using angle at circumference		
	$\cos BOA = \frac{\sqrt{20}}{10}$ or $\sin BOA = \frac{\sqrt{80}}{10}$ or $\tan BOA = \frac{\sqrt{80}}{\sqrt{20}} [=2]$	*M1	Use a trig function in triangle <i>AOB</i> .
	$BOA = 63.4^\circ \Rightarrow BOC = 126.8^\circ \text{ or } 126.9^\circ$	DM1	Strategy involving doubling
	$[BDC =]63.4^{\circ}$	A1	AWRT
	Metho 2: Using cosine rule	2	
	$BC = 8, BD = \sqrt{\left(\sqrt{20} + 4\right)^2 + 2^2}, CD = \sqrt{\left(\sqrt{20} - 4\right)^2 + 2^2}$	*M1	Calculate two lengths in triangle <i>BCD</i> .
	$64 = 80 - 16\sqrt{5}\cos BDC$	DM1	Use cosine rule with <i>their</i> lengths
	$\cos BDC = \frac{\sqrt{5}}{5} \Longrightarrow [BDC =]63.4^{\circ}$	A1	AWRT
	Method 3: Subtract angles from 90 °		
	Calculate one angle at D [=13.28]	*M1	ODB or angle between CD and the vertical from D
	Calculate a second angle at D [=13.28] and subtract both from 90°	DM1	
	$[BDC =]63.4^{\circ}$	A1	AWRT
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/12 October/November 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

	Mathematics Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method Α mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. .
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	Mid-point <i>AB</i> is $\left(\frac{10+5}{2}, \frac{2-1}{2}\right) \left[=\left(\frac{15}{2}, \frac{1}{2}\right)\right]$	B1	Accept unsimplified.
	Gradient of $AB = \frac{-1-2}{10-5} = \frac{-3}{5}$ Gradient perpendicular $= \frac{5}{3}$	M1	For use of $\frac{\text{Change in } y}{\text{Change in } x}$, condone inconsistent order of x and y , and $m_1m_2 = -1$.
	$\frac{y - \frac{1}{2}}{x - \frac{15}{2}} = \frac{5}{3} \left[y - \frac{1}{2} = \frac{5}{3} \left(x - \frac{15}{2} \right) \right]$	A1	OE ISW Any correct version e.g. $y = \frac{5}{3}x - 12$ or $5x - 3y = 36$.
		3	
1(b)	[Radius =] $\sqrt{34}$ or 5.8 AWRT or [(radius) ² =] 34	B1	Sight of $\sqrt{34}$ or 34. Condone confusion of <i>r</i> and r^2 .
	$(x-5)^2 + (y-2)^2$	B 1	Sight of $(x-5)^2 + (y-2)^2$
	$(x-5)^2 + (y-2)^2 = 34$	B 1	CAO ISW
	Alternative method for Question 1(b)		2.
	$x^2 + y^2 - 10x - 4y$	B1	-0
	$[c=]5 \operatorname{or}[c=]-5$	B1	Substitution of (10, -1) into $x^2 + y^2 - 10x - 4y + c = 0$.
	$x^2 + y^2 - 10x - 4y - 5 = 0$	B 1	
		3	

Question	Answer	Marks	Guidance
2	$2a - a = a^2 - 2a$	B1	OE An unsimplified correct equation in a or d only, e.g. $a^2 + a = 4a$. Can be implied by correct values for a or d.
	a = 3 or d = 3	B1	Condone 'extra' solution of $a = 0$ or $d = 0$.
	a = 3 and $d = 3$	B1	SOI
	$\mathbf{S}_{50} = \frac{50}{2} \left(2 \times their a + 49 \times their d \right)$	M1	May be done using 50th term (=150). Their a and d must be numerical.
	3825	A1	ISW SC B2 for 1275 <i>a</i> or 1275 <i>d</i>
		5	

Question	Answer	Marks	Guidance
3(a)	$k^2 - 4 \times 8 \times 2 \ [<0]$	M1	Use of $b^2 - 4ac$ but not just in the quadratic formula.
	-8 < k < 8 or -8 < k, k < 8 or k < 8 or (-8, 8)	A1	Condone '- 8 < k or k < 8', '- 8 < k and k < 8' but not $\sqrt{64}$.
	24	2	-,0'

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3(b)	$2(4\cos\theta-1)(\cos\theta-1)$ or $(4\cos\theta-1)(\cos\theta-1)$	M1	OE Or use of formula or completing the square. Allow use of replacement variable.
	$\cos\theta = \frac{2}{8}, \cos\theta = 1$	A1	OE For both answers. SC: If M0, SC B1 available for sight of $\cos \theta = \frac{2}{8}$ and 1
	[θ =] 0°, 75.5°	A1	AWRT ISW rejection of 0°. For both answers and no others in the range $0^{\circ} \le \theta \le 180^{\circ}$, must be in degrees. SC: If M0 B1 scored, SC B1 available for correct answers. SC: If M1 A0 scored, SC B1 available for $\cos \theta = \frac{2}{8}$ and $\theta = 75.5^{\circ}$ only, WWW.
		3	

Question	Answer	Marks	Guidance
4	$a r^{2} = 1764$ and $a r + a r^{2} = 3444$ or $a r = 1680$ or $\frac{a(1-r^{3})}{1-r} - a = 3444$	B1	Two correct algebraic statements.
	Attempt to solve as far as $r = \text{ or } a =$	M1	Any valid method, e.g. $1764 \div 1680$ or from $20 r^2 - 41r + 21$ OE (condone solving using a calculator).
	$r = \frac{1764}{1680} = \frac{21}{20}$ or 1.05 [<i>a</i> = 1600]	A1	Note: $r = \frac{1764}{3444 - 1764}$ www implies B1 and M1.
	17 500	A1	AWRT e.g. 17 474.1
		4	
Question	Answer	Marks	Guidance
----------	--	-------	--
5(a)	Three points at the bottom of their transformed graph plotted at $y = 2$	B1	All 5 points of the graph must be connected.
	Bottom three points of $\wedge \wedge$ at $x = 0$, $x = 1$ & $x = 2$	B1	Must be this shape.
	All correct	B1	Condone extra cycles outside $0 \le x \le 2$.
	GATP	3	SC: If B0 B0 scored, B1 available for /\ in one of correct positions or all 5 points correctly plotted and not connected or correctly sized shape in the wrong position.
5(b)	[g(x) =] f(2x) + 1	B1 B1	Award marks for their final answer as follows: f(2x) B1, +1 B1. Condone $y = or f(x) = .$
		2	
<u> </u>			

Question	Answer	Marks	Guidance
6(a)	$\mathbf{y} = 4\left(x + \frac{5}{2}\right)^2 - 19$		There is no requirement for the candidate to list a , b and c . Look at values in their final expression, condone omission of ² , and award marks as follows:
	3	B 1	a = 4
	Satp	B1	$b = \frac{5}{2}$ OE
		B1	<i>c</i> = -19
		3	

Question	Answer	Marks	Guidance
6(b)	$\left(Their 4\left(x+\frac{5}{2}\right)^2 - 19\right) = 45 \left[\Rightarrow \left(x+\frac{5}{2}\right)^2 = 16\right]$	*M1	Equate their quadratic completed square form from 6(a) to 45 or re-start and use completing the square.
	Solve as far as $x =$	DM1	Any valid method leading to two answers.
	$[x=]\frac{3}{2}, -\frac{13}{2}$	A1	SC: If M0 or M1 DM0 awarded, B1 available for correct final answers.
	6	3	
6(c)	Quadratic curve that is the right way up (must be seen either side of stationary point)	B1	No axes required, ignore any axes even if incorrect.
	Stationary point stated using any valid method or correctly	B1 FT	FT <i>their</i> values from $6(a)$ as long as <i>their</i> expression is of the
	labelled on their diagram.	B1 FT	form $p(qx+r)^2 + s$. Expect $\left(-\frac{5}{2}, -19\right)$.
			Condone if stated correctly but plotted incorrectly.
		3	

Question	Answer	Marks	Guidance
7(a)	$\frac{\sin\theta(\sin\theta-\cos\theta)+\cos\theta(\sin\theta+\cos\theta)}{(\sin\theta+\cos\theta)(\sin\theta-\cos\theta)}\left[=\frac{\sin^2\theta+\cos^2\theta}{\sin^2\theta-\cos^2\theta}\right]$	*M1	Sight of a correct common denominator, either in one or two fractions, condone missing brackets if recovered. In the numerator condone \pm sign errors only.
	$\frac{\sin^2\theta}{\cos^2\theta} + \frac{\cos^2\theta}{\cos^2\theta}$ $\frac{\sin^2\theta}{\sin^2\theta} + \cos^2\theta$	DM1	Divide throughout by $\cos^2 \theta$.
	$\frac{\sin^2 \theta}{\cos^2 \theta} - \frac{\cos^2 \theta}{\cos^2 \theta}$	R	
	$\frac{\tan^2\theta + 1}{\tan^2\theta - 1} \text{ AG}$	A1	
	Alternative method for Question 7(a)		
	$\frac{\frac{\sin^2 \theta}{\cos^2 \theta} + 1}{\frac{\sin^2 \theta}{\cos^2 \theta} - 1} \times \frac{\cos^2 \theta}{\cos^2 \theta} \text{ or the equivalent step} \left[= \frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta - \cos^2 \theta} \right]$	*M1	Replace $\tan^2 \theta$ with $\frac{\sin^2 \theta}{\cos^2 \theta}$ and multiply top and bottom by $\cos^2 \theta$. Condone \pm sign errors.
	Sight of convincing use of partial fractions	DM1	
	$\frac{\sin\theta}{\sin\theta + \cos\theta} + \frac{\cos\theta}{\sin\theta - \cos\theta} \text{ AG}$	A1	0.
	*.satpr	·eP3	Note: M1 DM1 A1 for working on both sides at the same time and finishing at the same correct expression. M1 DM1 for starting separately and finishing at the same correct expression and A1 if there is a final conclusion e.g. QED. Do not allow cross multiplication. Condone use of s, c and t and omission of θ .

Question	Answer	Marks	Guidance
7(b)	$\frac{\tan^2 \theta + 1}{\tan^2 \theta - 1} = 2 \Longrightarrow \tan^2 \theta + 1 = 2(\tan^2 \theta - 1)$	*M1	Equate expression from (a) to 2 and clear fraction.
	$\tan\theta = [\pm]\sqrt{3}$	DM1	Simplify as far as $\tan \theta = 0$. May be implied by a correct final answer in degrees or radians.
	Alternative method for first two marks of Question 7(b)		
	$\frac{\sin^2\theta + \cos^2\theta}{\sin^2\theta - \cos^2\theta} = 2 \implies 1 = 2\sin^2\theta - 2(1 - \sin^2\theta)$	*M1	Equate expression to 2, clear fraction and use trig identities to form an equation in $sin\theta$ or $cos\theta$ only.
	$sin\theta = [\pm]\sqrt{\frac{3}{4}}$ or $cos\theta = [\pm]\sqrt{\frac{1}{4}}$	DM1	Simplify as far as $sin\theta =$, or $cos\theta =$.
	$\theta = \frac{1}{3}\pi, \frac{2}{3}\pi$	A1 A1 FT	A1 for either correct answer then A1FT For their second value being π – (their first) and no others in range $0 \le \theta \le \pi$, both values must be exact and in radians. SC: B1 for $\theta = 60^{\circ}, 120^{\circ}$ or $0.333\pi, 0.667\pi$ AWRT. or 1.05, 2.09 AWRT.
	4	4	
32.satprep.co.			

Question	Answer	Marks	Guidance
8(a)	$\left[y=\right]\left\{\frac{3x^{\frac{3}{2}}}{\frac{3}{2}}\right\} + \left\{-\frac{3x^{\frac{1}{2}}}{\frac{1}{2}}\right\}\left[+c\right]\left[=2x^{\frac{3}{2}}-6x^{\frac{1}{2}}\right]$	B1 B1	Marks can be awarded for correct unsimplified expressions, 1 mark each for contents of { } ISW.
	$5 = 2 \times 3^{\frac{3}{2}} - 6 \times 3^{\frac{1}{2}} + c$	M1	Correct use of $(3,5)$ in an integrated expression (defined by at least one correct power) including + c.
	$y = 2x^{\frac{3}{2}} - 6x^{\frac{1}{2}} + 5$	A1	Condone $c = 5$ as their final line if either $y = \text{ or } f(x) = \text{ seen}$ elsewhere in the solution, but coefficients must not contain unresolved double fractions.
		4	
8(b)	$3x^{\frac{1}{2}} - 3x^{-\frac{1}{2}} = 0$	M1	Setting given differential to 0.
	[<i>x</i> =] 1	A1	CAO WWW Condone extra solution of —1 only if it is rejected.
		2	
8(c)	<i>x</i> >1 or <i>x</i> > " <i>their</i> 8(b)"	B1FT	Allow ≥
	Z	1	
	2		

Question	Answer	Marks	Guidance
9(a)	$a\left(x+\frac{1}{x}\right)+1$	B1	ISW
		1	

Question	Answer	Marks	Guidance
9(b)	$a\left(2+\frac{1}{2}\right)+1=11$	M1	Substitute $x = 2$ into <i>their</i> expression from (a) and equate to 11. This may be done in 2 stages: $f(2)=2.5, g(2.5)=11$.
	[a =] 4	A1	
		2	
9(c)	No,[because it is] not one-one	B1	Or other suitable explanation that may include one to many or many to one.
		1	
9(d)	$[g^{-1}(x)] = \frac{x-1}{5}$ WWW	B1	Condone use of a instead of 5.
	$[g^{-1}f(x)] = \frac{x + \frac{1}{x} - 1}{5} OE$	M1	Correct combination of their $g^{-1}(x)$ with given $f(x)$ Condone use of <i>a</i> instead of 5.
	$\frac{x^2 - x + 1}{5x} \text{ or } \frac{1}{5} \left(x + \frac{1}{x} - 1 \right) \text{ or } \frac{1}{5} \left(x + x^{-1} - 1 \right) \text{ OE ISW}$	A1	Must not contain unresolved fractions e.g. $\frac{x + x^{-1} - 1}{5}$.
	2	3	
9(e)	The domain of f does not include the whole of the range of g. Or The range of g does not lie in the domain of f.	B1	Accept an answer that includes an example outside the domain of f, e.g. $g(-1) = -4$ but for f, $x > 0$.
		1	

9709/12

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
10(a)	$2.5 \times \frac{4\pi}{4} + 2.24 \times \frac{5\pi}{4}$ [= 10.47[2] + 5.86[4] or $\frac{10\pi}{4} + \frac{28\pi}{4}$]	B1	For either arc correct. Arc ARB could be AR+RB.
	3 6 3 15	M1	For adding two (or three) arc lengths using different radii and angles and nothing else. SOI
	16.34 or $\frac{26\pi}{5}$	A1	AWRT Condone 16.33 only.
		3	
10(b)	Area $AOB = \frac{1}{2} \times 2.5^2 \sin \frac{2\pi}{3}$ [=2.706]	M1	For either $\triangle AOB$ or $\triangle APB$ (AB = 4.33, h= 1.25, 0.58) or any other valid method.
	Area $APB = \frac{1}{2} \times 2.24^2 \sin \frac{5\pi}{6}$ [=1.254]		
	[Difference =] 1.45	A1	AWRT Condone 1.46 only.
		2	
10(c)	Area $AOB = \frac{1}{2} \times 2.5^2 \times \frac{4\pi}{3}$ [=13.09]	B1	For either sector area correct
	Area $APB = \frac{1}{2} \times 2.24^2 \times \frac{5\pi}{6}$ [=6.57]		5
	[Area of cross section =] 5π	M1	Adding two sector areas from different sectors and ' <i>their</i> 10(b)'
	$\frac{1}{2} \times 2.5^2 \times \frac{4\pi}{3} + \frac{1}{2} \times 2.24^2 \times \frac{5\pi}{6} + \text{``their10(b)''}$		and nothing else. SOI
	$\left[=13.09+6.57+"their 10(b)"\right]$		
	21.1	A1	CAO Condone slight inaccuracies in intermediate working if the correct answer is arrived at.
		3	

Question	Answer	Marks	Guidance
11(a)	$\left[\frac{dy}{dx}\right] = \frac{9}{2}x - 12 \ [=0] \ \text{or} \ [y=] \ \frac{9}{4} \left\{ \left(x - \frac{8}{3}\right)^2 + \frac{8}{9} \right\} \ \text{or} \ \frac{9}{4} \left(x - \frac{8}{3}\right)^2 + 2$	B1	OE Either $\frac{dy}{dx}$ or a correct expression in completed square form. Allow unsimplified.
	$\boldsymbol{x} = \frac{24}{9}$	B1	OE Condone 2.67 AWRT.
	y = 2	B1	CAO Note: $x = \frac{-b}{2a} = \frac{8}{3}$ B1; substitute $\frac{8}{3}$ for x in y = B1; y=2 B1.
		3	

9709/12

Cambridge International AS & A Level – Mark Scheme			
PUBLISHED			

Question	Answer	Marks	Guidance
	For 11(b) look for working to be marked o	n page 19	or annotate it as BP or SEEN
11(b)	$[\text{Area} =] \int \left(18 - \frac{3}{8} x^{\frac{5}{2}} - \left(\frac{9}{4} x^2 - 12x + 18\right) \right) dx$	M1	Intention to integrate and subtract areas (either way around). Can be two separate functions or combined. Using y^2 scores 0/5 but condone inclusion of π except for the final mark.
	Note: Subtraction not required for these marks. Either separately $\left([18x] - \frac{3x^{\frac{7}{2}}}{8 \times \frac{7}{2}} \right)$, $\left(\frac{9x^3}{4 \times 3} - \frac{12x^2}{2} [+18x] \right)$ Or combined $[18x] - \frac{3x^{\frac{7}{2}}}{8 \times \frac{7}{2}} - \frac{9x^3}{4 \times 3} + \frac{12x^2}{2} [-18x]$	B1,B1	One mark for correct integration of each curve, allow unsimplified. $\left(\begin{bmatrix} 18x \end{bmatrix} - \frac{3}{28}x^{\frac{7}{2}} \right) \left(\frac{3}{4}x^3 - 6x^2 \begin{bmatrix} +18x \end{bmatrix} \right)$ or $\begin{bmatrix} 18x \end{bmatrix} - \frac{3}{28}x^{\frac{7}{2}} - \frac{3}{4}x^3 + 6x^2 \begin{bmatrix} -18x \end{bmatrix}$ BUT condone sign errors that are only due to missing brackets.
	$= \left(-\frac{3}{28} \times 4^{\frac{7}{2}} - \frac{3}{4} \times 4^{3} + 6 \times 4^{2} \right) \left[-(0) \right]$	M1	Clear substitution of 4 into at least one integrated expression (defined by at least one correct power) which can be unsimplified.
	$=\frac{240}{7}$ or 34.3 AWRT	A1	SC: If all marks awarded except the final M1, SCB1 is available for the correct final answer.
	2.Sato	5	
	a.p.		

Question	Answer	Marks	Guidance
11(c)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{-5 \times 3}{2 \times 8} x^{\frac{3}{2}} \left[= -\frac{15}{16} x^{\frac{3}{2}} \right]$	B1	Allow unsimplified.
	$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} \implies \frac{dy}{dt} = -\frac{15}{16} \times 8 \times 2$	M1	Substitute $x = 4$ into their $\frac{dy}{dx}$ and multiply by 2.
	-15	A1	Accept decreasing [at/by] 15
	9	3	Note: If incorrect curve used, this is not a MR and only M1 mark is available. Expect $(\frac{9(4)}{2} - 12) \times 2[=12]$

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/13 October/November 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

	Mathematics Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method Α mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. .
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

9709/13

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$8(1-\cos^2\theta)+6\cos\theta+1 [=0]$	M1	Expect $8\cos^2\theta - 6\cos\theta - 9 = 0$.
	$(4\cos\theta+3)(2\cos\theta-3) \ [=0]$	A1	Factors or formula or completing square must be shown.
	$\left[\rightarrow \cos \theta = -0.75 \rightarrow \theta = \right] 138.6^{\circ} \text{ only,}$	A1	AWRT, ignore solutions outside the given range, answer in radians A0.
		3	

Question	Answer	Marks	Guidance
2(a)	$[f(x)] = \{-2(x+2)^2\} - \{5\}$	B1 B1	
		2	
2(b)	$\left[\mathbf{f}\left(x\right)\right] < -7$	B1	Allow $y < -7$, $(-\infty, -7)$ or less than -7 $-\infty \langle f(x) \langle -7, -7 \rangle f(x) \rangle - \infty$, $f < -7$
	Z.	. 1	
2(c)	$y = -2(x+2)^2 - 5 \rightarrow (x+2)^2 = \frac{-(y+5)}{2}$	M1	Operations correct. Allow sign errors. FT <i>their</i> quadratic from (a).
	$x = [\pm] \sqrt{\frac{-(y+5)}{2}} -2$	M1	Operations correct. Allow sign errors. FT <i>their</i> quadratic from (a).
	$[f^{-1}(x)] = -2 - \sqrt{\frac{-(x+5)}{2}} \text{ or } -2 - \sqrt{-\frac{(x+5)}{2}}$	A1	Allow $[f^{-1}(x)] = -2 - \sqrt{\frac{x+5}{-2}}$.
		3	

Question	Answer	Marks	Guidance
3(a)	$1+10x+40x^2$ May be part of a complete expansion	B2, 1, 0	1⁵ must be simplified to 1, allow if the '1' is seen in a more complete expansion but not the final answer.Mis-reads not condoned in this question.
		2	
3(b)	$1-12x+54x^2$ May be part of a complete expansion	B2, 1, 0	1⁴ must be simplified to 1, allow if the '1' is seen in a more complete expansion but not the final answer.Mis-reads not condoned in this question.
		2	
3(c)	54-120+40	M1	Forming exactly 3 products correctly using their terms.
	-26	A1	Allow $-26x^2$ If in a list with other terms it must be clear this is the required term otherwise A0.
		2	

Question	Answer	Marks	Guidance
4	$\left[\frac{dv}{dx}\right] = \left(9 - x\right)^2$	B1	Allow unsimplified forms. Allow any or no notation
	Substitute $x = 4$ into <i>their</i> differentiated V,	*M1	Expect 25.
	$\frac{dx}{dt} = \frac{1}{their \text{ derivative}} \times 3.6 \text{ (accept } \frac{dt}{dx} = \frac{their \text{ derivative}}{3.6} \text{)}$	M1	Correct use of the chain rule, ignore incorrect conversions at this point. Expect 0.144
	$=\frac{1}{their numerical \text{ derivative}} \times 3.6 \times \frac{100}{60}$	DM1	Correct use of the conversion factors.
	$=\frac{1}{25}\times 3.6\times \frac{100}{60} = 0.24$	A1	
		5	

Question	Answer	Marks	Guidance
5(a)	3	B1	Ignore any description.
	3	. 51	
5(b)	2	B1	Ignore any description.
	·satprep.	1	
5(c)	(8, 2)	B1 B1	Ignore any description. Allow vector notation and absence of brackets.
		2	

Question	Answer	Marks	Guidance
5(d)	(1, 5)	B1 FT	FT each coordinate, (<i>their</i> $8 - 7$, <i>their</i> $2 + 3$) Allow
		B1 FT	vector notation and absence of brackets.
		2	

Question	Answer	Marks	Guidance
6	Use of $\sin^2 \alpha + \cos^2 \alpha = 1$ eg $\sin \alpha = [\pm] \sqrt{1 - \left(\frac{8}{17}\right)^2}$	*M1	Or Pythagoras seen (may quote 8, 15, 17 triple).
	$\sin\alpha = \frac{15}{17}$	A1	
	$\tan \alpha = \frac{15}{8}$	A1	
	$\frac{1}{\sin \alpha} + \frac{1}{\tan \alpha} = \frac{17}{15} + \frac{8}{15}$	DM1	Dealing with reciprocals and addition of fractions correctly.
	$=\frac{5}{3}$ oe	A1	Correct answer with no working shown scores 0. Extra answers from $\sin \alpha = -\frac{15}{17}$ are allowed.
	aprot	5	

9709/13

Question	Answer	Marks	Guidance
7(a)	$\frac{-3}{(a+2)^4} = -\frac{16}{27} \rightarrow \text{ e.g. } 16(a+2)^4 = 81$	M1	Equate first derivative and $-\frac{16}{27}$ and move term in <i>a</i> (or <i>x</i>) into the numerator.
	$\rightarrow (a+2)^2 = \frac{9}{4} \rightarrow a+2 = [\pm]\frac{3}{2}$	M1	Solve for $(a+2)$ or $(x+2)$
	$a = -\frac{1}{2}$ or $-\frac{7}{2}$	A1 A1	Allow 'x ='
		4	
7(b)	$\left[f(x)\right] = \frac{1}{\left(x+2\right)^3} \left[+c\right]$	B1	Allow unsimplified form and ' $y =$ '
	5 = 1 + <i>c</i>	M1	Sub $x = -1$, $y = 5$ into an integral.
	$\left[f\left(x\right)\right] = \frac{1}{\left(x+2\right)^3} + 4$	A1	Allow 'y ='
	ź	3	
	34. satprep.	,0'	·

Question	Answer	Marks	Guidance
8(a)	$APQ = \cos^{-1}\frac{\frac{5}{6}r}{r} \left[= \cos^{-1}\frac{5}{6} \right]$	*M1	May use cosine rule to find APB. Stating APQ or APB as an incorrect multiple of π is M0.
	= 0.5857	A1	Accept 0.586 or 33.6° or APB (1.171 or 67.1°).
	Perimeter = $4 \times r \times their 0.5857 = 2.34r$ or $0.745\pi r$ or $(293/125)r$	DM1 A1	Must use a numerical value of <i>their</i> angle.
		4	
8(b)	Use of sector formula: Sector APB = $\frac{1}{2}r^2 \times (2 \times their 0.5857)$ or Sector APC (C is on PQ so PC = r) = $\frac{1}{2}r^2 \times (their 0.5857)$	M1	Any sector with <i>their</i> appropriate angle. It must be clear the appropriate numerical angle is being used.
	Use of appropriate formula for area of triangle and correct combination with the sector to find the area of a half segment, one segment or both segments	M1	e.g. Area APB = $\frac{1}{2}r^2 \times \sin(2 \times their 0.5857)$.
	Shaded area $[=2 \times 0.1250r^2] = 0.250r^2$	A1	or $0.0796\pi r^2$, allow $\frac{1}{4}r^2$ or $0.25r^2$.
		3	

Question	2	Answer	Marks	Guidance
9(a)	$216r^3 = 64 \rightarrow r = 2/3$	"satprep"	B1	Allow decimal to 3sf (AWRT).
	$S_{\infty} = \frac{216}{1 - their^{2/3}} = 648$ cao		M1 A1	M1 depends on <i>their</i> $ \mathbf{r} < 1$.
			3	

Question	Answer	Marks	Guidance
9(b)	$216\left(\frac{2}{3}\right) = 144 \rightarrow 144 = a + d$	B1 FT	SOI, may be implied in the use of $96=144+3d$ and finding <i>a</i> . Mis-reads not condoned in 9(b) .
	$216\left(\frac{2}{3}\right)^2 = 96 \Rightarrow 96 = a + 4d$	B1 FT	SOI, may be implied in the use of $96=144+3d$ and finding <i>a</i> .
	Solve simultaneously	*M1	No working may be seen.
	d = -16, a = 160	A1	Both required.
	$S_{21} = \frac{21}{2} \{ 320 + 20(-16) \} = 0$	DM1 A1	Or use of $\frac{21}{2}(a+u_{21})$.
		6	

Question	Answer	Marks	Guidance
10(a)	$x^{2} + (2x-1)^{2} - 2[=0] \rightarrow 5x^{2} - 4x - 1[=0]$	*M1 A1	Or $5y^2 + 2y - 7 [= 0]$.
	(5x+1)(x-1)[=0] or $(5y+7)(y-1)[=0]$	DM1	May see factors or formula or completing square.
	x=1, y=1 or (1, 1) only	A1	May be implied on the diagram.
	Satprev	4	

Question	Answer	Marks	Guidance
10(b)	$(\pi)\int (2-x^2)dx = (\pi)\left(2x-\frac{x^3}{3}\right)$	*M1 A1	Attempt integration of y^2 , allow $\int (2-y^2) dy$.
	$(\pi)\left(2\sqrt{2}-\frac{(\sqrt{2})^3}{3}\right)-\left(2-\frac{1}{3}\right))$	DM1	Apply limits $1 \rightarrow \sqrt{2}$.
	$\frac{\pi}{3}(4\sqrt{2}-5)$	A1	CAO, allow $\frac{\pi}{3} (2\sqrt{8} - 5)$, must be in given form.
		4	
10(c)	Arc length = $\frac{1}{8}(2\pi\sqrt{2})$ or $\frac{\pi\sqrt{2}}{4}$ oe	B1	Must be exact.
	Perimeter = $\sqrt{2} + their$ arc length	B1 FT	Must be exact, do not allow inverse trig functions.
		2	

Question	Answer	Marks	Guidance
11(a)	$(5-2p)^{2}+(p+2)^{2}=(10-2p)^{2}+(3-p)^{2}$	M1 A1	Allow one sign error for M mark only.
	$25 - 20p + 4p^{2} + p^{2} + 4p + 4 = 100 - 40p + 4p^{2} + 9 - 6p + p^{2}$ $30p = 80 \rightarrow p = \frac{8}{3} \text{ oe}$	A1	Allow 2.67 AWRT.
		3	

9709/13

Question	Answer	Marks	Guidance
11(b)(i)	$m_{AC} = \frac{p+2}{2p-5}$ $m_{BC} = \frac{p-3}{2p-10}$	M1	Allow a sign error.
	$\frac{p+2}{2p-5} \times \frac{p-3}{2p-10} = -1$	M1	Use of $m_1m_2 = -1$ with their m_{AC} and m_{BC} .
	$p^2 - p - 6 = -(4p^2 - 30p + 50) \rightarrow 5p^2 - 31p + 44 \ (=0)$	A1	
	$p = 4$ (Ignore $p = \frac{11}{5}$)	A1	Factors $(p-4)(5p-11)$, or formula or completing square must be seen.
		4	
11(b)(ii)	Mid-point of $AB = (7\frac{1}{2}, \frac{1}{2})$	B1	SOI
	$r^{2} = 2\frac{1}{2}^{2} + 2\frac{1}{2}^{2} \left[= \frac{50}{4} \right] \text{ or } r = \sqrt{(2\frac{1}{2}^{2} + 2\frac{1}{2}^{2})} \left[= \frac{5\sqrt{2}}{2} \right]$	*M1	Or $r^2 = \frac{1}{4} (5^2 + 5^2) \left[= \frac{50}{4} \right]$ etc.
	Equation of circle is $(x - their 7\frac{1}{2})^2 + (y - their \frac{1}{2})^2 = their \frac{50}{4}$	DM1	Must use r^2 not r or d or d^2
	$x^2 + y^2 - 15x - y + 44 = 0$	A1	CAO
	·Satpre?	4	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/11 May/June 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then
	no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

May/June 2022

Question	Answer	Marks	Guidance
1(a)	$x^2 - 8x + 11 = (x - 4)^2 \dots$ or $p = -4$	B1	If p and q -values given after <i>their</i> completed square expression, mark the expression and ISW.
	-5 or $q = -5$	B1	
		2	
1(b)	$(x-4)^2 - 5 = 1$ so $(x-4)^2 = 6$ so $x-4 = [\pm]\sqrt{6}$	M1	Using <i>their</i> p and q values or by quadratic formula
	$x = 4 \pm \sqrt{6}$ or $\frac{8 \pm \sqrt{24}}{2}$	A1	Or exact equivalent. No FT; must have ± for this mark. ISW decimals 1.55, 6.45 if exact answers seen. If M0, SC B1 possible for correct answers.
		2	

Question	Answer	Marks	Guidance
2	a + 12d = 12	B1	For correct equation.
	$\frac{30}{2}(2a+(30-1)d) = -15$	B1	For correct equation in <i>a</i> and <i>d</i> . If using $\frac{n}{2}(a+l)$, must replace <i>l</i> with an expression involving <i>a</i> and <i>d</i> .
	a = 72, d = -5	B1	Both values correct SOI.
	$S_{50} = \frac{50}{2} (2(their a) + 49(their d))$	M1	Using sum formula with <i>their a</i> and <i>d</i> values obtained via a valid method.
	$S_{50} = -2525$	A1	
		5	

9709/11

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

May/June 2022

Question	Answer	Marks	Guidance
3(a)	x^{4} term is $[10 \times] (2x^{2})^{3} (\frac{k^{2}}{x})^{2}$	M1	For selecting the term in x^4 .
	$80k^4x^4 \Rightarrow a = 80k^4$	A1	For correct value of a . Allow $80k^4x^4$.
	$[x^{2} \text{ term is } [6 \times](2kx)^{2} \times 1 = 24k^{2}x^{2} \Longrightarrow] b = 24k^{2}$	B1	For correct value of <i>b</i> . Allow $24k^2x^2$.
	PR	3	
3(b)	$80k^4 + 24k^2 - 216[=0] \qquad \left[\Rightarrow 10k^4 + 3k^2 - 27 = 0 \right]$	M1	Forming a 3-term equation in k (all terms on one side) with <i>their a</i> and <i>b</i> and no <i>x</i> 's.
	$(2k^2 - 3)(5k^2 + 9) = 0 = 0 = k^2 = \frac{3}{2} \text{ or } -\frac{9}{5}$	M1	Attempt to solve 3-term quartic (or quadratic in another variable) by factorisation, formula or completing the square – see guidance.
	$[k] = \pm \sqrt{\frac{3}{2}}$	A1	OE e.g. $\pm \frac{\sqrt{6}}{2}$, $\pm \sqrt{1.5}$, AWRT ± 1.22 Omission of $\pm A0$. Additional answers A0. If M1 M0, SC B1 can be awarded for correct final answer, max 2/3.
	2	3	
	Satprep		

Question	Answer	Marks	Guidance
4(a)	$\frac{\sin^{3}\theta}{\sin\theta - 1} - \frac{\sin^{2}\theta}{1 + \sin\theta} = \frac{\sin^{3}\theta(1 + \sin\theta)}{(\sin\theta - 1)(1 + \sin\theta)} - \frac{\sin^{2}\theta(\sin\theta - 1)}{(\sin\theta - 1)(1 + \sin\theta)}$ $\left[= \frac{\sin^{3}\theta(1 + \sin\theta) - \sin^{2}\theta(\sin\theta - 1)}{(\sin\theta - 1)(1 + \sin\theta)} \right]$	*M1	Using a common denominator.
	$-\frac{\sin^2\theta + \sin^4\theta}{1 - \sin^2\theta}$	DM1	Reaching $\pm (1 - \sin^2 \theta)$ in denominator. SOI by $\pm \cos^2 \theta$.
	$-\frac{\sin^2\theta \left(1+\sin^2\theta\right)}{\cos^2\theta}$	DM1	Using $\sin^2 \theta + \cos^2 \theta = 1$ in denominator and isolating $\sin^2 \theta$ in numerator.
	$-\tan^2\theta(1+\sin^2\theta)$	A1	AG - Using/stating $\tan \theta = \frac{\sin \theta}{\cos \theta}$ is sufficient for A1. May be working from both sides provided the argument is complete. A0 if θ or brackets missing throughout, or sign errors. Allow recovery if AG follows from <i>their</i> working.
	Alternative method for Q4(a)		
	$-\tan^2\theta(1+\sin^2\theta) = -\frac{\sin^2\theta(1+\sin^2\theta)}{1-\sin^2\theta}$	*M1	Using $\tan\theta = \frac{\sin\theta}{\cos\theta}$ and $\sin^2\theta + \cos^2\theta = 1$.
	$\frac{-\sin^2\theta - \sin^4\theta}{(1 - \sin\theta)(1 + \sin\theta)}$	DM1	Factorising denominator.
	$\frac{\sin^2\theta + \sin^3\theta - \sin^3\theta + \sin^4\theta}{(\sin\theta - 1)(1 + \sin\theta)} = \frac{\sin^3\theta(1 + \sin\theta) - \sin^2\theta(\sin\theta - 1)}{(\sin\theta - 1)(1 + \sin\theta)}$	DM1	Factorising numerator.

9709/11

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

May/June 2022

Question	Answer	Marks	Guidance
4(a)	$\frac{\sin^3\theta}{\sin\theta - 1} - \frac{\sin^2\theta}{1 + \sin\theta}$	A1	AG A0 if θ or brackets missing throughout, or sign errors. Allow recovery if AG follows from <i>their</i> working.
		4	
4(b)	$-\tan^2 \theta (1 + \sin^2 \theta) = \tan^2 \theta (1 - \sin^2 \theta)$ leading to [2] $\tan^2 \theta = 0$	M1	Obtaining a (trig function) ² = 0 WWW.
	$\tan \theta = 0$ leading to $[\theta =]\pi$	A1	Ignore extra solutions outside the interval $(0, 2\pi)$.
	Alternative method for Q4(b)		
	$-\frac{\sin^2\theta}{\cos^2\theta}(1+\sin^2\theta) = \frac{\sin^2\theta}{\cos^2\theta}(1-\sin^2\theta) \text{ leading to}$ $-\sin^2\theta - \sin^4\theta = \sin^2\theta - \sin^4\theta \text{ leading to } [2]\sin^2\theta = 0$	M1	Obtaining a (trig function) ² = 0 WWW.
	$\sin \theta = 0$ leading to $[\theta =]\pi$	A1	Ignore extra solutions outside the interval $(0, 2\pi)$.
		2	

9709/11

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

May/June 2022

Question	Answer	Marks	Guidance
5(a)	Sector area = $\frac{1}{2}r^2\left(\frac{\pi}{6}\right)\left[=\frac{\pi}{12}r^2\right]$	B1	Using $\frac{1}{2}r^2\theta$ with θ in radians SOI. B0 if using a value for <i>r</i> .
	$BD = \sin\frac{\pi}{6}r \left[= \frac{1}{2}r \right] \text{ and } AD = \cos\frac{\pi}{6}r \left[= \frac{\sqrt{3}}{2}r \right]$ so triangle area = $\frac{1}{2} \left(\sin\frac{\pi}{6}r \right) \left(\cos\frac{\pi}{6}r \right) \left[= \frac{1}{2} \times \frac{1}{2}r \times \frac{\sqrt{3}}{2}r \right]$ or $\frac{1}{2}r \left(\cos\frac{\pi}{6}r \right) \left(\sin\frac{\pi}{6} \right) \left[= \frac{1}{2}r \times \frac{\sqrt{3}}{2}r \times \frac{1}{2} \right]$	B1	SOI Finding triangle area. Decimals B0 unless exact values seen in working.
	Area of $BCD = \frac{1}{12}\pi r^2 - \frac{\sqrt{3}}{8}r^2$	B1	OE e.g. $\frac{r^2}{4} \left(\frac{\pi}{3} - \frac{\sqrt{3}}{2} \right)$ with $\cos \frac{\pi}{6}$ and $\sin \frac{\pi}{6}$ evaluated. Must be exact, in terms of r^2 . ISW
		3	

Question	Answer	Marks	Guidance
5(b)	Angle $BAC = \sin^{-1} \left(\frac{\sqrt{3}}{2} r \\ r \right) \left[= \frac{\pi}{3} \right]$	B1	SOI by length of <i>AD</i> , <i>CD</i> or arc, or by perimeter.
	Length $AD = \cos \frac{\pi}{3} r \left[= \frac{1}{2} r \right]$ [so length $CD = \frac{1}{2} r$]	M1	SOI Finding length by Pythagoras, or by trigonometry with <i>their</i> angle <i>BAC</i> , provided $BAC \neq \frac{\pi}{6}$.
	Length of arc $BC = r \times \frac{\pi}{3}$	M1	SOI Using $r\theta$ with θ in radians. Condone $\theta = \frac{\pi}{6}$.
	Perimeter of $BCD = \frac{\sqrt{3}}{2}r + \frac{1}{2}r + \frac{\pi}{3}r$	A1	OE e.g. $r\left(\frac{\sqrt{3}+1}{2}+\frac{\pi}{3}\right)$ with e.g. $\cos\frac{\pi}{3}$ evaluated. Must be exact, in terms of <i>r</i> . ISW
		4	

9709/11

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(a)	$y = \frac{x^2 - 4}{x^2 + 4}$ leading to $(x^2 + 4)y = (x^2 - 4)$ leading to $x^2y + 4y = x^2 - 4$	*M1	For clearing denominator and expanding brackets. If swap variables first, look for $y^2x + 4x = y^2 - 4$.
	$x^{2}y - x^{2} = -4y - 4$ leading to $x^{2}(1 - y) = 4y + 4$ leading to $x^{2} =$	DM1	For making x^2 the subject. If swap variables first, look for $y^2(1-x)=4x+4 \Longrightarrow y^2=$
	$x^{2} = \frac{4y+4}{1-y}$ leading to $x = \sqrt{\frac{4y+4}{1-y}}$ leading to $[f^{-1}(x)] = \sqrt{\frac{4x+4}{1-x}}$	A1	OE e.g. $\sqrt{\frac{-4x-4}{x-1}}$ without \pm in final answer.
	Alternative method for Q6(a)		
	$x = \frac{y^2 - 4}{y^2 + 4}$ leading to $x = 1 - \frac{8}{y^2 + 4}$ leading to $x - 1 = \frac{-8}{y^2 + 4}$	*M1	For division and reaching $x - 1 =$ (or $y - 1 =$)
	$y^{2} + 4 = \frac{-8}{x-1}$ leading to $y^{2} = \frac{-8}{x-1} - 4$	DM1	For making $y^2(\text{ or } x^2)$ the subject.
	$[y=][f^{-1}(x)] = \sqrt{\frac{-8}{x-1}-4}$	A1	OE without \pm in final answer.
	22	3	
	·satpre?		·
9709/11

Question	Answer	Marks	Guidance
6(b)	$1 - \frac{8}{x^2 + 4} = \frac{x^2 + 4}{x^2 + 4} - \frac{8}{x^2 + 4} \left[= \frac{x^2 + 4 - 8}{x^2 + 4} \right] = \frac{x^2 - 4}{x^2 + 4}$	M1 A1	Using common denominator or division to reach 1. Remainder –8. WWW
	0 < f(x) < 1	B1 B1	B1 for each correct inequality. B0 if contradictory statement seen. Accept $f(x) > 0$, $f(x) < 1$; $1 > f(x) > 0$; $(0, 1)$ SC B1 for $0 \le f(x) \le 1$.
	6	4	
6(c)	Because the range of f does not include the whole of the domain of f (or any of it)	B1	Accept an answer that includes an example outside the domain of f, e.g. $f(4) = \frac{12}{20}$. Must refer to the domain or > 2. Need not explicitly use the term 'domain' but must not refer just to the range.
		1	

Question	Answer	Marks	Guidance
7(a)	$(3x-2)^{\frac{1}{2}} = \frac{1}{2}x+1 \Longrightarrow 3x-2 = \left(\frac{1}{2}x+1\right)^2 = \frac{1}{4}x^2+x+1$	M1	Equating curve and line, attempt to square; $\frac{1}{4}x^2 + 1$ M0
	$\Rightarrow \frac{1}{4}x^2 - 2x + 3[=0] [\Rightarrow x^2 - 8x + 12 = 0] \Rightarrow (x-6)(x-2)[=0]$	M1	Forming and solving a 3TQ by factorisation, formula or completing the square – see guidance.
	(2, 2) and (6, 4)	A1 A1	A1 for each point, or A1 A0 for two correct <i>x</i> -values. If M0 for solving, SC B2 possible: B1 for each point or B1 B0 for two correct <i>x</i> -values.
		4	

9709/11

Question	Answer	Marks	Guidance
7(b)	Area = $\pm \int_{[2]}^{[6]} \left((3x-2)^{\frac{1}{2}} - \left(\frac{1}{2}x+1\right) \right) [dx]$	*M1	For intention to integrate and subtract (M0 if squared).
	$\pm \left[\frac{2}{9}(3x-2)^{\frac{3}{2}} - \left(\frac{1}{4}x^{2} + x\right)\right]_{2}^{6}$	B1 B1	B1 for each bracket integrated correctly (in any form).
	$\pm \left(\left[\frac{2}{9} (16)^{\frac{3}{2}} - \left(\frac{1}{4} \times 36 + 6 \right) \right] - \left[\frac{2}{9} (4)^{\frac{3}{2}} - \left(\frac{1}{4} \times 4 + 2 \right) \right] \right)$	DM1	\pm (F(<i>their</i> 6) – F(<i>their</i> 2)) with <i>their</i> integral. Allow 1 sign error.
	$\frac{4}{9}$	A1	AWRT 0.444.
			SCI BI for $-11 \text{ * MI BI BI DM0}$.
			SC2 B1 for $\frac{4}{9}$ if *M1 B0 B0 DM0, provided limits
			stated.
	Alternative method for question 7(b)		
	Area = $\pm \int_{[2]}^{[6]} (3x-2)^{\frac{1}{2}} [dx]$ - area of trapezium (or triangle + rectangle)	*M1	For intention to integrate and subtract (M0 if squared).
	$\pm \left[\frac{2}{9}(3x-2)^{\frac{3}{2}}\right]_{2}^{6} - 4\left(\frac{2+4}{2}\right) \text{or} \pm \left[\frac{2}{9}(3x-2)^{\frac{3}{2}}\right]_{2}^{6} - \left(\frac{2+4}{2}+(2\times4)\right)$	B1 B1 FT	B1 for bracket integrated correctly (in any form). B1 FT for using correct formula with <i>their</i> values.
	$\pm \left(\left(\frac{2}{9} (16)^{\frac{3}{2}} - \frac{2}{9} (4)^{\frac{3}{2}} \right) - 12 \right)$	DM1	\pm (F(<i>their</i> 6) – F(<i>their</i> 2)) using <i>their</i> integral. Allow 1 sign error.

9709/11

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2022

Question	Answer	Marks	Guidance
7(b)	4	A1	AWRT 0.444.
	9		SC1 B1 for $\frac{4}{9}$ if *M1 B1 B1 DM0.
			SC2 B1 for $\frac{4}{9}$ if *M1 B0 B0 DM0, provided limits
			stated.
	PR	5	

9709/11

8(a) EITHER (1){Translation} $\binom{\{30^\circ\}}{\{0\}}$ OR (2){Translation} $\binom{\{60^\circ\}}{\{0\}}$ B2,1,0 B2 for fully correct, B1 with two elements correct. { } indicates different elements. Accept angle in radians. (3){Stretch} {factor 2} {in x-direction} B2,1,0 B2 for fully correct, B1 with two elements correct. { } indicates different elements. Accept angle in radians. (4) Stretch factor 4 in y-direction and correct order B1 Stretch, y-direction and factor and correct order. Correct order is either (1) then (3) or (3) then (2). (4) can be anywhere in the sequence. 8(b) $4\sin(\frac{1}{2}x-30^\circ)=2\sqrt{2}\Rightarrow\sin^{-1}(\frac{\sqrt{2}}{2})[=45]$ M1 SOI $\frac{1}{2}x-30=45$ or $135\Rightarrow x=2(45+30)$ or $x=2(135+30)$ M1 SOI. The M marks are independent. $x=150^\circ, x=330^\circ$ A1 Both exact values, condone $\frac{5\pi}{6}, \frac{11\pi}{6}, -$ A0 if extra solutions in the interval. Ignore other solutions on the interval.	Question	Answer	Marks	Guidance
(3) {Stretch} {factor 2} {in x-direction}B2,1,0B2 for fully correct, B1 with two elements correct. {} indicates different elements.(4) Stretch factor 4 in y-direction and correct orderB1Stretch, y-direction and factor and correct order. Correct order is either (1) then (3) or (3) then (2). (4) can be anywhere in the sequence.8(b) $4\sin(\frac{1}{2}x-30^{\circ})=2\sqrt{2}\Rightarrow\sin^{-1}(\frac{\sqrt{2}}{2})[=45]$ M1SOI $\frac{1}{2}x-30=45$ or $135\Rightarrow x=2(45+30)$ or $x=2(135+30)$ M1SOI. The M marks are independent. $x=150^{\circ}, x=330^{\circ}$ A1Both exact values, condone $\frac{5\pi}{6}, \frac{11\pi}{6}$. A0 if extra solutions in the interval. Impore other solutions outside $[0^{\circ}, 30^{\circ}]$	8(a)	EITHER (1){Translation} $\begin{pmatrix} \{30^\circ\}\\ \{0\} \end{pmatrix}$ OR (2){Translation} $\begin{pmatrix} \{60^\circ\}\\ \{0\} \end{pmatrix}$	B2,1,0	B2 for fully correct, B1 with two elements correct.{ } indicates different elements.Accept angle in radians.
(4) Stretch factor 4 in y-direction and correct orderB1Stretch, y-direction and factor and correct order. Correct order is either (1) then (3) or (3) then (2). (4) can be anywhere in the sequence.8(b) $4\sin(\frac{1}{2}x-30^{\circ})=2\sqrt{2} \Rightarrow \sin^{-1}(\frac{\sqrt{2}}{2})[=45]$ M1SOI $\frac{1}{2}x-30=45$ or $135 \Rightarrow x=2(45+30)$ or $x=2(135+30)$ M1SOI. The M marks are independent. $x=150^{\circ}, x=330^{\circ}$ A1Both exact values, condone $\frac{5\pi}{6}, \frac{11\pi}{6}$. A0 if extra solutions in the interval. Immere other solutions outside $[0,300^{\circ}]$		(3){Stretch} {factor 2} {in x-direction}	B2,1,0	B2 for fully correct, B1 with two elements correct. { } indicates different elements.
8(b) $4\sin\left(\frac{1}{2}x-30^{\circ}\right)=2\sqrt{2}\Rightarrow\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)[=45]$ M1SOI $\frac{1}{2}x-30=45 \text{ or } 135 \Rightarrow x=2(45+30) \text{ or } x=2(135+30)$ M1SOI. The M marks are independent. $x=150^{\circ}, x=330^{\circ}$ A1Both exact values, condone $\frac{5\pi}{6}, \frac{11\pi}{6}$. A0 if extra solutions in the interval. Ignore other solutions outside $[0^{\circ}, 360^{\circ}]$		(4) Stretch factor 4 in y-direction and correct order	B1	 Stretch, <i>y</i>-direction and factor and correct order. Correct order is either (1) then (3) or (3) then (2). (4) can be anywhere in the sequence.
8(b) $4\sin\left(\frac{1}{2}x-30^{\circ}\right) = 2\sqrt{2} \Rightarrow \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) [=45]$ M1 SOI $\frac{1}{2}x-30 = 45 \text{ or } 135 \Rightarrow x = 2(45+30) \text{ or } x = 2(135+30)$ M1 SOI. The M marks are independent. $x = 150^{\circ}, x = 330^{\circ}$ A1 Both exact values, condone $\frac{5\pi}{6}, \frac{11\pi}{6}$. A0 if extra solutions in the interval. Unore other solutions outside $[0^{\circ}, 360^{\circ}]$			5	
$\frac{1}{2}x - 30 = 45$ or $135 \Rightarrow x = 2(45 + 30)$ or $x = 2(135 + 30)$ M1SOI. The M marks are independent. $x = 150^\circ, x = 330^\circ$ A1Both exact values, condone $\frac{5\pi}{6}, \frac{11\pi}{6}$. A0 if extra solutions in the interval. Ignore other solutions outside $[0^\circ, 360^\circ]$	8(b)	$4\sin\left(\frac{1}{2}x - 30^\circ\right) = 2\sqrt{2} \Longrightarrow \sin^{-1}\left(\frac{\sqrt{2}}{2}\right) [= 45]$	M1	SOI
$x = 150^\circ, x = 330^\circ$ A1Both exact values, condone $\frac{5\pi}{6}, \frac{11\pi}{6}$. A0 if extra solutions in the interval. Ignore other solutions outside $\begin{bmatrix} 0^\circ, 360^\circ \end{bmatrix}$		$\frac{1}{2}x - 30 = 45 \text{ or } 135 \implies x = 2(45 + 30) \text{ or } x = 2(135 + 30)$	M1	SOI. The M marks are independent.
A0 if extra solutions in the interval. Ignore other solutions outside $\begin{bmatrix} 0^\circ, 360^\circ \end{bmatrix}$		$x = 150^{\circ}, x = 330^{\circ}$	A1	Both exact values, condone $\frac{5\pi}{6}, \frac{11\pi}{6}$.
Ignore other solutions outside 0°.360°		3		A0 if extra solutions in the interval.
		24	0	Ignore other solutions outside $[0^\circ, 360^\circ]$.
satpre? 3		·satpreP	3	

Question	Answer	Marks	Guidance
9(a)	Express as $(x+3)^2 + (y-1)^2 = 26 + 9 + 1[=36]$	M1	Completing the square on x and y or using the form $x^2+y^2+2gx+2fy+c=0$, centre $(-g,-f)$ and radius $\sqrt{g^2+f^2-c}$. SOI by correct answer.
	Centre (-3, 1)	B 1	
	Radius 6	B 1	
	So lowest point is $(-3, -5)$	A1 FT	FT on <i>their</i> centre and <i>their</i> radius.
		4	
9(b)	Intersects when $x^2 + (kx-5)^2 + 6x - 2(kx-5) - 26 = 0$ or $(x+3)^2 + (kx-5-1)^2 = 36$	*M1	Substituting $y = kx - 5$ into <i>their</i> circle equation or rearranging and equating <i>y</i> .
	$x^{2} + k^{2}x^{2} - 10kx + 25 + 6x - 2kx + 10 - 26 = 0$ or $x^{2} + 6x + 9 + k^{2}x^{2} - 12kx + 36 = 36$ leading to $k^{2}x^{2} + x^{2} + 6x - 12kx + 9[=0]$ or $(k^{2} + 1)x^{2} + (6 - 12k)x + 9[=0]$	DM1 A1	Rearranging to 3-term quadratic (terms grouped, all on one side). Allow 1 error. Correct quadratic (need to see 9 as constant term).
	$(6-12k)^2 - 4(k^2+1) \times 9 [>0]$ [leading to $144k^2 - 144k + 36 - 36k^2 - 36 > 0$]	DM1	Using discriminant $b^2 - 4ac [> 0]$ with <i>their</i> values. Allow if in square root.
	$[108k^2 - 144k = 0 \text{ leading to}] k = 0 \text{ or } k = \frac{4}{3}$	A1	Need not see method for solving.
	$k < 0, k > \frac{4}{3}$	A1	Do not accept $\frac{4}{3} < k < 0$.
		6	

9709/11

Question	Answer	Marks	Guidance
10(a)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6\left(-1\right)^2 - \frac{4}{\left(-1\right)^3} > 0 \therefore \text{ minimum or } \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 10 \therefore \text{ minimum}$	B1	Sub $x = -1$ into $\frac{d^2 y}{dx^2}$, correct conclusion. WWW
		1	
10(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^3 + \frac{2}{x^2} [+c]$	*M1	Integrating $\frac{d^2 y}{dx^2}$ (at least one term correct).
	0 = -2 + 2 + c leading to $c = [0]$	DM1	Substituting $x = -1$, $\frac{dy}{dx} = 0$ (need to see) to evaluate c. DM0 if simply state $c = 0$ or omit +c.
	$y = \frac{1}{2}x^4 - \frac{2}{x} + (their c)x + k$	A1 FT	Integrated. FT <i>their</i> non-zero value of C if DM1 awarded.
	$\frac{9}{2} = \frac{1}{2} + 2 + k$ leading to $k = [2]$	DM1	Substituting $x = -1$, $y = \frac{9}{2}$ to evaluate k (dep on *M1).
	$y = \frac{1}{2}x^4 - \frac{2}{x} + 2$	A1	OE e.g. $2x^{-1}$ or $\frac{4}{2}$.
			A0 (wrong process) if c not evaluated but correct answer obtained.
	4. SatoreP	5	
10(c)	$\frac{dy}{dx} = 2x^3 + \frac{2}{x^2} = 0$	M1	Their $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$.
	Leading to $x^5 = -1$	M1	Reaching equation of the form $x^5 = a$.
	So only stationary point is when $x = -1$	A1	x = -1 and stating e.g. 'only' or 'no other solutions.
		3	

May/June 2022

Question	Answer	Marks	Guidance
10(d)	At $x = 1$, $\frac{\mathrm{d}y}{\mathrm{d}x} = [4]$	*M1	Substituting $x = 1$ into their $\frac{dy}{dx}$.
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}y} \times \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{4} \times 5$	DM1	OE Using chain rule correctly SOI.
	$\frac{5}{4}$	A1	OE e.g. 1.25.
	9	3	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/12 May/June 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then
	no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. .
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

9709/12

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	Coefficient of $x^4 = 15$	B1	Condone inclusion of x^4 . Can be seen as part of an expansion.
	Coefficient of $x^2 = 240a^2$	B1	Condone inclusion of x^2 . Can be seen as part of an expansion.
	<i>'Their</i> 240' <i>a</i> ² – <i>'their</i> 15'	M1	Forming an equation of the form $pa^2 = q$, where <i>p</i> and <i>q</i> are constants. Condone inclusion of powers of <i>x</i> as long as they then disappear.
	$a = \frac{1}{4}$ or 0.25	A1	OE Do not condone extra 'answer' of $-\frac{1}{4}$, or allow $\sqrt{\frac{1}{16}}$ or similar.
		4	

Question	Answer	Marks	Guidance
2	<i>r</i> = 0.8	B 1	OE
	<i>a</i> = 12.5	B1	OE
	$S_{\infty} = 12.5 \div (1 - 0.8)$	M1	Using $\frac{a}{1-r}$ with ' <i>their a</i> ' and ' <i>their r</i> ' but $ r $ must be < 1.
	$S_{\infty} = \frac{125}{2}, 62\frac{1}{2}$ or 62.5	A1	$\frac{12\frac{1}{2}}{\frac{1}{5}}$ or similar does not get A1.
		4	

Question	Answer	Marks	Guidance
3	$\left[y=\right]\left\{\frac{3(4x-7)^{\frac{3}{2}}}{\frac{3}{2}\times4}\right\} + \left\{-\frac{4}{\frac{1}{2}}x^{\frac{1}{2}}\right\}\left[\Rightarrow\frac{1}{2}(4x-7)^{\frac{3}{2}}-8x^{\frac{1}{2}}\right]\left[+c\right]$	B1 B1	Marks can be awarded for correct unsimplified expressions ISW.
	$\frac{5}{2} = \frac{1}{2} (9)^{\frac{3}{2}} - 8 \times 4^{\frac{1}{2}} + c [\Rightarrow c = 5]$	M1	Using $(4, \frac{5}{2})$ in an integrated expression (defined by at least one correct power) including + <i>c</i> .
	$y = \frac{3}{6} (4x - 7)^{\frac{3}{2}} - 8x^{\frac{1}{2}} + 5.$	A1	Condone $c = 5$ as their final line if either $y = \text{ or } f(x) = \text{ seen}$ elsewhere in the solution. Coefficients must not contain unresolved double fractions.
		4	

Question	Answer	Marks	Guidance
4(a)	$2 \times 6k = k + k + 6$ or $6k - k = k + 6 - 6k$ or $2d = 6$ leading to $d = 3$, $\therefore 6k - 3 = k$	B1	OE A correct equation in k only. Can be implied by correct final answer.
	$k = \frac{6}{10}$ or 0.6	B1	OE
	Satpr	e (2	

9709/12

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2022

Question	Answer	Marks	Guidance
4(b)	<i>d</i> = 3	B1	Correct value of d can be implied by a correct final answer. Working may be seen in part (a) but must be used in (b).
	$S_{30} = \frac{30}{2} \left(2 \times \text{`their } k\text{'} + 29 \times \text{`their } d\text{'} \right)$	M1	It needs to be clear that the candidate is using a correct sum formula. There is no requirement to check the candidates working for d but it must be clearly identified.
	$S_{30} = 1323$	A1	ISW if corrected to 1320.
		3	

9709/12

May/June 2022

Question	Answer	Marks	Guidance	
5(a)	$4 \times 0^2 - 0 + \frac{1}{2}k^2 = 0 - a$	M1	Equating the equations of curve and line and substituting $x = 0$. Condone slight errors e.g. \pm sign errors.	
	$4 \times \left(\frac{3}{4}\right)^2 - \frac{3}{4}k + \frac{1}{2}k^2 = \frac{3}{4} - a$	M1	Equating the equations of curve and line and substituting $x = \frac{3}{4}$. Condone slight errors e.g. \pm sign errors.	
	k = 2, a = -2	A1 A1	www	
	Alternative method for question 5(a)			
	$(x-0)\left(x-\frac{3}{4}\right) = 0 \text{ or } x(4x-3) = 0 \implies 4x^2 - 3x = 0$	*M1	Use 0, $\frac{3}{4}$ to form a quadratic equation. Do not allow	
			$\left(x+0\right)\left(x+\frac{3}{4}\right)=0.$	
	$4x^2 - kx + \frac{1}{2}k^2 = x - a$ leading to $4x^2 - (k+1)x + \frac{1}{2}k^2 + a[=0]$	DM1	Equating the equations of curve and line and rearranging so that terms are all on same side. Condone slight errors e.g. \pm sign errors.	
	k = 2, a = -2	A1 A1	WWW	
	Alternative method for question 5(a)		.5	
	$-\frac{b}{a} = \frac{3}{4} + 0$ and $\frac{c}{a} = 0 \times \frac{3}{4}$	*M1	Using sum and product of roots. Condone \pm sign errors.	
	$\frac{k+1}{4} = \frac{3}{4}$ and $\frac{\frac{1}{2}k^2 + a}{4} = 0$	DM1	Equating the equations of curve and line and equating to $\frac{3}{4}$ and 0.	
	k = 2, a = -2	A1 A1	WWW	
		4		

Question	Answer	Marks	Guidance
5(b)	$4x^{2} - kx + \frac{1}{2}k^{2} = x + \frac{7}{2} \implies 4x^{2} - kx - x + \frac{1}{2}k^{2} - \frac{7}{2}[=0]$	*M1	OE Substitute $a = -\frac{7}{2}$ and rearrange so that terms are all on same
			side, condone \pm sign errors. Watch for multiples.
	$(k+1)^2 - 4 \times 4\left(\frac{1}{2}k^2 - \frac{7}{2}\right)$	*DM1	Use of $b^2 - 4ac$ with the coefficients from <i>their</i> 3-term quadratic. Both coefficients 'b' and 'c' must consist of two components.
	$\Rightarrow 7k^2 - 2k - 57$	A1	OE
	(k-3)(7k+19) or other valid method	DM1	Factorising or use of the formula or completing the square. Must be evidence of an attempt to solve for this mark. Dependent upon both previous method marks.
	$k = 3, k = -\frac{19}{7}$	A1	OE e.g. AWRT – 2.71. No ISW if inequalities used. SC: If second DM1 not scored, SC B1 available for correct final answers.
	Alternative method for question 5(b)		
	$8x - k = 1$ and $4x^2 - kx + \frac{1}{2}k^2 = x + \frac{7}{2}$	*M1	Equating gradients and equating line and curve.
	$4x^{2} - (8x - 1)x + \frac{1}{2}(8x - 1)^{2} = x + \frac{7}{2} \text{or}$	*DM1	Forming an equation in x or k only.
	$4\left(\frac{k+1}{8}\right)^2 - k\left(\frac{k+1}{8}\right) + \frac{1}{2}k^2 = \frac{k+1}{8} + \frac{7}{2}$	eP	
	$28x^2 - 8x - 3 \text{ or } 7k^2 - 2k - 57$	A1	OE A correct 3 term quadratic in x or k only.
	(14x+3)(2x-1) or $(k-3)(7k+19)$ or other valid method	DM1	OE Factorising or use of the formula or completing the square. Must be evidence of an attempt to solve for this mark. Dependent upon both previous method marks.

Question	Answer	Marks	Guidance
5(b)	$k = 3, k = -\frac{19}{7}$	A1	OE e.g. AWRT -2.71 . No ISW if inequalities used. SC: If second DM1 not scored, SC B1 available for correct final answers.
		5	

Question	Answer	Marks	Guidance
6	Line meets curve when: $2x + 2 = 5x^{\frac{1}{2}}$ leading to $2x - 5x^{\frac{1}{2}} + 2[=0]$ or $4x^2 + 8x + 4 = 25x$ leading to $4x^2 - 17x + 4[=0]$ or $x = \frac{y^2}{25}$ leading to $2y^2 - 25y + 50[=0]$	M1	Equating line and curve and rearranging so that terms are all on same side, condone sign errors, and making a valid attempt to solve by factorising, using the formula or completing the square. Factors are: $(2x^{\frac{1}{2}} - 1)(x^{\frac{1}{2}} - 2), (4x-1)(x-4)$ and $(2y-5)(y-10)$.
	$x = \frac{1}{4}, x = 4$	A1	SC: If M1 not scored, SC B1 available for correct answers, could just be seen as limits.
	Area = $\int 5x^{\frac{1}{2}} - (2x+2)dx = \int 5x^{\frac{1}{2}} - 2x - 2 dx$	*M1	Intention to integrate and subtract areas. Condone missing brackets and/or subtraction wrong way around.
	$= \left[\frac{10}{3}x^{\frac{3}{2}} - x^2 - 2x\right]_{\frac{1}{4}}^4 = \left(\left(\frac{10}{3} \times 8 - 16 - 8\right) - \left(\frac{10}{3} \times \frac{1}{8} - \frac{1}{16} - \frac{1}{2}\right)\right)$	DM1	Integrating $(kx^{\frac{3}{2}} \text{ seen})$ and substituting ' <i>their</i> points of intersection' (but limits need to be found, not assumed to be 0 and something else).
	$\frac{45}{16}$ or $2\frac{13}{16}$ or 2.8125	A1	OE exact answer. Condone $-\frac{45}{16}$ if corrected to $\frac{45}{16}$. A0 for inclusion of π . SC: If *M1 DM0 scored, SC B1 available for correct answer.

May/June 2022

Question	Answer	Marks	Guidance
6	Alternative method for question 6		
	Line meets curve when: $2x + 2 = 5x^{\frac{1}{2}} \Rightarrow 2x - 5x^{\frac{1}{2}} + 2[=0]$ or $4x^2 + 8x + 4 = 25x \Rightarrow 4x^2 - 17x + 4[=0]$ or $x = \frac{y^2}{25} \Rightarrow 2y^2 - 25y + 50[=0]$	M1	Equating line and curve and rearranging so that terms are all on same side, condone sign errors, and making a valid attempt to solve by factorising, using the formula or completing the square. Factors are: $(2x^{\frac{1}{2}}-1)(x^{\frac{1}{2}}-2), (4x-1)(x-4)$ and $(2y-5)(y-10)$.
	$x = \frac{1}{4}, x = 4$	A1	SC: If M1 not scored, SC B1 available for correct answers, could just be seen as limits.
	Area = $\int 5x^{\frac{1}{2}} dx - \{ \int (2x+2)dx \text{ or area of trapezium} \}$	*M1	Intention to integrate and subtract areas. Or integrate curve and subtract area of trapezium.
	$\begin{bmatrix} \frac{10}{3}x^{\frac{3}{2}} \end{bmatrix}_{\frac{1}{4}}^{4} - \left\{ \begin{bmatrix} x^{2} + 2x \end{bmatrix}_{\frac{1}{4}}^{4} or \frac{1}{2} (\text{sum of `their y values'}) `their \frac{15}{4}, \right\}$ $= \left(\left(\frac{10}{3} \times 8 \right) - \left(\frac{10}{3} \times \frac{1}{8} \right) \right) - \left\{ \left((16 + 8) - \left(\frac{1}{16} + \frac{1}{2} \right) \right) or \frac{1}{2} \left(\frac{5}{2} + 10 \right) \frac{15}{4} \right\}$	DM1	Integrating $(kx^{\frac{3}{2}} \text{ seen})$ and substituting ' <i>their</i> points of intersection' (but limits need to be found, not assumed to be 0 and something) or a trapezium using the correct formula (' <i>their</i> $\frac{15}{4}$ ' must be ' <i>their</i> 4' - ' <i>their</i> $\frac{1}{4}$ ' but not 0).
	$\frac{45}{16}$ or $2\frac{13}{16}$ or 2.8125	Al	OE exact answer. Condone $-\frac{45}{16}$ if corrected to $\frac{45}{16}$. A0 for inclusion of π . SC: If *M1 DM0 scored, SC B1 available for correct answer.
		5	

9709/12

Question	Answer	Marks	Guidance	
7(a)	$\left[A\hat{O}B=\right]\frac{2}{10}$	B1	OE Sight of 0.2 from $s = r\theta$ but $10\theta = 2$ is not enough. ISW if $\frac{2}{10} = \frac{\pi}{5}$.	
	$[B\hat{O}C =]\frac{5\pi+6}{30} \text{ or } \frac{1}{6}\pi+0.2$	B1	OE e.g. 0.724° AWRT or 41.5 degrees AWRT. But not $\frac{2 + \frac{5\pi}{3}}{10}$ – fraction within a fraction. ISW incorrect simplifications.	
	Alternative method for question 7(a)			
	OR [Arc AC =] $\frac{10\pi}{6}$ or [Arc BC =] $\frac{10\pi}{6}$ + 2 or 7.2	B1	AWRT. Sight of $\frac{10\pi}{6}$ or 5.2 or 7.2.	
	$[B\hat{O}C =]\frac{5\pi+6}{30} \text{ or } \frac{1}{6}\pi+0.2$	B1	OE e.g. 0.724° AWRT or 41.5 degrees AWRT. But not $\frac{2 + \frac{5\pi}{3}}{10}$ – fraction within a fraction. ISW incorrect simplifications.	
	Z	2		
Satprep.				

Question	Answer	Marks	Guidance
7(b)	$[BP] = 10\sin\left(\frac{5\pi+6}{30}\right) \text{ and } [OP] = 10\cos\left(\frac{5\pi+6}{30}\right)$ [= 6.6208] and [= 7.494] OR [BP] = $10\sin\left(\frac{5\pi+6}{30}\right)$ and [O \hat{B} P] = $\left(\frac{5\pi-3}{15}\right)$ [= 6.6208] and [= 0.84719]	M1	OE Any correct method for both lengths, for <i>their</i> angle BOC (which may have been incorrectly 'simplified' but not 0.2) or length BP and O \hat{B} P. May be seen as part of $\frac{1}{2}ab\sin C$. Sight of correct method enough. Can be implied by the next A1.
	Area of $\triangle OBP = \frac{1}{2} \times 10 \sin\left(\frac{5\pi+6}{30}\right) \times 10 \cos\left(\frac{5\pi+6}{30}\right)$ or $\frac{1}{2} \times 10 \times 10 \sin\left(\frac{5\pi+6}{30}\right) \times \sin\left(\left(\frac{5\pi-3}{15}\right)\right)$ [=24.809]	A1	OE Can be implied by any answer in range (24.7, 24.9) or a final answer in the range (11.3, 11.5) WWW.
	$[\text{Sector } BOC] = \frac{1}{2} \times 10^2 \times their \left(\frac{5\pi + 6}{30}\right)$ $\left[= 50\left(\frac{5\pi + 6}{30}\right) = 36.1799 \right]$	M1	Use of $\frac{1}{2}r^2\theta$ with <i>their</i> angle BOC (may have been incorrectly 'simplified' but not 0.2).
	Area of region $BPC = 11.4$	A1	САО
	2. Sator	4	C C
	- cupi		

Question	Answer	Marks	Guidance
8(a)	$1+1+a+b-12 = 0 [\Rightarrow a+b=10] 4+36+2a-6b-12 = 0 [\Rightarrow 2a-6b=-28]$	B1 B1	B1 for each equation. Allow unsimplified. Can be implied by correct values for a and b .
	a = 4, b = 6	B1	
	Centre is $\left(-\frac{their a}{2}, -\frac{their b}{2}\right)$ [-2, -3]	B1 FT	Or $x = -2, y = -3$
	6	4	

Question	Answer	Marks	Guidance
8(b)	Gradient of AC is $\frac{1-their y}{1-their x} \begin{bmatrix} 1 & -3 \\ 1 & -2 \end{bmatrix} = \frac{1+3}{1+2} = \frac{4}{3}$	*M1	Using <i>their</i> centre correctly.
	Gradient of tangent is $=\frac{-1}{their\frac{4}{3}}\left[=-\frac{3}{4}\right]$	A1 FT	Use of $m_1m_2 = -1$ to obtain the gradient of the tangent.
	Equation: $y-1 = 'their - \frac{3}{4}(x-1)$ or $y = -\frac{3}{4}x + \frac{7}{4}$	DM1	Using $(1,1)$ with <i>their</i> gradient of the tangent at <i>A</i> .
	3x + 4y = 7 or $4y + 3x = 7$. or integer multiples of these	A1	
	Alternative method for question 8(b)		
	$2x + 2y\frac{dy}{dx} + 4 + 6\frac{dy}{dx} = 0$	*M1	Implicit differentiation with at least one <i>y</i> term differentiated correctly.
	$8\frac{dy}{dx} = -6 \Longrightarrow \frac{dy}{dx} = -\frac{6}{8}$	A1	
	Equation: $y-1 = 'their - \frac{3}{4}'(x-1)$ or $y = -\frac{3}{4}x + \frac{7}{4}$	DM1	Using $(1,1)$ with <i>their</i> gradient of the tangent at <i>A</i> .
	3x + 4y = 7 or $4y + 3x = 7$. or integer multiples of these	A1	
	Alternative method for question 8(b)	OF	
	$\frac{dy}{dx} = \frac{1}{2} \left\{ 25 - (x+2)^2 \right\}^{-\frac{1}{2}} \left(-2x - 4 \right)$	*M1	Rearranging to form $y =$ and differentiating using the chain rule.
	$\frac{dy}{dx} = \frac{1}{2}(25-9)^{-\frac{1}{2}}(-6) = -\frac{6}{8}$	A1	

Question	Answer	Marks	Guidance		
8(b)	Equation: $y-1 = `their - \frac{3}{4}`(x-1) \text{ or } y = -\frac{3}{4}x + \frac{7}{4}$	DM1	Using $(1,1)$ with <i>their</i> gradient of the tangent at A.		
	3x + 4y = 7 or $4y + 3x = 7$. or integer multiples of these	A1			
		4			
L					

Question	Answer	Marks	Guidance
9(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \{3\} + \left\{-4 \times \frac{1}{2}(3x+1)^{-\frac{1}{2}} \times 3\right\} \left[=3 - 6(3x+1)^{-\frac{1}{2}}\right]$	B1 B1	Correct differentiation of $3x + 1$ and no other terms and correct differentiation of $-4(3x+1)^{\frac{1}{2}}$. Accept unsimplified.
	$\left[\frac{d^2 y}{dx^2}\right] - \frac{1}{2} \times -6(3x+1)^{-\frac{3}{2}} \times 3 \left[=9(3x+1)^{-\frac{3}{2}}\right]$	B1	WWW. Accept unsimplified. Do not award if $\frac{dy}{dx}$ is incorrect.
		3	
9(b)	$\frac{dy}{dx} = 0$ leading to $3 - 6(3x+1)^{-\frac{1}{2}} = 0$	M1	Setting their $\frac{dy}{dx} = 0.$
	$(3x+1)^{\frac{1}{2}} = 2 \Longrightarrow 3x+1=4$ leading to $x=1$	A1	CAO – do not ISW for a second answer.
	y = -4 [coordinates (1, -4)]	A1	Condone inclusion of second value from a second answer.
	$\frac{d^2 y}{dx^2} = 9(3 \times 1 + 1)^{-\frac{3}{2}} = \frac{9}{8} \text{ or } > 0 \text{ so minimum}$	A1	Some evidence of substitution needed but $\frac{d^2 y}{dx^2}$. Do not award if
			$\frac{d^2 y}{dx^2}$ is incorrect or wrongly evaluated. Accept correct consideration of gradients either side of $x = 1$.
		4	

9709/12

Question	Answer	Marks	Guidance
10(a)	$x \neq 1 \text{ or } x < 1, x > 1 \text{ or } (-\infty, 1), (1, \infty)$ $[x \in \mathbb{R}]$	B1	Must be x not $f^{-1}(x)$ or y. Do not accept $1 < x < 1$.
		1	
10(b)	$y = \frac{2x+1}{2x-1}$ leading to $(2x-1)y = 2x+1$ leading to $2xy - y = 2x+1$	*M1	Setting $y =$, removing fraction and expanding brackets.
	2xy - 2x = y + 1 leading to $2x(y - 1) = y + 1$	DM1	Reorganising to get $x =$. Condone \pm sign errors only.
	leading to $x = \frac{y+1}{2(y-1)}$		
	$[f^{-1}(x)] = \frac{x+1}{2(x-1)}, \ \frac{x+1}{x-1} \times \frac{1}{2} \text{or} \frac{1}{x-1} + \frac{1}{2}$	A1	OE. Must be in terms of x. Do not allow $\frac{x+1}{x-1} \div 2$.
		3	
10(c)	(<i>their</i> $f^{-1}(3)$) leading to (<i>their</i> $f^{-1}(3)$) ² + 4 [$f^{-1}(3) = 1, 1 + 4 =$]	M 1	Correct order of operations and substitution of $x = 3$ needed.
	5	A1	
	ž	2	.5
10(d)	Sight of 'not one to one' or 'many to one' or 'one to many'	B1	Any reason mentioning 2 values, or + and — , such as: square root gives 2 values or horizontal line test crosses curve twice or 2 values because of turning point or 2 values because it is a quadratic.
		1	

Question	Answer	Marks	Guidance
10(e)	$f(x) = 1 + \frac{2}{2x-1} = \frac{2x-1}{2x-1} + \frac{2}{2x-1} = \frac{2x+1}{2x-1}$	B 1	AG Do not condone equating expressions and verification.
	f'(x) = -4(2x-1) ⁻² or 2(2x-1) ⁻¹ + {-(2x+1)2(2x-1) ⁻² } or $\frac{(2x-1)2-2(2x+1)}{(2x-1)^2}$	*M1	For $k(2x-1)^{-2}$ and no other terms or correct use of the product or quotient rule then ISW.
	Gradient $m = -4$	A1	Differentiation must have clearly taken place.
	Equation of tangent is $y-3 = -4(x-1)$ [$\Rightarrow y = -4x+7$]	DM1	Using $(1, 3)$ in the equation of a line with <i>their</i> gradient.
	Crosses axes at $\left(\frac{7}{4}, 0\right)$ and $(0, 7)$	A1 FT	SOI from <i>their</i> straight line or by integration from 0 to ' <i>their</i> 7/4'.
	$[Area =] \frac{49}{8}$	A1	OE e.g. 6.13 AWRT. If M0 A0 DM0, SC B2 available for correct answer.
		6	

9709/12

Question	Answer	Marks	Guidance
11(a)	$4\cos^{4} x + \cos^{2} x - 3 = 0 \Longrightarrow (4\cos^{2} x - 3)(\cos^{2} x + 1) = 0$	M1	Attempt to solve 3 term quartic (or quadratic in another variable).
	$\Rightarrow \left[\cos^2 x = \right] \frac{3}{4} \left[\cos^2 x = -1\right]$	A1	If M0 scored then SC B1 is available for sight of $\frac{3}{4}$ [and -1].
	$\Rightarrow cosx = [\pm] \sqrt{their \frac{3}{4}} \mathbf{OE} \left[= \pm \frac{\sqrt{3}}{2} \right]$	M1	Square rooting ' <i>their</i> $\cos^2 x$ '. Allow without ±. May be implied by correct final answer(s). Ignore $\sqrt{-1}$.
	$[x=] \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$	A1 A1 FT	Dependent on preceding M1 only. Exact answers needed. A1 for any 2 correct answers A1 A1 for 4 correct answers and no others inside the range $0 \le x \le 2\pi$ A0 A1 FT can be awarded for two exact answers that are $2\pi - their \frac{\pi}{6}$ and $\frac{5\pi}{6}$, within the range $0 \le x \le 2\pi$.
			SC: If all 4 answers given in degrees (30, 150, 210, 330) or non- exact (AWRT 0.524, 2.62, 3.67, 5.76 or 0.167π , 0.833π , 1.17π , 1.83) and no others then SC B1.
		5	

9709/12

May/June 2022

Question	Answer	Marks	Guidance
11(b)	$\cos^2 x = \frac{-1 - \sqrt{1 + 16k}}{8} < 0 [\therefore \text{ no solutions}].$	B1	State that this root is less than 0, needs to be linked to $\cos^2 x$. Can be achieved by substituting a value for $k \ge 0$.
	$[\cos^2 x] = \frac{-1 \pm \sqrt{1 + 16k}}{8}$	*M1	Must use quadratic formula. Allow any value of k but not ± 3 . Condone + rather than \pm .
	Substituting $k = 5$ and obtain 1 from the formula	DM1	Or argue logically if $k > 5 \Rightarrow 1 + 16k > 81 \Rightarrow >1$.
	$\cos^2 x = 1 \text{ or } \cos^2 x > \text{ or } \ge 1$	A1	Needs to be linked to $\cos^2 x$.
	Concluding statement having considered both \pm cases. \therefore no solutions	A1	Dependent upon all previous marks having been scored.
	Alternative method for question 11(b)		
	$\cos^2 x = \frac{-1 - \sqrt{1 + 16k}}{8} < 0 \ [\therefore \text{ no solutions}].$	B1	State that this root is less than 0, needs to be linked to $\cos^2 x$. Can be achieved by substituting a value for $k \ge 0$.
	$[\cos^2 x] = \frac{-1 \pm \sqrt{1 + 16k}}{8}$	*M1	Must use quadratic formula. Allow any value of k but not ± 3 . Condone + rather than \pm .
	$\frac{-1 + \sqrt{1 + 16k}}{8} * 1 \Rightarrow -1 + \sqrt{1 + 16k} * 8 \Rightarrow 1 + 16k * 81$	DM1	* represents any inequality or =.
	k*5 Sator	A	* represents any inequality or =.
	Concluding statement having considered both \pm cases. \therefore no solutions	A1	Dependent upon all previous marks having been scored.
		5	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/13 May/June 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then
	no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. .
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

9709/13

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$4C1 \times p \times \frac{1}{p^3} x^3$	B1	OE soi Can be seen in an expansion.
	$\frac{4}{p^2} = 144$	B1	OE Correct with correct power of p and only one p term.
	$p = \pm \frac{1}{6}$	B1 B1	OE $\pm \frac{2}{12}$ etc. Allow ± 0.167 for B1 B1. SC B1 for $\pm \sqrt{\frac{1}{36}}$ B1 only,
		4	

Question	Answer	Marks	Guidance
2(a)	[<i>p</i> =] 3	B1	
		1	
2(b)	$[q =] \frac{1}{2}$	B1	
	The second	. 1	
2(c)	[<i>r</i> =] -2	B1	
		1	

9709/13

May/June 2022

Question	Answer	Marks	Guidance
3(a)	$\frac{n}{2} \Big[8 + (n-1)d \Big] = 5863 \text{leading to} n \Big[8 + (n-1)d \Big] = 11726$ leading to $(n-1)d = \frac{11726}{n} - 8$	B1	Must show a useful intermediate step. WWW AG.
		1	
3(b)	$4 + (n-1)d = 139$ leading to $\frac{11726}{n} - 8 = 135$	*M1	OE Use of correct u_n formula with expression from (a) or S_n formula to eliminate d .
	$n = \frac{11726}{143} = 82$	A1	
	$81d = \frac{11726}{82} - 8$	DM1	Substitute <i>their</i> n into a correct u_n or S_n formula
	$d = \frac{5}{3}$	A1	Accept $\frac{138}{81}$ OE fraction only If M0 DM0 scored them SC B1 B1 for correct <i>n</i> and <i>d</i> values only.
	Z	4	

Question	Answer	Marks	Guidance
4(a)	$\{(x+1)^2+2(x+1)-5\}+\{3\}$, or $\{(x+1+1)^2\}+\{-6+3\}$	M1 M1	M1 for dealing with $\begin{pmatrix} -1\\ 0 \end{pmatrix}$ and M1 for dealing with $\begin{pmatrix} 0\\ 3 \end{pmatrix}$.
	$[y=]x^2+4x+1$	A1	Answer only given full marks.
		3	

Question	Answer	Marks	Guidance
4(b)	{Stretch} {x direction or horizontally or y-axis invariant} { factor $\frac{1}{2}$ }	B2 , 1, 0	Additional transformation B0.
		2	

Question	Answer	Marks	Guidance
5(a)	$6y + 2 - 7y^{1/2} \ [= 0]$	*M1	OE Rearrange to a 3-term quadratic.
	$\left(2y^{\frac{1}{2}}-1\right)\left(3y^{\frac{1}{2}}-2\right)$ [= 0] or e.g. $(2u-1)(3u-2)$ [= 0]	DM1	Or use of formula or completing the square.
	$[y^{1/2} =]\frac{1}{2}, \frac{2}{3}$	A1	Answers only SC B1 if DM1 not scored.
	$[y=]\frac{1}{4},\frac{4}{9}$	A1	Answers only SC B1 if DM1 not scored.
		4	
5(b)	Use of $\tan x = their y$ values	M1	Must have at least 2 values of y from part (a).
	x = 14[.0], 24[.0], x = 194[.0], 204[.0]	A1 A1 FT	FT for 180 + angle (twice). AWRT
	satprei	3	
6(a) (
---------------------	--	------------	---
$(a) $ {2($2(x-4)^2$ {-9}	B1 B1	OE When a and b stated give priority to marking algebraic expression.
		2	
6(b) <i>y</i> >	> -7	B1	Allow $f(x) > -7$ or $(-7, \infty)$ Don't allow $x > -7$.
	T PR	1	
6(c) (x-	$(x-4)^2 = \frac{y+9}{2}$	M1	2 operations correct. Allow a sign error.
<i>x</i> =	$=4\left[\pm\right]\sqrt{\frac{y+9}{2}}$	M 1	2 operations correct. Allow a sign error.
$[\mathbf{f}^{-1}]$	$^{-1}(x) =]4 - \sqrt{\frac{x+9}{2}}$	A1 FT	OE FT on <i>their</i> answer to (a) i.e. $-a - \sqrt{\left(\frac{x-b}{2}\right)}$.
		3	
6(d) fg(x	$(x) = f(2x+4) = 2(2x+4-4)^2 - 9$	M1	Allow $2(2x+4)^2 - 16(2x+4) + 23$.
$8x^2$	$c^2 - 9$ only	A1	
	·satpre	2	

May/June 2022

Question	Answer	Marks	Guidance
7(a)	Equation of <i>BC</i> is $\{y =\}\{2\}\{-3x\}$	B2 , 1, 0	OE forms $y + 4 = -3(x-2)$ or $y - 2 = -3(x-0)$.
		2	
7(b)	$(x-2)^{2} + (2-3x+4)^{2} = 20$	*M1	OE Sub line equation into equation of circle to eliminate <i>y</i> .
	$10(x-2)^2 = 20 \text{ or } [10](x^2 - 4x + 2)[= 0]$	A1	OE Accept $(10x^2 - 40x + 20)$.
	$x-2 = [\pm]\sqrt{2} \text{ or } x = \frac{4[\pm]\sqrt{16-8}}{2}$	DM1	Correctly solving <i>their</i> quadratic.
	$x = 2 - \sqrt{2}$	A1	OE only solution. Answer only SC B1 If DM1 not scored.
	$y = 3\sqrt{2} - 4$	A1	OE only solution. Answer only SC B1 If DM1 not scored.
		5	

Question	Answer	Marks	Guidance
8(a)	$\left[\frac{dy}{dx}\right]^{1/2} x^{-1/2} - 2x^{-3/2}$	B1 B1	Allow unsimplified versions.
	At $x = 1$, $\frac{dy}{dx} = \frac{1}{2} - 2 = -\frac{3}{2}$	M1	Substitute $x = 1$ into a differentiated y.
	Equation of tangent is $y-5 = -\frac{3}{2}(x-1)$	A1	WWW Or $y = -\frac{3}{2}x + \frac{13}{2}$.
		4	

Question	Answer	Marks	Guidance
8(b)	$\frac{x^{3/2}}{3/2} + 8x^{1/2}$	B1	OE Integrate to find area under curve, allow unsimplified versions.
	$\left[\left(\frac{128}{3}+32\right)-\left(\frac{2}{3}+8\right)\right]$	M1	Apply limits $1 \rightarrow 16$ to an integrated expression.
	Area under line = $15 \times 5 = 75$	B1	Or by $\int_{1}^{16} 5 dx$.
	Required area = $75 - 66 = 9$	A1	
		4	

Question	Answer	Marks	Guidance
9(a)	$6\sin 0.9 = \frac{AC}{2}$ or $AC^2 = 6^2 + 6^2 - 2 \times 6 \times 6\cos 1.8$	M1	OE Correct working in degrees is acceptable throughout.
	<i>AC</i> = 9.40	A1	SOI Accept 9.39 – 9.41, may be used but not seen for A1.
	Angle $CAB = \frac{1}{2}(\pi - 1.8)$	M1	SOI Expect 0.6708 (or 0.671).
	Arc $CD = their 9.40 \times their 0.6708$	M1	Expect 6.306 (or 6.31), do not accept 6 for <i>their AC</i> or 1.8 for <i>CAB</i> .
	[Perimeter = 6 + 3.40 + 6.306 =] 15.7	A1	Accept 15.69 – 15.72.
		5	

Question	Answer	Marks	Guidance
9(b)	Sector $ADC - \Delta ABC = \frac{1}{2} \times their \ 9.40^2 \times their \ 0.6708 - \frac{1}{2} \times 6^2 \times \sin 1.8$	M1 M1	Accept correct use of their answers from part (a).
	[29.64 - 17.53 =] 12.1	A1	AWRT
		3	

Question	Answer	Marks	Guidance
10(a)	$\left\{\frac{(4x+2)^{-1}}{-1}\right\}\{\div4\} \text{ or eg} \left\{\frac{1}{16}\right\}\left\{-(x+0.5)^{-1}\right\} \text{ or } \frac{-1}{(16x+8)}$	B1 B1	OE If more than one function of x present then B0 B0.
	0 - (-1/24)	M1	Apply limits to an integral, ∞ must be used correctly.
	1/24	A1	Allow 0.0417 AWRT.
		4	
10(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left\{-2\left(4x+2\right)^{-3}\right\} \{\times 4\}$	B1 B1	Allow unsimplified forms.
	Recognise $\frac{dy}{dx} = -1$	B1	SOI
	their $\frac{-8}{2}$ = their -1	M1	Must be numerical.
	$(4x+2)^3$		Must be some attempt to solve <i>their</i> equation and $\frac{dy}{dx} \neq 0$.
	(0, 1/4)	A1 A1	Accept $x = 0$, $y = \frac{1}{4}$. $y = \frac{1}{4}$ must be from $x = 0$ not $x = -1$.
		6	

Question	Answer	Marks	Guidance	
11(a)	$mx + c = -\frac{m}{x} \implies mx^2 + cx + m = 0$	M1	All x terms in the numerator. OE e.g. $mx^2 + cx = -m$.	
	$b^2 - 4ac = 0 \implies c^2 - 4m^2 = 0$	M1	OE $b^2 - 4ac = 0$ is implied by $c^2 - 4m^2 = 0$.	
	$c = [\pm]2m$	A1	SOI. Allow \pm at this stage.	
	$mx^{2} [\pm] 2mx + m = 0 \Longrightarrow x^{2} [\pm] 2x + 1 = 0$	M1	Sub $c = +2m$ Ignore substitution of $-2m$.	
	$(x+1)^2 = 0 \implies x = -1$ only	A1		
	y = m only or $(-1, m)$ only	A1		
	Alternative method to question 11(a)			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{m}{x^2}$	M1	As this is a method mark a sign error is allowed.	
	$\frac{m}{x^2} = m \implies x^2 = 1$	M1 A1	Equating <i>their</i> $\frac{dy}{dx}$ and <i>m</i> and attempt to solve.	
	$x = \pm 1$ or $x = -1$	A1	If $x = -1$ and $y = m$ are the only answers offered here award the final M1 A1.	
	Selecting $x = -1$ as the only answer and attempt to find y	M1		
	y = m or $(-1, m)$	A1		
		6		

9709/13

Question	Answer	Marks	Guidance
11(b)	Equation of normal is $y - m = \frac{-1}{m}(x+1)$	*M1	Through <i>their P</i> with gradient $\frac{-1}{m}$, OE
			e.g. $y = \frac{-1}{m}x + \frac{m^2 - 1}{m}$.
	TPR		Allow use of the gradient of the curve as $-\frac{1}{\left[\frac{m}{(their x)^2}\right]}$ with
	6		<i>their</i> P. Coordinates of P must be in terms of <i>m</i> only.
	$\frac{-x}{m} - \frac{1}{m} + m = \frac{-m}{x} \implies x^2 + x(1 - m^2) - m^2 [= 0]$	DM1	OE Equating <i>their</i> normal equation to the equation of the curve and removing x from the denominator.
	$(x+1)(x-m^2) = 0 \Rightarrow x = m^2$	A1	or $x = \frac{m^2 - 1 \pm \sqrt{1 - 2m^2 + m^4 + 4m^2}}{2} = \frac{m^2 - 1 \pm (m^2 + 1)}{2} = m^2$
	$y = \frac{-m}{m^2} = \frac{-1}{m}$	A1	or $\left(m^2, \frac{-1}{m}\right)$, ignore the coordinates of P.
	3	4	E.
Satprep.co			

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/12 February/March 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2022 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics	Specific	Marking	Principles
1010011011100100	Speenie	THEFT	1 Interpres

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons

Types of mark

outside the scope of these notes.

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/12

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$\left[f(x) = \right] \frac{2x^{\frac{2}{3}}}{\frac{2}{3}} - \frac{x^{\frac{4}{3}}}{\frac{4}{3}} \ [+c]$	B1 B1	$\frac{2}{3}$ and $\frac{4}{3}$ may be seen as sums of 1 and a fraction.
	5 = 12 - 12 + c	M1	Substituting (8,5) into an integral.
	$\left[f(x)=\right]3x^{\frac{2}{3}}-\frac{3}{4}x^{\frac{4}{3}}+5$	A1	Fractions in the denominators scores A0.
		4	

Question	Answer	Marks	Guidance
2	$x^{2} + 2cx + 4 = 4x + c$ leading to $x^{2} + 2cx - 4x + 4 - c$ [=0]	*M1	Equate ys and move terms to one side of equation.
	$b^{2}-4ac = (2c-4)^{2}-4(4-c)$	DM1	Use of discriminant with <i>their</i> correct coefficients.
	$\left[4c^2 - 16c + 16 - 16 + 4c = \right] 4c^2 - 12c$	A1	
	$b^2 - 4ac > 0$ leading to $(4)c(c-3) > 0$	M1	Correctly apply '> 0' considering both regions.
	c<0, c>3	A1	Must be in terms of <i>c</i> . SC B1 instead of M1A1 for $c \le 0, c \ge 3$
		5	

February/March 2022

Question	Answer	Marks	Guidance
3(a)	${}^{6}\mathrm{C}_{2} \times (3x)^{4} \left(\frac{2}{x^{2}}\right)^{2}$	B1	Can be seen within an expansion.
	$15 \times 3^4 \times 2^2$	B1	Identified. Powers must be correct.
	4860	B 1	Without any power of <i>x</i>
		3	
3(b)	<i>Their</i> 4860 and one other relevant term	M1	Using <i>their</i> 4860 and an attempt to find a term in x^{-3}
	Other term = $6C3(3x)^3 \left(\frac{2}{x^2}\right)^3$ or $6C3 \times 3^3 \times 2^3$ or 4320	A1	Must be identified. If M0 scored then SC B1 for 4320 as the only answer.
	[4860 - 4320 =] 540	A1	
		3	

Question	Answer	Marks	Guidance
4	$ar^2 = a + d$	B1	
	$ar^4 = a + 5d$	B1	
	$a^{2}r^{4} = a(a+5d)$ leading to $a^{2} + 5ad = (a+d)^{2}$	*M1	Eliminating r or complete elimination of a and d .
	$\begin{bmatrix} 3ad - d^2 = 0 & \text{leading to} \end{bmatrix} d = 3a \text{ OR } [r = 2 & \text{leading to} \end{bmatrix} d = 3a$	A1	
	$S_{20} = \frac{20}{2} [2a + 19 \times 3a]$	DM1	Use of formula with <i>their d</i> in terms of <i>a</i> .
	590 <i>a</i>	A1	
		6	

Question	Answer	Marks	Guidance
5(a)	$2[\{(x-2)^2\} \{+3\}]$	B1 B1	B1 for $a = 2$, B1 for $b = 3$. 2 $(x-2)^2$ +6 gains B1B0
	2	2	
5(b)	{Translation} $\begin{pmatrix} \{2\}\\ \{3\} \end{pmatrix}$ OR {Stretch} {y direction} {factor 2}	B2,1,0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
	{Stretch} {y direction} {factor 2} OR {Translation} $\begin{pmatrix} \{2\}\\ \{6\} \end{pmatrix}$	B2,1,0	B2 for fully correct, B1 with two elements correct. {} indicates different elements.
		4	

February/March 2022

Question	Answer	Marks	Guidance
6(a)	$(x+1)^2 + (3x-22)^2 = 85$	M1	OE. Substitute equation of line into equation of circle.
	$10x^2 - 130x + 400 \ \ [=0]$	A1	Correct 3-term quadratic
	[10](x-8)(x-5) leading to $x=8 or 5$	A1	Dependent on factors or formula or completing of square seen.
	(8, 4), (5, -5)	A1	If M1A1A0A0 scored, then SC B1 for correct final answer only.
		4	
6(b)	Mid-point of $AB = \left(6\frac{1}{2}, -\frac{1}{2}\right)$	M1	Any valid method
	Use of $C = (-1, 2)$	B1	SOI
	$r^{2} = \left(-1 - 6\frac{1}{2}\right)^{2} + \left(2 + \frac{1}{2}\right)^{2}$	M1	Attempt to find r^2 . Expect $r^2 = 62\frac{1}{2}$.
	Equation of circle is $(x+1)^{2} + (y-2)^{2} = 62\frac{1}{2}$	A1	OE.
	2	4	5
	³ ¹ .satpre	.p.c0	

February/March 2022

Question	Answer	Marks	Guidance
7(a)	$\frac{(\sin\theta + 2\cos\theta)(\cos\theta + 2\sin\theta) - (\sin\theta - 2\cos\theta)(\cos\theta - 2\sin\theta)}{(\cos\theta - 2\sin\theta)(\cos\theta + 2\sin\theta)}$	*M1	Obtain an expression with a common denominator
	$\frac{5\sin\theta\cos\theta + 2\cos^2\theta + 2\sin^2\theta - (5\sin\theta\cos\theta - 2\sin^2\theta - 2\cos^2\theta)}{\cos^2\theta - 4\sin^2\theta}$	A1	
	$=\frac{4\left(\cos^{2}\theta+\sin^{2}\theta\right)}{\cos^{2}\theta-4\sin^{2}\theta}$		
	$\frac{4}{\cos^2\theta - 4\left(1 - \cos^2\theta\right)}$	DM1	Use $\cos^2 \theta + \sin^2 \theta = 1$ twice
	$\frac{4}{5\cos^2\theta - 4}$	A1	AG
		4	
7(b)	$\frac{4}{5\cos^2\theta - 4} = 5 \text{leading to} 25\cos^2\theta = 24$ leading to $\cos\theta = \sqrt{\frac{24}{25}} \left[= (\pm)0.9798 \right]$	M1	Make $\cos \theta$ the subject
	$\theta = 11.5^{\circ} \text{ or } 168.5^{\circ}$	A1 A1 FT	FT on 180° – 1st solution
		3	

9709/12

Question	Answer	Marks	Guidance
8(a)	$(-2)^2 + y^2 = 8$ leading to $y = 2$ leading to $A = (0,2)$	B1	
	Substitute $y = their 2$ into circle leading to $(x-2)^2 + 4 = 8$	M1	Expect $x = 4$.
	B = (4, 2)	A1	
	T PF	3	
8(b)	Attempt to find $[\pi] \int (8 - (x - 2)^2) dx$	*M1	
	$\left[\pi\right]\left[8x - \frac{(x-2)^3}{3}\right]$ or $\left[\pi\right]\left[8x - \left(\frac{x^3}{3} - 2x^2 + 4x\right)\right]$	A1	
	$\left[\pi\right]\left(32 - \frac{16}{3}\right) \text{ or } \left[\pi\right]\left[32 - \left(\frac{64}{3} - 32 + 16\right)\right]$	DM1	Apply limits $0 \rightarrow their 4$.
	Volume of cylinder = $\pi \times 2^2 \times 4 = 16\pi$	B1 FT	OR from $\pi \int 2^2 dx$ with <i>their</i> limits from (a). FT on <i>their</i> A and B
	[Volume of revolution = $26\frac{2}{3}\pi - 16\pi =]10\frac{2}{3}\pi$	A1	Accept 33.5
	"Satore	5	
			·

Question	Answer	Marks	Guidance
9(a)	$\left[x^{\frac{1}{2}} = \right] \frac{4 \pm \sqrt{16 - 4}}{2} = 2 \pm \sqrt{3}$	M1 A1	OE. Answer must come from formula or completing square. If M0A0 scored then SC B1 for $2 \pm \sqrt{3}$ only.
	$[x=]\left(2\pm\sqrt{3}\right)^2$	M1	Attempt to square <i>their</i> $2 \pm \sqrt{3}$
	$7+4\sqrt{3}$, $7-4\sqrt{3}$	A1	Accept $7 \pm 4\sqrt{3}$ or $a = 7, b = \pm 4, c = 3$ SC B1 instead of second M1A1 for correct final answer only.
	Alternative method for question 9(a)		
	$-4x^{\frac{1}{2}} + 1 = 0$ leading to $(x+1)^2 = 16x$ leading to $x^2 - 14x + 1 = 0$	*M1 A1	OE
	$x = \frac{14 \pm \sqrt{196 - 4}}{2}$	DM1	Attempt to solve for <i>x</i>
	$7+4\sqrt{3}$, $7-4\sqrt{3}$	A1	SC B1 instead of second M1A1 for correct final answer only.
		4	
9(b)	$[gh(x)=] m\left(x^{\frac{1}{2}}-2\right)^2 + n$	M1	SOI
	$\left[gh(x) = \right] m \left(x - 4x^{\frac{1}{2}} + 4 \right) + n \equiv x - 4x^{\frac{1}{2}} + 1$	A1	SOI
	m = 1, n = -3	A1 A1	WWW
		4	

9709/12

February/March 2022

Question	Answer	Marks	Guidance
10(a)	$\tan A = \frac{12}{5}$ or $\cos A = \frac{5}{13}$ or $\sin A = \frac{12}{13}$	M1	OR $\tan B = \frac{5}{12}$ or $\cos B = \frac{12}{13}$ or $\sin B = \frac{5}{13}$
	A = 1.176 B = 0.3948	A1	Allow 1.18 or 67.4°, Allow 0.395 or 22.6°.
			May be implied by $\frac{\pi}{2}$ -1.176
	DE = 4	B1	If trigonometry used accept AWRT 4.00
	Arcs = $5 \times their 1.176$ and $8 \times their 0.3948$	M1	Or corresponding calculations in degrees.
	[Perimeter = 5.880 + 3.158 + 4 =] 13.0	A1	Accept 13. If DE is outside the given range this mark cannot be awarded.
		5	
10(b)	Area of triangle = $\frac{1}{2} \times 5 \times their 12$ [= 30]	B1 FT	
	Area of sectors = $\frac{1}{2} \times 5^2 \times their \ 1.176 + \frac{1}{2} \times 8^2 \times their \ 0.3948$	M1	Or corresponding calculations in degrees
	[Area = 30 - 14.70 - 12.63 =] 2.67	A1	Allow 2.66 to 2.67
		3	

9709/12

February/March 2022

Question	Answer	Marks	Guidance
11(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left\{-k\left(3x-k\right)^{-2}\right\} \left\{\times 3\right\} \left\{+3\right\}$	B2, 1, 0	
	$\frac{-3k}{(3x-k)^2} + 3 = 0$ leading to $(3)(3x-k)^2 = (3)k$	M1	Set $\frac{dy}{dx} = 0$ and remove the denominator
	leading to $3x - k = [\pm]\sqrt{k}$		
	$x = \frac{k \pm \sqrt{k}}{3}$	A1	OE
		4	
11(b)	$a = \frac{4 \pm \sqrt{4}}{3}$ leading to $a = 2$	B1	Substitute $x = a$ when $k = 4$. Allow $x = 2$.
	$f''(x) = f'\left[-12(3x-4)^{-2}+3\right] = 72(3x-4)^{-3}$	B1	Allow $18k(3x-k)^{-3}$
	$> 0 \text{ (or 9) when } x = 2 \rightarrow \text{minimum}$	B1 FT	FT on <i>their</i> $x = 2$, providing their $x \ge \frac{3}{2}$ and $f''(x)$ is correct
	2	3	
	^{sy} .satpre	p.o	

Question	Answer	Marks	Guidance
11(c)	Substitute $k = -1$ leading to $g'(x) = \frac{3}{(3x+1)^2} + 3$	M1	Condone one error.
	g'(x) > 0 or $g'(x)$ always positive, hence g is an increasing function	A1	WWW. A0 if the conclusion depends on substitution of values into $g'(x)$.
	Alternative method for question 11(c)	22	
	$x = \frac{k \pm \sqrt{k}}{3}$ when $k = -1$ has no solutions, so g is increasing or decreasing	M1	Allow the statement 'no turning points' for increasing or decreasing
	Show $g'(x)$ is positive for any value of x , hence g is an increasing function	A1	Or show $g(b) > g(a)$ for $b > a \rightarrow g$, hence g is an increasing function
		2	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/11 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then
	no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/11

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$1 - \frac{1}{x} + \frac{1}{4x^2}$	B1	OE. Multiply or use binomial expansion. Allow unsimplified.
		1	
1(b)	$1 + 12x + 60x^2 + 160x^3$	B2 , 1, 0	Withhold 1 mark for each error; B2, 1, 0. ISW if more than 4 terms in the expansion.
		2	
1(c)	$their(1\times12) + their(-1\times60) + their(\frac{1}{4}\times160)$	M1	Attempts at least 2 products where each product contains one term from each expansion.
	[12-60+40=]-8	A1	Allow $-8x$.
		2	

9709/11

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
2	$kx^{2} + 2x - k = kx - 2$ leading to $kx^{2} + (-k+2)x - k + 2 = 0$	*M1	Eliminate <i>y</i> and form 3-term quadratic. Allow 1 error.
	$(-k+2)^2 - 4k(-k+2)$	DM1	Apply $b^2 - 4ac$; allow 1 error but <i>a</i> , <i>b</i> and <i>c</i> must be correct for <i>their</i> quadratic.
	$5k^2 - 12k + 4$ or $(-k+2)(-k+2-4k)$	A1	May be shown in quadratic formula.
	(-k+2)(-5k+2)	DM1	Solving a 3-term quadratic in k (all terms on one side) by factorising, use of formula or completing the square. Factors must expand to give <i>their</i> coefficient of k^2 .
	$\frac{2}{5} < k < 2$	A1	WWW, accept two separate correct inequalities. If M0 for solving quadratic, SC B1 can be awarded for correct final answer.
		5	

Question	Answer	Marks	Guidance
3	$3\cos\theta(2\tan\theta-1)+2(2\tan\theta-1)\left[=0\right]$	M1	Or similar partial factorisation; condone sign errors.
	$(2\tan\theta - 1)(3\cos\theta + 2) [=0]$	M1	OE. At least 2 out of 4 products correct.
	[leading to $\tan\theta = \frac{1}{2}$, $\cos\theta = -\frac{2}{3}$]		
	26.6°, 131.8°	A1 A1	WWW. Must be 1 d.p. or better. Final A0 if extra solution within the interval. SC B1 No factorisation: Division by $2\tan\theta - 1$ leading to 131.8° or division by $3\cos\theta + 2$ or similar leading to 26.6° .
	Alternative method for question 3		
	$6\cos\theta \left(\frac{\sin\theta}{\cos\theta}\right) - 3\cos\theta + 4\left(\frac{\sin\theta}{\cos\theta}\right) - 2\ [=0]$	M1	Using $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and reaching a partial factorisation;
	$6\cos\theta\sin\theta - 3\cos^2\theta + 4\sin\theta - 2\cos\theta \ [=0]$ $2\sin\theta(3\cos\theta + 2) - \cos\theta(3\cos\theta + 2) \ [=0]$		condone sign errors.
	$(2\sin\theta - \cos\theta)(3\cos\theta + 2) [=0]$ [leading to $\tan\theta = \frac{1}{2}, \ \cos\theta = -\frac{2}{3}$]	M1	At least 2 out of 4 products correct.
	26.6°, 131.8°	A1 A1	WWW. Must be 1 d.p. or better. Final A0 if extra solution within the interval. SC B1 No factorisation: Division by $2\tan\theta - 1$ leading to 131.8° or division by $3\cos\theta + 2$ or similar leading to 26.6°.
		4	

Question	Answer	Marks	Guidance
4(a)	$\frac{5a}{1-\left(\pm\frac{1}{4}\right)}$	B1	Use of correct formula for sum to infinity.
	$\frac{8}{2} \left[2a + 7(-4) \right]$	*M1	Use of correct formula for sum of 8 terms and form equation; allow 1 error.
	4a = 8a - 112 leading to $a = [28]$	DM1	Solve equation to reach a value of <i>a</i> .
	<i>a</i> = 28	A1	Correct value.
		4	
4(b)	<i>their</i> $28 + (k-1)(-4) = 0$	M1	Use of correct method with <i>their a</i> .
	[k=]8	A1	
		2	
	[k=]8	A1 2	

Question	Answer	Marks	Guidance
5(a)	<i>a</i> = 5	B1	
	<i>b</i> = 2	B1	
	<i>c</i> = 3	B1	
		3	

Question	Answer	Marks	Guidance
5(b)(i)	3	B1	
		1	
5(b)(ii)	2	B1	
		1	

		22	N
Question	Answer	Marks	Guidance
6(a)	Recognise that at least one of angles A, B, C is $\frac{\pi}{3}$	B1	SOI; allow 60°.
	One arc $6 \times their \frac{\pi}{3}$ leading to two arcs $2 \times 6 \times their \frac{\pi}{3}$	M1	SOI e.g. may see 2π or 4π . Use of correct formula for length of arc and multiply by 2.
	Perimeter = $6 + 4\pi$	A1	Must be exact value.
	Alternative method for question 6(a)		
	Calculate circumference of whole circle = 12π	B1	
	One arc $\frac{1}{6} \times 12\pi$ leading to two arcs $2 \times \frac{1}{6} \times 12\pi$	M1	SOI e.g. may see 2π or 4π .
	Perimeter = $6 + 4\pi$	A1	Must be exact value.
		3	

Question	Answer	Marks	Guidance
6(b)	Sector = $\frac{1}{2} \times 6^2 \times their\left(\frac{\pi}{3}\right)$	M1	Use of correct formula for area of sector. SOI e.g. may see 6π or 12π .
	$\frac{1}{2} \times \left(6^2\right) \times their\left(\frac{\pi}{3}\right) - \frac{1}{2} \times \left(6^2\right) \times \sin\left(their\left(\frac{\pi}{3}\right)\right) + 6\pi \left[=6\pi - 9\sqrt{3} + 6\pi\right]$	M1 A1	M1 for attempt at strategy with values substituted: area of segment + area of sector A1 if correct (unsimplified).
	Area = $12\pi - 9\sqrt{3}$	A1	Must be simplified exact value.
	Alternative method for question 6(b)		
	Sector = $\frac{1}{2} \times 6^2 \times their\left(\frac{\pi}{3}\right)$	M1	Use of correct formula for area of sector. SOI e.g. may see 6π or 12π .
	$2 \times \left(\frac{1}{2} \times 6^2 \times their\left(\frac{\pi}{3}\right)\right) - \frac{1}{2} \times \left(6^2\right) \times \sin\left(their\left(\frac{\pi}{3}\right)\right)$	M1 A1	M1 for attempt at strategy with values substituted: $2 \times \text{sector} - \text{triangle}$ A1 if correct (unsimplified).
	Area = $12\pi - 9\sqrt{3}$	A1	Must be simplified exact value.
	Alternative method for question 6(b)		
	Sector = $\frac{1}{2} \times 6^2 \times their\left(\frac{\pi}{3}\right)$	M1	Use of correct formula for area of sector. SOI e.g. may see 6π or 12π .
	$2 \times \left(\frac{1}{2} \times (6^2) \times their\left(\frac{\pi}{3}\right) - \frac{1}{2} \times (6^2) \times \sin\left(their\left(\frac{\pi}{3}\right)\right)\right) + \frac{1}{2} \times (6^2) \times \sin\left(their\left(\frac{\pi}{3}\right)\right) \left[=12\pi - 18\sqrt{3} + 9\sqrt{3}\right]$	M1 A1	M1 for attempt at strategy with values substituted: 2 × segment + triangle A1 if correct (unsimplified).
	Area $\left[=6\pi - 9\sqrt{3} + 6\pi\right] = 12\pi - 9\sqrt{3}$	A1	Must be simplified exact value.
		4	

9709/11

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(a)	$r^{2} \Big[= (5-2)^{2} + (7-5)^{2} \Big] = 13$	B1	$r^2 = 13$ or $r = \sqrt{13}$
	Equation of circle is $(x-5)^2 + (y-2)^2 = 13$	B1 FT	OE. FT on <i>their</i> 13 but LHS must be correct.
		2	
7(b)	$(x-5)^{2} + (5x-10-2)^{2} = 13$	M1	Substitute $y = 5x - 10$ into <i>their</i> equation.
	$26x^2 - 130x + 156 \ [=0]$	A1 FT	OE 3-term quadratic with all terms on one side. FT on <i>their</i> circle equation.
	[26](x-2)(x-3) [=0]	M1	Solve 3-term quadratic in x by factorising, using formula or completing the square. Factors must expand to give <i>their</i> coefficient of x^2 .
	(2, 0), (3, 5)	A1 A1	Coordinates must be clearly paired; A1 for each correct point. A1 A0 available if two x or y values only. If M0 for solving quadratic, SC B2 can be awarded for correct coordinates, SC B1 if two x or y values only.
	$(AB)^{2} = (3-2)^{2} + (5-0)^{2}$	M1	SOI. Using <i>their</i> points to find length of <i>AB</i> .
	$AB = \sqrt{26}$	A1	ISW. Dependent on final M1 only.

Question	Answer	Marks	Guidance
7(b)	Alternative method for question 7(b)		
	$\left(\frac{y+10}{5} - 5\right)^2 + \left(y - 2\right)^2 = 13$	M1	Substitute $x = \frac{y+10}{5}$ into <i>their</i> equation.
	$\frac{26y^2}{25} - \frac{26y}{5} = 0$	A1 FT	OE 2-term quadratic with all terms on one side. FT on <i>their</i> circle equation.
	[26]y(y-5)[=0]	M1	Solve 2-term quadratic in y by factorising, using formula or completing the square. Factors must expand to give <i>their</i> coefficient of y^2 .
	(2, 0), (3, 5)	A1 A1	Coordinates must be clearly paired; A1 for each correct point. A1 A0 available if two x or y values only. If M0 for solving quadratic, SC B2 can be awarded for correct coordinates, SC B1 if two x or y values only.
	$(AB)^{2} = (3-2)^{2} + (5-0)^{2}$	M1	SOI. Using <i>their</i> points to find length of <i>AB</i> .
	$AB = \sqrt{26}$	A1	ISW. Dependent on final M1 only.
	ž.	7	

Question	Answer	Marks	Guidance
8(a)	$\left\{-3(x-2)^2\right\}$ $\left\{+14\right\}$	B1 B1	B1 for each correct term; condone $a = 2, b = 14$.
		2	
8(b)	[<i>k</i> =] 2	B1	Allow $[x] \leq 2$.
		1	

9709/11

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
8(c)	[Range is] $[y] \leq -13$	B1	Allow $[f(x)] \leq -13$, $[f] \leq -13$ but NOT $x \leq -13$.
		1	
8(d)	$y = -3(x-2)^{2} + 14$ leading to $(x-2)^{2} = \frac{14-y}{3}$	M1	Allow $\frac{y-14}{-3}$. Allow 1 error in rearrangement if <i>x</i> , <i>y</i> on opposite sides.
	$x = 2(\pm)\sqrt{\frac{14-y}{3}}$	A1	Allow $\frac{y-14}{-3}$.
	$[f^{-1}(x)] = 2 - \sqrt{\frac{14 - x}{3}}$	A1	OE. Allow $\frac{x-14}{-3}$. Must be x on RHS; must be negative square root <u>only.</u>
	Alternative method for question 8(d)		
	$x = -3(y-2)^{2} + 14$ leading to $(y-2)^{2} = \frac{14-x}{3}$	M1	Allow $\frac{x-14}{-3}$. Allow 1 error in rearrangement if x, y on opposite sides.
	$=2(\pm)\sqrt{\frac{14-x}{3}}$	A1	Allow $\frac{x-14}{-3}$.
	$[f^{-1}(x)] = 2 - \sqrt{\frac{14 - x}{3}}$	- A1	OE. Allow $\frac{x-14}{-3}$. Must be x on RHS; must be negative square root <u>only.</u>
		3	

Question	Answer	Marks	Guidance
8(e)	$[g(x) =] \left\{ -3(x+3-2)^2 \right\} + \{14+1\}$	B2, 1, 0	OR $\left\{-3(x+3)^2\right\} + \left\{12(x+3)\right\} + \left\{3\right\}$
	$g(x) = -3x^2 - 6x + 12$	B1	
		3	

T PD				
Question	Answer	Marks	Guidance	
9(a)	$f(x) = \frac{2}{3}x^3 - 7x + 4x^{-1} [+c]$	B2, 1, 0	Allow terms on different lines; allow unsimplified.	
	$-\frac{1}{3} = \frac{2}{3} - 7 + 4 + c$ leading to $c = [2]$	M1	Substitute $f(1) = -\frac{1}{3}$ into an integrated expression and evaluate <i>c</i> .	
	$f(x) = \frac{2}{3}x^3 - 7x + 4x^{-1} + 2$	A1	OE.	
		4		

Question	Answer	Marks	Guidance
9(b)	$2x^4 - 7x^2 - 4 [= 0]$	M1	Forms 3-term quadratic in x^2 with all terms on one side. Accept use of substitution e.g. $2y^2 - 7y - 4[=0]$.
	$(2x^{2}+1)(x^{2}-4) = 0$	M1	Attempt factors or use formula or complete the square. Allow \pm sign errors. Factors must expand to give <i>their</i> coefficient of x^2 or e.g. y. Must be quartic equation. Accept use of substitution e.g. $(2y+1)(y-4)$.
	$x = [\pm]2$	A1	If M0 for solving quadratic, SC B1 can be awarded for $[\pm]2$.
	$\begin{bmatrix} \frac{2}{3}(2)^3 - 7(2) + \frac{4}{2} + 2 & \text{leading to} \end{bmatrix} \begin{pmatrix} 2, -\frac{14}{3} \end{pmatrix} \\ \begin{bmatrix} \frac{2}{3}(-2)^3 - 7(-2) + \frac{4}{-2} + 2 & \text{leading to} \end{bmatrix} \begin{pmatrix} -2, \frac{26}{3} \end{pmatrix}$	B1 B1	B1 B1 for correct coordinates clearly paired; B1 for each correct point; B1 B0 if additional point.
		5	
9(c)	$f''(x) = 4x + 8x^{-3}$	B1	OE
	Z.	1	5
32. satprep.co.			

Question	Answer	Marks	Guidance
9(d)	f''(2) = 9 > 0 MINIMUM at $x = their 2$	B1 FT	FT on <i>their</i> $x = [\pm]2$ provided $f''(x)$ is correct. Must have correct value of $f''(x)$ if $x = 2$.
	f''(-2) = -9 < 0 MAXIMUM at $x = their - 2$	B1 FT	FT on <i>their</i> $x = [\pm]2$ provided $f''(x)$ is correct. Must have correct value of $f''(x)$ if $x = -2$. Special case: If values not shown and B0B0 scored, SC B1 for $f''(2) > 0$ MIN and $f''(-2) < 0$ MAX
	Alternative method for question 9(d)		
	Evaluate $f'(x)$ for x-values either side of 2 and -2	M1	FT on <i>their</i> $x = [\pm]2$
	MINIMUM at $x = their 2$, MAXIMUM at $x = their 2$	A1 FT	FT on <i>their</i> $x = [\pm]2$. Must have correct values of $f'(x)$ if shown. Special case: If values not shown and M0A0 scored SC B1 f'(2) -/0/+ MIN and $f'(-2) +/0/-$ MAX
	Alternative method for question 9(d)		
	Justify maximum and minimum using correct sketch graph	B1 B1	Need correct coordinates in (b) for this method.
	27	2	
	Satpre	P.	

Question	Answer	Marks	Guidance
10(a)	$\left\{\frac{(3x-2)^{-\frac{1}{2}}}{-1/2}\right\} \div \{3\}$	B2, 1, 0	Attempt to integrate
	$-\frac{2}{3}[0-1]$	M1	M1 for applying limits $1 \rightarrow \infty$ to an integrated expression (either correct power or dividing by their power).
	$\frac{2}{3}$	A1	
		4	
10(b)	$[\pi] \int y^2 dx = [\pi] \int (3x-2)^{-3} dx = [\pi] \frac{(3x-2)^{-2}}{-2 \times 3}$	*M1 A1	M1 for attempt to integrate y^2 (power increases); allow 1 error. A1 for correct result in any form.
	$\left[\pi\right]\left[-\frac{1}{6}\right]\left[\frac{1}{16}-1\right]$	DM1	Apply limits 1 and 2 to an integrated expression and subtract correctly; allow 1 error.
	$\frac{5\pi}{32}$	A1	OE
	ž	4	S
2. satprep.00			

Question	Answer	Marks	Guidance
10(c)	$\frac{dy}{dx} = -\frac{3}{2} \times 3(3x - 2)^{-\frac{5}{2}}$	M1	M1 for attempt to differentiate (power decreases); allow 1 error.
	At $x = 1$, $\frac{dy}{dx} = -\frac{9}{2}$	*M1	Substitute $x = 1$ into <i>their</i> differentiated expression; allow 1 error.
	[Equation of normal is] $y-1=\frac{2}{9}(x-1)$ OR evaluates c	DM1	Forms equation of line or evaluates <i>c</i> using (1, 1) and gradient $\frac{-1}{their \frac{dy}{dx}}$.
	At <i>A</i> , $y = \frac{7}{9}$	A1	OE e.g. AWRT 0.778; must clearly identify <i>y</i> -intercept
		4	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/12 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics S	specific Marking	Principles
---------------	------------------	------------

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/12

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$2\cos^2\theta - 7\cos\theta + 3[=0]$	M1	Forming a 3-term quadratic expression with all terms on the same side or correctly set up prior to completing the square. Allow \pm sign errors.
	$(2\cos\theta - 1)(\cos\theta - 3) = 0$	DM1	Solving <i>their</i> 3-term quadratic using factorisation, formula or completing the square.
	$\left[\cos\theta = \frac{1}{2} \text{ or } \cos\theta = 3 \text{ leading to}\right] \theta = -60^{\circ} \text{ or } \theta = 60^{\circ}$	A1	
	$\theta = -60^{\circ}$ and $\theta = 60^{\circ}$	A1 FT	FT for \pm same answer between 0° and 90° or 0 and $\frac{\pi}{2}$. $\pm \frac{\pi}{3}$ or ± 1.05 AWRT scores maximum M1M1A0A1FT. Special case: If M1 DM0 scored then SC B1 for $\theta = -60^{\circ}$ or $\theta = 60^{\circ}$, and SC B1 FT can be awarded for $\pm (their 60^{\circ})$.
		4	

Question	Answer	Marks	Guidance
2(a)	Stretch with [scale factor] either ± 2 or $\pm \frac{1}{2}$	B1	
	Scale factor $\frac{1}{2}$ in the x-direction	B1	
	Translation $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ or translation of 3 units in negative <i>y</i> -direction	B1	
	9	3	
2(b)	(10,9)	B1 B1	B1 for each correct co-ordinate.
		2	

Question	Answer	Marks	Guidance
3(a)	$f(5) = [2] \text{ and } f(their 2) = [5] \text{ OR } ff(5) = \left[\frac{2+3}{2-1}\right]$ $OR \frac{x+3}{x-1} + 3 \text{ and an attempt to substitute } x = 5.$	M1	Clear evidence of applying f twice with $x = 5$.
	5	A1	
		2	

9709/12

Question	Answer	Marks	Guidance
3(b)	$\frac{x+3}{x-1} = y \Longrightarrow x+3 = xy - y \text{ OR } \frac{y+3}{y-1} = x \Longrightarrow y+3 = xy - x$	*M1	Setting $f(x) = y$ or swapping x and y, clearing of fractions and expanding brackets. Allow \pm sign errors.
	$xy - x = y + 3 \Rightarrow x = \frac{y+3}{y-1}$ OE OR $y+3 = xy - x \Rightarrow y = \left[\frac{x+3}{x-1}\right]$ OE	DM1	Finding x or $y =$. Allow \pm sign errors.
	$[f^{-1}(x) \text{ or } y] = \frac{x+3}{x-1}$	A1	OE e.g. $1 + \frac{4}{x-1}$ etc. Must be a function of <i>x</i> , cannot be $x = .$
		3	

Question	Answer	Marks	Guidance
4	$\frac{8}{3}$ [.]	* B 1	For $(3x+2)^{-1}$
	$y = -\frac{1}{(3x+2)}[+c]$	DB1	For $-\frac{8}{3}$
	$5\frac{2}{3} = -\frac{\frac{8}{3}}{(3 \times 2 + 2)} + c$	M1	Substituting $\left(2, 5\frac{2}{3}\right)$ into <i>their</i> integrated expression – defined by power = -1, or dividing by their power. + <i>c</i> needed
	$y = -\frac{8}{3(3x+2)} + 6$	A1	OE e.g. $y = -\frac{8}{3}(3x+2)^{-1}+6$
		4	

Question	Answer	Marks	Guidance
5(a)	$[(3^{rd} term - 1^{st} term) = (5^{th} term - 3^{rd} term) \text{ leading to}]$ -6\sqrt{3} sin x - 2 cos x = 10 cos x + 6\sqrt{3} sin x [leading to -12\sqrt{3} sin x = 12 cos x] OR [(1^{st} term + 5^{th} term) = 2 \times 3^{rd} term leading to] 12 cos x = -12\sqrt{3} sin x	*M1	OE. From the given terms, obtain 2 expressions relating to the common difference of the arithmetic progression, attempt to solve them simultaneously and achieve an equation just involving sinx and cosx.
	Elimination of sinx and cosx to give an expression in tanx $\left[\tan x = -\frac{1}{\sqrt{3}}\right]$	DM1	For use of $\frac{\sin x}{\cos x} = \tan x$
	$[x=]\frac{5\pi}{6} \text{ only}$	A1	CAO. Must be exact.
		3	
5(b)	$d = 2\cos x$ or $d = 2\cos(their x)$	B1 FT	Or an equivalent expression involving sinx and cosx e.g. $-3\sqrt{3}\sin(their x) - \cos(their x) \left[=-\sqrt{3}\right]$ FT for <i>their x</i> from (a) only. If not $\pm \sqrt{3}$, must see unevaluated form.
	$S_{25} = \frac{25}{2} \left(2 \times \left(2\cos(their x) \right) + (25-1) \times (their d) \right)$	M1	Using the correct sum formula with $\frac{25}{2}$, (25 – 1) and with
	$\left[=12.5\left(2\times\left(-\sqrt{3}\right)+24\left(-\sqrt{3}\right)\right)\right]$	p.0	<i>a</i> replaced by either $2(\cos(their x))$ or $\pm\sqrt{3}$ and <i>d</i> replaced by either $2(\cos(their x))$ or $\pm\sqrt{3}$.
	$-325\sqrt{3}$	A1	Must be exact.
		3	

Question	Answer	Marks	Guidance
6	$ar = 54$ and $\frac{a \text{ or } their a}{1-r} = 243$	B1	SOI
	$\frac{54}{r} = 243(1-r) \text{ leading to } 243r^2 - 243r + 54[=0] [9r^2 - 9r + 2 = 0]$ OR $a^2 - 243a + 13122[=0]$	*M1	Forming a 3-term quadratic expression in <i>r</i> or <i>a</i> using <i>their</i> 2nd term and S_{∞} . Allow \pm sign errors.
	k(3r-2)(3r-1)[=0] OR $(a-81)(a-162)[=0]$	DM1	Solving <i>their</i> 3-term quadratic using factorisation, formula or completing the square. If factorising, factors must expand to give \pm <i>their</i> coefficient of r^2 .
	$54 \div \left(their \frac{2}{3}\right) = a \text{ OR } 54 \div (their 81) = r$	DM1	May be implied by final answer.
	Tenth term = $\frac{512}{243} \left[\text{OR } 81 \times \left(\frac{2}{3}\right)^9 \text{OR } 54 \times \left(\frac{2}{3}\right)^8 \right]$	A1	OE. Must be exact. Special case: If B1M1DM0DM1 scored then SC B1 can be awarded for the correct final answer.
		5	

9709/12

October/November 2021

Question	Answer	Marks	Guidance
7(a)	EITHER By using trigonometry: $B\hat{A}C = 0.6435$ and $A\hat{B}C = \frac{\pi - 0.6435}{2}$ OR By Pythagoras: $AP = 12 \Rightarrow BP = 3$ so $\tan A\hat{B}C = \frac{9}{3}$ OR Using ΔPBC and either the sine or cosine rule $\sin A\hat{B}C = \frac{3}{\sqrt{10}}$ or $\cos A\hat{B}C = \frac{\sqrt{10}}{10}$	M1	$\frac{3}{\sqrt{10}} = 0.9486\dots \frac{\sqrt{10}}{10} = 0.3162\dots$
	$A\hat{B}C = \frac{\pi - 0.6435}{2} \text{ or } \tan^{-1} \frac{9}{3} \text{ or } \sin^{-1} \frac{3}{\sqrt{10}} \text{ or } \cos^{-1} \frac{\sqrt{10}}{10} \text{ or}$ $1.249(04) \text{ or } 71.56^{\circ} = 1.25 \text{ radians } (3 \text{ sf})$	A1	AG. Final answer must be 1.25, more accurate value 1.24904 with no rounding to 3sf seen as the final answer gets M1A0. If decimals are used all values must be given to at least 4sf for A1.
		2	
7(b)	$BC = \sqrt{(their 3)^2 + 9^2}$ or $\frac{9}{\sin 1.25}$ [= $\sqrt{90}$, $3\sqrt{10}$ or 9.48697]	M1	Using correct method(s) to find <i>BC</i> .
	Area of sector = $\frac{1}{2} \times (their BC)^2 \times tan^{-1} 3 [= 56.207 \text{ or } 56.25]$	M1	Using $\tan^{-1} 3$ or 1.25 and <i>their BC</i> , but not 9 or 15, in correct area of sector formula.
	Area of triangle <i>PBC</i> = 13.4 to 13.6 or $\frac{1}{2} \times 9 \times 3$	B1	
	[Area = $(56.207 \text{ or } 56.25) - their 13.5 =$] 42.7 or 42.8	A1	AWRT
		4	

Question	Answer	Marks	Guidance
8(a)	Terms required for x^2 : $-5 \times 2^4 \times ax + 10 \times 2^3 \times a^2 x^2 \left[= -80ax + 80a^2 x^2 \right]$	B 1	Can be seen as part of an expansion or in correct products.
	$2 \times (\pm their \text{ coefficient of } x) + 4 \times (\pm their \text{ coefficient of } x^2)$	*M1	
	$x^{2} \operatorname{coefficient} \text{ is } 320a^{2} - 160a = -15$ $\Rightarrow 64a^{2} - 32a + 3 \Rightarrow (8a - 3)(8a - 1)$	DM1	Forming a 3-term quadratic in a , with all terms on the same side or correctly setting up prior to completing the square and solving using factorisation, formula or completing the square. If factorising, factors must expand to give <i>their</i> coefficient of a^2 .
	$a = \frac{1}{8} \text{ or } a = \frac{3}{8}$	A1	OE. Special case: If DM0 for solving quadratic, SC B1 can be awarded for correct final answers.
		4	

Question	Answer	Marks	Guidance
8(b)	$320a^2 - 160a = k \implies 320a^2 - 160a - k [= 0]$	M1	Forming a 3-term quadratic in a with all terms on the same side. Allow \pm sign errors.
	<i>Their</i> $b^2 - 4ac$ [= 0], [160 ² - 4×320×(-k) = 0]	M1	Any use of discriminant on a 3-term quadratic.
	<i>k</i> = -20	A1	
	$a = \frac{1}{4}$	B1	Condone $a = \frac{1}{4}$ from $k = 20$.
	Alternative method for question 8(b)		
	$320a^2 - 160a = k$ and divide by $320\left[a^2 - \frac{a}{2} = \frac{k}{320}\right]$	M1	Allow \pm sign errors.
	Attempt to complete the square $\left[\left(a - \frac{1}{4}\right)^2 - \frac{1}{16} = \frac{k}{320}\right]$	M1	Must have $\left(a - \frac{1}{4}\right)^2$
	$a = \frac{1}{4}$	A1	
	<i>k</i> = -20	B 1	5
Satprep.00			

Question	Answer	Marks	Guidance
8(b) cont'd	Alternative method for question 8(b)		
	$320a^2 - 160a = k$ and attempt to differentiate LHS [640a - 160]	M1	Allow \pm sign errors.
	Setting <i>their</i> $(640a - 160) = 0$ and attempt to solve.	M1	
	$a = \frac{1}{4}$	A1	
	<i>k</i> = -20	B1	
		4	

Question	Answer	Marks	Guidance
9(a)	$\left[\frac{\mathrm{d}V}{\mathrm{d}r}\right] = \frac{9}{2} \left(r - \frac{1}{2}\right)^2$	B1	OE. Accept unsimplified.
	$\frac{dr}{dt} = \frac{dr}{dV} \times \frac{dV}{dt} = \frac{1.5}{their\frac{dV}{dr}} \left[= \frac{1.5}{\frac{9}{2} \left(5.5 - \frac{1}{2} \right)^2} = \frac{1.5}{112.5} \right]$	MI	Correct use of chain rule with 1.5, <i>their</i> differentiated expression for $\frac{dV}{dr}$ and using $r = 5.5$.
	0.0133 or $\frac{3}{225}$ or $\frac{1}{75}$ [metres per second]	A1	
		3	
9(b)	$\frac{\mathrm{d}V}{\mathrm{d}r} \text{ or } their \frac{\mathrm{d}V}{\mathrm{d}r} = \frac{1.5}{0.1} \text{ or } 15 \text{ OR } 0.1 = \frac{1.5}{their \frac{\mathrm{d}V}{\mathrm{d}r}} \left[= \frac{2 \times 1.5}{9 \left(r - \frac{1}{2}\right)^2} \text{OE} \right]$	B1 FT	Correct statement involving $\frac{dV}{dr}$ or <i>their</i> $\frac{dV}{dr}$, 1.5 and 0.1.
	$\left[\frac{9}{2}\left(r-\frac{1}{2}\right)^2 = 15 \Longrightarrow\right] r = \frac{1}{2} + \sqrt{\frac{10}{3}}$	B1	OE e.g. AWRT 2.3 Can be implied by correct volume.
	[Volume =] 8.13 AWRT	B1	OE e.g. $\frac{-3+5\sqrt{30}}{3}$. CAO.
		3	

9709/12

Question	Answer	Marks	Guidance
10(a)	$[\mathbf{f}'(x)] = 2x - \frac{k}{x^2}$	B1	
	$f'(2) = 0 \left[2 \times 2 - \frac{k}{2^2} = 0 \right] \Longrightarrow k = \dots$	M1	Setting <i>their</i> 2-term $f'(2) = 0$, at least one term correct and attempting to solve as far as $k = $.
	<i>k</i> = 16	A1	
	6	3	
10(b)	$f''(2) = e.g. 2 + \frac{2k}{2^3}$	M1	Evaluate a two term $f''(2)$ with at least one term correct. Or other valid method.
	$\left[2 + \frac{2k}{2^3}\right] > 0 \Rightarrow \text{minimum or} = 6 \Rightarrow \text{minimum}$	A1 FT	WWW. FT on positive <i>k</i> value.
		2	
10(c)	When $x = 2$, $f(x) = 14$	B1	SOI
	[Range is or y or $f(x)$] \geq <i>their</i> $f(2)$	B1 FT	Not $x \ge their f(2)$
	- Z	2	
2. satprep.			

Question	Answer	Marks	Guidance
11(a)	$\frac{dy}{dx} = \frac{1}{2} + \frac{1}{3(x-2)^{\frac{4}{3}}}$	B1	OE. Allow unsimplified.
	Attempt at evaluating <i>their</i> $\frac{dy}{dx}$ at $x = 3\left[\frac{1}{2} + \frac{1}{3(3-2)^{\frac{4}{3}}} = \frac{5}{6}\right]$	*M1	Substituting $x = 3$ into <i>their</i> differentiated expression – defined by one of 3 original terms with correct power of x .
	Gradient of normal = $\frac{-1}{their \frac{dy}{dx}} \left[= -\frac{6}{5} \right]$	*DM1	Negative reciprocal of <i>their</i> evaluated $\frac{dy}{dx}$.
	Equation of normal $y - \frac{6}{5} = (their \text{ normal gradient})(x - 3)$ $\left[y = -\frac{6}{5}x + 4.8 \Longrightarrow 5y = -6x + 24 \right]$	DM1	Using <i>their</i> normal gradient and <i>A</i> in the equation of a straight line. Dependent on *M1 and *DM1.
	[When $y = 0$,] $x = 4$	A1	or (4, 0)
		5	

Question	Answer	Marks	Guidance
11(b)	Area under curve = $\int \left(\frac{1}{2}x + \frac{7}{10} - \frac{1}{(x-2)^{\frac{1}{3}}} \right) [dx]$	M1	For intention to integrate the curve (no need for limits). Condone inclusion of π for this mark.
	$\frac{1}{4}x^2 + \frac{7}{10}x - \frac{3(x-2)^{\frac{2}{3}}}{2}$	A1	For correct integral. Allow unsimplified. Condone inclusion of π for this mark.
	$\left(\frac{9}{4} + 2.1 - \frac{3}{2}\right) - \left(\frac{6.25}{4} + 1.75 - \frac{3 \times 0.5^{\frac{2}{3}}}{2}\right)$	M1	Clear substitution of 3 and 2.5 into <i>their</i> integrated expression (with at least one correct term) and subtracting.
	0.48[24]	A1	If M1A1M0 scored then SC B1 can be awarded for correct answer.
	[Area of triangle =] 0.6	B 1	OE
	[Total area =] 1.08	A1	Dependent on the first M1 and WWW.
		6	

Question	Answer	Marks	Guidance
12(a)	Centre is (3, – 2)	B1	
	Gradient of radius = $\frac{(their - 2) - 4}{(their 3) - 5} [= 3]$	*M1	Finding gradient using <i>their</i> centre (not $(0, 0)$) and $P(5,4)$.
	Equation of tangent $y-4 = -\frac{1}{3}(x-5)$	DM1	Using P and the negative reciprocal of <i>their</i> gradient to find the equation of AB .
	Sight of $[x =]17$ and $[y =]\frac{17}{3}$	A1	
	$\left[\operatorname{Area} = \frac{1}{2} \times \frac{17}{3} \times 17 = \right] \frac{289}{6}$	A1	Or $48\frac{1}{6}$ or AWRT 48.2.
	Alternative method for question 12(a)		
	$2x + 2y\frac{\mathrm{d}y}{\mathrm{d}x} - 6 + 4\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	B1	
	At P: $10 + 8\frac{dy}{dx} - 6 + 4\frac{dy}{dx} = 0 \left[\Rightarrow \frac{dy}{dx} = -\frac{1}{3} \right]$	*M1	Find the gradient using $P(5,4)$ in <i>their</i> implicit differential (with at least one correctly differentiated y term).
	Equation of tangent $y-4 = -\frac{1}{3}(x-5)$	DM1	Using <i>P</i> and <i>their</i> value for the gradient to find the equation of <i>AB</i> .
	Sight of $[x =]17$ and $[y =]\frac{17}{3}$	A1	
	$\left[\operatorname{Area} = \frac{1}{2} \times \frac{17}{3} \times 17 = \right] \frac{289}{6}$	A1	Or $48\frac{1}{6}$ or AWRT 48.2.

Question	Answer	Marks	Guidance
12(a)	Alternative method for question 12(a)		
cont d	$\left[\left[y = -2 \pm \left(40 - (x - 3)^2 \right)^{\frac{1}{2}} \text{ OE leading to} \right] \frac{dy}{dx} = (3 - x) \left(31 + 6x - x^2 \right)^{-\frac{1}{2}} \right]$	B1	OE. Correct differentiation of rearranged equation.
	$\frac{dy}{dx} = (3-5)(31+6(5)-(5)^2)^{-\frac{1}{2}} \left[\Rightarrow \frac{dy}{dx} = -\frac{1}{3} \right]$	*M1	Find the gradient using $x = 5$ in <i>their</i> differential (with clear use of chain rule).
	Equation of tangent $y-4 = -\frac{1}{3}(x-5)$	DM1	Using <i>P</i> and <i>their</i> value for the gradient to find the equation of <i>AB</i> .
	Sight of $[x =]17$ and $[y =]\frac{17}{3}$	A1	
	$\left[\operatorname{Area} = \frac{1}{2} \times \frac{17}{3} \times 17 = \right] \frac{289}{6}$	A1	Or $48\frac{1}{6}$ or AWRT 48.2.
		5	

9709/12

Question	Answer	Marks	Guidance
12(b)	Radius of circle = $\sqrt{40}$,	B1	Or $2\sqrt{10}$ or 6.32 AWRT or $r^2 = 40$.
	Area of $\triangle CRQ = \frac{1}{2} \times (their r)^2 \sin 120 \left[= \frac{1}{2} \times 40 \times \frac{\sqrt{3}}{2} \right]$	M1	Using $\frac{1}{2}r^2\sin\theta$ with <i>their r</i> and 120 or 60 [×3]
	OR Area of $\triangle CQX = \frac{1}{2} \times \sqrt{40}\cos 30 \times \sqrt{40}\cos 60$ OE $\left[=\frac{1}{2} \times \sqrt{30} \times \sqrt{10}\right]$ OR		Using $\frac{1}{2}$ ×base×height in a correct right-angled triangle [×6].
	Area of circle – 3× Area of segment = $40\pi - 3 \times (40\frac{\pi}{3} - 10\sqrt{3})$ OR		
	$QR = \sqrt{120} \text{ or } 2\sqrt{30} \text{ and } \text{area} = \frac{1}{2}QR^2 \sin 60$		Use of cosine rule and area of large triangle
	30√3	A1	AWRT 52[.0] implies B1M1A0.
	Satpre	3	See diagram for points stated in 'Answer' column.

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/13 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specif	ic Marking Principles
--------------------	-----------------------

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/13

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance	
1	{Reflection} {[in the] x-axis} or {Stretch of scale factor -1} {parallel to y-axis}	*B1 DB1	{} indicate how the B1 marks should be awarded throughout.	
	Then {Translation} $\left\{ \begin{pmatrix} 0\\ 3 \end{pmatrix} \right\}$	B1 B1	Or Translation 3 units in the positive <i>y</i> -direction. N.B. If order reversed a maximum of 3 out of 4 marks awarded.	
	Alternative method for question 1			
	{Translation} $\left\{ \begin{pmatrix} 0 \\ -3 \end{pmatrix} \right\}$	B1 B1	Or Translation 3 units in the negative <i>y</i> -direction.	
	Then {Reflection} {in the x-axis} or {Stretch of scale factor -1} {parallel to y-axis}	*B1 DB1	N.B. If order reversed a maximum of 3 out of 4 marks awarded.	
		4		

Question	Answer	Marks	Guidance
2(a)	$1+6ax+15a^2x^2$	B 1	Terms must be evaluated.
		1	
2(b)	their $15a^2 \pm (3 \times their \ 6a)$	*M1	Expect $15a^2 - 18a$.
	$15a^2 - 18a = -3$	A1	
	(3)(a-1)(5a-1) = 0	DM1	Dependent on 3-term quadratic. Or solve using formula or completing the square.
	$a = 1, \frac{1}{5}$	A1	WWW. If DM0 awarded SC B1 if both answers correct.
		4	

Question	Answer	Marks	Guidance
3(a)	$\left\{5(y-3)^2\right\} \{+5\}$	B1 B1	Accept $a = -3, b = 5$
		2	
3(b)	$[f'(x) =]5x^4 - 30x^2 + 50$	B1	
	$5(x^2-3)^2+5$ or $b^2 < 4ac$ and at least one value of $f'(x) > 0$	M1	
	> 0 and increasing	A1	www
		3	

Question	Answer	Marks	Guidance
4(a)	84 - 3(n - 1) = 0	M1	OE, SOI. Allow either = 0 or < 0 (to -3).
	Smallest <i>n</i> is 30	A1	SC B2 for answer only $n = 30$ WWW.
		2	
4(b)	$\left(\frac{2k}{2}\right) \left[168 + (2k-1)(-3)\right] = \left(\frac{k}{2}\right) \left[168 + (k-1)(-3)\right]$	M1 A1	M1 for forming an equation using correct formula. A1 for at least one side correct.
	<i>k</i> = 19	A1	
		3	

9709/13

Question	Answer	Marks	Guidance
5(a)	Angle XYC = $\sin^{-1}\left(\frac{9}{11}\right) = 0.9582$	B 1	AG. OE using cosine rule.
	or $\sin XYC = \frac{9}{11}$ leading to $XYC = 0.9582$		
		1	
5(b)	$XY = \sqrt{11^2 - 9^2} = \sqrt{40}$ or using 0.9582 and trigonometry	*M1 A1	
	AB = 9 + 11 - theirXY	B1 FT	OE e.g. $20 - 2\sqrt{10}$, $2 + 9 - 2\sqrt{10} + 11 - 2\sqrt{10}$
	Arc $AC = 11 \times 0.9582$	M1	
	Arc $BC = 9 \times \frac{\pi}{2}$	M1	
	Perimeter = [13.6(8) + 10.5(4) +14.1(4) =] 38.4	A1	AWRT. Answer must be evaluated as a single decimal.
		6	

Question	Answer	Marks	Guidance
6(a)	satpres	B1	A reflection of the given curve in $y = x$ (the line $y = x$ can be implied by position of curve).
		1	

Question	Answer	Marks	Guidance
6(b)	$y = \frac{-x}{\sqrt{4-x^2}}$ leading to $x^2 = y^2 (4-x^2)$	*M1	Squaring and clearing the fraction. Condone one error in squaring $-x$ or y
	$x^2\left(1+y^2\right) = 4y^2$	DM1	OE. Factorisation of the new subject with order of operations correct. Condone sign errors.
	$x = (\pm) \frac{2y}{\sqrt{1+y^2}}$	DM1	$x = (\pm)\sqrt{\left(\frac{4y^2}{(1+y^2)}\right)}$ OE is acceptable for this mark. Isolating the new subject. Order of operations correct. Condone sign errors.
	$f^{-1}(x) = \frac{-2x}{\sqrt{1+x^2}}$	A1	Selecting the correct square root. Must not have fractions in numerator or denominator.
		4	
6(c)	1 or <i>a</i> = 1	B1	Do not allow $x = 1$ or $-1 < x < 1$
		1	
6(d)	$[fg(x) = f(2x) =] \frac{-2x}{\sqrt{4 - 4x^2}}$	B1	Allow $\frac{-2x}{\sqrt{4-(2x)^2}}$ or any correct unsimplified form.
	$fg(x) = \frac{-x}{\sqrt{1-x^2}}$ or $\frac{-x}{1-x^2}\sqrt{1-x^2}$ or $\frac{x}{x^2-1}\sqrt{1-x^2}$	B1	Result of cancelling 2 in numerator and denominator.
		2	

Question	Answer	Marks	Guidance
7(a)	$\tan x + \cos x = k(\tan x - \cos x) \text{leading to} \sin x + \cos^2 x = k(\sin x - \cos^2 x)$	M1	Use $\tan x = \frac{\sin x}{\cos x}$ and clear fraction.
	$\sin x + 1 - \sin^2 x = k \sin x - k + k \sin^2 x$	*M1	Use $\cos^2 x = 1 - \sin^2 x$ twice to obtain an equation in sine.
	$k\sin^2 x + \sin^2 x + k\sin x - \sin x - k - 1 = 0$	DM1	Gather like terms on one side of the equation.
	$(k+1)\sin^2 x + (k-1)\sin x - (k+1) = 0$	A1	AG. Factorise to obtain answer.
	9	4	
7(b)	$5\sin^2 x + 3\sin x - 5 = 0$	B 1	
	$\sin x = \frac{-3 \pm \sqrt{9 + 100}}{10}$	M1	Use formula or complete the square.
	x = 48.1°, 131.9°	A1 A1 FT	AWRT. Maximum A1 if extra solutions in range. FT for 180 – <i>their</i> answer or 540 – <i>their</i> answer if sinx is negative If M0 given and correct answers only SCB1B1 available. If answers in radians; 0.839, 2.30 can score SCB1 for both.
	22	4	
Question	Answer	Marks	Guidance
----------	--	----------	---
8(a)	$\int \left(\frac{5}{2} - x^{\frac{1}{2}} - x^{-\frac{1}{2}}\right) dx$	M1	OR as 2 separate integrals $\int \left(\frac{5}{2} - x^{1/2}\right) dx - \int \left(x^{-1/2}\right) dx$
	$\left\{\frac{5}{2}x - \frac{2}{3}x^{\frac{3}{2}}\right\} \{-\} \left\{2x^{\frac{1}{2}}\right\}$	A1 A1 A1	If two separate integrals with no subtraction SC B1 for each correct integral.
	$\left(10 - \frac{16}{3} - 4\right) - \left(\frac{5}{8} - \frac{1}{12} - 1\right)$	DM1	Substitute limits $\frac{1}{4} \rightarrow 4$ at least once, must be seen.
	$\frac{9}{8}$ or 1.125	A1	WWW. Cannot be awarded if π appears in any integral.
		6	
8(b)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] - \frac{1}{2}x^{-\frac{3}{2}}$	B1	
	When $x = 1, m = -\frac{1}{2}$	M1	Substitute $x = 1$ into a differential.
	[Equation of normal is] $y-1=2(x-1)$	M1	Through (1, 1) with gradient $-\frac{1}{m}$ or $\frac{1-p}{1} = 2$
	[When $x = 0$,] $p = -1$	A1	WWW
		4	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
9(a)	$x^{2} + (2x+5)^{2} = 20$ leading to $x^{2} + 4x^{2} + 20x + 25 = 20$	M1	Substitute $y = 2x + 5$ and expand bracket.
	$(5)(x^2 + 4x + 1)[=0]$	A1	3-term quadratic.
	$x = \frac{-4 \pm \sqrt{16 - 4}}{2}$	M1	OE. Apply formula or complete the square.
	$A = \left(-2 + \sqrt{3}, 1 + 2\sqrt{3}\right)$	A1	Or 2 correct x values.
	$B = \left(-2 - \sqrt{3}, 1 - 2\sqrt{3}\right)$	A1	Or all values correct. SC B1 all 4 values correct in surd form without working. SC B1 all 4 values correct in decimal form from correct formula or completion of the square
	$AB^{2} = their(x_{2} - x_{1})^{2} + their(y_{2} - y_{1})^{2}$	M1	Using <i>their</i> coordinates in a correct distance formula. Condone one sign error in $x_2 - x_1$ or $y_2 - y_1$
	$\left[AB^2 = 48 + 12 \text{ leading to}\right]AB = \sqrt{60}$	A1	OE. CAO. Do not accept decimal answer. Answer must come from use of surd form in distance formula.
	3	. 7	
Satprep.co.			

Question	Answer	Marks	Guidance
9(b)	$x^2 + m^2 \left(x - 10\right)^2 = 20$	*M1	Finding equation of tangent and substituting into circle equation.
	$x^{2}(m^{2}+1) - 20m^{2}x + 20(5m^{2}-1) [=0]$	DM1	OE. Brackets expanded and all terms collected on one side of the equation.
	$[b^{2} - 4ac =]400m^{4} - 80(m^{2} + 1)(5m^{2} - 1)$	M1	Using correct coefficients from <i>their</i> quadratic equation.
	$400m^4 - 80(5m^4 + 4m^2 - 1) = 0 \rightarrow (-80)(4m^2 - 1) = 0$	A1	OE. Must have '=0' for A1.
	$m = \pm \frac{1}{2}$	A1	
	Alternative method for question 9(b)		
	Length, <i>l</i> of tangent, is given by $l^2 = 10^2 - 20$	M1	
	$l = \sqrt{80}$	A1	
	$\tan \alpha = \frac{\sqrt{20}}{\sqrt{80}} = \frac{1}{2}$	M1 A1	Where α is the angle between the tangent and the <i>x</i> -axis.
	$m = \pm \frac{1}{2}$	A1	
		5	

Question	Answer	Marks	Guidance
10(a)	$f''(x) = -(\frac{1}{2}x + k)^{-3}$	B1	
	$\mathbf{f''(2)} > 0 \Longrightarrow -(1+k)^{-3} > 0$	M1	Allow for solving <i>their</i> $f''(2) > 0$
	<i>k</i> < -1	A1	WWW
	TPR	3	
10(b)	$\left[f(x) = \int \left(\left(\frac{1}{2}x - 3\right)^{-2} - \left(-2\right)^{-2}\right) dx = \right] \left\{\frac{\left(\frac{1}{2}x - 3\right)^{-1}}{-1 \times \frac{1}{2}}\right\} \left\{-\frac{x}{4}\right\}$	B1 B1	Allow $-2\left(\frac{1}{2}x+k\right)^{-1}$ OE for 1 st B1 and $-(1+k)^{-2}x$ OE for 2 nd B1
	$3\frac{1}{2} = 1 - \frac{1}{2} + c$	M1	Substitute $x = 2$, $y = 3\frac{1}{2}$ into <i>their</i> integral with <i>c</i> present.
	$f(x) = \frac{-2}{\left(\frac{1}{2}x - 3\right)} - \frac{x}{4} + 3$	A1	OE
		4	
10(c)	$\left(\frac{1}{2}x-3\right)^{-2}-\left(-2\right)^{-2}=0$	M1	Substitute $k = -3$ and set to zero.
	leading to $\left(\frac{1}{2}x-3\right)^2 = 4\left[\frac{1}{2}x-3=(\pm)2\right]$ leading to $x=10$	Al	
	$(10, -\frac{1}{2})$	A1	Or when $x = 10$, $y = -1 - 2\frac{1}{2} + 3 = -\frac{1}{2}$
	$f''(10) \left[= -(5-3)^{-3} \rightarrow \right] < 0 \rightarrow MAXIMUM$	A1	WWW
		4	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/11 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles	Mathematics S	specific Marking	Principles
---	---------------	------------------	------------

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$[y=] - \frac{1}{x^3} + 8x^4 \ [+c]$	B1 B1	OE. Accept unsimplified.
	$4 = -8 + \frac{1}{2} + c$	M1	Substituting $\left(\frac{1}{2}, 4\right)$ into an integrated expression
	$y = -\frac{1}{x^3} + 8x^4 + \frac{23}{2}$	A1	OE. Accept $-x^{-3}$; must be 8; $y =$ must be seen in working.
	9	4	

Question	Answer	Marks	Guidance
2	10(2a+19d) = 405	B 1	
	20(2a+39d) = 1410	B1	
	Solving simultaneously two equations obtained from using the correct sum formulae $[a = 6, d = 1.5]$	M1	Reach $a = $ or $d =$
	Using the correct formula for 60th term with their <i>a</i> and <i>d</i>	M1	
	60th term = 94.5	- A1	OE, e.g. $\frac{189}{2}$
		5	

Question	Answer	Marks	Guidance
3(a)	243	B1	
	-810x	B1	
	$+1080x^{2}$	B1	
		3	
3(b)	$(4+x)^2 = 16 + 8x + x^2$	B1	
	Coefficient of x^2 is $16 \times 1080 + 8 \times (-810) + 243$	M1	Allow if at least 2 pairs used correctly
	11043	A1	Allow $11043x^2$
		3	

Question	Answer	Marks	Guidance
4	<i>a</i> = 2	B1	
	$b = \frac{\pi}{4}$	B1	or $\frac{2\pi}{8}$
	<i>c</i> = 1	B 1	
	·satprep.	3	

Question	Answer	Marks	Guidance
5	$(-12)^2 = 8k \times 2k$	M1	Forming an equation in <i>k</i>
	<i>k</i> = -3	A1	
	Using correct formula for S_{∞} [$r = 0.5$, $a = -384$]	M1	With $-1 < r < 1$
	$S_{\infty} = -768$	A1	
	Alternative method for Question 5		
	$r^2 = \frac{2k}{8k}$	M1	
	$r = [\pm]0.5$	A1	
	Using correct formula for S_{∞} [$r = 0.5$, $a = -384$]	M1	-1 < <i>r</i> < 1
	$S_{\infty} = -768$	A1	
		4	

Question	Answer	Marks	Guidance
6	$(2k-3)x^2 - kx - (k-2) = 3x - 4$	*M1	Equating curve and line
	$(2k-3)x^2 - (k+3)x - (k-6)[=0]$	DM1	Forming a 3-term quadratic
	$(k+3)^{2} + 4(2k-3)(k-6)[=0]$	DM1	Use of discriminant (dependent on both previous M marks)
	$9k^2 - 54k + 81[=0]$ [leading to $k^2 - 6k + 9 = 0$]	M1	Simplifying and solving <i>their</i> 3-term quadratic in k
	<i>k</i> = 3	A1	
	Alternative method for Question 6		
	$(2k-3)x^2 - kx - (k-2) = 3x - 4$	*M1	Equating curve and line
	$2(2k-3)x-k=3 \Rightarrow x = \frac{k+3}{4k-6} \text{ or } k = \frac{3+6x}{4x-1}$	DM1	Differentiating and solving for <i>x</i> or <i>k</i>
	Either $(2k-3)\left(\frac{k+3}{4k-6}\right)^2 - k\left(\frac{k+3}{4k-6}\right) - (k-2) = 3\left(\frac{k+3}{4k-6}\right) - 4$ Or $4x\left(\frac{3x^2+3x-6}{2x^2-x-1}\right) - 6x - \left(\frac{3x^2+3x-6}{2x^2-x-1}\right) = 3$	DM1	Substituting <i>their</i> x into equation or <i>their</i> $k = \frac{3x^2 + 3x - 6}{2x^2 - x - 1}$ or $k = \frac{3x + 6}{2x + 1}$ into derivative equation (dependent on both previous M marks)
	$9k^2 - 54k + 81[=0]$ [leading to $k^2 - 6k + 9 = 0$]	M1	Simplifying and solving <i>their</i> 3-term quadratic in k (or solving for x)
	<i>k</i> = 3	A1	
			SC If M0, B1 for differentiating, equating to 3 and solving for x or k
		5	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

May/June 2021

Question	Answer	Marks	Guidance
7(a)	Reach $\frac{\cos^2\theta - \sin^2\theta}{\cos^2\theta}$ or $\frac{1 - \sin^2\theta}{1 - \sin^2\theta} - \frac{\sin^2\theta}{\cos^2\theta}$ or $\frac{\sin^2\theta + \cos^2\theta}{\cos^2\theta} - 2\tan^2\theta$ or $\sec^2\theta - \frac{2\sin^2\theta}{\cos^2\theta}$ or $2 - \sec^2\theta$ or $\frac{\cos^2\theta}{\cos^2\theta}$	M1	May start with $1 - \tan^2 \theta$
	$1-\tan^2\theta$	A1	AG, must show sufficient stages
		2	
7(b)	$1 - \tan^2\theta = 2\tan^4\theta \Rightarrow 2\tan^4\theta + \tan^2\theta - 1 [= 0]$	M1	Forming a 3-term quadratic in $\tan^2 \theta$ or e.g. <i>u</i>
	$\tan^2 \theta = 0.5 \text{ or } -1 \text{ leading to } \tan \theta = [\pm]\sqrt{0.5}$	M1	
	$\theta = 35.3^{\circ} \text{ and } 144.7^{\circ} \text{ (AWRT)}$	A1	Both correct. Radians 0.615, 2.53 scores A0.
		3	

Question	Answer	Marks	Guidance
8(a)	Either Let midpoint of <i>PQ</i> be <i>H</i> : sin <i>HCP</i> = $\frac{2}{4}$ \Rightarrow Angle <i>HCP</i> = $\frac{\pi}{6}$	M1	
	Or sin $PSQ = \frac{4}{8} \Rightarrow Angle PSQ = \frac{\pi}{6}$		
	Or using cosine rule: angle $PCQ = \frac{\pi}{3}$		
	Or by inspection: triangle <i>PCQ</i> or <i>PCT</i> is equilateral so angle $PCQ = \frac{\pi}{3}$		
	Angle $PCS = \pi - \frac{\pi}{6} - \frac{\pi}{6} = \frac{2}{3}\pi$	A1	AG
		2	
8(b)	Perimeter = $2 \times 4 \times \frac{2\pi}{3}$ or $8\pi - \frac{8\pi}{3}$	M1	Length of two arcs <i>PS</i> and <i>QR</i>
	$+2\pi\times2$	M1	Adding circumference of two semicircles
	$\frac{28\pi}{3}$	A1	Must be a single term
	3	3	
	Satprep.		

Question	Answer	Marks	Guidance
8(c)	Area sector $CPQ = \frac{1}{2} \times 4^2 \times \frac{\pi}{3} = \frac{8\pi}{3}$	M1	Uses correct formula for sector
	Area of segment of large circle beyond <i>CPQ</i> = $\frac{8\pi}{3} - \frac{1}{2} \times 4^2 \times \sin\left(\frac{\pi}{3}\right) = \frac{8\pi}{3} - 4\sqrt{3}$	M1	Attempts to find area of segment
	Area of small semicircle = $\pi \times 2$ or area of small circle = $\pi \times 2^2$	M1	
	Area of plate = Large circle $- [2 \times]$ small semicircle $- [2 \times]$ segment area	M1	
	$\pi \times 4^2 - \pi \times 2^2 - 2 \times \left(\frac{8\pi}{3} - 4\sqrt{3}\right) = \frac{20\pi}{3} + 8\sqrt{3}$	A1	AG
	Alternative method for Question 8(c)		
	Area of sector $PCS = \frac{1}{2} \times 4^2 \times \frac{2\pi}{3} = \frac{16\pi}{3}$	M1	Uses correct formula for sector
	Area of triangle $PCQ = \frac{1}{2} \times 4^2 \times \sin \frac{\pi}{3} = 4\sqrt{3}$	M1	Uses correct formula for triangle
	Area of small semicircle = $\pi \times 2$ or area of circle = $\pi \times 2^2$	M1	
	Area of plate = $[2 \times]$ large sector + $[2 \times]$ triangle – $[2 \times]$ small semicircle	M1	
	$2\left(\frac{16\pi}{3}\right) + 2\left(4\sqrt{3}\right) - \pi \times 2^2 = \frac{20\pi}{3} + 8\sqrt{3}$	A1	AG
		5	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2021

Question	Answer	Marks	Guidance
9(a)	Range of f is $f(x) \ge -4$	B1	Allow <i>y</i> , f or 'range' or $[-4,\infty)$
		1	
9(b)	$y = (x-2)^2 - 4 \Rightarrow (x-2)^2 = y + 4 \Rightarrow x - 2 = +\sqrt{(y+4)} \text{ or } \pm\sqrt{(y+4)}$	M1	May swap variables here
	$\left[f^{-1}(x)\right] = \sqrt{(x+4)} + 2$	A1	
	9	2	
9(c)	$(x-2)^2 - 4 = -\frac{5}{3}x + 2 \Rightarrow x^2 - 4x + 4 - 4 = -\frac{5}{3}x + 2 \ [\Rightarrow x^2 - \frac{7}{3}x - 2 = 0]$	M1	Equating and simplifying to a 3-term quadratic
	$(3x+2)(x-3)[=0]$ or $\frac{7\pm\sqrt{7^2-4(3)(-6)}}{6}$ OE	M1	Solving quadratic
	x = 3 only	A1	
		3	

Question	Answer	Marks	Guidance
9(d)	$f^{1}(12) = 6$	M1	Substitute 12 into <i>their</i> $f^{-1}(x)$ and evaluate
	$g(f^{-1}(12)) = 6a + 2$	M1	Substitute <i>their</i> '6' into $g(x)$
	$g(g(f^{-1}(12))) = a(6a+2) + 2 = 62$	M1	Substitute the result into $g(x)$ and $= 62$
	$6a^2 + 2a - 60 = 0$	M1	Forming and solving a 3-term quadratic
	$a = -\frac{10}{3}$ or 3	A1	
	Alternative method for Question 9(d)		
	$g(f^{-1}(x)) = a(\sqrt{x+4}+2)+2 \text{ or } gg(x) = a(ax+2)+2$	M1	Substitute <i>their</i> $f^{1}(x)$ or $g(x)$ into $g(x)$
	$g(g(f^{-1}(x))) = a(a(\sqrt{x+4}+2)+2)+2$	M1	Substitute the result into $g(x)$
	$g(g(f^{-1}(12))) = a(6a + 2) + 2 = 62$	M1	Substitute 12 and = 62
	$6a^2 + 2a - 60 [= 0]$	M1	Forming and solving a 3-term quadratic
	$a = -\frac{10}{3}$ or 3	A1	
	·satprep:	5	

Question	Answer	Marks	Guidance
10(a)	When $y = 0$ $x^2 - 4x - 77 = 0$ $[\Rightarrow (x+7)(x-11) = 0$ or $(x-2)^2 = 81$]	M1	Substituting $y = 0$
	So <i>x</i> -coordinates are -7 and 11	A1	
		2	

Question	Answer	Marks	Guidance
10(b)	Centre of circle C is $(2, -3)$	B 1	
	Gradient of AC is $-\frac{1}{3}$ or Gradient of BC is $\frac{1}{3}$	M1	For either gradient (M1 sign error, M0 if <i>x</i> -coordinate(s) in numerator)
	Gradient of tangent at A is 3 or Gradient of tangent at B is -3	M1	For either perpendicular gradient
	Equations of tangents are $y = 3x + 21$, $y = -3x + 33$	A1	For either equation
	Meet when $3x + 21 = -3x + 33$	M1	OR: (centre of circle has <i>x</i> coordinate 2) so <i>x</i> coordinate of point of intersection is 2
	Coordinates of point of intersection (2, 27)	A1	
	Alternative method for Question 10(b)		
	Implicit differentiation: $2y \frac{dy}{dx}$ seen	B1	
	$2x - 4 + 2y\frac{\mathrm{d}y}{\mathrm{d}x} + 6\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1	Fully differentiated $= 0$ with at least one term involving <i>y</i> differentiated correctly
	Gradient of tangent at A is 3 or Gradient of tangent at B is -3	M1	For either gradient
	Equations of tangents are $y = 3x + 21$, $y = -3x + 33$	- A1	For either equation
	Meet when $3x + 21 = -3x + 33$	M1	OR: (centre of circle has x coordinate 2) so x coordinate of point of intersection is 2
	Coordinates of point of intersection (2, 27)	A1	
		6	

9709/11

May/June 2021

Question	Answer	Marks	Guidance
11(a)	$\frac{dy}{dx} = 3(3x+4)^{-0.5} - 1$	B1 B1	B1 All correct with 1 error, B2 if all correct
	Gradient of tangent = $-\frac{1}{4}$ and Gradient of normal = 4	*M1	Substituting $x = 4$ into a differentiated expression and using $m_1 m_2 = -1$
	Equation of line is $(y - 4) = 4(x - 4)$ or evaluate c	DM1	With (4, 4) and <i>their</i> gradient of normal
	So $y = 4x - 12$	A1	
		5	
11(b)	$3(3x+4)^{-0.5} - 1 = 0$	M1	Setting their $\frac{dy}{dx} = 0$
	Solving as far as $x =$	M1	Where $\frac{dy}{dx}$ contains $a(bx+c)^{-0.5}$ a, b, c any values
	$x = \frac{5}{3}, y = 2\left(3 \times \frac{5}{3} + 4\right)^{0.5} - \frac{5}{3} = \frac{13}{3}$	A1	
		3	
11(c)	$\frac{d^2 y}{dx^2} = -\frac{9}{2} (3x+4)^{-1.5}$		Differentiating <i>their</i> $\frac{dy}{dx}$ OR checking $\frac{dy}{dx}$ to find +ve and -ve either side of their $x = \frac{5}{3}$
	At $x = \frac{5}{3} \frac{d^2 y}{dx^2}$ is negative so the point is a maximum	A1	
		2	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2021

Question	Answer	Marks	Guidance
11(d)	Area = $\left[\int 2(3x+4)^{0.5} - x dx = \right] \frac{4}{9}(3x+4)^{1.5} - \frac{1}{2}x^2$	B1 B1	B1 for each correct term (unsimplified)
	$\left(\frac{4}{9}(16)^{1.5} - \frac{1}{2}(4)^2\right) - \frac{4}{9}(4)^{1.5} = \frac{256}{9} - 8 - \frac{32}{9}$	M1	Substituting limits 0 and 4 into an expression obtained by integrating y
	$16\frac{8}{9}$	A1	Or $\frac{152}{9}$
	9	4	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/12 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then
	no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

May/June	2021
----------	------

Question	Answer	Marks	Guidance
1(a)	$(4x-3)^2$ or $(4x+(-3))^2$ or $a = -3$	B1	$k(4x-3)^2$ where $k \neq 1$ scores B0 but mark final answer, allow recovery.
	+1 or b = 1	B1	
		2	
1(b)	[For one root] $k = 1$ or ' <i>their b</i> '	B1 FT	Either by inspection or solving or from $24^2 - 4 \times 16 \times (10 - k) = 0$ WWW
	$[\text{Root or } x =]\frac{3}{4} \text{ or } 0.75$	B1	SC B2 for correct final answer WWW.
		2	

May/June 2021

Question	Answer	Marks	Guidance
2(a)	Translation $\begin{pmatrix} 1\\ 0 \end{pmatrix}$	B1	Allow shift and allow by 1 in <i>x</i> -direction or [parallel to/on/in/ along/against] the <i>x</i> -axis or horizontally. 'Translation by 1 to the right' only, scores B0
	Stretch	B1	Stretch. SC B2 for amplitude doubled.
	Factor 2 in y-direction	B1	With/by factor 2 in <i>y</i> -direction or [parallel to/on/in/along/against] the <i>y</i> -axis or vertically or with <i>x</i> axis invariant 'With/by factor 2 upwards' only, scores B0. Accept SF as an abbreviation for scale factor.
		3	Note: Transformations can be in either order
2(b)	$[-\sin 6x][+15x]$ or $[\sin(-6x)][+15x]$ OE	B1 B1	Accept an unsimplified version. ISW. B1 for each correct component – square brackets indicate each required component.
			If B0, SC B1 for either $\sin(-2x) + 5x$ or $-\sin(2x) + 5x$ or $\sin 6x - 15x$ or $\sin\left(-\frac{2}{3}x\right) + \frac{5}{3}x$
		2	

Question	Answer	Marks	Guidance
3(a)	1.2679	B1	AWRT. ISW if correct answer seen. $3 - \sqrt{3}$ scores B0
		1	
3(b)	1.7321	B1	AWRT. ISW if correct answer seen.
		1	
3(c)	Sight of 2 or 2.0000 or two in reference to the gradient	*B1	
	This is because the gradient at E is the limit of the gradients of the chords as the x-value tends to 3 or ∂x tends to 0.	DB1	Allow it gets nearer/approaches/tends/almost/approximately 2
		2	

Question	Answer	Marks	Guidance
4	[Coefficient of x or $p =$] 480	B 1	SOI. Allow 480x even in an expansion.
	$\left[\operatorname{Termin}\frac{1}{x}orq=\right]\left[10\times\right]\left(2x\right)^3\left(\frac{k}{x^2}\right)^2$	M1	Appropriate term identified and selected.
	$[10 \times 2^3 k^2 =] 80k^2$	A1	Allow $\frac{80k^2}{x}$
	$p = 6q$ used (480 = 6 × 80 k^2 or 80 = 80 k^2)	M1	Correct link used for <i>their</i> coefficient of x and $\frac{1}{x}$ (p and q) with no x's.
	$[k^2 = 1 \Rightarrow] k = \pm 1$	A1	A0 if a range of values given. Do not allow $\pm \sqrt{1}$.
		5	

Question	Answer	Marks	Guidance
5(a)	$ff(x) = 2(2x^2 + 3)^2 + 3$	M1	Condone = 0.
	$8x^4 + 24x^2 + 21$	Al	ISW if correct answer seen. Condone = 0.
		2	
5(b)	$8x^4 + 24x^2 + 21 = 34x^2 + 19 \Rightarrow 8x^4 + 24x^2 - 34x^2 + 21 - 19 [= 0]$	M1	Equating $34x^3 + 19$ to <i>their</i> 3-term ff(x) and collect all terms on one side condone \pm sign errors.
	$8x^4 - 10x^2 + 2[=0]$	A1	
	$[2](x^2 - 1)(4x^2 - 1)$	M1	Attempt to solve 3-term quartic or 3-term quadratic by factorisation, formula or completing the square or factor theorem.
	$\left[x^2 = 1 \text{ or } \frac{1}{4} \text{ leading to}\right]x = 1 \text{ or } x = \frac{1}{2}$	A1	If factorising, factors must expand to give $8x^4$ or $4x^4$ 4 or <i>their</i> ax^4 otherwise M0A0 due to calculator use. Condone ± 1 , $\pm \frac{1}{2}$ but not $\sqrt{\frac{1}{4}}$ or $\sqrt{1}$.
		4	

Question	Answer	Marks	Guidance		
6	Gradient AB = $\frac{1}{2}$	B1	SOI		
	Lines meet when $-2x + 4 = \frac{1}{2}(x-8) + 3$ Solving as far as $x =$	*M1	Equating given perpendicular bisector with the line through (8, 3) using <i>their</i> gradient of <i>AB</i> (but not -2) and solving. Expect $x = 2, y = 0$.		
	Using mid-point to get as far as $p = \text{ or } q =$	DM1	Expect $\frac{8+p}{2} = 2$ or $\frac{3+q}{2} = 0$		
	p = -4, q = -3	A1	Allow coordinates of <i>B</i> are $(-4, -3)$.		
	Alternative method for Question 6				
	Gradient AB = $\frac{1}{2}$	B1	SOI		
	$\frac{q-3}{p-8} = \frac{1}{2} \text{[leading to } 2q = p-2\text{]},$ $\frac{q+3}{2} = -2\left(\frac{8+p}{2}\right) + 4 \text{[leading to } q = -11-2p\text{]}$	*M1	Equating gradient of <i>AB</i> with <i>their</i> gradient of <i>AB</i> (but not -2) and using mid-point in equation of perpendicular bisector.		
	Solving simultaneously <i>their</i> 2 linear equations	DM1	Equating and solving 2 correct equations as far as $p = \text{ or } q = $.		
	p = -4, q = -3	Al	Allow coordinates of <i>B</i> are $(-4, -3)$.		

May/June 2021

Question	Answer	Marks	Guidance
6	Alternative method for Question 6		
	Gradient AB = $\frac{1}{2}$	B1	
	$\frac{q-3}{p-8} = \frac{1}{2} \text{[leading to } p = 2q+2\text{]},$ $y - \frac{q+3}{2} = -2(x - (q+5)) \text{[leading to } y = -2x + \frac{5q+23}{2}\text{]}$	*M1	Equating gradient of <i>AB</i> with <i>their</i> gradient of <i>AB</i> (but not -2) and using mid-point in equation of perpendicular bisector.
	their $\frac{5q+23}{2} = 4 \Rightarrow q =$	DM1	Equating and solving as far as q or $p =$
	p = -4, q = -3	A1	Allow coordinates of <i>B</i> are $(-4, -3)$.
		4	

Question	Answer	Marks	Guidance		
7(a)	$(5-1)^2 + (11-5)^2 = 52$ or $\frac{11-5}{5-1}$	M1	For substituting (1,5) into circle equation or showing gradient = $\frac{3}{2}$.		
	For both circle equation and gradient, and proving line is perpendicular and stating that <i>A</i> lies on the circle	A1	Clear reasoning.		
	Alternative method for Question 7(a)	PR			
	$(x-5)^{2} + (y-11)^{2} = 52$ and $y-5 = -\frac{2}{3}(x-1)$	M1	Both equations seen and attempt to solve. May see $y = -\frac{2}{3}x + \frac{17}{3}$		
	Solving simultaneously to obtain $(y - 5)^2 = 0$ or $(x - 1)^2 = 0 \Rightarrow 1$ root or tangent or discriminant = $0 \Rightarrow 1$ root or tangent	A1	Clear reasoning.		
	Alternative method for Question 7(a)				
	$\frac{dy}{dx} = \frac{10 - 2x}{2y - 22} = \frac{10 - 2}{10 - 22}$	M1	Attempting implicit differentiation of circle equation and substitute $x = 1$ and $y = 5$.		
	Showing gradient of circle at A is $-\frac{2}{3}$	A1	Clear reasoning.		
	4. Sot	2	0		
7(b)	Centre is (-3, -1)	B1 B1	B1 for each correct co-ordinate.		
	Equation is $(x + 3)^2 + (y + 1)^2 = 52$	B1 FT	FT <i>their</i> centre, but not if either (1, 5) or (5, 11). Do not accept $\sqrt{52^2}$.		
		3			

9709/12

Question	Answer	Marks	Guidance
8(a)	$\left(a+b=2\times\frac{3}{2}a\right) \Longrightarrow b=2a$	B1	SOI
	$18^2 = a(b+3)$ OE or 2 correct statements about <i>r</i> from the GP, e.g. $r = \frac{18}{a}$ and $b+3 = 18r$ or $r^2 = \frac{b+3}{a}$	B1	SOI
	$324 = a(2a + 3) \Rightarrow 2a^{2} + 3a - 324[= 0]$ or $b^{2} + 3b - 648[= 0]$ or $6r^{2} - r - 12[= 0]$ or $4d^{2} + 3d - 162[= 0]$	M1	Using the correct connection between AP and GP to form a 3-term quadratic with all terms on one side.
	(a - 12)(2a + 27)[= 0] or (b - 24)(b + 27)[= 0] or (2r - 3)(3r + 4)[= 0] or (d - 6)(4d + 27)[= 0]	M1	Solving <i>their</i> 3-term quadratic by factorisation, formula or completing the square to obtain answers for <i>a</i> , <i>b</i> , <i>r</i> or <i>d</i> .
	<i>a</i> = 12, <i>b</i> = 24	A1	WWW. Condone extra 'solution' $a = -13.5, b = -27$ only.
		5	

Question	Answer	Marks	Guidance
8(b)	Common difference $d = 6$	B1 FT	SOI. FT <i>their</i> $\frac{a}{2}$
	$S_{20} = \frac{20}{2} (2 \times 12 + 19 \times 6)$	M1	Using correct sum formula with <i>their a, their</i> calculated <i>d</i> and 20.
	1380	Al	
		3	

Question	Answer	Marks	Guidance
9	Curve intersects $y = 1$ at $(3, 1)$	B1	Throughout Question 9: $1 < their 3 < 5$ Sight of $x = 3$
	$Volume = [\pi] \int (x-2) [dx]$	M1	M1 for showing the intention to integrate $(x-2)$. Condone missing π or using 2π .
	$[\pi] \left[\frac{1}{2} x^2 - 2x \right]$ or $[\pi] \left[\frac{1}{2} (x-2)^2 \right]$	A1	Correct integral. Condone missing π or using 2π .
	$= [\pi] \left[\left(\frac{5^2}{2} - 2 \times 5 \right) - \left(\frac{their 3^2}{2} - 2 \times their 3 \right) \right]$ $= [\pi] \left[\frac{5}{2} + \frac{3}{2} \right] $ as a minimum requirement for <i>their</i> values	MI	Correct use of ' <i>their</i> 3' and 5 in an integrated expression. Condone missing π or using 2π . Condone +c. Can be obtained by integrating and substituting between 5 and 2 and then 3 and 2 then subtracting.
	Volume of cylinder = $\pi \times 1^2 \times (5 - their 3) [= 2\pi]$	B1 FT	Or by integrating 1 to obtain x (condone y if 5 and <i>their</i> 3 used).
	[Volume of solid = $4\pi - 2\pi =]2\pi$ or 6.28	A1	AWRT

May/June 2021

Question	Answer	Marks	Guidance
9	Alternative method for Question 9		
	Curve intersects $y = 1$ at $(3, 1)$	B1	Sight of $x = 3$
	Volume of solid = $\pi \int (x-2) - 1[dx]$	M1 B1	M1 for showing the intention to integrate $(x-2)$ B1 for correct integration of -1. Condone missing π or 2π for M1 but not for B1.
	$\left[\pi\right]\left[\frac{1}{2}x^2 - 3x\right] \text{ or } \left[\pi\right]\left[\frac{1}{2}(x-3)^2\right]$	A1	Correct integral, allow as two integrals. Condone missing π or using 2π .
	$= \left[\pi\right] \left[\left(\frac{5^2}{2} - 3 \times 5\right) - \left(\frac{their 3^2}{2} - 3 \times their 3\right) \right]$	M1	Correct use of ' <i>their</i> 3' and 5 in an integrated expression. Condone missing π or using 2π . Condone +c. Can be obtained by integrating and substituting between 5 and 2 and then 3 and 2 then subtracting.
	[Volume of solid = $4\pi - 2\pi =]2\pi$ or 6.28	A1	AWRT
		6	
May/June 2021

Question	Answer	Marks	Guidance
10(a)	$\frac{1+\sin x}{1-\sin x} - \frac{1-\sin x}{1+\sin x} = \frac{(1+\sin x)^2 - (1-\sin x)^2}{(1-\sin x)(1+\sin x)}$	*M1	For using a common denominator of $(1 - \sin x)(1 + \sin x)$ and reasonable attempt at the numerator(s).
	$=\frac{1+2\sin x+\sin^2 x-(1-2\sin x+\sin^2 x)}{(1-\sin x)(1+\sin x)}$	DM1	For multiplying out the numerators correctly. Condone sign errors for this mark.
	$\equiv \frac{4 \sin x}{1 - \sin^2 x} \equiv \frac{4 \sin x}{\cos^2 x}$	DM1	For simplifying denominator to $\cos^2 x$.
	$\equiv \frac{4 \sin x}{\cos x \cos x} \equiv \frac{4 \tan x}{\cos x}$	A1	AG. Do not award A1 if undefined notation such as s, c, t or missing x 's used throughout or brackets are missing.
	Alternative method for Question 10(a)		
	$\frac{4\tan x}{\cos x} \equiv \frac{4\sin x}{\cos^2 x} \equiv \frac{4\sin x}{1-\sin^2 x}$	*M1	Using $\tan x = \frac{\sin x}{\cos x}$ and $\cos^2 x = 1 - \sin^2 x$
	$=\frac{-2}{1+\sin x}+\frac{2}{1-\sin x}$	DM1	Separating into partial fractions.
	$\equiv 1 + \frac{-2}{1 + \sin x} + \frac{2}{1 - \sin x} - 1$	DM1	Use of 1-1 or similar
	$\equiv -\frac{1-\sin x}{1+\sin x} + \frac{1+\sin x}{1-\sin x}$	A1	
		4	

Question	Answer	Marks	Guidance
10(b)	$\cos x = \frac{1}{2}$	*B1	OE. WWW.
	$x = \frac{\pi}{3}$	DB1	Or AWRT 1.05
	$x = 0 \text{ from } \tan x = 0 \text{ or } \sin x = 0$	B1	WWW. Condone extra solutions outside the domain 0 to $\frac{\pi}{2}$ but B0 if any inside.
		3	

Question	Answer	Marks	Guidance
11(a)	At stationary point $\frac{dy}{dx} = 0$ so $6(3 \times 2 - 5)^3 - k \times 2^2 = 0$	M1	Setting given $\frac{dy}{dx} = 0$ and substituting $x = 2$ into it.
	$[k=]\frac{3}{2}$	A1	OE
	ź	2	.5
11(b)	$[y=]\frac{6}{4\times 3}(3x-5)^4 - \frac{1}{3}kx^3 \ [+c].$	*M1 A1FT	Integrating (increase of power by 1 in at least one term) given $\frac{dy}{dx}$
	arch.	101	Expect $\frac{1}{2}(3x-5)^4 - \frac{1}{2}x^3$.
			FT <i>their</i> non zero <i>k</i> .
	$-\frac{7}{2} = \frac{1}{2} (3 \times 2 - 5)^4 - \frac{1}{3} \times \frac{3}{2} \times 2^3 + c \text{ [leading to } -3.5 + c = -3.5 \text{]}$	DM1	Using (2,-3.5) in an integrated expression. + c needed. Substitution needs to be seen, simply stating $c = 0$ is DM0.
	$y = \frac{1}{2} (3x - 5)^4 - \frac{1}{2} x^3$	Al	y = or f(x) = must be seen somewhere in solution.

May/June 2021

Question	Answer	Marks	Guidance
11(b)	Alternative method for Question 11(b)		
	$[y=]\frac{81}{2}x^4 - \frac{541}{2}x^3 + 675x^2 - 750x(+c) \text{ or } -270x^3 - k\frac{x^3}{3}$	*M1 A1 FT	From $\frac{dy}{dx} = 162x^3 - 810x^2 - kx^2 - 1350x - 750$. FT their k
	$-\frac{7}{2} = \frac{81}{2} \times 2^4 - \frac{541}{2} \times 2^3 + 675 \times 2^2 - 750 \times 2 + c$	DM1	Using (2, -3.5) in an integrated expression. + c needed
	$y = \frac{81}{2}x^4 - \frac{541}{2}x^3 + 675x^2 - 750x + \frac{625}{2}$	A1	y = or f(x)= must be seen somewhere in solution.
		4	
11(c)	$[3\times] \Big[18(3x-5)^2 \Big] \Big[-2kx \Big]$	B2,1,0 FT	FT <i>their k.</i> Square brackets indicate each required component. B2 for fully correct, B1 for one error or one missing component, B0 for 2 or more errors.
	Alternative method for Question 11(c)		
	$486x^2 - 1623x + 1350 \text{ or } -1620x - 2kx$	B2,1,0 FT	FT <i>their k.</i> B2 for fully correct, B1 for one error, B0 for 2 or more errors.
	Z	2	0
11(d)	$[At x = 2] \left[\frac{d^2 y}{dx^2} \right] = 54(3 \times 2 - 5)^2 - 4k \text{ or } 48$	M1	OE. Substituting $x = 2$ into <i>their</i> second differential or other valid method.
	[>0] Minimum	A1	WWW
		2	

Question	Answer	Marks	Guidance	
12(a)	[By symmetry] $[6 \times P\hat{A}Q = 2\pi]$, $[P\hat{A}Q =]2\pi \div 6$,	M1		
	Explaining that there are six sectors around the diagram that make up a complete circle.	A1	AG	
	Alternative method for Question 12(a)			
	Using area or circumference of circle centre $A \div 6$	M1	$\frac{400\pi}{6} \text{ or } \frac{40\pi}{6}$	
	Justification for dividing by 6 followed by comparison with the sector area or arc length.	A1	AG	
	Alternative method for Question 12(a)			
	Explain why ΔPAQ is an equilateral triangle	M1	Assumption of this scores M0	
	Using ΔPAQ is an equilateral triangle $\therefore \hat{PAQ} = \frac{\pi}{3}$	A1	AG	
	Alternative method for Question 12(a)			
	Using the internal angle of a regular hexagon = $\frac{2\pi}{3}$	M1	.5	
	Or $F\hat{A}O + O\hat{A}B = \frac{2\pi}{3}$, equilateral triangles	brep	C ⁻	
	$P\hat{A}Q = 2\pi - \left(\frac{\pi}{2} + \frac{2\pi}{3} + \frac{\pi}{2}\right) = \frac{\pi}{3}$	A1	AG	

May/June 2	2021
------------	------

Question	Answer	Marks	Guidance
12(a)	Alternative method for Question 12(a)		
	$Sin\theta = \frac{20}{40}$, with θ clearly identified	M1	
	$\theta = \frac{\pi}{6}, 2\theta = \frac{\pi}{3} = F\hat{A}O$ and by similar triangles = $P\hat{A}Q$	A1	AG
		2	
12(b)	Each straight section of rope has length 40 cm	B1	SOI
	Each curved section round each pipe has length $r\theta = 20 \times \frac{\pi}{3}$	*M1	Use of $r\theta$ with $r = 20$ and θ in radians
	Total length = $6 \times ((their 40) + k\pi)$	DM1	$6 \times (their \text{ straight section} + their \text{ curved section}).$ Their curved section must be from acceptable use of $r\theta$ – this could now be numeric.
	$240 + 40\pi$ or 366 (AWRT) (cm)	A1	Or directly: $(6 \times \text{diameter}) + \text{circumference}$
	4	4	.5
	Satp	oreP	.0.

May/June	2021
----------	------

Question	Answer	Marks	Guidance
12(c)	[Triangle area =] $\frac{1}{2} \times 40 \times 40 \times \sin\left(\frac{\pi}{3}\right)$ or $\frac{1}{2} \times 40 \times 20\sqrt{3}$ or	B1	
	$400\sqrt{3}$ or 693(AWRT)		
	[Total area of hexagon = $6 \times 400\sqrt{3}$ =] $2400\sqrt{3}$	B1	Condone $4800\frac{\sqrt{3}}{2}$
	Alternative method for Question 12(c)		
	[Trapezium area =] $\frac{1}{2} \times (40 + 80) \times 40 \sin\left(\frac{\pi}{3}\right)$ or $1200\sqrt{3}$ or 2080	B1	
	(AWRT)		
	[Total area of hexagon = $2 \times 1200 \sqrt{3}$ =] $2400 \sqrt{3}$	B1	Condone $4800\frac{\sqrt{3}}{2}$
	Alternative method for Question 12(c)		
	Area of triangle $ABC = 400\sqrt{3}$ or 693 (AWRT) or 4 × Area of half of triangle $ABC = 4 \times 200\sqrt{3}$ or 1390 (AWRT) or Area of rectangle $ABDE = 1600\sqrt{3}$ or 2770 (AWRT)	B1	
	[Total area of hexagon = $2 \times 400\sqrt{3} + 1600\sqrt{3}$ =] $2400\sqrt{3}$ Or [= $4 \times 200\sqrt{3} + 1600$ =] $2400\sqrt{3}$	B1	Condone $4800\frac{\sqrt{3}}{2}$
			If B0B0, SC B1 can be scored for sight of 4160 (AWRT) as final answer.
		2	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2021

Question	Answer	Marks	Guidance
12(d)	Each rectangle area = 40×20 (= 800)	B1	SOI, e.g. by sight of 4800
	Each sector area = $\frac{1}{2}r^2\theta = \frac{1}{2} \times 20^2 \times \frac{\pi}{3} \left[= \frac{200\pi}{3} \right]$	B1	SOI.
	Total area = $2400\sqrt{3} + 4800 + 400\pi$ or $10200(\text{cm}^2)(\text{AWRT})$	B1	Or directly: part (c) + 6800 + area circle radius 20.
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/13 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics	Specific	Marking	Principles
1010011011100100	Speenie	111001111115	1 Interpres

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$\left[f(x)=\right] 2x^3 + \frac{8}{x} \left[+c\right]$	B1	Allow any correct form
	7 = 16 + 4 + c	M1	Substitute $f(2) = 7$ into an integral. <i>c</i> must be present. Expect $c = -13$
	$f(x) = 2x^3 + \frac{8}{x} - 13$	A1	Allow $y = f(x)$ or y can appear earlier in answer
	9	3	

Question	Answer	Marks	Guidance
2	$\left[\mathbf{f}^{-1}(x)=\right]\left(\left(2x-1\right)^{1/2}\right)\times\left(\frac{1}{3}\times2\times\frac{3}{2}\right)\left(-2\right)$	B2, 1, 0	Expect $(2x-1)^{1/2} - 2$
	$(2x-1)^{1/2} - 2 \leqslant 0 \rightarrow 2x-1 \leqslant 4 \text{ or } 2x-1 < 4$	M1	SOI. Rearranging and then squaring, must have power of $\frac{1}{2}$ not present Allow '=0' at this stage but do not allow ' \ge 0' or ' > 0' If '-2' missed then must see \le or < for the M1
	Value [of a] is $2\frac{1}{2}$ or $a = 2\frac{1}{2}$	A1	WWW, OE e.g. $\frac{5}{2}$, 2.5 Do not allow from '=0' unless some reference to negative gradient.
		4	

May/June 2021

Question	Answer	Marks	Guidance
3	$x^{2} - 4x + 3 = mx - 6$ leading to $x^{2} - x(4 + m) + 9$	*M1	Equating and gathering terms. May be implied on the next line.
	$b^2 - 4ac$ leading to $(4+m)^2 - 4 \times 9$	DM1	SOI. Use of the discriminant with <i>their a</i> , <i>b</i> and <i>c</i>
	$4+m = \pm 6 \text{ or}(m-2)(m+10) = 0$ leading to $m = 2 \text{ or} -10$	A1	Must come from $b^2 - 4ac = 0$ SOI
	Substitute both <i>their m</i> values into <i>their</i> equation in line 1	DM1	
	m = 2 leading to $x = 3$; $m = -10$ leading to $x = -3$	A1	
	(3, 0), (-3, 24)	A1	Accept 'when $x = 3$, $y = 0$; when $x = -3$, $y = 24$ ' If final A0A0 scored, SC B1 for one point correct WWW
	Alternative method for Question 3		
	$\frac{dy}{dx} = 2x - 4 \rightarrow 2x - 4 = m$	*M1	
	$x^2 - 4x + 3 = (2x - 4)x - 6$	DM1	
	$x^{2} - 4x + 3 = 2x^{2} - 4x - 6 \rightarrow 9 = x^{2} \rightarrow x = \pm 3$	A1	
	y = 0, 24 or (3, 0), (-3, 24)	A1	
	Substitute both <i>their x</i> values into <i>their</i> equation in line 1	DM1	Or substitute both <i>their</i> (x, y) into $y = mx - 6$
	When $x = 3$, $m = 2$; when $x = -3$, $m = -10$	A1	If A0, DM1, A0 scored, SC B1 for one point correct WWW
		6	

9709/13

Question	Answer	Marks	Guidance
4(a)	$\frac{\tan x + \sin x}{\tan x - \sin x} [=k] \text{ leading to } \frac{\sin x + \sin x \cos x}{\sin x - \sin x \cos x} [=k]$ or $\frac{\frac{1}{\cos x} + 1}{\frac{1}{\cos x} - 1} [=k] \text{ or } \frac{\tan x + \tan x \cos x}{\tan x - \tan x \cos x} [=k]$	M1	Multiply numerator and denominator by $\cos x$, or divide numerator and denominator by $\tan x$ or $\sin x$
	$\frac{\sin x(1+\cos x)}{\sin x(1-\cos x)} \text{ or } \frac{\frac{1}{\cos x}+1}{\frac{1}{\cos x}-1} \cdot \frac{\cos x}{\cos x} \text{ or } \frac{\tan x(1+\cos x)}{\tan x(1-\cos x)} \text{ leading to } \frac{1+\cos x}{1-\cos x} [=k]$	A1	AG, WWW
		2	
4(b)	$k - k\cos x = 1 + \cos x$ leading to $k - 1 = k\cos x + \cos x$	M1	Gather like terms on LHS and RHS
	$k-1 = (k+1)\cos x$ leading to $\cos x = \frac{k-1}{k+1}$	A1	WWW, OE
		2	
4(c)	Obtaining cos x from <i>their</i> (b) or (a)	M1	Expect $\cos x = \frac{3}{5}$
	± 0.927 (only solutions in the given range)	A1	AWRT. Accept $\pm 0.295\pi$
		2	

May/June 2021

Question	Answer	Marks	Guidance
5(a)	$\frac{1}{2} \times 4^2 \times \text{angle BAD} = 10$	M1	Use of sector area formula
	Angle BAD = 1.25	A1	OE. Accept 0.398π , 71.6° for SC B1 only
		2	
5(b)	$\operatorname{Arc} BD = 4 \times their 1.25$	M1	Use of arc length formula. Expect 5.
	$BC = 4\tan(their 1.25)$	M1	Expect 12.0(4). May use <i>ACB</i> =0.321 or 18.4°
	$CD = \frac{4}{\cos(their 1.25)} - 4 \text{ or } \sqrt{4^2 + (their BC)^2} - 4$	M1	Expect $12.69 - 4 = 8.69$. May use <i>ACB</i> .
	Perimeter = $5 + 12.0(4) + 8.69 = 25.7$ (cm)	A1	AWRT
		4	

Question	Answer	Marks	Guidance
6(a)	$f(x) = (x-1)^2 + 4$	B1	
	$g(x) = (x+2)^2 + 9$	B1	
	g(x) = f(x+3)+5	B1 B1	B1 for each correct element. Accept $p = 3, q = 5$
		4	

Question	Answer	Marks	Guidance
6(b)	Translation or Shift	B1	
	$\begin{pmatrix} -3\\ 5 \end{pmatrix}$ or acceptable explanation	B1 FT	If given as 2 single translations both must be described correctly e.g. $\begin{pmatrix} -3 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 5 \end{pmatrix}$ FT from <i>their</i> f (x + p) + q or <i>their</i> f(x) \rightarrow g(x) Do not accept $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$ or $\begin{pmatrix} -2 \\ 9 \end{pmatrix}$
		2	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

May/June 2021

Question	Answer	Marks	Guidance
7(a)	$(a-x)^6 = a^6 - 6a^5x + 15a^4x^2 - 20a^3x^3 + \dots$	B2, 1, 0	Allow extra terms. Terms may be listed. Allow a^6x^0 .
		2	
7(b)	$\left(1+\frac{2}{ax}\right)(\dots 15a^4x^2-20a^3x^3+\dots)$ leading to $\left[x^2\right](15a^4-40a^2)$	M1	Attempting to find 2 terms in x^2
	$15a^4 - 40a^2 = -20$ leading to $15a^4 - 40a^2 + 20[=0]$	A1	Terms on one side of the equation
	$(5a^2-10)(3a^2-2)$ [=0]	M1	OE. M1 for attempted factorisation or solving for a^2 or u (= a^2) using e.g. formula or completing the square
	$a = \pm \sqrt{2}, \ \pm \sqrt{\frac{2}{3}}$	B1 B1	OE exact form only If B0B0 scored then SC B1 for $\sqrt{2}$, $\sqrt{\frac{2}{3}}$ WWW or ±1.41,±0,816 WWW
	3	5	
	Satprep.co		

Question	Answer	Marks	Guidance
8(a)	$[fg(x) =]1/(2x+1)^2 - 1$	B1	SOI
	$\frac{1}{(2x+1)^2 - 1} = 3 \text{ leading to } 4(2x+1)^2 = 1$ or $\frac{1}{(2x+1)} = [\pm]2 \text{ or } 16x^2 + 16x + 3 = 0$	M1	Setting $fg(x) = 3$ and reaching a stage before $2x+1=\pm\frac{1}{2}$ or reaching a 3 term quadratic in x
	$2x+1=\pm\frac{1}{2}$ or $2x+1=-\frac{1}{2}$ or $(4x+1)(4x+3)[=0]$	A1	Or formula or completing square on quadratic
	$x = -\frac{3}{4}$ only	A1	
	Alternative method for Question 8(a)		
	$x^2 - 1 = 3$	M1	
	g(x) = -2	A1	
	$\frac{1}{(2x+1)} = -2$	M1	
	$x = -\frac{3}{4}$ only	A1	
	Satpree	4	

Question	Answer	Marks	Guidance
8(b)	$y = \frac{1}{(2x+1)^2} - 1$ leading to $(2x+1)^2 = \frac{1}{y+1}$ leading to $2x+1 = [\pm]\frac{1}{\sqrt{y+1}}$	*M1	Obtain $2x+1$ or $2y+1$ as the subject
	$x = [\pm] \frac{1}{2\sqrt{y+1}} - \frac{1}{2}$	DM1	Make $x(\text{ or } y)$ the subject
	$-\frac{1}{2\sqrt{x+1}} - \frac{1}{2}$	A1	OE e.g. $-\frac{\sqrt{x+1}}{2x+2} - \frac{1}{2}, -\left(\sqrt{\frac{-x}{4x+4} + \frac{1}{4}} + \frac{1}{2}\right)$
		3	

Question	Answer	Marks	Guidance
9(a)	$ar = \frac{24}{100} \times \frac{a}{1-r}$	M1	Form an equation using a numerical form of the percentage and correct formula for u_2 and S_{∞}
	$100r^2 - 100r + 24[=0]$	A1	OE. All 3 terms on one side of an equation.
	$(20r-8)(5r-3)[=0] \rightarrow r = \frac{2}{5}, \frac{3}{5}$	A1	Dependent on factors or formula seen from their quadratic.
	Satore?	3	

Question	Answer	Marks	Guidance
9(b)	$3 \times \{(a+4d)\} = \{(2(a+1)+11(d+1))\}$	*M1	SOI Attempt to cross multiply with contents of at least one { } correct
	Simplifies to $a + d = 13$	A1	
	$\left[\frac{5}{2}\right] \times 3\left\{(2a+4d)\right\} = \left[\frac{5}{2}\right] \times 2\left\{\left(4(a+1)+4(d+1)\right)\right\}$	*M1	SOI Attempt to cross multiply with contents of at least one { } correct
	Simplifies to $-a + 2d = 8$	A1	
	Solve 2 linear equations simultaneously	DM1	Elimination or substitution expected
	d = 7, a = 6	A1	SC B1 for <i>a</i> =6, <i>d</i> =7 without complete working
		6	

Question	Answer	Marks	Guidance
10(a)	Gradient of $AB = -\frac{3}{5}$, gradient of $BC = \frac{5}{3}$ or lengths of all 3 sides or vectors	M1	Attempting to find required gradients, sides or vectors
	$m_{ab}m_{bc} = -1$ or Pythagoras or $\overrightarrow{AB.BC} = 0$ or $\cos ABC = 0$ from cosine rule	A1	WWW
	"Satorep"	2	
10(b)	Centre = mid-point of $AC = (2,4)$	B1	
		1	

9709/13

Question	Answer	Marks	Guidance
10(c)	$(x - their \mathbf{x}_{c})^{2} + (y - their y_{c})^{2} \left[= r^{2} \right] or (their \mathbf{x}_{c} - \mathbf{x})^{2} + (their y_{c} - y)^{2} = \left[r^{2} \right]$	M1	Use of circle equation with <i>their</i> centre
	$(x-2)^{2} + (y-4)^{2} = 17$	A1	Accept $x^2 - 4x + y^2 - 8y + 3 = 0$ OE
		2	
10(d)	$\left(\frac{x+3}{2},\frac{y+0}{2}\right) = (2,4)$ or $\mathbf{BE} = 2\mathbf{BD} = 2\begin{pmatrix}-1\\4\end{pmatrix}$	M1	Use of mid-point formula, vectors, steps on a diagram
	Or Equation of <i>BE</i> is $y = -4(x-3)$ or $y-4 = -4(x-2)$ leading to $y = -4x+12$ Substitute equation of <i>BE</i> into circle and form a 3-term quadratic.		May be seen to find x coordinate at E
	$(x,y) = (1,8)$ or $\mathbf{OE} = \begin{pmatrix} 3\\ 0 \end{pmatrix} + \begin{pmatrix} -2\\ 8 \end{pmatrix} = \begin{pmatrix} 1\\ 8 \end{pmatrix}$	A1	E = (1, 8) Accept without working for both marks SC B2
	Gradient of <i>BD</i> , <i>m</i> , = -4 or gradient $AC = \frac{1}{4}$ = gradient of tangent	B1	Or gradient of $BE = -4$
	Equation of tangent is $y-8 = \frac{1}{4}(x-1)$ OE	M1 A1	For M1, equation through <i>their</i> E or (1, 8) (not, A, B or C) and with gradient $\frac{-1}{their - 4}$
	22 0	5	
	·satprep·		

9709/13

Question	Answer	Marks	Guidance
11(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}x^{-1/2} - \frac{1}{2}k^2x^{-3/2}$	B1 B1	Allow any correct unsimplified form
	$\frac{1}{2}x^{-1/2} - \frac{1}{2}k^2x^{-3/2} = 0 \text{leading to } \frac{1}{2}x^{-1/2} = \frac{1}{2}k^2x^{-3/2}$	M1	OE. Set to zero and one correct algebraic step towards the solutions.
	TPR		$\frac{dy}{dx}$ must only have 2 terms.
	$(k^2, 2k)$	A1	
		4	
11(b)	When $x = 4k^2$, $\frac{dy}{dx} = \left[\frac{1}{4k} - \frac{1}{16k} = \right]\frac{3}{16k}$	B1	OE
	$y = \left[2k + k^2 \times \frac{1}{2k}\right] = \frac{5k}{2}$	B1	OE. Accept $2k + \frac{k}{2}$
	Equation of tangent is $y - \frac{5k}{2} = \frac{3}{16k} (x - 4k^2)$ or $y = mx + c \to \frac{5k}{2} = \frac{3}{16k} (4k^2) + c$	M1	Use of line equation with <i>their</i> gradient and $(4k^2, their y)$,
	When $x = 0$, $y = \left[\frac{5k}{2} - \frac{3k}{4}\right] = \frac{7k}{4}$ or from $y = mx + c$, $c = \frac{7k}{4}$	A1	OE
	alpror	4	

Question	Answer	Marks	Guidance
11(c)	$\int \left(x^{\frac{1}{2}} + k^2 x^{-\frac{1}{2}}\right) dx = \frac{2x^{\frac{3}{2}}}{3} + 2k^2 x^{\frac{1}{2}}$	B1	Any unsimplified form
	$\left(\frac{16k^3}{3} + 4k^3\right) - \left(\frac{9k^3}{4} + 3k^3\right)$	M1	Apply limits $\frac{9}{4}k^2 \rightarrow 4k^2$ to an integration of y. M0 if volume attempted.
	$\frac{49k^3}{12}$	A1	OE. Accept $4.08 k^3$
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/12 March 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Math	nematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- Mark for a correct result or statement independent of method marks. B
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$1 + 5x + 10x^2$	B1	
		1	
1(b)	$1 - 12x + 60x^2$	B2, 1, 0	B2 all correct, B1 for two correct components.
		2	
1(c)	$(1+5x+10x^2)(1-12x+60x^2)$ leading to $60-60+10$	M1	3 products required
	10	A1	Allow $10x^2$
		2	

Question	Answer	Marks	Guidance
2	$u = 2x - 3$ leading to $u^4 - 3u^2 - 4 = 0$	M1	Or $u = (2x-3)^2$ leading to $u^2 - 3u - 4 = 0$
	$(u^2-4)(u^2+1) = 0$	M1	Or $(u-4)(u+1) [=0]$
	$2x-3=[\pm]2$	A1	
	$x = \frac{1}{2}, \frac{5}{2}$ only	A1	
		4	

Question	Answer	Marks	Guidance
3	$\tan\theta + 2\sin\theta = 3\tan\theta - 6\sin\theta$ leading to $2\tan\theta - 8\sin\theta = 0$	M1	OE
	$2\sin\theta - 8\sin\theta\cos\theta (=0)$ leading to $[2]\sin\theta(1 - 4\cos\theta) [=0]$	M1	
	$\cos\theta = \frac{1}{4}$	A1	Ignore $\sin \theta = 0$
	$\theta = 75.5^{\circ}$ only	A1	
	9	4	

Question	Answer	Marks	Guidance
4	$x^{2} + kx + 6 = 3x + k$ leading to $x^{2} + x(k-3) + (6-k) = 0$	M1	Eliminate y and form 3-term quadratic.
	$(k-3)^2 - 4(6-k)[>0]$	M1	OE. Apply $b^2 - 4ac$.
	$k^2 - 2k - 15[>0]$	A1	Form 3-term quadratic.
	(k+3)(k-5)[>0]	A1	Or $k = -3$, 5 from use of formula or completing square.
	k < -3, k > 5	A1 FT	Or any correct alternative notation, do not allow \leq , \geq . FT for <i>their</i> outside regions.
		5	

Question	Answer	Marks	Guidance
5(a)	(Stretch) (factor 3 in y direction or parallel to the y-axis)	B1 B1	
	(Translation) $\begin{pmatrix} 4\\ 0 \end{pmatrix}$	B1 B1	Allow Translation 4 (units) in <i>x</i> direction. N.B. Transformations can be given in either order.
		4	
5(b)	[y =] 3f(x - 4)	B1 B1	B1 for 3, B1 for $(x - 4)$ with no extra terms.
	9	2	

Question	Answer	Marks	Guidance
6(a)	At $x = 1$, $\frac{\mathrm{d}y}{\mathrm{d}x} = 6$	B1	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \left(\frac{\mathrm{d}x}{\mathrm{d}y} \times \frac{\mathrm{d}y}{\mathrm{d}t}\right) = \frac{1}{6} \times 3 = \frac{1}{2}$	M1 A1	Chain rule used correctly. Allow alternative and minimal notation.
	4	3	
	Zu.satprep.	.0	

Question	Answer	Marks	Guidance
6(b)	$[y =]\left(\frac{6(3x-2)^{-2}}{-2}\right) \div (3) \ [+c]$	B1 B1	
	-3 = -1 + c	M1	Substitute $x = 1$, $y = -3$. <i>c</i> must be present.
	$y = -(3x-2)^{-2} - 2$	A1	OE. Allow $f(x) =$
		4	

Question	Answer	Marks	Guidance
7(a)	$\left[f\left(x\right)=\right]\left(x+1\right)^{2}+2$	B1 B1	Accept $a = 1, b = 2$.
	Range [of f is (y)] ≥ 2	B1FT	OE. Do not allow $x \ge 2$, FT on <i>their b</i> .
		3	
7(b)	$y = (x+1)^{2} + 2$ leading to $x = [\pm]\sqrt{y-2} - 1$	M1	Or by using the formula. Allow one sign error.
	$f^{-1}(x) = -\sqrt{x-2} - 1$	A1	
	·Satpre?	2	

Question	Answer	Marks	Guidance
7(c)	$2(x^2 + 2x + 3) + 1 = 13$	B1	Or using a correct completed square form of $f(x)$.
	$2x^{2}+4x-6[=0]$ leading to $(2)(x-1)(x+3)[=0]$	B1	Or $x = 1, x = -3$ using formula or completing square. Must reach 2 solutions.
	x = -3 only	B1	
	PRE-	3	

Question	Answer	Marks	Guidance
8(a)	Centre of circle is (4, 5)	B1 B1	
	$r^{2} = (7-4)^{2} + (1-5)^{2}$	M1	OE. Either using <i>their</i> centre and A or C or using A and C and dividing by 2.
	<i>r</i> = 5	A1 FT	FT on <i>their</i> $(4, 5)$ if used.
	Equation is $(x-4)^2 + (y-5)^2 = 25$	A1	OE. Allow 5^2 for 25.
	3	5	
8(b)	Gradient of radius = $\frac{9-5}{7-4} = \frac{4}{3}$	B1 FT	FT for use of <i>their</i> centre.
	Equation of tangent is $y-9 = -\frac{3}{4}(x-7)$	B1	or $y = \frac{-3x}{4} + \frac{57}{4}$
		2	

9709/12

Question	Answer	Marks	Guidance
9(a)(i)	$\frac{\cos\theta}{1-r} = \frac{1}{\cos\theta}$	B1	
	$1 - r = \cos^2 \theta$ leading to $r = 1 - \cos^2 \theta$	M1	Eliminate fractions
	$r = \sin^2 \theta$ leading to 2nd term = $\cos \theta \sin^2 \theta$	A1	AG
	T PRA	3	
9(a)(ii)	$S_{12} = \frac{\cos\left(\frac{\pi}{3}\right) \left[1 - \left(\sin^2\left(\frac{\pi}{3}\right)\right)^{12}\right]}{1 - \sin^2\left(\frac{\pi}{3}\right)} = \frac{0.5 \left[1 - (0.75)^{12}\right]}{1 - 0.75}$	M1	Evidence of correct substitution, use of S_n formula and attempt to evaluate
	1.937	A1	
		2	
9(b)	$[d=]\cos\theta\sin^2\theta-\cos\theta$	M1	Use of $d = u_2 - u_1$
	$-\frac{1}{8}$	A1	
	$[85th term =] \frac{1}{2} + 84 \times -\frac{1}{8}$	M1	Use of $a + 84d$ with a calculated value of d
	-10	A1	
		4	

9709/12

Question	Answer	Marks	Guidance
10(a)	$\Delta ADE = \frac{1}{2} \left(ka\right)^2 \sin\frac{\pi}{6}$	M1	Attempt to find the area of ΔADE .
	$\frac{1}{4}k^2a^2$	A1	OE.
	Sector $ABC = \frac{1}{2}a^2 \frac{\pi}{6}$	B1	
	$2 \times \frac{1}{4}k^2 a^2 = \frac{1}{2}a^2 \frac{\pi}{6}$	M1	OE. For $2 \times \Delta ADE$ = sector ABC with at least one correct area.
	$k = \left(\sqrt{\frac{\pi}{6}}\right) = 0.7236$	A1	
		5	
10(b)	$2 \times \frac{1}{2} (ka)^2 \sin \theta = \frac{1}{2} a^2 \theta$	M1	Condone omission of '2' or '1/2' on LHS for M1 only.
	$k^2 = \frac{\theta}{2\sin\theta}$	A1	
	$k^2 > \frac{1}{2}$ leading to $\frac{1}{\sqrt{2}} < k < 1$	A1	OE. Accept $k > \frac{1}{\sqrt{2}}$ or $k > 0.707$ (AWRT) or
			0.707(AWRT) < $k < 1$ or $k > \sqrt{\frac{1}{2}}$ OE
		3	
9709/12

Question	Answer	Marks	Guidance
11(a)	$9\left(x^{-\frac{1}{2}} - 4x^{-\frac{3}{2}}\right) = 0 \text{leading to} 9x^{-\frac{3}{2}}(x-4) = 0$	M1	OE. Set <i>y</i> to zero and attempt to solve.
	x = 4 only	A1	From use of a correct method.
		2	
11(b)	$\frac{dy}{dx} = 9\left(-\frac{1}{2}x^{-\frac{3}{2}} + 6x^{-\frac{5}{2}}\right)$	B2, 1, 0	B2; all 3 terms correct: 9, $-\frac{1}{2}x^{-\frac{3}{2}}$ and $6x^{-\frac{5}{2}}$
			B1; 2 of the 3 terms correct
	At $x = 4$ gradient $= 9\left(-\frac{1}{16} + \frac{6}{32}\right) = \frac{9}{8}$	M1	Using <i>their</i> $x = 4$ in <i>their</i> differentiated expression and attempt to find equation of the tangent.
	Equation is $y = \frac{9}{8}(x-4)$	A1	or $y = \frac{9x}{8} - \frac{9}{2}$ OE
		4	
11(c)	$9x^{-\frac{5}{2}}\left(-\frac{1}{2}x+6\right) = 0$	M1	Set <i>their</i> $\frac{dy}{dx}$ to zero and an attempt to solve.
	x=12	A1	Condone $(\pm)12$ from use of a correct method.
		2	

Question	Answer	Marks	Guidance
11(d)	$\int 9\left(x^{-\frac{1}{2}} - 4x^{-\frac{3}{2}}\right) dx = 9\left(\frac{x^{\frac{1}{2}}}{\frac{1}{2}} - \frac{4x^{-\frac{1}{2}}}{-\frac{1}{2}}\right)$	B2, 1, 0	B2; all 3 terms correct: 9, $\frac{x^{\frac{1}{2}}}{\frac{1}{2}}, \frac{-4x^{-\frac{1}{2}}}{-\frac{1}{2}}$ B1; 2 of the 3 terms correct
	$9\left[\left(6+\frac{8}{3}\right)-\left(4+4\right)\right]$	M1	Apply limits <i>their</i> $4 \rightarrow 9$ to an integrated expression with no consideration of other areas.
	6	A1	Use of π scores A0
		4	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/11 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	athematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT ٠ above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 • decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column. ٠
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. ٠
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$2x^{2} + 5 = mx - 3 \rightarrow 2x^{2} - mx + 8 (= 0)$	B1	Form 3-term quadratic
	$m^2 - 64$	M1	Find $b^2 - 4ac$.
	-8 < m < 8	A1	Accept (-8, 8) and equality included
	TP	3	

Question	Answer	Marks	Guidance
2	$(y=)\left[-(x-3)^{-1}\right]\left[+\frac{1}{2}x^{2}\right](+c)$	B1 B1	
	7 = 1 + 2 + c	M1	Substitute $x = 2$, $y = 7$ into an integrated expansion (<i>c</i> present). Expect $c = 4$
	$y = -(x-3)^{-1} + \frac{1}{2}x^2 + 4$	A1	OE
		4	

Question	Answer	Marks	Guidance
3	(Derivative =) $4\pi r^2 (\rightarrow 400\pi)$	B1	SOI Award this mark for $\frac{dr}{dV}$
	$\frac{50}{their \text{ derivative}}$	M1	Can be in terms of <i>r</i>
	$\frac{1}{8\pi}$ or 0.0398	A1	AWRT
	9	3	

4 $(y=)[3]+[2]\left[\cos\frac{1}{2}\theta\right]$ B1	Question	Answer	Marks	Guidance
3	4	$(y=)[3]+[2]\left[\cos\frac{1}{2}\theta\right]$	B1 B1 B1	
			3	

Question	Answer	Marks	Guidance
5(a)	$6C2 \times \left[2\left(x^{2}\right)\right]^{4} \times \left[\frac{a}{\left(x\right)}\right]^{2} , \ 6C3 \times \left[2\left(x^{2}\right)\right]^{3} \times \left[\frac{a}{\left(x\right)}\right]^{3}$	B1 B1	SOI Can be seen in an expansion
	$15 \times 2^4 \times a^2 = 20 \times 2^3 \times a^3$	M1	SOI Terms must be from a correct series
	$a = \frac{15 \times 2^4}{20 \times 2^3} = \frac{3}{2}$	A1	OE
		4	

Question	Answer	Marks	Guidance
5(b)	0	B1	
		1	

Question	Answer	Marks	Guidance
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{1}{2}\left(25 - x^2\right)^{-1/2}\right] \times \left[-2x\right]$	B1 B1	
	$\frac{-x}{\left(25-x^2\right)^{1/2}} = \frac{4}{3} \to \frac{x^2}{25-x^2} = \frac{16}{9}$	M1	Set = $\frac{4}{3}$ and square both sides
	$16(25-x^2) = 9x^2 \rightarrow 25x^2 = 400 \rightarrow x = (\pm)4$	A1	
	When $x = -4, y = 5 \rightarrow (-4, 5)$	A1	
		5	

Question	Answer	Marks	Guidance
7(a)	$\left(\frac{\sin\theta}{1-\sin\theta} - \frac{\sin\theta}{1+\sin\theta}\right) = \frac{\sin\theta(1+\sin\theta) - \sin\theta(1-\sin\theta)}{1-\sin^2\theta}$	*M1	Put over a single common denominator
	$\frac{2\mathrm{sin}^2\theta}{\mathrm{cos}^2\theta}$	DM1	Replace $1 - \sin^2 \theta$ by $\cos^2 \theta$ and simplify numerator
	$2\tan^2\theta$	A1	AG
	6	3	
7(b)	$2\tan^2\theta = 8 \rightarrow \tan\theta = (\pm)2$	B1	SOI
	$(\theta =) 63.4^{\circ}, 116.6^{\circ}$	B1 B1 FT	FT on 180 – 1st solution (with justification)
		3	

Question	Answer	Marks	Guidance
8(a)	$S = \frac{a}{1-r} , \qquad 2S = \frac{a}{1-R}$	B1	SOI at least one correct
	$\frac{2a}{1-r} = \frac{a}{1-R}$	M1	SOI
	$2 - 2R = 1 - r \rightarrow r = 2R - 1$	A1	AG
		3	

Question	Answer	Marks	Guidance
8(b)	$ar^2 = aR \rightarrow (a)(2R-1)^2 = R(a)$	*M1	
	$4R^2 - 5R + 1 \ (=0) \rightarrow (4R - 1)(R - 1) \ (=0)$	DM1	Allow use of formula or completing square.
	$R = \frac{1}{4}$	A1	Allow $R = 1$ in addition
	$S = \frac{2a}{3}$	A1	
	Alternative method for question 8(b)		
	$ar^{2} = aR \rightarrow (a)r^{2} = \frac{1}{2}(r+1)(a)$	*M1	Eliminating 1 variable
	$2r^2 - r - 1 (= 0) \rightarrow (2r + 1)(r - 1) (= 0)$	DM1	Allow use of formula or completing square. Must solve a quadratic.
	$r = -\frac{1}{2}$	A1	Allow $r = 1$ in addition
	$S = \frac{2a}{3}$	A1	.5
	"Sato	4	
	a do		

Question	Answer	Marks	Guidance		
9(a)	$m_{AB} = \frac{4-2}{-1-3} = -\frac{1}{2}$	B1			
	Equation of tangent is $y-2=2(x-3)$	B1 FT	(3, 2) with <i>their</i> gradient $-\frac{1}{m_{AB}}$		
	TP	2			
9(b)	$AB^2 = 4^2 + 2^2 = 20$ or $r^2 = 20$ or $r = \sqrt{20}$ or $AB = \sqrt{20}$	B1			
	Equation of circle centre <i>B</i> is $(x-3)^2 + (y-2)^2 = 20$	M1 A1	FT <i>their</i> 20 for M1		
		3			
9(c)	$(x-3)^{2} + (2x-6)^{2} = their 20$	M1	Substitute <i>their</i> $y-2=2x-6$ into <i>their</i> circle, centre <i>B</i>		
	$5x^2 - 30x + 25 = 0$ or $5(x-3)^2 = 20$	A1			
	$[(5)(x-5)(x-1) \text{ or } x-3=\pm 2] x=5, 1$	A1			
	2	3			
	Satprep.				

9709/11

Question	Answer	Marks	Guidance
10(a)	$\left(\sin\theta = \frac{r}{OC} \rightarrow \right) OC = \frac{r}{\sin\theta}$	M1 A1	
	$CD = r + \frac{r}{\sin \theta}$	A1	
	TP	3	
10(b)	Radius of arc $AB = 4 + \frac{4}{\sin \frac{\pi}{6}} = 4 + 8 = 12$	B1	SOI
	(Arc $AB =$) their $12 \times \frac{2\pi}{6}$ or $\left(\frac{1}{2}AB\right)$ (their $12 \times \frac{\pi}{6}$)	M1	Expect 4π , must use <i>their</i> CD, not 4
	Perimeter = $24 + 4\pi$	A1	
		3	

Question	Answer	Marks	Guidance
10(c)	Area $FOC = \frac{1}{2} \times 4 \times their OC \times \sin \frac{\pi}{3}$	M1	
	8 \sqrt{3}	A1	
	Area sector $FOE = \frac{1}{2} \times \frac{2\pi}{3} \times 4^2 = \frac{16\pi}{3}$	B1	
	Shaded area = $16\sqrt{3} - \frac{16\pi}{3}$	A1	
	Alternative method for question 10(c)		
	$FC = \sqrt{\left(their \ OC\right)^2 - 4^2}$	M1	$\sqrt{48}$ or $4\sqrt{3}$
	Area $FOC = \frac{1}{2} \times 4 \times 4\sqrt{3} = 8\sqrt{3}$	A1	
	Area of half sector $FOE = \frac{1}{2} \times \frac{\pi}{3} \times 4^2 = \frac{8\pi}{3}$	B1	
	Shaded area = $16\sqrt{3} - \frac{16\pi}{3}$	A1	-9-
	satpi	4	

Question	Answer	Marks	Guidance
11(a)	$fg(x) = (2x+1)^2 + 3$	B1	OE
		1	
11(b)	$y = (2x+1)^2 + 3 \rightarrow 2x + 1 = (\pm)\sqrt{y-3}$	M1	1st two operations. Allow one sign error or x/y interchanged
	$x = (\pm)\frac{1}{2}(\sqrt{y-3} - 1)$	M1	OE 2nd two operations. Allow one sign error or x/y interchanged
	$(fg^{-1}(x) =) \frac{1}{2}(\sqrt{x-3} -1) \text{ for } (x) > 3$	A1 B1	Allow $(3, \infty)$
		4	
11(c)	$gf(x) = 2(x^2 + 3) + 1$	B1	SOI
	$(2x+1)^2 + 3 - 3 = 2(x^2 + 3) + 1 \rightarrow 2x^2 + 4x - 6 (= 0)$	*M1	Express as 3-term quadratic
	(2)(x+3)(x-1) (=0)	DM1	Or quadratic formula or completing the square
	<i>x</i> = 1	A1	
	1.Sata	4	

9709/11

Question	Answer	Marks	Guidance
12(a)	$4x^{\frac{1}{2}} - 2x = 3 - x \to x - 4x^{\frac{1}{2}} + 3(=0)$	*M1	3-term quadratic. Can be expressed as e.g. $u^2 - 4u + 3$ (=0)
	$\left(x^{\frac{1}{2}}-1\right)\left(x^{\frac{1}{2}}-3\right)(=0)$ or $(u-1)(u-3)(=0)$	DM1	Or quadratic formula or completing square
	$x^{\frac{1}{2}} = 1, 3$	A1	SOI
	x = 1, 9	A1	
	Alternative method for question 12(a)		
	$\left(4x^{\frac{1}{2}}\right)^2 = (3+x)^2$	*M1	Isolate $x^{\frac{1}{2}}$
	$16x = 9 + 6x + x^{2} \rightarrow x^{2} - 10x + 9 (=0)$	A1	3-term quadratic
	(x-1)(x-9) (=0)	DM1	Or formula or completing square on a quadratic obtained by a correct method
	x = 1, 9	A1	0.
		4	
12(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x^{1/2} - 2$	*B1	
	$\frac{dy}{dx}$ or $2x^{1/2} - 2 = 0$ when $x = 1$ hence <i>B</i> is a stationary point	DB1	
		2	

9709/11

Question	Answer	Marks	Guidance
12(c)	Area of correct triangle = $\frac{1}{2}(9-3) \times 6$	M1	or $\int_{3}^{9} (3-x)(dx) = \left[3x - \frac{1}{2}x^{2} \right] \rightarrow -18$
	$\int (4x^{\frac{1}{2}} - 2x)(dx) = \left[\frac{4x^{\frac{3}{2}}}{\frac{3}{2}} - x^{2}\right]$	B1 B1	
	$(72-81) - \left(\frac{64}{3} - 16\right)$	M1	Apply limits $4 \rightarrow their 9$ to an integrated expression
	$-14\frac{1}{3}$	A1	OE
	Shaded region = $18 - 14\frac{1}{3} = 3\frac{2}{3}$	A1	OE
		6	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/12 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT ٠ above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 • decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column. ٠
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. ٠
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	Coefficient of x^3 in $(1-2x)^5$ is -80	B1	Can be seen in an expansion but must be simplified correctly.
	Coefficient of x^2 in $(1-2x)^5$ is 40	B1	
	Coefficient of x^3 in $(1+kx)(1-2x)^5$ is $40k-80 = 20$	M1	Uses the relevant two terms to form an equation = 20 and solves to find k. Condone x^3 appearing in some terms if recovered.
	$(k=)\frac{5}{2}$	A1	
		4	

9709/12

Question	Answer	Marks	Guidance
2	$(-2p)^2 = (2p+6) \times (p+2)$ or $\frac{-2p}{2p+6} = \frac{p+2}{-2p}$	M1	OE. Using " <i>a</i> , <i>b</i> , <i>c</i> then $b^2 = ac$ " or $a = 2p+6$, $ar = -2p$ and $ar^2 = p + 2$ to form a correct relationship in terms of <i>p</i> only
	$(2p^2 - 10p - 12 = 0)p = 6$	A1	
	$a = 18$ and $r = -\frac{2}{3}$	A1	
	$(\mathbf{s}_{\infty}) = their \ a \div (1 - their \ r)$ $\left(=18 \div \frac{5}{3}\right)$	M1	Correct formula used with their values for <i>a</i> and <i>r</i> , $ r < 1$ Both <i>a</i> & <i>r</i> from the same value of p.
	$(s_{\infty} =)10.8$	A1	OE. A0 if an extra solution given
			SC B2 for $s_{\infty} = \frac{2p+6}{1-\frac{-2p}{2p+6}} or \frac{2p+6}{1-\frac{p+2}{-2p}}$ ignore any subsequent algebraic simplification.
		5	

Question	Answer	Marks	Guidance
3	$2x^{2} + m(2x+1) - 6x - 4(=0)$	*M1	y eliminated and all terms on one side with correct algebraic steps. Condone \pm errors
	Using $b^2 - 4ac$ on $2x^2 + x(2m-6) + m - 4 (=0)$	DM1	Any use of discriminant with their <i>a</i> , <i>b</i> and <i>c</i> identified correctly.
	$4m^2 - 32m + 68$ or $2m^2 - 16m + 34$ or $m^2 - 8m + 17$	A1	
	$(2m-8)^2 + k$ or $(m-4)^2 + k$ or minimum point $(4,k)$ or finds $b^2 - 4ac$ (=-4,-16,-64)	DM1	OE. Any valid method attempted on their 3-term quadratic
	$(m-4)^2 + 1$ oe + always > 0 \rightarrow 2 solutions for all values of <i>m</i> or Minimum point (4,1) + (fn) always > 0 \rightarrow 2 solutions for all values of <i>m</i> or $b^2 - 4ac < 0$ + no solutions \rightarrow 2 solutions for the original equation for all values of <i>m</i>	A1	Clear and correct reasoning and conclusion without wrong working.
		5	

Question	Answer	Marks	Guidance	
4	S_x and S_{x+1}	M1	Using two values of <i>n</i> in the given formula	
	a = 5, d = 2	A1 A1		
	$a + (n-1) d > 200 \rightarrow 5 + 2(k-1) > 200$	M1	Correct formula used with their a and d to form an equation or inequality with 200, condone use of n	
	(<i>k</i> =) 99	A1	Condone ≥ 99	
	Alternative method for question 4			
	$\frac{n}{2}(2a + (n-1)d) \equiv n^2 + 4n \to \left(\frac{d}{2} = 1, a - \frac{1}{2}d = 4\right)$	M1	Equating two correct expressions of S_n and equating coefficients of n and n^2	
	d = 2, a = 5	A1 A1		
	$a + (n-1) d > 200 \rightarrow 5 + 2(k-1) > 200$	M1	Correct formula used with their a and d to form an equation or inequality with 200, condone use of n	
	(<i>k</i> =) 99	A1	Condone ≥ 99	
	Alternative method for question 4			
	$sum_k - sum_{k-1} \rightarrow k^2 + 4k - (k-1)^2 - 4(k-1)$	M1 A1	Using given formula with consecutive expressions subtracted. Allow $k+1$ and k .	
	2k + 3 > 200 or = 200	M1 A1	Simplifying to a linear equation or inequality	
	(<i>k</i> =) 99	A1	Condone ≥ 99	
		5		

Question	Answer	Marks	Guidance
5(a)	0	B1	
		1	
5(b)	$(f^{-1}(x)) = \frac{x+2}{4}, (g^{-1}(x)) = \frac{4-x}{x} \text{ or } \frac{4}{x} - 1$	B1 B1	OE. Sight of correct inverses.
	$x^2 + 6x - 16 (= 0)$	B1	Equating inverses and simplifying.
	(x+8) and $(x-2)$	M1	Correct attempt at solution of <i>their</i> 3-term quadratic-factorising, completing the square or use of formula.
	(x =) 2 or -8	A1	Do not accept answers obtained with no method shown.
		5	

Question	Answer	Marks	Guidance
6(a)	$\left(\frac{1}{\cos x} - \frac{\sin x}{\cos x}\right) \left(\frac{1}{\sin x} + 1\right)$	B1	Uses " $\tan x = \sin x \div \cos x$ " throughout
	$\left(\frac{1-\sin x}{\cos x}\right)\left(\frac{1+\sin x}{\sin x}\right)$ or $\left(\frac{1-\sin^2 x}{\cos x\sin x}\right)$	M1	Correct algebra leading to two or four terms
	$\left(\frac{\cos^2 x}{\cos x \sin x}\right)$	A1	OE. A correct expression which can be cancelled directly to $\frac{\cos x}{\sin x} \text{ e.g. } \frac{\cos x (1 - \sin^2 x)}{\sin x (1 - \sin^2 x)}$
	$\left(\frac{\cos^2 x}{\cos x \sin x}\right) = \left(\frac{\cos x}{\sin x}\right) = \frac{1}{\tan x}$	A1	AG. Must show cancelling. If x is missing throughout their working withhold this mark.
		4	
6(b)	Uses (a) $\rightarrow \frac{1}{\tan x} = 2\tan^2 x \ \tan^3 x = \frac{1}{2}$	M1	Reducing to $\tan^3 x = k$.
	$(x =) 38.4^{\circ}$	A1	AWRT. Ignore extra answers outside the range 0 to 180° but A0 if within.
	2. Satoret	2	

9709/12

Question	Answer	Marks	Guidance
7(a)	$f'(4)\left(=\frac{5}{2}\right)$	*M1	Substituting 4 into $f'(x)$
	$\left(\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}\right) \longrightarrow \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = \frac{5}{2} \times 0.12$	DM1	Multiplies <i>their</i> f'(4) by 0.12
	$\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = 0.3$	A1	OE
		3	
7(b)	$\frac{6x^{\frac{1}{2}}}{\frac{1}{2}} - \frac{4x^{-\frac{1}{2}}}{-\frac{1}{2}}(+c)$	B1 B1	B1 for each unsimplified integral.
	Uses (4, 7) leading to $c = (-21)$	M1	Uses $(4, 7)$ to find a <i>c</i> value
	y or $f(x) = 12x^{\frac{1}{2}} + 8x^{-\frac{1}{2}} - 21$ or $12\sqrt{x} + \frac{8}{\sqrt{x}} - 21$	A1	Need to see y or $f(x)$ = somewhere in <i>their</i> solution and 12 and 8
	Z,	4	
	^h .satpret	0.00	

Question	Answer	Marks	Guidance
8(a)	Use of correct formula for the area of triangle <i>ABC</i>	M1	Use of 180–2 θ scores M0. Condone 2π – 2θ
	$\frac{\frac{1}{2}r^{2}\sin(\pi-2\theta) \text{ or } \frac{1}{2}r^{2}\sin 2\theta \text{ or } 2\times\frac{1}{2}r\times r\cos\theta\times\sin\theta \text{ or } 2\times\frac{1}{2}r\cos\theta\times r\sin\theta}{2\times\frac{1}{2}r\cos\theta\times r\sin\theta}$	A1	OE
	[Shaded area = triangle – sector] = <i>their</i> triangle area – $\frac{1}{2}r^2\theta$	B1 FT	FT for <i>their</i> triangle area $-\frac{1}{2}r^2\theta$ (Condone use of 180 degrees for triangle area for B1)
	6	3	
8(b)	Arc $BD = r\theta = 6$ cm	B1	SOI
	$AC = 2r\cos\theta = (2 \times 10\cos 0.6 = 20\cos 0.6 = 16.506)$ or $\sqrt{(2r^2 - 2r^2\cos(\pi - 2\theta))}$ or $\frac{r \times \sin(\pi - 2\theta)}{\sin \theta}$	*M1	Finding AC or $\frac{1}{2}AC$ (= 8.25)
	$DC = 2r\cos\theta - r \text{ or } \sqrt{(2r^2 - 2r^2\cos(\pi - 2\theta))} - r (= 6.506)$	DM1	Subtracting <i>r</i> from <i>their</i> AC or <i>r</i> - <i>rcos</i> θ from <i>their</i> half AC (8.25-1.75)
	(Perimeter = 10 + 6 + 6.506 =) 22.5	A1	AWRT
	3	4	
32. satprep.co.			

Question	Answer	Marks	Guidance	
9(a)	$r = \sqrt{(6^2 + 3^2)}$ or $r^2 = 45$	B1	Sight of $r = 6.7$ implies B1	
	$(x-5)^{2} + (y-1)^{2} = r^{2}$ or $x^{2} - 10x + y^{2} - 2y = r^{2} - 26$	M1	Using centre given and <i>their</i> radius or <i>r</i> in correct formula	
	$(x-5)^2 + (y-1)^2 = 45$ or $x^2 - 10x + y^2 - 2y = 19$	A1	Do not allow $\left(\sqrt{45}\right)^2$ for r^2	
		3		
9(b)	<i>C</i> has coordinates (11, 4)	B 1		
	0.5	B1	OE, Gradient of AB, BC or AC.	
	Grad of CD $=-2$	M1	Calculation of gradient needs to be shown for this M1.	
	$(\frac{1}{2} \times -2 = -1)$ then states + perpendicular \rightarrow hence shown or tangent	A1	Clear reasoning needed.	
	Alternative method for question 9(b)			
	<i>C</i> has coordinates (11, 4)	B1		
	0.5	B1	OE, Gradient of AB, BC or AC.	
	Gradient of the perpendicular is -2 \rightarrow Equation of the perpendicular is $y - 4 = -2(x - 11)$	M1	Use of $m_1m_2 = -1$ with <i>their</i> gradient of <i>AB</i> , <i>BC</i> or <i>AC</i> and correct method for the equation of the perpendicular. Could use $D(5, 16)$ instead of $C(11,4)$.	
	Checks $D(5, 16)$ or checks gradient of CD and then states D lies on the line or CD has gradient $-2 \rightarrow$ hence shown or tangent	A1	Clear check and reasoning needed. Checks that the other point lies on the line or checks gradient.	

Question	Answer	Marks	Guidance	
9(b)	Alternative method for question 9(b)			
	<i>C</i> has coordinates (11, 4) or Gradient of <i>AB</i> , <i>BC</i> or $AC = 0.5$	B1	Only one of <i>AB</i> , <i>BC</i> or <i>AC</i> needed.	
	Equation of the perpendicular is $y-4 = -2(x-11)$	B1	Finding equation of CD.	
	$(x-5)^{2} + (-2x+26-1)^{2} = 45 \rightarrow (x^{2} - 22x + 121 = 0)$	M1	Solving simultaneously with the equation of the circle.	
	$(x-11)^2 = 0$ or $b^2 - 4ac = 0 \rightarrow$ repeated root \rightarrow hence shown or tangent	A1	Must state repeated root.	
	Alternative method for question 9(b)			
	C has coordinates (11, 4)	B 1		
	Finding $CD = \sqrt{180}$ and $BD = \sqrt{225}$	B 1	OE. Calculated from the co-ordinates of B , $C \& D$ without using r .	
	Checking (their BD) ² – (their CD) ² is the same as (their r) ²	M1		
	\therefore Pythagoras valid \therefore perpendicular \rightarrow hence shown or tangent	A1	Triangle ACD could be used instead.	
	Alternative method for question 9(b)			
	<i>C</i> has coordinates (11, 4)	B1		
	Finding vectors \overrightarrow{AC} and \overrightarrow{CD} or \overrightarrow{BC} and \overrightarrow{CD} $(= \begin{pmatrix} 6\\ 3 \end{pmatrix} and \begin{pmatrix} -6\\ 12 \end{pmatrix}$ or $\begin{pmatrix} 12\\ 6 \end{pmatrix} and \begin{pmatrix} -6\\ 12 \end{pmatrix}$)	B1	Must be correct pairing.	
	Applying the scalar product to one of these pairs of vectors	M1	Accept <i>their</i> \overrightarrow{AC} and \overrightarrow{CD} or <i>their</i> \overrightarrow{BC} and \overrightarrow{CD}	
	Scalar product = 0 then states \therefore perpendicular \rightarrow hence shown or tangent	A1		
		4		

Question	Answer	Marks	Guidance	
9(c)	<i>E</i> (-1, 4)	B1 B1	WWW B1 for each coordinate Note: Equation of DE which is $y = 2x + 6$ may be used to find E	
		2		

Question	Answer		Marks	Guidance
10(a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = [8] \times \left[\left(3 - 2x\right)^{-3}\right] + [-1]$	$\left(=\frac{8}{(3-2x)^3}-1\right)$	B2, 1, 0	B2 for all three elements correct, B1 for two elements correct, B0 for only one or no elements correct.
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -3 \times 8 \times (3 - 2x)^{-4} \times (-2)$	$\left(=\frac{48}{\left(3-2x\right)^4}\right)$	B1 FT	FT providing <i>their</i> bracket is to a negative power
	$\int y dx = [(3-2x)^{-1}] [2 \div (-1 \times -2)] [-\frac{1}{2}x^{2}] (+c)$	$\left(=\frac{1}{3-2x}-\frac{1}{2}x^2+c\right)$	B1 B1 B1	Simplification not needed, B1 for each correct element
	2		6	
Satprep.co.				

Question	Answer	Marks	Guidance
10(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \longrightarrow (3-2x)^3 = 8 \longrightarrow 3 - 2x = k \longrightarrow x =$	M1	Setting their 2-term differential to 0 and attempts to solve as far as $x =$
	$\frac{1}{2}$	A1	
	Alternative method for question 10(b)		
	$y = 0 \rightarrow \frac{2}{(3-2x)^2} - x = 0 \rightarrow (x-2)(2x-1)^2 = 0 \rightarrow x =$	M1	Setting y to 0 and attempts to solve a cubic as far as $x =$ (3 factors needed)
	$\frac{1}{2}$	A1	
		2	
10(c)	Area under curve = their $\left[\frac{1}{3-2\times\left(\frac{1}{2}\right)} - \frac{\left(\frac{1}{2}\right)^2}{2}\right] - \left[\frac{1}{3-2\times 0} - 0\right]$	M1	Using <i>their</i> integral, <i>their</i> positive <i>x</i> limit from part (b) and 0 correctly.
	$\frac{1}{24}$	A1	
	Satpre	2	

Question	Answer	Marks	Guidance
11(a)	5, -1	B1 B1	Sight of each value
		2	
11(b)	6	*B1	Needs to be a curve, not straight lines. One complete cycle starting and finishing at <i>their</i> largest value.
	2 0 11/2 11 1	DB1	One complete cycle starting and finishing at $y = 5$ and going down to $y = -1$ and starting to level off at least one end.
		2	
11(c)(i)	0 solution	B1	
		1	
11(c)(ii)	2 solutions	B1	
	2	1	
11(c)(iii)	1 solution	B1	
		1	
Cambridge International AS & A Level – Mark Scheme PUBLISHED

October/November 2020

Question	Answer	Marks	Guidance
11(d)	Stretch by (scale factor) $\frac{1}{2}$, parallel to <i>x</i> -axis or in <i>x</i> direction (or horizontally)	B1	
	Translation of $\begin{pmatrix} 0\\4 \end{pmatrix}$	B1	Accept translation/shift Accept translation 4 units in positive <i>y</i> -direction.
		2	
11(e)	Translation of $\begin{pmatrix} -\frac{\pi}{2} \\ 0 \end{pmatrix}$	B1	Accept translation/shift Accept translation $-\frac{\pi}{2}$ units in x-direction.
	Stretch by (scale factor) 2 parallel to <i>y</i> -axis (or vertically).	B1	
		2	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/13 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	athematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT ٠ above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 • decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column. ٠
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. ٠
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\left[\left(x+3\right)^2\right] \left[-4\right]$	B1 B1	
		2	
1(b)	[Translation or shift] $\begin{pmatrix} -3 \\ -4 \end{pmatrix}$	B1 B1 FT	Accept [translation/shift] $\begin{pmatrix} -their \ a \\ their \ b \end{pmatrix}$ OR translation –3 units in <i>x</i> -direction and (translation) –4 units in <i>y</i> -direction.
		2	

Question	Answer	Marks	Guidance
2(a)	$\frac{-2}{x+2}$	B1	Integrate $f(x)$. Accept $-2(x+2)^{-1}$. Can be unsimplified.
	$0 - \left(-\frac{2}{3}\right) = \frac{2}{3}$	M1 A1	Apply limit(s) to an integrated expansion. CAO for A1
	ź	3	.5
2(b)	-1 = -2 + c	M1	Substitute $x = -1, y = -1$ into <i>their</i> integrated expression (<i>c</i> present)
	$y = \frac{-2}{x+2} + 1$	A1	Accept $y = -2(x+2)^{-1} + 1 - 2$ must be resolved.
		2	

October/November 2020

Question	Answer	Marks	Guidance
3	$3\tan^4\theta + \tan^2\theta - 2 \ (=0)$	M1	SOI 3-term quartic, condone sign errors for this mark only
	$(3\tan^2\theta - 2)(\tan^2\theta + 1) (= 0)$	M1	Attempt to factorise or solve 3-term quadratic in $\tan^2 \theta$.
	$\tan\theta = (\pm)\sqrt{\frac{2}{3}} \text{ or } (\pm)0.816 \text{ or } (\pm)0.817$	A1	SOI Implied by final answer = 39.2° after 1st M1 scored
	39.2°, 140.8°	A1 A1 FT	FT for 2nd solution =180° – 1st solution
		5	

Question	Answer	Marks	Guidance
4	$3x^{2} - 4x + 4 = mx + m - 1 \rightarrow 3x^{2} - (4 + m)x + (5 - m) (= 0)$	M1	3-term quadratic
	$b^{2}-4ac = (4+m)^{2}-4\times 3\times (5-m)$	M1	Find $b^2 - 4ac$ for <i>their</i> quadratic
	$m^2 + 20m - 44$	A1	
	(m+22)(m-2)	A1	Or use of formula or completing square. This step must be seen
	m > 2 , $m < -22$	A1	Allow $x > 2$, $x < -22$
		5	

Question	Answer	Marks	Guidance
5	$\left[7C1a^{6}b(x)\right], \left[7C2a^{5}b^{2}\left(x^{2}\right)\right], \left[7C4a^{3}b^{4}\left(x^{4}\right)\right]$	B2, 1, 0	SOI, can be seen in an expansion.
	$\frac{7C2a^{5}b^{2}(x^{2})}{7C1a^{6}b(x)} = \frac{7C4a^{3}b^{4}(x^{4})}{7C2a^{5}b^{2}(x^{2})} \rightarrow \frac{21a^{5}b^{2}}{7a^{6}b} = \frac{35a^{3}b^{4}}{21a^{5}b^{2}}$	M1 A1	M1 for a correct relationship OE (Ft from <i>their</i> 3 terms). For A1 binomial coefficients must be correct & evaluated.
	$\frac{a}{b} = \frac{5}{9}$	A1	OE
		5	

Question	Answer	Marks	Guidance
6(a)	$y = \frac{2x}{3x-1} \to 3xy - y = 2x \to 3xy - 2x = y \text{ (or } -y = 2x - 3xy)$	*M1	For 1st two operations. Condone a sign error
	$x(3y-2) = y \rightarrow x = \frac{y}{3y-2}$ (or $x = \frac{-y}{2-3y}$)	DM1	For 2nd two operations. Condone a sign error
	$\left(\mathbf{f}^{-1}(x)\right) = \frac{x}{3x-2}$	A1	Allow $(f^{-1}(x)) = \frac{-x}{2-3x}$
	1.Sata	3	
6(b)	$\left[\frac{2(3x-1)+2}{3(3x-1)}\right] = \left[\frac{6x}{3(3x-1)} = \frac{2x}{3x-1}\right]$	B1 B1	AG, WWW First B1 is for a correct single unsimplified fraction. An intermediate step needs to be shown. Equivalent methods accepted.
		2	

Question	Answer	Marks	Guidance
6(c)	$(\mathbf{f}(x)) > \frac{2}{3}$	B1	Allow $(y) > \frac{2}{3}$. Do not allow $x > \frac{2}{3}$
		1	

Question	Answer	Marks	Guidance
7(a)	$(d=) - \frac{\tan^2\theta}{\cos^2\theta} - \frac{1}{\cos^2\theta}$	B1	Allow sign error(s). Award only at form $(d =)$ stage
	$-\frac{\sin^2\theta}{\cos^4\theta} - \frac{1}{\cos^2\theta} \text{or} \frac{-\sec^2\theta}{\cos^2\theta}$	M1	Allow sign error(s). Can imply B1
	$\frac{-\sin^2\theta - \cos^2\theta}{\cos^4\theta} \text{or} \frac{-\frac{1}{\cos^2\theta}}{\cos^2\theta}$	M1	
	$-\frac{1}{\cos^4 \theta}$	A1	AG, WWW
	2	4	
7(b)	$a = \frac{4}{3}, d = -\frac{16}{9}$	B1	SOI, both required. Allow $a = \frac{1}{\frac{3}{4}}$, $d = -\frac{1}{\frac{9}{16}}$
	$u_{13} = \frac{1}{\cos^2\theta} - \frac{12}{\cos^4\theta} = \frac{4}{3} + 12\left(\frac{-16}{9}\right)$	M1	Use of correct formula with <i>their a</i> and <i>their d</i> . The first 2 steps could be reversed
	-20	A1	www
		3	

9709/13

Question	Answer	Marks	Guidance
8(a)	$\frac{dy}{dx} = [2] [-2(2x+1)^{-2}]$	B1 B1	
	$\frac{d^2 y}{dx^2} = 8(2x+1)^{-3}$	B1	
	P	3	
8(b)	Set <i>their</i> $\frac{dy}{dx} = 0$ and attempt solution	M1	
	$(2x+1)^2 = 1 \rightarrow 2x+1 = (\pm) 1 \text{ or } 4x^2 + 4x = 0 \rightarrow (4)x(x+1) = 0$	M1	Solving as far as $x = \dots$
	x = 0	A1	WWW. Ignore other solution.
	(0, 2)	A1	One solution only. Accept $x = 0$, $y = 2$ only.
	$\frac{d^2 y}{dx^2} > 0$ from a solution $x > -\frac{1}{2}$ hence minimum	B1	Ignore other solution. Condone arithmetic slip in value of $\frac{d^2 y}{dx^2}$. <i>Their</i> $\frac{d^2 y}{dx^2}$ must be of the form $k(2x+1)^{-3}$
	24	5	-0'

Question	Answer	Marks	Guidance
9(a)	$\cos BAO = \frac{6}{8} \text{ or } \frac{8^2 + 12^2 - 8^2}{2 \times 8 \times 12}$	M1	Or other correct method
	<i>BAO</i> = 0.723	A1	
		2	

October/November 2020

Question	Answer	Marks	Guidance
9(b)	Sector $ABC = \frac{1}{2} \times 12^2 \times their 0.7227$	*M1	Accept 52.1
	Triangle $AOB = \frac{1}{2} \times 8 \times 12 \sin(their 0.7227)$ or $\frac{1}{2} \times 12 \times \sqrt{28}$	*M1	or $\frac{1}{2} \times 8 \times 8 \sin(\pi - 2 \times their 0.7227)$. Expect 31.7 or 31.8
	Shaded area = <i>their</i> $52.0 - their 31.7 = 20.3$	DM1 A1	M1 dependent on both previous M marks
	TP	4	
9(c)	Arc $BC = 12 \times their 0.7227$	*M1	Expect 8.67
	Perimeter = $8 + 4 + their 8.67 = 20.7$	DM1 A1	
		3	

Question	Answer	Marks	Guidance
10(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{x^{-1/2}}{2k}\right] - \left[\frac{x^{-3/2}}{2}\right] + ([0])$	B2 , 1, 0	([0]) implies that more than 2 terms counts as an error
	Sub $\frac{dy}{dx} = 3$ when $x = \frac{1}{4}$ Expect $3 = \frac{1}{k} - 4$	M1	····
	$k = \frac{1}{7}$ (or 0.143)	A1	
		4	

October/November 2020

Question	Answer	Marks	Guidance
10(b)	$\int \frac{1}{k} x^{1/2} + x^{-1/2} + \frac{1}{k^2} = \left[\frac{2x^{3/2}}{3k}\right] + \left[2x^{1/2}\right] + \left[\frac{x}{k^2}\right]$	B2, 1, 0	OE
	$\left(\frac{2k^2}{3} + 2k + 1\right) - \left(\frac{k^2}{12} + k + \frac{1}{4}\right)$	M1	Apply limits $\frac{k^2}{4} \rightarrow k^2$ to an integrated expression. Expect $\frac{7}{12}k^2 + k + \frac{3}{4}$
	$\frac{7}{12}k^2 + k + \frac{3}{4} = \frac{13}{12}$	M1	Equate to $\frac{13}{12}$ and simplify to quadratic. OE, expect $7k^2 + 12k - 4 (= 0)$
	$k = \frac{2}{7}$ only (or 0.286)	-A1	Dependent on $(7k-2)(k+2) (=0)$ or formula or completing square.
		5	

Question	Answer	Marks	Guidance
11(a)	$(-6-8)^2 + (6-4)^2$	M1	OE
	= 200	A1	
	$\sqrt{200} > 10$, hence outside circle	A1	AG ('Shown' not sufficient). Accept equivalents of $\sqrt{200} > 10$
	Alternative method for question 11(a)	R	
	Radius = 10 and $C = (8, 4)$	B1	
	Min(x) on circle = $8 - 10 = -2$	M1	
	Hence outside circle	A1	AG
		3	
11(b)	angle = $\sin^{-1}\left(\frac{their10}{their10\sqrt{2}}\right)$	M1	Allow decimals for $10\sqrt{2}$ at this stage. If cosine used, angle <i>ACT</i> or <i>BCT</i> must be identified, or implied by use of 90° – 45° .
	angle = $\sin^{-1}(\frac{1}{\sqrt{2}} \operatorname{or} \frac{\sqrt{2}}{2} \operatorname{or} \frac{10}{10\sqrt{2}} \operatorname{or} \frac{10}{\sqrt{200}}) = 45^{\circ}$	A1	AG Do not allow decimals
	Alternative method for question 11(b)		0
	$(10\sqrt{2})^2 = 10^2 + TA^2$	M1	
	$TA = 10 \rightarrow 45^{\circ}$	A1	AG
		2	

October/November 2020

Question	Answer	Marks	Guidance
11(c)	Gradient, <i>m</i> , of $CT = -\frac{1}{7}$	B1	OE
	Attempt to find mid-point (M) of CT	*M1	Expect (1, 5)
	Equation of <i>AB</i> is $y-5=7(x-1)$	DM1	Through <i>their</i> (1, 5) with gradient $-\frac{1}{m}$
	y = 7x - 2	A1	
		4	
11(d)	$(x-8)^2 + (7x-2-4)^2 = 100$ or equivalent in terms of y	M1	Substitute <i>their</i> equation of <i>AB</i> into equation of circle.
	$50x^2 - 100x \ (=0)$	A1	
	x = 0 and 2	A1	WWW
	Alternative method for question 11(d)		
	$\mathbf{MC} = \begin{pmatrix} 7 \\ -1 \end{pmatrix}$	M1	.5
	$ \begin{pmatrix} 1\\5 \end{pmatrix} + \begin{pmatrix} -1\\-7 \end{pmatrix} = \begin{pmatrix} 0\\-2 \end{pmatrix}, \begin{pmatrix} 1\\5 \end{pmatrix} + \begin{pmatrix} 1\\7 \end{pmatrix} = \begin{pmatrix} 2\\12 \end{pmatrix} $	A1	
	x = 0 and 2	A1	
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/11 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- Marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Mathematics-Specific Marking Principles		
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.		
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.		
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.		
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).		
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.		
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.		

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks
1	$117 = \frac{9}{2}(2a + 8d)$	B1
	Either $91 = S_4$ with ' <i>a</i> ' as $a + 4d$ or $117 + 91 = S_{13}$ (M1 for overall approach. M1 for S_n)	M1M1
	Simultaneous Equations $\rightarrow a = 7, d = 1.5$	A1
		4

Question	Answer	Marks
2	$\left(kx + \frac{1}{x}\right)^5 + \left(1 - \frac{2}{x}\right)^8$ Coefficient in $\left(kx + \frac{1}{x}\right)^5 = 10 \times k^2$ (B1 for 10. B1 for k^2)	B1B1
	Coefficient in $\left(1 - \frac{2}{x}\right)^8 = 8 \times -2$	B2,1,0
	$10k^2 - 16 = 74 \longrightarrow k = 3$	B1
	·satpre?	5

Question	Answer	Marks
3(a)	$36000 \times (1.05)^{n}$ (B1 for $r = 1.05$. M1 method for <i>r</i> th term)	B1M1
	\$53 200 after 8 years.	A1
		3
3(b)	$S_{10} = 36000 \frac{(1.05^{10} - 1)}{(1.05 - 1)}$	M1
	\$453 000	A1
		2

		•
Question	Answer	Marks
4(a)	$-1 \leq f(x) \leq 2$	B1 B1
		2
4(b)	<i>k</i> = 1	B1
	Translation by 1 unit upwards parallel to the y-axis	B1
	Satpre?	2
4(c)	$y = -\frac{3}{2}\cos 2x - \frac{1}{2}$	B1
		1

Question	Answer	Marks
5(a)	$x(mx+c) = 16 \rightarrow mx^2 + cx - 16 = 0$	B1
	Use of $b^2 - 4ac = c^2 + 64m$	M1
	Sets to $0 \rightarrow m = \frac{-c^2}{64}$	A1
	AT PRA	3
5(b)	x(-4x+c) = 16 Use of $b^2 - 4ac \rightarrow c^2 - 256$	M1
	c > 16 and c < -16	A1 A1
		3

Question	Answer	Marks
6(a)	$3(3x+b)+b=9x+4b \rightarrow 10=18+4b$	M1
	<i>b</i> = -2	A1
	Either $f(14) = 2$ or $f^{-1}(x) = 2(x + a)$ etc.	M1
	<i>a</i> = 5	A1
		4
6(b)	$gf(x) = 3\left(\frac{1}{2}x - 5\right) - 2$	M1
	$gf(x) = \frac{3}{2}x - 17$	A1
		2

Question	Answer	Marks
7(a)	$\frac{\left(1+\sin\theta\right)^2+\cos^2\theta}{\cos\theta(1+\sin\theta)}$	M1
	Use of $\sin^2 \theta + \cos^2 \theta = 1 \rightarrow \frac{2 + 2\sin \theta}{\cos \theta (1 + \sin \theta)} \rightarrow \frac{2}{\cos \theta}$.	M1A1
	TPR	3
7(b)	$\frac{2}{\cos\theta} = \frac{3}{\sin\theta} \to \tan\theta = 1.5$	M1
	$\theta = 0.983 \text{ or } 4.12$ (FT on second value for 1st value + π)	A1 A1FT
		3

Question	Answer	Marks
8	Angle $AOB = 15 \div 6 = 2.5$ radians	B1
	Angle $BOC = \pi - 2.5$ (FT on angle AOB)	B1FT
	$BC = 6(\pi - 2.5)$ ($BC = 3.850$)	M1
	$\sin(\pi - 2.5) = BX \div 6 (BX = 3.59)$	M1
	Either $OX = 6\cos(\pi - 2.5)$ or Pythagoras ($OX = 4.807$)	M1
	$XC = 6 - OX$ ($XC = 1.193$) $\rightarrow P = 8.63$	A1
		6

Question	Answer	Marks
9(a)	$\frac{dy}{dx} = 3(3-2x)^2 \times -2 + 24 = -6(3-2x)^2 + 24$ (B1 without ×-2. B1 for ×-2)	B1B1
	$\frac{d^2 y}{dx^2} = -12(3-2x) \times -2 = 24(3-2x)$ (B1FT from $\frac{dy}{dx}$ without - 2)	B1FT B1
		4
9(b)	$\frac{dy}{dx} = 0$ when $6(3-2x)^2 = 24 \rightarrow 3-2x = \pm 2$	M1
	$x = \frac{1}{2}, y = 20 \text{ or } x = \frac{21}{2}, y = 52$ (A1 for both x values or a correct pair)	A1A1
		3
9(c)	If $x = \frac{1}{2}$, $\frac{d^2 y}{dx^2} = 48$ Minimum	B1FT
	If $x = 2\frac{1}{2}$, $\frac{d^2y}{dx^2} = -48$ Maximum	B1FT
	Satpre?	2

Question	Answer	Marks
10(a)	Centre is (3, 1)	B 1
	Radius = 5 (Pythagoras)	B 1
	Equation of C is $(x-3)^2 + (y-1)^2 = 25$ (FT on <i>their</i> centre)	M1 A1FT
	T PRA	4
10(b)	Gradient from (3, 1) to (7, 4) = $\frac{3}{4}$ (this is the normal)	B 1
	Gradient of tangent = $-\frac{4}{3}$	M1
	Equation is $y-4 = -\frac{4}{3}(x-7)$ or $3y+4x = 40$	M1A1
		4
10(c)	<i>B</i> is centre of line joining centres \rightarrow (11, 7)	B 1
	Radius = 5 New equation is $(x-11)^2 + (y-7)^2 = 25$ (FT on coordinates of B)	M1 A1FT
	·Satpre?	3

Question	Answer	Marks
11(a)	Simultaneous equations $\frac{8}{x+2} = 4 - \frac{1}{2}x$	M1
	$x = 0 \text{ or } x = 6 \rightarrow A(0, 4) \text{ and } B(6, 1)$	B1A1
	At $C \frac{-8}{(x+2)^2} = -\frac{1}{2} \to C(2,2)$	B1
	(B1 for the differentiation. M1 for equating and solving)	M1A1
	9	6
11(b)	Volume under line = $\pi \int \left(-\frac{1}{2}x + 4 \right)^2 dx = \pi \left[\frac{x^3}{12} - 2x^2 + 16x \right] = (42\pi)$	M1 A2,1
	(M1 for volume formula. A2,1 for integration)	
	Volume under curve = $\pi \int \left(\frac{8}{x+2}\right)^2 dx = \pi \left[\frac{-64}{x+2}\right] = (24\pi)$	A1
	Subtracts and uses 0 to $6 \rightarrow 18\pi$	M1A1
	4	6

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/12 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

This document consists of **15** printed pages.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- Marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Mathematics-Specific Marking Principles		
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.		
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.		
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.		
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).		
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.		
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.		

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks
1(a)	$(2+3x)\left(x-\frac{2}{x}\right)^6$	B1
	Term in x^2 in $\left(x - \frac{2}{x}\right)^6 = 15x^4 \times \left(\frac{-2}{x}\right)^2$	
	Coefficient = 60	B 1
	TPRA	2
1(b)	Constant term in $\left(x - \frac{2}{x}\right)^6 = 20x^3 \times \left(\frac{-2}{x}\right)^3 (-160)$	B2, 1
	Coefficient of x^2 in $(2+3x)(x-\frac{2}{x})^6 = 120 - 480 = -360$	B1FT
		3

Question	Answer	Marks
2(a)	$3\cos\theta = 8\tan\theta \rightarrow 3\cos\theta = \frac{8\sin\theta}{\cos\theta}$	M1
	$3(1-\sin^2\theta)=8\sin\theta$	M1
	$3\sin^2\theta + 8\sin\theta - 3 = 0$	A1
		3
2(b)	$(3\sin\theta - 1)(\sin\theta + 3) = 0 \rightarrow \sin\theta = \frac{1}{3}$	M1
	$\theta = 19.5^{\circ}$	A1
		2

Question	Answer	Marks
3(a)	Volume after 30 s = 18000 $\frac{4}{3}\pi r^3 = 18000$	M1
	r = 16.3 cm	A1
		2
3(b)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$	B1
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{600}{4\pi r^2}$	M1
	$\frac{\mathrm{d}r}{\mathrm{d}t} = 0.181 \mathrm{cmpersecond}$	A1
		3

Question	Answer	Marks
4	1st term is -6 , 2nd term is -4.5 (M1 for using <i>k</i> th terms to find both <i>a</i> and <i>d</i>)	M1
	$\rightarrow a = -6, d = 1.5$	A1 A1
	$S_n = 84 \rightarrow 3n^2 - 27n - 336 = 0$	M1
	Solution $n = 16$	A1
		5

Question	Answer	Marks
5(a)	$\mathrm{ff}(x) = a - 2(a - 2x)$	M1
	$\mathrm{ff}(x) = 4x - a$	A1
	$f^{-1}(x) = \frac{a-x}{2}$	M1 A1
	APRA	4
5(b)	$4x - a = \frac{a - x}{2} \to 9x = 3a$	M1
	$x = \frac{a}{3}$	A1
		2

Question	Answer	Marks
6(a)	$2x^{2} + kx + k - 1 = 2x + 3 \rightarrow 2x^{2} + (k - 2)x + k - 4 = 0$	M1
	Use of $b^2 - 4ac = 0 \rightarrow (k-2)^2 = 8(k-4)$	M1
	<i>k</i> = 6	A1
	T PD.	3
6(b)	$2x^{2} + 2x + 1 = 2\left(x + \frac{1}{2}\right)^{2} + 1 - \frac{1}{2}$	
	$a = \frac{1}{2}, b = \frac{1}{2}$	B1 B1
	vertex $\left(-\frac{1}{2},\frac{1}{2}\right)$	B1FT
	(FT on a and b values)	
		3

Question	Answer	Marks
7(a)	$BC^{2} = r^{2} + 4r^{2} - 2r \cdot 2r \times \cos\left(\frac{\pi}{6}\right) = 5r^{2} - 2r^{2}\sqrt{3}$	M1
	$BC = r\sqrt{\left(5 - 2\sqrt{3}\right)}$	A1
	TPR	2
7(b)	Perimeter = $\frac{2\pi r}{6} + r + r\sqrt{\left(5 - 2\sqrt{3}\right)}$	M1 A1
		2
7(c)	Area = sector – triangle	
	Sector area = $\frac{1}{2}4r^2\frac{\pi}{6}$	M1
	Triangle area = $\frac{1}{2}r$. $2r\sin\frac{\pi}{6}$	M1
	Shaded area = $r^2 \left(\frac{\pi}{3} - \frac{1}{2}\right)$	A1
	·satprep·	3

Question	Answer	Marks
8(a)	$Volume = \pi \int x^2 dy = \pi \int \frac{36}{y^2} dy$	*M1
	$=\pi\left[\frac{-36}{y}\right]$	A1
	Uses limits 2 to 6 correctly \rightarrow (12 π)	DM1
	Vol of cylinder = π . 1 ² .4 or $\int 1^2 dy = [y]$ from 2 to 6	M1
	$Vol = 12\pi - 4\pi = 8\pi$	A1
		5
8(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-6}{x^2}$	B1
	$\frac{-6}{x^2} = -2 \longrightarrow x = \sqrt{3}$	M1
	$y = \frac{6}{\sqrt{3}} = 2\sqrt{3} \text{Lies on } y = 2x$	A1
	Satpre?	3

Question	Answer	Marks
9(a)	f(x) from -1 to 5	B1B1
	g(x) from -10 to 2 (FT from part (a))	B1FT
		3
9(b)		B2, 1
9(c)	Reflect in <i>x</i> -axis	B 1
	Stretch by factor 2 in the <i>y</i> direction	B 1
	Translation by $-\pi$ in the <i>x</i> direction OR translation by $\begin{pmatrix} 0 \\ -\pi \end{pmatrix}$.	B1
		3

Question	Answer	Marks
10(a)	$\frac{dy}{dx} = 54 - 6(2x - 7)^2$	B2,1
	$\frac{d^2 y}{dx^2} = -24(2x - 7)$	B2,1 FT
	(FT only for omission of '×2' from the bracket)	
	TPRA	4
10(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \to (2x - 7)^2 = 9$	M1
	x = 5, y = 243 or $x = 2, y = 135$	A1 A1
		3
10(c)	$x = 5 \frac{d^2 y}{dx^2} = -72 \rightarrow \text{Maximum}$ (FT only for omission of '×2 ' from the bracket)	B1FT
	$x = 2 \frac{d^2 y}{dx^2} = 72 \rightarrow \text{Minimum}$ (FT only for omission of '×2' from the bracket)	B1FT
	Satarao.	2

Question	Answer	Marks
11(a)	Express as $(x-4)^2 + (y+2)^2 = 16 + 4 + 5$	M1
	Centre <i>C</i> (4, -2)	A1
	Radius = $\sqrt{25} = 5$	A1
	T PR	3
11(b)	P(1,2) to C(4, -2) has gradient $-\frac{4}{3}$ (FT on coordinates of C)	B1FT
	Tangent at <i>P</i> has gradient = $\frac{3}{4}$	M1
	Equation is $y-2 = \frac{3}{4}(x-1)$ or $4y = 3x + 5$	A1
		3
11(c)	Q has the same coordinate as $P y = 2$	B1
	<i>Q</i> is as far to the right of <i>C</i> as $P = 3 + 3 + 1 = 7 Q (7, 2)$	B1
	"Satorep"	2
	adprot	

Question	Answer	Marks
11(d)	Gradient of tangent at $Q = -\frac{3}{4}$ by symmetry	B1FT
	(FT from part (b))	
	Eqn of tangent at <i>Q</i> is $y-2 = -\frac{3}{4}(x-7)$ or $4y + 3x = 29$	M1
	$T(4, \frac{17}{4})$	A1
		3

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics 1 MARK SCHEME Maximum Mark: 75 9709/13 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- Marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Mathematics-Specific Marking Principles		
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.		
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.		
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.		
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).		
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.		
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.		

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks
1	$3x^2 + 2x + 4 = mx + 1 \rightarrow 3x^2 + x(2 - m) + 3 (= 0)$	B1
	$(2-m)^2 - 36$ SOI	M1
	(m+4)(m-8) (>/= 0) or $2-m$ >/= 6 and $2-m$ = -6 OE</td <td>A1</td>	A1
	m < -4, m > 8 WWW	A1
	Alternative method for question 1	
	$\frac{dy}{dx} = 6x + 2 \to m = 6x + 2 \to 3x^2 + 2x + 4 = (6x + 2)x + 1$	M1
	$x = \pm 1$	A1
	$m = \pm 6 + 2 \rightarrow m = 8 \text{ or } -4$	A1
	m < -4, m > 8 WWW	A1
		4

Question	Answer	Marks
2	$(y) = \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{3x^{\frac{1}{2}}}{\frac{1}{2}} (+c)$	B1 B1
	7 = 16 - 12 + c (M1 for subsituting $x = 4$, $y = 7$ into <i>their</i> integrated expansion)	M1
	$y = 2x^{\frac{3}{2}} - 6x^{\frac{1}{2}} + 3$	A1
		4

Question	Answer	Marks
3(a)	(y) = f(-x)	B1
		1
3(b)	(y) = 2f(x)	B1
	T PRA	1
3(c)	(y) = f(x+4) - 3	B1 B1
		2

Question	Answer	Marks
4(a)	$1+5a+10a^2+10a^3+$	B1
		1
4(b)	$1+5(x+x^2)+10(x+x^2)^2+10(x+x^2)^3+$ SOI	M1
	$1+5(x+x^2)+10(x^2+2x^3+)+10(x^3+)+$ SOI	A1
	$1 + 5x + 15x^2 + 30x^3 + \dots$	A1
		3

Question	Answer	Marks
5	$\cos POA = \frac{5}{13} \rightarrow POA = 1.17(6)$ Allow 67.4°	M1 A1
	or $\sin = \frac{12}{13}$ or $\tan = \frac{12}{5}$	
	Reflex $AOB = 2\pi - 2 \times their 1.17(6)$ OE in degrees or minor arc AB = $5 \times 2 \times their 1.17(6)$	M1
	Major arc = $5 \times their 3.93(1)$ or $2\pi \times 5$ - their 11.7(6)	M1
	$AP \text{ (or } BP) = \sqrt{13^2 - 5^2} = 12$	B1
	Cord length = 43.7	A1
		6

Question	Answer	Marks
6(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{1}{2}(5x-1)^{-1/2}\right] \times [5]$	B1 B1
	Use $\frac{dy}{dt} = 2 \times \left(their \frac{dy}{dx} \text{ when } x = 1 \right)$	M1
	$\frac{5}{2}$	A1
		4

Question	Answer	Marks
6(b)	$2 \times their \frac{5}{2} (5x-1)^{-1/2} = \frac{5}{8}$ oe	M1
	$(5x-1)^{1/2} = 8$	A1
	<i>x</i> = 13	A1
	PRA	3

Question	Answer	Marks
7(a)	$\frac{\tan\theta}{1+\cos\theta} + \frac{\tan\theta}{1-\cos\theta} = \frac{\tan\theta(1-\cos\theta) + \tan\theta(1+\cos\theta)}{1-\cos^2\theta}$	M1
	$=\frac{2\tan\theta}{\sin^2\theta}$	M1
	$=\frac{2\sin\theta}{\cos\theta\sin^2\theta}$	M1
	$=\frac{2}{\sin\theta\cos\theta} \mathbf{AG}$	A1
	·satpreP·	4

Question	Answer	Marks
7(b)	$\frac{2}{\sin\theta\cos\theta} = \frac{6\cos\theta}{\sin\theta}$	M1
	$\cos^2\theta = \frac{1}{3} \rightarrow \cos\theta = (\pm)0.5774$	A1
	54.7°, 125.3° (FT for 180° – 1st solution)	A1 A1FT
	5	4

Question	Answer	Marks
8(a)	$r = \cos^2 \theta$ SOI	M1
	$S_{\infty} = \frac{\sin^2 \theta}{1 - \cos^2 \theta}$	M1
	1	A1
	3	3
8(b)(i)	$d = \sin^2 \theta \cos^2 \theta - \sin^2 \theta$	M1
	$\sin^2\theta(\cos^2\theta - 1)$	M1
	$-\sin^4 heta$	A1
		3

Question	Answer	Marks
8(b)(ii)	Use of $S_{16} = \frac{16}{2} [2a + 15d]$	M1
	With both $a = \frac{3}{4}$ and $d = -\frac{9}{16}$	A1
	$S_{16} = -55\frac{1}{2}$	A1
	9	3

-		F
Question	Answer	Marks
9(a)	$\left[\left(x-2\right)^2\right]\left[-1\right]$	B1 B1
		2
9(b)	Smallest $c = 2$ (FT on <i>their</i> part (a))	B1FT
	Z. S.	1
9(c)	$y = (x-2)^2 - 1 \rightarrow (x-2)^2 = y + 1$	*M1
	$x = 2(\pm)\sqrt{y+1}$	DM1
	$(f^{-1}(x)) = 2 + \sqrt{x+1}$ for $x > 8$	A1
		3

Question	Answer	Marks
9(d)	$gf(x) = \frac{1}{(x-2)^2 - 1 + 1} = \frac{1}{(x-2)^2} OE$	B1
	Range of gf is $0 < gf(x) < \frac{1}{9}$	B1 B1
	T PR	3

Question	Answer	Marks
10(a)	Mid-point is (-1, 7)	B1
	Gradient, m, of AB is 8/12 OE	B 1
	$y - 7 = -\frac{12}{8}(x+1)$	M1
	3x + 2y = 11 AG	A1
		4
10(b)	Solve simultaneously $12x - 5y = 70$ and <i>their</i> $3x + 2y = 11$	M1
	x=5, y=-2	A1
	Attempt to find distance between <i>their</i> $(5, -2)$ and either $(-7,3)$ or $(5, 11)$	M1
	$(r) = \sqrt{12^2 + 5^2}$ or $\sqrt{13^2 + 0} = 13$	A1
	Equation of circle is $(x-5)^{2} + (y+2)^{2} = 169$	A1
		5

Question	Answer	Marks
11(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4bx + b^2$	B1
	$3x^2 - 4bx + b^2 = 0 \rightarrow (3x - b)(x - b) (= 0)$	M1
	$x = \frac{b}{3}$ or b	A1
	$a = \frac{b}{3} \rightarrow b = 3a$ AG	A1
	Alternative method for question 11(a)	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4bx + b^2$	B1
	Sub $b = 3a$ & obtain $\frac{dy}{dx} = 0$ when $x = a$ and when $x = 3a$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 12a$	A1
	< 0 Max at $x = a$ and > 0 Min at $x = 3a$. Hence $b = 3a$ AG	A1
	·satprep.	4

Question	Answer	Marks
11(b)	Area under curve = $\int (x^3 - 6ax^2 + 9a^2x) dx$	M1
	$\frac{x^4}{4} - 2ax^3 + \frac{9a^2x^2}{2}$	B2,1,0
	$\frac{a^4}{4} - 2a^4 + \frac{9a^4}{2} \left(= \frac{11a^4}{4} \right)$ (M1 for applying limits $0 \rightarrow a$)	M1
	When $x = a$, $y = a^3 - 6a^3 + 9a^3 = 4a^3$	B1
	Area under line = $\frac{1}{2}a \times their 4a^3$	M1
	Shaded area = $\frac{11a^4}{4} - 2a^4 = \frac{3}{4}a^4$	A1
		7

Cambridge International AS & A Level

MATHEMATICS

Paper 1 Pure Mathematics MARK SCHEME Maximum Mark: 75 9709/12 March 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	athematics-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$f'(x) = \left[-(3x+2)^{-2}\right] \times [3] + [2x]$	B2, 1, 0	
	< 0 hence decreasing	B1	Dependent on at least B1 for $f'(x)$ and must include < 0 or '(always) neg'
		3	

Question	Answer	Marks	Guidance
2	[Stretch] [factor 2, x direction (or y-axis invariant)]	*B1 DB1	
	[Translation or Shift] [1 unit in y direction] or [Translation/Shift] $\begin{bmatrix} 0\\1 \end{bmatrix}$	B1B1	Accept transformations in either order. Allow (0, 1) for the vector
		4	

Question	Answer	Marks	Guidance
3	$(\pi)^{\int}(y-1)dy$	*M1	SOI Attempt to integrate x^2 or $(y-1)$
	$(\pi)\left[\frac{y^2}{2}-y\right]$	A1	
	$(\pi)\left[\left(\frac{25}{2}-5\right)-\left(\frac{1}{2}-1\right)\right]$	DM1	Apply limits $1 \rightarrow 5$ to an integrated expression
	8π or AWRT 25.1	A1	
		4	

Question	Answer	Marks	Guidance
4	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 2$	B 1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{6}$	B1	OE, SOI
	$their(2x-2) = their\frac{4}{6}$	M1	LHS and RHS must be <i>their</i> $\frac{dy}{dx}$ expression and value
	$x = \frac{4}{3}$ oe	A1	
		4	

March 2	2020
---------	------

Question	Answer	Marks	Guidance
5	$2\tan\theta - 6\sin\theta + 2 = \tan\theta + 3\sin\theta + 2 \rightarrow \tan\theta - 9\sin\theta \ (=0)$	M1	Multiply by denominator and simplify
	$\sin\theta - 9\sin\theta\cos\theta \ (=0)$	M1	Multiply by $\cos \theta$
	$\sin\theta(1-9\cos\theta) (=0) \rightarrow \sin\theta=0, \cos\theta=\frac{1}{9}$	M1	Factorise and attempt to solve at least one of the factors $= 0$
	$\theta = 0$ or 83.6° (only answers in the given range)	A1A1	
	9	5	

Question	Answer	Marks	Guidance
6(a)	$5C2\left[2(x)\right]^{3}\left[\frac{a}{(x^{2})}\right]^{2}$	B1	SOI Can include correct <i>x</i> 's
	$10 \times 8 \times a^2 \left(\frac{x^3}{x^4}\right) = 720 \left(\frac{1}{x}\right)$	B1	SOI Can include correct <i>x</i> 's
	$a = \pm 3$	B1	0
	Satp	re ³	
6(b)	5C4 $\left[2(x)\right]\left[\frac{their a}{(x^2)}\right]^4$	B1	SOI <i>Their a</i> can be just <u>one</u> of their values (e.g. just 3). Can gain mark from within an expansion but must use <i>their</i> value of a
	810 identified	B 1	Allow with x^{-7}
		2	

Question	Answer	Marks	Guidance
7	$OC = 6\cos 0.8 = 4.18(0)$	M1A1	SOI
	Area sector $OCD = \frac{1}{2} (their 4.18)^2 \times 0.8$	*M1	OE
	$\Delta OCA = \frac{1}{2} \times 6 \times their 4.18 \times \sin 0.8$	M1	OE
	Required area = <i>their</i> $\triangle OCA$ – <i>their</i> sector <i>OCD</i>	DM1	SOI. If not seen <i>their</i> areas of sector and triangle must be seen
	2.01	A1	CWO. Allow or better e.g. 2.0064
		6	

Question	Answer	Marks	Guidance
8(a)	2%	B 1	
		1	
8(b)	Bonus = 600 + 23 × 100 = 2900	B1	
	Salary = 30000×1.03^{23}	M1	Allow 30000×1.03 ²⁴ (60984)
	= 59207.60	Al	Allow answers of 3significant figure accuracy or better
	<u>their 2900</u> their 59200	M1	SOI
	4.9(0)%	A1	
		5	

March	2020
-------	------

Question	Answer	Marks	Guidance
9(a)	$\left[2(x+3)^2\right]\left[-7\right]$	B1B1	Stating $a = 3, b = -7$ gets B1B1
		2	
9(b)	$y = 2(x+3)^2 - 7 \rightarrow 2(x+3)^2 = y+7 \rightarrow (x+3)^2 = \frac{y+7}{2}$	M1	First 2 operations correct. Condone sign error or with x/y interchange
	$x+3=(\pm)\sqrt{\frac{y+7}{2}} \rightarrow x=(\pm)\sqrt{\frac{y+7}{2}}-3 \rightarrow f^{-1}(x)=-\sqrt{\frac{x+7}{2}}-3$	A1FT	FT on <i>their a</i> and <i>b</i> . Allow $y = \dots$
	Domain: $x \ge -5$ or ≥ -5 or $[-5, \infty)$	B1	Do not accept $y =, f(x) =, f^{-1}(x) =$
		3	
9(c)	$fg(x) = 8x^2 - 7$	B1FT	SOI. FT on <i>their</i> –7 from part (a)
	$8x^2 - 7 = 193 \rightarrow x^2 = 25 \rightarrow x = -5$ only	B 1	
	Alternative method for question 9(c)		
	$g(x) = f^{-1}(193) \rightarrow 2x - 3 = -\sqrt{100} - 3$	M1	FT on their $f^{-1}(x)$
	x = -5 only	A1	0 ⁰
	satp	2	
9(d)	(Largest k is) $-\frac{1}{2}$	B1	Accept $-\frac{1}{2}$ or $k \leq -\frac{1}{2}$
		1	

Question	Answer	Marks	Guidance
10(a)	$2(a+3)^{\frac{1}{2}} - a = 0$	M1	SOI. Set $\frac{dy}{dx} = 0$ when $x = a$. Can be implied by an answer in terms of a
	$4(a+3) = a^2 \to a^2 - 4a - 12 = 0$	M1	Take <i>a</i> to RHS and square. Form 3-term quadratic
	$(a-6)(a+2) \rightarrow a = 6$	A1	Must show factors, or formula or completing square. Ignore $a = -2$ SC If <i>a</i> is never used maximum of M1A1 for $x = 6$, with visible solution
		3	
10(b)	$\frac{d^2 y}{dx^2} = (x+3)^{\frac{1}{2}} - 1$	B1	
	Sub their $a \rightarrow \frac{d^2y}{d^2y} = \frac{1}{d^2} = \frac{1}{d^2} = \frac{2}{d^2} (ar < 0) \rightarrow MAX$	M1A1	A mark only if completely correct
	Submetr $u \rightarrow \frac{1}{dx^2} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3}$ (b) \rightarrow MAX		If the second differential is not $-\frac{2}{3}$ correct conclusion must be
			drawn to award the M1
		3	
10(c)	$(y=)\frac{2(x+3)^{\frac{3}{2}}}{\frac{3}{2}} - \frac{1}{2}x^2 (+c)$	B1B1	0.0
	Sub $x = their \ a \text{ and } y = 14 \rightarrow 14 = \frac{4}{3}(9)^{\frac{3}{2}} - 18 + c$	M1	Substitute into an integrated expression. c must be present. Expect $c = -4$
	$y = \frac{4}{3}(x+3)^{\frac{3}{2}} - \frac{1}{2}x^2 - 4$	A1	Allow $f(x) = \dots$
		4	

Question	Answer	Marks	Guidance
11(a)	$(\tan x - 2)(3\tan x + 1) (= 0)$. or formula or completing square	M1	Allow reversal of signs in the factors. Must see a method
	$\tan x = 2 \text{ or } -\frac{1}{3}$	A1	
	$x = 63.4^{\circ}$ (only value in range) or 161.6° (only value in range)	B1FT B1FT	
		4	
11(b)	Apply $b^2 - 4ac < 0$	M1	SOI. Expect $25-4(3)(k) < 0$, tan x must not be in coefficients
	$k > \frac{25}{12}$	A1	Allow $b^2 - 4ac = 0$ leading to correct $k > \frac{25}{12}$ for M1A1
		2	
11(c)	<i>k</i> = 0	M1	SOI
	$\tan x = 0 \text{ or } \frac{5}{3}$	A1	
	$x = 0^{\circ} \text{ or } 180^{\circ} \text{ or } 59.0^{\circ}$	A1	All three required
	2.Sato	3	C ^C
	- the		

March	2020
-------	------

Question	Answer	Marks	Guidance
12(a)	Centre = $(2, -1)$	B1	
	$r^{2} = [2 - (-3)]^{2} + [-1 - (-5)]^{2}$ or $[2 - 7]^{2} + [-1 - 3]^{2}$ OE	M1	OR $\frac{1}{2} \left[\left(-3 - 7 \right)^2 + \left(-5 - 3 \right)^2 \right]$ OE
	$(x-2)^{2} + (y+1)^{2} = 41$	A1	Must not involve surd form SCB3 $(x+3)(x-7)+(y+5)(y-3)=0$
		3	
12(b)	Centre = <i>their</i> $(2, -1) + \binom{8}{4} = (10, 3)$	B1FT	SOI FT on <i>their</i> (2, -1)
	$(x-10)^{2} + (y-3)^{2} = their 41$	B1FT	FT on <i>their</i> 41 even if in surd form SCB2 $(x-5)(x-15)+(y+1)(y-7)=0$
		2	

Question	Answer	Marks	Guidance
12(c)	Gradient <i>m</i> of line joining centres = $\frac{4}{8}$ OE	B1	
	Attempt to find mid-point of line.	M1	Expect (6, 1)
	Equation of RS is $y-1 = -2(x-6)$	M1	Through <i>their</i> (6, 1) with gradient $\frac{-1}{m}$
	y = -2x + 13	A1	AG
	Alternative method for question 12(c)		
	$(x-2)^{2} + (y+1)^{2} - 41 = (x-10)^{2} + (y-3)^{2} - 41$ OE	M1	
	$x^{2} - 4x + 4 + y^{2} + 2y + 1 = x^{2} - 20x + 100 + y^{2} - 6y + 9$ OE	A1	Condone 1 error or errors caused by 1 error in the first line
	16x + 8y = 104	A1	
	y = -2x + 13	A1	AG
	4	4	5
12(d)	$(x-10)^{2} + (-2x+13-3)^{2} = 41$	M1	Or eliminate y between C_1 and C_2
	$x^{2} - 20x + 100 + 4x^{2} - 40x + 100 = 41 \rightarrow 5x^{2} - 60x + 159 = 0$	A1	AG
		2	

MATHEMATICS

9709/11 October/November 2019

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.
Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark. awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically DM or DB says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B FT marks are given for correct work only.

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

1 $ \begin{array}{c c} \mathbf{B1} & \mathrm{SOI} \\ \mathbf{SC: Condone errors in } (4^{-1})^2 \text{ evaluation or interpretation for} \\ \mathbf{B1} \text{ only} \\ \hline \mathbf{B1} & \mathbf{B1} \\ \hline \mathbf{B1} & \mathbf{B1}$	Question	Answer	Marks	Guidance
$15 \times 2^4 \times \frac{1}{4^2}$ B1Identified as required term.15B1	1	$6C2 \times (2x)^4 \times \frac{1}{(4x^2)^2}$	B1	SOI SC: Condone errors in $(4^{-1})^2$ evaluation or interpretation for B1 only
15 B1		$15 \times 2^4 \times \frac{1}{4^2}$	B1	Identified as required term.
		15	B1	
3		9	3	

Question	Answer	Marks	Guidance
2	Attempt to solve $f'(x) = 0$ or $f'(x) > 0$ or $f'(x) \ge 0$	M1	SOI
	(x-2)(x-4)	A1	2 and 4 seen
	(Least possible value of <i>n</i> is) 4	A1	Accept $n = 4$ or $n \ge 4$
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 10x - 3$	B1	
	At $x = 2$, $\frac{dy}{dx} = 24 - 20 - 3 = 1 \rightarrow a = 1$	M1 A1	
	$6=2+b \rightarrow b=4$	B1FT	Substitute $x = 2$, $y = 6$ in $y = (their a)x + b$
	$6 = 16 - 20 - 6 + c \rightarrow c = 16$	B1	Substitute $x = 2, y = 6$ into equation of curve
		5	

Question	Answer	Marks	Guidance
4(i)	Identifies common ratio as 1.1	B 1	
	Use of $x(1.1)^{20} = 20$	M1	SOI
	$x\left(=\frac{20}{(1.1)^{20}}\right)=3.0$	A1	Accept 2.97
	24	3	0.
4(ii)	$their 3.0 \times \frac{\left[\left(1.1 \right)^{21} - 1 \right]}{1.1 - 1} \rightarrow 192$	M1 A1	Correct formula used for M mark. Allow 2.97 used from (i) Accept 190 from $x = 2.97$
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(i)	$4\tan x + 3\cos x + \frac{1}{\cos x} = 0 \rightarrow 4\sin x + 3\cos^2 x + 1 = 0$	M1	Multiply by $\cos x$ or common denominator of $\cos x$
	$4\sin x + 3(1 - \sin^2 x) + 1 = 0 \rightarrow 3\sin^2 x - 4\sin x - 4 = 0$	M1	Use $\cos^2 x = 1 - \sin^2 x$ and simplify to 3-term quadratic in $\sin x$
	$\sin x = -\frac{2}{3}$	A1	AG
	9	3	
5(ii)	$2x - 20^\circ = 221.8^\circ, 318.2^\circ$	M1A1	Attempt to solve $sin(2x-20) = -2/3(M1)$. At least 1 correct (A1)
	$x = 120.9^{\circ}, 169.1^{\circ}$	A1 A1FT	FT for 290° – other solution. SC A1 both answers in radians
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6	Equation of line is $y = mx - 2$	B 1	OR
	$x^{2}-2x+7 = mx-2 \rightarrow x^{2}-x(2+m)+9=0$	M1	
	Apply $b^2 - 4ac(=0) \rightarrow (2+m)^2 - 4 \times 9 (=0)$	*M1	
	m = 4 or -8	A1	
	$m = 4 \rightarrow x^2 - 6x + 9 = 0 \rightarrow x = 3$ $m = -8 \rightarrow x^2 + 6x + 9 = 0 \rightarrow x = -3$	DM1	
	(3, 10), (-3, 22)	A1A1	
	Alternative method for question 6		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 2$	B 1	
	2x - 2 = m	M1	
	$x^{2}-2x+7 = (2x-2)x-2 = 2x^{2}-2x-2$	M1	
	$x^2 - 9 = 0 \rightarrow x = \pm 3$	A1	0.
	(3, 10), (-3, 22)	A1A1	
	When $x = 3$, $m = 4$; when $x = -3$, $m = -8$	A1	
		7	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(i)	Range of f is $0 < f(x) < 3$	B1B1	OE. Range cannot be defined using x
	Range of g is $g(x) > 2$	B1	OE
		3	
7(ii)	$(fg(x) =) \frac{3}{2(\frac{1}{x}+2)+1} = \frac{3x}{2+5x}$	B1B1	Second B mark implies first B mark
	9	2	
7(iii)	$y = \frac{3x}{2+5x} \rightarrow 2y + 5xy = 3x \rightarrow 3x - 5xy = 2y$	M1	Correct order of operations
	$x(3-5y)=2y \rightarrow x=\frac{2y}{3-5y}$	M1	Correct order of operations
	$((fg)^{-1}(x)) = \frac{2x}{3-5x}$	A1	
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
8(i)	$OA \times \frac{3}{8}\pi = 6$	M1	
	$OA = \frac{16}{\pi} = 5.093(0)$	A1	
8(ii)	$AB = their 5.0930 \times \tan\frac{3}{16}\pi$	M1	
	Perimeter = $2 \times 3.4030 + 6 = 12.8$	A1	
8(iii)	Area $OABC = (2 \times \frac{1}{2}) \times their 5.0930 \times their 3.4030$	M1	
	Area sector = $\frac{1}{2} \times (their 5.0930)^2 \times \frac{3}{8}\pi$	M1	
	Shaded area = <i>their</i> 17.331- <i>their</i> 15.279 = 2.05	M1A1	

9709/11

Question	Answer	Marks	Guidance	
9(i)	$y = [(5x-1)^{1/2} \div \frac{3}{2} \div 5] [-2x]$	B1 B1		
	$3 = \frac{27}{(3/2) \times 5} - 4 + c$	M1	Substitute $x = 2, y = 3$	
	$c = 7 - \frac{18}{5} = \frac{17}{5} \rightarrow \left(y = \frac{2(5x-1)^3}{15} - 2x + \frac{17}{5} \right)$	A1		
9(ii)	$d^{2}y/dx^{2} = \left[\frac{1}{2}(5x-1)^{-1/2}\right] [\times 5]$	B1 B1		
9(iii)	$(5x-1)^{1/2} - 2 = 0 \rightarrow 5x - 1 = 4$ x = 1	M1A1	Set $\frac{dy}{dx} = 0$ and attempt solution (M1)	
	$y = \frac{16}{25} - 2 + \frac{17}{5} = \frac{37}{15}$	A1	Or 2.47 or $\left(1, \frac{37}{15}\right)$	
	$\frac{d^2 y}{dx^x} = \frac{5}{2} \times \frac{1}{2} = \frac{5}{4}$ (> 0) hence minimum	A1	OE	
Satprep.				

Question	Answer	Marks	Guidance
10(i)	$\mathbf{AB} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} - \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ 9 \end{pmatrix}, \qquad \mathbf{BC} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix} - \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$	B1B1	Condone reversal of labels
	AB.BC = $6 - 6 \rightarrow = 0$ (hence perpendicular)	B1	AG
10(ii)	$\mathbf{DC} = \begin{pmatrix} 4 \\ -2 \\ 5 \end{pmatrix} - \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}$	B1	Or: $\mathbf{CD} = \begin{pmatrix} -2\\4\\-6 \end{pmatrix}$
	AB = kDC	M1	OE Expect $k = \frac{3}{2}$ Or: DC.BC = 4 - 4 = 0 hence <i>BC</i> is also perpendicular to <i>DC</i> Or: AB.DC = 1 or AB.CD = -1, angle between lines is 0 or 180
	AB is parallel to DC, hence ABCD is a trapezium	A1	
10(iii)	$ \mathbf{AB} = \sqrt{9 + 36 + 81} = \sqrt{126} = 11.22$ $ \mathbf{DC} = \sqrt{4 + 16 + 36} = \sqrt{56} = 7.483$ $ \mathbf{BC} = \sqrt{4 + 1 + 0} = \sqrt{5} = 2.236$	M1	Method for finding at least 2 magnitudes
	Area = $\frac{1}{2}$ (<i>theirAB</i> + <i>theirDC</i>)× <i>theirBC</i> = 20.92	M1A1	OE

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
11(i)	$(y=)(x+2)^2-1$	B1 DB1	2nd B1 dependent on 2 in bracket
	$x + 2 = (\pm)(y + 1)^{1/2}$	M1	
	$x = -2 + (y+1)^{1/2}$	A1	
11(ii)	$x^{2} = 4 + (y+1) - / + 4(y+1)^{\frac{1}{2}}$	*M1A1	SOI. Attempt to find x^2 . The last term can be – or + at this stage
	$(\pi) \int x^{2} (dy) = (\pi) \left[5y + \frac{y^{2}}{2} - \frac{4(y+1)^{\frac{3}{2}}}{\frac{3}{2}} \right]$	A2,1,0	
	$\left(\pi\right)\left[15 + \frac{9}{2} - \frac{64}{3} - \left(-5 + \frac{1}{2}\right)\right]$	DM1	Apply <i>y</i> limits
	$\frac{8\pi}{3}$ or 8.38	A1	

MATHEMATICS

9709/12 October/November 2019

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark. awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically DM or DB says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B FT marks are given for correct work only.

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$\frac{6x}{2}$, $15 \times \frac{x^2}{4}$	B1 B1	OE In or from a correct expansion. Can be implied by correct equation.
	$\times (4 + ax) \rightarrow 3a + 15 = 3$	M1	2 terms in x^2 equated to 3 or $3x^2$. Condone x^2 on one side only.
	<i>a</i> = -4	A1	CAO
	T PF	4	

Question	Answer	Marks	Guidance
2	Attempt to find the midpoint M	M1	
	(1, 4)	A1	
	Use a gradient of $\pm^{2}/_{3}$ and <i>their M</i> to find the equation of the line.	M1	
	Equation is $y - 4 = -\frac{2}{3}(x - 1)$	A1	AEF
	Alternative method for question 2		
	Attempt to find the midpoint <i>M</i>	M1	. <u>5</u>
	(1, 4)	A1	
	Replace 1 in the given equation by c and substitute <i>their M</i>	M1	
	Equation is $y - 4 = -\frac{2}{3}(x - 1)$	A1	AEF
		4	

Question	Answer	Marks	Guidance
3	$(y=) \frac{kx^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} \left(= \frac{k\sqrt{x}}{\frac{1}{2}} \right) (+c)$	B1	OE
	Substitutes both points into an integrated expression with a '+ c ' and solve as far as a value for one variable.	M1	Expect to see $-1 = 2k + c$ and $4 = 4k + c$
	$k = 2\frac{1}{2}$ and $c = -6$	A1	WWW
	$y = 5\sqrt{x} - 6$	A1	OE From correct values of both $k \& c$ and correct integral.
		4	

Question	Answer	Marks	Guidance
4(i)	Arc length $AB = 2r\theta$	B1	
	$\operatorname{Tan} \theta = \frac{AT}{r} \text{ or } \frac{BT}{r} \to AT \text{ or } BT = r \tan \theta$	B1	Accept or $\sqrt{\left(\left(\frac{r}{\cos\theta}\right)^2 - r^2\right)}$ or $\frac{r\sin\theta}{\sin\left(\frac{\pi}{2} - \theta\right)}$ NOT (90 - θ)
	$P = 2r\theta + 2r\tan\theta$	B1FT	OE, FT for <i>their</i> arc length $+ 2 \times their AT$
	atpre	3	

Question	Answer	Marks	Guidance
4(ii)	Area $\triangle AOT = \frac{1}{2} \times 5 \times 5 \tan 1.2$ or Area $AOBT = 2 \times \frac{1}{2} \times 5 \times 5 \tan 1.2$	B1	
	Sector area = $\frac{1}{2} \times 25 \times 2.4$ (or 1.2)	*M1	Use of $\frac{1}{2}r^2\theta$ with $\theta = 1.2$ or 2.4.
	Shaded area = 2 triangles – sector	DM1	Subtraction of sector, using 2.4 where appropriate, from 2 triangles
	Area = $34.3 (\text{cm}^2)$	A1	AWRT
	Alternative method for question 4(ii)		
	Area of $\triangle ABT = \frac{1}{2} \times (5 \times \tan 1.2)^2 \times \sin(\pi - 2.4) (= 55.86)$	B1	
	Segment area = $\frac{1}{2} \times 25 \times (2.4 - \sin 2.4) (= 21.56)$	*M1	Use of $\frac{1}{2}r^2(\theta - \sin \theta)$ with $\theta = 1.2$ or 2.4
	Shaded area = triangle – segment	DM1	Subtraction of segment from $\triangle ABT$, using 2.4 where appropriate.
	Area = $34.3 (\text{cm}^2)$	A1	AWRT
		4	

Question	Answer	Marks	Guidance
5(i)	Use of Pythagoras $\rightarrow r^2 = 15^2 - h^2$	M1	
	$V = \frac{1}{3}\pi(225 - h^2) \times h \to \frac{1}{3}\pi(225h - h^3)$	A1	$\begin{array}{l} \text{AG} \\ \text{WWW e.g. sight of } r = 15 - h \text{ gets A0.} \end{array}$
		2	

9709/12

Question	Answer	Marks	Guidance
5(ii)	$\left(\frac{\mathrm{d}v}{\mathrm{d}h}\right) = \frac{\pi}{3} \left(225 - 3h^2\right)$	B1	
	Their $\frac{\mathrm{d}v}{\mathrm{d}h} = 0$	M1	Differentiates, sets <i>their</i> differential to 0 and attempts to solve at least as far as $h^2 \neq 0$.
	$(h =) \sqrt{75}, 5\sqrt{3} \text{ or AWRT 8.66}$	A1	Ignore $-\sqrt{75}$ OE and ISW for both A marks
	$\frac{\mathrm{d}^2 h}{\mathrm{d}h^2} = \frac{\pi}{3} \ (-6h) \ (\rightarrow -\mathrm{ve})$	M1	Differentiates for a second time and considers the sign of the second differential or any other valid complete method.
	→ Maximum	A1FT	Correct conclusion from correct 2nd differential, value for h not required, or any other valid complete method. FT for <i>their</i> h , if used, as long as it is positive.
			SC Omission of π or $\frac{\pi}{3}$ throughout can score B0M1A1M1A0
		5	

Question	Answer	Marks	Guidance
6(a)	$(2x + 1) = \tan^{-1}(\frac{1}{3}) (= 0.322 \text{ or } 18.4 \text{ OR } -0.339 \text{ rad or } 8.7^{\circ})$	*M1	Correct order of operations. Allow degrees.
	Either their $0.322 + \pi$ or 2π Or their $-0.339 + \frac{\pi}{2}$ or π	DM1	Must be in radians
	x = 1.23 or $x = 2.80$	A1	AWRT for either correct answer, accept 0.39π or 0.89π
	9	A1	For the second answer with no other answers between 0 and 2.8 SC1 For both 1.2 and 2.8
		4	
6(b)(i)	$5\cos^2 x - 2$	B1	Allow $a = 5, b = -2$
		1	
6(b)(ii)	-2	B1FT	FT for sight of <i>their b</i>
	3	B1FT	FT for sight of <i>their</i> $a + b$
	4	2	.5
	34. satpre	p.c	,0 ·

Question	Answer	Marks	Guidance
7(i)	$\left(\overrightarrow{PB}\right) = 5\mathbf{i} + 8\mathbf{j} - 5\mathbf{k}$	B2,1,0	B2 all correct, B1 for two correct components.
	$\left(\overrightarrow{PQ}\right) = 4\mathbf{i} + 8\mathbf{j} + 5\mathbf{k}$	B2,1,0	B2 all correct, B1 for two correct components.
			Accept column vectors. SC B1 for each vector if all components multiplied by -1.
		4	
7(ii)	(Length of $PB =$) $\sqrt{(5^2 + 8^2 + 5^2)} = (\sqrt{114} \approx 10.7)$	M1	Evaluation of both lengths. Other valid complete comparisons can be accepted.
	(Length of $PQ = \sqrt{(4^2 + 8^2 + 5^2)} = (\sqrt{105} \approx 10.2)$		
	<i>P</i> is nearer to <i>Q</i> .	A1	www
		2	
7(iii)	$\left(\overrightarrow{PB}.\overrightarrow{PQ}\right) = 20 + 64 - 25$	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2$ on <i>their</i> \overrightarrow{PB} and \overrightarrow{PQ}
	$(Their\sqrt{114})(their\sqrt{105})\cos BPQ = (their 59)$	M1	All elements present and in correct places.
	$BPQ = 57.4(^{\circ}) \text{ or } 1.00 \text{ (rad)}$	A1	AWRT Calculating the obtuse angle and then subtracting gets A0.
	alpre	3	

Question	Answer	Marks	Guidance
8(a)(i)	21 st term = $13 + 20 \times 1.2 = 37$ (km)	B1	
		1	

Question	Answer	Marks	Guidance
8(a)(ii)	$S_{21} = \frac{1}{2} \times 21 \times (26 + 20 \times 1.2) \text{ or } \frac{1}{2} \times 21 \times (13 + their 37)$	M1	A correct sum formula used with correct values for <i>a</i> , <i>d</i> and <i>n</i> .
	525 (km)	A1	
		2	
8(b)(i)	$\frac{x-3}{x} = \frac{x-5}{x-3}$ oe (or use of <i>a</i> , <i>ar</i> and <i>ar</i> ²)	M1	Any valid method to obtain an equation in one variable.
	(a = or x =) 9	A1	
		2	
8(b)(ii)	$r = \left(\frac{x-3}{x}\right)$ or $\left(\frac{x-5}{x-3}\right)$ or $\sqrt{\frac{x-5}{x}} = \frac{2}{3}$. Fourth term = $9 \times (\frac{2}{3})^3$	M1	Any valid method to find <i>r</i> and the fourth term with <i>their a</i> & <i>r</i> .
	2 ² / ₃ or 2.67	A1	OE, AWRT
		2	
8(b)(iii)	$S\infty = \frac{a}{1-r} = \frac{9}{1-\frac{2}{3}}$	M1	Correct formula and using <i>their</i> 'r' and 'a', with $ r < 1$, to obtain a numerical answer.
	27 or 27.0	A1	AWRT
	·Satpre	2	
L			

Question	Answer	Marks	Guidance
9(i)	$f(x) = g(x) \rightarrow 2x^2 + 6x + 1 + k \ (= 0)$	*M1	Forms a quadratic with all terms on same side.
	Use of $b^2 = 4ac$	DM1	Uses the discriminant $= 0$.
	$(k =) 3\frac{1}{2}$	A1	OE, WWW
	Alternative method for question 9(i)		
	$4x + 8 = 2 \; (\to x = -1\frac{1}{2})$	*M1	Differentiating, equating gradients and solving to give $x =$
	Substitutes <i>their x</i> value into either $2x^2 + 6x + 1 + k = 0$ OR into the curve to find $y\left(=\frac{-13}{2}\right)$ then both values into the line.	DM1	Substituting appropriately for <i>their x</i> and proceeding to find a value of <i>k</i> .
	$(k =) 3\frac{1}{2}$	A1	OE, WWW
		3	
9(ii)	$2x^2 + 6x - 8 (< 0)$	M1	Forms a quadratic with all terms on same side
	- 4 and 1	A1	
	-4 < x < 1	A1	CAO
	2	3	D [*]
9(iii)	$(g^{-1}(x)) = \frac{x-1}{2}$	B1	Needs to be in terms of x .
	$(g^{-1}f(x)) = \frac{2x^2 + 8x + 1 - 1}{2} = 0 \rightarrow (2x^2 + 8x = 0) \rightarrow x =$	M1	Substitutes f into g^{-1} and attempts to solve it = 0 as far as $x =$
	0, -4	A1	САО
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
9(iv)	$2(x+2)^2-7$	B1 B1	or $a = +2, b = -7$
	(Least value of $f(x)$ or $y = -7$ or ≥ -7	B1FT	FT for <i>their b</i> from a correct form of the expression.
		3	

Question	Answer	Marks	Guidance
10(i)	$\frac{dy}{dx} = [0] + [(2x+1)^{-3}] \times [+16]$	B2,1,0	OE. Full marks for 3 correct components. Withhold one mark for each error or omission.
	$\int y dx = [x] + [(2x+1)^{-1}] \times [+2] (+c)$	B2,1,0	OE. Full marks for 3 correct components. Withhold one mark for each error or omission.
		4	
10(ii)	At <i>A</i> , $x = \frac{1}{2}$.	B1	Ignore extra answer $x = -1.5$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2 \rightarrow \text{Gradient of normal } (=-\frac{1}{2})$	*M1	With <i>their</i> positive value of x at A and <i>their</i> $\frac{dy}{dx}$, uses $m_1m_2 = -1$
	Equation of normal: $y - 0 = -\frac{1}{2}(x - \frac{1}{2})$ or $y - 0 = -\frac{1}{2}(0 - \frac{1}{2})$ or $0 = -\frac{1}{2} \times \frac{1}{2} + c$	DM1	Use of <i>their x</i> at <i>A</i> and <i>their</i> normal gradient.
	$B(0, \frac{1}{4})$	A1	
		4	

Question	Answer	Marks	Guidance
10(iii)	$\int_{0}^{\frac{1}{2}} 1 - \frac{4}{(2x+1)^{2}} (dx)$	*M1	$\int y dx$ SOI with 0 and <i>their</i> positive x coordinate of A.
	$[\frac{1}{2} + 1] - [0 + 2] = (-\frac{1}{2})$	DM1	Substitutes both 0 and <i>their</i> $\frac{1}{2}$ into <i>their</i> $\int y dx$ and subtracts.
	Area of triangle above x-axis = $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{4} \left(= \frac{1}{16} \right)$	B1	
	Total area of shaded region = $\frac{9}{16}$	A1	OE (including AWRT 0.563)
	Alternative method for question 10(iii)		
	$\int_{-3}^{0} \frac{1}{(1-y)^{\frac{1}{2}}} - \frac{1}{2}(dy)$	*M1	$\int x dy$ SOI. Where x is of the form $k \left(1 - y \right)^{-\frac{1}{2}} + c \right)$ with 0 and <i>their</i> negative y intercept of curve.
	$\left[-2\right] - \left[-4 + \frac{3}{2}\right] = \left(\frac{1}{2}\right)$	DM1	Substitutes both 0 and <i>their</i> -3 into <i>their</i> $\int x dy$ and subtracts.
	Area of triangle above x-axis = $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{4} \left(= \frac{1}{16} \right)$	B1	0
	Total area of shaded region = $\frac{9}{16}$	A1	OE (including AWRT 0.563)

Question	Answer	Marks	Guidance	
	Alternative method for question 10(iii)			
	$\int_{0}^{\frac{1}{2}} -\frac{1}{2}x + \frac{1}{4} - y \mathrm{d}x$	*M1	\int (<i>their</i> normal curve) with 0 and <i>their</i> positive <i>x</i> coordinate of A.	
	Curve $[\frac{1}{2} + 1] - [0 + 2] = (-\frac{1}{2})$	DM1	Substitutes both 0 and <i>their</i> $\frac{1}{2}$ into <i>their</i> $\int y dx$ and subtracts.	
	$\int_{0}^{\frac{1}{2}} -\frac{1}{2}x + \frac{1}{4}dx = \frac{-x^{2}}{4} + \frac{x}{4} = \left[\frac{-1}{16} + \frac{1}{8}\right] - \left[0\right] \left(=\frac{1}{16}\right)$	B1	Substitutes both 0 and ¹ / ₂ into the correct integral and subtracts.	
	Total area of shaded region = $\frac{9}{16}$	A1	OE (including AWRT 0.563)	
		4		

MATHEMATICS

9709/13 October/November 2019

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark. awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically DM or DB says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B FT marks are given for correct work only.

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
1(i)	$1 + 6y + 15y^2$	B1	САО
		1	
1(ii)	$1 + 6(px - 2x^{2}) + 15(px - 2x^{2})^{2}$	M1	SOI. Allow $6C1 \times 1^5 (px - 2x^2)$, $6C2 \times 1^4 (px - 2x^2)^2$
	$(15p^2 - 12)(x^2) = 48(x^2)$	A1	1 term from each bracket and equate to 48
	<i>p</i> = 2	A1	SC: A1 $p = 4$ from $15p - 12 = 48$
		3	

Question	Answer	Marks	Guidance
2	$(y=)\left[\left(x-3\right)^2\right]\left[-2\right]$	*B1 DB1	DB1 dependent on 3 in 1st bracket
	$x-3 = (\pm)\sqrt{y+2}$ or $y-3 = (\pm)\sqrt{x+2}$	M1	Correct order of operations
	$\left(g^{-1}(x)\right) = 3 + \sqrt{x+2}$	A1	Must be in terms of x
	Domain (of g^{-1}) is (x) > -1	B1	Allow $(-1, \infty)$. Do not allow $y > -1$ or $g(x) > -1$ or $g^{-1}(x) > -1$
		5	

Question	Answer	Marks	Guidance
3	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2x - 8$	B1	
	Set to zero (SOI) and solve	M1	
	(Min) $a = -2$, (Max) $b = 4/3$. – in terms of a and b .	A1 A1	Accept $a \ge -2$, $b \le \frac{4}{3}$ SC: A1 for $a > -2$, $b < \frac{4}{3}$ or for $-2 < x < \frac{4}{3}$
		4	

Question	Answer	Marks	Guidance
4(i)	Angle $CAO = \frac{\pi}{3}$	B1	
		1	
4(ii)	(Sector AOC) = $\frac{1}{2}r^2 \times their\frac{\pi}{3}$	M1	SOI
	$(\Delta ABC) = \frac{1}{2}(r)(2r)\sin\left(their\frac{\pi}{3}\right) \text{ or } \frac{1}{2}(2r)(r)\frac{\sqrt{3}}{2} \text{ or } \frac{1}{2}(r)(r)\sqrt{3}$	M1	For M1M1, <i>their</i> $\frac{\pi}{3}$ must be of the form $k\pi$ where $0 < k < \frac{1}{2}$
	$(\Delta ABC) = \frac{1}{2}(r)(2r)\sin\left(\frac{\pi}{3}\right)$ or $\frac{1}{2}(2r)(r)\frac{\sqrt{3}}{2}$ or $\frac{1}{2}(r)(r)\sqrt{3}$	A1	All correct
	$r^2\left(\frac{\sqrt{3}}{2}\right) - \frac{1}{2}r^2\left(\frac{\pi}{3}\right)$	A1	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(i)	$S = 28x^2, V = 8x^3$	B1B1	SOI
	$7V^{\frac{2}{3}} = 7 \times 4x^2 = S$	B1	AG, WWW
		3	
5(ii)	$\left(\frac{\mathrm{d}S}{\mathrm{d}V}\right) = \frac{14V^{-\frac{1}{3}}}{3} = \frac{14}{30}$ SOI when $V = 1000$	*M1 A1	Attempt to differentiate For M mark $\left(\frac{dS}{dV}\right)$ to be of form $kV^{-\frac{1}{3}}$
	$\left(\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}S}{\mathrm{d}t} \times \frac{\mathrm{d}V}{\mathrm{d}S}\right)$ OE used with $\frac{\mathrm{d}S}{\mathrm{d}t} = 2$ and $\frac{1}{their\frac{14}{30}}$	DM1	
	$\frac{30}{7}$ or 4.29	A1	OE
	Alternative method for question 5(ii)		
	$V = \frac{S^{\frac{3}{2}}}{7\sqrt{7}} \rightarrow \left(\frac{\mathrm{d}V}{\mathrm{d}S}\right) = \frac{3}{2} \times S^{\frac{1}{2}} \times \frac{1}{7\sqrt{7}} = \frac{30}{14} \text{ SOI when } S = 700$	*M1 A1	Attempt to differentiate For M mark $\left(\frac{dV}{dS}\right)$ to be of form $kS^{\frac{1}{2}}$
	$\left(\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}S}{\mathrm{d}t} \times \frac{\mathrm{d}V}{\mathrm{d}S}\right) \text{ OE used with } \frac{\mathrm{d}S}{\mathrm{d}t} = 2 \text{ and } \frac{1}{their\frac{14}{30}}$	DM1	
	$\frac{30}{7}$ or 4.29	A1	OE

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(ii)	Alternative method for question 5(ii)		
	Attempt to find either $\frac{dV}{dx}$ or $\left(\frac{dS}{dx} \text{ and } \frac{dV}{dS}\right)$ together with either $\frac{dx}{dt}$ or x	*M1	
	$\frac{\mathrm{d}V}{\mathrm{d}x} = 24x^2 \text{ or } \left(\frac{\mathrm{d}S}{\mathrm{d}x} = 56x \text{ and } \frac{\mathrm{d}V}{\mathrm{d}S} = \frac{3x}{7}\right), \ \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{140} \text{ or } x = 5 \text{ (A1)}$	A1	
	Correct method for $\frac{\mathrm{d}V}{\mathrm{d}t}$	DM1	
	$\frac{30}{7}$ or 4.29	A1	OE
		4	

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(i)	$3kx - 2k = x^{2} - kx + 2 \rightarrow x^{2} - 4kx + 2k + 2 (= 0)$	B1	<i>kx</i> terms combined correctly-implied by correct $b^2 - 4ac$
	Attempt to find $b^2 - 4ac$	M1	Form a quadratic equation in k
	1 and $-\frac{1}{2}$	A1	SOI
	$k > 1, k < -\frac{1}{2}$	A1	Allow $x > 1, x < -1/2$
	6	4	
6(ii)	$y = 3x - 2$, $y = -\frac{3}{2}x + 1$	M1	Use of <i>their k</i> values (twice) in $y = 3kx - 2k$
	$3x - 2 = -\frac{3}{2}x + 1 \text{ OR } y + 2 = 2 - 2y$	M1	Equate <i>their</i> tangent equations OR substitute $y = 0$ into both lines
	$x = \frac{2}{3}, \rightarrow y = 0$ in one or both lines	A1	Substitute $x = \frac{2}{3}$ in one or both lines
		3	
Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(i)	$3\cos^4\theta + 4\left(1 - \cos^2\theta\right) - 3(=0)$	M1	Use $s^2 = 1 - c^2$
	$3x^{2} + 4(1-x) - 3(=0) \rightarrow 3x^{2} - 4x + 1(=0)$	A1	AG
		2	
7(ii)	Attempt to solve for <i>x</i>	M1	Expect $x = 1, 1/3$
	$\cos\theta = (\pm)1, \ (\pm)0.5774$	A1	Accept $(\pm)\left(\frac{1}{\sqrt{3}}\right)$ SOI
	$(\theta =) 0^{\circ}, 180^{\circ}, 54.7^{\circ}, 125.3^{\circ}$	A3,2,1,0	A2,1,0 if more than 4 solutions in range
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
8(i)	$(2x-1)^{\frac{1}{2}} < 2 \text{ or } 3(2x-1)^{\frac{1}{2}} < 6$	M1	SOI
	2x - 1 < 4	A1	SOI
	$\frac{1}{2} < x < \frac{5}{2}$	A1 A1	Allow 2 separate statements
		4	
8(ii)	$f(x) = [3(2x-1)^{3/2} \div (\frac{3}{2}) \div (2)] [-6x] (+c)$	B1 B1	
	Subsitute $x = 1$, $y = -3$ into an integrated expression.	M1	Dependent on <i>c</i> being present $(c = 2)$
	$f(x) = (2x-1)^{\frac{3}{2}} - 6x + 2$	A1	-
		4	

9709/13

Question	Answer	Marks	Guidance
9(i)	$\frac{5k-6}{3k} = \frac{6k-4}{5k-6} \to (5k-6)^2 = 3k(6k-4)$	M1	OR any valid relationship
	$25k^2 - 60k + 36 = 18k^2 - 12k \rightarrow 7k^2 - 48k + 36$	A1	AG
		2	
9(ii)	$k = \frac{6}{7} , 6$	B1B1	Allow 0.857(1) for $\frac{6}{7}$
	When $k = \frac{6}{7}, r = -\frac{2}{3}$	B1	Must be exact
	When $k = 6, r = \frac{4}{3}$	B1	
		4	
9(iii)	Use of $S_{\infty} = \frac{a}{1-r}$ with $r = their - \frac{2}{3}$ and $a = 3 \times their \frac{6}{7}$	M1	Provided $0 < their - 2/3 < 1$
	$\frac{18}{7} \div \left(1 + \frac{2}{3}\right) = \frac{54}{35} \text{ or } 1.54$	A1	FT if 0.857(1) has been used in part (ii).
	·satpre	2	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
10(i)	$\mathbf{AX} = \begin{pmatrix} 6\\2\\3 \end{pmatrix}, \text{ and one of } \mathbf{AB} = \begin{pmatrix} 18\\6\\9 \end{pmatrix}, \mathbf{XB} = \begin{pmatrix} 12\\4\\6 \end{pmatrix}, \mathbf{BX} = \begin{pmatrix} -12\\-4\\-6 \end{pmatrix}$	B1B1	
	State $AB = 3AX$ (or $XB = 2AX$ or $AB = \frac{3}{2}XB$ etc) hence straight line	B1	WWW A conclusion (i.e. a straight line) is required.
	OR $\frac{\mathbf{AX}.\mathbf{AB}}{ \mathbf{AX} \mathbf{AB} } = 1 (\rightarrow \theta = 0) \text{ or } \frac{\mathbf{AX}.\mathbf{BX}}{ \mathbf{AX} \mathbf{BX} } = -1 (\rightarrow \theta = 180)$		
	hence straight line		
		3	
10(ii)	$\mathbf{CX} = \begin{pmatrix} -3 \\ 6 \\ 2 \end{pmatrix}$	B1	
	CX.AX = -18 + 12 + 6	M1	
	= 0 (hence CX is perpendicular to AX)	A1	
	Z	3	
10(iii)	$ \mathbf{CX} = \sqrt{3^2 + 6^2 + 2^2}, \mathbf{AB} = \sqrt{18^2 + 6^2 + 9^2}$ Both attempted	M1	
	Area $\triangle ABC = \frac{1}{2} \times their 21 \times their 7 = 73\frac{1}{2}$	M1A1	Accept answers which round to 73.5
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
11(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\left(x-1\right)^{-3}$	B1	
	When $x = 2$, $m = -2 \rightarrow$ gradient of normal $= -\frac{1}{m}$	M1	<i>m</i> must come from differentiation
	Equation of normal is $y-3 = \frac{1}{2}(x-2) \rightarrow y = \frac{1}{2}x+2$	A1	AG Through (2, 3) with gradient $-\frac{1}{m}$. Simplify to AG
		3	

9709/13

Question	Answer	Marks	Guidance
11(ii)	$(\pi)\int y_1^2(dx), (\pi)\int y_2^2(dx)$	*M1	Attempt to integrate y^2 for at least one of the functions
	$(\pi) \int \left(\frac{1}{2}x+2\right)^2 \text{ or } \left(\frac{1}{4}x^2+2x+4\right)$ $(\pi) \int \left((x-1)^{-4}+4(x-1)^{-2}+4\right)$	A1A1	A1 for $(\frac{1}{2}x+2)^2$ depends on an attempt to integrate this form later
	$(\pi) \left[\frac{\frac{2}{3} \left(\frac{1}{2} x + 2 \right)^3 \text{ or } \frac{1}{12} x^3 + x^2 + 4x \right]$ $(\pi) \left[\frac{(x-1)^{-3}}{-3} + \frac{4(x-1)^{-1}}{-1} + 4x \right]$	A1A1	Must have at least 2 terms correct for each integral
	$(\pi)\left\{18 - \frac{125}{12} \text{ or } \frac{2}{3} + 4 + 8 - \left(\frac{1}{12} + 1 + 4\right)\right\} \left\{\frac{-1}{24} - 2 + 12 - \left(\frac{-1}{3} - 4 + 8\right)\right\}$	DM1	Apply limits to at least 1 integrated expansion
	Attempt to add 2 volume integrals (or 1 volume integral + frustum) $\pi \left\{ 7 \frac{7}{12} + 6 \frac{7}{24} \right\}$	DM1	
	$13\frac{7}{8}\pi$ or $\frac{111}{8}\pi$ or 13.9π or 43.6	A1	$\frac{2}{3} + 4 + 8 - \left(\frac{1}{12} + 1 + 4\right) \frac{-1}{24} - 2 + 12 - \left(\frac{-1}{3} - 4 + 8\right)$
	24	8	

MATHEMATICS

9709/11 May/June 2019

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	Ind term $= (2x)^3 \times \left(\frac{k}{x}\right)^3 \times {}_6C_3$	B2,1,0	Term must be isolated
	$= 540 \rightarrow k = 1\frac{1}{2}$	B1	
		3	
1(ii)	Term, in x^2 is $(2x)^4 \times \left(\frac{k}{x}\right)^2 \times {}_6C_2$	B1	All correct – even if <i>k</i> incorrect.
	$15 \times 16 \times k^2 = 540 \text{ (or } 540 x^2\text{)}$	B 1	FT For $240k^2$ or $240k^2x^2$
		2	

Question	Answer	Marks	Guidance
2(i)	Eliminates x or $y \to y^2 - 4y + c - 3 = 0$ or $x^2 + (2c - 16)x + c^2 - 48 = 0$	M1	Eliminates <i>x</i> or <i>y</i> completely to a quadratic
	Uses $b^2 = 4ac \rightarrow 4c - 28 = 0$	M1	Uses discriminant = 0. (c the only variable) Any valid method (may be seen in part (i))
	<i>c</i> = 7	A1	
	Alternative method for question 2(i)		
	$\frac{dy}{dx} = \frac{1}{2\sqrt{(x+3)}} = \frac{1}{4}$	M1	
	Solving	M1	
	<i>c</i> = 7	A1	
		3	
2(ii)	Uses $c = 7$, $y^2 - 4y + 4 = 0$	M1	Ignore (1,-2), c=-9
	(1, 2)	A1	
	2. Satarat	2	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3	Uses $A = \frac{1}{2}r^2\theta$	M1	Uses area formula.
	$\theta = \frac{2A}{r^2}$	A1	
	$P = r + r + r\theta$	B 1	
	$P = 2r + \frac{2A}{r}$	A1	Correct simplified expression for <i>P</i> .
		4	

Question	Answer	Marks	Guidance
4(i)	Gradient of $AB = -\frac{1}{2} \rightarrow \text{Gradient of } BC = 2$	M1	Use of $m_1.m_2 = -1$ for correct lines
	Forms equation in $h \frac{3h-2}{h} = 2$	M1	Uses normal line equation or gradients for <i>h</i> .
	<i>h</i> = 2	A1	
	Alternative method for question 4(i)		
	Vectors AB.BC=0	M1	Use of vectors AB and BC
	Solving	M1	
	<i>h</i> = 2	A1	
	Alternative method for question 4(i)		
	Use of Pythagoras to find 3 lengths	M1	
	Solving	M1	
	<i>h</i> = 2	A1	
	3	3	
4(ii)	y coordinate of D is 6, (3 × 'their' h) $\frac{6-0}{x-4} = 2 \rightarrow x = 7 \rightarrow D (7, 6)$	B1	FT
	Vectors: AD.AB=0	M1 A1	Must use $y = 6$ Realises the <i>y</i> values of <i>C</i> and <i>D</i> are equal. Uses gradient or line equation to find <i>x</i> .
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(i)	$-2(x-3)^{2}+15 \ (a=-3, b=15)$	B1 B1	Or seen as $a = -3$, $b = 15$ B1 for each value
		2	
5(ii)	$(\mathbf{f}(x) \leqslant) 15$	B1	FT for (\leq) their "b" Don't accept (3,15) alone
	TPP	1	
5(iii)	$gf(x) = 2(-2x^2 + 12x - 3) + 5 = -4x^2 + 24x - 6 + 5$	B1	
	$gf(x) + 1 = 0 \rightarrow -4x^2 + 24x = 0$	M1	
	x = 0 or 6	A1	Forms and attempts to solve a quadratic Both answers given.
		3	

Question	Answer	Marks	Guidance
6(i)	LHS = $\left(\frac{1}{c} - \frac{s}{c}\right)^2 = \frac{(1-s)(1-s)}{c^2} = \frac{(1-s)(1-s)}{1-s^2}$	B1	Expresses tan in terms of sin and cos
	24	B1	correctly $1-s^2$ as the denominator
	$=\frac{(1-s)(1-s)}{(1-s)(1+s)}$	M1	Factors and correct cancelling www
	$\frac{1-\sin x}{1+\sin x} \qquad \qquad \text{AG}$	A1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(ii)	Uses part (i) to obtain $\frac{1-\sin 2x}{1+\sin 2x} = \frac{1}{3} \rightarrow \sin 2x = \frac{1}{2}$	M1	Realises use of $2x$ and makes $\sin 2x$ the subject
	$x = \frac{\pi}{12}$	A1	Allow decimal (0.262)
	$(or) x = \frac{5\pi}{12}$	A1	FT for $\frac{1}{2}\pi$ – 1st answer. Allow decimal (1.31)
	9		$\frac{\pi}{12}$ and $\frac{5\pi}{12}$ only, and no others in range.
			SC sinx= $\frac{1}{2} \rightarrow \frac{\pi}{6} \frac{5\pi}{6}$ B1
		3	

Question	Answer	Marks	Guidance
7(i)	$\overline{AM} = 1.5\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ $\overline{GM} = 6.5\mathbf{i} - 4\mathbf{j} - 5\mathbf{k}$	B3,2,1	Loses 1 mark for each error.
	3	3	
7(ii)	\overrightarrow{AM} . $\overrightarrow{GM} = 9.75 - 16 - 25 = -31.25$	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2$ on AM and GM
	\overrightarrow{AM} . $\overrightarrow{GM} = \sqrt{(1.5^2 + 4^2 + 5^2)} \times \sqrt{(6.5^2 + 4^2 + 5^2)} \cos GMA$	M1 M1	M1 for product of 2 modulii M1 all correctly connected
	Equating \rightarrow Angle <i>GMA</i> = 121°	A1	
		4	

Question	Answer	Marks	Guidance
8(a)	$ar^2 = 48, ar^3 = 32, r = \frac{2}{3}$ or $a = 108$	M1	Solution of the 2 eqns to give r (or a). A1 (both)
	$r = \frac{2}{3}$ and $a = 108$	A1	
	$S\infty = \frac{108}{\frac{1}{3}} = 324$	A1	FT Needs correct formula and r between -1 and 1 .
		3	
8(b)	Scheme A $a = 2.50, d = 0.16$ S _n = 12(5 + 23×0.16)	M1	Correct use of either AP S _n formula.
	$S_n = 104$ tonnes.	A1	
	Scheme B $a = 2.50, r = 1.06$	B 1	Correct value of r used in GP.
	$=\frac{2.5(1.06^{24}-1)}{1.06-1}$	M1	Correct use of either S _n formula.
	$S_n = 127$ tonnes.	A1	
	3	5	

Question	Answer	Marks	Guidance
9(i)	$-1 \leq f(x) \leq 5$ or $[-1, 5]$ (may use y or f instead of $f(x)$)	B1 B1	$-1 < f(x) \le 5$ or $-1 \le x \le 5$ or $(-1,5)$ or $[5,-1]$ B1 only
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
9(ii)	5 4 3 2 1 0 π/2 π 3π/2 2π -1	*B1	Start and end at –ve <i>y</i> , symmetrical, centre +ve.
	$g(x) = 2 - 3\cos x \text{ for } 0 \le x \le p$	DB1	Shape all ok. Curves not lines. One cycle $[0,2\pi]$ Flattens at each end.
	satpre	2	

Question	Answer	Marks	Guidance
9(iii)	(greatest value of $p =$) π	B1	
		1	
9(iv)	$x = 2 - 3\cos x \rightarrow \cos x = \frac{1}{3}(2 - x)$	M1	Attempt at $\cos x$ the subject. Use of \cos^{-1}
	$g^{-1}(x) = \cos^{-1}\frac{2-x}{3}$ (may use 'y =')	A1	Must be a function of x,
	6	2	
<u></u>			

Question	Answer	Marks	Guidance
10(i)	integrating $\rightarrow \frac{dy}{dx} = x^2 - 5x (+c)$	B1	
	= 0 when $x = 3$	M1	Uses the point to find <i>c</i> after $\int = 0$.
	<i>c</i> = 6	A1	
	integrating again $\rightarrow y = \frac{x^3}{3} - \frac{5x^2}{2} + 6x (+d)$	B1	FT Integration again FT if a numerical constant term is present.
	use of (3, 6)	M1	Uses the point to find <i>d</i> after $\int = 0$.
	$d = 1\frac{1}{2}$	A1	
		6	

Question	Answer	Marks	Guidance
10(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - 5x + 6 = 0 \longrightarrow x = 2$	B1	
		1	
10(iii)	$x = 3$, $\frac{d^2y}{dx^2} = 1$ and/or +ve Minimum.	B1	WWW
	$x = 2$, $\frac{d^2y}{dx^2} = -1$ and/or -ve Maximum		
	May use shape of '+ x^3 ' curve or change in sign of $\frac{dy}{dx}$	B1	www SC: $x = 3$, minimum, $x = 2$, maximum, B1
		2	

Question	Answer	Marks	Guidance
11(i)	$3 \times -\frac{1}{2} \times (1+4x)^{-\frac{3}{2}}$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 \times -\frac{1}{2} \times (1+4x)^{-\frac{3}{2}} \times 4$	B1	Must have '× 4'
	If $x = 2$, $m = -\frac{2}{9}$, Perpendicular gradient $= \frac{9}{2}$	M1	Use of $m_1.m_2 = -1$
	Equation of normal is $y-1=\frac{9}{2}(x-2)$	M1	Correct use of line eqn (could use y=0 here)
	Put $y = 0$ or on the line before $\rightarrow \frac{16}{9}$	A1	AG
		5	

Question	Answer	Marks	Guidance
11(ii)	Area under the curve = $\int_{0}^{2} \frac{3}{\sqrt{1+4x}} dx = \frac{3\sqrt{1+4x}}{\frac{1}{2}} \div 4$	B1 B1	Correct without '÷4'. For 2nd B1, ÷4'.
	Use of limits 0 to $2 \rightarrow 4\frac{1}{2} - 1\frac{1}{2}$	M1	Use of correct limits in an integral.
	3	A1	
	Area of the triangle = $\frac{1}{2} \times 1 \times \frac{2}{9} = \frac{1}{9}$ or attempt to find $\int_{16/9}^{2} \left(\frac{9}{2}x - 8\right) dx$	M1	Any correct method.
	Shaded area = $3 - \frac{1}{9} = 2\frac{8}{9}$	A1	
		6	

MATHEMATICS

9709/12 May/June 2019

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	For $\left(\frac{2}{x} - 3x\right)^5$ term in x is 10 or 5C ₃ or 5C ₂ × $\left(\frac{2}{x}\right)^2$ × $(-3x)^3$ or	B2,1	3 elements required. -1 for each error with or without <i>x</i> 's. Can be seen in an expansion.
	$\left(\frac{2}{x}\right)^5 \frac{5.4.3}{3!} \left(-\frac{3}{2}x^2\right)^3$ or $(-3x)^5 \frac{5.4}{2!} \left(\frac{2}{3x^2}\right)^2$		
	-1080 identified	B1	Allow $-1080x$ Allow if expansion stops at this term. Allow from expanding brackets.
		3	

Question	Answer	Marks	Guidance
2	Midpoint of <i>AB</i> is (5, 1)	B1	Can be seen in working, accept $\left(\frac{10}{2}, \frac{2}{2}\right)$.
	$m_{AB} = -\frac{1}{2}$ oe	B 1	
	C to (5, 1) has gradient 2	*M1	Use of $m_1 \times m_2 = -1$.
	Forming equation of line $(y = 2x - 9)$	DM1	Using their perpendicular gradient and their midpoint to form the equation.
	C(0, -9) or $y = -9$	A1	
		5	

9709/12

Question	Answer	Marks	Guidance
3(i)	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 7 \times -0.05$	M1	Multiply numerical gradient at $x = 2$ by ± 0.05 .
	-0.35 (units/s) or Decreasing at a rate of (+) 0.35	A1	Ignore notation and omission of units
		2	
3(ii)	$(y) = \frac{x^4}{4} + \frac{4}{x} (+c)$ oe	B1	Accept unsimplified
	Uses (2, 9) in an integral to find c.	M1	The power of at least one term increase by 1.
	$c = 3 \text{ or } (y =) \frac{x^4}{4} + \frac{4}{x} + 3 \text{ oe}$	A1	A0 if candidate continues to a final equation that is a straight line.
		3	

9709/12

Question	Answer	Marks	Guidance
4(i)	$a^2 + 2ab + b^2, a^2 - 2ab + b^2$	B1	Correct expansions.
	$\sin^2 x + \cos^2 x = 1 \text{ used} \rightarrow (a+b)^2 + (a-b)^2 = 1$	M1	Appropriate use of $\sin^2 x + \cos^2 x = 1$ with $(a+b)^2$ and $(a-b)^2$
	$a^2 + b^2 = \frac{1}{2}$	A1	No evidence of $\pm 2ab$, scores 2/3
	Alternative method for question 4(i)		
	$2a = (s+c) \& 2b = (s-c) \text{ or } a = \frac{1}{2}(s+c) \& b = \frac{1}{2}(s-c)$	B1	
	$a^{2}+b^{2} = \frac{1}{4}(s+c)^{2} + \frac{1}{4}(s-c)^{2} = \frac{1}{2}(s^{2}+c^{2})$	M1	Appropriate use of $\sin^2 x + \cos^2 x = 1$
	$a^2 + b^2 = \frac{1}{2}$	A1	Method using only $(\sin x - b)^2$ and $(a - \cos x)^2$ scores 0/3.
		3	SC B1 for assuming θ is acute giving $a = \frac{1}{\sqrt{5}} + b$
	4	5	or $2\sqrt{5}-b$

Question	Answer	Marks	Guidance
4(ii)	$\tan x = \frac{\sin x}{\cos x} \longrightarrow \frac{a+b}{a-b} = 2$	M1	Use of $tanx = \frac{sinx}{cosx}$ to form an equation in a and b only
	a = 3b	A1	
		2	

Question	Answer	Marks	Guidance
5	Perimeter of $AOC = 2r + r\theta$	B1	
	Angle $COB = \pi - \theta$	B1	Could be on the diagram. Condone $180 - \theta$.
	Perimeter of $BOC = 2r + r(\pi - \theta)$	B1	FT on angle <i>COB</i> if of form $(k\pi - \theta)$, $k > 0$.
	$(2r +) \pi r - r\theta = 2((2r) + r\theta)$ $(2 + \pi - \theta = 4 + 2\theta \rightarrow \theta = \frac{\pi - 2}{3})$	M1	Sets up equation using $r(k\pi - \theta)$ and $\times 2$ on correct side. Condone any omissions of OA, OB and/or OC.
	$\theta = 0.38$	A1	Equivalent answer in degrees scores A0.
	24	5	
	·satprep·		

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(i)	3, -3	B1	Accept ± 3
	-1/2	B1	
	21/2	B1	
		3	Condone misuse of inequality signs.
6(ii)			Only mark the curve from $0 \rightarrow 2\pi$. If the <i>x</i> axis is not labelled assume that $0 \rightarrow 2\pi$ is the range shown. Labels on axes are not required.
	2 complete oscillations of a cosine curve starting with a maximum at $(0,a)$, $a>0$	B1	
	Fully correct curve which must appear to level off at 0 and/or 2π .	B1	
	Line starting on positive y axis and finishing below the x axis at 2π . Must be straight.	B1	
		3	
6(iii)	4	B1	
		1	

9709/12

Question	Answer	Marks	Guidance
7(i)	$(f^{-1}(x)) = \frac{x+2}{3}$ oe	B1	
	$y = \frac{2x+3}{x-1} \to (x-1)y = 2x+3 \to x(y-2) = y+3$	M1	Correct method to obtain $x =$, (or $y =$, if interchanged) but condone +/- sign errors
	$(g^{-1}(x) \text{ or } y) = \frac{x+3}{x-2} \text{ oe } \left(eg\frac{5}{x-2}+1\right)$	A1	Must be in terms of x
	$x \neq 2$ only	B1	FT for value of <i>x</i> from their denominator $= 0$
		4	
7(ii)	$(fg(x)=)\frac{3(2x+3)}{x-1} - 2(=\frac{7}{3})$	B1	
	18x + 27 = 13x - 13 or 3(4x + 11) = 7(x - 1) (5x = -40)	M1	Correct method from their $fg = \frac{7}{3}$ leading to a linear equation and collect like terms. Condone omission of $2(x-1)$.
	Alternative method for question 7(ii)		
	$(f^{-1}(\frac{7}{3})) = \frac{13}{9}$	B1	
	$\frac{2x+3}{x-1} = \frac{13}{9} \to 9(2x+3) = 13(x-1) (\to 5x = -40)$	M1	Correct method from $g(x)$ = their $\frac{13}{9}$ leading to a linear equation and collect like terms.
	x = -8	A1	
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
8(i)	$6 \times 3 + 2 \times k + 6 \times 3 = 0$ (18 - 2k + 18 = 0)	M1	Use of scalar product = 0. Could be \overrightarrow{AO} . \overrightarrow{OB} , \overrightarrow{AO} . \overrightarrow{BO} or \overrightarrow{OA} . \overrightarrow{BO}
	<i>k</i> = 18	A1	
	Alternative method for question 8(i)		
	$76 + 18 + k^2 = 18 + (k+2)^2$	M1	Use of Pythagoras with appropriate lengths.
	<i>k</i> = 18	A1	
		2	
8(ii)	$36 + 4 + 36 = 9 + k^2 + 9$	M1	Use of modulus leading to an equation and solve to $k=$ or $k^2 =$
	$k = \pm \sqrt{58}$ or ± 7.62	A1	Accept exact or decimal answers. Allow decimals to greater accuracy.
		2	

Question	Answer	Marks	Guidance
8(iii)	$\overline{AB} = \begin{pmatrix} -3\\6\\3 \end{pmatrix} \rightarrow \overline{AC} = \begin{pmatrix} -2\\4\\2 \end{pmatrix} \text{ then } \overline{OA} + \overline{AC}$	M1	Complete method using $\overrightarrow{AC} = \pm \frac{2}{3} \overrightarrow{AB}$ And then $\overrightarrow{OA} + their \overrightarrow{AC}$
	$\overrightarrow{OC} = \begin{pmatrix} 4\\2\\-4 \end{pmatrix}$	A1	
	$\div \sqrt{\left(their 4\right)^2 + \left(their 2\right)^2 + \left(their - 4\right)^2}$	M1	Divides by modulus of their \overrightarrow{OC}
	$= \frac{1}{6} \begin{pmatrix} 4\\2\\-4 \end{pmatrix} \text{ or } \frac{1}{6} (4i+2j-4k)$	A1	
	Alternative method for question 8(iii)		
	Let $\overrightarrow{OC} = \begin{pmatrix} p \\ q \\ r \end{pmatrix} \rightarrow \overrightarrow{AC} = \begin{pmatrix} p-6 \\ q+2 \\ r+6 \end{pmatrix} \& \overrightarrow{CB} = \begin{pmatrix} 3-p \\ 4-q \\ -3-r \end{pmatrix}$	M1	Correct method. Equates coefficients leading to values for <i>p</i> , <i>q</i> , <i>r</i>
	p-6 = 2(3-p); q+2 = 2(4-q); r+6 = 2(-3-r) $\rightarrow p=4, q=2 \& r=-4$	A1	
	$\div \sqrt{\left(their 4\right)^2 + \left(their 2\right)^2 + \left(their - 4\right)^2}$	M1	Divides by modulus of their \overrightarrow{OC}
	$= \frac{1}{6} \begin{pmatrix} 4 \\ 2 \\ -4 \end{pmatrix} \text{ or } \frac{1}{6} (4i + 2j - 4k)$	A1	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
8(iii)	Alternative method for question 8(iii)		
	$\overrightarrow{CB} = \overrightarrow{OB} - \overrightarrow{OC} \therefore 2\left(\overrightarrow{OB} - \overrightarrow{OC}\right) = \overrightarrow{OC} - \overrightarrow{OA}$ $\rightarrow 2 \overrightarrow{OB} + \overrightarrow{OA} = 3 \overrightarrow{OC} \therefore 3 \overrightarrow{OC} = \begin{pmatrix} 12\\6\\-12 \end{pmatrix}$	M1	Correct method. Gets to a numerical expression for $k \overrightarrow{OC}$ from $\overrightarrow{OA} \& \overrightarrow{OB}$.
	$\overrightarrow{OC} = \begin{pmatrix} 4 \\ 2 \\ -4 \end{pmatrix}$	A1	
	$\div \sqrt{\left(their 4\right)^2 + \left(their 2\right)^2 + \left(their - 4\right)^2}$	M1	Divides by modulus of their \overrightarrow{OC}
	$= \frac{1}{6} \begin{pmatrix} 4\\2\\-4 \end{pmatrix} \text{ or } \frac{1}{6} (4i+2j-4k)$	A1	
		4	
9709/12

Question	Answer	Marks	Guidance
9	For C ₁ : $\frac{dy}{dx} = 2x - 4 \rightarrow m = 2$	B1	
	y - 'their 4' = 'their m' (x - 3) or using $y = mx + c$	M1	Use of : $\frac{dy}{dx}$ and (3, their 4) to find the tangent equation.
	y-4 = 2(x-3) or $y = 2x-2$	A1	If using $= mx + c$, getting $c = -2$ is enough.
	$2x - 2 = \sqrt{4x + k} (\to 4x^2 - 12x + 4 - k = 0)$	*M1	Forms an equation in one variable using tangent & C_2
	Use of $b^2 - 4ac = 0$ on a 3 term quadratic set to 0.	*DM1	Uses 'discriminant = 0'
	$144 = 16(4 - k) \rightarrow k = -5$	A1	
	$4x^2 - 12x + 4 - k = 0 \rightarrow 4x^2 - 12x + 9 = 0$	DM1	Uses k to form a 3 term quadratic in x
	$x = \frac{3}{2} \left(or \frac{1}{2} \right), y = 1(or - 1).$	A1	Condone 'correct' extra solution.
	Alternative method for question 9	.5	
	For C ₁ : $\frac{dy}{dx} = 2x - 4 \rightarrow m = 2$	B1	
	y - 'their 4' = 'their m' (x - 3) or using $y = mx + c$	M1	Use of : $\frac{dy}{dx}$ and (3, their 4) to find the tangent equation.
	y-4 = 2(x-3) or $y = 2x-2$	A1	If using $= mx + c$, getting $c = -2$ is enough.
	For C ₂ : $\frac{dy}{dx} = A(4x+k)^{-\frac{1}{2}}$	*M1	Finds $\frac{dy}{dx}$ for C_2 in the form $A(4x+k)^{-\frac{1}{2}}$

9709/12

Question	Answer	Marks	Guidance
9	At P: 'their 2' = $A(4x+k)^{-\frac{1}{2}}$ " $\rightarrow (x = \frac{1-k}{4} \text{ or } 4x + k = 1)$	*DM1	Equating ' <i>their</i> 2' to ' <i>their</i> $\frac{dy}{dx}$, and simplify to form a linear equation linking $4x + k$ and a constant.
	$(2x-2)^2 = 4x + k \rightarrow (2x-2)^2 = 1 \rightarrow (4x^2 - 8x + 3 = 0)$	DM1	Using their $y = 2x - 2$, $y^2 = 4x + k$ and their 4x + k = 1 (but not =0) to form a 3 term quadratic in x .
	$x = \frac{3}{2}\left(or\frac{1}{2}\right)$ and from $k = -5(or-1)$	A1	Needs correct values for <i>x</i> and <i>k</i> .
	from $y^2 = 4x + k$, $y = 1$ (or – 1).	A1	Condone 'correct' extra solution.
	Alternative method for question 9		
	For C ₁ : $\frac{dy}{dx} = 2x - 4 \rightarrow m = 2$	B1	
	y - 'their 4' = 'their m' (x - 3) or using $y = mx + c$	M1	Use of : $\frac{dy}{dx}$ and (3, their 4) to find the tangent equation.
	y-4 = 2(x-3) or $y = 2x-2$	A1	If using $= mx + c$, getting $c = -2$ is enough.
	For C ₂ : $\frac{dy}{dx} = A(4x+k)^{-\frac{1}{2}}$	*M1	Finds $\frac{dy}{dx}$ for C_2 in the form $A(4x+k)^{-\frac{1}{2}}$
	At P: 'their 2' = $A(4x+k)^{-\frac{1}{2}} \to (x = \frac{1-k}{4} \text{ or } 4x + k = 1)$	*DM1	Equating ' <i>their</i> 2' to ' <i>their</i> $\frac{dy}{dx}$, and simplify to form a linear equation linking $4x + k$ and a constant.
	From $4x + k = 1$ and $y^2 = 4x + k \to y^2 = 1$	DM1	Using <i>their</i> $4x + k = 1$ (but not =0) and C_2 to form $y^2 = a$ constant

Question	Answer	Marks	Guidance
9	$y = 1(\text{or} - 1) \text{ and } x = \frac{3}{2} \left(or \frac{1}{2} \right)$	A1	Needs correct values for <i>y</i> and <i>x</i> .
	From $4x + k = 1$, $k = -5$ (or -1)	A1	Condone 'correct' extra solution
		8	

Question	Answer	Marks	Guidance
10(a)(i)	$S_{10} = S_{15} - S_{10}$ or $S_{10} = S_{(11 \text{ to } 15)}$	M1	Either statement seen or implied.
	5(2a+9d) oe	B1	
	7.5(2a + 14d) – 5(2a + 9d) or $\frac{5}{2}[(a + 10d) + (a + 14d)]$ oe	A1	
	$d = \frac{a}{3} \mathbf{A}\mathbf{G}$	A1	Correct answer from convincing working
		4	Condone starting with $d = \frac{a}{3}$ and evaluating both summations as 25a.
10(a)(ii)	(a+9d) = 36+(a+3d)	M1	Correct use of $a + (n-1)d$ twice and addition of ± 36
	<i>a</i> = 18	A1	
		2	Correct answer www scores 2/2

Question	Answer	Marks	Guidance
10(b)	$S_{\infty} = 9 \times S_4; \ \frac{a}{1-r} = 9 \frac{a(1-r^4)}{1-r} \text{ or } 9(a+ar+ar^2+ar^3)$	B1	May have 12 in place of <i>a</i> .
	$9(1 - r^n) = 1$ where $n = 3,4$ or 5	M1	Correctly deals with <i>a</i> and correctly eliminates $(1 - r)^2$
	$r^4 = \frac{8}{9}$ oe	A1	
	$(5^{\text{th}} \text{ term} =) 10^{2/3} \text{ or } 10.7$	A1	
		4	Final answer of 10.6 suggests premature approximation – award 3/4 www.

Question	Answer	Marks	Guidance
11(i)	$\frac{dy}{dx} = \left[\frac{1}{2}(4x+1)^{-\frac{1}{2}}\right] [\times 4] \left[-\frac{9}{2}(4x+1)^{-\frac{3}{2}}\right] [\times 4]$	B1B1B1	B1 B1 for each, without \times 4. B1 for \times 4 twice.
	$\left(\frac{2}{\sqrt{4x+1}} - \frac{18}{\left(\sqrt{4x+1}\right)^3} \text{ or } \frac{8x-16}{\left(4x+1\right)^{\frac{3}{2}}}\right)$		SC If no other marks awarded award B1 for both powers of $(4x + 1)$ correct.
	$\int y dx = \left[\frac{(4x+1)^{\frac{3}{2}}}{\frac{3}{2}}\right] [\div 4] + \left[\frac{9(4x+1)^{\frac{1}{2}}}{\frac{1}{2}}\right] [\div 4] (+C)$	B1B1B1	B1 B1 for each, without ÷ 4. B1 for ÷4 twice. + C not required.
	$\left(\frac{\left(\sqrt{4x+1}\right)^3}{6} + \frac{9}{2}\left(\sqrt{4x+1}\right)(+C)\right)$		SC If no other marks awarded , B1 for both powers of $(4x + 1)$ correct.
		6	
11(ii)	$\frac{dy}{dx} = 0 \to \frac{2}{\sqrt{4x+1}} - \frac{18}{(4x+1)^{\frac{3}{2}}} = 0$	M1	Sets their $\frac{dy}{dx}$ to 0 (and attempts to solve
	$4x + 1 = 9 \text{ or } (4x + 1)^2 = 81$	A1	Must be from correct differential.
	x = 2, y = 6 or M is (2, 6) only.	A1	Both values required. Must be from correct differential.
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
11(iii)	Realises area is $\int y dx$ and attempt to use their 2 and sight of 0.	*M1	Needs to use their integral and to see ' <i>their 2</i> ' substituted.
	Uses limits 0 to 2 correctly $\rightarrow [4.5 + 13.5] - [\frac{1}{6} + 4.5] (= 13\frac{1}{3})$	DM1	Uses both 0 and ' <i>their 2</i> ' and subtracts. Condone wrong way round.
	$(Area =) 1\frac{1}{3} \text{ or } 1.33$	A1	Must be from a correct differential and integral.
	G	3	$13\frac{1}{3}$ or $1\frac{1}{3}$ with little or no working scores M1DM0A0.

MATHEMATICS

9709/13 May/June 2019

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	$\left[\left(x-2\right)^2\right] [+4]$	B1 DB1	2nd B1 dependent on 2 inside bracket
		2	
1(ii)	$(x-2)^2 < 5 \rightarrow -\sqrt{5} < x-2$ and/or $x-2 < \sqrt{5}$	M1	Allow e.g. $x-2 < \pm \sqrt{5}$, $x-2 = \pm \sqrt{5}$ and decimal equivalents for $\sqrt{5}$ For M1, ft from <i>their</i> (i). Also allow $\sqrt{13}$ instead of $\sqrt{5}$ for clear slip
	$2 - \sqrt{5} < x < 2 + \sqrt{5}$	A1A1	A1 for each inequality – allow two separate statements but there must be 2 inequalities for x. Non-hence methods, if completely correct, score SC 1/3. Condone \leq
		[3]	

Question	Answer	Marks	Guidance
2(i)	$\frac{-5}{x} + \frac{5}{8x^3} - \frac{1}{32x^5} \text{ (or } -5x^{-1} + \frac{5}{8}x^{-3} - \frac{1}{32}x^{-5} \text{)}$	B1B1B1	B1 for each correct term SCB1 for both $\frac{+5}{x} & \frac{+1}{32x^5}$
	Z	3	.5
2(ii)	$1 \times 20 + 4 \times their(-5) = 0$	M1A1	Must be from exactly 2 terms SCB1 for $20 + 20 = 40$
		2	

9709/13

Question	Answer	Marks	Guidance
3(i)	Angle EAD = Angle $ACD = \frac{3\pi}{10}$ or 54° or 0.942 soi	B1	
	or Angle $DAC = \frac{\pi}{5}$ or 36° or 0.628 soi		
	$AD = 8\sin(\frac{3\pi}{10}) \text{ or } 8\cos(\frac{\pi}{5})$	M1	Angles used must be correct
	(AD =) 6.47	A1	
	Alternative method for question 3(i)		
	$8\sin\left(\frac{3\pi}{2}\right)$	B1	Angles used must be correct
	$AB = \frac{8}{\tan\left(\frac{\pi}{5}\right)} \text{ or } AB = \frac{10}{\sin\left(\frac{\pi}{5}\right)} \text{ or } 11.(01)$		
	$AD = 11.0(1)\sin\frac{\pi}{5} \text{oe}$	M1	
	(AD =) 6.47	A1	.5
	24	3	0.
3(ii)	Area sector = $\frac{1}{2} (theirAD)^2 \times their\left(\frac{\pi}{2} - \frac{\pi}{5}\right)$	MI	19.7(4)
	Area $\Delta ADC = \frac{1}{2} \times 8 \times theirAD \times \sin\frac{\pi}{5}$ or $\frac{1}{2} \times 8\cos\left(\frac{3\pi}{10}\right) \times 8\sin\left(\frac{3\pi}{10}\right)$	M1	Or e.g. $\frac{1}{2}$ their $AD \times \sqrt{8^2 - their AD^2}$. 15.2(2)
	(Shaded area =) 35.0 or 34.9	A1	
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(i)	Max(<i>a</i>) is 8	B1	Allow $a = 8$ or $a \leq 8$
	Min(b) is 24	B1	Allow $b = 24$ or $b \ge 24$
		2	SCB1 for 8 and 24 seen
4(ii)	$gf(x) = \frac{96}{x-1} - 4$ or $gf(x) = \frac{100 - 4x}{x-1}$	B1	$2\left(\frac{48}{x-1}\right) - 4$ is insufficient Apply ISW
		1	
4(iii)	$y = \frac{96}{x-1} - 4 \rightarrow y + 4 = \frac{96}{x-1} \rightarrow x - 1 = \frac{96}{y+4}$	M1	FT from <i>their</i> (ii) provided (ii) involves algebraic fraction. Allow sign errors
	$(gf)^{-1}(x) = \frac{96}{x+4} + 1$	A1	OR $\frac{100+x}{x+4}$. Must be a function of x. Apply ISW
		2	

Question	Answer	Marks	Guidance
5(i)	$\frac{x}{2} \Big[2 + (x-1)(-/+0.02) \Big] \text{ or } 1.01x - 0.01x^2 \text{ or } 0.99x + 0.01x^2 \text{ oe}$	B1	Allow – or + 0.02. Allow n used
		1	

Question	Answer	Marks	Guidance
5(ii)	Equate to 13 then <i>either</i> simplify to a 3-term quadratic equation or find at least 1 solution (need not be correct) to an unsimplified quadratic	M1	Expect $n^2 - 101n + 1300$ (=0) or $0.99x + 0.01x^2 = 13$. Allow x used
	16	A1	Ignore 85.8 or 86
		2	
5(iii)	Use of $\frac{a(1-r^{n})}{1-r}$ with $a = 1, r = 0.92, n = 20$ soi	M1	
	(=) 10.1	A1	
	Use of $(S_{\infty} =) \frac{a}{1-r}$ with $a = 1, r = 0.92$	M1	OR $\frac{(1)(1-0.92^{n})}{1-0.92} = 13 \rightarrow 0.92^{n} = -0.04$ oe
	$S_{\infty} = 12.5$ so never reaches target or < 13	A1	Conclusion required – 'Shown' is insufficient No solution so never reaches target or < 13
		4	

Question	Answer	Marks	Guidance
6(i)	$\mathbf{MF} = -4\mathbf{i} + 2\mathbf{j} + 7\mathbf{k}$	B1	
	Satpl	1	
6(ii)	FN = 2i - j	B1	
		1	
6(iii)	$\mathbf{MN} = -2\mathbf{i} + \mathbf{j} + 7\mathbf{k}$	B1	FT on <i>their</i> ($MF + FN$)
		1	

Question	Answer	Marks	Guidance
6(iv)	MF.MN = 8 + 2 + 49 = 59	*M1	MF.MN or FM.NM but allow if one is reversed (implied by –59)
	$ \mathbf{MF} \times \mathbf{MN} = \sqrt{4^2 + 2^2 + 7^2} \times \sqrt{2^2 + 1^2 + 7^2}$	*DM1	Product of modulus. At least one methodically correct
	$\cos FMN = \frac{+/-59}{\sqrt{69} \times \sqrt{54}}$	DM1	All linked correctly. Note $\sqrt{69} \times \sqrt{54} = 9\sqrt{46}$
	$FMN = 14.9^{\circ} \text{ or } 0.259$	A1	Do not allow if exactly 1 vector is reversed – even if adjusted finally
	9	4	

Question	Answer	Marks	Guidance		
7(i)	D = (5, 1)	B1			
		1			
7(ii)	$(x-5)^{2} + (y-1)^{2} = 20$ oe	B1	FT on <i>their D</i> . Apply ISW, oe but not to contain square roots		
	4	1	.5		
34. satprep.co.					

Question	Answer	Marks	Guidance
7(iii)	$(x-1)^{2} + (y-3)^{2} = (9-x)^{2} + (y+1)^{2}$ soi	M1	Allow 1 sign slip For M1 allow with $$ signs round both sides but sides must be equated
	$x^{2} - 2x + 1 + y^{2} - 6y + 9 = x^{2} - 18x + 81 + y^{2} + 2y + 1$	A1	
	y = 2x - 9 www AG	A1	
	Alternative method for question 7(iii)		
	grad. of $AB = -\frac{1}{2} \rightarrow$ grad of perp bisector $= \frac{-1}{-\frac{1}{2}}$	M1	
	Equation of perp. bisector is $y-1=2(x-5)$	A1	
	y = 2x - 9 www AG	A1	
		3	
7(iv)	Eliminate y (or x) using equations in (ii) and (iii)	*M1	To give an (unsimplified) quadratic equation
	$5x^2 - 50x + 105 (= 0)$ or $5(x-5)^2 = 20$ or $5y^2 - 10y - 75 (= 0)$ or $5(y-1)^2 = 80$	DM1	Simplify to one of the forms shown on the right (allow arithmetic slips)
	x = 3 and 7, or $y = -3$ and 5	A1	
	(3, -3), (7, 5)	A1	Both pairs of $x & y$ correct implies A1A1. SC B2 for no working
		4	

Question	Answer	Marks	Guidance
8	$f'(-1) = 0 \rightarrow 3 - a + b = 0$ $f'(3) = 0 \rightarrow 27 + 3a + b = 0$	M1	Stationary points at $x = -1$ & $x = 3$ gives sim. equations in $a \& b$
	a = -6	A1	Solve simultaneous equation
	<i>b</i> = –9	A1	
	Hence $f'(x) = 3x^2 - 6x - 9 \rightarrow f(x) = x^3 - 3x^2 - 9x(+c)$	B1	FT correct integration for <i>their a,b</i> (numerical <i>a, b</i>)
	2 = -1 - 3 + 9 + c	M1	Sub $x = -1$, $y = 2$ into <i>their</i> integrated $f(x)$. <i>c</i> must be present
	<i>c</i> = -3	A1	FT from <i>their</i> $f(x)$
	$f(3) = k \rightarrow k = 27 - 27 - 27 - 3$	M1	Sub $x = 3$, $y = k$ into <i>their</i> integrated $f(x)$ (Allow <i>c</i> omitted)
	k = -30	A1	
		8	

Question	Answer	Marks	Guidance
9(i)	$q \leq f(x) \leq p+q$	B1B1	B1 each inequality – allow two separate statements Accept < , $(q, p+q)$, $[q, p+q]$ Condone y or x or f in place of $f(x)$
	Satp		

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
9(ii)	(a) 2	B1	Allow $\frac{\pi}{4}$, $\frac{3\pi}{4}$
	(b) 3	B1	Allow $0, \frac{\pi}{2}, \pi$
	(c) 4	B1	Allow $\frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}$
	0	3	
9(iii)	$3\sin^2 2x + 2 = 4 \rightarrow \sin^2 2x = \frac{2}{3} \text{ soi}$	M1	
	Sin2x = (±)0.816(5). Allow sin 2x = (±) $\sqrt{\frac{2}{3}}$ or 2x = sin ⁻¹ (±) $\sqrt{\frac{2}{3}}$	A1	OR Implied by at least one correct value for x . Allow \sin^{-1} form
	(2x =) at least two of 0.955(3), 2.18(6), 4.09(7), 5.32(8)	A1	Can be implied by corresponding values of <i>x</i> below Allow for at least two of 0.304π , 0.696π , $1.30(4)\pi$, $1.69(6)\pi$ OR at least <u>two</u> of 54.7(4)°, 125.2(6)°, 234.7(4)°, 305.2(6)°
	(<i>x</i> =) 0.478, 1.09, 2.05, 2.66.	A1A1	Allow 0.152π, 0.348π, 0.652π, 0.848π SC A1 for 2 or 3 correct. SC A1 for all of 27.4°, 62.6°, 117.4°, 152.6°
	satpr	ep	$\sin 2x = \pm \frac{2}{3} \rightarrow x = 0.365, 1.21, 1.94, 2.78$ scores SC M1A0A0A1
		5	

9709/13

Question	Answer	Marks	Guidance
10(i)	$\left[\frac{1}{2}(3x+4)^{-\frac{1}{2}}\right]$	B1	oe
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{1}{2}(3x+4)^{-\frac{1}{2}}\right] \times 3$	B1	Must have '×3'
	At $x = 4$, $\frac{dy}{dx} = \frac{3}{8}$ soi	B1	
	Line through (4, <i>their</i> 4) with gradient <i>their</i> $\frac{3}{8}$	M1	If $y \neq 4$ is used then clear evidence of substitution of $x = 4$ is needed
	Equation of tangent is $y-4 = \frac{3}{8}(x-4)$ or $y = \frac{3}{8}x + \frac{5}{2}$	A1	oe
		5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance			
10(ii)	Area under line $=\frac{1}{2}\left(4+\frac{5}{2}\right) \times 4 = 13$	B1	OR $\int_{0}^{4} \frac{3}{8}x + \frac{5}{2} = \left[\frac{3}{16}x^{2} + \frac{5}{2}x\right] = [3+10] = 13$			
	Area under curve: $\int (3x+4)^{\frac{1}{2}} = \left[\frac{(3x+4)^{3/2}}{3/2}\right] [\div 3]$	B1B1	Allow if seen as part of the difference of 2 integrals First B1 for integral without [÷3] Second B1 must have [÷3]			
	$\frac{128}{9} - \frac{16}{9} = \frac{112}{9} = 12\frac{4}{9}$	M1	Apply limits $0 \rightarrow 4$ to an integrated expression			
	Area = $13 - 12\frac{4}{9} = \frac{5}{9}$ (or 0.556)	A1				
	Alternative method for question 10(ii)					
	Area for line = $1/2 \times 4 \times 3/2 = 3$	B 1	OR $\int_{5/2}^{4} \frac{1}{3} (8y - 20) = \frac{1}{3} [4y^2 - 20] = \frac{1}{3} [-16 + 25] = 3$			
	Area for curve = $\int \frac{1}{2}(y^2 - 4) = \left[\frac{y^3}{9}\right] - \left[\frac{4y}{3}\right]$	B1B1	<i>.</i>			
	$\left(\frac{64}{9} - \frac{16}{3}\right) - \left(\frac{8}{9} - \frac{8}{3}\right) = \frac{32}{9}$	M1	Apply limits $2 \rightarrow 4$ to an integrated expression for curve			
	Area = $\frac{32}{9} - 3 = \frac{5}{9}$ (or 0.556)	A1				
		5				

Question	Answer	Marks	Guidance
10(iii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}$	B1	
	$\frac{3}{2}(3x+4)^{-\frac{1}{2}} = \frac{1}{2}$	M1	Allow M1 for $\frac{3}{2}(3x+4)^{-\frac{1}{2}} = 2$.
	$(3x+4)^{\frac{1}{2}}=3 \rightarrow 3x+4=9 \rightarrow x=\frac{5}{3}$ oe	A1	
	9	3	

MATHEMATICS

9709/12 March 2019

Paper 1 Pure Mathematics MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance	
1	$5C3\left[(-)(px)^3\right]$ soi	B1	Can be part of expansion. Condone omission of – sign	
	$(-1)10p^3 = -2160$ then \div and cube root	M1	Condone omission of – sign.	
	<i>p</i> = 6	A1		
	TPRA	3		

Question	Answer	Marks	Guidance
2	$y = \frac{1}{3}kx^3 - x^2 (+c)$	M1A1	Attempt integration for M mark
	Sub (0, 2)	DM1	Dep on c present. Expect $c = 2$
	$\operatorname{Sub}(3,-1) \to -1 = 9k - 9 + their c$	DM1	
	<i>k</i> = 2/3	A1	
		5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

March 2019

Question	Answer	Marks	Guidance
3	Angle $CBA = \sin^{-1}\left(\frac{7}{8}\right) = 1.0654$ or $CBD = \cos^{-1}\left(\frac{-17}{32}\right) = 2.13$	B1	Accept 61.0°, 66° or 122°
	Sector $BCYD = \frac{1}{2} \times 8^2 \times 2 \times their 1.0654 (rad)$ soi or sector CBY = $\frac{1}{2} \times 8^2 \times their 1.0654 (rad)$	M1	Expect 68.1(9). Angle must be in radians (or <i>their</i> $61/360 \times 2 \times 8^2$) Or sector DBY
	$\Delta BCD = 7 \times \sqrt{8^2 - 7^2} \text{ or } \frac{1}{2} \times 8^2 \times \sin(2 \times their 1.0654) \text{ soi}$	M1	Expect 27.1(1). Award M1 for ABC or ABD
	Semi-circle $CXD = \frac{1}{2}\pi \times 7^2 = 76.9(7)$	M1	M1M1 for segment area formula used correctly
	Total area = <i>their</i> 68.19 - <i>their</i> 27.11 + <i>their</i> 76.97 = 118.0–118.1	M1A1	Cannot gain M1 without attempt to find angle CBA or CBD
		6	

Question	Answer	Marks	Guidance
4(i)	$dy / dx = -2(2x - 1)^{-2} + 2$	B2,1,0	Unsimplified form ok (-1 for each error in '-2', ' $(2x-1)^{-2}$ ' and '2')
	$d^2y/dx^2 = 8(2x-1)^{-3}$	B 1	Unsimplified form ok
	Satpree	3	

Question	Answer	Marks	Guidance
4(ii)	Set dy / dx to zero and attempt to solve – at least one correct step	M1	
	x = 0, 1	A1	Expect $(2x-1)^2 = 1$
	When $x = 0$, $d^2 y / dx^2 = -8$ (or < 0). Hence MAX	B1	
	When $x = 1$, $d^2 y / dx^2 = 8$ (or > 0). Hence MIN	B1	Both final marks dependent on correct x and correct d^2y/dx^2 and no errors May use change of sign of dy/dx but not at $x = 1/2$
		4	

Question	Answer	Marks	Guidance
5(i)	$\mathbf{u}.\mathbf{v} = 8q + 2q - 2 + 6q^2 - 42$	B1	May be unsimplified
	$6q^2 + 10q - 44 = 0$ oe	M1	Simplify, set to zero and attempt to solve
	q = 2, -11/3	A1	Both required. Accept –3.67
	2	3	
	".satprep.		

Question	Answer	Marks	Guidance
5(ii)	$\mathbf{u} = \begin{pmatrix} 0\\2\\6 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 8\\-1\\-7 \end{pmatrix} \mathbf{u} \cdot \mathbf{v} = -2 - 42$	M1	Correct method for scalar product
	$ \mathbf{u} \times \mathbf{v} = \sqrt{2^2 + 6^2} \times \sqrt{8^2 + 1^2 + 7^2}$	M1	Prod of mods. At least one methodically correct.
	$\cos\theta = \frac{-44}{\sqrt{40} \times \sqrt{114}} = \frac{-44}{4\sqrt{285}} = \frac{-4}{\sqrt{11}}$	M1	All linked correctly and inverse cos used correctly
	$\theta = 130.7^{\circ} \text{ or } 2.28(05) \text{ rads}$	A1	No other angles between 0° and 180°
		4	

Question	Answer	Marks	Guidance
6(i)	$S_n = \frac{p(2^n - 1)}{2 - 1}$ soi	M1	
	$p(2^n-1) > 1000 p \rightarrow 2^n > 1001$ AG	A1	
	"Satorep"	2	
	, doite -		

March	2019
-------	------

Question	Answer	Marks	Guidance
6(ii)	p + (n-1)p = 336	B1	Expect $np = 336$
	$\frac{n}{2} \left[2p + (n-1)p \right] = 7224$	B1	Expect $\frac{n}{2}(p+np) = 7224$
	Eliminate <i>n</i> or <i>p</i> to an equation in one variable	M1	Expect e.g. $168(1 + n) = 7224$ or $1 + 336/p = 43$ etc
	n = 42, p = 8	A1A1	
	9	5	

Question	Answer	Marks	Guidance
7(a)	$3(1-\cos^2 2\theta) + 8\cos 2\theta = 0 \rightarrow 3\cos^2 2\theta - 8\cos 2\theta - 3 (=0)$	M1	Use $s^2 = 1 - c^2$ and simplify to 3-term quadratic in 2θ
	$\cos 2\theta = -\frac{1}{3}$ soi	A1	Ignore other solution
	$2\theta = 109.(47)^{\circ} \text{ or } 250.(53)^{\circ}$	A1	One solution is sufficient, may be implied by either of the next solns
	$\theta = 54.7^{\circ} \text{ or } 125.3^{\circ}$	A1A1ft	Ft for 180° – other solution Use of double angles leads to $3c^4 - 7c^2 + 2 = 0 \Rightarrow c = \pm 1/\sqrt{3}$ for M1A1A1 then A1A1 for each angle Similar marking if $3\sin^2 2\theta = -8\cos 2\theta$ is squared leading to $9\sin^4 2\theta + 64\sin^2 2\theta - 64 = 0$
		5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

March 2019

Question	Answer	Marks	Guidance	
7(b)	$\sqrt{3} = a + \tan 0 \rightarrow a = \sqrt{3}$	B1	b = 8 or -4 (or -10, 14 etc) scores M1A0	
	$0 = \tan(-b\pi/6) + \sqrt{3}$ taken as far as \tan^{-1} , angle units consistent	M1	A0 if $\tan^{-1}(-\sqrt{3})$ is not exact; (b=2 no working scores B2)	
	<i>b</i> = 2	A1		
	A FRE	3		

Question	Answer	Marks	Guidance
8(i)	$\left[\left(x-2\right)^{2}\right]+\left[3\right]$	B1 DB1	2nd B1 dependent on ±2 in 1st bracket
		2	
8(ii)	Largest k is 2 Accept $k \leq 2$	B1	Must be in terms of <i>k</i>
		1	
8(iii)	$y = (x-2)^2 + 3 \implies x-2 = (\pm)\sqrt{y-3}$	M1	
	$\Rightarrow f^{-1}(x) = 2 - \sqrt{x-3} \text{ for } x > 4$	A1B1	
	dipion	3	

Question	Answer	Marks	Guidance
8(iv)	$gf(x) = \frac{2}{x^2 - 4x + 7 - 1} = \frac{2}{(x - 2)^2 + 2}$	B1	Either form
	Since $f(x) > 4 \Rightarrow gf(x) < 2/3$ (or since $x < 1$ etc.)	M1A1	2/3 in answer implies M1 www
	range of $gf(x)$ is $0 < gf(x)(< 2/3)$	B1	Accept $0 < y < 2/3$, $(0, 2/3)$ but $0 < x < 2/3$ is SCM1A1B0
	6	4	

Question	Answer	Marks	Guidance
9(i)	$V = \left(\pi\right) \int \left(x^3 + x^2\right) (\mathrm{d}x)$	M1	Attempt $\int y^2 dx$
	$\left(\pi\right)\left[\frac{x^4}{4} + \frac{x^3}{3}\right]_0^3$	A1	
	$(\pi)\left[\frac{81}{4}+9 (-0)\right]$	DM1	May be implied by a correct answer
	$\frac{117\pi}{4}$ oe	A1	Accept 91.9 If additional areas rotated about x-axis, maximum of M1A0DM1A0
		4	

March 2019

Question	Answer	Marks	Guidance
9(ii)	$\frac{dy}{dx} = \frac{1}{2} \left(x^3 + x^2 \right)^{-1/2} \times \left(3x^2 + 2x \right)$	B2,1,0	Omission of $3x^2 + 2x$ is one error
	(At x = 3,) y = 6	B 1	
	At $x = 3$, $m = \frac{1}{2} \times \frac{1}{6} \times 33 = \frac{11}{4}$ soi	DB1ft	Ft on <i>their</i> dy / dx providing differentiation attempted
	Equation of normal is $y-6 = -\frac{4}{11}(x-3)$	DM1	Equation through (3, <i>their</i> 6) and with gradient $-1/their$ <i>m</i>
	When $x = 0, y = 7\frac{1}{11}$ oe	A1	
		6	

9709/12

March 2019

Question	Answer	Marks	Guidance
10(i)	$4x^{1/2} = x + 3 \rightarrow (x^{1/2})^2 - 4x^{1/2} + 3 (= 0) \text{ OR } 16x = x^2 + 6x + 9$	M1	Eliminate <i>y</i> from the 2 equations and then: Either treat as quad in $x^{1/2}$ OR square both sides and RHS is 3-term
	$x^{1/2} = 1 \text{ or } 3 x^2 - 10x + 9 (= 0)$	A1	If in 1st method $x^{1/2}$ becomes <i>x</i> , allow only M1 unless subsequently squared
	<i>x</i> = 1 or 9	A1	
	y = 4 or 12	A1ft	Ft from <i>their x</i> values If the 2 solutions are found by trial substitution B1 for the first coordinate and B3 for the second coordinate
	$AB^{2} = (9-1)^{2} + (12-4)^{2}$	M1	
	$AB = \sqrt{128} \text{ or } 8\sqrt{2} \text{ oe or } 11.3$	A1	
		6	
10(ii)	$dy/dx = 2 x^{-1/2}$	B 1	
	$2x^{-1/2} = 1$	M1	Set <i>their</i> derivative = <i>their</i> gradient of <i>AB</i> and attempt to solve
	(4, 8)	A1	Alternative method without calculus: $M_{AB} = 1$, tangent is $y = mx + c$ where $m = 1$ and meets $y = 4x^{1/2}$ when $4x^{1/2} = x + c$. This is a quadratic with $b^2 = 4ac$, so $16 - 4 \times 1 \times c = 0$ so $c = 4$ B1 Solving $4x^{1/2} = x + 4$ gives $x = 4$ and $y = 8$ M1A1
		3	
March 2019

Question	Answer	Marks	Guidance
10(iii)	Equation of normal is $y-8 = -1(x-4)$	M1	Equation through <i>their</i> T and with gradient $-1/their$ gradient of AB. Expect $y = -x + 12$,
	Eliminate y (or x) $\rightarrow -x + 12 = x + 3$ or $y - 3 = 12 - y$	M1	May use <i>their</i> equation of AB
	(4½, 7½)	A1	
	TPRA	3	

MATHEMATICS

9709/11 October/November 2018

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$(4x^{\frac{1}{2}}-3)(x^{\frac{1}{2}}-2)$ oe soi Alt: $4x+6=11\sqrt{x} \Rightarrow 16x^2-73x+36$	M1	Attempt solution for $x^{1/2}$ or sub $u = x^{1/2}$
	$x^{\frac{1}{2}} = 3/4 \text{ or } 2$ (16x-9)(x-4)	A1	Reasonable solutions for $x^{\frac{1}{2}}$ implies M1 ($x = 2, 3/4, M1A0$)
	x = 9/16 oe or 4	A1	Little or no working shown scores SCB3, spotting one solution, B0
		3	
<u> </u>			

Question	Answer	Marks	Guidance
2	$x^{2} + bx + 5 = x + 1 \rightarrow x^{2} + x(b - 1) + 4 (= 0)$	M1	Eliminate <i>x</i> or <i>y</i> with all terms on side of an equation
	$(b^2 - 4ac =) (b-1)^2 - 16$	M1	
	<i>b</i> associated with $-3 \& +5$ or $b-1$ associated with ± 4	A1	$(x-2)^2 = 0 \operatorname{or} (x+2)^2 = 0, x = \pm 2, b-1 = \pm 4$ (M1A1) Association can be an equality or an inequality
	$b \ge 5, b \le -3$	Al	
	·satpre	4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(i)	Gradient of $AB = -3/4$	B1	Accept $-3a/4a$
	$y = -\frac{3}{4}x$ oe	B1FT	Answer must not include <i>a</i> . Ft on <i>their</i> <u>numerical</u> gradient
	T PR	2	
3(ii)	$(4a)^2 + (3a)^2 = (10/3)^2$ soi	M1	May be unsimplified
	$25a^2 = 100/9$ oe	A1	
	a = 2/3	A1	
		3	

Question	Answer	Marks	Guidance
4(i)	$S_{80} = \frac{80}{2} [12 + 79 \times (-4)] \text{ or } \frac{80}{2} [6+l], l = -310$	M1A1	Correct formula (M1). Correct a , d and n (A1).
	-12 160	A1	
	Satpre	3	
4(ii)	$S_{\infty} = \frac{6}{1 - \frac{1}{3}} = 9$	M1A1	Correct formula with $ r < 1$ for M1
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(i)	$\frac{(\cos\theta - 4)(5\cos\theta - 2) - 4\sin^2\theta}{\sin\theta(5\cos\theta - 2)} (=0)$	M1	Accept numerator only
	$\frac{5\cos^2\theta - 22\cos\theta + 8 - 4(1 - \cos^2\theta)}{\sin\theta(5\cos\theta - 2)} (=0)$	M1	Simplify numerator and use $s^2 = 1 - c^2$. Accept numerator only
	$9\cos^2\theta - 22\cos\theta + 4 = 0$ www AG	A1	
	9	3	
5(ii)	Attempt to solve for $\cos\theta$, (formula, completing square expected)	M1	Expect $\cos\theta = 0.1978$. Allow 2.247 in addition
	$\theta = 78.6^{\circ}$, 281.4° (only, second solution in the range)	A1A1FT	Ft for (360° – 1st solution)
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(i)	$0 = 9a + 3a^2$	M1	Sub $\frac{dy}{dx} = 0$ and $x = 3$
	a = -3 only	A1	
		2	
6(ii)	$\frac{dy}{dx} = -3x^2 + 9x \to y = -x^3 + \frac{9x^2}{2} (+c)$	M1A1FT	Attempt integration. $\frac{1}{3}ax^3 + \frac{1}{2}a^2x^2$ scores M1. Ft on <i>their a</i> .
	$9\frac{1}{2} = -27 + 40\frac{1}{2} + c$	DM1	Sub $x = 3, y = 9\frac{1}{2}$. Dependent on <i>c</i> present
	<i>c</i> = -4	A1	Expect $y = -x^3 + \frac{9x^2}{2} - 4$
		4	
6(iii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -6x + 9$	M1	$2ax + a^2$ scores M1
	At $x = 3$, $\frac{d^2 y}{dx^2} = -9 < 0$ MAX www	A1	Requires at least one of -9 or < 0 . Other methods possible.
	Satorel	2	

Question	Answer	Marks	Guidance
7(i)	$2 = k(8 - 28 + 24) \to k = 1/2$	B1	
		1	
7(ii)	When $x = 5$, $y = [\frac{1}{2}](125 - 175 + 60) = 5$	M1	Or solve $[\frac{1}{2}](x^3 - 7x^2 + 12x) = x \Longrightarrow x = 5 [x = 0, 2]$
	Which lies on $y = x$, oe	A1	
		2	
7(iii)	$\int [\frac{1}{2}(x^3 - 7x^2 + 12x) - x]dx.$	M1	Expect $\int \frac{1}{2}x^3 - \frac{7}{2}x^2 + 5x$
	$\frac{1}{8}x^4 - \frac{7}{6}x^3 + \frac{5}{2}x^2$	B2,1,0FT	Ft on their k
	2 - 28/3 +10	DM1	Apply limits $0 \rightarrow 2$
	8/3	A1	
	OR $\frac{1}{8}x^4 - \frac{7}{6}x^3 + 3x^2$	B2,1,0FT	Integrate to find area under curve, Ft on their k
	2 - 28/3 +12	M1	Apply limits $0 \rightarrow 2$. Dep on integration attempted
	Area $\Delta = \frac{1}{2} \times 2 \times 2$ or $\int_{0}^{2} x dx = \left[\frac{1}{2}x^{2}\right] = 2$	M1	
	8/3	A1	
		5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
8(i)	$\overrightarrow{DF} = -6\mathbf{i} + 2\mathbf{k}$	B 1	
		1	
8(ii)	$\overrightarrow{EF} = -6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$	B1	
	$ \overrightarrow{EF} = \sqrt{(-6)^2 + (-3)^2 + 2^2}$	M1	Must use <i>their</i> \overrightarrow{EF}
	Unit vector = $\frac{1}{7}(-6\mathbf{i}-3\mathbf{j}+2\mathbf{k})$	A1	
		3	
8(iii)	$\overrightarrow{DF}.\overrightarrow{EF} = (-6\mathbf{i} + 2\mathbf{k}).(-6\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}) = 36 + 4 = 40$	M1	
	$ \overrightarrow{DF} = \sqrt{40}, \overrightarrow{EF} = 7$	M1	
	$\cos EFD = \frac{40}{7\sqrt{40}} \text{ oe}$	M1	
	<i>EFD</i> = 25.4°	A1	Special case: use of cosine rule M1(must evaluate lengths using correct method) A1 only
	2. Satorel	4	
	arpio		

9709/11

Question	Answer	Marks	Guidance
9	Angle $OAB = \pi / 2 - \pi / 5 = 3\pi / 10$ soi	B1	Allow 54° or 0.9425 rads
	Sector $CAB = \frac{1}{2} \times \left(their \frac{3\pi}{10} \right) \times 5^2$	M1	Expect 11.78
	$OA = \frac{5}{\sin\frac{\pi}{5}} = 8.507$	M1A1	May be implied by $OC = 3.507$
	Sector $COD = \frac{1}{2} \times (their 3.507)^2 \times \frac{\pi}{5}$	M1	Expect 3.86
	$\Delta OAB = \frac{1}{2} \times 5 \times (their 8.507) \sin \frac{3\pi}{10}$	M1	Or $\frac{1}{2} \times 5 \times \frac{5}{\tan \frac{\pi}{5}}$ or $2.5 \times \sqrt{(their 8.507)^2 - 25}$
	= 17.20 or 17.21	A1	
	Shaded area $17.20(or 17.21) - 11.78 - 3.86 = 1.56$ or 1.57	A1	
		8	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
10(i)(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[-\frac{1}{2}\left(4x-3\right)^{-2}\right] \times \left[4\right]$	B1B1	Can gain this in part (b)(ii)
	When $x = 1$, $m = -2$	B1FT	Ft from <i>their</i> $\frac{dy}{dx}$
	Normal is $y - \frac{1}{2} = \frac{1}{2}(x - 1)$	M1	Line with gradient $-1/m$ and through A
	$y = \frac{1}{2}x$ soi	A1	Can score in part (b)
		5	
10(i)(b)	$\frac{1}{2(4x-3)} = \frac{x}{2} \rightarrow 2x(4x-3) = 2 \rightarrow (2)(4x^2 - 3x - 1) (= 0)$	M1A1	x/2 seen on RHS of equation can score <i>previous</i> A1
	x = -1/4	A1	Ignore $x = 1$ seen in addition
		3	
10(ii)	Use of chain rule: $\frac{dy}{dt} = (their - 2) \times (\pm) 0.3 = 0.6$	M1A1	Allow +0.3 or -0.3 for M1
	22.000	2 2	

Question	Answer	Marks	Guidance
11(a)(i)	[Greatest value of <i>a</i> is] 3	B1	Must be in terms of <i>a</i> . Allow $a < 3$. Allow $a \leq 3$
		1	
11(a)(ii)	Range is $y > -1$	B1	Ft on <i>their a</i> . Accept any equivalent notation
	$y = (x-3)^2 - 1 \rightarrow (x-3)^2 = 1 + y \rightarrow x = 3(\pm)\sqrt{1+y}$	M1	Order of operations correct. Allow sign errors
	$f^{-1}(x) = 3 - \sqrt{1+x}$ cao	A1	
		3	
11(b)(i)	$gg(2x) = \left[(2x-3)^2 - 3 \right]^2$	B1	
	$(2x-3)^4 - 6(2x-3)^2 + 9$	B1	
		2	
11(b)(ii)	$\left[16x^{4} - 96x^{3} + 216x^{2} - 216x + 81\right] + \left[\left(-24x^{2} + 72x - 54\right) + 9\right]$	B4,3,2,1,0	
	$16x^4 - 96x^3 + 192x^2 - 144x + 36$		
	22	4	

MATHEMATICS

9709/12 October/November 2018

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	For a correctly selected term in $\frac{1}{x^2}$: $(3x)^4$ or 3^4	B1	Components of coefficient added together 0/4 B1 expect 81
	$\times \left(\frac{2}{3x^2}\right)^3$ or $(2/3)^3$	B1	B1 expect 8/27
	\times ₇ C ₃ or ₇ C ₄	B 1	B1 expect 35
	\rightarrow 840 or $\frac{840}{x^2}$	B1	All of the first three marks can be scored if the correct term is seen in an expansion and it is selected but then wrongly simplified.
			SC: A completely correct unsimplified term seen in an expansion but not correctly selected can be awarded B2.
		4	

Question	Answer	Marks	Guidance
2	Integrate $\rightarrow \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 2\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ (+C)	B1 B1	B1 for each term correct – allow unsimplified. C not required.
	$\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 2\frac{x^{\frac{1}{2}}}{\frac{1}{2}}\right]_{1}^{4} \rightarrow \frac{40}{3} - \frac{14}{3}$	M1	Evidence of 4 and 1 used correctly in their integrand ie at least one power increased by 1.
	$=\frac{26}{3}$ oe	A1	Allow 8.67 awrt. No integrand implies use of integration function on calculator 0/4. Beware a correct answer from wrong working.
		4	

3(i)P is $(t, 5t)$ Q is $(t, t(9 - t^2)) \rightarrow 4t - t^3$ B1 B1B1 for both y coordinates which can be implied by subsequent working. B1 for PQ allow $ 4t - t^3 $ or $ t^3 - 4t $. Note: $4x - x^3$ from equating line and curve 0/2 even if x then replaced by t.[2]	Question	Answer	Marks	Guidance
	3(i)	$P \text{ is } (t, 5t) Q \text{ is } (t, t(9-t^2)) \rightarrow 4t - t^3$	B1 B1	B1 for both y coordinates which can be implied by subsequent working. B1 for PQ allow $ 4t - t^3 $ or $ t^3 - 4t $. Note: $4x - x^3$ from equating line and curve 0/2 even if x then replaced by t.
		".satpre	[2]	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(ii)	$\frac{\mathrm{d}(PQ)}{\mathrm{d}t} = 4 - 3t^2$	B1FT	B1FT for differentiation of their <i>PQ</i> , which MUST be a cubic expression, but can be $\frac{d}{dx}f(x)$ from (i) but not the equation of the curve.
	$= 0 \rightarrow t = +\frac{2}{\sqrt{3}}$	M1	Setting their differential of PQ to 0 and attempt to solve for t or x .
	$\rightarrow \text{Maximum } PQ = \frac{16}{3\sqrt{3}} \text{ or } \frac{16\sqrt{3}}{9}$	A1	Allow 3.08 awrt. If answer comes from wrong method in (i) award A0. Correct answer from correct expression by T&I scores 3/3.
		3	

Question	Answer	M arks	Guidance
4(i)	$fg(x) = 2 - 3\cos(\frac{1}{2}x)$	B1	Correct fg
	$2 - 3\cos(\frac{1}{2}x) = 1 \rightarrow \cos(\frac{1}{2}x) = \frac{1}{3} \rightarrow \left(\frac{1}{2}x\right) = \cos^{-1}\left(\frac{1}{2}t\right)$	M1	M1 for correct order of operations to solve their $fg(x) = 1$ as far as using inverse cos expect 1.23, (or 70.5°) condone $x =$.
	$x = 2.46 \text{ awrt or } \frac{4.7\pi}{6} (0.784\pi \text{ awrt})$	A1	One solution only in the given range, ignore answers outside the range. Answer in degrees A0.
			Alternative: Solve $f(y) = 1 \rightarrow y = 1.23 \rightarrow \frac{1}{2}x = 1.23$ B1M1 $\rightarrow x = 2.46$ A1
		3	

Question	Answer	Marks	Guidance
4(ii)		B1	One cycle of \pm cos curve, evidence of turning at the ends not required at this stage. Can be a poor curve but not an inverted "V". If horizontal axis is not labelled mark everything to the right of the vertical axis. If axis is clearly labelled mark $0 \rightarrow 2\pi$.
	GATPA	B1	Start and finish at roughly the same negative y value. Significantly more above the x axis than below or correct range implied by labels .
		B1	Fully correct. Curves not lines. Must be a reasonable curve clearly turning at both ends. Labels not required but must be appropriate if present.
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(i)	From the AP: $x - 4 = y - x$	B1	Or equivalent statement e.g. $y = 2x - 4$ or $x = \frac{y+4}{2}$.
	From the GP: $\frac{y}{x} = \frac{18}{y}$	B1	Or equivalent statement e.g. $y^2 = 18x$ or $x = \frac{y^2}{18}$.
	Simultaneous equations: $y^2 - 9y - 36 = 0$ or $2x^2 - 17x + 8 = 0$	M1	Elimination of either x or y to give a three term quadratic $(= 0)$
	OR 9		
	$4+d = x, 4+2d = y \to \frac{4+2d}{4+d} = r$ oe	B1	
	$(4+d)\left(\frac{4+2d}{4+d}\right)^2 = 18 \rightarrow 2d^2 - d - 28 = 0$	M1	Uses $ar^2 = 18$ to give a three term quadratic (= 0)
	<i>d</i> = 4	B1	Condone inclusion of $d = \frac{-7}{2}$ oe

Question	Answer	Marks	Guidance
5(i)	OR		
	From the GP $\frac{y}{x} = \frac{18}{y}$	B1	
	$\rightarrow x = \frac{y^2}{18} \rightarrow 4 + d = \frac{y^2}{18} \rightarrow d = \frac{y^2}{18} - 4$	B1	
	$4 + 2\left(\frac{y^2}{18} - 4\right) = y \rightarrow y^2 - 9y - 36 = 0$	M1	
	x = 8, y = 12.	A1	Needs both <i>x</i> and <i>y</i> . Condone $\left(\frac{1}{2}, -3\right)$ included in final answer. Fully correct answer www 4/4
		4	
5(ii)	AP 4th term = 16	B1	Condone inclusion of $\frac{-13}{2}$ oe
	GP 4th term = $8 \times \left(\frac{12}{8}\right)^3$	M1	A valid method using their x and y from (i).
	= 27	A1	Condone inclusion of -108
			Note: Answers from fortuitous $x = 8$, $y = 12$ in (i) can only score M1. Unidentified correct answer(s) with no working seen after valid $x = 8$, $y = 12$ to be credited with appropriate marks.
		3	

9709/12

Question	Answer	Marks	Guidance
6(i)	In ΔABD , $\tan\theta = \frac{9}{BD} \rightarrow BD = \frac{9}{\tan\theta}$ or $9\tan(90 - \theta)$ or $9\cot\theta$ or $\sqrt{\left[\left(20 \tan\theta\right)^2 - 9^2\right]}$ (Pythag) or $\frac{9\sin(90 - \theta)}{\sin\theta}$ (Sine rule)	B1	Both marks can be gained for correct equated expressions.
	In $\triangle DBC$, $\sin \theta = \frac{BD}{20} \rightarrow BD = 20\sin\theta$	B1	
	$20\sin\theta = \frac{9}{\tan\theta}$	M1	Equates their expressions for BD and uses $\sin\theta/\cos\theta = \tan\theta$ or $\cos\theta/\sin\theta = \cot\theta$ if necessary.
	$\rightarrow 20 \sin^2 \theta = 9 \cos \theta AG$	A1	Correct manipulation of their expression to arrive at given answer.
			SC: In $\triangle DBC$, $\sin\theta = \frac{BD}{20} \rightarrow BD = 20\sin\theta$ B1 In $\triangle ABD$, $BA = \frac{9}{\sin\theta}$ and $\cos\theta = \frac{BD}{BA}$ $\cos\theta = \frac{20\sin\theta}{9/\sin\theta} \rightarrow \cos\theta = \frac{20\sin^2\theta}{9}$ M1 $\rightarrow 20\sin^2\theta = 9\cos\theta$ A1 Scores 3/4
	12. gotta	4	
6(ii)	Uses $s^2 + c^2 = 1 \rightarrow 20\cos^2\theta + 9\cos\theta - 20 \ (= 0)$	M1	Uses $s^2 + c^2 = 1$ to form a three term quadratic in $\cos\theta$
	$\rightarrow \cos\theta = 0.8$	A1	www
	$\rightarrow \theta = 36.9^{\circ} \text{ awrt}$	A1	www. Allow 0.644 ^c awrt. Ignore 323.1 ^o or 2.50 ^c . Note: correct answer without working scores 0/3.
		3	

Question	Answer	Marks	Guidance
7	$\overrightarrow{PN} = 8\mathbf{i} - 8\mathbf{k}$	B 1	
	$\overrightarrow{PM} = 4\mathbf{i} + 4\mathbf{j} - 6\mathbf{k}$	B2,1,0	Loses 1 mark for each component incorrect
			SC: $\overrightarrow{PN} = -8\mathbf{i} + 8\mathbf{k} \text{ and } \overrightarrow{PM} = -4\mathbf{i} - 4\mathbf{j} + 6\mathbf{k} \text{ scores } 2/3.$
	$\overrightarrow{PN}.\overrightarrow{PM} = 32 + 0 + 48 = 80$	M1	Evaluates $x_1x_2 + y_1y_2 + z_1z_2$ for correct vectors or one or both reversed.
	$ PN \times PM = \sqrt{128} \times \sqrt{68} \ (= 16\sqrt{34})$	M1	Product of their moduli – may be seen in cosine rule
	$\sqrt{128} \times \sqrt{68} \cos M \hat{P} N = 80$	M1	All linked correctly.
	Angle $M\hat{P}N = 31.0^{\circ}$ awrt	A1	Answer must come directly from +ve cosine ratio. Cosine rule not accepted as a complete method. Allow 0.540 ^c awrt. Note: Correct answer from incorrect vectors scores A0 (XP)
		7	

9709/12

Question	Answer	Marks	Guidance
8(i)	$A \hat{B} C$ using cosine rule giving $\cos^{-1}(\frac{-1}{8})$ or $2\sin^{-1}(\frac{3}{4})$ or $2\cos^{-1}\left(\frac{\sqrt{7}}{2}\right)$	M1	Correct method for $A \hat{B} C$, expect 1.696 ^c awrt
	or $B\hat{A}C = \cos^{-1}(\frac{3}{4})$ or $B\hat{A}C = \sin^{-1}\frac{\sqrt{7}}{4}$ or $B\hat{A}C = \tan^{-1}\frac{\sqrt{7}}{3}$		Or for $B \hat{A} C$, expect 0.723 ^c awrt
	$C\hat{B}Y = \pi - A\hat{B}C \text{ or } 2 \times C\hat{A}B$	M1	For attempt at $C\hat{B} Y = \pi - A\hat{B}C$ or $C\hat{B} Y = 2 \times C\hat{A}B$
	OR		
	Find <i>CY</i> from $\triangle ACY$ using Pythagoras or similar $\triangle s$	M1	Expect $4\sqrt{7}$
	$C\hat{B} Y = \cos^{-1}\left(\frac{8^2 + 8^2 - (their CY)^2}{2 \times 8 \times 8}\right)$	M1	Correct use of cosine rule
	$C \hat{B} Y = 1.445^{\circ} AG$	A1	Numerical values for angles in radians, if given, need to be correct to 3 decimal places. Method marks can be awarded for working in degrees. Need 82.8° awrt converted to radians for A1. Identification of angles must be consistent for A1.
	2	3	5
8(ii)	$\operatorname{Arc} CY = 8 \times 1.445$	B1	Use of $s=8\theta$ for arc CY, Expect 11.56
	$B\hat{A}C = \frac{1}{2}(\pi - A\hat{B}C) \text{ or } \cos^{-1}(\frac{3}{4})$	*M1	For a valid attempt at $B\hat{A}C$, may be from (i). Expect 0.7227 ^c
	Arc $XC = 12 \times (\text{their } B \hat{A} C)$	DM1	Expect 8.673
	Perimeter = 11.56 + 8.673 + 4 = 24.2 cm awrt www	A1	Omission of '+4' only penalised here.
		4	

Question	Answer	Marks	Guidance
9(i)	$2x^2 - 12x + 7 = 2(x - 3)^2 - 11$	B1 B1	Mark full expression if present: B1 for $2(x - 3)^2$ and B1 for -11 . If no clear expression award $a = -3$ and $b = -11$.
		2	
9(ii)	Range (of f or y) \geq 'their – 11'	B1FT	FT for their 'b' or start again. Condone >. Do NOT accept $x >$ or \ge
	6	1	
9(iii)	$(k =)$ –"their a" also allow <i>x</i> or $k \leq 3$	B1FT	FT for their " <i>a</i> " or start again using $\frac{dy}{dx} = 0$. Do NOT accept $x = 3$.
		1	
9(iv)	$y = 2(x-3)^2 - 11 \rightarrow y + 11 = 2(x-3)^2$ $\frac{y+11}{2} = (x-3)^2$	*M1	Isolating their $(x - 3)^2$, condone – 11.
	$x = 3 + \sqrt{\left(\frac{y+11}{2}\right)}$ or $3 - \sqrt{\left(\frac{y+11}{2}\right)}$	DM1	Other operations in correct order, allow \pm at this stage. Condone -3 .
	$(g^{-1}(x) \text{ or } y) = 3 - \sqrt{\left(\frac{x+11}{2}\right)}$	A1	needs '-'. x and y could be interchanged at the start.
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance	
10(i)	$2x + \frac{12}{x} = k - x$ or $y = 2(k - y) + \frac{12}{k - y} \rightarrow 3$ term quadratic.	*M1	Attempt to eliminate y (or x) to form a 3 term quadratic. Expect $3x^2 - kx + 12$ or $3y^2 - 5ky + (2k^2 + 12)$ (= 0)	
	Use of $b^2 - 4ac \rightarrow k^2 - 144 < 0$	DM1	Using the discriminant, allow \leq , = 0; expect 12 and -12	
	-12 < k < 12	A1	Do NOT accept ≤ . Separate statements OK.	
	T PR	3		
10(ii)	Using $k = 15$ in their 3 term quadratic	M1	From (i) or restart. Expect $3x^2 - 15x + 12$ or $3y^2 - 75y + 462$ (= 0)	
	x = 1,4 or $y = 11, 14$	A1	Either pair of x or y values correct	
	(1, 14) and (4, 11)	A1	Both pairs of coordinates	
		3		
10(iii)	Gradient of $AB = -1 \rightarrow$ Perpendicular gradient = +1	B1FT	Use of $m_1m_2 = -1$ to give +1 or ft from their <i>A</i> and <i>B</i> .	
	Finding their midpoint using their (1, 14) and (4, 11)	M1	Expect (2 ¹ / ₂ , 12 ¹ / ₂)	
	Equation: $y - 12\frac{1}{2} = (x - 2\frac{1}{2}) [y = x + 10]$	A1	Accept correct unsimplified and isw	
	2	3		
·satpreP·				

Question	Answer	Marks	Guidance
11(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{3}{2} \times \left(4x+1\right)^{-\frac{1}{2}}\right] \left[\times 4\right] \left[-2\right] \left(\frac{6}{\sqrt{4x+1}}-2\right)$	B2,1,0	Looking for 3 components
	$\int y dx = \left[3(4x+1)^{\frac{3}{2}} \div \frac{3}{2} \right] \left[\div 4 \right] \left[-\frac{2x^2}{2} \right] (+C)$	B1 B1 B1	B1 for $3(4x+1)^{\frac{3}{2}} \div \frac{3}{2}$ B1 for ' \div 4'. B1 for ' $-\frac{2x^2}{2}$ '. Ignore omission of + C. If included isw any attempt at
	$\left(=\frac{(4x+1)^2}{2}-x^2\right)$		evaluating.
		5	
11(ii)	At M , $\frac{dy}{dx} = 0 \rightarrow \frac{6}{\sqrt{4x+1}} = 2$	M1	Sets their 2 term $\frac{dy}{dx}$ to 0 and attempts to solve (as far as $x = k$)
	x = 2, y = 5	A1 A1	
		3	

Question	Answer	Marks	Guidance
11(iii)	Area under the curve = $\left[\frac{1}{2}(4x+1)^{\frac{3}{2}} - x^2\right]_0^2$	M1	Uses their integral and their '2' and 0 correctly
	(13.5 - 4) - 0.5 or 9.5 - 0.5 = 9	A1	No working implies use of integration function on calculator M0A0.
	Area under the chord = trapezium = $\frac{1}{2} \times 2 \times (3+5) = 8$ Or $\left[\frac{x^2}{2} + 3x\right]_0^2 = 8$	M1	Either using the area of a trapezium with their 2, 3 and 5 or $\int (their x + 3) dx$ using their '2' and 0 correctly.
	(Shaded area = 9 - 8) = 1	A1	Dependent on both method marks,
	OR Area between the chord and the curve is:		
	$\int_{0}^{2} 3\sqrt{4x+1} - 2x - (x+3)dx$ = $\int_{0}^{2} 3\sqrt{4x+1} - 3x - 3dx$	M1	Subtracts their line from given curve and uses their '2' and 0 correctly.
	$= 3 \left[\frac{1}{6} (4x+1)^{\frac{3}{2}} - \frac{x^2}{2} - x \right]_0^2$	A1	All integration correct and limits 2 and 0.
	$=3\left\{\left(\frac{27}{6}-2-2\right)-\left(\frac{1}{6}\right)\right\}$	M1	Evidence of substituting their '2' and 0 into their integral.
	$= 3\left\{\frac{1}{2} - \frac{1}{6}\right\} = 3\left\{\frac{1}{3}\right\} = 1$	A1	No working implies use of a calculator M0A0.
		[4]	

MATHEMATICS

9709/13 October/November 2018

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

9709/13

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
1	$7C5 x^2 (-2/x)^5$ soi	B1	Can appear in an expansion. Allow 7C2
	21×-32 soi	B1	Identified. Allow $(21x^2) \times (-32x^{-5})$. Implied by correct answer
	-672	B1	Allow $\frac{-672}{x^3}$. If 0/3 scored, 672 scores SCB1
		3	

Question	Answer	Marks	Guidance
2	$f'(x) = 3x^2 + 4x - 4$	B1	
	Factors or crit. values or sub any 2 values $(x \neq -2)$ into $f'(x)$ soi	M1	Expect $(x+2)(3x-2)$ or -2 , $\frac{2}{3}$ or any 2 subs (excluding $x = -2$).
	For $-2 < x < \frac{2}{3}$, $f'(x) < 0$; for $x > \frac{2}{3}$, $f'(x) > 0$ soi Allow \leq , \geq	M1	Or at least 1 specific value $(\neq -2)$ in each interval giving opp signs Or f' $(\frac{2}{3})=0$ and f'' $(\frac{2}{3})\neq 0$ (i.e. gradient changes sign at $x = \frac{2}{3}$)
	Neither www	A1	Must have 'Neither'
	ALT 1 At least 3 values of $f(x)$	M1	e.g. $f(0) = 7$, $f(1) = 6$, $f(2) = 15$
	At least 3 <u>correct</u> values of $f(x)$	A1	
	At least 3 <u>correct</u> values of $f(x)$ spanning $x = \frac{2}{3}$	A1	
	Shows a decreasing and then increasing pattern. Neither www	A1	Or similar wording. Must have 'Neither'
	ALT 2 f'(x) = $3x^2 + 4x - 4 = 3(x + \frac{2}{3})^2 - \frac{16}{3}$	B1B1	Do not condone sign errors
	$f'(x) \ge -\frac{16}{3}$	M1	
	f'(x) < 0 for some values and > 0 for other values. Neither www	A1	Or similar wording. Must have 'Neither'
		4	

Question	Answer	Marks	Guidance
3(i)	0.8 oe	B1	
		1	
3(ii)	$BD = 5\sin their 0.8$	M1	Expect 3.58(7). Methods using degrees are acceptable
	$DC = 5 - 5\cos their \ 0.8$	M1	Expect 1.51(6)
	Sector = $\frac{1}{2} \times 5^2 \times their 0.8$ OR Seg = $\frac{1}{2} \times 5^2 \times [their 0.8 - sintheir 0.8]$	M1	Expect 10 for sector. Expect 1.03(3) for segment
	Trap = $\frac{1}{2}(5 + theirDC) \times theirBD$ oe OR $\triangle BDC = \frac{1}{2}theirBD \times theirCD$	M1	OR (for last 2 marks) if <i>X</i> is on <i>AB</i> and <i>XC</i> is parallel to <i>BD</i> :
	Shaded area = 11.69 – 10 OR 2.71(9) – 1.03(3) = 1.69 cao	A1	$BDCX$ –(sector – ΔAXC) = 5.43(8) – [10 – 6.24(9)] = 1.69 cao M1A1
		5	

Question	Answer	Marks	Guidance
4(i)	Gradient, <i>m</i> , of $AB = 3/4$	B1	.5
	Equation of <i>BC</i> is $y-4 = \frac{-4}{3}(x-3)$	MIA1	Line through (3, 4) with gradient $\frac{-1}{m}$ (M1). (Expect $y = \frac{-4}{3}x + 8$)
	<i>x</i> = 6	A1	Ignore any <i>y</i> coordinate given.
		4	

9709/13

Question	Answer	Marks	Guidance
4(ii)	$\left(AC\right)^2 = 7^2 + 1^2 \rightarrow AC = 7.071$	M1A1	M mark for $\sqrt{(their 6 + / -1)^2 + 1}$.
		2	

Question	Answer	Marks	Guidance
5	a + (n-1)3 = 94	B1	
	$\frac{n}{2} [2a + (n-1)3] = 1420 \text{OR} \frac{n}{2} [a+94] = 1420$	B1	
	Attempt elimination of <i>a</i> or <i>n</i>	M1	
	$3n^2 - 191n + 2840 (= 0)$ OR $a^2 - 3a - 598 (= 0)$	A1	3-term quadratic (not necessarily all on the same side)
	n = 40 (only)	A1	
	a = -23 (only)	A1	Award 5/6 if a 2nd pair of solutions (71/3, 26) is given in addition or if given as the only answer.
	2	6	
	"Satp	brep.c	0

Question	Answer	Marks	Guidance
6	$(\mathbf{BO}) = -8\mathbf{i} - 6\mathbf{j}$	B1	OR (OB) = 8i + 6j
	$(\mathbf{BF}) = -6\mathbf{j} - 8\mathbf{i} + 7\mathbf{k} + 4\mathbf{i} + 2\mathbf{j} = -4\mathbf{i} - 4\mathbf{j} + 7\mathbf{k}$	B1	OR (FB) = 4i + 4j - 7k
	$(\mathbf{BF}.\mathbf{BO}) = (-4)(-8) + (-4)(-6)$	M1	OR (FB.OB) Expect 56. Accept one reversed but award final A0
	$ \mathbf{BF} \times \mathbf{BO} = \sqrt{4^2 + 4^2 + 7^2} \times \sqrt{8^2 + 6^2}$	M1	Expect 90. At least one magnitude methodically correct
	Angle $OBF = \cos^{-1}\left(\frac{their56}{their90}\right) = \cos^{-1}\left(\frac{56}{90}\right) \operatorname{or} \cos^{-1}\left(\frac{28}{45}\right)$	DM1A1	Or equivalent 'integer' fractions. All M marks dependent on use of (\pm) BO and (\pm) BF . 3rd M mark dep on both preceding M marks
		6	

Question	Answer	Marks	Guidance
7(i)	$\frac{(\tan\theta+1)(1-\cos\theta)+(\tan\theta-1)(1+\cos\theta)}{(1+\cos\theta)(1-\cos\theta)}$ soi	M1	
	$\frac{\tan\theta - \tan\theta\cos\theta + 1 - \cos\theta + \tan\theta - 1 + \tan\theta\cos\theta - \cos\theta}{1 - \cos^2\theta} \text{www}$	A1	
	$\frac{2(\tan\theta - \cos\theta)}{\sin^2\theta} \text{ www} \qquad \mathbf{AG}$	A1	
		3	

Question	Answer	Marks	Guidance
7(ii)	$(2)(\tan\theta - \cos\theta) (= 0) \rightarrow (2) \left(\frac{\sin\theta}{\cos\theta} - \cos\theta\right) (= 0) \text{soi}$	M1	Equate numerator to zero and replace $\tan \theta \operatorname{by} \sin \theta / \cos \theta$
	$(2)\left(\sin\theta - \left(1 - \sin^2\theta\right)\right) \ (=0)$	DM1	Multiply by $\cos\theta$ and replace $\cos^2\theta$ by $1 - \sin^2\theta$
	$\sin\theta = 0.618(0) \qquad \text{soi}$	A1	Allow $(\sqrt{5}-1)/2$
	$\theta = 38.2^{\circ}$	A1	Apply penalty –1 for extra solutions in range
		4	

Question	Answer	Marks	Guidance
8(i)	$y = \frac{1}{3} ax^3 + \frac{1}{2}bx^2 - 4x \ (+c)$	B1	
	11 = 0 + 0 + 0 + c	M1	Sub $x = 0$, $y = 11$ into an integrated expression. <i>c</i> must be present
	$y = \frac{1}{3}ax^3 + \frac{1}{2}bx^2 - 4x + 11$	A1	
	Z -	3	.5
8(ii)	4a + 2b - 4 = 0	M1	Sub x = 2, dy / dx = 0
	$y'_{3}(8a) + 2b - 8 + 11 = 3$	M1	Sub $x = 2$, $y = 3$ into an integrated expression. Allow if 11 missing
	Solve simultaneous equations	DM1	Dep. on both M marks
	a = 3, b = -4	A1A1	Allow if no working seen for simultaneous equations
		5	

Question	Answer	Marks	Guidance
9(i)	For <i>their</i> 3-term quad a recognisable application of $b^2 - 4ac$	M1	Expect $2x^2 - x(3+k) + 1 - k^2$ (=0) or for the 3-term quad.
	$(b^2 - 4ac =) (3+k)^2 - 4(2)(1-k^2)$ oe	A1	Must be correct. Ignore any RHS
	$9k^2 + 6k + 1$	A1	Ignore any RHS
	$(3k+1)^2 \ge 0$ Do not allow > 0. Hence curve and line meet. AG	A1	Allow $(9)\left(k+\frac{1}{3}\right)^2 \ge 0$. Conclusion required.
	ALT Attempt solution of 3-term quadratic	M1	
	Solutions $x = k + 1$, $\frac{1}{2}(1-k)$	A1A1	
	Which exist for all values of <i>k</i> . Hence curve and line meet. AG	A1	
		4	

Question	Answer	Marks	Guidance
9(ii)	k = -1/3	B1	ALT dy / dx = $4x - 3 \Longrightarrow 4x - 3 = k$
	Sub (one of) their $k = -\frac{1}{3}$ into either line $1 \rightarrow 2x^2 - \frac{8}{3}x + \frac{8}{9}(=0)$	M1	Sub $k = 4x - 3$ into line $1 \rightarrow 2x^2 - x(4x) + 1 - (4x - 3)^2 (= 0)$
	Or into the derivative of line $1 \rightarrow 4x - (3+k)(=0)$		
	$x = 2/3$ Do not allow unsubstantiated $\left(\frac{2}{3}, -\frac{1}{9}\right)$ following $k = -\frac{1}{3}$	A1	$x = 2/3, y = -1/9$ (both required) [from $-18x^2 + 24x - 8$ (=0) oe]
	$y = -1/9$ Do not allow unsubstantiated $\left(\frac{2}{3}, -\frac{1}{9}\right)$ following $k = -\frac{1}{3}$	A1	k = -1/3
		4	

Question	Answer	Marks	Guidance
10(i)	$V = 4(\pi) \int (3x-1)^{-2/3} dx = 4(\pi) \left[\frac{(3x-1)^{1/3}}{1/3} \right] [\div 3]$	M1A1A1	Recognisable integration of y^2 (M1) Independent A1, A1 for [][]
	$4(\pi)[2-1]$	DM1	Expect $4(\pi)(3x-1)^{\frac{1}{3}}$
	4π or 12.6	A1	Apply limits $\frac{2}{3} \rightarrow 3$. Some working must be shown.
		5	

Question	Answer	Marks	Guidance
10(ii)	$dy / dx = (-2 / 3) (3x - 1)^{-4/3} \times 3$	B1	Expect $-2(3x-1)^{-4/3}$
	When $x = 2/3$, $y = 2$ soi $dy/dx = -2$	B1B1	2nd B1 dep. on correct expression for $dy//dx$
	Equation of normal is $y - 2 = \frac{1}{2} \left(x - \frac{2}{3} \right)$	M1	Line through ($\frac{2}{3}$, <i>their</i> 2) and with grad $-1/m$. Dep on <i>m</i> from diffn
	$y = \frac{1}{2}x + \frac{5}{3}$	A1	
		5	

		T			
Question	Answer	Marks	Guidance		
11(i)	$[2]\left[\left(x-3\right)^2\right]\left[-7\right]$	B1B1B1			
		3			
11(ii)	Largest value of k is 3. Allow ($k = $) 3.	B1	Allow $k \leq 3$ but not $x \leq 3$ as final answer.		
	Z	1			
Satprep.					

Question	Answer	Marks	Guidance
11(iii)	$y = 2(x-3)^2 - 7 \rightarrow (x-3)^2 = \frac{1}{2}(y+7)$ or with x/y transposed	M1	Ft <i>their a</i> , <i>b</i> , <i>c</i> . Order of operations correct. Allow sign errors
	$x = 3 \pm \sqrt{\frac{1}{2}(y+7)}$ Allow $3 + \sqrt{1}$ or $3 - \sqrt{1}$ or with x/y transposed	DM1	Ft <i>their a</i> , <i>b</i> , <i>c</i> . Order of operations correct. Allow sign errors
	$f^{-1}(x) = 3 - \sqrt{\frac{1}{2}(x+7)}$	A1	
	(Domain is x) \geq their – 7	B1FT	Allow other forms for interval but if variable appears must be x
	9	4	
11(iv)	$x + 3 \le 1$. Allow $x + 3 = 1$	M 1	Allow $x + 3 \leq k$
	largest p is -2 . Allow ($p =$) -2	A1	Allow $p \leq -2$ but not $x \leq -2$ as final answer.
	$fg(x) = f(x+3) = 2x^2 - 7$ cao	B1	
		3	

MATHEMATICS

9709/11 May/June 2018

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

May/June 2018

Answer	Marks	Guidance
$(1-2x)^5 = 1 - 10x + 40x^2$ (no penalty for extra terms)	B2,1	Loses a mark for each incorrect term. Treat $-32x^5 + 80x^4 - 80x^3$ as MR -1
	2	
$\rightarrow (1 + ax + 2x^2)(1 - 10x + 40x^2)$		
$3 \text{ terms in } x^2 \rightarrow 40 - 10a + 2$	M1 A1FT	Selects 3 terms in x^2 . FT from (i)
Equate with $12 \rightarrow a = 3$	A1	САО
	3	
	Answer $(1-2x)^5 = 1 - 10x + 40x^2$ (no penalty for extra terms) $\rightarrow (1 + ax + 2x^2)(1 - 10x + 40x^2)$ $3 \text{ terms in } x^2 \rightarrow 40 - 10a + 2$ Equate with $12 \rightarrow a = 3$	AnswerMarks $(1-2x)^5 = 1 - 10x + 40x^2$ (no penalty for extra terms)B2,1 2 2 $\rightarrow (1 + ax + 2x^2)(1 - 10x + 40x^2)$ 2 3 terms in $x^2 \rightarrow 40 - 10a + 2$ M1 A1FTEquate with $12 \rightarrow a = 3$ A1 3 3

Question	Answer	Marks	Guidance		
2	$y = 2x + \frac{5}{x} \rightarrow \frac{dy}{dx} = 2 - \frac{5}{x^2} = -3$ (may be implied) when $x = 1$.	M1 A1	Reasonable attempt at differentiation CAO (-3)		
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} \to -0.06$	M1 A1	Ignore notation, but needs to multiply $\frac{dy}{dx}$ by 0.02.		
	2	4			
	Satprep.00				

Question	Answer	Marks	Guidance
3	$\frac{dy}{dx} = \frac{12}{(2x+1)^2} \to y = \frac{-12}{2x+1} \div 2 \ (+c)$	B1 B1	Correct without " \div 2". For " \div 2". Ignore " c ".
	Uses (1, 1) $\rightarrow c = 3 \ (\rightarrow y = \frac{-6}{2x+1} + 3)$	M1 A1	Finding " <i>c</i> " following integration. CAO
	Sets y to 0 and attempts to solve for $x \to x = \frac{1}{2} \to ((\frac{1}{2}, 0))$	DM1 A1	Sets y to 0. $x = \frac{1}{2}$ is sufficient for A1.
		6	

Question	Answer	Marks	Guidance
4(i)	$(\sin\theta + \cos\theta)(1 - \sin\theta\cos\theta) \equiv \sin^3\theta + \cos^3\theta.$		Accept abbreviations s and c
	$LHS = \sin\theta + \cos\theta - \sin^2\theta \cos\theta - \sin\theta \cos^2\theta$	M1	Expansion
	$=\sin\theta(1-\cos^2\theta)+\cos\theta(1-\sin^2\theta) \text{ or } (s+c-c(1-c^2)-s(1-s^2))$	M1A1	Uses identity twice. Everything correct. AG
	Uses $\sin^2\theta + \cos^2\theta = 1 \rightarrow \sin^3\theta + \cos^3\theta$ (RHS)		or from RHS: M1 for use of trig ID twice
	Or	5	
	LHS = $(\sin\theta + \cos\theta)(\sin^2\theta + \cos^2\theta - \sin\theta\cos\theta)$	M1	M1 for factorisation
	$= \sin^{3}\theta + \sin\theta\cos^{2}\theta - \sin^{2}\theta\cos\theta + \cos\theta\sin^{2}\theta + \cos^{3}\theta - \sin\theta\cos^{2}\theta = \sin^{3}\theta + \cos^{3}\theta$	M1A1	
		3	

9709/11

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
4(ii)	$(\sin\theta + \cos\theta)(1 - \sin\theta\cos\theta) = 3\cos^3\theta \rightarrow \sin^3\theta = 2\cos^3\theta$	M1	
	$\rightarrow \tan^3\theta = 2 \rightarrow \theta = 51.6^\circ \text{ or } 231.6^\circ \text{ (only)}$	A1A1FT	Uses $\tan^3 = \sin^3 \div \cos^3$. A1 CAO. A1FT, 180 + their acute angle. $\tan^3 \theta = 0$ gets M0
		3	

Question	Answer	Marks	Guidance
5(i)	Eqn of AC $y = -\frac{1}{2}x + 4$ (gradient must be $\Delta y / \Delta x$)	M1A1	Uses gradient and a given point for equa. CAO
	Gradient of $OB = 2 \rightarrow y = 2x$ (If y missing only penalise once)	M1 A1	Use of $m_1m_2 = -1$, answers only ok.
		4	

9709/11

Question	Answer	Marks	Guidance
5(ii)	Simultaneous equations \rightarrow ((1.6, 3.2))	M1	Equate and solve for M1 and reach ≥ 1 solution
	This is mid-point of OB . $\rightarrow B$ (3.2, 6.4)	M1 A1	Uses mid-point. CAO
	or		
	Let coordinates of $B(h, k)$ $OA = AB \rightarrow h^2 = 8k - k^2$ $OC = BC \rightarrow k^2 = 16h - h^2 \rightarrow (3.2, 6.4)$		M1 for both equations, M1 for solving with $y = 2x$
	or	\sim	
	gradients $\left(\frac{k-4}{h} \times \frac{k}{h-8} = -1\right)$		M1 for gradient product as -1 , M1 solving with $y = 2x$
	or		
	Pythagoras: $h^2 + (k-4)^2 + (h-8)^2 + k^2 = 4^2 + 8^2$		M1 for complete equation, M1 solving with $y = 2x$
		3	

Question	Answer	Marks	Guidance
6(i)	$(\tan\theta = \frac{AT}{r}) \rightarrow AT = r \tan\theta \text{ or } OT = \frac{r}{\cos\theta} \text{ SOI}$	B1	CAO
	$\rightarrow A = \frac{1}{2}r^{2}\tan\theta \qquad -\frac{1}{2}r^{2}\theta$	B1 B1	B1 for $\frac{1}{2}r^2 \tan\theta$. B1 for " $-\frac{1}{2}r^2\theta$ " If Pythagoras used may see area of triangle as $\frac{1}{2}r\sqrt{r^2 + r^2 \tan^2\theta}$ or $\frac{1}{2}r\left(\frac{r}{\cos\theta}\right)sin\theta$
		3	

Question	Answer	Marks	Guidance
6(ii)	$\tan\theta = \frac{AT}{3} \rightarrow AT = 7.716$	M1	Correct use of trigonometry and radians in rt angle triangle
	Arc length = $r\theta$ = 3.6	B1	Accept 3×1.2
	OT by Pythagoras or $\cos 1.2 = \frac{3}{OT}$ (= 8.279)	M1	Correct method for <i>OT</i>
	Perimeter = AT + arc + OT - radius = 16.6	A1	CAO, www
		4	

Question	Answer	Marks	Guidance
7	$\overrightarrow{OA} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} \text{ and } \overrightarrow{OC} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$		
7(i)	$\overrightarrow{AC} = \begin{pmatrix} 2\\ 4\\ -4 \end{pmatrix}$	B1	B1 for \overrightarrow{AC} .
	2. SotoroD.	1	
	dipion		

Question	Answer	Marks	Guidance
7(ii)	$\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM} = \begin{pmatrix} 2\\-1\\0 \end{pmatrix} \text{ or } \frac{1}{2} \begin{bmatrix} 1\\-3\\2 \end{bmatrix} + \begin{pmatrix} 3\\1\\-2 \end{bmatrix}$	M1	M1 for their $\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AM}$ oe
	Unit vector in direction of $\overrightarrow{OM} = \frac{1}{\sqrt{5}} (\overrightarrow{OM})$	M1 A1	M1 for dividing their \overrightarrow{OM} by their modulus
		3	
7(iii)	$\overrightarrow{AB} = \begin{pmatrix} -2\\6\\3 \end{pmatrix}, \text{ Allow } \pm$	B1	
	$ \overrightarrow{AB} =7, \overrightarrow{AC} =6 \begin{pmatrix} -2\\6\\3 \end{pmatrix} \cdot \begin{pmatrix} 2\\4\\-4 \end{pmatrix} = -4 + 24 - 12 = 8$	M1 M1	Product of both moduli, Scalar product of ± their AB and AC
	$7 \times 6 \cos \theta = 8 \rightarrow \theta = 79.(0)^{\circ}$	A1	1.38 radians ok
		4	
	Satprep.	<i>.</i> ,	

9709/11

May/June 2018

Question	Answer	Marks	Guidance
8(a)	$ar = 12$ and $\frac{a}{1-r} = 54$	B1 B1	CAO, OE CAO, OE
	Eliminates <i>a</i> or $r \to 9r^2 - 9r + 2 = 0$ or $a^2 - 54a + 648 = 0$	M1	Elimination leading to a 3-term quadratic in a or r
	$\rightarrow r = \frac{2}{3} \text{ or } \frac{1}{3} \text{ hence to } a \rightarrow a = 18 \text{ or } 36$	A1	Needs both values.
		4	
8(b)	<i>n</i> th term of a progression is $p + qn$		
8(b)(i)	first term = $p + q$. Difference = q or last term = $p + qn$	B1	Need first term and, last term or common difference
	$S_n = \frac{n}{2} (2(p+q) + (n-1)q) \text{ or } \frac{n}{2} (2p+q+nq)$	M1A1	Use of S_n formula with their a and d . ok unsimplified for A1.
		3	
8(b)(ii)	Hence $2(2p+q+4q) = 40$ and $3(2p+q+6q) = 72$	DM1	Uses their S_n formula from (i)
	Solution $\rightarrow p = 5$ and $q = 2$ [Could use S_n with a and $d \rightarrow a = 7, d = 2 \rightarrow p = 5, q = 2.$]	A1	Note: answers 7, 2 instead of 5, 2 gets M1A0 – must attempt to solve for M1
	22	2	

Question	Answer	Marks	Guidance
9	$f: x \mapsto \frac{x}{2} - 2, g: x \mapsto 4 + x - \frac{x^2}{2}$		
9(i)	$4 + x - \frac{x^2}{2} = \frac{x}{2} - 2 \to x^2 - x - 12 = 0$	M1	Equates and forms 3 term quadratic
	\rightarrow (4, 0) and (-3, -3.5) Trial and improvement, B3 all correct or B0	A1 A1	A1 For both <i>x</i> values or a correct pair. A1 all.
	9	3	
9(ii)	f(x) > g(x) for $x > 4, x < -3$	B1, B1	B1 for each part. Loses a mark for \leq or \geq .
		2	
9(iii)	$fg(x) = 2 + \frac{x}{2} - \frac{x^2}{4} - 2(=\frac{x}{2} - \frac{x^2}{4})$	B1	CAO, any correct form
	i.e. $-\frac{1}{4}((x-1)^2 - 1)$ or $\frac{dy}{dx} = \frac{1}{2} - \frac{2x}{4} = 0 \rightarrow x = 1$	M1 A1	Completes the square or uses calculus. First A1 is for $x = 1$ or completed square form
	$\rightarrow y = \frac{1}{4} \rightarrow \text{Range of fg} \leq \frac{1}{4},$	A1	CAO, OE e.g. $y \leq \frac{1}{4}$, $[-\infty, \frac{1}{4})$ etc.
	"Satorep"	4	
9(iv)	Calculus or completing square on 'h' $\rightarrow x = 1$	M1	May use a sketch or $-\frac{b}{2a}$
	$k=1$ (accept $k \ge 1$)	A1	Complete method. CAO
		2	

Question	Answer	Marks	Guidance
10	$y = x^3 - 2x^2 + 5x$		
10(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 4x + 5$	B1	САО
	Using $b^2 - 4ac \rightarrow 16 - 60 \rightarrow$ negative \rightarrow some explanation or completed square and explanation	M1 A1	Uses discriminant on equation (set to 0). CAO
		3	
10(ii)	$m = 3x^2 - 4x + 5$ $\frac{dm}{dx} = 6x - 4 (= 0) \text{ (must identify as } \frac{dm}{dx}\text{)}$	B1FT	FT providing differentiation is equivalent
	$\rightarrow x = \frac{2}{3}, m = \frac{11}{3} \text{ or } \frac{dy}{dx} = \frac{11}{3}$	M1 A1	Sets to 0 and solves. A1 for correct <i>m</i> .
	Alt1: $m = 3\left(x - \frac{2}{3}\right) + \frac{11}{3}, m = \frac{11}{3}$		Alt1: B1 for completing square, M1A1 for ans
	Alt2: $3x^2 - 4x + 5 - m = 0, b^2 - 4ac = 0, m = \frac{11}{3}$		Alt2: B1 for coefficients, M1A1 for ans
	$\frac{d^2m}{dx^2} = 6 + ve \rightarrow \text{Minimum value or refer to sketch of curve or}$ check values of <i>m</i> either side of $x = \frac{2}{3}$,	M1 A1	M1 correct method. A1 (no errors anywhere)
		5	

Question	Answer	Marks	Guidance
10(iii)	Integrate $\rightarrow \frac{x^4}{4} - \frac{2x^3}{3} + \frac{5x^2}{2}$	B2,1	Loses a mark for each incorrect term
	Uses limits 0 to 6 \rightarrow 270 (may not see use of lower limit)	M1 A1	Use of limits on an integral. CAO Answer only 0/4
	A PD	4	

MATHEMATICS

9709/12 May/June 2018

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

9709/12

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

May/June 2018

Question	Answer	Marks	Guidance
1	Coefficient of x^2 in $\left(2 + \frac{x}{2}\right)^6$ is ${}_6C_2 \times 2^4 \times (\frac{1}{2})^2 (x^2) (= 60)$	B2,1,0	3 things wanted –1 each incorrect component, must be multiplied together. Allow ${}_{6}C_{4}$, $\begin{pmatrix} 6\\4 \end{pmatrix}$ and factorial equivalents. Marks can be awarded for correct term in an expansion.
	Coefficient of x^2 in $(a + x)^5$ is ${}_{5}C_2 \times a^3 (x^2) (= 10a^3)$	B1	Marks can be awarded for correct term in an expansion.
	$\rightarrow 60 + 10a^3 = 330$	M1	Forms an equation ' <i>their 60</i> ' + ' <i>their 10a</i> ³ ' = 330, OK with x^2 in all three terms initially. This can be recovered by a correct answer.
	<i>a</i> = 3	A1	Condone ± 3 as long as ± 3 is selected.
		5	

Question	Answer	Marks	Guidance
2(i)			A complete method as far as finding a set of values for <i>k</i> by:
	Either $(x-3)^2 + k - 9 > 0, k - 9 > 0$		Either completing the square and using ' <i>their</i> $k - 9$ ' > or ≥ 0 OR
	or $2x - 6 = 0 \rightarrow (3, k - 9), k - 9 > 0$	M1	Differentiating and setting to 0, using ' <i>their</i> $x=3$ ' to find y and using ' <i>their</i> $k - 9$ ' > or ≥ 0 OR
	or $b^2 < 4ac$ oe $\rightarrow 36 < 4k$	prep.	Use of discriminant $<$ or ≤ 0 . Beware use of $>$ and incorrect algebra.
	$\rightarrow k > 9$ Note: not \ge	A1	T&I leading to (or no working) correct answer 2/2 otherwise 0/2.
		2	

Question	Answer	Marks	Guidance
2(ii)	EITHER		
	$x^{2} - 6x + k = 7 - 2x \rightarrow x^{2} - 4x + k - 7 \ (= 0)$	*M1	Equates and collects terms.
	Use of $b^2 - 4ac = 0$ (16 - 4(k - 7) = 0)	DM1	Correct use of discriminant = 0, involving k from a 3 term quadratic.
	OR	PR	
	$2x - 6 = -2 \rightarrow x = 2 (y = 3)$	*M1	Equates their $\frac{dy}{dx}$ to ± 2 , finds a value for <i>x</i> .
	(their 3) or $7-2(their 2) = (their 2)^2 - 6(their 2) + k$	DM1	Substitutes their value(s) into the appropriate equation.
	$\rightarrow k = 11$	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	$r = 1.02$ or $\frac{102}{100}$ used in a GP in some way.	B1	Can be awarded here for use in S _n formula.
	Amount in 12th week = 8000 (<i>their r</i>) ¹¹ or (<i>their a from</i> $\frac{8000}{their r}$) (<i>their r</i>) ¹²	M1 ore9	Use of ar^{n-1} with a = 8000 & $n = 12$ or with a = $\frac{8000}{1.02}$ and $n = 13$.
	= 9950 (kg) awrt	A1	Note: Final answer of either 9943 or 9940 implies M1. Full marks can be awarded for a correct answer from a list of terms.
		3	

Question	Answer	Marks	Guidance
3(ii)	In 12 weeks, total is $\frac{8000((their r)^{12} - 1)}{((their r) - 1)}$	M1	Use of S_n with a = 8000 and $n = 12$ or addition of 12 terms.
	= 107000 (kg) awrt	A1	Correct answer but no working 2/2
		2	

Question	Answer	Marks	Guidance
4(i)	$a + \frac{1}{2}b = 5$	B1	Alternatively these marks can be awarded when $\frac{1}{2}$ and -1 appear after <i>a</i> or <i>b</i> has been eliminated.
	a - b = 11	B1	
	$\rightarrow a = 7 \text{ and } b = -4$	B1	
		[3]	
4(ii)	a + b or their $a + their b$ (3)	B1	Not enough to be seen in a table of values – must be selected. Graph from their values can get both marks. Note: Use of $b^2 - 4ac$ scores 0/3
	a - b or their $a - their b$ (11).	B1	
	$\rightarrow k < 3, k > 11$	B1	Both inequalities correct. Allow combined statement as long as correct inequalities if taken separately. Both answers correct from T & I or guesswork 3/3 otherwise 0/3
		3	

9709/12

Question	Answer	Marks	Guidance		
5(i)	$\overrightarrow{DA} = 6\mathbf{i} - 4\mathbf{k}$	B1			
	$\overline{CA} = 6\mathbf{i} - 5\mathbf{j} - 4\mathbf{k}$	B1			
		2			
5(ii)	Method marks awarded only for <i>their</i> vectors $\pm \overrightarrow{CA} \& \pm \overrightarrow{DA}$	PR	Full marks can be obtained using \overrightarrow{AC} & \overrightarrow{AD}		
	$\overrightarrow{CA} \cdot \overrightarrow{DA} = 36 + 16 \ (= 52)$	M1	Using $x_1x_{2+}y_1y_2+z_1z_2$		
	$\left \overrightarrow{DA} \right = \sqrt{52}$, $\left \overrightarrow{CA} \right = \sqrt{77}$	M1	Uses modulus twice		
	$52 = \sqrt{77}\sqrt{52\cos \hat{CAD}}$ oe	M1	All linked correctly		
	$\cos \hat{CAD} = 0.82178 \rightarrow \hat{CAD} = 34.7^{\circ} \text{ or } 0.606^{\circ} \text{ awrt}$	A1	Answer must come from +ve cosine ratio		
		4			

Question	Answer	Marks	Guidance
6(i)	$AT \text{ or } BT = r \tan \theta \text{ or } OT = \frac{r}{\cos \theta}$	B1	May be seen on diagram.
	$\frac{1}{2}r^2 2\theta$, & $\frac{1}{2} \times r \times (r \tan \theta \text{ or } AT)$ or $\frac{1}{2} \times r \times (\frac{r}{\cos \theta} \text{ or } OT) \sin \theta$	ore _{M1}	Both formulae, $(\frac{1}{2}r^2\theta, \frac{1}{2}bh \text{ or } \frac{1}{2}absin\theta)$, seen with 2θ used when needed.
	$\frac{1}{2}r^22\theta = 2 \times \frac{1}{2} \times r \times r \tan \theta - \frac{1}{2}r^22\theta$ or $\rightarrow 2\theta = \tan \theta \mathbf{AG}$	A1	Fully correct working from a correct statement. Note: $\frac{1}{2}r^22\theta = \frac{1}{2}r^2\tan\theta$ is a valid statement.
		3	
Question	Answer	Marks	Guidance
----------	--------------------------------------	-------	---
6(ii)	$\theta = 1.2$ or sector area = 76.8	B1	
	Area of kite = 165 awrt	B1	
	164.6 - 76.8 = 87.8 awrt	B1	awrt 87.8 with little or no working can be awarded 3/3. SC Final answers that round to 88 with little or no working can be awarded 2/3.
		3	

Question	Answer	Marks	Guidance	
7(i)	$25 - 2(x + 3)^2$	B1 B1	Mark expression if present: B1 for 25 and B1 for $-2(x + 3)^2$. If no expression award $a = 25$ B1 and $b = 3$ B1.	
		2		
7(ii)	(-3, 25)	B1FT	FT from answers to (i) or by calculus	
		1		
7(iii)	$(k) = -3$ also allow x or $k \ge -3$	B1FT	FT from answer to (i) or (ii) NOT $x = -3$	
	3	1	-0'	
·satprep.				

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(iv)	EITHER		
	$y = 25 - 2(x + 3)^2 \rightarrow 2(x + 3)^2 = 25 - y$	[*] M1	Makes their squared term containing <i>x</i> the subject or equivalent with x/y interchanged first. Condone errors with $+/-$ signs.
	$x + 3 = (\pm)\sqrt{\frac{1}{2}(25 - y)}$	DM1	Divide by ± 2 and then square root allow \pm .
	OR	PR	
	$y = 7 - 2x^{2} - 12x \rightarrow 2x^{2} + 12x + y - 7 (= 0)$	*M1	Rearranging equation of the curve.
	$x = \frac{-12 \pm \sqrt{12^2 - 8(y - 7)}}{4}$	DM1	Correct use of their ' <i>a</i> , <i>b</i> and c' in quadratic formula. Allow just + in place of \pm .
	$g^{-1}(x) = \sqrt{\left(\frac{25-x}{2}\right)} - 3$ oe	A1	\pm gets A0. Must now be a function of <i>x</i> . Allow <i>y</i> =
	isw if substituting $x = -3$		
		3	

Question	Answer	Marks	Guidance
8	EITHER		
	Gradient of bisector $= -\frac{3}{2}$	B1	
	gradient $AB = \frac{5h-h}{4h+6-h}$	*M1	Attempt at $\frac{y - step}{x - step}$
	Either $\frac{5h-h}{4h+6-h} = \frac{2}{3}$ or $-\frac{4h+6-h}{5h-h} = -\frac{3}{2}$	*M1	Using $m_1m_2 = -1$ appropriately to form an equation.
	OR		
	Gradient of bisector = $-\frac{3}{2}$	B1	
	Using gradient of <i>AB</i> and <i>A</i> , <i>B</i> or midpoint $\rightarrow \frac{2}{3}x + \frac{h}{3} = y$ oe	*M1	Obtain equation of <i>AB</i> using gradient from $m_1m_2 = -1$ and a point.
	Substitute co-ordinates of one of the other points	*M1	Arrive at an equation in <i>h</i> .
	h = 2	A1	.5
	Midpoint is $\left(\frac{5h+6}{2}, 3h\right)$ or (8, 6)	B1FT	Algebraic expression or FT for numerical answer from ' <i>their h</i> '
	Uses midpoint and ' <i>their h</i> ' with $3x + 2y = k$	DM1	Substitutes ' <i>their midpoint</i> ' into $3x + 2y = k$. If $y = -\frac{3}{2}x + c$ is used (expect $c = 18$) the method mark should be withheld until they ×2.
	$\rightarrow k = 36 \text{ soi}$	A1	
		7	

9709/12

Question	Answer	Marks	Guidance
9(i)	$y = \frac{2}{3} \left(4x + 1 \right)^{\frac{3}{2}} \div 4 \left(+ C \right) \left(= \frac{\left(4x + 1 \right)^{\frac{3}{2}}}{6} \right)$	B1 B1	B1 without ÷ 4. B1 for ÷ 4 oe. Unsimplified OK
	Uses $x = 2, y = 5$	M1	Uses (2, 5) in an integral (indicated by an increase in power by 1).
	$\rightarrow c = \frac{1}{2}$ oe isw	A1	No isw if candidate now goes on to produce a straight line equation
		4	
9(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$		
	$\frac{dx}{dt} = 0.06 \div 3$	M1	Ignore notation. Must be 0.06÷3 for M1.
	= 0.02 oe	A1	Correct answer with no working scores 2/2
		2	
9(iii)	$\frac{d^2 y}{dx^2} = \frac{1}{2} \left(4x + 1 \right)^{-\frac{1}{2}} \times 4$	B1	L.
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \times \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{\sqrt{4x+1}} \times \sqrt{4x+1} (=2)$	B1FT	Must either show the algebraic product and state that it results in a constant or evaluate it as '= 2'. Must not evaluate at $x = 2$. ft to apply only if $\frac{d^2 y}{dx^2}$ is of the form $k(4x+1)^{-\frac{1}{2}}$
		2	

Question	Answer	Marks	Guidance
10(i)	$2\cos x = -3\sin x \rightarrow \tan x = -\frac{2}{3}$	M1	Use of tan=sin/cos to get tan =, or other valid method to find sin or cos =. M0 for tanx = $+/-\frac{3}{2}$
	$\rightarrow x = 146.3^{\circ} \text{ or } 326.3^{\circ} \text{awrt}$	A1 A1FT	FT for 180 added to an incorrect first answer in the given range. The second A1 is withheld if any further values in the range $0^{\circ} \le x \le 360^{\circ}$ are given. Answers in radians score A0, A0.
	6	3	

Question	Answer	Marks	Guidance
10(ii)	No labels required on either axis. Assume that the diagram is 0° to 360° unless labelled otherwise. Ignore any part of the diagram outside this range.		
		BI	Sketch of $y = 2\cos x$. One complete cycle; start and finish at <u>top of curve</u> at roughly the same positive <i>y</i> value and go below the <i>x</i> axis by roughly the same distance. (Can be a poor curve but not straight lines.)
		B1	Sketch of $y=-3\sin x$ One complete cycle; start and finish on the <i>x</i> axis, must be inverted and go below and then above the <i>x</i> axis by roughly the same distance. (Can be a poor curve but not straight lines.)
		B1	Fully correct answer including the sine curve with clearly larger amplitude than cosine curve. Must now be reasonable curves.
			Note: Separate diagrams can score 2/3
		3	
10(iii)	x < 146.3°, x > 326.3°	B1FT B1FT	Does not need to include 0°, 360°. $$ from their answers in (i) Allow combined statement as long as correct inequalities if taken separately. SC For two correct values including ft but with \leq and \geq B1
	·sat	pre?2	

Question	Answer	Marks	Guidance
11(i)	$y = \frac{x}{2} + \frac{6}{x} = 4 \to x = 2 \text{ or } 6$	B1 B1	Inspection or guesswork OK
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} - \frac{6}{x^2}$	B1	Unsimplified OK
	When $x = 2, m = -1 \rightarrow x + y = 6$ When $x = 6, m = \frac{1}{3} \rightarrow y = \frac{1}{3} x + 2$	*M1	Correct method for either tangent
	Attempt to solve simultaneous equations	DM1	Could solve BOTH equations separately with $y = x$ and get $x = 3$ both times.
	(3,3)	A1	Statement about $y = x$ not required.
		6	

Question	Answer	Marks	Guidance
11(ii)	$V = (\pi) \int \left(\frac{x^2}{4} + 6 + \frac{36}{x^2}\right) (dx)$	*M1	Integrate using $\pi \int y^2 dx$ (doesn't need π or dx). Allow incorrect squaring. Not awarded for $\pi \int \left\{ 4 - \left(\frac{x}{2} + \frac{6}{x}\right) \right\}^2 dx$. Integration indicated by increase in any power by 1.
	Integration $\rightarrow \frac{x^3}{12} + 6x - \frac{36}{x}$	A2,1	3 things wanted —1 each error, allow + C. (Doesn't need π)
	Using limits ' <i>their 2</i> ' to ' <i>their 6</i> ' $(53\frac{1}{3}\pi, \frac{160}{3}\pi, 168 \text{ awrt})$	DM1	Evidence of their values 6 and 2 from (i) substituted into their integrand and then subtracted. $48 - \left(-\frac{16}{3}\right)$ is enough.
	Vol for line: integration or cylinder $(\rightarrow 64\pi)$	M1	Use of $\pi r^2 h$ or integration of 4^2 (could be from $\left\{4 - \left(\frac{x}{2} + \frac{6}{x}\right)\right\}^2$)
	Subtracts $\rightarrow 10 \frac{2}{3} \pi$ oe $\left(\text{e.g.} \frac{32}{3} \pi, 33.5 \text{awrt} \right)$	A1	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
11(ii)	OR		
	V = $(\pi) \int 4^2 - \left(\frac{x}{2} + \frac{6}{x}\right)^2 (dx)$	M1 [*] M1	Integrate using $\pi \int y^2 dx$ (doesn't need π or dx) Integration indicated by increase in any power by 1.
	$= (\pi) \int 16 - \left(\frac{x^2}{4} + 6 + \frac{36}{x^2}\right) (dx)$	PR	
	$= (\pi) \left[16x - \left(\frac{x^3}{12} + 6x - \frac{36}{x}\right) \right] (dx)$	A2,1	$\operatorname{Or}\left[10x - \frac{x^3}{12} + \frac{36}{x}\right]$
	$=(\pi)(48-37\frac{1}{3})$	DM1	Evidence of their values 6 and 2 from (i) substituted
	$= 10\frac{2}{3}\pi \text{ oe}\left(\text{eg}\frac{32}{3}\pi, 33.5 \text{ awrt}\right)$	A1	
		6	

MATHEMATICS

9709/13 May/June 2018

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$[3]\left[\left(x-2\right)^2\right]\left[-5\right]$	B1B1B1	OR $a = 3, b = -2, c = -5$. 1st mark is dependent on the form $(x + a)^2$ following 3
		3	

Question	Answer	Marks	Guidance
2	${}_{5}C_{3} x^{2} \left(\frac{-2}{x}\right)^{3} SOI$	B2,1,0	-80 www scores B3. Accept ${}_5C_2$.
	-80 Accept $\frac{-80}{x}$	B1	+80 without clear working scores SCB1
		3	

Question	Answer	Marks	Guidance
3	$\left[\frac{a(1-r^n)}{1-r}\right][\div]\left[\frac{a}{1-r}\right]$	M1M1	Correct formulae <u>used</u> with/without $r = 0.99$ or $n = 100$.
		DM1	Allow numerical <i>a</i> (M1M1). 3rd M1 is for division $\frac{S_n}{S_{\infty}}$ (or ratio) SOI
	$1 - 0.99^{100}$ SOI OR $\frac{63(a)}{100(a)}$ SOI	A1	Could be shown multiplied by 100(%). Dep. on DM1
	63(%) Allow 63.4 or 0.63 but not 2 infringements (e.g. 0.634, 0.63%)	A1	$n = 99$ used scores Max M3. Condone $a = 0.99$ throughout $S_n = S_{\infty}$ (without division shown) scores 2/5
		5	

9709/13

Question	Answer	Marks	Guidance
4	$f(x) = \left[\frac{(3x-1)^{\frac{2}{3}}}{\frac{2}{3}}\right] [\div3] (+c)$	B1B1	
	$1 = \frac{8^{\frac{2}{3}}}{2} + c$	M1	Sub $y = 1, x = 3$ Dep. on attempt to integrate and <i>c</i> present
	$c = -1 \rightarrow y = \frac{1}{2} (3x - 1)^{\frac{2}{3}} - 1$ SOI	A1	
	When $x = 0$, $y = \frac{1}{2}(-1)^{\frac{2}{3}} - 1 = -\frac{1}{2}$	DM1A1	Dep. on previous M1
		6	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer		Marks	Guidance
5	Angle $AOC = \frac{6}{5}$ or 1.2		M1	Allow 68.8°. Allow $\frac{5}{6}$
	$AB = 5 \times tan(their 1.2)$ OR by e.g. Sine Rule	Expect 12.86	DM1	OR $OB = \frac{5}{\cos their 1.2}$. Expect 13.80
	Area $\triangle OAB = \frac{1}{2} \times 5 \times their 12.86$	Expect 32.15	DM1	OR $\frac{1}{2} \times 5 \times their OB \times sin their 1.2$
	Area sector $\frac{1}{2} \times 5^2 \times their 1.2$	Expect 15	DM1	All DM marks are dependent on the first M1
	Shaded region = $32.15 - 15 = 17.2$		A1	Allow degrees used appropriately throughout. 17.25 scores A0
			5	

9709/13

Question	Answer	Marks	Guidance
6(i)	Gradient, m, of $AB = \frac{3k+5-(k+3)}{k+3-(-3k-1)}$ OE $\left(=\frac{2k+2}{4k+4}\right) = \frac{1}{2}$	M1A1	Condone omission of brackets for M mark
		2	
6(ii)	Mid-pt = $\left[\frac{1}{2}(-3k-1+k+3), \frac{1}{2}(3k+5+k+3)\right] =$	B1B1	B1 for $\frac{-2k+2}{2}$, B1 for $\frac{4k+8}{2}$ (ISW) or better, i.e. $(-k+1, 2k+4)$
	$\left(\frac{-2k+2}{2},\frac{4k+8}{2}\right)$ SOI		
	Gradient of perpendicular bisector is $\frac{-1}{their m}$ SOI Expect -2	M1	Could appear in subsequent equation and/or could be in terms of k
	Equation: $y - (2k + 4) = -2[x - (-k + 1)]$ OE	DM1	Through <i>their</i> mid-point and with <i>their</i> $\frac{-1}{m}$ (now numerical)
	y + 2x = 6	A1	Use of numerical k in (ii) throughout scores SC2/5 for correct answer
		5	

9709/13

Question	Answer	Marks	Guidance
7(a)(i)	$\frac{\tan^2 \theta - 1}{\tan^2 \theta + 1} = \frac{\frac{\sin^2 \theta}{\cos^2} - 1}{\frac{\sin^2 \theta}{\cos^2} + 1}$	M1	
	$= \frac{\sin\theta^2 - \cos\theta^2}{\sin\theta^2 + \cos\theta^2}$	A1	multiplying by $\cos \theta^2$ Intermediate stage can be omitted by multiplying directly by $\cos \theta^2$
	$= \sin \theta^2 - \cos \theta^2 = \sin \theta^2 - (1 - \sin \theta^2) = 2\sin^2 \theta - 1$	A1	Using $\sin \theta^2 + \cos \theta^2 = 1$ twice. Accept $a = 2, b = -1$
	ALT 1 $\frac{\sec^2 \theta - 2}{\sec^2 \theta}$	M1	ALT 2 $\frac{\tan^2 \theta - 1}{\sec^2 \theta}$
	$1 - \frac{2}{\sec^2 \theta} = 1 - 2\cos^2 \theta$	A1	$(\tan^2\theta - 1)\cos^2\theta$
	$1 - 2\left(1 - \sin^2\theta\right) = 2\sin^2\theta - 1$	A1	$\sin^2\theta - \cos^2\theta = \sin^2\theta - (1 - \sin^2\theta) = 2\sin^2\theta - 1$
	5	3	.5
7(a)(ii)	$2\sin^2\theta - 1 = \frac{1}{4} \to \sin\theta = (\pm)\sqrt{\frac{5}{8}}$ or $(\pm)0.7906$	M1	OR $\frac{t^2 - 1}{t^2 + 1} = \frac{1}{4} \rightarrow 3t^2 = 5 \rightarrow t = (\pm)\sqrt{\frac{5}{3}}$ or $t = (\pm)1.2910$
	$\theta = -52.2$	A1	
		2	

Question	Answer	Marks	Guidance
7(b)(i)	$\sin x = 2\cos x \rightarrow \tan x = 2$	M1	Or $\sin x = \sqrt{\frac{4}{5}}$ or $\cos x = \sqrt{\frac{1}{5}}$
	x = 1.11 with no additional solutions	A1	Accept 0.352π or 0.353π . Accept in co-ord form ignoring y co-ord
		2	
7(b)(ii)	Negative answer in range $-1 < y < -0.8$	B1	
	-0.894 or -0.895 or -0.896	B1	
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
8(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 18x + 24$	M1A1	Attempt to differentiate. All correct for A mark
	$3x^2 - 18x + 24 = -3$	M1	Equate <i>their</i> $\frac{dy}{dx}$ to -3
	<i>x</i> = 3	A1	
	<i>y</i> = 6	A1	
	y-6=-3(x-3)	A1FT	FT on <i>their A</i> . Expect $y = -3x + 15$
		6	
8(ii)	(3)(x-2)(x-4) SOI or $x=2, 4$ Allow $(3)(x+2)(x+4)$	M1	Attempt to factorise or solve. Ignore a RHS, e.g. = 0 or > 0 , etc.
	Smallest value of k is 4	A1	Allow $k \ge 4$. Allow $k = 4$. Must be in terms of k
		2	

Question	Answer	Marks	Guidance
9(i)	$OE = \frac{2}{10}(8i + 6j) = 1.6i + 1.2j$ AG	M1A1	Evidence of $OB = 10$ or other valid method (e.g. trigonometry) is required
		2	
9(ii)	OD = 1.6i + 1.2j + 7k	B1	Allow reversal of one or both of OD , BD .
	BD = $-8i - 6j + 1.6i + 1.2j + 7k$ OE = $-6.4i - 4.8j + 7k$	M1A1	For M mark allow sign errors. Also if 2 out of 3 components correct
	Correct method for ± OD .± BD (using <i>their</i> answers)	M1	Expect $1.6 \times -6.4 + 1.2 \times -4.8 + 49 = 33$ or $\frac{825}{25} 825/25$.
	Correct method for OD or BD (using <i>their</i> answers)	M1	Expect $\sqrt{1.6^2 + 1.2^2 + 7^2}$ or $\sqrt{6.4^2 + 4.8^2 + 7^2} = \sqrt{53}$ or $\sqrt{113}$
	$\cos BDO = their \frac{\mathbf{OD.BD}}{ \mathbf{OD} \times \mathbf{BD} }$	DM1	Expect $\frac{33}{77.4}$. Dep. on all previous M marks and either B1 or A1
	64.8° Allow 1.13(rad)	A1	Can't score A1 if 1 vector only is reversed unless explained well
		7	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
10(i)	Smallest value of <i>c</i> is 2. Accept 2, $c = 2$, $c \ge 2$. Not in terms of <i>x</i>	B1	Ignore superfluous working, e.g. $\frac{d^2 y}{dx^2} = 2$
		1	
10(ii)	$y = (x-2)^2 + 2 \rightarrow x - 2 = (\pm)\sqrt{y-2} \rightarrow x = (\pm)\sqrt{y-2} + 2$	M1	Order of operations correct. Allow sign errors
	$f^{-1}(x) = \sqrt{x-2}+2$	A1	Accept $y = \sqrt{x-2} + 2$
	Domain of f^{-1} is $x \ge 6$. Allow ≥ 6 .	B1	Not $f^{-1}(x) \ge 6$. Not $f(x) \ge 6$. Not $y \ge 6$
		3	
10(iii)	$\left[(x-2)^2 + 2 - 2 \right]^2 + 2 = 51 \text{ SOI Allow 1 term missing for M mark}$ Or $(x^2 - 4x + 6)^2 - 4(x^2 - 4x + 6) + 6 = 51$	M1A1	ALT. $f(x) = f^{-1}(51) (M1) = \sqrt{51-2} + 2$ (A1)
	$(x-2)^4 = 49$ or $(x^2 - 4x + 4)^2 = 49$ OR $x^4 - 8x^3 + 24x^2 - 32x - 33 = 0$ often implied by next line	A1	$(x-2)^2 + 2 = \sqrt{49} + 2$ OR $f(x) = 9$
	$(x-2)^2 = (\pm)7$ OR $x^2 - 4x - 3 = 0$. Ignore $x^2 - 4x + 11 = 0$	A1	$(x-2)^2 = 7 \text{ OR } x = f^{-1}(9)$
	$x = 2 + \sqrt{7}$ only CAO $x = 2 + \sqrt[4]{49}$ scores 3/5	re Al	$x = 2 + \sqrt{7}$
		5	

Question	Answer	Marks	Guidance
11(i)	$\frac{dy}{dx} = 2(x+1) - (x+1)^{-2}$	B1	
	Set = 0 and obtain $2(x+1)^3 = 1$ <u>convincingly</u> www AG	B1	
	$\frac{d^2 y}{dx^2} = 2 + 2(x+1)^{-3} \text{ www}$	B1	
	Sub, e.g., $(x+1)^{-3} = 2$ OE or $x = \left(\frac{1}{2}\right)^{\frac{1}{3}} - 1$	M1	Requires exact method – otherwise scores M0
	$\frac{d^2 y}{dx^2} = 6$ CAO www	A1	and <u>exact</u> answer – otherwise scores A0
		5	

Question	Answer	Marks	Guidance
11(ii)	$y^{2} = (x+1)^{4} + (x+1)^{-2} + 2(x+1)$ SOI	B1	OR $y^2 = (x^4 + 4x^3 + 6x^2 + 4x + 1) + (2x + 2) + (x + 1)^{-2}$
	$(\pi) \int y^2 dx = (\pi) \left[\frac{(x+1)^5}{5} \right] + \left[\frac{(x+1)^{-1}}{-1} \right] + \left[\frac{2(x+1)^2}{2} \right]$	B1B1B1	Attempt to integrate y^2 . Last term might appear as $(x^2 + 2x)$
	OR $(\pi)\left[\frac{x^5}{5} + x^4 + 2x^3 + 2x^2 + x\right] + \left[x^2 + 2x\right] + \left[-\frac{1}{x+1}\right]$	RA	
	$(\pi) \left[\frac{32}{5} - \frac{1}{2} + 4 - \left(\frac{1}{5} - 1 + 1\right) \right]$	M1	Substitute limits $0 \rightarrow 1$ into an attempted integration of y^2 . Do not condone omission of value when $x = 0$
	9.7π or 30.5	A1	Note: omission of $2(x+1)$ in first line $\rightarrow 6.7\pi$ scores 3/6 Ignore initially an extra volume, e.g. $(\pi) \int (4^{1/2})^2$. Only take into account for the final answer
		6	

MATHEMATICS

9709/12 March 2018

Paper 1 Pure Mathematics MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$(y) = \frac{x^{\frac{1}{2}}}{\frac{1}{2}} - 3x \ (+c)$	B1B1	
	Sub $(4, -6) -6 = 4 - 12 + c \rightarrow c = 2$	M1A1	Expect $(y) = 2x^{\frac{1}{2}} - 3x + 2$
		4	
		R	

Question	Answer	Marks	Guidance
2(i)	$^{7}C_{2}(+/-2x)^{2}$ or $^{7}C_{3}(-2x)^{3}$	M1	SOI, Allow for either term correct. Allow + or – inside first bracket.
	$84(x^2), -280(x^3)$	A1A1	
		3	
2(ii)	$2 \times (their - 280) + 5 \times (their 84)$ only	M1	
	-140	A1	
	2	2	2.
2			

Question	Answer	Marks	Guidance
3(i)	$40+60 \times 1.2 = 112$	M1A1	Allow 1.12 m. Allow M1 for 40 + 59 × 1.2 OE
		2	

Question	Answer	Marks	Guidance
3(ii)	Find rate of growth e.g. 41.2/40 or 1.2/40	*M1	SOI, Also implied by 3%, 0.03 or 1.03 seen
	$40 \times (1 + their 0.03)^{60 or 59}$	DM1	
	236	A1	Allow 2.36 m
	TP	3	

Question	Answer	Marks	Guidance
4(i)	$\frac{1}{\sqrt{3}} = \frac{2}{x}$ or $y - 2 = \frac{-1}{\sqrt{3}}x$	M1	OE, Allow $y - 2 = \frac{+1}{\sqrt{3}}x$. Attempt to express $\tan \frac{\pi}{6} or \tan \frac{\pi}{3} \frac{\text{exactly}}{4}$
			is required or the use of $1/\sqrt{3}$ or $\sqrt{3}$
	$(x=)2\sqrt{3}$	A1	OE
		2	
4(ii)	Mid-point $(a, b) = (\frac{1}{2} their (i), 1)$	B1FT	Expect $(\sqrt{3}, 1)$
	Gradient of AB leading to gradient of bisector, m	M1	Expect $-1/\sqrt{3}$ leading to $m = \sqrt{3}$
	Equation is $y - their b = m(x - their a)$ OE	DM1	Expect $y-1=\sqrt{3}(x-\sqrt{3})$
	$y = \sqrt{3} x - 2$ OE	A1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

March 2018

Question	Answer	Marks	Guidance
5(a)	$2\tan x + 5 = 2\tan^2 x + 5\tan x + 3 \rightarrow 2\tan^2 x + 3\tan x - 2(=0)$	M1A1	Multiply by denom., collect like terms to produce 3-term quad. in tanx
	0.464 (accept 0.148π), 2.03 (accept 0.648π)	A1A1	SCA1 for both in degrees 26.6°, 116.6° only
		4	
5(b)	$\alpha = 30^{\circ}$ $k = 4$	B1B1	Accept $\alpha = \pi / 6$
	9	2	

Question	Answer	Marks	Guidance
6(i)	$\frac{PQ}{2} = 10 \times \sin 1.1$	M1	Correct use of sin/cos rule
	(<i>PQ</i> =) 17.8 (17.82implies M1 , A1) AG	A1	OR $PQ = \frac{10\sin 2.2}{\sin\left(\frac{\pi}{2} - 1.1\right)} or \frac{10\sin 2.2}{\sin 0.4708} or \sqrt{200 - 200\cos 2.2} = 17.8$
	2	2	1.5
6(ii)	Angle $OPQ = (\pi/2 - 1.1)$ [accept 27°]	B1	OE Expect 0.4708 or 0.471. Can be scored in part (i)
	Arc $QR = 17.8 \times their (\pi/2 - 1.1)$	M1	Expect 8.39. (or 8.38).
	Perimeter = $17.8 - 10 + 10 + their \operatorname{arc} QR$	M1	
	26.2	A1	For both parts allow correct methods in degrees
		4	

Question	Answer	Marks	Guidance
7(i)	$\overrightarrow{CE} = -4\mathbf{i} - \mathbf{j} + 8\mathbf{k}$	B1	
	$ \overrightarrow{CE} = \sqrt{\left(\left(their - 4\right)^2 + \left(their - 1\right)^2 + \left(their 8\right)^2} = 9$	M1A1	Could use Pythagoras' theorem on triangle CDE
		3	
7(ii)	$\overrightarrow{CA} = 3\mathbf{i} - 3\mathbf{j} \text{ or } \overrightarrow{AC} = -3\mathbf{i} + 3\mathbf{j}$	B1	
	$\overrightarrow{CE} \cdot \overrightarrow{CA} = (-4\mathbf{i} - \mathbf{j} + 8\mathbf{k}) \cdot (3\mathbf{i} - 3\mathbf{j}) = -12 + 3$ (Both vectors reversed ok)	M1	Scalar product of <i>their</i> \overrightarrow{CE} , \overrightarrow{CA} . One vector reversed ok for all M marks
	$ \overrightarrow{CE} \times \overrightarrow{CA} = \sqrt{16 + 1 + 64} \times \sqrt{9 + 9}$	M1	Product of moduli of <i>their</i> \overrightarrow{CE} , \overrightarrow{CA}
	$\cos^{-1}\left(\frac{-12+3}{9\sqrt{18}}\right) = \cos^{-1}\left(\frac{-1}{\sqrt{18}}\right)$ [or e.g. $\cos^{-1}\left(\frac{-3}{\sqrt{162}}\right)$, $\cos^{-1}\left(\frac{-9}{\sqrt{1458}}\right)$] etc.	A1A1	A1 for any correct expression, A1 for required form Equivalent answers must be in required form m/\sqrt{n} (<i>m</i> , <i>n</i> integers)
		5	

Question	Answer	Marks	Guidance
8(i)	$dy / dx = x - 6x^{\frac{1}{2}} + 8$	B2,1,0	
	Set to zero and attempt to solve a quadratic for $x^{\frac{1}{2}}$	M1	Could use a substitution for $x^{\frac{1}{2}}$ or rearrange and square correctly*
	$x^{\frac{1}{2}} = 4$ or $x^{\frac{1}{2}} = 2$ [$x = 2$ and $x = 4$ gets M1 A0]	A1	Implies M1. 'Correct' roots for <i>their</i> dy/dx also implies M1
	x = 16 or 4	A1FT	Squares of their solutions *Then A1,A1 for each answer
		5	

Question	Answer	Marks	Guidance
8(ii)	$d^2 y / dx^2 = 1 - 3x^{-\frac{1}{2}}$	B1FT	FT on <i>their</i> dy/dx , providing a fractional power of x is present
		1	
8(iii)	(When $x = 16$) $d^2 y / dx^2 = 1/4 > 0$ hence MIN	M1	Checking both of their values in their $d^2 y / dx^2$
	(When $x = 4$) $d^2 y / dx^2 = -1/2 < 0$ hence MAX	A1	All correct Alternative methods ok but must be explicit about values of x being considered
		2	

Question	Answer	Marks	Guidance
9(i)	$1 + cx = cx^{2} - 3x \rightarrow cx^{2} - x(c+3) - 1 (= 0)$	M1	Multiply throughout by <i>x</i> and rearrange terms on one side of equality
	Use $b^2 - 4ac \Big[= (c+3)^2 + 4c = c^2 + 10c + 9$ or $(c+5)^2 - 16 \Big]$	M1	Select their correct coefficients which must contain 'c' twice Ignore = $0, < 0, >0$ etc. at this stage
	(Critical values) –1, –9	A1	SOI
	$c \leq -9, c \geq -1$	A1	-0-
	·satp	-004	
Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
9(ii)	Sub their <i>c</i> to obtain a quadratic $[c = -1 \rightarrow -x^2 - 2x - 1(=0)]$	M1	
	x = -1	A1	
	Sub their <i>c</i> to obtain a quadratic $[c = (-9 \rightarrow -9x^2 + 6x - 1(=0)]$	M1	
	x = 1 / 3	A1	[Alt 1: $dy/dx = -1/x^2 = c$, when $c = -1, x = \pm 1, c = -9, x = \pm \frac{1}{3}$
	9		Give M1 for equating the gradients, A1 for all four answers and M1A1 for checking and eliminating]
			[Alt 2: $dy/dx = -1/x^2 = c$ leading to
			$1/x - 1/x^{2} = (-1/x^{2})(x) - 3$
			Give M1 A1 at this stage and M1A1 for solving]
		4	

Question	Answer	Marks	Guidance
10(i)(a)	f(x) > 2	B1	Accept $y > 2$, $(2, \infty)$, $(2, \infty]$, range > 2
	5	1	-0 ⁻
10(i)(b)	g(x) > 6	B1	Accept $y > 6$, $(6, \infty)$, $(6, \infty]$, range > 6
		1	
10(i)(c)	$2 < \mathrm{fg}(x) < 4$	B1	Accept 2 < <i>y</i> <4, (2, 4), 2 < <i>range</i> < 4
		1	

Question	Answer	Marks	Guidance
10(ii)	The range of f is (partly) outside the domain of g	B1	
		1	
10(iii)	$f'(x) = \frac{-8}{(x-x)^2}$	B1	SOI
	$(x-2)^2$		
	$y = \frac{8}{x-2} + 2 \rightarrow y-2 = \frac{8}{x-2} \rightarrow x-2 = \frac{8}{y-2}$	M1	Order of operations correct. Accept sign errors
	$f^{-1}(x) = \frac{8}{x-2} + 2$	A1	SOI
	$\frac{-48}{(x-2)^2} + \frac{16}{x-2} + 4 - 5 (<0) \to x^2 - 20x + 84 (<0)$	M1	Formation of 3-term quadratic in $x,(x-2)$ or $1/(x-2)$
	(x-6)(x-14) or 6, 14	A1	SOI
	2 < <i>x</i> < 6 , <i>x</i> > 14	A1	САО
	Z	6	1.5

Question	Answer	Marks	Guidance
11(i)	$dy / dx = [-2] - [3(1-2x)^{2}] \times [-2] (= 4 - 24x + 24x^{2})$	B2,1,0	Award for the accuracy within each set of square brackets
	At $x = \frac{1}{2} \frac{dy}{dx} = -2$	B1	
	Gradient of line $y = 1 - 2x$ is -2 (hence <i>AB</i> is a tangent) AG	B1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

March 2018

Question	Answer	Marks	Guidance
11(ii)	Shaded region = $\int_{0}^{\frac{1}{2}} (1-2x) - \int_{0}^{\frac{1}{2}} [1-2x-(1-2x)^{3}] \text{ oe}$	M1	Note: If area triangle OAB – area under the curve is used the first part of the integral for the area under the curve must be evaluated
	$= \int_{0}^{\frac{1}{2}} (1-2x)^{3} dx $ AG	A1	
	ATP	2	
11(iii)	Area = $\left[\frac{\left(1-2x\right)^4}{4}\right]$ [÷-2]	*B1B1	
	0 - (-1/8) = 1/8	DB1	OR $\int 1 - 6x + 12x^2 - 8x^3 = x - 3x^2 + 4x^3 - 2x^4$ (B2,1,0) Applying limits $0 \rightarrow \frac{1}{2}$
		3	

MATHEMATICS

9709/11 October/November 2017

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^{1/2} - 3 - 2x^{-1/2}$	B2,1,0	
	at $x = 4$, $\frac{dy}{dx} = 6 - 3 - 1 = 2$	M1	
	Equation of tangent is $y = 2(x-4)$ OE	A1FT	Equation through (4, 0) with <i>their</i> gradient
	6	4	

Question	Answer	Marks	Guidance
2	$f'(x) = 3x^2 - 2x - 8$	M1	Attempt differentiation
	$-\frac{4}{3}$, 2 SOI	A1	
	$f'(x) > 0 \Rightarrow x < -\frac{4}{3}$ SOI	M1	Accept $x > 2$ in addition. FT <i>their</i> solutions
	Largest value of <i>a</i> is $-\frac{4}{3}$	A1	Statement in terms of <i>a</i> . Accept $a \leq -\frac{4}{3}$ or $a < -\frac{4}{3}$. Penalise extra solutions
	·Se	itpr4	P · ·

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(i)	$\frac{3a}{1-r} = \frac{a}{1+2r}$	M1	Attempt to equate 2 sums to infinity. At least one correct
	3 + 6r = 1 - r	DM1	Elimination of 1 variable (a) at any stage and multiplication
	$r = -\frac{2}{7}$	A1	
		3	
3(ii)	$\frac{1}{2}n[2\times15+(n-1)4]=\frac{1}{2}n[2\times420+(n-1)(-5)]$	M1A1	Attempt to equate 2 sum to n terms, at least one correct (M1). Both correct (A1)
	<i>n</i> = 91	A1	
		3	

Question	Answer	Marks	Guidance
4(i)	$V = \frac{1}{3}\pi r^2 (18 - r) = 6\pi r^2 - \frac{1}{3}\pi r^3$	B1	AG
		1	
4(ii)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 12\pi r - \pi r^2 = 0$	M1	Differentiate and set $= 0$
	$\pi r (12 - r) = 0 \rightarrow r = 12$	A1	
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = 12\pi - 2\pi r$	M1	
	Sub $r = 12 \rightarrow 12\pi - 24\pi = -12\pi \rightarrow MAX$	A1	AG
		4	
4(iii)	Sub $r = 12$, $h = 6 \rightarrow \text{Max } V = 288\pi$ or 905	B1	
		1	

Question	Answer	Marks	Guidance
5(i)	$\cos A = 8/10 \rightarrow A = 0.6435$	B1	AG Allow other valid methods e.g. $\sin A = 6/10$
		1	
5(ii)	<i>EITHER:</i> Area $\triangle ABC = \frac{1}{2} \times 16 \times 6$ or $\frac{1}{2} \times 10 \times 16 \sin 0.6435 = 48$	(M1A1	
	Area 1 sector $\frac{1}{2} \times 10^2 \times 0.6435$	M1	
	Shaded area = $2 \times their \operatorname{sector} - their \Delta ABC$	M1)	
	$OR: \Delta BDE = 12, \ \Delta BDC = 30$	(B1 B1	
	Sector = 32.18	M1	
	$2 \times \text{segment} + \Delta BDE$	M1)	
	=16.4	A1	
		5	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(i)	Mid-point of $AB = (3, 5)$	B1	Answers may be derived from simultaneous equations
	Gradient of $AB = 2$	B1	
	Eqn of perp. bisector is $y-5 = -\frac{1}{2}(x-3) \rightarrow 2y = 13 - x$	M1A1	AG For M1 FT from mid-point and gradient of <i>AB</i>
		4	
6(ii)	$-3x + 39 = 5x^{2} - 18x + 19 \rightarrow (5)(x^{2} - 3x - 4)(=0)$	M1	Equate equations and form 3-term quadratic
	x = 4 or -1	A1	
	$y = 4\frac{1}{2}$ or 7	A1	
	$CD^2 = 5^2 + 2^{1/2^2} \rightarrow CD = \sqrt{\frac{125}{4}}$	M1A1	Or equivalent integer fractions ISW
		5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(a)	a = -2, b = 3	B1B1	
		2	
7(b)(i)	$s + s^{2} - sc + 2c + 2sc - 2c^{2} = s + sc \rightarrow s^{2} - 2c^{2} + 2c = 0$	B1	Expansion of brackets must be correct
	$1 - \cos^2\theta - 2\cos^2\theta + 2\cos\theta = 0$	M1	Uses $s^2 = 1 - c^2$
	$3\cos^2\theta - 2\cos\theta - 1 = 0$	A1	AG
		3	
7(b)(ii)	$\cos\theta = 1$ or $-\frac{1}{3}$	B1	
	$\theta = 0^{\circ} \text{ or } 109.5^{\circ} \text{ or } -109.5^{\circ}$	B1B1B1 FT	FT for – <i>their</i> 109.5°
		4	

Question	Answer	Marks	Guidance
8(a)	EITHER: $\overrightarrow{PR} = 2\overrightarrow{PQ} = 2(\mathbf{q} - \mathbf{p})$	(B1	
	$\overrightarrow{OR} = \mathbf{p} + 2\mathbf{q} - 2\mathbf{p} = 2\mathbf{q} - \mathbf{p}$	M1A1)	
	$\frac{OR:}{\overrightarrow{QR}} = \overrightarrow{PQ} = \mathbf{q} - \mathbf{p}$	(B1	
	$\overrightarrow{OR} = \overrightarrow{OQ} + \overrightarrow{QR} = \mathbf{q} + \mathbf{q} - \mathbf{p} = 2\mathbf{q} - \mathbf{p}$	M1A1)	Or other valid method
		3	
8(b)	$6^2 + a^2 + b^2 = 21^2$ SOI	B1	
	18 + 2a + 2b = 0	B1	
	$a^2 + (-a - 9)^2 = 405$	M1	Correct method for elimination of a variable. (Or same equation in b)
	$(2)(a^2+9a-162)(=0)$	A1	Or same equation in <i>b</i>
	a = 9 or -18	A1	
	b = -18 or 9	A1	0
	80.	tpr ₆	

Question	Answer	Marks	Guidance
9(i)	gg(x) = g(2x - 3) = 2(2x - 3) - 3 = 4x - 9	M1A1	
		2	
9(ii)	$y = \frac{1}{x^2 - 9} \to x^2 = \frac{1}{y} + 9$ OE	M1	Invert; add 9 to both sides or with x/y interchanged
	$f^{-1}(x) = \sqrt{\frac{1}{x} + 9}$	A1	
	Attempt soln of $\sqrt{\frac{1}{x} + 9} > 3$ or attempt to find range of f. (y > 0)	M1	
	Domain is $x > 0$ CAO	A1	May simply be stated for B2
		4	

Question	Answer	Marks	Guidance
9(iii)	EITHER:	(M1	
	$\frac{1}{(2x-3)^2-9} = \frac{1}{7}$		
	$(2x-3)^2 = 16$ or $4x^2 - 12x - 7 = 0$	A1	
	x = 7/2 or -1/2	A1	
	x = 7/2 only	A1)	
	OR:	(M1	
	$\mathbf{g}(\mathbf{x}) = \mathbf{f}^{-1}\left(\frac{1}{7}\right)$		
	g(x) = 4	A1	
	2x - 3 = 4	A1	
	x = 7/2	A1)	
		4	

Question	Answer	Marks	Guidance	
10(i)	Area = $\int \frac{1}{2} \left(x^4 - 1 \right) dx = \frac{1}{2} \left[\frac{x^5}{5} - x \right]$	*B1		
	$\frac{1}{2}\left[\frac{1}{5}-1\right]-0 = (-)\frac{2}{5}$	DM1A1	Apply limits $0 \rightarrow 1$	
		3		
10(ii)	Vol = $\pi \int y^2 dx = \frac{1}{4} (\pi) \int (x^8 - 2x^4 + 1) dx$	M1	(If middle term missed out can only gain the M marks)	
	$\frac{1}{4}(\pi)\left[\frac{x^9}{9} - \frac{2x^5}{5} + x\right]$	*A1		
	$\frac{1}{4}(\pi)\left[\left(\frac{1}{9}-\frac{2}{5}+1\right]-0\right]$	DM1		
	$\frac{8\pi}{45}$ or 0.559	A1		
	2	4	.5	
Satprep.co				

^{9709/11}

Question	Answer	Marks	Guidance
10(iii)	Vol = $\pi \int x^2 dy = (\pi) \int (2y+1)^{1/2} dy$	M1	Condone use of x if integral is correct
	$(\pi) \left[\frac{(2y+1)^{3/2}}{3/2} \right] [\div 2]$	*A1A1	Expect $(\pi)\left[\frac{(2y+1)^{3/2}}{3}\right]$
	$(\pi)\left[\frac{1}{3}-0\right]$	DM1	
	$\frac{\pi}{3}$ or 1.05	A1	Apply $-\frac{1}{2} \rightarrow 0$
		5	

MATHEMATICS

9709/12 October/November 2017

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	EITHER: Term is ${}^{9}C_{3} \times 2^{6} \times (-\frac{1}{4})^{3}$	(B1, B1, B1)	OE
	$OR1: \\ \left(\frac{8x^3 - 1}{4x^2}\right)^9 = \left(\frac{1}{4x^2}\right)^9 \left(8x^3 - 1\right)^9 or - \left(\frac{1}{4x^2}\right)^9 \left(1 - 8x^3\right)^9$		
	Term is $-\frac{1}{4^9} \times {}^9C_3 \times 8^6$	(B1, B1, B1)	OE
	$OR2: $ $(2x)^9 \left(1 - \frac{1}{8x^3}\right)^9$		
	Term is $2^9 \times {}^9C_3 \times \left(-\frac{1}{8}\right)^3$	(B1, B1, B1)	OE
	Selected term, which must be independent of $x = -84$	B1	
	4	4	.5

Question	Answer	Marks	Guidance
2(i)	$\frac{4-x}{5}$	B1	OE
	Equate a valid attempt at f ¹ with f, or with x, or f with x $\rightarrow \left(\frac{2}{3}, \frac{2}{3}\right)$ or (0.667, 0.667)	M1, A1	Equating and an attempt to solve as far $x =$. Both coordinates.
		3	
2(ii)	1	B1	Line $y = 4 - 5x$ – must be straight, through approximately (0,4) and intersecting the positive <i>x</i> axis near (1,0) as shown.
		B1	Line $y = \frac{4-x}{5}$ – must be straight and through approximately (0, 0.8). No need to see intersection with <i>x</i> axis.
		B1	A line through (0,0) and the point of intersection of a pair of <u>straight</u> lines with negative gradients. This line must be at 45° unless scales are different in which case the line must be labelled $y=x$.
	3	3	2.

	2.	C	0
Question	Answer	Marks	Guidance
3(a)	Uses $r = (1.05 \text{ or } 105\%)^{9, 10 \text{ or } 11}$	B1	Used to multiply repeatedly or in any GP formula.
	New value = $10000 \times 1.05^{10} = (\$)16\ 300$	B1	
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(b)	EITHER: $n = 1 \rightarrow 5$ $a = 5$	(B1	Uses $n = 1$ to find a
	$n = 2 \rightarrow 13$	B1	Correct S_n for any other value of n (e.g. $n = 2$)
	$a + (a + d) = 13 \rightarrow d = 3$	M1 A1)	Correct method leading to $d =$
	$OR: \\ \left(\frac{n}{2}\right) (2a + (n-1)d) = \left(\frac{n}{2}\right) (3n+7)$	R	$\left(\frac{n}{2}\right)$ maybe be ignored
	$\therefore dn + 2a - d = 3n + 7 \rightarrow dn = 3n \rightarrow d = 3$	(*M1A1	Method mark awarded for equating terms in n from correct S_n formula.
	2a - (their 3) = 7, a = 5	DM1 A1)	
		4	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(i)	Pythagoras $\rightarrow r = \sqrt{72}$ OE	M1	Correct method leading to $r =$
	or $\cos 45 = \frac{6}{r} \rightarrow r = \frac{6}{\cos 45} = 6\sqrt{2}$		
	Arc $DC = \sqrt{72} \times \frac{1}{4\pi} = \frac{3\sqrt{2}}{2}\pi$, 2.12 π , 6.66	M1 A1	Use of $s=r\theta$ with their r (NOT 6) and $\frac{1}{4}\pi$
		3	
4(ii)	Area of sector- <i>BDC</i> is $\frac{1}{2} \times 72 \times \frac{1}{4}\pi$ (= 9π or 28.274)	*M1	Use of $\frac{1}{2}r^2\theta$ with their r (NOT 6) and $\frac{1}{4}\pi$
	Area $Q = 9\pi - 18 (10.274)$	DM1	Subtracts their $\frac{1}{2} \times 6 \times 6$ from their $\frac{1}{2}r^2\theta$
	Area <i>P</i> is $(\frac{1}{4}\pi 6^2 - \text{area } Q) = 18$	M1	Uses $\{\frac{1}{4}\pi 6^2 - (\text{their area Q using }\sqrt{72})\}$
	Ratio is $\frac{18}{9\pi - 18} \left(\frac{18}{10.274} \right) \to 1.75$	A1	
		4	

October/November
2017

Question	Answer	Marks	Guidance
5(i)	EITHER: Uses $\tan^2 2x = \frac{\sin^2 2x}{\cos^2 2x}$	(M1	Replaces $\tan^2 2x$ by $\frac{\sin^2 2x}{\cos^2 2x}$ not $\frac{\sin^2}{\cos^2} 2x$
	Uses $\sin^2 2x = (1 - \cos^2 2x)$	M1	Replaces $\sin^2 2x$ by $(1 - \cos^2 2x)$
	$\rightarrow 2\cos^2 2x + 3\cos 2x + 1 = 0$	A1)	AG. All correct
	$OR: \tan^2 2x = \sec^2 2x - 1$	(M1	Replaces $\tan^2 2x$ by $\sec^2 2x - 1$
	$\sec^2 2x = \frac{1}{\cos^2 2x}$ Multiply through by $\cos^2 2x$ and rearrange	M1	Replaces $\sec^2 2x$ by $\frac{1}{\cos^2 2x}$
	$\rightarrow 2\cos^2 2x + 3\cos 2x + 1 = 0$	A1)	AG. All correct
		3	
5(ii)	$\cos 2x = -\frac{1}{2}, -1$	M1	Uses (i) to get values for $\cos 2x$. Allow incorrect sign(s).
	$2x = 120^{\circ}, 240^{\circ} \text{ or } 2x = 180^{\circ}1$ x = 60° or 120°	A1 A1 FT	A1 for 60° or 120° FT for 180–1st answer
	or $x = 90^{\circ}$	AI	Any extra answer(s) in given range only penalise fourth mark so max 3/4.
		4	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(a)(i)	$4 = a + \frac{1}{2}b$ 3 = a + b	M1	Forming simultaneous equations and eliminating one of the variables – probably <i>a</i> . May still include $\sin \frac{\pi}{2}$ and / or $\sin \frac{\pi}{6}$
	$\rightarrow a = 5, b = -2$	A1 A1	
		3	
6(a)(ii)	ff(x) = a + bsin(a + bsinx)	M1	Valid method for ff. Could be $f(0) = N$ followed by $f(N) = M$.
	$ff(0) = 5 - 2\sin 5 = 6.92$	A1	
6(b)	EITHER: 10 = c + d and $-4 = c - d10 = c - d$ and $-4 = c + d$	(M1	Either pair of equations stated.
	$c = 3, d = 7, -7 \text{ or } \pm 7$	A1 A1)	Either pair solved ISW Alternately c=3 B1, range = $14 \text{ M1} \rightarrow d = 7, -7 \text{ or } \pm 7 \text{ A1}$
	$OR:$ $y = 3 + 7 \sin(x)$ $y = 4$ $y = 3 - 7 \sin(x)$ $y = 4$ $y = 3 - 7 \sin(x)$ $y = 4$	(M1 A1 A1)	Either of these diagrams can be awarded M1.Correct values of c and/or d can be awarded the A1, A1
		3	

Question	Answer	Marks	Guidance
7(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 4 = 0$		Can use completing the square.
	$\rightarrow x = 2, y = 3$	B1 B1	
	Midpoint of <i>AB</i> is (3, 5)	B1 FT	FT on (<i>their</i> 2, <i>their</i> 3) with (4,7)
	$\rightarrow m = \frac{7}{3}$ (or 2.33)	B B1	
	97	4	
7(jj)		*M1	Equator and rate to 0 must contain m
/(11)	Simultaneous equations $\rightarrow x^2 - 4x - mx + 9 (= 0)$		Equates and sets to 0 must contain m
	Use of $b^2 - 4ac \rightarrow (m+4)^2 - 36$	DM1	Any use of $b^2 - 4ac$ on equation set to 0 must contain m
	Solves = $0 \rightarrow -10$ or 2	A1	Correct end-points.
	-10 < m < 2	A1	Don't condone \leq at either or both end(s). Accept $-10 < m, m < 2$.
		4	
	5		2.

Question	Answer	Marks	Guidance
8(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	MI CONT	Sets $\frac{dy}{dx}$ to 0 and attempts to solve leading to two values for <i>x</i> .
	x = 1, x = 4	A1	Both values needed
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
8(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -2x + 5$	B1	
	Using both of their x values in their $\frac{d^2 y}{dx^2}$	M1	Evidence of any valid method for both points.
	$x = 1 \rightarrow (3) \rightarrow$ Minimum, $x = 4 \rightarrow (-3) \rightarrow$ Maximum	A1	
		3	
8(iii)	$y = -\frac{x^3}{3} + \frac{5x^2}{2} - 4x (+c)$	B2, 1, 0	+c not needed. -1 each error or omission.
	Uses $x = 6$, $y = 2$ in an integrand to find $c \rightarrow c = 8$	M1 A1	Statement of the final equation not required.
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
9(i)	$\overline{AB} = \begin{pmatrix} 4\\3\\2 \end{pmatrix} \text{ or } \overline{BA} = \begin{pmatrix} -4\\-3\\-2 \end{pmatrix}$	M1	Use of b – a or a – b
	e.g. \overrightarrow{AO} . $\overrightarrow{AB} = -8 + 6 + 2 = 0 \rightarrow O\hat{AB} = 90^{\circ} \text{ AG}$	M1 A1	Use of dot product with either $\overrightarrow{AO} \text{ or } \overrightarrow{OA} \text{ \& either } \overrightarrow{AB} \text{ or } \overrightarrow{BA}$. Must see 3 component products
	OR	176	
	$\left \overrightarrow{OA}\right = 3, \left \overrightarrow{OB}\right = \sqrt{38}, \left \overrightarrow{AB}\right = \sqrt{29}$		OR Correct use of Pythagoras.
	$OA^2 + AB^2 = OB^2 \rightarrow O\hat{A}B = 90^\circ \text{ AG}$		In both methods must state angle or $\theta = 90^{\circ}$ or similar for A1
		3	
9(ii)	$\overrightarrow{CB} = \begin{pmatrix} 6 \\ -6 \\ -3 \end{pmatrix} \text{ or } \overrightarrow{BC} = \begin{pmatrix} -6 \\ 6 \\ 3 \end{pmatrix}$	B1	Must correctly identify the vector.
	$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC} \text{ (or } -\overrightarrow{CB}\text{)} = \begin{pmatrix} 0\\7\\4 \end{pmatrix}$	M1 A1	Correct link leading to \overrightarrow{OC}
	· sate	re?3	

Question	Answer	Marks	Guidance
9(iii)	$\left \overrightarrow{OA}\right = 3, \left \overrightarrow{BC}\right = 9, \left \overrightarrow{AB}\right = \sqrt{29} (5.39)$	B1	For any one of these
	Area = $\frac{1}{2}(3+9)\sqrt{29}$ or $3\sqrt{29} + 3\sqrt{29}$	M1	Correct formula(e) used for trapezium or (rectangle + triangle) or two triangles using their lengths.
	$= 6\sqrt{29} (1\sqrt{1044}, 2\sqrt{261} \text{ or } 3\sqrt{116})$	A1	Exact answer in correct form.
	9	3	

Question	Answer	Marks	Guidance
10(i)	$\frac{dy}{dx} = \frac{1}{2} \times (5x - 1)^{-\frac{1}{2}} \times 5 \qquad (= \frac{5}{6})$	B1 B1	B1 Without \times 5 B1 \times 5 of an attempt at differentiation
	$m \text{ of normal} = -\frac{6}{5}$	M1	Uses $m_1m_2 = -1$ with their numeric value from their dy/dx
	Equation of normal $y-3 = -\frac{6}{5}(x-2)$ OE	A1	Unsimplified. Can use $y = mx + c$ to get $c = 5.4$ ISW
	or $5y + 6x = 27$ or $y = \frac{-6}{5}x + \frac{27}{5}$	DD.C	0

Question	Answer	Marks	Guidance
10(ii)	EITHER:	(B1	Correct expression without ÷5
	For the curve $(\int)\sqrt{5x-1}dx = \frac{(5x-1)^{\frac{3}{2}}}{\frac{3}{2}} \div 5$	B1	For dividing an attempt at integration of y by 5
	Limits from $\frac{1}{5}$ to 2 used \rightarrow 3.6 or $\frac{18}{5}$ OE	M1 A1	Using $\frac{1}{5}$ and 2 to evaluate an integrand (may be $\int y^2$)
	Normal crosses x-axis when $y = 0, \rightarrow x = (4^{1/2})$	M1	Uses their equation of normal, NOT tangent
	Area of triangle = 3.75 or $\frac{15}{4}$ OE	A1	This can be obtained by integration
	Total area=3.6 + 3.75 = 7.35, $\frac{147}{20}$ OE	A1)	
	OR: For the curve: $\left(\int\right)\frac{1}{5}\left(y^2+1\right)dy = \frac{1}{5}\left(\frac{y^3}{3}+y\right)$	(B2, 1, 0	-1 each error or omission.
	Limits from 0 to 3 used $\rightarrow 2.4$ or $\frac{12}{5}$ OE	M1 A1	Using 0 and 3 to evaluate an integrand
	Uses their equation of normal, NOT tangent.	M1	Either to find side length for trapezium or attempt at integrating between 0 and 3
	Area of trapezium = $\frac{1}{2}(2+4\frac{1}{2}) \times 3 = \frac{39}{4}or9\frac{3}{4}$	A1	This can be obtained by integration
	Shaded area = $\frac{39}{4} - \frac{12}{5} = 7.35, \frac{147}{20}$ OE	A1)	

October/Novembe	er
201	7

Question	Answer	Marks	Guidance
		7	

MATHEMATICS

9709/13 October/November 2017

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$\frac{1}{2}n\left[-24+(n-1)6\right] \sim 3000$ Note: ~ denotes <u>any</u> inequality or equality	M1	Use correct formula with RHS \approx 3000 (e.g. 3010).
	$(3)(n^2-5n-1000)(\sim 0)$	A1	Rearrange into a 3-term quadratic.
	$n \sim 34.2 (\& -29.2)$	A1	
	35. Allow $n \ge 35$	A1	
		4	
2	$ax + 3a = -\frac{2}{x} \rightarrow ax^2 + 3ax + 2 (= 0)$	*M1	Rearrange into a 3-term quadratic.
	Apply $b^2 - 4ac > 0$ SOI	DM1	Allow \ge . If no inequalities seen, M1 is implied by 2 correct final answers in <i>a</i> or <i>x</i> .
	$a < 0, a > \frac{8}{9}$ (or 0.889) OE	A1 A1	For final answers accept $0 > a > \frac{8}{9}$ but not \leq , \geq .
	4	4	
Satprep.			
9709/13

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(i)	$6C3\left(\frac{2}{x}\right)^3 (-3x)^3$ SOI also allowed if seen in an expansion	M1	Both x 's can be missing.
	-4320 Identified as answer	A1	Cannot be earned retrospectively in (ii).
		2	
3(ii)	$6C2\left(\frac{2}{x}\right)^4 \left[(-)3x\right]^2$ SOI clearly identified as critical term	M1	Both x 's and minus sign can be missing.
	$15a \times 16 \times 9 - their 4320 (= 0)$	A1 FT	FT on <i>their</i> 4320.
	<i>a</i> = 2	A1	
		3	

Question	Answer	Marks	Guidance
4	$f'(x) = \left[\left(\frac{3}{2} \right) (2x - 1)^{1/2} \right] \times [2] - [6]$	B2, 1, 0	Deduct 1 mark for each [] incorrect.
	$f'(x) < 0 \text{ or } \leq 0 \text{ or } = 0$ SOI	M1	<u>,0</u>
	$(2x-1)^{1/2} < 2 \text{ or } \le 2 \text{ or } = 2 \text{ OE}$	A1	Allow with k used instead of x
	Largest value of k is $\frac{5}{2}$	A1	Allow $k \leq \frac{5}{2}$ or $k = \frac{5}{2}$ Answer must be in terms of k (not x)
		5	

9709/13

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(i)	$\cos\theta + 4 + 5\sin^2\theta + 5\sin\theta - 5\sin\theta - 5(=0)$	M1	Multiply throughout by $\sin\theta + 1$. Accept if $5\sin\theta - 5\sin\theta$ is not seen
	$5(1-\cos^2\theta)+\cos\theta-1 (=0)$	M1	Use $s^2 = 1 - c^2$
	$5\cos^2\theta - \cos\theta - 4 = 0 \qquad AG$	A1	Rearrange to AG
		3	
5(ii)	$\cos\theta = 1$ and -0.8	B1	Both required
	$\theta = [0^\circ, 360^\circ], [143.1^\circ], [216.9^\circ]$	B1 B1 B1 FT	Both solutions required for 1st mark. For 3rd mark FT for $(360^\circ - their 143.1^\circ)$
			Extra solution(s) in range (e.g. 180°) among 4 correct solutions scores $\frac{3}{4}$
		4	

Question	Answer	Marks	Guidance
6(i)	$y = \frac{2}{x^2 - 1} \implies x^2 = \frac{2}{y} + 1$ OE	M1	,°
	$x = (\pm)\sqrt{\frac{2}{y} + 1}$ OE	A1	With or without x/y interchanged.
	$f^{-1}(x) = -\sqrt{\frac{2}{x} + 1} OE$	A1	Minus sign obligatory. Must be a function of x .
		3	

9709/13

Question	Answer	Marks	Guidance
6(ii)	$\left(\frac{2}{x^2 - 1}\right)^2 + 1 = 5$	B1	
	$\frac{2}{x^2-1} = (\pm)2$ OE OR $x^4 - 2x^2 = 0$ OE	B1	Condone $x^2 = 0$ as an additional solution
	$x^{2} - 1 = (\pm)1 \implies x^{2} = 2 \text{ (or 0)}$ $x = -\sqrt{2} \qquad \text{or} \qquad -1.41 \text{ only}$	PRE	
	9	4	

Question	Answer	Marks	Guidance
7(i)	$\sin^{-1}\left(\frac{3}{5}\right) = 0.6435$ AG	M1	OR $(PBC =)\cos^{-1}\left(\frac{3}{5}\right) = 0.9273 \Rightarrow (ABP =)\frac{\pi}{2} - 0.9273 = 0.6435$
		L	Or other valid method. Check working and diagram for evidence of incorrect method
7(ii)	Use (once) of sector area = $\frac{1}{2}r^2\theta$	M1	
	Area sector $BAP = \frac{1}{2} \times 5^2 \times 0.6435 = 8.04$	A1	
	Area sector $DAQ = \frac{1}{2} \times \frac{1}{2}\pi \times 3^2 = 7.07$, Allow $\frac{9\pi}{4}$	Al	30
		3	

Question	Answer	Marks	Guidance		
7(iii)	<i>EITHER:</i> Region = sect + sect - (rect - Δ) or sect - [rect - (sect + Δ)]	(M1	Use of correct strategy		
	$(\text{Area } \Delta BPC =) \frac{1}{2} \times 3 \times 4 = 6$ Seen	A1			
	8.04 + 7.07 - (15 - 6) = 6.11	A1)			
	OR1: Region = sector ADQ – (trap $ABPD$ – sector ABP).	(M1	<u>Use</u> of correct strategy		
	(Area trap $ABPD = 1/(5+1) \times 3 = 9$ Seen	A1			
	7.07 - (9 - 8.04) = 7.07 - 0.96 = 6.11	A1)			
	<i>OR2:</i> Area segment AP = 2.5686 Area segment AQ = 0.5438 Region = segment AP + segment AQ + ΔAPQ .	(M1	<u>Use</u> of correct strategy		
	(Area $\triangle APQ =$) $\frac{1}{2} \times 2 \times 3 = 3$ Seen	A1			
	2.57 + 0.54 + 3 = 6.11	A1)			
	2	3	.5		
Satprep.co.					

9709/13

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
8(i)	<i>EITHER:</i> $4 - 3\sqrt{x} = 3 - 2x \rightarrow 2x - 3\sqrt{x} + 1 \ (=0)$ or e.g. $2k^2 - 3k + 1 \ (=0)$	(M1	Form 3-term quad & attempt to solve for \sqrt{x} .
	$\sqrt{x} = \frac{1}{2}, 1$	A1	Or $k = \frac{1}{2}$ or 1 (where $k = \sqrt{x}$).
	$x = \frac{1}{4}, 1$	A1)	
	OR1:	(M1	
	$\left(3\sqrt{x}\right)^2 = \left(1+2x\right)^2$		
	$4x^2 - 5x + 1 \ (=0)$	A1	
	$x = \frac{1}{4}, 1$	A1)	
	$OR2: \frac{3-y}{2} = \left(\frac{4-y}{3}\right)^2 (\rightarrow 2y^2 - 7y + 5(=0))$	(M1	Eliminate <i>x</i>
	$y = \frac{5}{2}, 1$	A1	.5
	$x = \frac{1}{4}, 1$	A1)	0
	-satp	rep3	

Question	Answer	Marks	Guidance
8(ii)	<i>EITHER:</i> Area under line = $\int (3-2x) dx = 3x - x^2$	(B1	
	$=\left[\left(3-1\right)-\left(\frac{3}{4}-\frac{1}{16}\right)\right]$	M1	Apply <i>their</i> limits (e.g. $\frac{1}{4} \rightarrow 1$) after integn.
	Area under curve $= \int (4 - 3x^{1/2}) dx = 4x - 2x^{3/2}$	B1	
	$[(4-2)-(1-\frac{1}{4})]$	M1	Apply <i>their</i> limits (e.g. $\frac{1}{4} \rightarrow 1$) after integration.
	Required area = $\frac{21}{16} - \frac{5}{4} = \frac{1}{16}$ (or 0.0625)	A1)	
	OR:	(*M1	Subtract functions and then attempt integration
	+/- $\int (3-2x) - (4-3x^{\frac{1}{2}}) = +/-\int (-1-2x+3x^{\frac{1}{2}})$		
	$+/-\left[-x-x^{2}+\frac{3x^{3/2}}{3/2}\right]$	A2, 1, 0 FT	FT on <i>their</i> subtraction. Deduct 1 mark for each term incorrect
	+/- $\left[-1-1+2-\left(-\frac{1}{4}+\frac{1}{16}+\frac{1}{8}\right)\right]=\frac{1}{16}$ (or 0.0625)	DM1 A1)	Apply <i>their</i> limits $\frac{1}{4} \rightarrow 1$
		5	

Question	Answer	Marks	Guidance
9(i)	$\overrightarrow{AB} = + / - \begin{pmatrix} -18\\9\\-18 \end{pmatrix}, \overrightarrow{BC} = + / - \begin{pmatrix} 12\\-6\\12 \end{pmatrix},$	B1 B1	Allow i , j , k form throughout.
	$\left \overrightarrow{AB}\right = 27, \qquad \left \overrightarrow{BC}\right = 18$	B1 FT B1 FT	FT on their \overrightarrow{AB} , their \overrightarrow{OD} .
	$\left \overline{CD}\right = \left(\frac{18}{27}\right) \times 18$ OR $\left(\frac{18}{27}\right)^2 \times 27 = 12$	B1	
		5	
9(ii)	$\overrightarrow{CD} = (\pm) their \frac{18}{27} \times their \overrightarrow{BC}$ SOI	M1	Expect $(\pm) \begin{pmatrix} 8 \\ -4 \\ 8 \end{pmatrix}$.
	$\overrightarrow{OD} = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix} (\pm) \ their \ \frac{18}{27} \begin{pmatrix} 12 \\ -6 \\ 12 \end{pmatrix} = \begin{pmatrix} 10 \\ -7 \\ 7 \end{pmatrix}, \begin{pmatrix} -6 \\ 1 \\ -9 \end{pmatrix}$	MI AI AI	Other methods possible for \overrightarrow{OD} , e.g. $\overrightarrow{OB} + \frac{5}{2} \overrightarrow{CD}$, $\overrightarrow{OB} + \frac{1}{2} \overrightarrow{CD}$ (One soln M2A1, 2nd soln A1) OR $\overrightarrow{OB} + \frac{5}{3} \overrightarrow{BC}$, $\overrightarrow{OB} + \frac{1}{3} \overrightarrow{BC}$ (One soln M2A1, 2nd soln A1)
	Sate	4	

9709/13

Question	Answer	Marks	Guidance
10(i)	$ax^{2} + bx = 0 \rightarrow x(ax+b) = 0 \rightarrow x = \frac{-b}{a}$	B1	
	Find $f''(x)$ and attempt sub <i>their</i> $\frac{-b}{a}$ into <i>their</i> $f''(x)$	M1	
	When $x = \frac{-b}{a}$, $f''(x) = 2a\left(\frac{-b}{a}\right) + b = -b$ MAX	A1	
	9	3	
10(ii)	Sub $f'(-2) = 0$	M1	
	Sub $f'(1) = 9$	M1	
	a=3 $b=6$	*A1	Solve simultaneously to give both results.
	$f'(x) = 3x^2 + 6x \rightarrow f(x) = x^3 + 3x^2 (+c)$	*M1	Sub <i>their a, b</i> into f'(x) and integrate 'correctly'. Allow $\frac{ax^3}{3} + \frac{bx^2}{2}(+c)$
	-3 = -8 + 12 + c	DM1	Sub $x = -2$, $y = -3$. Dependent on <i>c</i> present. Dependent also on <i>a</i> , <i>b</i> substituted.
	$f(x) = x^3 + 3x^2 - 7$	A1	
		6	

9709/13

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
11(i)	Gradient of $AB = \frac{1}{2}$	B1	
	Equation of <i>AB</i> is $y = \frac{1}{2}x - \frac{1}{2}$	B1	
		2	
11(ii)	$\frac{dy}{dx} = \frac{1}{2}(x-1)^{-\frac{1}{2}}$	B1	
	$\frac{1}{2}(x-1)^{-\frac{1}{2}} = \frac{1}{2}$. Equate their $\frac{dy}{dx}$ to their $\frac{1}{2}$	*M1	
	x = 2, y = 1	A1	
	$y - 1 = \frac{1}{2}(x - 2)$ (thro' <i>their</i> (2,1) & <i>their</i> $\frac{1}{2}$) $\rightarrow y = \frac{1}{2}x$	DM1 A1	
		5	

Question	Answer	Marks	Guidance
11(iii)	EITHER:	(M1	Where θ is angle between <i>AB</i> and the <i>x</i> -axis
	$\sin\theta = \frac{d}{1} \rightarrow d = \sin\theta$		
	gradient of $AB = \frac{1}{2} \Longrightarrow \tan \theta = \frac{1}{2} \Longrightarrow \theta = 26.5(7)^{\circ}$	B1	
	$d = \sin 26.5(7)^\circ = 0.45 (\text{or } \frac{1}{\sqrt{5}})$	A1)	
	<i>OR1:</i> Perpendicular through <i>O</i> has equation $y = -2x$	(M1	
	Intersection with AB: $-2x = \frac{1}{2}x - \frac{1}{2} \rightarrow \left(\frac{1}{5}, \frac{-2}{5}\right)$	A1	
	$d = \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = 0.45 \text{ (or } \frac{1}{\sqrt{5}}\text{)}$	A1)	
	<i>OR2:</i> Perpendicular through (2, 1) has equation $y = -2x + 5$	(M1	.5
	Intersection with AB: $-2x + 5 = \frac{1}{2}x - \frac{1}{2} \rightarrow \left(\frac{11}{5}, \frac{3}{5}\right)$	A1	,0
	$d = \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = 0.45 \text{ (or } 1/\sqrt{5})$	A1)	

Question	Answer	Marks	Guidance
11(iii)	OR3:	(B1	
	$\triangle OAC$ has area $\frac{1}{4}$ [where $C = (0, -\frac{1}{2})$]		
	$\frac{1}{2} \times \frac{\sqrt{5}}{2} \times d = \frac{1}{4} \longrightarrow d = \frac{1}{\sqrt{5}}$	M1 A1)	
		3	

MATHEMATICS

9709/11 May/June 2017

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

May/June 2017

Question	Answer	Marks	Guidance
1	$(3-2x)^6$		
	Coeff of $x^2 = 3^4 \times (-2)^2 \times {}_6C_2 = a$	B3,2,1	Mark unsimplified forms. –1 each independent error but powers
	Coeff of $x^3 = 3^3 \times (-2)^3 \times {}_6C_3 = b$		must be correct. Ignore any ' x ' present.
	$\frac{a}{a} = -\frac{9}{2}$	B1	OE. Negative sign must appear before or in the numerator
	<i>b</i> 8	RA	
	Total:	4	
2	$\overrightarrow{OA} = \begin{pmatrix} 3 \\ -6 \\ p \end{pmatrix} \text{ and } \overrightarrow{OB} = \begin{pmatrix} 2 \\ -6 \\ -7 \end{pmatrix}$		
2(i)	Angle $AOB = 90^\circ \rightarrow 6 + 36 - 7p = 0$	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2 = 0$ or Pythagoras
	$\rightarrow p = 6$	A1	
	Total:	2	

Question	Answer	Marks	Guidance
2(ii)	$\overrightarrow{OC} = \frac{2}{3} \begin{pmatrix} 3 \\ -6 \\ p \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 4 \end{pmatrix}$	B1 FT	CAO FT on their value of <i>p</i>
	$\overrightarrow{BC} = \mathbf{c} - \mathbf{b} = \begin{pmatrix} 0\\2\\11 \end{pmatrix}; \text{ magnitude} = \sqrt{125}$	M1 M1	Use of $\mathbf{c} - \mathbf{b}$. Allow magnitude of $\mathbf{b} + \mathbf{c}$ or $\mathbf{b} - \mathbf{c}$ Allow first M1 in terms of p
	Unit vector = $\frac{1}{\sqrt{125}} \begin{pmatrix} 0\\2\\11 \end{pmatrix}$	A1	OE Allow ± and decimal equivalent
3(i)	$\frac{1+\cos\theta}{\sin\theta} + \frac{\sin\theta}{1+\cos\theta} \equiv \frac{2}{\sin\theta}.$		
	$\frac{(1+c)^2 + s^2}{s(1+c)} = \frac{1+2c+c^2+s^2}{s(1+c)}$	M1	Correct use of fractions
	$=\frac{2+2c}{s(1+c)}=\frac{2(1+c)}{s(1+c)}\rightarrow\frac{2}{s}$	M1 A1	Use of trig identity, A1 needs evidence of cancelling
	Total:	3	
3(ii)	$\frac{2}{s} = \frac{3}{c} \to t = \frac{2}{3}$	M1	Use part (i) and $t = s \div c$, may restart from given equation
	$\rightarrow \theta = 33.7^{\circ} \text{ or } 213.7^{\circ}$	A1 A1FT	FT for 180° + 1st answer. 2nd A1 lost for extra solns in range
	Total:	3	

Question	Answer	Marks	Guidance
4(a)	$a = 32, a + 4d = 22, \rightarrow d = -2.5$	B1	
	$a + (n-1)d = -28 \rightarrow n = 25$	B1	
	$S_{25} = \frac{25}{2} (64 - 2.5 \times 24) = 50$	M1 A1	M1 for correct formula with $n = 24$ or $n = 25$
	Total:	4	
4(b)	<i>a</i> = 2000, <i>r</i> = 1.025	B1	$r = 1 + 2.5\%$ ok if used correctly in S_n formula
	$S_{10} = 2000(\frac{1.025^{10} - 1}{1.025 - 1}) = 22400$ or a value which rounds to this	M1 A1	M1 for correct formula with $n = 9$ or $n = 10$ and their a and r
			SR: correct answer only for $n = 10$ B3, for $n = 9$, B1 (£19 900)
	Total:	3	

Question	Answer	Marks	Guidance
5	$y = 2\cos x$		
5(i)		B1	One whole cycle – starts and finishes at –ve value
		DB1	Smooth curve, flattens at ends and middle. Shows $(0, 2)$.
		R	
	Total:	2	
5(ii)	$P(\frac{\pi}{3}, 1) Q(\pi, -2)$		2
	$\rightarrow PQ^2 = \left(\frac{2\pi}{3}\right)^2 + 3^2 \rightarrow PQ = 3.7$	M1 A1	Pythagoras (on their coordinates) must be correct, OE.
	Total:	2	

9709/11

Question	Answer	Marks	Guidance
5(iii)	Eqn of PQ $y-1 = -\frac{9}{2\pi}\left(x-\frac{\pi}{3}\right)$	M1	Correct form of line equation or sim equations from their $P \& Q$
	If $y = 0 \rightarrow h = \frac{5\pi}{9}$	A1	AG, condone $x = \frac{5\pi}{9}$
	If $x = 0 \rightarrow k = \frac{5}{2}$,	A1	SR: non-exact solutions A1 for both
	Total:	3	
6(i)	Volume = $\left(\frac{1}{2}\right) x^2 \frac{\sqrt{3}}{2} h = 2000 \to h = \frac{8000}{\sqrt{3x^2}}$	M1	Use of (area of triangle, with attempt at ht) $\times h = 2000, h = f(x)$
	$A = 3xh + (2) \times \left(\frac{1}{2}\right) \times x^2 \times \frac{\sqrt{3}}{2}$	M1	Uses 3 rectangles and at least one triangle
	Sub for $h \to A = \frac{\sqrt{3}}{2}x^2 + \frac{24000}{\sqrt{3}}x^{-1}$	A1	AG
	Total:	3	o ⁻
6(ii)	$\frac{dA}{dx} = \frac{\sqrt{3}}{2}2x - \frac{24000}{\sqrt{3}}x^{-2}$	B 1	CAO, allow decimal equivalent
	$= 0$ when $x^3 = 8000 \rightarrow x = 20$	M1 A1	Sets their $\frac{dA}{dx}$ to 0 and attempt to solve for x
	Total:	3	

Question	Answer	Marks	Guidance
6(iii)	$\frac{\mathrm{d}^2 A}{\mathrm{d}x^2} = \frac{\sqrt{3}}{2} 2 + \frac{48000}{\sqrt{3}} x^{-3} > 0$	M1	Any valid method, ignore value of $\frac{d^2A}{dx^2}$ providing it is positive
	\rightarrow Minimum	A1 FT	FT on their <i>x</i> providing it is positive
	Total:	2	
7	$\frac{\mathrm{d}y}{\mathrm{d}x} = 7 - x^2 - 6x$	R	
7(i)	$y = 7x - \frac{x^3}{3} - \frac{6x^2}{2} (+c)$	B1	CAO
	Uses $(3, -10) \rightarrow c = 5$	M1 A1	Uses the given point to find <i>c</i>
	Total:	3	
7(ii)	$7 - x^2 - 6x = 16 - (x + 3)^2$	B1 B1	B1 $a = 16$, B1 $b = 3$.
	Total:	2	
7(iii)	$16 - (x+3)^2 > 0 \rightarrow (x+3)^2 < 16$, and solve	M1	or factors $(x + 7)(x - 1)$
	End-points $x = 1$ or -7	Al	
	$\rightarrow -7 < x < 1$	A1	needs <, not \leq . (SR <i>x</i> < 1 only, or <i>x</i> > -7 only B1 i.e. 1/3)
	Total:	3	

^{9709/11}

Question	Answer	Marks	Guidance
8(i)	Letting <i>M</i> be midpoint of <i>AB</i>		
	$OM = 8$ (Pythagoras) $\rightarrow XM = 2$	B1	(could find $\sqrt{40}$ and use sin ⁻¹ or cos ⁻¹)
	$\tan AXM = \frac{6}{2} AXB = 2\tan^{-1}3 = 2.498$	M1 A1	AG Needs \times 2 and correct trig for M1
	(Alternative 1: $\sin AOM = \frac{6}{10}$, $AOM = 0.6435$, $AXB = \pi - 0.6435$)	R	(Alternative 1: Use of isosceles triangles, B1 for AOM, M1,A1 for completion)
			(Alternative 2: Use of circle theorem, B1 for AOB, M1 , A1 for completion)
	Total:	3	
8(ii)	$AX = \sqrt{(6^2 + 2^2)} = \sqrt{40}$	B1	CAO, could be gained in part (i) or part (iii)
	Arc $AYB = r\theta = \sqrt{40 \times 2.498}$	M1	Allow for incorrect $\sqrt{40}$ (not $r = 6 or 12 or 10$)
	Perimeter = $12 + arc = 27.8 cm$	A1	
	Total:	3	
8(iii)	area of sector $AXBY = \frac{1}{2} \times (\sqrt{40})^2 \times 2.498$	M1	Use of $\frac{1}{2}r^2\theta$ with their r, (not $r = 6 \text{ or } r = 10$)
	Area of triangle $AXB = \frac{1}{2} \times 12 \times 2$, Subtract these $\rightarrow 38.0 \text{ cm}^2$	M1 A1	Use of $\frac{1}{2bh}$ and subtraction. Could gain M1 with $r = 10$.
	Total:	3	

Question	Answer	Marks	Guidance
9	$f: x \mapsto \frac{2}{3-2x} g: x \mapsto 4x + a,$		
9(i)	$y = \frac{2}{3 - 2x} \rightarrow y(3 - 2x) = 2 \rightarrow 3 - 2x = \frac{2}{y}$	M1	Correct first 2 steps
	$\rightarrow 2x = 3 - \frac{2}{y} \rightarrow f^{-1}(x) = \frac{3}{2} - \frac{1}{x}$	M1 A1	Correct order of operations, any correct form with $f(x)$ or $y =$
	Total:	3	
9(ii)	$gf(-1) = 3 f(-1) = \frac{2}{5}$	M1	Correct first step
	$\frac{8}{5} + a = 3 \rightarrow a = \frac{7}{5}$	M1 A1	Forms an equation in a and finds a , OE
			(or $\frac{8}{3-2x} + a = 3$, M1 Sub and solves M1 , A1)
	Total:	3	i'i
9(iii)	$g^{-1}(x) = \frac{x-a}{4} = f^{-1}(x)$	M1	Finding $g^{-1}(x)$ and equating to their $f^{-1}(x)$ even if $a = 7/5$
	$\rightarrow x^2 - x(a+6) + 4(=0)$	M1	Use of $b^2 - 4ac$ on a quadratic with a in a coefficient
	Solving $(a+6)^2 = 16 \text{ or } a^2 + 12a + 20 (= 0)$	M1	Solution of a 3 term quadratic
	$\rightarrow a = -2 \text{ or } -10$	A1	
	Total:	4	

Question	Answer	Marks	Guidance
10(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-4}{\left(5 - 3x\right)^2} \times (-3)$	B1 B1	B1 without ×(-3) B1 For ×(-3)
	Gradient of tangent = 3, Gradient of normal $-\frac{1}{3}$	*M1	Use of $m_1m_2 = -1$ after calculus
	$\rightarrow \text{eqn: } y-2 = -\frac{1}{3}(x-1)$	DM1	Correct form of equation, with (1, their y), not (1,0)
	$\rightarrow y = -\frac{1}{3}x + \frac{7}{3}$	A1	This mark needs to have come from $y = 2$, y must be subject
	Total:	5	
10(ii)	$Vol = \pi \int_{0}^{1} \frac{16}{(5-3x)^2} dx$	M1	Use of $V = \pi \int y^2 dx$ with an attempt at integration
	$\pi \left[\frac{-16}{(5-3x)} \div -3 \right]$	A1 A1	A1 without(÷ -3), A1 for (÷ -3)
	$= \left(\pi \left(\frac{16}{6} - \frac{16}{15}\right)\right) = \frac{8\pi}{5} \text{ (if limits switched must show - to +)}$	M1 A1	Use of both correct limits M1
	Total:	eP 5	

MATHEMATICS

9709/12 May/June 2017

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	Coefficient of $x = 80(x)$	B2	Correct value must be selected for both marks. SR +80 seen in an expansion gets B1 or -80 gets B1 <u>if selected.</u>
	Total:	2	
1(ii)	Coefficient of $\frac{1}{x} = -40\left(\frac{1}{x}\right)$	B2	Correct value soi in (ii), if powers unsimplified only allow if selected. SR +40 soi in (ii) gets B1 .
	Coefficient of $x = (1 \times \text{their } 80) + (3 \times \text{their} - 40) = -40(x)$	M1 A1	Links the appropriate 2 terms only for M1 .
	Total:	4	
2(i)	Gradient = 1.5 Gradient of perpendicular = $-\frac{2}{3}$	B1	
	Equation of AB is $y-6 = -\frac{2}{3}(x+2)$ Or $3y+2x=14$ oe	M1 A1	Correct use of straight line equation with a changed gradient and $(-2, 6)$, the $(-(-2))$ must be resolved for the A1 ISW.
			Using $y = mx + c$ gets A1 as soon as c is evaluated.
	Total:	3	
2(ii)	Simultaneous equations \rightarrow Midpoint (1, 4)	M1	Attempt at solution of simultaneous equations as far as $x =$, or $y =$.
	Use of midpoint or vectors $\rightarrow B(4, 2)$	M1A1	Any valid method leading to <i>x</i> , or to <i>y</i> .
	Total:	3	0.

Question	Answer	Marks	Guidance
3(i)	$LHS = \left(\frac{1}{c} - \frac{s}{c}\right)^2$	M1	Eliminates tan by replacing with $\frac{\sin}{\cos}$ leading to a function of sin and/or cos only.
	$=\frac{\left(1-s\right)^2}{1-s^2}$	M1	Uses $s^2 + c^2 = 1$ leading to a function of sin only.
	$=\frac{(1-s)(1-s)}{(1-s)(1+s)}=\frac{1-\sin\theta}{1+\sin\theta}$	A1	AG. Must show use of factors for A1.
	Total:	3	
3(ii)	Uses part (i) $\rightarrow 2 - 2s = 1 + s$		
	$\rightarrow s = \frac{1}{3}$	M1	Uses part (i) to obtain $s = k$
	$\theta = 19.5^{\circ} \text{ or } 160.5^{\circ}$	A1A1 FT	FT from error in 19.5° Allow 0.340° (0.3398°) & 2.80(2) or $0.108\pi^{\circ}$ & $0.892\pi^{\circ}$ for A1 only. Extra answers in the range lose the second A1 if gained for 160.5°.
	Total:	3	
4(i)	$(AB) = 2r\sin\theta \text{ (or } r\sqrt{2 - 2\cos2\theta} \text{ or } \frac{r\sin2\theta}{\sin\left(\frac{\pi}{2} - \theta\right)})$	BI	Allow unsimplifed throughout eg r + r, $\frac{2\theta}{2}$ etc
	$(\operatorname{Arc} AB) = 2r\theta$	B1	
	$(P =) 2r + 2r\theta + 2r\sin\theta \text{ (or } r\sqrt{2 - 2\cos2\theta} \text{ or } \frac{r\sin2\theta}{\sin\left(\frac{\pi}{2} - \theta\right)})$	B1	
	Total:	3	

Question	Answer	Marks	Guidance
4(ii)	Area sector $AOB = (\frac{1}{2}r^2 2\theta) \frac{25\pi}{6}$ or 13.1	B1	Use of segment formula gives 2.26 B1B1
	Area triangle $AOB = (\frac{1}{2} \times 2r\sin\theta \times r\cos\theta \text{ or } \frac{1}{2} \times r^2 \sin 2\theta)$ $\frac{25\sqrt{3}}{4} \text{ or } 10.8$	B1	
	Area rectangle $ABCD = (r \times 2r\sin\theta) 25$	B1	
	(Area =) Either $25 - (25\pi/6 - 25\sqrt{3}/4)$ or 22.7	B1	Correct final answer gets B4 .
	Total:	4	
5(i)	Crosses <i>x</i> -axis at (6, 0)	B1	x = 6 is sufficient.
	$\frac{dy}{dx} = (0+) -12 (2-x)^{-2} \times (-1)$	B2,1,0	-1 for each incorrect term of the three or addition of + C.
	Tangent $y = \frac{3}{4}(x-6)$ or $4y = 3x-18$	M1 A1	Must use dy/dx , $x =$ their 6 but not $x = 0$ (which gives $m = 3$), and correct form of line equation.
	4		Using $y = mx + c$ gets A1 as soon as c is evaluated.
	Total:	5	-0 ⁻
5(ii)	If $x = 4$, $dy/dx = 3$	tpre	
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 3 \times 0.04 = 0.12$	M1 A1FT	M1 for ("their m" from $\frac{dy}{dx}$ and $x = 4$) × 0.04. Be aware: use of $x = 0$ gives the correct answer but gets M0.
	Total:	2	

Question	Answer	Marks	Guidance
6	Vol = $\pi \int (5-x)^2 dx - \pi \int \frac{16}{x^2} dx$	M1*	Use of volume formula at least once, condone omission of π and limits and dx .
		DM1	Subtracting volumes somewhere must be after squaring.
	$\int (5-x)^2 dx = \frac{(5-x)^3}{3} \div -1$	B1 B1	B1 Without ÷ (−1). B1 for ÷(−1)
	$(or 25x - 10x^2/2 + \frac{1}{3}x^3)$	(B2,1,0)	-1 for each incorrect term
	$\int \frac{16}{x^2} \mathrm{d}x = -\frac{16}{x}$	B1	
	Use of limits 1 and 4 in an integrated expression and subtracted.	DM1	Must have used y^{2} at least once. Need to see values substituted.
	$\rightarrow 9\pi \text{ or } 28.3$	A1	
	Total:	7	
7(a)	$(S_n =) \frac{n}{2} [32 + (n-1)8]$ and 20000	M1	M1 correct formula used with d from $16 + d = 24$
	2,	A1	A1 for correct expression linked to 20000.
	$\rightarrow n^2 + 3n - 5000 \ (<,=,>0)$	DM1	Simplification to a three term quadratic.
	\rightarrow (<i>n</i> = 69.2) \rightarrow 70 terms needed.	A1	Condone use of 20001 throughout. Correct answer from trial and improvement gets 4/4.
	Total:	4	

9709/12

Question	Answer	Marks	Guidance
7(b)	$a = 6, \ \frac{a}{1-r} = 18 \ \rightarrow r = \frac{2}{3}$	M1A1	Correct $S\infty$ formula used to find r .
	New progression $a = 36$, $r = \frac{4}{9}$ oe	M1	Obtain new values for <i>a</i> and <i>r</i> by any valid method.
	New $S\infty = \frac{36}{1 - \frac{4}{9}} \to 64.8 \text{ or } \frac{324}{5} \text{ oe}$	A1	(Be aware that $r = -\frac{2}{3}$ leads to 64.8 but can only score M marks)
	Total:	4	
8(i)	Uses scalar product correctly: $3 \times 6 + 2 \times 6 + (-4) \times 3 = 18$	M1	Use of dot product with \overrightarrow{OA} or \overrightarrow{AO} & \overrightarrow{OB} or \overrightarrow{BO} only.
	$ \overrightarrow{OA} = \sqrt{29}, \overrightarrow{OB} = 9$	M1	Correct method for any one of $\left \overrightarrow{OA}\right $, $\left \overrightarrow{AO}\right $, $\left \overrightarrow{OB}\right $ or $\left \overrightarrow{BO}\right $.
	$\sqrt{29} \times 9 \times \cos AOB = 18$	M1	All linked correctly.
	$\rightarrow AOB = 68.2^{\circ} \text{ or } 1.19^{\circ}$	A1	Multiples of π are acceptable (e.g. $0.379\pi^{\circ}$)
	Total:	4	
8(ii)	$\overline{AB} = 3\mathbf{i} + 4\mathbf{j} + (3+2p)\mathbf{k}$	*M1	For use of $\overrightarrow{OB} - \overrightarrow{OA}$, allow with $p = 2$
	Comparing " j "	DM1	For comparing, \overrightarrow{OC} must contain $p \& q$. Can be implied by $\overrightarrow{AB} = 2 \overrightarrow{OC}$.
	$\rightarrow p = 2^{1/2}$ and $q = 4$	A1 A1	Accuracy marks only available if \overline{AB} is correct.
	Total:	4	

Question	Answer	Marks	Guidance
9(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-\frac{1}{2}} - 2$	B1	Accept unsimplified.
	= 0 when $\sqrt{x} = 2$		
	x = 4, y = 8	B1B1	
	Total:	3	
9(ii)	$\frac{d^2 y}{dx^2} = -2x^{-\frac{3}{2}}$	B1FT	FT providing –ve power of x
	$\left(\frac{d^2 y}{dx^2} = -\frac{1}{4}\right) \rightarrow Maximum$	B1	Correct $\frac{d^2 y}{dx^2}$ and x=4 in (i) are required. Followed by "< 0 or negative" is sufficient" but $\frac{d^2 y}{dx^2}$ must be correct if evaluated.
	Total:	2	
9(iii)	<i>EITHER:</i> Recognises a quadratic in \sqrt{x}	(M1	$Eg \sqrt{x} = u \rightarrow 2u^2 - 8u + 6 = 0$
	1 and 3 as solutions to this equation	A1	
	$\rightarrow x = 9, x = 1.$	A1)	

Question	Answer	Marks	Guidance
	<i>OR:</i> Rearranges then squares	(M1	\sqrt{x} needs to be isolated before squaring both sides.
	$\rightarrow x^2 - 10x + 9 = 0$ oe	A1	
	$\rightarrow x = 9, x = 1.$	A1)	Both correct by trial and improvement gets 3/3
	Total:	3	
9(iv)	k > 8	B1	
	Total:	1	
10(i)	$3\tan\left(\frac{1}{2}x\right) = -2 \rightarrow \tan\left(\frac{1}{2}x\right) = -\frac{2}{3}$	M1	Attempt to obtain $\tan\left(\frac{1}{2}x\right) = k$ from $3\tan\left(\frac{1}{2}x\right) + 2 = 0$
	$1/2x = -0.6 (-0.588) \rightarrow x = -1.2$	M1 A1	$\tan^{-1} k$. Seeing $\frac{1}{2}x = -33.69^{\circ}$ or $x = -67.4^{\circ}$ implies M1M1.
			Extra answers between $-1.57 \& 1.57$ lose the A1. Multiples of π are acceptable (eg -0.374π)
	Total:	3	
10(ii)	$\frac{y+2}{3} = \tan\left(\frac{1}{2}x\right)$	M1	Attempt at isolating $tan(\frac{1}{2}x)$
	$\rightarrow f^{-1}(x) = 2\tan^{-1}\left(\frac{x+2}{3}\right)$	M1 A1	Inverse tan followed by \times 2. Must be function of <i>x</i> for A1.
	-5,1	B1 B1	Values stated B1 for -5, B1 for 1.
	Total:	5	

9709/12

iviay/June 2017	Ma	y/J	une	2017	
-----------------	----	-----	-----	------	--

Question	Answer	Marks	Guidance
10(iii)		B1 B1 B1	A tan graph through the first, third and fourth quadrants. (B1) An invtan graph through the first, second and third quadrants.(B1) Two curves clearly symmetrical about $y = x$ either by sight or by exact end points. Line not required. Approximately in correct domain and range. (Not intersecting.) (B1) Labels on axes not required.
	Total:	3	

MATHEMATICS

9709/13 May/June 2017

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.
The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$7C1 \times 2^6 \times a(x), 7C2 \times 2^5 \times [a(x)]^2$	B1 B1	SOI Can be part of expansion. Condone ax^2 only if followed by a^2 .
			ALT $2^{7}[1 + ax/2]^{7} \rightarrow 7C1[a(x)/2] = 7C2[a(x)/2]^{2}$
	$a = \frac{7 \times 2^6}{21 \times 2^5} = \frac{2}{3}$	B1	Ignore extra soln $a = 0$. Allow $a = 0.667$. Do not allow an extra x in the answer
	Total:	3	

Question	Answer	Marks	Guidance
2(i)	$S = \frac{r^2 - 3r + 2}{1 - r}$	M1	
	$S = \frac{(r-1)(r-2)}{1-r} = \frac{-(1-r)(r-2)}{1-r} = 2 - r \text{ OR}$ $\frac{(1-r)(2-r)}{1-r} = 2 - r \text{ OE}$	A1	AG Factors must be shown. Expressions requiring minus sign taken out must be shown
	Total:	2	
2(ii)	Single range $1 < S < 3$ or (1, 3)	B2	Accept $1 < 2 - r < 3$. Correct range but with $S = 2$ omitted scores SR B1 $1 \le S \le 3$ scores SR B1 . [$S > 1$ and $S < 3$] scores SR B1 .
	Total:	2	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3	EITHER Elim <i>y</i> to form 3-term quad eqn in $x^{1/3}$ (or <i>u</i> or <i>y</i> or even <i>x</i>)	(M1	Expect $x^{2/3} - x^{1/3} - 2(=0)$ or $u^2 - u - 2(=0)$ etc.
	$x^{1/3}$ (or <i>u</i> or <i>y</i> or <i>x</i>) = 2, -1	*A1	Both required. But $\underline{x} = 2,-1$ and not then cubed or cube rooted scores A0
	Cube solution(s)	DM1	Expect $x = 8, -1$. Both required
	(8, 3), (-1,0)	A1)	
	OR Elim <i>x</i> to form quadratic equation in <i>y</i>	(M1	Expect $y + 1 = (y - 1)^2$
	$y^2 - 3y = 0$	*A1	
	Attempt solution	DM1	Expect $y = 3, 0$
	(8, 3), (-1,0)	A1)	
	Total:	4	

Question	Answer	Marks	Guidance
4(i)	$\overrightarrow{OB} - \overrightarrow{OA} \left(= \overrightarrow{AB} \right) = \begin{pmatrix} 5\\4\\-3 \end{pmatrix} - \begin{pmatrix} 5\\1\\3 \end{pmatrix} = \begin{pmatrix} 0\\3\\-6 \end{pmatrix}$	B1	
	$\overrightarrow{OP} = \begin{pmatrix} 5\\1\\3 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 0\\3\\-6 \end{pmatrix} = \begin{pmatrix} 5\\2\\1 \end{pmatrix}$	M1 A1	If \overrightarrow{OP} not scored in (i) can score SR B1 if seen correct in (ii). Other equivalent methods possible
	Total:	3	
4(ii)	Distance $OP = \sqrt{5^2 + 2^2 + 1^2} = \sqrt{30}$ or 5.48	B1 FT	FT on <i>their</i> \overline{OP} from (i)
	Total:	1	
4(iii)	Attempt $\overrightarrow{AB}.\overrightarrow{OP}$. Can score as part of $\overrightarrow{AB}.\overrightarrow{OP} = (AB)(OP)\cos\theta$ Rare ALT: Pythagoras $\left \overrightarrow{OP}\right ^2 + \left \overrightarrow{AP}\right ^2 = 5 + 30 = \left \overrightarrow{OA}\right ^2$	M1	Allow any combination of \overline{AB} . \overline{PO} etc. and also if \overline{AP} or \overline{PB} used instead of \overline{AB} giving $2-2 = 0$ & $4-4 = 0$ respectively. Allow notation × instead of .
	(0+6-6) = 0 hence perpendicular. (Accept 90°)	A1 FT	If result not zero then 'Not perpendicular' can score A1FT if value is 'correct' for <i>their</i> values of $\overrightarrow{AB}, \overrightarrow{OP}$ etc. from (i).
	Total:	tor ²	P
L			

Question	Answer	Marks	Guidance
5(i)	$\frac{2\sin\theta + \cos\theta}{\sin\theta + \cos\theta} = \frac{2\sin\theta}{\cos\theta}$	M1	Replace $\tan \theta$ by $\sin \theta / \cos \theta$
	$2\sin\theta\cos\theta + \cos^2\theta = 2\sin^2\theta + 2\sin\theta\cos\theta \Longrightarrow c^2 = 2s^2$	M1 A1	Mult by $c(s + c)$ or making this a common denom For A1 simplification to AG without error or omission must be seen.
	Total:	3	RA
5(ii)	$\tan^2\theta = 1/2$ or $\cos^2\theta = 2/3$ or $\sin^2\theta = 1/3$	B1	Use $\tan \theta = s / c$ or $c^2 + s^2 = 1$ and simplify to one of these results
	$\theta = 35.3^{\circ} \text{ or } 144.7^{\circ}$	B1 B1 FT	FT for 180 – other solution. SR B1 for radians 0.615, 2.53 (0.196 π , 0.804 π) Extra solutions in range amongst solutions of which 2 are correct gets B1B0
	Total:	3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6	Gradient of normal is $-1/3 \rightarrow$ gradient of tangent is 3 SOI	B1 B1 FT	FT from <i>their</i> gradient of normal.
	dy/dx = 2x - 5 = 3	M1	Differentiate and set = <i>their</i> 3 (numerical).
	x = 4	*A1	
	Sub $x = 4$ into line $\rightarrow y = 7$ & sub <i>their</i> (4, 7) into curve	DM1	OR sub $x = 4$ into curve $\rightarrow y = k - 4$ and sub <i>their</i> (4, $k - 4$) into line OR other valid methods deriving a linear equation in k (e.g. equating curve with either normal or tangent and sub $x = 4$).
	<i>k</i> = 11	A1	
	Total:	6	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance		
7(i)	$\sin ABC = 8/10 \rightarrow ABC = 0.927(3)$	B1	Or $\cos = 6/10$ or $\tan = 8/6$. Accept 0.295π .		
	Total:	1			
7(ii)	$AB = 6$ (Pythagoras) $\rightarrow \Delta BCD = 8 \times 6 = 48.0$	M1A1	OR 8×10sin0.6435 or $\frac{1}{2}$ ×10×10sin((2)×0.927)=48. 24or 40or 80 gets M1A0		
	Area sector $BCD = \frac{1}{2} \times 10^2 \times (2) \times their 0.9273$	*M1	Expect 92.7(3). 46.4 gets M1		
	Area segment = $92.7(3) - 48$	*A1	Expect 44.7(3). Might not appear until final calculation.		
	Area semi-circle – segment = $\frac{1}{2} \times \pi \times 8^2 - their(92.7 - 48)$	DM1	Dep. on previous M1A1 OR $\pi \times 8^2 - (\frac{1}{2} \times \pi \times 8^2 + their 44.7)$.		
	Shaded area = $55.8 - 56.0$	A1			
	Total:	6			

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance	
8(i)	(b-1)/(a+1)=2	M1	OR Equation of AP is $y-1=2(x+1) \rightarrow y=2x+3$	
	b = 2a + 3 CAO	A1	Sub $x = a$, $y = b \rightarrow b = 2a + 3$	
	Total:	2		
8(ii)	$AB^2 = 11^2 + 2^2 = 125$ oe	B1	Accept $AB = \sqrt{125}$	
	$(a+1)^{2} + (b-1)^{2} = 125$	B1 FT	FT on <i>their</i> 125.	
	$(a+1)^{2} + (2a+2)^{2} = 125$	M1	Sub from part (i) \rightarrow quadratic eqn in <i>a</i> (or possibly in $b \rightarrow b^2 - 2b - 99 = 0$)	
	$(5)(a^2 + 2a - 24) = 0 \rightarrow eg(a - 4)(a + 6) = 0$	M1	Simplify and attempt to solve	
	a = 4 or -6	A1		
	<i>b</i> = 11 or –9	A1	OR (4, 11), (-6, -9) If A0A0, SR1 for either (4, 11) or (-6, -9)	
	Total:	6	5	
34. satprep.co'				

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
9(i)	$\left(3x-1\right)^2+5$	B1B1B1	First 2 marks dependent on correct $(ax+b)^2$ form. OR $a=3$, $b=-1$, $c=5$ e.g. from equating coefs
	Total:	3	
9(ii)	Smallest value of p is 1/3 seen. (Independent of (i))	B1	Allow $p \ge 1/3$ or $p = 1/3$ or $1/3$ seen. But not in terms of x.
	Total:	1	
9(iii)	$y = (3x-1)^2 + 5 \Longrightarrow 3x - 1 = (\pm)\sqrt{y-5}$	B1 FT	OR $y=9\left(x-\frac{1}{3}\right)^2+5 \Rightarrow \left(y-5\right)/9=\left(x-\frac{1}{3}\right)^2$ (Fresh start)
	$x = (\pm) \frac{1}{3} \sqrt{y-5} + \frac{1}{3} OE$	B1 FT	Both starts require 2 operations for each mark. FT for <i>their</i> values from part (i)
	$f^{-1}(x) = \frac{1}{3}\sqrt{x-5} + \frac{1}{3}$ OE domain is $x \ge their5$	B1B1 FT	Must be a function of x and \pm removed. Domain must be in terms of x. Note: $\sqrt{y-5}$ expressed as $\sqrt{y} - \sqrt{5}$ scores Max B0B0B0B1 [See below for general instructions for different starts]
	Total:	4	
9(iv)	<i>q</i> < 5 CAO	B1	p.ce
	Total:	1	
Alt 9(iii)	For start $(ax - b)^2 + c$ or $a(x - b)^2 + c$ $(a \ne 0)$ ft for their For start $(x - b)^2 + c$ ft but award only B1 for 3 correct oper For start $a(bx - c)^2 + d$ ft but award B1 for first2 operations	r <i>a</i> , <i>b</i> , <i>c</i> rations s correct and	B1 for the next 3 operations correct

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
10(a)(i)	Attempt to integrate $V = (\pi) \int (y+1) dy$	M1	Use of <i>h</i> in integral e.g. $\int (h+1) = \frac{1}{2}h^2 + h$ is M0 . Use of $\int y^2 dx$ is M0
	$= \left(\pi\right) \left[\frac{y^2}{2} + y\right]$	A1	
	$=\pi\left[\frac{h^2}{2}+h\right]$	A1	AG. Must be from clear use of limits $0 \rightarrow h$ somewhere.
	Total:	3	
10(ii)	$\int (y+1)^{1/2} dy$ ALT $6 - \int (x^2 - 1) dx$	M1	Correct variable and attempt to integrate
	$\frac{2}{3}(y+1)^{3/2}$ oe ALT $6 - (\frac{1}{3}x^3 - x)$ CAO	*A1	Result of integration must be shown
	$\frac{2}{3}[8-1]$ ALT $6-[(\frac{8}{3}-1)-(\frac{1}{3}-1)]$	DM1	Calculation seen with limits $0 \rightarrow 3$ for <i>y</i> . For ALT, limits are $1 \rightarrow 2$ and rectangle.
	14/3 ALT $6 - 4/3 = 14/3$	A1	16/3 from $\frac{2}{3} \times 8$ gets DM1A0 provided work is correct up to applying limits.
	Total:	tpr4	P.

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
10(b)	Clear attempt to differentiate wrt <i>h</i>	M1	Expect $\frac{\mathrm{d}V}{\mathrm{d}h} = \pi (h+1)$. Allow $h + 1$. Allow h .
	Derivative = 4π SOI	*A1	
	$\frac{2}{their \text{ derivative}}$. Can be in terms of <i>h</i>	DM1	
	$\frac{2}{4\pi} \operatorname{or} \frac{1}{2\pi} \text{or } 0.159$	A1	
	Total:	4	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
11(i)	f '(x) = [(4x+1) ^{1/2} ÷ ¹ / ₂] [÷4] (+c)	B1 B1	Expect $\frac{1}{2}(4x+1)^{1/2}(+c)$
	$f'(2)=0 \implies \frac{3}{2}+c=0 \implies c=-\frac{3}{2}$ (Sufficient)	B1 FT	Expect $\frac{1}{2}(4x+1)^{1/2} - \frac{3}{2}$. FT on <i>their</i> $f'(x) = k(4x+1)^{1/2} + c$. (i.e. $c = -3k$)
	Total:	3	
11(ii)	f''(0) = 1 SOI	B1	
	$f'(0) = 1/2 - 1\frac{1}{2} = -1$ SOI	B1 FT	Substitute $x = 0$ into <i>their</i> f'(x) but must not involve <i>c</i> otherwise B0B0
	f(0) = -3	B1 FT	FT for 3 terms in AP. FT for 3rd B1 dep on 1st B1 . Award marks for the AP method only.
	Total:	3	
11(iii)	$f(x) = \left[\frac{1}{2}(4x+1)^{3/2} \div 3/2 \div 4\right] - \left[\frac{1}{2}x\right](+k)$	B1 FT B1 FT	Expect $(1/12)(4x+1)^{3/2} - 1\frac{1}{2}x (+k)$. FT from <i>their</i> f'(x) but c numerical.
	$-3 = 1/12 - 0 + k \implies k = -37/12$ CAO	M1A1	Sub $x = 0, y = their f(0)$ into their f(x). Dep on $cx \& k$ present (c numerical)
	Minimum value = $f(2) = \frac{27}{12} - 3 - \frac{37}{12} = -\frac{23}{6}$ or -3.83	A1	
	Total:	5	

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/12 March 2017

Paper 1 Pure Mathematics MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓^{*} implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through [↓]" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$(3k)^2 - 4 \times 2 \times k$	M1	Attempt $b^2 - 4ac$
	$9k^2 - 8k > 0 \text{soi} \text{Allow } 9k^2 - 8k \ge 0$	A1	Must involve correct inequality. Can be implied by correct answers
-	0, 8/9 soi	A1	
	<i>k</i> < 0, <i>k</i> > 8/9 (or 0.889)	A1	Allow $(-\infty, 0)$, $(8/9, \infty)$
	Total:	4	

Question	Answer	Marks	Guidance		
2	$5C2\left(\frac{1}{ax}\right)^3 \left(2ax^2\right)^2$ soi	B1	Seen or implied. Can be part of an expansion.		
	$10 \times \frac{1}{a^3} \times 4a^2 = 5$ soi	M1A1	M1 for identifying relevant term and equating to 5, all correct. Ignore extra x		
	a = 8 cao	A1			
	Total: 4				
	Zh.sa	tpreP			

Question	Answor	Marks	Cuidance
Question	Allswei		Guidance
3(i)	$V = \frac{1}{12}h^3 \text{ oe}$	B1	
	Total:	1	
3(ii)	$\frac{dV}{dh} = \frac{1}{4}h^2$ or $\frac{dh}{dV} = 4(12v)^{-2/3}$	M1A1	Attempt differentiation. Allow incorrect notation for M. For A mark accept <i>their</i> letter for volume - but otherwise correct notation. Allow V'
	$\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt} = \frac{4}{h^2} \times 20 \text{ soi}$	DM1	Use chain rule correctly with $\frac{d(V)}{dt} = 20$. Any equivalent formulation. Accept non-explicit chain rule (or nothing at all)
	$\left(\frac{\mathrm{d}h}{\mathrm{d}t}\right) = \frac{4}{10^2} \times 20 = 0.8$ or equivalent fraction	A1	
	Total:	4	

	Μ	arch	20	17
--	---	------	----	----

Question	Answer	Marks	Guidance
4(i)	$ABC = \pi / 2 - \pi / 7 = 5\pi / 14.$ $CBD = \pi - 5\pi / 14 = 9\pi / 14$	B1	AG Or other valid exact method.
	Total:	1	
4(ii)	$\sin\frac{\pi}{7} = \frac{\frac{1}{2}BC}{8} \text{ or } \frac{BC}{\sin\frac{2\pi}{2}} = \frac{8}{\sin\frac{5\pi}{5\pi}} \text{ or }$	M1	
	$7 14 BC2 = 82 + 82 - 2(8)(8)\cos\frac{2\pi}{7}$	PR	
	BC = 6.94(2)	A1	
	arc $CD = their 6.94 \times 9\pi / 14$	M1	Expect 14.02(0)
	arc $CB = 8 \times 2\pi / 7$	M1	Expect 7.18(1)
	perimeter = 6.94 + 14.02 + 7.18 = 28.1	A1	
	Total:	5	

Question	Answer	Marks	Guidance
5(i)	$\tan x = \cos x \to \sin x = \cos^2 x$	M1	Use $\tan = \frac{\sin}{\cos and}$ multiply by $\cos and$
	$\sin x = 1 - \sin^2 x$	M1	Use $\cos^2 x = 1 - \sin^2 x$
	$\sin x = 0.6180$. Allow $(-1 + \sqrt{5})/2$	M1	Attempt soln of quadratic in $\sin x$. Ignore solution -1.618 . Allow $x = 0.618$
	<i>x</i> -coord of $A = \sin^{-1} 0.618 = 0.666$ cao	A1	Must be radians. Accept 0.212π
	Total:	4	
5(ii)	EITHER <i>x</i> -coord of <i>B</i> is π – <i>their</i> 0.666	(M1	Expect 2.475(3). Must be radians throughout
	<i>y</i> -coord of <i>B</i> is $tan(their 2.475) \operatorname{or} cos(their 2.475)$	M1	
	x = 2.48, y = -0.786 or -0.787 cao	A1)	Accept $x = 0.788\pi$
	OR <i>y</i> -coord of <i>B</i> is – (cos or tan (<i>their</i> 0.666))	(M1	
	<i>x</i> -coord of <i>B</i> is $\cos^{-1}(their y)$ or $\pi + \tan^{-1}(their y)$	M1	5
	x = 2.48, y = -0.786 or -0.787	A1)	Accept $x = 0.788\pi$
	Total:	bre ³	
		prer	

	Ma	rch	20	17	7
--	----	-----	----	----	---

Question	Answer	Marks	Guidance
6(i)	$\mathbf{B}\mathbf{A} = \mathbf{O}\mathbf{A} - \mathbf{O}\mathbf{B} = -5\mathbf{i} - \mathbf{j} + 2\mathbf{k}$	B1	Allow vector reversed. Ignore label BA or AB
	OA.BA = -10 - 3 + 10 = -3	M1	soi by ±3
	$ \mathbf{OA} \times \mathbf{BA} = \sqrt{2^2 + 3^2 + 5^2} \times \sqrt{5^2 + 1^2 + 2^2}$	M1	Prod. of mods for at least 1 correct vector or reverse.
	$\cos OAB = \frac{+/-3}{\sqrt{38} \times \sqrt{30}}$	M1	
	$OAB = 95.1^{\circ} (\text{or } 1.66^{\circ})$	A1	
	Total:	5	
6(ii)	$\Delta OAB = \frac{1}{2}\sqrt{38} \times \sqrt{30} \sin 95.1 \text{ . Allow } \frac{1}{2}\sqrt{38} \times \sqrt{74} \sin 39.4$	M1	Allow their moduli product from (i)
	= 16.8	A1	cao but \underline{NOT} from sin 84.9 (1.482°)
	Total:	2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(i)	f'(x) = $\left[\frac{3}{2}(4x+1)^{1/2}\right]$ [4]	B1B1	Expect $6(4x+1)^{1/2}$ but can be unsimplified.
	f "(x) = $6 \times 1/2 \times (4x+1)^{-1/2} \times 4$	B1√ [^]	Expect $12(4x+1)^{-1/2}$ but can be unsimplified. Ft from <i>their</i> f'(x).
	Total:	3	
7(ii)	f(2), f'(2), kf "(2) = 27, 18, 4k OR 12	B1B1√B1√	Ft dependent on attempt at differentiation
	$27/18 = 18/4k$ oe OR $kf''(2) = 12 \implies k = 3$	M1A1	
	Total:	5	

9709/12

March 2	017
---------	-----

Question	Answer	Marks	Guidance
8(i)	$gf(x) = 3(2x^{2} + 3) + 2 = 6x^{2} + 11$	B1	AG
	$fg(x) = 2(3x+2)^2 + 3$ Allow $18x^2 + 24x + 11$	B1	ISW if simplified incorrectly. Not retrospectively from (ii)
	Total:	2	
8(ii)	$y = 2(3x+2)^2 + 3 \implies 3x+2 = (\pm)\sqrt{(y-3)/2}$ oe	M1	Subtract 3; divide by 2; square root. Or x/y interchanged. Allow $\frac{\sqrt{y-3}}{2}$ for 1st M
	$\Rightarrow x = (\pm)\frac{1}{3}\sqrt{(y-3)/2} - \frac{2}{3} \text{ oe}$	M1	Subtract 2; divide by 3; Indep. of 1st M1. Or x/y interchanged.
	$\Rightarrow (\mathrm{fg})^{-1}(x) = \frac{1}{3}\sqrt{(x-3)/2} - \frac{2}{3} \text{ oe}$	A1	Must be a function of x. Allow alt. method $g^{-1}f^{-1}(x)$ OR $18\left(x+\frac{2}{3}\right)^2+3 \Rightarrow (fg)^{-1}(x) = \sqrt{\frac{x-3}{18}} - \frac{2}{3}$
	Solve <i>their</i> (fg) ⁻¹ (x) ≥ 0 or attempt range of fg	M1	Allow <u>range</u> \ge 3 for M only. Can be implied by correct answer or $x >$ 11
	Domain is $x \ge 11$	A1	
	Total:	5	C C

Answer	Marks	Guidance
$6(2x)^{2} + 11 = 2(3x + 2)^{2} + 3$	M1	Replace x with 2x in gf and equate to <i>their</i> fg(x) from (i). Allow $\underline{12} x^2 + 11 =$
$6x^2 - 24x = 0 \text{oe}$	A1	Collect terms to obtain correct quadratic expression.
x = 0 , 4	A1	Both required
Total:		
	Answer $6(2x)^2 + 11 = 2(3x + 2)^2 + 3$ $6x^2 - 24x = 0$ oe $x = 0$, 4 Total:	AnswerMarks $6(2x)^2 + 11 = 2(3x + 2)^2 + 3$ M1 $6x^2 - 24x = 0$ oeA1 $x = 0$, 4A1Total:3

Question	Answer	Marks	Guidance
9(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 2 \text{ . At } x = 2, \ m = 2$	B1B1	Numerical <i>m</i>
	Equation of tangent is $y-2=2(x-2)$	B1	Expect $y = 2x - 2$
	Total:	3	
9(ii)	Equation of normal $y - 2 = -\frac{1}{2}(x - 2)$	M1	Through (2, 2) with gradient = $-1/m$. Expect $y = -\frac{1}{2}x + 3$
	$x^{2} - 2x + 2 = -\frac{1}{2}x + 3 \rightarrow 2x^{2} - 3x - 2 = 0$	M1	Equate and simplify to 3-term quadratic
	$x = -\frac{1}{2}, y = \frac{3}{4}$	A1A1	Ignore answer of (2, 2)
	Total:	pre 4	
•			•

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
9(iii)	At $x = -\frac{1}{2}$, grad = $2(-\frac{1}{2}) - 2 = -3$	B1√^	Ft <i>their</i> $-\frac{1}{2}$.
	Equation of tangent is $y - 3\frac{1}{4} = -3(x + \frac{1}{2})$	*M1	Through <i>their B</i> with grad <i>their</i> -3 (not m ₁ or m ₂). Expect $y = -3x + 7/4$
	2x - 2 = -3x + 7/4	DM1	Equate <i>their</i> tangents or attempt to solve simultaneous equations
	$x = 3/4, y = -\frac{1}{2}$	A1	Both required.
	Total:	4	

Question	Answer	Marks	Guidance
10(i)	$2x - 2 / x^3 = 0$	M1	Set = 0.
	$x^4 = 1 \Longrightarrow x = 1$ at A cao	A1	Allow 'spotted' $x = 1$
	Total:	2	
10(ii)	$f(x) = x^2 + 1/x^2(+c)$ cao	B1	
	$\frac{189}{16} = 16 + 1/16 + c$	M1	Sub (4, $\frac{189}{16}$). <i>c</i> must be present. Dep. on integration
	c = -17/4	ipre _{A1}	
	Total:	3	

9709/12

Question	Answer	Marks	Guidance
10(iii)	$x^{2} + 1/x^{2} - 17/4 = 0 \implies 4x^{4} - 17x^{2} + 4 (= 0)$	M1	Multiply by $4x^2$ (or similar) to transform into 3-term quartic.
	$(4x^2-1)(x^2-4) \ (=0)$	M1	Treat as quadratic in x^2 and attempt solution or factorisation.
	$x = \frac{1}{2}$, 2	A1A1	Not necessary to distinguish. Ignore negative values. No working scores 0/4
	Total:	4	
10(iv)	$\int (x^2 + x^{-2} - 17/4) dx = \frac{x^3}{3} - \frac{1}{x} - \frac{17x}{4}$	B2,1,0√ [≜]	Mark final integral
	(8/3-1/2-17/2)-(1/24-2-17/8)	M1	Apply <i>their</i> limits from (iii) (Seen). Dep. on integration of at least 1 term of y
	Area = 9/4	A1	Mark final answer. $\int y^2$ scores 0/4
	Total:	4	

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/11 October/November 2016

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓^{*} implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	11

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4 Mark Scheme					Syllabus	Paper		
			Cambridge International AS/A Level – Octo	ber/Nove	mber	2016	9709	11	
1	(i)	(x-	$(+3)^2 - 7$	B1B1	[2]	For <i>a</i>	=3, b=-7		
	(ii)	1,- <i>x</i> >	7 seen 1, $x < -7$ oe	B1 B1	[2]	x > 1 Allow	x > 1 or $x < -7Allow x \le -7, x \ge 1 oe$		
2		8C0 28 448	$5(2x)^6 \left(\frac{1}{2x^3}\right)^2$ soi $< 64 \times \frac{1}{4}$ oe (powers and factorials evaluated)	B1 B2,1,0 B1	[4]	May be seen within a number of terms May be seen within a number of terms Identified as answer			r of
3	(i)	2rα α =	$\alpha + r\alpha + 2r = 4.4r$	M1 A1	[2]	At least 3 of the 4 terms requir			ired
	(ii)	¹ / ₂ ((3/	$(2r)^2 0.8 - \frac{1}{2}(r^2) 0.8 = 30$ $(2)r^2 \times 0.8 = 30 \rightarrow r = 5$	M1A1√ ^A A1	[3]	Ft thro	ough on <i>their</i>	rα	
4	(i)	$C = m_A$ Equ	$f_{2}(4, -2)$ $g_{3} = -1/2 \rightarrow m_{CD} = 2$ variation of <i>CD</i> is $y + 2 = 2(x - 4)$ or 2x - 10	B1 M1 M1 A1	[4]	Use o Use o equati	$f_{m_1m_2} = -1$ f <i>their C</i> and fon	on their m m_{CD} in a l	AB ine
	(ii)	AL AD	$p^{2} = (14 - 0)^{2} + (-7 - (-10))^{2}$ = 14.3 or $\sqrt{205}$	M1 A1	[2]	Use th	<i>heir D</i> in a co	prrect meth	od
5		a (1 ar ($(r+r) = 50 \text{ or } \frac{a(1-r^2)}{1-r} = 50$ $(1+r) = 30 \text{ or } \frac{a(1-r^3)}{1-r} = 30 + a$	B1 B1		Or oth	nerwise atten	npt to solve	
		Elin <i>r</i> = <i>a</i> = <i>S</i> =	ninating a or r 3/5 125/4 oe 625/8 oe	M1 A1 A1 A1√ [™]	[6]	for <i>r</i> Any c Ft thre	Forrect methor bough on <i>their</i> r < 1	r r and a	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	11

6 (i)	$\cos^4 x = (1 - \sin^2 x)^2 = 1 - 2\sin^2 x + \sin^4 x$ AG	B1	[1]	Could be LHS to RHS or vice versa
(ii)	$8\sin^{4}x + 1 - 2\sin^{2}x + \sin^{4}x = 2(1 - \sin^{2}x)$ $9\sin^{4}x = 1$ $x = 35.3^{\circ} \text{ (or any correct solution)}$ Any correct second solution from 144.7°, 215.3°, 324.7° The remaining 2 solutions	M1 A1 A1 A1√ [™] A1	[5]	Substitute for $\cos^4 x$ and $\cos^2 x$ or OR sub for $\sin^4 x \rightarrow 3\cos^2 x = 2$ $\rightarrow \cos x = (\pm)\sqrt{2/3}$ Allow the first 2 A1 marks for radians (0.616, 2.53, 3.76, 5.67)
7 (i)	$A = (\frac{1}{2}, 0)$	B1	[1]	Accept $x = 0$ at $y = 0$
(ii)	$\int (1-2x)^{\frac{1}{2}} dx = \left[\frac{(1-2x)^{3/2}}{3/2} \right] [\div(-2)]$ $\int (2x-1)^2 dx = \left[\frac{(2x-1)^3}{3} \right] [\div2]$	B1B1		May be seen in a single expression May use $\int_{1}^{1} dy$ may expand
	$\begin{bmatrix} 0 - (-1/3) \end{bmatrix} - \begin{bmatrix} 0 - (-1/6) \end{bmatrix}$ $\frac{1}{6}$	M1 A1	[6]	$(2x-1)^2$ Correct use of <i>their</i> limits
8 (i)	fg(x) = 5x Range of fg is $y \ge 0$ oe	M1A1 B1	[3]	only Accept $y > 0$
(ii)	$y = 4/(5x+2) \Rightarrow x = (4-2y)/5y \text{ oe}$ $g^{-1}(x) = (4-2x)/5x \text{ oe}$ 0, 2 with no incorrect inequality $0 < x \le 2 \text{ oe, c.a.o.}$	M1 A1 B1,B1 B1	[5]	Must be a function of <i>x</i>
9 (i)	XP = -4i + (p - 5)j + 2k [-4i + (p - 5)j + 2k].(pj + 2k) = 0 $p^{2} - 5p + 4 = 0$ p = 1 or 4	B1 M1 A1 A1	[4]	Or PX Attempt scalar prod with OP/PO and set = 0 (=0 could be implied)
(ii)	$\mathbf{XP} = -4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k} \rightarrow \mathbf{XP} = \sqrt{16 + 16 + 4}$ Unit vector = 1/6 (-4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) oe	M1 A1	[2]	Expect 6
(iii)	$\mathbf{AG} = -4\mathbf{i} + 15\mathbf{j} + 2\mathbf{k}$ $\mathbf{XQ} = \lambda \mathbf{AG} \text{soi}$ $\lambda = 2/3 \rightarrow \mathbf{XQ} = -\frac{8}{3}\mathbf{i} + 10\mathbf{j} + \frac{4}{3}\mathbf{k}$	B1 M1 A1	[3]	

	Page 6 Mark Scheme					Syllabus	Paper			
			Cambridge International AS/A Level – Octo	ber/Nove	mber	2016	9709	11		
		1		r	1	n				
10	(i)	$3z \cdot x^{1/2}$ $x = x^{1/2}$	$-\frac{2}{z} = -1 \implies 3z^2 + z - 2 = 0$ f(or z) = 2/3 or -1 4/9 only	M1 A1 A1	[3]	Express $x^{1/2}$ for (OR 3x - 1 M1, A	Express as 3-term quad. Accept $x^{1/2}$ for z (OR) $3x-1 = -\sqrt{x}, 9x^2 - 13x + 4 = 0$ M1, A1,A1 $x = 4/9$)			
	(ii)	f () Sub Wh -2	$f(x) = \frac{3x^{3/2}}{3/2} - \frac{2x^{1/2}}{1/2} (+c)$ (+c)	B1B1 M1A1 M1 A1	[6]	<i>c</i> must be present Substituting <i>x</i> value from par (i)			rt	
11	(i)	$\frac{dy}{dx}$ m_{tax} Equ	$= -(x-1)^{-2} + 9(x-5)^{-2}$ $= -\frac{1}{4} + \frac{9}{4} = 2$ hation of normal is $y-5 = -\frac{1}{2}(x-3)$ 13	M1A1 B1 M1 A1	[5]	May b Throu m = -	be seen in particular be seen in particular be seen in particular be general between the second sec	rt (ii) I with		
	(ii)	$(x - x) = \frac{d^2 y}{dx^2}$ Wh	$(-5)^{2} = 9(x-1)^{2}$ $5 = (\pm)3(x-1) \text{ or } (8)(x^{2}-x-2) = 0$ (-1 or 2) $\frac{y'_{2}}{2} = 2(x-1)^{-3} - 18(x-5)^{-3}$ en $x = -1, \frac{d^{2}y}{dx^{2}} = -\frac{1}{6} < 0$ MAX en $x = 2, \frac{d^{2}y}{dx^{2}} = \frac{8}{3} > 0$ MIN	B1 M1 A1 B1 B1 B1	[6]	Set $\frac{dy}{dz}$ Simplisolution	$\frac{y}{x} = 0$ and similarly further and on a sign up to the roots	plify nd attempt used, x valu nust be used rrect	ıes d	

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/12 October/November 2016

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓th implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Pag		e 4	Mark Scheme					Paper	
			Cambridge International AS/A Le	vel – October/November 2016			9709	12		
										
1	1		(<i>y</i>)	$0 = 8(4x+1)^{\frac{1}{2}} \div \frac{1}{2} \div 4(+c)$	B1 B1		Correct integrand (unsimplified) without $\div 4$ $\div 4$. Ignore <i>c</i> .			
			Use	es x = 2 and y = 5	M1		Substitution of correct values into an integrand			
				<i>c</i> = -7	A1	[4]	$y = 4\sqrt{4x+1} - 7$			
						[ד]				
2	(i)		2sii tan	$n2x = 6\cos 2x$ $2x = k$	M1		Expand and collect as far as $\tan 2x = a$ constant from $\sin \pm \cos x$ so			stant
			;	$\Rightarrow \tan 2x = 3 \text{ or } k = 3$	A1	[2]	CWO			
	(ii)		<i>x</i> =	$(\tan^{-1}(their k)) \div 2$	M1		Inverse then ÷2. s			
				$(71.6 \ 61 \ -108.4) \ -2$ $x = 35.8^{\circ}, -54.2^{\circ}$	A1 A1√	[3]	✓ on 1st answer + extra solutions in	-/ – 90° if in the given rar	given range 1ge.	but no
			x = x = x = x	$0.624^{\circ}, -0.946^{\circ}$ $0.198\pi^{\circ}, -0.301\pi^{\circ}$			Both SR A1A0			
3	(i)		$2x^{2}$	$x^{2}-6x+5>13$						
_	()		$2x^2$	$x^{2}-6x-8(>0)$	M1		Sets to 0 + attemp	ots to solve		
			(x =	=) −1 and 4.	A1		Both values requi	red		
			<i>x</i> >	4, <i>x</i> < -1	A1		Allow all recogni	sable notatio	n.	
						[3]				
						[0]				
(ii)			$2x^2$	$x^2 - 6x + 5 = 2x + k$						
			\rightarrow	$2x^2 - 8x + 5 - k(=0)$	M1*		Equates and sets t	to 0.		
			Use	e of $b^2 - 4ac$	DM1		Use of discrimina	nt		
			\rightarrow	-s	AI	[3]				
			OR			[3]				
			dy	=4x-6						
			dx	6 - 2	M1*		Sata (their dy) –	2		
			+x	= 2			$\int dx = \frac{dx}{dx}$	2		
			<i>x</i> =	$z \rightarrow y = 1$						
			Usi	ing <i>their</i> (2,1) in $y = 2x + k$	DM1		Uses <i>their</i> $x = 2$ a	and <i>their</i> $y =$	1	
				or $y = 2x^2 - 6x + 5$						
				$\rightarrow k = -3$	A1					
						[3]				

	Page	le 5 Mark Scheme			Syllabus	Paper					
			Cambridge International AS/A Level – October/November 2016				9709	12			
									-		
4		Term in $x = \frac{nx}{2}$ $(3-2x)(1+\frac{nx}{2}+) \rightarrow 7 = \frac{3n}{2}-2$ $\rightarrow n = 6$ Term in $x^2 = \frac{n(n-1)}{2} \left(\frac{x}{2}\right)^2$ Coefficient of $x^2 = \frac{3n(n-1)}{2} - \frac{2n}{2}$		B1 M1		numerical <i>n</i> .					
				A1 B1		May be implied by (their n) × (their $n-1$) ÷ 8.					
			8 2	M1		Considers 2 terms	$\sin x^2$.				
			$=\frac{21}{4}$	A1	[6]	aef					
5		$A(a a^{2} a^{2} M]$ $M]$ $M]$ Sub or $\rightarrow a$	(a) and $B(0, b)$ $+b^2 = 100$ has coordinates $\left(\frac{a}{2}, \frac{b}{2}\right)$ les on $2x + y = 10$ $a + \frac{b}{2} = 10$ $\rightarrow a^2 + (20 - 2a)^2 = 100$ $\left(10 - \frac{b}{2}\right)^2 + b^2 = 100$ a = 6, b = 8.	B1 M1* B1√ ^Å M1* DM1	[6]	soi Uses Pythagoras w	with their <i>A</i> of <i>a</i> or in <i>b</i> .	& <i>B</i> . eir M, to link	a and		
		Page 6 Mark Scheme		Syllabus	Paper						
---	-------	---	--	-------------------------	--------	--	--	----------------------	----	--	--
			Cambridge International AS/A L	.evel – Oct	ober/N	November 2016	9709	12			
6	(i)	$\frac{r}{10}$ or $r = r$	$F = \sin 0.6 \text{ or } \frac{r}{10} = \cos 0.97$ $BD = \sqrt{200 - 200 \cos 1.2} (=11.3)$ $F = 10 \times 0.5646, r = 10 \times \sin 0.6,$ $F = 10 \times \cos 0.971 \text{ or } r = \frac{1}{2} BD$ r = 5.646	M1 A1	[2]	Or other valid alternative.					
	(ii)	$Ma \\ \theta \\ or \\ Set \\ Ma \\ = \theta$	ajor arc = $10(\theta)$ (= 50.832) = $2\pi - 1.2$ (= 5.083) C = $2\pi \times 10$, Minor arc = 1.2×10 micircle = 5.646π (= 17.737) ajor arc + semicircle 58.6	M1 B1 A1	[3]	$\theta = 2\pi - 1.2$ or $\pi -$ Implied by 5.1	$\theta = 2\pi - 1.2 \text{ or } \pi - 1.2$ mplied by 5.1				
	(iii)	Ar Ar Ar	ea of major sector $= \frac{1}{2}10^{2} (\theta) (= 254.159)$ ea of triangle <i>OBD</i> $= \frac{1}{2}10^{2} \sin 1.2 (= 46.602)$ ea = semicircle + sector + triangle (= 50.1 + 254.2 + 46.6) = 351	M1 M1 A1	[3]	$\theta = 2\pi - 1.2$ or $\pi - 1.2$ or	- 1.2 or other comp	olete method	1		
7	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{1}{x} = \frac{-3}{\left(2x-1\right)^2} \times 2$	B1 B1	[2]	B1 for a single cor without ×2.	rect term (u	nsimplified)			
	(ii)	e.g	Solve for $\frac{dy}{dx} = 0$ is impossible.	B1√^	[1]	Satisfactory expla	nation.				
	(iii)	If z Per \rightarrow Sh	$x = 2, \ \frac{dy}{dx} = \frac{-6}{9} \text{ and } y = 3$ rpendicular has $m = \frac{9}{6}$ $y - 3 = \frac{3}{2}(x - 2)$ ows when $x=0$ then $y=0$ AG	M1* M1* DM1 A1	[4]	Attempt at both null Use of $m_1m_2 = -1$ Line equation usin	eeded. numerically ng (2, their 3) and their <i>n</i>	n.		
	(iv)	$\frac{\frac{\mathrm{d}x}{\mathrm{d}t}}{\frac{\mathrm{d}y}{\mathrm{d}t}}$	$\dot{f} = -0.06$ $\dot{f} = \frac{dy}{dx} \times \frac{dx}{dt} \rightarrow -\frac{2}{3} \times -0.06 = 0.04$	M1 A1	[2]						

	Page 7		e 7	Mark Sci	heme		Syllabus Paper				
				Cambridge International AS/A Le	vel – Octo	ber/N	November 2016 9709 12				
8	(a)) (i)	200 = 1	0+(15−1)(+/−5) 30	M1 A1	[2]	Use of <i>n</i> th term with $a = 200$, $n = 14$ or 15and $d = +/-5$.				
		(ii)	$\frac{n}{2}$	$ 400 + (n-1)(+/-5)] = (3050) 5n^2 - 405n + 6100 (= 0) 20 $	M1 A1 A1	[3]	Use of $S_n \ a=200$ and $d = +/-5$.				
	(b)) (i)	$\frac{ar^2}{\frac{63}{2}}$	$, ar^{5} \rightarrow r = \frac{1}{2}$ = $\frac{a(1 - \frac{1}{2}^{6})}{\frac{1}{2}} \rightarrow a = 16$	M1 A1 M1 A1	[4]	Both terms correct. Use of $S_n = 31.5$ with a numeric <i>r</i> .				
		(ii)	Sur	m to infinity = $\frac{16}{\frac{1}{2}}$ = 32	B1√*	[1]	\checkmark^{h} for their <i>a</i> and <i>r</i> with $ r < 1$.				
9	(i)		-4	-6 - 6 = -16	M1		Use of $x_1x_2 + y_1y_2 + z_1z_2$ on their $\overrightarrow{OA} \And \overrightarrow{OB}$				
			\sqrt{x}	$\frac{1}{x_1^2 + y_1^2 + z_1^2}$ or $\sqrt{x_2^2 + y_2^2 + z_2^2}$	M1		Modulus once on either their \overrightarrow{OA} or \overrightarrow{OB}				
			$3 \times \rightarrow$	$7 \times \cos \theta = -16$ $\theta = 139.6^{\circ} \text{ or } 2.44^{\circ} \text{ or } 0.776\pi$	M1 A1	[4]	All linked using their $\overrightarrow{OA} \And \overrightarrow{OB}$				
	(ii) A		\overline{AC} Ma	$\vec{c} = c - a = \begin{pmatrix} 0 \\ 8 \\ 6 \end{pmatrix}$ gnitude = 10	B1		.5				
		Scaling $\rightarrow \frac{15}{their10} \times \begin{pmatrix} 0\\ 8\\ 6 \end{pmatrix} = \begin{pmatrix} 0\\ 12\\ 9 \end{pmatrix}$			M1 A1	[3]	For 15 × <i>their</i> unit vector.				
	(iii	i)	$\begin{vmatrix} 2\\6\\5\\ \rightarrow \\ \rightarrow \end{vmatrix}$	$ \begin{array}{l} +2p \\ -2p \\ -p \end{array} \right) \\ -2(2+2p) + 3(6-2p) + 6(5-p) = 0 \\ p = 2^{3} \\ \end{array} $	B1 M1 A1		Single vector soi by scalar product. Dot product of $(p \overrightarrow{OA} + \overrightarrow{OC})$ and $\overrightarrow{OB} = 0$.				
						[3]					

	Page 8 Mark Scheme			Syllabus	Paper			
<u>.</u>		Cambridge International AS/A	Level – Octo	ober/l	November 2016	9709	12	
10 (i) 3 ≤	$\leq f(x) \leq 7$	B1 B1	[2]	Identifying both 3 inequality. Completely correction NB $3 \le x \le 7$ sco	and 7 or cos ct statement. ores B1B0	rrectly statir	ig one
(ii)			B1* DB1	[2]	One complete osc between 0 and π . All correct, initial f(x)=0	illation of a	sinusoidal c vnwards, all	urve above
(iii)	$\begin{array}{c} 5-2 \\ \rightarrow \\ 0.5 \\ \frac{\pi}{1.8} \end{array}$	$2\sin 2x = 6 \rightarrow \sin 2x = -\frac{1}{2}$ $2x = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}$ $x = \frac{7\pi}{12} \text{ or } \frac{11\pi}{12}$ $383\pi \text{ or } 0.917\pi$ $+ 0.524 \over 2 \text{ or } \frac{2\pi - 0.524}{2}$ $33^{\circ} \text{ or } 2.88^{\circ}$	M1 A1 A1√	[3]	Make sin2x the su for $\frac{3\pi}{2} - 1^{st}$ are in given range SR A1A0 for both	ıbject. Iswer from s	$\sin 2x = -\frac{1}{2} o$	nly, if
(iv)) k =	$=\frac{\pi}{4}$	B1	[1]				
(v)) 2si (g	$n2x = 5 - y \rightarrow \sin 2x = \frac{1}{2}(5 - y)$ $r^{-1}(x) = \frac{1}{2}\sin^{-1}\frac{(5 - x)}{2}$	M1 M1 A1	[3]	Makes $\pm \sin 2x$ the Correct order of c dealing with " – " Must be a functio	subject soi to perations ind n of <i>x</i>	by final answ cluding corr	ver. ectly
	(g	$f^{-1}(x)) = \frac{1}{2} \sin^{-1} \frac{(5-x)}{2}$		[3]	dealing with " – " Must be a functio	n of x		

MATHEMATICS

9709/13 October/November 2016

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	13

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol I implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	13

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4 Mark Scheme				Syllabus	Paper		
			Cambridge International AS/A Level – October	/Novembe	er 20	16 9709	13	
1		$kx^2 - 2$	$3x = x - k \implies kx^2 - 4x + k (= 0)$	M1		Eliminate y and term quad	rearrange in	nto 3-
		$(-4)^{2}$	-4(k)(k) soi	M1		b^2-4ac .		
		<i>k</i> > 2	, $k < -2$ cao Allow $(2, \infty)$ etc. Allow $2 \le k \le -k$	A1	[3]			
2		(+/-	$20 \times 3^3(x^3)$, $10a^3(x^3)$ soi	B1B1		Each term can i	nclude x^3	
		-540	$+10a^3 = 100$ oe	M1		Must have 3 ter a^3 and 100	ms and inclu	ude
		<i>a</i> = 4		A1	[4]			
3		4sin ²	$x = 6\cos^2 x \Longrightarrow \tan^2 x = \frac{6}{4} \text{ or } 4\sin^2 x = 6(1 - \sin^2 x)$	M1		Or $4(1-\cos^2 x)$	$=6\cos^2 x$	
		[$\tan x$ x = 50. Anoth	= $(\pm)1.225$ or sin $x = (\pm)0.7/46$ or cos $x = (\pm)0.6325$] 8 (Allow 0.886 (rad)) er angle correct	A1 A1√ [≜]		Or any other angle correct Ft from 1st angle (Allow radia		
		x = 50	0.8°, 129.2°, 230.8°, 309.2° 0.886, 2.25/6, 4.03, 5.40 (rad)]	A1	[4]	All 4 angles col		205
4		f'(x)	$=3x^2-6x-9$ soi	B1				
		Attem	pt to solve $f'(x) = 0$ or $f'(x) > 0$ or $f'(x) \ge 0$ soi	M1				
		(3)(x	(x+1) or 3,-1 seen or 3 only seen	A1		With or without	, , .	
		Least	possible value of <i>n</i> is 3. Accept $n = 3$. Accept $n \ge 3$	A1	[4]	Must be in term	s of <i>n</i>	
5	(i)	cos 0.9	$\Theta = OE / 6$ or $= \sin\left(\frac{\pi}{2} - 0.9\right)$ oe	M1		Other methods	possible	
		<i>OE</i> =	6 cos 0.9 = 3.73 oe AG	A1	[2]			
((ii)	Use of	f $(2\pi - 1.8)$ or equivalent method	M1		Expect 4.48		
		Area o	of large sector $= \frac{1}{2} \times 6^2 \times (2\pi - 1.8)$ oe	M1		Or $\pi 6^2 - \frac{1}{2} 6^2 1$	8. Expect 8	80.70
		Area o	of small sector $\frac{1}{2} \times 3.73^2 \times 1.8$	M1		Other methods	possible	
		Total a	area = $80.7(0) + 12.5(2) = 93.2$	A1	[4]			
6	(i)	$\frac{2+x}{2}$	$=n \implies x=2n-2$	B1		No MR for $(\frac{1}{2})$	2+ <i>n</i>),	
		$\frac{m+y}{2}$	$=-6 \implies y=-12-m$	B1	[2]	Expect $(2n-2,$	-12 - m)	

	Page	5	Mark Scheme			Syllabus	Paper	
			Cambridge International AS/A Level – October	/Novembe	er 20	16 9709	13	
(ii	i) Sut <i>m</i> -	b <i>the</i> + 6	eir x, y into $y = x + 1 \rightarrow -12 - m = 2n - 2 + 1$	M1*		Expect $m + 2n =$	= -11	
	2 - Elin <i>m</i> =	-n min =-9	ate a variable $n = -1$	DM1 A1A1	[5]	Note: other met	hods possibl	le
7 (i	i) AB AB AC	8.A(8.AI C.AI	C = 3 - 2 - 1 = 0 hence perpendicular or 90° D = 3 + 4 - 7 = 0 hence perpendicular or 90° D = 1 - 8 + 7 = 0 hence perpendicular or 90° AG	B1 B1 B1	[3]	3 - 2 - 1 or sun must be seen Or single staten perpendicular o once .	n of prods et nent: mutual r 90° seen at	t ly t least
(ii	i) Are $= \frac{1}{2}$ Vol	ea A $\sqrt{2\sqrt{1}}$	$ABC = (\frac{1}{2})\sqrt{3^{2} + 1^{2} + 1^{2}} \times \sqrt{1^{2} + (-2)^{2} + (-1)^{2}}$ $\overline{1} \times \sqrt{6}$ $\frac{1}{3} \times their \Delta ABC \times \sqrt{1^{2} + 4^{2} + (-7)^{2}}$	M1 A1 M1		Expect ½√66		
	$=\frac{1}{6}$	$\frac{1}{6}\sqrt{6}$	$\overline{6} \times \sqrt{66} = 11$	A1	[4]	Not 11.0		
8 (i	i) (2 <i>x</i>	x + 3	$(3)^{2} + 1$ Cannot score retrospectively in (iii)	B1B1B1	[3]	For $a = 2, b = 3$, <i>c</i> = 1	
(ii	i) g(:	x)=	2x+3 cao	B1	[1]	In (ii),(iii) Allow $4\left(x+\frac{3}{2}\right)^{2}+1$	w if from	
(iii	i) y =	=(2	$(x+3)^2 + 1 \Rightarrow 2x + 3 = (\pm)\sqrt{y-1}$ or ft from (i)	M1		Or with <i>x/y</i> tran	sposed.	
	<i>x</i> =	=(±)	$\frac{1}{2}\sqrt{y-1} - \frac{3}{2}$ or ft from (i)	M1		Or with <i>x/y</i> tran sign errors.	sposed Allo	w
	(fg	$g)^{-1}$	$(x) = \frac{1}{2}\sqrt{x-1} - \frac{3}{2}$ cao Note alt. method $g^{-1}f^{-1}$	A1		Must be a funct =	ion of <i>x</i> . Al	low y
	Do	mai	n is $(x) > 10$	B1	[4]	Allow $(10, \infty)$, but not with <i>y</i> o Not ≥ 10	$10 < x < \infty$ e r f or g invo	tc. lved.
	AL Try	.T. r ying	nethod for first 3 marks: to obtain $g^{-1} [f^{-1}(x)]$	*M1				
	g^{-1}	$1 = \frac{1}{2}$	$f^{2}(x-3), f^{-1} = \sqrt{x-1}^{-1}$	DM1		Both required		
	A1	for	$\frac{1}{2}\sqrt{x-1} - \frac{3}{2}$	A1				

	Page 6 Mark Scheme			Syllabus	Paper			
			Cambridge International AS/A Level – October/	Novembe	er 20	16 9709	13	
		1						
9	(a)	$\frac{6}{1-r} =$	$=\frac{12}{1+r}$	M1				
		$r = \frac{1}{3}$		A1				
		S=9		A1	[3]			
	(b)	$\frac{13}{2}$ [20	$\cos\theta + 12\sin^2\theta = 52$	M1*		Use of correct f	ormula for s	um of
		$2\cos\theta$	$\theta + 12(1 - \cos^2\theta) = 8 \rightarrow 6\cos^2\theta - \cos\theta - 2(=0)$	DM1		Use $s^2 = 1 - c^2$ term quad	& simplify (to 3-
		$\cos\theta$ =	= 2/3 or $-1/2$ soi	A1		Accept 0 268	2π/3 SD 1	for
		$\theta = 0.8$	841 , 2.09 Dep on previous A1	A1A1	[5]	48.2°, 120° Extr range –1	a solutions i	n
10	(i)	at $x =$	$a^{2}, \frac{dy}{dx} = \frac{2}{a^{2}} + \frac{1}{a^{2}} \operatorname{or} 2a^{-2} + a^{-2} \left(= \frac{3}{a^{2}} \operatorname{or} 3a^{-2} \right)$	B1		$\frac{2}{a^2} + \frac{1}{a^2} \text{ or } 2a^{-1}$	$a^2 + a^{-2}$ seen	
		y-3=	$=\frac{3}{a^2}(x-a^2)$ or $y=\frac{3}{a^2}x+c \to 3=\frac{3}{a^2}a^2+c$	M1		Through $(a^2,3)$ grad as f(a)	& with <i>the</i>	ir
		$y = \frac{y}{a^2}$	$\frac{1}{2}x$ or $3a^{-2}x$ cao	A1	[3]			
	(ii)	$(y) = \cdot$	$\frac{2}{a}\frac{x^{\frac{1}{2}}}{\frac{1}{2}} + \frac{ax^{-\frac{1}{2}}}{-\frac{1}{2}} (+c)$	B1B1				
		sub x	$=a^2, y=3$ into $\int dy/dx$	M1		c must be presen	nt. Expect	
		<i>c</i> = 1	$(y = \frac{4x^{\frac{1}{2}}}{a} - 2ax^{-\frac{1}{2}} + 1)$	A1	[4]	3-4-2+ <i>c</i>		
(iii)	sub x	=16, $y = 8 \rightarrow 8 = \frac{4}{a} \times 4 - 2a \times \frac{1}{4} + 1$	*M1		Sub into <i>their y</i>		
		$\begin{vmatrix} a^2 + 1 \\ a = 2 \\ a = 1 \end{vmatrix}$	4a - 32(=0)	A1 A1		Allow –16 in ac	ldition	
		A = (4	(10, 8) $AB^{-} = 12^{-} + 5^{-} \rightarrow AB = 15$	DMIAI	[5]			

Page /		age /	Mark Scheme			Syllabus Paper			
			Cambridge International AS/A Level – October/N	lovembe	r 20	16 9709 13			
		T							
11	(i)	Attem	pt diffn. and equate to $0 \frac{dy}{dx} = -k(kx-3)^{-2} + k = 0$	*M1		Must contain $(kx-3)^{-2}$ + other term(s)			
		(kx-3)	$3)^{2} = 1 \text{ or } k^{3}x^{2} - 6k^{2}x + 8k(=0)$	DM1		Simplify to a quadratic			
		$x = \frac{2}{k}$	or $\frac{4}{k}$	*A1*A1		Legitimately obtained			
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} =$	$=2k^2(kx-3)^{-3}$	B1√		Ft must contain $Ak^2(kx-3)^{-3}$			
		When	$x = \frac{2}{k}, \frac{d^2 y}{dx^2} = (-2k^2) < 0$ MAX All previous	DB1		where <i>A</i> >0 Convincing alt. methods (values either side) must show which			
		When	$x = \frac{4}{k}, \ \frac{d^2 y}{dx^2} = (2k^2) > 0$ MIN working correct	DB1		values used & cannot use $x = 3 / k$			
					[7]				
	(ii)	$V = (\pi$	$(\tau) \int \left[(x-3)^{-1} + (x-3) \right]^2 dx$	*M1		Attempt to expand y^2 and then			
		$=(\pi)$	$\int [(x-3)^{-2} + (x-3)^{2} + 2] dx$	A1		integrate			
		$=(\pi)$	$\left[-(x-3)^{-1}+\frac{(x-3)^{3}}{3}(+2x)\right]$ Condone missing 2x	A1		Or $\begin{bmatrix} x^3 & x^3 \end{bmatrix}$			
		$-(\pi)$	$\begin{bmatrix} 1 & -\frac{1}{2} + 4 & -(\frac{1}{2} - 9 + 0) \end{bmatrix}$	DM1		$\begin{bmatrix} -(x-3)^{-1} + \frac{1}{3} - 3x^2 + 9x + 2x \end{bmatrix}$ Apply limits $0 \rightarrow 2$			
		$=(\pi)$ = 40 π	$\begin{bmatrix} 1 & -\frac{1}{3} & +\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \end{bmatrix}$	A1		2 missing $\rightarrow 28\pi/3$ scores			
					[5]	M1A0A1M1A0			

....

.

.

MATHEMATICS

9709/11 May/June 2016

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	11

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol share implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.
- The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.
- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	11

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR–1 A penalty of MR–1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through √ marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA–1 This is deducted from A or B marks in the case of premature approximation. The PA–1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper				
	Cambridge International AS/A Leve	el – May/Jun	e 2016	9709	11		
		1					
1	$\left(x-\frac{3}{2x}\right)^6$						
	Term is ${}^{6}C_{3} \times x^{3} \times \left(\frac{-3}{2x}\right)^{3}$	B1 B1	B1 for Bin c	oeff. B1 for r	est.		
	$\rightarrow -67.5$ oe	B1 [3]					
2	$3\sin^2\theta = 4\cos\theta - 1$ Uses $s^2 + c^2 = 1$ $\rightarrow 3c^2 + 4c - 4 (= 0)$ $(\rightarrow c = \frac{2}{2} \text{ or } -2)$	M1 A1	Equation in $\cos\theta$ only. All terms on one side of (=) For 360° – 1st answer.				
	$\rightarrow \theta = 48.2^{\circ} \text{ or } 311.8^{\circ}$ 0.841, 5.44 rads, A1 only (0.268 π , 1.73 π)	A1 A1√ [^]					
3	$x = \frac{12}{y^2} - 2.$ $Vol = (\pi) \times \int x^2 dy$ $\rightarrow \left[\frac{-144}{3y^3} + 4y + \frac{48}{y} \right]$	M1 3 × A1	Ignore omiss Attempt at ir Un-simplifie	sion of π at the theorem of a the second state of π at the second state of π and π an	is stage		
	Limits 1 to 2 used $\rightarrow 22\pi$	A1 [5]	only from co	prrect integrat	ion		
4 (i)	$\frac{dy}{dx} = 2 - 8(3x + 4)^{-\frac{1}{2}}$ $(x = 0, \rightarrow \frac{dy}{dx} = -2)$ $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} \rightarrow -0.6$	M1A1 [2]	Ignore notati	on. Must be	$\frac{\mathrm{d}y}{\mathrm{d}x} \times 0.3$		
(ii)	$y = \{2x\} \left\{ -\frac{8\sqrt{3x+4}}{\frac{1}{2}} \div 3 \right\} (+c)$ $x = 0, y = \frac{4}{3} \rightarrow c = 12.$	B1 B1 M1 A1	No need for Uses <i>x</i> , <i>y</i> val	+c. ues after∫wi	th c		
5 (i)	$A = 2y \times 4x (= 8xy)$ 10y + 12x = 480 $\rightarrow A = 384x - 9.6x^{2}$	B1 B1 B1 B1 [3]	answer give	n			

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	11

	(ii)	$\frac{dA}{dx} = 384 - 19.2x$ $= 0 \text{ when } x = 20$ $\rightarrow x = 20, y = 24.$	B1 M1 A1		Sets to 0 and attempt to solve oe Might see completion of square Needs both <i>x</i> and <i>y</i>
		Uses $x = -\frac{b}{2a} = \frac{-384}{-19.2} = 20$, M1, A1 y = 24, A1 From graph: B1 for $x = 20$, M1, A1 for y = 24		[3]	Trial and improvement B3 .
6	(a)	$y = 2x^{2} - 4x + 8$ Equates with $y = mx$ and selects a, b, c Uses $b^{2} = 4ac$ $\rightarrow m = 4$ or -12 .	M1 M1 A1	[3]	Equate + solution or use of dy/dx Use of discriminant for both.
	(b) (i)	$f(x) = x^{2} + ax + b$ Eqn of form $(x-1)(x-9)$	M1		Any valid method allow $(x+1)(x+9)$ for M1
		$\rightarrow a = -10, b = 9$ (or using 2 sim eqns M1 A1)	A1	[2]	must be stated
	(ii)	Calculus or $x = \frac{1}{2} (1+9)$ by symmetry $\rightarrow (5, -16)$	M1 A1	[2]	Any valid method
7	(i)	$CD = r\cos\theta, BD = r - r\sin\theta$ oe Arc $CB = r(\frac{1}{2}\pi - \theta)$ oe	B1 B1 B1		allow degrees but not for last B1
		$\rightarrow P = r\cos\theta + r - r\sin\theta + r\left(\frac{1}{2}\pi - \theta\right)$ oe	B 1√	[4]	√ sum – assuming trig used
	(ii)	Sector = $\frac{1}{2}.5^2.(\frac{1}{2}\pi - 0.6)$ (12.135)	M1		Uses $\frac{1}{2}r^2\theta$
		Triangle = $\frac{1}{2}$.5cos0.6.5sin0.6 (5.825) \rightarrow Area = 6.31	M1 A1		Uses $\frac{1}{2}bh$ with some use of trig.
		(or $\frac{1}{4}$ circle – triangle – sector)		[3]	

P	age 6	Mark Scheme			Syllabus	Paper
		Cambridge International AS/A Leve	el – May/June	e 2016	9709	11
					•	
		4				
8		$y = 3x - \frac{4}{3}$				
		$\frac{dy}{dt} = 3 + \frac{4}{dt}$	B1			
		$dx = x^2$				
		$m ext{ of } AB = 4$	B1			
		Equate $\rightarrow x = \pm 2$				
		$\rightarrow C(2, 4) \text{ and } D(-2, -4)$	M1 A1	Equating + s	olution.	
		$\rightarrow M(0, 0)$ or stating M is the origin	B1√^	on their C	and D	
		m of CD = 2				
		1				
		Perpendicular gradient $(=-\frac{1}{2})$	M1	Use of m_1m_2	=-1, must u	ise m _{CD}
			A1	(not m = 4)		
		$\rightarrow y = -\frac{1}{2}x$	[7]			
		2				
0	(9)	$a = 50$ $ar^2 = 22$	R1	seen or impl	ied	
9	(a)	a - 30, ar - 32	DI	seen or impli	lea	
		$\rightarrow r = \frac{4}{7}$ (allow $-\frac{4}{7}$ for M mark)	M1	Finding <i>r</i> and use of correct S_{∞}		
		5 5		formula		
		G 050			1	
		$\rightarrow S_{\infty} = 250$	AI	Only if $ \mathbf{r} < 1$	1	
			[3]			
	மு) ப	$2 \sin r - 3 \cos r - (\sin r + 2 \cos r)$				
	(b) (l	3c - 2s = (s + 2c) - 3c	M1	Links terms	un with AP	needs one
		(or uses $a = a + d = a + 2d$)		expression for	or d	
		(or uses a, a + a, a + 2a) 4		empression re		
		$\rightarrow 4c = 3s \rightarrow t = \frac{1}{2}$	M1 A1	Arrives at $t =$	= <i>k</i> . ag	
		3	[3]			
		SC uses $t = \frac{4}{2}$ to show				
		3				
		8 9 10				
		$u_1 = \frac{1}{5}, u_2 = \frac{1}{5}, u_3 = \frac{1}{5}, B1$ only	0			
		5 5 5 4	0			
		· Sator	SA.			
	(ii	$\rightarrow c = \frac{3}{2}$, $s = \frac{4}{2}$ or calculator $x = 53.1^{\circ}$	M1			
	(H)	5, 5 5				
		$\rightarrow a = 1.6, d = 0.2$	M1	Correct meth	od for both	<i>a</i> and <i>d</i> .
		$\rightarrow S_{20} = 70$	A1	(Uses S_n form	nula)	
			[3]			
10		$ \longrightarrow \begin{pmatrix} 2 \\ - \end{pmatrix} \longrightarrow \begin{pmatrix} 5 \\ - \end{pmatrix} \longrightarrow \begin{pmatrix} 2 \\ - \end{pmatrix} $				
10	(i)	$OA = \begin{bmatrix} 1 \end{bmatrix}, OB = \begin{bmatrix} -1 \end{bmatrix}, OC = \begin{bmatrix} 6 \end{bmatrix}$				
		$\begin{pmatrix} -2 \end{pmatrix}$ $\begin{pmatrix} k \end{pmatrix}$ $\begin{pmatrix} -3 \end{pmatrix}$				
		1				
		$10 - 1 - 2k = 0 \rightarrow k = 4\frac{1}{2}$	M1 A1	Use of scalar	r product = 0	
		2	[2]			

Pa	age 7	Mark Scheme				Paper
		Cambridge International AS/A Leve	el – May/Jun	e 2016	11	
	(ii)	$\overline{AB} = \begin{pmatrix} 3 \\ -2 \\ k+2 \end{pmatrix},$	B1			
		$\overline{OC} = 7$ (seen or implied)	R1			
		$3^2 + (-2)^2 + (k+2)^2 = 49$	D1 M1 A1	Correct meth	od. Both con	rrect.
		$\rightarrow k = 4 \text{ or } -8$	[4]	Condone sig	n error in \overline{A}	B
	(iii)	$\left \overline{OA}\right = 3$				
		$\overrightarrow{OD} = 3 \overrightarrow{OA} = \begin{pmatrix} 6\\ 3\\ -6 \end{pmatrix}$ and $\overrightarrow{OE} = 2$	M1 A1	Scaling from – oe.	magnitudes	/unit vector
		$\overrightarrow{OC} = \begin{pmatrix} 4\\12\\-6 \end{pmatrix}$				
		(-2)				
		$\overrightarrow{DE} = \overrightarrow{OE} - \overrightarrow{OD} = \begin{bmatrix} 9 \\ 0 \end{bmatrix},$	M1	Correct vecto	or subtraction	n.
		\rightarrow Magnitude of $\sqrt{85}$.	A1			
			[4]			
11	(i)	$f: x \to 4\sin x - 1$ for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$	B1	-5 and 3		
		Range $-5 \leq f(x) \leq 3$	B 1	Correct range	e	
			[2]			
		4		C		
	(ii)	$4s - 1 = 0 \rightarrow s = \frac{1}{4} \rightarrow x = 0.253$	M1 A1	Makes $\sin x$ s	ubject. Deg	rees M1 A0,
		$r=0 \rightarrow v=-1$	R1	(14.5)		
		x 0 / y 1	[3]			
	(iii)	31	B1√ [∿]	Shape from t	heir range ir	n (i)
		-3	B1 [2]	Flattens, curv	ve.	
		-5!				
	(iv)	range $-\frac{1}{2}$ $\pi \leq f^{-1}(x) \leq \frac{1}{2}$ π	B1			
		domain $-5 \le x \le 3$	B1√^	√ on part (i)	(only for 2 n	umerical
		$\left(x+1\right)$		values)	-	
		Inverse $f^{-1}(x) = \sin^{-1}\left(\frac{x+1}{4}\right)$	M1 A1 [4]	Correct order	r of operation	ns

MATHEMATICS

9709/12 May/June 2016

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	12

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	12

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme				Syllabus	Paper	
		Cambridge International AS/A Level – Ma	ıy/Ju	ne 20	16	9709	12]
r			r		1			
1		$f: x \mapsto 10 - 3x, g: x \mapsto \frac{10}{3 - 2x},$						
		ff(x) = 10 - 3(10 - 3x)	B1		Correct u	unsimplified	expression	
		$gf(2) = \frac{10}{3 - 2(10 - 3(2))} (= -2)$	B1		Correct with 2 in	unsimplified 1 for x	expression	
		<i>x</i> = 2	B1	[3]				
2		$f'(x) = \frac{8}{\left(5 - 2x\right)^2}$						
		$f(x) = \frac{8(5-2x)^{-1}}{-1} \div -2 (+c)$	B1 B1		Correct v An attem	without (÷ by 1pt at integra	r −2) tion (÷ by−2	2)
		Uses $x = 2, y = 7,$	M1		Substitut an integr	tion of correctration of correctration of correct	t values into	o
		<i>c</i> = 3	A1	[4]				
3		$\overline{OA} = 2\mathbf{i} - 5\mathbf{j} - 2\mathbf{k}$ and $\overline{OB} = 4\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.						
		$\overrightarrow{AB} = 2\mathbf{i} + \mathbf{j} + 4\mathbf{k} \text{ or } \overrightarrow{AC} = 4\mathbf{i} + 2\mathbf{j} + 8\mathbf{k}$	B 1					
		$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC} = 6\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$	M1		correct n	nethod for \overline{O}	\vec{C}	
		OR						
		$\begin{pmatrix} 2\\1\\4 \end{pmatrix} = \begin{pmatrix} x-4\\y+4\\z-2 \end{pmatrix},$	B1					
		$\overrightarrow{OC} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ 6 \end{pmatrix}$	M1					
		(2) (0) OR						
		$\overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{OC} - \overrightarrow{OB}$ $\therefore \overrightarrow{OC} = 2\overrightarrow{OB} - \overrightarrow{OA}$	B1					
		$= \begin{pmatrix} 8\\-8\\4 \end{pmatrix} - \begin{pmatrix} 2\\-5\\-2 \end{pmatrix} = \begin{pmatrix} 6\\-3\\6 \end{pmatrix}$	M1					
		Unit vector = (Their \overrightarrow{OC}) ÷ (Mod their \overrightarrow{OC})	M1		Divides	by their mod	of their \overline{OC}	
		$= (6\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}) \div 9$	A1	[4]	Correct u	unsimplified	expression	

	Page 5	Mark Scheme			Syllabus	Paper	
		Cambridge International AS/A Level – Ma	y/June 20	16	9709	12	
4	(i)	$\left(x - \frac{2}{x}\right)^{6}$ Term is ${}_{6}C_{3} \times (-2)^{3} = (-)160$ -160	B1 B1 [2]	±160 see	±160 seen anywhere		
	(ii)	$ \begin{pmatrix} 2 + \frac{3}{x^2} \end{pmatrix} \left(x - \frac{2}{x} \right)^6 $ Term in $x^2 = {}_6C_2(-2)^2 x^2 $ = 60 (x ²)	B1 B1	±60 seen	anywhere		
		Term independent of x: = $2 \times (\text{their}-160) + 3 \times (\text{their } 60)$ -140	M1 A1 [4]	Using 2 J	Using 2 products correctly		
5	(i)	$\tan\left(\frac{\pi}{3}\right) = \frac{AC}{2x} \text{ or } \cos\left(\frac{\pi}{3}\right) \left(=\sin\frac{\pi}{6}\right) = \frac{2x}{AB}$ $\rightarrow AC = 2\sqrt{3x} \text{ or } AB = 4x$	B1	Either tri	g ratio		
		$AM = \sqrt{13x^2}, \sqrt{13x}, 3.61x$	M1A1 [3]	Complet	e method.		
	(ii)	$\tan\left(\hat{MAC}\right) = \frac{x}{\text{Their }AC}$	M1	"Their A $\left(\hat{MAC} \right)$ =	IC" must be ∉θ.	f(<i>x</i>),	
		$\theta = \frac{1}{6}\pi - \tan^{-1}\frac{1}{2\sqrt{3}} \mathbf{AG}$	A1 [2]	Justifies	$\frac{\pi}{6}$ and links	SMAC & θ	
6	(i)	$PT = r \tan \alpha$	B1				
		$QT = OT - OQ = \frac{r}{\cos \alpha} - r$					
		or $\sqrt{r^2 + r^2 \tan^2 \alpha} - r$	B1				
		Perimeter = sum of the 3 parts including $r\alpha$	B1 [3]				
	(ii)	Area of triangle = $\frac{1}{2} \times 10 \times 10 \tan \frac{\pi}{3}$	M1	Correct f	formula used	, 50√3,86.6	
		Area of sector = $\frac{1}{2} \times 10^2 \times \frac{1}{3}\pi$	M1	Correct f	formula used	$,\frac{50\pi}{3},52.36$	
		Shaded region has area 34 (2sf)	A1 [3]				

_	Page 6	Mark Scheme			Syllabus	Paper	_
		Cambridge International AS/A Level – Ma	y/June 20	June 2016 9709 12			
			1				
7	(i)	$\frac{1+\cos\theta}{1-\cos\theta} = \frac{4}{1-\cos\theta}$					
		$1 - \cos\theta 1 + \cos\theta \sin\theta \tan\theta$					
		LHS = $\frac{1+2c+c^2-(1-2c+c^2)}{(1-c)(1+c)}$	M1	Attempt	Attempt at combining fractions.		
		$=\frac{4c}{1-c^2}$	A1 A1	A1 for n	umerator. Al	denominat	tor
		$=\frac{4c}{s^2}$		Essential	step for awa	ard of A1	
		$=\frac{4}{ts}$ AG	A1 [4]				
	(ii)	$\sin\theta\left(\frac{1+\cos\theta}{1-\cos\theta}-\frac{1-\cos\theta}{1+\cos\theta}\right)=3.$		Uses par correctly	Uses part (i) to eliminate " <i>s</i> " correctly.		
		\rightarrow s × $\frac{4}{2}$ = 3 (\rightarrow t = $\frac{4}{2}$)	M1				
		ts 3	A1 A1.A	Å c 1000 + 15t			
		$\theta = 53.1^{\circ} \text{ and } 233.1^{\circ}$	[3]	▼ 10r 18	0^{-} + 1 answ	er.	
		0	[9]				
8		A (0, 7), B (8, 3) and C (3k, k)					
	(i)	<i>m</i> of <i>AB</i> is $-\frac{1}{2}$ oe. Eqn of <i>AB</i> is $y = -\frac{1}{2}x + 7$ Let $x = 3k, y = k$ k = 2.8 oe	B1 M1 M1 A1	Using A, Using C	$B ext{ or } C ext{ to get}$ or $A, B ext{ in the}$	an equation	n
		OR					
		$\frac{7-k}{0-3k} = \frac{3-k}{8-3k}$	M1A1	Using A,	<i>B</i> & <i>C</i> to equ	ate gradien	nts
		$\rightarrow 20k = 56 \rightarrow k = 2.8$	DM1A1	Simplifies to a linear or 3 term $\frac{1}{2}$			
		OR		quadratic = 0 .			
		$\frac{7-k}{0-3k} = \frac{7-3}{0-8}$	M1A1	Using <i>A</i> , <i>B</i> and <i>C</i> to equate gradients			
		$\rightarrow 20k = 56 \rightarrow k = 2.8$	DM1A1 [4]	Simplifie quadratic	to a linear $c = 0$.	or 3 term	

Ρ	age 7	Mark Scheme			Syllabus	Paper	
		Cambridge International AS/A Level – Ma	ay/June 20	016 9709 12			
(ii)		M(4, 5)	B1	anvwher	e in (ii)		
(11)		Perpendicular gradient = 2 .	M1	Use of $m_1m_2=-1$ soi			
		Perp bisector has eqn $y-5=2(x-4)$	M1	Forming ean using their M and			
				their "pe	rpendicular	<i>n</i> "	
		Let $x = 3k$, $v = k$		1	1		
		$k = \frac{3}{2}$ oe	A1				
		5 OR					
		$(0-3k)^{2} + (7-k)^{2} = (8-3k)^{2} + (3-k)^{2}$	M1A1	Use of P	ythagoras.		
		$-14k + 49 = 73 - 54k \rightarrow 40k = 24 \rightarrow k = 0.6$	DM1A1 [4]	Simplific quadratic	to a linear $c = 0$.	or 3 term	
9	(i) (a)	$a + (n-1)d = 10 + 29 \times 2$	M1	Use of n $a=\pm 10$ d	th term of an $l=\pm 2$ n=30 or	AP with	
		= 68	A1 [2]	Condone	$e - 68 \rightarrow 68$		
	(b)	$\frac{1}{2}n(20+2(n-1)) = 2000 \text{ or } 0$	M1	Use of S_n formula for an AP w a=+10, d=+2 and equated to explanate the equation of the second se			ı er
				0 or 200	2000.		
		$\rightarrow 2n^2 + 18n - 4000 = 0$ oe	A1	Correct 3	3 term quadra	$\operatorname{tric} = 0.$	
		(n=) 41	A1 [3]				
((ii)	<i>r</i> = 1.1, oe	B1	e.g. $\frac{11}{10}$,	110%		
		Uses $S_{30} = \frac{10(1.1^{30} - 1)}{1.1 - 1}$ (= 1645)	M1	Use of <i>S</i> n=30.	n formula for	a GP, a=±1	0,
		$Percentage lost = \frac{2000 - 1645}{2000} \times 100$	DM1	Fully con with "the	rrect method eir 1645"	for % left	
		= 17.75	A1 [4]	allow 17	.7 or 17.8.		
10		$y = \frac{8}{x} + 2x.$					
	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -8x^{-2} + 2$	B1	unsimpl	ified ok		
		$\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{d}x^2} = 16x^{-3}$	B1	unsimpl	unsimplified ok		
		$\int y^2 dx = -64x^{-1} \text{ oe} + 32x \text{ oe} + \frac{4x^3}{3} \text{ oe} (+c)$	3 × B1 [5]	B1 for ea	ach term – ur	simplified of	ok

	Page 8	Mark Scheme		Syllabus	Paper		
		Cambridge International AS/A Level – May/June 201			9709	12	
1			1	1			
	(ii)	sets $\frac{dy}{dx}$ to $0 \rightarrow x = \pm 2$	M1	Sets to 0	and attempts	s to solve	
		$\rightarrow M(2, 8)$ Other turning point is $(-2, -8)$	A1 A1	Any pair Second r	Any pair of correct values A1 Second pair of values A1		
				Second	second pair of values AT		
		If $x = -2$, $\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{d}x^2} < 0$	M1	Using the	eir $\frac{d^2 y}{dx^2}$ if kx	x^{-3} and $x < 0$	
		∴Maximum	A1 [5]				
	(iii)	Vol = $\pi \times [$ part (i) $]$ from 1 to 2	M1	Evidence their inte	e of using lin gral of y ² (ig	nits 1&2 in nore π)	
		$\frac{220\pi}{3},73.3\pi,230$	A1			,	
			[2]				
11		$f: x \mapsto 6x - x^2 - 5$					
	(i)	$6x - x^2 - 5 \leqslant 3$					
		$\rightarrow x^2 - 6x + 8 \ge 0$	M1	$\pm (6x-x)$	x^2-8 =, \leq , \geq	≥ 0 and	
		$\rightarrow x = 2, x = 4$	A1	attempts Needs bo	to solve oth values wh	ether = 2, < 2	2,
		$x \leq 2, x \geq 4$ condone < and/or >	A1 [3]	Accept a	ll recognisab	le notation.	
	(ii)	Equate $mx + c$ and $6x - x^2 - 5$ Use of " $b^2 - 4ac$ "	M1 DM1	Equates, Use of d	sets to 0. iscriminant v	vith values o	of
		$4c = m^2 - 12m + 16$. AG	A1	= (0) mu	st appear bef	ore last line.	•
		OR	1.5				
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 6 - 2x = m \to x = \left(\frac{6 - m}{2}\right)$	M1	Equates	$\frac{\mathrm{d}y}{\mathrm{d}x}$ to <i>m</i> and	rearrange	
		$m\left(\frac{6-m}{2}\right) + c = 6\left(\frac{6-m}{2}\right) - \left(\frac{6-m}{2}\right)^2 - 5$	M1	Equates and subs	$mx + c$ and $ext{ditutes}$ for x	$5x - x^2 - 5$	
		$4c = m^2 - 12m + 16$. AG	A1 [3]				
	(iii)	$6x - x^2 - 5 = 4 - (x - 3)^2$	B1 B1 [2]	4 B1 – (2	$(x-3)^2 B1$		
	(iv)	k=3.	B1 √^ [1]	√ for " <i>b</i>	".		
	(v)	$g^{-1}(x) = \sqrt{4-x} + 3$	M1 A1	Correct of	order of operation	ations.	
			[2]	$\pm\sqrt{4-x}$	+3 M1A0		
				$\sqrt{x-4}$	+3 M1A0		
				$\sqrt{4-y}$	+3 M1A0		

MATHEMATICS

9709/13 May/June 2016

Paper 1 MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	13

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme S		Paper
	Cambridge International AS/A Level – May/June 2016	9709	13

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme				Paper
	Cambridge International AS/A Level – May/June 2016			9709	13
		1	I		
1	$5C2\left(\frac{1}{x}\right)^3 \left(3x^2\right)^2$	B1	Can be seen in expansion		
	$10(\times 1) \times 3^2$	B1	Identified as	s leading to a	nswer
	90(x)	B1		U	
		[3]			
2	$(\pi) \int (x^3 + 1) dx$	M1	Attempt to resolve y^2 and attempt		
	$(\pi)\left \frac{x^4}{4}+x\right $	A1	to integrate		
	6π or 18.8	DM1A1 [4]	Applying limits 0 and 2. (Limits reversed: Allow M mark and allow A mark if final answer i 6π)		
3 (i)	$6+k=2 \rightarrow k=-4$	B1 [1]			
(ii)	$(y) = \frac{6x^3}{3} - \frac{4}{-2}x^{-2} (+c)$	B1B1√ [∧]	ft on <i>their k</i> . Accept $+\frac{k}{-2}x^{-2}$		
	9 = 2 + 2 + c c must be present	M1	Sub (1,9) with numerical k. Dep c attempt \int		l k. Dep on
	$(y) = 2x^3 + 2x^{-2} + 5$	A1 [4]	Equation needs to be seen Sub (2, 3) $\rightarrow c = -13\frac{1}{2}$ scores M1A		
4	$r = \frac{3+2d}{3} \operatorname{or} \frac{3+12d}{3+2d}$ or $r^2 = \frac{3+12d}{3}$	B1	1 correct eq sufficient	uation in <i>r</i> ar	nd <i>d</i> only is
	$(3+2d)^2 = 3(3+12d)$ oe OR sub $2d = 3r - 3$	M1	Eliminate r	or <i>d</i> using va	llid method
	(4)d(d-6)=0 OR $2^{2}-18-15+(-1)(-5)$	DM1	Attempt to simplify and solve quadratic		solve
	$3r = 18r - 13 \rightarrow (r - 1)(r - 5)$ $d = 6$ $r = 5$	A1 A1 [5]	Ignore $d = 0$ or $r = 1$ Do not allow -5 or ± 5		

Page 5	Page 5 Mark Scheme		Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016			13
	dy and the second se			

5	$\frac{dy}{dx} = [8] + [-2] [(2x-1)^{-2}]$	B2,1,0	
	$= 0 \rightarrow 4(2x-1)^2 = 1$ or $eg \ 16x^2 - 16x + 3 = 0$	M1	Set to zero, simplify and attempt to solve soi
	$x = \frac{1}{4} \text{ and } \frac{3}{4}$	A1	Needs both x values. Ignore y values
	$\frac{d^2 y}{dx^2} = 8(2x-1)^{-3}$	B1√*	ft to $k(2x-1)^{-3}$ where $k > 0$
	When $x = \frac{1}{4}$, $\frac{d^2 y}{dx^2} (= -64)$ and/or < 0 MAX	DB1	Alt. methods for last 3 marks (values either side of 1/4 & 3/4)
	When $x = \frac{3}{4}$, $\frac{d^2 y}{dx^2} (= 64)$ and/or > 0 MIN	DB1 [7]	must indicate <u>which</u> <i>x</i> -values and cannot use $x = 1/2$. (M1A1A1)
6	$BAC = \sin^{-1}(3/5)$ or $\cos^{-1}(4/5)$ or $\tan^{-1}(3/4)$	B 1	Accept 36.8(7)°
	$ABC = \sin^{-1}(4/5)$ or $\cos^{-1}(3/5)$ or $\tan^{-1}(4/3)$	B1	Accept 53.1(3)°
	$ACB = \pi / 2$ (Allow 90°)	B1	
	Shaded area = ΔABC – sectors ($AEF + BEG + CFG$)	M1	
	$\Delta ABC = \frac{1}{2} \times 4 \times 3 \text{oe}$	B1	
	$Sum sectors = \frac{1}{2} \left[3^2 0.6435 \right) +$		
	2 ² 0.9273 + 1 ² 1.5708]	M1	
	OR $\frac{\pi}{360} \left[3^2 36.8(7) + 2^2 53.1(3) + 1^2 90 \right]$		
	6-5.536 = 0.464	A1 [7]	
7	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 5x^{1/2} + 5$	B1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2$	B1	
	$2x - 5x^{1/2} + 5 = 2$	M1	Equate their dy/dx to <i>their</i> 2 or $\frac{1}{2}$.
	$2x - 5x^{n^2} + 3(=0)$ or equivalent 3-term quadratic	A1	
	Attempt to solve for $x^{1/2}$ e.g.		
	$(2x^{1/2} - 3)(x^{1/2} - 1) = 0$	DM1	Dep. on 3-term quadratic
	$x^{1/2} = 3/2$ and 1 x = 9/4 and 1	A1	ALT
	$\lambda - \gamma \gamma + a \pi u \tau$	[7]	$5x^{2} = 2x + 3 \rightarrow 25x = (2x + 3)^{2}$
			x = 9/4 and 1
			1

Page 6	Mark Scheme			Syllabus	Paper
	Cambridge International AS/A Level –	May/June	2016	9709	13
		-			
8 (i)	$3\sin^{2} x - \cos^{2} x + \cos x = 0$ Use $s^{2} = 1 - c^{2}$ and simplify to 3-term quad $\cos x = -3/4$ and 1	M1 M1 A1	Multiply by Expect $4c^2$	$\cos x \\ -c - 3 = 0$	
	$x = 2.42$ (allow 0.77 π) or 0 (extra in range max 1)	A1A1 [5]	SC1 for 0.723 (or 0.23 π), π following $4c^2 + c - 3 = 0$		
(ii)	$2x = 2\pi - their 2.42$ or $360 - 138.6$	B1√ [^]	Expect $2x =$	3.86	
	$x = 1.21 (0.385\pi), 1.93 (0.614/5\pi), 0, \pi (3.14)$ (extra max 1)	B1B1 [3]	Any 2 correct B1. Remaining 2 correct B1. SCB1 for all 69.3, 110.7, 0, 180 (degrees) SCB1 for .361, $\pi/2$, 2.78 after $4c^2 + c - 3 = 0$		
9 (i)	$\mathbf{AB} = \mathbf{OB} - \mathbf{OA} = \begin{pmatrix} -1 \\ 2 \\ p+4 \end{pmatrix}$	B1	Ignore label	s. Allow B A	or BC
	$\mathbf{CB} = \mathbf{OB} - \mathbf{OC} = \begin{pmatrix} -4\\5\\p-2 \end{pmatrix}$	B1	\mathbf{M}		
	$1+4+(p+4)^{2} = 16+25+(p-2)^{2}$ p=2	M1 A1 [4]			
(ii)	AB.CB = 4+10-5 = 9 $ \mathbf{AB} = \sqrt{1+4+25} = \sqrt{30}, \mathbf{CB} = \sqrt{16+25+1}$	M1	Use of $x_1 x_2$	$+ y_1 y_2 + z_1 z_2$	
	$=\sqrt{42}$ $\cos ABC = \frac{9}{\sqrt{30}\sqrt{42}} \text{or} \frac{9}{6\sqrt{35}}$	M1 M1	Allow one c	of AB , CB re	versed - but
	$ABC = 75.3^{\circ}$ or 1.31rads (ignore reflex angle 285°)	A1 [4]			
10 (i)	$2(ax^{2} + b) + 3 = 6x^{2} - 21$ a = 3, b = -12	M1 A1A1 [3]			
(ii)	$3x^2 - 12 \ge 0$ or $6x^2 - 21 \ge 3$	M1	Allow = or a	\leq or > or <.	Ft from
	$x \le -2$ i.e. (max) $q = -2$	A1 [2]	Must be in t	erms of q (e	eg $q \leqslant -2$)
(iii)	$y \ge 6(-3)^2 - 21 \Rightarrow$ range is $(y) \ge 33$	B1 [1]	Do not allow notations e.g. $[33, \infty)$	w $y > 33.Acc$ or [33, ∞]	ept all other

Page 7	Mark Scheme	Syllabus	Paper		
	Cambridge International AS/A Level – May/June 2016			9709	13
	Γ	Τ	1		
(iv)	$y = 6x^2 - 21 \implies x = (\pm)\sqrt{\frac{y+21}{6}}$	M1			
	$(fg)^{-1}(x) = -\sqrt{\frac{x+21}{6}}$	A1	Allow $y = \dots$ of x	Must be	a function
	Domain is $x \ge 33$	B1 √ [∧] [3]	ft from <i>their</i> essential	• part (iii) bu	t x
11 (i)	$AB^2 = 6^2 + 7^2 = 85, BC^2 = 2^2 + 9^2 = 85$ (\rightarrow isosceles)	B1B1	Or $AB = BC$	$C = \sqrt{85}$ etc	
	$AC^{2} = 8^{2} + 2^{2} = 68$ $M = (2 - 2) \cos RM^{2} - (\sqrt{85})^{2} - (1/\sqrt{68})^{2}$	B1			
	$M = (2, -2) \text{ or } BM = (\sqrt{85})^{-} - (\sqrt{2}\sqrt{68})^{-}$ $BM = \sqrt{2^{2} + 8^{2}} = \sqrt{68} \text{ or } \sqrt{85 - 17} = \sqrt{68}$	в1 В1	where <i>M</i> is	mid-point of	AC
	Area $\Delta ABC = \frac{1}{2}\sqrt{68}\sqrt{68} = 34$	B1 [6]			
(ii)	Gradient of $AB = 7/6$	B1		7	
	Equation of <i>AB</i> is $y+1 = \frac{7}{6}(x+2)$	M1	Or $y-6=\frac{7}{6}$	$\frac{1}{6}(x-4)$	
	Equation of CD is $y+3 = \frac{-6}{-6}(x-6)$	MI M1			
	Sim Eqns $2 = \frac{-6}{7}x + \frac{36}{7} - \frac{7}{6}x - \frac{14}{6}$	M1			
	$x = \frac{34}{85} = \frac{2}{5}$ oe	A1 [6]			
	Sim Eqns $2 = \frac{-6}{7}x + \frac{36}{7} - \frac{7}{6}x - \frac{14}{6}$ $x = \frac{34}{85} = \frac{2}{5}$ oe	M1 A1 [6]			

MARK SCHEME for the March 2016 series

9709 MATHEMATICS

9709/12

Paper 1 (Pure Mathematics), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE[®] and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme S		Paper
	Cambridge International AS/A Level – March 2016	9709	12

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme S		Paper
	Cambridge International AS/A Level – March 2016	9709	12

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR-1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA-1 This is deducted from A or B marks in the case of premature approximation. The PA-1 penalty is usually discussed at the meeting.

	Page 4	Page 4 Mark Scheme				Paper	
		Cambridge International AS/A Leve	el – March 2	2016	9709	12	
1	(i)	$80(x^4), -32(x^5)$	B1B1 [2]	Fully simpli	fied		
	(ii)	$(-32+80p)(x^5) = 0$ p = 2/5 or $32/80$ oe	M1 A1 ¹ / ^b [2]	Attempt to r	nult. relevant	terms & pu	t = 0
2		$y = \frac{3x^3}{3} - \frac{2x^{-2}}{-2} (+c)$ 3 = -1 + 1 + c y = x ³ + x ⁻² + 3	B1B1 M1 A1 [4]	Sub $x = -1$, Accept $c = 3$	y = 3. c mus 3 www	t be present	
3		a+11d = 17 $\frac{31}{2}(2a+30d) = 1023$ Solve simultaneous equations $d = 4, \ a = -27$ 31st term = 93	B1 B1 M1 A1 A1 [5]	At least one	correct		
4	(a)	$3x = -\sqrt{3}/2$ $x = \frac{-\sqrt{3}}{6}$ oe	M1 A1 [2]	Accept -0.8 Or $\frac{-3}{6\sqrt{3}}$ or	66 at this stap $\frac{-1}{2\sqrt{3}}$	ge	
	(b)	$(2\cos\theta - 1)(\sin\theta - 1) = 0$ $\cos\theta = 1/2 \text{ or } \sin\theta = 1$ $\theta = \pi/3 \text{ or } \pi/2$	M1 A1 A1A1 [4]	Reasonable Award B1B Allow 1.05,	attempt to fac 1 www 1.57. SCA1	ctorise and s for both 60°	solve , 90°
5	(i)	Mid-point of $AB = (7, 3)$ soi Grad. of $AB = -2 \rightarrow \text{grad}$ of perp. bisector = $1/2$ soi Eqn of perp. bisector is $y - 3 = \frac{1}{2}(x - 7)$	B1 M1 A1 [3]	Use of $m_1 m_2$	₂ = -1		
	(ii)	Eqn of CX is $y - 2 = -2(x - 1)$ $\frac{1}{2}x - \frac{1}{2} = -2x + 4$ x = 9/5, y = 2/5 $BX^2 = 7.2^2 + 1.4^2$ soi BX = 7.33	M1 DM1 A1 M1 A1 [5]	Using their of Solve simult previous M'	original gradi aneously dep s	ent and (1,2 pendent on b	2) both
Page 5Mark SchemeSyllabusPaperCambridge International AS/A Level – March 2016970912

6 (i)	$A = 2\pi r^{2} + 2\pi rh$ $\pi r^{2}h = 1000 \rightarrow h = \frac{1000}{\pi r^{2}}$ Sub for h into $A \rightarrow A = 2\pi r^{2} + \frac{2000}{r}$ AG	B1 M1 A1 [3]	
(ii)	$\frac{dA}{dr} = 0 \implies 4\pi r - \frac{2000}{r^2} = 0$ r = = 5.4 $\frac{d^2A}{dr^2} = 4\pi + \frac{4000}{r^3}$ > 0 hence MIN hence MOST EFFICIENT AG	M1A1 DM1 A1 B1 [5]	Attempt differentiation & set = 0 Reasonable attempt to solve to r^3 = Or convincing alternative method
7 (i)	$CP = \frac{3}{5}CA$ soi $CP = \frac{3}{5}(4\mathbf{i} - 3\mathbf{k}) = 2.4\mathbf{i} - 1.8\mathbf{k}$ AG	M1 A1 [2]	
(ii)	$OP = 2.4\mathbf{i} + 1.2\mathbf{k}$ $BP = 2.4\mathbf{i} - 2.4\mathbf{j} + 1.2\mathbf{k}$	B1 B1 [2]	
(iii)	$BP.CP = 5.76 - 2.16 = 3.6$ $ BP CP = \sqrt{2.4^2 + 2.4^2 + 1.2^2} \sqrt{2.4^2 + 1.8^2}$ $\cos BPC = \frac{3.6}{\sqrt{12.96}\sqrt{9}} \left(=\frac{1}{3}\right)$ Angle BPC = 70.5° (or 1.23 rads) cao	M1 M1 M1 A1 [4]	Use of $x_1x_2 + y_1y_2 + z_1z_2$ Product of moduli All linked correctly
8 (i)	2a + 4b = 8 $2a^{2} + 3a + 4b = 14$ $2a^{2} + 3a + (8 - 2a) = 14 \rightarrow (a + 2)(2a - 3) = 0$ a = -2 or 3/2 b = 3 or 5/4	M1 A1 M1 A1 A1 [5]	Substitute in -2 and -3 Sub linear into quadratic & attempt solution If A0A0 scored allow SCA1 for either (-2,3) or $(3/2, 5/4)$
(ii)	$y = \left(x - \frac{1}{2}\right)^2 - \frac{13}{4}$ Attempt completing of square $x - \frac{1}{2} = (\pm)\sqrt{y + \frac{13}{4}}$ oe $f^{-1}(x) = \frac{1}{2} - \sqrt{x + \frac{13}{4}}$ oe Domain of f^{-1} is $(x) \ge -13/4$	M1A1 DM1 A1 B1√ ^Å [5]	Allow with <i>x/y</i> transposed Allow with <i>x/y</i> transposed Allow <i>y</i> = Must be a function of <i>x</i> Allow > , $-13/4 \le x \le \infty$, $\left[-\frac{13}{4},\infty\right]$ etc

Page 6Mark SchemeSyllabusPaperCambridge International AS/A Level – March 2016970912

9 (a) (i)	$BAO = OBA = \frac{\pi}{2} - \alpha$		Allow use of 90° or 180°
	$AOB = \pi - \left(\frac{\pi}{2} - \alpha\right) - \left(\frac{\pi}{2} - \alpha\right) = 2\alpha AG$	M1A1 [2]	Or other valid reasoning
(ii)	$\frac{1}{2}r^2(2\alpha) - \frac{1}{2}r^2\sin 2\alpha \text{oe}$	B2,1,0 [2]	SCB1 for reversed subtraction
(b)	Use of $\alpha = \frac{\pi}{6}$, $r = 4$	B1B1	
	1 segment $S = \left(\frac{1}{2}\right)4^2\left(\frac{\pi}{3}\right) - \left(\frac{1}{2}\right)4^2\sin\frac{\pi}{3}$		
	$=\left(\frac{8\pi}{3}-4\sqrt{3}\right)$	M1	Ft their (ii), α ,r
	Area ABC $T = \left(\frac{1}{2}\right) 4^2 \sin \frac{\pi}{3} \left(=4\sqrt{3}\right)$	B1	OR $AXB = \frac{T}{3} = 4\tan\frac{\pi}{6}$ or
	$T-3S = \left(\frac{1}{2}\right)4^2\sin\frac{\pi}{3} - 3$		$\frac{1}{2}\left(\frac{4}{\sqrt{3}}\right)^2 \sin\frac{2\pi}{3} \left(=\frac{4\sqrt{3}}{3}\right)$
	$\left[\left(\frac{1}{2}\right)4^2\left(\frac{\pi}{3}\right) - \left(\frac{1}{2}\right)4^2\sin\frac{\pi}{3}\right]$	M1	OR $3\left[\frac{T}{3}-S\right] = 3\left[\frac{4\sqrt{3}}{3}-\left(\frac{8\pi}{3}-4\sqrt{3}\right)\right]$
	$16\sqrt{3} - 8\pi$ cao	A1 [6]	
10 (i)	x = 1 / 3	B1 [1]	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{2}{16}(3x-1)\right] [3]$	B1B1	5
	When $x = 3$ $\frac{dy}{dx} = 3$ soi	M1	
	Equation of QR is $y-4=3(x-3)$ When $y=0$ $x=5/3$	M1 A1 [5]	
(iii)	Area under curve = $\left[\frac{1}{16 \times 3}(3x-1)^3\right] \left[\times \frac{1}{3}\right]$	B1B1	
	$\frac{1}{16 \times 9} \left[8^3 - 0 \right] = \frac{32}{9}$	M1A1	Apply limits: <i>their</i> $\frac{1}{3}$ and 3
	Area of $\Delta = 8/3$ Shaded area $= \frac{32}{2} - \frac{8}{2} = \frac{8}{2}$ (or 0.889)	B1 A1	
	9 3 9	[6]	

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/11

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	11

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	11

- AEF Any Equivalent Form (of answer is equally acceptable)AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page	4	Mark Scheme			Syllabus	Paper
			Cambridge International AS/A Level – Oc	tober/Nov	vember 2015	9709	11
1		(<i>c</i> (- 0	$(a + x)^{5} = a^{5} + {}^{5}C_{1}a^{4}x + {}^{5}C_{2}a^{3}x^{2} + \dots \text{ soi}$ $-\frac{2}{a} \times (their 5a^{4}) + (their 10a^{3}))(x^{2})$	M1 M1 A1 [3]	Ignore subsequ	lent terms	
2		f (5 <i>c</i>	$(x) = x^{3} - 7x (+c)$ = 27 - 21 + c = -1 \rightarrow f(x) = x^{3} - 7x - 1	B1 M1 A1 [3]	Sub $x = 3, y =$	5. Dep. on <i>c</i>	present
3		4 So x^{2}	$x^{2} + x^{2} = 1/2$ soi blve as quadratic in x^{2} $x^{2} = 1/4$ $x = \pm 1/2$	B1 M1 A1 A1 [4]	E.g. $(4x^2 - 1)(2x^2)$ Ignore other so	$2x^2 + 1$) or x oblution	$^2 = $ formula
4	(i) (ii)	4 4 si θ	$\cos^{2} \theta + 15 \sin \theta = 0$ (1-s ²)+15s = 0 $\rightarrow 4 \sin^{2} \theta - 15 \sin \theta - 4 = 0$ n $\theta = -1/4$ = 194.5 or 345.5	M1 M1A1 [3] B1 B1B1√ [™] [3]	Replace $\tan \theta$ is $\sin \theta$ or equive Use $c^2 = 1 - s^2$ (www) Ignore other so Ft from 1st sol	by $\frac{\sin \theta}{\cos \theta}$ and alent alent and rearrant olution ution, SC B1	multiply by ge to AG both angles
5	(i)	$\frac{d}{d}$	$\frac{y}{x} = -\frac{8}{x^2} + 2 \text{ cao}$ $\frac{y}{x^2} = \frac{16}{x^3}$ cao	B1B1 B1 [3]			
	(ii)	- x y <u>d</u>	$\frac{8}{x^2} + 2 = 0 \rightarrow 2x^2 - 8 = 0$ = ± 2 = ± 8 $\frac{2y}{y} > 0 \text{ when } x = 2 \text{ hence MINIMUM}$	M1 A1 A1 B1√ [*]	Set = 0 and real If A0A0 scored [Ft for "correct	nrrange to qu d, SCA1 for ct" conclusio	adratic form just (2, 8) n if
		$\frac{d}{d}$	x^{2} $\frac{2}{x^{2}}y < 0$ when $x = -2$ hence MAXIMUM	B1√ [^] [5]	$\begin{cases} \frac{d^2 y}{dx^2} \text{ incorrec} \\ \text{any valid mer} \end{cases}$	ct or thod inc. a go	odsketch

Cambridge International AS/A Level – October/November 2015 970 6 (i) $x^2 - x + 3 = 3x + a \rightarrow x^2 - 4x + (3 - a) = 0$ B1 AG (ii) $5 + (3 - a) = 0 \rightarrow a = 8$ B1 Sub $x = -1$ into (i) $x^2 - 4x - 5 = 0 \rightarrow x = 5$ B1 OR B2 for $x = 5$ www	9	11
6 (i) $x^{2} - x + 3 = 3x + a \rightarrow x^{2} - 4x + (3 - a) = 0$ (ii) $5 + (3 - a) = 0 \rightarrow a = 8$ $x^{2} - 4x - 5 = 0 \rightarrow x = 5$ B1 Sub $x = -1$ into (i) B1 OR B2 for $x = 5$ www [2]		
6 (i) $x^{2} - x + 3 = 3x + a \rightarrow x^{2} - 4x + (3 - a) = 0$ (ii) $5 + (3 - a) = 0 \rightarrow a = 8$ $x^{2} - 4x - 5 = 0 \rightarrow x = 5$ B1 AG [1] AG [1] B1 Sub $x = -1$ into (i) B1 OR B2 for $x = 5$ www [2]		
(ii) $5 + (3 - a) = 0 \rightarrow a = 8$ $x^2 - 4x - 5 = 0 \rightarrow x = 5$ [2] B1 Sub $x = -1$ into (i) B1 OR B2 for $x = 5$ www		
[2]	7	
(iii) $16-4(3-a) = 0$ (applying $b^2 - 4ac = 0$) a = -1 $(x-2)^2 = 0 \rightarrow x = 2$ y = 5 (applying $b^2 - 4ac = 0$) A1 A1 $y = 2^2 - 2 + 3 \rightarrow y = 1$	2 <i>x</i> -	-1=3
$y = 5 \qquad \qquad$		
7 (i) $BC^2 = r^2 + r^2 = 2r^2 \rightarrow BC = r\sqrt{2}$ B1 [1] AG		
(ii) Area sector $BCFD = \frac{1}{4}\pi (r\sqrt{2})^2$ soi M1 Expect $\frac{1}{2}\pi r^2$		
Area $\Delta BCAD = \frac{1}{2}(2r)r$ M1 Expect r^2 (could be	mbe	dded)
Area segment $CFDA = \frac{1}{2}\pi r^2 - r^2$.oe A1		
Area semi-circle $CADE = \frac{1}{2}\pi r^2$ B1		
Shaded area $\frac{1}{2}\pi r^2 - \left(\frac{1}{2}\pi r^2 - r^2\right)$		
or $\pi r^2 - \left(\frac{1}{2}\pi r^2 + \left(\frac{1}{2}\pi r^2 - r^2\right)\right)$ DM1 Depends on the area	A BC	D
$=r^{2}$ [6]		

	Page 6 Mark Scheme			Syllabus	Paper	
		Cambridge International AS/A Level – Oc	tober/Nov	vember 2015	9709	11
				1		
8	(i)	$x^2 - 4x = 12$	M1	$4x - x^2 = 12$ so	cores M1A0	
		x = -2 or 6	A1			
		3^{rd} term = $(-2)^2 + 12 = 16$ or $6^2 + 12 = 48$	A1A1	SC1 for 16, 48	after $x = 2$.	- 6
			[4]	,	,	
		$x^{2}(x)$				
	(ii)	$r^2 = \frac{\pi}{4x} \left(= \frac{\pi}{4} \right)$ soi	M1			
		4				
		$\frac{4\lambda}{2} = 8$	M1	Accept use of	unsimplified	
		$1-\frac{x}{4}$		x^2 or $4x$ or 4		
		4 4 1		$\frac{1}{4x}$ or $\frac{1}{x^2}$ or $\frac{1}{x}$		
		$x = \frac{1}{3}$ or $r = \frac{1}{3}$	A1			
		16				
		3^{rd} term = $\frac{10}{27}$ (or 0.593)				
		27	[4]			
		ALT				
		$\frac{4x}{4x} = 8 \rightarrow r = 1 - \frac{1}{2}r \text{ or } \frac{4x}{4x} = 8 \rightarrow r = 2(1 - r)$	M1			
		$1-r$ 2^{x} $1-r$ $1-r$				
		$r^{2} = 4r\left(1 - \frac{1}{r}r\right)$ $r = \frac{2(1 - r)}{r}$	M1			
		$x = ix \left(1 - \frac{1}{2}x\right)$ 4				
		$r = \frac{4}{r}$ $r = \frac{1}{r}$	A1			
		3 3				
0	(i)	(1) (2)	D1D1D1	-		
,	(1)	$-(1)(x-3)^{2}+4$	BIBIBI			
						_
	(11)	Smallest (m) is 3	B1√ [1]	Accept $m \ge 3$, Et their h	m = 3. Not x	$x \ge 3.$
			[1]	Ft metr b		
	(iii)	$(x-3)^2 = 4 - y$	M1	Or x/y transp	osed. Ft their	• a, b, c
		Correct order of operations	M1			
		$f^{-1}(x) = 2 + \sqrt{4 - x}$ and	11	Accort use if	alaar	
		$\begin{array}{c} 1 (x) = 5 + \sqrt{4 - x} \text{cau} \\ \end{array}$	R1	Accept $y = 11$	Cical	
		Domain is $\lambda \leq 0$	[4]			
			r.1			

	Page	7 Mark Scheme			Syllabus	Paper	
			Cambridge International AS/A Level – Oc	tober/Nov	/ember 2015	9709	11
				•	•		
10	(i)	PN	$M = 2i - 10k + \frac{1}{2}(6j + 8k)$ oe	M1	Any valid met	hod	
		PN	$\mathbf{M} = 2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$	A1			
		÷	$\sqrt{4+9+36}$	M1			
		Uı	nit vector = $\frac{1}{7}(2\mathbf{i}+3\mathbf{j}-6\mathbf{k})$	A1			
	(ii)	Δ,	T = 6i + 8k $PT = 3i + 6i - 2k$ soi	R1	Allow 1 vector	r reversed at	this stage
	(11)	л (о	r = 0 $j + 0$ k , $r = a + 0$ $j = 2k$ sol		$(\mathbf{A}\mathbf{M})$ or \mathbf{MT} c	ould be used	for AT)
		(0				ould be used	
		(c	$\cos ATP) = \frac{(6\mathbf{j} + 8\mathbf{k}).(a\mathbf{i} + 6\mathbf{j} - 2\mathbf{k})}{\sqrt{36 + 64}\sqrt{a^2 + 36 + 4}}$	M1			
			$=\frac{36-16}{\sqrt{36+64}\sqrt{a^2+36+4}}$				
			$\frac{20}{0\sqrt{a^2+40}}$	A1√ [^]	Ft from their A	AT and PT	
			$\frac{2}{a^2 + 40} = \frac{2}{7}$ oe and attempt to solve	M1	2		
		a:	=3	A1 [5]	Withheld if on	ly 1 vector r	eversed
		A	LT				
		A	lt (Cosine Rule) Vectors (AT, PT etc.)	B1	-		
		co	$\cos ATP = \frac{a^2 + 36 + 4 + 36 + 64 - (100 + a^2)}{2\sqrt{(a^2 + 40)}\sqrt{100}}$	M1A1			
		th	en as above				
L			2222 · · · · · · · · · · · · · · · · ·		5		

Page 8 **Mark Scheme** Syllabus Paper Cambridge International AS/A Level – October/November 2015 11 9709 $\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{1}{2}(1+4x)^{-1/2}\right] \times \left[4\right]$ 11 (i) **B1B1** At x = 6, $\frac{dy}{dx} = \frac{2}{5}$ **B1** Gradient of normal at $P = -\frac{1}{2}$ B1√^ OR eqn of norm $y-5 = their - \frac{5}{2}(x-6)$ Gradient of $PQ = -\frac{5}{2}$ hence PQ is a normal, When y = 0, x = 8 hence result **B1** or $m_1 m_2 = -1$ [5] Vol for curve $=(\pi)\int (1+4x)$ and attempt to (ii) **M1** integrate y^2 = $(\pi)[x + 2x^2]$ ignore '+ c' = $(\pi)[6 + 72 - 0]$ A1 DM1 Apply limits $0 \rightarrow 6$ (allow reversed if corrected later) **A1** $= 78(\pi)$ $\mathbf{OR} \ (\pi) \left[\frac{\left(-\frac{5}{2}x + 20 \right)^3}{3 \times -\frac{5}{2}} \right]$ Vol for line $=\frac{1}{3} \times (\pi) \times 5^2 \times 2$ **M1** $=\frac{50}{3}(\pi)$ A1 Total Vol = $78\pi + 50\pi/3 = 94\frac{2}{3}\pi$ (or $284\pi/3$) A1 [7]

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/12

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	12

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	12

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR-1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA-1 This is deducted from A or B marks in the case of premature approximation. The PA-1 penalty is usually discussed at the meeting.

F	Page 4	Mark Scheme			Syllabus	Paper
		Cambridge International AS/A Level – Octo	ber/Novem	ber 2015	9709	12
1		$f: x \mapsto 3x + 2, g: x \mapsto 4x - 12$	B1			
		$f^{-1}(x) = \frac{x-2}{3}$	B1			
		gf(x) = 4(3x+2) - 12	M1	Equates, co	ollects terms	, +soln
		Equate $\rightarrow x = \frac{2}{7}$	A1 [4]			
2		$(x + 2k)^7$ Term in $x^5 = 21 \times 4k^2 = 84k^2$ Term in $x^4 = 35 \times 8k^3 = 280k^3$	B1 B1			
		Equate and solve $\rightarrow k = 0.3$ or $\frac{1}{10}$	M1 A1 [4]	Correct me	ethod to obta	in <i>k</i> .
3	(i)	$\tan 60 = \frac{x}{h} \rightarrow x = h \tan 60$	B1	Any correc	et unsimplifie	ed length
		$A = h \times x$	M1	Correct me	thod for area	a
		$V = 40\sqrt{(3h^2)}$	A1	ag		
			[3]			
	(ii)	$\frac{\mathrm{d}V}{\mathrm{d}h} = 80\sqrt{(3h)}$	B1	B1		
		If $h = 5$, $\frac{dh}{dt} = \frac{1}{2\sqrt{3}}$ or 0.289	M1A1 [3]	M1 (must l	be ÷, not ×).	
4	(i)	$\left(\frac{1}{\sin x} - \frac{1}{\tan x}\right)^2 = \left(\frac{1}{s} - \frac{c}{s}\right)^2$	M1	Use of tan	= sin/cos	
		$\frac{(1-c)^2}{s^2} = \frac{(1-c)^2}{1-c^2}$	M1	Use of $s^2 =$	$1 - c^2$	
		$=\frac{(1-c)(1-c)}{(1-c)(1+c)} \text{ or } \frac{(1-c)^2}{(1-c)(1+c)}$	A1			
		$\equiv \frac{1 - \cos x}{1 + \cos x}$	A1 [4]	ag		
	(ii)	$\left(\frac{1}{\sin x} - \frac{1}{\tan x}\right)^2 = \frac{2}{5}$				
		$\frac{1 - \cos x}{1 + \cos x} = \frac{2}{5} \to \cos x \frac{3}{7}$	M1	Making co	sx the subjec	t
		$\rightarrow x = 1.13 \text{ or } 5.16$	A1 A1∜ [≜] [3]	$2\pi - 1^{st}$ and	swer.	

Page	e 5 Mark Scheme			Syllabus	Paper		
		Cambridge International AS/A Level – Octo	ber/Nover	er/November 2015 9709 12			
	1						
5 (i)	L	$ength of OB = \frac{6}{\cos 0.6} = 7.270$	M1 [1]	ag Any va	lid method		
(ii)	A A P	$B = 6\tan 0.6 \text{ or } 4.1$ Arc length = 7.27 × (½ π – 0.6) = (7.06) Perimeter = 6 + 7.27 + 7.06 + 6tan0.6 = 24.4	B1 M1 A1 [3]	Sight of in Use of $s = r$	Sight of in (ii) Use of $s = r\theta$ with sector angle		
(iii)	A A -	Area of $AOB = \frac{1}{2} \times 6 \times 7.27 \times \sin 0.6$ Area of $OBC = \frac{1}{2} \times 7.27^2 \times (\frac{1}{2}\pi - 0.6)$ \Rightarrow area = 12.31 + 25.65 = 38.0	M1 M1 A1 [3]	Use of any Use of $\frac{1}{2}r^2$	Use of any correct area method Use of $\frac{1}{2}r^2\theta$.		
6	A	((-3, 7), <i>B</i> (5, 1) and <i>C</i> (-1, <i>k</i>)					
(i)	A 6 k	B = 10 ² + (k - 1) ² = 10 ² = -7 and 9	B1 M1 A1 [3]	Use of Pyt	Use of Pythagoras		
(ii)	m	$a \text{ of } AB = -\frac{3}{4} m \text{ perp} = \frac{4}{3}$	B1 M1	B1 M1 U	B1 M1 Use of $m_1 m_2 = -1$		
	Λ	<i>I</i> =(1,4)					
	Е	Eqn $y-4 = \frac{4}{3}(x-1)$	B1				
	S	$et y to 0, \rightarrow x = -2$	M1 A1 [5]	Complete	Complete method leading to <i>D</i> .		
7	Ō	$\overrightarrow{\text{DA}} = \begin{pmatrix} 0\\2\\-3 \end{pmatrix}, \overrightarrow{\text{OB}} = \begin{pmatrix} 2\\5\\-2 \end{pmatrix}, \overrightarrow{\text{OC}} = \begin{pmatrix} 3\\p\\q \end{pmatrix}.$					
(i)		$\overrightarrow{AB} = \begin{pmatrix} 2\\3\\1 \end{pmatrix} \overrightarrow{AC} \begin{pmatrix} 3\\p-2\\q+3 \end{pmatrix} \overrightarrow{BC} \begin{pmatrix} 1\\p-5\\q+2 \end{pmatrix}$ $\Rightarrow p = 6\frac{1}{2} \text{ and } q = -1\frac{1}{2}$	B1B1 B1 B1	Any 2 of 3	relevant vec	tors	
			[4]				
(ii)	6	a + 3p - 6 + q + 3 = 0 a = -3p - 3	M1 A1 [2]	Use of x_1x_2	Use of $x_1x_2 + y_1y_2 + z_1z_2 = 0$		
(iii)	A	$B^{2} = 4 + 9 + 1 AC^{2} = 9 + 1 + (q + 3)^{2}$	M1	For attemp	t at either		
	-	$\rightarrow (q+3)^2 = 4$ $\rightarrow q = -1 \text{ or } -5$	A1 A1 [3]				

Page	6 Mark Scheme				Paper
	Cambridge International AS/A Level – Octo	ber/Novem	ber 2015	9709	12
8	$f: x \to x^2 + ax + b ,$				
(i)			B1 for $(x +$	$(-3)^2$. B1 for	-17
	$x^2 + 6x - 8 = (x+3)^2 - 17$	B1 B1	or B1 for 2	x = -3, B1	v = -17
	or $2x + 6 = 0 \rightarrow x = -3 \rightarrow y = -17$				
	\rightarrow Range f(x) ≥ -17	B1 √ [*] [3]	Following	through visi	ble method.
(ii)	(x-k)(x+2k) = 0	M1	Realises th	e link betwe	en roots and
	$\equiv x^{-} + 5x + b = 0$	A 1		n a affi ai anta	~ f
		AI A1	comparing	coefficients	01 <i>X</i>
		[3]			
(iii)	$(x+a)^{2} + a(x+a) + b = a$	M1	Replaces "	x" by " $x + a^{2}$	in 2 terms
	Uses $b^2 - 4ac \rightarrow 9a^2 - 4(2a^2 + b - a)$	DM1	Any use of	discriminan	t
	$\rightarrow a^2 < 4(b-a)$	A1			
		[3]			
9	$f''(x) = \frac{12}{x^3}$				
(i)	$f'(x) = -\frac{6}{x^2} (+c)$	B1	Correct int	egration	
	$= 0 \text{ when } x = 2 \rightarrow c = \frac{3}{2}$	M1 A1	Uses $x = 2$,	, f'($x = 0$)	
	$f(x) = \frac{6}{x} + \frac{3x}{2} (+A)$	B1√B1√	For each in	itegral	
	= 10 when $x = 2 \rightarrow A = 4$	A1			
		[6]			
	6 3				_
(ii)	$-\frac{1}{x^2} + \frac{1}{2} = 0 \rightarrow x = \pm 2$	MI	Sets their 2	term f'(x) t	o 0.
	Other point is $(-2, -2)$	A1			
	• • • • • •	[2]			
/!!!\	$A_{4,n} = 2 f''(n) = 1.5 Min$	D1			
(111)	At $x = 2$, $f'(x) = 1.5$ Min At $x = -2$ $f''(x) = -1.5$ Max	BI R1			
	$\Delta t x = 2, 1 (x) = 1.5 \text{ivid} x$	[2]			
		[[-]			

Page 7	7 Mark Scheme	Syllabus	Paper		
	Cambridge International AS/A Level – Octo	ber/Novem	ber 2015	9709	12
10	$y = \sqrt{(9 - 2x^2)} P(2, 1)$				
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2\sqrt{(9-2x^2)}} \times -4x$	B1 B1	Without " \times -4 <i>x</i> " Allow even if B0 above.		
	At P, $x = 2$, $m = -4$ Normal grad = $\frac{1}{4}$ Eqn AP $y - 1 = \frac{1}{4}(x - 2)$	M1 M1	For $m_1m_2 = -1$ calculus needed Normal, not tangent		needed
	$\rightarrow A (-2, 0) \text{ or } B (0, \frac{1}{2})$ Midpoint <i>AP</i> also $(0, \frac{1}{2})$	A1 A1 [6]	Full justifi	cation.	
(ii)	$\int x^2 \mathrm{d}y = \int \left(\frac{9}{2} - \frac{y^2}{2}\right) \mathrm{d}y$	M1	Attempt to	integrate x ²	
	$=\frac{9y}{2}-\frac{y^3}{6}$	A1	Correct int	egration	
	Upper limit = 3 Uses limits 1 to 3 \rightarrow volume = 4 ² / ₃ π	B1 DM1 A1 [5]	Evaluates Uses both	upper limit limits correct	ly

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/13

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	13

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol A^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2015	9709	13

- AEF Any Equivalent Form (of answer is equally acceptable)AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √^k" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper			
	Cambridge International AS/A Level – Octo	ber/Nove	mber 2015	9709	13	
	$x^{2} - 4x + c = 2x - 7 \rightarrow x^{2} - 6x + c + 7(=0)$ 36 - 4(c + 7) < 0 c > 2	M1 DM1 A1 [3]	All terms on Apply b^2 –	n one side 4 <i>ac</i> < 0. Al	low ≼ .	
	$[7C2] \times \left[\left(\frac{x}{3} \right)^5 \right] \times \left[\left(\frac{9}{x^2} \right)^2 \right]$ soi	B2,1,0	Seen			
	$21 \times \frac{1}{3^5} \left(x^5\right) \times 81 \left(\frac{1}{x^4}\right)$ soi	B 1	Identified as	s required ter	m	
	7	B1 [4]	Accept 7 <i>x</i>			
(i)	$[3][(x-1)^2][-1]$	B1B1B1 [3]				
(ii)	$f'(x) = 3x^2 - 6x + 7$	B1	Ft their (i)	+ 5		
	$=3(x-1)^{2}+4$	B1√				
	> 0 hence increasing	DB1 [3]	Dep B1√ un	less other va	lid reason	
(i)	Sector $OCD = \frac{1}{2}(2r)^2\theta \ (=2r^2\theta)$	B1	$2r^2\theta$ seen s	omewhere		
	Sector(s) $OAB/OEF = (2)\frac{1}{2}r^2(\pi - \theta)$	B1	Accept with AG www	/without fact	or (2)	
	$10ta1 = r (\pi + \theta)$	B1 [3]				
(ii)	Arc $CD = 2r\theta$ Arc(s) $AB/EF(2)r(\pi - \theta)$ Straight edges $= 4r$ Total $2\pi r + 4r$ (which is independent of θ)	B1 B1 B1 B1 [4]	Accept with Must be sim	/without fact	or (2)	
	(i) (i) (i) (i)	Page 4Mark SchemeCambridge International AS/A Level - Octor $x^2 - 4x + c = 2x - 7 \rightarrow x^2 - 6x + c + 7(=0)$ $36 - 4(c + 7) < 0$ $c > 2$ $[7C2] \times \left[\left(\frac{x}{3} \right)^5 \right] \times \left[\left(\frac{9}{x^2} \right)^2 \right]$ soi $21 \times \frac{1}{3^5} (x^5) \times 81 \left(\frac{1}{x^4} \right)$ $21 \times \frac{1}{3^5} (x^5) \times 81 \left(\frac{1}{x^4} \right)$ (i) $[3] [(x - 1)^2] [-1]$ (ii) $f'(x) = 3x^2 - 6x + 7$ $= 3(x - 1)^2 + 4$ > 0hence increasing(i)Sector $OCD = \frac{1}{2}(2r)^2 \theta$ ($= 2r^2 \theta$)Sector(s) $OAB/OEF = (2) \frac{1}{2}r^2(\pi - \theta)$ Total $= r^2(\pi + \theta)$ (ii)Arc $CD = 2r\theta$ Arc(s) AB/EF ($2)r(\pi - \theta$)Straight edges $= 4r$ Total $2\pi r + 4r$ (which is independent of θ)	Mark SchemeCambridge International AS/A Level – October/Novel $x^2 - 4x + c = 2x - 7 \rightarrow x^2 - 6x + c + 7(= 0)$ MI $36 - 4(c + 7) < 0$ DM1 $c > 2$ x^2 $[7C2] \times \left[\left(\frac{x}{3} \right)^5 \right] \times \left[\left(\frac{9}{x^2} \right)^2 \right]$ soiB2,1,0 $21 \times \frac{1}{3^5} \left(x^5 \right) \times 81 \left(\frac{1}{x^4} \right)$ soiB1 7 B1(i) $[3] \left[(x - 1)^2 \right] [-1]$ B1B1B1(ii) $[3] \left[(x - 1)^2 \right] [-1]$ B1B1B1 (ii) $[3] \left[(x - 1)^2 + 4 \right] = 0$ hence increasingDB1 (ii) Sector $OCD = \frac{1}{2}(2r)^2 \theta \ (= 2r^2 \theta)$ B1Sector(s) $OAB/OEF = (2) \frac{1}{2}r^2(\pi - \theta)$ B1 $Total = r^2(\pi + \theta)$ B1 $Arc \ CD = 2r\theta$ B1 $Arc(s) \ AB/EF \ (2)r(\pi - \theta)$ B1 $Straight edges = 4r$ B1 $Total \ 2\pi r + 4r$ (which is independent of θ)E1	Mark SchemeCambridge International AS/A Level – October/November 2015 $x^2 - 4x + c = 2x - 7 \rightarrow x^2 - 6x + c + 7(=0)$ $36 - 4(c + 7) < 0$ $c > 2$ M1 All [3]All terms or Apply $b^2 - a^2$ $x^2 - 4x + c = 2x - 7 \rightarrow x^2 - 6x + c + 7(=0)$ $c > 2$ M1 All [3]All terms or Apply $b^2 - a^2$ $x^2 - 4x + c = 2x - 7 \rightarrow x^2 - 6x + c + 7(=0)$ $c > 2$ M1 DM1 All [3]All terms or Apply $b^2 - a^2$ $(7C2] \times \left[\left(\frac{x}{3} \right)^5 \right] \times \left[\left(\frac{9}{x^2} \right)^2 \right]$ soisoi B1 B1 [4]B1 Accept 7x(i) $[3] \left[(x - 1)^2 \right] [-1]$ $= 3(x - 1)^2 + 4$ > 0 hence increasingB1 B1 [3]Ft their (i) B1 [3](i)Sector $OCD = \frac{1}{2}(2r)^2 \theta$ ($= 2r^2 \theta$) Sector(s) $OAB/OEF = (2)\frac{1}{2}r^2(\pi - \theta)$ Total $= r^2(\pi + \theta)$ B1 B1 [3]Accept with B1 [3](ii)Arc $CD = 2r\theta$ Arc(s) AB/EF ($2)r(\pi - \theta$) Straight edges $= 4r$ Total $2\pi r + 4r$ (which is independent of θ)B1 B1 [4]Accept with B1 [4]	Page 4Mark SchemeSyliabusCambridge International AS/A Level - October/November 20159709 $x^2 - 4x + c = 2x - 7 \rightarrow x^2 - 6x + c + 7(=0)$ $36 - 4(c + 7) < 0$ $c > 2$ M1 $M1$ $A1$ All terms on one side Apply $b^2 - 4ac < 0.$ Al $[7C2] \times \left[\left(\frac{x}{3} \right)^s \right] \times \left[\left(\frac{9}{x^2} \right)^2 \right]$ $2 1 \times \frac{1}{3^5} (x^5) \times 81 \left(\frac{1}{x^4} \right)$ 7 soiB2,1.0Seen $21 \times \frac{1}{3^5} (x^5) \times 81 \left(\frac{1}{x^4} \right)$ 7 soiB1 B1 B1 [3]Identified as required ter Accept $7x$ (i) $[3] \left[(x-1)^2 \right] [-1]$ $= 3(x-1)^2 + 4$ > 0 hence increasingB181B1 B1 [3](ii)Sector $OCD = \frac{1}{2} (2r)^2 \theta \ (= 2r^2 \theta)$ $Total = r^2 (\pi + \theta)B1Arc (S) \ AB/CEF \ (2)r(\pi - \theta)Arc(S) \ AB/CEF \ (2)r(\pi - \theta)Straight edges = 4rTotal 2\pi^r + 4r (which is independent of \theta)B1[4]$	Page 4Mark SchemeSyllabusPagerCambridge International AS/A Level - October/November 2015970913 $x^2 - 4x + c = 2x - 7 \rightarrow x^2 - 6x + c + 7(=0)$ $36 - 4(c + 7) < 0$ $c > 2$ M1 $A1$ $[3]$ All terms on one side Apply $b^2 - 4ac < 0$. Allow \leq . $[7C2] \times \left[\left(\frac{x}{3} \right)^5 \right] \times \left[\left(\frac{9}{x^2} \right)^2 \right]$ soiB2,1,0Seen $[7C2] \times \left[\left(\frac{x}{3} \right)^5 \right] \times \left[\left(\frac{9}{x^2} \right)^2 \right]$ soiB1 Identified as required term $21 \times \frac{1}{3^5} (x^5) \times 81 \left(\frac{1}{x^4} \right)$ soiB1 14 (i) $[3] \left[(x - 1)^2 \right] [-1]$ B1B1B1 $[3]$ (ii) $[3] x^2 - 6x + 7$ $= 3(x - 1)^2 + 4$ > 0 hence increasingB1 $B1$ (i) Sector $OCD = \frac{1}{2} (2r)^2 \theta (= 2r^2 \theta)$ B1 $B1$ (i) Sector $OCD = \frac{1}{2} (2r)^2 \theta (= 2r^2 \theta)$ B1 $B1$ (ii) Accept $2r\theta$ $Arc(s) AB/CEF = (2) \frac{1}{2}r^2 (\pi - \theta)$ $Total = r^2 (\pi + \theta)B1B1B1B1B1B1B1B1B1B1B1B1B1Arc(s) AB/EF (2)r(\pi - \theta)Straight edges = 4rTotal 2\pi r + 4r (which is independent of \theta)B1[4]$

	Page 5	Mark Scheme	Syllabus	Paper			
		Cambridge International AS/A Level – Octo	ber/Nove	mber 2015	9709	13	
				[
5	(i)	$-2p^{2}+16p-24+2p^{2}-6p+2$	M1	Good attem	pt at scalar p	roduct	
C	(1)	Set scalar product = 0 and attempt solution	DM1		pt at sealar p	louuot	
		p = 2.2	A1				
		*	[3]				
	(ii)	4-2p=2(p-6) or p=2(2p-6)	M1				
		(-2) (-4)					
		$p = 4 \longrightarrow \overrightarrow{OA} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \qquad \overrightarrow{OB} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$	A1	At least one	of OA and O	OB correct	
		$\left \vec{O} \vec{A} \right = \sqrt{(-2)^2 + 2^2 + 1}^2 = 3$	M1A1 [4]	For M1 acce	ept a numeri	cal p	
		ALT 1					
		Compare <i>AB</i> with $OA \rightarrow 10 - 3p = p - 6$ or					
		6 - p = 2p - 6. Similarly of <i>AB</i> with <i>OB</i>	M1				
		T Pr					
		ALT 2					
		$(OA.OB)/(OA \times OB) = 1 \text{ or } -1 \rightarrow$					
		$10p - 22 = \sqrt{5p^2 - 36p} + $	M1				
		$73\sqrt{5p^2-16p+20}$					
		$\rightarrow 125 p^4 - 260 p^3 + 941 p^2 - 1448 p +$					
		$976 - 0 \rightarrow n - 4$. Similarly					
		with $OA AB$ or $OB AB$					
		ALT 3					
		OA & OB have equal unit vectors. (Similarly					
		with OA & AB or OB & AB.)					
		Hence $(n-6)$					
		$1 \qquad p=0$					
		$\frac{1}{\sqrt{5p^2 - 36p + 73}} = 2p - 6$					
		(4-2p)					
		$=\frac{1}{\sqrt{p}}$ p					
		$\sqrt{5p^2-16p+20}$ 2	2.54				
		1 2	MI				
		$\rightarrow \frac{1}{\sqrt{5n^2-36n+73}} = \frac{1}{\sqrt{5n^2-16n+20}}$					
1		$\sqrt{5p} = 50p \pm 75 \sqrt{5p} = 10p \pm 20$					
		$\rightarrow 15 n^2 - 128 n + 272 - 0$					
		$(n - 4)(15n - 6^2) = 0$					
1		$\rightarrow (p-4)(15p-08) = 0$					
		$\rightarrow p = 4(or68/15)$					

	Pag	e 6	Mark Scheme			Syllabus	Paper
			Cambridge International AS/A Level – Octo	ober/Nove	mber 2015	9709	13
					1		
6	(i)	(a)	1.92 + 1.84 + 1.76 + oe	B1	OR <i>a</i> =0.96,	<i>d</i> =04 & a	ns
			$\frac{20}{2} [2 \times 1.92 + 19 \times (-0.08)]$ oe	M1	doubled/adjusted		
			2 23.2 cao	4.1	Corr formul	a used with	orr d & thai
				AI [3]	a, n	a used with v	
				[0]	a = 1, n = 21	$1 \rightarrow 12.6 \ (25)$	5.2),
		()			<i>a</i> = 0.96, <i>n</i> =	$= 21 \rightarrow 11.70$	6 (23.52)
		(D)	$1.92 + 1.92(.96) + 1.92(.96)^2 + \dots$	B 1			
			$1.92(196^{20})$	M1	OR a=.96. r	=.96 & ans	
			196		/doubled/ad	justed	
			20:8 Cao	A1	Corr formul	a used with <i>i</i>	r =.96 & their
				[5]	a, n a = 96 n =	$21 \rightarrow 13.82$	(27.63)
					a = 1, n = 2	$1 \rightarrow 14.39(2)$	(27.03) 8.78)
			1.92 0.96			× ·	
		(ii)	$\frac{1.92}{1-96} = 48 \text{ or } \frac{0.96}{1-0.96} = 24 \text{ \& then}$	M1A1	$a = 1 \rightarrow 25$ (5)	50) but must	be doubled
			Double AG	[2]	10F M 1	(6^n)	
					$1.92 \frac{(1-0.9)}{1-0.9}$	$\frac{6}{96} < 48 \rightarrow 6$	$0.96^n > 0$
					(www)		
					'which is tru	e' scores SC	CB1
7	(9)		$1+3\sin^2\theta+4\cos\theta=0$	M1	Attempt to r	multiply by c	ros A
ľ	(a)		1 + 3011 + 10000 + 10000 + 0 $1 + 3(1 - \cos^2 \theta) + 4\cos \theta + 0$	M1	Use $c^2 + s^2$	=1	.030
			$3\cos^2\theta - 4\cos\theta - 4 = 0$	A1		1	
			$\cos\theta = -2/3$	B1	Ignore other	· solution	
			$\theta = 131.8 \text{ or } 228.2$	B1B1√ [∧]	Ft for 360 –	1^{st} soln. -1	extra solns in
				[6]	range		
	(b)		c = b/a cao d = a - b	B1 B1	Radians 2.3	50 & 3.98 sco	ores SCB1
			u u o	[2]	Allow $D = ($	(0, a-b)	
	-					0 · · ·	
8	(i)		$3x + 1 \le -1$ (Accept $3x + 1 = -1, 3a + 1 = -1$)	MI	Do not allow	v gt in (1) to	score in (111)
			$x \le -2/3 \Rightarrow$ largest value of a is $-2/3$ (in terms of a)	AI [2]	Accept $a \leq -$	-2/3 and a	=-2/3
			010	[2]			
	(ii)		$fg(x) = 3(-1 - x^2) + 1$	B 1	No marks in	this part for	gfused
			$fg(x) + 14 = 0 \Longrightarrow 3x^2 = 12 \text{ oe} (2 \text{ terms})$	B 1			
			x = -2 only	B 1			
	(iii)		(1)	[3]			
	(111)		$gt(x) = -1 - (3x + 1)^2$ oe	B1	No marks in	this part for	fg used
			$gt(x) \leqslant -50 \Rightarrow (3x+1)^2 \geqslant 49 \text{ (Allow } \leqslant or =$	M1	OR attempt soln of $9x^2 + 6x - 48 + /$		
			$3x+1 \ge 7$ or $3x+1 \le -7$ (one sufficient) www	A1	$\leq \geq 0$	_	
			x = 0/5 Only WWW		OR $x-2 \ge$	or $3x + 8 \leq$	0(one suffic)
				[+]			

Page / Wark Schen	Mark Scheme					
Cambridge International AS/A Level	- October/Nove	mber 2015	9709	13		
		I				
9 (i) At $x = 4$, $\frac{dy}{dx} = 2$	B1					
$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 2 \times 3 = 6$	M1A1 [3]	Use of Chain rule				
(ii) $(y) = x + 4x^{\frac{1}{2}}(+c)$	B1					
Sub $x = 4$, $y = 6 \rightarrow 6 = 4 + (4 \times 4^{\overline{2}}) + c$	M1	Must includ	e c			
$c = -6 \rightarrow (y = x + 4x^{\frac{1}{2}} - 6$	A1					
(iii) Eqn of tangent is $y - 6 = 2(x - 4)$ or $(6 - 0)/(4 - 5)$	m^{1}	Correct eqn	thru (4, 6) &	with $m =$		
B = (1, 0) (A = 1)	A = 2 Al					
$ \begin{array}{l} B - (1, 0) (\text{Allow } x = 1) \\ \text{Gradient of normal} = -1/2 \end{array} $	M1	[Expect eqn	of normal: y	$y = -\frac{1}{2}x + $		
C = (16, 0) (Allow $x = 16$)		8]				
	[5]		$\overline{15}$ AC $\sqrt{11}$	<u> </u>		
Area of triangle $= - \times 15 \times 6 = 45$		Or $AB = \sqrt{4}$	$AC = \sqrt{1}$	80 →		
		Area = 45.0				
10 (i) $f'(x) = 2 - 2(x+1)^{-3}$	B1					
$f''(x) = 6(x+1)^{-4}$	B1					
f0 = 0 hence stationary at $x = 0$	B1	AG				
f''0 = 6 > 0 hence minimum	B1	www. Depe	ndent on cor	rect f "(x)		
	[4]	except $-6($:	$(x+1)^{-4} \rightarrow <$	0 MAX		
(ii) $AB^2 = (3/2)^2 + (3/4)^2$	M1	scores SC1				
$AB = 1.68 \text{ or } \sqrt{45/4}$ oe	A1					
	[2]					
Area under curve = $\int f(x) = x^2 - (x+1)^{-1}$	P1	Janora La a	if avaluat	ad		
(m) (1) (1)	DI	Do not pena	lise reversed	limits		
$=\left 1-\frac{1}{2}\right -\left \frac{1}{4}-2\right =9/4$	0	Do not pena		mmus		
(2) (7)	NTO P					
(Apply limits – γ_2	\rightarrow 1) M1A1	Allow rever	sed subtn if	final ans		
Area trap. $=\frac{1}{2}(3+\frac{9}{4})\times\frac{3}{2}$	M1	positive				
$= \frac{2}{-63/16} = \frac{4}{2} \frac{2}{2}$	IVII					
= 05/10 015.94 Shaded area $63/16 - 9/4 + 27/16$ or 1.69	A1					
ALT eqn AB is $y = -\frac{1}{2}x + \frac{11}{4}$	[0] R1					
Area = $\int -\frac{1}{2} x + \frac{11}{4} - \int 2x + (x+1)^{-2} dx$						
	NI I	Attempt inte	egration of at	least one		
$= \left[-\frac{1}{4}x^{2} + \frac{11}{4}x \right] - \left[x^{2} - (x+1)^{-1} \right]$	A1A1	Ignore $+c$ even if evaluated Dep. on integration having taken				
Annala limites 1/ + 1 + 1 + that is a 1		place	Oración nuvn	-O witch		
Apply limits $-\frac{1}{2} \rightarrow 1$ to both integrals	M1	Allow rever	sed subtn if	final ans		
2 //16 or 1.69	A1	positive				

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/11

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge International AS/A Level – May/June 2015	9709	11

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol shifts implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme S		Paper
	Cambridge International AS/A Level – May/June 2015	9709	11

- AEF Any Equivalent Form (of answer is equally acceptable)AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a "fortuitous" answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR–1 A penalty of MR–1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓^{*}" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA–1 This is deducted from A or B marks in the case of premature approximation. The PA–1 penalty is usually discussed at the meeting.

Page 4		Mark Scheme	Syllabus	Paper		
		Cambridge International AS/A Level –	May/June	2015	9709	11
				[
1		θ is obtuse, $\sin \theta = k$				
(i)		$\cos\theta = -\sqrt{(1-k^2)}$	B1 [1]	cao		
(ii)		$\tan \theta = \frac{\sin \theta}{\cos \theta} \text{ used}$	M1	Used, atten	npt at cosine	seen in (i)
		$\rightarrow \tan \theta = -\frac{k}{\sqrt{(1-k^2)}}$ aef	A1√ [^] [2]	Ft for their cosine as a function of k only, from part (i)		
(iii)		$\sin\left(\theta+\pi\right)=-k$	B1 [1]	cao		
2		$y = 2x^2$, $X(-2, 0)$ and $P(p, 0)$				
(i)		$A = \frac{1}{2} \times (2+p) \times 2p^2 (= 2p^2 + p^3)$	M1 A1 [2]	Attempt at base and height in terms of p and use of $\frac{bh}{2}$		
		6	50		Z	
(ii)		$\frac{\mathrm{d}A}{\mathrm{d}p} = 4p + 3p^2$	B1	cao		
		$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}p} \times \frac{\mathrm{d}p}{\mathrm{d}t} = 0.02 \times 20 = 0.4$	M1 A1	any correct	method, cao	
		or $\frac{dA}{dt} = 4p \frac{dp}{dt} + 3p^2 \frac{dp}{dt}$	[3]			
3		$(1-x)^2(1+2x)^6$.				
(i)	(a)	$(1-x)^6 = 1 - 6x + 15x^2$	B2,1 [2]	-1 each erro	or	
	(b)	$(1+2x)^6 = 1 + 12x + 60x^2$	B2,1 [2]	-1 each error SC B1 only correct desc SC only one of the '1' in	or , in each part eending powe e penalty for each expans	t, for all 3 ers omission ion
(ii)		Product of (a) and (b) with >1 term $\rightarrow 60 - 72 + 15 = 3$	M1 DM1A1 [3]	Must be 2 o M1 exactly condone $3x^2$	r more produ 3 products.	icts cao,

Page 5	Mark Scheme	Syllabus	Paper		
	Cambridge International AS/A Level –	May/June	2015	9709	11
4	$\overrightarrow{OA} = \begin{pmatrix} 3\\0\\-4 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 6\\-3\\2 \end{pmatrix}, \overrightarrow{OC} = \begin{pmatrix} k\\-2k\\2k-3 \end{pmatrix}$				
(i)	$OA \cdot OB = 18 - 8 = 10$ Modulus of $OA = 5$, of $OB = 7$	M1	Use of x_1x_2 -	$+ y_1 y_2 + z_1 z_2$	
	Angle $AOB = \cos^{-1}\left(\frac{10}{35}\right)$ aef	M1	All linked w cao, (if ang	vith modulus le given, no	penalty),
	$\rightarrow \frac{10}{35} \text{ or } \frac{2}{7}$	A1 [3]	correct angle implies correct cosine		
(ii)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 3 \\ -3 \\ 6 \end{pmatrix}$	B1	allow for a -	– b	
	$k^{2} + 4k^{2} + (2k - 3)^{2} = 9 + 9 + 36$	M1	Correct use of moduli using their		
	$\rightarrow 9k^2 - 12k - 45(=0)$	DM1	obtains 3 ter	m quadratic	
	$\rightarrow k=3 \text{ or } k=-\frac{5}{3}$	A1 [4]	cao		
5 (i)	$24 = r + r + r\theta$		(May not us	e θ)	
	$\rightarrow \theta = \frac{24 - 2r}{r}$	M1	Attempt at <i>s</i> and <i>r</i>	$r = r\theta$ linked	with 24
	$A = \frac{1}{2} r^{2}\theta = \frac{24r}{2} - r^{2} = 12r - r^{2}. \text{ aef, ag}$	M1A1 [3]	Uses A form	nula with $ heta$ a	s f(<i>r</i>). cao
(ii)	$(A =)36 - (r - 6)^2$	B1 B1 [2]	cao		
(iii)	Greatest value of $A = 36$	B1√	Ft on (ii).		
	$(r=6) \rightarrow \theta = 2$	B1 [2]	cao, may us discriminan	e calculus or t on $12r - r^2$	the

Page 6	Mark Scheme			Syllabus	Paper
	Cambridge International AS/A Level –	May/June	e 2015 9709 1		11
			1		
6 (i)	y - 2t = -2(x - 3t)(y + 2x = 8t) Set x to 0 $\rightarrow B(0, 8t)$ Set y to 0 $\rightarrow A(4t, 0)$ \rightarrow Area = 16t ²	M1 M1 A1 [3]	Unsimplified or equivalent forms Attempt at both <i>A</i> and <i>B</i> , then us cao		
(ii)	$m = \frac{1}{2}$ $\rightarrow y - 2t = \frac{1}{2}(x - 3t)(2y = x + t)$ Set y to 0 $\rightarrow C(-t, 0)$ Midpoint of CP is (t, t) This lies on the line $y = x$.	B1 M1 A1 A1 [4]	cao Unsimplifie co correctly sh	ed or equivale own.	ent forms
7 (a)	$ar^{2} = \frac{1}{3}, ar^{3} = \frac{2}{9}$ $\rightarrow r = \frac{2}{3} \text{ aef}$ Substituting $\rightarrow a = \frac{3}{4}$ $\rightarrow S_{\infty} = \frac{\frac{3}{4}}{\frac{1}{3}} = 2\frac{1}{4} \text{ aef}$	M1 A1 M1 A1 [4]	Any valid n Could be an Both <i>a</i> and a Correct form	nethod, seen a swers only. r nula with $ r $	or implied. <1, cao
(b)	$4a = a + 4d \rightarrow 3a = 4d$ $360 = S_5 = \frac{5}{2}(2a + 4d) \text{ or } 12.5a$ $\rightarrow a = 28.8^{\circ} \text{ aef}$ Largest = $a + 4d$ or $4a = 115.2^{\circ}$ aef	B1 M1 A1 B1 [4]	May be imp 360 = 5/2(a Correct S_n fitterms cao, may be (may use defined)	blied in a + 4a) formula or sum implied egrees or radi	m of 5 ans)
	Patpre				

Page 7	Mark Scheme			Syllabus	Paper
	Cambridge International AS/A Level –	May/June	2015	9709	11
8	f: $x \mapsto 5 + 3\cos\left(\frac{1}{2}x\right)$ for $0 \le x \le 2\pi$.				
(i)	$5 + 3\cos\left(\frac{1}{2}x\right) = 7$			(1) 2	
	$\cos\left(\frac{1}{2}x\right) = \frac{2}{3}$	B1	Makes cos	$\left(\frac{1}{2}x\right) = \frac{2}{3}$	
	$\frac{1}{2}x = 0.84$ $x = 1.68$ only, aef (in given range)	M1A1 [3]	Looks up co	os ⁻¹ first, then	n×2
(ii)		B1 B1 [2]	y always +v from (0, 8) t implied)	e, <i>m</i> always to $(2\pi, 2)$ (matrix)	-ve. ay be
	2 x 2m				
(iii)	No turning point on graph or 1:1	B1 [1]	cao, indeper	ndent of grap	h in (ii)
(iv)	$y = 5 + 3\cos\left(\frac{1}{2}x\right)$	M1	Tries to mal	ke x subject.	
	Order; $-5, \div 3, \cos^{-1}, \times 2$	M 1	Correct orde	er of operatio	ons
	(x-5)	A 1	C20		
	$x = 2\cos^{-1}\left(\frac{1}{3}\right)$	[3]	040		
	2222 A	.0	5		

Page 8	Mark Scheme			Syllabus	Paper
	Cambridge International AS/A Level –	May/June	2015	9709	11
		1	1		
9	$y = x^3 + px^2$				
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2px$	B1	cao		
	Sets to $0 \rightarrow x = 0$ or $-\frac{2p}{3}$	M1	Sets differen	ntial to 0	
	\rightarrow (0, 0) or $\left(-\frac{2p}{3}, \frac{4p^3}{27}\right)$	A1 A1 [4]	cao cao, firs turning poin x values. 2n TPs	t A1 for any t or any corr d A1 for 2 co	correct ect pair of omplete
(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x + 2p$	M1	Other metho demonstrati gradient, cle shape of the	ods include; o on of sign ch car reference curve	clear ange of to the
	At $(0, 0) \rightarrow 2p$ +ve Minimum	A1	www		
	At $\left(-\frac{2p}{3}, \frac{4p^3}{27}\right) \rightarrow -2p$ -ve Maximum	A1 [3]			
(iii)	$y = x^{3} + px^{2} + px \rightarrow 3x^{2} + 2px + p (= 0)$	B1			
	Uses $b^2 - 4ac$ $\rightarrow 4p^2 - 12p < 0$	M1	Any correct	use of discri	minant
	$\rightarrow 0 aef$	A1 [3]	cao (condor	ne ≤)	

Page 9	Mark Scheme			Syllabus	Paper
	Cambridge International AS/A Level –	May/June	2015 9709 11		
		-			
10	$y = \frac{8}{\sqrt{3x+4}}$				
(i)	$\frac{dy}{dx} = \frac{-4}{(3x+4)^{\frac{3}{2}}} \times 3$ aef	B1 B1	Without the For "×3" ev	"×3" en if 1st B m	ark lost.
	$\rightarrow m_{(x=0)} = -\frac{3}{2}$ Perpendicular $m_{(x=0)} = \frac{2}{3}$	M1	Use of $m_1 m_2$ to find $\frac{dy}{dx} (x)$	$_2 = -1$ after a	ttempting
	Eqn of normal $y-4 = \frac{2}{3}(x-0)$	M1	Unsimplified line equation		
	Meets $x = 4$ at $B\left(4, \frac{20}{3}\right)$	A1 [5]	cao		
(ii)	$\int \frac{8}{\sqrt{(3x+4)}} \mathrm{d}x = \frac{8\sqrt{(3x+4)}}{\frac{1}{2}} \div 3$	B1 B1	Without "÷3	3". For "÷3"	
	Limits from 0 to 4 \rightarrow Area $P = \frac{32}{3}$	M1 A1	Correct use	of correct lin	nits. cao
	Area Q = Trapezium – P Area of Trapezium = $\frac{1}{2}\left(4 + \frac{20}{3}\right) \times 4 = \frac{64}{3}$	M1	Correct met trapezium	hod for area	of
	\rightarrow Areas of <i>P</i> and <i>Q</i> are both $\frac{32}{3}$	A1 [6]	All correct.		
	ZZ. satpre	p.c0			

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/12

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	12

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	12

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.
| Page | 4 | Mark Scheme | | Syllabus | Paper | |
|----------|----------|--|------------------|---------------------------------------|----------------------|--------------|
| | | Cambridge International AS/A Level – N | lay/June | 2015 | 9709 | 12 |
| [| | Ι | Γ | Γ | | |
| 1 | | $f'(x) = 5 - 2x^2$ and (3, 5) | | | | |
| | | $\frac{1}{2}\left(x\right) = \frac{2x^3}{2x^3} \left(x\right)$ | D1 | F • 4 | 1 | |
| | | $f(x) = 5x - \frac{2x}{3} (+c)$ | BI | For integra | 1 | |
| | | Uses (3, 5) | M1 | Uses the po | oint in an inte | egral |
| | | $\rightarrow c = 8$ | AI
[2] | со | | |
| | | | [3] | | | |
| 2 | | Radius of semicircle = $\frac{1}{2}AB = r\sin\theta$ | B1 | aef | | |
| | | Area of semicircle $= \frac{1}{2}\pi r^2 \sin^2\theta = 4$ | B1√ [^] | Uses $\frac{1}{2}\pi r^2$ | with $r = f(\theta)$ | |
| | | Area of semicircle $-\frac{1}{2}h$ sin $b - A_1$ | | 2 | | |
| | | Shaded area = semicircle – segment | B1B1 | B1 (-secto | or), B1 for + | (triangle) |
| | | $= A_1 - \frac{1}{2}r^2 2\theta + \frac{1}{2}r^2 \sin 2\theta$ | [4] | | | |
| a | | $(2 - w)^6$ | | | | |
| 3 (i) |) | $\left(2-x\right)^{2}$ | D1 | | | |
| | | Coeff of x^2 is 240
Coeff of x^3 is $-20 \times 8 = -160$ | BI
B2 1 | C0
$P1$ for ± 160 | 0 | |
| | | $COEII OI x^2 IS = 20 \times 8 = -100$ | ^{D2,1} | D1 101 + 10 | 0 | |
| | | TPD | [2] | | | |
| (ii) |) | $(3x+1)(2-x)^6$ | | | | |
| | | Product needs exactly 2 terms | M1 | $3 \times$ their 240 + their -160 | | |
| | | \rightarrow 720 - 160 = 560 | A1√ | \checkmark for candidate's answers. | | |
| | | | [2] | | | |
| 4 | | u = 2r(v - r) and $r + 3v - 12$ | | | | |
| - | | u = 2x(y - x) and $x + 3y = 12$, | | | | |
| | | $u = 2x \left(\frac{12 - x}{2} - x \right)$ | M1 A1 | Expresses <i>i</i> | <i>i</i> in terms of | x |
| | | | | | | |
| | | $=8x-\frac{8x^2}{3}$ | | | | |
| | | $\frac{\mathrm{d}u}{\mathrm{d}x} = 8 \frac{16x}{\mathrm{d}x}$ | M1 | Differentia | te candidate' | s quadratic. |
| | | $\frac{1}{dx} = \frac{1}{3}$ | | sets to $0 + a$ | attempt to fir | nd x, or |
| | | $= 0$ when $x = 1\frac{1}{2}$ | A1 | other valid | method | |
| | | $\rightarrow (v = 3^{\perp})$ | A1-0 | Complete r | nathad that l | ends to u |
| | | $(y = 5_2)$ | [5] | Complete I | | |
| | | $\rightarrow u - 0$ | [•] | | | |
| F | 、
、 | $\sin\theta - \cos\theta$ | | | | |
| 5 (I) |) | $\overline{\sin\theta+\cos\theta}$. | | | | |
| | | Divides top and bottom by $\cos \theta$ | B1 | Answer giv | ven. | |
| | | $\rightarrow \frac{t-1}{1}$ | [1] | | | |
| | | <i>t</i> +1 | | | | |
| | | $\sin\theta - \cos\theta = 1$ | | | | |
| (ii) |) | $\frac{1}{\sin\theta + \cos\theta} = \frac{1}{6}\tan\theta$ | | | | |
| | | t-1 - t | B1 | Using the i | dentity. | |
| | | $\rightarrow \overline{t+1} - \overline{6}$ |
M1 | E | 1 | |
| | | $\rightarrow t^2 - 5t + 6 = 0$ | MI | Forms a 3 t | erm quadrati | c with |
| | | $\rightarrow t = 2 \text{ or } t = 3$ | A1 A1 | | i same side. | |
| | | $\rightarrow \theta = 63.4^{\circ} \text{ or } 71.6^{\circ}$ | [4] | | | |
| | | | r., | | | |

Page 5	5	Mark Scheme	Syllabus	Paper		
		Cambridge International AS/A Level – N	May/June	2015	9709	12
		l				
6		$h = 60(1 - \cos kt)$				
		May h when $h = 1 + 120$	D1	Ca		
(1)		Max <i>n</i> when $\cos = -1 \rightarrow 120$	ы [1]	Co		
			[1]			
(ii)		h = 0 and $t = 30$, or $h = 120$ and $t = 15$	M1	Substituting	g a correct p	air of values
		$\rightarrow \cos 30k = 1$ or $\cos 15k = -1$		into the equ	lation.	
		$ \rightarrow 50k - 2\pi \text{of } 15k - \pi \\ 2\pi \pi $				
		$\rightarrow k = \frac{2\pi}{30} = \frac{\pi}{15}$	A1	co ag		
			[2]			
(iii)		$90 = 60(1 - \cos kt)$				
		$\rightarrow \cos kt = \frac{-30}{60} = -0.5$	B1	co – but the	ere must be e	vidence of
		$\rightarrow kt = \frac{2\pi}{2\pi}$ or $\rightarrow kt = \frac{4\pi}{2\pi}$		correct sub	traction.	
		$\rightarrow \kappa = \frac{3}{3}$ or $\rightarrow \kappa = \frac{3}{3}$				
		\rightarrow Fither $t = 10$ or 20 or both	B1			
		$\rightarrow t = 10$ minutes	B1			
			[3]			
7		<i>A</i> (4, 6), <i>B</i> (10, 2).				
(i)		$M = (7 \ A)$	B1	60		
(1)		m = (7, 4) m of $AB = -\frac{2}{2}$	B1	co		
		m of perpendicular = $\frac{3}{2}$				
		$A = \frac{3}{2} (x - 7)$	M1 A1	Use of $m_1 m$	$n_2 = -1 \ \& \ the$	ir midnoint
		$\rightarrow y-4 = \frac{1}{2}(x-7)$	[4]	in the equa	tion of a line	. co
(11)		Eqn of line parallel to AB through $(3, 11)$	M1	Needs to us	rem of AB	
		$\rightarrow y - 11 = -\frac{1}{3}(x - 3)$	DM1A1	Must be us	ing their cor	ect lines
		Sim eqns $\rightarrow C(9, 7)$	[3]	Co	ing then con	cet mes.
		24	0			
8 (a)		1st, 2nd, <i>n</i> th are 56, 53 and -22 a = 56, $d = -3$	0.			
		-22 = 56 + (n-1)(-3)	M1	Uses correc	ct <i>u_n</i> formula	
		$\rightarrow n = 27$	A1	co	14	
		$S_{27} = \frac{27}{2} \left(112 + 26(-3) \right)$	M1	Needs posi	tive integer <i>i</i>	1
		\rightarrow 459	A1	Со		
			[4]			
(b)		$1^{\text{st}}, 2^{\text{nd}}, 3^{\text{rd}}$ are $2k + 6, 2k$ and $k + 2$.				
	(i)	Either $\frac{2k}{2k+6} = \frac{k+2}{2k}$				
		or uses <i>a</i> , <i>r</i> and eliminates	M1	Correct me	thod for equ	ation in <i>k</i> .
		$\rightarrow 2k^2 - 10k - 12 = 0$	DM1	Forms quad	d. or cubic ed	quation with
			A 1	no brackets	s or fractions	
		$\rightarrow k = 6$		0		
			[2]			

Page 6	Mark Scheme		Syllabus	Paper		
Cambridge International AS/A Level – May/June 2015				9709	12	
(ii)	$S_{\infty} = \frac{a}{1-r} \text{ with } r = \frac{2k}{2k+6} \text{ or } \frac{k+2}{2k} (=\frac{2}{3})$ $\rightarrow 54$	M1 A1 [2]	Needs atter Co	Needs attempt at a and r and S_{∞} Co		
9	$\overrightarrow{OA} = 2\mathbf{i} + 4\mathbf{j} + 4\mathbf{k}$ and $\overrightarrow{OB} = 3\mathbf{i} + \mathbf{j} + 4\mathbf{k}$					
(i)	\overrightarrow{OA} . $\overrightarrow{OB} = 6 + 4 + 16 = 26$	M1	Must be nu	merical at so	me stage	
	$\left \overrightarrow{OA}\right = \sqrt{36}$, $\left \overrightarrow{OB}\right = \sqrt{26}$	M1	Product of	Product of 2 moduli		
	$\cos AOB = \frac{26}{\sqrt{26}}$	M1	All linked correctly			
	$\rightarrow 31.8^{\circ}$	A1 [4]	со			
(ii)	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 1 \\ -3 \\ 0 \end{pmatrix}$	B1				
	$\overrightarrow{OC} = \begin{pmatrix} 2\\4\\4 \end{pmatrix} + 2\overrightarrow{AB} \text{ or } \begin{pmatrix} 3\\1\\4 \end{pmatrix} + \overrightarrow{AB}$	M1	Correct linl	¢		
	$\overrightarrow{OC} = \begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix}$					
	Unit vector \div modulus $\rightarrow \frac{1}{6} \begin{pmatrix} 4 \\ -2 \\ 4 \end{pmatrix}$	M1 A1 [4]	÷ by modul	lus. co		
(iii)	$\left \overrightarrow{OC}\right = 6, \left \overrightarrow{OA}\right = 6$	B1 [1]	со			

Page 7	<u> </u>		Syllabus	Paper		
	Cambridge International AS/A Level – I	May/June	2015	9709	12	
		_				
10	$y = \frac{4}{2x - 1}.$	B1	Correct wit	hout the ÷2		
(i)	$\int \frac{16}{(2x-1)^2} dx = \frac{-16}{2x-1} \div 2$	B1	For the ÷2	even if first l	B1 is lost	
	$Vol = \pi \left[\frac{-8}{2x-1} \right]$ with limits 1 and 2	M1	Use of limi expression.	Use of limits in a changed expression.		
	$\rightarrow \frac{16\pi}{3}$	AI [4]	co			
(ii)	$m = \frac{1}{2}m$ of tangent = -2	M1	Use of $m_1 m_2$	$n_2 = -1$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-4}{(2x-1)^2} \times 2$	B1 B1	Correct wit For the ×2	hout the ×2 even if first	B1 is lost	
	Equating their $\frac{dy}{dx}$ to -2 $\rightarrow x = \frac{3}{2}$ or $-\frac{1}{2}$	DM1	со			
	$(y = 2 \text{ or } -2)$ $\Rightarrow c = \frac{5}{2} \text{ or } -\frac{7}{2}$	A1				
		A1	со			
		[6]				
11	$f: x \mapsto 2x^2 - 6x + 5$					
(i)	$2x^2 - 6x + 5 - p = 0$ has no real roots	M1	Sets to 0 w	ith <i>p</i> on LHS	5.	
	Uses $b^2 - 4ac \rightarrow 36 - 8(5 - p)$	DM1	Uses discri	minant.		
	Sets to $0 \rightarrow p < \frac{1}{2}$	A1 [3]	co – must b	be "<", not "s	≤".	
(ii)	$2x^{2} - 6x + 5 = 2\left(x - \frac{3}{2}\right)^{2} + \frac{1}{2}$	3 × B1 [3]	со	со		
(iii)	Range of g $\frac{1}{2} \le g(x) \le 13$	B1√ [*] B1 [2]	$\sqrt[n]{}$ on (ii) co from sub of $x = 4$		of $x = 4$	
	h: $x \mapsto 2x^2 - 6x + 5$ for $k \le x \le 4$					
(iv)	Smallest $k = \frac{3}{2}$	B1√ [*] [1]	√ on (ii)			
(v)	h(x) = $2\left(x - \frac{3}{2}\right)^2 + \frac{1}{2}$	M1	Using comp get x as su	p square forr bject or y if t	n to try and ransposed.	
	Order of operations $\pm \frac{1}{2}$, $\div 2$, $\sqrt{2}$, $\pm \frac{3}{2}$	DM1	Order must	be correct		
	\rightarrow Inverse = $\frac{3}{2} + \sqrt{\left(\frac{x}{2} - \frac{1}{4}\right)}$	A1 [3]	co (without	t ±)		

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/13

Paper 1 (Paper 1), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme S		Paper
	Cambridge International AS/A Level – May/June 2015	9709	13

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme S		Paper
	Cambridge International AS/A Level – May/June 2015	9709	13

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4Mark SchemeSyllabusPaperCambridge International AS/A Level – May/June 2015970913

1	$2(x-3)^2 - 11$	B1B1B1 [3]	For 2, $(x-3)^2$, -11. Or $a=2, b=-3$, c=-11
2	$\left[\frac{\left(2x+1\right)^{\frac{3}{2}}}{\frac{3}{2}}\right] [\div 2] \qquad (+c)$	B1B1	
	7 = 9 + c $y = \frac{(2x+1)^{\frac{3}{2}}}{3} - 2$ or unsimplified	M1 A1 [4]	Attempt subst $x = 4$, $y = 7$. <i>c</i> must be there. Dep. on attempt at integration. c = -2 sufficient
3 (i)	$a^5 - 5a^4x + 10a^3x^2 - 10a^2x^3 + \dots$	B2,1,0 [2]	Ok full expansion (ignore extra terms) Descending: Ok if full expansion but max B1 for 4 terms
(ii)	$(1-ax)(10a^{3}x^{2}-10a^{2}x^{3}) = (x^{3})(-10a^{4}-10a^{2})$ $-10a^{4}-10a^{2} = -200$ $a^{2} = 4$ ignore $a^{2} = -5$	M1 A1√ M1	Attempt to find coeff. of x^3 from 2 terms Ft from <i>their</i> $10a^3$, $-10a^2$ from part (i) Attempt soln. for a^2 from 3-term quad. in a^2
	$a = \pm 2$ cao	A1 [4]	Ignore any imaginary solutions
4 (i)	$\tan \theta = 1/3$ $\theta = 18.4^{\circ}$ only	M1 A1 [2]	Ignore solns. outside range $0 \rightarrow 180$
(ii)	$\tan 2x = (\pm)1/\sqrt{3}$ Must be sq. root soi	M1	$\sin 2x = (\pm) 1/2$ or $\cos 2x = (\pm)\sqrt{3/2}$ using $c^2 + s^2 = 1$. Not $\tan x = (\pm) \frac{1}{\sqrt{3}}$ etc.
	(x) = 15 (x) = any correct second value (75, 105, 165) (x) = cao	A1 A1√ A1 [4]	ft for (90 \pm their 15) or (180 – their 15) All four correct. Extra solns in range 1
5 (i)	$\overrightarrow{AB} = \begin{pmatrix} 5 \\ -1 \\ -2 \end{pmatrix} - \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$	B1	Or \overrightarrow{BA} , \overrightarrow{CB} . Allow any combination. Ignore labels.
	$\overrightarrow{BC} = \begin{pmatrix} 6\\1\\2 \end{pmatrix} - \begin{pmatrix} 5\\-1\\-2 \end{pmatrix} = \begin{pmatrix} 1\\2\\4 \end{pmatrix}$	B1	
	\overrightarrow{AB} . $\overrightarrow{BC} = 2 - 6 + 4$ oe must be seen = 0 hence $ABC = 90^{\circ}$	M1 A1 [4]	Could be part of calculation for angle <i>ABC</i> AG Alt methods Pythag, Cosine Rule

Page 5

(ii)	$\left \overrightarrow{AB} \right = \sqrt{14}$, $\left \overrightarrow{BC} \right = \sqrt{21}$ oe	B1	At least one correct
	Area = $\frac{1}{2}\sqrt{14}\sqrt{21}$	M1	Reasonable attempt at vectors and their magnitudes
	8.6 oe	A1 [3]	Allow $\frac{7\sqrt{6}}{2}$
6 (i)	Attempt to find $(f^{-1})^{-1}$	M1	
	$2xy = 1 - 5x$ or $\frac{1}{2x} = y + \frac{5}{2}$ Allow 1 sign error	A1	Or with x/y transposed.
	$x = \frac{1}{2y+5}$ oe Allow 1 sign error (total)	A1	Or with x/y transposed. Allow $x = \frac{\frac{1}{2}}{y + \frac{5}{2}}$.
	$(f(x)) = \frac{1}{2x+5}$ for $x \ge -\frac{9}{4}$	A1 B1	Allow $\frac{\frac{1}{2}}{x+\frac{5}{2}}$. Condone $x > \frac{-9}{4}$, $(\frac{-9}{4}, \infty)$
	$(\mathbf{Allow} - \frac{9}{4} \le x \le \infty)$	[5]	(etc.)
(ii)	$\mathbf{f}^{-1}\left(\frac{1}{x}\right) = \frac{1 - \frac{5}{x}}{\frac{2}{x}}$	M1	Reasonable attempt to find $\mathbf{f}^{-I}\left(\frac{1}{x}\right)$.
	$\frac{x-5}{2}$ or $\frac{1}{2}x-\frac{5}{2}$	A1 [2]	
7 (i)	$(9-p)^2 + (3p)^2 = 169$	M1	Or $=13$
	p = 4 or -11/5 oe	A1 A1 [3]	
(ii)	Gradient of given line $=-\frac{2}{3}$	B1	
	Hence gradient of $AB = \frac{3}{2}$	M1	Attempt using $m_1 m_2 = -1$
	$\frac{3}{2} = \frac{3p}{9-p} \text{oe} \text{eg}\left(\frac{-2}{3}\right)\left(\frac{3p}{9-p}\right) = 1$	M1	Or vectors $\begin{pmatrix} 9-p\\ 3p \end{pmatrix} \cdot \begin{pmatrix} 3\\ -2 \end{pmatrix}$
	(includes previous M1) p = 3	A1 [4]	
8 (i)	$-(x+1)^{-2} - 2(x+1)^{-3}$	M1A1 A1 [3]	M1 for recognisable attempt at differentn. Allow $\frac{-x^2 - 4x - 3}{(x+1)^4}$ from Q rule. (A2,1,0)

Page 6Mark SchemeSyllabusPaperCambridge International AS/A Level – May/June 2015970913

(ii)	f'(x) < 0 hence decreasing	B1 [1]	Dep. on <i>their</i> (i) < 0 for $x > -1$
(iii)	$\frac{-1}{(x+1)^2} - \frac{2}{(x+1)^3} = 0 \text{ or } \frac{-x^2 - 4x - 3}{(x+1)^4} = 0$	M1*	Set $\frac{dy}{dx}$ to 0
	$\frac{-(x+1)-2}{(x+1)^3} = 0 \to -x - 1 - 2 = 0 \text{ or}$ $-x^2 - 4x - 3 = 0$	M1 Dep*	OR mult by $(x+1)^3$ or $(x+1)^5$ (i.e.×mult) × multn $\rightarrow -(x+1)^3 - 2(x+1)^2 = 0$
	x = -3, y = -1/4	A1A1 [4]	(-3, -1/4) www scores 4/4
9 (a)	2222/17 (=131 or 130.7) 131 × 17 (=2227) -2222 + 2227 = 5	M1 M1 A1 [3]	Ignore signs. Allow 2239/17→131.7 or 132 Ignore signs. Use 131. 5 www gets 3/3
(b)	$r = \frac{2\cos\theta}{\sqrt{3}}$ soi oe	B1	0
	$(-1<)\frac{2\cos\theta}{\sqrt{3}}<1$ or $(0<)\frac{2\cos\theta}{\sqrt{3}}<1$ soi	M1√ [^]	Ft on <i>their r</i> . Ignore a 2nd inequality on LHS
	$\pi/6, 5\pi/6$ soi (but dep. on M1) $\pi/6 < \theta < 5\pi/6$ cao	A1A1 A1 [5]	Allow 30°, 150°. Accept ≤
10 (i)	$\frac{d y}{d x} = 6 - 6x$ At $x = 2$, gradient $= -6$ soi y - 9 = -6(x - 2) oe Expect $y = -6x + 21When y = 0, x = 3\frac{1}{2} cao$	B1 B1√ ^Å M1 A1 [4]	Line through $(2, 9)$ and with gradient <i>their</i> -6
(ii)	Area under curve: $\int 9+6x-3x^2 dx = 9x+3x^2-x^3$ (27+27-27)-(18+12-8) Area under tangent: $\frac{1}{2} \times \frac{3}{2} \times 9 (=\frac{27}{4})$	B2,1,0 M1 B1√ [^]	Allow unsimplified terms Apply limits 2,3. Expect 5 OR $\int_2^{\frac{7}{2}} (-6x + 21) dx (\rightarrow \frac{27}{4})$. Ft on <i>their</i>
	Area required $\frac{27}{4} - 5 = \frac{7}{4}$	A1 [5]	-6x + 21 and/or <i>their</i> 7/2.

	Page 7 Mark Scheme			Syllabus	Paper			
			Cambridge International AS/A Leve	el – May/J	une 2015	9709	13	
		ſ						
11	(i)	00	$r = r \cos \alpha$ or $AC = r \sin \alpha$ or oe soi	M1				
		(Ar	ea $\Delta OAC = \frac{1}{2}r^2 \sin \alpha \cos \alpha$	A1				
		$\frac{1}{2}r^{2}$	$\sin \alpha \cos \alpha = \frac{1}{2} \times \frac{1}{2} r^2 \alpha$ oe	M1	Or e.g.			
		2	2 2		$\frac{1}{2}r^2\alpha - \frac{1}{2}r^2$ co	$a \sin \alpha = \frac{1}{2}$	$q_4' r^2 \alpha$	
					$\frac{1}{2}r^{2}\alpha - \frac{1}{2}r^{2}\cos(\frac{1}{2}r^{2})$	$\cos \alpha \sin \alpha = \frac{1}{2}$	$\frac{1}{2}r^2\cos\alpha\sin\alpha$	1α
		sin	$\alpha \cos \alpha = \frac{1}{2}\alpha$	A1	AG			
				[4]				
	(ii)	Peri	meter $\triangle OAC = r + r \sin \alpha + r \cos \alpha = 2.4(0)r$	M1A1	Allow with r a r	number. 2.01	64 gets M1	A0
		Peri	m.					
		AC	$B = r\alpha + r\sin\alpha + r - r\cos\alpha = 2.18r \text{ or } 2.17r$	M1A1	Allow with <i>r</i> a f Allow 2.2 www	number. 0.96	544 gets M1	A0
		Rat	$io = \frac{2.4(0)}{2.18 \text{ or } 2.17} : 1 = 1.1 : 1$	A1	Use of $\cos = 0.6$	$b, \sin = 0.8, a$	$\alpha = 0.9$ is PA	. 1
			2.10 <i>or</i> 2.1/	[5]				
((iii)	54.3	^{3°} cao	B1				
				[1]				

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/11

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	11

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2014	9709	11

- AEF Any Equivalent Form (of answer is equally acceptable)AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4

Mark Scheme Sy Cambridge International AS/A Level – October/November 2014

SyllabusPaper970911

nt angle triangle use = $\sqrt{10}$
$2 + \cos \theta$ tely t in radians, A1 slue of θ
(4+4)/(b-8) = -4/k (4 = 20) (a M1 solving A1,
to one side of equ. Allow \geq at this solve or find 2 en with wrong
$4, OB^2 = 59$ B^2
correct in (i) or (ii) be

		Cambridge International AS/A Level – Oc	ctober/No	ovember 2014 9709 11
7	(i)	$S = \frac{a}{1-r}, 3S = \frac{a}{1-2r}$	B1	At least $3S = \frac{a}{1-2r}$
		1 - r = 3 - 6r	M1	Eliminate S
		$r = \frac{2}{5}$	A1	
			[3]	
	(ii)	7 + (n-1)d = 84 and/or $7 + (3n-1)d = 245$	B1	At least one of these equations seen
		[(n-1)d = 77, (3n-1)d = 238, 2nd = 161]	B1	Two different seen – unsimplified ok
		$\frac{n-1}{2} = \frac{77}{220}$ (must be from the correct u _n formula)	M1	Or other attempt to elim d. E.g. sub $d = \frac{161}{2}$
		3n-1 238		(if <i>n</i> is eliminated <i>d</i> must be found) $2n$
		$n = 23$ $(d = \frac{77}{100} = 3.5)$	A1	
		$\frac{1}{22}$ $\frac{1}{22}$ $\frac{1}{22}$ $\frac{1}{22}$	[4]	
0			D1	
ð	(1)	Arc $DC = (4 \cos \alpha)\alpha$	В1 B1	
		AC (or DB) = 4 – 4 cos α	B1	
		Perimeter = $4\alpha \cos \alpha + 4\alpha + 8 - 8\cos \alpha$	B1	
			[4]	
	(ii)	OD $4\pi\pi^{\pi}(2\sqrt{2})$	R1	
	(11)	$OD = 4\cos\frac{1}{6} \left(= 2\sqrt{3} \right)$	Ы	
		Shaded area = $\begin{bmatrix} \frac{1}{2} \times 4^2 \times \frac{\pi}{6} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \left(2\sqrt{3} \right)^2 \times \frac{\pi}{6} \end{bmatrix}$	B1B1	
		<u>π</u>	B1	Or $k = \frac{1}{3}$
		3	[4]	
9	(i)	$f'(2) = 4 - \frac{1}{2} = \frac{7}{2} \rightarrow \text{gradient of normal} = -\frac{2}{7}$	B1M1	
		$y-6 = -\frac{2}{7}(x-2)$ AEF	A1√ [^]	Ft from their $f'(2)$
		4	[3]	5
	(ii)	$f(x) = x^2 + \frac{2}{2}(+c)$	B1B1	
		$6 = 4 + 1 + c \rightarrow c = 1$	M1A1	Sub $(2, 6)$ – dependent on c being present
		satpre	[4]	
	(iii)	$2x - \frac{2}{x^2} = 0 \Longrightarrow 2x^3 - 2 = 0$	M1	Put $f'(x) = 0$ and attempt to solve
		x=1	A1	Not necessary for last A mark as
				x > 0 given
		$1^{"}(x)=2+\frac{4}{x^3}$ or any valid method	M1	
		f''(1) = 6 OR > 0 hence minimum	A1	Dependent on everything correct
			[4]	

Mark Scheme

Syllabus

Paper

Page 5

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	11

10 (i)	$(x-1)^2 - 16$	B1B1 [2]	
(ii)	-16	B1√ [^] [1]	Ft from (i)
(iii)	$9 \le (x-1)^2 - 16 \le 65 \text{ OR } x^2 - 2x - 15 = 9 \rightarrow 6, -4$ $25 \le (x-1)^2 \le 81 \qquad x^2 - 2x - 15 = 65 \rightarrow 10, -8$ $5 \le x - 1 \le 9 \qquad p = 6$ $6 \le x \le 10 \qquad q = 10$	M1 M1 A1 A1 [4]	OR $x^2 - 2x - 24 \ge 0, x^2 - 2x - 80 \le 0,$ $(x - 6)(x + 4) \ge 0 (x - 10)(x + 8) \le 0$ $x \ge 6$ $x \le 10$ SC B2, B2 for trial/improvement
(iv)	$x = (y-1)^{2} - 16$ [interchange x/y] $y - 1 = (\pm)\sqrt{x+16}$ $f^{-1}(x) = 1 + \sqrt{x+16}$	M1 M1 A1 [3]	OR $(x-1)^2 = y+16$ $x = 1 + (\pm)\sqrt{y+16}$ $f^{-1}(x) = 1 + \sqrt{x+16}$
11 (i)	For $y = (4x+1)^{\frac{1}{2}}, \frac{dy}{dx} = \left[\frac{1}{2}(4x+1)^{-\frac{1}{2}}\right] \times [4]$	B1B1	
	When $x = 2$, gradient $m_1 = \frac{2}{3}$ For $y = \frac{1}{2}x^2 + 1$, $\frac{dy}{dx} = x \rightarrow$ gradient $m_2 = 2$	B1√ [*] B1	Ft from <i>their</i> derivative above
	$\alpha = \tan^{-1} m_2 - \tan^{-1} m_1$ $\alpha = 63.43 - 33.69 = 29.7$ cao	M1 A1 [6]	
(ii)	$\int (4x+1)^{\frac{1}{2}} dx = \left[\frac{(4x+1)^{\frac{3}{2}}}{2/3} \right] \div [4]$	B1B1	5
	$\int \left(\frac{1}{2}x^2 + 1\right) dx = \frac{1}{6}x^3 + x$	B1	2
	$\int_{0}^{2} (4x+1)^{\frac{1}{2}} dx = \frac{1}{6} [27-1], \int_{0}^{2} (\frac{1}{2}x^{2}+1) dx = \left[\frac{8}{6}+2\right]$	M1	Apply limits $0 \rightarrow 2$ to at least the 1 st integral
	$\frac{13}{3} - \frac{10}{3}$	M1	Subtract the integrals (at some stage)
	1	AI [6]	

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/12

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	12

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	12

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR-1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA-1 This is deducted from A or B marks in the case of premature approximation. The PA-1 penalty is usually discussed at the meeting.

P	age 4	Mark Scher	ne		Syllabus	Paper
		Cambridge International AS/A Level	- October	/November 2014	9709	12
<u> </u>		· • • • • • • • • • • • • • • • • • • •				
1	Vol =	$f(\pi) \int x^2 dy = (\pi) \int (y-1) dy$	M1 A1	Use of $\int x^2 - \operatorname{not} \int y^2$ co	– ignore π	
	Integr	ral is $\frac{1}{y^2} - y$ or $\frac{(y-1)}{2}$	B1	Sight of an integral	sign with 1	and 5
	т ::4	2 2			C	
	Limits	s for y are 1 to 5				
	$\rightarrow 8\pi$	or 25.1(AWRT)	A1	со		
	0.0		[4]	(no π max 3/4)		
2	(i) te	$an\theta = \frac{5}{2}$	2.41			
2	(1) 1	$\frac{12}{12}$	Ml	Any valid trig meth	iod ag	
	-	$\rightarrow (\theta = 0.3948)$	[1]			
	(ii) (Other angle in triangle = $-\frac{1}{2}\pi - 0.3948$	B1	Unsimplified OK		
	A	Area of triangle $AOB = \frac{1}{2} \times 12 \times 5 \ (= 30)$	B1	со		
	Ţ	Ise of $\frac{1}{r^2\theta}$ once	M1	With θ in radians a	nd $r = 5$ or 1°	2
	s	$\frac{2}{2}$ Shaded area = sector + sector - triangle		with 6 in radians a	107 J 01 1.	
	-	$-\frac{1}{2} \times 122 \times 0.2048 + \frac{1}{5} \times 20$	DM1	Sum of 2 sectors $-$	triangle or a	w other
	-	$\frac{-1}{2} \times 12^{-1} \times 0.3948 + \frac{-3}{2} \times 0 - 30$	DIVIT	valid method using	the given an	gle and a
				different one.	8	8
	=	= 28.43 + 14.70 - 30 = 13.1	A 1	60		
			[5]	0		
			[5]			
3	(i) ($(1+x)^5 = 1 + 5x + 10x^2$	B2 1	Loses 1 for each en	ror	
5	(1) ([2]			
	(ii) ($(1 + nr + r^2)^5$				
	(II) ($(1 + px + x^2)$ 1+) $5(pr + r^2) + 10(pr + r^2)^2$	M1	Peplace r by (nr +	r^{2}) in their of	vnancion
	($1+) 5(px + x^{-}) + 10(px + x^{-})$	1 v1 1	Replace x by $(px + x)$	x) in then e.	xpansion
	C	Coeff of $x^2 = 5 + 10p^2$	DM1	Considers 2 terms		
	=	$=95 \rightarrow p=3$	A1	co – no penalty for	± 3	
		2	[3]	-0		
		·Sat.	roD'			
4	v = -	12	JICI			
	3	-2x				
	(i) T	$\text{Differential} = -12(2 - 2x)^{-2} \times -2$	R1 R1	co.co.(even if 1st B	mark lost)	
	(1) 1	$\int \prod_{x \in [0, \infty]} \prod_$	[2]		mark lost)	
			[-]			
		dy dy dx				
	(ii) -	$\frac{dt}{dt} = \frac{dt}{dt} \div \frac{dt}{dt} = 0.4 \div 0.15$	M1	Chain rule used cor	rectly (AEF))
	,	24 8		d	O	2
	-	$\rightarrow \frac{2\pi}{(2-2)^2} = \frac{3}{2}$	M1	Equates their $\frac{dy}{dt}$ w	with their $\frac{8}{-}$ c	$r = \frac{3}{2}$
		$(3-2x)^{-3}$		dx	3	8
		x = 0 or 2	Δ1 Λ1	<u> </u>		
	_	$\rightarrow x = 0 \text{ or } 3$	AT AT [4]			
			נדן			

Ρ	age 5	Mark Schei	ne	Mark Scheme			
		Cambridge International AS/A Leve	I – October	/November 2014	9709	12	
			•	-			
5	1 + s	$\sin x \tan x = 5\cos x$					
	(i)	Replaces t by s/c c^2	M1	Correct formula			
		$1 + \frac{s}{c} = 5c$	2.0		1.	• , 1	
		Replace s^2 by $1 - c^2$	MI	Correct formula use	ed in appropi	riate place	
		$\rightarrow 6c^2 - c - 1 (= 0)$	A1 [3]	AG			
	(ii)	Soln of quadratic \rightarrow (c = $-\frac{1}{3}$ or $\frac{1}{2}$) \rightarrow x = 60° or 109.5°	M1 A1 A1	Correct method co co			
			[3]				
6	y = x	$a^3 + ax^2 + bx$					
	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 2ax + b$	B1	со			
	(ii)	$b^2 - 4ac = 4a^2 - 12b \ (<0)$	M1	Use of discriminant	t on their qua	ndratic $\frac{dy}{dx}$	
		$\rightarrow a^2 < 3b$	A1 [3]	co – answer given	od		
	(iii)	$y = x^3 - 6x^2 + 9x$					
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 12x + 9 < 0$	M1	Attempt at different	tiation		
		= 0 when $x = 1$ and 3	A1	со			
		$\rightarrow 1 < x < 3$	A1 [3]	condone ≤			
7	(i)	$\mathbf{A}\mathbf{M} = -6\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}$	B2,1	co -1 each error			
		AC = -8i + 8j	B1 [3]	со			
	(ii)	AM.AC = 48 + 16 = 64	M1	Use of x_1y_1 + etc. w	rith suitable	vectors	
		$64 = \sqrt{128}\sqrt{65\cos\theta}$ $\rightarrow \theta = 45.4^{\circ}$	M1 M1 A1 [4]	Product of moduli. co	Correct link.		

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	12

8 (a)	$S_n = 32n - n^2.$ Set <i>n</i> to 1, <i>a</i> or $S_1 = 31$ Set <i>n</i> to 2 or other value $S_2 = 60$ \rightarrow 2nd term = 29 $\rightarrow d = -2$ (or equates formulae – compares coeffs n^2 , <i>n</i>) [M1 comparing, A1 <i>d</i> A1 <i>a</i>]	B1 M1 A1 [3]	co Correct method. co [M1 only when coeffs compared]
(b)	$\frac{a}{1-r} = 20$, $\frac{a(1-r)^2}{1-r}$, or $a + ar = 12.8$	B1 B1	co co
	Elimination of $\frac{a}{1-r}$ or <i>a</i> or <i>r</i>	M1	'Correct' elimination to form equation in a or r
	\rightarrow (r = 0.6) \rightarrow a = 8	DM1 A1 [5]	Complete method leading to $a =$ Condone $a = 8$ and 32
9 (i)	$m_{AB} = -3 \text{ or } \frac{-9}{3}$	B1	oe
	$m_{AD} = \frac{1}{3}$	M1	use of $m_1m_2 = -1$ with grad AB
	Eqn AD $y-6 = \frac{1}{3}(x-2)$ or $3y = x+16$	A1 [3]	co – OK unsimplified
(ii)	Eqn <i>CD</i> $y-3 = -3(x-8)$ or $y = -3x + 27$ Sim Eqns	B1√ [*] M1	OK unsimplified. \checkmark on <i>m</i> of <i>AB</i> . Reasonable algebra leading to $x =$ or $y =$ with <i>AD</i> and <i>CD</i> .
	$\rightarrow D(6\frac{1}{2},7\frac{1}{2})$	A1	
(iii)	Use of vectors or mid-point $\rightarrow E(5, 12)$ or mid-point (5,4.5) Length of $BE = 15$	[5] B1 B1 [2]	May be implied co
$10 \frac{d^2}{dx}$ (i)	$\frac{y}{2} = \frac{24}{x^3} - 4$ (If $x = 2$) it's negative \rightarrow Max	B1 [1]	www
(ii)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = -12x^{-2} - 4x + (A)$	B2,1,0	oe one per term
	= 0 when x = 2 $\rightarrow A = 11$	M1 A1 [4]	Attempt at the constant <i>A</i> after ∫n co
(iii)	$(y =) 12x^{-1} - 2x^2 + Ax + (c)$	B2,1,0 √ [▲]	oe Doesn't need $+c$, but does need a term A to give " Ax ".
	$y = 13$ when $x = 1 \rightarrow c = -8$ (If $x = 2$), $y = 12$	M1	Attempt at c after $\int n$
	(11 x = 2) y = 12	A1 [4]	со

Page 7	Mark Scher	Syllabus	Paper		
	Cambridge International AS/A Level	- October	/November 2014	9709	12
11 f:x⊢	$\rightarrow 6 - 4\cos\left(\frac{1}{2}x\right)$				
(i) 6	$-4\cos\left(\frac{1}{2}x\right) = 4 \rightarrow 4\cos\left(\frac{1}{2}x\right) = 2$	M1	Makes $\cos\left(\frac{1}{2}x\right)$ the	e subject.	
	$\frac{1}{2}x = \frac{1}{3}\pi$ $x = \frac{2}{3}\pi$	M1	Looks up " $\frac{1}{2}x$ " bet	fore ×2	
		A1 [3]	co (120° gets A0 –	decimals A))
(ii) F	Range is $2 \le f(x) \le 10$	B1 B1 [2]	condone <		
(iii)		B1 B1 [2]	Point of inflexion a Fully correct	t π	
(iv) ($\cos\left(\frac{1}{2}x\right) = \frac{1}{4}(6-y)$	M1	Makes $\cos\left(\frac{1}{2}x\right)$ the	e subject	
	$\frac{1}{2}x = \cos^{-1}\left(\frac{1}{4}(6-y)\right)$	M1	Order of operations (M marks allowed i	correct f + for –)	
f	$x^{-1}(x) = 2\cos^{-1}\left(\frac{6-x}{4}\right)$	A1 [3]	oe – needs to be a f	unction of x	not y

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/13

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	13

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol I implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	13

- AEF Any Equivalent Form (of answer is equally acceptable)AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √^k" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Pa	ge 4	Mark Scheme			Syllabus	Paper
		Cambridge International AS/A Level – Oct	ober/Nove	mber 2014	9709	13
	(D1D1			
1	(15 c	or ${}^{16}C_2 \times 2^4 \times (ax)^2$, $(20 \text{ or } {}^{6}C_3) \times 2^3 \times (ax)^3$	RIRI			
	<i>a</i> =	$\frac{13 \times 2}{20 \times 2^3} = \frac{3}{2}$	M1A1 [4]	240 <i>a</i> = 160 <i>a</i>	a is M0	
2	(i)	$CB \text{ or } AB = \frac{3}{\tan \frac{\pi}{3}} \text{ or } 3 \tan \frac{\pi}{3}$	B1	Allow throu	ghout for e.g	$5. 3\sqrt{3}$,
		$\frac{\tan 6}{6}$	B1	$\sqrt{27}, \sqrt{3^3},$	$(\sqrt{3})^3, \frac{9}{\sqrt{3}}$.
		Arc or $AC = 3 \times \left[\frac{2\pi}{3} \text{ or } \frac{\pi}{3}\right] \qquad (= 2\pi \text{ or } \pi)$	B1 [3]	After B0B0	SCB1 for 16	.7
		Perimeter $= 6\sqrt{3} + 2\pi$ oe	B1√ [∧]	<i>Their AB</i> in	form $k\sqrt{3}$	
	(ii)	Area $OABC(2) \times \frac{1}{2} \times 3 \times their AB$				
		$(=9\sqrt{3} \text{ or } \frac{9\sqrt{3}}{2})$	B1			
		Area <i>OADC</i> $\frac{1}{2} \times 3^2 \times \left(\frac{2\pi}{2} \text{ or } \frac{\pi}{3}\right) = \left(=3\pi \text{ or } \frac{3\pi}{2}\right)$	B1	After B0B0	SCB1 for 6.	16 or 6.17.
		Shaded area $9\sqrt{3} - 3\pi$ oe	[3]	Allow $(\sqrt{3})$	-3π	
3	(i)	$(3x-2)^2 + 1$	B1B1B1	For either of	f 1 st 2 marks	bracket
	()			must be in the	he form (ax -	$(+b)^2$
				SCB2 for 9	$\left(x-\frac{2}{2}\right)^{2}+1$	
			[3]	5	3)	
	(ii)	$f'(x) = 9x^2 - 12x + 5$	B1			
		= their $(3x-2)^2 + 1$	M1	Ft from (i).	Some	
		>0 (of ≥ 1) hence an increasing function	[3]	Allow > 1. A	Allow <i>their</i> 1	provided
				Allow a con or 0/2)	nplete alt me	thod (2/2
4	(i)	$S_P = \frac{2}{1 - \frac{1}{2}}, S_P = \frac{3}{1 - \frac{1}{3}}$	M1	At least one	correct	
		$S_P = 4, S_Q = \frac{9}{2}$	A1	At least one	correct	
		$S_R = 5$ cao	A1 [3]			
	(ii)	$\frac{4}{1-r} = their S_R$	M1			
		$r = \frac{1}{5}$	A1			

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	13

		$R = 4 + \frac{4}{5} + \frac{4}{25} = 4\frac{24}{25} \text{ or } 4.96 \qquad \text{cao}$	A1	[3]	
5	(i) (ii)	$ (s^{2} - c^{2})(s^{2} + c^{2}) \text{ OR } s^{2}(1 - c^{2}) - c^{2}(1 - s^{2}) $ $ sin^{2}\theta - cos^{2}\theta $ $ 2sin^{2}\theta - 1 www AG $ $ 2sin^{2}\theta - 1 = \frac{1}{2} \Rightarrow sin\theta = (\pm)\frac{\sqrt{3}}{2} \text{ or } (\pm)0.866 $	M1 A1 A1 B1	[3]	OR $\sin^4 \theta - (1 - \sin^2 \theta)^2$ $\sin^4 \theta - (1 - 2\sin^2 \theta + \sin^4 \theta)$ $= 2\sin^2 \theta - 1$ AG OR $\cos 2\theta = -\frac{1}{2} \rightarrow 2\theta = 120,240$ etc.
		$ \theta = 60^{\circ} \\ \theta = 120^{\circ} $	B1 B1√ [≜]		Ft for 180 – <i>their</i> 60 Ft for 180 + <i>their</i> 60, 360 – <i>their</i> 60
		$\theta = 240^\circ, 300^\circ$	B 1√ [^]	[4]	Allow $\frac{\pi}{3}$, $\frac{2\pi}{3}$ etc. Extra sols in range -1
6	(i)	$m = \frac{3a+9-(2a-1)}{2a+4-a} = \frac{a+10}{a+4} \text{ or e.g. } \frac{-a-10}{-a-4}$	M1A1	I	cao Allow omission of brackets for M1
		Gradient of perpendicular $=\frac{-(a+4)}{a+10}$ oe but not $\frac{-1}{\left(\frac{a+10}{a+4}\right)}$	A1√ [*]	[3]	Do not ISW. Max penalty for erroneous cancellation 1 mark
	(ii)	$(\sqrt[4]{(a+4)^2 + (a+10)^2]} = (\sqrt[4]{260}$ $(\sqrt[4]{(a+4)^2 + (a+10)^2]}$ cao $(2)(a^2 + 14a - 72) (= 0)$ a = 4 or -18 cao	M1 A1 A1 A1	[4]	Allow <i>their</i> $(a + 4)$, $(a + 10)$ from (i). Allow $(-a - 4)^2$ etc. Allow omission of brackets

Page 6	Mark Scheme	Syllabus	Paper			
	Cambridge International AS/A Level – Oct	ober/Nove	mber 2014	9709	13	
7 (i)	$OA.OB = -7 + 3 - 3p + p^2$	M1	Correct method for scalar product			
	(p+1)(p-4)=0	DM1	Equate to zero & attempt to			
	p = -1 or 4	A1 [3]	'= 0' implied by answers			
(ii)	$49 + (1 - p^{2}) + p^{2} = 2(1 + 9 + p^{2})$ $n = 15$	M1 A1	Scalar result	Scalar result required		
	p = 15	[2]				
(iii)	$AB = -8\mathbf{i} + 6\mathbf{j}$	B1	p = 15 used	- treat as M	R	
	Divide AB by $ AB = \sqrt{(-8)^2 + 6^2} = 10$ soi	M1	$ \rightarrow 1 $	-8		
	Unit vector $=\frac{1}{10}(-8\mathbf{i}+6\mathbf{j})$ oe cao	A1 [3]	√353	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$		
8 (i)	Minimum since $f''(3) (= 4/3) > 0$ www	B1				
(ii)	$f'(x) = -18x^{-2} (+c)$	[1] B1				
	0 = -2 + c	M1	Sub $f'(3) =$	0. (dep <i>c</i> p	oresent)	
	$\mathbf{c} = 2 (\rightarrow \mathbf{f}'(x) = -18x^2 + 2)$	Al	c = 2 suffici	ent at this st	age	
	$f(x) = 18x^{-1} + 2x(+k)$ 7 = 6 + 6 + k	B1√B1√ M1	Allow cx at Sub $f(3) = 3$	this stage (<i>k</i> present &	è numeric	
	$k = -5 \rightarrow (f(x) = 18x^{-1} + 2x - 5)$ cao	A1 [7]	(or no) <i>c</i>)			
9 (i)	$x - 3\sqrt{x} + 2 \text{ or } k^2 - 3k + 2 \text{ or } (3\sqrt{x})^2 = (x+2)^2$	M1	OR attempt $r = \frac{y^2}{y^2}$	to eliminate	x eg sub	
	$\sqrt{x} = 1 \text{ or } 2 \text{ or } k = 1 \text{ or } 2 \text{ or } x^2 - 5x + 4 (= 0)$	A1	$y^{2} - 9y + 18$ $y = 3 \text{ or } 6$	8 = 0		
	x = 1 or 4 y = 3 or 6	A1 A1 [4]	x = 1 or 4			
		[7]				

Mark Scheme Image: Sch

SyllabusPaper970913

(ii) $\int 3x \frac{1}{2} dx - \left[\int (x+2) dx \text{ or attempt at trapezium} \right]$ $2x \frac{3}{2} - \left[\left(\frac{1}{2} x^2 + 2x \right) \text{ or } \frac{1}{2} (y_2 + y_1) (x_2 - x_1) \right]$	M1DM1 A1A1	Attempt to integrate. Subtract at some stage Where $(x_1, y_1), (x_2, y_2)$ is <i>their</i> $(1, 3), (4, 6)$
$(16-2) - \left[\left[\left(8+8 \right) - \left(\frac{1}{2}+2 \right) \right] $ or their $\frac{1}{2} \times 9 \times 3 \right]$	DM1	Apply <i>their</i> $1 \rightarrow 4$ limits correctly to curve
$\frac{1}{2}$	A1	For A mark allow reverse subtn \rightarrow
OR	[6]	$\begin{array}{c} \rightarrow - \\ 2 \\ \end{array}$ but not reversed limits
$\left[\int (y-2) dy \text{ or attempt at trap}\right] - \int \frac{y^2}{9} dy$	M1DM1	
$\left[\frac{1}{2}y^2 - 2y \text{ or } \frac{1}{2}(x_1 + x_2)(y_2 - y_1)\right] - \frac{y^3}{27}$	A1A1	
$\left[(18-12) - \left(4\frac{1}{2} - 6\right) \text{ or } \frac{1}{2} \times 5 \times 3 \right] - [8-1]$	DM1	Apply <i>their</i> $3 \rightarrow 6$ limits correctly to curve
$\frac{1}{2}$	A1	
10 (a) (i) $(a+b)^{\frac{1}{3}} = 2$, $(9a+b)^{\frac{2}{3}} = 16$ a+b=8, $9a+b=64a=7$, $b=1$	B1B1 M1 A1	Ignore 2 nd soln (–9, 17) throughout Cube etc. & attempt to solve Correct answers without any working 0/4
(ii) $x = (7y+1)^{\frac{1}{3}}$ (x/y interchange as first or last step) $x^{3} = 7y+1$ or $y^{3} = 7x+1$ $f^{-1}(x) = \frac{1}{7}(x^{3}-1)$ cao	[4] B1√ [∧] B1	ft on from <i>their a, b</i> or in terms of a, b ft on from <i>their a, b</i> or in terms of a, b A function of <i>x</i> required
Domain of f^{-1} is $x \ge 1$ cao	B1	Accept >. Must be x
(b) $\frac{dy}{dx} = \left[\frac{1}{3}(7x^2+1)^{-\frac{2}{3}}\right] \times [14x]$	[4] B1B1	
When $x = 3$, $\frac{dy}{dx} = \frac{1}{3} \times (64)^{-\frac{2}{3}} \times 42$ $\left(=\frac{7}{8}\right)$	M1	
$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{7}{8} \times 8$ 7	DM1 A1 [5]	Use chain rule

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/11

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	11

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^k implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL – May/June 2014	9709	11	

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a "fortuitous" answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR–1 A penalty of MR–1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA–1 This is deducted from A or B marks in the case of premature approximation. The PA–1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme			Syllabus	Paper	
		GCE AS/A LEVEL -	May/June 20	14	9709	11	
1	a = 1, b = 2		B1B1 [2]	Or 1+2 s	sin x		
2	(i) $(2x-3)^2$ -	- 9	B1B1 [2]	For -3 and -9			
	(ii) $2x-3 > 4$	2x - 3 < -4	M1	At least or	the of these statem	ents	
	$x > 3\frac{1}{2} (or)$ Allow $-\frac{1}{2}$	$x < -\frac{1}{2} \text{cao}$ $x > 3\frac{1}{2}$	AI	Allow an	$d^{-3}\frac{-}{2}, -\frac{-}{2}$ sol so	cores first MI	
0	$\mathbf{R} \qquad 4x^2 - 12x - x - \frac{1}{2}x - \frac{1}{2}$	$7 \rightarrow (2x - 7)(2x + 1)$ $0 < -\frac{1}{2} \text{cao}$ $> x > 3\frac{1}{2}$	M1 A1 [2]	Attempt to solve 3-term quadratic Allow 'and' $3\frac{1}{2}$, $-\frac{1}{2}$ soi scores first M1			
3	[⁸ C ₆ or 28]×[16 7	for $4^2](x^6) \times \left[\frac{1}{(64 \text{ or } 2^6)(x^6)}\right]$	B1B1B1 B1 [4]	I Seen in expansion ok. Allow ⁸ C ₂ Identified as answer			
4	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[-2 \times 4\left(3x + \right)\right]$	$1)^{-3}] \times [3]$	B1B1	$[-2 \times 4u^{-3}] \times [3]$ is B0B1 unless resolved			
	When $x = -1$, $\frac{d}{dx}$	$\frac{y}{z} = 3$	B1				
	d When $x = -1, y$ y - 1 = 3(x + 1)	$x = 1 \text{soi} \\ (\rightarrow y = 3x + 4)$	B1 B1 √ [∧] [5]	Ft on <i>their</i> '3' only (not $-\frac{1}{3}$). Dep on diffn			
5	(i) 200/2(2 <i>a</i> +	$199d) = 4 \times 100/2(2a + 99d)$	M1A1	Correct fo eqn A1	rmula used (once) M1, correct	
	d = 2a ca (ii) $a + 99d = a$ 199a cao	$a + 99 \times 2a$	A1 [3] M1 A1 [2]	Sub. <i>their</i> part(i) into correct formula			
6	(i) area $\Delta = \frac{1}{2}$	$\times 4 \times 4$ tan α oe soi	B1	$4\tan\alpha = \sqrt{16/\cos^2\alpha - 16}$. (Can also score in			
	Area sector	$r = \frac{1}{2} \times 2^2 \alpha$ oe soi	B1 B1	answer) Accept θ throughout Little/no working – accept terms in answer			
	Shaded are (ii) $DC = \frac{4}{\cos \alpha}$ Arc $DE = 2$ Perimeter =	a = $8\tan \alpha - 2\alpha$ cao -2 oe soi α soi anywhere provided clean = $\frac{4}{\cos \alpha} + 4\tan \alpha + 2\alpha$ cao	[3] B1 B1 B1 [3]	Little/no working – accept terms in answer $\frac{4}{\cos \alpha} = \sqrt{16 + 16 \tan^2 \alpha}.$ Can score in answer Little/no working – accept terms in answer			

[F	Page 5	5 Mark Scheme		Syllabus	Paper				
			GCE AS/A LEVEL – May	/Jun	e 20′	14	9709	11		
				1						
7	(a - 2 -	$(-3)^2 + (2-b)^2$ $(b)^2 - 2 = 200$	=125 oe	B1						
	$\frac{1}{a-3} - 2 = 0c$ $(a-3)^2 + (2a-6)^2 = 125 (\text{sub for } a \text{ or } b)$ $(5)(a+2)(a-8) (= 0) \text{Attempt factorise/solve}$		M1 Or 1/4(2 – M1 Or (5)(b –		Or 1/4(2 – Or (5)(<i>b</i> –	$(-b)^{2} + (2-b)^{2} = 125$ (-12)(b+8) (= 0)				
	<i>a</i> =	-2 or 8, b =	= 12 or -8		[6]	Answers (no working) after 2 correct eqns score SCB1B1 for each correct pair (a, b)				
8	(i)	(i) $OA.OB = -3p^2 - 4 + p^4$ soi $(p^2 + 1)(p^2 - 4) = 0$ or e.g. with substitution $p = \pm 2$ and no other real solutions [3] Put = 0 (solutions)			oi) and attempt to	solve				
	(ii)	$\overrightarrow{BA} = \begin{pmatrix} 9\\4\\9 \end{pmatrix} - \begin{pmatrix} \end{pmatrix}$	$ \begin{pmatrix} -3\\-1\\9 \end{pmatrix} = \begin{pmatrix} 12\\5\\0 \end{pmatrix} $	M1 Reversed		Reversed	subtraction can sc	ore M1M1A0		
	$ \overrightarrow{BA} = \sqrt{12^2 + 5^2} = 13$ and division by <i>their</i> 13		M1							
		Unit vector	$=\frac{1}{13} \begin{pmatrix} 12\\5\\0 \end{pmatrix} \text{cao}$	A1	[3]					
9	(i)	LHS = $\frac{\sin^2}{(1-1)^2}$	$\frac{\theta - (1 - \cos \theta)}{\cos \theta \sin \theta}$ cao	B1		Put over c	common denomina	ator		
		$\equiv \frac{1-c}{(1-c)}$	$\frac{\cos^2\theta - 1 + \cos\theta}{-\cos\theta}\sin\theta$	M1		Use $s^2 =$	$1 - c^2$ oe			
		$\equiv \frac{\cos \theta}{\left(1 - \alpha\right)}$	$\frac{\partial(1-\cos\theta)}{\cos\theta}\sin\theta$	M1		Correct fa	ctorisation from l	ine 2		
		$\equiv \frac{1}{\tan \theta}$		A1 [4] AG		AG				
	(ii)	$ \tan \theta = (\pm) \frac{1}{2} $ 26.6°, 153	8.4°	M1 A1A	.1√ [*] [3]	Ft for 180	– 1 st answer			
					[3]					
	F	Page 6	Mark Scheme	9		Syllabus	Paper			
----	---------	--	--	-----------------------	---	---	----------------------------------	---		
			GCE AS/A LEVEL – May	/June 20 [/]	14	9709	11			
10	(i)	$-5 \le f(x) \le$ allow <, [-5]	≤ 4 For f(<i>x</i>) allow <i>x</i> or <i>y</i> ; 5, 4], (−5,4)	B1 [1]	Allow less explicit answers (eg $-5 \rightarrow 4$) Ignore line $y = x$					
	(ii)	$f^{-1}(x)$ appro Closed regi reaches <i>x</i> -ax	ximately correct (independent of f) on between (1, 1) and (4, 4); line xis	B1 DB1 [2]						
	(iii)	LINE: f	$x^{-1}(x) = \frac{1}{3}(x+2)$	B1	Allow $y =$	but must be a	function of x			
		f	For $-5 \le x \le 1$	B1B1	cao but a	llow <				
		CURVE: 5	$5 - y = \frac{4}{x} \qquad \text{OR} \qquad x = 5 - \frac{4}{y}$	M1						
		f	$f^{-1}(x) = 5 - \frac{4}{x} \text{oe}$	A1	cao					
		f	for $1 < x \le 4$	B1 [6]	cao but al	llow < or <				
11	(i)	$x^{2} + 4x + c + 16 - 4(c - 8)$ $c = 12$	-8 (= 0) (= 0) (= 0)	M1 M1 A1	Attempt to Apply b^2 -	b simplify to 3-ter -4ac = 0. '= 0'	m quadratic soi			
	X	-2 - 2x = 2 -4 + c = 8 + 2	$ \rightarrow x = (-2) $ + 4 - 4	M1 M1	Equate de Sub <i>their</i> . equate	rivs of curve and $x = -2$ into line at	line. Expect $x=-$ nd curve, and	2		
		<i>c</i> = 12		A1 [3]						
	(ii)	$x^2 + 4x + 3$ $x = -1 \text{ or } -3$	$ \rightarrow (x+1)(x+3) (=0) \rightarrow $	B1						
		$\int \left(8 - 2x - x^2 \right)^2$)-[$\int (2x+11)$ or area of trapezium]	M1M1	Attempt to	o integrate. At son	ne stage subtract			
8.	$x-x^2$	$\left[-\frac{x^3}{3}\right] - \left[x^2 + 1\right]$	$1x$]or $\left[8x - x^2 - \frac{x^3}{3}\right] - \frac{1}{2}(5+9) \times 2$	A1B1	A1 for cur $OR \begin{bmatrix} -3 \end{bmatrix}$	rve, B1 for line $3x - 2x^2 - \frac{x^3}{3}$ A2,	1,0			
		Apply <i>their</i> $1\frac{1}{3}$ oe	limits to at least integral for curve	M1 A1 [7]	For M ma subtractio	rks allow reversed n of areas but ther	l limits and/or 1 final A0			

	Page 7 Mark Scheme			Syllabus	Paper			
			GCE	AS/A LEVEL – May	/June 20′	14	9709	11
						-		
12	(i)	$y = \frac{2}{3}x^{\frac{3}{2}} - 2$	$x^{\frac{1}{2}} + (c)$ oe		B1B1	Attempt to	ointegrate	
		$\frac{2}{3} = \frac{16}{3} - 4 +$	- C		M1	Sub $\left(4,\frac{2}{3}\right)$. Dependent on <i>c</i> present		
		$c = -\frac{2}{3}$			A1 [4]			
	(ii)	$\frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{2}x^{-\frac{1}{2}}$	- <u>3</u> 0e		B1B1 [2]			
	(iii)	$x^{\frac{1}{2}} - x^{-\frac{1}{2}} = 0$	$0 \rightarrow \frac{x-1}{\sqrt{x}} = 0$		M1	Equate to zero and attempt to solve		
	c N	x = 1 When $x = 1$	$y = \frac{2}{3} - 2 - \frac{2}{3} =$	= -2	A1 M1A1	Sub. their	'1' into <i>their</i> 'y'	
		When $x = 1$	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} (=1) > 0$	Hence minimum	B1 [5]	Everything correct (ii)	g correct on final l). Accept other val	ine. Also dep on lid methods

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/12

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	12

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	12

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

	Pag	ge 4	Mark Scheme			Syllabus	Paper
			GCE AS/A LEVEL – Ma	ay/June 2014	4	9709	12
1	(2, 7	') to (10, 3)				
	Mid	-point (6	, 5)	B1	со		
	Grac	$11ent = -\frac{1}{2}$	- 2	BI D1	co		
	Fan	v = 5 - 2l	(r - 6)	M1	Must be	correct form of Pe	ern
	Sets y to $0 \rightarrow (31/6)$			Al	co $x = 3\frac{1}{2}$ only is ok.		
	5005	<i>y</i> to 0, <i>'</i>	(372, 0)	[5]		5	
2	(1+.	$x^2\left(\frac{x}{2}-\frac{4}{x}\right)^{6}$					
	Tern	$\min x^2 = 1$	$5 \times \frac{1}{16} \times (-4)^2 = 15$	B1 B1	B1 unsin	nplified. B1 15.	
	Con	stant term	$=20 \times \frac{1}{8} \times (-4)^3 = -160$	B1 B1	B1 unsin	nplified. B1 –160	
	Coef	fficient of	$x^2 = -145$	B1√^	Uses 2 te	rms. √ on previou	is answers
				[5]		Ĩ	
3	refle	x angle θ	is such that $\cos\theta = k$,				
	(i)	(a) $\sin \theta$	$= -\sqrt{(1-k^2)}$	B1 B1	(-) B1	rest B1	
	()			[2]			
		(b) Ugog	$-\sqrt{1-k^2}$	D1 Å	the for (i)	- <i>h</i>	
		(D) Uses	$l \rightarrow k$	BIV [1]	v 101 (l)	$-\kappa$.	
	(ii)	θ is in 4th	quadrant.	D1			
		2θ lies be $\sin 2\theta$ is n	egative in both these quadrants	BI B1			
		511120 15 11	egative in com mose quadrants.	[2]	00		
4	(i)						
		$\frac{1}{2}r^2\theta = \frac{1}{2}$	$\frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta$	B1	Correct e	equation.	
		$\rightarrow 2 \sin^2$	$\theta = \theta \rightarrow p = 2.$	B1	All ok –	answer given.	
			1 4	[2]		U	
	(ii)	Chord len	$agth = 8sin1.2 \times 2 (14.9)$	M1	Needs ×2	2. Any method ok.	
		(or from c	cosine rule) $h = 2.4 \times 8$ (10.2)	D1	,9		
		Perimeter	r = sum of these = 34.1		<u> </u>		
		1 ennieter	sum of these star	[3]	00		
5	(i)	1	$\frac{\cos\theta}{\cos\theta} \equiv \tan\theta$.	M1	Correct a	ddition of fraction	15
	$\cos\theta = 1 + \sin\theta$						
		LHS = $\frac{1}{a}$	$\frac{+s-c^2}{c(1+s)} = \frac{s^2+s}{c(1+s)} = \frac{s}{c}$	M1M1	Use of $s^2+c^2=1$. $(1 + s)$ cancelled.		
		$= \tan \theta$	· · · · ·	A1	\rightarrow answe	er given.	
	(ii)	$\rightarrow \tan \theta +$	$-2 = 0$ ie $\tan \theta = -2$	[4] M1	Lises nor	t (i) Allow $\tan \theta$	+2
	(II)	$\rightarrow \theta = 1$	16.6° or 296.6°	A1 A1√	Co. \sqrt{fc}	or 180° + and no of	her solutions in
		~ I		[3]	the range		
					Ũ		

	Page 5 Mark Scheme				Syllabus	Paper	
			GCE AS/A LEVEL – N	ay/June 2014	4	9709	12
				1			
6	(i)	GP 8	8 r 8r ²				
		AP 8	8 + 8d 8 + 20d				
		8r = 8 + 8	$8d \text{ and } 8r^2 = 8 + 20d$	B1 B1	B1 for ea	ach equation.	
		Eliminate	$s d \rightarrow 2r^2 - 5r + 3 = 0$	M1	Correct elimination.		
		$\rightarrow r = 1.$	5 (or 1)		co (no p	enalty for including	ng r = 1)
	(ii)	4th term of	of $GP = ar^3 = 8 \times 27/8 = 27$	B1√ ^[+]	со		
		If $r = 1.5$,	d = 0.5				1 10 1
		4th term (DI AP = $a + 3a = 9{2}$	[3]	needs <i>a</i> -	+3d and correct m	ethod for d
			(-2)(3)				
7	(i)	(b - a).(b	$(\mathbf{p} - \mathbf{c}) = \begin{vmatrix} -1 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} 2 \end{vmatrix}$	M1	AB = b -	a once $(\mathbf{a} - \mathbf{b})$ is	ok)
			$\left(\begin{array}{c}2\end{array}\right)\left(4\right)$	M1	Use of x_1	$x_{2\dots}$ with AB and	CB
		$\rightarrow -6 -$	$2+8 = 0 \rightarrow 90^{\circ}$	A1	All corre	ct	
			(2)	[3]			
	(;;)	I Init waat		MI	Mathad	Sau: 4	
	(11)		01 - 73 1	IVI I	Method	for unit vector.	
			(-2)				
		CD 10			W (1 1 1 10 14DA		
		$\mathbf{C}\mathbf{D} = 12$	\times unit vector = \pm 4	MI	Knows to	o multiply by 12 c	or $\pm 4BA$
			(-8)				
			$\begin{pmatrix} 12 \end{pmatrix}$				
		OD = OC	$\mathbf{C} + \mathbf{C}\mathbf{D} = \begin{vmatrix} 9 \end{vmatrix}$	M1 A1	Correct r	nethod. co	
			(-2)	[4]			
	$d^2 v$						
8	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$	= 2x - 1			1.5		
	$\rightarrow \int$	$\frac{\mathrm{d}y}{\mathrm{d}x} =$	$x^2 - x + c$	B1	Correct i	ntegration (ignore	e^{+c}
	$dx = 0 \text{ when } x = 3 \rightarrow c = -6$			M1 A1	Uses a co	onstant of integrat	tion. co
	$x^{2} - x - 6 = 0$ when $x = -2$ (or 3)			Al	Puts dv/c	lx to 0	
				B1√B1√	√ first ?	terms. $\sqrt{for} cx$	
	= -10 when x = 3			M1	Correct r	nethod for <i>k</i>	
	$\rightarrow k$	$x = 3\frac{1}{2}$	-				
	$\rightarrow y$	$v = 10\frac{5}{6}$		A1	Co - r 10	.8	
				[8]			

Pa	Page 6 Mark Scheme			Syllabus	Paper	
		GCE AS/A LEVEL -	May/June 201	4	9709	12
				1		
9 <i>y</i> =	$= 8 - \sqrt{4 - x}$	-				
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{2}$	$(4-x)^{-\frac{1}{2}} \times -1$	B1 B1	Without	(−1). For (×−1).	
(ii)	$\int y dx = 8$ Eqn $y - \frac{1}{2}$ $\rightarrow y = \frac{1}{2}$	$3x - \frac{(4-x)^{\frac{3}{2}}}{\frac{3}{2}} \div -1$ $7 = \frac{1}{2}(x-3)$ $6x + \frac{5}{2}$	3 × B1 [5] M1A1	B1 for "8x" and $+c$ ". B1 for all except $\div(-1)$. B1 for $\div(-1)$. (n.b. these 5 marks can be gained in(ii) of (iii)) M1 unsimplified A1 as $v=mr+c$		
(iii)	Area unde Area unde	er curve = \int from 0 to 3 (58/3) er line = $\frac{1}{2}(5\frac{1}{2} + 7) \times 3$	[2] M1 M1	Use of li Correct 1	mits – needs use nethod	of "0"
	Or $\left\lfloor \frac{1}{4}x^2 \right\rfloor$ $\rightarrow \frac{58}{2}$	$\left. + \frac{11x}{2} \right]$ from 0 to 3 $\frac{75}{4} = \frac{7}{12}$	M1 A1 [4]	M1 Subt	raction. A1 co	
	3	4 12	PRA			
10 f:	$x \mapsto 2x - 3$	$3, x \in \mathbb{R},$				
g :.	$x \mapsto x^2 + 4$	$x, x \in \mathbb{R}.$				
(i)	ff = 2(2x + 3) Solves = (or $2x-3$)	(-3) -3 $11 \rightarrow x = 5$ $=11, x = 7. 2x - 3 = 7 \rightarrow x = 5)$	M1 A1	Either fo equation	orms ff correctly, c s co	or solves 2
(ii)	$\begin{array}{l} \min \operatorname{at} x = \\ \rightarrow & \operatorname{Range} \end{array}$	z = -2 $z \ge -4$	[2] M1 A1 [2]	Any vali	d method – could	be guesswork.
(iii)	$x^{2} + 4x - $ $\rightarrow x = 2 $ $\rightarrow x < - x$	12 (>0) or -6 6, $x > 2$.	M1 A1 A1	Makes q Correct l co	uadratic = $0 + 2$ so imits – even if >,	olutions <,≥,≤,=
(iv)	gf(x) = (2) $\rightarrow 4x^2 - 4x^2$	$x - 3)^{2} + 4(2x - 3) = p$ 4x - 3 - p = 0 -4ac'' 16 = 16(-3 - p)	[3] B1 M1	co unsim Use of d co	nplified iscriminant	
(v)	$\rightarrow p = -2$	4	[3] [1]	со		
(vi)	$y = (x + 2)$ $\sqrt{y + 4} =$ $h^{-1}(x) =$	$\frac{2}{x^2} - 4$ $\frac{x+2}{\sqrt{x+4} - 2}$	B2,1 M1 A1 [4]	-1 for ea Correct of co with a	ach error order of operation x , not y . \pm left A0.	S

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/13

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	13

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	13

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4 Mark Scheme			Syllabus	Paper		
			GCE AS/A LEVEL – Ma	ay/June 201	4	9709	13
1	$\int x^2$	$\left(-\frac{2}{x}\right)^{5}$					
	Ter	m in <i>x</i> is 1($(x^2)^2 \times \left(\frac{-2}{x}\right)^3$	B1 B1	B1 10 or	$^{5}C_{2} \text{ or } ^{5}C_{3}, B1 \left(= \right)$	$\left(\frac{-2}{x}\right)^3$
	Coe	efficient =	-80(x)	B1 [3]	co Mus	t be identified	
2	36, (i)	$32, \dots \\ r = \frac{8}{9} S_{\infty}$	$=(their a) \div (1 - their r)$	M1	Method	for r and S_{∞} ok. (<i>r</i> < 1)
		$S_{\infty} = 36 \div$	$\frac{1}{9} = 324$	A1	со		
	(ii) $d = -4$		[2] B1	со			
		$0 = \frac{n}{2}$ (72)	2 + (n-1)(-4))	M1	S_n formu	ila ok and a value	for $d \neq \frac{8}{9}$
		$\rightarrow n = 19$	GATH	A1 [3]	Condone	e n = 0 but no othe	er soln
3	(i)	$s = r\theta$ Angle of Perimeter (or full ci	major arc = $2\pi - 2.2 = (4.083)$ = $12 + 24.5 = 36.5$ or $12\pi - 1.2$ rcle - minor arc B1)	M1 B1 A1	Used wir Could be co	th major or minor e gained in (ii) .	arc
	(ii)	Area of m	major sector = $\frac{1}{2}r^2\theta = (73.49)$	[3] M1	Used wi	th major/minor se	ector.
		Area of tr	iangle = $\frac{1}{2} \cdot 6^2 \sin 2.2 = (14.55)$	M1	Correct the corre	formula or methoo 2)/sin 2.2 gets M1	l. M1
		Ratio $= 5$.	$.05:1$ (Allow $5.03 \rightarrow 5.06$)	A1 [3]	co		
4	sin	$\frac{\tan x + 1}{x \tan x + \cos x}$	$\frac{1}{8x} \equiv \sin x + \cos x$	brep			
	(i)	LHS $\frac{\left(\frac{s}{c}\right)}{\left(\frac{s^2}{c}\right)}$	$\frac{+1}{+c} = \frac{s+c}{s^2+c^2}$	M1 M1	Use of t Correct a	= s/c twice algebra and use of	$s^{2} + c^{2} = 1$
		= RHS		A1 [3]	AG all o	ok	
	(ii)	s + c = 3s	- 2 <i>c</i>				
		$\rightarrow \tan x =$ $\rightarrow x = 0.9$	$\frac{3}{2}$ Allow $\cos^2 = \frac{4}{13}$, $\sin^2 = \frac{9}{13}$ 983 and 4.12 or 4.13	M1 A1 A1√ [3]	Uses (i) co. ∳ 1st range. A	and $t = \frac{s}{c}$ $t = \frac{2}{3}$ $t + \pi$, providing not llow 0.313π , 1.31	or 0 is M0 9 excess solns in π
					1		

	Page 5 Mark Scheme		Syllabus	Paper		
		GCE AS/A LEVEL – Ma	ay/June 2014	4	9709	13
5	$\mathbf{f}(x) = \frac{15}{2x+3}$					
	(i) $f'(x) = \frac{1}{2}$	$\frac{-15}{(x+3)^2} \times 2$	B1 B1	Without (indep of	the "×2". For "×2 f 1 st B1).	2"
	() ² alway	$s + ve \rightarrow f'(x) < 0$				
	(No turnin	ng points) – therefore an inverse	B1√ [3]		$()^{2}$ in f'(x). 1-	-1 insuff.
	(ii) $y = \frac{15}{2x+3}$	M1	Order of	ops – allow sign	error	
	$\rightarrow x = \frac{15}{y}$	A1	co as function of <i>x</i> . Allow $y = \dots$			
	(Range) 0	$\leq f^{-1}(x) \leq 6.$				
	Allow 0≤	≤ <i>v</i> ≤6.[0.6]	B1	For rang	e/domain ignore	letters
	(Domain)	$1 \le x \le 5$. Allow [1, 5]	B1	unless ra	nge/domain not i	dentified
	, , , , , , , , , , , , , , , , , , ,		[4]		C	
		10				
6	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{12}{\sqrt{4x+a}}$	P(2, 14) Normal $3y + x = 44$				
	(i) <i>m</i> of norm	$\operatorname{hal} = -\frac{1}{3}$	B1	co		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 = 1$	$\frac{12}{\sqrt{4x+a}} \to a=8$	M1 A1	Use of m	$m_1 m_2 = -1.$ AG.	
			[3]			
	(ii) $\int y = 12(4)$	$(x+a)^{\frac{1}{2}} \div \frac{1}{2} \div 4 (+c)$	B1 B1	Correct v	without "÷4". for	"÷4".
	Uses (2, 14)		M1	Uses in a	an integral only. D	ep 'c'.
	c = -10		A1	co All 4	marks can be giv	en in (i)
		2	[4]			
		2	[4]	0		

	Page 6		Mark Sche		Syllabus	Paper		
			GCE AS/A LEVEL – M	ay/June 201	4	9709	13	
7	(i)	Angle BA	C needs sides AB,AC or BA,CA					
		AB.AC =	(b - a).(c - a)		Ignore <i>their</i> labels:			
		(4)						
		= -2 . 3	3 = 10	B1	One of A	One of AB , BA , AC , CA correct		
		4	1	IVI I	Use of x_{j}	$_{1}x_{2} + y_{1}y_{2}$, etc.		
		$=\sqrt{36}\times$	$\sqrt{25} \cos BAC$	M1M1	M1 prod	of moduli M1 al	l linked	
					init prod	or moduli. Ivir u	i iiiiteu	
		$\rightarrow BAC$	$r = \cos^{-1}\frac{1}{3}$ AG	Al	If e.g. B	A.OC max B1M1	M1. If both	
					vectors	$\frac{1}{-1} \left[-\frac{1}{2} \right]$	DA.AC	
					used \rightarrow	$\cos^{-1}\left(-\frac{3}{3}\right)$ final m	ark A0	
				[5]				
	(ii)	sinBAC =	$\sqrt{1-\frac{1}{9}}$	B1	Use of s ²	$c^{2} + c^{2} = 1 - \text{not de}$	cimals	
		$\Delta rea = \frac{1}{2}$	$\times 6 \times 5 \times \sqrt{8} = 5\sqrt{8}$ or	M1 A1	Correct f	ormula for area D	ecimals seen A0	
		2	√0 × 5 × √9 5 × 8 0 €		Conteen	ormula for area. D	cennais seen Ao	
			0	[3]				
8	$2x^2$	-10x + 8	$\rightarrow a(x+b)^2 + c$					
	(i)	a=2 $b=$	$=-2\frac{1}{2}$ $c = -4\frac{1}{2}$	3 × B1	Or $2x$ -	$(-2\frac{1}{2})^2 - 4\frac{1}{2}$		
	(1)	u 2, 0	2, 2, 2	5.01		-2) 2		
		$\rightarrow \min v$	alue is $-4\frac{1}{2}$ Allow $(2\frac{1}{2}, -4\frac{1}{2})$	B1√	Can scor	The by sub $x = 2\frac{1}{2}$ is	nto original but	
			2 2 2		not by di	2 ifferentiation		
				[4]	not of a			
		2^{2} 10						
	(11)	$2x^2 - 10x$ Use of "b	+8 - kx = 0 $x^{2} - 4ac$	M1	discrimi	ation to 0 and uses	5	
		$(-10 - k)^2$	$k^2 - 64 < 0 \text{ or } k^2 + 20 k + 36 < 0$	M1	Realises	discriminant < 0 .	Allow ≤	
		$\rightarrow k = -$	18 or – 2	A1	co Dep	on 1 st M1 only		
		-18 < <i>k</i> <	z-2	Al	co			
			- al	[4]				
9	(i)	$3x^2y = 28$	8 y is the height	B1	co			
		$A = 2(3x^2)$	+xy+3xy)	M1	Consider	rs at least 5 faces ($(y \neq x)$	
		Sub for <i>y</i>	$\rightarrow A = 6x^2 + \frac{768}{r}$	A1	co answe	er given		
			λ	[3]				
		44	768	[5]				
	(ii)	$\frac{\mathrm{d}A}{\mathrm{d}x} = 12x$	$-\frac{708}{x^2}$	B1	со			
		= 0 when	$x = 4 \rightarrow A = 288$. Allow (4,288)	M1 A1	Sets diff	erential to 0 + solu	ution. co	
		$\frac{\mathrm{d}^2 A}{\mathrm{d}x^2} = 12$	$+\frac{1536}{x^3}$	M1	Any vali	d method		
		(= 36) > 0) Minimum	Al	co www	dep on correct f	" and $x = 4$	
				[5]				

	Page 7	Mark Scher	ne		Syllabus	Paper
		GCE AS/A LEVEL – M	ay/June 2014	4	9709	13
10	pts of intersect $\rightarrow x = 3, 7$	tion $2x + 1 = -x^2 + 12x - 20$	M1A1	Attempt at soln of sim eqns. co		
	Area of trapez	$ium = \frac{1}{2}(4)(7+15) = 44$	M1A1	Either m	ethod ok. co	
	(or $\int (2x+1) dx$ Area under cur	rve = $-\frac{1}{2}x^3 + 6x^2 - 20x$	B2,1	-1 each t	term incorrect	
	Uses 3 to 7 \rightarrow	$(54\frac{2}{3})$	DM1	Correct u	use of limits (Dep	1 st M1)
	Shaded area =	$10\frac{2}{3}$	A1	со		
	OR		[8]			
	$\int_{3}^{7} \left(-x^{2} + 10x - \right)^{7} $	$-21) = -\frac{x^3}{3} + 5x^2 - 21x$	PRA	Function	s subtracted befor	e integration
	M1 subtraction DM1 correct u	n, A1A1A1 for integrated terms, use of limits, A1		Subtracti Limits re	on reversed allow eversed allow DM	y A3A0. 1A0
11	Sim eqns \rightarrow	<i>A</i> (1, 3)	M1 A1	co Allow	answer only B2	
	Vectors or mic	$1-\text{point} \rightarrow C(12, 14)$	M1 A1√*	Allow ar	aswer only B2√ [♣]	
	Eqn of <i>BC</i> 4y	= x + 44 or <i>CD</i> $y = 3x - 22$	M1	equation	ok – unsimplified	1
	Sim eqns \rightarrow	<i>B</i> (4, 12) or <i>D</i> (9, 5)	DM1A1	Sim eqns	s. co	
	Vectors or mic	$1\text{-point} \rightarrow B(4, 12) \text{ or } D(9, 5)$	DM1A1	Valid me	ethod (or sim eqns	e) co
		4	[9]			

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/11

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	11

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	11

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Pa	Page 4 Mark Scheme				Syllabus	Paper	
			GCE AS/A LE	/EL – October/N	ovember 2	013	9709	11
·								
1	(i)	64 + 576x	$+2160x^{2}$		B1B1B1	Can sc	ore in (ii)	
	(ii)	$576a(x^2)$	$+2160(x^2)=0$		M1			
		$a = -\frac{216}{576}$	$\frac{0}{5}$ or $(eg - \frac{15}{4})$ or	r –3.75	A1 [2]			
2	Atte	empt integr	ation		M1			
	f(x)	=2(x+6)	$\frac{1}{2} - \frac{6}{x}(+c)$		A1A1	Accept	t unsimplified te	rms
	2(3)	$\left(-\frac{6}{3}+c\right) = 1$			M1	Sub.x	= 3, y = 1. c m	ust be present
	<i>c</i> = 1	-3			A1 [5]			
3	(i)	$\mathbf{DB} = 6\mathbf{i} + \mathbf{i}$	$4\mathbf{j} - 3\mathbf{k}$ cao		B1			
		DE = 31 +	$2\mathbf{j} - 3\mathbf{k}$ cao		B1 (2)			
	(ii)	DB.DE =	18 + 8 + 9 = 35		M1	Use of	$r_{1}r_{2} + v_{1}v_{2} + 7$. 7 -
	()	$ \mathbf{DB} = \sqrt{2}$	61 or $ \mathbf{DE} = \sqrt{22}$		M1	Correc	t method for mc	duli
		$35 = \sqrt{6}$	$1 \times \sqrt{22 \times \cos \theta}$ oe		M1	All con	nnected correctly	y
		$\theta = 17.2^{\circ}$	(0.300 rad)	cao	A1	Use of	e.g. BD. DE ca	n score M
					[4]	marks	(leads to obtuse	angle)
4	(i)	$4(1-\cos^2)$	$x\Big) + 8\cos x - 7 = 0$		M1	Use c^2	$s^{2} + s^{2} = 1$	
		$4c^2 - 8c +$	$3 = 0 \rightarrow (2\cos x - 1)(2\cos x $	$2\cos x - 3) = 0$	M1	Attemp	pt to solve	
		$x = 60^\circ$ or	300°		A1A1			
	()	1/0 00			[4]			
	(11)	$\frac{1}{2}\theta = 60$	^o (or 300 ^o)		M1	Allow	300° in addition	l
		$\theta = 120^{\circ}$	only		A1 (2)	1		
			2		[2]			
5	(i)	$x = (\pm)\sqrt{y}$	<u>-1</u>		B1	OR y^2	$x^{2} = x - 1$ (<i>x</i> / <i>y</i> int	erchange 1 st)
		$f^{-1}: x \mapsto $	$\overline{x-1}$ for $x > 1$		B1B1			
		• • • •			[3]			
	(ii)	ff(x) = (x)	$(2^{2}+1)^{2}+1$		B1	Or x^4	$+2x^2 - (153/16)$)=0
		$r^{2} + 1 = (-$	+)13/4		M1	Or x^2	= 9/4, $(-17/4)$	
		x = 3/2			A1	www.	Condo	one $\pm 3/2$
		.			[3]			
Al	t. (ii)	$\mathbf{f}(\mathbf{x}) = \mathbf{f}^{-1}$	(185/16) = 13/4	M1		Alt.(ii)	f(3/2) = 13/4	B1
		$x = f^{-1}(13)$	5/4)	M1			f(13/4) = 185/	16 B1
		x = 3/2	/	A1			x = 3/2	B1
						SC.B2	answer 1.5 wi	th no working

	Page 5 Mark Scheme			Syllabus	Paper			
			GCE AS/A LEVEL – October/N	ovember 2	013	9709	11	
				<u> </u>				
6	(i)	$r(2\pi - \alpha)$ $2\pi r + r\alpha$	$+2r\alpha + 2r$ + 2r	B1B1 B1√ [≜] [3]	ft for <i>r</i> SC1 fo part)	ft for $r\alpha$ instead of $2r\alpha$ or omission $2r$ SC1 for $2r\alpha + 4r$. (Plate = shaded part)		
	(ii)	$\frac{1}{2}(2r)^2 \alpha$	$x + \pi r^2 - \frac{1}{2}r^2\alpha$	B1B1	Either	B1 can be score	d in (iii)	
		$\frac{3r}{2}$ + π	.2	B1 [3]				
	(iii)	$\pi r^2 - \frac{1}{2}r$	$r^2 \alpha = 2r^2 \alpha$	M1	For eq	uating <i>their</i> 2 pa	rts from (ii)	
		$\alpha = -\frac{\pi}{5}$		A1 [2]				
7	(i) (ii)	mid-point Grad. AB y - 4 = 2(y = 2x - 2 q = 2p - 2 $p^{2} + (2p - 2)$ $\{OR^{1/4}(q - 2)\}$	$= (3, 4)$ $= -\frac{1}{2} \rightarrow \text{grad. of perp.,} = 2$ $x - 3)$ $p^{2} + q^{2} = 4 \text{ oe}$ $-2)^{2} = 4 \rightarrow 5p^{2} - 8p = 0$ $+2)^{2} + q^{2} = 4 \rightarrow 5q^{2} + 4q - 12 = 0$ $d \left(\frac{8}{5}, \frac{6}{5}\right)$	B1 M1 M1 A1 [4] B1√ ^b B1 M1 A1A1 [5]	soi For use of $-1/m$ soi ft on <i>their</i> (3, 4) and 2 ft for 1 st eqn. Attempt substn (linear into quadratic) & simplify			
8	(i)	$A = 2xr + 2xr + 2x + 2\pi r = A = 400r$	πr^{2} $= 400 \iff x = 200 - \pi r^{2}$ $-\pi r^{2}$	B1 B1 M1A1 [4]	Subst a	& simplify to A	G (www)	
	(ii)	$\frac{\mathrm{d}A}{\mathrm{d}r} = 400$	-2m	B1	Differe	entiate		
		= 0 200		M1	Set to :	zero and attempt	t to find <i>r</i>	
		$r = \frac{\pi}{\pi}$ $x = 0 \implies \pi$	no straight sections AG	AI A1				
		$\frac{\mathrm{d}^2 A}{\mathrm{d}r^2} = -2$	π (<0) Max	B1 [5]	Dep or reason	$1 - 2\pi$, or use o	f other valid	

Page 6			Mark Scheme			Syllabus	Paper
			GCE AS/A LEVEL – October/No	ovember 20	013	9709	11
						-	• • • • • • • • • • • • • • • • • • •
9	(a)	$\frac{10}{2}(2a+9)$	d) = 400 oe	B1	$\rightarrow 2a$	+9d = 80	
		$\frac{20}{2}(2a+1)$	9d) = 1400 OR				
		$\frac{10}{2}[2(a+1)]$	0d)+9d]=1000	B1	$\rightarrow 2a$	+19d = 140 or 2	2a + 29d = 200
		d = 6 a =	13	M1A1A1 [5]	Solve s	sim. eqns both fi lae	rom S _n
	(b)	$\frac{a}{1-r} = 6$	$\frac{2a}{1-r^2} = 7$	B1B1			
		$\frac{12(1-r)}{1-r^2} =$	= 7 or $\frac{1-r^2}{1-r} = \frac{12}{7}$	M1	Substit	tute or divide	
		$r = \frac{5}{7}$ or ().714	A1			
		$a = \frac{12}{7}$ or	1.71(4)	A1√ [^] [5]	Ignore	any other solns	for <i>r</i> and <i>a</i>
10	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[3\left(3\right)\right]$	$(-2x)^2] \times [-2]$	B1B1	OR –	$54 + 72x - 24x^2$	B2,1,0
		At $x = \frac{1}{2}$,	$\frac{\mathrm{d}y}{\mathrm{d}x} = -24$	M1			
		y - 8 = -2	$4\left(x-\frac{1}{2}\right)$	DM1			
		y = -24x	+ 20	A1 [5]			
	(ii)	Area unde	r curve = $\left[\frac{(3-2x)^4}{4}\right] \times \left[-\frac{1}{2}\right]$	B1B1	OR 27	$7x - 27x^2 + 12x^3$	$-2x^4$ B2,1,0
		$-2-\left(-\frac{8}{8}\right)$	$\left(\frac{1}{3}\right)$	M1	Limits intenti	$0 \rightarrow \frac{1}{2}$ applied to on of subtraction	o integral with n shown
		Area unde	r tangent = $\int (-24x + 20)$	M1	or area	$trap = \frac{1}{2}(20 + 8)$	$) \times \frac{1}{2}$
		$= -12x^2$	+20x or 7 (from trap)	A1	Could	be implied	
		$\frac{9}{8}$ or 1.125	5	A1 [6]	Dep or	n both M marks	

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/12

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	12

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	12

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark	Scheme	Syllabus Paper		
		GCE AS/A LEVEL –	October/Novembe	er 2013	9709	12
1	(i) sin <i>x</i> =	$=\sqrt{(1-p^2)}$	B1 [1]	Allow 1 – ± is B0.	<i>p</i> if following	$(1-p^2)$
	(ii) tan <i>x</i>	$r = \frac{\sin x}{\cos x} = \frac{\sqrt{1-p^2}}{p}$	B1√ [1]	∲ for ans	wer to (i) used.	
	(iii) tan(9	$(90-x) = \frac{p}{\sqrt{1-p^2}}$	B1√ [№] [1]	✓ for reci	procal of (ii)	
2	(i) slant circu arc 1 $\rightarrow \theta$	length = 10 cm. Imference of base = 12π ength = 10θ (= 12π) = 1.2π or 3.77 radians.	B1 B1 B1√ [≜] B1	Use of <i>rθ</i>	, $ heta$ calculated, no	ot 6 or 8.
	(ii) $\frac{1}{2}r^{2}\theta$	$= 188.5$ cm ² or 60π .	[4] M1 A1√ [2]	Use of $\frac{1}{2}n$ r = calcu	$e^{2\theta}$ with radians lated '10', not 6	and or 8.
3	$y = \frac{2}{\sqrt{5x - 6}}$		PRE			
	(i) $\frac{\mathrm{d}y}{\mathrm{d}x} =$	$= 2 \times -\frac{1}{2} \times (5x - 6)^{-\frac{3}{2}} \times 5$	B1 B1 B1 [3]	B1 without Use of ' <i>u</i> '	ut '×5'. B1 For ' v' or ' <i>u</i> /v' ok.	×5'
	(ii) integ	$\operatorname{ral} = \frac{2\sqrt{5x-6}}{\frac{1}{2}} \div 5$	B1 B1	B1 without	ut '÷5'. B1 for '-	÷ 5'
	Uses	$2 \text{ to } 3 \rightarrow 2.4 - 1.6 = 0.8$	M1 A1 [4]	Use of lin	nits in an integra	1.
4	$\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j}$ and	$\overrightarrow{OB} = 4\mathbf{i} + p\mathbf{k} ,$				
	(i) $\overrightarrow{AB} =$ Unit	b - a = 3i - 2j + 6k vector = $(3i - 2j + 6k) \div 7$	B1 M1 A1∳ [3]	Must be Divides b	$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ y modulus. $\sqrt{\mathbf{on}}$	vector AB.
	(ii) Scala $= \sqrt{5}$	$\begin{aligned} \text{ar product} &= 4 \\ \times \sqrt{(16 + p^2)} \times \cos \theta \end{aligned}$	M1 M1 M1	Use of x_1 , For modulincluding	$x_2 + y_1y_2 + z_1z_2$ lus. All linked c correct use of co	orrectly $\cos\theta = 1/5$.
	$\rightarrow p$	$=\pm 8$	A1 [4]			
5	A (0, 8) B (4, m of $AB = -2$ m of $BC = \frac{1}{2}$ Eqn $BC \rightarrow y$ Sim eqns $\rightarrow C$ Vector step m (or $AD \ y = \frac{1}{2}x$ (or $M = (8, 7)$	0) $8y + x = 33$ $-0 = \frac{1}{2}(x - 4)$ C (16, 6) ethod $\rightarrow D$ (12, 14) $+8, CD \ y = -2x + 38)$ $\rightarrow D = (12, 14)$	B1 M1 M1 M1 A1 M1 A1 [7]	Use of m_1 Correct m Sim Eqns M1 valid	$m_2 = -1$ for BC of nethod for equati for BC, AC. method.	or <i>AD</i> on of <i>BC</i>

	Page 5 Mark Scheme				Syllabus	Paper	
		GCE AS/A LEVEL – Octobe	r/Novembei	r 2013	9709	12	
6	(i) Sim (triangles $\frac{y}{16-x} = \frac{12}{16}$ (or trig)	M1	Trig, simi	larity or eqn of l	line	
		$= 12 - \frac{3}{4x}$ $xy = 12x - \frac{3}{4x^2}.$	A1 A1 [3]	(could also come from eqn of line) ag – check working.			
	(ii) $\frac{dA}{dx} = 0 x$	$= 12 - \frac{6x}{4}$ when $x = 8. \rightarrow A = 48$.	B1 M1 A1	Sets to 0 -	+ solution.		
	This Fron	is a Maximum. n –ve quadratic or 2nd differential.	B1 [4]	Can be de Allow eve	educed without a en if '48' incorre	ny working. ect.	
7	(a) (i) $a=3$ $\rightarrow 54$	00, $d = 12$ 40 = 300 + (n − 1)12 → n = 21	M1 A1 [2]	Use of <i>n</i> th Ignore inc	n term. Ans 20 g correct units	ets 0.	
	(ii) $S_{26} = \rightarrow 3$	$13 (600 + 25 \times 12) = 11700$ hours 15 minutes.	M1 A1 [2]	Correct us	se of s_n formula.		
	(b) $ar = 48 \text{ ar}$ $\rightarrow a = 72.$ $S_{\infty} = 72 \div$	and $ar^2 = 32 \rightarrow r = \frac{2}{3}$ $\frac{1}{3} = 216.$	M1 A1 M1	Needs <i>ar</i> and ar^2 + attempt at <i>a</i> and <i>r</i> . Correct S_{∞} formula with $ \mathbf{r} < 1$			
8	$f: x \mapsto 3\cos x$	-2 for $0 \le x \le 2\pi$.	[4]				
	(i) $3\cos x$	$c - 2 = 0 \rightarrow \cos x = \frac{2}{3}$ = 0.841 or 5.44	M1 A1 A1√	Makes co \checkmark for 2π -	s subject, then co - 1st answer.	os ⁻¹	
	(ii) rang	$e \text{ is } -5 \le f(x) \le 1$	B2,1 [2]	B1 for \geq	$-5.$ B1 for $\leq 1.$		
		$\frac{1}{2\pi x}$	B1,B1	B1 starts a decreasing B1 for sha	and ends at same g. One cycle onl ape, not 'V' or 'l	e point. Starts y. U'.	
	(iv) may	value of $k = \pi$ or 180°	[1] M1	Make x th	te subject, copes	with 'cos'.	
	(iv) max (iv) $g^{-1}(x)$	$f(x) = \cos^{-1}\left(\frac{x+2}{3}\right)$	[2]		oc in terms of x.		

	Page 6 Mark Scheme			Syllabus	Paper		
			GCE AS/A LEVEL – Octobe	r/Novembeı	r 2013	9709	12
				•	•		
9	$y = \frac{8}{x} + \frac{8}{x}$	2x					
	(i) $\frac{dy}{dx} = \frac{-8}{x^2} + 2$ $(-6 \text{ at } A)$			M1 A1	Attempt at differentiation. algebraic – unsimplified.		
		$\frac{dt}{dt} = 0$	$\frac{dx}{dt} \times \frac{dt}{dt}$	M1 A1 [4]	Ignore no and 'his'	gnore notation – needs product of 0.04 nd 'his' $\frac{dy}{dx}$.	
	(ii)	$\int y^2 =$	$= \int \frac{64}{x^2} + 4x^2 + 32$	M1	Use of int	egral of y^2 (igno	re <i>π</i>)
		=(-	$\frac{64}{x} + \frac{4x^3}{3} + 32x$)	A3,2,1	3 terms –	\rightarrow -1 each error.	
		Limi	ts 2 to 5 used correctly	DM1	Uses correct limits correctly.		
		$\rightarrow 27$ (allow	71.2π or 852 w 271 π or 851 to 852)	A1 [6]	(omission of π loses last mark)		
10	$f: x \mapsto 2$	$2x^2 - 3$	$x, g: x \mapsto 3x + k$,		\sim		
	(i)	$2x^2 - x = x = 0$ Set o	-3x - 9 > 0 =3 or $-1\frac{1}{2}$ f x x > 3, or x < $-1\frac{1}{2}$	M1 A1 A1 [3]	For solving quadratic. Ignore > or \geq condone \geq or \leq		
	(ii)	$2x^2 -$	$3x = 2(x - \frac{3}{4})^2 - \frac{9}{8}$	B3,2,1	$-x^2$ in bracket is an error.		
		Verte	$ex(\frac{3}{4},-\frac{9}{8})$	B1√ [^] [4]	∲ on ' <i>c</i> ' a	nd ' <i>b</i> '.	
	(iii)	gf(x)	$= 6x^2 - 9x + k = 0$	B1	0.		
		Use o	of $b^2 - 4ac \rightarrow k = \frac{27}{8}$ oe.	M1 A1 [3]	Used on a	quadratic (even	fg).

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/13

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	13

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	13

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme		Syllabus	Paper	
		GCE A LEVEL – Octobe	r/Novembe	er 2013	9709	13
1	(x+1) (x-2) -1, 2 x < -1, x > 2	or other valid method	M1 A1 A1 [3]	Attempt soln of eqn or other method Penalise \leq , \geq		
2	$f(x) = 2x^{-\frac{1}{2}} + 5 = -2 \times \frac{1}{2} + c = 2$	-x (+c) 4+c	M1A1 M1 A1 [4]	Attempt into Sub (4, 5).	eg $x^{\frac{1}{2}}$ or $+x$ nee c must be present	eded for M
3	(i) gradient of $y - 1 = -$ (ii) $C = (-9, 0)$ $AC^2 = [3]$ AC = 13	of perpendicular = $-\frac{1}{2}$ soi $\frac{1}{2}(x-3)$ 6) $-(-9)]^2 + [1-6]^2$ (ft on <i>their C</i>)	B1 B1 [2] B1 M1 A1 [3]	soi in (i) or OR $AB^2 = [AB = 26 A AC = 13 AC$	(ii) 3-(-21)] ² + [1-11 1 1]² M1
4	(i) $OD = 4i - CD = 4i - $	+ 3 j + 3 j −10 k = 9 + 16 = 25 $\sqrt{25}$ or $ $ CD $ $ = $\sqrt{125}$ 5 × $\sqrt{125}$ × cos θ oe 3.4° (or 1.11 rads)	B1 B1√ [*] [2] M1 M1 M1 A1 [4]	✓ for OD – Use of $x_1 x_2$ Correct met All connect cao	- 10k + $y_1y_2 + z_1z_2$ thod for moduli ed correctly	
5	(a) $\frac{a}{1-r} = 8$ $r = \frac{7}{8}$ oe (b) $a + 4d = \frac{10}{2} [2a + 9]$ d = 14	$3a \Rightarrow 1(a) = 8(a)(1-r)$ 197 $9d] = 2040$	B1 B1 [2] B1 B1 M1A1 [4]	Or $2a + 9d$ Attempt to s	= 408 solve simultaneous	sly
6	(i) sector are $k = \frac{\frac{1}{2} \times 1}{k}$ $k = \frac{96}{25}$	eas are $\frac{1}{2}11^2 \alpha$, $\frac{1}{2}5^2 \alpha$ $\frac{1^2 \alpha - \frac{1}{2} \times 5^2 \alpha}{\frac{1}{2} \times 5^2 \alpha}$ or 3.84	B1 M1 A1 [3]	Sight of 11^2 Or $\frac{11^2 - 5^2}{5^2}$	² , 5 ² ² -	

	Page 5	age 5 Mark Scheme		Syllabus	Paper		
	-	GCE A LEVEL – October	October/November 2013		9709	13	
L							·
	(ii) perimeter $6 = 16 a$	shaded region= $11\alpha + 5\alpha + 6 +$	B1				
	6 - 10a + perimeter	s unshaded region = $5\alpha + 5 + 5 =$	B1				
	$16\alpha + 12$	= 2 (5a + 10)	M1				
	$\alpha = 4/3$ o	r 1.33	Al				
				[4]			
7	(a) $x^2 - 1 = s$	$in\frac{\pi}{3}$	M1				
	$x = \pm 1.3$	66	A1A1	[√ [^] [3]	If for negat	ive of 1 st answer	
	(b) $2\theta + \frac{\pi}{3} =$	$\frac{5\pi}{6}\left(\text{or } \frac{13\pi}{6} \text{or } \frac{\pi}{6} \right)$	B1		1 correct an	gle on RHS is suf	ficient
	$2\theta = \frac{\pi}{2} =$	$\left(\text{or } \frac{11\pi}{6} \right)$	M1		Isolating 26)	
	$\theta - \frac{\pi}{2}$	1π	A1A1		CC desired	~ 0.795 % 2.99 ~ ~	ana MIDI
	$v = \frac{1}{4}, \frac{1}{1}$	2		[4]	SC decimal	s 0.785 & 2.88 sc	ores MIBI
8	(i) 81 (x^8)		B1				
				[1]			
	(ii) 10×3^3 (x)	(x^{2}) soi leading to their answer	B1B1		B1 for 10, 5	C2 or 5C3. B1 fo	r 3 ³ . But must
	270 (x^8)		B1	[3]	oe multiplie		
			M1		$k \neq 1.0$		
	(III) $\mathbf{K} \times (\mathbf{I})$ 405 soi		A1		$\mathbf{K} \neq 1, 0$		
	+ (ii)		DM1				
	$675(x^8)$		A1		0		
			ore	[4]			
9	$\frac{dy}{dx} = -k^2(x+t)$	$(2)^{-2} + 1 = 0$	MIA	1	Attompt dif	forantiation & sat	to zoro
	$dx = \pi (x + x)$		IVIIA	1		icicilianon & set	10 2010
	$x + 2 = \pm k$		DM1		Attempt to a	solve	
	$x = -2 \pm k$		A1		cao		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2k^2 \left(x - \frac{1}{2}\right)$	$(+2)^{-3}$	M1		Attempt to o	differentiate again	L
			M1		Sub their x	value with k in it i	into $\frac{d^2 y}{dx^2}$
	When $x = -2 =$	= k, $\frac{d^2 y}{dx^2} = \left(\frac{2}{k}\right)$ which is (> 0) min	A1		Only 1 of b	racketed items nee	eded for each
	When $x = -2$ –	$-k, \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \left(\frac{2}{-k}\right)$ which is (< 0)	A1		but $\frac{d^2 y}{dx^2}$ and	d x need to be con	rrect.
	max			[8]			

Page 6		Mark Scheme			Syllabus	Paper		
		GCE A LEVEL – October	r/Novembe	er 2013	9709	13		
		2						
10 (i)	Range is	$(\mathbf{y}) \ge c^2 + 4c$	B1	Allow >				
	$x^2 + 4x =$	$(x+2)^2-4$	M1	OR $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x + 4 = 0$				
	(Smallest	t value of c is) -2	A1	-2 with no	with no (wrong) working gets B2			
			[3]					
(ii)	5a + b =	11	B1					
	$(a+b)^{2} +$	-4(a+b) = 21	B1					
	(11 - 5a)	$(+a)^{2} + 4(11 - 5a + a) = 21$	M1	OR corresp	onding equation in	n <i>b</i>		
	(8) $(2a^2 - a^2) = 0$	-13a + 18) = (8)(2a - 9)(a - 2)	M1	OR (8) $(2b+23)(b-1) = 0$				
	$a = \frac{9}{2}, 2$	OR $b = \left(-\frac{23}{2}\right), 1$	A1	A1 for eithe	er <i>a</i> or <i>b</i> correct. C	condone 2 nd		
	Z	(2)	A1	value. Spotted solution scores only B mark				
			[6]					
			PR					
Alt.	(ii) La	st 5 marks						
	f^{-1}	$(x) = \sqrt{x+4} - 2 \qquad B1$		Alt. (ii) Last 4 marks				
	g ($f(1) = f^{-1} = (21)$ used M1		(a+b+7)	(a+b-3)=0	M1A1		
	<i>a</i> +	$-b = \sqrt{25 - 2} = 3$ A1		(Ignore solu	tion involving <i>a</i> +	-b = -7)		
	So	lve $a + b = 3$, $5a + b = 11$ M1		Solve $a + b$	=3, 5a+b=11	M1		
	<i>a</i> =	= 2, b = 1 A1		a = 2, b = 1		A1		
11 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{1}{2}\right]$	$(x4+4x+4)^{\frac{1}{2}}] \times [4x^3+4]$	B1B1					
	At $x = 0$,	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \times \frac{1}{2} \times 4 = (1)$	M1	Sub $x = 0$ and	nd attempt eqn of	line following		
	Equation	is $y - 2 = x$	A 1	differentiati	on.			
	1	The second se	[4]	0				
		.sat	orep	-				
(ii)	$x + 2 = \sqrt{1 + 2}$	$(x^4 + 4x + 4 \Longrightarrow (x+2)^2)$	B1	AG www				
	= x4 + 4x $x^{2} - x^{4} = 0$	2 + 4 0 oe	B1					
	$x = 0, \pm 1$		B2,1.0					
	,		[4]					
(iii)	$(\pi)\left[\frac{x^5}{5}\right]$	$-2x^2+4x$	M1A1	Attempt to i	integrate y^2			
	$(\pi) \left[0 - \left(\right) \right]$	$\left[\frac{-1}{5}+2-4\right]$	DM1					
	$\frac{11\pi}{5}$ (6.9	01) oe	A1 [4]	Apply limit	$s - 1 \rightarrow 0$			

MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/11

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	11

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	11

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a "fortuitous" answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt[h]{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.
| | Pa | ge 4 | Mark Sch | Mark Scheme | | | Syllabus | Paper | | |
|---|---------------------|---|--|-------------|---------------------------|-----|---|--|---|----|
| | | | GCE AS/A LEVEL – I | May/. | June 20 | 13 | | 9709 | 11 | |
| 1 | f'(<i>x</i>
> 0 | f(x) = (2x - 5) | $(x)^2 \times 2 + 1$ or $24\left(x - \frac{5}{2}\right)^2 + 1$ | | B1B1
B1 √ [^] | [3] | B1 for
SC B1
Dep or
Subst | $3(2x-5)^2$, B1
for $24x^2 - 120x$
in $k(2x-5)^2 + c$
of particular val | for $(\times 2 + 1)$
x + 151
(k > 0), (c ≥ 0)
lues is B0 | |
| 2 | (i) | 1 – 6 <i>px</i> | $+15p^{2}x^{2}$ | | B1B1 | [2] | Simpli | Simplificn of <i>n</i> C <i>r</i> can be scored in (ii) | | |
| | (ii) | $15p^{2} \times 1$ $3p(5p+2)$ $p = -\frac{2}{5}$ | $(-6p \times -1) = 0$ | | M1
DM1
A1 | [3] | Obtair
Allow | Obtain & attempt to solve quadratic
Allow $p = 0$ in addition | | |
| 3 | (i) | $(OAB) = \frac{\pi}{2}$ | $\frac{1}{2} \times 8^2 \alpha , \ (OAC) = \frac{1}{2} \times \pi \times 4^2$ | | B1B1
B1 | | Accept 25.1 (for <i>OAC</i>) | | | |
| | (ii) | $8 + 8 \times th$ $8 + 5\pi$ | teir $\alpha + \frac{1}{2} \times 8 \times \pi$ | | B1 √ [*]
B1 | [3] | 23.7 gets B1B0
SC B1 for e.g. 5π (omitted <i>OB</i>) | | | |
| 4 | (i) | $ar^{2} = -10$ $r^{3} = \frac{32}{-10}$ $r = \left(-\frac{2}{3}\right)$ | 8, $ar^5 = 32$
$\frac{8}{8} = \left(-\frac{8}{27}\right)$
or -0.666 or -0.667 | | B1
M1
A1 | [3] | Elimin $-\frac{2}{3}$ from | the patting a for no v | vorking $\rightarrow \frac{3}{3}$ wv | NW |
| | (ii)
(iii) | a = -243 | 43 - 729 or 145.8 | pr | B1 √ | [1] | ft on their $r\left(-\frac{108}{r^2} \text{ or } \frac{32}{r^5}\right)$ | | | |
| | (Ш) | $S_{\infty} = \frac{1}{1+1}$ | $\frac{2}{3}$ $\frac{-143.8}{5}$ | | M1A1 | [2] | Accep | t –146. For M1 | r must be < 1 | L |
| 5 | (i) | $\frac{\sin\theta(\sin\theta)}{(\sin\theta)}$ | $\frac{\theta - \cos \theta}{\sin \theta + \cos \theta} + \frac{\cos \theta}{\sin \theta + \cos \theta}$ | | M1 | | | | | |
| | | $\sin^2\theta - \sin^2\theta$ | $\frac{\sin\theta\cos\theta + \cos\theta\sin\theta = \cos^2\theta}{\sin^2\theta - \cos^2\theta}$ | | A1 | | | | | |
| | | $\frac{1}{\sin^2\theta - c}$ | $\cos^2 \theta$ | AG | A1 | [3] | www | | | |

	Page 5 Mark Scheme		Syllabus	Paper					
			GCE AS/A LEVEL – May	/June 20)13		9709	11	
	(ii)	$s^2 - (1 - s)^2$	$(s^2) = \frac{1}{c^2}$ or $1 - c^2 - c^2 = \frac{1}{c^2}$	M1		A re 1-	$a^2 + a^2 - 1$		
		or $3(s^2 - a^2)$	$c^{2}) = c^{2} + s^{2}$ 1	MII		Apply	$\log c + s = 1$		
		$\sin\theta = (\pm$	$\frac{1}{\sqrt{\frac{2}{3}}} \text{ or } \cos\theta = (\pm)\sqrt{\frac{1}{3}}$	A1		Or $s = t = (\pm)$	(±) 0.816, <i>c</i> = (±) 1.414	±) 0.577,	
		$\theta = 54.7^{\circ}$	e, 125.3°, 234.7°, 305.3°	A1A1	[4]	<u>any</u> 2 s >4 sol	solutions for 1 st utions in range r	A1 nax A1A0	
6	(i)	OA.OC = =	$= -4p^2 - q^2 + 4p^2 + q^2$ = 0	M1 A1	[2]	Attem for e.g	pt scalar produc OA.OB = 2pq	t. Allow M1 ev $-2pq$ etc.	en
	(ii)	$\mathbf{CA} = \mathbf{OA}$ $ \mathbf{CA} = 1 + 1$	$\mathbf{A} - \mathbf{OC} = (\pm)(1 + 4p^2 + q^2) (\mathbf{i})$ $-4p^2 + q^2$	M1 A1		Ignore Not $$	$\frac{\mathbf{CA} = \mathbf{OC} - \mathbf{OA}}{\left(1 + 4p^2 + q^2\right)^2}$		
	(iii)	$\mathbf{B}\mathbf{A} = \mathbf{O}\mathbf{A}$ $= (\pm)($	$\mathbf{A} - \mathbf{OB} = \mathbf{i} + 6\mathbf{j} + 2\mathbf{k} - (2\mathbf{j} - 6\mathbf{k})$ $(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$	M1	[2]	Allow	subtn reversed	for both M mar	ks
		$\frac{x\mathbf{i} + y\mathbf{j}}{\sqrt{x^2 + y^2}}$	$\frac{z\mathbf{k}}{z^{2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$	M1A1	[3]	M1 in	dependent of 1 st	M1	
7	(i)	$x^{2} - 4x + (x - 1)(x - 1)(x - 1) = (4 - 1)(x - 1)(x - 1)(x - 1) = (4 - 1)(x - 1)(x$	$4 = x \Longrightarrow x^2 - 5x + 4 = 0$ -4)(= 0) or other valid method	M1 M1 A1		Elimir Attem	ate y to reach 3- pt solution	-term quadratic	;
		(1, 1), (4, Mid-poin	$t = (2\frac{1}{2}, 2\frac{1}{2})$	A1 √	[4]	ft depe	endent on 1 st M1		
	(ii)	$x^2 - (4 + m) = \pm m$	$m)x + 4 = 0 \rightarrow (4 + m)^2 - 4(4) = 0$ 4 or $m(8 + m) = 0$	M1 DM1		Apply Attem	$b^2 - 4ac = 0$ pt solution		
		$m = -8$ $x^2 + 4x + $	4=0	A1 M1		Ignore Sub no	m = 0 in addition $m = 0$ in addition m and at	on tempt to solve	
		x = -2, y	= 16	AI	[5]	Ignore	(2,0) solution 1	from $m = 0$	
Al	t (ii)	2x - 4 = n	n	M1		OR $2x$	$x - 4 = m$ $= \frac{m + 4}{m + 4} y = \frac{m}{m}$	n(m+4) into a	het
		$x^2 - 4x + 4$	4 = (2x - 4)x	DM1		Subx	$-\frac{1}{2}$, $y = -\frac{1}{2}$	$\frac{1}{2}$	
		x = -2 (19) m = -8 (19) y = 16	gnore +2) gnore 0)	Al Al Al		m = -8 $x = -2$ $y = 16$	from resulting	quad $m(m + 8)$	=0
8	(i)	$2(x-3)^2$	-5 or a = 2, b = -3, c = -5	B1B1B	31 [3]				
	(ii)	3		B1 √*	[1]	ft on –	their b. Allow i	$k \ge 3 \text{ or } x \ge 3$	

	Page 6		Mark Scheme				Syllabus	Paper
			GCE AS/A LEVEL – May/	June 20	13		9709	11
	(iii)	(<i>y</i>) ≥ 27		B1	[1]	Allow OR (<i>x</i>	>. Allow $27 \le \frac{1}{2}$	$y \le \infty$ etc. s 1 st operation)
	(iv)	$2(x-3)^2$	=(y+5)	M1		x = 2($(y-3)^2 - 5$	
		$x-3 = (\pm$	$\frac{1}{2}\left(y+5\right)$	M1		(y-3)	$(y-3)^2 = \frac{1}{2}(x+5)$	
		$x = 3 + / \pm$	$=\sqrt{\frac{1}{2}(y+5)}$	A1 √		y-3=	$= (\pm)\sqrt{\frac{1}{2}(x+5)}$	
		$(f^{-1}(x)) =$	$3 + \sqrt{\frac{1}{2}(x+5)}$ for $x \ge 27$	A1B1 √	[5]	ft on <i>ti</i>	heir 27 from (iii)
9	(i)	$3u + \frac{3}{u} - 1$	10 = 0	B1 O C		Or $3x$ Or $(3x)$	$-10\sqrt{x} + 3 = 0$ $\sqrt{x} - 1(\sqrt{x} - 3)$	or apply formula
		$3u^2 - 10u$	$+3 = 0 \Longrightarrow (3u - 1)(u - 3) = 0$	M1		etc.		
		$\sqrt{x} = \frac{1}{3}$ or	r 3	A1				
		$\sqrt{x} = \frac{1}{9} c$	pr 9	A1	[4]			
	(ii)	$f''(x) = \frac{3}{2}$	$-x^{-\frac{1}{2}} - \frac{3}{2}x^{-\frac{3}{2}}$	B1		Allow	anywhere	
		At $x = \frac{1}{9}$	$(2) \xrightarrow{3} (27)(-26) < 0 > Max$	M1		Valid	mathad Allow	nna subs avan
		$f(x) = \frac{1}{2}$ At $x = 9$	$\frac{(3)}{2} = \frac{1}{2} \frac{(27)(-30)}{(27)(-30)} = \frac{1}{2} \frac{1}{2$			$3, \frac{1}{2}$	inculod. Anow I	linae subs, even
		$f''(x) = \frac{3}{2}$	$\times \frac{1}{3} - \frac{3}{2} \times \frac{1}{27} (= \frac{4}{9}) > 0 \to \text{Min}$	A1	[3]	Fully of	correct. No work	king, no marks.
	(iii)	f(x) = 2x -7 = 16 + c = 5	$\frac{3}{2} + 6x^{\frac{1}{2}} - 10x \ (+c)$ - 12 - 40 + c	B2 M1 A1		B1 for Sub (4	2/3 terms corre , -7). <i>c</i> must be	ct. Allow in (i) present.
					[4]			
10	(i)	$\frac{\mathrm{dy}}{\mathrm{dx}} = 4(x)$	$(-2)^{3}$	B1		Or 4x	$x^{3} - 24x^{2} + 48x - $	-32
		Grad of ta Eq. of tan	angent = -4 gent is y - 1 = $-4(x - 1)$	M1 M1		Sub <i>x</i> : Line th	= 1 into <i>their</i> de nru (1, 1) and wi	rivative ith <i>m</i> from deriv
		$\rightarrow B\left(\frac{3}{4}\right)$	0)	A1				
		Grad of n	ormal = $\frac{1}{4}$	M1		Use of	$m_1 m_2 = -1$	
		Eq. of nor	rmal is $y - 1 = \frac{1}{4}(x - 1) \rightarrow C(0, \frac{3}{4})$	A1	[6]			

	Page 7	Page 7 Mark Scheme				Paper
		GCE AS/A LEVEL – May/	June 2013		9709	11
$(1)^2$						
	(ii) $AC^2 = 1^2$	$+\left(\frac{1}{4}\right)$	M1	Allow	17	
	$\frac{\sqrt{17}}{4}$		[2]	Allow	$\sqrt{16}$	
	(iii) $\int (x-2)^4 dx$	$4x = \frac{(x-2)^5}{5}$	B1	Or $\frac{x^5}{5}$	$-2x^4 + 8x^3 - 16$	$5x^2 + 16x$
	$\left[0-\left(-\frac{1}{5}\right)\right]$	$\left[0 \right] = \frac{1}{5}$	M1	Apply $\underline{5}$	limits $1 \rightarrow 2$ for	curve
	$\Delta = \frac{1}{2} \times 1 \times (their \frac{5}{4} - 1) = \frac{1}{8}$		M1	Or $\int_{1}^{4} (-$	$-4x+5) \mathrm{d}x = \frac{1}{8}$	
	$\frac{1}{5} - \frac{1}{8} = \frac{2}{4}$	A1 [4]				

MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/12

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	12

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

	Page 4	Mark Sc	heme		Syllabus	Paper	
		GCE AS/A LEVEL -	- May/Ju	ne 2013	9709	12	
1	$\frac{dy}{dx} = \frac{6}{x^2}$ $y = -6x^{-1} + 6$ Uses (2, 9) \rightarrow $y = -6x^{-1} + 6$	c c = 12 12	B1 M1 A1	Integration of Uses (2, 9) in 3]	Integration only – unsimplified Uses (2, 9) in an integral		
2	$ \begin{pmatrix} 2x - \frac{1}{2x} \end{pmatrix}^{6} $ (i) Coeff of x (ii) Constant $ \times (1 + x^{2}) $ $ \rightarrow 60 - x^{2} $	$x^{2} = 15 \times 16 \times (-\frac{1}{2})^{2} = 60$ term is $20 \times 8x^{3} \times (-1 \div 8x^{3})$ needs to consider 2 terms 20 = 40	B1 B1 [B1 M1 A1 [B1 for 2/3 pa B1 unsimplif Needs to cons 3]	B1 for 2/3 parts. B1 B1 unsimplified Needs to consider the constant term		
3	$mx + 14 = \frac{12}{x}$ Uses $b^2 = 4aa$ $-3x^2 + 12x - 12x^2$ [Or $m = -12x^2$ $[\rightarrow m = -3 \text{ and} 10^2]$	$+2 \rightarrow mx^{2} + 12x - 12 = 0$ $x \rightarrow m = -3$ $12 = 0 \rightarrow P (2, 8)$ $^{-2} M1 \text{ Sub M1 } x = 2 \text{ A1]}$ d y = 8 M1 A1]	M1 M1 A1 DM1 A1 [Eliminates x (Any use of di Any valid me	Eliminates x (or y) Any use of discriminant Any valid method.		
4	(i) $BOC = 2t$ (ii) $OB = \sqrt{14}$ Arc BXC \rightarrow Perim (iii) Area = $\frac{1}{2}$ $-\frac{1}{2}$.10.10	$an^{-1}\frac{1}{2} = 0.9273$ $0^{2} + 5^{2}$) or $11.2 = r$ $= \sqrt{125} \times 0.9273$ eter = 20.4 cm $r^{2}\theta$ $0 \rightarrow 7.96 \text{ cm}^{2}$.	M1 A1 B1 M1 A1 [] M1 A1 []	2] Correct trigon Use of trig (o Use of $s = r\theta$ 3] Correct form Allow 7.95 of	nometry. (ans giv r Pyth) for the <i>O</i> , with θ in rads , <i>r</i> ula used with rad r 7.96	ren) $B = \sqrt{125}.$ $\cdot \neq 10$ s, $r \neq 10.$	
5	$a = \sin \theta - 3c$ (i) $a^2 + b^2 =$ $(s^2 + 9c^2)$ $10c^2 + 10c^2$ (ii) $2s - 6c =$ $\rightarrow \tan \theta =$ $\rightarrow 98.1^\circ$ and 278.1	$\cos\theta, \ b = 3\sin\theta + \cos\theta$ $cos\theta, \ b = 3\sin\theta + \cos\theta$ $cos\theta, \ b = 3\sin\theta + \cos\theta$ $s^{2} - 6sc) + (9s^{2} + c^{2} + 6sc)$ $s^{2} = 10$ $= 3s + c \rightarrow s = -7c$ $= -7$	B1 M1 A1 [- M1 A1 A1 A1 √	Correct squar Use of $s^2 + c^2$ (can get 2/3 f Collecting an For $180^0 + firanswers in th$	ing ${}^{2}=1$ to get constator missing $6sc$) d t = s÷c rst answer, provide range.	nt. ding no extra	

	Page 5	Mark Sc	heme		Syllabus	Paper	
		GCE AS/A LEVEL -	- May/June	2013	9709	12	
			T	1			
6	$\overrightarrow{OA} = \mathbf{i} - 2\mathbf{j} + \mathbf{i}$	$2\mathbf{k}, \qquad \overrightarrow{OB} = 3\mathbf{i} + p\mathbf{j} + q\mathbf{k}$					
	(i) $p = -6, q$	= 6	B1 B1				
	(ii) dot produ $\rightarrow p = -1$	$ct = 0 \rightarrow 3 - 2p + 4p = 0$.5	M1 A1	Use of $x_1x_2 + y_1$	Use of $x_1x_2 + y_1y_2 + z_1z_2 = 0$		
	(iii) $\overrightarrow{AB} = \mathbf{b}$	-a = 2i + 3j + 6k	B1	not for $\mathbf{b} - \mathbf{a}$.			
	Unit vect	$\mathbf{br} = (\mathbf{2i} + \mathbf{3j} + 6\mathbf{k}) \div 7$	M1 A1 🖈 [3]	M1 for divisio	n by modulus.	[*] on B1.	
7	3y + 2x = 33. Gradient of line Gradient of per Eqn of perp y - Sim Eqns \rightarrow	$e = -\frac{2}{3}$ pendicular = $3/2$ $-3 = \frac{3}{2}(x+1)$ (3, 9)	B1 M1 M1 M1 A1	Use of $m_1m_2 =$ Correct form of Sim eqns.	-1 with gradier	nt of line eqn.	
	$(-1,3) \rightarrow (3,9)$	(7,15)	M1 A1 [7]	Vectors or oth	er method.		
8	(i) $\pi r^2 h = 2$ $\rightarrow S =$ $\rightarrow S =$ (ii) $\frac{dS}{dr} = 4\pi$ = 0 when $\rightarrow S = 15$ (iii) $\frac{d^2S}{dr^2} = 4\pi$ This is positive	$250\pi \rightarrow h = \frac{250}{r^2}$ $2\pi r^h + 2\pi r^2$ $2\pi r^2 + \frac{500\pi}{r}$ $\pi - \frac{500\pi}{r^2}$ $r^3 = 125 \rightarrow r = 5$ 0π $4\pi + \frac{1000\pi}{r^3}$ $e \rightarrow \text{Minimum}$	M1 M1 [2] B1 B1 M1 A1 [4] M1 A1 [2]	Makes <i>h</i> the subject. $\pi r^2 h$ must be right Ans given – check all formulae B1 for each term Sets differential to 0 + attempt at soln Any valid method. 2 nd differential must be correct – no need for			
9	$f(x) = \frac{5}{1-3x}$, (i) $f'(x) = -$	$x \ge 1$ -5×-3	B1 B1	B1 without × -	-3. B1 for ×−3.	even if first B	
		$(1-3x)^2$	[2]	mark is incorr	ect	- , en 11 11150 D	
	(ii) $15 > 0$ ar \rightarrow increa	and $(1 - 3x)^2 > 0$, $f'(x) > 0$ using	B1√^ [1]	$\oint \text{providing } ()^2 \text{ in denominator.}$		or.	
	(iii) $y = \frac{5}{1-3x}$ $\rightarrow f^{-1}(x)$	$\frac{1}{x} \rightarrow 3x = 1 - \frac{5}{y}$ $x = \frac{x - 5}{2} \text{or} \frac{1}{3} - \frac{5}{2}$	M1 A1	Attempt to make x the subject. Must be in terms of x .			
	Range is Domain i	$3x \qquad 3x$ ≥ 1 $s - 2.5 \leq x < 0$	B1 B1 B1 [5]	must be ≥ condone <			

	Page 6	Mark Sc	heme		Syllabus	Paper
		GCE AS/A LEVEL -	- May/June	2013	9709	12
10	(a) $57 = 2(24)$ 48 = 12 + 12 + 12 + 12 + 12 + 12 + 12 + 12	$(n+3d) \rightarrow d = 1.5$ $(n-1)1.5 \rightarrow n = 25$ $r = \pm 2$ = ka s or $k = -21$	M1 A1 M1 A1 [4] B1 B1 B1 B1 [4]	Use of correct Use of correct (allow for $r = 1$	S_n formula. T_n formula. 2)	
11	$y = \sqrt{1 + 4x}$ (i) $\frac{dy}{dx} = \frac{1}{2}(1)$ $= 2 \text{ at } B \text{ (Gradient Equation)}$	$(+4x)^{-\frac{1}{2}} \times 4$ (0, 1) of normal = $-\frac{1}{2}$ $y - 1 = -\frac{1}{2}x$	B1 B1 M1 M1 A1 [5]	B1 Without "> mark lost. Use of m_1m_2 =- Correct metho	<4". B1 for "×4' -1 d for eqn.	' even if first B
	(ii) At $A = \int \sqrt{1+4x}$ Limits $-\frac{1}{2}$ Area <i>BOO</i> \rightarrow Shade	$-\frac{1}{4}$ $dx = \frac{(1+4x)^{\frac{3}{2}}}{\frac{3}{2}} \div 4$ $4 \text{ to } 0 \rightarrow \frac{1}{6}$ $C = \frac{1}{2} \times 2 \times 1 = 1$ $d \text{ area} = \frac{7}{6}$	B1 B1 B1 B1 B1√ ^A [5]	B1 Without th mark lost. For 1 + his "1/	e "÷4". For "÷4 ⁄6".	" even if first B

MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/13

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.OnlineExamHelp.com

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
1 m 1 4 - 4	GCE AS/A LEVEL – May/June 2012	9709	13

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

2	Page 4		Mark Scheme				Syllabus	Paper
88-			GCE AS/A LEVEL -	May/	June 201	3	9709	13
1	8			Ê		<u> </u>	2	
1		$\frac{\mathrm{d}y}{\mathrm{d}x} = $	2x + 5					
		$\frac{(2x+5)}{\frac{3}{2}}$	$\frac{1}{2}^{\frac{3}{2}}$ ÷ 2 (+c)		B1 B1		B1 Everything wi B1 "÷2"	thout "÷2".
		Uses (2,	5) $\rightarrow c = -4$		M1 A1	[4]	Uses point in an in	ntegral.
2	(i)	$\frac{1}{2}.3^{2}\pi =$	$\frac{1}{2}9^2\theta - \frac{1}{2}3^2\theta$		M1 A1		M1 needs $\frac{1}{2}r^2\theta$ or	ice. A1 all
		$\rightarrow \theta =$	$\frac{1}{4}\pi$		A1	[3]	Answer given	
	(ii)	P = 6 + 6	$+3 \times \frac{1}{4}\pi + 9 \times \frac{1}{4}\pi = 21.4$ cm.		M1		M1 is for use of s	$=r\theta$ once.
a :	19	or 12 + 3	3π		A1	[2]		
3		$2\cos^2\theta =$	= tan ² θ					
	(i)	$\rightarrow 2\cos^{-1}$	$e^2\theta = \frac{\sin^2\theta}{\cos^2\theta}$		M1		Use of $t^2 = s^2 \div c^2$ Correct eqn.	or alternative.
		\rightarrow Uses	$c^{2+}s^{2}=1 \rightarrow 2c^{4}=1-c^{2}$		A1	[2]		
	(ii)	(2c ² -	$(-1)(c^2+1) = 0 \rightarrow c = \pm \frac{1}{\sqrt{2}}$		M1		Method of solving for 3-term quadratic.	
		$\rightarrow \theta$	$= \frac{1}{4\pi}$ or $\frac{3}{4\pi}$.		A1 A1√	[3]	(in terms of π). $\sqrt{\pi}$ Cannot gain A1 $\sqrt{\pi}$ answers given in t	for $\pi = 1^{st}$ ans. if other he range.
4	(i)	(2+ax)	$)^{5} = 32 + 80ax + 80a^{2}x^{2}$		3 × B1	[3]	B1 for each term.	t.
	(ii)		(x) $a^{2} + 160a$ or $a = -3$.		M1 DM1A1	[3]	Realises need to c terms. Solution of 3-term	onsider 2 1 quadratic.
5	(i)				B1 DB1		y =sin2x has 2 cyc finishes on the x-a comes first. From +1 to -1 . Sr	cles, starts and xis, max nooth curves.
		+1		\rightarrow	B1		y = cosx - 1 has o starts and finishes with a minimum p	one cycle, on x-axis, ot.
		-1 -2					flattens.	Jour cui ve,
			2 10.5 10 10.7 10			[4]		
	(ii)	(a) sin1	$2x = -\frac{1}{2} \rightarrow 4$ solutions		B1√	[1]	$\sqrt{1000}$ for their curve.	
		(b) sin2	$2x + \cos x + 1 = 0 \rightarrow 3$ solutions.		B1√	[1]	$\sqrt{1}$ for intersections curves.	of their

Page 5		e 5	Mark Scheme			Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2013			9709	13	
6		$u = x^{2}y y + 3x = 9$ $u = x^{2}(9 - 3x) \text{ or } \left(\frac{9 - y}{3}\right)^{2}y$		M1		Expressing <i>u</i> in tervariable	rms of 1	
		$\frac{du}{dx} = 18x - 9x^2$ or $\frac{du}{dy} = 27 - 12y + y^2$		DM1A1		Knowing to differentiate.		
		= 0 when $x = 2$ or $y = 3 \rightarrow u = 12$		DM1 A1		Setting differential to 0.		
		$\frac{\mathrm{d}^2 u}{\mathrm{dx}^2} = 12$	8–18x –ve	DM1 A1	[7]	Any valid method		
7		A (2, 14), B (14, 6) and C (7, 2).						
	(i)	m of AB	=- ² / ₃	B1				
		m of per	pendicular = $\frac{3}{2}$	M1	0	For use of $m_1m_2 =$	-1	
		eqn of AB $y - 14 = -\frac{2}{3}(x - 2)$		M1	\mathbf{N}	Allow M1 for unsimplified eq		
		eqn of $CX \ y-2 = \frac{3}{2}(x-7)$		M1		Allow M1 for unsimplified equ		
		Sim Eqn	$x \to X(11, 8)$	M1 A1	[6]	For solution of sin	n eqns.	
	(ii)	$\frac{AX: XB}{\text{Or } \sqrt{9^2+1}}$	= 14-8: 8-6 = 3: 1 -6 ²): $\sqrt{(3^2+2^2)} = 3: 1$	M1 A1	[2]	Vector steps or Pythagoras.		
8		$\overrightarrow{OA} = \left(\begin{array}{c} \\ \\ \end{array} \right)$	$ \begin{array}{c} 3 \\ 3 \\ -4 \end{array} \text{ and } \overrightarrow{OB} = \begin{pmatrix} 5 \\ 0 \\ 2 \end{pmatrix}. $	ep.	0.5			
		(i) OC =	$= \mathbf{A}\mathbf{B} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 2 \\ -3 \\ 6 \end{pmatrix}$	M1		Knowing how to f	ind OC	
		Uses OC and OB		B 1		Using OC.OB or	CO.BO	
		OC.OB	$= 22 = 7 \times \sqrt{29} \cos BOC$	M1 M1		M1 Use of $x_1x_2 + .$ modulus	M1 for	
		→ Angle	$BOC = 54.3^{\circ}$ (or 0.948 rad)	M1 A1	[6]	M1 everything lind (nb uses BO.OC 1 (nb uses other vector M1M1)	ked. oses B1 A1) tors – max	

Page 6		Mark Sch	Syllabus	Paper		
		GCE AS/A LEVEL -	9709	13		
1	î				Î	4
(ii)	Modul	us of $\mathbf{OC} = 7$	M1		Knows to scale by factor of 35 ÷	
	Vector	$= 35 \div 7 \times \mathbf{OC}$			Mod	
	1				For their OC	
		$\begin{pmatrix} 2 \end{pmatrix}$			Tor men oc.	
	$\rightarrow \pm 5$	$\rightarrow \pm 5 -3 $				
		6)		[2]		
(a)M 108978			2			<u></u>
9 (a)	$S_n = 2n$	$n^2 + 8n$				
	12.1 11510					
	$S_1 = 10$	=a	B1			
	$S_2 = 24$	= a + (a + d) d = 4	M1 A1	[3]	correct use of S_n f	ormula.
1000 100	-					
(b)	GP a = 0	$64 ar = 48 \rightarrow r = \frac{3}{4}$	B1			
	\rightarrow 3rd te	rm is $ar^2 = 36$	M1		ar^2 numerical – fo	r their r
			PBN			
	AP $a = 0$	$64, a+8d=48 \rightarrow d=-2$	B1			
	36 = 64	+(n-1)(-2)	M1		correct use of $a+($	n-1)d
					A REAL PROPERTY AND A REAL	
	$\rightarrow n = 1$	5.	A1	[5]		
10	f · r b	$2r+k$ $a:r \mapsto r^2-6r+8$				
	1.417	2x 1 k, g. x 1 / x 0x 10,				
(i)	2(2x+3)) + 3 = 25	M1		ff(x) needs to be c	orrectly
	$\rightarrow x = 4$		A1		formed	
	or {f(11	= 25, f(4) = 11		[2]		
(ii)	$r^2 - 6r$	+8 = 2r + k				
	$r^2 - 8r$	+8-k-0	M1	6	Eliminates y to for	rm eqn in x.
	Uses b^2	-4ac < 0	M1		Uses the discrimin	nant – even if
	$\rightarrow k < -$	8	Al	[3]	=0.>0	
		Sate			D 4 00 14 1	
(iii)	x^2-6x	$x+8 = (x-3)^2 - 1$	B1 B1		For "-3" and "-1"	
	$y = (x - M_{c})$	$(3)^2 - 1$	M1 A1V		Makes x the subje	ct. in terms of
	Needs s	the subject $\rightarrow \pm v(x + 1) + 3$	un mi v	[4]	x and without $-o$	r±.
	Ticcus s	peenlearly to lose the .	0	[4]	n eenskonster - onerstaanskatster i - 300 S	992 - 630 9

Page 7		Mark Scher	Syllabus	Paper		
		GCE AS/A LEVEL – May/June 2013			9709	13
11	$y = \frac{8}{\sqrt{x}}$	x				
(i)	$\frac{dy}{dx} = -\frac{3}{2}$ $= -\frac{3}{2}$ Eqn of R $\rightarrow C(1, 3)$	$4x^{-\frac{3}{2}} - 1$ when $x = 4$. BC $y - 0 = -\frac{3}{2}(x - 4)$ $4\frac{1}{2}$	B1 M1 M1 A1	[4]	needs both Subs $x = 4$ into dy Must be using diff correct form of lin	dx ferential + ne at $B(4,0)$.
(ii)	area und $=\frac{8x^{\frac{1}{2}}}{\frac{1}{2}}$	ler curve = $\int (\frac{8}{\sqrt{x}} - x)$ $-\frac{1}{2}x^2$	B1 B1		(both unsimplified	1)
	Limits 1 Area un	to 4 \rightarrow 8 ¹ / ₂ der tangent = $\frac{1}{2} \times 4^{1}/_{2} \times 3 = 6^{3}/_{4}$	M1		Using correct limit	its.
	Shaded	area = $1\frac{3}{4}$	A1	[5]	and an	

