

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/51 May/June 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1(a)	Var = $\left[\frac{\Sigma(x-q)^2}{50} - \left(\frac{\Sigma(x-q)}{50}\right)^2 = \right] \frac{14235}{50} - \left(\frac{700}{50}\right)^2$ [= 284.7 - 196 = 88.7]	M1	$\frac{14235}{a} - \left(\frac{700}{a}\right)^2$; where $a = 49, 50, 51$.
	$[sd = \sqrt{88.7} =] 9.42$	A1	9.4180677 rounded to at least 3SF.
		2	
1(b)	$\sum x - 50q = 700$ [2865 - 50q = 700]	M1	Forming equation with Σx , 50 <i>q</i> and 700.
	$q = 43.3, 43\frac{3}{10}$	A1	If M0 scored, SC B1 for 43.3 WWW.
		2	

Question	Answer	Marks	Guidance
2(a)	${}^{6}C_{3} \times {}^{8}C_{3}$	M1	⁶ C ₃ × <i>b</i> or <i>c</i> × ⁸ C ₃ seen. <i>b</i> , <i>c</i> integers ≥ 1 (1 may be implied).
	1120	A1	
		2	
2(b)	Method 1		
	0 brothers $[{}^{3}C_{0}] \times {}^{11}C_{6} = 462$	B1	${}^{3}C_{x} \times {}^{11}C_{6-x}$, with $x = 1$ or 2 seen.
	2 brothers ${}^{3}C_{2} \times {}^{11}C_{4}$ 990	M1	Add values of 3 correct scenarios, (may be identified by the appropriate calculations) no incorrect/repeated scenarios, condone use of permutations.
	2838	A1	Only dependent on the M mark. SC B1 for the correct calculation or 2838 seen WWW.
	Method 2		
	$^{14}C_6 - ^{11}C_3$	B1	$^{14}C_6 - d$, where d a positive integer.
	5005 - 105	M1	$e - {}^{11}C_3$, where <i>e</i> is a positive integer >165.
	= 2838	A1	
		3	

Question	Answer	Marks	Guidance
3(a)	$\left[\frac{8!}{2!3!}\right] 3360$	B1	
		1	
3(b)	$\frac{6!}{2!2!}$	M1	$\frac{6!}{2!f!}; f=1, 2, 3.$
	180	A1	
		2	
3(c)	$\begin{bmatrix} P(OOO CC) = \frac{P(OOO \cap CC)}{P(CC)} = \end{bmatrix}$ $\frac{5!}{\frac{7!}{1}}$	M1	$\frac{5!}{g}$ g a positive integer, g ≠ 3360, 1. Condone numerator of $\frac{5!}{3360g}$.
	3!	M1	$\frac{h}{\frac{7!}{3!}} \text{ or } \frac{h}{\frac{8!}{3!}}, \text{ where } h \text{ is a positive integer.}$ Condone division by 3360 in denominator.
	$=\frac{120}{840},\frac{1}{7},0.143$	A1	0.1428571 to at least 3SF. If M0 scored SC B1 for $\frac{1}{7}$ WWW.
		3	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(a)	$P(Z > \frac{20 - 14.6}{5.2}) = P(Z > 1.03846)$	M1	Use of \pm standardisation formula with 20, 14.6 and 5.2 not σ^2 , not $\sqrt{\sigma}$, no continuity correction.
	1 - 0.8504	M1	Calculating the appropriate probability area (leading to their final answer).
	0.150	A1	0.1496, 0.149 < $p \leq 0.15[0]$. Only dependent on the 2 nd M mark so M0M1A1 possible. SC B1 for 0.149 < $p \leq 0.15[0]$ if M0M0A0 awarded.
	[250 × <i>their</i> 0.1496 =] 37, 38	B1 FT	Strict FT <i>their</i> at least 4-figure probability seen anywhere (give BOD if they go on to use 0.150). Final answer must be positive integer, no approximation or rounding stated.
		4	
4(b)	$z_1 = \frac{14.5 - \mu}{1000000000000000000000000000000000000$	B1	$-0.843 < z_1 < -0.841$ or $0.841 < z_1 < 0.843$.
	σ $18.5-\mu$ 0.44	B1	$-0.441 < z_2 < -0.439$ or $0.439 < z_2 < 0.441$.
	$z_2 = -0.44$	M1	Use of the ±standardisation formula once with μ , σ and a <i>z</i> -value (not 0.20, 0.80, 0.67, 0.23, 0.5793, 0.7881, 0.7486, 0.591 or 1- <i>z</i> i.e. 0.158 etc.). Condone continuity correction ±0.05, not σ^2 , $\sqrt{\sigma}$.
	Solve, obtaining values for μ and σ . $\mu = 22.9, \sigma = 9.95$	M1	Solve using the elimination method, substitution method or other appropriate approach to obtain values for both μ and σ .
		A1	AWRT 22.9, 9.95 .
		5	

Question				A	nswer		Marks	Guidance	
5(a)	cw fd	800 0.01	400 0.03	800 0.0625	1200 0.04	1600 0.02		M1	At least 4 frequency densities calculated (F/cw, e.g. $\frac{8}{800} \left(\text{condone} \frac{8}{n}, 799 \le n \le 801 \right) \text{ Accept unsimplified,}$ may be read from graph using <i>their</i> scale.
								A1	All heights correct on graph.
	59	0.05						B1	Bar ends at 50, 850, 1250, 2050, 3250, 4850 read at the axis with a horizontal linear scale with at least 3 values indicated. $50 \leq \text{horizontal scale} \leq 4850.$
	Cum Cum Cum Cum Cum Cum Cum Cum Cum Cum					-1150	B1	Axes labelled frequency density (fd) and population (pop) OE, or in a title. Linear vertical scale, with at least 3 values indicated. Vertical axis must cover at least the range $0 \leq \text{vertical axis} \leq 0.0625$. Axes may be reversed.	
								4	
5(b)	2100 -	3200						B1	Accept 2050 – 3250 OE. Condone '4 th interval'.
								1	
5(c)	3249 -	1250						M1	$2050 \le UQ \le 3250 - 1250 \le LQ \le 2050.$
	1999							A1	Condone 3250 – 1250 = 2000.
								2	

9709/51

Question				A	nswer			Marks	Guidance
6(a)	[P(X=3) =	$=] \frac{3}{4} \times \left(\frac{1}{4}\right)$	$\left(\frac{1}{4}\right)^3 \times 4$					M1	$\frac{3}{4} \times \left(\frac{1}{4}\right)^3 \times q$; q a positive integer (1 may be implied).
	$=\frac{3}{64}$							A1	AG.
								2	
6(b)	x 0 1 2 3 4					4		B1	Either P(1) = $\frac{27}{64}$, 0.421875
	P(X=x)	$\frac{81}{256}$	$\frac{27}{64}$	$\frac{27}{128}$	$\frac{3}{64}$	$\frac{1}{256}$			or P(2) = $\frac{27}{128}$, 0.2109375 correct to at least 3SF. Condone not in table.
								B1 FT	Both values in table. FT P(1) + P(2) = $\frac{81}{128}$, 0.6328125.
								2	
6(c)	[E(X) =] [0]	$\times \frac{81}{256}]$	+1×thei	$r\frac{27}{64}$ +2>	$\times their \frac{2}{12}$	$\frac{7}{28} + 3 \times \frac{7}{2}$	$\frac{12}{256} + 4 \times \frac{1}{256}$	M1	Correct method from <i>their</i> probability distribution table with at least 4 terms, $0 < their P(x) < 1$, accept partially evaluated.
									$= 0 + \frac{27}{64} + \frac{54}{128} + \frac{36}{256} + \frac{4}{256}$
	= 1							A1	
								2	

9709/51

Question	Answer	Marks	Guidance
6(d)	Mean = $96 \times \frac{67}{256} = 25.125$ Var = $96 \times \frac{67}{256} \times \frac{189}{256} = 18.549$	B1	25.125, $25\frac{1}{8}$ and 18.5493 to at least 3SF seen, allow unsimplified (4.3068 $\leq \sigma \leq 4.307$ implies correct variance).
	$P(X < 20) = P(Z < \frac{19.5 - 25.125}{\sqrt{18.549}})$	M1	Substituting <i>their</i> μ and σ into \pm standardisation formula (any number for 19.5). Condone σ^2 and $\sqrt{\sigma}$.
		M1	Using continuity correction 19.5 or 20.5 in <i>their</i> standardisation formula. Note: $\frac{\pm 5.625}{\sqrt{18.549}}$ seen gains M2 BOD.
	$[= P(Z < -1.306) = 1 - \Phi (1.306) =] 1 - 0.9042 =$	M1	Appropriate area Φ , from final process. Must be a probability.
	0.0958	A1	$0.0957 \le p \le 0.0958$. SC B1 for $0.0957 \le p \le 0.0958$ if B1M0M0M1 scored.
		5	

Question	Answer	Marks	Guidance
7(a)	Method 1		
	$[P(X < 6) = P(X \le 5) =] 1 - 0.8^{5}$	M1	$1 - 0.8^r, r = 5, 6.$
	= 0.672	A1	
	Method 2		
	[P(X < 6) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) =] $\frac{1}{5} + \frac{4}{5} \times \frac{1}{5} + \left(\frac{4}{5}\right)^2 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5} + \left(\frac{4}{5}\right)^4 \times \frac{1}{5}$	M1	Condone an extra term $(\frac{4}{5})^5 \times \frac{1}{5}$. First, last and one of the 3 middle terms implies M1.
	= 0.672	A1	
		2	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(b)	Method 1		
	$\begin{bmatrix} 1 - P(0, 1, 2) \end{bmatrix} = 1 - ({}^{12}C_0 (0.8)^{12} + {}^{12}C_1 (0.2)(0.8)^{11} + {}^{12}C_2 (0.2)^2 (0.8)^{10})$	M1	One term ${}^{12}C_x(p)^x(1-p)^{12-x}, 0$
	[= 1 - (0.06872 + 0.20615 + 0.28347)]	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer. Correct unsimplified expression or better.
	= 0.442	B1	$0.411 WWW.$
	Method 2		
	$\begin{bmatrix} P(3,4,5,6,7,8,9,10,11,12) = \\ {}^{12}C_3 (0.2)^3 (0.8)^9 + {}^{12}C_4 (0.2)^4 (0.8)^8 + \dots + {}^{12}C_{11} (0.2)^{11} (0.8)^1 + {}^{12}C_{12} (0.2)^{12} \end{bmatrix}$	M1	One term ${}^{12}C_x(p)^x(1-p)^{12-x}, 0$
	$[= 0.23622 + 0.13288 + \ldots + 1.966 \times 10^{-7} + 4.096 \times 10^{-9}]$	A1	Correct expression, accept unsimplified, leading to final answer. Accept first, last and 8 of the middle terms.
	=0.442	B1	$0.411 .$
		3	

Question	Answer	Marks	Guidance
7(c)	$(0.2)^5 \times 5!$	M1	$(0.2)^5 \times s$, s a positive integer. 1 may be implied.
		M1	$t \times 5!$ where $0 \le t \le 1$.
	$= 0.0384, \frac{24}{625}$	A1	
	Alternative Method for Question 7(c)		
	$\frac{{}^{5}C_{1} \times {}^{4}C_{1} \times {}^{3}C_{1} \times {}^{2}C_{1} \times [{}^{1}C_{1}]}{({}^{5}C_{1})^{5}}$	M1	$({}^{5}C_{1})^{5}$ or 5 ⁵ as denominator.
		M1	${}^{5}C_{1} \times {}^{4}C_{1} \times {}^{3}C_{1} \times {}^{2}C_{1} \times [{}^{1}C_{1}] \text{ or } 5! \text{ as numerator.}$
	$= 0.0384, \frac{24}{625}$	A1	
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/52 May/June 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question			A	nswer	Marks				Guidar	ıce
1(a)	[3k+3k]	k + 8k = 1, so]k	$=\frac{1}{14}$		B1					
	x P(x)	-2 $\frac{3}{14}, 0.214$	$\frac{2}{\frac{3}{14}, 0.214}$	$\frac{3}{\frac{8}{14}, 0.571}$	B1 FT	Table w probabi Condor 0.	vith corre lity linke any ac	ect value ed with Iditional	es of <i>x</i> , a outcom l <i>X</i> value	and at least one correct e. FT <i>their k.</i> es if probability stated as
					B1 FT	 T The outcomes in the table must be -2, 2 and 2 further correct probabilities in table or 3 correct probabilities not in table linked or 3 correct FT probabilities in table using or 3 incorrect probabilities summing to 1 in stated. 	t be -2 , 2 and 3. In table table linked to outcomes, table using <i>their k</i> , numing to 1 in table if <i>k</i> not			
						$ \begin{array}{c} \text{If } k \text{ not} \\ x \\ P(x) \end{array} $	calculat -2 3k	ed, SC] 2 3 <i>k</i>	B1 for th 3 8k	ne below.
					3					

Question	Answer	Marks	Guidance
1(b)	$\begin{bmatrix} E(X) = -2 \times \frac{3}{14} + 2 \times \frac{3}{14} + 3 \times \frac{8}{14} = \end{bmatrix}$ $-\frac{6}{14} + \frac{6}{14} + \frac{24}{14}$	M1	Accept unsimplified expression. May be calculated in variance. FT <i>their</i> table with 3 probabilities summing to $0.999 \le total \le 1 \ (0 \le p \le 1)$ or in terms of <i>k</i> .
	$\begin{bmatrix} \operatorname{Var}(X) = (-2)^2 \times \frac{3}{14} + 2^2 \times \frac{3}{14} + 3^2 \times \frac{8}{14} - (their \operatorname{E}(X))^2 = \\ 4 \times \frac{3}{14} + 4 \times \frac{3}{14} + 9 \times \frac{8}{14} - (their \frac{12}{7})^2 \\ \left[\frac{12 + 12 + 72}{14} - (their \frac{12}{7})^2 \right]$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table with 3 or more probabilities $(0 which need not sum to 1, or in terms of k with an expression no more evaluated than shown.$
	$E(X) = \frac{12}{7}, 1.71, 1\frac{5}{7}$ $Var(X) = \frac{192}{49}, 3.92, 3\frac{45}{49}$	A1	Answers for $E(X)$ and $Var(X)$ must be identified. $E(X)$ may be identified by correct use in Variance (condone E, V, μ , σ^2 , etc.). If A0 earned, SC B1 for identified correct final answers.
		3	

Question	Answer	Marks	Guidance
2(a)	$[P(\text{no rain}) = 0.6 \times (0.8)^3 =] 0.3072, \frac{192}{625}$	B1	Exact value required
		1	

Question	Answer	Marks	Guidance
2(b)	$0.6 \times 0.8 \times 0.2$	M1	$a \times b \times c$ where $a, b = 0.6, 0.8, c = 0.2, 0.4, 0.7$. Condone including Wednesday with both 0.3 and 0.7 used.
	$= 0.096[0], \frac{12}{125}$	A1	
		2	
2(c)	$P(RDDD) = 0.4 \times 0.3 \times 0.8 \times 0.8 = 0.0768, \frac{48}{625}$ $P(DPDD) = 0.6 \times 0.2 \times 0.3 \times 0.8 = 0.0288 $ ¹⁸	B1	Guidance $a \times b \times c$ where $a, b = 0.6, 0.8, c = 0.2, 0.4, 0.7$. Condone including Wednesday with both 0.3 and 0.7 used.Correct probability for one clearly identified outcome evaluated accept unsimplified.
	$P(DRDD) = 0.6 \times 0.2 \times 0.3 \times 0.8 = 0.0288, \frac{625}{625}$ $P(DDRD) = 0.6 \times 0.8 \times 0.2 \times 0.3 = 0.0288, \frac{18}{625}$ $P(DDDR) = 0.6 \times 0.8 \times 0.8 \times 0.2 = 0.0768, \frac{48}{625}$ $0.2112, \frac{132}{625}$	M1	Add 4 probability values, $0 , for appropriate identified scenarios. Accept unsimplified.$
			Ways of identifying scenarios for this mark: Stating the days. All the unsimplified probability calculations exactly as stated in the mark scheme. Identifying the correct branches on a tree diagram and linking with the values.
			No repeated scenarios. No incorrect scenarios.
		A1	Accept 0.211 If 0/3 scored SC B1 for 0.2112, $\frac{132}{625}$.
		3	

Question	Answer	Marks	Guidance
3(a)	Median = 2710	B1	Must be identified, condone Q2. Ignore units throughout.
	2840 - 2610	M1	$2820 \le UQ \le 2850 - 2600 \le LQ \le 2620.$
	230	A1	www If M0 scored SC B1 for 230 www. If key ignored consistently: B0 Median = 271 SC M1 282 \leq UQ \leq 285 - 260 \leq LQ \leq 262 SC A1 23.
		3	
3(b)	Box-and-whisker plot on provided grid.	B1	All 5 key values for <i>B</i> plotted accurately in standard format using a linear scale with 3 identified values. Labelled <i>B</i> . Scale at least 1 cm = 100 .
	B: 2540 2600 2690 2780 3090 A: 2500 2610 2710 2840 3010	B1FT	All 5 key values for A, FT from (a), plotted accurately in standard format using a linear scale with 3 identified values. Labelled A. Scale at least $1 \text{ cm} = \$100$
		B1	Whiskers not through box for both, not drawn at corners of boxes, single linear scale for the diagram and labelled 'salaries' (oe) and \$.
		3	

Question	Answer	Marks	Guidance
3(c)	Examples: Mean less appropriate than median because of extreme value for company <i>B</i> [at \$3090]. No, extreme value in company B. No, \$3090 is an anomaly.	B1	Must refer to company B, may be implied by appropriate use of \$3090. Must include an indication that the mean is not appropriate. No contradictory statements can be present, e.g. acceptable comment with 'but mean could be used for company A'. Condone reference to \$309.
		1	

Question	Answer	Marks	Guidance
4(a)	$[P(X=4) = (0.8)^{3} (0.2) =] 0.1024, \frac{64}{625}$	B1	Condone 0.102 .
		1	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(b)	$[P(X < 6)] =]1 - 0.8^{5}$	M1	$1 - 0.8^d$, $d = 5, 6.$
	$= 0.672, \frac{2101}{3125}$	A1	0.67232 to at least 3SF. If M0 awarded, SC B1 for $\frac{2101}{3125}$ or 0.67232 only.
	Alternative Method for Question 4(b)		
	$[P(X < 6) =]\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^2\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^3\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^4\left(\frac{1}{5}\right)$	M1	If answer correct, condone omission of 2 from 3 middle terms.
			Allow M1 for $\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right) \left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^2 \left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^3 \left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^4 \left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^5 \left(\frac{1}{5}\right)$
	$= 0.672, \frac{2101}{3125}$	A1	0.67232 to at least 3SF. If M0 awarded, SC B1 for $\frac{2101}{3125}$ or 0.67232 only.
		2	

Question	Answer	Marks	Guidance
4(c)	$\begin{bmatrix} P(X > 0 X \neq 2) = \frac{P(X > 0 \cap X \neq 2)}{P(X \neq 2)} = \end{bmatrix}$ $= \frac{\frac{14}{25}}{\frac{19}{25}}$ $= \frac{14}{19}, 0.737$	M1 M1 A1	$[P(X > 0 \cap X \neq 2) =] \frac{14}{25}, 0.56[0] \text{ seen as numerator or}$ denominator of conditional probability fraction. $[P(X \neq 2) =] \frac{19}{25}, 0.76[0] \text{ seen as denominator of}$ conditional probability fraction. Final answer = $\frac{14}{19}, 0.7368421$ to at least 3SF.
	Alternative Method for Question 4(c)		I no, se bi foi concet iniai answer www.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	[Number of outcome $(X > 0 \cap X \neq 2) =$]14 seen as numerator or denominator of conditional probability fraction.
		M1	[Number of outcome $(X \neq 2) =$]19 seen as denominator of conditional probability fraction.
	$\begin{bmatrix} P(X > 0 X \neq 2) = \frac{\text{Number of outcome}(X > 0 \cap X \neq 2)}{\text{Number of outcomes } X \neq 2} = \end{bmatrix}$ $\frac{14}{10}, 0.737$		Final answer = $\frac{14}{19}$, 0.7368421 to at least 3SF.
	17	3	

Question	Answer	Marks	Guidance
4(d)	$[P(X>2) = 1 - P(0, 1, 2) \text{ with } p = \frac{6}{25}]$	M1	One term ${}^{9}C_{x}(p)^{x}(1-p)^{9-x}, 0$
	$1 - ({}^{9}C_{0} \left(\frac{19}{25}\right)^{9} + {}^{9}C_{1} \left(\frac{6}{25}\right)^{1} \left(\frac{19}{25}\right)^{8} + {}^{9}C_{2} \left(\frac{6}{25}\right)^{2} \left(\frac{19}{25}\right)^{7})$ $[1 - (0.08459 + 0.2404 + 0.3037)]$	A1	$1 - ({}^{9}C_{0} (1-p)^{9} + {}^{9}C_{1} (p)^{1} (1-p)^{8}$ + {}^{9}C_{2} (p)^{2} (1-p)^{7}), 0 Correct expression from <i>their p</i> , accept unsimplified, no terms omitted leading to final answer. Condone omission of last bracket only.
	0.371	B1	$0.371 \leq p < 0.3715$.
	Alternative Method for Question 4(d)		
	$[P(X>2) = P(3,4,5,6,7,8,9) \text{ with } p = \frac{6}{25}]$	M1	One term ${}^{9}C_{x}(p)^{x}(1-p)^{9-x}, 0$
	${}^{9}C_{3}\left(\frac{6}{25}\right)^{3}\left(\frac{19}{25}\right)^{6} + {}^{9}C_{4}\left(\frac{6}{25}\right)^{4}\left(\frac{19}{25}\right)^{5} + \dots + {}^{9}C_{8}\left(\frac{6}{25}\right)^{8}\left(\frac{19}{25}\right)^{1} + {}^{9}C_{9}\left(\frac{6}{25}\right)^{9}$ $[0.2238 + 0.1060 + \dots + 7.529 \times 10^{-5} + 2.642 \times 10^{-6}]$	A1	${}^{9}C_{3}(p)^{3}(1-p)^{6} + {}^{9}C_{4}(p)^{4}(1-p)^{5} + \dots + {}^{9}C_{8}$ $(p)^{8}(1-p)^{1} + {}^{9}C_{9}(p)^{9}, 0 Correct expression from their p, accept unsimplified, no terms omitted leading to final answer.$
	0.371	B1	$0.371 \leq p < 0.3715$.
		3	

9709/52

Question	Answer	Marks	Guidance
5(a)	$[P(15.4 < X < 16.8) =] P(\frac{15.4 - 16.5}{0.6} < Z < \frac{16.8 - 16.5}{0.6})$ $[= P(-1.833 < Z < 0.5)]$	M1	Use of \pm standardisation formula once with 16.5, 0.6 and either 15.4 or 16.8 substituted.
	$\begin{bmatrix} = \Phi(0.5) + \Phi(1.833) - 1 = \\ 0.6915 + 0.9666 - 1 \end{bmatrix}$	M1	Calculating the appropriate probability area (leading to their final answer, expect > 0.5). 0.6915 - (1 - 0.9666) or (0.6915 - 0.5) + (0.9666 - 0.5) OE are alternatives.
	= 0.658	A1	$0.658 \le p < 0.6585$. If A0 scored, SC B1 for $0.658 \le p < 0.6585$.
	[Expected number =] 0.6581 × 150 = 98, 99	B1 FT	FT <i>their</i> 4SF (or better) probability from a normal calculation. Must be a positive single integer answer. No approximation notation.
		4	
5(b)	$\left[P\left(Z > \frac{17.1 - 18.4}{2}\right) = 0.72\right]$	B1	$0.5825 \le z \le 0.583$ or $-0.583 \le z \le -0.5825$ seen.
	$\begin{bmatrix} 1 & \sigma & \sigma \\ \sigma & \sigma & \sigma \end{bmatrix}$ $\frac{17.1 - 18.4}{\sigma} = -0.583$		Use of the \pm standardisation formula with 17.1, 18.4, σ and a <i>z</i> -value (not 0.28, 0.72, 0.4175, 0.2358, 0.7642, 0.6103, 0.3897,). Condone continuity correct \pm 0.05, not σ^2 , $\sqrt{\sigma}$.
	$\sigma = 2.23$	A1	AWRT
		3	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(c)	$[Mean = 120 \times 0.72 =] 86.4$ [Var = $120 \times 0.72 \times 0.28 =] 24.192$	B1	86.4, $84\frac{2}{5}$ and $24\frac{24}{125}$, 24.192 to at least 3SF seen, allow unsimplified. May be seen in standardisation formula. (4.918 $\leq \sigma \leq 4.919$ implies correct variance) Incorrect notation is penalised.
	$P(X < 80) = P(Z < \frac{79.5 - 86.4}{\sqrt{24.192}})$	M1	Substituting <i>their</i> mean (not 18.4) and <i>their positive</i> 4.9185 into \pm standardisation formula (any number for 79.5), condone <i>their</i> 4.918 ² and \sqrt{their} 4.918.
		M1	Using continuity correction 79.5 or 80.5 in <i>their</i> standardisation formula.
	$[P(Z < -1.4029) = 1 - \Phi(1.403)]$ 1 - 0.9196	M1	Appropriate area Φ , from final process, must be a probability. Expect final answer < 0.5. Note: correct final answer implies this M1.
	0.0804	A1	$0.0803 \leqslant p \leqslant 0.0804$
		5	

Question	Answer	Marks	Guidance	
6(a)	$\begin{array}{l} S+4C+2R {}^{6}C_{1} \times {}^{8}C_{4} \times {}^{11}C_{2} \ [= 6 \times 70 \times 55] = 23 \ 100 \\ S+5C+1R {}^{6}C_{1} \times {}^{8}C_{5} \times {}^{11}C_{1} \ [= 6 \times 56 \times 11] = 3696 \\ S+6C \ [+ 0R] {}^{6}C_{1} \times {}^{8}C_{6} \ [\times {}^{11}C_{0}] \ [= 6 \times 28] = 168 \end{array}$	M1	${}^{6}C_{e} \times {}^{8}C_{f} \times {}^{11}C_{g}$, with $e + f + g = 7$ seen.	
		B1	Correct outcome/value for 1 identified scenario, accept unsimplified, www.	
		M1	Add values of 3 correct scenarios. No incorrect scenarios, no repeated scenarios. Condone ${}^{6}C_{e} \times {}^{8}C_{f} \times {}^{11}C_{g}$, with $e + f + g = 7$ to identify S, C, R.	
	[Total =] 26964	A1	сао	
		4		
6(b)	$2! \times 3! \times 4! \times 6$	M1	$2! \times 3! \times 4! \times k$, <i>k</i> an integer > 0. 1 can be implied.	
	=1728	A1	If A0 scored SC B1 for 1728 www.	
		2		

Ivia y/June 202J

Question	Answer	Marks	Guidance
6(c)	Method 1		
	$6! \times 7 \times 6 \times 5$	M1	$6! \times k$, k an integer > 0. 1 can be implied.
		M1	$\frac{m!}{a! \times b!} \times 7 \times n \times r; 6 \leq m \leq 9; a = 1, 2; b = 1, 4;$ $1 \leq n, r \leq 6, n \neq r.$
		M1	$\frac{m!}{a! \times b!} \times 7 \times 6 \times 5; 6 \leq m \leq 9; a = 1, 2; b = 1, 4.$
	151 200	A1	Condone 151 000. If A0 scored SC B1 for 151 200 www.
	Method 2		
	$6! \times {}^7\mathrm{P}_3$	M1	$6! \times k$, k an integer > 0. 1 can be implied.
		M1	$\frac{m!}{a! \times b!} \times {}^{7}\mathbf{P}_{q}, \text{ or } \frac{m!}{a! \times b!} \times {}^{7}\mathbf{C}_{q} \times q! ; 6 \le m \le 9; a = 1, 2;$ b = 1, 4; 1 \le q \le 6.
		M1	$\frac{m!}{a! \times b!} \times {}^{7}P_{3}, \text{ or } \frac{m!}{a! \times b!} \times {}^{7}C_{3} \times 3!; 6 \le m \le 9; a = 1, 2; \\ b = 1, 4.$
	151 200	A1	Condone 151 000. If A0 scored SC B1 for 151 200 www.

Question	Answer	Marks	Guidance
6(c)	Method 3		
	$6! \times 35 \times 3!$	M1	$6! \times k$, k an integer > 0. 1 can be implied.
		M1	$\frac{m!}{a! \times b!} \times 35 \times q!; 6 \le m \le 9; a = 1, 2; b = 1, 4; 1 \le q \le 3.$
		M1	$\frac{m!}{a! \times b!} \times 35 \times 6; 6 \le m \le 9; a = 1, 2; b = 1, 4.$
	151 200	A1	Condone 151 000. If A0 scored SC B1 for 151 200 www.
	Method 4		
	$9! - 7!3! - {}^{3}P_{2} \times 6! \times 7 \times 6$ Or	M1	9! – 7! r ! – q , r an integer > 1, q an integer ≤ 0.0 and 1 may be implied.
	$[= 362\ 880 - 30\ 240 - 181\ 440]$	M1	$\frac{s!}{a! \times b! \times c!} - 7!3! - q; s = 8, 9; a = 1, 2; b = 1, 3; c = 1, 4;$ q an integer ≥ 0.0 and 1 may be implied.
		M1	$\frac{s!}{a! \times b! \times c!} - 7!3! - {}^{3}P_{2} \times 6! \times 6 \times 7, 6 \leqslant s \leqslant 9,$ or $\frac{s!}{a! \times b! \times c!} - 7!3! - 3! \times 7! \times 6, 6 \leqslant s \leqslant 9.$
			$a! \times b! \times c!$ a = 1, 2 $b = 1, 3$ $c = 1, 4.1$ may be implied.
	151 200	A1	Condone 151 000. If A0 scored SC B1 for 151 200 www.
		4	

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/53 May/June 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

1

Mathematics Specific Marking Principles
Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required
then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3	Allow alternative conventions for notation	n if used consistently throughou	t the paper, e.g. commas bei	ing used as decimal points.
---	--	----------------------------------	------------------------------	-----------------------------

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.
Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

9709/53

Question	Answer	Marks	Guidance
1(a)	$\left[P(HH) = \frac{1}{4}\right] [E(X) =] 4$	B1	
		1	
1(b)	$\left[P\left(X=5\right)=\left(\frac{3}{4}\right)^4\left(\frac{1}{4}\right)=\right] 0.0791$	B1	$\frac{81}{1024}$
		1	
1(c)	$[P(X < 7) =]1 - \left(\frac{3}{4}\right)^6$	M1	$1 - p^n, 0or$
	or $\frac{1}{4} + \frac{3}{4} \times \frac{1}{4} + \frac{3}{4}^2 \times \frac{1}{4} + \dots + \frac{3}{4}^5 \times \frac{1}{4}$		$p + p(1-p) + p(1-p)^{2} + + p(1-p)^{n}$, where $n = 4, 5$.
	$=\frac{3367}{4096}, 0.822$	A1	Accept 0.82202148 to at least 3SF.
		2	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

May/June 2023

Question	Answer	Marks	Guidance
2 N V	Mean = $120 \times 0.4 = 48$ Var = $120 \times 0.4 \times 0.6 = 28.8$	B1	48 and $28\frac{4}{5}$, 28.8 seen, allow unsimplified. (5.366 $\leq \sigma \leq 5.367$ or $\frac{12\sqrt{5}}{5}$ implies correct variance).
	$P(36 \le X \le 54) = P(\frac{35.5 - 48}{\sqrt{28.8}} < Z < \frac{54.5 - 48}{\sqrt{28.8}})$	M1	Substituting <i>their</i> μ and σ into one ±standardisation formula (any number for 35.5 or 54.5), condone σ^2 and $\sqrt{\sigma}$.
		M1	Using continuity correction 35.5, 36.5 or 53.5, 54.5 once in <i>their</i> standardisation formula. Note: $\frac{\pm 12.5}{\sqrt{28.8}}$ or $\frac{\pm 6.5}{\sqrt{28.8}}$ seen gains M2 BOD.
	[= P(-2.3292 < Z < 1.211) =] 0.8871 + 0.9900 - 1	M1	Appropriate area Φ , from final process. Must be a probability. Expect final answer > 0.5. Note: correct final answer implies this M1.
	= 0.877	A1	$0.877 \le p \le 0.8772$.
		5	

Question	Answer	Marks	Guidance
3(a)	[P(X = 4) = 3P(X = 2)] $4k(4+a) = 3 \times 2k(2+a)$ 16k + 4ak = 12k + 6ak	M1	Using $P(X=4) = 3P(X=2)$ to form an equation in <i>a</i> and <i>k</i> .
	<i>a</i> = 2	A1	If M0 scored, SC B1 for $a = 2$ www.
	3k + 8k + 15k + 24k = 1	M1	Using sum of probabilities = 1 to form an equation in k: k(1 + a) + 2k(2 + a) + 3k(3 + a) + 4k(4 + a) = 1.
	$k = \frac{1}{50}$	A1	If M0 scored, SC B1 for $k = \frac{1}{50}$ www.
		4	
3(b)	X 1 2 3 4 P(X) $\frac{3}{50}$, 0.06 $\frac{8}{50}$, 0.16 $\frac{15}{50}$, 0.3 $\frac{24}{50}$, 0.48	B1 FT	X 1 2 3 4 P(X) $k(1+a)$ $2k(2+a)$ $3k(3+a)$ $4k(4+a)$
			$0 for all outcomes, must be numerical.$
3(c)	Var(X) = $\frac{3}{50} \times 1 + \frac{8}{50} \times 2^2 + \frac{15}{50} \times 3^2 + \frac{24}{50} \times 4^2 - 3.2^2$	M1	Correct formula for variance method from their probability distribution table, $0 \le their P(x) \le 1$. Accept $\frac{3+32+135+384}{50} - \frac{256}{25}$.
	$[= 11.08 - 3.2^2 =] 0.84[0], \frac{21}{25}$	A1	If M0 score SC B1 for 0.84 www.
		2	

Question	Answer	Marks	Guidance
4(a)	Median = 99 [minutes]	B1	
	[IQR =] 106 - 83	M1	$105 \leqslant UQ \leqslant 112 - 82 \leqslant LQ \leqslant 87.$
	23 [minutes]	A1	www. If M0 scored SC B1 for 23 www.
		3	
4(b)	The times for the Cheetahs are faster than the times for the Panthers	B1	Correct statement comparing central tendency in context.
	The times for the Cheetahs are more spread than the times for the Panthers	B1	Correct statement comparing range/IQR in context.
		2	
4(c)	[Total time including Kenny = 99×20 =]1980	B1	Accept unsimplified.
	[Kenny's time =] 1980 – 1862	M1	For <i>their</i> 1980 – <i>their</i> 1862.
	= 118 [minutes]	A1	Accept 1 hour 58 mins.
	Alternative Method for Question 4(c)		
	$\frac{1862 + their \text{ Kenny's time}}{20} = 99$	B1	$\frac{1862 + their \text{ Kenny's time}}{20} = 99 \text{ seen.}$
	$[Kenny's time = 99 \times 20 - 1862]$	M1	For <i>their</i> 99 ×20 – <i>their</i> 1862.
	= 118 [minutes]	A1	Accept 1 hour 58 mins.
		3	

May/June	2023
----------	------

Question	Answer	Marks	Guidance
5(a)	$P(A) = \frac{10}{36}$ $P(B) = \frac{24}{36}$	B1	Accept P(A) = $\frac{10}{36}, \frac{5}{18}, 0.278$ and P(B) = $\frac{24}{36}, \frac{2}{3}, 0.667$.
	$P(A \cap B) = \frac{8}{36}$	B1	
	$\frac{10}{36} \times \frac{24}{36}$	M1	Their $P(A) \times$ their $P(B)$ seen numerically, $0 \leq \text{their } P(A), P(B) \leq 1.$
	$=\frac{5}{27}, 0.185 \left[\neq \frac{8}{36}\right]$ Events are not independent	A1 FT	Multiplication evaluated correctly and compared with intersection that is not a product of multiplication, conclusion stated, notation $P(A)$, $P(B)$ and $P(A \cap B)$ used.
		4	

May/June 2023

Question	Answer	Marks	Guidance
5(b) $\begin{bmatrix} P(B A') = \frac{P(B \cap A')}{P(A')} = \end{bmatrix}$ $\frac{\frac{16}{36}}{(1, 10)}$	M1	$\left[P(B \cap A') = \right] \frac{16}{36}, 0.4444$ or <i>their</i> P(B) – <i>their</i> P(A \cap B) seen as numerator or denominator of conditional probability fraction.	
	$\left(1-\frac{10}{36}\right)$	MI	$\left[P(A')=\right]\left(1-\frac{10}{36}\right), \frac{26}{36}, 0.7222 \text{ or } 1-\text{their } P(A) \text{ seen as}$ denominator of conditional probability fraction.
	$=\frac{8}{13}$	A1	Final answer $\frac{16}{26}, \frac{8}{13}, 0.6153846$ to at least 3SF.
	Alternative Method for Question 5(b): Direct from outcome tabl	les	
	$\left[P(B A') = \frac{\text{Number of outcomes}(B \cap A')}{\text{Number of outcomes}(A')} = \right]$	M1	[Number of outcomes $(B \cap A')$ =]16 seen as numerator or denominator of conditional probability fraction.
	$\frac{16}{26}$	M1	[Number of outcomes (A') =]26 seen as denominator of conditional probability fraction.
		A1	Final answer $\frac{16}{26}, \frac{8}{13}, 0.6153846$ to at least 3SF.
		3	

Question	Answer	Marks	Guidance
6(a)	$\left[P(X < 16) = P(Z < \frac{16 - 28}{2}) = 0.1 \right]$	B1	± 1.282 seen, cao – critical value.
	$\frac{16-28}{\sigma} = -1.282$	M1	Use of the ±standardisation formula with 16, 28, σ and a <i>z</i> -value (not 0.1, 0.9, 0.282, 0.5398, 0.8159) equated to a <i>z</i> -value. Condone continuity correct ±0.5, not σ^2 , $\sqrt{\sigma}$. Condone $\pm \frac{12}{\sigma} = -1.282$.
	$\sigma = 9.36$	A1	
		3	
6(b)	$ \begin{bmatrix} 1 - P(0, 1, 2) = \end{bmatrix} 1 - ({}^{12}C_0(0.1)^0 (0.9)^{12} + {}^{12}C_1(0.1)^1 (0.9)^{11} + {}^{12}C_2 (0.1)^2 (0.9)^{10}) $	M1	One term ${}^{12}C_x(p)^x(1-p)^{12-x}, 0$
	$(0.1)^2 (0.9)^{10}) \\ [1 - (0.2824 + 0.3766 + 0.2301)]$	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer.
	0.111	B1	0.1108699 rounded to at least 3SF.
	Alternative Method for Question 6(b)		
	$P(3,4,5,6,7,8,9,10,11,12) = {}^{12}C_3(0.1)^3(0.9)^9 + {}^{12}C_4(0.1)^4(0.9)^8 + \dots + {}^{12}C_{11}(0.1)^{11}(0.9)^1 + {}^{12}C_{12}(0.1)^{12}(0.9)^0$	M1	One term ${}^{12}C_x(p)^x(1-p)^{12-x}, 0$
	$[0.08523 + 0.02131 + \dots + 1.08 \times 10^{-10} + 1 \times 10^{-12}]$	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer.
	0.111	B 1	0.1108699 rounded to at least 3SF.
		3	

Question	Answer	Marks	Guidance
6(c)	[P(-1.3 < Z < 1.3)]	B1	Identifying at least one of -1.3 or 1.3 as the appropriate z-values.
	$= 2 \Phi(1.3) - 1]$ = 2 × 0.9032 - 1 $= 0.806, \frac{504}{625}$	M1	Calculating the appropriate probability area from 2 symmetrical <i>z</i> -values (leading to their final answer, expect > 0.5).
		A1	$0.8064, 0.806 \leq p < 0.8065$.
[In 365 days 0.8064×365] = 294 or 295	[In 365 days 0.8064×365] = 294 or 295	B1 FT	Strict FT <i>their</i> at least 4-figure probability (not <i>z</i> -value). Final answer must be positive integer, no approximation or rounding stated.
		4	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2023

Question	Answer	Marks	Guidance
7(a)	Method 1: Total number of arrangements – number of arranger	nents with	Cs together
	$\frac{10!}{2!4!} - \frac{9!}{4!} $ [75600-15120]	M1	$\frac{10!}{a!b!} - c, a \neq b, a = 1, 2, b = 1, 4$, with <i>c</i> being a positive integer.
		M1	$d - \frac{e!}{4!}$, $e = 8, 9, 10$, with d being a positive integer.
	= 60480	A1	Exact value only. SC B1 for final answer 60480 www.
	Method 2: Arrangements ^ ^ C ^ C ^ ^ ^ ^ ^		
	$\frac{8!}{4!} \times \frac{9 \times 8}{2}$	M1	$\frac{8!}{4!} \times f$ seen, with f being a positive integer.
		M1	$g \times \frac{9 \times 8}{h}$, with g being a positive integer, $h = 1, 2$. $g \times {}^{9}C_{2}$ and $g \times {}^{9}P_{2}$ are acceptable.
	= 60480	A1	Exact value only. SC B1 for final answer 60480 www.
		3	

Question	Answer	Marks	Guidance
7(b)	7(b) $\begin{array}{c} AC^{\wedge\wedge\wedge}C^{\wedge\wedge\wedge}A\\ \frac{6!}{2!} \times 4 \end{array}$	M1	$\frac{6!}{2!} \times s$, with s being a positive integer.
2!	M1	$\frac{t!}{r!} \times 4, r = 1, 2, 3 \text{ and } t = 8, 7, 6.$	
	1440	A1	
	Alternative Method for Question 7(b)		
$\frac{4 \times {}^{6}P_{3} \times 3!}{2!}$ 1440	M1	$\frac{{}^{6}\mathbf{P}_{3}}{2!} \times k$, with k being a positive integer.	
		M1	$4 \times 3! \times \frac{{}^{6}\mathbf{P}_{m}}{n!}, m = 2, 3 \text{ and } n = 1, 2, 3.$
	1440	A1	
		3	

May/June 2023

Question	Answer	Marks	Guidance
7(c) Scenari AA	Scenarios $AA_{}$ ${}^{5}C_{3} = 10$ AA_{-} ${}^{5}C_{-} = 10$	B1	Correct number of ways for identified scenarios of 2 or 3 As, accept unsimplified, www.
	$\begin{array}{ccc} AAA & & {}^{3}C_{2} = 10 \\ AAAA & & {}^{5}C_{1} = 5 \end{array}$	M1	Add 3 values for 2, 3 and 4 As, no additional, incorrect or repeated scenarios. Accept unsimplified.
	25	A1	
	Alternative Method 2 for Question 7(c)Scenarios: $AAC_{}$ $^4C_2 = 6$ $AA_{}$ $^4C_3 = 4$		
		B1	Correct total number of ways for identified scenarios of 2 or 3 As, accept unsimplified, www (e.g., both values for AAC ^{^^} and AA ^{^^^} shown would be fine for 2As).
	$\begin{array}{ccc} AAAC & C_1 = 4 \\ AAA & 4C_2 = 6 \\ AAAAC & 1 \\ AAAA & 4 \end{array}$	M1	Add 6 values of appropriate scenarios only, no additional, incorrect or repeated scenarios. Accept unsimplified.
	25	A1	
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability and Statistics 1 MARK SCHEME Maximum Mark: 50 9709/52 February/March 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2023 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

	Mathematics Specific Marking Principles						
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.						
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.						
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.						
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).						
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.						
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.						

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). •
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 ٠ decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. ٠
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. ٠

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer								Marks	Guidance	
1(a)		Upper value	60 4	90 12	110 26	140 51	180 58	240 60		B1	All cumulative frequencies stated. May be under data table, condone omission of 4. May be read accurately from graph, must include 4.
	Convolution of the second seco]	M1 A1	 At least 5 points plotted at class upper end points, daylight rule tolerance. Linear cf scale 0 ≤ cf ≤ 60, linear time scale 30 ≤ time ≤ 240 with at least 3 values identified on each axis. All points plotted correctly. Curve drawn (within tolerance), no ruled segments, and joined to (30,0). Axes labelled 'cumulative frequency' and 'hours [of sunshine]' (OE including appropriate title).
	1	4.0 (0 1/2 (0.0 λ./hov0	Pos 24g	220						3	
1(b)	[60 × 0.7	=] 42								M1	42 may be implied by clear use on graph.
	126									A1 FT	Must be clear evidence on graph of use of 42, e.g. an appropriate mark on either axis, appropriate mark on curve. FT from increasing cf graph only read at 42 only.
										2	

Question	Answer	Marks	Guidance
1(c)	Midpoints: 45, 75, 100, 125, 160, 210	B1	At least 5 correct mid-points seen, check by data table or used in formula.
	$[Mean =] \frac{4 \times 45 + 8 \times 75 + 14 \times 100 + 25 \times 125 + 7 \times 160 + 2 \times 210}{60}$ $\left[= \frac{6845}{60} \right]$	M1	Correct mean formula using their 6 midpoints (must be within class, not upper bound, lower bound), condone 1 data error If correct midpoints seen accept $\frac{180+600+1400+3125+1120+420}{60}$
	$= 114, 114 \frac{1}{12}$	A1	Accept 114.1, 114.08[3] If A1 not awarded, SC B1 for 114, 114 $\frac{1}{12}$, 114.1 or 114.08[3].
		3	

Question	Answer	Marks	Guidance
2(a)	$0.6(0.5)^3 + 0.4(0.5)^3 \times 3$	B1	Either $0.6(0.5)^3 + a$ or $b + 0.4(0.5)^3 \times (3 \text{ or } {}^3\text{C}_1), 0 < a, b < 1$ seen.
		M1	$0.6(0.5)^3 + 0.4(0.5)^3 \times d$ seen, $d = 1, 3$. Condone $0.075 + 0.05 \times d$, $d = 1, 3$.
	= 0.225	A1	AG full supporting working required. Scenarios identified and linked to calculations.
		3	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question				Answ	er			Marks	Guidance	
2(b)		$\begin{array}{c} x \\ P(X=x) \end{array}$	0 0.05	1 0.225	2 0.375	3 0.275	4		B1	Either $[P(2) =] 0.375, \frac{3}{8}$ or $[P(3) =] 0.275, \frac{11}{40}$ seen. Condone not in table if identified.
									B1 FT	Both values in table. FT $P(2) + P(3) = 0.650$.
									2	
2(c)	Var(X) = $[1^2 \times]0.225 + 2^2 \times their \ 0.375 + 3^2 \times their \ 0.275 + 4^2 \times 0.075 - 2.1^2$							$75 - 2.1^2$	M1	Appropriate variance formula from their probability distribution table with at least 4 terms, $0 < their P(x) < 1$. Condone 4.41 for 2.1 ² . Condone mean clearly recalculated inaccurately. Or $0.225 + 4 \times their 0.375 + 9 \times their 0.275 + 16 \times 0.075 - 2.1^2$ Condone 2.1 ² for 4.41.
	[5.4-2.	$.1^2$] = 0.99[0	0]						A1	If M0 awarded SC B1 for 0.99[0] WWW.
									2	

Question	Answer	Marks	Guidance
3(a)	Method 1 for Question 3(a)		
	$[P(X > 17) = P(18, 19, 20) =]$ ${}^{20}C_{18} (0.8)^{18} (0.2)^{2} + {}^{20}C_{19} (0.8)^{19} (0.2)^{1}$	M1	One term ²⁰ C _x $(p)^{x} (1-p)^{20-x}, 0$
	$+ {}^{20}C_{20} (0.8)^{20} = 0.13691 + 0.05765 + 0.01153$	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer.
	0.206	B1	Mark the final answer at the most accurate value $0.206 \leqslant p \leqslant 0.2061$.
	Method 2 for Question 3(a)		
	[P(X > 17) = 1 - P(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17) =] 1 - (²⁰ C ₀ (0.8) ⁰ (0.2) ²⁰ + ²⁰ C ₁ (0.8) ¹ (0.2) ¹⁹	M1	One term ²⁰ C _x $(p)^{x} (1-p)^{20-x}, 0$
	+ ${}^{20}C_2 (0.8)^2 (0.2)^{18} + + {}^{20}C_{16} (0.8)^{16} (0.2)^4$ + ${}^{20}C_{17} (0.8)^{17} (0.2)^3)$ = 1 - (1.048×10 ⁻¹⁴ + 8.389×10 ⁻¹³ +3.188×10 ¹¹ + + 0.2182 + 0.2054)	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer. If answer correct, condone omission of any 15 of the 16 middle terms.
	0.206	B1	Mark the final answer at the most accurate value $0.206 \le p \le 0.2061$. Condone omission of brackets.
		3	
3(b)	$\left[\left(0.8 \right)^4 \left(0.2 \right) = \right] 0.08192, \frac{256}{3125}$	B1	Accept $\frac{8192}{100000}$ OE.
		1	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3(c)	$(0.8)^5 (0.2)^2 \times 6$	M1	$(0.8)^{5} (0.2)^{2} \times k or (0.8)^{5} (0.2) \times k \times 0.2,$ 2 \le k \le 7.
	$= 0.0786, \frac{8144}{78125}$	A1	$0.0786 \le p < 0.07865, \frac{786432}{10000000}.$ If A0 awarded, SC B1 for correct answer WWW.
		2	

Question	Answer	Marks	Guidance
4	$(1-x) \times 0.7 \times 0.9 = 0.36$	M1	$(1-x) \times a \times b = 0.36, a = 0.7 \text{ or } 0.3, b = 0.9 \text{ or } 0.1$
		B1	$(1-x) \times 0.7 \times 0.9 = 0.36, (1-x) \times 0.63 = 0.36,$ $0.63 - 0.63x = 0.36$ or $1 - x = \frac{0.36}{0.63}$ seen. Condone recovery from omission of brackets.
	$x = \frac{3}{7}$	A1	Accept 0.428571 to at least 3 sf. Condone 0.4285 rounding to 0.429. If M0 awarded, SC B1 for $x = \frac{3}{7}$ or 0.428571 to at least 3 sf.
		3	

Question	Answer	Marks	Guidance
5	$P(A) = \frac{1}{2}, P(B) = \frac{8}{24} = \frac{1}{3},$	B1	Both stated, accept unsimplified.
	$P(A \cap B) = \frac{1}{6}$	M1	Evidence that independence properties not used.
	$P(A) \times P(B) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ so events are independent	A1	Evaluated and conclusion stated. $P(A) \times P(B)$ and $P(A \cap B)$ seen.
		3	

Question	Answer	Marks	Guidance
6(a)	$[P(X < 74) =] P\left(Z < \frac{74 - 62.3}{8.4}\right) \left[= P\left(Z < 1.393\right)\right]$	M1	Use of \pm standardisation formula with 74, 62.3 and 8.4 substituted appropriately, not 8.4 ² , not $\sqrt{8.4}$, no continuity correction.
	= 0.918	A1	$0.918 \le p \le 0.9185$.
		2	

Question	Answer	Marks	Guidance
6(b)	$[P(50 < X < 74) = P]\left(\frac{50 - 62.3}{8.4} < Z < \frac{74 - 62.3}{8.4}\right)$ $[P(-1.464 < Z < 1.393)]$	M1	Use of \pm standardisation formula with both 74 (may be seen in 6(a) if <i>their</i> value seen) & 50, 62.3 and 8.4 substituted appropriately. Condone use of 8.4^2 , $\sqrt{8.4}$ and continuity correction ± 0.5 (73.5 or 74.5 and 49.5 or 50.5).
	$[\Phi(1.464) + \Phi(1.393) - 1]$ 0.9285 + 0.9182 - 1	M1	Calculating the appropriate probability area from stated Φ of <i>z</i> -values (leading to <i>their</i> final answer > 0.5) but not symmetrical values.
	= 0.847	A1	$0.8465 \le p < 0.8475$. SC B1 for $0.8465 \le p < 0.8475$ if M0A0 awarded.
	$(0.8467)^4 = 0.514$	B1 FT	Accept $0.513 \le p \le 0.514$. FT (<i>their</i> 4-figure p) ⁴ , $0 .$
		4	
6(c)	$z_{1} = \frac{36 - \mu}{2} = -0.739$		$-0.740 < z_1 < -0.738$ or $0.738 < z_1 < 0.740$.
	σ $54-\mu$	B1	$z_2 = \pm 1.282$ (critical value).
	$z_2 = \frac{\sigma + \rho}{\sigma} = 1.282$	M1	Use of the ±standardisation formula once with μ , σ and a <i>z</i> -value (not 0.23, 0.77, 0.90, 0.10, ±0.261, ±0.282). Condone continuity correction ±0.5, not σ^2 , $\sqrt{\sigma}$.
	Solve, obtaining values for μ and σ $\mu = 42.6$, $\sigma = 8.91$	M1	Solve using the elimination method, substitution method or other appropriate approach to obtain values for both μ and σ .
		A1	$\begin{array}{l} 42.58 \leqslant \mu \leqslant 42.6, \\ 8.90 \leqslant \sigma \leqslant 8.91 \end{array}.$
		5	

Question	Answer	Marks	Guidance						
7(a)	Method 1: Arrangements with 3 Es together – arrangements with 3 Es together and 2 Ds together								
	$\frac{7!}{2!} - 6!$	B1	$\frac{7!}{2!} - e, e \text{ a positive integer (including 0).}$						
		M1	<i>f</i> -6!, <i>f</i> > 6!						
		M1	$\frac{7!}{a!b!} - \frac{6!}{c!d!}$, $a, c = 1, 2$ and $b, d = 1, 3$.						
	1800	A1							
	Method 2: Identified scenarios ^ EEE ^ ^ ^								
	$5 \times \frac{6 \times 5}{5}$	B1	5! × <i>j</i> , <i>j</i> a positive integer ($j = 1$ may be implied).						
	2	M1	$\frac{k!}{m!} \times \frac{6 \times 5}{2}, \frac{k!}{m!} \times {}^{6}C_{2}, \frac{k!}{m!} \times \frac{{}^{6}P_{2}}{2} \text{ or } k \times \frac{7 \times 6}{n},$ k a positive integer (k = 1 may be implied), m = 1, 2 n = 1, 2, 3.						
		M1	$k \ge \frac{m \ge (m-1)}{n}$ k a positive integer > 1, $m = 10, 9, 8, 7, 6$ and $n = 1, 2$.						
	1800	A1							
		4							

Question	Answer	Marks	Guidance					
7(b)	First 2 marks: Method 1 – Number of arrangements with 2 Ds in one position with 4 letters in between – repeats allowed							
	$7! \times 4 \times 2$	M1	$7! \times s$, $s = \text{positive integer} > 1$.					
		M1	$t! \times 4 \times 2, t = 8, 7, 6.$ Condone $t! \times 8.$					
	First 2 marks: Method 2 – Picking 2Ds, arranging 4 letters from remaining letters between and then arranging terms							
	$^{7}P_{4} \times 4 \times 2!$	M1	$^{7}\mathbf{P}_{4} \times a \Join b!$, $1 \le a \le 6$ and $b = 1, 2, 3$.					
		M1	$^{7}P_{c} \times 4 \Join 2!, c = 3, 4, 5.$					
	First 2 marks: Method 3 – Identified scenarios involving Es between Ds							
	$D^{AAA} D E E E = {}^{4}C_{4} \times 4! \times 4! \times 2! = 1152$	M1	1 identified scenario value correct.					
	$D E E^{A} \cap D E E^{A} = {}^{4}C_{3} \times 4! \times 4! \times 3 \times 2! = 13824$ $D E E^{A} \cap D E^{A} = {}^{4}C_{2} \times 4! \times 4! \times 3 \times 2! = 20736$ $D E E E^{A} D^{A} \cap = {}^{4}C_{1} \times 4! \times 4! \times 2! = 4608$	M1	4 appropriate scenarios added, no incorrect.					

Question	Answer	Marks	Guidance					
7(b)	Final 3 marks for Methods 1, 2 and 3							
	40320	A1	If A0 scored, SC B1 for 40320 WWW.					
	[Total number of arrangements =] $[9!=]$ 362880	B1	Accept unsimplified. May be seen as denominator of probability.					
	Probability = $\frac{40320}{362880} = \frac{1}{9}$	B1FT	their 40320 their 362880, accept unsimplified.B1FT if their 40320 and their 362880 supported by work in this part. Condone their 362880 supported by calculation in 7(a).					
		5						
7(c)	Scenarios $D E_{}$ ${}^{4}C_{3}$ 4 $D E E_{}$ ${}^{4}C_{2}$ 6 $D E E E_{}$ ${}^{4}C_{}$ 4	B1	1 correct unsimplified outcome/value for one identified scenario excluding DDEEE. Note: ${}^{4}C_{1}$ cannot be used for ${}^{4}C_{3}$.					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Add values of 6 appropriate scenarios, no additional, incorrect or repeated scenarios. Accept unsimplified.					
	[Total =] 25	A1						
		3						

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/51 May/June 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics S	pecific Marking Principles
manie maries b	peenie marking i meipies

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

May/June 2022

Question	Answer	Marks	Guidance
1(a)	5!	M1	k! where $k = 5, 6$ or 7 Condone $\times 1$ OE
	120	A1	
		2	
1(b)	[Total no of ways =] $\frac{8!}{2!3!}$ [= 3360]	M1	$\frac{8!}{a!b!}$, $a = 1,2$ $b = 1,3$ $a \neq b$
	[With 3Es together =] $\frac{6!}{2!}$ [= 360]	M1	$\frac{6!}{c!}$, $c = 1,2$ seen in an addition/subtraction
	[With 3Es not together] = 3360 - 360	M1	$\frac{8!}{d!e!} - \frac{6!}{f!}$ where $d, f = 1, 2 \& e = 1, 3$
	3000	A1	
		4	

May/June 2022

Question	Answer	Marks	Guidance	
2(a)	$^{12}C_4 \times 2$	M1	${}^{g}C_{4} \times h$ $g = 12, 13, h = 1,2$	
	990	A1		
	Alternative method for question 2(a)			
	$[\text{total} - \text{both on} - \text{neither on}]^{14}C_5 - (^{12}C_3 + ^{12}C_5) = [2002 - 220 - 792]$	M1	${}^{k}C_{5} - ({}^{a}C_{3} + {}^{a}C_{5})$ a = 12, 13 and k = 13, 14	
	990	A1		
		2		
2(b)	[Mrs Lan plus]	M1	$^{7}C_{r} \times {}^{6}C_{4-r}$ for $r = 2, 3$ or 4	
	$ \begin{array}{rcl} 2 & W & 2M & C_2 \times C_2 & -313 \\ 3 & W & 1M & {}^7C_3 \times {}^6C_1 & = 210 \\ 4 & W & {}^7C_4 & = 35 \end{array} $	B1	Outcome for one identifiable scenario correct, accept unevaluated	
		M1	Add outcomes for 3 identifiable correct scenarios Note: if scenarios not labelled, they may be identified by seeing ⁷ C _r × ${}^{6}C_{s} r + s = 4$ to imply <i>r</i> women and <i>s</i> men for both B & M marks only	
	[Total =] 560	A1		
		4		

Question	Answer							Marks	Guidance
3(a)	Class width	20	10	10	20	30		M1	At least 4 frequency densities calculated (Frequency \div class width, e.g. 440(440 440 $)$
	Frequency density	22	72	92	15	4			$\frac{1}{20} \left(\frac{\text{condone}}{19.5}, \frac{1}{20.5} \right)$ Accept unsimplified, may be read from graph using <i>their</i> scale
	t							A1	All heights correct on graph NOT FT
	Frequency Density		-					B1	Bar ends at $[0,]$ 20, 30, 40, 60, 90 at axis with a horizontal linear scale with at least 3 values indicated. $0 \leq$ horizontal scale \leq 90
	90 10 50 40 30 10	10 20) 30	40	50 00	70	80 90 Time token († minotes)	B1	Axes labelled frequency density (fd), time (<i>t</i>) and minutes (mins) or in a title. Linear vertical scale, with at least 3 values indicated $0 \le $ vertical axes ≤ 92 (condone 90 used).
								4	
Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(b)	Midpoints 10 25 35 50 75	B 1	At least 4 correct midpoints seen
	$\begin{bmatrix} \text{Mean} = 31.44 \text{ given} \end{bmatrix}$ $\begin{bmatrix} \text{Variance} = \frac{440 \times 10^2 + 720 \times 25^2 + 920 \times 35^2 + 300 \times 50^2 + 120 \times 75^2}{2500} - 31.44^2 \end{bmatrix}$ $= \frac{44000 + 450000 + 1127000 + 750000 + 675000}{2500} - 31.44^2$ $\begin{bmatrix} \frac{3046000}{2500} - 31.44^2 = 229.9264 \end{bmatrix}$ Or $\begin{bmatrix} \text{Variance} = \\ \frac{440(10 - 31.44)^2 + 720(25 - 31.44)^2 + 920(35 - 31.44)^2 + 300(50 - 31.44)^2 + 120(75 - 31.44)^2}{2500}$ $= \frac{202256 + 29860 + 11659 + 103342 + 227697}{2500} = \frac{574814}{2500} = 229.9264$	M1	Correct formula for variance or standard deviation (– mean ² included with <i>their</i> midpoints (not upper bound, lower bound, class width, frequency density, frequency or cumulative frequency) and <i>their</i> \sum f if calculated. Condone 1 data error.
	Standard deviation = 15.2	A1	WWW, allow 15.16[3]
		3	
3(c)	30-40	B1	
		1	
3(d)	Stays the same, data still in same intervals	B1	Frequencies unchanged
		1	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(a)	$a = P(1 \text{ head}) = 0.7 \times (0.5)^3 + 0.3 \times (0.5)^3 \times 3 = \frac{1}{5}$	B1	Clear statement of unevaluated correct calculation $=\frac{1}{5}$. AG
	$b = 0.7 \times 0.5^3 \times 3 + 0.3 \times 0.5^3 \times 3 = \frac{3}{8}$	M1	Clear statement of unevaluated calculation for either b or c
	$c = 0.7 \times 0.5^3 \times 3 + 0.3 \times 0.5^3 = \frac{3}{10}$	A1	For either <i>b</i> or <i>c</i> correct
	$\left[or c = \frac{27}{40} - b\right]$	B1 FT	$their b + their c = \frac{27}{40}$
		4	
4(b)	$\left[E(X) = \frac{3 \times 0 + 16 \times 1 + 30 \times 2 + 24 \times 3 + 7 \times 4}{80} = \right] \frac{176}{80} \text{ or } 2.2$	B1 FT	Correct or accept unsimplified calculation using <i>their</i> values for <i>b</i> and <i>c</i> seen (sum of probabilities = 1)
		1	

Question	Answer	Marks	Guidance
4(c)	$[P(0, 1, 2) =]^{10}C_0 \ 0.2^0 \ 0.8^{10} \ + \ {}^{10}C_1 \ 0.2^1 \ 0.8^9 \ + \ {}^{10}C_2 \ 0.2^2 \ 0.8^8$	M1	One term ${}^{10}C_x p^x (1-p)^{10-x}$, for $0 < x < 10, 0 < p < 1$
	0.107374 + 0.268435 + 0.301989	A1	Correct expression, accept unsimplified leading to final answer
	0.678	B1	0.677
	Alternative method for question 4(c)		
	$\frac{1 - [{}^{10}C_{10} \ 0.2{}^{10}0.8^0 + {}^{10}C_9 \ 0.2^9 0.8^1 + {}^{10}C_8 \ 0.2^8 0.8^2 + {}^{10}C_7 \ 0.2^7 0.8^3 + {}^{10}C_6 \ 0.2^6 0.8^4 + {}^{10}C_5 \ 0.2^5 0.8^5 + {}^{10}C_4 \ 0.2^4 0.8^6 + {}^{10}C_3 \ 0.2^3 0.8^7]}{(1 - 1)^6 (1 -$	M1	One term ${}^{10}C_x p^x (1-p)^{10-x}$, for 0 < x < 10, 0 < p < 1
		A1	Correct expression, accept unsimplified
	0.678	B1	0.677
		4	
4(d)	$0.8^6 \times 0.2 + 0.8^7 \times 0.2 = 0.0524288 + 0.041943$	M1	$p^{l} \times (1-p) + p^{m} \times (1-p), l = 6, 7$ $m = l + 1, 0$
	0.0944	A1	$0.09437 \le p \le 0.0944$
		2	

9709/51

Question	Answer	Marks	Guidance
5(a)	$P(X < 6) = P(Z < \frac{6 - 5.2}{1.5}) = P(Z < 0.5333)$	M1	6, 5.2, 1.5 substituted into \pm standardisation formula, condone 1.5 ² , continuity correction ± 0.5
	0.703	A1	
		2	
5(b)	$z_1 = \frac{3-\mu}{\sigma} = -1.329$	B1	$1.328 < z_1 \leq 1.329$ or $-1.329 \leq z_1 < -1.328$
	$z_2 = \frac{8-\mu}{\sigma} = 0.878$	B1	$0.877 < z_2 \leq 0.878$ or $-0.878 \leq z_2 < -0.877$
	Solve to find at least one unknown: $\frac{3-\mu}{\sigma} = -1.329$ $8-\mu = 0.878$	M1	Use of the ± standardisation formula once with μ , σ , a <i>z</i> -value (not 0.8179, 0.7910, 0.5367, 0.5753, 0.19, 0.092 etc.) and 3 or 8, condone continuity correction but not σ^2 or $\sqrt{\sigma}$
	$\sigma = 0.878$	M1	Use either the elimination method or the substitution method to solve their two equations in μ and σ
	$\sigma = 2.27, \mu = 6.01$	A1	$2.26 \leqslant \sigma \leqslant 2.27, 6.01 \leqslant \mu \leqslant 6.02$
		5	

Question	Answer	Marks	Guidance
5(c)	$[P(Z < -1) + P(Z > 1)] \Phi(1) - \Phi(-1) =$	M1	Identify 1 and -1 as the appropriate <i>z</i> -values.
	$= 2 - 2 \Phi(1)$ = 2 - 2 × 0.8413	M1	Calculating the appropriate area from stated phis of <i>z</i> -values which must be \pm the same number
	0.3174	A1	Accept AWRT 0.317
	Number of leaves: $2000 \times 0.3174 = 634.8$ so 634 or 635	B1 FT	FT <i>their</i> 4 s.f. (or better) probability, final answer must be positive integer no approximation or rounding stated
		4	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(a)	$0.6 + 0.4 \times 0.3 = 0.72$ or $1 - 0.4 \ge 0.72 = 0.72$	B1	Clear identified calculation AG
		1	
6(b)	$0.72 \times (0.4 + 0.6 \times 0.2)$	M1	$0.72 \times u, 0 < u < 1$
		M1	$v \times (0.4 + 0.6 \times 0.2)$, or $v \times (1 - 0.6 \times 0.8) \ 0 < v \le 1$ no additional terms SC B1 for $0.72 \times (0.4 + 0.12)$ or $0.72 \times (1 - 0.48)$
	0.3744	A1	WWW. Condone 0.374. SC B1 for 0.3744 only
		3	
	Alternative method for question 6(b)		
	[p(P1P2) + p(F1P1P2) + p(P1F2P2) + p(F1P1F2P2)] =	M1	Any two terms unsimplified and correct
	$0.6 \times 0.4 + 0.4 \times 0.3 \times 0.4 + 0.6 \times 0.6 \times 0.2 + 0.4 \times 0.3 \times 0.6 \times 0.2$	M1	Summing 4 appropriate scenarios by listing or on a tree diagram SC B1 for 0.24 + 0.048 + 0.072 + 0.0144
	0.3744	A1	WWW. Condone 0.374. SC B1 for 0.3744 only
		3	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(c)	$P(\text{fails first or second level} \text{finishes game}) = \frac{P(\text{fails first or second level} \cap \text{finishes game})}{their(\mathbf{b})}$	M1	Either $0.6 \times 0.6 \times 0.2$ or $0.4 \times 0.3 \times 0.4$ seen Condone 0.072 or 0.048 if seen in (b)
	Numerator = P(S SF) + P(FS S) = $0.6 \times 0.6 \times 0.2 + 0.4 \times 0.3 \times 0.4 = 0.072 + 0.048 = 0.12$	A1	Both correct accept unsimplified expression. No additional terms
	Required probability = $\frac{0.12}{their(\mathbf{b})}$	M1	$\frac{Their \text{ sum of two 3-term probabilities as numerator}}{their (b) \text{ or correct}}$
	0.321 or $\frac{25}{78}$	A1	0.3205
		4	

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/52 May/June 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific N	Marking Principles
------------------------	--------------------

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (ISW).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded . (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. .
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$\sum x - \sum 200 = \sum (x - 200)$	B1	Forming a correct 3-term (linear) equation from $\sum x$, $\sum 200$ and $\sum (x - 200)$. Accept 6846 - 200 <i>n</i> = 446 OE. Condone 1 sign error.
	$\sum 200 = 200n$	B1	SOI
	[200n = 6846 - 446 = 6400] $n = 32$	B 1	WWW
		3	

Question	Answer							Marks	Guidance
2(a)	x	2	3	4	5	6		B1	Table with correct <i>X</i> values and at least one probability. Condone any additional <i>X</i> values if probability stated as 0.
	р	$\frac{1}{36}$	$\frac{4}{36}$	$\frac{10}{36}$	$\frac{12}{36}$	$\frac{9}{36}$		B 1	3 correct probabilities linked with correct outcomes. Accept 3 sf decimals.
		0.02778	0.1111	0.2778	0.3333	0.25		B1	2 further correct probabilities linked with correct outcomes. Accept 3 sf decimals.
								3	SC B1 for 5 probabilities $(0 that sum to 1 with less than 3 correct probabilities.$

Question	Answer	Marks	Guidance							
2(b)	If method FT from <i>their</i> incorrect (a), expressions for $E(X)$ and $Var(X)$ must be seen at the stage shown in bold (or less simplified) in the scheme with all probabilities < 1.									
	$\left[E(X) = \frac{1 \times 2 + 4 \times 3 + 10 \times 4 + 12 \times 5 + 9 \times 6}{36} = \right] \frac{2 + 12 + 40 + 60 + 54}{36}$	M1	Accept unsimplified expression. May be calculated in variance. FT <i>their</i> table with 4 or more probabilities summing to $0.999 \leq \text{total} \leq 1 \ (0$							
	$\left[\operatorname{Var}(X) = \frac{1 \times 2^2 + 4 \times 3^2 + 10 \times 4^2 + 12 \times 5^2 + 9 \times 6^2}{36} - \left(their \operatorname{E}(X) \right)^2 = \right]$ $\frac{1 \times 4 + 4 \times 9 + 10 \times 16 + 12 \times 25 + 9 \times 36}{36} - \left(their \frac{14}{3} \right)^2$ $\left[\frac{4 + 36 + 160 + 300 + 324}{36} - \left(their \frac{14}{3} \right)^2 \right]$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table with 3 or more probabilities $(0 which need not sum to 1 and the calculation in bold (or less simplified) seen.$							
	$E(X) = \frac{168}{36}, \frac{14}{3}, 4.67$ $Var(X) = \frac{10}{9}, 1\frac{1}{9}, 1.11, \frac{1440}{1296}$	A1	Answers for $E(X)$ and $Var(X)$ must be identified. E(X) may be identified by correct use in Variance. Condone E, V, μ , σ^2 etc. If M0 earned SC B1 for identified correct final answers.							
		3								

Question	Answer	Marks	Guidance
3(a)	Median = 0.355	B1	Identified condone Q2.
	[IQR =] 0.366 - 0.348	M1	$0.365 \leq UQ \leq 0.369 - 0.343 \leq LQ \leq 0.349$. Subtraction may be implied by answer.
	0.018	A1	If $0/3$ scored SC B1 for figs Median = 355 IQR = 18.
		3	
3(b)	Box-and-whisker plot on provided grid	B1	All 5 key values for <i>B</i> plotted accurately in standard format using <i>their</i> scale. Labelled <i>B</i> . Check accuracy in the middle of vertical line.
		B1 FT	All 5 key values for A , FT from part 3(a) , plotted in standard format accurately using <i>their</i> scale. Labelled A . Check accuracy in the middle of vertical line.
	Company A 33 34 35 36 37 38 39 Diameter (m ×10 ⁻³)	B1	Whiskers not through box for both, not drawn at corners of boxes, single linear scale with at least 3 values stated, covering at least 0.34 to 0.38 and labelled diameter (d etc) and cm. Accept as a title.
		3	If both plots attempted and plot(s) not labelled, SC B1 for at least 1 fully correct set of values plotted.
3(c)	A comparison in context	B1	Single comment comparing spread or central tendency in context. Must reference either diameter or pipes. Not a simple numerical comparison of statistical values such as median, range, IQR or min/max.
		1	

Question	Answer	Marks	Guidance
4(a)	$[P(1.98 < X < 2.03) =]P(\frac{1.98 - 2.02}{0.03} < z < \frac{2.03 - 2.02}{0.03})$ [= P(-1.333 < z < 0.333)]	M1	Use of ±standardisation formula once with 2.02, 0.03 and either 1.98 or 2.03 substituted appropriately. Condone 0.03^2 and continuity correction ±0.005, not $\sqrt{0.03}$.
	$[= \Phi(0.333) - (1 - \Phi(1.333))]$ = 0.6304 + 0.9087 - 1	M1	Calculating the appropriate probability area from <i>their</i> z-values. (or $0.6304 - 0.09121$ or $(0.9087 - 0.5) + (0.6304 - 0.5)$ etc)
	0.539	A1	$0.539 \leq z < 0.5395$ Only dependent upon 2nd M mark. If M0 scored SC B1 for $0.539 \leq z < 0.5395$.
		3	
4(b)	$[P(X > 2.6) = \frac{134}{5000} = 0.0268]$ [P(X<2.6) = 1 - 0.0268 =] 0.9732	B1	0.9732 or $\frac{4866}{5000}$ or $\frac{2433}{2500}$ seen.
	$\frac{2.6-2.55}{\sigma} = 1.93$	M1	Use of ±standardisation formula with 2.6 and 2.55 substituted, no σ^2 , $\sqrt{\sigma}$ or continuity correction.
		M1	<i>Their</i> standardisation formula with values substituted equated to <i>z</i> -value which rounds to ± 1.93 .
	$\sigma = 0.0259$	A1	AWRT 0.0259 or $\frac{5}{193}$.
		Λ	
		4	

Question	Answer	Marks	Guidance	
5(a)	$[P(10, 11, 12) =]$ ${}^{12}C_{10}0.72^{10}0.28^{2} + {}^{12}C_{11}0.72^{11}0.28^{1} + {}^{12}C_{12}0.72^{12}0.28^{0}$	M1	One term ${}^{12}C_x p^x (1-p)^{12-x}$, for $0 < x < 12, 0 < p < 1$.	
	= 0.193725 + 0.0905726 + 0.0194084	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.	
	0.304	B1	Final answer $0.3036 .$	
	Alternative method for question 5(a)			
	[1 - P(0,1,2,3,4,5,6,7,8,9) =] 1 - (¹² C ₀ 0.72 ⁰ 0.28 ¹² + ¹² C ₁ 0.72 ¹ 0.28 ¹¹ + ¹² C ₂ 0.72 ² 0.28 ¹⁰ +	M1	One term ${}^{12}C_x p^x (1-p)^{12-x}$, for $0 < x < 12, 0 < p < 1$.	
	${}^{12}C_3 0.72^3 0.28^9 + {}^{12}C_4 0.72^4 0.28^8 + {}^{12}C_5 0.72^5 0.28^7 + \\ {}^{12}C_6 0.72^6 0.28^6 + {}^{12}C_7 0.72^7 0.28^5 + {}^{12}C_8 0.72^8 0.28^4 + \\ {}^{12}C_9 0.72^9 0.28^3)$	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.	
	0.304	B1	Final answer $0.3036 .$	
		3		
5(b)	Mean = $[0.52 \times 90 =]46.8$, var = $[0.52 \times 0.48 \times 90] = 22.464$	B1	46.8 and 22.464 or 22.46 seen, allow unsimplified, (4.739 < $\sigma \leq 4.740$ imply correct variance).	
	$[P(X < 40) =] P\left(z < \frac{39.5 - 46.8}{\sqrt{22.464}}\right)$	M1	Substituting <i>their</i> mean and <i>their</i> variance into ±standardisation formula (any number for 39.5), not σ^2 , $\sqrt{\sigma}$.	
		M1	Using continuity correction 39.5 or 40.5 in <i>their</i> standardisation formula.	
	= [P(Z < -1.540)] = 1 - 0.9382	M1	Appropriate area Φ , from final process, must be probability.	
	0.0618	A1	$0.06175 \leqslant p \leqslant 0.0618$	
		5		

Question	Answer	Marks	Guidance
6(a)	$\left[\frac{9!}{2!2!}\right] 90720$	B1	
		1	
6(b)	Method 1 Arrangements Cs at ends – Arrangements Cs at ends and Os t	ogether	
	[Os not together =] $\frac{7!}{2!} - 6!$ [= 2520 - 720]	M1	$\frac{w!}{2!} - y, w = 6, 7 y \text{ an integer.}$
			Condone $2 \times \left(\frac{w!}{2!}\right) - y$.
		M1	a - 6! or $a - 720$, a an integer resulting in a positive answer.
	1800	A1	
	Method 2 identified scenarios R ^ ^ ^ R		
	[Os not together =] 5! $\times \frac{6 \times 5}{6}$ =	M1	$5! \times b, b \text{ integer } >1.$
	2!	M1	$c \times \left(\frac{6 \times 5}{2!} \operatorname{or}^{6} C_{2} \operatorname{or}^{\frac{6}{2}} \frac{1}{2!} \operatorname{or}^{15}\right), c \text{ integer} > 1.$
	1800	A1	
		3	

Question	Answer	Marks	Guidance		
6(c)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	Correct outcome/value for 1 identified scenario. Accept unsimplified. WWW		
		M1	Add 5 or 6 values of appropriate scenarios only, no additional incorrect scenarios, no repeated scenarios. Accept unsimplified. Condone use of permutations.		
	[Total =] 50	A1			
		3			
6(d)	Both Os in group with a C ${}^{5}C_{2} = 10$ Both Os in group without a C ${}^{5}C_{2} \times {}^{3}C_{2} = 30$ One O in a C group, one not ${}^{5}C_{1} \times {}^{4}C_{2} = 30$ One O with each C $({}^{5}C_{1} \times {}^{4}C_{1}) \div 2! = 10$	B1	A correct scenario calculated accurately. Accept unsimplified.		
		M1	Add 3 or 4 correct scenario values, no incorrect scenarios, accept repeated scenarios. Accept unsimplified.		
	[Total =] 80	A1			
	Alternative method for question 6(d)				
	$\begin{array}{l} CCO \ O^{\wedge \wedge \wedge \wedge} = {}^{5}C_{2} = 10 \\ CC^{\wedge} \ O^{\wedge \wedge} = {}^{5}C_{1} \times {}^{4}C_{2} = 30 \\ CC^{\wedge} \ OO^{\wedge} \ \wedge \wedge \wedge = {}^{5}C_{1} \times {}^{4}C_{1} = 20 \end{array}$	B1	A correct scenario calculated accurately. Accept unsimplified.		
	Total ways of making three groups $\frac{{}^{9}C_{6} \times {}^{6}C_{3}}{2 \times 2 \times 3} = 140$ 140 – (<i>their</i> 10+ <i>their</i> 30+ <i>their</i> 20)	M1	Total subtract 2 or 3 correct scenario values, no incorrect scenarios. Accept unsimplified.		
	80	A1			
		3			

Question	Answer	Marks	Guidance
7(a)	YYY: $\frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} = \frac{60}{1320}, \frac{1}{22}$	M1	Either $12 \times 11 \times 10$ in denominator or $a \times (a-1) \times (a-2)$, $a = 5, 4, 3$ in numerator seen in at least one expression.
	OOO: $\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} = \frac{24}{1320}, \frac{1}{55}$	A1	One expression $\frac{a}{12} \times \frac{a-1}{11} \times \frac{a-2}{10}$, $a = 5, 4, 3$ (consistent in
	RRR: $\frac{3}{12} \times \frac{2}{11} \times \frac{1}{10} = \frac{6}{1320}, \frac{1}{220}$		expression). Correct order of values in the numerator is essential.
		M1	$\frac{5}{12} \times \frac{4}{d} \times \frac{3}{e} + \frac{4}{12} \times \frac{3}{d} \times \frac{2}{e} + \frac{3}{12} \times \frac{2}{d} \times \frac{1}{e}, \text{ either } d = 11, e = 10 \text{ or}$ d = 12, e = 12.
			Condone $\frac{1}{22} + \frac{1}{55} + \frac{1}{220}$ OE
	$[\text{Total} =]\frac{90}{1320}, \frac{3}{44}, 0.0682$	A1	0.06818. Dependent only upon the second M mark.

Question	Answer	Marks	Guidance
7(a)	Alternative method for question 7(a)		
	YYY: $\frac{{}^{5}C_{3}}{{}^{12}C_{3}} = \frac{10}{220}, \frac{1}{22}$	M1	Either ${}^{12}C_3$ in denominator or ${}^{a}C_3$ in numerator seen in at least one expression.
	OOO: $\frac{{}^{4}C_{3}}{{}^{12}C_{3}} = \frac{4}{220}, \frac{1}{55}$	A1	One expression $\frac{{}^{a}C_{3}}{{}^{12}C_{3}}a = 5, 4, 3$
	RRR: $\frac{C_3}{^{12}C_3} = \frac{1}{220}$	M1	$\frac{{}^{5}C_{3}}{{}^{12}C_{3}} + \frac{{}^{4}C_{3}}{{}^{12}C_{3}} + \frac{{}^{3}C_{3}}{{}^{12}C_{3}}$
			Condone $\frac{1}{22} + \frac{1}{55} + \frac{1}{220}$ OE
	$[\text{Total} =]\frac{90}{1320}, \frac{3}{44}, 0.0682$	A1	0.06818. Dependent only upon the second M mark.
		4	
7(b)	$[P(YYY \mid all same colour) =] \frac{60}{1320} \div \frac{90}{1320}$	M1	$\frac{\text{their P(YYY) or } \frac{60}{1320} \text{ or } \frac{1}{22}}{\text{their 7(a) or } \frac{90}{1320} \text{ or } \frac{3}{44}}$
	$\frac{2}{3}$, 0.667	A1	OE
		2	

Question	Answer	Marks	Guidance
7(c)	In each method, the M mark requires the scenarios to be identifiable. This may be implied by a list of scenarios and then the calculations which will be assumed to be in the same order. A correct value/expression will be condoned as identifying the connected scenario.		
	Method 1		
	$[1 - \text{no orange} =]1 - \frac{8}{12} \times \frac{7}{11} \times \frac{6}{10} \text{ or } 1 - \frac{{}^{8}C_{3}}{{}^{12}C_{3}} = 1 - \frac{14}{55}$	B1	$\frac{\frac{8}{12} \times \frac{7}{11} \times \frac{6}{10} \text{ or } \frac{{}^{8}C_{3}}{{}^{12}C_{3}} \text{ seen, condone } \frac{336}{1320} \text{ or } \frac{56}{220} \text{ only, not} \\ OE.$
		M1	$1 - \frac{f}{12} \times \frac{g}{d} \times \frac{h}{e}$ Either $d = 11, e = 10$ or $d = 12, e = 12$ or $1 - \frac{{}^{8}C_{3}}{{}^{12}C_{3}}$. Condone $1 - \frac{14}{55}$ OE (not $\frac{41}{55}$).
	$\frac{41}{55}$	A1	$0.745 \le p \le 0.74545$ If M0 scored SC B1 $0.745 \le p \le 0.74545$.

Question	Answer	Marks	Guidance
7(c)	Method 2		
	$\left(\frac{4}{3}\times\frac{3}{2}\times\frac{2}{2}+\frac{4}{3}\times\frac{5}{3}\times\frac{4}{3}+\right)$	B 1	P(1 O)or P(2 O) correct, accept unsimplified.
	$P(1 \text{ O}) = \begin{pmatrix} 12 & 11 & 10 & 12 & 11 & 10 \\ & 2 \times \frac{4}{12} \times \frac{5}{11} \times \frac{3}{10} \end{pmatrix} \times 3 = \frac{672}{1320}$	M1	3 correct scenarios added, with at least one 3-term product of form $\frac{f}{d} \times \frac{g}{d} \times \frac{h}{d}$ seen either $d = 11$, $e = 10$ or $d = 12$, $e = 12$.
	$P(2O) = \frac{4}{12} \times \frac{3}{11} \times \frac{8}{10} \times 3 = \frac{288}{1320}$		12 d e
	$P(3O) = \frac{24}{1320}$		
	$[\text{Total} =] \frac{984}{1320} = \frac{41}{55}, 0.745$	A1	$0.745 \le p \le 0.74545$ If M0 scored SC B1 $0.745 \le p \le 0.74545$.
	Method 3		
$O Y R = {}^{4}C_{1} >$	O Y R = ${}^{4}C_{1} \times {}^{5}C_{1} \times {}^{3}C_{1} = 60$	B1	Number of ways either 1 or 2 orange sweets obtained correctly (112 or 48). Accept unsimplified
	O R R = ${}^{4}C_{1} \times {}^{3}C_{2} = 12$ O V V = ${}^{4}C_{2} \times {}^{5}C_{2} = 40$		Note ${}^{4}C_{1} \times {}^{8}C_{2} = 112$ or ${}^{4}C_{2} \times {}^{8}C_{1} = 48$ are correct alternatives.
	$O O Y = {}^{4}C_{2} \times {}^{5}C_{1} = 30$	M1	3 correct scenarios (1, 2 or 3 orange sweets) added on $\frac{12}{3}$
	$O O R = {}^{4}C_{2} \times {}^{3}C_{1} = 18$		numerator, denominator ¹² C ₃
	$O O O = {}^{4}C_{3} = 4$ Total = 164		
	Prob = $\frac{164}{{}^{12}C_3}$		
	$\frac{984}{1320} = \frac{41}{55}, 0.745$	A1	$0.745 \le p \le 0.74545$ If M0 scored SC B1 $0.745 \le p \le 0.74545$.

May/June 2	2022
------------	------

Question	Answer	Marks	Guidance
7(c)	Method 4		
	$P(R R O) = \frac{3}{12} \times \frac{2}{11} \times \frac{4}{10} = \frac{1}{55}$	B1	$P(R^{\wedge}) = \frac{17}{110}$ or $P(Y^{\wedge}) = \frac{17}{66}$. Accept unsimplified.
	$P(R O) = \frac{3}{12} \times \frac{4}{11} = \frac{1}{11}$	M1	3 correct scenarios added, with at least one 3-term product of
	$P(R Y O) = \frac{3}{12} \times \frac{5}{11} \times \frac{4}{10} = \frac{1}{22}$		form $\frac{f}{12} \times \frac{g}{d} \times \frac{h}{e}$ seen, either $d = 11$, $e = 10$ or $d = 12$, $e = 12$.
	$P(O) = \frac{4}{12} = \frac{1}{3}$		
	$P(Y R O) = \frac{5}{12} \times \frac{3}{11} \times \frac{4}{10} = \frac{1}{22}$		
	$P(Y O) = \frac{5}{12} \times \frac{4}{11} = \frac{5}{33}$		
	$P(Y Y O) = \frac{5}{12} \times \frac{4}{11} \times \frac{4}{10} = \frac{2}{33}$		
	$\frac{984}{1320} = \frac{41}{55}, \ 0.745$	A1	$0.745 \le p \le 0.74545$ If M0 scored SC B1 $0.745 \le p \le 0.74545$.

May/	June	2022	
1 Iu ji	June	2022	

Question	Answer	Marks	Guidance
7(c)	Method 5		
	P(O) $=\frac{4}{12} = \frac{1}{3}$		P(^ O) = $\frac{8}{33}$ or P(^ O) = $\frac{28}{165}$. Accept unsimplified.
	$P(^{O}) = \frac{8}{12} \times \frac{4}{11} = \frac{8}{33}$ $P(^{O}) = \frac{8}{12} \times \frac{7}{11} \times \frac{4}{10} = \frac{28}{165}$	M1	3 correct scenarios added, with at least one 3-term product of form $\frac{f}{12} \times \frac{g}{d} \times \frac{h}{e}$ seen, either $d = 11$, $e = 10$ or $d = 12$, $e = 12$ with correct numerator.
	$\frac{984}{1320} = \frac{41}{55}, \ 0.745$		$0.745 \le p \le 0.74545$ If M0 scored SC B1 $0.745 \le p \le 0.74545$.
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/53 May/June 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Matł	nsematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (ISW).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column.
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	Cumulative frequency (cf) graph	M1	At least 3 points plotted accurately at class upper end points (25,16) (50,44) (75,86) (100,104) (150, 132) (200, 150). Linear cf scale $0 \le cf \le 150$ and linear time scale $0 \le time(mins) \le 200$ with at least 3 values identified on each axis.
		A1	All points plotted correctly, curve drawn (within tolerance) and joined to (0,0). Axes labelled cumulative frequency (cf), time (<i>t</i>) and minutes (min), or a suitable title.
		2	
1(b)	Line from cumulative frequency = 30 to meet graph at t is between 37.5 and 42	B1 FT	Not from wrong working. Must be an increasing cumulative frequency graph.
		1	

Question	Answer	Marks	Guidance
2(a)	$\left[\frac{123.4}{20}\right] = \left[6.17\right]$	B1	Accept 6 m 17 cm, $\frac{1234}{200}$.
		1	
2(b)	$\frac{10\text{th} + 11\text{th}}{2} = \frac{5.4 + 5.5}{2} = 5.45 \text{ (m)}$	B1	Accept 5 m 45 cm.
		1	
2(c)	The mean is unduly influenced by an extreme value, 19.4.	B1	Comment must be within context.
		1	

Question	Answer						Marks	Guidance
3(a)	$k = \frac{1}{18} (4k + k + 4k + 9k = 18k = 1)$						B1	SOI
	x	-2	1	2	3		M1	Table with correct <i>x</i> values and at least one probability accurate using <i>their k</i> .
	P(X=x)	$\frac{4}{18}$	$\frac{1}{18}$	$\frac{4}{18}$	$\frac{9}{18}$			Values need not be in order, lines may not be drawn, may be vertical, x and $P(X=x)$ may be omitted. Condone any additional X values if probability
								stated as 0.
							A1	Remaining probabilities correct.
							3	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(b)	$\begin{bmatrix} E(X) = \frac{4 \times -2 + 1 \times 1 + 4 \times 2 + 9 \times 3}{18} = \end{bmatrix}$ $\frac{-8 + 1 + 8 + 27}{18}$	M1	-8k + k + 8k + 27k May be implied by use in Variance. Accept unsimplified expression. FT <i>their</i> table if probabilities sum to 1 or 0.999. SC B1 28k.
	$\left[\operatorname{Var}(X) = \frac{4 \times (-2)^2 + 1 \times 1^2 + 4 \times 2^2 + 9 \times 3^2}{18} - \left(their \operatorname{E}(X)\right)^2 = \right]$ $= \frac{16 + 1 + 16 + 81}{18} - \left(their \frac{28}{18}\right)^2$	M1	$16k + k + 16k + 81k - (their mean)^{2}$ FT <i>their</i> table even if probabilities not summing to 1. Note: If table is correct, $\frac{114}{18} - (their E(X))^{2}$ M1. SC B1 114k - (their mean)^{2}.
	$E(X) = \frac{14}{9}, 1\frac{5}{9}, 1.56, Var(X) = \frac{317}{81}, 3\frac{74}{81}, 3.91$	A1	Answers for $E(X)$ and $Var(X)$ must be identified. 3.91 $\leq Var(X) \leq 3.914$
		3	

Question	Answer	Marks	Guidance
4(a)	$\left[\left(\frac{5}{6}\right)^7 \times \frac{1}{6} = \right] 0.0465, \frac{78125}{1679616}$	B1	$0.0465 \leq p < 0.04652$
		1	

9709/53

Question	Answer	Marks	Guidance
4(b)	$P(X < 6) = 1 - \left(\frac{5}{6}\right)^5 \text{ or } \frac{1}{6} + \left(\frac{5}{6}\right)\left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^2\left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^3\left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^4\left(\frac{1}{6}\right)$	M1	$1-p^n, 0 terms p \times (1-p)^n for n = 0, 1, 2, 3, 4(5).$
	$0.598, \frac{4651}{7776}$	A1	
		2	
4(c)	[Probability of total less than 4 is] $\frac{3}{36}$ or $\frac{1}{12}$	B1	SOI
	$[1 - P(0, 1, 2)] = 1 - \left({}^{10}C_0 \left(\frac{1}{12}\right)^0 \left(\frac{11}{12}\right)^{10} + {}^{10}C_1 \left(\frac{1}{12}\right)^1 \left(\frac{11}{12}\right)^9 + {}^{10}C_2 \left(\frac{1}{12}\right)^2 \left(\frac{11}{12}\right)^8 \right)$	M1	One term ${}^{10}C_x p^x (1-p)^{10-x}$, for $0 < x < 10$, $0 .$
	1 - (0.418904 + 0.380822 + 0.155791)	A1 FT	Correct expression. Accept unsimplified.
	0.0445	A1	$0.04448 \le p \le 0.0445$
		4	

9709/53

Question	Answer	Marks	Guidance
5(a)	$[P(142 < X < 205)] = P\left(\frac{142 - 170}{25} < z < \frac{205 - 170}{25}\right)$	M1	Use of \pm standardisation formula once substituting 170, 25 and either 142 or 205 appropriately Condone 25 ² and continuity correction ± 0.5 .
	P(-1.12 < z < 1.4)	A1	Both correct. Accept unsimplified.
	$\Phi(1.4) - (1 - \Phi(1.12)) = 0.9192 + 0.8686 - 1$	M1	Calculating the appropriate area from stated phis of <i>z</i> -values.
	0.788	A1	AWRT, not from wrong working
		4	
5(b)	P(X > 205) = 1 - 0.9192 = 0.0808	B1 FT	Correct or FT from part 5(a).
	$(0.0808 \times 0.30 + their 0.788 \times 0.24) \times 20000$	M1	Correct or <i>their</i> $0.0808 \times 0.30 \times k + their$ $0.788 \times 0.24 \times k$, <i>k</i> positive integer.
	[\$]4266.24	A1	$4265 < \text{income} \leq 4270$, not from wrong working
		3	
5(c)	$[P(Z > \frac{w - 182}{w}) = 0.72]$	B1	$0.5828 \le z \le 0.583$ or $-0.583 \le z \le -0.5828$ seen.
	$\frac{w - 182}{20} = -0.583$	M1	182 and 20 substituted in \pm standardisation formula, no continuity correction, not σ^2 , $\sqrt{\sigma}$, equated to a <i>z</i> -value.
	w=170	A1	$170 \leqslant w < 170.35$
		3	

Question	Answer	Marks	Guidance
6(a)	1 st 2 nd 3 rd	B1	First and second jumps correct with probabilities and outcomes identified.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	Third jump correct with probabilities and outcomes identified.
		2	
6(b)	SFF $0.2 \times 0.7 \times 0.9 = 0.126$ FSF $0.8 \times 0.1 \times 0.7 = 0.056$ FFS $0.8 \times 0.9 \times 0.1 = 0.072$	M1	Two or three correct 3 factor probabilities added, correct or FT from part $6(a)$. Accept unsimplified.
	[Total = probability of 1 success =] $0.254 \left(\frac{127}{500}\right)$	A1	Accept unsimplified.
	[Probability of at least 1 success = $1 - 0.8 \times 0.9 \times 0.9 =]0.352 \left(\frac{44}{125}\right)$	B1 FT	Accept unsimplified.
	P(exactly 1 success at least 1 success) = $\frac{their 0.254}{their 0.352}$	M1	Accept unsimplified.
	$0.722, \frac{127}{176}$	A1	0.7215
		5	
May/June 2022

Question	Answer	Marks	Guidance
6(c)	$\begin{array}{l} 0.8 \times 0.9 \times 0.9 \times 0.1 \times 0.3 \times 0.3 = 0.005832 [FFFSSS] \\ 0.2 \times 0.3 \times 0.3 \times 0.7 \times 0.9 \times 0.9 = 0.010206 [SSSFFF] \end{array}$	M1	$a \times b \times c \times d \times e \times f$ FT from <i>their</i> tree diagram. Either <i>a</i> , <i>b</i> and <i>c</i> all = 0.8 or 0.9 (at least one of each) and <i>d</i> , <i>e</i> and <i>f</i> all = 0.1 or 0.3 (at least one of each). Or <i>a</i> , <i>b</i> , <i>c</i> = 0.2 or 0.3 (at least one of each) and <i>d</i> , <i>e</i> , <i>f</i> = 0.7 or 0.9 (at least one of each).
		A1	Either correct. Accept unsimplified.
	[Total =] 0.0160[38]	A1	
		3	

Question	Answer	Marks	Guidance
7(a)	$^{12}C_5 \times ^7C_4 [\times ^3C_3]$	M1	$^{12}C_r \times q, r = 3, 4, 5 \ q \text{ a positive integer} > 1,$ no + or
		M1	$s = 3, 4, 5; t = 3, 4, 5 \neq s; u = 3, 4, 5 \neq s, t$
	Alternative method for question 7(a)		
	12!	M1	12! ÷ by a product of three factorials.
	5!×3!×4!	M1	$\frac{n!}{5 \Join 3 \trianglerighteq 4!}$
	[792 × 35 =] 27 720	A1	CAO
		3	

Question	Answer	Marks	Guidance
7(b)	4! (Lizo) × 6! (Kenny) × 2! (Martin) × 2! (Nantes)	M1	Product involving at least 3 of 4!, 6!, 2!, 2!
	× 3! (orders of K, M and N)	M1	$w \times 3!$, w integer > 1.
	414 720	A1	WWW CAO
		3	
7(c)	$^{7}C_{4} \text{ (adults)} \times {}^{4}C_{1} \times {}^{3}C_{1}$	M1	$^{7}C_{4} \times b$, b integer > 1 no + or – .
	420	A1	
		2	
7(d)	K not L ${}^{5}C_{3} \times {}^{8}C_{3} = 560$ L not K ${}^{5}C_{3} \times {}^{8}C_{3} = 560$ L and K ${}^{5}C_{2} \times {}^{8}C_{3} = 560$	M1	⁸ C ₃ (or ⁸ P ₃) × <i>c</i> for one of the products or ⁵ C ₃ (or ⁵ P ₃)× <i>c</i> , positive integer >1 for first 2 products only.
		M1	Add 2 or 3 correct scenarios only values, no additional incorrect scenarios, no repeated scenarios. Accept unsimplified.
	[Total or Difference=] 1680	A1	
	Alternative method for question 7(d)		
	Total no of ways – neither L nor K Total 7 C \times 8 C = 1000	M1	${}^{8}C_{3} \times c, c \text{ a positive integer }>1.$
	Neither K nor $L = {}^{5}C_{4} \times {}^{8}C_{3} = 280$	M1	Subtracting the number of ways with neither from their total number of ways.
	[Total or Difference=] 1680	A1	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

May/June 2022

Question	Answer	Marks	Guidance
7(d)	Alternative method for question 7(d)		
	Subtracting K and L from sum of K and L	M1	${}^{8}C_{3} \times c$, <i>c</i> a positive integer >1.
	$\begin{array}{l} K & {}^{6}C_{3} \times {}^{6}C_{3} = 1120 \\ L & {}^{6}C_{3} \times {}^{8}C_{3} = 1120 \\ L \text{ and } K & {}^{5}C_{2} \times {}^{8}C_{3} = 560 \\ 1120 + 1120 - 560 = 1680 \end{array}$	M1	Subtracting number of ways with both from sum of number of ways with K and number of ways with L.
	[Total or Difference=] 1680	A1	
		3	

Cambridge International AS & A Level

MATHEMATICS

9709/52 February/March 2022

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2022 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Math	ematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question				An	swer		Marks	Guidance
1(a)	X	-2	-1	0	1	2	B1	Table with correct X values and at least one probability $0 . Condone any additional X values if probability stated as 0. No repeated X values.$
		$\frac{1}{16}$	$\frac{3}{16}$	$\frac{5}{16}$	$\frac{5}{16}$	$\frac{2}{16}$	B1	3 correct probabilities linked with correct outcomes, may not be in table.
		0.0625	0.1875	0.3125	0.3125	0.125	B1	2 further correct probabilities linked with correct outcomes, may not be in table No repeated X values. SC if less than 3 correct probabilities seen, award SCB1 Sum of <i>their</i> probabilities, $0 , of 4,5 or 6 Xvalues = 1 (condone summing to 1±0.01 or better).$
							3	
1(b)	$\boxed{ \left[\frac{1}{16} \times -2^2 + \frac{3}{16} \times -1^2 \left(+\frac{5}{16} \times 0^2\right) + \frac{5}{16} \times 1^2 + \frac{2}{16} \times 2^2 - \left(\frac{1}{4}\right)^2\right]} \\ \frac{1 \times 4 + 3 \times 1 + 5 \times 0 + 5 \times 1 + 2 \times 4}{16} - 0.25^2}$							Appropriate variance formula using $(E(X))^2$ value, accept unsimplified. FT <i>their</i> table with at least 3 different X values even if probabilities not summing to 1, $0 .Condone 1 error providing all probabilities <1 and 0.25^2 used$
	$\left[=\frac{5}{4}-\right]$	$\frac{1}{16} = \boxed{\frac{19}{16}},$, 1.1875				A1	Condone 1.188 or 1.19 WWW
							2	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
2(a)	[P(>2) = 1 - P(0,1,2) =] 1 - (⁷ C ₀ 0.18 ⁰ 0.82 ⁷ + ⁷ C ₁ 0.18 ¹ 0.82 ⁶ + ⁷ C ₂ 0.18 ² 0.82 ⁵)	M1	One term ${}^{7}C_{x} p^{x} (1-p)^{7-x}, 0$
	= 1 - (0.249285 + 0.383048 + 0.252251) = 1 - 0.88458	A1	Correct unsimplified expression or better Condone omission of brackets if recovered
	0.115	B1	WWW. $0.115 \le p < 0.1155$ not from wrong working
		3	
2(b)	$[P(at least 1 day of rain) = 1 - P(0) = 1 - (0.82)^7 =] 0.7507$	B1	AWRT 0.751 seen
	$[P(exactly 2 periods) =] 0.7507^2 \times (1 - 0.7507) \times 3$	M1	FT <i>their</i> $1 - p^7$ or <i>their</i> 0.7507 if identified, not 0.18, 0.82 Accept $\times^3 C_r$, r=1,2 or $\times^3 P_1$ for $\times 3$ Condone $\times 2$
	0.421	A1	Accept $0.421 \le p \le 0.4215$ SC B1 if 0/3 scored for final answer only $0.421 \le p \le 0.4215$
		3	

Question			Ans	wer		Marks	Guidance	
3(a)		[I	1	1	1 1	M1	At least 4 frequency densities calculated
	Class Width	30	15	20	10	25	A1	All heights correct on graph
	Frequency Density	0.7	2	3.4	8.6	1.8	B1	Bar ends at 0.5, 30.5, 45.5, 65.5, 75.5, 100.5
								(at axis), 5 bars drawn, condone 0 in first bar $0.5 \leq \text{time axis} \leq 100.5$, linear scale with at least 3 values indicated.
							B1	Axes labelled: Frequency density (fd), time (t) and mins (or appropriate title). Linear fd scale, with at least 3 values indicated $0 \le \text{fd} \text{ axis} \le 8.6$
							4	
3(b)	66 – 75						B1	Condone 65.5 – 75.5
							1	
3(c)	Distribution	is not symm	etrical				B1	Or skewed, ignore nature of skew
							1	

Question	Answer	Marks	Guidance
4(a)	$P(46 < X < 62) = P\left(\frac{46 - 55}{6} < Z < \frac{62 - 55}{6}\right)$	M1	46 or 62, 55 and 6 substituted into \pm standardisation formula once. Condone 6^2 and continuity correction ± 0.5
	$= P\left(-1.5 < Z < \frac{7}{6}\right)$	B1	Both standardisation values correct, accept unsimplified
	$\left[=\Phi\left(\frac{7}{6}\right)-\left(1-\Phi(1.5)\right)\right]$	M1	Calculating the appropriate area from stated Φ s of <i>z</i> -values, must be probabilities.
	= 0.8784 + (0.9332 - 1)		
	0.812	A1	$0.8115 \le p \leqslant 0.812$
		4	
4(b)	$z = \pm 0.674$	B1	CAO, critical <i>z</i> -value
	$\frac{36-42}{\sigma} = -0.674$	M1	36 and 42 substituted in ±standardisation formula, no continuity correction, not σ^2 , $\sqrt{\sigma}$, equated to a <i>z</i> -value
	$\sigma = 8.9[0]$	A1	WWW. Only dependent on M.
		3	

Question	Answer	Marks	Guidance
4(c)	P(male < 46) = 1- <i>their</i> 0.9332 = 0.0668	M1	FT value from part (a) or Correct: $1 - \Phi\left(\frac{46-55}{6}\right)$, condone continuity correction, σ^2 , $\sqrt{\sigma}$, and probability found. Condone unsupported correct value stated.
	P(female < 46) = P(Z < $\frac{46 - 42}{their 8.90}) [= \Phi(0.449)]$ = 0.6732	M1	46, 42 and <i>their</i> 4(b) σ (or correct σ) substituted in ±standardisation formula, condone continuity correction, σ^2 , $\sqrt{\sigma}$, and probability found Condone $\frac{4}{their 8.90}$.
	$P(both) = 0.0668 \times 0.6732$	M1	Product of <i>their</i> 2 probabilities $(0 < both < 1)$ Not 0.25 or <i>their</i> final answer to 4(a) used.
	0.0450 or 0.0449	A1	$0.0449 \le p \le 0.0450$
		4	

Question	Answer	Marks	Guidance
5(a)	${}^{5}\mathrm{C}_{1} \times {}^{7}\mathrm{C}_{4}$	M1	${}^{7}C_{4} \times k, \ k \text{ integer} \ge 1$ Condone ${}^{5}P_{1}$ for M1 only
	175	A1	
		2	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(b)	2B 1G 2A ${}^{3}C_{2} \times {}^{4}C_{1} \times {}^{5}C_{2} = 120$ 2B 2G 1A ${}^{3}C_{2} \times {}^{4}C_{2} \times {}^{5}C_{1} = 90$ 2D 2C ${}^{3}C_{2} \times {}^{4}C_{2} = 12$	M1	${}^{3}C_{x} \times {}^{4}C_{y} \times {}^{5}C_{z}, x + y + z = 5, x, y, z \text{ integers } \ge 1$ Condone use of permutations for this mark
	$\begin{array}{cccc} 2B & 5G & & C_2 \times C_3 & -12 \\ 3B & 1G & 1A & & ^3C_3 \times {}^4C_1 \times {}^5C_1 & = 20 \\ 3D & 2G & & & ^3C \times {}^4C & & \\ \end{array}$	B1	2 appropriate identified outcomes correct, allow unsimplified
	$3B 2G \qquad C_3 \times C_2 \qquad = 6$	M1	Summing <i>their</i> values for 4 or 5 correct identified scenarios only (no repeats or additional scenarios), condone identification by unsimplified expressions
	[Total =] 248	A1	Note: Only dependent upon M marks
		4	
5(c)	$8! \times 3! \times {}^5P_2$	M1	$8! \times m, m$ an integer ≥ 1 Accept $8 \times 7!$ for $8!$
			$3! \times n, n$ an integer > 1
			$p \times {}^{5}P_{2}, p \times {}^{5}C_{2} \times 2, p \times 20, p$ an integer > 1 If extra terms present, maximum 2/3 M marks available
	4838400	A1	Exact value required
		4	

Question	Answer	Marks	Guidance		
6(a)	[Probability of lemon = $\frac{3}{15} = \frac{1}{5}$]	B 1	0.0524288 rounded to more than 3SF if final answer		
	$\left[\left(\frac{4}{5}\right)^6 \times \frac{1}{5} = \right] \frac{4096}{78125}, 0.0524$				
		1			
6(b)	$\left(1-\frac{1}{5}\right)^{6}$	M1	or $\left(\frac{4}{5}\right)^6$. FT <i>their</i> $\frac{1}{5}$ or correct. From final answer		
			Condone $\left(\frac{4}{5}\right)^5 \operatorname{or}\left(\frac{1}{5}\right) \times \left(\frac{4}{5}\right)^5 + \left(\frac{4}{5}\right)^6$		
	$\frac{4096}{15625}, 0.262$	A1	0.262144 rounded to more than 3SF		
	Alternative method for question 6(b)	· · ·			
	[1 - P(1,2,3,4,5,[6]) =]	M1	From final answer		
	$1 - \left(\frac{1}{5} + \frac{4}{5} \times \frac{1}{5} + \left(\frac{4}{5}\right)^2 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5} + \left(\frac{4}{5}\right)^4 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5}\right)$		Condone omission of $\left(\frac{4}{5}\right)^3 \times \frac{1}{5}$		
	$\frac{4096}{15625}, 0.262$	A1 0.262144 rounded to more than 3SF			
		2			

	I ODLISHED						
Question	Answer	Marks	Guidance				
6(c)	$\frac{10}{15} \times \frac{9}{14} \times \frac{8}{13}$	M1	$\frac{a}{15} \times \frac{a-1}{14} \times \frac{a-2}{13}$, no additional terms				
	$\frac{24}{91}$, 0.264	A1	0.263736 rounded to more than 3SF				
	Alternative method for question 6(c)						
	$\frac{3}{15} \times \frac{2}{14} \times \frac{1}{13} + 3 \times \frac{3}{15} \times \frac{2}{14} \times \frac{7}{13} + 3 \times \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} + \frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}$	M1	[3Ls + 2Ls1S + 1L2Ss + 3Ss] Condone one numerator error. Condone no multiplications seen if tree diagram complete with probabilities on each branch, scenarios listed and attempt at evaluation				
	$\frac{24}{91}$, 0.264	A1	0.263736 rounded to more than 3SF				
	Alternative method for question 6(c)						
	$1 - \left(\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13} + 3 \times \frac{5}{15} \times \frac{4}{14} \times \frac{10}{13} + 3 \times \frac{5}{15} \times \frac{10}{14} \times \frac{9}{13}\right)$	M1	1 – P(3,2,1 oranges) Condone one numerator error.				
	$\frac{24}{91}$, 0.264	A1	0.263736 rounded to more than 3SF				
	Alternative method for question 6(c)						
	$\frac{{}^{10}C_3}{{}^{15}c_3}$	M1					
	$\frac{24}{91}, 0.264$	A1	0.263736 rounded to more than 3SF				
		2					

Question	Answer	Marks	Guidance		
6(d)	$\frac{7}{15} \times \frac{5}{14} \times \frac{3}{13} \times 3!$	M1	All probabilities of the form: $\frac{7}{a} \times \frac{5}{b} \times \frac{3}{c}$, $13 \le a, b, c \le \underline{15}$		
		M1	$\frac{e}{f} \times \frac{g}{h} \times \frac{i}{j} \times 3! \ e, f, g, h, i, j \text{ positive integers forming}$ probabilities or 6 identical probability calculations or values added, no additional terms		
	$\frac{3}{13}, 0.231$	A1	0.230769 rounded (not truncated) to more than 3SF		
	Alternative method for question 6(d)				
	$\frac{{}^{3}C_{1} \times {}^{5}C_{1} \times {}^{7}C_{1}}{{}^{15}C_{3}}$	M1	$\frac{{}^{3}C_{1} \times {}^{5}C_{1} \times {}^{7}C_{1}}{k}, k \text{ integer} > 1$ Condone use of permutations		
		M1	$\frac{{}^{3}\text{C}_{a} \times {}^{5}\text{C}_{b} \times {}^{7}\text{C}_{c}}{{}^{15}\text{C}_{3}}, 0 \le a \le 3, 0 \le b \le 5, 0 \le c \le 7,$ Condone use of permutations		
$\frac{3}{13}, 0.231$		A1	0.230769 rounded (not truncated) to more than 3SF		
		3			

Question	Answer	Marks	Guidance		
6(e)	$\frac{\frac{7}{15} \times \frac{6}{14} \times \frac{5}{13} + \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} \times 3}{their(c)} \left[= \frac{14}{65} \div \frac{24}{91} \right]$	B1	$\frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} \times 3 \text{ seen (SSL, SLS, LSS)}$ SC B1 $\frac{3}{65} \times 3, \frac{126}{2730} \times 3 \text{ seen}$		
		B1	$\frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}$ seen in numerator (SSS) SCB1 $\frac{210}{2730}, \frac{1}{13}$ seen in numerator		
			Fraction with <i>their</i> (c) or correct in denominator $\left(\frac{720}{2730}, \frac{24}{91}, 0.263736\right)$		
	$=rac{49}{60}$, 0.817	A1	Accept 0.816		
	Alternative method for question 6(e)				
	$\frac{{}^{7}C_{2} \times {}^{3}C_{1} + {}^{7}C_{3}}{{}^{10}C_{3}}$	B1	$^{7}C_{2} \times {}^{3}C_{1}$ seen (SSL, SLS, LSS) SCB1 21 × 3 seen or use of permutations		
		B1	⁷ C ₃ seen in numerator (SSS) SCB1 35 seen in numerator or use of permutations		
			Fraction with ${}^{10}C_3$ or consistent with <i>their</i> numerator of 6(c) in denominator		
	$=\frac{49}{60}$, 0.817	A1	Accept 0.816		
		4			

Cambridge International AS & A Level

MATHEMATICS

9709/51 October/November 2021

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics	Specific	Marking	Principles

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
---	---

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

2	Allow alternative conventions for notation if used consister	the throughout the paper a g comma	being used as desimal points
5	Anow alternative conventions for notation in used consisten	ily unoughout the paper, e.g. commas	s being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\left(\frac{3}{4}\right)^6 \frac{1}{4}$	M1	$(1-p)^6 p, 0$
	$0.0445, \frac{729}{16384}$	A1	
		2	
1(b)	$\left(\frac{3}{4}\right)^9$	M1	$\left(\frac{3}{4}\right)^n$ or p^n , 0
	$0.0751, \frac{19683}{262144}$	A1	
		2	

Question	Answer	Marks	Guidance			
2(a)	$\begin{bmatrix} \frac{\sum x}{40} - k = \frac{\sum (x - k)}{40} \end{bmatrix}$ $\frac{40 \times 34}{40} - k = \frac{520}{40}$	M1	Forms an equation involving Σx , $\Sigma(x-k)$ and k . Accept at a numeric stage with k .			
	k[=34-13]=21	A1	Evaluated.			
		2				

Question	Answer	Marks	Guidance
2(b)	Var = $\left[\frac{\Sigma(x-k)^2}{40} - \left(\frac{\Sigma(x-k)}{40}\right)^2\right] = \frac{9640}{40} - \left(\frac{520}{40}\right)^2 = [241 - 13^2 =]$	M1	Values substituted into an appropriate variance formula, accept unsimplified.
	72	A1	
		2	

Question	Answer	Marks	Guidance			
3	$\left[P(T B') = \frac{P(T \cap B')}{P(B')} \right]$		$0.45 \times a + 0.35 \times b + 0.2[\times 1], a = 0.7, 0.3b = 0.4, 0.6$, seen anywhere.			
	$P(B') = 0.45 \times 0.7 + 0.35 \times 0.4 + 0.2 \times 1$ $\left[= 0.655, \frac{131}{200} \right]$	A1	Correct, accept unsimplified.			
	$P(T \cap B') = 0.35 \times 0.4 \ [= 0.14, \ \frac{7}{50}]$	M1	Seen as numerator or denominator of a fraction.			
	$P(T \mid B') = \frac{their 0.14}{their 0.655}$	M1	Values substituted into conditional probability formula correctly. Accept unsimplified. Denominator sum of 3 two-factor probabilities (condone omission of 1 from final factor). If clearly identified, condone from incomplete denominator.			
	$0.214, \frac{28}{131}$	A1	If 0 marks awarded, SC B1 0.214 WWW.			
		5				

Question	Answer	Marks	Guidance					
4(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	[0	1	2	2	
	$ \begin{vmatrix} p \\ 1 \\ 12 \end{vmatrix} = 0.0833 \begin{vmatrix} \frac{2}{12} \\ 12 \end{vmatrix} = 0.167 \begin{vmatrix} \frac{4}{12} \\ 12 \end{vmatrix} = 0.333 \begin{vmatrix} \frac{5}{12} \\ 12 \end{vmatrix} = 0.25 \begin{vmatrix} \frac{2}{12} \\ 12 \end{vmatrix} = 0.167 $		- 1	-1	0	1	1	
			0	0	1	2	2	
			1	1	2	3	3	
			Table v substitu Condor	with $x v$ uted, $0 < 0$ ne any a	alues an $.$	d at leas al <i>x</i> valu	et one pro	obability bability stated as 0.
		B1	2 correct identified probabilities.					
		B1	All probabilities correct (accept to 3sf).					
			SC if less than 2 correct probabilities: SC B1 4 or 5 probabilities summing to one.					
		3						
4(b)	$E(X) = -\frac{1}{12} + \frac{4}{12} + \frac{6}{12} + \frac{6}{12} \left[= \frac{15}{12} \right]$	M1	May be implied by use in Variance, accept unsimplified expression. Probabilities must sum to 1 ± 0.001 .					
	Var (X) = $\frac{1}{12} + 0 + \frac{4}{12} + \frac{12}{12} + \frac{18}{12} - \left(\frac{15}{12}\right)^2$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$. FT accept probabilities not summing to 1. Condone $\frac{35}{12} - \left(\frac{15}{12}\right)^2 or \frac{35}{12} - \frac{25}{9}$ from correct table.					
	$\left[\frac{35}{12} - \frac{25}{16} = \right] \frac{65}{48}, 1.35$	A1	www					
		3						

Question	Answer	Marks	Guidance
5(a)	[8! =] 40 320	B1	Evaluated, exact value only.
		1	
5(b)	Method 1 [^ ^ ^ R ^ ^ S ^ ^]		
	$7! \times {}^{8}C_{2} \times 2$	M1	$7! \times k$ seen, k an integer > 1.
		M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n = 7, 8$ or 9, m an integer > 1.
	282 240	A1	Exact value only. SC B1 for final answer 282 240 WWW.
Method 2 [Total number of arrangements – Arrangements with R & S together]			
	$9! - 8! \times 2$	M1	9! - k, k an integer < 362 880.
		M1	$m - 8! \times n$, m an integer > 40 320, $n = 1,2$.
	282 240	A1	Exact value only. SC B1 for final answer 282 240 WWW.
		3	
5(c)	${}^{9}C_{5} [\times {}^{4}C_{4}]$	M1	${}^{9}C_{x} [\times {}^{9-x}C_{9-x},] x = 4, 5. \text{ Condone} \times 1 \text{ for } {}^{9-x}C_{9-x}.$ Condone use of P.
	126	A1	WWW
		2	

October/November 2021

Question	Answer	Marks	Guidance
5(d)	[Number of ways with Raman and Sanjay together on back row =] ${}^{7}C_{3}$ [Number of ways with Raman and Sanjay together on front row =] ${}^{7}C_{2}$	M1	$^{7}C_{x}$ seen, $x = 3$ or 2.
	[Total =] 35 + 21	M1	Summing two correct scenarios.
	56	A1	Evaluated – may be seen used in probability. If M0 scored, SC B1 for 56 WWW.
	Probability = $\frac{their 56}{their(c)} = \frac{56}{126}, \frac{4}{9}, 0.444$	B1 FT	FT <i>their</i> 56 from adding 2 or more scenarios in numerator and <i>their</i> (c) or correct as denominator.
		4	

Question		Answer	Marks	Guidance
6(a)	Rebels	Sharks	B1	Correct stem, ignore extra values (not in reverse).
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	Correct Rebels labelled on left, leaves in order from right to left and lined up vertically, no commas.	
	9 5 3	$\left \begin{array}{c} 2 \\ 0 \end{array} \right ^2$	B1	Correct Sharks labelled on same diagram, leaves in order and lined up vertically, no commas.
	Key: 8 7 2 means 78 kg for Rebels and 72 kg for Sharks	B1	Correct key for their diagram, need both teams identified and 'kg' stated at least once here or in leaf headings or title. SC If 2 separate diagrams drawn, SC B1 if both keys	
				meet these criteria.
			4	

October/November 2021

Question	Answer	Marks	Guidance
6(b)	Median = 84 (kg)	B1	
	[UQ = 93, LQ = 80] 93 - 80	M1	$95 \leq UQ \leq 89 - 79 \leq LQ \leq 82$
	[IQR =] 13 (kg)	A1	WWW
		3	
6(c)	Box and whisker with end points 75 and 102	B 1	Whiskers drawn to correct end points not through box, not joining at top or bottom of box.
	Median and quartiles plotted as found in (b)	B1 FT	Quartiles and median plotted as box graph.
		2	
6(d)	e.g. Average weight of Rebels is higher than average weight of Sharks	B1	Acceptable answers refer to: Range, skew, central tendency within context. E.g. range of Rebels is greater B0 . Range of weights of the rebels is greater B1 . Simple value comparison insufficient.
		1	

October/November 2021

Question	Answer	Marks	Guidance
7(a)(i)	$P(X > 142) = P\left(Z > \frac{142 - 125}{24}\right)$	M1	Substitution of correct values into the ±Standardisation formula, allow continuity correction, not σ^2 , $\sqrt{\sigma}$.
	[= P(Z > 0.7083) =]1 - 0.7604	M1	Appropriate numerical area Φ , from final process, must be probability, expect $p < 0.5$.
	0.2396	A1	$0.239 \leq p \leq 0.240$ to at least 3sf.
	<i>Their</i> 0.2396 × 365 [= 87.454]	M1	FT <i>their</i> 4sf (or better) probability.
	87 or 88	A1 FT	Final answer must be positive integer, no indication of approximation/rounding, only dependent on previous M mark. SC B1 FT for <i>their</i> 3sf probability \times 365 = integer value, condone 0.24 used.
		5	
7(a)(ii)	$P(0, 1) = 0.7604^{10} + {}^{10}C_1 \times 0.2396^1 \times 0.7604^9$ [= 0.064628 + 0.20364]	M1	One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10$, any <i>p</i> .
		A1 FT	Correct unsimplified expression using <i>their</i> probability to at least 3sf from (a)(i) or correct.
	0.268	A1	AWRT, WWW.
		3	
7(b)	$z = \pm 1.282$	B1	Correct value only, critical value.
	$\frac{t - 125}{24} = -1.282$	M1	Use of \pm Standardisation formula with correct values substituted, allow continuity correction, σ^2 , $\sqrt{\sigma}$, to form an equation with a <i>z</i> -value and not probability.
	<i>t</i> = 94.2	A1	AWRT, condone AWRT 94.3. Not dependent on B mark.
		3	

Cambridge International AS & A Level

MATHEMATICS

9709/52 October/November 2021

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Mathematics Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
1(a)	$\frac{82}{180}, \frac{41}{90}, 0.456$	B1	
		1	
1(b)	$\left[P(M D) = \frac{P(M \cap D)}{P(D)}\right] = \frac{\frac{11}{180}}{\frac{20}{180} + \frac{11}{180}} \text{ or } \frac{0.6011}{0.1722}$	M1	Their identified $\frac{P(M \cap D)}{P(D)}$ or from data table $\frac{11}{20+11}$, accept unsimplified, condone × 180.
	$\frac{11}{31}, 0.355$	A1	Final answer.
		2	
Question	Answer	Marks	Guidance
----------	--	-------	---
1(c)	$P(F) = \frac{100}{180}, \frac{5}{9}, 0.5556 \text{ OE } P(G) = \frac{82}{180}, \frac{41}{90}0.4556 \text{ OE}$	M1	<i>Their</i> identified $P(F) \times their$ identified $P(G)$ or correct seen, can be unsimplified.
	$P(F \cap G) = \frac{38}{180}, \frac{19}{90}, 0.2111 OE$ $P(F) \times P(G) = \frac{100}{180} \times \frac{82}{180} = \frac{41}{162}, 0.2531 OE \left[\neq \frac{38}{180} \right]$ Not independent	A1	$\frac{41}{162}, \frac{38}{180}, P(F \cap G)$ and $P(F) \times P(G)$ seen with correct conclusion, WWW. Values and labels must be seen.
	Alternative method for question 1(c)		
	$P(F \cap G) = \frac{38}{19} \frac{19}{0.2111} OF P(G) = \frac{82}{10} \frac{41}{0.4556} OF$	M1	P(F G) (OE) unsimplified with <i>their</i> identified probs or correct
	$P(F G) = \frac{\frac{38}{180}}{\frac{82}{180}} = \frac{19}{41}, 0.4634 \text{ OE}$ $\neq P(F) = \frac{100}{180}, \frac{5}{9}, 0.5556 \text{ OE}$ Not independent	A1	$\frac{19}{41}, \frac{100}{180}, P(F \cap G)$ and $P(F G)$ seen with correct conclusion WWW. Values and labels must be seen.
		2	

Question	Answer	Marks	Guidance
2(a)	$^{11}C_5 \times {}^{4}C_1$	M1	$^{11}C_5 \times {}^4C_1$ condone $^{11}P_5 \times {}^4P_1$ no +, -, × or ÷.
	1848	A1	CAO as exact.
		2	
2(b)	Method 1 [Identifying scenarios]		
	[Neither selected =] ${}^{13}C_6$ [= 1716] [Only Jane selected =] ${}^{13}C_5$ [= 1287] [Only Kate selected =] ${}^{13}C_5$ [= 1287]	M1	Either ¹³ C ₆ seen alone or ¹³ C ₅ seen alone or $\times 2$ (condone ¹³ P _n , $n = 5,6$).
	[Total =] 1716 + 1287 + 1287	M1	Three correct scenarios only added, accept unsimplified (values may be incorrect).
	4290	A1	
	Method 2 [Total number of selections – selections with Jane and Kate both picked]		
	$^{15}C_6 - ^{13}C_4 [= 5005 - 715]$	M1	${}^{15}C_6 - k$, k a positive integer < 5005, condone ${}^{15}P_{6}$.
		M1	$m - {}^{13}C_4$, <i>m</i> integer > 715, condone $n - {}^{13}P_4$, <i>n</i> > 17 160.
	4290	A1	
		3	
			SC Where the condition of 2(a) is also applied in 2(b) , the final answer is 1512 SC M1 M1 A0 max. The method marks can be earned for the equivalent stages in each method. Method $1 {}^{4}C_{1} \times {}^{9}C_{5} + {}^{4}C_{1} \times {}^{9}C_{4} \times 2$ Method $2 {}^{4}C_{1} \times {}^{11}C_{5} - {}^{4}C_{1} \times {}^{9}C_{3}$

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance			
3(a)	For one yellow: YGG + GYG + GGY $\frac{5}{2} \times \frac{4}{3} \times \frac{3}{7} \times 3$	M1	$\frac{a}{9} \times \frac{b}{8} \times \frac{c}{7}$, $0 < a, b, c$ integers ≤ 5 , for one arrangement.			
	987	M1	<i>Their</i> three-factor probability \times 3, ${}^{3}C_{1}$, ${}^{3}C_{2}$ or ${}^{3}P_{1}$ (or repeated adding) no additional terms.			
	$\left[\frac{180}{504}\right] = \frac{5}{14}$	A1	AG. Convincingly shown, including identifying possible scenarios, may be on tree diagram WWW.			
		3				
	Alternative method for question 3(a)					
	$\frac{{}^{5}C_{1} \times {}^{4}C_{2}}{{}^{9}C_{3}}$	M1	$\frac{{}^{5}C_{1} \times {}^{4}C_{2}}{{}^{9}C_{r}}, r = 2, 3, 4$			
		M1	$\frac{{}^{5}C_{s} \times {}^{4}C_{t}}{{}^{9}C_{3}}, s+t=3$			
	$\left[\frac{30}{84}\right] = \frac{5}{14}$	A1	AG. Convincingly shown, WWW.			
		3				

Question			ŀ	Answer			Marks	Guidance
3(b)	X P(X)	0 24	1	2	3		B1	Table with correct X values and one correct probability inserted appropriately. Condone any additional X values if probability stated as 0.
		504	$\overline{504}$	504	504		B1	Second identified correct probability, may not be in table.
	$\begin{bmatrix} =\frac{1}{21}, \\ 0.0476 \end{bmatrix} \begin{bmatrix} =\frac{3}{14}, \\ 0.357 \end{bmatrix} \begin{bmatrix} =\frac{10}{21}, \\ 0.476 \end{bmatrix} \begin{bmatrix} =\frac{5}{42}, \\ 0.119 \end{bmatrix}$	B1	 All probabilities identified and correct . SC if less than 2 correct probabilities or <i>X</i> value(s) omitted: SC B1 3 or 4 probabilities summing to one. 					
							3	
3(c)	[E(X) =	$[\frac{840}{504}, \frac{5}{3}, 1.$	67				B1	OE Must be evaluated. SC B1 FT correct unsimplified expression from incorrect $3(b)$ using at least 3 probabilities, $0 .$
							1	

Question	Answer	Marks	Guidance
4(a)	$\frac{9!}{3!}$	M1	$\frac{9!}{e!}, e=2,3$
	60 480	A1	
		2	

Question	Answer	Marks	Guidance			
4(b)	7! 3!×2×6	M1	$\frac{7!}{3!} \times k$ seen, k an integer > 0.			
		M1	$\frac{m!}{n!} \times 2 \times q 7 \le m \le 9, 1 \le n \le 3, 1 \le q \le 8 \text{ all integers.}$			
		M1	$\frac{m!}{n!} \times p \times 6 7 \le m \le 9, \ 1 \le n \le 3, \ 1 \le p \le 2 \text{ all integers.}$ (Accept 3P2 for 6) If M0 M0 M0 awarded, SC M1 for $t \times 12, t$ an integer $\ge 20, \frac{5!}{3!}$.			
	10 080	A1	Exact value.			
	Alternative method for question 4(b)					
	$\frac{{}^{7}P_{2}\times6!\times2}{3!}$	M1	$\frac{6!}{3!} \times k$ seen, k an integer > 0.			
		M1	$\frac{m!}{n!} \times^7 \mathbf{P}_2 \times q m = 6,9, \ 1 \le n \le 3, \ 1 \le q \le 2 \text{ all integers.}$			
		M1	$\frac{m!}{n!} \times {}^{7}\mathbf{P_{r}} \times 2 m = 6, 9, 1 \le n \le 3, 1 \le r \le 5 \text{ all integers.}$			
			If M0 M0 M0 awarded, SC M1 for $t \times 84$, t an integer ≥ 20 , $\frac{5!}{3!}$.			
	10 080	A1	Exact value.			

Question	Answer	Marks	Guidance			
4(b)	Alternative method for question 4(b)					
	$\frac{7!}{3!} \times 4P2$	M1	$\frac{7!}{3!} \times k$ seen, k an integer > 0.			
		M1	$t \times {}^{4}P_{2} \text{ or } 12, t \text{ an integer} \ge 20, \frac{5!}{3!}$.			
		M1	$\frac{m!}{n!} \times 4P2 7 \le m \le 9, \ 1 \le n \le 3 \text{ all integers.}$			
	10 008	A1	Exact value.			
		4				

Question	Answer	Marks	Guidance
5(a)	$[P(0, 1, 2) =] {}^{10}C_0 0.16^0 0.84^{10} + {}^{10}C_1 0.16^1 0.84^9 + {}^{10}C_2 0.16^2 0.84^8$	M1	One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 \le x \le 10$, any <i>p</i> .
	$[= 0.17490 \pm 0.333143 \pm 0.28333]$	A1	Correct unsimplified expression, or better.
	0.794	A1	$0.7935 , mark at most accurate.If M0 scored, SC B1 for final answer 0.794.$
		3	
5(b)	$(0.84)^7 0.16$	M1	$(1-p)^7 p, 0$
	0.0472	A1	0.0472144 to at least 3sf.
		2	

Question	Answer	Marks	Guidance
5(c)	$4 \times 0.0472 \times (1 - 0.0472)^3$	M1	$4 \times q(1-q)^3$, $q = their$ (b) or correct.
	0.163	A1	$0.163 \le p \le 0.1634$, mark at most accurate from <i>their</i> probability to at least 3sf.
		2	

Question	Answer	Marks	Guidance
6(a)	$\left[P(X > 28.6) = \right] P\left(Z > \frac{28.6 - 32.2}{9.6}\right)$ $\left[= P(Z > -0.375) \right]$	M1	28.6, 32.2 and 9.6 substituted appropriately in \pm Standardisation formula once, allow continuity correction of \pm 0.05, no σ^2 , $\sqrt{\sigma}$.
	$[\Phi(their 0.375) =] their 0.6462$	M1	Appropriate numerical area, from final process, must be probability, expect > 0.5 .
	0.646	A1	AWRT
		3	
6(b)	$z = \pm 0.842$	B1	$0.841 < z \le 0.842$ or $-0.842 \le z < -0.841$ seen.
	$\frac{t-32.2}{9.6} = 0.842$	M1	Substituting 32.2 and 9.6 into \pm standardisation formula, no continuity correction, allow σ^2 , $\sqrt{\sigma}$, must be equated to a <i>z</i> -value.
	t = 40.3	A1	$40.28 \leqslant t \leqslant 40.3$ WWW
		3	

Question	Answer	Marks	Guidance
6(c)	$P\left(-\frac{15}{9.6} < Z < \frac{15}{9.6}\right)$ $P(-1.5625 < Z < 1.5625)$	M1	Identifying at least one of $\frac{15}{9.6}$ and $-\frac{15}{9.6}$ as the appropriate z-values or substituting <i>their</i> (32.2 ± 15) into ± Standardisation formula once, no continuity correction, σ^2 nor $\sqrt{\sigma}$. Condone ±1.563 for M1 .
	$[2 \Phi(\frac{15}{2}) - 1]$	A1	p = 0.941 AWRT SOI
	$= 2 \times 0.9409 - 1$	M1	Appropriate area $2\Phi - 1$ oe, (eg $1 - 2 \times 0.0591$, 2 × (0.9409 - 0.5) or 0.9409 - 0.0591), from final process, must be probability > 0.5.
	0.882	A1	
		4	

Question	Answer	Marks	Guidance
7(a)	Cumulative frequency graph drawn	B1	Axes labelled 'cumulative frequency' (or cf) from 0 to at least 140 and 'distance (or d) [in] m' from 0 to at least 1600, linear scales with at least 3 values stated.
		B1	All plotted correctly at correct upper end points (200 etc.) curve drawn accurately joined to (0, 0) (straight line segments B0) but no daylight above 140. Cf scale no less than 2 cm = 20 children .
		2	

Question	Answer	Marks	Guidance
7(b)	[UQ at 75% of 140 = 105, LQ at 25% of 140 = 35] [IQR:] 700 – 260	M1	Accept $660 \leq UQ \leq 720 - 240 \leq LQ \leq 290$. If values are outside our range, FT providing scales linear and increasing cf drawn.
	440	A1	Accept correct evaluation of $660 \le their UQ \le 720 - 240 \le their LQ \le 290$ with clear indication that graph has been used for at least one of 105 or 35.
		2	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance								
7(c)	$[Mean =] 16 \times 100 + 30 \times 250 + 42 \times 400 + 34 \times 700 + 12 \times 1050 + 6 \times 1400$	B1	Frequencies 16 30 42 34 12 6								
	140		Mid-points	100	250	400	700	1050	1400		
			5 or 6 correct f	reque	ncy va	lues se	een.			-	
		B1	5 or 6 correct r	nidpoi	int val	ues see	en.				
		M1	Values substituted into mean formula using <i>their</i> midpoints which must be in the class – condone 1 data error. Accept $\frac{1600 + 7500 + 16800 + 23800 + 12600 + 8400}{140} \text{ or } \frac{70700}{140}.$ Condone $\frac{70770}{140}$ for M1.								
	505	A1 WWW									
	Variance = $\frac{16 \times 100^{2} + 30 \times 250^{2} + 42 \times 400^{2} + 34 \times 700^{2} + 12 \times 1050^{2} + 6 \times 1400^{2}}{140}$ -505 ²	M1	Values substitut midpoints and unsimplified. C Accept: $\begin{bmatrix} 160\ 000\ +\ 1\ 87 \end{bmatrix}$ or $\frac{50\ 405\ 000}{140}$ If formula state	uted in their f Condor 75 000 or 360 ed acc	to var frequen ne 1 da + 6 72 0 035.7 ept 10	iance f ncies (ata erro 0 000 - 7143] – 5 010 -	Formul includ or. +16.60 140 $\cdot [505^2$ or 105	a using ing for 50 000 + or 255 + 011 V	(<i>their</i> 1 denomi -13 230 025] VWW.	$(1)^2$ and <i>their</i> inator). Accept (2)	
	S.d. = $\left[\sqrt{105010.7} =\right]324$	A1	WWW								
		6									

Cambridge International AS & A Level

MATHEMATICS

9709/53 October/November 2021

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Г

Ma	Mathematics Specific Marking Principles					
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.					
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.					
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.					
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).					
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.					
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.					

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	²³ C ₁₇	M1	$^{23}C_x$ or $^{y}C_{17}$ or $^{z}C_6$, <i>x</i> , <i>y</i> or <i>z</i> are integers no +, -, × or ÷.
	100947	A1	CAO
		2	

Question	Answer										Marks	Guidance		
2(a)		Lake	view					Rive	erside				B1	Correct stem, ignore extra values.
	8	9 7	4 6	0 2	1 2	8 0	8 1	3	4	5	5		B1	Correct Lakeview labelled on left, leaves in order from right to left and lined up vertically, no commas.
		3	2	0 1	3	0	6						B1	Correct Riverside labelled on same diagram, leaves in order and lined up vertically, no commas.
	Key:	6 2 3	means	s 26m	1 for L	akevi	ew ar	nd 23n	n for F	Rivers	ide		B1	Correct key for their diagram, need both teams identified and 'm' stated at least once here or in leaf headings or title.
														SC If 2 separate diagrams drawn: SC B1 if both keys meet these criteria.
													4	
2(b)	UQ =	= 32, L	.Q =]	19									M1	$(30 \le \mathrm{UQ} \le 33) - (14 \le \mathrm{LQ} \le 22)$
	IQR =	= 32 -	- 19 =	13									A1	WWW
													2	

Question	Answer	Marks	Guidance
3(a)	Cw: 5 5 10 10 20	M1	At least 4 frequency densities calculated (f/cw), accept unsimplified and class widths ± 1 of true values. May be implied by graph.
	Fd: 4.6 20.4 13.5 7.6 1.2	A1	All heights correct on graph NOT FT
	Enquercy density	B1	Bar ends at 0, 5, 10, 20, 30, 50 clear intention not to draw at 4.5 or 5.5 etc.
		B1	Axes labelled: Frequency density (fd), time (t) and mins (or appropriate title). Linear scales between 0 and 20.4 or above on vertical axis, and 0 and 50 or above on the horizontal axis. (Axes may be reversed.)
		4	
3(b)	$\frac{2.5 \times 23 + 7.5 \times 102 + 15 \times 135 + 25 \times 76 + 40 \times 24}{360}$	M1	Uses at least 4 midpoint attempts (e.g. 2.5 ± 0.5) in correct formula, accept unsimplified expression, denominator either correct or <i>their</i> Σ frequencies .
	$\left[\frac{5707.5}{360}\right] = 15.9, \ 15\frac{41}{48}$	A1	Evaluated.
		2	

9709/53

Question	Answer	Marks	Guidance
4(a)	$P(X > 43.2) = P\left(Z > \frac{43.2 - 41.2}{3.6}\right) = P(Z > 0.5556)$	M1	Use of ±Standardisation formula once, allow continuity correction, not σ^2 , $\sqrt{\sigma}$.
	$1 - \Phi(0.5556) = 1 - 0.7108$	M1	Appropriate area Φ , from final process, must be probability.
	0.289	A1	AWRT
		3	
4(b)	Probability = $1 - their$ (a) = $1 - 0.2892 = 0.7108$	B1FT	1 - their (a) or correct.
	0.7108 × 365 = 259.4 259, 260	B1FT	FT <i>their</i> 4SF (or better) probability, final answer must be positive integer.
		2	
4(c)	$z = \pm 1.645$	B1	CAO, critical z value.
	$\frac{t - 41.2}{3.6} = -1.645$	M1	Use of ±standardisation formula with μ , σ equated to a <i>z</i> -value, no continuity correction, allow σ^2 , $\sqrt{\sigma}$.
	<i>t</i> = 35.3	A1	
		3	

Question	Answer	Marks	Guidance
5(a)	${}^{5}P_{2} \times {}^{7}P_{4}$ or $5 \times 4 \times 7 \times 6 \times 5 \times 4$	M1	${}^{5}\mathbf{P}_{x} \times {}^{7}\mathbf{P}_{y}, 1 \leq x \leq 4, 1 \leq y \leq 6$
	16 800	A1	
		2	

Question	Answer	Marks	Guidance					
5(b)	Method 1 [Identify scenarios]							
	With A and no 5: $8 \times {}^{6}P_{4}$ or $(1 \times 4 \times 6 \times 5 \times 4 \times 3) \times 2$ or $4C1 \times 2! \times 6P4 =$	M1	One number of ways correct, accept unsimplified.					
	With 5 and no A: ${}^{4}P_{2} \times 4 \times {}^{6}P_{3}$ or $(4 \times 3 \times 1 \times 6 \times 5 \times 4) \times 4$ or $4P2 \times 6C3 \times 4! = 5760$ With A and 5: $8 \times 4 \times {}^{6}P_{3}$ or $(4 \times 1 \times 1 \times 6 \times 5 \times 4) \times 8$ or $4C1 \times 2! \times 6C3 \times 4! = 3840$	M1	Add 2 or 3 identified correct scenarios only, accept unsimplified.					
	[Total =] 12 480	A1	САО					
	Method 2 [total number of codes – number of codes with no A or 5]							
	No A or 5 : $(4 \times 3) \times (6 \times 5 \times 4 \times 3) = 4320$	M1	${}^{4}P_{2} \times {}^{6}P_{4}$ or ${}^{4}C_{2} \times {}^{6}C_{4}$ seen, accept unsimplified.					
	Required number = their (a) – their 4320	M1	<i>Their</i> 5(a) (or correct) – <i>their</i> (No A or 5) value.					
	12 480	A1						
	Method 3 [subtracting double counting]							
	With A ${}^{4}P_{1} \times {}^{7}P_{4} \times 2$ or ${}^{4}C_{1} \times 2 \times {}^{7}C_{4} \times 4! = 6720$ With 5 ${}^{5}P_{2} \times {}^{6}P_{3} \times 4$ or ${}^{5}C_{2} \times 2 \times {}^{6}C_{3} \times 4! = 9600$ With A and 5 = ${}^{4}P_{1} \times {}^{6}P_{3} \times 8$ or 4C1 $\times 2! \times 6$ C3 $\times 4! \times 8 = 3840$	M1	One outcome correct, accept unsimplified.					
	Required number = $6720 + 9600 - 3840$	M1	Adding 'with a' to 'with 5' and subtracting 'A and 5'.					
	12 480	A1	САО					
		3						

Question	Answer	Marks	Guidance
5(c)	Method 1 – number of successful codes divided by total		
	$(1 \times) 3 \times {}^{5}P_{2}$	M1	$3 \times {}^{5}P_{n}, n = 2, 3.$ Condone $3 \times {}^{5}C_{2}$, no + or –.
	Probability = $\frac{their 3 \times 5P2}{their 16800}$	M1	Probability = $\frac{their 60}{their 16 800}$.
	$\frac{1}{280}, 0.00357$	A1	
	Method 2 – product of probabilities of each part of code		
	$\frac{1}{5} \times \frac{1}{4} \times \frac{1}{7} \times \frac{3}{6} \left(\times \frac{5}{5} \times \frac{4}{4} \right) \text{ or } \frac{1}{5} \times \frac{1}{4} \times \frac{3 \times 5P2}{7P4}$	M1	$\frac{1}{5} \times \frac{1}{4} \times k$ where $0 < k < 1$ for considering letters.
		M1	$t \times \frac{1}{7} \times \frac{3}{6}$ or $t \times \frac{3 \times 5P2}{7P4}$ where $0 < t < 1$.
	$\frac{1}{280}$	A1	САО
		3	

Question	Answer	Marks	Guidance
6(a)	p + q + 0.65 = 1	B1	Sum of probabilities = 1.
	p + 2q + 0.15 = 0.55	B1	Use given information.
	Solve 2 linear equations	M1	Either a single expression with one variable eliminated formed or two expressions with both variables on the same side seen with at least one variable value stated.
	$p = 0.3, \frac{3}{10}, q = 0.05, \frac{1}{20}$	A1	CAO, both WWW If M0 with correct answers SC B1 .
		4	
6(b)	Var (X) = their $0.3 + 4 \times their \ 0.05 + 9 \times 0.05 - 0.55^2$	M1	Appropriate variance formula including $(E(X))^2$, accept unsimplified.
	$0.6475\left[\frac{259}{400} ight]$	A1	CAO (must be exact).
		2	
6(c)	$1 - P(0, 1, 2) = 1 - ({}^{12}C_0 \ 0.3^0 \ 0.7^{12} + {}^{12}C_1 \ 0.3^1 \ 0.7^{11} + {}^{12}C_2 \ 0.3^2 \ 0.7^{10})$	M1	One correct term: ${}^{12}C_x p^x (1-p)^{12-x}$ for $0 < x < 12$, $0 .$
	1 - (0.01384 + 0.07118 + 0.16779)	A1FT	Correct unsimplified expression, or better in final answer. Unsimplified expression must be seen to FT <i>their</i> p from 6(a) or correct.
	0.747	A1	
		3	
6(d)	$(0.95)^8 \times 0.05 = 0.0332$ or $0.95^8 - 0.95^9 = 0.0332$	B1	Evaluated.
		1	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(a)	Probabilities: $\frac{x+1}{x+10}$, $\frac{9}{x+10}$, $\frac{x}{x+10}$, $\frac{10}{x+10}$	B1	One probability correct in correct position.
		B1	Another probability correct in correct position.
		B1	Other two probabilities correct in correct positions.
		3	
7(b)	$\frac{4}{10} \times their \frac{10}{x+10}$	M1	Method consistent with <i>their</i> tree diagram.
	$\frac{4}{x+10}$	A1	AG
		2	

Question	Answer	Marks	Guidance
7(c)	$\frac{4}{x+10} = \frac{1}{6}$ x+10 = 24, x = 14	B1	Find value of <i>x</i> . Can be implied by correct probabilities in calculation.
$P(ARed BRed) = P(ARed \cap BRed) \div P(BRed)$ $\frac{\frac{6}{10} \times their \frac{x+1}{x+10}}{\frac{6}{10} \times their \frac{x+1}{x+10} + \frac{4}{10} \times their \frac{x}{x+10}} = \frac{\frac{6}{10} \times \frac{15}{24}}{\frac{6}{10} \times \frac{15}{24} + \frac{4}{10} \times \frac{14}{24}}$ $\frac{\frac{45}{73}, 0.616[4]}{\frac{45}{73}, 0.616[4]}$	$P(ARed BRed) = P(ARed \cap BRed) \div P(BRed)$ $\frac{6}{10} \times their \frac{x+1}{10} \qquad \qquad \frac{6}{10} \times \frac{15}{10} \qquad \qquad \frac{3}{10}$	B1 FT	$\frac{6}{10} \times their \frac{x+1}{x+10}$ as numerator or denominator of fraction.
	$\frac{10}{\frac{6}{10} \times their \frac{x+1}{x+10} + \frac{4}{10} \times their \frac{x}{x+10}} = \frac{10}{\frac{6}{10} \times \frac{124}{24} + \frac{4}{10} \times \frac{14}{24}} = \frac{\frac{8}{73}}{\frac{73}{120}}$	M1	$\frac{6}{10} \times their \frac{x+1}{x+10} + \frac{4}{10} \times their \frac{x}{x+10}$ seen anywhere.
		A1 FT	Seen as denominator of fraction.
	$\frac{45}{73}, 0.616[4]$	A1	If B0 M0: SC B1 for $\frac{\frac{3}{8}}{\frac{73}{120}}$ or $\frac{0.375}{0.6083}$ SC B1 $\frac{45}{73}$ or 0.616.
		5	

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/51 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Math	nematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	RRRRB ${}^{8}C_{4} \times {}^{4}C_{1} = 280$ BBBBR ${}^{8}C_{1} \times {}^{4}C_{4} = 8$ RRRRR ${}^{8}C_{5} = 56$	M1	⁸ C _x × ⁴ C _y with $x + y = 5$. x, y both integers, $1 \le x \le 5$, $0 \le y \le 4$ condone ⁸ C ₁ × 1
		A1	Two correct outcomes evaluated
		M1	Add 2 or 3 identified correct scenarios only (no additional terms, not probabilities)
	[Total =] 344	A1	WWW, only dependent on 2nd M mark
		4	SC not all (or no) scenarios identified B1 280 + 8 + 56 DB1 344

Question	Answer	Marks	Guidance
2	$\left[P\left(\left(\frac{25.2 - (25.5 + 0.50)}{0.4}\right) < z < \left(\frac{25.2 - (25.2 - 0.50)}{0.4}\right)\right)\right]$ $= P\left(-\frac{0.5}{0.4} < z < \frac{0.5}{0.4}\right)$	M1	Use of \pm Standardisation formula once; no continuity correction, σ^2 , $\sqrt{\sigma}$
	$\begin{bmatrix} = 2\Phi(1.25) - 1 \end{bmatrix} \\ = 2 \times 0.8944 - 1$	A1	For AWRT 0.8944 SOI
		M1	Appropriate area $2\Phi - 1$ OE, from final process, must be probability
	0.7888	A1	Accept AWRT 0.789
	Number of rods = 0.7888×500 = 394 or 395	B1FT	Correct or FT <i>their</i> 4SF (or better) probability, final answer must be positive integer, not 394.0 or 395.0, no approximation/rounding stated, only 1 answer
		5	

9709/51

Question	Answer	Marks	Guidance
3(a)	$\left[\frac{8!}{3!}\right] = 6720$	B1	NFWW, must be evaluated
		1	
3(b)	$__L E D __:$ With LED together: $\frac{6!}{2!}$	M1	$\frac{6!}{k}$ or $\frac{5!x6}{k}$ $k \ge 1$ and no other terms
		M1	$\frac{m}{2!}$, <i>m</i> an integer, $m \ge 5$
	360	A1	CAO
		3	
3(c)	Method usingA _D: Arrange the 6 letters RELESE = $\frac{6!}{3!}$ [= 120]	*M1	$\frac{6!}{3!} \times k$ seen, k an integer > 0
	Multiply by number of ways of placing AD in non-adjacent places = their $120 \times {}^{7}P_{2}$ [= 5040]	*M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n = 6, 7$ or 8, m an integer > 0
	$[Probability =] \frac{their 5040}{their 6720}$	DM1	Denominator = <i>their</i> (a) or correct, dependent on at least one M mark already gained.
	$\frac{5040}{6720}$ or $\frac{3}{4}$ or 0.75	A1	
	Alternative method for Question 3(c)		
	Method using 'Total arrangements – Arrangements with A and D	*M1	<i>Their</i> $6720 - k$, <i>k</i> a positive integer
	Their $6720 - \frac{7! \times 2}{3!} = 5040$	*M1	$(m-)\frac{7 \ltimes k}{3!}, k=1,2$

Question	Answer	Marks	Guidance
	$[Probability =] \frac{their 5040}{their 6720}$	DM1	With denominator = <i>their</i> (a) or correct, dependent on at least one M mark already gained.
	$\frac{5040}{6720}$ or $\frac{3}{4}$ or 0.75	A1	
	Alternative method for Question 3(c)		
	Method using '1 – Probability of arrangements with A and D together': $\frac{7!\times 2}{3!}$ [= 1680]	*M1	$\frac{7 \bowtie k}{3!}, k = 1, 2$
	$[Probability =] \frac{their 1680}{their 6720}$	*M1	With denominator = <i>their</i> (a) or correct
	$1 - \frac{their 1680}{their 6720}$	DM1	1 - m, $0 < m < 1$, dependent on at least one M mark already gained
	$\frac{5040}{6720}$ or $\frac{3}{4}$ or 0.75	A1	
		4	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(a)	0.3 P P	B1	Fully correct labelled tree diagram for each pair of branches clearly identifying written and practical, pass and fail for each intersection (no additional branches)
	0.8 W1 P 0.3 P P	B1	'One written test' branch all probabilities (or %) correct
	0.7 PF W2P 0.6 0.7 PF	B1	'Two written tests' branch all probabilities (or %) correct, condone additional branches after W2F with probabilities 1 for PF and 0 for PP
	W2 F		
		3	
4(b)	$[P(W1P) \times P(PP) + P(W1F) \times P(W2P) \times P(PP)]$ 0.8×0.3+0.2×0.6×0.3	M1	Consistent with their tree diagram or correct
	0.276 or $\frac{69}{250}$	A1	
		2	
4(c)	$P(W1 P) = \frac{P(W1 \cap \text{Practical})}{P(\text{getting place})} = \frac{0.8 \times 0.3}{their(b)} \left[= \frac{0.24}{0.276} \right]$	M1	Correct expression or FT <i>their</i> (b)
	$\frac{20}{23}$ or 0.87[0]	A1	
		2	

Question		Answer				Marks	Guidance
5(a)		1 1			· · · · · · · · · · · · · · · · · · ·	M1	At least 4 frequency densities calculated, accept
	Class width	10 10	20	20	40		May be read from graph using <i>their</i> scale, 3SF or correct
	Frequency Density	1.6 5.4	3.9	1.6	0.5	A1	All heights correct on graph
	Frequency density					B1	Bar ends at 0, 10, 20, etc. with a horizontal linear scale with at least 3 values indicated, $0 \leq \text{horizontal axis} \leq 100$
	6.0 5.0 4.0 3.0					B1	Axes labelled: Frequency density (fd), time (t) and seconds. Linear vertical scale, with at least 3 values indicated $0 \leq \text{vertical axis} \leq 5.4$
		40 60	80 100	Time/t seconds			
						4	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(b)	$Mean = \left[\frac{16 \times 5 + 54 \times 15 + 78 \times 30 + 32 \times 50 + 20 \times 80}{200}\right]$ $= \frac{80 + 810 + 2340 + 1600 + 1600}{200}$	M1	Uses at least 4 midpoint attempts (e.g. 5 ± 0.5). Accept unsimplified expression, denominator either correct or <i>their</i> Σ frequencies
	$\left[\frac{6430}{200}\right] 32\frac{3}{20} \text{ or } 32.15$	A1	Accept 32.2
		2	
5(c)	A value in correct UQ (40–60) – a value in correct LQ (10–20)	M1	
	Greatest possible value is $60 - 10 = 50$	A1	Condone 49. 9
		2	

Question	Answer	Marks	Guidance					
6(a)	$1 - P(10, 11, 12) = 1 - ({}^{12}C_{10}0.6{}^{10}0.4^2 + {}^{12}C_{11}0.6{}^{11}0.4^1 + {}^{12}C_{12}0.6{}^{12}0.4^0)$	M1	One term: ${}^{12}C_x p^x (1-p)^{12-x}$ for $0 < x < 12$, any p allowed.					
	[= 1 - (0.003832 + 0.01/414 + 0.0021/08)]	A1	Correct unsimplified expression, or better.					
	[1 - 0.083443] = 0.917	A1	AWRT					
	Alternative method for Question 6(a)							
	$P(0,1,2,3,4,5,6,7,8,9) = {}^{12}C_0 0.6^0 0.4^{12} + {}^{12}C_1 0.6^1 0.4^{11} + \dots {}^{12}C_9 0.6^9$	M1	One term: ${}^{12}C_x p^x (1-p)^{12-x}$ for $0 < x < 12$, any p allowed.					
	$ \begin{bmatrix} -0.000016777 + 0.00030199 + 0.0024914 + 0.012457 + 0.042043 + \\ 0.10090 + 0.17658 + 0.22703 + 0.21284 + 0.14189 \end{bmatrix} $	A1	Correct unsimplified expression with at least the first two and last terms					
	0.917	A1	WWW, AWRT					
		3						

Question	Answer	Marks	Guidance
6(b)	[Mean =] 0.6×150 [= 90]; [Variance =] $0.6 \times 150 \times 0.4$ [= 36]	B1	Correct mean and variance. Accept evaluated or unsimplified
	$P(X < 81) = P\left(Z < \frac{80.5 - 90}{6}\right)$	M1	Substituting <i>their</i> mean and variance into \pm standardisation formula (with a numerical value for 80.5), allow σ^2 , $\sqrt{\sigma}$, but not $\mu \pm 0.5$
		M1	Using continuity correction 80.5 or 81.5
	$\Phi(-1.5833) = 1 - 0.9433$	M1	Appropriate area Φ , from final process, must be probability
	0.0567	A1	AWRT
		5	
6(c)	np = 90, nq = 60 both greater than 5	B1	At least <i>nq</i> evaluated and statement >5 required
		1	

Question	Answer	Marks	Guidance
7(a)	$P(X=3) = \frac{4}{7} \times \frac{3}{6} \times \frac{3}{5}$	M1	$\frac{m}{7} \times \frac{n}{6} \times \frac{o}{5}$ used throughout. condone use of $\frac{1}{2}$
	$\frac{6}{35}$	A1	AG. The fractions must be identified, e.g. P(NC, NC, C), may be seen in a tree diagram.
		2	

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(b)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1	Table with x values and at least one probability Condone any additional x values if probability stated as 0.
		B1	One correct probability other than $X = 3$ linked to the correct outcome
		B1	Two further correct probabilities other than $X = 3$ seen linked to the correct outcome
		B1FT	All probabilities correct, or at least 4 probabilities summing to 1
		4	
7(c)	$\begin{bmatrix} E(X) = 1 \times \frac{15}{35} + 2 \times \frac{10}{35} + 3 \times \frac{6}{35} + 4 \times \frac{3}{35} + 5 \times \frac{1}{35} \end{bmatrix}$ $E(X) = \frac{15 + 20 + 18 + 12 + 5}{35} \left[= \frac{70}{35} = 2 \right]$	M1	At least 4 correct terms FT <i>their</i> values in (a) with probabilities summing to 1 May be implied by use in Variance, accept unsimplified expression.
	$\operatorname{Var}(X) = \left[\frac{1^2 \times 15 + 2^2 \times 10 + 3^2 \times 6 + 4^2 \times 3 + 5^2 \times 1}{35} - 2^2 = \right]$ $\frac{15 + 40 + 54 + 48 + 25}{35} - 2^2$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$. FT <i>their</i> table accept probabilities not summing to 1.
	$\left[=\frac{182}{35}-4\right]=\frac{6}{5}$	A1	N.B. If method FT for M marks from <i>their</i> incorrect (b), expressions for $E(X)$ and $Var(X)$ must be seen unsimplified with all probabilities <1
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/52 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Math	nematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/52

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

9709/52

Question	Answer	Marks	Guidance
1(a)	6	B1	WWW
		1	
1(b)	$\left(\frac{5}{6}\right)^3 \frac{1}{6} + \left(\frac{5}{6}\right)^4 \frac{1}{6} + \left(\frac{5}{6}\right)^5 \frac{1}{6} + \left(\frac{5}{6}\right)^6 \frac{1}{6}$	M1	$p^{3}(1-p) + p^{4}(1-p) + p^{5}(1-p) + p^{6}(1-p), 0$
	0.300 (0.2996)	A1	At least 3s.f. Award at most accurate value.
	Alternative method for Question 1(b)		
	$\left(\frac{5}{6}\right)^3 - \left(\frac{5}{6}\right)^7$	M1	$p^3 - p^7, 0$
	0.300 (0.2996)	A1	At least 3s.f. Award at most accurate value.
		2	
1(c)	$1 - \left(\frac{5}{6}\right)^9$	M1	$1 - p^n, 0$
	0.806	A1	
	Alternative method for Question 1(c)		
	$\frac{1}{6} + \frac{1}{6} \left(\frac{5}{6}\right) + \frac{1}{6} \left(\frac{5}{6}\right)^2 + \dots + \frac{1}{6} \left(\frac{5}{6}\right)^8$	M1	$p + p(1-p) + p(1-p)^{2} + p(1-p)^{3} + p(1-p)^{4} + p(1-p)^{5} + p(1-p)^{6} + p(1-p)^{7} + p(1-p)^{8} (+ p(1-p)^{9}), 0As per answer for minimum terms shown$
	0.806	A1	
		2	

Question	Answer	Marks	Guidance
2	$\left[P(X > 1.1) = \frac{72}{2000} (= 0.036)\right]$ z = ±1.798	B1	$1.79 \le z \le 1.80, -1.80 \le z \le -1.79$ seen
	$\frac{1.1 - 1.04}{\sigma} = 1.798 \\ \left[\frac{0.06}{\sigma} = 1.798\right]$	B1	1.1 and 1.04 substituted in ±standardisation formula, allow continuity correction, not σ^2 or $\sqrt{\sigma}$
		M1	Equate <i>their</i> ±standardisation formula to a <i>z</i> -value and to solve for the appropriate area leading to final answer (expect $\sigma < 0.5$). $\left(\operatorname{Accept} \pm \frac{0.06}{\sigma} = z - \operatorname{value}\right)$
	$\sigma = 0.0334$	A1	$0.03335 \le \sigma \le 0.0334$. At least 3 3s.f.
		4	

Question	Answer	Marks	Guidance
3(a)	$P(\text{not late}) = 0.4 \times 0.45 + 0.35 \times 0.3 + 0.25 \times (1 - x)$ or $P(\text{late}) = 0.4 \times 0.55 + 0.35 \times 0.7 + 0.25x$	M1	$0.4 \times p + 0.35 \times q + 0.25 \times r$, p = 0.45, 0.55, q = 0.3, 0.7 and $r = (1 - x), x$
	0.18 + 0.105 + 0.25 (1 - x) = 0.48 or 0.22 + 0.245 + 0.25x = 0.52	A1	Linear equation formed using sum of 3 probabilities and 0.48 or 0.52 as appropriate. Accept unsimplified.
	<i>x</i> = 0.22	A1	Final answer
		3	
3(b)	$\left[P(train late) - \frac{P(train \cap late)}{P(train \cap late)}\right]$	B1	0.35×0.7 or 0.245 seen as numerator of fraction
	$\begin{bmatrix} P(late) - P(late) \end{bmatrix}$ = $\frac{0.35 \times 0.7}{1 - 0.48}$ or $\frac{0.35 \times 0.7}{0.4 \times 0.55 + 0.35 \times 0.7 + 0.25 \times their 0.22}$	M1	P(late) seen as a denominator with <i>their</i> probability as numerator (Accept $\frac{their p}{0.52} or \frac{their p}{0.22 + 0.245 + 0.25 \times their 0.22}$)
	$= 0.471 \text{ or } \frac{49}{104}$	A1	
		3	

Question				Answer				Marks	Guidance
4(a)	X	-1	0	1	2	3		B1	Table with correct X values and at least one probability Condone any additional X values if probability stated as 0.
	<i>P(X)</i>	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{9}$	$\frac{3}{9}$	$\frac{2}{9}$		B1	2 correct probabilities linked with correct outcomes, may not be in table.
								B1	3 further correct probabilities linked with correct outcomes, may not be in table.
									SC if less than 2 correct probabilities seen, award SCB1 for sum of <i>their</i> 4 or 5 probabilities in table = 1
								3	
4(b)	$\begin{bmatrix} E(X) = \frac{-1 \times 1 + (0 \times 2) + 1 \times 1 + 2 \times 3 + 3 \times 2}{9} = \\ \frac{-1 + 1 + 6 + 6}{9} \end{bmatrix}$						M1	May be implied by use in variance, accept unsimplified expression. FT <i>their</i> table if <i>their</i> 3 or more probabilities sum to 1 or 0.999	
	$\begin{bmatrix} \text{Var} (X) \\ -1^2 \times 1 \\ \\ 1 + 0 + 1 \end{bmatrix}$	$ \begin{array}{c}) =] \\ + \left(0^2 \times 2 \right) + \\ \\ \hline \\ + 12 + 18 \\ \hline 9 \\ \end{array} - $	$\frac{1^2 \times 1 + 2^2}{9}$ (their E(X)	$\frac{\langle 3+3^2\times 2}{\rangle}$	-(their E(X	$\left(T \right) \right)^2$		M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table even if <i>their</i> 3 or more probabilities not summing to 1.
	E(X) =	$=\frac{4}{3}$ or 1.33	and Var(X	$=\frac{16}{9}$ or 1.	78			A1	Answers for $E(X)$ and $Var(X)$ must be identified
								3	N.B. If method FT for M marks from <i>their</i> incorrect (b), expressions for $E(X)$ and $Var(X)$ must be seen unsimplified with all probabilities <1

Question	Answer	Marks	Guidance
5(a)	$[(0.7)^3 =]0.343$	B1	Evaluated WWW
	Alternative method for Question 5(a)		
	$[(0.15)^3 + {}^{3}C_1(0.15)^2(0.55) + {}^{3}C_2(0.15)(0.55)^2 + (0.55)^3 =] 0.343$	B1	Evaluated WWW
		1	
5(b)	$1 - (0.85^9 + {}^9C_1 \ 0.15^1 \ 0.85^8 + {}^9C_2 \ 0.15^2 \ 0.85^7)$	M1	One term: ${}^{9}C_{x} p^{x} (1-p)^{9-x}$ for $0 < x < 9$, any 0
	[1 - (0.231617 + 0.367862 + 0.239667)]	A1	Correct expression, accept unsimplified.
	0.141	A1	$0.1408 \leq ans \leq 0.141$, award at most accurate value.
	Alternative method for Question 5(b)		
	${}^{9}C_{3}0.15^{3}0.85^{6} + {}^{9}C_{4}0.15^{4}0.85^{5} + {}^{9}C_{5}0.15^{5}0.85^{4} + {}^{9}C_{6}0.15^{6}0.85^{3} +$		One term: ${}^{9}C_{x} p^{x} (1-p)^{9-x}$ for $0 < x < 9$, any 0
	$C_7 0.13 \ 0.83 \ \pm \ C_8 0.13 \ 0.83 \ \pm \ 0.13$	A1	Correct expression, accept unsimplified.
	0.141	A1	$0.1408 \leq ans \leq 0.141$, award at most accurate value.
		3	

May/June 2021

Question	Answer	Marks	Guidance
5(c)	Mean = $[60 \times 0.15 =]9$ Variance = $[60 \times 0.15 \times 0.85 =]7.65$	B1	Correct mean and variance, allow unsimplified. ($2.765 \le \sigma \le 2.77$ imply correct variance)
	$\left[\left(X \ge 12 \right) = \right] P \left(Z > \frac{11.5 - 9}{\sqrt{7.65}} \right)$	M1	Substituting <i>their</i> mean and variance into ±standardisation formula (any number for 11.5), not σ^2 or $\sqrt{\sigma}$
		M1	Using continuity correction 11.5 or 12.5 in <i>their</i> standardisation formula.
	$1 - \Phi(0.9039) = 1 - 0.8169$	M1	Appropriate area Φ , from final process, must be probability.
	0.183	A1	Final AWRT
		5	

Question	Answer	Marks	Guidance
6(a)	<u>8!</u> 2!3!	M1	$\frac{8!}{k \Join m!} k = 1 \text{ or } 2, m = 1 \text{ or } 3, \text{ not } k = m = 1$ no additional terms
	3360	A1	
		2	

May/June 2021

Question	Answer	Marks	Guidance
6(b)	Method 1 Arrangements Rs at ends – Arrangements Rs at ends and O	s together	
	[Os not together =] $\frac{6!}{3!} - 4!$	M1	$\frac{6!}{k!} - m, 1 \le k \le 3, m \text{ an integer, condone } 2 \times \left(\frac{6!}{k!}\right) - m.$
		M1	w - 4! or $w - 24$, w an integer Condone $w - 2 \times 4!$
	96	A1	
	Method 2 identified scenarios R R, Arrangement No Os together	r + 2Os and	l a single O
	${}^{4}C_{3} \times 3! + {}^{4}C_{2} \times 2 \times 3!$		${}^{4}C_{3} \times 3! + r \text{ or } 4 \times 3! + r \text{ or } {}^{4}P_{3} \times 3! + r, r \text{ an integer.}$ Condone $2 \times {}^{4}C_{3} \times 3! + r. 2 \times 4 \times 3! + r \text{ or } 2 \times {}^{4}P_{3} \times 3! + r.$
		M1	$q + {}^{4}C_{2} \times 3! \times k \text{ or } q + {}^{4}P_{2} \times 3! \times k, k = 1, 2, q \text{ an integer}$
	[24 + 72 =] 96	A1	
		3	
6(c)	Method 1 Identified scenarios		
	OORR ${}^{3}C_{2} \times {}^{2}C_{2} \times [{}^{3}C_{0}] = 3 \times 1 = 3$	B1	Outcomes for 2 identifiable scenarios correct, accept unsimplified.
	$ORR_{-} = C_{1} \times C_{2} \times C_{1} = 3 \times 1 \times 3 = 9$ $OOR_{-} = {}^{3}C_{2} \times {}^{2}C_{1} \times {}^{3}C_{1} = 3 \times 2 \times 3 = 18$ $OR_{-} = {}^{3}C_{1} \times {}^{2}C_{1} \times {}^{3}C_{2} = 3 \times 2 \times 3 = 18$ $OOOR_{-} = {}^{3}C_{3} \times {}^{2}C_{1} \times [{}^{3}C_{0}] = 1 \times 2 = 2$	M1	Add 4 or 5 identified correct scenarios only values, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations.
	Total 50	A1	All correct and added
	Probability = $\frac{50}{{}^{8}C_{4}}$	M1	$\frac{their'50'}{{}^{8}C_{4}}$, accept numerator unevaluated

Question	Answer	Marks	Guidance					
6(c) cont'd	$\frac{50}{70}$ or 0.714	A1						
	Method 2 Identified outcomes							
	ORTM ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORTW ${}^{3}C_{1} \times {}^{2}C_{1} = 6$	B1	Outcomes for 5 identifiable scenarios correct, accept unsimplified.					
	1 1	M1	Add 9, 10 or 11 identified correct scenarios only values, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations.					
	Total 50	A1	All correct and added					
	Probability = $\frac{50}{{}^{8}C_{4}}$	M1	$\frac{their'50'}{{}^{8}C_{4}}$, accept numerator unevaluated.					
	$\frac{50}{70}$ or 0.714	A1						
		5						

Question	Answer	Marks Guidance
7(a)	Includes all data	B1 Reference to <i>either</i> including all/raw data or further statistical processes are possible that cannot be found using data from box-and-whisker, eg frequency, mean, mode or standard deviation not only median, IQR, range or spread which can be found from both.
		1
7(b)	Amazons Giants	B1 Correct stem can be upside down, ignore extra values
	8 17 5 4 2 1 18 2 4 7 9	B1 Correct Amazons labelled on left, leaves in order from right to left and lined up vertically (less than halfway to next column), no commas or other punctuation.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 Correct Giants labelled on same diagram, leaves in order and lined up vertically (less than halfway to next column), no commas or other punctuation.
	5 21	B1 Correct single key for their diagram, need both teams identified and 'cm' stated at least once here or in leaf headings or title.
	Key: 1 18 2 means 181 cm for Amazons and 182 cm for Giants	SC for if 2 separate diagrams drawn, award SCB1 if both keys meet these criteria (Max B1, B0, B0, B1)
		4
7(c)	[UQ = 202 (cm), LQ = 182 (cm)] $[UOP = 1202 \dots 182 = 20 \text{ (cm)}]$	M1 $201 \le UQ \le 205 - 181 \le LQ \le 184$
	[1QK -] 202 - 182 - 20 (CIII)	A1 WWW
		2

Question	Answer	Marks	Guidance			
7(d)	$[\Sigma_{11} = 2132 \\ \Sigma_{15} = 191.2 \times 15 = 2868]$	B1	Both Σ_{11} and Σ_{15} found. Accept unevaluated.			
	$their \ 2868 = their \ 2132 + (180 + 185 + 190) + h$	M1	Forming an equation for the height using <i>their</i> Σ_{11} and Σ_{15} .			
	181 (cm)	A1				
	Alternative method for Question 7(d)					
	$[\Sigma_{15} = 191.2 \times 15 = 2868$ $\Sigma_{15} = 2687 + h]$	B1	Σ_{15} found using the mean and raw data methods. Accept unevaluated.			
	<i>their</i> $2868 = their 2687 + h$	M1	Forming an equation for the height using <i>their</i> Σ_{15} expressions.			
	181 (cm)	A1				
	Alternative method for Question 7(d)					
	$[\Sigma_{15} = 2687 + h]$ $\frac{\Sigma_{15}}{15} = 191.2]$	B1	Σ_{15} found using raw data method and statement on calculating new mean. Accept unevaluated.			
	$\frac{their 2687 + h}{15} = 191.2$	M1	Forming an equation for the height using <i>their</i> Σ_{15} expressions			
	181 (cm)	A1				
		3	N.B. All methods can be presented as a logical numerical argument which can be condoned if clear.			

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/53 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Math	nematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/53

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	60	B1	Accept 60 or 61. No decimals
		1	
1(b)	65% of 160 = 104	M1	0.65×160 (=104) seen unsimplified or implied by use on graph
	136 (cm)	A1	Use of graph must be seen. SCB1 correct value (136 only) if neither 104 nor use of graph are evident
		2	
1(c)	UQ: 150 LQ: 76	M1	$UQ - LQ ; 148 \leq UQ \leq 152; 74 \leq LQ \leq 78.$
	IQR = 150 - 76 = 74 [cm]	A1	Must be from 150 - 76
		2	

Question	Answer	Marks	Guidance
2	p + p + 0.1 + q + q = 1	B1	Sum of probabilities = 1
	0.1 + 2q = 3(2p)	B1	Use given information
	Attempt to solve two correct equations in <i>p</i> and <i>q</i>	M1	Either use of Substitution method to form a single equation in either <i>p</i> or <i>q</i> and finding values for both unknowns. Or use of Elimination method by writing both equations in same form (usually $ap + bq = c$) and + or – to find an equation in one unknown and finding values for both unknowns.
	$p = \frac{1}{8}$ or 0.125 and $q = \frac{13}{40}$ or 0.325	A1	CAO, both WWW
		4	

Question	Answer	Marks	Guidance
3(a)	Mean height $=\frac{\Sigma x + \Sigma y}{6+11} = \frac{1050 + 1991}{6+11} = \frac{3041}{17}$	M1	Use of appropriate formula with values substituted, accept unsimplified.
	178.9	A1	Allow 178.88, 178 $\frac{15}{17}$, 179
		2	

9709/53

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(b)	$\frac{\Sigma x^2 + \Sigma y^2}{6+11} = \frac{193700 + 366400}{6+11}$	M1	Use of appropriate formula with values substituted, accept unsimplified.
	$Sd^{2} = \frac{560100}{17} - their 178.88^{2} [= 948.289]$	M1	Appropriate variance formula using <i>their</i> mean ² , accept unsimplified expression.
	Standard deviation = 30.8	A1	Accept 30.7
		3	

Question	Answer	Marks	Guidance
4(a)	[Possible cases: 1 1 2, 1 2 1, 2 1 1] Probability = $\left(\frac{1}{6}\right)^3 \times 3$	M1	$\left(\frac{1}{6}\right)^3 \times k$, where k is an integer.
		M1	Multiply a probability by 3, not +, – or \div
	$\frac{1}{72}$	A1	Accept $\frac{3}{216}$ or 0.0138 or 0.0139
		3	
4(b)	$P(18) = \left(\frac{1}{6}\right)^3 \left[=\frac{1}{216}\right]$	B1	
	P(18 on 5th throw) = $\left(\frac{215}{216}\right)^4 \times \frac{1}{216}$	M1	$(1-p)^4 p, 0 < their p < 1$
	0.00454	A1	
		3	

9709/53

Question	Answer	Marks	Guidance
5(a)	$z_1 = \frac{4 - \mu}{\delta} = -1.378$	B1	$1.378 \leqslant z_1 \le 1.379 \text{ or } -1.379 \leqslant z_1 \leqslant -1.378$
	$z_2 = \frac{10 - \mu}{\sigma} = 0.842$	B1	$0.841 \leqslant z_2 \leqslant 0.842 \text{ or } -0.842 \leqslant z_2 \leqslant -0.841$
	Solve to find at least one unknown: $\frac{4-\mu}{\sigma} = -1.378$ $\frac{10-\mu}{\sigma} = 0.842$	M1	Use of ±standardisation formula once with μ , σ , a <i>z</i> -value and 4 or 10, allow continuity correction, not σ^2 or $\sqrt{\sigma}$
		M1	Use either the elimination method or the substitution method to solve two equations in μ and σ .
	$\sigma = 2.70 \ \mu = 7.72$	A1	$2.70 \leqslant \sigma \leqslant 2.71 \ 7.72 \leqslant \mu \leqslant 7.73$
		5	
5(b)	$\Phi(2) - \Phi(-2) = 2\Phi(2) - 1$	M1	Identifying 2 and –2 as the appropriate <i>z</i> -values
	2× <i>their</i> 0.9772–1	B1	Calculating the appropriate area from stated phis of z-values which must be \pm the same number
	0.9544 or 0.9545	A1	Accept AWRT 0.954
	0.9544 × 800 = 763.52 763 or 764	B1 FT	FT <i>their</i> 4SF (or better) probability, final answer must be positive integer
		4	

Question	Answer	Marks	Guidance
6(a)	$\frac{11!}{2!3!}$	M1	11! alone on numerator – must be a fraction. $k! \times m!$ on denominator, $k = 1, 2, m = 1, 3, 1$ can be implied but cannot both = 1. No additional terms
	3326400	A1	Exact value only
		2	
6(b)	8! = 40320	B1	Evaluate, exact value only
		1	
6(c)	$\frac{9!}{3!} \times 7$	M1	$\frac{9!}{3!} \times k$ seen, k an integer > 0, no +, - or ÷
		M1	7 × an integer seen in final answer, no +, – or \div
	423360	A1	Exact value only
	Alternative method for Question 6(c)		
	${}^{9}C_{3} \times 7! (\times \frac{3!}{3})$	M1	9C3× k seen, k an integer > 0, no + or –
	3!	M1	$7! \times k$ seen, , k an integer > 0, no + or –
	423360	A1	Exact value only but there must be evidence of $\times \frac{3!}{3!}$

Question	Answer	Marks	Guidance
6(c) cont'd	Alternative method for Question 6(c)		
	$3 \times 7 \times \frac{8!}{2!}$	M1	$3 \times \frac{8!}{2!} \times k$ seen, k an integer > 0, no + or –
		M1	7 × an integer seen in final answer, no +, – or \div
	423360	A1	Exact value only
	Alternative method for Question 6(c)		
	$7 \times \frac{2}{11} \times \frac{9}{10} \times \frac{8}{9} \times \frac{7}{8} \times \frac{1}{7} \times \text{total no. of arrangements}$	M1	Product of correct five fractions $\times k$ seen, k an integer > 0 , no $+$ or $-$
		M1	7×'total no of arrangements' ×k seen, k an integer > 0, no + or –
	423360	A1	Exact value only
	Alternative method for Question 6(c)		
	No E between the Rs $-\frac{{}^{6}C_{3} \times 3 \times 7!}{3!} = 100800$	M1	Finding the correct number of ways for no, 1 or 2 Es between the Rs, accept unsimplified.
	1E between the Rs $-\frac{{}^{6}C_{2} \times 3 \times 7!}{2!} = 226800$	M1	Adding the number of ways for 3 or 4 correct scenarios
	2Es between the Rs $-{}^{6}C_{1} \times 3 \times 7! = 90720$ 3Es between the Rs $-7! = 5040$		
	$[\text{Total} = 7 \Join (20 + 45 + 18 + 1) = 7 \Join 84 =]423360$	A1	CAO
		3	

Question	Answer	Marks	Guidance
6(d)	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	M1	Identifying four correct scenarios only.
		B1	Correct number of selections unsimplified for 2 or more scenario.
		M1	Adding the number of selections for 3 or 4 identified correct scenarios only, accept unsimplified. ${}^{3}C_{x} \times {}^{2}C_{y} \times {}^{6}C_{z}, x+y+z=5$ correctly identifies <i>x</i> Es and <i>y</i> Rs
	[Total =] 28	A1	WWW, only dependent upon 2nd M mark.
	Alternative method for Question 6(d) – Fixing EER first. No other scenarios can be present anywhere in solution.		
	$E E R^{\wedge \wedge} = {}^{8}C_{2}$	M1	⁸ C _x seen alone or ⁸ C _x × k, , $k = 1$ or 2, 0 <x<8 Condone ⁸P_x or ⁸P_x × k, $k = 1$ or 2, 0<x<8< td=""></x<8<></x<8
		B 1	${}^{8}C_{2} \times k, \ k = 1 \text{ or } 2 \text{ OE}$
		M1	${}^{8}C_{2} \times k, \ k = 1 \text{ OE and no other terms}$
	[Total =] 28	A1	Value stated
		4	

Question	Answer	Marks	Guidance
7(a)(i)	$\frac{40}{800}$ or $\frac{1}{20}$ or 0.05	B1	
		1	
7(a)(ii)	$\frac{177}{223+177+40}$	M1	<i>Their</i> 223 + 177 + 40 seen as denominator of fraction in the final answer, accept unsimplified
	$\frac{177}{440}$ or 0.402	A1	CAO
	Alternative method for Question 7(a)(ii)		
	$P(G \mid S) = \frac{P(G \cap S)}{P(S)} = \frac{\frac{177}{800}}{\frac{223 + 177 + 40}{800}} = \frac{\frac{177}{800}}{\frac{440}{800}} = \frac{\frac{177}{800}}{\frac{11}{20} \text{ or } 0.55}$	M1	<i>Their</i> P(<i>S</i>) seen as denominator of fraction in the final answer, accept unsimplified
	$\frac{177}{440}$ or 0.402	A1	CAO
		2	
7(b)(i)	$P(0, 1, 2) = {}_{^{10}C_0} (0.35)^0 (0.65)^{10} + {}^{10}C_1 (0.35)^1 (0.65)^9 + {}^{10}C_2 (0.35)^2 (0.65)^8$	M1	One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10$, any 0
	0.013463 + 0.072492 + 0.17565	A1	Correct unsimplified expression, or better
	0.262	A1	
		3	

Question	Answer	Marks	Guidance
7(b)(ii)	Mean = $120 \times 0.35 [= 42]$	B1	Correct mean and variance seen, allow unsimplified
	Variance = $120 \times 0.35 \times 0.65 [= 27.3]$		
	$P(X>32) = P(Z > \frac{32.5 - 42}{\sqrt{27.3}}) = P(Z > -1.818)$	M1	Substituting <i>their</i> mean and variance into \pm standardisation formula (any number), condone σ^2 or $\sqrt{\sigma}$
		M1	Using continuity correction 31.5 or 32.5
	$\Phi(1.818)$	M1	Appropriate area Φ , from final process, must be probability
	0.966	A1	$0.965 \leqslant p \leqslant 0.966$
		5	

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability and Statistics 1 MARK SCHEME Maximum Mark: 50 9709/52 March 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

9709/52

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

9709/52

Question	Answer	Marks	Guidance
1(a)	$\left[\left(\frac{4}{5}\right)^7 \frac{1}{5} = \right] \frac{16384}{390625} \text{ or } 0.0419[43]$	B1	Evaluated, final answer.
		1	
1(b)	$1 - \left(\frac{4}{5}\right)^5 \text{ or } \frac{1}{5} + \frac{4}{5} \times \frac{1}{5} \left(\frac{4}{5}\right)^2 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5} + \left(\frac{4}{5}\right)^4 \times \frac{1}{5}$	M1	$1 - p^{n} n = 5,6$ or $p + pq + pq^{2} + pq^{3} + pq^{4} (+ pq^{5})$ $0Sum of a geometric series may be used.$
	$\frac{2101}{3125}$ or 0.672[32]	A1	Final answer.
	Alternative method for question 1(b)		
	$[P(\text{at least 1 three scored in 5 throws}) =] \left(\frac{1}{5}\right)^{5} + {}^{5}C_{4}\left(\frac{1}{5}\right)^{4}\left(\frac{4}{5}\right) + {}^{5}C_{3}\left(\frac{1}{5}\right)^{3}\left(\frac{4}{5}\right)^{2} + {}^{5}C_{2}\left(\frac{1}{5}\right)^{2}\left(\frac{4}{5}\right)^{3} + {}^{5}C_{4}\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)^{4}$	M1	$(p)^{5} + {}^{5}C_{4}(p)^{4}(q) + {}^{5}C_{3}(p)^{3}(q)^{2} + {}^{5}C_{2}(p)^{2}(q)^{3} + {}^{5}C_{1}(p)(q)^{4}$ or $(p)^{6} + {}^{6}C_{5}(p)^{5}(q) + {}^{6}C_{4}(p)^{4}(q)^{2} + {}^{6}C_{3}(p)^{3}(q)^{3}$ $+ {}^{6}C_{2}(p)^{2}(q)^{4} + {}^{6}C_{1}(p)(q)^{5}, 0At least first, last and one intermediate term is required toshow pattern of terms if not all terms stated.$
	$\frac{2101}{3125}$ or 0.672[32]	A1	Final answer.
		2	

Question	Answer	Marks	Guidance
2(a)	$0.2[\times 1] + 0.45 \times 0.4 + 0.35 \times 0.3$	M1	$0.2 [\times 1] + 0.45 \times b + 0.35 \times c, b = 0.4, 0.6 c = 0.3, 0.7$
	$0.485 \text{ or } \frac{97}{200}$	A1	
		2	
2(b)	$P(Y \overline{H}) = \frac{P(Y \cap \overline{H})}{P(\overline{H})} = \frac{0.35 \times 0.7}{1 - their(\mathbf{a})} = \frac{0.245}{0.515}$	B1	0.35×0.7 or 0.245 seen as numerator or denominator of fraction.
		M1	0.515 or 1 - their (a) or $[0.3 \times 0 +] 0.45 \times d + 0.35 \times e$, where $d = their b'$, $e = their c'$ seen as denominator of fraction.
	$0.476 \text{ or } \frac{49}{103}$	A1	$0.4757 \leq p \leq 0.476$
		3	

Question	Answer	Marks	Guidance
3(a)	$P\left(\left(\frac{85-96}{18}\right) < z < \left(\frac{100-96}{18}\right)\right)$	M1	Use of ±standardisation formula once with appropriate values substituted, no continuity correction, not σ^2 or $\sqrt{\sigma}$.
	$P(-0.6111 < z < 0.2222) = \Phi(0.2222) + \Phi(0.6111) - 1 = 0.5879 + 0.7294 - 1$	M1	Appropriate area Φ , from final process, must be probability. Use of $(1 - z)$ implies M0.
	0.317	A1	Final answer which rounds to 0.317.
		3	
Question	Answer	Marks	Guidance
----------	------------------------------	-------	--
3(b)	$z = \pm 1.175$	B1	$1.17 \le z \le 1.18 \text{ or } -1.18 \le z \le -1.17$
	$-1.175 = \frac{t - 96}{18}$	M1	An equation using ±standardisation formula with a <i>z</i> -value, condone σ^2 , $\sqrt{\sigma}$ or continuity correction. E.g. equating to 0.88, 0.12, 0.8106, 0.1894, 0.5478, 0.4522, ±0.175 or ±2.175 implies M0.
	74·85 or 74·9	A1	$74.85 \leqslant t \leqslant 74.9$
		3	

Question				Ans	wer		Marks	Guidance
4(a)	x prob	1 4k	2 6k	3 6k	4 4k		B1	Table with \times values and one correct probability expressed in terms of <i>k</i> . Condone any additional \times values if probability stated as 0.
							B1	Remaining 3 probabilities correct expressed in terms of k – condone if the first correct probability is not in table.
							2	
4(b)	$[4k+6k+6k+4k=1] \ k = \frac{1}{20} \ (=0.05)$						B1	Correct value for k SOI. May be calculated in 4(a). SC B1 If denominator 20k used throughout.
	$E(X) = 1 \times \frac{4}{20} + 2 \times \frac{6}{20} + 3 \times \frac{6}{20} + 4 \times \frac{4}{20} = \frac{4}{20} + \frac{12}{20} + \frac{18}{20} + \frac{16}{20}$ (= 2.5)							Accept unsimplified expression. Condone $4k + 12k + 18k + 16k$. May be implied by use in Variance expression. Special ruling: Allow use of denominator 20k.
	$\operatorname{Var}(X) = 1^{2} \times \frac{4}{20} + 2^{2} \times \frac{6}{20} + 3^{2} \times \frac{6}{20} + 4^{2} \times \frac{4}{20} - \left(their 2\frac{1}{2}\right)^{2}$ = $(4 + 24 + 54 + 64) \times their 0.05 - (their 2.5)^{2}$ Or $(1 - 2.5)^{2} \times \frac{4}{20} + (2 - 2.5)^{2} \times \frac{6}{20} + (3 - 2.5)^{2} \times \frac{6}{20} + (4 - 2.5)^{2} \times \frac{4}{20}$						M1	Appropriate variance formula with <i>their</i> numerical probabilities using <i>their</i> $(E(X))^2$, accept unsimplified, with <i>their k</i> substituted. Special ruling: If denominator 20 <i>k</i> used throughout, accept appropriate variance formula in terms of <i>k</i> .
	1.05						A1	AG, NFWW.
							4	

Question	Answer								Guidance
5(a)							B1	Correct cumulative frequencies seen (may be by table or	
	Distance	0-4	5-10	11-20	21-30	31-40	41-60		plotted accurately on graph), condone 12 not stated.
	Upper boundary	4.5	10.5	20.5	30.5	40.5	60.5		
	Cumulative frequency	12	28	60	126	146	150		
								B1	Axes labelled 'distance (or d) [in] km' from 0 to 60 and 'cumulative frequency' (or cf) from 0 to 150.
								M1	At least 5 points plotted at upper end points for <i>d</i> (allow upper boundary ± 0.5) with a linear scale for distance, condone $0 - 4$ interval inaccurate, no scale break on axis. Not bar graph/histogram unless clear indication of upper end point only of each bar.
					A1	All plotted correctly at correct upper end points (4.5 etc.) with both scales linear ($0 \le d \le 60$, $0 \le cf \le 150$), curve drawn accurately joined to (0,0), cf line>150, no daylight if >150.			
								4	
5(b)	70% of $150 = 1$	105						M1	105 seen or implied by indication on grid.
	Approx. 27							A1 FT	Strict FT <i>their</i> increasing cumulative frequency graph, use of graph must be seen. If no clear evidence of use of graph: SC B1 FT correct value from <i>their</i> increasing cumulative frequency graph.
								2	

March	2021
	-

Question	Answer	Marks	Guidance
5(c)	Midpoints: 2.25, 7.5, 15.5, 25.5, 35.5, 50.5	B1	At least 5 correct midpoints seen.
	$Mean = \frac{2.25 \times 12 + 7.5 \times 16 + 15.5 \times 32 + 25.5 \times 66 + 35.5 \times 20 + 50.5 \times 4}{150}$ $= \frac{27 + 120 + 496 + 1683 + 710 + 202}{150}$	M1	Using 6 midpoint attempts (e.g. $2 \cdot 25 \pm 0 \cdot 5$), condone one error not omission, multiplied by frequency, accept unevaluated, denominator either correct or <i>their</i> Σ frequencies.
	$\left[= \frac{3238}{150} \right] = 21.6, \ 21\frac{44}{75}$	A1	Evaluated, WWW, accept 21.5[866].
		3	

Question	Answer	Marks	Guidance
6(a)	$\frac{11!}{2!2!2!}$	M1	11! alone as numerator. $2! \times m! \times n!$ on denominator, $m = 1, 2, n = 1, 2$. no additional terms, no additional operations.
	4989600	A1	Exact answer only.
		2	

Question	Answer	Marks	Guidance
6(b)	Method 1 R ^ ^ ^ ^ ^ R		
	Arrange the 7 letters CTEPILL = $\frac{7!}{2!}$		$\frac{7!}{2!} \times k$ seen, k an integer > 1.
	Number of ways of placing As in non-adjacent places = ${}^{8}C_{2}$ $\frac{7!}{2!} \times {}^{8}C_{2}$	M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n = 7, 8$ or 9, m an integer > 1.
		M1	$\frac{7!}{p!} \times {}^{8}C_{2} \text{ or } \frac{7!}{p!} \times {}^{8}P_{2}, p \text{ integer} \ge 1, \text{ condone } 2520 \times 28.$
	= 70560	A1	Exact answer only. SC B1 70560 from M0, M1 only.
	Method 2 [Arrangements Rs at ends – Arrangements Rs at ends and As	ogether]	
	Total arrangements with R at beg. and end $=\frac{9!}{2!2!}$ Arrangements with R at ends and As together $=\frac{8!}{2!}$ With As not together $=\frac{9!}{2!} = \frac{8!}{2!}$	M1	$\frac{9!}{2!m!} - k, 90720 > k \text{ integer} > 1, m = 1, 2.$
		B1	$s - \frac{8!}{2!}$, s an integer >1
	2!2! 2!	M1	$\frac{9!}{p} - \frac{8!}{q}$, p, q integers ≥ 1 , condone 90720 - 20160.
	[90720 - 20160] = 70560	A1	Exact answer only. SC B1 70560 from M0, M1 only.
		4	

March 2

Question	Answer	Marks	Guidance					
6(c)	Method 1							
	$\begin{array}{cccc} R R A L & {}^{5}C_{2} & = 10 \\ R R A L L & {}^{5}C_{1} & = 5 \\ R R A A L & {}^{5}C_{1} & = 5 \\ R R A A L L & = 1 \end{array}$	M1	⁵ C _x seen alone or ⁵ C _x × k, $2 \ge k \ge 1$, k an integer, $0 < x < 5$ linked to an appropriate scenario.					
		A1	⁵ C ₂ × k, $k = 1$ oe or ⁵ C ₁ × m, $m = 1,2$ oe alone. SC if ⁵ C _x not seen. B2 for 5 or 10 linked to the appropriate scenario WWW.					
		M1	Add outcomes from 3 or 4 identified correct scenarios only, accept unsimplified. ${}^{2}C_{w} \times {}^{2}C_{x} \times {}^{2}C_{y} \times {}^{5}C_{z}$, $w+x+y+z=6$ identifies w Rs, × As and y Ls.					
	[Total =] 21	A1	WWW, only dependent on 2nd M mark. Note: ${}^{5}C_{2} + {}^{5}C_{1} + {}^{5}C_{1} + 1 = 21$ is sufficient for 4/4.					
			SC not all (or no) scenarios identified. B1 $10 + 5 + 5 + 1$ DB1 = 21					
	Method 2 – Fixing RRAL first. N.B. No other scenarios can be present anywhere in solution.							
	$\mathbf{R} \mathbf{R} \mathbf{A} \mathbf{L}^{\wedge \wedge} = {}^{7}\mathbf{C}_{2}$	M1	⁷ C _x seen alone or ⁷ C _x × k, $2 \ge k \ge 1$, k an integer, $0 \le x \le 7$. Condone ⁷ P _x or ⁷ P _x × k, $2 \ge k \ge 1$, k an integer, $0 \le x \le 7$.					
		M1	$^{7}\mathrm{C}_{2} \times k, \ 2 \geqslant k \geqslant 10\mathrm{e}$					
		A1	$^{7}C_{2} \times k, k = 1$ oe no other terms.					
	[Total =] 21	A1	Value stated.					
		4						

March 2	2021
---------	------

Question	Answer	Marks	Guidance
7(a)(i)	$\left[\frac{104+31}{400}\right] = \frac{135}{400}, \frac{27}{80}, 0.3375$	B1	Evaluated, exact value.
		1	
7(a)(ii)	Method 1		
	$P(M) = \frac{180}{400}, 0.45 P(S) = \frac{135}{400}, 0.3375 P(M \cap S) = \frac{31}{400}, 0.0775$	M1	<i>Their</i> $P(M) \times their P(S)$ seen, accept unsimplified.
	$\frac{180}{400} \times \frac{135}{400} = \frac{243}{1600}, 0.151875 \neq \frac{31}{400}$ so NOT independent		
		A1	$P(M)$, $P(S)$ and $P(M \cap S)$ notation seen, numerical comparison and correct conclusion, WWW.
	Method 2		
	$P(M \cap S) = \frac{31}{400} P(S) = \frac{135}{400} P(M) = \frac{180}{400}$ 31	M1	$[P(M S) =] \frac{\text{their } P(M \cap S)}{\text{their } P(S)} \text{ (oe) seen, accept unsimplified.}$
	$P(M S) = \frac{\overline{400}}{\frac{135}{400}} = \frac{31}{135}, 0.2296 \neq \frac{180}{400}$ so NOT independent		
		A1	$P(M)$, $P(S)$ and $P(M \cap S)$ notation seen, numerical comparison and correct conclusion, WWW.
		2	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

March 2021

Question	Answer	Marks	Guidance					
7(b)(i)	Method 1 [1 – P(0,1,2)]							
	$= 1 - ({}^{10}C_0 0.3^0 0.7^{10} + {}^{10}C_1 0.3^1 0.7^9 + {}^{10}C_2 0.3^2 0.7^8)$	M1	${}^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10, 0 < p < 1$, any <i>p</i> .					
	= 1 - (0.028248 + 0.121061 + 0.233474)	A1	Correct expression, accept unsimplified, condone omission of final bracket, condone recovery from poor notation.					
	= 0.617	A1	Accept $0.61715 \le p \le 0.61722$, WWW.					
	Method 2 [P(3,4,5,6,7,8,9,10) =]							
	${}^{10}C_3 0 \cdot 3^3 0 \cdot 7^7 + {}^{10}C_4 0 \cdot 3^4 0 \cdot 7^6 + {}^{10}C_5 0 \cdot 3^5 0 \cdot 7^5 $	M1	$^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10, 0 < p < 1$, any <i>p</i> .					
	$+ {}^{10}C_9 0.3^9 0.7^1 + {}^{10}C_{10} 0.3^{10} 0.7^0$	A1	Correct unsimplified expression.					
	= 0.617	A1	Accept $0.61715 \le p \le 0.61722$, WWW.					
		3						

March 20	021	
----------	-----	--

Question	Answer	Marks	Guidance
7(b)(ii)	[p = 0.3] Mean = 0.3 × 90 = 27; variance = 0.3 × 90 × 0.7 = 18.9	B1	Correct mean and variance, allow unsimplified. Condone $\sigma = 4.347$ evaluated.
	$P(X < 32) = P\left(z < \frac{31.5 - 27}{\sqrt{18.9}}\right)$	M1	Substituting <i>their</i> μ and σ (not σ^2 , $\sqrt{\sigma}$) into the ±standardising formula with a numerical value for '31.5'.
		M1	Using either 31.5 or 32.5 within a ±standardising formula with numerical values for <i>their</i> μ and σ (condone σ^2 , $\sqrt{\sigma}$).
	$=\Phi(1.035)$	M1	Appropriate area Φ , from standardisation formula P($z <$) in final solution, must be probability.
	= 0.850	A1	Allow $0.8495 , final answer WWW.$
		5	

Cambridge International A Level

MATHEMATICS

9709/51 October/November 2020

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

г

Ma	thematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International A Level – Mark Scheme PUBLISHED Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column.
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Cambridge International A Level – Mark Scheme PUBLISHED

Question				Answer Mark		Marks Gui	Guidance			
1(a)	1(a)				R	ed			M1 Complete outcome space or or listing A and B outcomes	
			1	2	3	4	5	6	or listing $A \cap B$ outcomes	
		1	2	3	4	5	6	7		
		2	3	4	5	6	7	8		
	ue	3	4	5	6	7	8	9		
	Bl	4	5	6	7	8	9	10		
		5	6	7	8	9	10	11		
		6	7	8	9	10	11	12		
	$P(A \cap B) = \frac{5}{2}$								A1 With evidence	
	$P(A B) = \frac{1}{36}$									
									2	

Question	Answer	Marks	Guidance
1(b)	$P(A) \times P(B) = \frac{1}{3} \times \frac{10}{36}$	M1	Their $\frac{1}{3} \times their \frac{10}{36}$ seen
	$\frac{5}{54} \neq \frac{5}{36}$ so not independent	A1	$\frac{5}{54}, \frac{5}{36}, P(A) \times P(B)$ and $P(A \cap B)$ seen in workings and correct conclusion stated Condone $\frac{5}{36}$ being stated in (a)
	Alternative method for question 1(b)		
	$P(B A) = P(B)$ $P(B A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{5}{36}}{\frac{1}{3}}$	M1	OE, $\frac{their1(a)}{theirP(A)}$ seen
	$\frac{5}{12} \neq \frac{5}{18}$ so not independent	A1	P(A B), P(B), $\frac{5}{12}, \frac{5}{18}$ seen in workings and correct conclusion stated Condone $\frac{5}{18} \equiv \frac{10}{36}$ being identified in (a)
		2	

Question	Answer	Marks	Guidance
2(a)	$0.6 \times 0.7 + 0.4(1 - x) = 0.58$ = 0.42 + 0.4(1 - x) = 0.58	M1	Equation of form $0.6 \times a + 0.4 \times b = 0.58$; a = 0.3, 0.7, b = x, (1 - x)
		B 1	Single correct product seen, condone 0.42 , in an equation of appropriate form
	x = 0.6	A1	
	Alternative method for question 2(a)		
	$0.6 \times 0.3 + 0.4x = 0.42 = 0.18 + 0.4x = 0.42$	M1	Equation of form 0.6 x $a + 0.4$ x b = 0.42; a = 0.3, 0.7, b = x, (1 - x)
		B 1	Single correct product seen, condone 0.18 , in an equation of appropriate form
	x = 0.6	A1	
		3	
2(b)	$(0.6 \times 0.3)^2$	M1	$(a \times b)^2$, $a = 0.6$, 0.4 and $b = 0.7$, 0.3, x , (1– x) or 0.18 ² , alone.
	0.0324	A1	
		2	
3(a)	$P(X > 6) = 0.75^6$	M1	$p^{n}, n = 6, 7 0$
	$0.178, \frac{729}{4096}$	A1	0.17797
		2	

Question				Answer			Marks		Guidance				
3(b)	1 - P(0, 1)	(2) = 1 - ($0.75^{10} + {}^{10}$	$^{0}C_{1} 0.25^{1} 0$	$0.75^9 + {}^{10}$	$C_2 0.25^2 0.75^8$)	M1	Binon any <i>p</i> ,	Binomial term of form ${}^{10}C_x p^x (1-p)^{10-x}, 0 any p, x \neq 0, 10$				
	1 - (0.056	53135 + 0.1	877117 +	5)		A1	Corre	Correct unsimplified expression					
	0.474						A1	0.474	$\leq p \leq$	0.474	4		
4(a)	У	1	2	3	4]	B 1		1	2	3	4	
	prob	_7	5	3	1	-		1	1	1	2	3]
	proc	16	16	16	16			2	1	2	1	2	
								3	2	1	3	1	
								4	3	2	1	4	
								Proba one pr stated	bility c obabil	listribu ity, all	tion ta	ible wi tra scor	th correct scores with at least re values if probability of zero
							B1	One p	robabi	lity (liı	nked w	vith con	rrect score) correct
							B1	2 mor	e prob	s (linke	ed with	n corre	ct scores) correct
							B1 FT	4 th pro	b corr	ect, FT	sum c	of 3 or	4 terms = 1
							4						

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(b)	$P(2 even) = \frac{\frac{5}{16}}{\frac{6}{16}}$	M1	$\frac{\text{their P(2)}}{\text{their P(2) + their P(4)}}$ seen or correct outcome space.
	$\frac{5}{6}$ or 0.833	A1	
		2	
5(a)	$P(X > 4.2) = P(z > \frac{4.2 - 3.5}{0.9})$ = P(z > 0.7778)	M1	Using \pm standardisation formula, no $\sqrt{\sigma}$ or σ^2 , continuity correction
	1 - 0.7818	M1	Appropriate area Φ , from standardisation formula P(z >) in final solution
	0.218	A1	
		3	
5(b)	z = -1.282	B1	±1.282 seen (critical value)
	$\frac{t-3.5}{0.9} = -1.282$	M1	An equation using ±standardisation formula with a <i>z</i> -value, condone $\sqrt{\sigma}$, σ^2 and continuity correction
	t = 2.35	A1	AWRT, only dependent on M mark
		3	

Question	Answer	Marks	Guidance						
5(c)	$P(2.8 < X < 4.2) = 1 - 2 \times their 5(a)$ = 2(1 - their 5(a)) - 1 = 2(0.5 - their 5(a)) = 0.5636	B1 FT	FT from <i>their</i> 5(a) < 0.5 or correct Accept unevaluated probability OE Accept 0.564						
	Number of days = $365 \times 0.5636 = 205.7$	M1	$365 \times their p$						
	So, 205 (days)	A1 FT	Accept 205 or 206, not 205.0 or 206.0 no approximation/ rounding stated FT must be an integer value						
	Alternative method for question 5(c)								
	$P\left(\frac{2.8-3.5}{0.9} < z < \frac{4.2-3.5}{0.9}\right)$ = $\Phi(0.7778) - (1 - \Phi 0.7778)$ = $0.7818 - (1 - 0.7818)$ = 0.5636	B1	$0.5635OE$						
	Number of days = $365 \times 0.5636 = 205.7$	M1	$365 \times their p$						
	So, 205 (days)	A1 FT	Accept 205 or 206, not 205.0 or 206.0 no approximation/ rounding stated FT must be an integer value						
		3							

Question	Answer	Marks	Guidance
6(a)	The Takes (minutes)	M1	At least 4 points plotted at upper end points, with both scales linear with at least 3 values indicated
	Correct cumulative frequency curve	A1	All plotted correctly with curve drawn joined to $(0, 0)$, axes labelled cumulative frequency, time, minutes
		2	
6(b)	$150 \times 0.76 = 114$	M1	114 SOI, may be on graph
	k = 45 (mins)	A1 FT	Clear indication that <i>their</i> graph has been used, tolerance ± 1 mm
		2	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(c)	Frequencies: 12 36 58 28 16	B1	Correct frequencies seen
	Mean = $\frac{10 \times 12 + 25 \times 36 + 35 \times 58 + 50 \times 28 + 80 \times 16}{150}$	B1	At least 4 correct midpoints seen and used
	$\frac{120 + 900 + 2030 + 1400 + 1280}{150}$	M1	Correct formula with <i>their</i> midpoints (not upper boundary, lower boundary, class width or frequency density).
	$38.2, 38\frac{1}{5}$	A1	
	Variance = $\frac{12 \times 10^2 + 36 \times 25^2 + 58 \times 35^2 + 28 \times 50^2 + 16 \times 80^2}{150} - mean^2$ $= \frac{1200 + 22500 + 71050 + 70000 + 102400}{150} - mean^2$	M1	Substitute <i>their</i> midpoints and frequencies (condone use of cumulative frequency) in correct variance formula, must have '– <i>their</i> mean ² '
	(Standard deviation = $\sqrt{321.76}$) = 17.9	A1	
		6	
7(a)	$\frac{8!}{2!}$	M1	$\frac{8!}{k} \equiv \frac{7 \ltimes 8}{k} \text{, where } k \in \mathbb{N}, \ \frac{a!}{2(!)}, \text{ where } a \in \mathbb{N}$
	20160	A1	
		2	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance					
7(b)	Total number of ways: $\frac{10!}{2!3!}$ (= 302400) (A)	B1	Accept unsimplified					
	With Ps together: $\frac{9!}{3!}$ (= 60 480) (B)	B1	Accept unsimplified					
	With Ps not together: 302 400 – 60 480	M1	$\frac{10!}{m} - \frac{9!}{n}$, <i>m</i> , <i>n</i> integers or (A) – (B) if clearly identified					
	241 920	A1						
	Alternative method for question 7(b)							
	<u>8!</u>	B1	$k \times 8!$ in numerator, k a positive integer, no \pm					
	3!	B1	$m \times 3!$ in denominator, m a positive integer, no \pm					
	$\times \frac{9 \times 8}{2}$	M1	<i>Their</i> $\frac{8!}{3!}$ multiplied by ${}^{9}C_{2}$ or ${}^{9}P_{2}$ no additional terms					
	241 920	A1	Exact value, WWW					
		4						

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(c)	Probability = $\frac{\text{Number of ways Es at beginning and end}}{\text{Total number of ways}}$ Probability = $\frac{\frac{8!}{2!}}{\frac{10!}{2 \times 3!}} = \frac{20160}{302400}$	M1	$\frac{\left(\frac{8!}{k!}\right)}{\frac{10!}{k!l!}} 1 \le k, l \in \mathbb{N} \le 3, \text{FT denominator from 7(b) or correct}$
	$\frac{1}{15}, 0.0667$	A1	
	Alternative method for question 7(c)		
	Probability = $\frac{3}{10} \times \frac{2}{9}$	M1	$\frac{a}{10} \times \frac{a-1}{9} a = 3,2$
	$\frac{1}{15}, 0.0667$	A1	
	Alternative method for question 7(c)		
	Probability = $\frac{1}{10} \times \frac{1}{9} \times 3!$	M1	$\frac{1}{10} \times \frac{1}{9} \times m!, m = 3, 2$
	$\frac{1}{15}, 0.0667$	A1	
		2	

Question	Answer	Marks	Guidance
7(d)	Scenarios: DEFE $5C = 1$	M1	${}^{5}C_{x}$ seen alone, $1 \leq x \leq 4$
	$\begin{array}{cccc} P & E & E & {}^{5}C_{0} = 1 \\ P & E & {}^{5}C_{1} = 5 \\ P & E & {}^{5}C_{2} = 10 \\ P & {}^{-} & {}^{5}C_{3} = 10 \end{array}$	M1	Summing the number of ways for 3 or 4 correct scenarios (can be unsimplified), no incorrect scenarios
	Total = 26	A1	
		3	

Cambridge International A Level

MATHEMATICS

9709/52 October/November 2020

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ма	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT ٠ above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 • decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column. ٠
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. ٠
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. ٠

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

9709/52

Question	Answer	Marks	Guidance
1(a)	$1 - \left(\frac{5}{6}\right)^{5}$ or $\frac{1}{6} + \frac{5}{6} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{2} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{3} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{4} \times \frac{1}{6}$	M1	$1 - p^{n} n = 5,6$ or $p + pq + pq^{2} + pq^{3} + pq^{4} (+ pq^{5})$ 0
	$0.598, \frac{4651}{7776}$	A1	
		2	
1(b)	$(1 - P(0, 1, 2))$ $1 - \left(\left(\frac{5}{6}\right)^{10} + {}^{10}C_1\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^9 + {}^{10}C_2\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)^8\right)$	M1	$^{10}C_x p^x (1-p)^{10-x}, 0$
	1 - (0.1615056 + 0.3230111 + 0.290710)	A1	Correct expression, accept unsimplified, condone omission of final bracket
	0.225	A1	$0.2247 , WWW$
		3	

Question	Answer	Marks	Guidance
2(a)	$P(1 \text{ red}) = \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} \times 3$	M1	$\frac{a}{8} \times \frac{b}{7} \times \frac{c}{6} \times k \text{ or } \frac{5}{d} \times \frac{3}{e} \times \frac{2}{f} \times 3, 1 \leq a, b, c \leq 5, d, e, f \leq 8, a, b, c,$
			<i>d</i> , <i>e</i> , <i>f</i> , <i>k</i> all integers $1 < k \leq 3$,
	$\frac{15}{56}$	A1	AG, WWW
	Alternative method for question 2(a)		
	$\frac{{}^{5}C_{1} \times {}^{3}C_{2}}{{}^{8}C_{3}}$	M1	$\frac{{}^{a}\mathrm{C}_{1} \times {}^{b}\mathrm{C}_{2}}{{}^{8}\mathrm{C}_{3}} \text{ or } \frac{{}^{5}\mathrm{C}_{d} \times {}^{3}\mathrm{C}_{e}}{{}^{8}\mathrm{C}_{3}} \text{ or }$
			$\frac{{}^{5}C_{d} \times {}^{3}C_{e} \left(or {}^{a}C_{1} \times {}^{b}C_{2}\right)}{{}^{5}C_{3} \times {}^{3}C_{0} + {}^{5}C_{2} \times {}^{3}C_{1} + {}^{5}C_{1} \times {}^{3}C_{2} + {}^{5}C_{0} \times {}^{3}C_{3}},$ a + b = 8, d + e = 3
	$\frac{15}{56}$	A1	AG, WWW, $\frac{15}{56}$ must be seen
		2	
2(b)	x 0 1 2 3	B1	Probability distribution table with correct outcomes with at least one probability less than 1, allow extra outcome values if
	Prob. $\frac{1}{15}$ $\frac{15}{15}$ $\frac{30}{15} = \frac{15}{15}$ $\frac{10}{15} = \frac{5}{15}$		probability of zero stated.
	56 56 56 28 56 28	B1	2 of P(0), P(2) and P(3) correct
	0.0179 0.268 0.536 0.179	B1 FT	4^{th} probability correct or FT sum of 3 or more probabilities = 1, with P(1) correct
		3	

Question	Answer	Marks	Guidance
2(c)	$Var(X) = \frac{(0^2 \times 1) + 1^2 \times 15 + 2^2 \times 30 + 3^2 \times 10}{56} - \left(\frac{15}{8}\right)^2$ $= \frac{15}{56} + \frac{120}{56} + \frac{90}{56} - \left(\frac{15}{8}\right)^2$	M1	Substitute <i>their</i> attempts at scores in correct variance formula, must have ' – mean ² ' (FT if mean calculated) (condone probabilities not summing to 1 for this mark)
	$\frac{225}{448}, 0.502$	A1	
		2	

Question	Answer	Marks	Guidance
3(a)	$P(X > 11.3) = P(z > \frac{11.3 - 10.1}{1.3}) = P(z > 0.9231)$	M1	Using \pm standardisation formula, no $\sqrt{\sigma}$ or σ^2 , continuity correction
	1 - 0.822	M1	Appropriate area Φ , from standardisation formula P(z >) in final solution
	0.178	A1	0.1779
		3	
3(b)	z = -0.674	B1	±0.674 seen (critical value)
	$\frac{t - 10.1}{1.3} = -0.674$	M1	An equation using ±standardisation formula with a <i>z</i> -value, condone $\sqrt{\sigma}$ or σ^2 , continuity correction.
	t = 9.22	A1	AWRT. Only dependent on M1
		3	

Question	Answer	Marks	Guidance		
3(c)	$P(8.9 < X < 11.3) = 1 - 2 \times their \mathbf{3(a)}$ = 2(1 - their 3(a)) - 1 = 2(0.5 - their 3(a)) = 0.644	B1 FT	FT from <i>their</i> 3(a) < 0.5 or correct, accept unevaluated probability OE		
	Number of days = 90×0.644 = 57.96	M1	$90 \times their p$ seen, 0		
	So 57 (days)	A1 FT	Accept 57 or 58, not 57.0 or 58.0, no approximation/rounding stated FT must be an integer value		
	Alternative method for question 3(c)				
	$P\left(\frac{8 \cdot 9 - 10 \cdot 1}{1 \cdot 3} < z < \frac{11.3 - 10.1}{1 \cdot 3}\right)$ = $\Phi(0 \cdot 9231) - (1 - \Phi(0 \cdot 9231))$ oe = $0.822 - (1 - 0.822)$ = 0.644	B1	Accept unevaluated probability		
	Number of days = 90×0.644 = 57.96	M1	$90 \times their p$ seen, 0		
	So 57 (days)	A1 FT	Accept 57 or 58, not 57.0 or 58.0, no approximation/rounding stated FT must be an integer value		
		3			

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	All probabilities correct, may be on branch or next to 'Fine/Rainy' Ignore additional branches.
		1	
4(b)	$0.8 \times 0.75 + 0.2 \times 0.4 \ (= 0.6 + 0.08)$	M1	Correct or FT from <i>their</i> diagram unsimplified, all probabilities $0 .Partial evaluation only sufficient when correct.Accept working in 4(b) or by the tree diagram.$
	$0.68, \frac{17}{25}$	A1	From supporting working
		2	

Question	Answer	Marks	Guidance	
4(c)	$0.8 \times 0.75 \times 0.25 + 0.8 \times 0.25 \times 0.6$	M1	$a \times b \times c + a \times 1 - b \times d$, $0 < c$, $d \le 1$, <i>a</i> , <i>b</i> consistent with <i>their</i> tree diagram or correct, no additional terms	
	0.15 + 0.12	A1	At least one term correct, accept unsimplified	
	0.27	A1	Final answer	
		3		
4(d)	$P(Y) = their (c) + 0.2 \times 0.4 \times 0.25 + 0.2 \times 0.6 \times 0.6 $ (= 0.362)	B1 FT	<i>their</i> (c) + $e \times f \times g + e \times (1-f) \times h$, $0 < g$, $h \le 1$, e , f consistent with <i>their</i> tree diagram, or correct	
	$P(X Y) = \frac{their(c)}{their P(Y)} = \frac{0.27}{0.362}$	M1	<i>their</i> 4(c) (or correct)/ <i>their</i> previously calculated and identified $P(Y)$ or a denominator involving 3 or 4 3-factor probability terms consistent with <i>their</i> tree diagram & third factor 0	
	$0.746, \frac{373}{500} \text{ or } \frac{135}{181}$	A1	(0.7458)	
		3		
Question		Answer	Marks	Guidance
----------	---	--	------------	---
5(a)	Dados	Linva	B1	Correct stem can be upside down, ignore extra values
	8 6 6 5 2 0 0	0 0 2 9 1 0 1 2 5 6	B1	Correct Dados labelled, leaves in order and lined up vertically (less than midway to next column), no commas etc, no extra terms
	8 2 6	2 3 2 6	B1	Correct Linva on opposite side of stem labelled, leaves in order and lined up vertically (less than midway to next column), no commas etc, no extra terms
	2	4 0	B 1	Correct single key for their diagram, need both resorts identified and 'cm' stated at least once here or in leaf headings or title.
	KEY 6 3 2 means 36 and 32	cm (snow) in Dados cm (snow) in Linva		SC If 2 separate diagrams drawn, SCB1 if both keys meet these criteria B0B1B0SCB1 max.
			4	
5(b)	Median or $Q2 = 15$ (cm	1)	B1	Correct
	UQ or Q3 = 28 cm, LQ IQR = $28 - 10$	Q or Q1 = 10 cm	M1	$22 \leq UQ \leq 36 - 8 \leq LQ \leq 10$
	18 (cm)		A1	WWW
			3	
5(c)	On average the snowfa	ll in Davos is higher	B1 FT	FT from <i>their</i> 5(b) values for Dados. Statement comparing central tendency in context
	The amount of snowfal	ll in Linva varies more than in Davos	B1 FT	Statement comparing spread in context Note: simply stating and comparing the values is not sufficient.
			2	

Question	Answer	Marks	Guidance
6(a)	${}^{9}C_{6} (\times {}^{3}C_{3})$	M1	${}^{9}C_{k} \times n, k = 6, 3, n = 1,2$ oe Condone ${}^{9}C_{6} + {}^{3}C_{3}, {}^{9}P_{6} \times {}^{3}P_{3}$
	84	A1	Accept unevaluated.
		2	
6(b)	Number with 3 Baker children = ${}^{6}C_{2}$ or 15	B1	Correct seen anywhere, not multiplied or added
	Total no of selections = ${}^{9}C_{5}$ or 126 Probability = $\frac{\text{number of selections with 3 Baker children}}{\text{total number of selections}}$	M1	Seen as denominator of fraction
	$\frac{15}{126}, 0.119$	A1	OE, e.g. $\frac{5}{42}$
	Alternative method for question 6(b)		
	$\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \left(\times \frac{6}{6} \right) \left(\times \frac{5}{5} \right) \times {}^5C_3$	B1	${}^{5}C_{3}$ (OE) or 10 seen anywhere, multiplied by fractions only, not added
		M1	$\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \left(\times \frac{6}{6} \right) \left(\times \frac{5}{5} \right) \times k , 1 \le k, k \text{ integer}$
	$\frac{15}{126}, 0.119$	A1	OE, e.g. $\frac{5}{42}$
		3	

Question	Answer	Marks	Guidance
6(c)	[Total no of arrangements = 9!] [Arrangements with men together = 8! × 2]	M1	9! - k or $362880 - k$, k an integer < 362880
	Not together: 9! –		
	8!×2	B1	$8! \times 2(!)$ or 80 640 seen anywhere
	282 240	A1	Exact value
	Alternative method for question 6(c)		
	$7! \times 8 \times 7$	B1	$7! \times k$, <i>k</i> positive integer > 1
		M1	$m \times 8 \times 7$, $m \times {}^{8}P_{2}$, $m \times {}^{8}C_{2} m$ positive integer > 1
	282 240	A1	Exact value
		3	
6(d)	$7! \times 2 \times 7$	M1	7! × k, k positive integer > 1 If 7! not seen, condone $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times (1) \times k$ or $7 \times 6! \times k$ only
		M1	$m \times 2 \times 7$, <i>m</i> positive integer > 1
	70 560	A1	
		3	

Cambridge International A Level

MATHEMATICS

9709/53 October/November 2020

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ма	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT ٠ above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 • decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column. ٠
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. ٠
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. ٠

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$P(56 < X < 66) = P\left(\frac{56 - 62}{5} < z < \frac{66 - 62}{5}\right)$ = P(-1.2 < z < 0.8)	M1	Using \pm standardisation formula at least once, no $\sqrt{\sigma}$ or σ^2 , allow continuity correction
	$\Phi(0.8) + \Phi(1.2) - 1$ = 0.7881 + 0.8849 - 1	M1	Appropriate area Φ , from standardisation formula in final solution
	0.673	A1	
		3	
1(b)	<i>z</i> = 1.127	B1	$\pm(1.126 - 1.127)$ seen, 4 sf or more
	$\frac{60t - 62}{5} = 1.127$ 60t = 5.635 + 62 = 67.635	M1	z-value = $\pm \frac{(60t-62)}{5}$ condone z-value = $\pm \frac{(t-62)}{5}$ no continuity correction, condone $\sqrt{\sigma}$ or σ^2
	<i>t</i> = 1.13	A1	САО
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
2(a)	$\left(\frac{5}{6}\right)^8$	M1	p^8 , $0 , no x, + or -$
	0.233	A1	
		2	
2(b)	36	B1	
		1	
2(c)	$P(X=10) + P(X=11) = \left(\frac{35}{36}\right)^9 \frac{1}{36} + \left(\frac{35}{36}\right)^{10} \frac{1}{36}$	M1	OE, unsimplified expression in form $p^9q + p^{10}q$, $p + q = 1$, no \times
	0.0425	A1	
		2	

Question	Answer	Marks	Guidance
3(a)	Scenarios: $6W 0M {}^{9}C_{6} = 84$	M1	Correct number of ways for either 5 or 4 women, accept unsimplified
	$5 \text{ W } 1\text{ M } {}^{5}\text{C}_{5} \times {}^{5}\text{C}_{1} = 126 \times 5 = 630$ $4 \text{ W } 2\text{ M } {}^{9}\text{C}_{4} \times {}^{5}\text{C}_{2} = 126 \times 10 = 1260$	M1	Summing the number of ways for 2 or 3 correct scenarios (can be unsimplified), no incorrect scenarios.
	Total = 1974	A1	
		3	
3(b)	Total number of ways = ${}^{14}C_6$ (3003) Number with sister and brother = ${}^{12}C_4$ (495) Number required = ${}^{14}C_6$ -	M1	$^{14}C_6$ – a value
	$^{12}C_4 = 3003 - 495$	M1	${}^{12}C_x$ or ${}^{n}C_4$ seen on its own or subtracted from <i>their</i> total, $x \le 6$, $n \le 13$
	2508	A1	
	Alternative method for question 3(b)		
	Number of ways with neither = ${}^{12}C_6 = 924$	M1	$^{12}C_6 + a \text{ value}$
	Number of ways with either brother or sister (not both) = ${}^{12}C_5 \times 2$ (= 792 × 2) = 1584	M1	${}^{12}C_x \times 2 \text{ or } {}^nC_5 \times 2 seen on its own or added to their number of ways with neither, x \le 5, n \le 12$
	Number required = 924 + 1584 = 2508	A1	
		3	

Question	Answer	Marks	Guidance
4(a)	$0.65^7 + {}^7C_1 \ 0.65^6 \ 0.35^1 + {}^7C_2 \ 0.65^5 \ 0.35^2$	M1	Binomial term of form ${}^{7}C_{x} p^{x} (1-p)^{7-x}, 0 any p, x \neq 0, 7$
	0.049022 + 0.184776 + 0.29848	A1	Correct unsimplified answer
	0.532	A1	
		3	
4(b)	Mean = $142 \times 0.35 = 49.7$ Variance = $142 \times 0.35 \times 0.65 = 32.305$	B1	Correct unsimplified <i>np</i> and <i>npq</i> (condone σ = 5.684 evaluated)
	$P(X > 40) = P(z > \frac{40.5 - 49.7}{\sqrt{32.305}})$	M1	Substituting <i>their</i> μ and σ (no $\sqrt{\sigma}$ or σ^2) into ±standardisation formula with a numerical value for '40.5'
	P(z > -1.619)	M1	Using either 40.5 or 39.5 within a ±standardisation formula
		M1	Appropriate area Φ , from standardisation formula P($z >$) in final solution, must be probability
	0.947	A1	Correct final answer
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(a)	Total number of ways = $\frac{8!}{3!2!}$ (= 3360)	B 1	Correct unsimplified expression for total number of ways
	Number of ways with V and E in correct positions = $\frac{6!}{2 \times 2!}$ (= 180)	B1	$\frac{6!}{2 \times 2!}$ alone or as numerator in an attempt to find the number of ways with V and E in correct positions. No \times, \pm
	Probability = $\frac{180}{3360} \left(=\frac{3}{56}\right)$ or 0.0536	B1 FT	Final answer from <i>their</i> $\frac{6!}{2 \times 2!}$ divided by <i>their</i> total number of ways
	Alternative method for question 5(a)		
	$\frac{1}{8} \times \frac{3}{7}$	M1	$\frac{a}{8} \times \frac{b}{7}$ seen, no other terms (correct denominators)
		M1	$\frac{1}{c} \times \frac{3}{d}$ seen, no other terms (correct numerators)
	$\frac{3}{56}$ or 0.0536	A1	
		3	

Question	Answer	Marks	Guidance
5(b)	Rs together and Es together: 5! (120)	B1	Alone or as numerator of probability to represent the number of ways with Rs and Es together, no \times , +, –
	Es together: $\frac{6!}{2!}(=360)$	B 1	Alone or as denominator of probability to represent the number of ways with Es together, no \times , + or –
	Probability = $\frac{5!}{\frac{6!}{2!}}$	M1	$\frac{their 5!}{their \frac{6!}{2!}}$ seen
	$\frac{1}{3}$	A1	OE
	Alternative method for question 5(b)		
	P(Rs together and Es together): $\frac{5!}{their \text{ total number of ways}} \left(=\frac{1}{28}\right)$	B1	
	P(Es together): $\frac{6!}{\frac{2!}{their \text{ total number of ways}}} \left(=\frac{3}{28}\right)$	B1	Alone or as numerator of probability to represent the P(Rs and Es together), no \times , +, –
	Probability = $\frac{\frac{1}{28}}{\frac{3}{28}}$	M1	Alone or as denominator of probability to represent the P(Es together), no \times , + or –
	$\frac{1}{3}$	A1	OE, $\frac{their \frac{1}{28}}{their \frac{3}{28}}$ seen
		4	

Question	Answer	Marks	Guidance	
6(a)	Scenarios:	M1	One 3 factor probability with 3, 3, 5 as denominators	
	HHT: $\frac{2}{3} \times \frac{2}{3} \times \frac{1}{5} = \frac{4}{45}$	M1	3 factor probabilities for 2 or 3 correct scenarios added, no	
	HTH: $\frac{2}{3} \times \frac{1}{3} \times \frac{4}{5} = \frac{8}{45}$		incorrect scenarios	
	THH: $\frac{1}{3} \times \frac{2}{3} \times \frac{4}{5} = \frac{8}{45}$			
	$Total = \frac{20}{45} = \frac{4}{9}$	A1	AG, Total of 3 products with clear context	
		3		
6(b)	x 0 1 2 3 Prob. 1 8 20 16	B1	Probability distribution table with correct outcomes with at one probability, allow extra outcome values if probability o zero stated'	
		B1	2 of P(0), P(1) and P(3) correct	
		B1 FT	3 or 4 probabilities sum to 1 with P(2) correct	
		3		
6(c)	$Var(X) = \frac{0^2 \times 1 + 1^2 \times 8 + 2^2 \times 20 + 3^2 \times 16}{45} - \left(\frac{32}{15}\right)^2$	M1	Substitute <i>their</i> attempts at scores in correct variance formula, must have '– mean ² ' (FT if calculated) (condone probs not summing to 1); must be at least 2 non-zero values	
	$= \frac{8}{45} + \frac{80}{45} + \frac{144}{45} - \left(\frac{32}{15}\right)^2$			
	$\frac{136}{225}$ or 0.604	A1		
		2		

October/November 2020

Question Marks Guidance Answer Class widths: 5, 5, 10, 20, 30 At least 3 class widths correct and used in a calculation 7(a) **M1** Frequency density: 2, 1, 2.6, 1.6, 0.6 At least 3 correct frequency densities unsimplified - FT their **M1** class widths All correct heights on a histogram using a linear vertical scale A1 from zero – no FT Enquercy Density Correct upper bar ends (5.5, 10.5, 20.5, 40.5, 70.5) and 4 correct **B1** 3.0 lower bar ends of 5.5, 10.5, 20.5, 40.5. Condone 0 or 1. Linear scales with at least 3 values indicated on each axis, **B1** 2.6 vertical scale from 0, axes labelled 'fd' and 'no. of (incorrect) notes', or better. 2.0 1.5 1.0 0.5 10.5 30.5 40.5 50.5 60.5 20.5 70.5 0.5 Number of incorrect notes 5 LQ: 11 – 20 Both UQ and LQ correct 7(b) **B1** UQ: 21 – 40 Subtract lower end of their LQ interval from upper end of their Greatest IQR = 40 - 11 = 29B1 FT UQ interval 2

Question	Answer	Marks	Guidance
7(c)	Midpoints: 3 8 15.5 30.5 55.5	M1	At least 4 midpoints correct and used
	Mean = $\frac{3 \times 10 + 8 \times 5 + 15.5 \times 26 + 30.5 \times 32 + 55.5 \times 18}{91}$ = $\frac{30 + 40 + 403 + 976 + 999}{91}$ = $\frac{2448}{91}$	M1	Correct formula with <i>their</i> midpoints (not upper boundary, lower boundary, class width, frequency density, frequency or cumulative frequency)
	26.9, $26\frac{82}{91}$	A1	Accept 26 or 27
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/51 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles	Mathematics	Specific	Marking	Principles	
---	-------------	----------	---------	------------	--

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks
1(a)	Prob of 4 (from 1,3, 3,1 or 2,2) = $\frac{3}{36} = \frac{1}{12}$ AG	B1
		1
1(b)	Mean = $\frac{1}{\frac{1}{12}} = 12$	B1
		1
1(c)	$\left(\frac{11}{12}\right)^5 \times \frac{1}{12} = 0.0539 \text{ or } \frac{161051}{2985984}$	B1
		1
1(d)	$1 - \left(\frac{11}{12}\right)^7$	M1
	$0.456 \text{ or } \frac{16344637}{35831808}$	A1
		2

Question	Answer	Marks
2(a)	6!	M1
	720	A1
		2
2(b)	Total number: $\frac{9!}{3!2!}(30240)$	M1
	Number with Ls together = $\frac{8!}{3!}(6720)$	M1
	Number with Ls not together = $\frac{9!}{2!2!} - \frac{8!}{2!}$	M1
	= 30240 - 6720	
	23 520	A1
	Alternative method for question 2(b)	
	$\frac{7!}{3!} \times \frac{8 \times 7}{2}$	
	$7! \times k$ in numerator, k integer ≥ 1	M1
	$8 \times 7 \times m$ in numerator or $8C2 \times m$, <i>m</i> integer ≥ 1	M1
	3! in denominator	M1
	23 520	A1
		4

Question					Answer		Marks
3(a)	x	0	1	2	3		B1
	Probability	$\frac{1}{56}$	$\frac{15}{56}$	$\frac{30}{56}$	$\frac{10}{56}$		
	(B1 for probab	oility distributi	on table with c	orrect outcom	e values)		
	$P(0) = \frac{3}{8} \times \frac{2}{7} \times \frac{2}{7}$ $P(1) = \frac{5}{8} \times \frac{3}{7} \times \frac{3}{7} \times \frac{1}{7}$ $P(2) = \frac{5}{8} \times \frac{4}{7} \times \frac{1}{7} \times \frac{1}{$	$\frac{1}{6} = \frac{1}{56}$ $\frac{2}{6} \times 3 = \frac{15}{56}$ $\frac{3}{6} \times 3 = \frac{30}{56}$ $\frac{3}{6} = \frac{10}{56}$ minator 8×7×6)				M1
	Any one probability correct (with correct outcome)					A1	
	All probabiliti	es correct					A1
							4
3(b)	1 – P(8, 9, 10)	$= 1 - \left[{}^{10}C_8 0 \right]$	$64^8 0.36^2 + {}^{10}C$	$_{9}0.64^{9}0.36^{1}+$	0.64^{10}		M1
	1-(0.164156	+ 0.064852 + 0).11529)				M1
	0.759						A1
							3

Question	Answer	Marks
4	Scenarios: 2P 3V 2G ${}^{8}C_{2} \times {}^{4}C_{2} \times {}^{6}C_{3} = 28 \times 6 \times 20 = 3360$ 2P 4V 1G ${}^{8}C_{2} \times {}^{4}C_{1} \times {}^{6}C_{4} = 28 \times 4 \times 15 = 1680$ 3P 3V 1G ${}^{8}C_{3} \times {}^{4}C_{1} \times {}^{6}C_{3} = 56 \times 4 \times 20 = 4480$ 4P 2V 1G ${}^{8}C_{4} \times {}^{4}C_{1} \times {}^{6}C_{2} = 70 \times 4 \times 15 = 4200$ (M1 for ${}^{8}C_{r} \times {}^{4}C_{r} \times {}^{6}C_{r}$ with $\sum r = 7$)	M1
	Two unsimplified products correct	B1
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total: 13 720	A1
		4

Question	Answer	Marks
5(a)	$\begin{array}{c} 0.3 \\ 0.35 \\ 0.44 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.2 \\$	
	Fully correct labelled tree for method of transport with correct probabilities.	B1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the prob 0	B1
		2
5(b)	$0.35 \times 0.3 + 0.44 \times 0.8 (+0)$	M1
	0.457	A1
		2

Question	Answer	Marks
5(c)	$P(\text{not B} \text{not fruit}) = \frac{P(B' \cap F')}{P(F')}$	M1
	$\frac{0.35 \times 0.7 + 0.21 \times 1}{1 - their(\mathbf{b})}$	M1
	$\frac{0.455}{0.543}$ (M1 for 1 – <i>their</i> (b) or summing three appropriate 2-factor probabilities, correct or consistent with <i>their</i> tree diagram as denominator)	M1
	0.838 or $\frac{455}{543}$	A1
		4

Question	Answer	Marks
6(a)	$P\left(\frac{50-54}{6.1} < z < \frac{60-54}{6.1}\right) = P\left(-0.6557 < Z < 0.9836\right)$	M1
	Both values correct	A1
	$\Phi (0.9836) - \Phi (-0.6557) = \Phi (0.9836) + \Phi (0.6557) - 1$ = 0.8375 + 0.7441 - 1 (Correct area)	M1
	0.582	A1
		4

Question	Answer	Marks
6(b)	$\frac{45-\mu}{\sigma} = -0.994$	B1
	$\frac{56-\mu}{\sigma} = 1.372$	B1
	One appropriate standardisation equation with μ , σ , z-value (not probability) and 45 or 56.	M1
	11 = 2.366 σ (M1 for correct algebraic elimination of μ or σ from <i>their</i> two simultaneous equations to form an equation in one variable)	M1
	$\sigma = 4.65, \mu = 49.6$	A1
		5

Question	Answer	Marks
7(a)	Class widths: 10, 5, 15, 20, 10	M1
	Frequency density = frequency/ <i>their</i> class width: 1.8, 4.8, 2, 1, 0.8	M1
	All heights correct on diagram (using a linear scale)	A1
	Correct bar ends	B1
	Bar ends: 10.5, 15.5, 30.5, 50.5, 60.5	B1
		5
7(b)	11-15 and 31-50	B1
	Greatest $IQR = 50 - 11 = 39$	B1
		2
7(c)	Mean = $\frac{18 \times 5.5 + 24 \times 13 + 30 \times 23 + 20 \times 40.5 + 8 \times 55.5}{100} = \frac{2355}{100} = 23.6$	B1
	$Var = \frac{18 \times 5.5^2 + 24 \times 13^2 + 30 \times 23^2 + 20 \times 40.5^2 + 8 \times 55.5^2}{100} - mean^2$	M1
	$\frac{77917.5}{100} - \text{mean}^2 = 224.57$	A1
	Standard deviation = 15.0 (FT <i>their</i> variance)	A1 FT
		4

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/52 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks
1	$\sum x - 50n = 144$	B1
	50n + 144 = 944	M1
	<i>n</i> = 16	A1
		3

Question	Answer	Marks
2(a)	$\frac{56}{500}$ or $\frac{14}{125}$ or 0.112	B1
		1
2(b)	$P(D S) = \frac{P(D \cap S)}{P(S)} = \frac{120}{280}$	M1
	$\frac{120}{280} \text{ or } \frac{3}{7}$	A1
		2
Question	Answer	Marks
----------	--	-------
2(c)	$P(\text{hockey}) = \frac{220}{500} = 0.44$ $P(\text{Amos or Benn}) = \frac{242}{500} = 0.484$ $P(\text{hockey} \cap \text{A or B}) = \frac{104}{500} = 0.208$	M1
	$P(H) \times P(A \cup B) = P(H \cap (A \cup B))$ if independent	
	$\frac{220}{500} \times \frac{242}{500} = \frac{1331}{6250}$ so not independent	A1
		2

Question	Answer	Marks
3(a)	Median = 0.238	B1
	UQ = 0.245, LQ = 0.231, So $IQR = 0.245 - 0.231$	M1
	0.014	
		3

uestion	Ans	swer				
3(b)			LQ	М	UQ	
	A	0.220	0.231 FT	0.238 FT	0.245 FT	0.254
	В	0.211	0.224	0.232	0.243	0.256
	Mee	dians and	quartiles c	correctly plo	tted for A or	r <i>B</i>
	End	l points co	orrect for A	l or B		
	Con	npletely o	correct, inc	luding scale		
(c)	Len (B1	gths of ro for comp	ods produce parison of c	ed by machi central tende	ne A are lor ency)	nger.
	Len (B1	gths of ro for comp	ods produce parison of s	ed by machi spread)	ne A are les	s spread ou

Question	Answer	Marks
4(a)	$P(X < 25) = P\left(z < \frac{25 - 40}{12}\right) = P(z < -1.25)P(X < 25) = P(z < -1.25)P(X < -1.25)P($	M1
	1-0.8944	M1
	0.106	A1
		3
4(b)	0.8944 divided by 3 (M1 for 1 - <i>their</i> (a) divided by 3)	M1
	0.298 AG	A1
		2
4(c)	0.2981 gives z = 0.53	B1
	$\frac{h-40}{12} = 0.53$	M1
	h = 46.4	A1
		3

Question	Answer							Marks
5(a)		1	1	2	2	3		M1
	1	1	1	2	2	3		
	2	2	2	2	2	3		
	3	3	3	3	3	3		
	$\frac{7}{15}$ AG						A1	
								2
5(b)	x		1	2		3		B1
	Probabi	lity	$\frac{2}{15}$	$\frac{6}{15}$		$\frac{7}{15}$		
	P(1) or P(2) correct						B1	
	3 rd proba	bility co	rect, FT s	um to 1				B1
								3

Question	Answer	Marks
5(c)	$E(X) = \frac{2+12+21}{15} = \frac{35}{15} = \frac{7}{3}$	B1
	$Var(X) = \frac{1^2 \times 2 + 2^2 \times 6 + 3^2 \times 7}{15} - \left(\frac{7}{3}\right)^2$	M1
	$\frac{22}{45}(0.489)$	A1
		3

Question	Answer	Marks
6(a)	$\frac{8!}{3!}$	M1
	6720	A1
		2

Question	Answer	Marks				
6(b)	Total number = $\frac{10!}{2!3!}$ (302400) (A)	B1				
	With Es together = $\frac{9!}{3!}$ (60480) (B)	B1				
	Es not together = $their(A) - their(B)$	M1				
241920						
Alternative method for question 6(b)						
	$\frac{\overset{\wedge}{8!}}{\overset{9\times8}{3!}\times \overset{\wedge}{2}} \overset{\wedge}{2} \overset{\vee}{2} \vee$					
	8! × <i>k</i> in numerator, <i>k</i> integer \ge 1, denominator \ge 1	B1				
	$3! \times m$ in denominator, m integer ≥ 1	B1				
	<i>Their</i> $\frac{8!}{3!}$ Multiplied by ${}^{9}C_{2}$ (OE) only (no additional terms)	M1				
	241920	A1				
		4				

Question	Answer	Marks
6(c)	Scenarios: $E M M M = {}^{5}C_{0} = 1$ $E M M = {}^{5}C_{1} = 5$ $E M _ {}^{5}C_{2} = 10$	M1
	Summing the number of ways for 2 or 3 correct scenarios	M1
	Total = 16	A1
		3

Question	Answer	Marks							
7(a)	$ \begin{array}{l} 1 - P(10, 11, 12) \\ = 1 - [{}^{12}C_{10}0.72^{10}0.28^2 + {}^{12}C_{11}0.72^{11}0.28^1 + 0.72^{12}] \end{array} $	M1							
	-(0.19372+0.09057+0.01941)								
	0.696	A1							
		3							
7(b)	$0.28^3 \times 0.72 = 0.0158$	B1							
		1							

Question	Answer	Marks
7(c)	Mean = $100 \times 0.72 = 72$ Var = $100 \times 0.72 \times 0.28 = 20.16$	M1
	P(less than 64) = P $\left(z < \frac{63.5 - 72}{\sqrt{20.16}}\right)$ (M1 for substituting <i>their</i> μ and σ into ±standardisation formula with a numerical value for '63.5')	M1
	Using either 63.5 or 64.5 within a ±standardisation formula	M1
	Appropriate area Φ , from standardisation formula P(z<) in final solution = P(z < -1.893)	M1
	0.0292	A1
		5

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/53 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

]	Mathematics	Specific M	arking Prin	ciples		

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks
1(a)	$\begin{array}{c} 0.6 \\ 0.2 \\ 0.45 \\ 0.45 \\ 0.35 \\ W \\ 1 \\ 0 \\ NE \end{array}$	
	Fully correct labelled tree for method of transport with correct probabilities.	B1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the probability 0.	B1
		2
1(b)	$P(C E) = \frac{P(C \cap E)}{P(E)} = \frac{0.2 \times 0.6}{0.2 \times 0.6 + 0.45 \times 0.1 + 0.35 \times 1}$	M1
	Summing three appropriate 2-factor probabilities	M1
	$\frac{0.12}{0.515}$	A1
	0.233 or $\frac{12}{515}$	A1
		4

Question	Answer	Marks
2(a)	$0.22^3 = 0.0106$	B1
		1
2(b)	$P(2, 3, 4) = {}^{16}C_2 \ 0.22^2 0.78^{14} + {}^{16}C_3 0.22^3 0.78^{13} + {}^{16}C_4 0.22^4 0.78^{12}$	M1
	0.179205 + 0.235877 + 0.216221	A1
	0.631	A1
		3

Question	Answer	Marks
3(a)	$P(X < 21) = P\left(z < \frac{21 - 15.8}{4.2}\right) = \Phi(1.238)$	M1
	0.892	A1
		2
3(b)	$z = \pm 0.674$	B1
	$\frac{k-15.8}{4.2} = 0.674$	M1
	18.6	A1
		3

Question							Ans	wer		Marks
4(a)	-1	0	0	1						
	0	1	1	2						
	2	3	3	4						
	x		-1	0	1	2	3	4		
	Probat	oility	$\frac{1}{12}$	$\frac{3}{12}$	$\frac{3}{12}$	$\frac{2}{12}$	$\frac{2}{12}$	$\frac{1}{12}$		
	Probability distribution table with correct scores with at least one probability							B1		
	At least 4 probabilities correct								B1	
	All prob	oabilities	s correct							B1
										3
4(b)	E(X) =	-1+0+	-3+4+6 12	$\frac{+4}{12} = \frac{16}{12}$	$=\frac{4}{3}$					B1
	Var(X)	$=\frac{1+0}{1+0}$	+3+8+1 12	$\frac{8+16}{-}$	$\left(\frac{4}{3}\right)^2$					M1
	$\frac{37}{18} (= 2)$	2.06)								A1
										3

Question	Answer	Marks
5(a)	$\frac{1}{\frac{1}{4}} = 4$	B1
		1
5(b)	$\frac{9}{64}$ (= 0.141)	B1
		1
5(c)	$P(X < 6) = 1 - \left(\frac{3}{4}\right)^5$	M1
	(FT <i>their</i> probability/mean from part (a))	
	0.763	A1
		2
5(d)	Mean = $80 \times 0.25 = 20$ Var = $80 \times 0.25 \times 0.75 = 15$	M1
	P(more than 25) = P $\left(z > \frac{25.5 - 20}{\sqrt{15}}\right)$	M1
	P(z > 1.42)	M1
	1-0.9222	M1
	0.0778	A1
		5

Question	1 Answer	Marks		
6(a)	AB			
	2 6			
	5 2 0 3 0 1 5 8			
	9 7 2 1 1 4 1 2 2 7 9			
	3 2 5 2			
	4 6			
	KEY 1 4 2 means \$41,000 for A and \$42,000 for B			
	Correct stem			
	Correct A on LHS			
	Correct B on same diagram	B1		
	Correct key for <i>their</i> diagram, both companies identified and correct units	B1		
		4		
6(b)	Median = [\$]42 000	B1		
	$LQ = [\$]35\ 000$ $UQ = [\$]52\ 000$	B1		
	IQR = [\$]17 000 (FT if $49000 \le UQ \le 53000 - 32000 \le LQ \le 41000$)	B1 FT		
		3		

Question	Answer	Marks
6(c)	Sum of given 11 numbers is 433 000	M1
	Sum of 12 numbers, including new = $38500 \times 12 = 462000$	M1
	Difference = new salary = [\$]29 000	A1
		3

Question	Answer	Marks
7(a)	$\frac{9!}{2!2!} = 90\ 720$	B1
		1
7(b)	$\frac{6!}{2!}$	M1
	360	A1
		2

Question	Answer	Marks
7(c)	2 Es together = $\frac{8!}{2!}$ (= 20160)	M1
	Es not together = $90720 - 20160 = 70560$	M1
	$Probability = \frac{70560}{90720}$	M1
	$\frac{7}{9}$ or 0.778	A1
	Alternative method for question 7(c)	
	$\frac{7!}{2!} \times \frac{8 \times 7}{2} = 70560$	
	7! × k in numerator, k integer ≥ 1 , denominator ≥ 1	M1
	Multiplying by ⁸ C ₂ OE	M1
	$Probability = \frac{70560}{90720}$	M1
	$\frac{7}{9}$ or 0.778	A1
		4

Question	Answer	Marks
7(d)	Scenarios are: $E L _ _ 5C_3 = 10$ $E E L _ 5C_2 = 10$ $E _ 5C_4 = 5$ $E E _ _ 5C_3 = 10$	M1
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total = 35	A1
		3

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability and Statistics MARK SCHEME Maximum Mark: 50 9709/52 March 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	athematics-Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	${}^{38}C_{r}$ or ${}^{n}C_{34}$	M1	Either expression seen OE, no other terms, condone x1
	³⁸ C ₃₄	A1	Correct unsimplified OE
	73815	A1	If M0, SCB1 ${}^{38}C_{34} \ge k$, k an integer
		3	

Question	Answer	Marks	Guidance
2(a)	$\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^3 + \left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^4$	M1	One correct term with 0
	$=\frac{4}{27} + \frac{8}{81} + \frac{16}{243} \left(=\frac{2432}{7776}\right)$	A1	Correct expression, accept unsimplified
	$=\frac{76}{243}$ or 0.313	A1	
		3	

March	2020
-------	------

Question	ion Answer		Guidance
2(b) $x = 0$ 1 2 3 $P(x) = \frac{8}{27} = \frac{12}{27} = \frac{6}{27} = \frac{1}{27}$		B1	Probability distribution table with correct values of x , no additional values unless with probability of 0 stated, at least one non-zero probability included
	$P(0) = \left(\frac{2}{3}\right)^3$	B1	1 correct probability seen (may not be in table) or 3 or 4 non-zero probabilities summing to 1
	$P(1) = \left(\frac{1}{3}\right) \left(\frac{2}{3}\right) \times 3$ $P(2) = \left(\frac{2}{3}\right) \left(\frac{1}{3}\right)^2 \times 3$	B1	All probabilities correct
	$P(3) = \left(\frac{1}{3}\right)^3$		
		3	
2(c)	$E(X) = \left[0 \times \frac{8}{27}\right] + 1 \times \frac{12}{27} + 2 \times \frac{6}{27} + 3 \times \frac{1}{27}$	M1	Correct method from <i>their</i> probability distribution table with at least 3 terms, $0 \le their P(x) \le 1$, accept unsimplified
	$= \left[\frac{0}{27}\right] + \frac{12}{27} + \frac{12}{27} + \frac{3}{27}$		
	= 1	A1	
		2	

9709/52

March	2020
-------	------

Question	Answer	Marks	Guidance
3(a)	$P(X > 87) = P\left(Z > \frac{87 - 82}{\sigma}\right) = 0.22$	M1	Using \pm standardisation formula, not σ^2 , not $\sqrt{\sigma}$, no continuity correction
	$P\left(Z < \frac{5}{\sigma}\right) = 0.78$	B1	AWRT ±0.772 seen B0 for ±0.228
	$\left(\frac{5}{\sigma}\right) = 0.772$		
	$\sigma = 6.48$	A1	
		3	
3(b)	$P\left(-\frac{4}{\sigma} < Z < \frac{4}{\sigma}\right) = P\left(-0.6176 < Z < 0.6176\right)$	M1	Using ±4 used within a standardisation formula (SOI), allow σ^2 , $\sqrt{\sigma}$ and continuity correction
		M1	Standardisation formula applied to both <i>their</i> ± 4
	$\Phi = 0.7317$ Prob = $2\Phi - 1 = 2(0.7317) - 1$	M1	Correct area $2\Phi - 1$ oe linked to final solution
	= 0.463	A1	
		4	

1v1a1CII 2020

Question	Answer	Marks	Guidance
4(a)	$\frac{R^{\wedge \wedge \wedge \wedge \wedge \wedge \wedge \wedge}R}{3!6!}$	M1	9! Alone on numerator, 3! $\times k$ or 6! $\times k$ on denominator
	= 84	A1	
		2	
4(b)	^ (B B B) ^ ^ ^ ^ ^ ^	M1	$\frac{7!}{6!} \times k$ or $7k$ seen, k an integer > 0
	$\frac{7!}{6!} \times \frac{8 \times 7}{2}$	M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n=7, 8$ or 9, m an integer > 0
		M1	n = 8 used in above expression
	= 196	A1	
	Alternative for question 4(b)		
	[Arrangements, blues together – Arrangements with blues together and reds together =] $\frac{9!}{2!6!} - \frac{8!}{6!}$	M1	9! Seen alone or as numerator with subtraction
	= [252 - 56]	M1	8! Seen alone or as numerator in a second term and no other terms
		M1	All terms divided by 6! x k, k an integer
	= 196	A1	
		4	

Question	Answer	Marks	Guidance
5(a)	$1 - P(6, 7, 8) = 1 - ({}^{8}C_{6} \ 0.7^{6} 0.3^{2} + {}^{8}C_{7} \ 0.7^{7} 0.3^{1} + 0.7^{8})$	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}, 0$
	= 1 - 0.55177	A1	Correct unsimplified expression, or better
	= 0.448	A1	
	Alternative method for question 5(a)	I	
	$ \begin{array}{l} P(0, 1, 2, 3, 4, 5) \\ = 0.3^8 + {}^8C_1 0.7^{1} 0.3^7 + {}^8C_2 0.7^2 0.3^6 + {}^8C_3 0.7^3 0.3^5 + \\ {}^8C_4 0.7^4 0.3^4 + {}^8C_5 0.7^5 0.3^3 \end{array} $	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}, 0$
		A1	Correct unsimplified expression, or better
	= 0.448	A1	
		3	
5(b)	Mean = $120 \times 0.7 = 84$ Var = $120 \times 0.7 \times 0.3 = 25.2$	B1	Correct mean and variance, allow unsimplified
	P(more than 75) = P $\left(z > \frac{75.5 - 84}{\sqrt{25.2}}\right)$	M1	Substituting <i>their</i> μ and σ into the ±standardising formula (any number), not σ^2 , not $\sqrt{\sigma}$
		M1	Using continuity correction 75.5 or 74.5
	P(z > -1.693)	M1	Appropriate area Φ , from final process, must be a probability
	= 0.955	A1	Allow 0.9545
		5	

Question	Answer	Marks	Guidance
6(a)	Box A Box B	B1	Both correct probs, box A
	10 Red	B1	2 probs correct for box B
	$\frac{1}{15}$	B1	All correct probs for box B
	$ \begin{array}{c} \frac{7}{8} \\ \frac{7}{8} \\ \frac{5}{15} \\ Blue \\ \frac{9}{15} \\ Red \\ \frac{1}{8} \\ Blue \\ \frac{6}{15} \\ Blue \end{array} $		
		3	
6(b)	$\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{9}{15}$	M1	Two 2 factor terms added, correct or FT <i>their</i> 6(a) .
	$=\frac{44}{120} \left[\frac{11}{30} \text{ or } 0.367\right]$	A1	OE
		2	

Marc	h 2	020
		~ - ~

Question	Answer	Marks	Guidance
6(c)	$P(A \text{ blue } B \text{ blue}) = \frac{P(A \text{ blue } \cap B \text{ blue})}{P(B \text{ blue})}$	M1	<i>their</i> $\frac{1}{8} \times \frac{6}{15}$ seen as numerator or denom of fraction
	$=\frac{\frac{1}{8}\times\frac{6}{15}}{\frac{7}{8}\times\frac{5}{15}+\frac{1}{8}\times\frac{6}{15}}=\frac{\frac{1}{20}}{\frac{41}{120}}$		
		M1	<i>their</i> $\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{6}{15}$ seen
		M 1	<i>their</i> $\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{6}{15}$ seen as denominator
	$=\frac{6}{41}$ or 0.146	A1	
		4	

Question	Answer	Marks	Guidance
7(a)	15, 63, 129, 150	B 1	Correct cumulative frequencies seen (may be on graph)
		B1	$0 \leq$ Horizontal axis $\leq 30, 0 \leq$ vertical axis ≤ 150 Labels correct: length cm, cf
	130	M1	At least 3 points plotted at upper end points (e.g. allow 9, 9.5, 10) with a linear horizontal scale.
	110 90 90 90 90 90 90 90 90 90 9	A1	Linear vertical scale, all points at correct upper end points (9.5 etc.), curve drawn accurately, joined to (0,0) (condone (-0.5, 0))
		4	
7(b)	60% of 150 = 90	M1	90 seen or implied by use on graph
	Approx. 16.5 [cm]	A1FT	FT <i>their</i> increasing cumulative frequency graph, Use of graph must be seen.
			If no clear evidence of use of graph SCB1FT correct value from <i>their</i> graph
		2	

Question	Answer	Marks	Guidance
7(c)	Midpoints: 4.75, 12, 17, 25	M1	At least 3 correct midpoints used (39449.4375 implies M1)
	Var = $\frac{4.75^2 \times 15 + 12^2 \times 48 + 17^2 \times 66 + 25^2 \times 21}{150} - 15.295^2$	M1	Using midpoints ± 0.5 in correct var formula, including subtraction of <i>their</i> μ^2 .
	= 29.1	A1	
		3	

MATHEMATICS

9709/61 October/November 2019

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.
Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark. awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or М errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically DM or DB says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B FT marks are given for correct work only.

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$0.8 \times 0.6 + 0.2(1 - x) = 0.63$	M1	Equation of form $0.8 \times A + 0.2 \times B = C$, A,B involving $1 - x$ and 0.6 or 0.4 and C = 0.63 or 0.37
	0.2x = 0.05	M1	Correct unsimplified equation
	<i>x</i> = 0.25	A1	
	Alternative method for question 1		
	$0.8 \times 0.4 + 0.2x = 1 - 0.63$	M1	Equation of form $0.8 \times A + 0.2 \times B = C$, A,B involving x and 0.6 or 0.4 and C = 0.63 or 0.37
	0.2x = 0.05	M1	Correct unsimplified equation
	x = 0.25	A1	
		3	

Question	Answer	Marks	Guidance
2(i)	$1 - ({}^{10}C_2 \ 0.42^8 \ 0.58^2 + {}^{10}C_9 \ 0.42^9 \ 0.58^1 + 0.42^{10})$	M1	Binomial term of form ${}^{10}C_a p^a (1-p)^b \ 0$
		A1	Correct unsimplified expression
	0.983	A1	
		3	
2(ii)	$1 - P(0) > 0.995 0.58^n < 0.005$	M1	Equation or inequality involving 0.58^n or 0.42^n and 0.995 or 0.005
	$ n > \frac{\log 0.005}{\log 0.58} \\ n > 9.727 $	M1	Attempt to solve using logs or Trial and Error. May be implied by their answer (rounded or truncated)
	<i>n</i> = 10	A1	CAO
		3	

Question	Answer	Marks	Guidance
3(i)	$\sum x = 60 \times 20 \qquad = 1200$	B1	
	$\frac{\sum x^2}{20} - 60^2 = 4^2$	M1	Correct variance formula used, condone = 4
	$\sum x^2 = 3616 \times 20 = 72320$	A1	Exact value
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3(ii)	$\sum x = 1200 + 550 = 1750$ $\sum x^2 = 72320 + 40500 = 112800$	M1	Summing both values of $\sum x$ and $\sum x^2$
	Mean = $\frac{their 1750}{30} = 58.3$	B1FT	FT <i>their</i> 1750 (not 550 or 1200)/ <i>their</i> (20+10), accept unsimplified
	Variance = $\frac{their 112820}{30} - \left(\frac{their 1750}{30}\right)^2$ (= 357.89)	M1	substitute <i>their</i> Σx and Σx^2 into correct variance formula
	s.d. = 18.9	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	$\frac{1}{4} + p + p + \frac{3}{8} + 4p = 1$	M1	Unsimplified sum of probabilities equated to 1
	$p = \frac{1}{16}$	A1	If method FT from <i>their</i> incorrect (i), expressions for $E(X)$ and $Var(X)$ must be seen unsimplified with all probabilities <1, condone not adding to 1
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(ii)	$[E(X)] = -\frac{1}{4} + \frac{1}{16} + \frac{6}{8} + 1 = \frac{25}{16}$	M1	May be implied by use in Variance, accept unsimplified
	$[\operatorname{Var}(X)] = \frac{1}{4} + \frac{1}{16} + \frac{12}{8} + \frac{16}{4} - \left(their\frac{25}{16}\right)^2$	M1	Substitute into correct variance formula, must have '- their mean ² '
	$\frac{863}{256}$ or 3.37	A1	OE
		3	
4(iii)	$P(X=2 X>0) = \frac{P(X=2)}{P(X>0)} = \frac{\frac{3}{8}}{\frac{11}{16}}$	M1	Conditional probability formula used consistent with their probabilities
	$\frac{6}{11}$ or 0.545	A1	
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(i)	156 - 55 = 99	B1	98 ≤ answer < 100
		1	
5(ii)	90% of 160 = 144	M1	144 seen, may be marked on graph
	(L=) 22	A1	
		2	
5(iii)	Median = 15.6 UQ = 18.8, LQ = 12.7	B1	15.5 < median < 15.8
	IQR = 18.8 - 12.7	M1	18.5 < UQ < 19 – 12.5 < LQ < 13
	6.1	A1	$6.0 \leq IQR \leq 6.2$
		3	
5(iv)	The Median higher for Ransha (1st set of data)	B1	Any correct comparison of central tendency, must mention median
	IQR lower for Ransha (1st set of data)	B1	Any correct comparison of spread, must refer to IQR
		2	

Question	Answer	Marks	Guidance
6(i)	$\frac{9!}{2!} = 181440$	B1	Exact value
		1	
6(ii)	Total no of ways = $\frac{12!}{2!4!} = 9979200$ (A)	B1	Accept unevaluated
	With Ss together = $\frac{11!}{4!} = 1663200$ (B)	B1	Accept unevaluated
	With Ss not together = $(B) - (A)$	M1	Correct or $\frac{12!}{m} - \frac{8!}{m}$, <i>n</i> integers > 1
			<i>m n</i> or <i>their</i> identified total – <i>their</i> identified Ss together
	8 316 000	A1	Exact value
	Alternative method for question 6(ii)		
	_T_E_E_P_L_E_C_H_A_E_	B1	$10! \times k$ in numerator k integer ≥ 1
	$\frac{10!}{4!} \times \frac{11 \times 10}{2!}$	B1	$4! \times k$ in numerator k integer ≥ 1
	$\frac{their10!}{their4!} \times {}^{11}C_2 \text{ or } {}^{11}P_2$	M1	OE
	8 316 000	A1	Exact value
		4	

Question	Answer	Marks	Guidance
6(iii)	S E E E : 1	M1	${}^{6}C_{x}$ seen alone or times $K > 1$
	$S E E_{-}: {}^{6}C_{1} = 6$ $S E_{-}: {}^{6}C_{2} = 15$ $S_{}: {}^{6}C_{3} = 20$	B1	${}^{6}C_{3}$ or ${}^{6}C_{2}$ or ${}^{6}C_{1}$ alone
	Add 3 or 4 correct scenarios	M1	No extras
	Total = 42	A1	
		4	

Question	Answer	Marks	Guidance
7(i)	$P(46 < X < 53) = P\left(\frac{46 - 49.2}{2.8} < Z < \frac{53 - 49.2}{2.8}\right)$	M1	Using \pm standardisation formula for either 46 or 53, no continuity correction, σ^2 or $\sqrt{\sigma}$
	P(-1.143 < Z < 1.357)	A1	Both standardisations correct unsimplified
	$\Phi(1.357) + \Phi(1.143) - 1$ = 0.9126 + 0.8735 - 1	M1	Correct final area
	0.786	A1	Final answer
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(ii)	$\frac{t - 49.2}{2.8} = -1.406$	B1	±1.406 seen
		M1	An equation using \pm standardisation formula with a <i>z</i> -value, condone σ^2 or $\sqrt{\sigma}$
	45.3	A1	
		3	
7(iii)	P(X < 46) = 0.1265	M1	Calculated or ft from (i)
	$P(2PB < 46) = 3(1 - 0.1265)0.1265^{2}$	M1	3(1- <i>p</i>) <i>p</i> ² , 0< <i>p</i> <1
	0.0419	A1	
		3	

MATHEMATICS

9709/62 October/November 2019

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark. awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or М errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically DM or DB says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B FT marks are given for correct work only.

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To
- NFWW Not From Wrong Working

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
1(i)	Median = 51 UQ = 57.5, LQ = 40	B1	
	IQR = UQ - LQ	M1	$55 \leq UQ \leq 62 - 38 \leq LQ \leq 45$
	17.5	A1	NFWW
		3	
1(ii)	Result will be disproportionately affected by 110	B1	Affected by an extreme/large value There is a large outlier contains outliers such as 110 Not 'mean affected by extreme values'
		1	

Question	Answer	Marks	Guidance
2(i)	$0.4x + 0.6 \times 2x = 0.36$ or $0.4(1 - x) + 0.6(1 - 2x) = 0.64$	M1	0.4a + (1 - 0.4)b = 0.36 or 0.64, <i>a</i> , <i>b</i> terms involving <i>x</i>
	$ \begin{array}{l} 1.6x = 0.36 \\ x = 0.225 \end{array} $	A1	Fully justified by algebra AG
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
2(ii)	$P(H L') = \frac{0.4(1-x)}{1-0.36} = \frac{0.4 \times (1-0.225)}{0.64} = \frac{0.4 \times 0.775}{0.4 \times 0.775 + 0.6 \times 0.55}$	M1	Correct numerical numerator of a fraction. Allow unsimplified.
		M1	Denominator 0.36 or 0.64. Allow unsimplified.
	$\frac{31}{64}$ or 0.484	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	0.5 2.4 3 1.4 0.4	M1	At least 3 frequency densities calculated (frequency ÷ class width) e.g. $\left(\frac{10}{20}, \frac{10}{19} \text{ or } \frac{10}{19.5}\right)$ may be read from graph using <i>their</i> scale, 3SF or exact
	All heights correct on graph.	A1	
	Bar ends of 9.5, 29.5, 39.5, 59.5, 89.5	B1	
	Axes labelled: Frequency density (fd) and speed/km h ⁻¹ (or appropriate title). Linear scales $9.5 \le $ horizontal axis ≤ 89.5 , 0 $\le $ vertical axis ≤ 3 , 5 bars with no gaps	B1	
		4	

Question	Answer	Marks	Guidance
3(ii)	$\frac{19.5 \times 10 + 34.5 \times 24 + 44.5 \times 30 + 54.5 \times 14 + 74.5 \times 12}{their 90}$ $= \frac{195 + 828 + 1335 + 763 + 894}{90}$ $= \frac{4015}{90} \text{ or } \frac{803}{18}$	M1	Uses at least 4 midpoint attempts (e.g. 19.5 ± 0.5). Allow unsimplified expression.
	$44\frac{11}{18}$ or 44.6 (km h ⁻¹)	A1	Final answer not an improper fraction NFWW
		2	

Question	Answer	Marks	Guidance
4(i)	$P(8, 9, 10) = {}^{10}C_8 \ 0.66^8 \ 0.34^2 + {}^{10}C_9 \ 0.66^9 \ 0.34^1 + 0.66^{10}$	M1	Correct binomial term, ${}^{10}C_a \ 0.66^a (1-0.66)^b$ $a+b=10, \ 0 < a,b < 10$
		A1	Correct unsimplified expression
	0.284	B1	CAO
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(ii)	$np = 0.66 \times 150 = 99$ $npq = 0.66 \times (1 - 0.66) \times 150 = 33.66$	B1	Accept evaluated or unsimplified μ , σ^2 numerical expressions, condone $\sigma = \sqrt{33.66} = 5.8017 \text{ or } 5.802$ CAO
	$P(X > 84) = P\left(Z > \frac{84.5 - 99}{\sqrt{33.66}}\right)$	M1	\pm Standardise, $\frac{x - their 99}{\sqrt{their 33.66}}$, condone σ^2 , x a value
		M1	84.5 or 83.5 used in <i>their</i> standardisation formula
	(= P(Z > -2.499))	M1	Correct final area
	0.994	A1	Final answer (accept 0.9938)
			SC if no standardisation formula seen, B2 $P(Z > -2.499) = 0.994$
		5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer							Marks	Guidance
5(i)		1	T					B1	Table with correct values of <i>x</i> , at least 1 probability, all
	x	-1	0	1	2	3	4		probabilities ≤ 1
	p	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{3}{12}$	$\frac{2}{12}$	$\frac{3}{12}$	$\frac{2}{12}$		
								B1	2 probabilities correct, may not be in table
								B1	2 more probabilities correct, may not be in table
							B1	All correct, values in table SC1 No more than 1 correct probability and at least 5 probabilities summing to 1 in table	
								4	
5(ii)	$[E(X)] = \left(\frac{-1+0+3+4+9+8}{12}\right) = \frac{23}{12}$							M1	May be implied by use in variance. Allow unsimplified expression
	$[\operatorname{Var}(X)] = \frac{1+0+3+8+27+32(=71)}{12} - \left(\frac{23}{12}\right)^2$					$\Big)^2$		M1	Appropriate variance formula using <i>their</i> $E(X)^2$
	2.24 or	$\frac{323}{144}$ or 2	35 144					A1	CAO
								3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(i)	$P(X < 45) = P\left(Z < \frac{45 - 40}{8}\right)$ = P(Z < 0.625)	M1	\pm Standardise, no continuity correction, σ^2 or $\sqrt{\sigma}$, formula must be seen
	0.734(0)	A1	САО
		2	
6(ii)	1 - 2(1 - (i)) = 2(i) - 1 = 2((i) - 0.5)	M1	Use result of part (i) or recalculated to find area OE
	0.468	A1ft	0 < FT from (i) < 1 or correct.
		2	
6(iii)	P(X < 10) = 48/500 = 0.096 z = -1.305	B1	$z = \pm 1.305$
	P(X>24) = 76/500 = 0.152 z = 1.028	B1	$z = \pm 1.028$
	$ \begin{array}{l} 10 - \mu = -1.305\sigma \\ 24 - \mu = 1.028\sigma \end{array} $	M1	Form 1 equation using 10 or 24 with μ, σ, z -value. Allow continuity correction, not $\sigma^2, \sqrt{\sigma}$
	$14 = 2.333\sigma$	M1	OE Solve two equations in σ and μ to form equation in one variable
	$\sigma = 6.[00], \mu = 17.8[3]$	A1	CAO, WWW
		5	

Question	Answer	Marks	Guidance
7(i)	6! = 720	B1	Evaluated
		1	
7(ii)	Total no of arrangements: $\frac{9!}{2!3!} = 30240$	B1	Accept unevaluated
	No with Ts together = $\frac{8!}{3!} = 6720$	B1	Accept unevaluated
	With Ts not together: 30 240 – 6720	M1	correct or $\frac{9!}{m} - \frac{8!}{n}, m, n$ integers > 1
			or <i>their</i> identified total – <i>their</i> identified Ts together
	23 520	A1	CAO
	Alternative method for question 7(ii)		
	$\frac{7!}{3!} \times \frac{8 \times 7}{2}$	B1	$7! \times (k > 0)$ in numerator, cannot be implied by $^{7}P_{2}$, etc.
		B1	$3! \times (k \ge 0)$ in denominator
		M1	$\frac{their \ 7!}{their \ 3!} \times {}^{8}C_{2} \text{ or } {}^{8}P_{2}$
	23 520	A1	САО
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(iii)	Number of arrangements = $\frac{7!}{3!}$ Probability = $\frac{their \frac{7!}{3!}}{their \frac{9!}{3!2!}} = \frac{840}{30240}$	M1	$\frac{their \text{ identified number of arrangements with T at ends}}{their \text{ identified total number of arrangements}}$ $or \frac{\frac{7!}{m}}{\frac{9!}{n}}m,n \text{ integers > 1}$
	$\frac{1}{36}$ or 0.0278	A1	Final answer
		2	
7(iv)	$\begin{array}{c} OOT_ & {}^{4}C_{2}=6 \\ OOT_ & {}^{4}C_{2}=6 \end{array}$	M1	${}^{4}C_{x}$ seen alone or ${}^{4}C_{x} \ge 1$, <i>k</i> an integer, $0 \le x \le 4$
	$\begin{array}{ccc} OOTI _ & C_1 = 4 \\ OOOT_ & {}^4C_1 = 4 \\ OOOTT & = 1 \end{array}$	A1	${}^{4}C_{2} \ge k, k = 1 \text{ oe or } {}^{4}C_{1} \ge m, m = 1 \text{ oe alone}$
		M1	Add 3 or 4 identified correct scenarios only, accept unsimplified
	(Total) = 15	A1	CAO, WWW Only dependent on 2nd M mark
		4	

MATHEMATICS

9709/63 October/November 2019

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark. awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or М errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically DM or DB says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B FT marks are given for correct work only.

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1(i)	$\frac{120}{300} = 0.4$	B1	OE
		1	
1(ii)	P(male) × P(not piano) = $\frac{160}{300} \times \frac{225}{300} \left(\frac{8}{15} \times \frac{3}{4}\right) = \frac{2}{5}$	M1	$P(M) \times P(P')$ seen Can be unsimplified but the events must be named in a product
	As P(male \cap not piano) also = $\frac{120}{300} = \frac{2}{5}$	A1	Numerical comparison and correct conclusion
	The events are Independent		
	Alternative method for question 1(ii)		
	P(male ∩ not piano) = $\frac{120}{300}$; P(not piano) = $\frac{225}{300}$	M1	P(M P') or $P(P' M)$ unsimplified seen with <i>their</i> probs with correctly named events
	$P(M \mid \text{not piano}) = \frac{\frac{120}{300}}{\frac{225}{300}} = \frac{120}{225} = \frac{8}{15} = P(\text{male})$	A1	Numerical comparison with P(M) or P(P') and correct conclusion
	or P(not piano M) = $\frac{\frac{120}{300}}{\frac{160}{300}} = \frac{120}{160} = \frac{3}{4} = P(\text{not piano})$		
	Therefore the events are Independent		
		2	

Question	Answer	Marks	Guidance
2(i)	$\frac{9!}{2!3!} = 30240$	B1	9! Divided by at least one of 2! or 3!
		B1	Exact value
		2	
2(ii)	DR: $\frac{7!}{2!2!} = 1260$ DO: $\frac{7!}{3!} = 840$	B1	7! Seen alone or as numerator in a term, can be multiplied not + or –
		B1	One term correct, unsimplified
	Total = 2100	B1	Final answer
		3	

Question	Answer	Marks	Guidance
3(i)	$3A 2D 2M : {}^{6}C_{3} \times {}^{5}C_{2} \times {}^{4}C_{2} (= 1200)$ $4A 2D 1M : {}^{6}C_{4} \times {}^{5}C_{2} \times {}^{4}C_{1} (= 600)$ $3A 3D 1M : {}^{6}C_{3} \times {}^{5}C_{3} \times {}^{4}C_{1} (= 800)$	M1	${}^{6}C_{x} \times {}^{5}C_{y} \times {}^{4}C_{z}, x+y+z=7$
		A1	2 correct products, allow unsimplified
		M1	Summing their totals for 3 correct scenarios only
	Total = 2600	A1	Correct answer SC1 ${}^{6}C_{3} \times {}^{5}C_{2} \times {}^{4}C_{1} \times {}^{9}C_{1} = 7200$
		4	

Question	Answer	Marks	Guidance
3(ii)	$^{7}C_{4} \times 1$	B1	$^{7}C_{3}$ or $^{7}C_{4}$ seen anywhere
	35	B1	
		2	

Question	Answer	Marks	Guidance
4(i)	P(h < 148) = 0.67	B1	$z = \pm 0.44$ seen
	$\frac{h-148}{8} = 0.44$	M1	$z\text{-value} = \pm \frac{(h-148)}{8}$
	$151.52 \approx 152$	A1	CAO
		3	
4(ii)	$P(144 < X < 152) = P\left(\frac{144 - 148}{8} < Z < \frac{152 - 148}{8}\right)$	M1	Using ± standardisation formula for either 144 or 152, $\mu = 148$, $\sigma = 8$ and no continuity correction, allow σ^2 or $\sqrt{\sigma}$
	$= P\left(-\frac{1}{2} < Z < \frac{1}{2}\right) = 0.6915 - (1 - 0.6915) = 2 \times 0.6915 - 1$	M1	Correct final area legitimately obtained from $phi(their z_2) - phi(their z_1)$
	= 0.383	A1	Final probability answer
	$0.383 \times 120 = 45.96$ Accept 45 or 46 only	B1FT	Their prob (to 3 or 4 sf) \times 120, rounded to a whole number or truncated
		4	

Question	Answer	Marks	Guidance
5(i)	Correct labels and scales	B1	Axes labelled 'cumulative frequency' (or cf) and 'time (or t) [in] min(utes)', linear scales from 0 to 90 and 0 to 200 with at least 3 values marked on each axis.
	7 correctly plotted points above upper boundaries joined in a curve or line segments	B1	(0, 0); (10, 16); (20, 50); (30, 106); (50, 146); (70,176); (90,200)
		2	
5(ii)	29	B1	$28 \leq \text{median} \leq 30$
		1	
5(iii)	120 seen	M1	For seeing 120 in a calculation or marked on the graph
	37	A1FT	$36 \leq Ans \leq 39$ or FT from <i>their</i> graph SC1 unsupported answer in range
		2	
5(iv)	Frequencies 16 34 56 40 30 24	B1	Seen. Allow unsimplified
	Est. Mean = $\frac{5 \times 16 + 15 \times 34 + 25 \times 56 + 40 \times 40 + 60 \times 30 + 80 \times 24}{200}$	M1	At least 4 correct midpoints (5, 15, 25, 40, 60, 80) used in a calculation
	$\frac{7310}{200}$	M1	Summing products of <i>their</i> 6 mid-points (not lower or upper bound or class width) × <i>their</i> frequencies / 200 (or <i>their</i> Σ f), unsimplified
	36.55	A1	Accept 36.6
		4	

Question	Answer	Marks	Guidance
6(i)	$P(RR) = \frac{3}{8} \times \frac{2}{7} = \frac{3}{28}$	B1	OE
		1	
6(ii)	$P(RW) + P(WR) \frac{3}{8} \times \frac{5}{7} + \frac{5}{8} \times \frac{3}{7}$	M1	Method shown, numerical calculations identified, may include replacements
	$=\frac{15}{28}$	A1	AG, Fully correct calculations
	Alternative method for question 6(ii)		
	$1 - (P(RR) + P(WW)) 1 - \left(\frac{3}{28} + \frac{5}{8} \times \frac{4}{7}\right)$	M1	Method shown, numerical calculations identified, may include replacements
	$=\frac{15}{28}$	A1	AG, Fully correct calculations
		2	
6(iii)	P(first red second red) = $\frac{their(\mathbf{i})}{their(\mathbf{i}) + \frac{5}{8} \times \frac{3}{7}} = \frac{\frac{3}{8} \times \frac{2}{7}}{\frac{3}{8} \times \frac{2}{7} + \frac{5}{8} \times \frac{3}{7}} = \frac{\frac{3}{28}}{\frac{21}{56}}$	M1	Conditional probability formula used consistent with <i>their</i> probabilities or correct
	$=\frac{2}{7}$	A1	OE
		2	

Question	Answer	Marks	Guidance
6(iv)	x 0 1 2 p $\frac{10}{28}$ $\frac{15}{28}$ $\frac{3}{28}$	B1	Probability distribution table with correct values of x and at least one correct probability placed. Extra x values allowed with probability of zero stated.
		B1FT	Fully correct FT P(2) = <i>their</i> (i), P(1) = <i>their</i> (ii), $\Sigma(p) = 1$.
		2	
6(v)	$E(X) = \frac{30}{56} + \frac{12}{56} = \frac{42}{46} \left(=\frac{3}{4}\right)$	B1	May be implied by use in variance formula
	$Var(X) = \frac{30}{56} + \frac{24}{56} - \left(their \frac{3}{4}\right)^2$	M1	Substitute into correct variance formula, must have ' <i>– their</i> mean ² ' Must be for 2 or more non-zero <i>x</i> -values
	$\frac{45}{112}$ or 0.402	A1	Correct final answer
		3	

Question	Answer	Marks	Guidance
7(i)(a)	$P(0, 1, 2) = {}^{6}C_{0} \ 0.3^{0} \ 0.7^{6} + {}^{6}C_{1} \ 0.3^{1} \ 0.7^{5} + {}^{6}C_{2} \ 0.3^{2} \ 0.7^{4}$	M1	Binomial term of form ${}^{6}C_{x}p^{x}(1-p)^{6-x}$ $0 any p, x \neq 6,0$
	0.1176 + 0.3025 + 0.3241	A1	Correct unsimplified answer
	0.744	A1	Correct final answer
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(i)(b)	P(support neither choir) = $1 - (0.3 + 0.45) = 0.25$	M1	0.25^n seen alone, $1 \le n \le 6$
	P(6 support neither choir) = 0.25^6	A1	Correct final answer
	$= 0.000244 \text{ or } \frac{1}{4096}$		
		2	
7(ii)	Mean = $240 \times 0.25 = 60$ Variance = $240 \times 0.25 \times 0.75 = 45$	B1FT	Correct unsimplified 240p and 240pq where $p = their$ P(support neither choir) or 0.25
	$P(X < 50) = P\left(Z < \frac{49.5 - 60}{\sqrt{45}}\right) = P(Z < -1.565)$	M1	Substituting <i>their</i> μ and σ (condone σ^2) into the ±Standardisation Formula with a numerical value for '49.5'.
		M1	Using continuity correction 49.5 or 50.5 within a standardisation expression
	1 - 0.9412	M1	Appropriate area Φ from standardisation formula P(z<) in final solution, (< 0.5 if z is -ve, > 0.5 if z is +ve)
	0.0588	A1	Correct final answer
		5	

MATHEMATICS

9709/61 May/June 2019

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.
GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1(i)	$\Sigma(t - 120) = -25 + 6 - 3 + 15 + 0 + 5 - 6 - 1 + 16 = 7$	M1	Attempt to sum both $(t - 120)$ and $(t - 120)^2$ Correct ans using $\Sigma t - 9 \times 120$ and $\Sigma (t - 120)^2$ M1A1
	$\Sigma(t - 120)^2 = 25^2 + 6^2 + 3^2 + 15^2 + 0^2 + 5^2 + 6^2 + 1^2 + 16^2$ = 1213	A1	Both correct, www, SC correct ans no working B1B1
		2	
1(ii)	Var = $\frac{\Sigma(t-120)^2}{9} - \left(\frac{\Sigma(t-120)}{9}\right)^2 = \frac{their 1213}{9} - \left(\frac{their 7}{9}\right)^2$	M1	Using two coded values in correct formula including finding Σt from 7 etc
	= 134(.2)	A1	Correct answer SC if correct variance obtained by another method from raw data give SCB1
		2	

Question	Answer	Marks	Guidance
2	Jameel: P(plum) = $\frac{5}{8}$, Rosa: P(plum) = $\frac{x}{x+6}$ $\frac{5}{8} \times \frac{x}{x+6} = \frac{1}{4}$	M1	Their 2 probabilities for P(plum) multiplied and equated to 1/4
		A1	Correct equation oe
	(x =) 4	A1	SC correct answer with no appropriate equations i.e. common sense B1
		3	

Question	Answer	Marks	Guidance
3	$P(X) = \frac{3}{36} \left(\frac{1}{12}oe\right)$	B1	
	$P(Y) = \frac{12}{36} \left(\frac{1}{3}oe\right)$	B1	
	$P(X \cap Y) = \frac{1}{36}$	M1	Independent method to find $P(X \cap Y)$ without multiplication, either stated or by listing or circling numbers on a probability space diagram. OR condititional prob with a single fraction numerator
	$P(X) \times P(Y) = P(X \cap Y)$, independent	A1	Numerical comparison and conclusion, www
		4	

Question	Answer	Marks	Guidance
4	Median Maths = 40	M1	Indication of finding medians, such as mark on graph or reference marks to 700 pupils, condone poor terminology such as 'mean'
	Median English = 55	A1	Both values correct, condone 54 <english<56 54,="" 56="" a0<="" but="" get="" td=""></english<56>
	Median of English is larger than median of Maths	B1	Correct statement, median must be referenced within answer. No credit if statement references 'means'
	Range Maths is 100 or IQ range Maths = $80 - 12 = 68$	M1	Evidence of finding either both ranges or both IQ ranges i.e. see a minus
	Range English is 60 or IQ range English = $62 - 42 = 20$	A1	Both ranges or IQR correct
	Maths marks have more spread then English marks	B1	Correct conclusion. Accept standard deviation but must see some figures
		6	

Question	Answer	Marks	Guidance
5(i)	(P > 12) = P(13, 14, 15)	M1	Binomial term of form ${}^{15}C_x p^x (1-p)^{15-x} \ 0 any p, x \neq 15, 0$
	$= {}^{15}C_{13}(0.65)^{13}(0.35)^2 + {}^{15}C_{14}(0.65)^{14}(0.35)^1 + (0.65)^{15}$	A1	Correct unsimplified answer
	= 0.0617	A1	SC if use np and npq with justification give $(12.5 - 9.75)/\sqrt{3.41}$ M1 1-F(1.489) A1 0.0681 A0
		3	
5(ii)	mean = $250 \times 0.65 = 162.5$ variance = $250 \times 0.65 \times 0.35 = 56.875$	B1	Correct unsimplified <i>np</i> and <i>npq</i>
	$P(<179) = P(z < \frac{178.5 - 162.5}{\sqrt{56.875}}) = P(z < 2.122)$	M1	Substituting <i>their</i> μ and σ (condone σ^2) into the Standardisation Formula with a numerical value for '178.5'. Continuity correct not required for this M1. Condone \pm standardisation formula
	Using continuity correction 178.5 or 179.5	M1	
	= 0.983	A1	Correct final answer
		4	

Question	Answer	Marks	Guidance
6(i)	$P(\text{loses }\$1) = P(F \text{ and } F) = 0.8 \times 0.8$	M1	$0.8 \ge 0.8 \text{ or } (1 - 0.2)(1 - 0.2) \text{ or } P(F) \times P(F) \text{ or } P(F)+P(F) \text{ seen or implied}$
	= 0.64 AG	A1	Must see probabilities multiplied together with final answer and a clear probability statement or implied by labelled tree diagram
		2	

Question	Answer					Marks	Guidance
6(ii)	Amount	1	0.50	2]	B1	-1 linked with 0.64 in table
	gained (\$)	-1	0.50	2		B1	0.5 seen in table
	Prob		0.16	0.2		B1	0.16 seen in table linked to their 0.5
						B1	FT P(2.00 gained) = $0.36 - P(0.50 \text{ gained})$ or correct, and all amount gained linked correctly in table
						4	
6(iii)	E(winnings) = $-1 \times 0.64 + 0.5 \times 0.16 + 2 \times 0.2$ = $-(\$)0.16$, -16 cents				B1	FT Accept (\$)0.16 or 16 cents loss. FT unsimplified E(winnings) from their table provided $\Sigma p = 1$	
						1	

Question	Answer	Marks	Guidance
7(i)	P (< 700) = P $\left(z < \frac{700 - 830}{120}\right)$ = P(z < -1.083)	M1	Using \pm standardisation formula, no continuity correction, not σ^2 or $\sqrt{\sigma}$
	= 1 - 0.8606	M1	Appropriate area Φ from standardisation formula P(z<) in final probability solution, (<0.5 if <i>z</i> is -ve, >0.5 if <i>z</i> is +ve)
	= 0.1394	A1	Correct final probability rounding to 0.139
	Expected number of female adults = $430 \times their \ 0.1394$ = 59.9 So 59 or 60	B1	FT their 3 or 4 SF probability, rounded or truncated to integer
		4	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(ii)	P(giraffe < 830+w) = 95% so $z = 1.645$	B1	±1.645 seen (critical value)
	$\frac{(830+w)-830}{120} = \frac{w}{120} = 1.645$	M1	An equation using the standardisation formula with a <i>z</i> -value (not $1 - z$), condone σ^2 or $\sqrt{\sigma}$ not 0.8519, 0.8289
	<i>w</i> = 197	A1	Correct answer
		3	
7(iii)	P(male > 950) = 0.834, so $z = -0.97$	B1	± 0.97 seen
	$\frac{950-1190}{\sigma} = -0.97$	M1	Using \pm standardisation formula, condone continuity correction, σ^2 or $\sqrt{\sigma}$, condone equating with non <i>z</i> -value not 0.834, 0.166
	$\sigma = 247$	A1	Condone $-\sigma = -247$. www.
		3	

Question	Answer	Marks	Guidance
8(i)	$({}^{9}C_{4} =) 126$	B1	
		1	
8(ii)	$^{7}C_{2}$	B1	$^{7}C_{x}$ or $^{y}C_{2}$ (implied by correct answer) or $^{7}P_{x}$ or $^{7}P_{y}$, seen alone
	= 21	B1	correct answer
		2	

Question	Answer	Marks	Guidance
8(iii)	$_{C_{1}}(B_{1} B_{2} B_{3}) C_{2} C_{3} C_{4} C_{5} C_{6}$	B1	3! or 6! seen alone or multiplied by $k > 1$ need not be an integer
	$3! \times 6! \times 7$	B1	3! and 6! seen multiplied by $k > 1$, integer, no division
	= 30240	B1	Exact value
	Alternative method for question 8(iii)	·	
	$C_1 (B_1 B_2 B_3) C_2 C_3 C_4 C_5 C_6$	B1	3! or 7! seen alone or multiplied by $k > 1$ need not be an integer
	3! × 7!	B1	3! and 7! seen multiplied by $k > or = 1$, no division
	= 30240	B1	Exact value
		3	
8(iv)	$C_1 _ C_2 _ C_3 _ C_4 _ C_5 _ C_6$	B1	6! or 4! X 6P2 seen alone or multiplied by k > 1, no division (arrangements of cars)
	$6! \times 5P3 \text{ or } 6! \times 5 \times 4 \times 3 \text{ or } 6! \times 3! \times 10$	B1	Multiply by 5P3 oe i.e. putting Bs in between 4 of the Cs OR multiply by $3! \times n$ where $n = 7, 8, 9, 10$ (number of options)
	= 43200	B1	Correct answer
		3	

MATHEMATICS

9709/62 May/June 2019

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$P(S) = \frac{1}{2}$	B1	
	$P(T) = \frac{16}{36} \left(\frac{4}{9}\right)$	B1	
	$P(S \cap T) = \frac{10}{36} \left(\frac{5}{18}\right)$	M1	$P(S \cap T)$ found by multiplication scores M0 M1 awarded if <i>their</i> value is identifiable in their sample space diagram or Venn diagram or list of terms or probability distribution table (oe)
	$P(S) P(T) \neq P(S \cap T)$ so not independent	A1	8/36, 10/36 P(S) × P(T) and P($S \cap T$) seen in workings and correct conclusion stated, www
	Alternative method for question 1		
	$P(S) = \frac{1}{2}$	B1	
	$P(T) = \frac{16}{36} \left(\frac{4}{9}\right)$	B1	
	$P(S \cap T) = \frac{10}{36} \left(\frac{5}{18}\right)$	M1	$P(S \cap T)$ found by multiplication scores M0 M1 awarded if <i>their</i> value is identifiable in their sample space diagram or Venn diagram or list of terms or probability distribution table (oe)
	$P(S T) = \frac{10}{16} \text{ or } P(T S) = \frac{10}{18}$ $P(S T) \neq P(S) \text{ or } P(T S) \neq P(T) \text{ so not independent}$	A1	Either 18/36, 10/16,P(S) and P($S T$) seen in workings and correct conclusion stated, www Or 16/36, 10/18, P(T) and P(T S) seen in workings and correct conclusion stated, www
		4	

Question	Answer	Marks	Guidance
2	$P(<28.9) = P\left(z < \frac{28.9 - 30}{1.5}\right)$	B1	Using ± standardising formula, no continuity correction, not σ^2 or $\sqrt{\sigma}$,
	= P(z < -0.733) = 1 - 0.7682	M1	Appropriate area Φ from standardisation formula P(z <) in final probability solution, Must be a probability, e.g. 1 – 0.622 is M0
	= 0.2318	A1	Correct final probability rounding to 0.232. (Only requires M1 not B1 to be awarded
	Number of cartridges is <i>their</i> 0.2318×8 = 1.85, so 2 (Also accept 1 but not both)	B1	FT using <i>their</i> 4 SF (or better) value, ans. rounded or truncated to integer, no approximation indicated.
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(i)	P(at most 7) = 1 - P(8, 9, 10) = 1 - ¹⁰ C8(0.35) ⁸ (0.65) ² - ¹⁰ C ₉ (0.35) ⁹ (0.65) ¹ - (0.35) ¹⁰	M1	Use of normal approximation M0 Binomial term of form ${}^{10}C_x p^x (1-p)^{10-x}$ $0 any p, x \neq 10,0$
	[= 1 - 0.004281 - 0.0005123 - 0.00002759]	A1	Correct unsimplified (or individual terms evaluated) answer seen Condone $1 - A + B + C$ leading to correct solution
	= 0.995	B1	B1 not dependent on previous marks.
	Alternative method for question 3(i)		
	P(at most 7) = P(0,1,2,3,4,5,6,7)	M1	Binomial term of form ${}^{10}C_x p^x (1-p)^{10-x}$ $0 any p, x \neq 10, 0$
	$= (0.65)^{10} + {}^{10}\text{C1}(0.35)^1(0.65)^9 + \ldots + {}^{10}\text{C}_7(0.35)^7(0.65)^3$	A1	Correct unsimplified answer or individual terms evaluated seen
	= 0.995	B1	
		3	
3(ii)	$\begin{array}{l} 1 - (0.65)^n > 0.99 \\ 0.01 > (0.65)^n \end{array}$	M1	Equation or inequality with $(0.65)^n$ and 0.01 or $(0.35)^n$ and 0.99 only (Note $1 - 0.99$ is equivalent to 0.01 etc.)
	<i>n</i> > 10.69	M1	Solving their $a^n = c$, $0 < a, c < 1$ using logs or Trial and Error If answer inappropriate, at least 2 trials are required for Trial and Error M mark
	smallest $n = 11$	A1	САО
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4	$z = 0.842 = \left(\frac{121 - \mu}{\mu}\right)$ so $0.842\sigma = 121 - \mu$	B1	\pm 0.842 seen but B0 if 1 \pm 0.842 oe seen
	(σ)	M1	One appropriate standardisation equation with a <i>z</i> -value, μ , σ and 121 or 102, condone continuity correction. Not 0.158, 0.42,
	$z = -0.58 = \left(\frac{102 - \mu}{\sigma}\right)$ so $-0.58\sigma = 102 - \mu$	B1	$\pm 0.58(0)$ seen but B0 if 1 ± 0.58 oe seen
	Solving	M1	Correct algebraic elimination of μ or σ from <i>their</i> two simultaneous equations to form an equation in one variable, condone 1 numerical slip
	$\sigma = 13.4 \ \mu = 110$	A1	If M0A0 scored (i.e. no algebraic elimination seen), SC B1 can be awarded for both answers correct Consistent use of σ^2 or $\sqrt{\sigma}$ throughout apply MR penalty to A mark or SC B mark.
		5	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(i)	5/9 T	B1	First pair of branches labels and probs correct (6/7 and 1/7 or rounding to 0.857 and 0.143)
	Т		(Labelling must be logicallye.g. (T and T) or (T and Not T) would be acceptable)
	6/7 4/9 C	B1	Either of second top pair or bottom of branches labels and probs correct
	1/7 C 6/9 T		
	3/9 C	B1	Both second pairs of branches labels and probs correct. No additional / further branches.
		3	
5(ii)	No of toffees	B1	P(1) correct
	taken (<i>T</i>) 0 1 2	B1	P(0) or P(2) correct
	prob $\begin{array}{c cccc} \frac{3}{63}, & \frac{30}{63}, & \frac{30}{63}, \\ 0.0476(2) & 0.476(2) & 0.476(2) \end{array}$	B1	FT Correct values in table, any additional values of <i>T</i> have stated probability of zero. For FT $\Sigma p = 1$,
		3	
5(iii)	$E(X) = \frac{90}{63} (\frac{10}{7}) \ (1.43)$	B1	Not FT
		1	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(iv)	$P(1^{st} C 2^{nd} T) = \frac{P(C \cap T)}{P(T)} = \frac{\frac{1}{7} \times \frac{6}{9}}{\frac{1}{7} \times \frac{6}{9} + \frac{6}{7} \times \frac{5}{9}} = \frac{\frac{6}{63}}{\frac{36}{63}}$	B1	$P(C \cap T)$ attempt seen as numerator of a fraction, consistent with <i>their</i> tree diagram or correct
		M1	Summing 2 appropriate two-factor probabilities, consistent with <i>their</i> tree diagram or correct seen anywhere
		A1	$\frac{36}{63}$ oe or correct unsimplifed expression seen as numerator or denominator of a fraction
$\frac{1}{6}$ oe	A1	Final answer	
		4	

Question	Answer	Marks	Guidance
6(i)	Advantage: comment referring to spread or range or shape	B1	Comments referring to quartiles, IQR, Range, median, shape, skewness, data distribution, spread score B1 Any comments with reference to mean or standard deviation or any other 'disadvantage' will score B0 Comments referring to '5-value plot', comparison with another data set, overview or ease of drawing/plotting/reading require an appropriate advantage statement.
	Disadvantage: comment referring to limited data information provided	B1	Comments referring to no individual data, no information about the number of values, unable to calculate mean, standard deviation, variance and mode score B1 Any comments with reference to median, shape or any other 'advantage' will score B0 Comments referring to 'size of data set' or 'average' require an appropriate disadvantage statement. Comments referring to outliers are ignored in all cases (as outliers are not in the syllabus content) unless supported by an appropriate advantage / disadvantage statement. If comments not clearly identified, assume first comment is the advantage.
		2	

Question	Answer	Marks	Guidance		
6(ii)	Not mean as data skewed by one large value	B1	Comment which identifies 768 (or 'a very large number') as the problem. Condone the use of 'outlier'		
	Not mode as frequencies all the same	B1	Comment which indicates that no mode exists (e.g. all the data is different, there is no repeated number, all the values are different)		
	Median	B1	Median identified as choice, dependent upon statements for mean and mode being given, even if incorrect or very general.		
	SC: Mean is identified as most suitable				
	Not mode as frequencies all the same	SCB1	Comment which indicates that no mode exists		
	Not median as not all values used	SCB1	Comment which indicates limitation of median e.g. median is not in middle of range.		
		3			
6(iii)(a)	LQ = 256 or 256.5 Med = 280 UQ = 329 Min 190 max 375	B1	Median, UQ and LQ values seen, may not be identified or identified correctly. (Not read from box plot unless value stated)		
	150 200 250 300 350 400 time minutes	B1	FT Median and quartiles plotted in box on graph, linear scale		
		B1	Correct end points, whiskers from ends of box but not through box, not at top or bottom of box		
		B1	Uniform scale from 190 to 375 (need at least 3 linear identified points min) and labelled 'time' and 'minutes' (can be in title)		
			No time axis or time axis with no scale attempt, Max B1B0B0B0		
		4			

Question	Answer	Marks	Guidance
6(iii)(b)	IQR = <i>their</i> 329 – <i>their</i> 256 = 73 or 72.5	B1	FT Must follow through only from <i>their</i> stated values (condone if correct quartiles stated here), not reading from graph.
		1	

Question	Answer	Marks	Guidance
7(a)	${}^{6}C_{3} \times {}^{3}C_{2} \times {}^{1}C_{1}$	M1	${}^{6}C_{a} \times {}^{6-a}C_{b} \times {}^{6-a-b}C_{6-a-b}$ seen oe ${}^{6-a-b}C_{6-a-b}$ can be implied by 1 or omission, condone use of permutations,
	$=20 \times 3$	A1	Any correct method seen no addition/additional scenarios
	= 60	A1	Correct answer
	Alternative method for question 7(a)		
	$\frac{{}^{6}P_{6}}{{}^{3}P_{3} \times {}^{2}P_{2} \times {}^{1}P_{1}} = \frac{6!}{3! \times 2!}$	M1	${}^{6}P_{6} / ({}^{n}P_{n} \ge k)$ with $3 \ge n > 1$ and $6 \ge k$ an integer ≥ 1 , not $6!/1$
		A1	Correct method with no additional terms
	= 60	A1	Correct answer
		3	
7(b)(i)	$\frac{4!}{3!} \times \frac{3!}{2!} \times 2$	M1	A single expression with either $4!/3! \times k$ or $3!/2! \times k$, k a positive integer seen oe (condone 2 identical expressions being added)
		M1	Correctly multiplying <i>their</i> single expression by 2 or 2 identical expressions being added.
	= 24	A1	Correct answer
		3	

Question	Answer	Marks	Guidance		
7(b)(ii)	Total no of arrangements = $\frac{7!}{2!3!}$ = 420 (A)	B1	Accept unsimplified		
	No with 2s together = $\frac{6!}{3!}$ = 120 (B)	B1	Accept unsimplified		
	With 2s not together: <i>their</i> (A) – <i>their</i> (B)	M1	Subtraction indicated, possibly by <i>their</i> answer, no additional terms present		
	= 300 ways	A1	Exact value www		
	Alternative method for question 7(b)(ii)				
	3_7_7_8_				
	$5! \times \frac{6 \times 5}{6}$	B1	$k \ge 5!$ in numerator, k a positive integer		
	3! 2	B1	$m \ge 3!$ In denominator, m a positive integer		
		M1	<i>Their</i> 5!/3! multiplied by ${}^{6}C_{2}$ only (no additional terms)		
	= 300 ways	A1	Exact value www		
		4			

MATHEMATICS

9709/63 May/June 2019

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
1(i)	$P(79 < X < 91) = P\left(\frac{79 - 85}{6.8} < Z < \frac{91 - 85}{6.8}\right)$ = P(-0.8824 < Z < 0.8824)	M1	Using ± standardisation formula for either 79 or 91, no continuity correction
	$= \Phi(0.8824) - \Phi(-0.8824)$ = 0.8111 - (1 - 0.8111)	M1	Correct area ($\Phi - \Phi$) with one +ve and one –ve z-value or $2\Phi - 1$ or $2(\Phi - 0.5)$
	= 0.622	A1	Correct answer
		3	
1(ii)	z = -1.751	B1	± 1.751 seen
	$-1.751 = \frac{t - 85}{6.8}$	M1	An equation using \pm standardisation formula with a <i>z</i> -value, condone σ^2 or $\sqrt{\sigma}$
	<i>t</i> = 73.1	A1	Correct answer
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
2(i)	or P	B1	Fully correct labelled tree with correct probabilities for 'Send'
	$\begin{array}{c cccc} 0.4 & R \\ \hline 0.0 & 0.6 & NR \\ \hline 0.2 & email & 0.15 & R \\ \hline 0.2 & email & 0.85 & NR \\ \hline 0.5 & social \\ media & 0.4 & NR \end{array}$	B1	Fully correct labelled branches with correct probabilities for the 'reply'
		2	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
2(ii)	$P(email NR) = \frac{P(email \cap NR)}{P(NR)} = \frac{0.2 \times 0.85}{0.3 \times 0.6 + 0.2 \times 0.85 + 0.5 \times 0.4}$	M1	$P(email) \times P(NR)$ seen as numerator of a fraction, consistent with <i>their</i> tree diagram
	$=\frac{0.17}{0.18+0.17+0.2}=\frac{0.17}{0.55}$	M1	Summing three appropriate 2-factor probabilities, consistent with <i>their</i> tree diagram, seen anywhere 0.55 oe (can be unsimplified) seen as denom of a fraction
	$= 0.309, \frac{17}{55}$	A1	
		A1	Correct answer
		4	

Question	Answer	Marks	Guidance
3(i)	9! × 2	B1	9! seen multiplied by $k \ge 1$, no addition
	= 725760	B1	Exact value
		2	
3(ii)	$Eg (K_1K_2K_3K_4K_5) A A A (U_1U_2) A$	B1	2! or 5! seen mult by $k > 1$, no addition (arranging Us or Ks)
	$=5!\times2!\times6!$	B1	6! Seen mult by $k > 1$, no addition (arranging AAAAKU)
	= 172800	B1	Exact value
		3	

Question	Answer	Marks	Guidance
4(i)	$ \begin{array}{rrrr} M(8) & W(4) \\ 4 & 2 & \text{in} \ ^8C_4 \times \ ^4C_2 = 420 \ \text{ways} \\ 5 & 1 & \text{in} \ \ ^8C_5 \times \ \ ^4C_1 = 224 \ \text{ways} \\ 6 & 0 & \text{in} \ \ \ ^8C_6 \times \ \ \ ^4C_0 = 28 \ \ \text{ways} \end{array} $	B1	One unsimplified product correct
		M1	Summing the number of ways for 2 or 3 correct scenarios (can be unsimplified), no incorrect scenarios
	Total 672 ways	A1	Correct answer
		3	

Question	Answer	Marks	Guidance		
4(ii)	Total number of selections = ${}^{12}C_6 = 924$ (A)	M1	$^{12}C_x$ – (subtraction seen), accept unsimplified		
	Selections with males together = ${}^{10}C_4 = 210$ (B)	A1	Correct unsimplified expression		
	Total = (A) - (B) = 714	A1	Correct answer		
	No males + Only male 1 + Only male 2 = ${}^{10}C_6 + {}^{10}C_5 + {}^{10}C_5$	M1	${}^{10}C_x + 2 \times {}^{10}C_y$, $x \neq y$ seen, accept unsimplified		
	= 210 + 252 + 252	A1	Correct unsimplified expression		
	= 714	A1	Correct answer		
	Alternative method for question 4(ii)				
	Pool without male 1 + Pool without male 2 – Pool without either male	M1	$2 x^{11}C_x - {}^{10}C_x$		
	$= {}^{11}C_6 + {}^{11}C_6 - {}^{10}C_6$ = 462 + 462 - 210	A1	Correct unsimplified expression		
	= 714	A1	Correct answer		
		3			

Question	Answer	Marks	Guidance
5(i)	$P(0, 1, 2) = (0.66)^{14} + {}^{14}C_1(0.34)(0.66)^{13} + {}^{14}C_2(0.34)^2(0.66)^{12}$	M1	Binomial term of form ${}^{14}C_x p^x (1-p)^{14-x} \ 0 any p, x \neq 14, 0$
	= 0.0029758 + 0.02146239 + 0.071866	A1	Correct unsimplified answer
	= 0.0963	A1	Correct answer
		3	
5(ii)	Mean = $600 \times 0.34 = 204$, Var = $600 \times 0.34 \times 0.66 = 134.64$	B1	Correct unsimplified <i>np</i> and <i>npq</i> (or sd = 11.603 or Variance = 3366/25)
	$P(<190) = P\left(z < \frac{189.5 - 204}{\sqrt{100}}\right) = P(z < -1.2496)$	M1	Substituting <i>their</i> μ and σ , (no σ^2 or $\sqrt{\sigma}$) into the Standardisation Formula with a numerical value for '189.5'. Condone \pm standardisation formula
	(134.64)	M1	Using continuity correction 189.5 or 190.5 within a Standardisation formula
	$= 1 - \Phi (1.2496)$	M1	Appropriate area Φ from standardisation formula P(z<) in final solution, (<0.5 if <i>z</i> is -ve, >0.5 if <i>z</i> is +ve)
	= 1 - 0.8944 = 0.106	A1	Correct final answer
		5	

Question	Answer								Marks	Guidance
6(i)		score	1	2	3	4	6	9	B1	Probability distribution table with correct scores, allow extra score values if probability of zero stated
		prob	$\frac{3}{15}$	$\frac{4}{15}$	$\frac{4}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{1}{15}$	B1	2 probabilities (with correct score) correct
			15	15	15	15	15	15	B1	3 or more correct probabilities with correct scores
									B1	FT $\Sigma p = 1$, at least 4 probabilities
									4	
6(ii)	mean = $\frac{(3+8+12+4+12+9)}{4} = \frac{48}{4}$ (3.2)								B1	
	15 15									
	Var = $\frac{(3+16+36+16+72+81)}{15} - (their 3.2)^2$								M1	FT Substitute <i>their</i> attempts at scores in correct var formula, must have "– mean ² " (condone probabilities not summing to 1)
	$=\frac{224}{15} - 3.2^2 = 4.69\left(\frac{352}{75}\right)$								A1	
									3	
6(iii)	Sco	ore of 4, 6	5, 9						M1	Identifying relevant scores from <i>their</i> mean and <i>their</i> table
	Pro	$bb = \frac{4}{0}$	267)						A1	Correct answer
		15								SC B1 for 4/15 with no working
									2	
Question	Answer	Marks	Guidance							
----------	---	-------	--							
7(i)	Thaters School Whitefay Park School	B1	Correct stem can be upside down, ignore extra values,							
	8 3 8 3 4 5 7 8 8 7 6 4 2 5 3 6 6	B1	Correct Thaters School labelled on left, leaves in order from right to left and lined up vertically, no commas							
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	Correct Whitefay Park School labelled on same diagram on right hand side in order from left to right and lined up vertically, no commas							
K n	Key 8 4 5 represents 48 minutes for Thaters School and 45 minutes for Whitefay Park School.		FT Correct key for <i>their</i> diagram, need both teams identified and 'minutes' stated at least once here or in leaf headings or title.							
			SC If 2 separate diagrams drawn, SCB1 if both keys meet these criteria							
		4								
7(ii)	LQ = 50 UQ = 61.5	B1	Both quartiles correct							
	IQ range = $61.5 - 50 = 11.5$	B1	FT $61 \le UQ \le 62 - 48 \le LQ \le 52$							
		2								
7(iii)	$\Sigma(x-60)^{2} = (-15)^{2} + (-13)^{2} + (-7)^{2} + (-4)^{2} + (-4)^{2} + 1^{2} + 4^{2} + 6^{2} + 9^{2} + 13^{2} + 23^{2} + 15^{2} + 18^{2}$	M1	Summing squares with at least 5 correct unsimplified terms							
	= 1856	A1	Exact value							
		2								

Question	Answer	Marks	Guidance
7(iv)	Var = mean of coded squares – (coded mean) ² = $\frac{\Sigma(x-60)^2}{13} - \left(\frac{\Sigma(x-60)}{13}\right)^2$	M1	Using two coded values in correct formula (variance or sd)
	$Var = \frac{their 1856}{13} - \left(\frac{46}{13}\right)^2 = 130$	A1	Correct answer SC if correct variance obtained by another method give SCB1
		2	

MATHEMATICS

9709/62 March 2019

Paper 6 Probability and Statistics MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

March 2019	March	2019	l
------------	-------	------	---

Question	Answer	Marks	Guidance
1(i)	$0.6 \times 0.2 + 0.4 \times 0.32$	M1	Addition of 2 two-factor terms $0.6 \times a + 0.4 \times b$
	$= 0.248, \frac{31}{125}$	A1	CAO
		2	
1(ii)	Method 1		
	$P(GS Not Red socks) = \frac{0.4 \times 0.68}{1 - (i)}$	B1	Correct [unsimplified] numerator seen in fraction
		M1	1 – their (i) as denominator in fraction
	$=0.362, \frac{17}{47}$	A1	
	Method 2		
	P(GS Not Red socks) = $\frac{0.4 \times 0.68}{0.6 \times 0.8 + 0.4 \times 0.68}$	B1	Correct [unsimplified] numerator seen in fraction
		M1	Correct or (their (i))' as denominator in fraction
	$= 0.362, \frac{17}{47}$	A1	
		3	

March 2019	March	2019	l
------------	-------	------	---

Question	Answer	Marks	Guidance
2(i)	$\sigma^{2} = \frac{\sum (x-c)^{2}}{n} - \left(\frac{\sum (x-c)}{n}\right)^{2}$ $3.2^{2} = \frac{3099.2}{40} - \left(\frac{\sum (x-c)}{40}\right)^{2}$	M1	Use correct formula with values substituted
	$\left(\frac{\Sigma(x-c)}{40}\right)^2 = 67.24 :$ $\Sigma(x-c) = 40 \times \sqrt{67.24}$	M1	Rearrange to make <i>their</i> $\left(\frac{\Sigma(x-c)}{40}\right)^2$ the subject, unsimplified.
	= 328	A1	Exact value, cao
		3	
2(ii)	$\sum x - 40c = their (i)$ Mean = $\frac{their(i)}{40} + 50$ = 58.2	B1FT	FT their (i)
		1	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

March 2019

Question	Answer	Marks	Guidance
3(i)	$P(X < 132) = P\left(Z < \frac{132 - 140}{12}\right) = P(Z < -0.6667)$	M1	Using \pm standardisation formula, no continuity correction, not σ^2 or $\sqrt{\sigma}$
	= 1 - 0.7477	M1	Appropriate area Φ from standardisation formula P(z<) in final solution
	= 0.252 awrt	A1	Condone linear interpolation $= 0.25243$
		3	
3(ii)	P(time>k) = 0.675, z = -0.454	B1	±0.454 seen
	$\frac{k - 140}{12} = -0.454$	M1	An equation using the standardisation formula with a <i>z</i> -value (not $1 - z$), condone σ^2 or $\sqrt{\sigma}$
	<i>k</i> = 135, 134.6, 134.55	A1	B0M1A1 max from –0.45
		3	

Question	Answer					Marks	Guidance
4(i)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				3 9k	B1	Probability distribution table with correct values of x , no additional values unless with probability 0 stated, at least one correct probability including k
	15k = 1,						Equating $\Sigma p = 1$, may be implied by answer
	$k = \frac{1}{15}$					A1	If 0 scored, SCB2 for probability distribution table with correct numerical probabilities.
						3	

Question	Answer	Marks	Guidance
4(ii)	Method 1		
	$E(X) = 8k + 27k = 35k = \frac{35}{15} = \frac{7}{3}$	B1FT	FT if 0< <i>their k</i> <1
	$Var(X) = (k + k + 16k + 81k) - (35k)^{2}$	M1	Correct formula for variance, in terms of k at least – must have '– mean ² '(ft).
	$= 1.16, \frac{52}{45}$	A1	
	Method 2		
	$E(X) = \frac{8}{15} + \frac{27}{15} = \frac{35}{15} = \frac{7}{3}$	B1FT	FT if 0< <i>their k</i> <1
	$Var(X) = \frac{1}{15} + \frac{1}{15} + \frac{16}{15} + \frac{81}{15} - \left(\frac{7}{3}\right)^2$	M1	Subst <i>their</i> values in correct var formula – must have '– mean ² '(ft) (condone probs not summing to exactly 1)
	= 1.16 (= 52/45)	A1	Using their values from (i)
		3	

March	2019
-------	------

Question	Answer			Marks	Guidance
5(i)	Dolphins		Sharks	B1	Correct stem can be upside down, ignore extra values,
		5	9	B1	Correct Dolphin must be on LHS,
	9 5 5 3 2 5 3 2	6 7	4 6 8 0 1 2 4 7	B1	Correct Sharks on either LHS or RHS of back-to-back. Alignment ± half a space, no late entries squeezed in, no crossing out if shape is changed. Condone a separate RHS stem-and-leaf diagram
	2 2 0	8	0 4	B1FT	Correct single key for <i>their</i> single diagram, need both teams identified and 'kg' stated at least once here or in leaf headings or title.
			Key: 3 6 4 means 63 kg for Dolphins and 64 kg for Sharks		
				4	
5(ii)	Median = 72 LQ = 65, UQ = 80,			B1	72 <uq<82-62<lq<72< td=""></uq<82-62<lq<72<>
	IQR = 80 - 65			M1	nfww
	= 15			A1	SCB1 if M0 scored for $LQ = 65$ and $UQ = 80$
				3	

Question	Answer	Marks	Guidance
6(i)	$P(4, 5, 6) = {}^{6}C_{4} 0.35^{4} 0.65^{2} + {}^{6}C_{5} 0.35^{5} 0.65^{1} + 0.35^{6}$	M1	Binomial term of form ${}^{6}C_{x}p^{x}(1-p)^{6-x} \ 0 any p, x \neq 6, 0$
		A1	Correct unsimplified answer
	= 0.117	A1	
		3	
6(ii)	$ \begin{array}{l} 1 - 0.65^n > 0.95 \\ 0.65^n < 0.05 \end{array} $	M1	Equation or inequality involving 0.65^n or 0.35^n , and 0.95 or 0.05^n
	$n > \frac{\log 0.05}{\log 0.65} = 6.95$	M1	Attempt to solve <i>their</i> exponential equation using logs or Trial and Error.
	n = 7	A1	САО
		3	
6(iii)	Mean = $0.35 \times 100 = 35$ Variance = $0.35 \times 0.65 \times 100 = 22.75$	B1	Correct unsimplified <i>np</i> and <i>npq</i> ,
	$P\left(z > \frac{39.5 - 35}{\sqrt{22.75}}\right) = P(z > 0.943)$	M1	Substituting <i>their</i> μ and σ (condone σ^2) into the ±Standardisation Formula with a numerical value for '39.5'.
		M1	Using continuity correction 39.5 or 40.5
	= 1 - 0.8272	M1	Appropriate area Φ from standardisation formula P(z>) in final solution, (>0.5 if <i>z</i> is -ve, <0.5 if <i>z</i> is +ve)
	= 0.173	A1	Final answer
		5	

Question	Answer	Marks	Guidance
7(i)	$\frac{9!}{2!3!}$	M1	9! alone on numerator, 2! and/or 3! on denominator
	= 30240	A1	Exact value, final answer
		2	
7(ii)	$A^{\wedge \wedge \wedge} A^{\wedge \wedge \wedge} A$ Arrangements = $\frac{6!}{2!} = 360$	B1	Final answer
		1	
7(iii)	$M^{\wedge}M^{\wedge\wedge\wedge\wedge\wedge\wedge} = \frac{7!}{3!} \times 7$	M1	7! in numerator, (considering letters not M)
		M1	Division by 3! only (removing repeated As)
		M1	Multiply by 7 (positions of M-M)
	= 5880	A1	Exact value, final answer
	Method 2 (choosing letter between Ms)		
	$1 \times \frac{6!}{2!} \times 7 + 4 \times \frac{6!}{3!} \times 7$	M1	6! in sum of 2 expressions $a6! + b6!$
		M1	Multiply by 7 in both expressions (positions of M-M)
	= 2520 + 3360	M1	$\frac{c}{2!} + \frac{d}{3!}$ seen (removing repeated As)
	= 5880	A1	Exact value

Question	Answer	Marks	Guidance
7(iii)	Method 3		
	$(MAM)^{\wedge \wedge \wedge \wedge} = 7!/2! = 2520$	M1	7! in numerator (considering 6 letters + block)
	$(MA'M)^{\wedge \wedge \wedge \wedge \wedge} = 7!/3! \times 4 = 840 \times 4 = 3360$	M1	Division by 2! and 3! seen in different terms
	Total = 2520 + 3360	M1	Summing 5 correct scenarios only
	= 5880	A1	Exact value
		4	
7(iv)	M A $^{^{}}$ = $^{4}C_{1}$ = 4	B1	Final answer
		1	
7(v)	$M^{\wedge \wedge} : {}^{4}C_{2} = 6$ M M^{\wedge} : {}^{4}C_{1} = 4	M1	Either option M M $^{\rm o}$ or M $^{\rm o}$ correct, accept unsimplified
	$M M A : = 1M A A : = 1(M A_:^{4}C_{1} = 4)$	M1	Add 4 or 5 correct scenarios only
	Total = 16	A1	Value must be clearly stated
	Method 2		
	$M M^{-5} = {}^{5}C_{1} = 5$	M1	Either option M M ^ or M ^ ^ correct, accept unsimplified
	$M^{\wedge \wedge} = {}^{5}C_{2} = 10$	M1	Adding 2 or 3 correct scenarios only
	$M A A = = 1 \qquad Total = 16$	A1	Value must be clearly stated
		3	

MATHEMATICS

9709/61 October/November 2018

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	${}^{9}C_{4} \times {}^{5}C_{3} \times {}^{2}C_{2}$	B1	${}^{9}C_{4} \text{ or } {}^{9}C_{3} \text{ or } {}^{9}C_{2} \text{ seen } (1st group)$
	$=126 \times 10 \times 1$	B1	^{5 or 7} C ₃ or ^{6 or 7} C ₄ or ^{6 or 5} C ₂ times an integer (2nd group)
	=1260	B1	Correct answer
		3	

Question	Answer	Marks	Guidance
2(i)	6p + 0.1 = 1 p = 0.15	B1	Correct answer
		1	
2(ii)	$Var(X) = 1 \times p + 1 \times 2p + 4 \times 2p + 16 \times 0.1 - 1.15^{2}$	M1	Correct unsimplified formula, <i>their p</i> substituted (allow 1 error)
	$0.15 + 0 + 0.3 + 1.2 + 1.6 - 1.15^{2}$ = 1.9275 = 1.93 (3sf)	A1	Correct answer
		2	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3(i)	Scenarios are: 4V + 1C + 1DB: $^{11}C_4 \times {}^5C_1 \times {}^4C_1$	M1	$^{11}C_{a} \times ^{5}C_{b} \times ^{4}C_{c}, a+b+c=6,$
	$\begin{array}{cccc} 4V + 2C: & {}^{11}C_4 \times {}^5C_2 \\ 5V + 1C: & {}^{11}C_5 \times {}^5C_1 \end{array}$	B1	2 correct unsimplified options
	6600 + 3300 + 2310	M1	Add 2 or 3 correct scenarios only
	= 12210	A1	Correct answer
		4	
3(ii)	4! × 3!	M1	<i>k</i> multiplied by 3! or 4!, <i>k</i> an integer ≥ 1
		A1	Correct unsimplified expression
	= 144	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
4(a)	$P(X < 29.4) = P(Z < \frac{29.4 - 31.4}{\sqrt{3.6}})$ = P(Z < -1.0541)	M1	Standardise, no cc, must have sq rt.
	= 1 - 0.8540	M1	Obtain 1 – prob
	= 0.146	A1	Correct final answer
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(b)	$P(X < 12) = \frac{42}{400} = 0.105 \text{ and } P(X > 19) = \frac{58}{400} = 0.145$	M1	Eqn with μ, σ and a <i>z</i> -value. Allow cc, wrong sign, but not $\sqrt{\sigma}$ or σ^2
	$\frac{12-\mu}{\sigma} = -1.253$	B1	Any form with <i>z</i> value rounding to ± 1.25
	$\frac{19-\mu}{\sigma} = 1.058$	B1	Any form with z value rounding to ± 1.06
	$12 - \mu = -1.253\sigma 19 - \mu = 1.058\sigma$	M1	Solve 2 equations in μ , σ eliminating to 1 unknown
	$7 = 2.307\sigma$ or $36.455 + 2.307\mu = 0$ oe		
	$\mu = 15.8, \sigma = 3.03$	A1	Correct answers
		5	

Question	Answer	Marks	Guidance
5(i)	1 - (P(7) + P(8) + P(9)) = 1 - (⁹ C ₇ 0.8 ⁷ × 0.2 ² + ⁹ C ₈ 0.8 ⁸ × 0.2 ¹ + ⁹ C ₉ 0.8 ⁹ × 0.2 ⁰)	M1	Any binomial term of form ${}^{9}C_{x}p^{x}(1-p)^{9-x}, x \neq 0$
		M1	Correct unsimplified expression
	= 1 - (0.3019899 + 0.3019899 + 0.1342177) $= 0.262$	A1	Correct answer
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(ii)	Mean = $200 \times 0.8 = 160$: var = $200 \times 0.8 \times 0.2 = 32$	B1	Both unsimplified
	$P(X > 166) = P(Z > \frac{166.5 - 160}{\sqrt{32}})$	M1	Standardise, $z = \pm \frac{x - their 160}{\sqrt{their 32}}$ with square root
		M1	166.5 or 165.5 seen in attempted standardisation expression
	= P(Z > 1.149) = 1 - 0.8747	M1	$1 - a \Phi$ -value, correct area expression, linked to final answer
	= 0.125	A1	Correct final answer
		5	
5(iii)	np = 160, nq = 40: both > 5 (so normal approx. holds)	B1	Both parts required
		1	

Question	Answer	Marks	Guidance
6(i)	300 250 200 150 100 50 0 20 40 60 80 100 120 RAINFALL (MM)	B1	Appropriate linear scales starting at (0,0), axes labelled cf and Rainfall, mm
		B1	Correct graph, points plotted at ucb, allow straight lines or curve
		2	
6(ii)		M1	Read off from increasing graph at $cf = 150$
	42	A1	Correct answer $(41 \le r \le 43)$
		2	

Question	Answer	Marks	Guidance
6(iii)	Frequencies 52, 42, 48, 30, 50, 28	B1	Correct frequencies
	Mean age = $(10 \times 52 + 25 \times 42 + 35 \times 48 + 45 \times 30 + 60 \times 50 + 85 \times 28) / 250$	B1	Correct midpoints (allow one error)
	=9980/250	M1	Using $\Sigma fx/250$ with mid-points attempt, not cf, cw, lb, ub
	= 39.9(2) oe	A1	Correct answer
	Variance = $10^2 \times 52 + 25^2 \times 42 + 35^2 \times 48 + 45^2 \times 30 + 60^2 \times 50 + 85^2 \times 28) / 250 - $ mean ² = 539.59	M1	Attempt at variance using their midpoints and their mean
	$\sigma = 23.2$	A1	Correct answer for sd
		6	

Question	Answer	Marks	Guidance
7(i)	52/160 = 13/40, 0.325	B1	oe
		1	
7(ii)	P(boy) = 96/160: P(Music) = 52/160 P(boy and Music) = 40/160	M1	Use of $P(B) \times P(M) = P(B \cap M)$, appropriate probabilities used
	$96/160 \times 52/160 \neq 40/160$: Not independent	A1	Numerical comparison and conclusion stated
		2	

Question	Answer	Marks	Guidance
7(iii)	Method 1		
	P(not Music/girl) = P(not Music and girl)/P(girl) $(27/160) / (64/160)$	M1	Appropriate probabilities in a fraction
	$=\frac{27}{64}$	A1	Correct answer www implies method
	Method 2		
	Direct from table	M1	27/a or b/64, a ≠ 160
	$\frac{27}{64}$	A1	Correct answer www implies method
		2	
7(iv)	$P(B M) \times P(B NM) \times P(G NM)$ or $P(G M) \times P(B NM) \times P(B NM)$	M1	One scenario identified with 3 probs multiplied
	40/160 × 56/159 × 52/158 or 12/160 × 56/159 × 55/158	A1	One scenario correct (ignore multiplying factor)
	× 3! × 3!/2!	B1	Both multiplying factors correct
	$\begin{array}{c} 0.17387 \\ P = 0.17387 + 0.02759 \end{array} 0.02759 \end{array}$	M1	Both cases attempted and added (multiplying factor not required), accept unsimplified
	= 0.201	A1	Correct answer, oe
	Note: If score in this part is 0, award SCB1 for $\frac{1}{160} \times \frac{1}{159} \times \frac{1}{158} \times k$, for positive integer <i>k</i> , seen		

Question	Answer	Marks	Guidance
7(iv)	Method 2		
	$ \frac{\begin{pmatrix} 40\\1 \end{pmatrix} \times \begin{pmatrix} 56\\1 \end{pmatrix} \times \begin{pmatrix} 52\\1 \end{pmatrix} + \begin{pmatrix} 12\\1 \end{pmatrix} \times \begin{pmatrix} 56\\2 \end{pmatrix}}{\begin{pmatrix} 160\\3 \end{pmatrix}}} $	M1	One scenario identified with 2 or 3 combination multiplied
		A1	One scenario correct
		B1	Denominator correct
	$\frac{116480 + 18480}{669920}$	M1	Both scenarios attempted, and added, seen as a numerator of a fraction
	$\frac{1687}{8374}$	A1	Correct answer, oe
		5	

MATHEMATICS

9709/62 October/November 2018

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	$\frac{11!}{4!4!2!}$	M1	$\frac{11!}{4 imes k} or \frac{11!}{2 imes k}$, k a positive integer
	= 34650	A1	Correct final answer
		2	
1(ii)	Method 1		
	$P(SS) = \frac{4}{11} \times \frac{3}{10} = \frac{12}{110} \ (= 0.10911)$	B1	One of P(SS), P(PP) or P(II) correct, allow unsimplified
	$P(PP) = \frac{2}{11} \times \frac{1}{10} = \frac{2}{110} (= 0.01818)$ $P(II) = \frac{4}{11} \times \frac{3}{10} = \frac{12}{110} (= 0.10911) \frac{4}{11} \times \frac{3}{10}$	M1	Sum of probabilities from 3 appropriate identifiable scenarios (either by labelling or of form $\frac{4}{11} \times \frac{a}{b} + \frac{2}{11} \times \frac{c}{b} + \frac{4}{11} \times \frac{a}{b}$ where $a = 4$ or 3, $b = 11$ or 10, $c = 2$ or 1)
	$\text{Total} = \frac{26}{110} = \frac{13}{55} \text{ oe } (0.236)$	A1	Correct final answer
	Method 2		
	Total number of selections = ${}^{11}C_2 = 55$ Selections with 2 Ps = 1	B1	Seen as the denominator of fraction (no extra terms) allow unsimplified
	Selections with 2 Ss = ${}^{4}C_{2} = 6$ Selections with 2 Is = ${}^{4}C_{2} = 6$,	M1	Sum of 3 appropriate identifiable scenarios (either by labelling or values, condone use of permutations. May be implied by 2,12,12)
	Total selections with 2 letters the same = 13 Probability of 2 letters the same = $\frac{13}{55}$ oe (0.236)	A1	Correct final answer, without use of permutations
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question			An	swer			Marks	Guidance
2(i)	median = 0.225 ; LQ = 0.215 : UQ = 0.236							Correct median (Q ₂)
	IQR = 0.236 - 0.215							$0.232 < UQ (Q_3) < 0.238 - 0.204 < LQ (Q_1) < 0.219$
	= 0.021							www Omission of all decimal points MR-1 <u>If M0 awarded</u> SCB1 for both LQ = 0.215: UQ = 0.236 seen
							3	
2(ii)	BA A 						B1	Linear scale between 0.20 to 0.26 (condone omission of 0.26) axis labelled (time and seconds), at least one box plot attempted, no lines through boxes, whiskers not at corner of boxes
							B1 ft	Labelled correct graph for A, (ft their median/quartiles), condone lines through boxes, whiskers at corner of boxes
	Α	0.200	0.215	0.225	0.236	0.250	B1	Labelled correct graph for B, condone lines through boxes, whiskers at corner of boxes
	В	0.205	0.217	0.235	0.245	0.258		SC If B0B0 scored because graphs not labelled/labels reversed SCB1 if both 'correct'
								Penalty MR-I if graphs plotted on separate axes unless both scales align exactly.
							3	

Question	Answer	Marks	Guidance
3(i)	Method 1		
	$P(3) + P(4) + P(5) = {}^{5}C_{3} \ 0.75^{3} \times 0.25^{2} + $	M1	One binomial term ${}^{5}C_{x}p^{x}(1-p)^{5-x}$, $x \neq 0$ or 5, any p
	${}^{5}C_{4} \ 0.75^{4} \times 0.25^{1} + {}^{5}C_{5} \ 0.75^{5} \times 0.25^{0}$	M1	Correct unsimplified expression
	= 0.26367 + 0.39551 + 0.23730 = 0.896 (459/512)	A1	Correct final answer, allow 0.8965 (isw) but not 0.897 alone
	Method 2		
	$1 - P(0) - P(1) - P(2) = 1 - {}^{5}C_{0} \ 0.75^{0} \times 0.25^{5}$	M1	One binomial term ${}^{5}C_{x}p^{x}(1-p)^{5-x}$, $x \neq 0$ or 5, any p
	$- {}^{5}C_{1} \ 0.75^{1} \times 0.25^{4} - {}^{5}C_{2} \ 0.75^{2} \times 0.25^{3}$	M1	Correct simplified expression
	= 1 - 0.00097656 - 0.014648 - 0.087891 $= 0.896 (459/512)$	A1	Correct final answer, allow 0.8965 (isw) but not 0.897 alone
		3	
Question	Answer	Marks	Guidance
----------	---	-------	---
3(ii)	Method 1		
	P(C,C) + P(C,C') + P(C',C) 0.8 × 0.9	B1	Unsimplified prob completed on both days
	$0.8\times0.1+0.2\times0.6$	M1	Unsimplified prob $0.8 \times a + 0.2 \times b$, $a = 0.1$ or 0.4 , $b = 0.6$ or 0.9
	= 0.92 oe	A1	Correct final answer
	Method 2		
	$1 - P(C',C') = 1 - 0.2 \times 0.4$	B1	Unsimplified prob completed on no days
		M1	$1 - 0.2 \times a$, <i>a</i> =0.1or 0.4 allow unsimplified
	= 0.92	A1	Correct final answer
		3	

Question	Answer	Marks	Guidance
4(i)	5! × 6! ×2	B1	k×5! or m ×6! (k,m integer, $k,m \ge 1$), no inappropriate addition
		B1	$n \times 5! \times 6!$ (<i>n</i> integer, $n \ge 1$), no inappropriate addition
	= 172800	B1	Correct final answer, isw rounding (www scores B3) All marks based on their final answer
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(ii)	G G G G G No. ways girls placed × No. ways boys placed in gaps =	M1	$k \times 6!$ or $k \times {}^{7}P_{5}$ (k is an integer, $k \ge 1$) no inappropriate add. (${}^{7}P_{5} \equiv 7 \times 6 \times 5 \times 4 \times 3$ or ${}^{7}C_{5} \times 5!$)
	$6! \times {}^7P_5$	M1	Correct unsimplified expression
	= 1814400	A1	Correct exact final answer (ignore subsequent rounding)
		3	

Question	Answer	Marks	Guidance
5(i)	$\frac{15.5 \times 12 + 910}{12 + 20}$	M1	Unsimplified total age divided by <i>their</i> total members (not 12, 20 or 2)
	$=34.25 \text{ or } 34\frac{1}{4} \text{ (years)}$	A1	Correct exact answer (isw rounding), oe (34 years 3 months)
		2	
5(ii)	Considering Juniors: variance = $\frac{\sum x^2}{12} - 15.5^2 = 1.2^2$	M1	$\frac{\sum x^2}{k} - 15.5^2 = 1.2^2, k = 12 \text{ or } 20$
	$\sum x^2 = 2900.28$	A1	Answer wrt 2900
	Considering whole group: $\sum z^{2} = \sum x^{2} + \sum y^{2} = 2900.28 + 42850 = 45750$ Variance = $\frac{\sum z^{2}}{32} - \mu^{2} = \frac{their 45750}{12 + 20} - (their 34.25)^{2}$ (= 256.63)	M1	<i>Their</i> $45750 > 42850$ (not 85700 or rounding to 1.8×10^9) in correct variance or std deviation formula (Σx^2 and addition may not be seen)
	s d = 16.0(2)	A1	Correct final answer, condone 16.03
		4	

Question					Answer					Marks	Guidance
6(i)		x p	-2 $\frac{1}{12}$	-1 $\frac{2}{12}$	$\begin{array}{c} 0\\ \frac{3}{12} \end{array}$	$\frac{1}{\frac{3}{12}}$	$\frac{2}{\frac{2}{12}}$	$\begin{array}{c} 3\\ \frac{1}{12} \end{array}$		B1	-2, -1 , 0, 1, 2, 3 seen as top line of a pdf table with at least 1 probability OR attempting to evaluate P(-2), P(-1), P(0), P(1), P(2), P(3) (condone additional values with $p=0$ stated)
										B1	At least 4 probs correct (need not be in table)
									B1	All probs correct in a table	
										3	
6(ii)	$E(X) = \frac{-2 \times 1 - 1 \times 2 + 0 + 1 \times 3 + 2 \times 2 + 1 \times 3}{12} = 0.5$).5			M1	Unsimplified expression for mean using <i>their</i> pdf table (or correct) with at least 2 non-zero values (may be seen in variance). Numerator terms may be implied by values.
	Var(X) = $\frac{(-2)^2 \times 1 + (-1)^2 \times 2 + 1^2 \times 3 + 2^2 \times 2 + 3^2 \times 1}{12} - (their 0.5)^2$							(their 0.5	$(5)^2$	M1	Unsimplified expression for variance using <i>their</i> pdf table (or correct) with at least 2 non-zero values and <i>their</i> E(X). Numerator terms may be implied by values. If $-k^2$ is seen for $(-k)^2$, the method must be confirmed by seeing value used correctly
	26/1	2 -1/4 =	23/12							A1	Correct final answer
										3	

Question	Answer	Marks	Guidance
6(iii)	Method 1		
	P(X non-zero) = 9/12	B1ft	If Binomial distribution used $0/3$ P(X non-zero) ft from <i>their</i> pdf table, Σ <i>p</i> =1 oe
	$P(X=1 \mid X \text{ non-zero}) = \frac{P(X=1 \cap X \text{ non-zero})}{P(X \text{ non-zero})} = \frac{\frac{3}{12}}{\frac{9}{12}}$	M1	<i>Their</i> $P(X = 1)$ <i>/their</i> $P(X \text{ non-zero})$ from <i>their</i> pdf table oe
	= 1/3 oe	A1	Correct final answer www
	Method 2		
	$P(X=1 \mid X \text{ non-zero}) = \frac{Number of outcomes = 1}{Number of non - zero outcomes}$	B1ft	Number of non-zero outcomes (expect 9) ft from <i>their</i> outcome table or pdf table numerators oe
		M1	<i>a/b, a = their</i> 3 from <i>their</i> outcome table or pdf table numerators, b = their 9 (not 12)
	$=\frac{3}{9}=\frac{1}{3}$ oe	A1	Correct final answer www
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(a)(i)	$P(X < 4) = P\left(Z < \frac{4 - 3.24}{0.96}\right)$	M1	±Standardisation formula, no cc, no sq rt, no square
	= P(Z < 0.7917) = 0.7858	A1	0.7855 or $p = 0.786$ Cao (implies M1A1 awarded), may be seen used in calculation
	<i>their</i> 0.7858 × 365 = 286 (or 287)	B1ft	<i>Their</i> probability × 365 provided 4sf probability <u>seen</u> . FT answer rounded or truncated to nearest integer. No approximation notation used.
		3	
7(a)(ii)	$P(X < k) = P(Z < \frac{k - 3.24}{0.96}) = 0.8$	B1	$(z=) \pm 0.842$ seen
	$\frac{k-3.24}{0.96} = 0.842$	M1	$z = \pm \frac{k - 3.24}{0.96}$, allow cc, sq rt or square equated to a <i>z</i> -value (0.7881, 0.2119, 0.158, 0.8, 0.2 etc. are not acceptable)
	<i>k</i> = 4.05	A1	Correct final answer, www
		3	
7(a)(iii)	P(-1.5 < Z < 1.5) =	M1	$\Phi(z = 1.5)$ or $\Phi(z = -1.5)$ seen used or $p = 0.9332$ seen
	$\Phi(1.5) - \Phi(-1.5) = 2\Phi(1.5) - 1$ = 2 × 0.9332 - 1 oe	M1	Correct final area expression using <i>their</i> probabilities
	= 0.866	A1	Correct final answer
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(b)	$P(Y>0) = P\left(Z > \frac{0-\mu}{\sigma}\right) \equiv P\left(Z > \frac{0-\mu}{3\mu/4}\right) \text{ or}$ $P\left(Z > \frac{0-\left(\frac{4\sigma}{3}\right)}{\sigma}\right)$	M1	\pm Standardisation attempt in terms of one variable no sq rt or square, condone ± 0.5 as cc
	= P(Z > -4/3)	A1	Correct unsimplified standardisation, no variables
	= 0.909	A1	Correct final answer
		3	

Alternative methods for Question 1(ii)

Method 3

 $P(S,S') = \frac{4}{11} \times \frac{7}{10} = \frac{28}{110}$ $P(P,P') = \frac{2}{11} \times \frac{9}{10} = \frac{18}{110}$ $P(I,I') = \frac{4}{11} \times \frac{7}{10} = \frac{28}{110}$ $P(M,M') = \frac{1}{11} \times \frac{10}{10} = \frac{10}{110}$ $Total = \frac{84}{110}$ $P(Same) = 1 - \frac{84}{110} = \frac{26}{110}$

- B1 one of products correctM1 1 sum of probabilities from 4 appropriate scenarios
- A1 Correct final answer

Method 4

 $PP' = \frac{2 \times 9}{2} = 9$ $SS' = \frac{4 \times 7}{2} = 14$ $II' = \frac{4 \times 7}{2} = 14$ $MM' = \frac{1 \times 10}{2} = 5$ $Total number of ways = \frac{10 \times 11}{2} = 55$ Number of ways of letters repeating = 55 - (9 + 14 + 14 + 5) = 13 $P(Same) = \frac{13}{55}$ B1 ¹¹C₂ seen as the denominator of fraction (no extra terms) allow unsimplified M1 1 - sum of 4 appropriate scenarios

A1 Correct final answer

MATHEMATICS

9709/63 October/November 2018

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	Method 1		
	M M M M	M1	$k \times 5!$ (120) or $k \times 6P2$ (30), k is an integer ≥ 1 ,
	No. ways men placed × No. ways women placed in gaps = $5! \times {}^{6}P_{2}$	M1	Correct unsimplified expression
	= 3600	A1	Correct answer
	Method 2		
	Number with women together = $6! \times 2$ (1440) Total number of arrangements = $7!$ (5040)	M1	$6! \times 2 \text{ or } 7! - k \text{ seen, } k \text{ is an integer} \ge 1$
	Number with women not together = $7! - 6! \times 2$	M1	Correct unsimplified expression
	= 3600	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
2(i)	x -2 -1 0 1 2 3 P(X=x) $\frac{2}{18}$ $\frac{4}{18}$ $\frac{5}{18}$ $\frac{4}{18}$ $\frac{2}{18}$ $\frac{1}{18}$	B1	-2, -1, 0, 1, 2, 3 seen as top line of a pdf table OR attempting to evaluate P(-2), P(-1), P(0), P(1), P(2), P(3),
		B1	At least 4 probs correct (need not be in table)
		B1	All probs correct in a table
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
2(ii)	$E(X) = \frac{-4 - 4 + 0 + 4 + 4 + 3}{18} = \frac{1}{6}$	M1	Correct unsimplified expression for the mean using their table, $\Sigma p = 1$, may be implied
	Var(X) = $\frac{8+4+0+4+8+9}{18} - \left(\frac{1}{6}\right)^2$ =11/6 - 1/36 (1.8333 - 0.02778)	M1	Correct, unsimplified expression for the variance using their table, and their mean ² subtracted. Allow $\Sigma p \neq 1$
	= 65/36, (1.81)	A1	Correct answer
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(i)	First Ball Second Ball	B1	Fully correct labelled tree and correct probabilities for 'First Ball'
		B1	Correct probabilities (with corresponding labels) for 'Second Ball'
		2	
3(ii)	$P(RR) + P(BB) = 3/8 \times 2/8 + 5/8 \times 4/8 = 3/32 + 5/16$	M1	Correct unsimplified expression from their tree diagram, $\Sigma p = 1$ on each branch
	= 13/32 (0.406)	A1	Correct answer
		2	

Question	Answer	Marks	Guidance
3(iii)	$P(RB) = 3 / 8 \times 5 / 8 = 15/64$	M1	$P(1\text{st ball red}) \times P(2\text{nd ball blue})$ from their tree diagram seen unsimplified as numerator or denominator of a fraction Allow $\Sigma p \neq 1$ on each branch
	$P(B) = 3/8 \times 5/8 + 5/8 \times 4/8 = 35/64$	M1	Correct unsimplified expression for P(B) from their tree diagram seen as denominator of a fraction. Allow $\Sigma p \neq 1$ on each branch
	$P(R B) = P(RB) / P(B) = (15/64) \div (35/64) = 3/7 (0.429)$	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
4(i)	Total number of selections = ${}^{12}C_7 = 792$	B1	Seen as denominator of fraction
	Selections with boy included = ${}^{11}C_6$ or ${}^{12}C_7 - {}^{11}C_7 = 462$	M1	Correct unsimplified expression for selections with boy included seen as numerator of fraction
	Probability = 462/792 = 7/12 (0.583)	A1	Correct answer
	OR		
	prob of boy not included = $11/12 \times 10/11 \times \dots \times 5/6 = 5/12$	B1	Correct unsimplified prob
	1 - 5/12	M1	Subtracting prob from 1
	= 7/12	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
4(ii)	Method 1		
	Scenarios are: 2G + 5B: ${}^{4}C_{2} \times {}^{8}C_{5} = 336$	B1	One unsimplified product correct
	$\begin{array}{rcl} 3G+4B: & {}^{4}C_{3} \times {}^{8}C_{4} = 280 \\ 4G+3B: & {}^{4}C_{4} \times {}^{8}C_{3} = 56 \end{array}$	M1	No of selections (products of ${}^{n}C_{r}$ and ${}^{n}P_{r}$) added for 2, 3 and 4 girls with no of girls and no of boys summing to 7
	Total = 672	A1	Correct total
	Probability = 672/792 (28/33) (0.848)	A1ft	Correct answer – 'total'/('total no of selections' from i)
	Method 2		
	$0G + 7B$ ${}^{4}C_{0} \times {}^{8}C_{7} = 8$	B1	One unsimplified no of selections correct
	$ \begin{array}{r} 1G + 6B & {}^{4}C_{1} \times {}^{8}C_{6} = 112 \\ Total = 8 + 112 = 120 \end{array} $	M1	No of selections (products of ${}^{n}C_{r}$ and ${}^{n}P_{r}$) added for 0 and 1 girls with no of girls and no of boys summing to 7
	$({}^{12}C_7 - 120)/792$ or $1 - 120/792$	A1	792 - 120 = 672 or $1 - 120/792$
	Probability = 672/792 (28/33) (0.848)	A1ft	'672' over '792' from i
	Method 3 (probability)		
	$1 - P(0) - P(1) = 1 - (8/12 \times 7/11 \times \dots \times 2/6) - (8/12 \times \dots \times 3/7 \times 4/6 \times 7)$	B1	One correct unsimplified prob for 0 or 1
	= 1 - 1/99 - 14/99	M1	Subtracting 'P(0)' and 'P(1)' (using products of 7 fractions with denominators from 12 to 6) from 1
		A1	Both probs correct unsimplified
	= 84/99 = 28/33	A1ft	1 - P(0)' - P(1)'

Question	Answer	Marks	Guidance
4(ii)	Method 4 (probability)		
	P(2) + P(3) + P(4) =	B1	One correct unsimplified prob for 2, 3 or 4
	42/99 + 35/99 + 7/99	M1	Adding 'P(2)', 'P(3)' and P(4)' (using products of 7 fractions with denominators from 12 to 6)
		A1	Three probs correct unsimplified
	= 84/99 = 28/33	A1ft	(P(2))' + (P(3))' + (P(4))'
		4	

Question	Answer	Marks	Guidance
5(i)	$z_1 = \pm \frac{90 - 120}{24} = -\frac{5}{4}, \ z_2 = \pm \frac{140 - 120}{24} = \frac{5}{6}$	M1	At least one standardisation, no cc, no sq rt, no sq using 120 and 24 and either 90 or 140
	$= \Phi\left(\frac{20}{24}\right) - \Phi\left(-\frac{30}{24}\right)$	A1	-5/4 and 5/6 unsimplified
	$= \Phi(0.8333) - (1 - \Phi(1.25))$ = 0.7975 - (1 - 0.8944) or 0.8944 - 0.2025 = 0.6919	M1	Correct area $\Phi - \Phi$ legitimately obtained and evaluated from phi(their z_2) – phi (their z_1)
	= 0.692 AG	A1	Correct answer obtained from 0.7975 and 0.1056 oe to 4sf or 0.6919 seen www
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(ii)	Method 1		
	Probability = P(2, 3, 4) = $0.692^2(1 - 0.692)^2 \times {}^4C_2 + 0.692^3(1 - 0.692) \times {}^4C_3 + 0.692^4$	M1	Any binomial term of form $4C_x p^x (1-p)^{4-x}$, $x \neq 0$ or 4
		B1	One correct bin term with $n = 4$ and $p = 0.692$,
	= 0.27256 + 0.40825 + 0.22931	M1	Correct unsimplified expression using 0.692 or better
	= 0.910	A1	Correct answer
	Method 2:		
	1 - P(0, 1) =	M1	Any binomial term of form $4C_x p^x (1-p)^{4-x}$, $x \neq 0$ or 4
	$1 - 0.692^{0}(1 - 0.692)^{4} \times {}^{4}C_{0} - 0.692^{1}(1 - 0.692)^{3} \times {}^{4}C_{1}$	B1	One correct bin term with $n = 4$ and $p = 0.692$
	= 1 - 0.00899 - 0.0808757	M1	Correct unsimplified expression using 0.692 or better
	= 0.910	A1	Correct answer
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(i)	P(X>1800) = 0.96, so P(Z > $\frac{1800 - 2000}{\sigma}) = 0.96$	B1	± 1.75 seen
	$\Phi(\frac{200}{\sigma}) = 0.96$	M1	$z = \pm \frac{1800 - 2000}{\sigma}$, allow cc, allow sq rt, allow sq equated to a
	$\frac{200}{\sigma} = 1.751$		z-value
	$\sigma = 114$	A1	Correct final answer www
		3	
6(ii)	Mean = $300 \times 0.2 = 60$ and variance = $300 \times 0.2 \times 0.8 = 48$	B1	Correct unsimplified mean and variance
	$P(X < 70) = P(Z > \frac{69.5 - 60}{\sqrt{48}})$	M1	$Z = \pm \frac{x - their 60}{\sqrt{their 48}}$
	$= \Phi(1.371)$	M1	69.5 or 70.5 seen in an attempted standardisation expression as cc
	=0.915	A1	Correct final answer
		4	
6(iii)	np = 60, nq = 240: both > 5, (so normal approximation holds)	B1	Both parts evaluated are required
		1	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer		Marks	Guidance	
7(i)		1		B1	Correct stem, up or down
	Anvils		Brecons		
	8	15			
	95	16	6		
	5 3 2 0	17	0 1 2 2 8		
	4 1 0	18	1 2 3 3		
	6	19	2		
			Key: 5 16 6 means 165 cm for Anvils and 166 cm for Brecons		
				B1	Correct Anvils labelled on left, leaves in order from right to left and lined up vertically, no commas
				B1	Correct Brecons labelled on same diagram on right hand side in order from left to right and lined up vertically, no commas
				B1	Correct key, not split, both teams, at least one with cm
				4	
7(ii)	Median = 173			B1	Correct median (or Q2)
	LQ = 169; UQ = 181 IQR = 181 - 169			M1	Either UQ = 181 ± 4 , or LQ = 169 ± 4 and evaluating UQ – LQ
	= 12			A1	Correct answer from 181 and 169 only
				3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(iii)	$\Sigma x = 1923 + 166 + 172 + 182 (= 2443)$ $\Sigma x^{2} = 337221 + 166^{2} + 172^{2} + 182^{2} (= 427485)$	M1	Correct unsimplified expression for $\sum x$ and $\sum x^2$, may be implied
	Mean = $\frac{\sum x}{14} = \frac{2443}{14} = 174.5$	M1	Correct unsimplified mean
	Variance = $\frac{\sum x^2}{14} - \left(\frac{\sum x}{14}\right)^2 = \frac{427485}{14} - \left(\frac{2443}{14}\right)^2$	M1	Correct unsimplified variance using 14, their Σx and their Σx^2 , not using 1923 and/or 337221
	S d = 9.19	A1	Correct answer
		4	

MATHEMATICS

9709/61 May/June 2018

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$\Sigma(x - 10) = 186 - 12 \times 10 = 66$	B1	Correct answer
	$\frac{\Sigma(x-10)^2}{12} - \left(\frac{\Sigma(x-10)}{12}\right)^2 = 4.5^2$	M1	Consistent substituting in the correct coded variance formula OR Valid method for Σx^2 then expanding $\Sigma (x - 10)^2$, 3 terms with at least 2 correct
	$\Sigma(x-10)^2 = 606$	B1	Correct answer
		3	

Question	Answer	Marks	Guidance
2(i)	LQ = 18, Median = 25, UQ = 50		median correct
		B 1	LQ and UQ correct
		B 1	Quartiles and median plotted as box graph with linear scale min 3 values
	1 1 1 1 0 20 40 60 80 Distance km	B1ft	Whiskers drawn to correct end points with linear scale, not thr' box, not joining at top or bottom of box. Ft their UQ and LQ. Whiskers must be with ruler If scale non-linear or non-existent SCB1if all 5 data values (quartiles and end points) have values shown and all are correct numerically and fulfil the 'box' and 'whiskers ruled line' requirements
		B1	Label to include 'distance or travelled' and 'km,' allow 'total km', linear scale, numbered at least $5 - 70$.
		5	

Question	Answer	Marks	Guidance
2(ii)	$1.5 \times IQR = 48$ Method 1 LQ - 48 = -ve, (i.e. < 0) UQ + 48 = 98 (i.e. > 70)	M1	Attempt to find $1.5 \times$ their IQR and add to UQ or subt from LQ
	hence no outliers	A1	Correct conclusion from correct working, need both ends. No need to state comparisons.
	Method 2 LQ $- 5 = 13 (< 48) 70 - UQ = 20 (< 48)$	M1	Compare their $1.5 \times IQR (= 48) > gap (20)$ between UQ and max 70 or LQ and min 5
	Hence no outliers	A1	Correct conclusion from correct working, need both ends. No need to state comparisons
		2	

9709/61

Question	Answer		Marks	Guidance
3(i)	P(RB) + P(BR) = $\frac{4}{12} \times \frac{8}{11} + \frac{8}{12} \times \frac{4}{11}$ oe		M1	Multiply 2 probs together and summing two 2-factor probs, unsimplified, condone replacement
	P(diff colours) = $\frac{64}{132} (\frac{16}{33}) (0.485)$ oe		A1	Correct answer
	Method 2 1 - P(BB) - P(RR) = 1 - $\frac{4}{12} \times \frac{3}{11} - \frac{8}{12} \times \frac{7}{11}$		M1	Multiply 2 probs together and subtracting two 2-factor probs from 1, unsimplified, condone replacement
	P(diff colours) = $\frac{64}{132}$ ($\frac{16}{33}$) oe		A1	Correct answer
	Method 3 P(diff colours) = $\frac{({}^{4}C_{1} \times {}^{8}C_{1})}{{}^{12}C_{2}}$		M1	Multiply 2 combs together and dividing by a combination
	$=\frac{16}{33}$		A1	Correct answer
			2	
3(ii)	Number of red socks01Prob $\frac{14}{33}$ $\frac{16}{33}$	$\frac{2}{\frac{3}{33}}$	B1	Prob distribution table drawn, top row correct, condone additional values with $p = 0$ stated
			B1	P(0) or P(2) correct to 3sf (need not be in table)
			B1	All probs correct to 3sf, condone P(0) and P(2) swapped if correct
			3	

Question	Answer	Marks	Guidance
3(iii)	$E(X) = 1 \times \frac{16}{33} + 2 \times \frac{3}{33} = \frac{16}{33} + \frac{6}{33} = \frac{22}{33} \left(\frac{2}{3}\right)$	B1ft	ft their table if 0, 1, 2 only, 0
		1	

Question	Answer	Marks	Guidance
4(a)	$z_1 = 2.4$	B1	± 2.4 seen accept 2.396
	$z_2 = -0.5$	B1	± 0.5 seen
	$2.4 = \frac{36800 - \mu}{\sigma}$	M1	Either standardisation eqn with z value, not 0.5082, 0.7565, 0.0082, 0.6915, 0.3085, 0.6209, 0.0032 or any other probability
	$-0.5 = \frac{31000 - \mu}{\sigma}$	M1	Sensible attempt to eliminate μ or σ by substitution or subtraction from their 2 equations (<i>z</i> -value not required), need at least 1 value stated
	$\sigma = 2000$ $\mu = 32000$	A1	Both correct answers
		5	
4(b)	P (X < 3µ) = P $\left(z < \frac{3\mu - \mu}{(4\mu/3)}\right)$ or P = $\left(z < \frac{(9\sigma/4) - (3\sigma/4)}{\sigma}\right)$	M1	Standardise, in terms of one variable, accept σ^2 or $\sqrt{\sigma}$
	$P(z < \frac{6}{4})$	M1	$\frac{6}{4}$ or $\frac{6}{4\sigma}$ seen
	= 0.933	A1	Correct final answer
		3	

May/June	2018	3
----------	------	---

Question	Answer	Marks	Guidance
5(i)	$P(4, 5, 6) = {}^{15}C_4(0.22)^4(0.78)^{11} + {}^{15}C_5(0.22)^5(0.78)^{10} +$	M1	One binomial term ${}^{15}C_x p^x (1-p)^{15-x}$ 0
	$^{15}C_6(0.22)^6(0.78)^9$	A1	Correct unsimplified expression
	= 0.398	A1	Correct answer
		3	
5(ii)	$\mu = 145 \times 0.22 = 31.9$ $\sigma^2 = 145 \times 0.22 \times 0.78 = 24.882$	B1	Correct unsimplified mean and variance
	$P(x > 26) = P\left(z > \frac{26.5 - 31.9}{\sqrt{24.882}}\right) = P(z > -1.08255)$	M1	Standardising must have sq rt
		M1	25.5 or 26.5 seen as a cc
	$=\Phi(1.08255)$	M1	Correct area Φ , must agree with their μ
	= 0.861	A1	Correct final answer accept 0.861, or 0.860 from 0.8604 not from 0.8599
		5	

Question	Answer	Marks	Guidance
6(i)	$P(SLL) = (0.3)(0.55)(0.55) = 0.09075 \left(\frac{363}{4000}\right)$	M1	P(SLL), P(SRR), P(SSL) or P(SSR) seen
	$P(SRR) = (0.3)(0.15)(0.15) = 0.00675 \left(\frac{27}{4000}\right)$	A1	Two correct options 0.09075 or 0.00675 can be unsimplified
	Total = ${}^{3}C_{1} \times P(SLL) + {}^{3}C_{1} \times P(SRR)$ = 0.27225 + 0.02025	M1	Summing 6 prob options not all identical
	Prob = 0.293 accept 0.2925 $(\frac{117}{400})$	A1	Correct answer
		4	
6(ii)	$P(SSS \mid all same dir^{n}) = \frac{P(SSS \text{ and same dir}^{n})}{P(same direction)}$	B1	$(0.3)^3$ oe seen on its own as num or denom of a fraction
		M1	Attempt at P(SSS+LLL+RRR) seen anywhere
	$= \frac{0.3 \times 0.3 \times 0.3}{(0.15)^3 + (0.55)^3 + (0.3)^3}$	A1	$(0.15)^3 + (0.55)^3 + (0.3)^3$ oe seen as denom of a fraction
	$= 0.137 \left(\frac{108}{787}\right)$	A1	Correct answer
		4	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

May/June 2018

Question	Answer	Marks	Guidance
7(i)	$\frac{9!}{2!2!} = 90720$	B1	Must see 90720
		1	
7(ii)	Method 1 ↑ * * * * * A	B1	5! seen multiplied (arrangement of consonants allowing repeats)
	No. arrangements of consonants × ways of inserting vowels =	B1	⁶ P ₄ oe (i.e. $6 \times 5 \times 4 \times 3$, ⁶ C ₄ × 4!) seen mult (allowing repeats) no extra terms
	$\frac{5!}{2!} \times \frac{{}^{6}P_{4}}{2!}$	B1	Dividing by at least one 2! (removing at least one set of repeats)
	Answer $\frac{{}^{6}P_{4}}{2!} \times \frac{5}{2} = 10\ 800$	B1	Correct final answer
		4	
7(iii)	${}^{5}C_{3} = 10$	M1	${}^{5}C_{x}$ or ${}^{5}P_{x}$ seen alone, $x = 2$ or 3
		A1	Correct final answer not from ⁵ C ₂
		2	

May/June 2018

Question	Answer	Marks	Guidance
7(iv)	Method 1 Considering separate groups	M1	Considering two scenarios of MME or EEM or MMEE with attempt, may be probs or perms
	MME ^{**} = ${}^{5}C_{2} = 10$ MEE ^{**} = ${}^{5}C_{2} = 10$ MMEE [*] = ${}^{5}C_{1} = 5$	M1	Summing three appropriate scenarios from the four need ${}^{5}C_{x}$ seen in all of them
	$ME^{***} = {}^{5}C_{3} = 10$ see (iii) Total = 35	A1	Correct final answer
	Method 2 Considering criteria are met if ME are chosen	M1	$^{7}C_{x}$ only seen, no other terms
		M1	$^{x}C_{3}$ only seen, no other terms
	ME *** = ${}^{7}C_{3} = 35$	A1	Correct final answer
		3	

MATHEMATICS

9709/62 May/June 2018

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	38	B1	
		1	
1(ii)	Median = 38.5	B1	САО
	IQR = 40 - 38	M1	$39 < UQ < 45 - 36 < LQ \leq 38$
	= 2	A1	If M0 awarded SCB1 for both UQ = 40 or 40.5 and LQ = 38 or 37.75 seen
		3	

Question	Answer	Marks	Guidance
2(i)	Method 1 $P(M \cap H) = \frac{3}{4} \times \frac{3}{5} = \frac{9}{20} (0.45)$	B1	Seen, accept unsimplified
	$P(F \text{ or } M \cap H) = \frac{1}{2} + \frac{9}{2} = \frac{14}{2}$	M1	Numerical attempt at $P(F) + P(M \cap H)$
	4 20 20	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) OE	A1	Correct final answer
	Method 2 $P(M \cap H') = \frac{3}{4} \times \frac{2}{5} = \frac{6}{20} (0.3)$	B1	Seen, accept unsimplified
	$P(F \text{ or } M \cap H) = 1 - P(M \cap H')$	M1	Numerical attempt at $1 - P(M \cap H')$
	$=1-\frac{3}{4}\times\frac{2}{5}$	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) OE	A1	Correct final answer

Question	Answer	Marks	Guidance
2(i)	Method 3 P($F \cap H'$ or H) = $\frac{1}{4} \times \frac{1}{5} + \frac{1}{4} \times \frac{4}{5} + \frac{3}{4} \times \frac{3}{5}$	B1	$\frac{3}{4} \times \frac{3}{5} \left(\frac{9}{20}\right)$ or $\frac{1}{4} \times \frac{4}{5} \left(\frac{4}{20}\right)$ or $\frac{3}{4} \times \frac{3}{5} + \frac{1}{4} \times \frac{4}{5} \left(\frac{13}{20}\right)$ seen
	$=\frac{1}{2}+\frac{4}{2}+\frac{9}{2}$	M1	Numerical attempt at $P(F \cap H') + P(F \cap H) + P(M \cap H)$
	20 20 20	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) oe	A1	Correct final answer
	Method 4 – Venn diagram style approach $P(F \cup H) = P(F) + P(H) - P(F \cap H)$	B1	$\frac{3}{4} \times \frac{3}{5} \left(\frac{9}{20}\right)$ or $\frac{1}{4} \times \frac{4}{5} \left(\frac{4}{20}\right)$ or $\frac{3}{4} \times \frac{3}{5} + \frac{1}{4} \times \frac{4}{5} \left(\frac{13}{20}\right)$ seen
	$= \frac{1}{4} + \frac{1}{4} \times \frac{4}{5} + \frac{3}{4} \times \frac{3}{5} - \frac{1}{4} \times \frac{4}{5}$	M1	Numerical attempt at $P(F) + P(H) - P(F \cap H)$
	$=\frac{1}{4}+\frac{4}{20}+\frac{9}{20}-\frac{4}{20}$	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) oe	A1	Correct final answer
		4	

Question	Answer	Marks	Guidance
2(ii)	Method 1 $(P(M) \times P(H) =) \frac{3}{4} \times their \frac{13}{20} = \frac{39}{80}$ $(P(M \cap H) =) \frac{3}{4} \times \frac{3}{5} = 0.45$	M1	Unsimplified, or better, legitimate numerical attempt at $P(M) \times P(H)$ and $P(M \cap H)$ Descriptors $P(M \cap H)$ and $P(M) \times P(H)$ seen, correct numerical evaluation and comparison, conclusion stated
	$\frac{39}{80}$ (0.4875) \neq 0.45, not independent	A1	
	Method 2 $P(M H) = \frac{P(M \cap H)}{P(H)} = \frac{\frac{9}{20}}{\text{their } \frac{13}{20}} = \frac{9}{13}$ $P(M) = \frac{3}{4}$	M1	Unsimplified, or better, numerical attempt at $P(H)$ and $P(M \cap H)$, $P(M)$
	$\frac{9}{13} \neq \frac{3}{4}$, not independent	A1	Descriptors $P(M \cap H)$, $P(H)$ and $P(M)$ OR $P(M H)$ and $P(M)$ seen, numerical evaluation and comparison, conclusion stated Any appropriate relationship can be used, the M is awarded for an unsimplified, or better, numerical attempt at the terms required, the A mark requires the correct descriptors, numerical evaluation and comparison and the conclusion
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(i)	z = -1.282	B1	±1.282 seen
	$-1.282 = \frac{440 - \mu}{9}$	M1	±Standardisation equation with 440, 9 and μ , equated to a <i>z</i> -value, (not $1 - z$ -value or probability e.g. 0.1841, 0.5398, 0.6202, 0.8159)
	$\mu = 452$	A1	Correct answer rounding to 452, not dependent on B1
		3	
3(ii)	P(z > 1.8) = 1 - 0.9641 = 0.0359	B1	
	Number = 0.0359×150 = 5.385	M1	$p \times 150, 0$
	(Number of cartons =) 5	A1FT	Accept either 5 or 6, not indicated as an approximation, e.g. \sim , about FT <i>their</i> $p \times 150$, answer as an integer
		3	

Question	Answer	Marks	Guidance
4(i)	X 0 1 2 Prob $\frac{2}{7}$ $\frac{4}{7}$ $\frac{1}{7}$	B1	Prob distribution table drawn, top row correct with at least one probability $0 entered, condone additional values with p = 0 stated$
	$P(0) = \frac{5}{7} \times \frac{4}{6} \times \frac{3}{5} = \frac{2}{7} (0.2857)$	B1	One probability correct (need not be in table)
	$P(1) = \frac{2}{7} \times \frac{5}{6} \times \frac{4}{5} \times {}^{3}C_{1} = \frac{4}{7} (0.5713)$	B1	Another probability correct (need not be in table).
	$P(2) = \frac{2}{7} \times \frac{1}{6} \times \frac{5}{5} \times {}^{3}C_{2} = \frac{1}{7} (0.1429)$	B1	Values in table, all probs correct (to 3SF) or 3 probabilities summing to 1
		4	
4(ii)	Var (X) = $1 \times \frac{4}{7} + 4 \times \frac{1}{7} - (\frac{6}{7})^2$ = $\frac{8}{7} - (\frac{6}{7})^2$	M1	Unsimplified correct numerical expression for variance or <i>their</i> probabilities from (i) $0 in unsimplified varianceexpression$
	$=\frac{20}{49}$ or 0.408	A1	Correct answer (0.40816) nfww Final answer does not imply the method mark
		2	

Question	Answer	Marks	Guidance
5(i)	<i>a</i> = 40	B1	
		1	
5(ii)	Mean = $\frac{0.5 \times 14 + 1.5 \times 46 + 3.5 \times 102 + 7.5 \times their 40 + 20 \times 40}{242}$	M1	Numerator: 5 products with at least 3 acceptable mid-points \times appropriate frequency FT (i). Denominator: 242 CAO
	$=\frac{1533}{242}$		$\frac{1533}{242}$ implies M1, but if FT an unsimplified expression required
	$= 6\frac{81}{242}$ or 6.33	A1	CAO (6.3347 rounded to 3 or more SF)
		2	
5(iii)	$fd = 14, 46, 34, (\frac{their(i)}{5} =) 8, 2$	M1	Attempt at fd [f/(attempt at cw)] or scaled freq
	$ \begin{array}{c} \text{fd} \\ 50 \\ 40 \end{array} $	A1FT	Correct heights seen on diagram with linear vertical scale from (x, 0) FT their $\frac{a}{5}$ only
		B1	Correct bar widths (1:1:3:5:20) at axis, visually no gaps, with linear horizontal scale from $(0, y)$, first bar starting at $(0,0)$
	20 - 10 - 10 - 15 20 25 30 Length phone call /mins	B1	Labels (time, mins, and fd(OE) seen, some may be as a title) and a linear scale with at least 3 values marked on each axis. (Interval notation not acceptable)
		4	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(a)(i)	(AAAIU) * * * * Arrangements of vowels/repeats × arrangements of (consonants & vowel group) =	M1	$k \times 5!$ (k is an integer, $k \ge 1$)
	$\frac{5! \times 5!}{3!}$	M1	$\frac{m}{3}$! (<i>m</i> is an integer, <i>m</i> ≥ 1) Both Ms can only be awarded if expression is fully correct
	= 2400	A1	Correct answer
		3	
6(a)(ii)	E.g. R * * * T * * * L. Arrangements of consonants RL, RS, SL = ${}^{3}P_{2} = 6$ Arrangements of remaining letters = $\frac{6!}{3!} = 120$	M1	$k \times \frac{6!}{3!}$ or $k \times {}^{3}P_{2}$ or $k \times {}^{3}C_{2}$ or $k \times 3!$ or $k \times 3 \times 2$ (k is an integer, $k \ge 1$), no irrelevant addition
	Total 120 × 6	M1	Correct unsimplified expression or $\frac{6!}{3!} \times {}^{3}C_{2}$
	= 720 ways	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
6(b)	Method 1 N(2) R(8) Br(4) 1 2 1 $= 2 \times {}^{8}C_{2} \times 4 = 224$	M1	Multiply 3 combinations, ${}^{2}C_{x} \times {}^{8}C_{y} \times {}^{4}C_{z}$. Accept ${}^{2}C_{1} = 2$ etc.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	3 or more options correct unsimplified
	$\begin{bmatrix} 2 & 0 & 2 & = 1 \times 1 \times {}^{4}C_{2} = 6 \\ 1 & 0 & 3 & = 2 \times 1 \times 4 = 8 \end{bmatrix}$	M1	Summing <i>their</i> values of 4 or 5 legitimate scenarios (no extra scenarios)
	Total = 366 ways	A1	Correct answer
	Method 2 ${}^{14}C_4 - (2N2R \text{ or } 1N3R \text{ or } 4R \text{ or } 3R1B \text{ or } 2R2B \text{ or } 1R3B \text{ or } 4B)$	M1	$^{14}C_4 - k'$ seen, k an integer from an expression containing 8C_x
	$1001 - (1 \times {}^{8}C_{2} + 2 \times {}^{8}C_{3} + {}^{8}C_{4} + {}^{8}C_{3} \times 4 + {}^{8}C_{2} \times {}^{4}C_{2} + 8 \times 4 + 1)$	A1	4 or more 'subtraction' options correct unsimplified, may be in a list
	1001 - (28 + 112 + 70 + 224 + 168 + 32 + 1)	M1	<i>Their</i> ${}^{14}C_4 - [their values of 6 or more legitimate scenarios] (no extra scenarios, condone omission of final bracket)$
	= 366	A1	Correct answer
		4	

Question	Answer	Marks	Guidance
7(i)	Method 1 P(<11) = 1 – P(11, 12, 13)	M1	Binomial expression of form ${}^{13}C_x (p)^x (1-p)^{13-x}$, $0 < x < 13$, 0
	$= 1 - {}^{13}C_{11}(0.6)^{11}(0.4)^2 - {}^{13}C_{12}(0.6)^{12}(0.4) - (0.6)^{13}$	M1	Correct unsimplified answer
	= 0.942	A1	САО
	Method 2 P(<11) = P(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)	M1	Binomial expression of form ${}^{13}C_x (p)^x (1-p)^{13-x} 0 < x < 13, 0 < p < 1$
	$= (0.4)^{13} + {}^{13}C_1(0.4)^{12}(0.6) + \ldots + {}^{13}C_{10}(0.4)^3(0.6)^{10}$	M1	Correct unsimplified answer
	= 0.942	A1	CAO
		3	
7(ii)	$\mu = 130 \times 0.35 = 45.5$ var $= 130 \times 0.35 \times 0.65 = 29.575$	B 1	Correct unsimplified mean and var (condone $\sigma^2 = 29.6, \sigma = 5.438$)
	P(≥ 50) = P $\left(z > \frac{49.5 - 45.5}{\sqrt{29.575}}\right)$ = P (z > 0.7355)	M1	Standardising, using $\pm \left(\frac{x - their \text{ mean}}{their \sigma}\right)$, $x = \text{value to standardise}$ 49.5 or 50.5 seen in \pm standardisation equation
	$= 1 - \Phi(0.7355)$	M1	Correct final area
	= 1 - 0.7691	M1	
	= 0.231	A1	Correct final answer
		5	

Question	Answer	Marks	Guidance
7(iii)	$1 - (0.65)^n > 0.98$ or $0.02 > (0.65)^n$	M1	Eqn or inequality involving, 0.65^n and 0.02 or 0.35^n and 0.98
	n > 9.08	M1	Attempt to solve their eqn or inequality by logs or trial and error
	n = 10	A1	САО
		3	

Cambridge International AS & A Level Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/63 May/June 2018

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	15–19 (kg) cao	B1	kg not necessary; condone 14.5 – 19.5
	Total:	1	
1(ii)	fd = 1.2, 2.4, 2.8, 1, 0.32	M1	Attempt at fd [f/(attempt at cw)] or scaled freq (may be implied by 4 correct)
		A1	Correct heights seen on diagram with linear vertical scale from $(x, 0)$
		B1	Correct bar widths (1:1:1:2:5) visually no gaps with linear horizontal scale from $(9.5,y)$ and first bar starting at $(9.5,y)$
		B1	Histogram, using attempted fds, with labels (mass, kg and fd seen) and at least 3 linearly spaced values on each axis.
			Horizontal axis must range from at least 9.5 to 59.5
	0 9.5 19.5 39.5 59.5 Mass (kg)		If horizontal axis clearly starts from zero, either a break in the scale must be indicated or the scale must be linear from zero.

May/June	2018
----------	------

Question	Answer	Marks	Guidance
2(i)	<i>z</i> = 0.674	B1	z value ± 0.674
	$0.674 = \frac{03}{\sigma}$	M1	±Standardising with 0 and equating to a z-value
	$\sigma = 4.45$	A1	Correct answer www ie not ignoring a minus sign
	Total:	3	
2(ii)	P(0, 1)	M1	Any bin of form ${}^{8}C_{x}(0.75)^{x}(0.25)^{8-x}$ any x
	$= (0.75)^8 + {}^8C_1(0.25)(0.75)^7$	M1	Correct unsimplified answer, may be implied by numerical values
	0.1001 + 0.2670 = 0.367	A1	Correct answer
	Method 2 $1 - P(8,7,6,5,4,3,2) = 1 - (0.25)^8 - {}^8C_1(0.75)(0.25)^7 - \dots$	M1	Any bin of form ${}^{8}C_{x}(0.75)^{x}(0.25)^{8-x}$ any x
	$-{}^{8}C_{2}(0.75)^{6}(0.25)^{2}$	M1	Correct unsimplified answer
	= 0.367	A1	Correct answer
	Total:	3	

Question	Answer	Marks	Guidance
3(i)	(1-x) and 0.45 (or 0.3)	B1	Seen, either on tree diagram or elsewhere
	Beginners: $0.7 \times x + {}^{\circ}0.45' \times {}^{\circ}(1-x)' = 0.5$ Or Advanced: ${}^{\circ}0.3' \times x + 0.55 \times {}^{\circ}(1-x)' = 0.5$ Or $0.7 \times x + {}^{\circ}0.45' \times {}^{\circ}(1-x)' = {}^{\circ}0.3' \times x + 0.55 \times {}^{\circ}(1-x)'$	M1	One of the three correct probability equations
	x = 0.2 oe	A1	Correct answer
	Total:	3	
3(ii)	$P(M \mid A) = \frac{P(M \cap A)}{P(A)} = \frac{0.2 \times 0.3}{0.5}$		'i' \times 0.3 as num or denom of a fraction
	P(A) = 0.5	M1	0.5 (or $(1 - i) \times 0.55 + i \times 0.3$ unsimplified) seen as denom of a fraction
	$= 0.12 \left(\frac{3}{25}\right)$		Correct answer
	Total:	3	

May/June 2	2018
------------	------

Question	Answer	Marks	Guidance
4(i)	$Mean = (30 \times 1500 + 21 \times 2400)/51$	M1	Multiply by 30 and 21, summing and dividing total by 51 $\left(\frac{45000 + 50400}{51}\right)$
	= 1870 (1870.59)	A1	correct answer (to 3sf)
	Total:	2	
4(ii)	$\sum x_{F}^{2}$ 1500 ² $\sum x_{F}^{2}$ (0.007.000	M1	One correct substitution into a correct variance formula
	$230^{\circ} = \frac{-1300}{30} = 1500 \text{ so } 2x_F = 69.087.000$	A1	Correct Σx_F^2 (rounding to 69 000 000 2sf)
	$160^2 = \frac{\Sigma x_L^2}{21} - 2400^2 \text{ so } \Sigma x_L^2 = 121497600$	A1	Correct Σx_L^2 (rounding to 121 000 000 3sf)
	New var = $\frac{69087000 + 121497600}{-1870.588^2} = 237853$	M1	using Σx_F^2 + Σx_L^2 dividing by 51 and subtracting 'i' squared.
	51		(Correct ' Σx_F^2 ', + '' $\Sigma x_L^2 = 190584600$)
	New sd = 488	A1	Correct answer accept anything between 486 and 490
	Total:	5	

9709/63

Question	Answer	Marks	Guidance
5(i)	$ \begin{array}{l} P(0) = 0.6 \times 0.25 \times 0.5 = 0.075 \\ P(1) = 0.4 \times 0.25 \times 0.5 + 0.6 \times 0.75 \times 0.5 + 0.6 \times 0.25 \times 0.5 = \\ 0.35 \end{array} $	B1	0, 1, 2, 3 seen as top line of a pdf table OR attempting to evaluate P(0), P(1), P(2) and P(3)
	$\begin{array}{l} P(2) = 0.4 \times 0.75 \times 0.5 + 0.4 \times 0.25 \times 0.5 + 0.6 \times 0.75 \times 0.5 = \\ 0.425 \\ P(3) = 0.4 \times 0.75 \times 0.5 = 0.15 \end{array}$	M1	Multiply 3 probabilities together from 0.4 or 0.6, 0.25 or 0.75, 0.5 with or without a table
	No of heads0123	M1	Summing 3 probabilities for $P(1)$ or $P(2)$ with or without a table
	Notation 0.075 0.35 0.425 0.15 Prob (7) (17) (3)	B 1	One correct probability seen.
	$\left \begin{array}{c c} \frac{3}{40} \\ \hline \end{array} \right \left(\frac{1}{20} \\ \hline \end{array} \right \left(\frac{1}{40} \\ \hline \end{array} \right) \left(\frac{3}{20} \\ \hline \end{array} \right)$	A1	All correct in a table
	Total:	5	
5(ii)	E(X) = 0.35 + 2 × 0.425 + 3 × 0.15 = 1.65 $\left(\frac{33}{20} \text{ oe}\right)$	M1	Correct unsimplified expression for the mean using their table, $\sum p = 1$; can be implied by correct answer
5(ii)	$Var(X) = 0.35 + 4 \times 0.425 + 9 \times 0.15 - 1.65^{2}$	M1	Correct unsimplified expression for the variance using their table and their mean ² subtracted, $\sum p = 1$
	$= 0.678 (0.6775) \left(\frac{271}{400} \text{ oe} \right)$	A1	Correct answer
	Total:	3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(i)	$z_1 = \pm \frac{4.1 - 5.7}{0.8} = -2$ $z_2 = \pm \frac{5 - 5.7}{0.8} = -0.875$	M1	At least one standardising no cc no sq rt no sq using 5.7 and 0.8 and either 4.1 or 5
	P(Toffee Apple) = P($d < 5.0$) – P($d < 4.1$) = P($z < -0.875$) – P($z < -2$) = $\Phi(-0.875) - \Phi(-2)$ = $\Phi(2) - \Phi(0.875)$	M1	Correct area $\Phi - \Phi$ legitimately obtained – need 2 negative z-values or 2 positives – not one of each
	= 0.9772 - 0.8092 = 0.168 (or $0.1908 - 0.0228$)	A1	Correct final answer
	Total:	3	
6(ii)	$np = 250 \times 0.168 = 42$, $npq = 34.944$	B1ft	Correct unsimplified mean and var – ft their prob for (i) providing ($0)Implied by \sigma = \sqrt{34.944} = 5.911$
	$P(<50) = P\left(z < \frac{49.5 - 42}{2}\right) = P(z < 1.2687)$	M1	\pm Standardising using 50, their mean and sd; must have sq rt.
	$1((30)) + (2 \sqrt{34.944}) + (2 \sqrt{1.2007})$	M1	49.5 or 50.5 seen as a cc
	$= \Phi(1.2687)$	M1	Correct area $\Phi(> 0.5 \text{ for } + z \text{ and } < 0.5 \text{ for } -z)$ in their final answer
	= 0.898	A1	Correct final answer
	Total:	5	

Question	Answer	Marks	Guidance
7(i)	****E****	M1	Mult by 8! or ⁸ P ₈ oe (arrangements ignoring repeats)
	Other letters arranged in $\frac{1}{2!3!}$ = 3360 ways	A1	Correct final answer www
	OR	M1	Correct numerator (161 280)
	$\frac{8 \times 7 \times 6 \times 5 \times 4 \times 4 \times 3 \times 2 \times 1}{4!2!} = 3360 \text{ ways}$	A1	Correct final answer www
	Total:	2	
7(ii)	i) * * * * * * Arrangements other letters × ways Es inserted		k mult by ${}^{6}C_{4}$ or ${}^{6}P_{4}$ oe (ways to insert Es ignoring repeats), k can = 1 or k mult by $\frac{5!}{2!}$
	$= \frac{5!}{2!} \times {}^{6}C_{4} \left(\frac{5!}{2!} \times \frac{{}^{6}P_{4}}{4!} \right)$	M1	Correct unsimplified expression or $\frac{5!}{2!} \times {}^6P_4$
	= 900 ways	A1	Correct answer
	OR Total no of ways – no of ways with Es touching $9!/(4! \times 2!) - \dots$ or 7 560 –	M1	7560 unsimplified – k
	$\frac{6!}{2!} + {}^{6}P_{2} \times \frac{5!}{2!} + \frac{1}{2!} \times \frac{5!}{2!} + \frac{1}{2! \times \frac{5!}{2!}}$ $= 360 + 1800 + 900 + 3600 = 6660$	M1	Attempting to find four ways of Es touching (4 Es, 3Es and a single, 2 lots of 2 Es, 2 Es and 2 singles)
	7 560 - 6 660 = 900	A1	Correct answer

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(ii)	OR Adding the number of wave with the first E in the $1^{st}(E) = 2^{nd}$	M1	For any values for E_1 , E_2 and E_3
	Adding the number of ways with the first E in the 1 (E_1) , 2 (E_2) or $3^{rd}(E_3)$ position.		
	$\frac{5!}{2!}$ (E ₁ + E ₂ + E ₃) where E ₁ = 10, E ₂ = 4, E ₃ = 1		
	51	NI I	For any two correct values of E_1 , E_2 and E_3
	$\frac{5!}{2!}$ (E ₁ + E ₂ + E ₃)		
	600 + 240 + 60 = 900	A1	Correct answer
	Total:	3	
7(iii)	EENN* in 3 ways	B1	Numerical value must be stated
	Total:	1	

Question	Answer	Marks	Guidance	
7(iv)	EE *** with no N: 1 way EEN** 3C2 or listing 3 ways EENN* 3 ways from (iii)	EE *** with no N: 1 way		Identifying the three different scenarios of EE, EEE or EEEE
		A1	Total no of ways with two Es $(7 \text{ or } 3 + 3 + 1)$	
	EEE** with no N: 3 ways EEEN* 3 ways EEENN 1 way	A1	Total no. of ways with 3 Es (7)	
	EEEE* no N 3 ways EEEEN 1 way Total 18 ways	A1	Correct answer stated	
	Method List containing ways with 2Es, 3Es and 4Es List containing at least 8 correct different ways List of all 18 correct ways Total 18	M1	At least 1 option listed for each of EE^^^, EEE^^,	
		A1	Ignore repeated options	
		A1	Ignore repeated/incorrect options	
		A1	Correct answer stated	
	Total:	4		

MATHEMATICS

9709/62 March 2018

Paper 6 Probability and Statistics MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer									Marks	Guidance
1	TIVE FREQUENCY	1000 800 600 400			0	0	0		©	M1 A1	Attempt to plot cumulative frequencies at ucb and all points joined between $(3,y_1)$ and $(14,y_2)$. Cf table not required. Linear scales starting at $(0,0)$ and axes labelled cf and time in mins, all points correct; (allow straight lines or curves)
	200 0 0 5 10 15 TIME, IN MINUTES								15	M1	450 seen in median attempt on increasing CF graph (independent);
	t	0	3	4	5	6	8	10	14		
	cf	0	120	300	500	660	770	850	900		
	Media	ın valu	e: 4.8 (r	ninutes)						A1 FT	Correct (4.7 \leq m < 4.9) or FT from reading their increasing graph at cf = 450
										4	

March 2018
Question	Answer	Marks	Guidance
2(i)	1 L: ${}^{6}C_{2} = 15$	B1	
		1	
2(ii)	No L: ${}^{6}C_{3} = 20$ (1 L: ${}^{6}C_{2} = 15$)	M1	Either 0L or 2L correct unsimplified
	2 L: ${}^{6}C_{1} = 6$	M1	Summing the 3 correct scenarios
	Total = 41	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	(10/160 =) 1/16, 0.0625	B1	OE
		1	
3(ii)	(90/160) = 9/16, 0.5625	B1	OE
		1	
3(iii)	P(red/hatchback) = P(red hatchback) / P(hatchback) = 40/160 / 90/160	M1	Appropriate probabilities in a fraction
	= 4/9	A1	OE Altn method: Direct from table M1 for 40/a or b/90, $a \neq 160$ A1 for 40/90 oe
		2	

Question	Answer	Marks	Guidance
3(iv)	<i>EITHER:</i> P(red) × P(hatchback) = $\frac{72}{160} \times \frac{90}{160} \neq \frac{40}{160}$	(M1	Use correct approach with appropriate probabilities substituted
	Not independent	A1)	Numerical comparison and conclusion stated
	<i>OR</i> : P(red/hatchback) = 40/90 and $\frac{40}{90} \neq \frac{72}{160}$	(M1	Use correct approach with appropriate probabilities substituted
	Not independent	A1)	Numerical comparison and conclusion stated
		2	

Question	Answer	Marks	Guidance
4(i)	$\Sigma p = 1: 0.2 + 0.1 + p + 0.1 + q = 1: p + q = 0.6$	M1	Unsimplified sum of probabilities equated to 1
	$\Sigma px = 1.7: -0.4 + 0 + p + 0.3 + 4q = 1.7:$	M1	Unsimplified Sum of <i>px</i> equated to 1.7
	p + 4q = 1.8	M1	Solve simult. equations to find expression in p or q
	p = 0.2, q = 0.4	A1	
		4	
4(ii)	$Var(X) = \Sigma p x^{2} - 1.7^{2} = 4x0.2 + 1p + 9x0.1 + 16q - 1.7^{2}$ = 8.3 - 2.89	M1	Use correct unsimplified expression for variance
	= 5.41	A1	
		2	

|--|

Question	Answer	Marks	Guidance
5(i)	24.25n - 20n = 136 Or $\frac{136}{n} + 20 = 24.25$	M1	Unsimplified correct equation
	<i>n</i> = 32	A1	
		2	
5(ii)	Using coded information: Variance = $\frac{2888}{32} - \left(\frac{136}{32}\right)^2$	M1	unsimplified expression for variance
	= 72.1875 = 72.19	A1	accept answers 72.2 SOI
	Using uncoded information: Variance = $\frac{\sum x^2}{32} - 24.25^2$ Equate with 72.1875 to give	M1	Equate two expressions for variance and solve
	$\sum x^2 = 21128$	A1	
		4	

March 2	018
---------	-----

Question	Answer	Marks	Guidance
6(i)	$3! \times \frac{4!}{2} \times 2$	M1	3! oe seen multiplied by integer ≥ 1 , no addition
	3!	M1	4!/3! oe seen multiplied by integer > 1, no addition
	= 48	A1	
		3	
6(ii)	EITHER:	B 1	7!/3! -
	Even = 1 otal number of arrangements – Odd numbers = $7!/3! - 3 \times \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{3!} = (7!/3! - 6!/2!)$ = $840 - 360$	B1	6!/2! OE
	= 480	B 1	
	<i>OR:</i> No of arrangements ending in 8: $\frac{6!}{3!}$	B1	No. ending in 8 or no. ending in 6 correct unsimplified
	No ending in 6: 6!/2!	B 1	Both correct and added unsimplified
	Total: $\frac{6!}{3!} + 6!/2 = 120 + 360 = 480$	B1	
		3	

9709/62

Question	Answer	Marks	Guidance
7(i)	$P(X > 410) = 225/6000 = 0.0375$ $P\left(Z > \frac{410 - 400}{\sigma}\right) = 0.0375: 0.9625$	M1	Use 1 –225/6000 = 0.9625 to find <i>z</i> value
	$z \text{ value} = \pm 1.78$	A1	z value: ± 1.78
	$\frac{10}{\sigma} = 1.78$	M1	$(410-400)/\sigma = their z \text{ (must be a } z \text{ value)}$
	$\sigma = 5.62$	A1	
		4	
7(ii)	We need $P(Z < -1.5)$ and $P(Z > 1.5)$	M1	Attempt at $P(Z < -1.5)$ or $P(Z > 1.5)$ 1 - $\Phi(1.5)$ seen
	$\Phi(-1.5) + 1 - \Phi(1.5) = 2 - 2\Phi(1.5)$	M1	Or equivalent expression with values
	$=2-2 \times 0.9332 = 0.1336 \ (0.134)$	A1	Correct to 3sf
	Number expected = 500 × 0.1336 = 66.8: 66 or 67 packets	B1ft	0.1336 used or FT their 4sf probability times 500, (not 0.9625 or 0.0375) rounded or truncated
		4	

9709/62

Question	Answer	Marks	Guidance
8(i)	$P(4) + P(5) = {}^{5}C_{4} \left(\frac{1}{4}\right)^{4} \left(\frac{3}{4}\right)^{1} + {}^{5}C_{5} \left(\frac{1}{4}\right)^{5} \left(\frac{3}{4}\right)^{0}$	M1	One binomial term, with $p < 1$, $n=5$, $p + q=1$
	= 0.014648 + 0.00097656	M1	Add 2 correct unsimplified binomial terms
	$= 0.0156 \text{ or } \frac{1}{64}$	A1	
		3	
8(ii)	$1 - P(0) > 0.995: 0.75^n < 0.005$	M1	Equation or inequality involving 0.75^n and 0.005 or 0.25^n and 0.995
	$n\log 0.75 < \log 0.005$ n > 18.4:	M1	Attempt to solve <i>their</i> exponential equation using logs, or trial and error May be implied by their answer
	<i>n</i> = 19	A1	
		3	
8(iii)	p = 0.25, n = 160: mean = 160 x 0.25 (= 40) variance = 160 x 0.25 x 0.75 (=30)	B1	Correct unsimplified mean and variance
	$P(X < 50) = P\left(Z < \frac{49.5 - 40}{2}\right)$	M1	Use standardisation formulae must include square root.
	× (√30)	M1	Use continuity correction ± 0.5 (49.5 or 50.5)
	= P(Z < 1.734) = 0.959	A1	Correct final answer
		4	

MATHEMATICS

9709/61 October/November 2017

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	p + q = 0.45	M1	Equation involving $\Sigma P(x) = 1$
	0.15 + 2p + 1.2 + 6q = 3.05	M1	Equation using $E(X) = 3.05$
	q = 0.2	M1	Solving simultaneous equations to one variable
	p = 0.25	A1	Both answers correct
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
2(i)	Points (5.5,10), (8.5,25), (11.5,42), (16.5,46), (25.5,48)	B1	Correct cfs values seen listed, in or by table or on graph, 0 not required
	cf 50 40	B1	Axes labelled "cumulative frequency" (or cf) and "time [or t etc.] (in) seconds (or sec etc.)". Linear scales – cf 0–48, time 2.5 – 25.5 (ignore <2.5 on time.) At least 3 values stated on each axis, but (0,0) can be implied without stating.
	30 20 10 0 5 10 15 20 25 10 15 20 25 10 15 20 25 10 15 20 25 10 15 10 15 10 15 20 25 10 15 20 25 10 15 10 15 20 25 10 15 10 15 20 25 10 10 10	B1	All points plotted accurately, (5, 10) etc. scores B0 . Curve or line segments drawn starting at (5.5,10) and passing within '1 scale unit' vertically and horizontally of plotted points
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
2(ii)	48 - 35 = 13	M1	Subt 35 (checked ± 1 mm on graph) from 48 or 50,
	l = 0.5 sec	A1	$6 \leq Ans \leq 7$
		2	

Question	Answer	Marks	Guidance
3(i)	p = 0.207	B1	
		1	
3(ii)	$Var = 30 \times 0.207 \times 0.793 = 4.92$	B1	
		1	
3(iii)	$P(\ge 2) = 1 - P(0, 1)$	M1	
	$= 1 - (0.793)15 - \binom{15}{1}(0.207)(0.793)14$	M1	1 - P(0, 1) seen <i>n</i> =15 <i>p</i> = any prob
	= 0.848	A1	
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(i)	$\frac{(48.7 \times 12 + 38.1 \times 7)}{19}$	M1	Accept unsimplified (may be separate calculations)
	= 44.8	A1	
		2	
4(ii)	$7.65^2 = \frac{\Sigma x^2}{12} - 48.7^2 \ \Sigma x^2 = 29162.55$	M1	Substitution in one correct variance formula
	$4.2^2 = \frac{\Sigma y^2}{7} - 38.1^2 \qquad \Sigma y^2 = 10284.75$	A1	One Σx^2 or Σy^2 correct (can be rounded to 4sf))
	Combined var = $\frac{(29162.55 + 1028475)}{19} - 44.79^2$	M1	Using their Σx^2 and Σy^2 and their 4(i) in the variance formula
	$=\frac{39447.3}{19}-44.79^2$		
	Combined $\sigma = 8.37$ or 8.36	A1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(i)	GNS	B1	Must see at least 4 probs correct including one with an x in, correct shape
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	Shape, clear labels/annotation and all probs correct
		2	
5(ii)	$0.82x + 0.18 \times 0.9 = 0.285$	M1	Eqn with x in , two 2-factors on one side
	x = 0.15	A1	
		2	
5(iii)	$P(E \mid notGNS) = \frac{P(E \cap notGNS)}{P(E \cap notGNS)}$	M1	Attempt at P(E∩not GNS) seen as num or denom of fraction
	$P(notGNS) = \frac{P(notGNS)}{P(notGNS)}$	M1	Attempt at P(not GNS) seen anywhere
	$=\frac{0.82\times0.85}{1-0.285}=0.975$	A1	Correct answer
		3	

October/November 2017

Question	Answer	Marks	Guidance
6(a)(i)	⁴⁰ P ₅	M1	${}^{40}P_x$ or ${}^{y}P_5$ oe seen, can be mult by $k \ge 1$
	= 78 960 960	A1	
		2	
6(a)(ii)	not front row e.g. WEJ** in $3 \times 3! = 18$ ways	B1	3! seen mult by $k \ge 1$
	7 rows in 7 × 18= 126 ways	B1	mult by 7
	front row: e.g. *MA** in $4 \times 2 = 8$ ways	M1	attempt at front row arrangements and multiplying by the 7 other rows arrangements, need not be correct
	Total $126 \times 8 = 1008$	A1	
		4	
6(b)	<i>EITHER:</i> e.g. *R** in ${}^{8}C_{3}$ ways = 56 ways *L** in ${}^{8}C_{3}$ = 56 ways	(M1	Considering either R or L only in team
	**** in ${}^{8}C_{4} = 70$ ways	M1*	Considering neither in team
		DM1	summing 3 scenarios
	Total 182 ways	A1)	
	<i>OR1:</i> No restrictions ${}^{10}C_4 = 210$ ways	(M1	$^{10}C_4$ – , Considering no restrictions with subtraction
	$*RL^* = {}^8C_2 = 28$	M1*	Considering both in team
	210-28	DM1	subt
	= 182 ways	A1)	

Question	Answer	Marks	Guidance
6(b)	<i>OR2:</i> R out in ${}^{9}C_{4} = 126$ ways L out in ${}^{9}C_{4} = 126$ ways	(M1	Considering either R out or L out
	Both out in ${}^{8}C_{4} = 70$	M1*	Considering both out
		DM1	Summing 2 scenarios and subtracting 1 scenario
	126 + 126 - 70 = 182 ways.	A1)	
		4	

Question	Answer	Marks	Guidance
7(i)	$P(<570) = P\left(z < \frac{570 - 500}{91.5}\right) = P(z < 0.7650)$ = 0.7779	M1	Standardising for either 570 or 390, no cc, no sq, no $$
	$P(<390) = P\left(z < \frac{390 - 500}{91.5}\right) = P(z < -1.202)$	A1	One correct z value
	= 1 - 0.8853 = 0.1147	A1	One correct Φ , final solution
	Large:0.222 (0.2221) Small: 0.115 (0.1147)	A1	Correct small and large
	Medium: 0.663 (0.6632)	A1FT	Correct Medium rounding to 0.66 or ft 1 – (their small + their large)
		5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
7(ii)	$1.645 = \left(\frac{x - 500}{91.5}\right)$	B1	± 1.645 seen (critical value)
		M1	Standardising accept cc, sq, sq rt
	<i>x</i> = 651	A1	$650 \leq Ans \leq 651$
		3	
7(iii)	P(x > 610) = 0.1147 (symmetry)	M1	Attempt to find upper end prob $x > 610$ or $\Phi(x)$, ft their P(< 390) from (i)
	$0.3 + 0.1147 = 0.4147 \implies \Phi(x) = 0.5853$	M1	Adding 0.3 to <i>their</i> $P(x > 610)$ or subt 0.5 from $\Phi(x)$ or 0.8853 – 0.3
	z = 0.215 or 0.216	M1	Finding $z = \Phi^{-1}(0.5853)$
	$0.215 = \frac{k - 500}{91.5}$	M1	Standardising and solving, accept cc, sq, sq rt
	<i>k</i> = 520	A1	
		5	

MATHEMATICS

9709/62 October/November 2017

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	<i>EITHER:</i> $(\Sigma x =) 11.5n = 27 + 10n$	(M1	Expanding brackets and forming a three term equation involving 27 and at least one term in n , without x
		M1	10 <i>n</i> or 11.5 <i>n</i> seen in expression without x (1.5 <i>n</i> = 27 implies M2)
	<i>n</i> = 18	A1)	
	$OR: \\ 11.5 = \frac{27}{n} + 10$	(M1	Dividing coded sum by n and forming a three term equation involving 11.5 and at least one term in n , without x
		M1	27/ <i>n</i> seen in expression without <i>x</i> (1.5 = $\frac{27}{n}$ implies M2)
	<i>n</i> = 18	A1)	
		3	

Question	Answer	Marks	Guidance
2(i)	points (50, 14), (80, 62), (100, 132), (120, 140)	B1	Correct cfs values seen listed, in or by table or on graph, 0 not required
	cf 200	B1	Axes labelled 'cumulative frequency' (or cf) and 'circumference [or cir or c etc.] (in) cm'. Linear scales $- c.f. 0-140$ circumference 40–120 (ignore <40 on circ.) At least 3 values stated on each axis, but (0,0) can be implied without stating.
	0 20 40 60 80 100 120 Circumference cm	B1	All points plotted accurately
		3	
2(ii)	140 - 54 = 86	M1	Finding correct value from graph (checked ± 1 mm) or linear interpolation. Subtraction from 140 can be implied
	Percentage = $\overline{61.4\%}$	A1	$60.5\% \leqslant \text{Ans} \leqslant \overline{64.5\%}$
		2	

October/November 2017

Question	Answer	Marks Guidance				
3(i)	<i>EITHER:</i> P(X=3) = P(RRB) = $\frac{2}{6} \times \frac{1}{5} \times \frac{4}{4}$	(M1	probabilities in order $\frac{2}{p} \times \frac{1}{q} \times \frac{4}{r}$, $p, q, r \le 6$ and $p \ge q \ge r, r \ge 4$, accept $\times 1$ as $\frac{4}{r}$.			
	$=\frac{1}{15}$ AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.			
	OR1: P(X=3) = P(RRB) = $\frac{{}^{2}C_{2}}{{}^{6}C_{2}} \times \frac{{}^{4}C_{1}}{{}^{4}C_{1}}$	(M1	probabilities stated clearly, $\times \frac{{}^{4}C_{1}}{{}^{4}C_{1}}$ or $\times 1$ or $\times \frac{4}{4}$ included			
	$=\frac{1}{15}$ AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.			
	<i>OR2:</i> P(X=3) = P(RRB) = $\frac{{}^{2}C_{1}}{{}^{6}C_{1}} \times \frac{{}^{1}C_{1}}{{}^{5}C_{1}} \times \frac{{}^{4}C_{1}}{{}^{4}C_{1}}$	(M1	probabilities in order $\frac{{}^{2}C_{1}}{{}^{p}C_{1}} \times \frac{{}^{1}C_{1}}{{}^{q}C_{1}} \times \frac{{}^{4}C_{1}}{{}^{r}C_{1}} p, q, r \leqslant 6$ and $p \ge q \ge r, r \ge 4$ $(\times \frac{{}^{4}C_{1}}{{}^{4}C_{1}} \text{ or } \times 1 \text{ or } \times \frac{4}{4} \text{ acceptable})$			
	= 1/15 AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.			
		2				

9709/62

Question	Answer			r	Marks	Guidance			
3(ii)	$P(1) = P(B) = \frac{4}{6} \left(\frac{2}{3} = 0.667\right)$					B1	Probability distribution table drawn with at least 2 correct <i>x</i> values and at least 1 probability. All probabilities $0 \le p < 1$.		
	P(2) = P(RB) = $\frac{2}{6} \times \frac{4}{5} = \frac{4}{15}$ (= 0.267) P(3) = P(RRB) = $\frac{2}{6} \times \frac{1}{5} \times \frac{4}{4} = \frac{1}{15}$ (= 0.0667)				0.267)	B1	P(1) or P(2) correct unsimplified, or better, and identified.		
					$\frac{1}{15}$ (= 0.0667)	B1	All probabilities in table, evaluated correctly OE. Additional x values must have a stated probability of 0		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
						3			

9709/62

October/November 2017

Question	Answer	Marks	Guidance	
4(i)	$P(4, 2H) = \frac{1}{2} \times {}^{4}C_{2} \times (\frac{1}{2})^{2} (\frac{2}{2})^{2}$	M1	Multiplying their 2H expression by ¹ / ₄ [P(4)]	
	4 2 3 3		Remaining factor is $(\frac{1}{2})^2(\frac{2}{2})^2$ [or $\frac{4}{2}$] multiplied by integer value	
			$k \ge 1 \text{ OE}$	
	$=\frac{2}{27}(0.0741)$	A1		
		3		
4(ii)	P(3, 3H) = $\frac{1}{4} \times (\frac{1}{3})^3 = \frac{1}{108}$ (0.00926)	B1		
		1		
4(iii)	P(1, 1H) = $\frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$ (0.08333)	M1	Correct expression for 1 of P(1, 1H), P(2, 2H), P(4, 4H) Unsimplified (or better)	
	$P(2, 2H) = \frac{1}{4} \times (\frac{1}{3})^2 = \frac{1}{36} (0.02778)$		Summing their values for 3 or 4 appropriate outcomes for the 'game'	
	$P(3, 3H) = \frac{1}{4} \times (\frac{1}{3})^3 = \frac{1}{108} (0.009259)$		with no additional outcomes.	
	P(4, 4H) = $\frac{1}{4} \times (\frac{1}{3})^4 = \frac{1}{324}$ (0.003086)			
	$Prob = \frac{10}{81} \ (0.123)$	A1		
		3		

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(i)	<i>EITHER:</i> P(>2) = 1 - P(0, 1, 2)	(M1	Binomial term of form ${}^{30}C_x p^x (1-p)^{30-x}$, $0 any p$
	$= 1 - (0.96)^{30} - {}^{30}C_1(0.04)(0.96)^{29} - {}^{30}C_2(0.04)^2(0.96)^{28}$ (= 1 - 0.2938 0.3673 0.2219)	A1	Correct unsimplified answer
	= 1-0.883103 = 0.117 (0.116896)	A1)	
	OR: P(>2) = P(3,4,5,6,30)	(M1	Binomial term of form ${}^{30}C_x p^x (1-p)^{30-x}$, $0 any p$
	$= {}^{30}C_3(0.04)^3(0.96)^{27} + {}^{30}C_4(0.04)^4(0.96)^{26} + \dots + (0.04)^{30}$	A1	Correct unsimplified answer
	= 0.117	A1)	
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(ii)	$np = 280 \times 0.1169 = 32.73, npq = 280 \times 0.1169 \times 0.8831 = 28.9$	M1 FT	Correct unsimplified <i>np</i> and <i>npq</i> , FT their <i>p</i> from (i),
	$P(\ge 30) = P\left(z > \frac{29.5 - 32.73}{\sqrt{28.9}}\right) = P(z > -0.6008)$	M1	Substituting <i>their</i> μ and σ (\sqrt{npq} only) into the Standardisation Formula
		M1	Using continuity correction of 29.5 or 30.5
		M1	Appropriate area Φ from standardisation formula P(z >) in final solution
	= 0.726	A1	
		5	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(a)(i)	<i>EITHER:</i> 3**, 4**, 6**, 8**	(M1	${}^{5}P_{2} \text{ or } {}^{5}C_{2} \times 2! \text{ or } 5 \times 4 \text{ OE} \text{ (considering final 2 digits)}$
	options $4 \times 5 \times 4 = 80$		Mult by 4 or summing 4 options (considering first digit)
		A1)	Correct final answer
	<i>OR:</i> Total number of values: $6 \times 5 \times 4 = 120$	(M1	Calculating total number of values (with subtraction seen)
	Number of values less than 300: $2 \times 5 \times 4 = 40$		Calculating number of unwanted values
	Number of evens = $120 - 40 = 80$	A1)	Correct final answer
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
$6(a)(ii) \qquad 3^{**}, 4^{**}, 6^{**}, 8^{**}$ <i>EITHER:</i> options $4 \times 6 \times 4$ (last)		(M1	6 linked to considering middle digit e.g. multiplied or in list
		M1	Multiply an integer by 4×4 (condone $\times 16$) (No additional figures present for both M's to be awarded)
	= 96	A1)	
	<i>OR:</i> Total number of values $4 \times 6 \times 6 = 144$	(M1	Calculating total number of values (with subtraction seen)
	Number of odd values $4 \times 6 \times 2 = 48$	M1	Calculating number of unwanted values
	Number of evens = $144 - 48 = 96$	A1)	
		3	
6(b)(i)	252	B1	
		1	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(b)(ii)	B (6)G(4)		
	5 0 in ${}^{6}C_{5}(\times {}^{4}C_{0}) = 6 \times 1 = 6$ 4 1 in ${}^{6}C_{4} \times {}^{4}C_{1} = 15 \times 4 = 60$ 3 2 in ${}^{6}C_{3} \times {}^{4}C_{2} = 20 \times 6 = 120$	M1	Multiplying 2 combinations ${}^{6}C_{q} \times {}^{4}C_{r}$, $q + r = 5$, or ${}^{6}C_{5}$ seen alone
		M1	Summing 2 or 3 appropriate outcomes, involving perm/comb, no extra outcomes.
	Total = 186 ways	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	$P(>65) = P\left(z > \frac{65 - 61.4}{12.3}\right) = P(z > 0.2927)$	M1	Standardising no continuity correction, no square or square root, condone \pm standardisation formula
		M1	Correct area (< 0.5)
	= 1 - 0.6153 = 0.385	A1	
		3	

Question	Answer	Marks	Guidance
7(ii)	P (< 65) = 0.6153 so P(< k) = 0.25 + 0.6153 = 0.8653	B 1	
	<i>z</i> = 1.105	B 1	$z = \pm 1.105$ seen or rounding to 1.1
	$1.105 = \frac{k - 61.4}{12.3}$	M1	standardising allow \pm , cc, sq rt, sq. Need to see use of tables backwards so must be a <i>z</i> -value, not $1 - z$ value.
	<i>k</i> = 75.0	A1	Answers which round to 75.0. Condone 75 if supported.
		4	
7(iii)	$2.326 = \frac{97.2 - \mu}{\sigma}$	B1	± 2.326 seen (Use of critical value)
	$-0.44 = \frac{55.2 - \mu}{\sigma}$	B1	± 0.44 seen
		M1	An equation with a <i>z</i> -value, μ , σ and 97.2 or 55.2, allow $\sqrt{\sigma}$ or σ^2
		M1	Algebraic elimination μ or σ from <i>their</i> two simultaneous equations
	$\mu = 61.9$ $\sigma = 15.2$	A1	both correct answers
		5	

MATHEMATICS

9709/63 October/November 2017

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
 - When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Octo	ber/	No	ve	m	b	er

2017

Question	Answer	Marks	Guidance
1	EITHER: P(at least 1 completes) = $1 - P(0 \text{ people complete})$ = $1 - (0.8)^3$	(M1	Fully correct unsimplified expression $1 - (0.8)^3$ OE
	$= 0.488 \left(\frac{61}{125}\right)$	A1)	
	OR1: P(1, 2, 3) = ${}^{3}C_{1}(0.2)(0.8)^{2} + {}^{3}C_{2}(0.2)^{2}(0.8) + (0.2)^{3}$	(M1	Unsimplified correct 3 term expression
	$= 0.488 \left(\frac{61}{125}\right)$	A1)	
	$OR2: 0.2 + 0.8 \times 0.2 + 0.8 \times 0.8 \times 0.2$	(M1	Unsimplified sum of 3 correct terms
	$= 0.488 \left(\frac{61}{125}\right)$	A1)	
		2	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
2	$\Sigma(x - 45) = 1218 - 20 \times 45 = 318$	B1	
	$\frac{\Sigma(x-45)^2}{20} - \left(\frac{\Sigma(x-45)}{20}\right)^2 = 4.2^2$	M1	Fully correct substitution in the correct coded variance formula with their $\Sigma(x - 45)$ OR valid method for $\Sigma x^2 = 74529 (4.2^2 = \frac{\Sigma x^2}{20} - (\frac{1218}{20})^2)$ and expanding $\Sigma(x-45)^2$ correctly $= \Sigma x^2 - 90\Sigma x + 20 \times 45^2 = '74529' - 90 \times 1218 + 40500 = 5409$
	$\Sigma(x-45)^2 = 5409$	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	Pass	M1	Correct shape
	0.83 0.15 Fail	A1	All correct labels and probabilities
	0.35 Fail	2	
Question	Answer	Marks	Guidance
----------	--	-------	---
3(ii)	$P(F \mid P) = \frac{P(F \cap P)}{P(P)}$	M1	P(P) consistent with their tree diagram seen anywhere
	$= \frac{0.15 \times 0.65}{0.85 + 0.15 \times 0.65} \text{ or } \frac{0.15 \times 0.65}{1 - 0.15 \times 0.35}$	A1	Correct unsimplified $P(P)$ seen as num or denom of a fraction
	$=\frac{0.0975}{0.9475}$	M1	$P(F \cap P)$ found as correct product or consistent with their tree diagram seen as num or denom of a fraction
	$=\frac{39}{379}=0.103$	A1	
		4	

Question	Answer					Marks	Guidance
4(i)	x	-3	0	5	32	B1	At least 3 different correct values of <i>X</i> (can be unsimplified)
	Prob	1/6	1/2	1/6	1/6	B1	Four correct probabilities in a Probability Distribution table
						B1	Correct probs with correct values of X
						3	

October/November
2017

Question	Answer	Marks	Guidance
4(ii)	E(X) = -3/6 + 5/6 + 32/6 = 34/6 = 17/3 (5.67)	M1	Subst their attempts at scores in correct formula as long as 'probs' sum to 1
	$Var(X) = 9/6 + 25/6 + 1024/6 - (34/6)^2$	M1	Subst their attempts at scores in correct var formula
	$= 144 \left(\frac{1298}{9}\right)$	A1	Both answers correct
		3	

October/November
2017

Question	Answer	Marks	Guidance
5(i)		B1	Stem, digits 5, 7, 9 can be missing here, can be upside down
	0 2 2 5 6 9 1 0 0 0 2 2 3 3 4 7 7 8 8	B1	All leaves in correct order increasing from stem, (5, 7 and 9 can be missing), condone commas
	2 88 3 458 4 4 5	B1	Reasonable shape, requires all values of the stem, only one line for each stem and leaves must be lined up. Can be upside down or sideways. No commas. Condone one 'leaf' error.
	6 5 7 8 2 8 9 10 4 key 2 8 means 28 medals	B1	Correct key must state 'medals' or have 'medals' in leaf heading or title
		4	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

October/November 2017

Question	Answer	Marks	Guidance
5(ii)	Med = 17 LQ = 10 UQ = 35	B1	Median correct
		B1	LQ and UQ correct
		B1	Uniform scale from 2 to 104 (need 3 identified points min) and label including medals (can be in title)
	0 10 20 30 40 50 60 70 80 90 100 110 Number of medals	B1 FT	Correct box med and quartiles on diagram, FT their values
		B1	Correct end-whiskers from ends of box but not through box
		5	

Question	Answer	Marks	Guidance
6(i)	¹⁸ P ₅	M1	¹⁸ P _x or ^y P ₅ OE seen, $0 \le x \le 18$ and $5 \le y \le 18$, can be mult by $k \ge 1$
	= 1 028 160	A1	
		2	

October/November 2017

Question	Answer	Marks	Guidance
6(ii)	<i>EITHER:</i> e.g. ***(CCCCC)******** in 5!×14 ways	(B1	5! OE mult by $k \ge 1$, considering the arrangements of cars next to each other
	= 1680	B1	Mult by 14 OE, (or 14 on its own) considering positions within the line
	P (next to each other) = 1680/1 028 160	M1	Dividing by (i) for probability
	P(not next to each other) = 1 - 1680/1028160	M1	Subtracting prob from 1 (or their ' $5! \times 14$ ' from (i))
	$= 0.998 \left(\frac{611}{612}\right) \text{OE}$	A1)	
	$\frac{OR1:}{\frac{5! \times 14!}{18!}} = 0.001634$	(B1	5! OE mult by $k \ge 1$ (on its own or in numerator of fraction) considering the arrangements of cars next to each other
		B 1	Multiply by 14!, (or 14! on its own) considering all ways of arranging spaces with 5 cars together
		M1	Dividing by 18!, total number of ways of arranging spaces
	1 - 0.001634	M1	Subtracting prob from 1 (or '5! × 14!' from 18!)
	= 0.998(366)	A1)	
	OR2: 4 together - 2×5!×14C12 = 21 840 3, 1, 1 - 3×5!×14C11 = 1 31 040 3, 2 - 2×5!×14C12 = 21 840 2,2,1 - 3×5!×14C11 = 131 040 2,1,1,1 - 4×5!×14C10 = 480 480 1,1,1,1,1 - 5!×14C9 or 14P5 = 240 240	(M1	Listing the six correct scenarios (only): 4 together; 3 together and 2 separate; 3 together and 2 together; two sets of 2 together and 1 separate; 2 together and 3 separate; 5 separate.
		M1	Summing total of the six scenarios, at least 2 correct unsimplified

October/November 2017

Question	Answer	Marks	Guidance
	$Total = 1\ 026\ 480$	A1	Total of 1 026 480
		M1	Dividing their 1 026 480 by their 6(i)
	$1\ 026\ 480\ \div 1\ 028\ 160\ =\ 0.998(366)$	A1)	
		5	

October/November 2017

Question	Answer	Marks	Guidance
6(iii)	$\begin{array}{c} R(5) W(4) B(3) \\ \text{Scenarios} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	B1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Any of ${}^{5}C_{2}$ or ${}^{4}C_{2}$ or ${}^{3}C_{2}$ seen multiplied by $k > 1$ (can be implied)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Summing no more than 7 scenario totals containing at least 6 correct scenarios
	Total = 205	A1	
	OR ${}^{12}C_3 -$		
		M1	Seeing $^{12}C_3$ –', considering all selections of 3 cars
	$-{}^{5}C_{3}$ $-{}^{4}C_{3}$ $-{}^{3}C_{3}$		Subt ⁵ C ₃ OE, removing only red selections
			Subt ${}^{4}C_{3}$ OE, removing only white selections
			Subt ³ C ₃ OE, removing only black selections
	= 205	A1	Correct answer
		5	

October/November 2017

Question	Answer	Marks	Guidance
7(i)	$P(t > 6) = P\left(z > \frac{6 - 5.3}{2.1}\right) = P(z > 0.333)$	M1	Standardising, no continuity correction, no sq, no sq rt
	= 1 - 0.6304	M1	Correct area 1 – Φ (< 0.5), final solution
	= 0.370 or 0.369	A1	
		3	
7(ii)	z = 1.645	B1	± 1.645
	$1.645 = \frac{x - 5.3}{2.1}$	M1	Standardising, no continuity correction, allow sq, sq rt. Must be equated to a <i>z</i> -value
	<i>x</i> = 8.75 or 8.755 or 8.7545	A1	
		3	
7(iii)	n = 10, p = 0.05	M1	Bin term ${}^{10}C_x p^x (1-p)^{10-x}$
	$P(0, 1, 2) = (0.95)^{10} + {}^{10}C_1(0.05)(0.95)^9 + {}^{10}C_2(0.05)^2(0.95)^8$	M1	Correct unsimplified answer
	= 0.988 (0.9885 to 4 sf)	A1	
		3	
7(iv)	P(misses bus) = P(t < 0)	*M1	Seeing <i>t</i> linked to zero
	$= P\left(z < \frac{0-5.3}{2.1}\right) = P(z < -2.524) = 1 - \Phi(2.524)$ $= 1 - 0.9942$	DM1	Standardising with $t = 0$, no continuity correction, no sq, no sq rt
	= 0.0058	A1	
		3	

MATHEMATICS

9709/61 May/June 2017

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	EITHER: $\frac{\sum x}{30} - k = \frac{315}{30} = 10.5$	(M1	Dividing 315 by ± 30 and $\pm 0r - from 50.5$ need both and no more
	k = 5.5 - 10.5 = 40	A1)	Correct answer from correct working
	<i>OR:</i> $\sum x = 50.5 \times 30 = 1515$, $1515 - 30k = 315$	(M1	Mult by 50.5 by 30 and $+$ or -315 and dividing by ± 30 need all these
	<i>k</i> =40	A1)	Correct answer from correct working. 1200 gets M0
	Total:	2	
1(ii)	<i>EITHER:</i> var = 4022/30–10.5 ² (=23.817)	(M1	Subst in correct coded variance formula
	sd = 4.88	A1)	
	<i>OR:</i> $\sum_{x} x^{2} - 2(40) \sum_{x} x + 30(40)^{2} = 4022, \sum_{x} x^{2} = 77222$ Var = 77222/30 - 50.5 ² (= 23.817)	(M1	Expanding with $\pm 40\Sigma x$ and $\pm 30(40)^2$ seen
	sd = 4.88	A1)	
	Total:	2	

Question	Answer	Marks	Guidance
2	P(R) = 4/36 = 1/9	M1	Attempt at $P(R)$ by probability space diag or listing more than half the options, must see a prob, just a list is not enough
	P(T) = P(O, E) + P(E, O) = 1/4 + 1/4 = 1/2 OR P(R T) = 1/9	M1	Attempt at $P(T)$ or $P(R T)$ involving more than half the options
	$P(R \cap T) = P(3, 4) + P(4, 3) = 2/36 = 1/18 \text{ OR } P(R T) = 1/9$	B1	Value stated, not from $P(R) \times P(T)$ e.g. from probability space diagram
	As $P(R) \times P(T) = P(R \cap T)$ OR as $P(R T) = P(R)$	M1	Comparing product values with $P(R \cap T)$, or comparing $P(R T)$ with $P(R)$
	The events are independent.	A1	Correct conclusion must have all probs correct
	Total:	5	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3(i)	$W = \frac{7/10}{1/10} D L$ $W = \frac{1/10}{1/3} D L$ $\frac{1/3}{1/3} D L$ $\frac{1/3}{1/3} L$ $\frac{1/3}{1/3} L$ $\frac{1/3}{1/3} L$ $\frac{1/20}{13/20} D L$	M1	Correct shape i.e. 3 branches then 3 by 3 branches, labelled and clear annotation Condone omission of lines for first match result providing the probabilities are there.
		A1	All correct probs with fully correct shape and probs either fractions or decimals not 1.5/5 etc.
	Total:	2	

Question	Answer	Marks	Guidance
3(ii)	$P(L_1 \text{ given } W_2) = \frac{P(L_1 \cap W_2)}{P(W_2)}$	M1	Attempt at $P(L1 \cap W2)$ as a two-factor prod only as num or denom of a fraction
	$=\frac{1/5\times3/10}{3/5\times7/10+1/5\times1/3+1/5\times3/10}$	M1	Attempt at P(W2) as sum of appropriate 3 two-factor probs OE seen anywhere
		A1	Unsimplified correct P(W2) num or denom of a fraction
	$=\frac{3/50}{41/75}=9/82(0.110)$	A1	
	Total:	4	

Question	Answer	Marks	Guidance
4(i)	fd 16, 14, 11, 505, 2.5	M1	Attempt at fd (must be at least 3 freq/cw) – may be implied by graph
	fd 20 15 15 10^{-} 5^{-} 0 20 40 60 80 100 120 140 time sec	A1	Correct heights seen on graph i.e. must see a gap for fd = 2.5 etc.
		B1	Correct end points of bars and correct widths
		B1	labels fd, sec. Time can be optional. Linear axes, condone $0 \le t < 20$ etc.
	Total:	4	

Question	Answer	Marks	Guidance
4(ii)	$(10 \times 320 + 30 \times 280 + 50 \times 220 + 80 \times 220 + 120 \times 100) / 1140$	M1	using $\sum fx / n$ with mid-point attempt ±0.5, not ends not class widths
	= 45.8	A1	
	Total:	2	
5(i)	<i>p</i> = 0.07	B1	
	$P(2) = {}^{20}C_2 (0.07)^2 (0.93)^{18}$	M1	Bin term ${}^{20}C_x p^x (1-p)^{20-x}$ their p
	= 0.252	A1	
	Total:	3	
5(ii)	P(at least 1 cracked egg)= $1-(0.93)^{20}=1-0.2342$	M1	Attempt to find P(at least1 cracked egg) with their p from (i) allow $1 - P(0, 1)$ OE
	= 0.766	A1	Rounding to 0.766
	Total:	2	
5(iii)	$(0.7658)^{n} < 0.01$	M1	Eqn or inequal containing (their 0.766) ⁿ or (their 0.234) ⁿ , together with 0.01 or 0.99
	<i>n</i> = 18	A1	
	Total:	2	

Question	Answer	Marks	Guidance
6(a)(i)	z = 0.674	B1	rounding to ± 0.674 or 0.675
	$0.674 = \frac{6.8 - \mu}{0.25\mu}$	M1	standardising, no cc, no sq rt, no sq, σ may still be present on RHS
		M1	subst and sensible solving for μ must collect terms, no <i>z</i> -value needed can be 0.75 or 0.7734 need a value for μ
	$\mu = 5.82$	A1	
	Total:	4	
6(a)(ii)	$P(X < 4.7) = P\left(z < \frac{4.7 - 5.819}{1.4548}\right)$	M1	± standardising no cc, no sq rt, no sq unless penalised in (a)(i)
	$= \Phi(-0.769) = 1 - 0.7791$	M1	correct side for their mean i.e. $1-\phi$ (final solution)
	= 0.221	A1	
	Total:	3	
6(b)	$P(<15.75) = P\left(z < \frac{15.75 - 16}{0.2}\right) = 1 - P(z < 1.25) = 1 - 0.8944 = 0.1056 \text{ and}$ $P(>16.25) = 0.1056 \text{ by sym}$	*M1	Standardising for 15.75 or 16.25 no cc no sq no sq rt unless penalised in (a)(i) or (a)(ii)
	P(usable) = 1 - 0.2112 = 0.7888	B1	2φ–1 OE for required prob, (final solution)
	Usable rods=1000 × 0.7888 =	DM1	Mult their prob by 1000 dep on recognisable attempt to standardise
	788 or 789	A1	
	Total:	4	

Question	Answer	Marks	Guidance
7(a)	<i>EITHER:</i> e.g. xxxxx =5! for the other children	(B1	5! OE seen alone or mult by integer $k \ge 1$, no addition
	Put y in 6 ways, then 5 then 4 for the youngest children	B1	Mult by 6P3 OE
	Answer $5! \times 6P3 = 14400$	B1)	Correct answer
	<i>OR</i> : total - 3 tog - 2 tog = $8! - 6!3! - 6! \times 2 \times 5 \times 3 = 14400$	(B1	$8! - 6! \times k \ge 1$ seen
		B1	6!3! or 6! \times 2 \times 5 \times 3 seen subtracted
		B1)	Correct answer
	Total	3	
7(b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	One correct unsimplified option
	3 1 1 = $6C3 \times 4 \times 1$ = 80	M1	Summing 2 or more 3-factor options which can contain perms or 3 factors added. The 1 can be implied
	1 3 1 = $6 \times 4C3 \times 1$ = 24	M1	Summing the correct 3 unsimplified outcomes only
	Total=194 ways	A1	
	Total	4	

Question					Answer			Marks	Guidance
7(c)	C 2	D 1	S 1	=	$^{26}C_2 \times 9 \times 5 \times 4!$	= 351 000		M1	summing 2 or more options of the form (2 1 1), (1 2 1), (1 1 2), can have perms, can be added
	1	2	1	=	$26 \times {}^9C_2 \times 5 \times 4!$	= 112 320		M1	4 relevant products seen excluding 4! e.g. $26 \times 9 \times 8 \times 5$ or $26 \times {}^{9}P_{2} \times 5$ for 2nd outcome, condone $26 \times 9 \times 5 \times 37$ as being relevant
	1	1	2	=	$26 \times 9 \times {}^{5}C_{2} \times 4!$	= 56 160		M1	mult all terms by 4! or 4!/2!
	Tota	al = 51	9 480					A1	
							Total:	4	

MATHEMATICS

9709/62 May/June 2017

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	$4 \times 5.5 + 3x + 90 = 8 \times 29$	M1	An expression to work out total cost of individual items = $8 \times$ mean, <i>x</i> may be implied.
	$ \begin{array}{r} 112 + 3x = 232 \\ x = 40 \end{array} $	A1	Correct complete unsimplified expression / calculation
	(Cost = \$)40	A1	Units not required
	Total:	3	
1(ii)	sd = 0 so all cost the same	M1	Must see comment interpreting $sd = 0$, OE
	shirts cost $4 \times \$26 = \104 AG	A1	See $4 \times $ \$26, $130 - $ \$26 OE. Must have a final value of \$104 stated
	Total:	2	
2(i)	med = 3.2	B1	Accept 3.2 ± 0.05
	$UQ = 3.65 \le uq \le 3.7 LQ = 2.55 \le lq \le 2.6$	M1	UQ – LQ, UQ greater than <i>their</i> 'median', LQ less than <i>their</i> 'median'
	$IQR = 1.05 \leqslant iqr \leqslant 1.15$	A1	Correct answer from both LQ and UQ in given ranges
	Total:	3	
2(ii)	134 - 24 = 110	B1	Accept $108 \le n \le 112$, <i>n</i> an integer
	Total:	1	

Question	Answer	Marks	Guidance
2(iii)	200 - 12 = 188 less than length <i>l</i>	M1	188 seen, can be implied by answer in range, mark on graph.
	l = 4.5 cm	A1	Correct answer accept $4.4 \le l \le 4.5$
	Total:	2	
3(i)	$k(-2)^2$ is the same as $k(2)^2 = 4k$	B1	need to see $-2^2 k$, $2^2 k$ and $4k$, algebraically correct expressions OE
	Total:	1	
3(ii)	x -2 -1 2 4 Prob $4k$ k $4k$ $16k$	B1	-2, -1, 2, 4 only seen in a table, together with at least one attempted probability involving k
	4k + k + 4k + 16k = 1	M1	Summing 4 probs equating to 1. Must all be positive (table not required)
	$k = 1/25 \ (0.04)$	A1	CWO
	Total:	3	
3(iii)	E(X) = -8k + -k + 8k + 64k = 63k	M1	using Σpx unsimplified. FT their k substituted before this stage, no inappropriate dividing
	= 63/25 (2.52)	A1	
	Total:	2	

Question	Answer	Marks	Guidance
4	P(score is 6) = P(3, 3)	M1	Realising that score 6 is only $P(3, 3)$
	$r = r^{2} = 1/36$ r = 1/6	A1	Correct ans [SR B2 $r = 1/6$ without workings]
	P(2, 3) + P(3, 2) = 1/9 qr + rq = 1/9	M1	Eqn involving <i>qr</i> (OE) equated to 1/9 (<i>r</i> may be replaced by <i>their</i> 'r value')
	q/6 + q/6 = 1/9	M1	Correct equation with <i>their</i> 'r value' substituted
	q = 1/3	A1	Correct answer seen, does not imply previous M's
	p = 1 - 1/6 - 1/3 = 1/2	B1 FT	FT their p + their r + their q =1 , 0
	Total:	6	
5(i)	$(z=)\frac{4.2-3.9}{\sigma}$	M1	Standardising, not square root of σ , not σ^2
	z = 0.916 or 0.915	B1	Accept $0.915 \leq \pm z \leq 0.916$ seen
	$\sigma = 0.328$	A1	Correct final answer (allow 20/61 or 75/229)
	Total:	3	

Question	Answer	Marks	Guidance
5(ii)	z = 4.4 - 3.9/their 0.328 or z = 3.4 - 3.9/their 0.328 = 1.5267 = -1.5267	M1	Standardising attempt with 3.4 or 4.4 only, allow square root of σ , or σ^2
	$\Phi = 0.9364$	A1	$0.936 \leq \Phi \leq 0.937$ or $0.063 \leq \Phi \leq 0.064$ seen
	$Prob = 2\Phi - 1 = 2(0.9364) - 1$	M1	Correct area $2\Phi - 10E$ i.e. $\Phi = -(1 - \Phi)$, linked to final solution
	= 0.873	A1	Correct final answer from $0.9363 \le \Phi \le 0.9365$
	Total:	4	
5(iii)	dividing (0.5) by a larger number gives a smaller <i>z</i> -value or more spread out as sd larger or use of diagrams	*B1	No calculations or calculated values present e.g. (σ =)0.656 seen Reference to spread or <i>z</i> value required
	Prob is less than that in (ii)	DB1	Dependent upon first B1
	Total:	2	
6(i)	<i>EITHER</i> : Route 1 $A^{******}A$ in 9! / 2!2!5! = 756 ways	(*M1	Considering AA and BB options with values
	$B^{*******}B$ in 9! / 4!5! = 126 ways	A1	Any one option correct
	756 + 126	DM1	Summing their AA and BB outcomes only
	Total = 882 ways	A1)	

Question	Answer	Marks	Guidance
	<i>OR1:</i> Route 2 $A^{*******}A$ in ${}^{9}C_{5} \times {}^{4}C_{2} = 756$ ways	(M1	Considering AA and BB options with values
	$B^{*******}B$ in ${}^{9}C_{4} \times {}^{5}C_{5} = 126$ ways	A1	Any one option correct
	756 + 126	DM1	Summing their AA and BB outcomes only
	Total = 882	A1)	
	Total:	4	

Question	Answer	Marks	Guidance
6(ii)	<i>EITHER:</i> (The subtraction method) <i>As</i> together, no restrictions 8! / 2!5! = 168	(*M1	<i>Considering all As together</i> – 8! seen alone or as numerator – condone × 4! for thinking A's not identical
	As together and Bs together $7! / 5! = 42$	M1	<i>Considering all As together and all Bs together</i> – 7! seen alone or numerator
		M1	<i>Removing repeated Bs or Cs</i> – Dividing by 5! either expression or 2! 1st expression only – OE
	Total 168 – 42	DM1	Subt their 42 from their 168 (dependent upon first M being awarded)
	= 126	A1)	
	<i>OR1:</i> As together, no restrictions ${}^{8}C_{5} \times {}^{3}C_{1} = 168$	(*M1	⁸ C ₅ seen alone or multiplied
		M1	⁷ C ₅ seen alone or multiplied
	As together and Bs together ${}^{7}C_{5} \ge {}^{2}C_{1} = 42$	M1	First expression x ${}^{3}C_{1}$ or second expression x ${}^{2}C_{1}$
	Total 168 – 42	DM1	Subt their 42 from their 168 (dependent upon first M being awarded)
	= 126	A1)	
	<i>OR2:</i> (The intersperse method)	(M1	Considering all "As together" with Cs – Mult by 6!
	(AAAA)CCCCC then intersperse B and another B	M1	<i>Removing repeated Cs</i> – Dividing by 5!– [Mult by 6 implies M2]
		*M1	Considering positions for Bs – Mult by 7P2 oe –

Question	Answer	Marks	Guidance
	$\frac{6!}{5!} \times 7 \times 6 \div 2$	DM1	Dividing by 2! Oe – removing repeated <i>B</i> s (dependent upon 3rd M being awarded)
	= 126	A1)	
	Total:	5	
7(i)	$P(H) = P(BH) + P(SH) = 0.6 \times 0.05 + 0.4 \times 0.75$	M1	Summing two 2-factor probs using 0.6 with 0.05 or 0.95, and 0.4 with 0.75 or 0.25
	$= 0.330 \text{ or } \frac{33}{100}$	A1	Correct final answer accept 0.33
	Total:	2	
7(ii)	$P(S H) = \frac{P(S \cap H)}{P(H)} = \frac{0.4 \times 0.75}{0.33} = \frac{0.3}{0.33}$	M1 FT	Their $\frac{P(S \cap H)}{P(H)}$ unsimplified, FT from (i)
	$=\frac{10}{11}$ or 0.909	A1	
	Total:	2	
7(iii)	Var (B) = $45 \times 0.6 \times 0.4$ Var (S)= $45 \times 0.4 \times 0.6$	B1	One variance stated unsimplified
	Variances same	B1	Second variance stated unsimplified and at least one variance clearly identified, and both evaluated <i>or</i> showing equal <i>or</i> conclusion made
			SR B1 – Standard Deviation calculated Fulfil all the criteria for the variance method but calculated to Standard Deviation
	Total:	2	

May/June 2	2017
------------	------

Question	Answer	Marks	Guidance
7(iv)	$1 - P(0, 1) = 1 - [(0.6)^{10} + {}^{10}C_1(0.4)(0.6)^9] = 1 - 0.0464$ OR $P(2,3,4,5,6,7,8,9,10) = {}^{10}C_2(0.4)^2(0.6)^8 + \dots + {}^{10}C_9(0.4)^9(0.6) + (0.4)^{10}$	M1 M1	Bin term ${}^{10}C_x p^x (1-p)^{10-x} 0Correct unsimplified answer$
	= 0.954	A1	
	Total:	3	

MATHEMATICS

9709/63 May/June 2017

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
1	P(6) = 0.3	B1	SOI
	P(sum is 9) = P(3, 6) + P(4, 5) + P(5, 4) + P(6, 3)	M1	Identifying the four ways of summing to 9 $(3,6)$, $(6,3)$ $(4,5)$ and $(5,4)$
	$=(0.03+0.02)\times 2$	M1	Mult 2 probs together to find one correct prob of (3,6), (6,3) (4,5) or (5,4) unsimplified
	= 0.1	A1	OE
	Total:	4	
2	$np = 270 \times 1/3 = 90, npq = 270 \times 1/3 \times 2/3 = 60$	B1	Correct unsimplified <i>np</i> and <i>npq</i> , SOI
	$P(x > 100) = P\left(z > \frac{99.5 - 90}{\sqrt{60}}\right) = P(z > 1.2264)$	M1 M1	±Standardising using 100 need sq rt Continuity correction, 99.5 or 100.5 used
	= 1 - 0.8899	M1	Correct area $1 - \Phi$ implied by final prob. < 0.5
	= 0.110	A1	
	Total:	5	
3(i)	$P(S) = 0.65 \times 0.6 + 0.35 \times 0.75$	M1	Summing two 2-factor probs or 1 – (sum of two 2-factor probs)
	= 0.653 (261/400)	A1	
	Total:	2	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance			
3(ii)	$P(Std L) = \frac{P(Std \cap L)}{P(L)} = \frac{0.35 \times 0.25}{1 - 0.6525} = 0.0875/0.3475$	M1	$P(Std)' \times P(L/Std)$ 'as num of a fraction. Could be from tree diagram in 3(i).			
		M1	Denominator (1 - their (i)) or their (i) or 0.65×0.4 (or 0.6) + 0.35×0.25 (or 0.75) = $0.26+0.0875$ or P(L) from their tree diagram			
	= 0.252 (35/139)	A1				
	Total:	3				
4(a)	$P(x > 0) = P\left(z > \pm \frac{0 - \mu}{\sigma}\right)$	M1	±Standardising, in terms of μ and/or σ with 0 in numerator, no continuity correction, no $$			
	$= P\left(z > \frac{-\mu}{\mu/1.5}\right) \text{ or } P\left(z > \frac{-1.5\sigma}{\sigma}\right)$					
	= P(z > -1.5)	A1	Obtaining z value of ± 1.5 by eliminating μ and σ , SOI			
	= 0.933	A1				
	Total:	3				
4(b)	z = -1.151	B1	$\pm z$ value rounding to 1.1 or 1.2			
	$-1.151 = \frac{70 - 120}{s}$	M1	\pm Standardising (using 70) equated to a z-value, no cc, no squaring, no $$			
	$\sigma = 43.4 \text{ or } 43.5$	A1				
	Totals:	3				
Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(i)	constant probability (of completing)	B1	Any one condition of these two
	independent trials/events	B1	The other condition
	Totals:	2	
5(ii)	$P(5, 6, 7) = {^{7}C_{5}(0.7)^{5}(0.3)^{2}} + {^{7}C_{6}(0.7)^{6}(0.3)^{1}} + (0.7)^{7}$	M1 A1	Bin term ${}^{7}C_{x}(0.7)^{x}(0.3)^{7-x}$, $x \neq 0, 7$ Correct unsimplified answer (sum) OE
	= 0.647	A1	
	Total:	3	
5(iii)	P(0, 1, 2, 3, 4) = 1 - their '0.6471' = 0.3529	M1	Find P(\leq 4) either by subtracting their (ii) from 1 or from adding Probs of 0,1,2,3,4 with <i>n</i> =7 (or 10) and <i>p</i> = 0.7
	$P(3) = {}^{10}C_3(0.3529)^3(0.6471)^7$	M1	${}^{10}C_3$ (their 0.353) ³ (1 – their 0.353) ⁷ on its own
	= 0.251	A1	
6(a)(i)	First digit in 2 ways. $2 \times 4 \times 3 \times 2$ or $2 \times 4P3$	M1	1, 2 or 3 × 4P3 OE as final answer
	Total = 48 ways	A1	
	Total:	2	
6(a)(ii)	$2 \times 5 \times 5 \times 3$	M1 M1	Seeing 5^2 mult; this mark is for correctly considering the middle two digits with replacement Mult by 6; this mark is for correctly considering the first and last digits
	= 150 ways	A1	
	Totals:	3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(b)(i)	OO**** in ¹⁸ C ₄ ways	M1	¹⁸ C _x or the sum of five 2-factor products with $n = 14$ and 4, may be × by 2C2: $4C0 \times 14C4 + 4C1 \times 14C3 + 4C2 \times 14C2 + 4C3 \times 14C1 + 4C4$ (× 14C0)
	= 3060	A1	
	Totals:	2	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question		Answer		Marks	Guidance
6(b)(ii)	Choc 0 1 2 OR Choc	Not $6=1 \times {}^{16}C_6$ $5={}^4C_1 \times {}^{16}C_5$ $4={}^4C_2 \times {}^{16}C_4$ Oats	Choc = 8008 0.2066 = 17472 0.4508 = 10920 0.2817 Ginger	B1	The correct number of ways with one of 0, 1 or 2 chocs, unsimplified or any three correct number of ways of combining choc/oat/ginger, unsimplified
	0 0 1 1 1 2 2 2	0 1 2 0 1 2 0 1 2	6 5 4 5 4 3 4 3 2		
	Total = 36400 ways			M1	sum the number of ways with 0, 1 and 2 chocs and two must be totally correct, unsimplified OR sum the nine combinations of choc, ginger, oats, six must be totally correct, unsimplified
	Probability = 36400,	$/^{20}C_{6}$		M1	dividing by ${}^{20}C_6$ (38760) oe
	= 0.939 (910/969)			A1	
			Totals:	4	
7(i)	$freq = fd \times cw \ 10, 4$	0, 120, 30		M1 A1	Attempt to multiply at least 3 fds by their 'class widths'
			Totals:	2	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question				Answer				Marks	Guidance
7(ii)		length	< 5	< 10	< 20	< 25		B1	3 or more correct cfs heights on graph 10, 50, 170, 200
		cf	10	50	170	200		B1	Labels correct cf and length(cm), linear scales from zero (allow
	cf 🔺								0.5 on horizontal axis)
	200							M1	Attempt (at least three) at plotting at upper end points (either 5 or 5.5, 10 or 10.5 etc.)
	150		/					۸1	Starting at $(0, 0)$ polygon or smooth curve increasing with
	10 0							731	plotted points at lengths 5, 10, 20 and 25
						→			
	5 10 15 20 25 length (cm)								
	Totals:							4	
7(iii)	median = 14.2							B1	Median (accept 13.2 – 15.2)
	ʻ18.:	5' - '10'						M1	Subt their LQ from their UQ if reasonable from their graph
	IQ ra	ange = 8.5	5					A1FT	Correct FT using LQ = 10 and UQ between 17.5 and 19.5
	Totals:						tals:	3	
7(iv)	mean = $(2.5 \times 10 + 7.5 \times 40 + 15 \times 120 + 22.5 \times 30) / 200$							M1	Using mid points (\pm 0.5) and their frequencies from 7(i) in correct formula
	= 14							A1	
	Totals:							2	

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/62 March 2017

Paper 6 Probability and Statistics MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through [↓]" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

March 2017

Question	Answer	Marks	Guidance
1	1.6 -1.5 2.3 1.4 -0.6 -0.9 2.5 1.9 2.4 1.9 2.8 1.0	M1	Subtracting 1760, allow max 2 slips
	Mean = 1.23	A1	
	sd = 1.39	A1	
	Mean of $x = 1761.23$, sd of $x = 1.39$	A1√ [∧]	ft their coded mean and sd.
			SR B1 correct mean and sd without use of coded process
	Total:	4	

Question	Answer	Marks	Guidance
2	$\frac{{}^{12}C_3 \times {}^{28}C_4}{{}^{40}C_7}$	M1	Using combinations with attempt to evaluate 2 terms in num. and 1 in denom.
		M1	Correct numerator or denominator unsimplified
	= 0.242	A1	
	OR		
	$P(GGG) = \frac{12}{40} \times \frac{11}{39} \times \frac{10}{38} \times \frac{28}{37} \times \frac{27}{36} \times \frac{26}{35} \times \frac{25}{34} \times {}^{7}C_{3}$	M1	Multiplying 3 green probs with 4 non-green probs, without replacement
		M1	Multiplying by ⁷ C ₃
	= 0.242	A1	
	Total:	3	

March 2	017
---------	-----

Question	Answer	Marks	Guidance
3	$np = 160 \times 0.1 (16) npq = 160 \times 0.1 \times 0.9 (14.4)$	B1	Correct unsimplified <i>np</i> and <i>npq</i>
	$P(>17) = P\left(z > \frac{17.5 - 16}{\sqrt{14.4}}\right) = P(z > 0.3953)$	M1	Standardising need $$
		M1	16.5 or 17.5 seen in standardised eqn for continuity correction
	= 1 - 0.6536	M1	Correct area from their mean $(1 - \Phi)$, final solution
	= 0.346	A1	
	Total:	5	

Question	Answer	Marks	Guidance
4(i)	LQ = 0.7495 Med = 0.7507 UQ = 0.7517	M1	Attempt to find all 3 quartiles can be implied, Condone LQ=0.7496, Med=0.7506, UQ=0.7515
	0.747 0.748 0.749 0.750 0.751 0.752 0.753 Wt kg	B1	Correct median line in box using their scale
		A1	Correct quartiles in box
		B1	Correct end whiskers(not dots or boxes), lines not through box,
		B1	Correct uniform scale from at least 0.7473 to 0.7532, and label (wt) kg oe can be seen in title or scale
	Total:	5	

March 2017

Question	Answer	Marks	Guidance
4(ii)	Normal	B1	
	Symmetrical/peaks in middle or tails off quickly	B1	Need symm + another reason
	Total:	2	

Question	Answer	Marks	Guidance
5(i)	$^{12}C_1 + ^{12}C_3 + ^{12}C_5 + ^{12}C_7 + ^{12}C_9 + ^{12}C_{11}$	M1	Summing at least 4 ${}^{12}C_x$ combinations with $x = \text{odd numbers}$
		A1	Correct unsimplified answer (can be implied by final answer)
	= 2048	A1	Correct answer
	Total:	3	
5(ii)	$7! \times {}^{8}P_{4}$	B1	7! seen alone or multiplied only (cupcakes ordered)
		M1	multiplying by ⁸ P ₄ o.e (placing brownies)
	= 8467200	A1	correct answer
	Total:	3	
5(iii)	9! / (6! × 2!)	B1	9! oe seen alone or as numerator
		M1	dividing by at least one of 6!,2! (removing repeated shortbread or gingerbread biscuits) ignore 4! if present
	= 252	A1	correct answer
	Total:	3	

March 2	01	7
---------	----	---

Question			А	nswer				Marks	Guidance
6(i)	$P(2) = P(0,2) = 2/10 \times 4/6$							M1	Mult 2 probs seen (or complete listing of all options)
	= 2/15 AG							A1	Correct answer legit obtained
						Т	Fotal:	2	
6(ii)	x 0 1 2 3 5 P(X=x) $2/30$ $5/30$ $4/30$ $13/30$ $6/30$		B1	Correct values for x in table. Any additional values must have $P(x)=0$ stated					
								B1	One correct prob other than P(2) or P(3)
								B1	Correct P(3)
								B1	All correct
						Т	Fotal:	4	
6(iii)	$P(A1 Sum 3) = \frac{P(A1 \cap Sum3)}{P(Sum3)} = \frac{5/10 \times 4/6}{13/30}$					5		M1	Attempt at P($A1 \cap$ Sum 3) as num or denom of a fraction, can be by counting
								M1	Their P(3) from (ii) as num or denom of a fraction
	= 10/13(0.7)	69)						A1	
						Т	Fotal:	3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

March 2017

Question	Answer	Marks	Guidance
7(a)(i)	$0.674 = \frac{8.8 - \mu}{\sigma} \implies 0.674\sigma = 8.8 - \mu$	B1	±0.674 seen
	$-0.935 = \frac{7.7 - \mu}{\sigma} \implies -0.935\sigma = 7.7 - \mu$	B1	± 0.935 seen (condone ± 0.934)
		M1	An eqn with a z-value, μ and σ allow sq rt, sq cc
		M1	sensible attempt to eliminate μ or σ by substitution or subtraction
	$\sigma = 0.684$ $\mu = 8.34$	A1	correct answers (from –0.935)
	Total:	5	
7(a)(ii)	$P(<8.2) = P\left(z < \frac{8.2 - 7.9}{0.44}\right)$	M1	Standardising no cc no sq rt no sq
		M1	Correct area ie Φ , final solution
	= P(z < 0.6818) = 0.7524	A1	Correct prob rounding to 0.752
	$P(3) = {}^{5}C_{3} (0.7524)^{3} (0.2476)^{2}$	M1	Binomial ${}^{5}C_{x}$ powers summing to 5, any p , $\Sigma p = 1$
	= 0.261	A1	
	Total:	5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

March 2017

Question	Answer	Marks	Guidance
7(b)	$P(<1.5\mu) = P\left(z < \frac{1.5\mu - \mu}{\mu}\right) = P(z < 0.5)$	*M1	standardising with μ and $\sigma(\sigma$ may be replaced by μ)
		DM1	just one variable
	= 0.692	A1	
	Total:	3	

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/61 October/November 2016

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\textcircled{B}}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	61

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓th implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	61

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Cambridge International AS/A Level - October/November 2016 9709 61 1 $z = 0.674$ $0.674 = \frac{k-20}{7}$ MI x = 24.7 $t0.674$ seen $x = 24.7$ Standardising no cc, no sq, no sq rt 2 $\frac{\text{diff}}{\text{prob}} 0 \frac{1}{6/36} \frac{1}{10/36} \frac{2}{8/36} \frac{3}{6/36} \frac{4}{4/36} \frac{5}{2/36}$ B1 M1 M1 $0, 1, 2, 3, 4, 5$ seen in table heading or considering all different differences Attempt at finding prob of any difference in the final probes summing to 1 3 (i) $9.9 \times 0.95 \times 0.85 \times 0.15 = 0.0727$ B1 I1 (ii) $P(0, 1, 2)$ $= (0.9)^{12} + ^{12}C_1(0.1)(0.9)^{11} + ^{12}C_2(0.1)^2(0.9)^{10}$ <th>Page 4</th> <th>Mark Scheme</th> <th></th> <th></th> <th></th> <th>Syllabus</th> <th>Paper</th>	Page 4	Mark Scheme				Syllabus	Paper
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Cambridge International AS/A Level – Octob	er/Noven	nber	2016	9709	61
1 $z = 0.674$ MI ± 0.674 seen 0.674 = $\frac{k-20}{7}$ MI MI Standardising no cc, no sq, no sq nt 2 $\frac{\text{diff}}{\text{prob}} 0 \frac{1}{6/36} \frac{1}{10/36} \frac{2}{8/36} \frac{3}{6/36} \frac{4/36}{4/36} \frac{2/36}{2/36}$ BI 0, 1, 2, 3, 4, 5 seen in table heading or considering all differences Attempt at finding prob of any difference i correct prob 2 $\frac{1}{2000} \frac{1}{0.26} \frac{2}{8/36} \frac{1}{6/36} \frac{4/36}{4/36} \frac{2/36}{2/36}$ BI II 0, 1, 2, 3, 4, 5 seen in table heading or considering all differences Attempt at finding prob of any difference i correct prob 2 $\frac{1}{200000000000000000000000000000000000$	_						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	z = 0.674	M1 ± 0.674 seen				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$0.674 = \frac{k - 20}{7}$	M1		Stand	ardising no c	c, no sq, no
k = 24.7 AI [3] 2 diff 0 1 2 3 4 5 prob 6/36 10/36 8/36 6/36 1/36 2/36 BI Image: Constraint of the state		/			sq rt		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<i>k</i> = 24.7	Al	[3]			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	diff 0 1 2 3 4 5	R1		012	9 3 4 5 seen	in table
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DI		headin	ng or conside	ring all
MI Attempt at finding prob of any difference 1 correct prob Probs summing to 13 (i) $0.9 \times 0.95 \times 0.85 \times 0.1 = 0.0727$ B1[1](ii) $P(0, 1, 2)$ $= (0.9)^{12} + ^{12}C_1 (0.1)(0.9)^{11} + ^{12}C_2 (0.1)^2(0.9)^{10}$ MI MI A1Bin term $^{12}C_x (p)^x(1-p)^{12-x} p$ $< 1, x \neq 0$ Bin term $^{12}C_x (p)^x(1-p)^{12-x} p$ $< 1, x \neq 0$ 		prob 6/36 10/36 8/36 6/36 4/36 2/36			differ	ent difference	es
Expectation = (0+10+16+18+16+10)/36 = 70/36 = 1.94AI MI MI A1Interact Probs summing to 13(i) $0.9 \times 0.95 \times 0.85 \times 0.1= 0.0727$ B1[1](ii) $P(0, 1, 2)$ = $(0.9)^{12} + ^{12}C_1 (0.1)(0.9)^{11} + ^{12}C_2 (0.1)^2(0.9)^{10}$ = 0.889 M1 A1Bin term $^{12}C_x (p)^v (1-p)^{12-x} p$ Bin expression $p = 0.1$ or $0.9, n$ = 12, 2 or 3 terms(iii) $X \sim B(50, 0.85)$ Expectation = $50 \times 0.85 (= 42.5)$ Var = $50 \times 0.85 \times 0.15 (= 6.375)$ M1 A1[3]4(i) $P(<1) = P\left(z < \frac{1-1.04}{0.017}\right) = P(z < -2.353)$ $= 1 - 0.9907$ $= 0.0093$ M1 A1Standardising no cc, no $$ or sq(iii) $z = -1.765$ $-1.765 = \frac{1-\mu}{0.017}$ $= 1.03$ B1[1]Or anything in between(iv)expected number 1000 ÷ 1.03 = 971 or 970B1 $$ [1]Or anything in between, ft their(iv)expected number = 1000 ÷ 1.03 = 971 or 970B1 $$ [1]Or anything in between, ft their			M1		Atten	pt at finding	prob of any
Expectation = $(0+10+16+18+16+10)/36$ = $70/36$ = 1.94 MI A1Probarmation3 (i) $0.9 \times 0.95 \times 0.85 \times 0.1 = 0.0727$ B1[1](ii) $P(0, 1, 2)$ = $(0.9)^{12} + ^{12}C_1 (0.1)(0.9)^{11} + ^{12}C_2 (0.1)^2(0.9)^{10}$ = 0.889 MI A1Bin term $^{12}C_x (p)^s (1-p)^{12-x} p$ $S_1 x \neq 0$ Bin expression $p = 0.1$ or $0.9, n$ = $12, 2 \text{ or } 3 \text{ terms}$ (iii) $X \sim B(50, 0.85)$ Expectation = $50 \times 0.85 (= 42.5)$ Var = $50 \times 0.85 \times 0.15 (= 6.375)$ MI A1 50×0.85 seen oe can be implied Correct unsimplified mean and var4 (i) $P(<1) = P\left(z < \frac{1-1.04}{0.017}\right) = P(z < -2.353)$ $= 1 - 0.9907$ $= 0.0093$ MI A1Standardising no cc, no $$ or sq(ii)expected number $1000 \div 1.04 = 961$ or 962 B1[1]Or anything in between(iii) $z = -1.765$ $-1.765 = \frac{1-\mu}{0.017}$ $= 1.03$ B1[1]Or anything in between(iv)expected number $1000 \div 1.03 = 971$ or 970 B1 $$ [1]Or anything in between, ft their			A1		1 corr	ence ect prob	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Expectation = $(0+10+16+18+16+10)/36$	M1		Probs	summing to	1
Image: Second		= 70/36		5.63			
3 (i) $0.9 \times 0.95 \times 0.85 \times 0.1 = 0.0727$ B1[1](ii) $P(0, 1, 2)$ $= (0.9)^{12} + {}^{12}C_1 (0.1)(0.9)^{11} + {}^{12}C_2 (0.1)^2 (0.9)^{10}$ M1 M1 M1 		= 1.94	AI	[5]			
(ii) $P(0, 1, 2)$ $= (0.9)^{12} + {}^{12}C_{1} (0.1)(0.9)^{11} + {}^{12}C_{2} (0.1)^{2}(0.9)^{10}$ $= 0.889$ M1 M1 M1 A1Bin term ${}^{12}C_{x} (\rho)^{x}(1-\rho)^{12-x} p$ $= 1, x \neq 0$ Bin expression $p = 0.1$ or $0.9, n$ $= 12, 2$ or 3 terms(iii) $X \sim B(50, 0.85)$ Expectation $= 50 \times 0.85 (= 42.5)$ Var $= 50 \times 0.85 \times 0.15 (= 6.375)$ M1 A1 50×0.85 seen oe can be implied Correct unsimplified mean and var4(i) $P(<1) = P\left(z < \frac{1-1.04}{0.017}\right) = P(z < -2.353)$ $= 0.0093$ M1 A1 3 Standardising no cc, no $$ or sq(ii)expected number $1000 \div 1.04 = 961$ or 962 B1[1]Or anything in between(iii) $z = -1.765$ $-1.765 = \frac{1-\mu}{0.017}$ $= 1.03$ B1 $A1$ $\frac{1}{23}$ $\frac{1}{2}$ to 1.77 Standardising must have a z- value, allow $$ or sq(iv)expected number $= 1000 \div 1.03 = 971$ or 970 B1 $\sqrt[4]{}$ [1]Or anything in between, ft their (iii)	3 (i)	$0.9 \times 0.95 \times 0.85 \times 0.1 {=}\ 0.0727$	B1	[1]			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(ii)	P(0, 1, 2)	M1		Bin te	$\operatorname{erm}^{12} \operatorname{C}_{x}(p)^{x}(p)$	$(1-p)^{12-x}$
(ii) $X \sim B(50, 0.85)$ Expectation = 50 × 0.85 (= 42.5) Var = 50 × 0.85 × 0.15 (= 6.375) 4 (i) $P(<1) = P\left(z < \frac{1-1.04}{0.017}\right) = P(z < -2.353)$ $= 1 - 0.9907$ $= 0.0093$ (ii) expected number 1000 ÷ 1.04 = 961 or 962 B1 [1] Or anything in between $= 1.03$ (iv) expected number = 1000 ÷ 1.03 = 971 or 970 B1 $\sqrt[4]$ [1] Or anything in between, ft their		$= (0.9)^{12} + {}^{12}C_{1}(0.1)(0.9)^{11} + {}^{12}C_{2}(0.1)^{2}(0.9)^{10}$	M1		< 1, x	$\neq 0$	0.1 or 0.9
= 0.889 A1 [3] (iii) $X \sim B(50, 0.85)$ Expectation = 50 × 0.85 (= 42.5) Var = 50 × 0.85 × 0.15 (= 6.375) M1 50 × 0.85 seen oe can be implied Correct unsimplified mean and var 4 (i) $P(<1) = P\left(z < \frac{1-1.04}{0.017}\right) = P(z < -2.353)$ M1 Implied Standardising no cc, no $\sqrt{0}$ or sq 4 (ii) $P(<1) = P\left(z < \frac{1-1.04}{0.017}\right) = P(z < -2.353)$ M1 Implied Standardising no cc, no $\sqrt{0}$ or sq (iii) expected number 1000 ÷ 1.04 = 961 or 962 B1 [1] Or anything in between (iii) $z = -1.765$ $-1.765 = \frac{1-\mu}{0.017}$ B1 ± 1.76 to 1.77 Standardising must have a z-value, allow $\sqrt{0}$ or sq (iv) expected number = 1000 ÷ 1.03 = 971 or 970 B1 $\sqrt[n]$ [1] Or anything in between, ft their fiii)		$=(0.5)$ + $C_1(0.1)(0.5)$ + $C_2(0.1)(0.5)$	1711		= 12,	2 or 3 terms	0.1 01 0.7,
(iii) $X \sim B(50, 0.85)$ Expectation = 50×0.85 (= 42.5) Var = $50 \times 0.85 \times 0.15$ (= 6.375) M1 50 × 0.85 seen oe can be implied Correct unsimplified mean and var 4 (i) $P(<1) = P\left(z < \frac{1-1.04}{0.017}\right) = P(z < -2.353)$ $= 1 - 0.9907$ $= 0.0093$ M1 Standardising no cc, no $$ or sq (ii) expected number 1000 \div 1.04 = 961 or 962 B1 [1] Or anything in between (iii) $z = -1.765$ $-1.765 = \frac{1-\mu}{0.017}$ $= 1.03$ B1 \pm 1.76 to 1.77 		= 0.889	A1	[3]			
Image: Second stateImage: Second stateImage: Second stateImage: Second stateImage: Second stateImage: Second stateStat	(iii)	$X \sim B(50, 0.85)$	M1		50 ×	0.85 seen oe	can be
Expectation = 50 × 0.85 (= 42.5) Var = 50 × 0.85 × 0.15 (= 6.375)A1[2]Correct unsimplified mean and var4(i) $P(<1) = P\left(z < \frac{1-1.04}{0.017}\right) = P(z < -2.353)$ $= 1 - 0.9907$ $= 0.0093$ M1 A1[3]Standardising no cc, no $$ or sq $1 - \Phi$ (final process)(ii)expected number 1000 ÷ 1.04 = 961 or 962B1[1]Or anything in between(iii) $z = -1.765$ $-1.765 = \frac{1-\mu}{0.017}$ $= 1.03$ B1[3] ± 1.76 to 1.77 Standardising must have a z- value, allow $$ or sq(iv)expected number = 1000 ÷ 1.03 = 971 or 970B1 $\sqrt{^h}$ [1]Or anything in between, ft their (iii)					implie	ed	
Val = 30 × 0.03 × 0.13 (= 0.373) AI [2] Val 4 (i) $P(<1) = P\left(z < \frac{1-1.04}{0.017}\right) = P(z < -2.353)$ M1 Standardising no cc, no $\sqrt{0}$ or sq = 1 - 0.9907 M1 [3] Standardising no cc, no $\sqrt{0}$ or sq (ii) expected number 1000 ÷ 1.04 = 961 or 962 B1 [1] Or anything in between (iii) $z = -1.765$ B1 [1] Or anything in between (iii) $z = -1.765$ B1 [1] Or anything in between (iii) $z = -1.765$ B1 [1] Or anything in between (iii) $z = -1.765$ B1 [3] ± 1.76 to 1.77 (iii) $z = -1.03$ B1 [3] ± 0.177 (iv) expected number = 1000 ÷ 1.03 = 971 or 970 B1 $\sqrt[n]$ [1] Or anything in between, ft their		Expectation = 50×0.85 (= 42.5) Vor = $50 \times 0.85 \times 0.15$ (= 6.275)	A 1	[2]	Corre	ct unsimplifi	ed mean and
4 (i) $P(<1) = P\left(z < \frac{1-1.04}{0.017}\right) = P(z < -2.353)$ M1 Standardising no cc, no $\sqrt{0}$ or sq $= 1 - 0.9907$ $= 0.0093$ M1 [3] $1 - \Phi$ (final process) (ii) expected number $1000 \div 1.04 = 961$ or 962 B1 [1] Or anything in between (iii) $z = -1.765$ B1 [1] Or anything in between (iii) $z = -1.765$ B1 [1] Standardising must have a z-value, allow $\sqrt{0}$ or sq (iv) expected number = $1000 \div 1.03 = 971$ or 970 B1 $\sqrt{1}$ [1] Or anything in between, ft their (iii)		$vai = 50 \times 0.85 \times 0.15 (-0.575)$	AI	[2]	vai		
$= 1 - 0.9907$ $= 0.0093$ M1 A1[3] $1 - \Phi$ (final process)(ii)expected number $1000 \div 1.04 = 961$ or 962 B1[1]Or anything in between(iii) $z = -1.765$ $-1.765 = \frac{1-\mu}{0.017}$ 	4 (i)	$P(<1) = P\left(z < \frac{1-1.04}{0.017}\right) = P(z < -2.353)$	M1		Stand	ardising no c	c, no $$ or so
Image: Second		= 1 - 0.9907	M1		1 – Φ	(final proces	s)
(ii)expected number $1000 \div 1.04 = 961$ or 962 B1[1]Or anything in between(iii) $z = -1.765$ $-1.765 = \frac{1-\mu}{0.017}$ $= 1.03$ B1 $= 1.76$ to 1.77 Standardising must have a z-value, allow $\sqrt{0}$ or sq(iv)expected number = $1000 \div 1.03 = 971$ or 970 B1 [1]Or anything in between, ft their		= 0.0093	A1	[3]		(-)
(iii) $z = -1.765$ $-1.765 = \frac{1-\mu}{0.017}$ = 1.03 (iv) expected number = 1000 ÷ 1.03 = 971 or 970 (iv) expected number =	(ii)	expected number $1000 \div 104 = 961$ or 962	B1	۲ [1]	Or an	vthing in bet	ween
(iii) $z = -1.765$ $-1.765 = \frac{1-\mu}{0.017}$ = 1.03 (iv) expected number = 1000 ÷ 1.03 = 971 or 970 (iv) expected number =							
$\begin{vmatrix} -1.765 = \frac{1-\mu}{0.017} \\ = 1.03 \end{vmatrix}$ $\begin{vmatrix} M1 \\ A1 \end{vmatrix} \begin{bmatrix} 3 \end{bmatrix}$ $\begin{cases} \text{Standardising must have a z-value, allow \sqrt{\text{ or sq}} \end{cases} \begin{vmatrix} \text{(iv)} \\ \text{expected number} = 1000 \div 1.03 = 971 \text{ or } 970 \end{cases} B1 \sqrt[4]{} \begin{bmatrix} 1 \\ \text{(iii)} \\ \text{(iii)} \end{vmatrix}$	(iii)	z = -1.765	B1		± 1.76	o to 1.77	
(iv) expected number = $1000 \div 1.03 = 971$ or 970 A1 [3] value, allow $\sqrt{\text{ or sq}}$ [1] Or anything in between, ft their (iii)		$-1.765 = \frac{1-\mu}{0.017}$	M1		Stand	ardising mus	t have a z-
(iv) expected number = $1000 \div 1.03 = 971$ or 970 B1 (1) Or anything in between, ft their (iii)		=1.03	A1	[3]	value,	, allow $\sqrt{100}$ or s	q
(iv) expected number = $1000 \div 1.03 = 9/1$ or $9/0$ B1 [1] Or anything in between, ft their (iii)	·····						0.1
	(iv)	expected number = $1000 \div 1.03 = 971$ or 970	B14,		Or an (iii)	ything in bet	ween, it the

Ρά	age 5	Mark Scheme	Syllabus	Paper			
		Cambridge International AS/A Level – Octobe	er/Noven	nber	2016	9709	61
5	(a)	a a D*NI*D*D*I	M1		Multi	by 51 in num	
5	(a)	$51 ^{6}P.$	IVII		Wiuit	by 5! In num	
		$=\frac{3}{3!}\times\frac{4}{2!}$	M1 M1		Divid Mult	ing by 3! or $\frac{1}{2}$	2!
		= 3600	A1	[4]	Iviuit	by F ₄ 0e	
(b)	(i)	$^{7}C_{5} \times {}^{5}C_{4} \times {}^{2}C_{1} \times {}^{2}C_{1}$	M1		Mult 4	4 combs of w	which three
		= 420	A1	[2]			
	(ii)	both in team	M1		Evalu	ating both in	team and
		${}^6\mathrm{C}_4 \times {}^4\mathrm{C}_3 \times 2 \times 2 = 240$	M1		240 se	een can be ui r_{420} their 2	nsimplified
		420 - 240 = 180 ways	A1		it the	r 420, their 2	240
		OR					
		Bat in bowl out + bowl in bat out + both out	M1		summ both i	ning 2 or 3 op n team	otions not
		$= {}^{6}C_{4} \times {}^{4}C_{3} \times 2 \times 2 + {}^{6}C_{5} \times {}^{4}C_{3} \times 2 \times 2 + {}^{6}C_{5} \times {}^{4}C_{4} \times 2 \times 2$	A1		2 or 3	options corr	ect
		= 60 + 96 + 24 = 180 ways	A1		Corre worki	ct ans from c	correct
		OR				0	
		Bat in bowl out + bat out = $60 + {}^{6}C_{5} \times {}^{5}C_{4} \times 2 \times 2 = 60 + 120 = 180$ ways	M1 A1 A1	[3]	As ab bowl	ove, or bowl out	in bat out +
6	(i)	$P(B, B) = 1/4 \times 2/5$	M1		Multi	plying two d	ifferent probs
		= 1/10	A1	[2]			
	(ii)	P(X = 1) = P(R,R) + P(B,B)	M1		Findi	ng P(R, R) (=	=3/5)
		$= \frac{3}{4} \times \frac{4}{5} + \frac{1}{10}$ = 14/20 (7/10)	MI A1	[3]	Sumn	ning two opti	ons
	(iii)	P(B B)	M1		their (i) seen as nu	m or denom
		$P(B \cap B) = 1/10$			of a fi	raction	
		$=\frac{P(B)}{P(B)} = \frac{1}{3/4 \times 1/5 + 1/4 \times 2/5}$	M1		$\frac{3}{4} \times p$	$_{1} + \frac{1}{4} \times p_{2}$ se	en anywhere
			A1		1/4 (u or der	nsimplified) nom of a frac	seen as num tion, www
		= 2/5	A1	[4]			

P	age 6			Mark Scheme			Syllabus	Paper		
		Cambridge Inte	erna	tional AS/A Level – Octob	er/Nove	mber	2016	9709	61	
						-	T			
7	(i)	Factory A	Factory AFactory B3158				Atten factor	npt at orderin y <i>B</i>	g	
		9 9887430 53111	4 5 6	2 4 7 8 9 1 4 6 8 4	B1		Corre	ct stem		
		55111	U		B1		Corre	ct leaves fact	ory A	
		Key: 9 4 2 rep	Key: 9 4 2 represents 0.049g for factory					ct leaves fact	ory B	
		<i>A</i> and 0.042 g for fa	actor	ry B	B1	[5]	Corre factor	ct key need f y <i>B</i> and units	actory A and	ł
	(ii)	median factory $B =$	0.04	18 g	B1		using	their key i.e.	48, 0.48 etc	;
		IQR = UQ - LQ = 0.055 - 0.04					Subt t	their LQ fron	n their UQ	
		= 0.015			A1	[3]	101 14			
	(iii)	generally heavier in Masses more sprea	n fac d ou	tory A t in factory B	B1 B1	[2]	oe must i	refer to conte	ext, e.g. mass	3

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/62 October/November 2016

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\textcircled{B}}$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	62

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓th implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	62

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

raye 4	

Mark Scheme Cambridge International AS/A Level – October/November 2016

SyllabusPaper970962

1		P(C give	$(en L) = \frac{P}{Q}$	$\frac{(C \cap L)}{P(L)}$			M1		$P(C \cap L)$ seen as num or denom of a fraction
		$=\frac{1}{0.65}$	$\frac{0}{5 \times 0.1 + 0}$	$\frac{65 \times 0.1}{3 \times 0.15 + 0.15}$	0.05×0.6	-	A1		Correct unsimplified $P(C \cap L)$ as numerator
		0.06	55				M1		Summing three 2-factor products seen anywhere
		$=\frac{1}{0.1}$	4				A1		0.14 (unsimplified) seen as num or denom of a fraction
		= 0.46	$4, \frac{13}{28}$				A1	[5]	oe
2	(i)	P(1 T-sh	nirt) = $\frac{{}^{3}C_{1}}{1}$	$\frac{\times {}^{9}C_{2}}{2}$			B1		Correct num unsimplified
		27/		$^{2}C_{3}$			B1	[0]	Correct denom unsimplified
		= 2 //	22			AC	BI	[3]	Answer given, so process needs to be convincing
		OR 3/12	2×9/11×8/	$10 \times {}^{3}C_{1}oe$			M1		Mult 3 probs diff denoms (not a/3 x b/4 x c/5) Mult by ${}^{3}C$ as
		= 27/55				AC	A1		Answer given, so process needs to be convincing
	(ii)	X	0	1	2	3	B1		0, 1, 2, 3 only seen in top line (condone
		Prob	84/220	27/55	27/220	1/220			additional values if Prob stated as 0)
						11	B1		One correct prob, correctly placed in table
							B1 B1√ [≜]	[4]	One other correct prob ft $\Sigma p = 1$, 4 values in table
3	(i)	Bin (7, 0).8)				M1		${}^{7}C_{n} p^{n} (1-p)^{7-n}$ seen
		P(6, 7) = 0.577	$= {}^{7}C_{6}(0.8)$	$^{6}(0.2)^{1}+($	$(0.8)^7$		M1 A1	[3]	Correct unsimplified expression for P(6,7)
	<i>(</i> ••)	0.577	1000 2	20				[-]	
	(11)	mean = $Var = 1($	$100 \times 0.2 =$ $00 \times 0.2 \times 0.2$	= 20 8 = 16			BI		Correct unsimplified mean and var
		P(at mos	(130) = P	$z < \frac{30.5}{2}$	$\frac{-20}{}$		M1 M1		Standardising must have sq rt, their μ , variance
			,		16)		M1		Correct area Φ , from final process
		= P(z < z)	2.625)				A 1	[5]	
		= 0.996						[3]	
4	(i)	P(< 4.5)	$= P\left(z \right)$	$< \frac{4.5 - 4.2}{0.6}$	$\left(z\right) = P(z < z)$	(0.5)	M1		Standardising once no cc no sq no sq rt
		= 0.6915	5	25 10					
		P(< 3.5)	$= P \left(z < - 2 \right)$	$\left(\frac{5.3-4.2}{0.6}\right)$	= P(z < -1)	.167)			
		= 1 - (0.8784 = 0	0.1216			M1		$\Phi_1 - (1 - \Phi_2) [P_1 - P_2, 1 > P_1 > 0.5, 0.5 > P_2 > 0]$ oe
		0.6915 -	- 0.1216 =	0.570			A1	[3]	

Ра	ige 5 Mark Scher Cambridge International AS/A Level	ne I – Oci	obe	Syllabus Paper r/November 2016 9709 62
			1	
(ii)	$z = 1.175$ $1.175 = \frac{t - 4.2}{0.6}$	B1 M1		± 1.17 to 1.18 seen Standardising no cc, allow sq, sq rt with z – value
	t = 4.91	A1	[3]	(not ± 0.8106 , 0.5478, 0.4522, 0.1894, 0.175 etc.) Correct answer from $z = 1.175$ seen (4sf)
(iii)	$(0.88)^{n} < 0.003$	M1		Inequality or eqn in 0.88, power correctly placed using <i>n</i> or $(n\pm 1)$, 0.003 or $(1 - 0.003)$ oe
	$n > \log (0.003)/\log (0.88)$ n > 45.4 n = 46	M1 A1	[2]	Attempt to solve by logs or trial and error (may be implied by answer) Correct integer answer
5 (i)	cw 5, 5, 10, 20, 40 fd 8, 6, 1.8, 1.7, 0.2 fd▲	M1 M1		cw either 4 or 5 etc fd or scaled freq [f/their cw attempt] fd may be ÷ 1000
		A1		Correct heights seen accurately on diagram
		B1		Correct bar ends, accurately plotted on axis
	0 10 20 30 40 50 60 70 80 90 Capacity (1000s)	B1	[5]	Labels fd and capacity (thousands) Correct horizontal scale required. Vertical scale linear from 0
(ii)	(5×40+10×30+17.5×18+32.5×34+62.5×8)/130	M1		$\Sigma f x/130$ where x is mid point attempt (value within class, not end pt or cw)
	= 2420/130 = 18.6 thousand	A1	[2]	
(iii)	median group = $8 - 12$ thousand LQ group = $3 - 7$ thousand	B1 B1	[2]	Thousands not needed

	Page 6 Mark Scheme							Paper	
			Cambridge International AS/A Leve	I – Oci	obe	r/November 2016	9709	62	
6 ((i) e. $\frac{4}{2}$	g. (0) $\frac{1}{2!} \times \frac{6}{2}$	DAEE)(CPNHGN) or cv $\frac{!}{!} \times 2 = 8640$	M1 M1 A1	[3]	4!/2! or 6!/2! seen an All multiplied by 2 of	nywhere De		
(1	ii) Fi O Se	irst M To EE EB = 72 \mathbf{PR}	Method tal ways = $10!/2!2! = 907200$ together in $9!/2!$ ways = 181440 not together = $907200 - 181440$ 25760 d Method	B1 M1 M1 A1	[4]	Total ways together EE together attempt Considering total – 1 81/21 Seen	correct alone EE together		
	In In Te	nsert nsert otal	E in 9 ways 2nd E in 8 ways, ÷2 = 8!/2!×9×8÷2 = 725760	M1 M1 A1		Interspersing an E, x additional factors. Mult by 9×8(÷2), ⁹ C	x n where n= $x_2 \text{ or } {}^9P_2 \text{ only}$	7,8,9. Condo oe	one
(ii	ii) Fi E S L L T E T	= 1 EEN*** Tota PR econnistin istin otal ENN otal	Method * in ⁶ C ₂ ways 5 different ways N in 1 way al 16 ways d Method g with at least 8 different correct options g all correct options = 15 different ways N in 1 way 16 ways	M1 M1 A1 B1 A1 M1 M1 A1 B1 A1	[5]	${}^{6}C_{x}$ or ${}^{y}C_{2}$ seen alone (1x1x) ${}^{6}C_{2}$ seen strict EENN only Value stated or implication correct value stated Award 16 SRB2 if r	e or mult by a ctly alone or ied by final a	k > 1, x<6, y added to the answer present	/>2 eir

MATHEMATICS

9709/63 October/November 2016

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	63

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓th implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	63

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4 Mark Scheme Syllabus Paper						
		Cambridge International AS/A Level	– Octoł	ber/No	ovember 2016 9709 63		
1		total ways ${}^{10}C_5 = 252$ MW together e.g. (MW)*** in ${}^{8}C_3$ ways = 56 MW not together = 252 - 56 = 196 ways OR 1 $2 {}^{8}C_4 + {}^{8}C_5$ $2 {}^{8}C_4 = 2x70 = 140; {}^{8}C_5 = 56$ $2 {}^{8}C_4 + {}^{8}C_5 = 196$ OR 2 $2 {}^{9}C_5 - {}^{8}C_5$ $2 {}^{9}C_5 - {}^{8}C_5 = 252; {}^{8}C_5 = 56$ $2 {}^{9}C_5 - {}^{8}C_5 = 196$	M1 B1 A1 M1 B1 A1 M1 B1 A1	[3]	¹⁰ C ₅ or 252 252 and 56 seen, may be unsimplified $2 {}^{n}C_{4} + {}^{n}C_{5}$ 140 and 56 seen may be unsimplified $2 {}^{9}C_{5}$ 252 and 56 seen, may be unsimplified		
2	(i)	$p = \frac{1}{3}$ $P(\ge 2) = 1 - P(0, 1) = 1 - (\frac{2}{3})^{4} - {}^{4}C_{1}(\frac{1}{3})(\frac{2}{3})^{3}$ or $P(2,3,4) = {}^{4}C_{2}(\frac{1}{3})^{2}(\frac{2}{3})^{2} + {}^{4}C_{3}(\frac{1}{3})^{3}(\frac{2}{3}) + (\frac{1}{3})^{4}$ $= \frac{11}{27}, 0.407$	M1 M1 A1	[3]	Bin term ${}^{4}C_{x}p^{x}(1-p)^{4-x} 0Correct unsimplified answer$		
	(ii)	P(sum is 5) = P(1, 1, 1, 2) ×4 = $(1/3)^4 \times 4$ = $\frac{4}{81}$, 0.0494	M1 M1 A1	[3]	1, 1, 1, 2 seen or 4 options Mult by $(1/3)^4$		
3	(i) (ii)	e.g. **5 in ${}^{3}P_{2}$ ways = 6 **7 in ${}^{3}P_{2}$ = 6 Total 12 AG OR listing 457, 547, 467, 647, 567, 657, 475, 745 465, 645, 675, 765 AG Total 12 AG 1 digit in 2 ways	M1 M1 A1 M1 M1 A1 M1	[3]	Recognising ends in 5 or 7, can be implied Summing ends in 5 + ends in 7 oe Correct answer following legit working Listing at least 5 different numbers ending in 5 Listing at least 5 different numbers ending in 7 Consider at least 3 options with different		
		2 digits in *5 or $*7 = {}^{3}P_{1} \times 2 = 6$ 4 digits in ***5 or ***7 = ${}^{3}P_{3} \times 2 = 12$ Total ways = 32	A1 A1	[3]	number of digits. If no working, must be 3 or 4 from 2, 6, 12, 12 One option correct from 1, 2 or 4 digits		
4	(i)	64/250, 0.256	B1	[1]	oe		
	(ii)	190/250, 0.76(0)	B1	[1]	oe		

	Pa	Page 5 Mark Scheme			Syllabus	Paper			
			Cambridge International AS/A Level -	- Octob	ber/No	ovember 2016	9709	63	
(ii	ii)	P(X) =	80/250 = 8/25	M1		attempt at P(X)			
		P(Y) =	100/250 = 2/5	M1		attempt at P(Y)			
		$P(X \cap$	(Y) = 32/250 = 16/125	B1		oe			
		$P(X) \times$	$P(Y) = \frac{8}{25} \times \frac{2}{5} = \frac{16}{125}$	M1		comparing P(<i>X</i>) as independence	\times P(Y) and I has not been	$P(X \cap Y)$ so a n assumed	long
		Since I indepe	$P(X) \times P(Y) = P(X \cap Y)$ therefore endent	A1	[5]	correct answer w	with all work	ing correct	
5	(i)	cf 60 45		B1		Horizontal axis vertical axis from two CF graphs of	from min of m 0 to minin on the same s	140 to 190 a num of 60 ar set of axes.	and nd
		30	boys	B1		Labels: CF; heig correct places	ght (ht) in cm	n; girls; boys	s in
		15-		B1		CF graph going (170, 43), (180,	through (15 55) and (190	0, 0) , (160,), 60)	20),
		140	150 160 170 180 190 Ht in cm	B1	[4]	CF graph going (160,33), (170,5	through (140 0), (180, 60)	0, 0), (150, 1 [and (190, 0	.2), 60)]
(i	ii)	42 (± 1	1) shorter than 165.	M1		Line or reading	from 165 on	their cf grap	ph oe
		(18(± = 30%	1))/60×100 (± 1.7%)	M1 A1	[3]	subtracting non	100		
(ii	ii)	can see is more	e which is taller; see which of boys or girls e spread out	B1	[1]	any sensible cor	nment in cor	ntext	
6	(i)	P(smal	$ l = P\left(z < \frac{95 - 150}{50}\right)$	M1		± standardising	using 95, no	cc, no sq, no	o sq rt
		= P(z < = 1 - 0) = 0.13	< -1.1) 0.8643 6	M1 A1	[3]	$1 - \Phi$ (in final a	answer)		
(i	ii)	<i>z</i> = 1.2	282	B1		± rounding to 1.	28		
		1.282 =	$=\frac{x-150}{50}$	M1		Standardised eq	n in their z al	llow cc	
		x = 21	4 g	A1	[3]				
(ii	ii)	P(smal P(med	ll) = 0.1357, P(large) = 0.1357 symmetry ium) = $1 - 0.1357 \times 2 = 0.7286$ AG	B1	[1]	Correct answer	legit obtaine	d	
(b)	Expect 0.1357 Total c = 1930	ted cost per banana = $0.1357 \times 10 + 0.7286 \times 20 = 19.3215$ cents cost of 100 bananas 0 (cents) (\$19.30)	*M1 DM1 A1	[3]	Attempt at multi and summing Mult by 100	iplying each	'prob' by a	price

	Page 6 Mark Scheme					Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016						63
7 (i)	P(2) = 0.12	$^{7}C_{2}(0.1)^{2}(0.9)^{5}$	M1 A1	[2]	Bin term $^{7}C_{2}p^{2}(2)$	$(1-p)^5 0 < 0$	<i>p</i> < 1
(ii)	(0.15)	$(0.1)^2 (0.75)^2 \times 5!/2!2!$	M1		Mult probs for c where $a + b + c$	options, (0.15 sum to 5	$(0.1)^{b}(0.75)^{c}$
	= 0.02	53 or 81/3200	M1 A1	[3]	Mult by 5!/2!2!	oe	
(iii)	mean = Var =	= 365×0.15 (= 54.75 or 219/4) 365× 0.15×0.85 (= 46.5375 or 3723/80)	B1		Correct unsimpl	ified mean a	nd var, oe
	P(x > z) = P(z > z)	$P(z > \frac{44.5 - 54.75}{\sqrt{46.5375}}) = -1.5025$	M1 M1 M1		± Standardising cc either 44.5 (ο Φ	need sq rt or 43.5)	
	= 0.93	3	A1	[5]	Correct answer	accept 0.934	

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/61 May/June 2016

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	61

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol I implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	61

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4

Mark Scheme Cambridge International AS/A Level – May/June 2016

SyllabusPaper970961

Question	Answer	Marks	Guidance
1	z = 1.037	B1	Rounding to 1.04
	$1.037 = \frac{1.8 - 1.62}{\sigma}$	M1	Standardising attempt allow cc no sq rt must have a <i>z</i> -value i.e. not 0.8023 or 0.5596.
	$\sigma = 0.18/1.037 = 0.174$	A1 [3]	
2	P (throwing a 4) = $(1 - 0.4) / 4$ = 0.15	M1 A1	Sensible attempt to find P(1) Correct answer
	P(at most 1) = P(0, 1) or 1 – P(2, 3) = $(0.85)^3 + {}^3C_1 (0.15) (0.85)^2$	M1 M1	A binomial term with ${}^{3}C_{n}$ oe any p Binomial expression with ${}^{3}C_{n}$ P(0, 1) or 1 - P(2, 3) n = 0.15 or 0.85
	= 0.939	A1 [5]	p = 0.15 of 0.85
3 (i)	P (cup of coffee) = $0.6 \times 0.9 + 0.4 \times 0.3$ = 0.66	M1 A1 [2]	Summing two 2-factor probabilities Correct answer accept 0.660
(ii)	P(Not on time no cup of coffee)	M1	0.4×0.7 seen as num or denom of a fraction
	$= \frac{P(\text{noton time} \cap \text{no cup})}{P(\text{no cup})} = \frac{0.4 \times 0.7}{1 - 0.66}$	M1	Attempt at P(no cup) as $0.1 \times p_1 + 0.7 \times p_2$ or as $1 - (i)$ seen anywhere
	$=\frac{0.28}{0.34}=0.824$	A1 [3]	
4	$[P(X=0)] = P(B, B) = 5/7 \times 4/6 = 10/21$	M1	Attempt to find P(0) or P(1) or P(2) can be seen as P(BB) etc. or table
	$[P(X=1)] = P(G,B) + P(B,G) = 2/7 \times 5/6 \times 2$	A1	P(1) or $P(BG)+P(GB)$ correct
	$[P(X=2] = P(G,G) = 2/7 \times 1/6 = 1/21$	A1	P(0) or P(2) correct must see <i>X</i> value
	E(X) = 0 + 10/21 + 2/21 = 4/7 (0.571)	B1 √	Correct answer ft their probs P(1) and P(2)
	$Var(X) = 0 + 10/21 + 4/21 - (4/7)^{2}$ = 50/147 (0.340)	M1 A1 [6]	Attempt at $\Sigma x^2 p - [E(X)]^2$
5 (i)	$P(x < 3.0) = P\left(z < \frac{3.0 - 2.6}{0.25}\right) + P(z < 1.6) = 0.945$	M1 M1 A1 [3]	Standardising no sq rt no cc Correct area i.e. prob > 0.5 legit
(ii)	$X \sim B(500, 0.9452) \sim N(472.6, 25.898)$ $P\left(z > \frac{479.5 - 472.6}{\sqrt{25.89848}}\right) = P(z > 1.3558)$ $= 1 - 0.9125 = 0.0875$	M1 M1 M1 M1 A1 [5]	500 ×'0.9452' and 500×'0.9452'×('1 – 0.9452') seen oe Standardising must have sq rt. All M marks indep cc either 479.5 or 480.5 seen correct area i.e. < 0.5

 Page 5
 Mark Scheme
 Syllabus
 Paper

 Cambridge International AS/A Level – May/June 2016
 9709
 61

Question	Answer	Marks	Guidance
(iii)	500× 0.9452 and 500× (1–0.9452) are both > 5	B1 √[1]	must see at least $500 \times 0.0548 > 500$ ft their (i) accept $np > 5$, $nq > 5$ if both not npq > 5
6 (a) (i)	$9 \times 9 \times 8$	M1 M1	Logical listing attempt
	= 648	A1 [3]	
	OR $900 - 28 \times 9 = 648$		
(ii)	$(7in \ 1 \times 8 \times 4 = 32 \text{ ways})$	M1	Listing #s starting with 7 or 9 and ending odd
	8 in $1 \times 8 \times 5 = 40$ 9 in $1 \times 8 \times 4 = 32$	M1 M1	
	Total 104 ways	A1 [4]	
(b)	R(6) T(5) D(4) 2 2 3 = ${}^{6}C_{2} \times {}^{5}C_{2} \times {}^{4}C_{3} = 600$ 2 3 2 = ${}^{6}C_{2} \times {}^{5}C_{3} \times {}^{4}C_{2} = 900$ 3 2 2 = ${}^{6}C_{2} \times {}^{5}C_{3} \times {}^{4}C_{2} = 1200$	M1 M1	Mult 3 combs, ${}^{6}C_{x} \times {}^{5}C_{y} \times {}^{4}C_{z}$ Summing 2 or 3 three-factor outcomes
	Total = 2700	A1 A1 [4]	2 options correct unsimplified
7 (i)	cf 16, 56, 104, 130, 160	M1	Attempt at cf table (up to 160) no graph needed accept %cf but give final
	160 120	B1	linear scale minimum 0 to 160 and 0 to 120
	80	M1	Attempt to plot points at (30, 16), (50, 56), (70,104), (90, 130), (140, 160) up to 2 errors can have a polygon
	50 100 150 Amount spent \$	A1 [4]	All points correct from their scale and joined up, with (0,0) as well
(ii)	median \$59	B1√ [^]	accept 57–60 or ft their graph if used lb, midpts instead of ub or assume linear interpolation.
	IQR = 82 - 43 = \$39	M1 A1∜ [3]	Subt a (sensible) LQ from a sensible UQ (generous) Ans ft need a cf graph and UQ 80–84, LQ
Page 6	Mark Scheme	Syllabus	Paper
--------	--	----------	-------
	Cambridge International AS/A Level – May/June 2016	9709	61

Question	Answer	Ma	rks	Guidance
(iii)	160 - 149 = 11 OR 115 is mid pt of last interval so # of shoppers is $30/2 = 15$ (can be implied)	M1 A1	[2]	41–46 Subtracting from 160 can be implied Correct answer accept 9–16
(iv)	mean = (15×16+ 40×40 +60×48+ 80×26 + 115×30)/160 = 10250/160 = \$64.1= \$64.1	M1 A1	[2]	Using $\Sigma x f/160$ with mid-points

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/62 May/June 2016

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	62

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	62

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4Mark SchemeSyllabusPaperCambridge International AS/A Level – May/June 2016970962

Qu		Answer	Marks	Notes
1	(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	Correct shape with either one branch after HC or 2 branches with 0 prob seen correct Labelled and clear annotation
		NM	A1 [2]	All probs correct
	(ii)	$P(C \mid milk) = \frac{P(coffee \cap milk)}{P(milk)}$ $= \frac{0.28 \times 0.5}{0.28 \times 0.5}$	M1	Attempt at P(coffee∩ milk)as a two-factor prod only seen as num or denom of a fraction
		$=\frac{0.14}{0.73}$	M1	Summing appropriate three 2-factor products seen anywhere (can omit the 1)
		=0.192	A1 [3]	Correct answer oe
2	(i)	0.72	B1 [1]	
	(ii)	$np = 180 \times 0.72, npq = 180 \times 0.72 \times 0.28$ $X \sim N(129.6, 36.288)$	B1√ [^]	180×0.72 , $180 \times 0.72 \times 0.28$ seen, their values or correct
		$P(x > 115) = P\left(z > \frac{115.5 - 129.6}{\sqrt{26.2000}}\right)$	M1	Standardising (\pm) must have sq rt
		(\(\sigma_36.288\)	M1	cc either 115.5 or 114.5 seen
		= P(z > -2.341)	M1	Correct area, Φ from final answer attempt fully correct method
		= 0.990	A1 [5]	
3	(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 M1 A1 [3]	Probability Distribution Table, either k or correct numerical values Summing probs involving k to = 1, 3 or 4 terms
	(ii)	E(X) = 1/10 + 4/10 + 9/10 + 16/10 = 3 Var(X) = 1/10 + 8/10 + 27/10 + 64/10 - 3 ² = 1	B1 M1 A1 [3]	Correct mean Correct method seen for var, their k and μ

	Page 5	5 Mark Scheme			Syllabus	Paper	
		Cambridge International AS/A Level –	May/Ju	ne 2016	9709	62	
				1			
4	(i)	$p = 0.66X \sim B(15, 0.66)$ P(at least 14) = P(14, 15) =	M1	Bin term ${}^{15}C_{x}p$	$(1-p)^{15-x}$ se	een any p	
		$^{15}C_{14} (0.66)^{14} (0.34) + (0.66)^{15}$	M1	Unsimplified C P(14,15)	correct expre	ssion for	
		= 0.0171	A1 [3]				
	(ii)	$(0.87)^n < 0.04$	M1 M1	Eqn involving 0.87, power of n, 0.04 only Solving by logs or trial and error(can be implied). Must be exponential equation			only be
		<i>n</i> = 24	A1 [3]				
5	(i)	Bronlea Rogate	B1	Correct single	stem		
		6 3 0 4 5 7 7 7 4 3 1 0 1 3 5 (8	B1	Correct ordere	d leaves Bro	nlea	
		8754212336	BI	Correct ordered leaves Rogate			
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	Correct overall shape			
		Key 3 1 5 represents 13 kph for Bronlea and 15 kph for Rogate	B1 [5]	Single key must have both towns and units consistent with their values			
	(ii)	median Bronlea = 23 km per hour IQ range Rogate = $23 - 7$	B1 M1	Units not necessary Subt their LQ <14 from their UQ>14 from Rogate leaf			rom
		= 16	A1 [3]	Kogate lear			
	(iii)	Rogate is less windy than Bronlea	B1 [1]	Not a comparison of a statistic but interpretation of information			
6	(i)	$P(x > 10.2) = P\left(z > \frac{10.2 - 9.5}{2}\right)$	M1	Standardiaina		rt og	
			1911	Standardising	anow cc, sq	ii, sq	
		= P(z > 0.53846) = 1 - 0.7046	M1	$1 - \Phi$ final sol	ution attemp	t	
		= 0.295	A1 [3]				
	(ii)	z = -1.282	B1	\pm rounding to	1.28 seen		
		$-1.282 = \frac{t - 9.5}{1.3}$	M1	Standardising correctly can be $\pm z$ value here			ie
		t = 7.83	A1 [3]	Correct answer from $z = -1.282$ only			
	(iii)	P(x < 8.8) = 0.2954 by symmetry Days = 365×0.2954 = 107 or 108	B1 M1 A1 [3]	oe method, FT Mult a probabi Correct answe	<i>their 0.2954</i> ility <1 by 36 r (no decima	4 from (i) 55 ls)	
7	(a) (i)	$\frac{10!}{2!3!} = 302400$	B1 [1]	Exact value or	lly, isw round	ding	

Page 6	Mark Scheme			Syllabus	us Paper				
	Cambridge International AS/A Level –	May/Ju	ne 2016	9709	62				
	1		1						
(ii)	e.g. *W*****W*, **W*****W, W****W**	M1	8! Seen mult o embedded (arr letters).	r alone. Cannot be angements of other 8					
	$\frac{8!}{2!}$ × 3(for the Ws)	M1	Dividing by 3	(removing r	repeated L's)				
	5:	M1	Mult by 3 (diff sum of 3 terms	ferent W pos	itions) may b)e			
	= 20160	A1 [4]							
(b)	S(5) A(7) C(4) 1 3 2 : $5 \times {}^{7}C_{3} \times {}^{4}C_{2} = 1050$	M1	Mult 3 combir x 7 x 4)	$^{5}C_{x}$, $^{7}C_{y}$, $^{4}C_{z}$ (not					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	2 correct optio	ons unsimplif	ïed				
	(Outcomes : Options)	M1	Summing only involving com	3 or 4 corre bs or perms	ct outcomes				
	Total = 3990	A1 [4]							

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/63 May/June 2016

Paper 6 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	63

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	63

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	63

Qu	Answer			Marks		Guidance		
1 (i)		Wears specs	Not wears	Total				
	RH Not	6 2	19 3	25 5		B 1		One correct row or col including total other than the Total row/column
	Total	8	22			B1	[2]	All correct
(ii)	P(X) = 25/	$\sqrt{30}, P(Y) = 8$	3/30			M1		P(X) or $P(Y)$ from their table or correct from question (denom 30) oe
	$P(X) \times P(Y) = 25/30 \times 8/30 = 200/900 = 2/9$ $P(X \cap Y) = 6/30 = 1/5 \neq P(X) \times P(Y)$				'9	M1		Comparing their $P(X) \times P(Y)$ (values substituted) with their evaluated $P(X \cap Y) -$ not $P(X) \times P(Y)$
	Not indep	endent				A1	[3]	
2 (i)	girls—					B 1		Labels 'time' and 'seconds', 'boys' and 'girls' on correct plots and scaled line
	boys]			B1		One box and whisker all correct on graph paper – ignore boy or girl label
	4 6	8 1	0 12	14 16 Time in s	econds	B 1	[3]	Second box and whisker all correct (on graph paper and ignore boy/girl label) on SAME scaled line.
(ii)	girls small less spread girls gener median boys almo	ler range or d out oe rally quicke oys median ost symmetri	IQ range th r than boys (not mean) ical, girls +v	an boys / or girls oe vely skew	girls ved oe	B1 B1	[2]	Any 2 comments – MUST be a comparison
3 (i)	P(0) = 6/3	6, P(1) = 10	//36, P(2) =	8/36		B1 B1 M1		Table oe seen with 0, 1, 2, 3, 4, 5 (6 if P(6) = 0) Any three probs correct $\sum n = 1$ and at least 3 outcomes
	P(3) = 6/3	6, $P(4) = 4/2$	36, $P(5) = 2$	2/36		A1	[4]	All probs correct
(ii)	mean scor	$e = (0 \times 6 + 1)$	×10 +16 +1	8 +16+10))/36	M1		Using $\sum xp$ (unsimplified) on its own – condone
	= 70/36 (3	5/18, 1.94)				A1	[2]	$\Sigma p \text{ not} = 1$

 Page 5
 Mark Scheme
 Syllabus
 Paper

 Cambridge International AS/A Level – May/June 2016
 9709
 63

Qu	Answer	Ma	rks	Guidance
4 (i)	$ \begin{array}{l} 1845/9 (= 205) \\ c = 2205 - 205 = 2000 \end{array} $	M1 A1		Accept (1845± anything)/ 9
	OR $\Sigma x = 2205 \times 9$ (= 19845) $\Sigma x - \Sigma c = 1845$	M1		For 2205×9 seen
	c = 2000	A1	[2]	
(ii)	$var = \frac{477450}{9} - 205^2$ = 11025	M1 A1		For $\frac{477450}{9}$ – (their coded mean) ²
	OR var = $\frac{43857450}{9} - 2205^2$	M1		For their $\Sigma x^2/9 - 2205^2$ where Σx^2 is obtained from expanding $\Sigma (x-c)^2$ with
	= 11025	A1	[2]	$2c\Sigma x$ seen
(iii)	new total = $2120.5 \times 10 = 21205$	M1		Attempt at new total
	new price = $21205 - 19845$ = 1360	A1	[2]	
5 (i)	z = 1.015	B 1		Accept z between ± 1.01 and 1.02
	$1.015 = \frac{70 - 69}{\sigma}$	M1		Standardising
	$\sigma = 0.985 \ (200/203)$	A1	[3]	
(ii)	58 + 9 = 67	M1		58 + 9 seen or implied (or 69-58 or 69-9)
	$P(>67) = P\left(z > \frac{67 - 69}{0.9852}\right)$	M1		Standardising $\pm z$ no cc allow their sd (must be +ve)
				Alt. 1 69-58 =11, P(>9)=P $\left(z > \frac{9-11}{0.9852}\right)$
				Alt.2 69-9 =60, P(>58) =P $\left(z > \frac{58-60}{0.9852}\right)$
	= P(z > -2.03) = 0.9788	M1		Correct prob area
	300×0.9788	M1		Multiply their prob (from use of tables) by 300
	= 293.6 so 293	A1	[5]	 accept 293 or 294 from fully correct working

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – Mav/June 2016	9709	63

	Qu	Answer	Ma	rks	Guidance
6	(i)	7560 ways	B1	[1]	
	(ii)	RxxxxxxG in $\frac{7!}{4!}$	B1		7! alone seen in num or 4! alone in denom Must be in a fraction. $\frac{7 \ge 2}{4 \ge 2}$ gets full marks
		= 210 ways	B1	[2]	
	(iii)	eg EEEExxxxx in $\frac{6!}{2!}$	B 1		6! or 5! \times 6 seen in numerator or on own
		= 360 ways	B1	[2]	Can be $6! \times k$ but not $6! \pm k$
	(iv)	1 R eg RVG or RVN or RGN = 3	B 1	[1]	
	(v)	no Rs eg VGN or 3C3 ways = 1 2 Rs eg RRV or 3C1 ways = 3	M1		Summing at least 2 options for R
		Total = 7	A1 A1	[3]	Correct outcome for no Rs or 2 Rs – evaluated
7	(i)	${}^{12}C_8 (0.65)^8 (0.35)^4 + {}^{12}C_9 (0.65)^9 (0.35)^3 + {}^{12}C_{10}$	M1		Bin term with ${}^{12}C_r p^r (1-p)^{12-r}$ seen $r \neq 0$
			M1		Summing 2 or 3 bin probs $p = 0.65$ or 0.35 , $n = 12$
		= 0.541	A1	[3]	0.55, 11 – 12
	(ii)	$P(\overline{RRR}) = 0.35 \times 0.35 \times 0.35 \times 0.65$	M1		Mult 4 probs either $(0.35)^3(0.65)$ or
		= 0.0279	A1	[2]	(0.65) (0.35)
	(iii)	P(7) = 0.2039 (unsimplified)	B1		$^{12}C_7 (0.65)^7 (0.35)^5$
		Mean = 250×'0.2039' (= 50.9798) Var = 250×'0.2039' × '(1 – 0.2039)' (= 40.5851)	B 1		Correct unsimplified np and npq using 'their 0.2039' but not 0.65 or 0.35
		$P(>54) = P\left(\frac{54.5 - 50.9798}{54.5 - 50.9798}\right)$	M1		Standardising need sq rt – must be from
		= P(z > 0.5526)	M1		working with 54 cc either 53.5 or 54.5
		$= 1 - \Phi(0.5526) = 1 - 0.7098$	M1		correct area < 0.5 i.e. $1 - \Phi$ - must be from working with 54
		= 0.290	A1	[6]	

MARK SCHEME for the March 2016 series

9709 MATHEMATICS

9709/62

Paper 6 (Probability and Statistics), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE[®] and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9709	62

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9709	62

AEF Any Equivalent Form (of answer is equally acceptable) AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid) BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear) CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed) CWO Correct Working Only – often written by a 'fortuitous' answer ISW Ignore Subsequent Working MR Misread PA Premature Approximation (resulting in basically correct work that is insufficiently accurate) SOS See Other Solution (the candidate makes a better attempt at the same question) SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a

Penalties

particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4Mark SchemeSyllabusPaperCambridge International AS/A Level – March 2016970962

1	(i)	$\Sigma x = 862$				B1	1	Must be stated or replaced in (ii) Can see (i) and (ii) in any order
	(ii)	362/10 + a = a = 50	= 86.2			M1 A1	2	86.2 ± 36.2 seen oe Correct answer, nfww
2		No of W Prob	0 42/90	1 42/90	2 6/90	B1		0, 1, 2, seen in table with attempt at prob.
		P(0) = 8/10P(1W) = P(× 3= 42P(2W) = P(× 3= 6/9)	× 7/9 × 6/8 = W,NW, NW 2/90 W, W, NW) 90	= 42/90) × 3 = 2/10 × 3 = 2/10	× 8/9 × 7/8 × 1/9 × 8/8	M1 M1 A1	4	3-factor prob seen with different denoms. Mult by 3 All correct
3	(i)	P(R) [(1, 4) = 10/64	,(2,5), (3,6),	(4,7),(5,8)]	× 2/64	M1 A1	2	List of at least 4 different options or possibility space diagram Correct answer
	(ii)	P(S) = [(3,8)](5,7)(5,6)(6)(5,5)(6,6)(7)= 28/64)(3,7)(4,8)(4, ,8)(6,7)(7,8)] ,7)(8,8)	,7)(4,6)(4,5) ×2 +	(5,8)	M1	2	List of at least 14 different options or ticks oe from possibility space
	(iii)	$P(R \cap S) =$ $4/64 \neq 10/64$ Events are n	4/64 4 × 28/64 10t independe	ent		B1 M1 A1	3	Comparing their $P(R \cap S)$ with (i) ×(ii) with values Correct answer
4	(i)	32				B1	1	
	(ii)	freqs 0 fd 0 cf	18 32 1.2 1.6	9 4 0.6 0.2		M1		attempt at fd or scaled freq (at least 3 f/cw attempt)
		_				A1		correct heights seen on diagram
						B1		Correct bar ends
		0 10 2	20 30 40) 50 60	70 80 7ime (mins)	B1	4	Labels fd and time (mins) and linear axes or squiggle

	Page	5 Mark Scheme				Syllabus	Paper	
		Cambridge International AS/A Le	evel -	- Marc	:h 2016	9709	62	
	(iii)	$(17.5 \times 18 + 35 \times 32 + 52.5 \times 9 + 70 \times 4)/63$	M1	2	$\Sigma fx/63$ where x is end pt or cw	is midpoint a	ttempt not	
		= 218/.3/03 = 34.7	AI	2	Correct answer			
5	(i)	P(Abroad given camping) $P(A \cap C)$	M1		Attempt at P(A)	C) seen alon	ne anywhere	9
		$= \frac{P(H \cap C)}{P(A \cap C) + P(H \cap C)}$	A1		Correct answer a fraction	seen as num	or denom of	fa
		$=\frac{0.35 \times 0.15}{0.25 \times 0.15 \times 0.05 \times 0.15}$	M1		Attempt at $P(C)$	seen anywh	ere	
		$= \frac{0.0525}{0.00000000000000000000000000000000000$	AI		or denom of a fr	action	seen as nun	n
		0.3125 = 0.168	A1	5	Correct answer			
	(ii)	$(0.65)^n < 0.002$	M1		Eqn with 0.65 o 0.998	r 0.35, powe	r <i>n</i> , 0.002 or	r
		$n > \lg (0.002) / \lg (0.65)$	M1		Attempt to solve and error need a	e their eqn by	v logs or tria	ıl
		<i>n</i> = 15	A1	3	Correct answer	1		
6	(i)	$^{15}P_5 = 360360$	M1 A1	2	oe, can be impli Correct answer	ed Not ¹⁵ C ₅		
	(ii)	$5 \times 10 \times 4 \times 9 \times 3$ = 5400	M1 A1	2	Mult 5 numbers Correct answer			
	(iii)	M(5) F(10) 3 2 = ${}^{5}C_{3} \times {}^{10}C_{2} = 450$ ways 4 1 = ${}^{5}C_{4} \times {}^{10}C_{1} = 50$ 5 0 = ${}^{5}C_{5} \times {}^{10}C_{0} = 1$ Total = 501 ways	M1 M1 A1	3	Mult 2 combs, ⁵ Summing 2 or 3 x + y = 5 Correct answer	$C_x \times {}^{10}C_y$ two-factor of	options,	
	(iv)	(Couple) M(4) F(9) ManWife + 3 $0 = {}^{4}C_{3} \times {}^{9}C_{0} = 4$ ManWife + 2 $1 = {}^{4}C_{2} \times {}^{9}C_{1} = 54$ Total = 58	M1 M1 A1	3	Mult 2 combs ⁴ C Summing both o correct Correct answer	C_x and 9C_y options $x + y$	=3, gender	
7	(i)	z = -1.645	B1		± 1.64 to 1.65 se	een		
		$-1.645 = \frac{0.9 - m}{0.35}$	M1		Standardising w	ith a <i>z</i> -value	accept (0.3	5) ²
		m = 1.48	A1	3				
	(ii)	$P(<2) = P\left(z < \frac{2 - 1.476}{0.35}\right)$	M1		Standardising no	o sq , FT <i>the</i>	<i>ir m</i> , no cc	
		= P(z < 1.50) = 0.933	M1 A1		Correct area i.e. Accept correct t	F o 2sf here		
		Prob = $(0.9332)^4$ = 0.758	M1 A1	5	Power of 4, from Correct answer	n attempt at	P(z)	

Page	6 Mark Schem Cambridge International AS/A	e Level – N	larc	SyllabusPaperch 2016970962
(iii)	$P(t > 0.6\mu) = P\left(z > \frac{0.6\mu - \mu}{\mu/3}\right)$	M1		Standardising attempt with 1 or 2 variables
	= P(z > -1.2) = 0.885	MI A1	3	Eliminating μ or σ Correct final answer

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	61

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied
 and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	61

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	
	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
PA SOS	Misread Premature Approximation (resulting in basically correct work that is insufficiently accurate) See Other Solution (the candidate makes a better attempt at the same question)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Pa	ge 4	Mark Scheme					Paper
		Cambridge International AS/A Level – Octo	ber	/Nov	ember 2015	9709	61
1		p = 0.76 P(fewer than 10) = 1 - P(10, 11) = 1 - (0.76)^{10}(0.24)^{11}C_{10} - (0.76)^{11} = 1 - 0.219 = 0.781	M1 M1 M1 A1	[4]	Any binomial ${}^{11}C_x p^x (1-p)^{1/-x}$ Any binomial 1 - P(10, 11) Correct answe	term , $0 term {}^{n}C_{x}(0.7)oe binomialer$	$(0.24)^{n-x}$ expression
2		$\mu = 54.1 z = -1.11 -1.11 = \frac{50.9 - 54.1}{\sigma} \sigma = 2.88$	B1 B1 M1 A1	[4]	Stated or eval Accept round Standardising Correct answe	uated ing to ± 1.1 no cc no sq er	rt
3	(i)	a = 9/cw = 9/2 = 4.5 1.5 = b/4 so b = 6	M1 A1 A1	[3]	Using $fd = f/c$ Correct <i>a</i> Correct <i>b</i>	¢₩	
	(ii)	fd 6 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	B1√ B1	[3]	Correct heigh Correct width either 60 or 59 Labels fd, tim squiggle and b	ts ft their <i>b</i> s, ie 3, 2, 3, 9.5 e or minutes pars from 59	4 starting and .5 to 71.5
4	(i)	$\overline{x} = 80 - \frac{147}{30} = 80 - 4.9$ = 75.1 $sd = \sqrt{\left(\frac{952}{30} - \left(\frac{147}{30}\right)^2\right)} = \sqrt{7.72}$ sd = 2.78	M1 A1 M1 A1	[4]	For $-147/30$ c Correct answer $952/30 - (\pm th$ Correct answer	be seen er heir coded m er	lean) ²
	(ii)	$P(x > 160) = P\left(z > \frac{160 - 148.6}{18.5}\right)$ = P(z > 0.616) = 1 - 0.7310 = 0.269	M1 M1 A1	[3]	Standardising 1 – Φ Correct answe	no cc no sq er	rt

Pa	ige 5	Mark Scheme					Paper
		Cambridge International AS/A Level – Octo	ober	/Nov	ember 2015	9709	61
5	(i)	5 (i) eg **(EEEE)*** Number of ways = $\frac{6!}{2!2!}$ = 180	M1 M1 A1	[3]	Mult by 6! oe Dividing by 2 Correct answe	!2! oe er	
	(ii)	S******T or T******S Number of ways = $\frac{7!}{4!2!} \times 2$ = 210	M1 M1 A1	[3]	Mult by 7! Or or 4! Mult by 2 Correct answe	dividing by	one of 2!
	(iii)	exactly one E in ${}^{6}C_{3}$ ways = 20	M1 M1 A1	[3]	${}^{6}C_{x}$ as a single ${}^{x}C_{3}$ as a single correct answe	e answer e answer r	
6	(i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1		3 pairs S (ban and F oe seen Exactly 3 pair	k, log in, suc no extra bits rs, must be la	ccess oe) 3. ibelled
		0.6 F	A1	[3]	Correct diagra	am with all p	robs correct
	(ii)	x 0 1 2 3 Prob 0.4 0.144 0.216	B1 M1 A1 B1	[4]	P(0) correct Multiplying tv 0.4 and 0.6 One more cor One more cor	wo of more f rect prob rect prob	actors of
	(iii)	$E(X) = 0.24 + 2 \times 0.144 + 3 \times 0.216$ = 1.176 (1.18)	M1 A1	[2]	Using $\Sigma p_i x_i$ Correct answe	er	
7	(i)	let P(2, 4, 6) all = p then P(1, 3, 5) all = 2p 3p + 6p = 1 p = 1/9 so prob (3) = 2/9 (0.222)	M1 M1 A1	[3]	Using P(even) versa oe Summing P(o P(1, 2, 3, 4, 5, Correct answe	P = 2P(odd) dd+ even) or abla (6) = 1 er	or vice
	(ii)	$P(5, 5, 6) = 2/9 \times 2/9 \times 1/9 \times {}^{3}C_{2}$ $= 4/243 \ (0.0165)$	M1 M1 A1	[3]	Mult three pro Mult by 3 oe i Correct answe	obs together ie summing (er	3 options
	(iii)	$\mu = 100 \times 1/3 = 33.3, \ \sigma = 100 \times 1/3 \times 2/3 = 22.2$ $P(x \le 37) = P\left(z \le \frac{37.5 - \frac{100}{3}}{\sqrt{\frac{200}{9}}}\right) = P(z \le 0.8839)$	B1 M1 M1 M1		Unsimplified Standardising 36.5 or 37.5 s correct area us	100/3 and 20 need sq rt een sing their me	00/9 seen
		= 0.812	A1	[5]	Correct answe	er	

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/62

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	62

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	62

AEF AG	Any Equivalent Form (of answer is equally acceptable) Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page	Je 4 Mark Scheme				Syllabus	Paper		
			Cambridge International AS/A Level –	October/N	over	nber 2015	9709	62	
						I			
1		Σx -	-100n = 216	B1		$\Sigma x - 100n$ s	een		
		241	6 - 100n = 216	B1		Subst 2416	for their Σx		
	1	<i>n</i> =	22	B 1	3	Correct ans	wer		
		OR							
		241	16 216 100	B 1		2416/ <i>n</i> seen	or $216/n +$	100 oe	
		n	$==\frac{n}{n}+100$			eg $\Sigma x/n - 1$	00 = 216/n		
				B1		correct equa	ation		
				B1		Correct ans	wer		
	i	<i>n</i> =	22						
2		P(n)	$p_{1} \text{ men} = \frac{{}^{9}C_{6}}{{}^{2}C_{6}} = \frac{84}{{}^{2}C_{6}} = \frac{21}{{}^{2}C_{6}} = \frac{3}{{}^{2}C_{6}}$	R1		⁹ C < seen an	vwhere		
2	-	1 (11)	$^{16}C_6 = 8008 = 2002 = 286$	DI			ywnere		
		=	= 0.0105	B1		$^{16}C_6$ seen as	denom of fr	action oe	
				B1	3	Correct fina	l answer		
		OD	9 $8 $ $7 $ $6 $ $5 $ $4 $ -0.0105	D1					
		OK	$\frac{16}{16} \times \frac{1}{15} \times \frac{1}{14} \times \frac{1}{13} \times \frac{1}{12} \times \frac{1}{11} = 0.0103$	BI D1		$(0 \times 8 \times 7 \times$	$6 \times 5 \times 4$	oon onwwha	ro
				B1		$(9 \times 0 \times 7 \times 7)$	$0 \times 5 \times 4/8$	nom	IC
				DI		Correct fina	l answer		
		1		DI	1				
3 (1)	$\overline{4}$		BI	I				
		(3)	$\binom{4}{1}$ 81				2.2 1.4		
(ii)	$\left \frac{1}{4} \right $	$\left \left(\frac{1}{4} \right) \right = \frac{1}{1024} = 0.0791$	M1	-	Expression	of form $p^*(1)$	(-p) only,	
		(',			•	p = 1/4 or 3	/4		
				AI	2	Correct ans	wer		
			1 1 1 1						
(iii)	P(al	$1 \operatorname{diff} = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times 4!$	M1	-	4! on nume	rator seen m	ult by $k \ge 1$	or
			2			$3 \times 2 \times 1$ on n	um oe, must	be in a fract	tion.
			$=\frac{3}{22}(0.0938)$	MI	-	4' on denon	n or 4° on de	nom with th	e
			32	1	2	$3 \times 2 \times 1$			
				AI	3	Correct ans	WCI		
		OR	$1 \times \frac{3}{2} \times \frac{2}{2} \times \frac{1}{2} = \frac{3}{2}$						
		<u> </u>	4 4 4 32						
1 (Tree	in como toxi:	1		⁶ C or ⁶ C -	0.000 000	hara	
4 (I	9	1 W (${}^{6}C_{2} \times {}^{4}C_{2} \times 2 \text{ or } {}^{6}C_{2} + {}^{6}C_{3}$		-	$C_4 \text{ OF } C_2 0$	$\times 2$ only or a	dding 2 egu	a1
			$C_2 \sim C_4 \sim 2$ or $C_2 + C_4$	1411	-	terms	~2 only of a	aanig 2 equ	aı
			= 30	A1	3	Correct fing	lanswer		
(ii)	MJS	S in taxi	M1		${}^{5}P_{1}, {}^{5}C_{1} \text{ or } 5$	seen anywh	iere	
			$(^{5}C_{1} \times 2 \times 2) \times {}^{4}P_{4}$	M1		Mult by 2 o	r 4 oe	2	
				M1		Mult by ⁴ P ₄	oe eg 4! or 4	$4 \times {}^{3}P_{3}$ or can	be
			400			part of 5!	1		
			= 480	A1	4	Correct fina	answer		

Page 5Mark SchemeSyllabusPaperCambridge International AS/A Level – October/November 2015970962

5 (i)	team A	team B	B1	Correct stem can be upside down, ignore extra values, allow 70, 80 etc with
		7 5 7 9		suitable numerical key
	4 4 2	8 2 3 4 6	D 1	Correct team 4 must be on LHS
	98761	9 4 5 6	DI	alignment \pm half a space, no late entries
		10 1 8		squeezed in, no crossing out if shape is
				changed
		12	D1	Correct teem P in single diagram can be
	2	12	DI	either LHS or RHS
	key 1 9 4 means 91	kg for team A and 94 kg for B	B1 4	Correct key or keys for their diagram/s, need both teams, at least one kg.
(ii)	LO = 91 UO = 109		B1	Both quartiles correct
	IQ range = 18		B1 √ 2	Correct IQR ft wrong quartiles, $LQ < UQ$,
				not
				12 – 4 etc
(iii)	$\Sigma x_{15} = 1399$		M1	Attempt at Σx_{15} for either team
	$\Sigma x_{16} = 16 \times 93.9 = 150$	02.4	M1	Mult 93.9 by 16 attempt
	New wt = $1502.4 - 1$	399 = 103 (103.4)	AI 3	Correct answer
6 (i)		Spinner A		
		1 2 3 3		
			B1 1	
	-3 (-	-2) -1 0 0		
	Spinner -2 -	-1 0 (1) 1		
	В			
	-1	0 1 2 2		
	1	2 3 4 4		
(ii)	x -2 -1	0 1 2 3 4	M1	Their values in (i) as the top line, seen
			M1	listed in (11) or used in part (111) Attempt at probs seen evaluated need at
	prob $\frac{1}{2}$	$\underline{4}$ $\underline{3}$ $\underline{3}$ $\underline{1}$ $\underline{2}$	1111	least 4 correct from their table
	16 16	16 16 16 16 16	A1 3	Correct table seen
(iii)	$\mathrm{E}(X) = 1$		M1	Attempt at $E(X)$ from their table if $\Sigma p = 1$
	$Var(X) = ((-2)^2 + 2 + 2)^2$	$+3+12+9+32)/16-1^2$	M1	Evaluating $\Sigma x^2 p - [\text{their E}(X)]^2$ allow $\Sigma p \neq$
	$=\frac{62}{-1}$			1 but all p 's <1
	16			
	$=\left(\frac{23}{9}\right)$ (2.8)	375)	A1 3	Correct answer
	$\left \begin{array}{c} \left(\delta \right) \\ OB \text{ using } \Sigma_{\pi} \left(-\frac{1}{2} \right) \right ^2$	-(0+0+4+0+2+4+10)/10	M	
	OK using $\sum p(x-x)^2$	= (9 + 8 + 4 + 0 + 3 + 4 + 18)/16	MI	
	$=\frac{40}{16}=2.875$		M1	
	10		A1	

Pag	e 6 Mark Scheme	Syllabus Paper		
	Cambridge International AS/A Level – Octo	ber/Noven	nber 2015	9709 62
(iv)	P(even given +ve) = $\frac{5}{9}$	M1 A1 2	Counting the by their post Correct ans	neir even numbers and dividing sitive numbers
	OR P(even given +ve) = $\frac{\left(\frac{5}{16}\right)}{\left(\frac{9}{16}\right)}$	M1	Using cond P(+ve) need any of $\frac{5/1}{9/16}$	prob formula not P(E) × d fraction over fraction accept $\frac{16or6/16or9/16}{6or10/16or13/16}$
	$=\frac{5}{9}(0.556)$	A1	Correct ans	wer
7 (a) (i)	$P(x > 3900) = P\left(z > \frac{3900 - 4520}{560}\right)$ $= P(z > -1.107) = \Phi(1.107)$	M1 M1	Standardisi	ng no cc no sq rt no sq a Φ ie > 0.5
	$= 0.8657$ Number of days = $365 \times 0.0.8657$ $= 315 \text{ or } 316 (315.98)$	A1 B1√ [*] 4	Prob round: Correct ans previous A(3sf	ing to 0.866 swer ft their wrong prob if 0, p < 1, ft must be accurate to
(ii)	z = 1.165 1.165 = $\frac{8000 - m}{560}$ m = 7350 (7347.6)	B1 M1 A1 3	± 1.165 see Standardisit have z-valu 0.810. Correct ans	n ng eqn allow sq, sq rt, cc, must le eg not 0.122, 0.878, 0.549, swer rounding to 7350
(iii)	$P(0, 1) = (0.878)^6 + {}^6C_1(0.122)^1(0.878)^5$ = 0.840 accept 0.84 Normal approx. to Binomial. M0, M0, A0	M1 M1 A1 3	Binomial te seen Correct uns Correct ans	erm ${}^{6}C_{x} p^{x} (1-p)^{6-x} 0 \le p \le 1$ simplified expression swer
(b)	$P(<2\mu) = P\left(z > \frac{2\mu - \mu}{\sigma}\right) = P(z < 1.5)$	M1 M1	Standardisi Attempt at	ng with μ and σ one variable and cancel
	= 0.933	A1 3	Correct ans	swer

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/63

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	63

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol I implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	63

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through √* marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page	e 4	4 Mark Scheme				Syllabus	Paper	
			Cambridge International AS/A Level –	Octo	ber/	November 2015	9709	63	
1		cod	led mean = 0.3 oe	B1		$\Sigma(t - 2.5) = 75 \text{ B0}$	until ÷ 250		
		sd	$=\sqrt{\frac{96.1}{250}-(0.3)^2}$	M1		Subst in variance f	òrmula both	terms coded	1
			v 250 = 0.543	A1	3	Correct answer			
		Alt Σt^2	: $\Sigma(t-2.5)^2$ expanded = 2033.6	Or B1					
		sd	$=\sqrt{\frac{2033.6}{250}-2.8^2}$	M1		Substituting their X	Et^2 from expansion	inded 3-term	n
			= 0.543	A1	3	expression, 250 an	d 2.8 in varia	ance formula	a
2	(i)	Р(Х	$K) = \frac{20}{28} \left(\frac{5}{7}\right) (0.714), 71.4\%$	B 1	1	oe			
	(ii)	P(<i>P</i>	$F(r) = \frac{20}{28} \times \frac{1}{4} \times \frac{8}{28} \times \frac{6}{10} = \frac{7}{20}$	M1		Summing two 2-fa	ctor probs cr	eated by $\sqrt{28} = \frac{8}{28}$	
				A1	2	Added to 4/10 or 6 Correct answer	$10 \times \text{altn pc}$	pulation pro	ob
	(iii)	Р(.	$X F) = \frac{5/28}{7/20} = \frac{25}{49}(0.510)$	M1		Their unsimplified (5/28) as num or d Or (their fair hair p hair pop)	country X p enom of a fra oopulation) ÷	robability action (total fair	
				A1	2	Correct answer			
3	(i)	P(S	$f) = \frac{3}{16}$	M1		Sensible attempt at	t P(<i>S</i>)		
		P(7	$T) = \frac{4}{16}$	M1		Sensible attempt at	P(T)		
		P(<i>S</i>	$T \cap T) = \frac{2}{16}$	B1		Correct $P(S \cap T)$			
		P(S	$P(T) \times P(T) = \frac{1}{64} \neq \frac{1}{16}$	M1		comp $P(S) \times P(T)$ values), evaluated	with $P(S \cap T)$	(their	
		No	t independent	A1	5	Correct conclusion working	following a	ll correct	
	(ii)	not Or Or	exclusive since $P(S \cap T) \neq 0$ counter example e.g. 1 and 3 $P(SUT) \neq P(S)+P(T)$ with values	B1√ [^]	1	FT their $P(S \cap T)$, n $P(T)$, with value ar	ot obtained f nd statement.	From $P(S) \times$	
4	(i)	z =	1.127	B1		\pm 1.127 seen accep	ot rounding to	0±1.13	
		1.1	$27 = \frac{136 - 125}{\sigma}$	M1		Standardising no c	c no sq rt, wi	th attempt	
			$\sigma = 9.76$	A1	3	(not $\pm 0.8078, \pm 0.5$ Correct ans	517, ±0.13, =	=0.87)	

Page 5

Mark Scheme Cambridge International AS/A Level – October/November 2015

Syllabus Paper 9709 63

5	(ii) (a)	$P(131 < x < 141) = P\left(\frac{131 - 125}{9.76} < z < \frac{141 - 125}{9.76}\right)$ = $\Phi(1.639) - \Phi(0.6147)$ = $0.9493 - 0.7307$ = 0.2186 Number = $0.2186 \times 170 = 37$ or 38 or awrt 37.2 e.g. **(AAOOOI)***** $\frac{8!}{100} \times \frac{6!}{100} = 604800$	M1 M1 M1 A1 4 B1 M1	Standardising once with their sd, no $\sqrt{2}$, allow cc Correct area $\Phi 2 - \Phi 1$ Mult by 170, P<1 Correct answer, nfww 8! (8 × 7!) or 6! seen anywhere, either alone or in numerator) Dividing by at least 3 of 2!2!2!3! (may be
		2!2! 2!3!	A1 3	fractions added) Correct answer
	(b)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M1 A1 M1* DM1 A1 5	Mult 3 appropriate combinations together assume $6={}^{6}C_{1}$, $1={}^{4}C_{0}$ etc., $\sum r=4$, C&E both present At least 3 correct unsimplified products Listing at least 4 different correct options Summing at least 4 outcomes, involving 3 combs or perms, $\sum r=4$ Correct answer SC if CE removed, M1 available for listing at least 4 different correct options for remaining 2. DM1 for ${}^{7}C_{1} \times {}^{6}C_{1} \times (\text{sum of at least 4} \text{ outcomes})$
6	(i)	fd 0.9, 3, 4.2, 5.2, 1.4 fd 5 4 3 2 1 2 0.5 30.5 40.5 50.5 60.5 70.5 80.5 ht metres	M1 A1 B1 B1 4	Attempt at scaled freq [f/(attempt at cw)] Correct heights seen on diagram Scale no less than 1cm to 1 unit Correct bar widths visually no gaps Labels (ht/metres and fd or freq per 20 m etc.) and end points at 20.5 etc. condone 2 end point errors, scale no less than 1cm to 5m for 20,30 unless clearly accurate, linear scale between 20.5 and 80

	Page	e 6 Mark Scheme		Syllabus Paper		
			Cambridge International AS/A Level –	November 2015 9709 63		
						T
	(ii)	(30 70.	9.5 × 18 + 43 × 15 + 48 × 21 + 55.5 × 52 + 5 × 28)/134	M1		Attempt at unsimplified, mid points (at least 4 within 0.5)
		= -	$\frac{7062}{134} = 52.701$	M1 A1		Attempt at Σfx their mid points \div 134 Correct mean rounding to 53
		Var × 5 = 3	$\mathbf{r} = (30.5^2 \times 18 + 43^2 \times 15 + 48^2 \times 21 + 55.5^2)$ 2 + 70.5 ² × 28)/134 - 52.701 ² 92203 5/134 - 52 701 ² = 149 496	M1		Attempts at Σfx^2 their mid points \div their Σf - mean ²
		sd =	= 12.2	A1	5	Correct answer, nfww
7	(i)	P(0 (0.9	0, 1, 2) = $92)^{19} + {}^{19}C_1(0.08)(0.92)^{18} + {}^{19}C_2(0.08)^2(0.92)^{17}$	M1 M1		Binomial term ${}^{19}C_x p^x (1-p)^{I^{g_{-x}}}$ seen $0Correct unsimplified expression$
		= 0	.809	A1	3	Correct answer (no working SC B2)
	(ii)	P(a	t least 1) = $1 - P(0)$ = $1 - P(0.92)^n > 0.90$ $0.1 > (0.92)^n$ n > 27.6 s 28	M1 M1 A1	3	Eqn with their 0.92 ^{<i>n</i>} , 0.9 or 0.1, 1 not nec Solving attempt by logs or trial and error, power eqn with one unknown power Correct answer, not approx., \approx , \geq , \geq , \leq , \leq
	(iii)	np P(a	= $1800 \times 0.08 = 144$ npq = 132.48 at least 152) = P $\left(z > \left(\frac{151.5 - 144}{\sqrt{132.48}}\right)\right)$	B1 M1 M1		correct unsimplified np and npq seen accept 132.5, 132, 11.5, awrt 11.51 standardising, with $$ cont correction 151.5 or 152.5 seen
			= P(z > 0.6516) = 1 - 0.7429 = 0.257	M1 A1	5	correct area $1 - \Phi$ (probability) correct answer
	(iv)	Use bot	e because 1800 ×0.08 (and 1800 × 0.92 are h) > 5	B1	1	$1800 \times 0.08 > 5$ is sufficient np>5 is sufficient if clearly evaluated in (iii) If $npq>5$ stated then award B0
						* *
MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	61

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	61

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper		
	Cambridge International AS/A Level	– May/J	une 2015	9709	61
1	$P(x < 3.273) = 0.5 - 0.475 = 0.025$ $z = -1.96$ $\frac{3.2 - \mu}{0.714} = -1.96$	M1 A1 M1	Attempt to fi tables in reverse ± 1.96 seen Solving their sta z-value not nec	nd z-value	using quation
	$\mu = 4.60 \mathrm{s}$	A1 [4]	Correct ans acce	ept 4.6	
2 (i)	UQ 5.5 – 7.0 cm	B1 [1]			
(ii)	fd 5.33, 25, 28, 20.7, 6, fd 30 - 25 -	M1 A1	Attempt at fd or Correct heights	scaled freq	[fr/cw] h
	20 - 15 - 10 - 5 -	B1	Correct bar wid	ths no gaps	
	0 2 4 6 8 10 length in cm	B1 [4]	Labels (fd an correct bar ends	d length/cn	n) and
3 (i)	$P(A) = \frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{1}{3} = \frac{4}{9}$	M1 M1	Sensible attemp Sensible attemp	t at $P(A)$ t at $P(B)$	
	$P(B) = \frac{27}{36} = \frac{3}{4}$	B1 M1	correct $P(A \cap B)$ Cf $P(A \cap B)$ with least 1 correct	$P(A) \times P(B)$	need at
	$P(A \cap B) = \frac{12}{36} = \frac{1}{3}$	A1 [5]	Correct conclu correct working	sion follow	ing all
	$P(A) \times P(B) = \frac{4}{9} \times \frac{3}{4} = \frac{1}{3}$ Independent as $P(A \cap B) = P(A) \times P(B)$				
(ii)	Not mutually exclusive because $P(A \cap B) \neq 0$ Or give counter example e.g. 1 and 6	B 1√ [1]	ft their $P(A \cap B)$		
4 (i)	$(1-x)0.9 + x \times 0.24 = 0.801$	M1	Eqn with sum of probs $= 0.801$	f two 2-facto	or
	<i>x</i> = 0.15	A1 A1 [3]	Correct equation Correct answer	n	

Page 5	Mark Scheme	Syllabus	Paper		
	Cambridge International AS/A Leve	l – May/J	une 2015	9709	61
(11)				•	
(11)	$P(\geq 100 \text{ times given } \leq 3 \text{ views})$	BI	0.85×0.1 seen o	n its own as	num or
	$\frac{P(\geq 100 \text{ times} \cap \geq 3 \text{ views})}{(\geq 100 \text{ times} \cap \geq 3 \text{ views})} =$	M1	Attempt at $P(\geq$	· 3 views) eit	her
	$P(\geq 3 \text{ views})$		$(0.85 \times p_1 + 0.15)$	× p_2) or 1 – 0	.801
	0.85×0.1	. 1	seen anywhere		. 、
	$\overline{0.85 \times 0.1 + 0.15 \times 0.76 \text{ or } 1 - 0.801}$	AI	Correct unsimpl	lifted $P(\ge 3)$ m of a fractic	views)
	= 0.427	A1 [4]	Correct answer	in of a flactic	
5 (i)	new mean = $\frac{9 \times 7.1 + 18 \times 5.2}{27}$	M1	Mult by 9 and 1	8 and dividin	ng by
	= 5.83	A1 [2]	27 correct answer		
	$\sum r^2$				
(ii)	$1.45^2 = \text{ so } \frac{2X_t}{9} = 472.6125 \text{mm}$	M1	subst in a correc	et variance fo	ormula
		A1	sq rt or not correct Σx^2 (rou	unding to 470	n
	$0.96^2 = \frac{\sum x_g^2}{5.2^2} = 5.2^2$ so	A1	correct Σx_a^2 (rou	unding to 500))
	$18 \Sigma x_g^2 = 503.3088$		8 1	U	,
	$\frac{\text{New sd}^2}{472.6^2 + 503.3^2} - 5.83^2 = 2.117$	M1	using $\Sigma x_t^2 + \Sigma x_g$ and subt comb r	$\frac{2}{2}$, dividing by mean ²	y 27
	New $sd = 1.46$	A1 [5]	correct answer		
6 (i)	$P(5, 6, 7) = {}^{8}C_{5}(0.68)^{5}(0.32)^{3} +$	M1	Binomial term ⁸	$C_x p^x (1-p)^{8-x}$	seen
	${}^{8}C_{6}(0.68)^{6}(0.32)^{2} + {}^{8}C_{7}(0.68)^{7}(0.32)$	M1	0	amial tampa	
		A1	Correct unsimp	omial terms	
	= 0.722	A1 [4]	Correct answer		
(ii)	np = 340, npq = 108.8	B1	Correct (unsimp	olified) mean	and
	$P(x > 337) = P\left(z > \frac{337.5 - 340}{\sqrt{100.0}}\right)$	M1	standardising w	ith sq rt mus	t have
	(108.8)	M1	used 500 cc either 337.5 c	or 336.5	
	= P(z > -0.2396)	M1	correct area (> 0).5) must hav	ve used
	= 0.595	A1 [5]	500 correct answer		
(iii)	np (340) > 5 and nq(160) > 5	B1 [1]	must have both smaller, need nu justification	or at least the	e
7 (a) (i		B1	Dividing by 212	131	
, (n) (l	21213!				
	= 15120 ways	ВІ [2]	Correct answer		

Page 6	Mark Scheme	Mark Scheme					
	Cambridge International AS/A Level	– May/Ji	une 2015	9709	61		
(ii	i) *******3 in $\frac{8!}{2!2!3!} = 1680$ ways	B1	Correct ways en	id in 3			
	******7 in $\frac{8!}{2!3!}$ = 3360 ways B1 Correct w		Correct ways en	id in 7			
	Total even = $15120 - 1680 - 3360$	M1	Finding odd and subt from 151		5120		
	= 10080 ways A1 [4] Correct answer						
	********2 in 8!/2!3! = 3360 ways	B1	One correct way	end in even			
	*******6 in 8!/2!2!3! = 1680 ways	B1	correct way end	ven			
	*******8 in 8!/2!2!2! = 5040ways	M1	Summing 2 or 3				
	Total = 10080 ways OR	A1	1 Correct answer				
	"15120" ×6/9 = 10080	M2	Mult their (i) by	2/3 oe			
		A2	Correct answer				
(b)	T(3) S(6) G(14)						
	$1 1 3 \text{ in } 3 \times 6 \times {}^{14}\text{C}_3 = 6552$	M1	Mult 3 (combina	ations) togetl	ner		
	$1 3 1 \text{ in } 3 \times C_3 \times 14 = 840$	271	assume $6 = C_1 e$				
	$3 1 1 \ln 1 \times 6 \times 14 = 84$	MI	Listing at least 4	afferent op	otions		
	$2 2 1 \text{ in } {}^{3}C_{2} \times C_{2} \times 14 = 630$	MI	Summing at leas	st 4 different			
	2 1 2 in $C_2 \times 6 \times C_2 = 1638$		options				
	1 2 2 in $3 \times C_2 \times C_2 = 4095$	B1	At least 3 correc	et numerical			

Total ways = 13839 (13800)

options

Correct answer

A1 [5]

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/62

Paper 6 (paper 6), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	62

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	62

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Ρ	ag	e	4

Mark Scheme Sy Cambridge International AS/A Level – May/June 2015

1	P(3, 4, 5) =	M1		Bin expression of form ${}^{10}C_x(p)^x(1-p)^{10-x}$ any <i>x</i> any <i>p</i>
	${}^{10}C_3\left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^7 + {}^{10}C_4\left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6 + {}^{10}C_5\left(\frac{1}{6}\right)^5$	A1		Correct unsimplified answer accept (0.17, 0.83), (0.16, 0.84), (0.16, 0.83), (0.17, 0.84) or more accurate
	$\left(\frac{5}{6}\right)$	A1	3	Correct answer
	= 0.222			
2	mid points 13, 30.5, 40.5, 50.5, 73	M1		Attempt at midpoints at least 3 correct
	Mean = $\frac{4 \times 13 + 24 \times 30.5 + 38 \times 40.5 + 34 \times 50.5 + 20 \times 73}{120}$ $= \frac{5500}{120} = 45.8$	M1 A1		Using their midpoints i.e. cw, ucb, 1/2 cw and freqs into correct formula must be divided by 120 Correct answer from correct working
	$var = \frac{4 \times 13^{2} + 24 \times 30.5^{2} + 38 \times 40.5^{2} + 34 \times 50.5^{2} + 20 \times 73^{2}}{120}$ $- (45.8)^{2}$ $= \frac{278620}{120} - 45.8^{2}$ $= 2321.8333 - 45.8^{2}$	M1		Evaluating $\frac{\sum fx^2}{120} - \text{their } \overline{x}^2 \text{ must see their } 45.8^2$ subtracted allow cw etc
	sd = 14.9	Al	5	Correct answer
3 (i)	0 1 2 3 4 5 6 7 8 9 10	B1 B1 √* B1		LQ = 2.6 med = 3.8-3.85, UQ = 6.4-6.6 Correct quartiles and median on graph ft linear from 2–10 End whiskers correct not through box
	time in sec	B1	4	Label need seconds and linear 2–10 axis or can have 5 values on boxplot no line provided correct
(ii)	$1.5 \times IQR = 1.5 \times 3.8 = 5.7$	M1		Attempt to find $1.5 \times IQR$ and add to UQ
	LQ – 5.7 = -ve, UQ + 5.7 = 12.1 i.e. > 10 So no outliers AG	A1	2	with gap 3.6 between UQ and max 10 Correct conclusion from correct working need both
4 (i)	$0.3 \times 0.72 + 0.7 \times x = 0.783$	M1		Eqn with sum of two 2-factor probs =0.783
	<i>x</i> = 0.81	A1 A1	3	Correct equation Correct answer

	Page 5	Mark Scheme			Syllabus	Paper]	
		Cambridge International AS/A Leve	el – Ma	ay/J	une 2015	9709	62	
	(ii)	$P(S \text{ given not like}) = \frac{P(S \cap NL)}{P(NL)}$	B1		0.3×0.28 seen o of a fraction	n its own as	num or deno	om
		$=\frac{0.3\times0.28}{0.3\times0.28+0.7\times0.19\ or\ 1-0.783}$	M1		Attempt at $P(NL)$ either $(0.3 \times p_1) + (0.7 \times p_2)$ or $1 - 0.783$ seen anywhere Correct unsimplified $P(NL)$ as num or denom of a fraction			
		= 0.387 (12/31)	A1	4				
			AI	4	Correct answer			
5	(i)	P(2Es 1O) = $\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times ^{3}C_{2} = \frac{3}{5}$ (0.6) OR	M1 M1 A1	3	5×4×3 seen in d Mult a prob by Correct answer	$^{3}C_{2}$ oe		
		P(2Es 1O) = $\frac{{}^{3}C_{2} \times {}^{2}C_{1}}{{}^{5}C_{3}} = \frac{6}{10}$	M1		${}^{3}C_{x}$ or ${}^{y}C_{2}$ or ${}^{2}C_{1}$ num	oe seen mul	t by $k \ge 1$ i	in
		= 0.6	M1 A1		⁵ C ₃ seen in deno Correct answer	om		
		OR 241, 247, 261, 267, 461, 467 = 6 options 124 126 127 146 147 167 246 247 267 467	M1 M1		List at least 3 of ⁵ C ₃ or list to get	241, 247, 261 all 10 option	, 267, 461, 4 as in denom	·67
		Prob = 6/10	A1		Correct answer			
	(ii)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 B1 B1 B1	5	Attempt at listin All correct and 1, 2, 4 only seer Any two correct All correct	ng with at lea no others or a n in top row t	st 7 correct all 60	
6	(a) (i)	N****B						
		Number of ways = $\frac{5!}{3!}$ = 20	B1 B1 B1	3	5! Seen in num 3! Seen in denor Correct final an	oe or alone n m can be mu swer	nult by $k \ge$ It by $k \ge 1$	1
	(ii)	B(AAA)NNS						
		Number of ways = $\frac{5!}{2!}$ or 5P_3 = 60	M1 M1 A1	3	5! seen as a nun Dividing by 2! Correct final and	n can be mult swer	t by $k \ge 1$	
	(b)	$^{14}C_9$ total options = 2002 T and M both in $^{12}C_7$ = 792 Ans 2002 - 792 = 1210	M1 B1 A1	3	$^{14}C_9$ or $^{14}P_9$ in su $^{12}C_7$ (792) seen Correct final and	ubtraction att	empt	
		Neither $in^{12}C_9 = 220$ One in ${}^{12}C_8 = 495$ Other in ${}^{12}C_8 = 495$	M1 B1		Summing 2 or 3 condone ${}^{12}P_9 + {}^{12}$ Second correct of 495 or if M1 no option	options at le ${}^{12}P_8 + {}^{12}P_8$ he option seen a t awarded, an	east 1 correct re only ccept anoth ny correct	er

Page 6Mark SchemeSyllabusPaperCambridge International AS/A Level – May/June 2015970962

	total = 1210	A1	Correct final answer
7 (a) (i)	prob = $p\left(z < \frac{30 - 35.2}{4.7}\right)$ = P(z < -1.106) = 1 - 0.8655 = 0.1345 0.1345×52 = 6.99	M1 M1 A1 A1 4	Standardising no sq rt no cc no sq $1-\Phi$ Correct ans rounding to 0.13 Correct final answer accept 6 or 7 if 6.99 not seen but previous prob 0,1345 correct
(ii)	$\Phi(t) = 0.648 \qquad z = 0.380$ $0.380 = \frac{t - 35.2}{4.7}$ t = 37.0	B1 M1 A1 3	0.648 seen standardising allow cc, sq rt,sq, need use of tables not 0.148, 0.648, 0.352, 0.852 correct answer rounding to 37.0
(b)	$\frac{7 - \mu = -0.8\sigma}{\sigma} \text{so} 7 - \mu = -0.8\sigma$ $\frac{10 - \mu}{\sigma} = 0.44 \text{so} 10 - \mu = 0.44\sigma$ $\mu = 0.44\sigma$	B1 B1 M1 M1	\pm 0.8 seen \pm 0.44 seen An eqn with z-value, μ and σ no sq rt no cc no sq Sensible attempt to eliminate μ or σ by subst or subtraction, need at least one value
	$\mu = 8.94$ $\sigma = 2.42$	A1 5	Correct answers

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/63

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	63

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	63

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Ρ	age 4	Mark Scheme						Syllabus	Paper	
		Cam	bridge Inte	ernational /	AS/A Level	– May	/June	e 2015	9709	63
1		7 - 1 12	6			D1		± 1.126 soor	p not ± 1.14	
1		Ζ-1.15	195 – <i>1</i> 1			DI		± 1.130 Sec	$1, 1101 \pm 1.14,$	
		1.136 =	$\frac{100 \ \mu}{22}$			M1		Standardisir	ng, no cc no s heir z not 0 1	q rt, 28 or 0 872
		μ=	= 170			A1	[3]	Correct answ	wer, nfww	20 01 0.072
2	(i)							All values n	nay be decim	als or %
			Kitchen	Kitchen	Total	B1		2 probabiliti	es correct	
			mess	not mess		DI			1 1 11.	
		On time Not on	1/10	1/10	4/5	BI		2 further pro	obabilities co	rrect
		time	172		17.5					
		Total	3/5	4/10		B1	[3]	2 further pro	obabilities co	rrect
j 5	(ii)	P(not on tin	ne given kito	chen mess) =	$=\frac{1/2}{3/5}$	M1		A cond prob fraction seen (using corresponding combined outcomes		
			= 5/6 o.e.			A1	[2]	FT from the <1, 3/5ft<1	ir values, 3sf	or better,
3		$\mu = 300 \times 0.0$)72 = 21.6,	$\sigma^2 = 20.0443$	8	B1		300×0.072 s 300×0.072×	seen and 0.928 seen of 2000	r implied
		P(x < 18) =	$= \mathbf{P}\bigg(z < \frac{17.5}{\sqrt{20}}\bigg)$	$\left(\frac{-21.6}{0.0448}\right)$		M1		$(\sigma = 4.4771)$ ±Standardis sq root	$\sigma^2 = 20(.0))$ ing, their means	oe an/var, with
		=P(z < -0)	.9157)			M1		Cont corr 17	7.5 or 18.5	
		= 1 - 0.82	.01			M1		Correct area	ι1-Φ	
		= 0.180				Al	[5]	Answer wrt	0.180, nfww	
4	(i)	P(1 W)	$) = 6/9 \times 3/8$	+ 3/9×6/8		M1		summing 2 (condone regulation) (condone regulation	two-factor pr placement) n	obs ot $\frac{1}{2} \times \frac{1}{2} +$
		$= \frac{1}{2}$	AG			A1	[2]	Correct answ	wer, fully jus	tified
		$OR \frac{{}^{6}C_{1} \times {}^{3}}{{}^{9}C_{2}}$	C_1			M1		Using comb correct form	inations cons	sistent,
		$= \frac{1}{2} AG$				A1		Correct answ	wer, fully jus	tified
	(ii)	$P\left(\overline{W},\overline{W}\right) = 3$	$3/9 \times 2/8 = 6/2$	72 (1/12)		B1		Distribution	table with 0,	1,2 only
		P(W,W) = 6	$\frac{5}{9} \times \frac{5}{8} = 30$)/72 (5/12)	2	B1		P(W,W) or	$P(\overline{W},\overline{W})$ corr	rect
		Prob	1/12	1/2	5/12	B1 √	[3]	P(W,W) + 1	$P\left(\overline{W},\overline{W}\right) = 0.5$	5
	(iii)	E(X) = 16/1	2 (4/3) (1.33	3) isw		B1	[1]	Condone 1(seen, nfww	.3) if correct	working

Ρ	Page 5	Mark Scheme		Syllabus	Paper		
		Cambridge International AS/A Level	– May	/June	2015	9709	63
			•		1		
5	(i)	$P(large) = 1 - \Phi\left(\frac{29 - 21.7}{6.5}\right)$ = 1 - \Phi(1.123) = 1 - 0.8692 = 0.1308 $P(0,1) = (0.8692)^{8/} + {}^{8}C_{1}(0.1308)(0.8692)^{7}$ = 0.718	M1 M1 A1 M1 M1 A1	[6]	Standardising Correct area Rounding to Any bin term Summing bin $= 8$, oe Correct ans	g no cc no so $1 - \Phi$ 0.13 a with ${}^{8}C_{x}p^{x}(n P(0) + P(1))$	$(1-p)^{8-x} = 0$) only with <i>n</i>
	(ii)	$= 1 - (0.8692)^{n} > 0.98$ $(0.8692)^{n} < 0.02$ Least number = 28	M1 M1 A1	[3]	eq/ineq invol (0.1308) ⁿ , 0.0 without a 1 solving attem error) – may answer	ving their (()2 or 0.98 of ppt (could be be implied b	0.8692) ⁿ or e with or e trial and by their
					correct answe	er	
6	(i)	cf 3.5 4.0 4.5 5.0 nitrogen content	B1 M1		Uniform axes labelled, at le 4.8 seen 5 points plott paper 3.5 3.8 0 6	s cf and nitro east 0 to 70 a red correctly 4.0 4.218 41	$\begin{array}{r} \text{orgen content} \\ \text{and } 3.5 \text{ to} \\ \hline \text{r on graph} \\ \hline \hline 4.5 & 4.8 \\ \hline 62 & 70 \\ \hline \end{array}$
		content	A1	[3]	All points con curve (condo line segments	rrect and a r ne 1 missed s.	easonable point) or
	(ii)	70 - their 55 = 15 = 21.4%	M1 A1	[2]	Subt a value $n < 29$) Correct ans, a	> 41 from 7 accept 18.5	0 (or <i>n</i> /70, - 22
	(iii)	median = 4.15	B1	[1]	Accept 4.1<	median < 4.	2, nfww

Page 6

Mark Scheme Cambridge International AS/A Level – May/June 2015

SyllabusPaper970963

(iv)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 M1	Attempt at freqs, at least 3 correct, ignore labelling Attempt at fd as f/cw only at least 3 correct FT (Accept f/cw $\times k$)
	120 100 80 60 40	A1	Correct heights seen on graph (plot at 4.8,27 A0) Graph paper must be used (3 correct relative heights implies M1M1)
	20	B1	Correct bar ends seen on graph – graph paper used
	3.5 4.0 4.5 5.0 nitrogen content	B1 [5]	Correct linear scale and labels.
7 (i)	W S D 1 1 3 = $6 \times 4 \times^{3}C_{3} = 24$ 1 3 1 = $6 \times^{4}C_{3} \times 3 = 72$ 3 1 1 = $^{6}C_{3} \times 4 \times 3 = 240$ 1 2 2 = $6 \times^{4}C_{2} \times^{3}C_{2} = 108$ 2 1 2 = $^{6}C_{3} \times 4 \times^{3}C_{3} = 180$	M1 M1 M1	Listing at least 4 different options Mult 3 (combs) together assume $6 = {}^{6}C_{1}, \Sigma r = 5$ Summing at least 4 different evaluated/unsimplified options >1
	2 1 $2 = C_2 \times 4 \times C_2 = 130$ 2 2 $1 = {}^6C_2 \times {}^4C_2 \times 3 = 270$ Total = 894	B1 A1 [5]	At least 3 correct unsimplified options Correct answer
(ii)	${}^{3}P_{2} \times {}^{10}P_{8}$	B1	${}^{3}P_{2}$ oe seen multiplied either here or
		B1	in (iii) $k^{10}P_x$ seen or $k^{\nu}P_8$ with no addition,
	= 10886400	B1 [3]	$k \ge 1, y \ge 8, x < 10$ Correct answer, nfww
(iii)	DSWSWSWSWD or DWSWSWSD D in ${}^{3}P_{2}$ ways = 6 S in ${}^{4}P_{4}$ ways = 24 W in ${}^{6}P_{4}$ = 360	B1	If ${}^{3}P_{2}$ has not gained credit in (ii) may be awarded ${}^{4}P_{4}$ or ${}^{6}P_{4}$ oe seen multiplied or common in all terms (no division)
	Swap SW in 2 ways Total = 103680 ways	B1 B1 [3]	Mult by 2 (condone 2!) Correct answer, 3sf or better, nfww

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	61

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	61

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

F	Page 4 Mark Scheme					Syllabus	Paper
		Cambridge International AS/A Le	vel – (Octob	er/November 2014	9709	61
1	mean	= (5 + (-2) + 12 + 7 + (-3) + 2 + (-6) + 4 + 0 + 8) / 10	B1				
	var	= 2.7 = $(5^2 + (-2)^2 + + 8^2) / 10 - 2.7^2 =$ 35.1 - 2.7 ²	M1		Subst in correct var fo $- \text{mean}^2$	rmula must ł	nave
	:	= 27.8	A1	3	Correct answer		
2	(i) 0 k	24 + 0.35 + 2k + k + 0.05 = 1 $= 0.12$	M1 A1	2	Summing probs = 1 Correct answer		
	(ii) m	odel number is 1	B1	1			
	(iii) m P	the an = $1 \times 0.35 + 2 \times 0.24 + 3 \times 0.12 + 4 \times 0.05$ (>1.39) = P(2, 3, 4) = 0.41	B1 M1 B1	3	1.39 seen Finding $P(X > \text{their m} Correct ans following}$	lean) mean or moo	le only
3	P(8) =	= $P(H 4 4) + P(T 2 4) + P(T 4 2)$	M1		$\frac{1}{3}$ or $\frac{2}{3}$ mult by dice realized anywhere	elated prob, s	seen
	=	$= \frac{1}{3} \times \frac{1}{16} + \frac{2}{3} \times \frac{1}{16} + \frac{2}{3} \times \frac{1}{16}$	M1		Summing two or three involving $\frac{1}{3}$ and $\frac{2}{3}$	2-factor pro	bs
	=	$=$ $\frac{5}{48}$	A1		$\frac{5}{48}$ oe seen as num or	denom of a	fraction
	P(H 8	$P(H \cap 8) = \frac{P(H \cap 8)}{P(8)}$	B1		$\frac{1}{48}$ oe seen as num or	denom of a	fraction
		$= \frac{\frac{1}{48}}{\frac{5}{48}} = \frac{1}{5}$	A1	5	Correct ans		
4	(i) m L U	$\begin{array}{l} \text{redian } A = 0.52 \\ Q = 0.41 \\ Q = 0.79 \end{array}$	B1 B1 B1ft	3	ft wrong units		
	(ii)						
Α			B1		2 correct boxes ft (i) C	OK if superin	posed
В	-		B1		2 pairs correct whisker inside	rs lines up to	box not
0	0.1 0.2	0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Time in secs	B1	3	Correct uniform scale it. No scale no marks with all 10 values show B1B1B0	need at least unless perfec wn, in which	4 values on t A and B case score

 Page 5
 Mark Scheme
 Syllabus
 Paper

 Cambridge International AS/A Level – October/November 2014
 9709
 61

	(iii)	Smartphone <i>B</i> is quicker, slightly less variable, etc.	B1	1	oe sensible answer
5	(i)	1.2 = 15p $p = 0.08$	M1		Attempt to find p using $1.2 = 15p$
		$Var = npq = 15 \times 0.08 \times 0.92 = 1.104$ AG	A1	2	Correct answer
	(ii)	$P(0, 1, 2) = (0.92)^{15} + {}^{15}C_1(0.08)(0.92)^{14} + {}^{15}C_2(0.08)^2(0.92)^{13} = 0.887$	M1 M1 A1	3	Binomial expression ${}^{15}C_x p^x (1-p)^{15-x}$ $0Correct unsimplified expression for P(0, 1, 2)Correct answer$
	(iii)	P(at least 1 faulty screw) = 1 - P(0) = 1	M1		Attempt at $P(0)$ or $1 - P(0)$
		= (0.92) = 0.7137 P(at least 1 faulty screw in 7 packets) = ⁸ C ₇ (0.713) ⁷ (0.2863)	A1 M1		Rounding to 0.71 Binomial expression ${}^{8}C_{7}p^{7}(1-p)$ 0
		= 0.216	A1	4	Correct answer
6	(i)	$z_1 = \frac{70 - 66.4}{5.6} = 0.6429$	M1		Standardising one variable, no cc, no sq rt
		$z_2 = \frac{72.5 - 66.4}{5.6} = 1.089$	M1		Correct area $\Phi_2 - \Phi_1$
		$\Phi(1.089) - \Phi(0.643) = 0.8620 - 0.7399$	A1		Correct answer rounding to 0.12
		= 0.1221 0.1221 × 250 = 30.5 30 or 31 sheep	M1 A1ft	5	Mult by 250 Correct answer ft their 0.1221
	(ii)	66.4 - 59.2 = 7.2 66.4 + 7.2 = 73.6	M1 A1	2	Subt from 66.4 Correct answer
	(iii)	z = 0.674	B1		± 0.674 or 0.675 seen
		$\frac{67.5 - \mu}{4.92} = 0.674$	M1		Standardising with a z-value no cc no sq rt
		$\mu = 64.2$	A1	3	Correct answer
7	(i)	W(8) M(5) 4 $2 = {}^{8}C_{4} \times {}^{5}C_{2} = 700$ 5 $1 = {}^{8}C_{5} \times {}^{5}C_{1} = 280$ 6 $0 = {}^{8}C_{6} \times {}^{5}C_{0} = 28$ Total = 1008	M1 M1 A1 A1	4	Mult 2 combs, ${}^{8}C_{x} \times {}^{5}C_{y}$ Summing 2 or 3 options 2 correct options unsimplified Correct answer
	(ii)	M1 and MMWWW = ${}^{3}C_{2} \times {}^{8}C_{3} = 168$	M1		Summing 3 options
		Notice the set of the	B1		One correct option
		Total = 392	A1	3	Correct answer
		OR total, no restrictions = ${}^{5}C_{3} \times {}^{8}C_{3} =$	M1		Subt 2 men together from no restrictions
		M1M2 and MWWW = ${}^{3}C_{1} \times {}^{8}C_{3} = 168$ 560 - 168 = 392	B1 A1		One correct of 560 or 168 Correct answer

Page 6	Mark Sc	heme			Syllabus	Paper
	Cambridge International AS/A Le	per/November 2014	9709	61		
(iii) e =	e.g. WWMWWW = 5! (women) × 4 = 480	M1 M1 A1	3	5! Seen mult by intege Mult by 4 Correct answer	er ≥ 1	
OR 6! – MWWWWW – WWWWWM = 6! – 5! – 5! = 480				6! seen with a subtract 5! or 2×5 ! Seen subtract Correct answer	tion racted	

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/62

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	62

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	62

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Pag	je 4	Mark Scheme				Syllabus	Paper
		Cambridge International AS/A Level –	Octo	ber	/November 2014	9709	62
			-				
1 4	⁸ C ₄₃		B1 B1		48 seen in a single t 43 or 5 seen in a sir combination oe Both can be mult by	term combin gle term $v integer k \ge$	ation oe
=	= 171	2304 (1710000)	B1	3	Correct final answe	er	-
2 (i	i) 6 =	! ×5! 86400	B1 B1 B1	3	6! oe seen multiplie 5! oe seen multiplie Correct final answe	ed by integer ed by integer er	$k \ge 1$ $k \ge 1$
(ii	i) 6 =	$! \times 7 \times 6 \times 5 \times 4$ 604800	B1 B1 B1	3	6! seen mult by inte Mult by ⁷ P ₄ oe Correct final answe	eger $k \ge 1$ er	
3 (i	i) 1	1 1 2 or 1 1 2 1 or 1 2 1 1 or 2 1 1 1 1 1 1 1 1	M1		One of 1 1 1 2 seen		
	Р	$rob = \frac{-\times - \times - \times - \times 4}{6 \ 6 \ 6 \ 6}$	M1		Mult a prob by 4 or seen	$\left(\frac{1}{6}\right)^4 \times \text{integ}$	ger $k \ge 1$
	=	$\frac{1}{324}$ (0.00309)	A1	3	Correct answer		
(ii	i) P 7($(1,2) = {^{7}C_{1} \times (1/324) (323/324)^{6}} + C_{2}(1/324)^{2}(323/324)^{5}$	M1 M1 M1		Bin term ${}^{7}C_{x}p^{x}(q)^{7-x}$ Using their <i>p</i> from Correct unsimplifie	x^{α} , $0.99 \le p +$ (i) in a bin te ad answer	$q \leq 1$
	_	0.0214	A1	4	Correct answer		
4 (i	i) V	W = wrong, $C = $ correct	M1		3 branches first qn a only	and 2 by 2 fo	or second qn
	1 <u>3</u>	$W \xrightarrow{\frac{1}{2}} C \xrightarrow{C} C$ $\frac{1}{3} \xrightarrow{\frac{1}{2}} W \xrightarrow{\frac{1}{2}} W \xrightarrow{1} U$	M1 B1		One branch twice for branches twice with branches Any two of $\frac{1}{3}$, $\frac{1}{2}$ a	or third qn on n 0 and 1 see nd 1 seen as	r two n on probs
		$\frac{1}{2}$ C C	A1	4	Probs all correct an for 4 outcomes inst	d sensible la ead of 3, M1	bels NB SR B1 only
		С	M1		2 branches first qn a only	and 1 by 2 fo	or second qn
OR		$\frac{1}{2}$ W 1	M1		One branch once for branches with 0 and	or third qn or 1 1 seen on b	two ranches
2	/		B1		Any two of $\frac{1}{3}$ or $\frac{2}{3}$ Probs all correct an	, $\frac{1}{2}$ and 1 sed d sensible la	en as probs bels
		2	A1				
	$\frac{1}{3}$	~ C					

	Page 5			Mark Scheme	Э			Syllabus	Paper
		Cambridge In	ternational	AS/A Level -	- Octo	ber	/November 2014	9709	62
	(ii)								
	x	1	2	3	B1		1, 2, 3 seen only oe		
	Prob	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	B1		2 correct probs		
	Р	P(1) = P(C) say =	$\frac{1}{3}$	1					
	P 	$P(2) = P(WC) = \frac{1}{6}$	P(WC) =	$\frac{1}{6}$ total P (2)					
	P	P(3) = P(WWC) =	$\frac{1}{6}$ P(WWC)	=	B1		3 correct probs		
$\frac{1}{6} \text{ total } P(3) = \frac{1}{3}$ $E(X) = 1 \times \frac{1}{3} + 2 \times \frac{1}{3} + 3 \times \frac{1}{3} = 2$				B1√	4	Correct answer ft their probs provided $0.999 \le \Sigma p \le 1$			
	5 (a) (i) $P(x < 8) = P\left(x < 8\right)$	$z < \frac{8 - 7.15}{0.88} \right)$		M1		Standardising \pm , no	o cc no sq rt i	no sq
		$= \Phi (0.9659)$ = 0.833			A1	2	Correct answer		
	(i	i) $z = 0.674$			B1		Accept ± 0.674 or 0).675 only	
		$\frac{q-7.15}{0.88} = 0.6$	574		M1		Standardised eqn = or sq rt if already p	± their z-valuenalised in (i	ue, allow sq)
		<i>q</i> = 7.74			A1	3	Correct answer		
	(b) P	$P(Y > 4\mu) = P(z > 4\mu)$	$\left(\frac{4\mu-\mu}{(3\mu/2)}\right) =$	= P(z > 2)	M1		Standardising no so variable	rt, no cc, no	sq, one
	=	= 1 – 0.9772 = 0.0228			A1 A1	3	$z = \pm 2$ seen correct ans SR B1 i and 0.0228 obtained	f made-up va d	llues used

Page 6			Ma	rk Scheme)			Syllabus	Paper
	Cambridge	Internat	ional AS	/A Level –	Octo	ber	/November 2014	9709	62
					1		1		
6 (i) ht < CF 2	<10.5 <15.5 2 54	<20.5 132	<25.5 172	<30.5 200	B1		At least 4 CFs corre	ect seen on g	raph
cf 200-					B1		Labels correct, i.e.	all of ht, cm,	cf
100 -		7			M1		Attempt at upper er 10.5 or 11 at least 4	nd points eith upper end p	er 10 or points
	3.5 10.5	20.5	30.5	ht(cm)	A1	4	All correct, i.e. poin 0) to (10.5, 22)to lines or curve	nts joined up o (30.5, 200)	from (3.5, Straight
(ii)	72% less, i.e. $144h = 22.5$ cm	4 less that	n ht <i>h</i> .		M1 A1	2	144 used can be im single value in rang	plied ge 21 to 23 in	clusive
(iii)	$var = (7^2 \times 22 + 1) + 28^2 \times 28)/200 - 18 = 74870/200 - 18$	$13^2 \times 32 + 18.39^2$ 8.39^2	$-18^2 \times 78$	$+23^{2} \times 40$	M1		Using mid points at var formula incl – r	ttempt 7 ± 0	5in correct
	= 374.35 – 18.39 = 36.1579	2			B1		At least 4 correct m	idpoints	
	sd = 6.01				A1	3	Correct ans		
7 (i)	P(4, 5, 6) = (0.7)	$(0.25)^4 (0.25)^6$	$^{4} \times {}^{8}C_{4} +$	$^{2} \times {}^{8}C_{6}$	M1		Bin term $p^r(1-p)^{8-r}$	$r \times {}^{8}C_{r}$ seen a	any p
		0, (0,)	e) (01 <u>-</u> e)	0	M1		Correct unsimplifie	d answer	
	= 0.606				A1	3	Correct ans		
(ii)	$mp = 160 \times 0.75$	= 120	npq = 30		B1		Unsimplified mean	and var corr	ect
	P(>114) = P(z) = $P(z>-1.004)$	$>\left(\frac{114.5}{\sqrt{3}}\right)$	$\left(\frac{-120}{\overline{00}}\right)$		M1 M1 M1		Standardising, need Cont correction eith Correct area consist	l sq rt her 114.5 or tent with the	113.5 ir working
	$= \Phi(1.004) = 0.8$	42			A1	5	Correct ans		

B1 1

Need both

(iii) np and nq both > 5

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/63

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	63

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	63

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through √' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4Mark SchemeSyllabusPaperCambridge International AS/A Level – October/November 2014970963

1	z =	-2.326	B1		± 2.325 to ± 2.33 seen
	250	$\frac{0-260}{\pi} = -2.326$	M1		Standardising and = or $<$ their z, no cc, sq, sq rt
	σ=	= 4.30	A1	3	Correct ans
2	(i)	0.7 - 2.4 + 2.2 - 0.5 + 6.3 + 4.9 + 0 + 0.3 = 11.5	B1	1	
	(ii)	$(0.7^2 + 2.4^2 + 2.2^2 + 0.5^2 + 6.3^2 + 4.9^2 + 0.3^2)$			
		= 75.13 (75.1)	B1	1	
	(iii)	mean = 63.4375 Variance = $75.13/8 - (11.5/8)^2$ = 7.32	B1√ M1 A1	3	ft 62 + their (i)/8 their(ii)/8 - $((i)/8)^2$ correct answer
		OR mean = 507.5/8 = 63.4375 Var = 32253/8 - 63.4375 ² = 7.32	B1 M1 A1		subst in correct variance or standard deviation formula correct answer – allow 6.62, 6.93–7.04, 7.260– 7.325
					Marks can be awarded in (i) or (ii) if not 'contradicted' by further working
3	(i)	$max = 12P(12) = (0.7)^{12} = 0.0138$	B1 B1	2	(Implied by P(12) with power 12) Accept 0.014
	(ii)	P(fewer than 10) = 1- P (10, 11, 12) = $1 - {}^{12}C_{10} \times (0.7)^{10} (0.3)^2 - 12 \times (0.7)^{11} (0.3)$ - $(0.7)^{12}$	M1		Binomial term ${}^{12}C_r(0.7)^r(0.3)^{12-r}$ or ${}^{12}C_r(p)^r(q)^{12-r}, 0.99 \le p+q \le 1.00$
		= 1 - 0.2528 = 0.747	A1 A1	3	Correct unsimplified expression oe Correct answer

Page 5	5	Mark Sche	eme			Syllabus	Paper
	Cam	bridge International AS/A Leve	el – O	cto	ber/November 2014	9709	63
	•						
4 (i)	Stem	leaf	B1		Correct stem (or reverse	ed order)	
	1 2 3 4	4 5 7 8 9 9 1 2 2 3 4 5 6 6 8 8 0 2 6 8 1 2 5 6 7	B1		Correct leaves, ordered with ½ 'column' tolerar	in numerica nce	l sequence,
	Key 1 4	represents 14 glasses (of water)	B1	3	Key must include 'glass item	ses' or simila	ar drinking
(ii) 	LQ = 20	Med = 26 $UQ = 37$	B1 B1 B1√		Correct median Correct quartiles Correct on diagram ft a quartiles. Linear scale based upor	ny wrong mo 1 3 quartiles	ed or plotted
10	20	30 40 50 Glasses of water	B1 B1	5	Correct end points of at through box Linear axis, label, both	tached whish must be seen	kers not
SC No va 3 quartile End poin	alues stat es on diag its of atta	ed gram in correct relative positions ched whiskers not through box	B2				
correct re	elative to	quartiles	Ы				
5 (i)	P(<1.2)=	$= P\left(z < \frac{1.2 - 1.9}{0.55}\right) = P(z < -1.2727)$	M1		Standardising for wt 1.2 May be awarded in (ii)	2 or 2.5, no c if not attemp	cc, sq, sq rt oted in (i)
	$= 1 - \Phi($ = 0.1014 P(>2.5)	(1.273) = 1 - 0.8986 (1.273) = 1 - 0.8986 (1.273) = 1 - 0.8986 (1.273) = 1 - 0.8986	A1		Accept 0.102 First correct proportion	seen	
	$= 1 - \Phi($ = 0.138	(1.0909) = 1 - 0.8623	A1		Second correct proporti	on seen	
	P (1.2 <	wt < 2.5) = 1 – 0.101 – 0.138	M1		Third proportion 1 – the proportions or correct a	eir previous 2 ttempt for re	2 maining
	= 0.761		A1√	5	proportion Correct answer or $1 - th$ proportions	<i>heir</i> 2 previo	us correct
(ii)	P(x > k) $z = -1.5$	= 0.8 + 0.1377 = 0.9377 36	M1 A1		Valid method to obtain ± 1.536 seen accept 3sf	P(x > k) or I rounding to	P(x < k) 1.53 or
	-1.536	$=\frac{k-1.9}{0.55}$	M1		1.54 Attempt to solve equati area z value, <i>k</i> , 1.9 and	on with their 0.55	correct'
	<i>k</i> =1.06		A1	4	Correct answer or round	ding to 1.05	

Ρ	Page 6 Mark Scheme S				Syllabus	Paper			
		Cambrie	dge Internationa	al AS/A Leve	el – C)cto	ber/November 2014	9709	63
					1				
6	(a)	Mark Sc Cambridge International AS/A Lo International AS/Colspan="2">International AS/A Lo International AS/Colspan="2">International AS/A Lo International AS/Colspan="2">International AS/A Lo International AS/A Lo International A		*2	M1 M1 A1	3	Mult by 6 ⁵ (for middle Mult by 3 or summing (for end dice outcomes) Correct answer accept 2	5 dice outcom 3 different co) 23 300	mes) ombinations
		23320				C			
	(b)	b) W J H 1 1 $7 = {}^{9}C_{1} \times {}^{8}C_{1} \times 1 = 72$ 1 7 $1 = {}^{9}C_{1} \times {}^{8}C_{7} \times 1 = 72$ 7 1 $1 = {}^{9}C_{7} \times {}^{2}C_{1} \times 1 = 72$ 1 3 $5 = {}^{9}C_{1} \times {}^{8}C_{3} \times 1 = 504$ mult by 3! 3 3 $3 = {}^{9}C_{3} \times {}^{6}C_{3} \times 1 = 1680$			M1 A1 A1 M1 M1		Multiplying 3 combinations (may be implied) 1 unsimplified correct answer (72, 504, 1680, 216 or 3024) A 2 nd unsimplified different correct answer Summing options for 1,1.7 or 1,3,5 oe (mult by 3 or 3!) Summing at least 2 different options of the 3		
		Total 4920			A1	6	Correct ans		
		10001 4720				U			
	If no marks gained Listing all 10 different outcomes			SCN	M 1	If games replaced M1M If factorials used M0M	11M1 max a 1M1 max av	vailable ailable	
7	(a) (i) $P(X=3) = P(GRR) + P(RGR)$		M1		Mult 3 probs				
		$\frac{2}{4} \times \frac{2}{3} \times$	$\frac{1}{2} + \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}$		M1		Summing 2 options		
		$\frac{1}{3}$ AG	2 . 5 2		A1	3	Correct working with a and fraction sequencing	ppropriate ju g	stification
	((ii)	1						
		X	2 3	4	B1		Values 2, 3, 4 only in ta	able	
		Prob	$\frac{1}{6}$ $\frac{1}{3}$	$\frac{1}{2}$			Condone $x=0,1$ if $\Gamma(x)$	-0 stated	
		$P(X=2) = P(RR) = \frac{2}{4} \times \frac{1}{3} = \frac{1}{6}$			B1		One correct prob other	than (i)	
	$P(X = 4) = 1 - \left(\frac{1}{6} + \frac{1}{3}\right) = \frac{1}{2}$ Or P(GGRR) + P(RGGR) + P(GRGR) $= \left(\frac{2}{4} \times \frac{1}{3} \times \frac{2}{2} \times \frac{1}{1}\right) \times 3 = \frac{1}{2}$			В1√	` 3	Second correct prob ft	1 – their prev	vious 2	
Page 7	Mark Scheme	Syllabus	Paper						
--------	--	----------	-------						
	Cambridge International AS/A Level – October/November 2014	9709	63						

(iii)	$P(3 \text{ orange } \text{ at least } 2 \text{ O}) = \frac{P(3O)}{P(at \text{ least } 2O)}$ $P(3 \text{ orange}) = P(OOO)$ $= \frac{5}{7} \times \frac{4}{6} \times \frac{3}{5} = \frac{2}{7}$ $P(\text{at least } 2O) = P(YOO) + P(OYO) + P(OYO) + \frac{2}{7}$	M1 A1		Atttempt at P(OOO) one three-factor option, not added Correct unsimplified num of a fraction
	$= \frac{2}{7} \times \frac{5}{6} \times \frac{4}{5} + \frac{5}{7} \times \frac{2}{6} \times \frac{4}{5} + \frac{5}{7} \times \frac{4}{6} \times \frac{2}{5} + \frac{2}{7}$ $= \frac{6}{7}$	M1 A1		Attempt at P(at least 2O) sum 3 or 4 three- factor options Correct unsimplified answer seen anywhere
	7 P(30 at least 2O) = $\frac{2}{7} \div \frac{6}{7} = \frac{1}{3}(0.333)$	A1	5	Correct answer evaluated
$\frac{\text{Alternative 1}}{3 \text{ Orange}} = {}^{5}\text{O}$	23	M1		Attempt at combinations for 3 orange oe, not added
		A1		Correct unsimplified num of a fraction
At least 2 Ora	ange = ${}^{5}C_{2} \times {}^{2}C_{1} + {}^{5}C_{3}$	M1		Attempt at combinations for at least 2 orange
		A1		Correct unsimplified answer seen anywhere
P(3O at leas	t 2O) = $\frac{{}^{5}C_{3}}{{}^{5}C_{2} \times {}^{2}C_{1} + {}^{5}C_{3}} = \frac{1}{3}$	A1	5	Correct answer evaluated
<u>Alternative 2</u> No Yellow =	$^{2}C_{0}$	M1		Attempt at combinations for 0 yellow oe, not added
		A1		Correct unsimplified num of a fraction
No more than	1 Yellow = ${}^{2}C_{1} + {}^{2}C_{0}$	M1 A1		Attempt at combinations for no more than 1 yellow. Condone omission of +2C0 Correct unsimplified answer seen anywhere
P(3O at leas	t 2O) = $\frac{{}^{2}C_{0}}{{}^{2}C_{1} + {}^{2}C_{0}} = \frac{1}{3}$	A1	5	Correct answer evaluated
$\frac{\text{Misread} - \text{wir}}{\text{MR} - 1 \text{ applied}}$ $P(3O) = \frac{5}{7} \times \frac{5}{7}$	th replacement d to first Accuracy Mark earned $\frac{5}{7} \times \frac{5}{7} = \frac{125}{343}$	M1 A1		Attempt at P(OOO) one three factor option oe not added Correct unsimplified num of a fraction
P(at least 2O)	$0 = \frac{5}{7} \times \frac{5}{7} \times \frac{2}{7} \times ^{3} C_{2} + \left(\frac{5}{7}\right)^{3}$	M1 A1		Attempt at P(at least 2O) sum of 3 or 4 three factor options Correct unsimplified seen anywhere
P(3O at leas	$t 2O) = \frac{5}{11}$	A1 m	4 ax	Answer evaluated

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	61

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √* implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	61

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Pa	ge 4	Mark Scher	ne			Syllabus	Paper
			GCE AS/A LEVEL – M	ay/June	e 20'	14	9709	61
	D (0	1 (
1	P(2	1.6 < x < 2	8.7)					
	= P	$\left(\left(\frac{21.6-24}{4.7}\right)\right)$	$\frac{1}{2} < z < \left(\frac{28.7 - 24}{4.7}\right)$	M1 A1		Standardis One round	sing; no cc, no sq ling to $\Phi(0.841 \text{ or})$	rt r 0.695)
	= P	(-0.5106 <	$z < 1$) = $\Phi(1) - \Phi(-0.5106)$	M1		$\Phi_1 + \Phi_2 -$	1	
	= 0.	8413 - (1 -	- 0.6953)					
	= 0.	537 (0.536	6)	A1	4	Correct ar	nswer	
2	1.75	$\delta 1 = \frac{12 - \mu}{\sigma}$	<u>1</u>	B1		Rounding	to ± 1.75 seen	
	0.46	$68 = \frac{9-\mu}{\sigma}$		B1		±0.468 see	en	
		U		M1		An eqn wi σ^2	ith a <i>z</i> -value, μ an	d σ no √σ, no
	$\sigma^{=}$	2.34		M1		Sensible a substitutio	ttempt to elimination or subtraction,	the μ or σ by meed a value
	$\mu =$	7.91		A1	5	correct an	swers	
3	(i)	constant / fixed / giv	given <i>p</i> , independent trials, yen no. of trials, only two	B1		Any one c	correct	
		outcomes		B1	2	Any 3 cor	rect	
	(ii)	$P(x \ge 3)$	= 1 - P(0, 1, 2)	M1		Any binor seen	nial expression p ^r	$(1-p)^{18-r} {}^{18}C_r$
		$= 1 - [(0.1)(0.85)^{16}]$	$(0.15)^{18} + (0.85)^{17}(0.15) \times 18 + (0.15)^2 \times {}^{18}C_2$	M1		1 - P(0, 1)	, 2), any <i>n,p,q</i>	
		= 0.520		A1	3	Correct ar	nswer	
4	(i)	P(exactly	2) = $\frac{{}^{6}C_{2}}{{}^{8}C_{4}} = \frac{15}{70} = \frac{3}{14}$ AG	M1		$^{6}Cx / ^{8}Cx =$ (last 2 can	seen or ${}^{4}C_{2}$ mult b be implied)	y 4 fractions
		OR P(2)	$= \frac{6}{8} \times \frac{5}{7} \times \frac{2}{6} \times \frac{1}{5} \times {}^{4}C_{2} = \frac{3}{14} \text{ AG}$	A1	2	Answer le	git obtained	
	(ii)	x Prob	2 3 4 3/14 8/14 3/14	B1 B1 B1√	3	2, 3, 4 onl one correct third corre	y in top line et prob other than ect prob ft $\Sigma = 1$	P(2)
	(iii)	$\operatorname{Var}(X) =$	$\frac{12}{14} + \frac{72}{14} + \frac{48}{14} - 3^2$	M1		using $\sum x^2 \mu$ evaluated	$p-3^2$ (or their {E	(X) ²) must be
		$=\frac{3}{7}(0.42)$	29)	A1	2	correct an	swer	

	Pa	ge 5	Mark Schem	ne		Syllabus	Paper
			GCE AS/A LEVEL – Ma	ay/June 20	014	9709	61
					-		
5	(i)	P(X and <i>P</i>	$P) = \frac{1}{4} \times \frac{4}{9} = \frac{1}{9}$	M1	Mult a pla	yground prob wit	h a <i>P</i> prob
		P(Y and F)	$P) = \frac{1}{4} \times \frac{2}{12} = \frac{1}{24}$	A1	One corre	ct prob	
		P(Z and F)	$P) = \frac{1}{2} \times \frac{1}{16} = \frac{1}{32}$	M1	Summing	at least two 2-fac	tor probs
		$\mathbf{P}(P) = \frac{5}{28}$	$\frac{3}{88} = 0.184$	A1 4	Correct ar	iswer	
	(ii)	$\mathbb{P}(Y \mid C) =$	$=\frac{\mathbf{P}(Y \cap C)}{\mathbf{P}(C)}$	M1	Attempt a fraction	t $P(Y \cap C)$ as num	merator of a
		$\frac{1}{1} \times \frac{1}{1}$		M1	Attempt a	t $P(C)$ in form of s	summing two 2-
		$\frac{4}{1}$	$\frac{2}{1-4}$		factor pro	ducts, seen anywh	iere
		$\frac{1}{4} \times \frac{1}{12} + \frac{1}{2}$	$\frac{1}{2} \times \frac{4}{16}$	A1	Correct ur	simplified $P(C)$ s	een anywhere
		$=\frac{\frac{1}{48}}{\frac{7}{48}}=$	<u>1</u> 7	A1 4	Correct an	ıswer	
6	(i)	$\frac{6!}{2!} = 360$		B1 B1 2	6! Seen al Dividing I	one by 2! only	
	(ii)	$\frac{4!}{2!} \times \frac{4!}{3!}$		B1 B1	4! seen m Dividing b	ult by 2! or 3! (Mult b	by 4 implied
		= 48		B1 3	B1B1) Correct ar	nswer	
	(iii)	1N and 1 = 3 ways	A: N A xx in ${}^{3}C_{2}$	M1 A1 2	$^{3}C_{x} \text{ or } {}^{x}C_{2}$ Correct an	seen alone nswer	
	(iv)	0 A : Nxx 2 As: NA 3 As: NA	xx = 1 way Ax in ${}^{3}C_{1} = 3$ ways AA in 1 way	M1 M1	Finding w Summing	rays with 0 or 2 or 3 or 4 options	3 As
		Total = 8	ways	A1 3	Correct an	nswer	

Pa	age 6	Mark Scher	ne		Syllabus	Paper
		GCE AS/A LEVEL – Ma	ay/June 20	14	9709	61
7 (i)	class widt	ths 5, 15, 15, 25, 20	M1	Attempt a	t class widths	
	$\mathrm{fd}=\frac{24}{5},$	$\frac{9}{15}, \frac{21}{15}, \frac{15}{25}, \frac{42}{20}$	B1	Correct with halves, see	idths of bars, with en on diagram	or without
fd	= 4.8, 0.6	, 1.4, 0.6, 2.1		A 44	4 61 1 - 1 6	
			MI	Attempt a	t id or scaled freq	
).5 20.5		A1	Correct he	ights seen on grap	oh ft their fd
		errors	B1 5	Correct la	bels, scales and ha	lves
(ii)	mean =					
	$(3 \times 24 + 1)$	$\frac{13 \times 9 + 28 \times 21 + 48 \times 15 + 70.5 \times 42)}{111}$	M1 M1	Using mid using (Σ the second seco	l points heir fx) / their 111	
	= 40.2 err	ors	A1 3	correct and	swer	
(iii)	LQ in 6 – UQ in 61 Least valu	20 - 80 ue of IQ range is $61 - 20 = 41$	B1 B1 B1√ [№] 3	ft any or b sensible	ooth wrong quartile	e ranges if

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/62

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	62

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √* implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	62

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Pa	ge 4				Mark So	cheme			Paper		
				G	CE AS/	A LEVEL	– May/J	lune	2014	9709	62	
1	V	D(10	0 12)				M1		Any hinemist	$t_{arm} = \frac{19}{2} c_{ar} x_{(1)} = \frac{1}{2}$	$)^{19-x}$ 0 - $x - 1$	
	$A \sim P(X) = (0)$	(19) (< 4) $(.88)^{19}$	P = P(0, 1) = P(0, 1) $P + {}^{19}C_1(0)$	(1, 2, 3) $(0.12)^{1}(0)$	$(88)^{18} +$		M1		Any binomial	term ^{<i>n</i>} Cx(0.12 or 0	$y, \sqrt{p} < 1$ (0.88) ^x (0.88 or	
	${}^{19}C_{2}$	(0.12	$)^{2}(0.88)$	$^{17} + {}^{19}C_3$	$(0.12)^3(0$	0.88) ¹⁶	M1		$0.12)^{n-x}$ P(0, 1, 2, 3) bin	nomial expr with	at least 2	
	= 0.	.813					A1	4	consistent term Correct answer	ns r		
2	Y1(7) Y2	2(2)Y3(2)	2) -7×1	× 1 – 7		B1		One unsimplif	ied correct 3-facto	or product of	
	1 2 2	2 1 2	2 2 1	$= 7 \times 1$ $= {}^{7}C_{2} \times$ $= {}^{7}C_{2} \times$	$^{2}C_{1} \times 1 = 7$	= 42 - 42	B1		A second unsit	mplified correct 3	-factor product	
	$\frac{2}{3}$	1	1	$= C_2 \times$ = $^7C_3 \times$	$^{1}\times C_{1}$ $^{2}C_{1}\times ^{2}C_{1}$	$_{1} = 140$	M1		Summing 3 or	4 options allow p	erms, wrong	
	Tota	al = 2	31				A1	4	Correct answer	r		
3	(i)	P(RI P(A)	(R) = 0.6 (A) = 0.4	$\times 0.7 =$ $\times 0.75 =$	0.42 = 0.3		B1 B1		Only 2 factors Only 2 factors			
		P(2 s	sets in n	natch) =	0.72		B1√ [^]	3	ft previous ans	wers		
	(ii)	<u>P(A</u>	winsan P(2se	d 2sets) ts)	$=\frac{P(A)}{P(2 s)}$	$\frac{(A)}{(A)}$	B1√		Correct num of their (i)	r correct denom o	f a fraction ft	
		$=\frac{0}{0.}$	$\frac{1.3}{72} = \frac{5}{12}$	2 (0.417)			B1√*	2	Correct answer ft their or recovered AA/their or recovered (i)			
4	(i)	A:P(B: P	(H) = 2/2 (H) = 1/4	3, $P(T) =$, $P(T) =$	= 1/3 = 3/4		M1		Using some of involving prod	2/3, 1/3, ¹ / ₄ or 3/4 of 3 probs	in a calculation	
		P(1H = ($(H) = P(H) = 2/3 \times 1/3$	$\begin{array}{l} \text{ITT} + P \\ 3 \times 3/4 \end{array}$	(THT) + + (1/3 ×	P(TTH) 2/3 × 3/4)	M1		Summing 3 op	tions not all the sa	ame	
			+ (1/3	\times 1/3 \times	1/4) = 13	3/36 AG	A1	3	Correct answer	r		
		x	0	1	2	3						
	(ii)	Р	3/36	13/36	16/36	4/36	B1		0, 1, 2, 3 seen and not absolutely	for table no probs necessary if calcs	needed, table shown	
	Р	P (0H)	= P(TT	T(T) = 1/3	\times 1/3 \times	3/4 = 1/12	B1		One prob corre for 0.0833	ect other than (i) c	ondone 0.083	
		P(2H = (+ ((HT) + P $(3 \times 3/4)$ $(3 \times 1/4)$	P(HTH) - + (2/3 × = 4/9 no	+ P(THH) 1/3 × 1/4) t 2/3 × 2/3	B1		A second prob correct need 3 factors can be implied			
	I	P(3H)	= P(HI)	HH) = 2/	$3 \times 2/3 >$	< 1/4 = 1/9	B1√*	4	A third prob co	orrect ft $23/36 - \Sigma$	their 2 probs	
	(iii)	E(<i>X</i>)	= 13/3	6 + 32/36	5 + 12/30	6	M1		Attempt to eva	luate Σxp at least	3 vals of x in	
			= 57/36	5 (19/12)	(1.58)		A1	2	Correct answer	r		

Page 5	5	Mark Sc	cheme			Syllabus Paper			
		GCE AS/A LEVEL	– May	/June	2014 9709 62				
5 (i) 5! ×	< 3! or	6!	B1		5! or 3! or 6! o	e seen mult or alc	ne		
= 72	20		B1	2	Correct final a	nswer			
(ii) 3**	4, 3**	*8, 4**8	M1		considering at ending with 4 o	least 2 types of 4- or 8 and starting v	figure options with 3 or 4		
= 5	×4+	$5 \times 4 + 5 \times 4 = 60$	A1	3	Correct final a	nswer	can be implied		
(iii) 5,*	5, **5	5,	M1		Appreciating the implied	hat the number m	ust end in 5 (can		
= 1	+7+	7 ²	M1		summing numl	bers ending in 5 w	with at least 2		
= 5'	7		A1	3	Correct final an	nswer			
6 (i) 6			B1	1	Must see in (i)				
(ii) frec fd	ls 4 8	6 30 9 8 12 30 18 8	M1		Attempt at scal least three f/cw	led freq or fd (mu	st be f/cw) at		
-30			A1		Correct heights	s seen on graph			
20 - +0			B1		Correct-lookin gaps no extra l	g widths from 10, ines	10.5 etc. no		
	11	12 13 14 Time (sec)	B1	4	Labels and line secs, fd,	ear axes or squigg	le need time or		
(iii) E(X 30 -	r) = (1 + 12.2	$0.25 \times 4 + 10.75 \times 6 + 11.5 \times 5 \times 9 + 13 \times 8)/57$	M1		Using mid-poin	nt attempt (not en	d points) with		
= 1	1.7(11	.662)	A1		their freq or cf Correct mean	at least 2 sensible	e ones		
Var 11.: + 1:	$(X) = 5^2 \times 30^2$ $3^2 \times 8^2$	$(10.25^2 \times 4 + 10.75^2 \times 6 + 0 + 12.25^2 \times 9) / 57 - (11.662)^2$	M1		numerical attempt at correct variance formula with mean ² subt ft their "midpoints" i.e. ucb, cw, etc.				
= 0.	.547		A1	4	accept answers condone 0.6, 0	s between 0.547 a .60	nd 0.610		

Pa	ige 6	Mark So	cheme			Syllabus	Paper
		GCE AS/A LEVEL	– May/J	une	e 2014	9709	62
7 (i)	z = -0.842	2	B1		± rounding to ().84 seen	
	P ($x > 1.3$	$5) = P\left(z > \frac{1.35 - 1.9}{\sigma}\right)$	M1		$\pm \frac{1.35 - 1.9}{\sigma} = a$	n prob or a <i>z</i> -value	e NOT 0.8 or 0.2
	-0.842 =	-0.55/ σ			allow a 1–		
	σ = 0.653		A1	3	Correct answer	r from correct wor	king
(ii)	P(x < 2) =	$= P\left(z < \frac{2 - 1.9}{0.6532}\right)$	M1		± standardising	g no continuity co	rrection their σ
	= 0.561		A1	2	Correct answer	r	
(iii)	<i>X</i> ~N(160, P(162.5 <	(32) (x < 173.5) =	B1		Unsimplified 1	60 and 32 seen	
	$P\left(\frac{162.5}{\sqrt{3}}\right)$	$\frac{-160}{32} < z < \frac{173.5 - 160}{\sqrt{32}} \right)$	M1		Standardising 1	need sq rt	
	P(0.442 <	z < 2.386)	M1		Any of 162.5,	163.5, 172.5, 173	5 seen
	$= \Phi(2.386)$	$(6) - \Phi(0.442)$	M1		$\Phi_2 - \Phi_1$ oe		
	= 0.9915	-0.6707	A1		One correct Φ	to 3sf	
	= 0.321		A1	6	Correct answer	r accept 0.320	

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/63

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	63

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √* implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	63

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4			Mark Sc						Syllabus	Paper
				G	CE AS/A	LEVEL	– May/J	June	2014	9709	63
1	(i)										
1	(I)	<u>A</u> 8 7 4	6 5 4 3 3 3 2 1 8 4 3 1	4 5 6 7	Children 3 4 1 2 7 8 2 7	_	B1		Single stem an children and se	d key correct – in econds	cluding adults,
			0 1 5 1	8 9	13469 25		B1		Right hand lea	ves correct shape	
		key 3 adults	5 4 re and 54	epresen secono	ts 53 secor ls for child	nds for ren	B1	3	Left hand leav	es correct shape	
	 (ii) Two from: Children's estimates more spread out Adults estimates lower Adults are symmetrical whereas children are skewed 					B1 B1	2	oe oe oe			
2	(i)	np = 2 npq =	252 × 1/ 252 × 1	7 = 36	7 = 30.857	7	B1		Unsimplified 3	36 and 30.857 see	n, oe
	$P\left(z < \left(\frac{29.5 - 36}{\sqrt{30.857}}\right)\right) + P\left(z > \left(\frac{44.5 - 36}{\sqrt{30.857}}\right)\right)$				M1 M1		any standardising, sq rt needed any continuity correction either 29.5, 30.5, 43.5, 44.5				
		= P (z	<-1.17	70) + P	(z > 1.530))					
		= 1 - 0	0.8790 -	+ 1 - 0	.9370		M1		correct area 2 -	$-(\Phi_1+\Phi_2)$	
		= 0.18					A1	5	correct answer		
	(ii)	np and	d <i>nq</i> are	both >	5		B1	1	must have both		
3	(i)	P(2) = OR	${}^{6}C_{3} \times {}^{3}$	$C_2/{}^9C_5$	C		M1 OR		Using combina	ations ${}^{a}C_{b} \times {}^{c}C_{d} / {}^{e}C_{d}$	Ç f
	$\frac{{}^{6}C_{3} \times {}^{5}C_{2}}{{}^{6}C_{5} + {}^{6}C_{4} \times {}^{3}C_{1} + {}^{6}C_{3} \times {}^{3}C_{2} + {}^{6}C_{2} \times {}^{3}C_{3}}$ OR 3/9 × 2/8 × 6/7 × 5/6 × 4/5 × {}^{5}C_{2} = 10/21 = 60/126 AG					M1 OR M1 A1	2	Mult 5 probs v If ⁵ C ₂ replace b Legit method,	with a ${}^{p}C_{q}$ by 10, oe must be as answer given	justified	
	(ii)										
			0	1	2	3	B1		0, 1, 2, 3 only Condone $x = 4$	seen in table. ,5 in table if $P(x)$	= 0 or blank and
	Pı	rob	2/42	15/42	20/42	5/42			values in table	for $x = 0, 1, 2, 3$	
	$P(0) = {}^{6}C_{5} / {}^{9}C_{5} = 6/126$ $P(1) = {}^{6}C_{4} \times {}^{3}C_{1} / {}^{9}C_{5} = 45/126$ $P(3) = {}^{6}C_{2} \times {}^{3}C_{3} / 126 = 15/126$						B1 B1 B1√ [*]	4	Any correct pr Any other corr $\Sigma P(x) = 1, 3 < r$	bob other than $P(2)$ rect prob h(x) < 6)

I uge o

Mark Scheme	Syllabus
GCE AS/A LEVEL – May/June 2014	9709

Paper 63

-					
4	(i)	new mean $\frac{172.6 \times 28 - 161.8}{27} = 173$	M1 A1	2	Mult by 28, subt 161.8 and dividing by 27 or 28 Correct ans
	(ii)	original $\Sigma x^2 = (4.58^2 + 172.6^2) \times 28$	M1		Subst in formula to find Σx^2 and attempt to make Σx^2 subject, with 2 terms both squared
		= 834728.6 (835000)	A1		Correct answer
		Remaining $\Sigma x^2 = 834728.6 - 161.8^2$ = 808549.36	M1		Subtract 161.8 ² from their original Σx^2
		sd of remaining = $\sqrt{\frac{808549.36}{27} - 173^2}$			
		= 4.16	A1	4	Correct ans, accept 4.15 or 3.93
5	(i)	z = -1.282	B1		Rounding to ± 1.28 seen
		$-1.282 = \frac{t - 6.5}{1.76}$	M1		Standardising, no cc, no sq or sq rt, $z \neq \pm 0.9, \pm 0.1$
		<i>t</i> = 4.24	A1	3	Correct answer, accept 4.25
	(ii)	P(z < 1) = 0.8413	M1		z = 1 used to find a probability
		P(within 1sd of mean) = $2\Phi - 1$ = 0.6826	B1		correct prob, accept answer rounding to 0.66, 0.67, 0.68, not from wrong working. If quoted, then implies first M1.
		$P(8, 9) = {}^{9}C_{8}(0.6826)^{8}(0.3174) + (0.6826)^{9}$	M1 M1		Binomial term $p^r(1-p)^{9-r} C_r$, 9C_r must be seen Binomial expression for P(8)+P(9), any p
		= 0.167	A1	5	Correct ans
6	(i)	$P(B \text{ champ}) = 0.7 \times 0.7 = 0.49$	B1	1	
	(ii)	P (B champ) = P(WW) + P(WLW) + P(LWW) = $(0.7 \times 0.7) + (0.7 \times 0.3 \times 0.7) +$ $(0.3 \times 0.7 \times 0.7)$	M1		Summing at least 2 options, at least one of which is 3-factor
		= 0.49 + 0.147 + 0.147 $= 0.784$	B1 A1	3	0.147 seen, unsimplified Correct answer
	(iii)	$P(T2 T) = \frac{P(T2 \cap T)}{P(T)}$	M1		Attempt P(T2 \cap T) seen anywhere sum of 2 terms
		$= \frac{0.3 \times 0.3 + 0.7 \times 0.3 \times 0.3}{0.216}$ = 0.708	A1 M1 A1	4	Correct unsimplified num of a fraction Dividing by their $(1 - (ii) \sqrt[h]{})$ oe Correct answer

	Page 6			Mark Scheme				Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014				2014	9709	63		
7	(i)	(a)	6! (×) 4 ÷ 2!2	! OR (×) 4×3 2!3! OR ÷ 2!3!	M1 M1 M1		Seen in a singl Seen in a singl (denomin Seen in a singl	e term expression e term expression ator may be 1) e term expression	as numerator as numerator as denominator
			Total	1720 ways	A1	4	Correct ans		
	(i)	(b)	1*** 3*** 3***	****3 = $\frac{7!}{3!2!}$ = 420 ****1= 420 ****3= 420	B1 M1		$\frac{7!}{3!2!}$ seen oe Attempting to 1***3, 3***1,	evaluate and sum 3***3	at least 2 of
			Tota	l = 1260 ways	A1	3	Correct ans		
(ii)	(a)	5 × 4	$x \times 3 = 60$ ways (⁵ P ₃)	M1 A1	2	${}^{5}P_{3} \text{ or } {}^{5}C_{3} \times 3!$ Correct ans	(can be implied)	
(ii)	(b)	2** i 212, 221, 231, 241, 261,	n 213, 214, 216, 223, 224, 226, 232, 233, 234, 236, 242, 243, 246 262, 263, 264, 266	M1	2	Listing attemp correct entries	t starting with 2, a	ıt least 10
			Altor	r – 22 ways	AI	2	Correct ans		
			3×4	$C_1 + 2 \times {}^5C_1$	M1		$p \times {}^{4}\mathrm{C}_{1} + q \times {}^{5}$	C_1 , oe $p + q > 2$	
			OR ⁵ P ₂ +	² C ₁	OR M1		⁵ P ₂ seen		
			OR ${}^{4}P_{2} +$	$2 \times {}^{4}P_{1} + {}^{2}C_{1}$	OR M1		Any 2 terms ac	lded	

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √* implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Sc	Syllabus	Paper			
		GCE AS/A LEVEL – Oct	ober/N	over	nber 2013	9709	61
1	Y	$Z \bigwedge$	B1		X mean at 30, 1 or $15 - 45$	roughly from 10	to 50
	X		B1		<i>Y</i> same mean a	as X but higher a	nd thinner
	10 20 30	40 50 60 70	B1ft	3	Z same shape a	as Y but mean at	50 ft wrong <i>Y</i>
2	either 55/90 (1 or 95/160 (19/	1/18) 32) seen	B1		oe		
	P(M and 18 - 6) = 0.367 (11)	50) = 0.6 × 55/90 / 30)	M1		0.6 mult by 55, of a fraction	/90 seen as num	/ denom
	P(18-60) = 0 (= 29/48 or 0.6	$0.6 \times 55/90 + 0.4 \times 95/160$ 504)	M1		Summing 2 tw anywhere	o-factor product	s seen
	P(M 18 – 60	$P(18-60) = \frac{P(M \cap 18-60)}{P(18-60)}$	A1		Correct unsimp num/denom of	plified answer se a fraction	en as
		= 88/145 (0.607)	A1	5	Correct answer	r	
3	$\Sigma(x-5) = 116$	- 18 × 5 = 26	M1 A1		Obtaining Σx a Correct answer	nd subtracting 1	8 × 5
	$\frac{\Sigma(x-5)^2}{18} - \left(\frac{2}{1}\right)$	$\left(\frac{26}{8}\right)^2 = \frac{967}{18} - \left(\frac{58}{9}\right)^2$	M1 M1		Subst in correc Subst in correc	et var formula all et var formula all	coded vals uncoded
	$\Sigma(x-5)^2 = 257$	7	A1	5	Correct answer	r	
	OR coded mean $\Sigma(x-5) = 1.44$	m = 58/9 - 5 = 1.444 $44 \times 18 = 26$	M1 A1		Subtracting 5 f Correct answer	rom true mean a r	nd mult by 18
	$\Sigma(x-5)^2 = \Sigma x^2$ $= 967 - 1160$	$x^2 - 10\Sigma x + 25 \times 18$ 0 + 450 = 257	M1 A1 A1		Expanding $\Sigma(x)$ Any 2 terms co Correct answer	(-5) ² 3 terms nee prrect r	ded
4	(i)		B1 B1		Linear scale or in heading, nee Correct mediar	• 5 values shown ed thousands of o	and labels or lollars,
200) 300 400 500	600 700 800 900 1000 House price, 000's dollars	B1 B1	4	Correct quartile Correct end po	es ints of whiskers	not
	(ii) 15 × 170	= 255	M1		Mult their IO r	ange by 1.5	
	Expensive 690 + 170 i.e. 957	e houses above $1 \times 1.5 = 945$ and 986 thousands of dollars	A1	2	Correct answer	rs from correct v	vkg need
					thousands of d	ollars	
	(iii) doesn't sh	now all the data items	B1	1	Need to see 'in	idividual items'	oe

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

5	(i)	z = -1.406	B1		Rounding to ± 1.41 seen
		$\frac{c-14.2}{3.6} = -1.406$	M1		Standardising allow sq rt no cc
		c = 9.14	A1	3	Correct answer
	(ii)	$P\left(\frac{15-14.2}{3.6}\right) < z < \left(\frac{16-14.2}{3.6}\right)$	M1		2 attempts at standardising no cc no sq rt
		$= \Phi(0.5) - \Phi(0.222)$ = 0.6915 - 0.5879	M1		Subt two Φ s (indep mark)
		= 0.0313 = 0.3879 = 0.1036	A1		Needn't be entirely accurate, rounding to 0.10
		P(at least 2) = 1 - P(0, 1) = 1 - (0.8964) ⁷ - (0.8964) ⁶ (0.1036)-C.	M1		Binomial term with $_{7}C_{r}p^{r}(1-p)^{7-r}$ seen $r \neq 0$
		= 1 - 0.8413	M1		1 - P(0), 1 - P(1), 1 - P(0, 1) seen their p
		= 0.159	A1	6	Correct answer accept 3sf rounding to 0.16
6	(i)	$\begin{array}{ccc} M & R & O \\ 3 & 1 & 2 = 7C3 \times 5C1 \times 8C2 = 4900 \end{array}$	M1		Summing more than one 3term option involving combs (can be added)
		3 2 $1 = 7C3 \times 5C2 \times 8C1 = 2800$	M1		Mult 3 combs only (indep)
		2 2 $2 = 7C2 \times 5C2 \times 8C2 = 5880$	A1		1 option correct unsimplified
		Total = 13580	A1	4	Correct answer
	(ii)	4 groups in 4! ways 3 mountain in 3! ways	M1		4! seen mult by something
		2 ordinary in 2! ways	M1		Mult by 3! for racing or 2! for ordinary
		$4! \times 3! \times 2 = 288$	A1	3	Correct answer
	(iii)	ii) e.g. $s O x x x x O s s s$			2! or 4! seen mult
		Rest of bikes in 4!	M1		Mult by 5 (ssssb)
		Dives and spaces 5 groups in 5 ways $2! \times 4! \times 5 = 240$	A1	3	Correct answer

I	Page 6			Mark Schen							Syll	abus	Paper		
GCE AS/A LEVEL – Octo					tober/No	bber/November 2013 9709 61			61						
7 (i) if throw H then smallest score is 2 P(T, 1) = $1/2 \times 1/4 = 1/8$ AG							s 2		B1 B1	2	Or equivalent				
(ii	i) P	(3) fron	n two	o dice =	= 2/1	6 seen			B1		From (1, 2) and (2, 1))			
	$P(H, 3) = 1/2 \times 2/16 = 2/32$ $P(T, 3) = 1/2 \times 1/4 = 1/8$ So P(3) = 6/32 = 3/16 AG					M1 A1 A1	4	Summing P(H, 3) and P(T, 3) One correct Correct answer must see clear reasoning							
(iii	i)														
X	1	2	3	4	5	6	7	8	B1		One correct prob				
Prob		5/32		7/32		3/32			B1 B1	3	A second correct prob A third correct prob)			
(iv	(iv) $P(Q \cap R) = 0$ or 'if you throw a tail you can't get a 7'					M1		Stating $P(Q \cap R) = 0$ or implying by words							
	Ŷ	es they	are	exclusi	ve				Aldep	2	Dep on previous M				

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/62

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through √* marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4Mark SchemeSyllabusPaperGCE AS/A LEVEL – October/November 2013970962

1		$P(x < -2.4) = P\left(z < \frac{-2.4 - 1.5}{3.2}\right)$	M1		Standardising no cc can have sq
		= P(z < -1.219)	M1		Correct area, i.e. < 0.5
		= 1 - 0.8880 = 0.111	A1	[3]	Correct answer rounding to 0.111
2	(i)	$P(C \cap < 50) = 0.35 \times 0.2 = 0.07$	B1	[1]	
	(ii)	$P(C \mid <50) = \frac{P(C \cap <50)}{P(<50)}$	M1	[4]	Summing three 2-factor products seen anywhere (can omit the 1)
		$= \frac{0.35 \times 0.2}{0.25 \times 0.3 + 0.35 \times 0.2 + 0.4(\times 1)}$	A1		0.545 (unsimplified) seen as num or denom of a fraction
		$=\frac{0.07}{0.545}$	M1		Attempt at $P(C \cap < 50)$ as 2-factor prod only seen as num or denom of a fraction
		= 0.128 (14/109)	A1		Correct answer
3	(i)	$\frac{z = 0.878}{\frac{190 - 160}{2}} = 0.878$	B1 M1		\pm 0.878, 0.88, rounding to 0.88 seen (190 – 160)/ σ = something
		$\sigma = 34.2$	A1	[3]	Correct answer
	(ii)	P(at least 1) = 1 - P(0)	M1		Using $1 - P(0)$, $1 - P(0, 1)$, P(1,2 12) or P(2, 12) with $p = 0.19$ or 0.81, terms must be
		$= 1 - (0.81)^{12} = 0.920$	A1	[2]	Correct answer accept 0.92
4	(i)	number = $1.5 \times 50 = 75$ (AG)	B1	[1]	Must see 1.5×50
	(ii)	freqs are 10, 25, 50, 75, 30 (15, 15)	M1 A1		Attempt at freqs not fd Correct freqs
		$Mean = (10 \times 125 + 25 \times 162.5 + 50 \times 187.5 + 75 \times 225 + 30 \times 300)/190$	M1		attempt at mid points not cw or ucb or lcb
		= 40562.5/190 = 213 (213.48)	A1		correct mean
		$sd^{2} = 10 \times 125^{2} + 25 \times 162.5^{2} + 50 \times 187.5^{2} + 75 \times 225^{2} + 30 \times 300^{2})/190 - (213.48 \dots)^{2}$	M1		subst their Σfx^2 in correct variance formula
		sd = 46.5 or 46.6	A1	[6]	
	(iii)	have used the mid-point of each interval and not the raw data	B1	[1]	

	Page 5		Mark So	Syllabus	Paper				
			GCE AS/A LEVEL – Oc	GCE AS/A LEVEL – October/November 2013					
						1			
5	(i)	P(4, 5, 6) (0.22) ⁵ (0	$ = (0.22)^{4}(0.78)^{4}8C4 + 0.78)^{3}8C5 + (0.22)^{6}(0.78)^{2}8C6 $	M1 M1		Bin term v seen $r \neq 0$ Summing n = 8	with ${}_{8}C_{r} p^{r} (1-p)$ any $p < 1$ 2 or 3 bin probs	p^{8-r} $p = 0.22,$	
		= 0.0763		A1	[3]	Correct answer			
	(ii)	prob = 0.13 mean = $300 \times 0.13 = 39$ var = $300 \times 0.13 \times 0.87 = 33.93$				Correct prob can be implied Correct unsimplified np and npq ft wrong 0.13			
		P(30 < x) $(30.5 - 3)$	< 50) = P 39 $(7, 49.5 - 39)$	M1		Standardis	sing a value need	l sq rt	
		$\left(\frac{1}{\sqrt{33.93}} < z < \frac{1}{\sqrt{33.93}}\right)$				Cont corre only	Cont correction 30.5 / 31.5 or 48.5/49.5 only		
		$= P(-1.4592 \le z \le 1.8026)$ = $\Phi(1.8026) + \Phi(1.4592) - 1$ = 0.0642 + 0.0278 = 1 = 0.802		M1	[6]	Correct area $\Phi_1 + \Phi_2 - 1$ oe Rounding to correct answer SC P(31, 40)=300C31(0,13)^{31}(0,87)^{269}			
		0.9015	0.5270 1 0.052		[•]	$+ \dots +300C49 \text{ etc.}$ B1B1			
6	(i)	1663200		B1	[1]				
	(ii)	M xxxxx	XXXXX M	M1		9! or 9P9 s	seen		
		Number	of ways = $\frac{9!}{3!2!}$ = 30240	A1	[2]	Correct an	swer		
	(iii)	4 vowels	$s together = 8! \times 4/2!2!$ = 40320	M1 M1		8!/2!2! see 4 oe 4!/3! something	en mult by some or 4C1 etc. seen	thing mult by	
		1663200	-40320 = 1622880	B1	[3]	Correct answer SC 7!/2!2! × 8P4 or 7! × 8P4/3! Or 7!/2!2! × 8P4/3! M1			
	(iv)	Exactly 2	2 Fs 4C2 = 6	M1		Summing	2 options		
	(17)	Exactly 3 Es $4C_2 = 0$		B1		One option	n correct		
		Total = 10 ways		A1	[3]	Correct answer			
		OR 5C?		M2		M1 for k5	C2		
		= 10		Al		Correct an	S =		
		-							

Page 6			Mark Sch	Syllabus	Paper			
		GCE AS	A LEVEL - Octo	9709	62			
					-	-		
7 (i) options (3. 4. 4.) or (4.	(4, 4, 3)	M1		Summing	three 3-factor or	otions oe
, (-	Probs (4	$10 \times 6/9 \times 5/3$	3) ×3C1	M1		$10 \times 9 \times 8$	seen in denom	
	= 360/72	20	,					
	$= \frac{1}{2} AG$			A1	[3]	Correct an	iswer	
	$OR 6^{C_2}$	$\times_4 C_1 = 1$	٨G	M1		One of 6C	2 or 4C1 seen ir	n num
	UK —	$\frac{1}{C_3} - \frac{1}{2}$	AU	M1		10C3 in de	enom	
	1	0 5		Al		Correct an	iswer	
Gi)			B1	[4]	9 10 11	12 only seen	
	$\frac{1}{2}$	10	11 12		ניין	, 10, 11,	12 only seen	
Dro	h $24/7'$	$\frac{10}{20}$ 216/720	11 $12360/720$ $120/720$	0 B1		One correc	ct prob other tha	n P(11), with
110	24/72	20 210/720	300/720 120/72			or without	replacement	
	P(3 3 3	$) = 4/10 \times 3/9$	$\times 2/8 = 24/720 (1/3)$	BO) B1		Another co	orrect prob	
	P(3, 3, 4)	$) = 4/10 \times 3/9$	$\times 6/8 \times 3C1$,0)			· · · · ·	
	= 216/72	20 (3/10)						
	P(4, 4, 4	$) = 6/10 \times 5/9$	× 4/8 = 120/720(1/	6) B1		Σ all 4 probs = 1		
(iii	P(R) = 0	.5 $P(S) = 0.4$	$P(R \cap S) = 120/720$	B1	[3]	$P(R \cap S) =$	120/720 (1/6)	
				M1		Numerical	l attempt to com	pare $P(R \text{ and } S)$
	$P(R \cap S)$	$= 120/720 \neq P$	$(R) \times \mathbf{P}(S)$			with $P(R)$	\times P(S) provided	$P(R \cap S) \neq 1/5$
	Not inde	р		Alft		Correct co	onclusion ft wror	ng P(R ∩ S) ≠
						1/5, P(S) c	correct	
(iv) $P(R \cap S)$:	$\neq 0$ or there is	an overlan between	R B1ft	[1]	Correct an	swer following	correct
(1)	and $S(3)$	4.4)			[-]	reasoning	ft wrong non ze	ro P($R \cap S$)
	Not excl	usive $\sum xf/\sum f$				- sussing		

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/63

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through √* marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Pa	ge 4	Mark Sche	Syllabus	Paper					
			GCE AS/A LEVEL – Octol	9709	63					
1	bars Are labe	are not to a not rep b elled fd	uching oe y frequency, not used fd, not	B1 B1	2	Sensible reason involving not touching, no gaps, class boundaries, group data not continuous (may be the negative) Must be frequency density oe. Wrong height not sufficient. (Best 2 reasons awarded)				
2 P(1	13.6 <	: X < 14.8)	$P = P\left(\frac{13.6 - 14}{0.52} < z < \frac{14.8 - 14}{0.52}\right)$	M1		Standardising 1 sq, ±, mean on r	expression, no o num.	cc, no sq rt, no		
	= P(-0.7692 < z < 1.538) = $\Phi(1.538) - [1 - \Phi(0.7692)]$ = $0.9380 - [1 - 0.7791]$ = 0.7171 P(8) = $(0.7171)^8(0.2829)^2_{10}C_8$ = 0.252			M1 A1		$\Phi 1 + \Phi 2 - 1$ (in ($\Phi 2 - \Phi 1$ if cc to Correct probabi	ndep) oe used) lity rounding to	0.72 here		
				M1 A1	5	Binomial expres any p Correct answer	ssion 10C8 p ⁸ q ² (rounding to 0.2	$, \Sigma p + q = 1,$ 52)		
3	(i)	(p =)0.85 P(<12) = 1 - P(12, 13, 14) $= 1 - [(0.85)^{12}(0.15)^{2}_{14}C_{12} + (0.85)^{13}(0.15)_{14}C_{13} + (0.85)^{14}]$ = 1 - 0.6479 = 0.352			3	(p =)0.85 oe see Summing 2 or 3 p < 1, n = 14 (or bin probs) Correct answer	en anywhere consistent bin j r summing 12 or	probs, any 13 consistent		
	(ii)	$(0.85)^n \ge n \le n \le n = n$	≥ 0.1 14.2 14	M1 M1 A1	3	Eqn or inequality in 0.85(or 0.15), n , 0.1, n as a power Attempt to solve (can be implied) if n a power Correct answer – must be equals, not approx. MR allowed for 0.01, M1M1A0 max.				
4	(i)	(220×20 - = 16	+ 118×25)/45 3	M1 A1	2	Mult by 20 and Correct answer,	25 and dividing 163.3 or 490/3	their sum by 45 oe acceptable		
	(ii)	$\frac{\Sigma x_o^2/20}{\Sigma x_o^2} = 98$	$220^2 = 32^2$ 8480	M1 A1		Subst in correct Correct Σx_0^2	variance formu	la		
	$\sum x_l^2 / 25 - 118^2 = 12^2$ $\sum x_l^2 = 351700$			A1		correct Σx_l^2				
		$\Sigma x_o^2 + \Sigma x_o^2$ New var	$c_l^2 = 1340180$ = 1340180/45 - (7350/45) ² = 3100 - 3120	M1 A1	5	Subst their com var formula Correct answer	bined results in	correct		

Page 5		Mark Sche	Syllabus	Paper					
		GCE AS/A LEVEL – Octol	ber/N	ove	mber 2013	9709	63		
			r		Γ				
5 (a)	$P(X < q + z = 0.5)$ $\frac{\pm q}{7.4} \text{ or } \frac{\pm q}{7}$	$\frac{2}{82} = 0.72$ $\frac{2q}{7.4} = z \text{ or probability (o.e.)}$	M1 M1		Rounding to \pm 0.58 or \pm 0.15 seen Standardising, no cc, no sq, no sq rt				
	q = 4.31		A1	3	correct answer				
(b)	(b) $\frac{0.5\mu - \mu}{\sigma} = \frac{\pm 0.5\mu}{\sigma}$				Standardising at allow cc, sq rt, s Can be implied	ttempt some μ/σ sq			
	$\frac{0.20}{\sigma} = -$	$-0.2\sigma = -0.580$	B1 M1		\pm 0.580 seen (a substituting to e numerical solution not dependent	ccept ± 0.58) eliminate μ or σ ion, any <i>z</i> value	, arriving at or probability –		
	$\sigma = 2.$ $\mu = 3.$	90 36	A1	4	both answers co	orrect, accept 2.9)		
6 (i)	$\frac{8!}{3!2!2!}$ = 1680		M1 A1	2	8! Divided by a Correct answer	t least one of 3!	2!2! oe		
(ii)	5! = 120		M1 A1	2	5! Seen (not add Correct answer	ded, may be divi	ded/multipled)		
(iii)	<u>5!4!</u> 3!2!2!		B1 M1		5! Or 4! Seen in (denominator m $\frac{k5!4!}{1000}$ in a nume	a sum or product ay by 1) prical expression	in numerator		
					3!2!2!	r F			
	= 120		A1	3	Correct final an	swer			
(iv)	GG with A TA, TE, = 8 ways	AA, AE, EE, RA, RE, RT,	M1		Summing 2 opt	ions (could be lis	sts)		
	GGG with	h A, E, R, T = 4 ways	A1		1 correct option	L			
	Total = 12	2 ways	A1	3	Correct answer				
Pa	ge 6 Mark Scheme				Syllabus	Paper			
-------	----------------------------------	--	----------	-----	---	------------------------------	-----------------	--	--
		GCE AS/A LEVEL – Octob	per/No	ove	mber 2013	9709	63		
-									
7 (i)	P(same) = 2	= P(1, 1) + P(3, 3) + P(5, 5)	M1		Summing 3 two	-factor options			
	$=\frac{2}{9}\times\frac{1}{8}+$	$\frac{4}{9} \times \frac{5}{8} + \frac{5}{9} \times \frac{2}{8}$	M1		Multiplying terr or denominator	ns by one less i	n the numerator		
	= 5/18 (0.	278)	A1	3	Correct answer				
	Alt meth	od:							
	2C2+40	C2 + 3C2			M1 for nume	rator, M1 for	denominator,		
	90	22			A1 correct ans	wer	,		
	$2 \times 1 +$	$3 \times 4 + 2 \times 3$							
	or <u> </u>	$\overline{\partial C2 \times 2}$ de							
(ii)	$P(5, \overline{5}) +$	$P(\bar{5},5)$	M1 M1		Mult 2 probs whose numerators sum to 9 o.e. Summing 2 options or mult by 2 (may be 4 options)				
	$=\frac{3}{9}\times\frac{6}{8}+$	$\frac{6}{9} \times \frac{3}{8} = \frac{36}{72} = \frac{1}{2}$ or 0.5	A1	3	3 Correct answer				
	Alt moth	ad							
	$6C1 \times 3C$	1(×2)			M1 for more	unter M1 for			
	9C2 (>	$\frac{1}{2}$ oe			A1 correct answ	ver	denominator,		
	·····	·							
(iii)	$P(5 \cap \overline{5})$	$=\frac{3}{9}\times\frac{6}{8}=\frac{1}{4}$	M1		Attempt at P(5 a denominator of	and not 5) seen a a fraction	as numerator or		
	$P(\overline{5}) = \frac{1}{4}$	$\frac{6}{9} \times \frac{5}{8} = 48/72 = 0.6666$	M1		Attempt at P(no seen anywhere	t 5) sum of 2 tw	o-factor terms		
	$P(5 \overline{5})$	$= \frac{1/4}{2} = 3/8$	A1		Correct $P(\overline{5})$ as in fraction	numerator or de	enominator		
	$ (J_1 J_2) $	48/72							
	:	= 0.375	A1	4	Correct answer				
(iv)									
(1V)	$\frac{x}{P(X=x)}$	0 1 2 5/12 1/2 1/12	B1		Values 0, 1, 2 seen in table with at least 1 pr				
	P(0) = P	$P(\overline{5},\overline{5}) = \frac{6}{2} \times \frac{5}{2} = 30/72$ (5/12)	B1		Correct P(0) uns	simplified			
	(0.4166)	98							
	P(1) = 0.5	from part (ii)							
	P(2) = 6/7	72 (1/12) (0.0833) from part (i)	B1ft	3	If <i>x</i> =0,1,2(,3) probabilities <1	ft $\Sigma p = 1$, no	-ve values, all		

MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	61

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	61

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Pag	ge 4 Mark Scheme					Syllabus	Paper	
			GCE AS/A LEVEL – Ma	y/June	2013		9709	61	
						·			
1	(i)	$sd^2 = 19$ $sd = 2.1$	$57.5/30 - (234/30)^2$	M1 A1	[2]	Subst in 1 Accept 2	formula or expa .10	und	
	(ii)	86 = 234 $c = 78.$	4/30 + <i>c</i> 2	M1 A1	[2]	234/30 se	234/30 seen		
2		np = 350 $npq = 35$	$0 \times 1/7 (= 50)$ $50 \times 1/7 \times 6/7 (= 42.857)$	B1 M1		Correct u standardi have sq r	unsimplified <i>np</i> sing, with or v t	and <i>npq</i> without cc, must	
		P(x = 4) $P(z > -6)$	$P(z > \frac{46.5 - 50}{\sqrt{42.857}}) = 0.5346)$	M1 M1		continuit correct an	y correction 46 rea ie > 0.5 mus	.5 or 47.5 st be a Φ	
		= 0.704	,	A1	[5]	correct an	nswer		
3	(i)	females: LQ \$21	med \$22 700 700 UQ \$24 000	B1 B1	[2]	Any 2 co All corre	rrect ct		
	(ii)	males		B1		Uniform Salary, \$	scale and la	abels must see	
		females		B1		Correct graph for females ft their quartiles. Line not through box			
		20 21	22 23 24 25 26 27 Salary in \$000	B1	[3]	Correct graph for males			
4	(a)	P(y < 0)	$= P\left(z < \frac{0-\mu}{\mu/2}\right)$	M1		Standard implied)	ising containin and μ only	ng 0 (can be	
		-1(2 < -1)	(-2)		[2]	Z < -2 se			
		-1 - 0.5	7772 - 0:0228	AI	[9]	Correct a	inswer		
(b)		P(x > 2. P (x < 2	$\begin{array}{l} 1 \) = 253/8000 = 0.031625 \\ 1 \) = 0.968375 = \Phi \ (z) \end{array}$	M1		1 – thei <i>z</i> -value	ir 253/8000 us	sed to obtain a	
		z = 1.85	7 or 1.858 or 1.859 = $\frac{2.1 - 2.04}{\sigma}$	A1		Rounded	to 1.86 seen		
		$\sigma = 0.03$	23	M1		Solving f	for σ using thei	r <i>z</i> val must be a	
				A1	[4]	Correct a	nswer		
5	(i)	X~Bin	(12, 0.2)	B1 B1 B1	[3]	Bin or B 12 0.2 or 1/5	5		
	(ii)	P(X=X)	$(3, 4, 5) = 0.2^3 0.8^9{}_{12}C_3 + 0.2^4 0.8^8{}_{12}C_4$	M1		Bin expre	erssion with any	y p	
		$\begin{vmatrix} +0.2^{\circ}0.3\\ = 0.2362\\ = 0.422 \end{vmatrix}$	$8_{12}C_5$ 22 + 0.13287 + 0.05315	A1ft A1	[3]	Correct u Correct a	insimplified exp inswer	pression, their p	

	Pag	je 5		Mark Schem	е			Syllabus	Paper	
			GCE A	S/A LEVEL – Ma	y/June	2013		9709	61	
		[
	(iii)	P ($X = 0$ 0.8 ⁿ < 0. n = 21) < 0.01 01		M1 M1 A1	[3]	Statement can be in Equn inv Correct	Statement involving $P(X = 0)$ and 0.01 can be implied Equn involving '0.8', 0.01 or 0.99 Correct answer		
6	(i)	4! × 3! ×	$5! \times 2! \times 4! = 829$	9440	B1 B1 B1	[3]	4!, 3!, 5 denomin Mult by Correct	i!, 2 seen multip aator 4! answer	blied 1, not in	
	(ii)	8! × 9 × = 24385	$8 \times 7 \times 6 \times 5 \times 4$ 53600 (2.44 × 10 ⁹))	B1 B1 B1	[3]	8! seen 1 Mult by Correct	multiplied 1 ₉ P ₆ answer		
	(iii)	8C3 × 50 = 560	C3 × 2C2		B1 B1 B1	[3]	8C3 seen 5C3 seen Correct	n mult n mult answer		
7	(i)	number $P(Y) = x_x$	of balls in <i>B</i> is $5+$ /(x + 6) AG	x+1 = x+6	B1	[1]	Sensible	reason		
	(ii)	b	ox A	box B $\frac{6}{x+6}$ W	B1		both cor	rect for box A		
			W V10 V10 Y	$\frac{5}{x+6}$ W	B1 B1		1 correct	t		
				$\frac{x+1}{x+6} \qquad Y$	B1	[4]	1 correct	t		
	(iii)	$P(W_B) =$	$\frac{6}{x+6} = \frac{1}{3}$		M1		their $\frac{\theta}{x+\theta}$	$\frac{5}{-6} = 1/3 \text{ or } x/x +$	6 = 2/3	
		x =	12 AG		A1	[2]	Verifica	tion or solving le	egit	

Pag	je 6	Mark Schem	е			Syllabus	Paper
		GCE AS/A LEVEL – Ma	y/June	2013		9709	61
(iv)	$P(Y) = \frac{1}{1}$ $= \frac{6}{9}$ $P(=(AY)$ $= \frac{2}{10}$	$\frac{\frac{8}{0} \times \frac{12}{18} + \frac{2}{10} \times \frac{13}{18}}{\frac{11}{0}}$ $F(BY) = \frac{P(AY \cap BY)}{P(Y)}$ $\times \frac{13}{18} / \frac{61}{90}$	M1 A1 B1		Attempt fractions Correct fraction $(2/10) \times$ of a frac	at P(, Y) involv s, seen anywhere P(Y) seen as nur (13/18) seen as tion	ing 2 two-factor c. m or denom of a s num or denom
	$=\frac{13}{61}$	(0.213)	A1	[4]	Correct	answer	

MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/62

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	62

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	62

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4			Mark Scheme				Syllabus	Paper		
			GCE AS/A LEVEL	– May	/June	2013		9709	62	
1		<i>z</i> = 1.45 1.452 =	$\frac{2}{\frac{20-\mu}{\mu/5}}$		B1 B1		Roundin $\frac{20-\mu}{\mu/5}$	$rac{to \pm 1.45}{or \frac{20 - 5\sigma}{\sigma}} seer$	1 0e	
		μ=	= 15.5		B1	[3]	rounding	g to correct answ	ver	
2		$\overline{x} = 50$ -	+ 81.4/22 = 53.7		M1		Attempt	to find variance	using coding	
		var = 67	$71/22 - 3.7^2 = 16.81(16.8)$		A1		in both, Correct	correct formula answer eir var and their	mean with	
		16.81 =	$\Sigma x^2/22 - 53.7^2$		M1		uncodec	l formula for bot	h	
		= 6	3811(63800)		A1	[4]	correct a	correct answer		
		OR $\Sigma r = 22 \times$	$x = 50 = 81.4$ ($\Sigma r = 1181.4$)		M1		exnande	ed ean with 22×5	i0 seen	
		$\Sigma x^2 - 100$	$\sum_{x \to 2} \sum_{x \to 2} \sum_{x$		M1		expande correct	ed eqn with 2 or	3 terms	
		$\Sigma x^2 = 67$ Var = Σ	$x^{1} + 118140 - 55000 = 63811$ $x^{2}/22 - (\Sigma x/22)^{2} = 16.81$		A1 A1		correct a correct a	answer		
3	(i)	P(x < 4	40)							
		$= \mathbf{P} \left(z \right)$	$<\frac{440-445}{2}$ = 1 - Φ (1.389)		M1		Standar	dising no cc no s	q or sq rt	
		= 1 - 0.	9176		M1		Correct	area $(1 - \Phi)$ oe ((indep)	
		An	s = 0.0824		A1	[3]	Roundir 0.0825	ng to correct ans	wer accept	
	(ii)	<i>z</i> = 1.88	1		M1		±1.88 or seen±	r 1.881 or 1.882	or 1.555	
		$\frac{c}{3.6} = 1.$	881		M1		Equation z or prof (can be	n with $\pm c/3.6$ or b implied)	2c/3.6 only =	
		<i>c</i> =	6.77		A1	[3]	Correct	answer accept 6	.78	
4	(i)	p = 4/9 P(at lea = 1 - (5)	or 5/9 st 2) = 1 - P(0, 1) $5/9)^{5} - (4/9)(5/9)^{4} {}_{5}C_{1}$		B1 M1		Binomia	al term ${}_5C_x p^x (1 -$	$p)^{5-x}$ seen	
		= 0	.735		A1	[3]	Correct	answer		
	(ii)	<i>np</i> = 96	$npq = 32 p = P (\leq k)$		M1		Using <i>n</i> in 1 vari	p = 96 npq = 32 able	to obtain eqn	
		p = 2/3 $k = 6$	$q = 1/3 \ n = 144$		A1 A1ft		1/3 or 2/ Correct	/3 seen or implie k ft $k = 9p$	d	
		<i>n</i> = 144			A1	[4]	correct <i>i</i>	n		

	Р	age 5	Mark Scheme				Syllabus	Paper	
			GCE AS/A LEVEL – May/Ju	une 20	13		9709	62	
5	(i)	Stem	leaf	B1		Corre	ect stem condone	e a space under	
		0	1 4 6 8 0 3 4 4 4 5 5 5 6 6 6 6 7 8 8	B1		Corre	ect leaves must b	e single digits	
		2 3	0 1 5 7 8 1			and o lines	and one line for each stem value or 2 lines each stem value		
		4 5	5 7						
		Key 1	4 represents \$140	B1ft	[3]	Correcases	Correct key must have \$, ft 2 special cases		
	(ii)	Median = $LQ = 140$	160 UQ = 210	B1			Subt their LQ from their UQ		
		IQ range =	= UQ - LQ	M1		Subt			
		= 70		A1	[3]	Corre	Correct answer cwo		
	(iii)	1.5 × IQ ra	inge = 105	M1		Mult impli	Mult their IQ range by 1.5 can be implied		
		Lower out Upper out	lier is below 35 ier is above 315	Alft		Corre quart	ect limits ft their iles	IQ range and	
		Outlie	ers 10, 450, 570	A1	[3]	Corre	ect outliers		
6	(i)	H J 1. 3 7 4 6	$\begin{array}{ccc} O \\ 28 \\ 2 \\ = 4C2 \times 9C8 \times 2C2 = 54 \\ 2 \\ = 4C3 \times 9C7 \times 2C2 = 144 \\ 2 \\ = 4C4 \times 9C6 \times 2C2 = 84 \end{array}$	M1 M1 A1		Mult $4Cx \times$ Sumr 2 opti	3 combs, 2C2 m 9Cy×2Cz ning 2 or 3 three ions correct unsi	ay be implied e-factor options mplified	
		Total	= 282 ways	A1	[4]	Corre	ect answer		
	(ii)	4! × 6! × 2	2! × 3!	M1		$\begin{array}{c} 4! \times 6 \\ \geq 1 \end{array}$	$5! \times 2!$ oe seen n	nultiplied by int	
				M1		3! see	en mult by int \geq	1	
		= 2	207360 (207000)	A1	[3]	Corre	ect answer		
	(iii)	8 J and O t 9 gaps × 8	$\frac{1}{2} \times 7 \times 6$	B1 M1		8! see 9P4 c ≥ 1 n	ten mult by int \geq be or 7P4 or 8P4 o division	1 no division seen mult by in	ıt
		=	121,927,680 (122,000,000)	A1	[3]	Corre	ect answer		
	(i)	SR 4C2×9	C2×2C2×9C6	M1					
	(ii)	$SR \frac{4 \times 6 \times 2}{4 \times 6 \times 2}$	2! or 3! or both M1	M1					

	Page 6 Mark Schem			е			Syllabus	Paper	
			GCE AS/A LEVEL – Ma	y/June	e 2013	}	9709	62	
		[1	[
	(iii)	SR1 12! -	- 9! 4!	M1					
		SR2 $\frac{9P4}{4!}$	or $\frac{8!}{6! 2!}$ or both	M1					
7	(i)	P(T,B) =	$\frac{5}{12} \times \frac{2}{10} = \frac{1}{12} \left(0.0833 \right)$	M1 A1	[2]	Mult thei Correct a	Mult their P(<i>T</i>) by 2/9 or 2/10 only Correct answer		
	(ii)	$P(C_S \cap G)$	$C_A) = \frac{7}{12} \times \frac{4}{10} = \frac{28}{120} $ (0.2333)	M1		Mult thei num or d	Tr P(C_s) by 3/9 o enom of a fraction	r 4/10 seen as on	
		$P(C_A) = \frac{1}{1}$	$\frac{7}{2} \times \frac{4}{10} + \frac{5}{12} \times \frac{3}{10} = \frac{43}{120} (0.3583)$	M1		Summing $P(C_A)$ see	g 2 two-factor pr en anywhere	oducts to find	
		$P(C_S C_A)$	$= \frac{P(C \cap C)}{P(C_A)} = \frac{28/120}{43/120}$	A1		Correct u or denom	nsimplified P(C of a fraction	T_A) seen as num	
		=	$\frac{28}{43}(0.651)$	A1	[4]	Correct answer			
	(iii)	x Prob	0 1 2 7/24 19/40 7/30	B1		x = 0, 1, 2 working	2, can be implied	d from table or	
		$\mathbf{P}(X=0) =$	= P(T, B) + P(T, T)	M1		1 or 2 tw 10 or 12	o-factor product and 9, implied if	s, denoms 12 and f ans is correct	
		$=\frac{5}{12}\times\frac{2}{10}$	$\frac{2}{0} + \frac{5}{12} \times \frac{5}{10} = \frac{7}{24} (0.292)$	A1		One corre	ect unsimplified		
		P(X=2) =	= P(C, C) = $\frac{7}{12} \times \frac{4}{10} = \frac{28}{120} (0.233)$	B1		One othe	r correct unsimp	blified	
		P(X=1) =	$= 1 - 7/24 - 28/120 = \frac{19}{40} (0.475)$	B1ft	[5]	Third cor	rrect ft 1 – P(2 o	f their probs))	

MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/63

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	63

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	63

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a "fortuitous" answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through "" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	63

1		$P(Q) = \frac{4}{36}$ or $P(S) = \frac{1}{2}$	B1		oe
		$P(Q \cap S) = \frac{2}{36}$ or $P(S Q) = \frac{1}{2}$ or	B1		oe
		$P(Q S) = \frac{2}{18}$			
		$P(Q \cap S) = P(Q) \times P(S) \text{ or}$ P(S Q) = P(S) or P(Q S) = P(Q)	M1		Comparing correct pair of terms $0 \le all \text{ probabilities} < 1$
		Independent	A1	[4]	Correct conclusion must have all probs correct
2		P(at least 2) = P(2, 3) or 1 - P(0, 1)	M1		Summing, or 1–, two different three-factor prob expressions, ${}_{3}C_{2}$ not needed
		$=\frac{5}{12} \times \frac{4}{11} \times \frac{7}{10} \times {}_{3}C_{2} + \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10}$	M1 M1		12, 11, 10 seen or implied in denominator Mult a prob by ${}_{3}C_{2}$ or ${}_{3}C_{1}$ oe
		$=\frac{1}{11}(0.364)$	A1	[4]	Correct answer
		OR $\frac{(_5C_3) + (_5C_2 \times _7C_1)}{(_5C_2 \times _7C_1)}$	M1		${}_{5}C_{3}$ seen added in numerator
		₁₂ C ₃	M1		${}_{5}C_{2}$ seen mult alone or in numerator
			M1		$_{12}C_3$ seen in denom
			A1		Correct answer
3	(i)	P(tall) = P $\left(z > \frac{70 - 50}{16}\right)$ = P(z > 1.25)	M1		+ve/-ve Standardising no cc no sq rt no sq
		= 1 - 0.8944 = 0.106	A1	[2]	Correct answer
	(ii)	P(short) = (1 - 0.1056)/3	M1		Subt their (i) from 1 or their (i) and multiplying by $\frac{1}{3}$ or $\frac{2}{3}$
		= 0.2981	A1 ft		Rounding to 0.298, only ft for $\frac{(1-(i))}{(1-(i))}$
		z = -0.53	A1		\pm z-value rounding to 0.53, condone ± 0.24
		$-0.53 = \frac{x - 50}{16}$	M1		Standardising with their z value (not a probability), no cc sq rt etc.
		<i>x</i> = 41.5	A1	[5]	Correct answer

	-		
Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	63

4 (i)	$(0.8)^n < 0.001$	M1		Eqn or inequ involving 0.8^n or 0.2^n and 0.001 or 0.999 Trial and error or logs (can be implied)
	n = 31	A1	[3]	Correct answer MR 0.01, max available M1M1A0
(ii)	$\mu = 120 \times 0.2 = 24$ $\sigma^{2} = 120 \times 0.2 \times 0.8 = 19.2$	B1 M1		24 and 19.2 or $\sqrt{19.2}$ seen Standardising with or without cc, must have sq rt in denom
	$P(x < 33) = P \times \left(z < \frac{32.5 - 24}{\sqrt{19.2}}\right)$ = P(z < 1.9398)	M1		Continuity correction 32.5 or 33.5
	= 0.974	A1	[4]	Correct answer
5 (a)	$P(W_2) = P(W_1W_2) + P(L_1W_2)$ = 0.3 × 0.6 + 0.7 × 0.15 = 0.285	B1 M1		0.3×0.6 alone as num or denom of a fraction Attempt at P(W ₂) as sum of two 2-factor options seen anywhere
	$P(W_1 W_2) = \frac{P(W_1 \cap W_2)}{P(W_2)} = \frac{0.18}{0.285}$	A1		Correct unsimplified P(W ₂) as num or denom of a fraction
	$= 0.632, \frac{12}{19}$	A1	[4]	Correct answer
(b)	x + 4 oe seen	B1		Seen anywhere
	$\frac{10}{15} \times \frac{7}{x+4} = \frac{7}{18}$	M1		Mult two probabilities, one containing x and equating to $\frac{7}{18}$
	<i>x</i> = 8	A1 A1	[4]	Correct unsimplified equation Correct answer
6 (i) cf por	(40, 0), (50, 12) etc. up to (90, 144)	B1		Axes, (cf) and labels (kg), uniform scales from at least 0–140 and 40.5–69.5 either way round
140				
50				
	40 50 60 70 80 90 kg	B1	[2]	All points correct, sensible scale (not 12), polygon or smooth curve
(ii)	80 weigh less than 67.2 kg $c = 67.2$	M1 A1 ft	[2]	Subt 64 from 144 Accept anything between 67 and 68 ft from incorrect graph

	Page 6	Mark Scheme			Syllabus	Paper	
		GCE AS/A LEVE	L – May	/Jun	e 2013	9709	63
_							
(iii) freqs 12, 22, 30, 28, 52		M1 A1		frequencies attempt not cf Correct freas			
mean wt = $(45 \times 12 + 55 \times 22 + 62.5)$		M1		Using mid points attempt, i.e. 44.5, 45, 45.5		4.5, 45, 45.5, in	
		$\times 30 + 67.5 \times 28 + 80 \times 52)$			correct mean f	ormula, unsim	plified, no cfs,
		/ 144	A 1		C		
	=	96757144 67.24a	AI		Correct mean		
	Vai 62. 52)	r $(45^2 \times 12 + 55^2 \times 22 + 5^2 \times 30 + 67.5^2 \times 28 + 80^2 \times 0/144$ (9675/144) ² = 127.59	M1		Substituting thei widths, lower o formula even wit	r mid-pts square r upper bound th cfs with their	ed (may be class) in correct var mean ²
	sd	= 11.3, allow 11.2	A1	[6]	Correct answer		
,	7 (i)						
	S(10) R(14) P(6)	~	M1		Summing 2 or 1	more 3-factor o	ptions perms or
	$\begin{array}{cccc} 1 & 2 & 4 = 10 \\ 1 & 3 & 3 = 10 \end{array}$	$C1 \times 14C2 \times 6C4 = 13650$ $C1 \times 14C3 \times 6C3 = 72800$	M1		combs Mult 3 combs or	4 combs with Σ	r=7
	2 2 3 = 10	C2×14C2×6C3= 81900	B1		2 options correct	, unsimplified	. ,
	Total = 16	8350 or 168000	Al	[4]	Correct answer		
	(ii) $2! \times 2! \times 5!$		M1		$2! \times 2!$ oe, seen t	nult by an integ	er≥1, no
			M1		Mult by 5!, or 5! \geq 1 no division	alone, seen mu	It by an integer
	= 480		A1	[3]	Correct answer		
If M0 earned $\frac{2! \times 2!}{2! \times 2!}$ or $\frac{5!}{3!}$ or both,		SCM1					
	seen mult b Or 2!×2!×5	by an integer ≥ 1 ! divided by a value					
	(iii) spaniels and	d retrievers in 4! ways	M1		4! seen multiplie	d by an integer	>1
	gaps in 5P3	or $5 \times 4 \times 3$ ways	Ml Al	[3]	Mult by 5P3 oe Correct answer		
	= 1440			[0]			
	If M0 earne	ed	SCM1		₅ C ₃ oe		
	$\frac{4!}{2!}$ or $\frac{5P_3}{2!}$	$\frac{3}{2}$ or both, seen multiplied					
	$2!\times 2!$ $3!$ by an intege	er > 1					
	or						
	$7! - 5! \times 3!$		M1		oe		
	$- \{(4! \times 2 \times$	$(4 \times 3!) +$	M1		oe, e.g. $6 \times 5 \times 4$	× 4!	
	(4! × 3 ×	$\langle 4 \times 3! \rangle$	A1				
ĺ	= 1440						
ĺ	If M0 earne	ed					
ĺ	$3! \times 2! \times 2$! used as a denominator in					
	all 4 terms		SCM1		Marks cannot be	earned from bo	th methods.