

Cambridge International AS & A Level

MATHEMATICS
9709/51
Paper 5 Probability & Statistics 1

MARK SCHEME
October/November 2024

Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	Method 1		
	$[P(X<8)=] 1-\left(\frac{5}{6}\right)^7$	M1	$1 - b^{d}, b = \frac{5}{6}, \frac{1}{6} d = 7, 8.$ $1 - c^{e} - (1 - c) \times c^{e-1}, c = \frac{5}{6}, \frac{1}{6} e = 8,9.$
	= 0.721	A1	0.720918 $\frac{201811}{279936}$. If M0 scored, SC B1 for 0.7209 or $\frac{201811}{279936}$ only.
	Method 2		
	$[P(X < 8) =] \frac{1}{6} + \left(\frac{5}{6}\right) \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^{2} \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^{3} \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^{4} \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^{5} \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^{6} \left(\frac{1}{6}\right)$	M1	$a + ba + b^{2}a + b^{3}a + b^{4}a + b^{5}a + b^{6}a \Big[+ b^{7}a \Big].$ $a = \frac{1}{6}, \frac{5}{6}a + b = 1.$
	= 0.721	A1	0.720918 $\frac{201811}{279936}$. If M0 scored, SC B1 for 0.7209 or $\frac{201811}{279936}$ only.
		2	

Question	Answer	Marks	Guidance
1(b)	$\left(\frac{5}{6}\right)^6 \times \left(\frac{1}{6}\right)^2 \times 7$	M1	$\left(\frac{5}{6}\right)^6 \times \left(\frac{1}{6}\right)^2 \times d$ d an integer ≥ 1 , no inappropriate addition.
	0.0651	A1	$0.0651 \leqslant p < 0.06512.$
		2	

Question			Aı	nswer			Marks	Guidance
2(a)	[Probs $6k$, $3k = \frac{1}{28}$	k, 2k, 6k,	11k so 28k	k = 1,]		B1	k must be identified	
	$ \begin{array}{ c c c c c c c c c }\hline x & -2 & -1 & 0 & 2 & 3 \\\hline P(X=x) & \frac{6}{28} & \frac{3}{28} & \frac{2}{28} & \frac{6}{28} & \frac{11}{28} \\ 0.2143 & 0.1071 & 0.07143 & 0.2143 & 0.3929 \\\hline \end{array} $							Table with correct outcomes and 2 correct probabilities. FT substituting <i>their k</i> correctly into formula, with $0 . No additional x values unless probability 0. Condone in terms of k of the form \frac{6k}{28} or 6k. Fully correct.$
				15	44.8	atpr	E 3	Decimal answers to at least 3 sig figures, condone not summing exactly to 1.

PUBLISHED

Question	Answer	Marks	Guidance
2(b)	$E(X) = \left[-2 \times \frac{6}{28} + -1 \times \frac{3}{28} + \left[0 \times \frac{2}{28} \right] + 2 \times \frac{6}{28} + 3 \times \frac{11}{28} \right]$ $\frac{1}{28} \left(-12 - 3 + 12 + 33 \right) \left[= \frac{15}{14} \right]$	M1	Accept unsimplified expression. May be calculated in the variance. FT <i>their</i> table with 5 probabilities $0 that sum to 1.$
	$Var(X) = \frac{6 \times (-2)^{2} + 3 \times (-1)^{2} + 6 \times 2^{2} + 11 \times 3^{2}}{28}$ $-their \left(\frac{15}{14}\right)^{2}$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table with at least 4 probabilities $0 , that may not sum to 1.$
	$=4.21,\ 4\frac{41}{196}$	A1	Condone $\frac{825}{196}$. If one or both M marks not awarded, SC B1 for correct answer WWW.
		3	

Question	Answer	Marks	Guidance
3(a)	200 200 200 200 240	M1	At least 4 points plotted within tolerance at upper bounds. Linear cf scale $0 \le cf \le 200$ and linear time scale $0 \le t \le 70$, with at least 3 values identified on each. Minimum scale uses at least $\frac{1}{2}$ the grid.
	120 120 100 100 100 100 100 100	A1	All points plotted correctly. Curve drawn and joined to (0, 0). Axes labelled cumulative frequency (cf), time (<i>t</i>) and minutes (min) – or a suitable title.
		2	
3(b)	Median = 33	B1 FT	Must be identified. Evidence of use of graph must be seen. Strict FT ± ½ square on time axis.
	[IQR =]42 - 26	M1	$41 \le UQ \le 43 - 25 < LQ \le 27$. If outside of range FT $\pm \frac{1}{2}$ square on time axis.
	16	A1 FT	5
	12	3	

·satpreP.

Question				Answer			Marks	Guidance	
3(c)	Midpoint Frequency	7.5	20 28	27.5	35 52	45 36	60	B1	At least 5 correct midpoints or 5 correct frequencies seen.
	Mean = $\frac{18 \times 7.5 + 28 \times 20 + 42 \times 27.5 + 52 \times 35 + 36 \times 45 + 24 \times 60}{200}$							M1	Correct mean formula using <i>their</i> 6 midpoints (must be within class, not upper bound, not lower bound) condone 1 error and <i>their</i> 6 frequencies (not cumulative frequencies).
	$= 33.65, 33\frac{13}{20}$							A1	Accept 33.7, not $\frac{673}{20}$.
								3	

Question	Answer	Marks	Guidance
4(a)	$P(HRR) = \frac{1}{4} \times \frac{4}{6} \times \frac{4}{6} = \frac{16}{144}, \frac{4}{36}$ $P(TRR) = \frac{3}{4} \times \frac{3}{7} \times \frac{2}{6} = \frac{18}{168}, \frac{3}{28}$ $P(HBB) = \frac{1}{4} \times \frac{2}{6} \times \frac{2}{6} = \frac{4}{144}, \frac{1}{36}$ $P(TBB) = \frac{3}{4} \times \frac{4}{7} \times \frac{3}{6} = \frac{36}{168}, \frac{6}{28}, \frac{3}{14}$	B1	2 clearly identified unsimplified probabilities from P(HRR), P(TRR), P(HBB) and P(TBB) correct.
	$\frac{4}{36} + \frac{3}{28} + \frac{1}{36} + \frac{6}{28}$	M1	Sum of 4 correct scenarios, may be identified by the unsimplified probability calculations.
	$=\frac{29}{63}$ or 0.460	A1	(0.460317 to at least 3SF).
		3	

Question	Answer	Marks	Guidance
4(b)	$\left[P(T BB) = \frac{P(T \cap BB)}{P(BB)}\right] = \left[\frac{\frac{3}{4} \times \frac{4}{7} \times \frac{3}{6}}{\frac{1}{36} + \frac{6}{28}}\right]$	M1	$\frac{3}{4} \times \frac{4}{7} \times \frac{3}{6}, \frac{36}{168}$ oe, $\frac{3}{14}$, 0.2142857 seen as numerator of a fraction, accept unsimplified, FT <i>their</i> P(TBB) from 4(a)
	$\frac{3}{14} \div \frac{61}{252} \text{ or } \frac{\frac{3}{14}}{\frac{61}{252}}$	M1	their $\frac{1}{36}$ + their $\frac{6}{28}$ FT from 4(a) or correct, 0.24206, seen as denominator of a fraction, accept unsimplified.
	$\frac{54}{61}$ or 0.885	A1	Accept 0.8852589 rounded to at least 3SF. If one or both Ms not awarded, SC B1 for correct final answer WWW.
		3	

Question	Answer	Marks	Guidance
5(a)	$P(83 < X < 95) = P(\frac{83 - 90}{8} < Z < \frac{95 - 90}{8})$	M1	Using \pm standardisation formula with 90, 8 and <i>either</i> 83 or 95. Not σ^2 , not σ , no continuity correction.
	= P(-0.875 < Z < 0.625)	A1	Both ± 0.875 OE and ± 0.625 OE seen. If M0 scored, SC B1 for both ± 0.875 and ± 0.625 seen
	$[\Phi(0.625) + \Phi(0.875) - 1]$ = 0.7340 + 0.8092 - 1	M1	Calculating the appropriate probability area, leading to their final probability. Expect final answer > 0.5.
	= 0.543	A1	$0.5432, 0.543 \le p < 0.5435.$ Only dependent on the 2 nd M mark.
		4	

Question	Answer	Marks	Guidance
5(b)	[Mean = $160 \times 0.6 =]96$ [Var = $160 \times 0.6 \times 0.4 =]38.4$	B1	96 and 38.4 seen, allow unsimplified. May be seen in the standardisation formula.
	$P(X < 105) = P(Z < \frac{104.5 - 96}{\sqrt{38.4}})$	M1	Substituting <i>their</i> 96 and <i>their</i> 38.4 into the ±standardising formula (any number for 104.5), condone σ^2 or $\sqrt{\sigma}$.
	$[P(Z < 1.372) = \Phi(1.372)]$	M1	Use continuity correction 104.5 or 105.5 in <i>their</i> standardisation formula. Note: $\frac{\pm 8.5}{\sqrt{38.4}}$ or $\frac{\pm 8.5}{6.197}$ seen gains M2 BOD.
		M1	Appropriate area Φ , from final process, must be a probability. Expect final answer > 0.5 .
	= 0.915[0]	A1	$0.9149 \le p \le 0.915$. If one or more M marks not scored, SC B1 for $0.9149 \le p \le 0.915$.

Question	Answer	Marks	Guidance
6(a)	$\frac{182.7 - \mu}{1} = 1.282$	B1	1.282 or – 1.282 seen, CAO (critical value).
	$\frac{\sigma}{\frac{162.5 - \mu}{\sigma}} = -0.253$	B1	$-0.2535 < z \le -0.253$ or $0.253 \le z < 0.2535$ seen.
	$\frac{\gamma}{\sigma} = -0.253$	M1	One standardisation formula, not σ^2 , or $\sqrt{\sigma}$, with 182.7 or 162.5 substituted correctly equated to a <i>z</i> value (not 0.9, 0.1, 0.8159, 0.5398, 0.4, 0.6, 0.6554, 0.7257,).
	Solve, obtaining values for μ and σ	M1	Either a single expression with one variable eliminated formed or two expressions with both variables on the same side seen with at least one variable value stated.
	$\mu = 165.8, \ \sigma = 13.2$	A1	Answers must be to at least 1 DP (context).
		5	

Question	Answer	Marks	Guidance						
6(b)	Method 1								
	$[P(X < 8) = 1 - P(8, 9, 10) =] 1 - ({}^{10}C_8 (0.6)^8 (0.4)^2 + {}^{10}C_9$	M1	One term ${}^{10}C_x (p)^x (1-p)^{10-x}$. With $0 or 10.$						
	$(0.6)^{9} (0.4)^{1} + (0.6)^{10})$ $[= 1 - (0.12093 + 0.040311 + 0.0060466)]$	A1	Correct unsimplified expression. Allow 10 for 10 C ₉ . Condone omission of last bracket only. If both brackets omitted in unsimplified expression allow recovery for final stated calculation of 1 – 0.1673 or final answer WRT 0.8327.						
	= 0.833	B1	0.8327						
	Method 2								
	$ \left(0.4\right)^{10} + {}^{10}C_{1} \left(0.6\right)^{1} \left(0.4\right)^{9} + {}^{10}C_{2} \left(0.6\right)^{2} \left(0.4\right)^{8} + {}^{10}C_{3} \left(0.6\right)^{3} \left(0.4\right)^{7} + $	M1	One term ${}^{10}C_x (p)^x (1-p)^{10-x}$. With $0 or 10.$						
	$ \begin{array}{l} ^{10}\text{C}_{4} \left(0.6\right)^{4} \left(0.4\right)^{6} \ + ^{10}\text{C}_{5} \left(0.6\right)^{5} \left(0.4\right)^{5} + ^{10}\text{C}_{6} \left(0.6\right)^{6} \left(0.4\right)^{4} \ + ^{10}\text{C}_{7} \\ \left(0.6\right)^{7} \left(0.4\right)^{3} \end{array} $	A1	Correct unsimplified expression.						
	$\left[1.0486 \times 10^{-4} + 1.5729 \times 10^{-3} + \dots + 0.21499\right]$								
	= 0.833	B1	0.8327						
	7. Sature!	3							

Question	Answer	Marks	Guidance
7(a)	<u>8!</u> <u>2!2!</u>	M1	$\frac{k!}{2!m!}$ $k = 7$ or $8, m = 1, 2$.
	= 10080	A1	
7(b)	Method 1 Number of ways with no restriction on Es – ways with Es togetl	her	
	$\frac{7!}{2!2!} - \frac{6!}{2!}$	M1	$\frac{7!}{2!2!} - r, r \text{ integer} > 1.$
	[= 1260 – 360]	M1	$s - \frac{6!}{2!}, s \text{ integer} > 360.$
	= 900	A1	
	Method 2 T ^ ^ ^ ^ T with Es inserted in gaps		
	$\frac{5!}{2!} \times \frac{6 \times 5}{2} \text{ or } \frac{5!}{2!} \times {}^{6}C_{2}$	M1	$t \times \frac{6 \times 5}{2}$ or $t \times {}^{6}C_{2}$, t an integer > 1.
	$[=60 \times 15]$	M1	$\frac{5!}{2!} \times u$, u an integer > 1.
	=900	A1	
	Satpre	3	

Question	Answer	Marks	Guidance							
7(c)	Method 1 – addition									
	$T E_{} = {}^{2}C_{1} \times {}^{2}C_{1} \times {}^{5}C_{2} = 40$	B1	Either identified or correct unsimplified expression, either alone or in an addition.							
	TEE_= ${}^{2}C_{1} \times {}^{2}C_{2} \times {}^{5}C_{1} = 10$	B1	Either identified or correct unsimplified expression, either alone or in an addition.							
	Probability $\frac{(40+10)}{{}^{9}C_{4}}$	M1	$\frac{a}{{}^{9}\text{C}_{4}}$, a an integer < 126.							
			Denominator value must be seen as ${}^{9}C_{4}$ somewhere.							
	$\left[\text{Percentage} = \frac{50}{126} \times 100\right] = 39.7\%$	A1	39.68 ≤ percentage ≤ 39.7.							
	Method 2 – subtraction (total arrangements with 1 T – number of arrangements with 1T 0 E)									
	$T \wedge \wedge \wedge = {}^{2}C_{1} \times {}^{7}C_{3} = 70$	B1	Either identified or correct unsimplified expression, either alone or in a subtraction.							
	$T * * * = {}^{2}C_{1} \times {}^{5}C_{3} = 20$	B1	Either identified or correct unsimplified expression, either alone or in a subtraction.							
	Probability $\frac{(70-20)}{{}^{9}C_{4}}$	M1	$\frac{a}{{}^{9}\mathrm{C}_{4}}$, a an integer < 126.							
			Denominator value must be seen as ${}^{9}\mathrm{C}_{4}$ somewhere.							
		A1	39.68 ≤ percentage ≤ 39.7.							
		4								

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1

MARK SCHEME

9709/52

October/November 2024

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$[P(X N) =] \frac{12}{40}$	B1	$0.3, \frac{3}{10}, 30\% \text{ OE.}$
		1	
1(b)	$[P(N/X) =] \frac{12}{50}$	B1	0.24, $\frac{6}{25}$ OE.
		1	
1(c)	$P(N \cap X) = \frac{12}{120}, \ P(N) = \frac{40}{120}, \ P(X) = \frac{50}{120}$ $\frac{40}{120} \times \frac{50}{120} = \frac{5}{36}, 0.138[8] \neq \frac{12}{120}, 0.1 \text{ Not independent}$	B1	$P(N), P(X)$ and $P(N \cap X)$ or $P(N \text{ and } X)$ notation seen and equated to the values for $P(N), P(X)$ and $P(N \cap X)$ or $P(N \text{ and } X)$. Calculation stated and evaluated. Not independent clearly stated. $\frac{5}{36} \neq \frac{12}{120}$ does not need to be stated. All values OE. Condone consistent use of A, B etc. If values for $P(N), P(X)$ stated, accept $P(N) \times P(X) = \frac{5}{36}$.
	4.824 -01	0 1	

Question	Answer	Marks	Guidance						
1(d)	Method 1								
	$ \begin{split} & [P(0,1,2) =]\; (0.85)^8 + ^8C_1(0.85)^7(0.15) + ^8C_2(0.85)^6(0.15)^2 \\ & [= 0.27249 + 0.38469 + 0.23760] \end{split} $	M1	One term of form ${}^8C_x (p)^x (1-p)^{8-x}$. With $0 , x \ne 0 or 8.$						
	TPR	A1	Correct unsimplified expression, no terms omitted leading to final answer.						
	= 0.895	B1	$0.8945 \leqslant p \leqslant 0.895.$						
	Method 2								
	$ \begin{array}{ c c c c c c }\hline [P(0,1,2)=] \ 1-\{^8C_3(0.85)^5(0.15)^3+{}^8C_4(0.85)^4(0.15)^4+{}^8C_5(0.85)^3(0.15)^5\\ + {}^8C_6(0.85)^2(0.15)^6+ {}^8C_7(0.85)(0.15)^7+(0.15)^8\} \end{array} $	M1	One term of form ${}^{8}C_{x} (p)^{x} (1-p)^{8-x}$ With $0 or 8.$						
		A1	Correct unsimplified expression. Condone omission of final bracket '}'. If other brackets omitted, allow recovery if $1-0.1052[]$ seen.						
	= 0.895	B1	$0.8945 \leqslant p \leqslant 0.895.$						
	3	3	<u> </u>						

Question	Answer	Marks	Guidance
2(a)	$\left[\frac{9!}{2!}\right]181440$	B1	Exact value must be seen. CAO.
		1	

Question	Ans	wer	Mari	ks	Guidance				
2(b)	Method 1								
	Scenario number of letters between As]	B1	Correct outcome/value for 1 identified scenario, accept unsimplified.			
	A A [^^^^^]	7! × 8 or 8!	[=40320]	N	М1	Add values of 3 correct scenarios, no incorrect/repeated scenarios.			
	A^A[^^^^]	7! × 7	[=35280]	T PR					
	A ^ ^ A [^ ^ ^ ^]	7! × 6	[=30240]						
	Total: $7! \times (8 + 7 + 6)$)							
	= 105 840		7//	A	A1	If M1 not awarded, SC B1 for 105840 WWW.			
	Method 2					-111			
	Scenario number of letters between As		Me		B1	Correct outcome/value for 1 identified scenario, accept unsimplified.			
	A A [^ ^ ^ ^ ^]	8!	[=40320]	N	М1	Add values of 3 correct scenarios, no incorrect/repeated scenarios.			
	A ^ A [^ ^ ^ ^ ^]	$^{7}P_{1} \times 7!$ or $^{7}C_{1} \times 7!$	[=35280]			section 103.			
	A ^ ^ A [^ ^ ^ ^]	$^{7}P_{2} \times 6!$ or $^{7}C_{2} \times 2 \times 6!$	[=30240]	Satpre 9.					
	Total: $8! + {}^{7}P_{1} \times 7! + {}^{7}$ or $8! + {}^{7}C_{1} \times 7! + {}^{7}C_{2} \times 7!$								
	=105 840			. A	A1	If M1 not awarded, SC B1 for 105840 WWW.			

Question		Aı	nswer		Marks	Guidance
2(b)	Method 3					
	Scenario number of letters between As				В1	Correct outcome/value for 1 identified scenario, accept unsimplified.
	A ^ ^ ^ A [^ ^ ^ ^]	7! × 5	[=25200]		M1	their 2(a) , or correct, subtract values of 5 correct scenarios, no incorrect/repeated scenarios.
	A ^ ^ ^ A [^ ^ ^]	7! × 4	[=20160]	TPR		
	A ^ ^ ^ ^ A [^ ^]	7! × 3	[=15120]			
	A ^ ^ ^ ^ A [^]	7! × 2	[= 10080]			
	A ^ ^ ^ ^ ^ A	7! [× 1]	[=5040]			
	$Total = \frac{9!}{2!} - 7 \times (5 + 4)$	+3+2+1)				
	=105 840				A1	If M1 not awarded, SC B1 for 105840 WWW.
					3	

Question	Answer									Marks	Guidance
3(a)	X	0	2	4	6	8	10	12		B1	Table with correct <i>x</i> values and at least 2 correct probabilities.
	P(X=x)	$\frac{3}{12}$, $\frac{1}{4}$ 0.25	$\frac{2}{12}$, $\frac{1}{6}$ 0.167	2 12	2/12	1 12 0.0833	1/12	$\frac{1}{12}$	R		Condone any additional x values if probability stated as 0.
					16					B1	Four more probabilities correctly linked to the correct <i>x</i> value, need not be in table, accept unsimplified.
										B1	7 correct probabilities linked with correct outcomes, may not be in table. Decimals correct to at least 3 SF. SC B1 7 or more probabilities summing to 1 placed in a probability distribution table.
										3	

PUBLISHED

Question	Answer	Marks	Guidance
3(b)	$[E(X) =] [0] + 2 \times \frac{2}{12} + 4 \times \frac{2}{12} + 6 \times \frac{2}{12} + 8 \times \frac{1}{12} + 10 \times \frac{1}{12} + 12 \times \frac{1}{12}$ $[0] + \frac{4}{12} + \frac{8}{12} + \frac{12}{12} + \frac{8}{12} + \frac{10}{12} + \frac{12}{12} = \frac{54}{12} = 4.5$	M1	Accept unsimplified expression. May be calculated in variance. Accept $\frac{1}{3} + \frac{2}{3} + 1 + \frac{2}{3} + \frac{5}{6} + 1$ OE for the M mark FT <i>their</i> table with 7 or 8 probabilities summing to $0.999 \le total \le 1$ $(0 . FT acceptable at the bold partially evaluated stage.$
	$[Var(X) =]$ $[0] + 2^{2} \times \frac{2}{12} + 4^{2} \times \frac{2}{12} + 6^{2} \times \frac{2}{12} + 8^{2} \times \frac{1}{12} + 10^{2} \times \frac{1}{12} + 12^{2} \times \frac{1}{12} - (their 4.5)^{2}$ $\left[\frac{[0] + 2 \times 4 + 2 \times 16 + 2 \times 36 + [1 \times] 64 + [1 \times] 100 + [1 \times] 144}{12} - \frac{81}{4} \right]$ $[= 35 - 4.5^{2}]$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table with 6 or more probabilities. $(0 which need not sum to 1 or with an expression no more evaluated than shown. FT acceptable at the bold partially evaluated stage with their probabilities.$
	$= 14.75, 14\frac{3}{4}$	A1	CAO Accept $\frac{59}{4}$. If either or both M marks not awarded, SC B1 for correct answer WWW
	7	3	

Question	Answer	Marks	Guidance
4(a)	$[P(X < 18.2) = P(Z <] \frac{18.2 - 19.8}{2.4})$	M1	Use of \pm standardisation formula with 18.2, 19.8 and 2.4 substituted appropriately, no continuity correction. Condone $\sigma^2(2.4^2)$ or $\sqrt{\sigma}(\sqrt{2.4})$.
	$= \left[\Phi(-0.6667) = 1 - \Phi(0.6667) \right]$ $= 1 - 0.7477$	M1	Calculating the appropriate probability areas (leading to their final answer, expect < 0.5). Note: 0.432 is <i>z</i> -value of 0.667 so is not an appropriate probability area (M0).
	= 0.252(3)	A1	AWRT 0.252 SOI, accept 0.2525. If one or both M marks not awarded, SC B1 for AWRT 0.252 SOI, accept 0.2525.
	[Expected number = 0.2523 ×450 = 113.5,] = 113 or 114	B1FT	Strict FT <i>their</i> at least 4 figure probability × 450. (Check with calculator). One integer answer only. No indication of 'approximation', e.g. ≈,≅,about.
		4	
4(b)	[P(X>25.5) = 0.26 so P(Z > $\frac{25.5-23.4}{\sigma}$) = 0.26]	B1	$0.643 \le z \le 0.6435$ or $-0.6435 \le z \le -0.643$ seen.
	$\frac{25.5 - 23.4}{\sigma} = 0.643$	M1	\pm standardisation formula with 25.5, 23.4, σ equating to a z-value, (not 1 – their z-value). Condone continuity correction ± 0.05 , not σ^2 , not $\sqrt{\sigma}$.
	$\sigma = 3.27$	A1	$3.26 \le \sigma \le 3.27$. Do not award for improper fractions.
		3	

Question			Answer			Marks	Guidance
5(a)	$^{10}\text{C}_4 \times {}^{6}\text{C}_2 \rangle$	< ⁵ C ₁				M1	$^{10}\text{C}_a \times {}^6\text{C}_b \times {}^5\text{C}_c$, $a+b+c=7$, a,b,c integers. No other terms present but condone \times 6 or \times 3!.
	[= 210 ×15	$5 \times 5] = 15$	750			A1	
						2	
5(b)	Scenario	VGP			TPR	M1	correct and lower numbers summing to 5 and linked to a
	VVVVG	410	${}^{10}\text{C}_4 \times {}^{6}\text{C}_1 \text{ [x } {}^{5}\text{C}_0]$	[1260]			correct identified scenario. Condone the consistent use of permutations.
	VVVGG	320	$^{10}\text{C}_3 \times ^6\text{C}_2 [\times ^5\text{C}_0]$	[1800		B1	2 identified outcomes evaluated accurately, accept unsimplified.
	VVGGG	230	$^{10}\text{C}_2 \times ^6\text{C}_3 [\times ^5\text{C}_0]$	[900]		M1	Add values of 5 correct scenarios, no incorrect/repeated scenarios.
	VVVGP	3 1 1	$^{10}\text{C}_3 \times ^{6}\text{C}_1 \times ^{5}\text{C}_1$	[3600			
	VVGGP	2 2 1	$^{10}\text{C}_2 \times ^6\text{C}_2 \times ^5\text{C}_1$	[3375]			
	Total = 109	935		24		A1	If either or both Ms not awarded, SC B1 for 10935 WWW
					satble!	4	

Question	Answer	Marks	Guidance
6(a)	Falcons Kites 9 8 3 2	B1	Correct stem, ignore extra values (not in reverse, not split). If a split stem-and-leaf plot is used (i.e. stem values are repeated) the remaining B marks are available.
	8 6 4 2 4 0 0 5 7 8	B1	Correct Falcons labelled on left, leaves in order from right to left and lined up vertically, no commas or other punctuation.
	9 8 6 2 1 0 5 2 4 8 9 9 9 4 6 0 1 3 5 6 7 Key: 1 5 4 means 51 minutes for Falcons and 54 minutes for Kites	B1	Correct Kites labelled on same diagram, leaves in order and lined up vertically, no commas or other punctuation. Penalise each error only once in question. E.g. commas in both sets of data. Correct key, for their diagram, need both teams names and 'mins' at least once here, or in leaf headings or title. If 2 separate diagrams drawn max marks B1 if both stems correct. B1 if Falcons correct to the left of the stem. B1 if both keys correct including 'mins' and team name.
	4	4	
6(b)	Median = 51 [minutes]	B1	Accept Q2 , must be identified.
	[IQR =] 59 – 44	M1	$58 \le UQ \le 64 - 42 \le LQ \le 46$. Implied if both quartile values are stated and an appropriate IQR calculated accurately.
	= 15 [minutes]	A1	www
		3	

Question	Answer	Marks	Guidance
6(c)	$\[\text{mean} = \frac{792 + 783}{30} = \frac{1575}{30} = \] 52.5, \ 52\frac{1}{2}, \ \frac{105}{2} \]$	B1	$\frac{1575}{30}$ is not acceptable for this mark.
	$\Sigma' x^{2}' = 85727$ $sd^{2} = \left[\text{Variance} = \right] \left[\frac{\left(43504 + 42223 \right)}{30} - \left(\frac{792 + 783}{30} \right)^{2} \right]$ $\frac{85727}{30} - \left(\frac{1575}{30} \right)^{2} \left[= 101.3167 \right]$	M1	Accept unsimplified variance formula. FT <i>their</i> mean. Ignore any square root leading to sd for this mark.
	$\sigma = \left(\sqrt{101.3167} = \right)10.1$	A1	AWRT. Must be identified, e.g. sd, s, std d, σ . Condone 'short' square root signs. If M1 not awarded, SC B1 for, $\sigma = \sqrt{101.3167} \text{ or } \sqrt{\frac{6079}{60}} \text{ oe } = 10.1.$
		3	

Question	Answer	Marks	Guidance
7(a)	$[(0.6)^4 \times 0.4 =] \ 0.0518[4], \ \frac{162}{3125}$	B1	
		1	

Question	Answer	Marks	Guidance		
7(b)	Method 1				
	$[P(X \le 7) - P(X \le 2) =] (1 - 0.6^{7}) - (1 - 0.6^{2})$	M1	$(1-p^7)-(1-p^2)or p^2-p^7$ seen, $0 .$		
	$[= 0.36 - 0.02799]$ $= 0.332[0], \frac{25938}{78125}$	A1	If M0 awarded SC B1 0.3320064 or $\frac{25938}{78125}$ CAO.		
	78125				
	Method 2				
	$[P(X = 3,4,5,6,7) =]$ $0.4 \times 0.6^{2} + 0.4 \times 0.6^{3} + 0.4 \times 0.6^{4} + 0.4 \times 0.6^{5} + 0.4 \times 0.6^{6}$	M1	$ (1-p) \times p^2 + (1-p) \times p^3 + (1-p) \times p^4 + (1-p) \times p^5 + (1-p) \times p^6 $ seen, $0 .$		
	$ [= 0.144 + 0.0864 + 0.05184 + 0.031104 + 0.0186624] $ $ = 0.332[0], \frac{25938}{78125} $	A1	If M0 awarded SC B1 0.3320064 or $\frac{25938}{78125}$ CAO.		
	Method 3 – geometric series				
	$[P(X = 3,4,5,6,7) =] \frac{0.144(1-0.6^5)}{1-0.6 \text{ or } 0.4}$	M1	$\frac{0.144(1-p^5)}{1-p} \text{ seen } 0$		
	$=0.332[0], \frac{25938}{78125}$	A1	If M0 awarded SC B1 0.3320064 or $\frac{25938}{78125}$ CAO.		
		2			

Question	Answer			Marks	Guidance	
7(c)	Method 1					
	2nd goal scored on:			M1	2 correct unsimplified outcomes. Condone not identified but not incorrectly identified.	
	2nd attempt	$(0.4)^2$	[=0.16]	M1	Add values for 4 identified correct scenarios. Condone adding values of 2nd, 3rd and 4th attempts only. No incorrect scenarios.	
	3rd attempt	$(0.4)^2 (0.6) \times (2 \text{ or } ^2C_1)$	[=0.192]			
	4th attempt	$(0.4)^2 (0.6)^2 \times (3 \text{ or } ^3C_1)$	[=0.1728]			
	5th attempt	$(0.4)^2 (0.6)^3 \times (4 \text{ or } {}^4C_1)$	[=0.13824]			
	$=0.663, \frac{2072}{3125}$			A1	If either or both M marks not awarded, SC B1 for 0.663, $\frac{2072}{3125}$ WWW condone 1 index error.	
	Method 2					
	$^{5}C_{2}(0.4)^{2}(0.6)^{3} + ^{5}C_{3}(0.4)^{3}(0.6)^{2} + ^{5}C_{4}(0.4)^{4}(0.6)^{1} + ^{5}C_{5}(0.4)^{5}$ [0.3456 + 0.2304 + 0.0768 + 0.01024] or $1 - (^{5}C_{0}(0.6)^{5} + ^{5}C_{1}(0.4)^{1}(0.6)^{4})$			M1	At least 2 correct unsimplified terms.	
				M1	Add values for 4 terms of the form $^5C_a(0.4)^a(0.6)^{5-a}$ or $1-\text{sum of 2 terms of the form }^5C_a(0.4)^a(0.6)^{5-a}$.	
	$=0.663, \frac{2072}{3125}$			(A1	If either or both M marks not awarded, SC B1 for 0.663 www condone 1 index error.	
				3		

Question	Answer	Marks	Guidance
7(d)	[Mean = $75 \times 0.4 =]30$ [Variance = $75 \times 0.4 \times 0.6 =]18$	В1	30 and 18 seen, allow unsimplified. May be seen in standardisation formula. $(\sigma = \sqrt{18}, 3\sqrt{2}, 4.2426 \leqslant \sigma \leqslant 4.243 \text{ implies correct variance})$ Withold mark if variance clearly identified as standard deviation.
	$P(28 < X < 35) = P(\frac{28.5 - 30}{\sqrt{18}} < Z < \frac{34.5 - 30}{\sqrt{18}})$	M1	Substituting <i>their</i> μ and positive σ into one \pm standardising formula (any number for 28.5 or 34.5), not σ^2 , not $\sqrt{\sigma}$.
		M1	Using continuity corrections 27.5 or 28.5 and 34.5 or 35.5 in <i>their</i> 2 separate standardisation formula.
	$ \begin{bmatrix} =\Phi(1.0607) + \Phi(0.3536) - 1 \\ = 0.8556 + 0.6383 - 1 \\ \text{Or } 0.8556 - (1 - 0.6383) \\ \text{Or } 0.8556 - 0.3617 \\ \text{Or } (0.8556 - 0.5) + (0.6383 - 0.5) \\ \text{Or } 0.3556 + 0.1383 \end{bmatrix} $	M1	Appropriate area Φ , from final process. Must be a probability.
	= 0.494	A1	AWRT.
		5	5/

Cambridge International AS & A Level

MATHEMATICS
9709/53
Paper 5 Probability & Statistics 1

MARK SCHEME

October/November 2024

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$0.3^{3} + 0.7^{3}$ or $1 - (3 \times 0.3^{2} \times 0.7 + 3 \times 0.3 \times 0.7^{2}) = [1 - 0.63]$		$p^{3} + q^{3}$, $p + q = 1$, $p,q > 0$ or $1 - (3 \times p^{2} \times q + 3 \times p \times q^{2})$, p + q = 1, $p,q > 0$.
	0.37[0]	A1	$\frac{37}{100}$.
		2	

Question	Answer	Marks	Guidance
1(b)	[Mean = $125 \times 0.3 =$] 37.5 [Variance = $125 \times 0.3 \times 0.7 =$] 26.25	B1	37.5 or 37½ and 26.25, 26¼ seen, allow unsimplified. May be seen in standardisation formula. $([\sigma =] 5.12, \frac{\sqrt{105}}{2} \text{ implies correct variance}).$
	$P(X > 45) = P(Z > \frac{45.5 - 37.5}{\sqrt{26.25}})$	M1	Substituting their <i>mean</i> and <i>their</i> positive standard deviation into the \pm standardising formula (any number for 45.5), not <i>their</i> σ^2 , not <i>their</i> $\sqrt{\sigma}$.
		M1	Use continuity corrections 44.5 or 45.5 in <i>their</i> standardisation formula Note: $\frac{\pm 8}{\sqrt{26.25}}$ or $\frac{\pm 8}{5.123}$ seen gains M2 BOD
	$[1 - \Phi(their 1.5614)] = 1 - their 0.9407$	M1	Appropriate area Φ , from final process, must be a probability. Expect final answer < 0.5. Note: appropriate final answer implies this M1.
	0.0593	A1	$0.0592 \le p \le 0.0593.$
	arpier	5	

Question				A	nswer			Marks	Guidance
2(a)								B1	Table with correct <i>x</i> values and at least one correct probability linked with the correct <i>x</i> -
	X	1	2	3	4	6			value.
	P(X = x)	6	12	$\frac{6}{36}$	6	6			Values need not be in order, lines may not be drawn, may be vertical,
		36	36	36	36	36			x and P(X) may be omitted. Condone any additional x values if
		$\frac{1}{\epsilon}$	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{\epsilon}$	PRA		probability stated as 0.
		6	3		60	6		B1	4 correct probabilities linked with the correct <i>x</i> -values, need not be in table,
		0.167	0.333	0.167	0.167	0.167			accept unsimplified.
								B1	5 correct probabilities linked with correct <i>x</i> -values, may not be in table. Decimals correct to at least 3 SF. SC B1 4 or 5 probabilities summing to 1 placed in a probability distribution table with 4 or 5 x-values between 1 and 6 inclusive.
								3	
2(b)	$[E(X) = \frac{1}{36}($	5+24+18	+ 24 + 36))=] 3	324			B1 FT	FT <i>their</i> table with 4 or 5 probabilities (0 < p < 1) summing to 1.
						Sai	tpreP.	1	

Question	Answer	Marks	Guidance
3(a)	$[P(X > 170) = P(Z >] \frac{170 - 176}{4.8})$	M1	Using \pm standardisation formula with 170, 176 and 4.8 substituted appropriately. Condone σ^2 and $\sqrt{\sigma}$. No continuity correction.
	$\left[\Phi(1.25)\right] = 0.894$	M1	Appropriate area Φ , from final process, must be a probability. Expect final answer > 0.5.
		A1	$0.894 \text{ or } 0.89435 \leqslant p \leqslant 0.8944.$ If A0 scored, SC B1 for 0.894 or $0.89435 \leqslant p \leqslant 0.8944$, WWW.
		3	
3(b)	P(h < 170) = 1 - 0.8944 = 0.1056	M1	1 – <i>their</i> 3(a) seen or implied by 0.7056 or 0.2944
	$\frac{k-176}{4.8} \left[= \Phi^{-1} \left(0.1056 + 0.6 \right) \right] = 0.541$	В1	$0.540 < z \le 0.541$ or $-0.541 \le z < 0.540$ seen.
	Satures. So.	M1	Use of ±standardisation formula with k , 176, 4.8 equated to a z -value (not 1.25, 0.7601, 0.2399, 0.7056, 0.7257, 0.8313, 0.253 ±0.894, 0.6, 0.4), not 4.8^2 , not $\sqrt{4.8}$, no continuity correction.
	k = 178.6	A1	CAO (answer required to 1 dp).
		4	

Question					An	swer				Marks	Guidance
4(a)	H(cm)	10–19	20–29	30–39	40–44	45–49	50–54	55–59		B1	Condone omission of 10.
	UB	19.5	29.5	39.5	44.5	49.5	54.5	59.5			May be implied by accurate plotting (scale no less than 1cm = 10).
	cf	[10]	28	60	102	130	144	150			May be by data table.
	140							P	200	B1	Linearly scaled axes correctly labelled cumulative frequency (cf) (from 0 to 150) and height (h) and centimetres (cm) (from 9.5 to 59.5) with at least 3 values identified on each. Axes can be the other way round.
	100									M1	At least 4 points plotted at upper boundary ± 0.5, (e.g. allow (19, 19.5 or 20, 10) etc.) on correctly scaled axes. (9.5,0), (19.5,10), (29.5, 28), (39.5, 60), (44.5,102), (49.5, 130), (54.5, 144), (59.5,150).
	Ormulative frequency	10	20 Height (cn	30 40	50	60			P. CO.	A1	All points plotted correctly, curve drawn (within tolerance), joined to (9.5, 0) and not going beyond above 150 vertically. A0 if straight line segments used.
										4	

Question	Answer	Marks	Guidance
4(b)	$[150 \times 0.3 = 45]$	M1	Use of graph must be seen.
	Line drawn from 45 on cf axis to meet graph at $h = 36$	A1 FT	Must be an increasing cf graph. Expect an answer in range $35 \le h \le 37$ for a correct graph.
		2	
4(c)	Midpoints 14.5, 24.5, 34.5, 42, 47, 52, 57	B1	At least 6 correct midpoints seen, may be unsimplified, may be in calculation, may be by data table.
	Mean = $\frac{10 \times 14.5 + 18 \times 24.5 + 32 \times 34.5 + 42 \times 42 + 28 \times 47 + 14 \times 52 + 6 \times 57}{150}$ $\left[= \frac{145 + 441 + 1104 + 1764 + 1316 + 728 + 342}{150} \right]$	M1	Correct unsimplified mean formula with <i>their</i> midpoints (not ub, lb, upper limits, lower limits, cw, fd, f or cf and must be within class). If midpoints correct, accept partially evaluated.
	$=\frac{5840}{150},\frac{584}{15},38\frac{14}{15},38.9$	A1	Accept answers wrt 38.9 WWW If M1 withheld, SC B1 for $\frac{5840}{150}, \frac{584}{15}, 38\frac{14}{15}, 38.9.$
	$sd^{2} = \frac{10 \times 14.5^{2} + 18 \times 24.5^{2} + 32 \times 34.5^{2} + 42 \times 42^{2} + 28 \times 47^{2} + 14 \times 52^{2} + 6 \times 57^{2}}{150} - \left(their \frac{5840}{150}\right)^{2}$ $\left[= \frac{244285}{150} - \left(their \frac{5840}{150}\right)^{2}\right]$	M1	Correct unsimplified variance formula with <i>their</i> midpoint (not ub, lb, upper limits, lower limits, cw, fd, f or cf and must be within class). If midpoints correct, accept partially evaluated
	[= 112.76] standard deviation $\left[\sqrt{112.76}\right]$ = 10.6	A1	AWRT 10.6 WWW. If second M1 withheld, SC B1 for 10.6 WWW.
		5	

	TUBLISHED							
Question	Answer	Marks	Guidance					
5(a)	Method 1							
	$[P(0, 1, 2) =] {}^{8}C_{2}(0.75)^{6}(0.25)^{2} + {}^{8}C_{1}(0.75)^{7}(0.25)^{1} + (0.75)^{8}$	M1	One term ${}^{8}C_{x}$. $(p)^{x}(1-p)^{8-x}, 0 .$					
	[=0.31146+0.26697+0.10011]=							
	T PA	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer.					
	= 0.679	B1	AWRT.					
		3						
	Method 2							
	$ [P(0, 1, 2) = 1 - P(3, 4, 5, 6, 7, 8) =] 1 - \{ {}^{8}C_{3}(0.75)^{5}(0.25)^{3} + {}^{8}C_{4}(0.75)^{4}(0.25)^{4} + {}^{8}C_{5}(0.75)^{3}(0.25)^{5} + {}^{8}C_{6}(0.75)^{2}(0.25)^{6} + {}^{8}C_{7}(0.75)(0.25)^{7} + (0.25)^{8} \} $	M1	One term ${}^{8}C_{x}(p)^{x}(1-p)^{8-x},$ 0					
		A1	Correct expression, accept unsimplified, condone omission of up to 3 'middle' terms, leading to final answer.					
	= 0.679	B1	AWRT.					
	3, 01	3						

·satpreP·

Question	Answer	Marks	Guidance					
5(b)	Method 1							
	$1-0.75^6$	M1	$1-0.75^n, n=6,7$.					
	$=0.822, \frac{3367}{4096}$	A1	0.82202148 to at least 3SF.					
	Method 2							
	$0.25 + 0.25 \times 0.75 + 0.25 \times 0.75^{2} + 0.25 \times 0.75^{3} + 0.25 \times 0.75^{4} + 0.25 \times 0.75^{5}$	M1	Summing 6 or 7 terms – condone extra term 0.25×0.75^6 .					
	=0.822	A1						
	Method 3							
	$1 - 0.75^7 - 0.25 \times 0.75^6$	M1	Correct expression.					
	=0.822	A1						
		2						

Question		Answe	er		Marks	Guidance		
5(c)	Method 1 P(2) R G RorG Ror	nd gold ∩ 5th is first unwrapped) rG U						
	$0.25 \times 0.3 \times 0.5$ on its own or a	$55 \times 0.55 \times 0.45 = 0.01021$ as a numerator		M1	$a \times 0.3 \times b \times c \times 0.45 \ 0 < a, b, c < 1.$ $a \neq 0.3, 0.45 \ b, c \neq 0.45.$ multiplied in that order, or correct.			
			TPE		A1	5 correct probabilities multiplied.		
	Method 2 P(2nd	d gold \cap 5th is first unwrapped).4 pc	ossible scenarios					
	R G R G U	0.25×0.3×0.25×0.3×0.45		M1	$a \times 0.3 \times b \times c \times 0.45$ 0 < a, b, c < 1. $a \neq 0.3$, 0.45 b, $c \neq 0.45$. 4 terms in this form seen added on their own or as a numerator.			
	RGGRU	$0.25 \times 0.3 \times 0.25 \times 0.25 \times 0.45$ $0.25 \times 0.3 \times 0.3 \times 0.25 \times 0.45$	[= 0.002109375] [= 0.00253125]		A1	All probabilities correct and attempt to sum the 4 scenarios.		
	RGGGU	0.25×0.3×0.3×0.3×0.45 [Total	[= 0.0030375] 0.010209375]					
	For either approach							
	[P(5 th is first ur	nwrapped) = $[(0.55)^4(0.45)[=0.0]$	0.00	B1				
	$P(2^{\text{nd}} \text{ is first g})$ $= \frac{0.0102093}{0.0411778}$	old 5 th is first unwrapped) = $\frac{0.2}{125}$		M1	$\frac{\textit{their} P\big(2\text{nd gold} \cap 5\text{th is first unwrapped}\big)}{\textit{their} P\big(5\text{th is first unwrapped}\big)}.$ Their probabilities must be clearly identified if incorrect.			
	$=0.248, \frac{30}{121}$				A1	0.24793		

Question	Answer	Marks	Guidance
5(c)	Method 3 First chocolate is red and second gold 0.25 0.3	M1	Either $\frac{0.25}{0.55 or 0.45}$ or $\frac{0.3}{0.55 or 0.45}$.
	P(red given that it is wrapped) \times P(gold given that it is wrapped) = $\frac{0.25}{0.55} \times \frac{0.3}{0.55}$	A1	Either $\frac{0.25}{0.55}$ or $\frac{0.3}{0.55}$.
	TPRA	B1	Both probs correct, can be unsimplified.
		M1	Multiplying their identified P(red given wrapped) by their identified P(gold given wrapped) or correct.
	$=0.248, \frac{30}{121}$	A1	
		5	

Question	Answer	Marks	Guidance
6(a)	$\left[\frac{9!}{2!2!}\right] = 90720$	B1	
	34 69/	1	

Question		Ans	wer	Marks	Guidance				
6(b)	Method 1 Total arrangements – arrangements with repeated letters at ends								
	$\frac{9!}{2!2!} - \frac{7!}{2!} \times 2$		M1	$a - \frac{7!}{2!} \times b$ $a = their$ 6(a) or correct, $b = 1,2$.					
			M1	$a - \frac{7!}{c!} \times 2$ $a = their$ 6(a) or correct, $c = 1,2$.					
	85680			A1 FT	ft their 6(a) – 5040.				
	Method 2 Adding no of differ	rent ways							
	P and S at ends	$2 \times 7! = $ $4 \times 5 \times \frac{7!}{2!} = $	10080	M1	Finding correct number of ways for one of these correctly identified scenarios.				
	P or S at one end only Neither P nor S at an end	$4 \times 3 \times \frac{7!}{2!} = 5 \times 4 \times \frac{7!}{2!2!} = 1$	50400 25200	M1	Adding no of ways for 3 correctly identified scenarios.				
	Total	85680		A1					
	Method 3	12							
	P at beginning	$7 \times \frac{7!}{2!}$	= 17640	M1	Finding correct number of ways for one of these correctly identified scenarios.				
	S at beginning	$7 \times \frac{7!}{2!}$ $7 \times \frac{7!}{2!}$	= 17640	M1	Adding no of ways for 3 correctly identified scenarios.				
	Neither P nor S at beginning	$5 \times \frac{8!}{2!2!}$	= 50400						
	Total		85680	A1					
				3					

Question	Answer	Marks	Guidance		
6(c)	Method 1 arrangements with PP between Ss { S P P S ^ ^ ^ ^ } } add arrangements with PP in	not between Ss { (S ^ ^ S) ^ P P ^ }			
	6!+5\x5×4	M1	$6! + d$, d an integer ≥ 1 , may be implied.		
	6!+5\x5×4	M1	$e+5 \times f$, e, f integers ≥ 1 , may be implied.		
	AT PRAIN	M1	$e + g \bowtie (5 \times 4 \text{ or }^5 P_2)$, e an integer ≥ 1 , $g = 4,5,6$.		
	[Total]= 3120	A1			
	Method 2 - considers the 6 positions for S ^^S				
	Positions 1 and 6 there are 5 ×5! ways	M1	Identifying no of ways if S^S is in position 1 or 6.		
	Positions 2, 3, 4 and 5 there are 4×5! ways	M1	Identifying no of ways if S^S is in position 2, 3, 4 or 5.		
	2 ×5×5!+4×4×5!	M1	Adding no of ways for 6 scenarios (or $26 \times 5!$).		
	[Total] = 3120	A1	SC B1 for 3120 if any method marks are withheld.		
	34 60	4			

Question	Answer	Marks	Guidance
6(d)	Method 1 Either PP in the group of 5 or PP in the group of 4		
	$\frac{{}^{5}C_{3}}{{}^{9}C_{5}} + \frac{{}^{5}C_{2}}{{}^{9}C_{5}},$ $\frac{{}^{5}C_{3} + {}^{5}C_{2}}{{}^{9}C_{5}}$	M1	$a \times {}^{5}C_{2}$, $a \times {}^{5}C_{3}$, or ${}^{5}C_{2} + {}^{5}C_{3}$ seen as a numerator of one or two fractions where a is 1 or 2, no extra terms.
	$\frac{{}^{5}C_{3} + {}^{5}C_{2}}{{}^{9}C_{5}}$	M1	⁹ C ₅ or ⁹ C ₄ seen (no addition, multiplication) as a denominator of one or two fractions.
	Probability = $\frac{20}{126}, \frac{10}{63}, 0.159$	A1	
	Method 2 Considering the positions of P and then S		
	$\left(\frac{5}{9} \times \frac{4}{8} \times \frac{4}{7} \times \frac{3}{6}\right) + \left(\frac{5}{7} \times \frac{4}{6} \times \frac{4}{9} \times \frac{3}{8}\right)$	M1	$a \times 5 \times 4 \times 4 \times 3$ seen as a numerator of a fraction. where $a = 1$ or 2.
	$\left[\left(\frac{5}{9} \times \frac{4}{8} \times \frac{4}{7} \times \frac{3}{6} \right) + \left(\frac{5}{7} \times \frac{4}{6} \times \frac{4}{9} \times \frac{3}{8} \right) \right]$	M1	$9 \times 8 \times 7 \times 6$ seen as a denominator of a fraction.
	$=\frac{10}{63}$	A1	
		3	

Cambridge International AS & A Level

MATHEMATICS 9709/51
Paper 5 Probability & Statistics 1 May/June 2024

MARK SCHEME

Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	[For all 45 values Mean =] $\frac{439 + 470}{45} + 30$	M1	$\frac{439+470}{45}$ or $\frac{909}{45}$ seen.
	= 50.2	A1	If M0 awarded, SC B1 50.2 WWW.
	Alternative Method for Question 1(a)		
	[For all 45 values Mean =] $\frac{25 \times 30 + 470 + 20 \times 30 + 439}{45}$	(M1)	$\frac{1220+1039}{45}$ or $\frac{2259}{45}$ seen.
	= 50.2	(A1)	If M0 awarded, SC B1 50.2 WWW.
		2	
1(b)	For all 45 values $Sd^2 = \frac{12405 + 11346}{45} - \left(\frac{909}{45}\right)^2$	M1	$\frac{their(12405+11346) \text{ or } 23751}{45} - \left(their\frac{909}{45}\right)^2$
	sd [= $\sqrt{119.76}$]=10.9	A1	If M0 awarded, SC B1 10.9 WWW.
		2	

	TOBER	JIILD	
Question	Answer	Marks	Guidance
2(a)	$P(23 < X < 35) = P(\frac{23 - 28}{3.3} < Z < \frac{35 - 28}{3.3})$ $[= P(-1.515 < Z < 2.121)]$	M1	Using ±standardisation formula once with 23 or 35, 28 and 3.3, allow σ^2 , allow $\sqrt{\sigma}$, no continuity correction.
	[-1(-1.313 < Z < 2.121)]	A1	One fully correct ± standardisation formula.
	$[= \Phi(2.121) + \Phi(1.5151) - 1]$ = 0.9830 + 0.9351 - 1	M1	Appropriate area Φ , from final process, must be a probability.
	= 0.918	A1	AWRT
		4	
2(b)	$[P(X > 7.6) = P(Z > \frac{7.6 - 8.5}{\sigma}) = 0.75]$	B1	0.674 or – 0.674 seen. CAO as critical value.
	$\frac{7.6 - 8.5}{\sigma} = -0.674$	M1	Use of the ±standardisation formula with 7.6, 8.5, σ and a z-value (not 0.75, 0.25, 0.7734, 0.2266, 0.5987 nor $1-z$ -value: 0.326, 0.5987). Condone use of $\frac{\pm 0.9}{\sigma}$.
	$\sigma = 1.34$	A1	$1.33 \leqslant \sigma \leqslant 1.34$

Question				Aı	ıswer			Marks	Guidance
3(a)	cw	20	10	10	5	20		M1	At least four frequency densities calculated $\frac{f}{cw}$ (e.g. $\frac{16}{20}$).
	fd	0.8	3.2	7.6	12.8	0.6			Condone $\frac{f}{cw \pm 0.5}$ if unsimplified. Accept unsimplified, may be read from graph using <i>their</i> scale no lower than 1 cm = fd 2.
	Penjulnity Density	A.						A1	All bar heights correct on graph, not FT. Using their suitable linear scale with at least three values indicated, no lower than 1 cm = fd 2.
	M							B1	Bar ends at 150, 160, 170, 175, 195. Five bars drawn with a horizontal linear scale no lower than $1 \text{ cm} = 10 \text{ cm}$, with at least three values indicated, $130 \leq \text{horizontal scale} \leq 195$.
				140 141			In designab Error)	B1	Axes labelled frequency density (fd) height (h) and cm, OE, or an appropriate title. (Axes may be reversed)
							satp	4	
3(b)		$.60 \leqslant h < 60 = 15$	=	[Q:] 170	≤ <i>h</i> < 175	;		M1	$170 \leqslant h < 175 - 160 \leqslant h < 170$ UQ and LQ classes seen.
								A1	175 - 160 = 15
									If M0 scored, SC B1 for 175 – 160 = 15.
								2	

Question	Answer	Marks	Guidance							
4(a)	Method 1									
	[Probability of 4 in 3 throws is] $1 - \left(\frac{3}{4}\right)^3 = \frac{37}{64}$	M1	$1-(s)^3$, $s=\frac{3}{4}$ or $\frac{1}{4}$.							
		A1	AG							
	Method 2									
	[Probability of 4 in 3 throws is] $\frac{1}{4} + \frac{1}{4} \times \frac{3}{4} + \frac{1}{4} \times \left(\frac{3}{4}\right)^2 = \frac{37}{64}$	(M1)	$t+t(1-t)+t(1-t)^2$, $t=\frac{1}{4}$ or $\frac{3}{4}$.							
		(A1)	AG							
	Method 3									
	${}^{3}C_{1} \times \frac{1}{4} \times \left(\frac{3}{4}\right)^{2} + {}^{3}C_{2} \times \left(\frac{1}{4}\right)^{2} \times \frac{3}{4} + {}^{3}C_{3} \times \left(\frac{1}{4}\right)^{3} = \frac{37}{64}$	(M1)								
	$\frac{1}{4} \cdot (4) \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{64} = \frac{1}{64}$	(A1)	AG							
		2	1.5							

Question	Answer	Marks	Guidance
4(b)	Method 1		
	$\left(1 - \frac{37}{64}\right)^4 = 0.0317$	B1FT	$(1-their(\mathbf{a}))^4$, accept unsimplified.
		1	
	Method 2	R	
	[Probability no 4s is] $\left(\frac{3}{4}\right)^6 \times \left(\frac{3}{4}\right)^6 = 0.0317$	(B1FT)	Accept unsimplified.
		1	
4(c)	$\frac{X3}{Y1}$ $\left(\frac{37}{64}\right)^3 \times \frac{37}{64} \times \left(\frac{27}{64}\right)^2 \times 3$ [= 0.059645]	B1	Correct probability for 1 identified scenario. Accept unsimplified.
	$\begin{array}{ccc} X2 & \left(\frac{37}{64}\right)^2 \times \frac{27}{64} \times \left(\frac{27}{64}\right)^3 \times 3 & [= 0.03176] \end{array}$	M1	Add values of 2 correct scenarios. Identification may be implied by correct unsimplified expressions (condone omission of × 3). Values may not be probabilities.
	Probability = 0.0914	A1	If A0 scored, SC B1 for 0.0914 WWW.
		3	C ^O

Question	Answer	Marks	Guidance					
5(a)	Method 1	1120222						
	[P(5, 6, 7) =]	M1	One term ${}^{7}C_{x}(p)^{x}(1-p)^{7-x}$, with $0 .$					
	${}^{7}C_{5} 0.7^{5} 0.3^{2} + {}^{7}C_{6} 0.7^{6} 0.3^{1} + 0.7^{7}$ $[= 0.31765 + 0.24706 + 0.08235]$	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer.					
	= 0.647	B1	$0.647 \le p < 0.6475$					
	Method 2							
	[P(5, 6, 7) = 1 - P(0, 1, 2, 3, 4) =]	(M1)	One term ${}^{7}C_{x}(p)^{x}(1-p)^{7-x}$, with $0 .$					
	$1 - \{0.3^{7} + {}^{7}C_{1} 0.7^{1} 0.3^{6} + {}^{7}C_{2} 0.7^{2} 0.3^{5} + {}^{7}C_{3} 0.7^{3} 0.3^{4} + {}^{7}C_{4} 0.7^{4} 0.3^{3}\}$	(A1)	Correct expression, accept unsimplified, no terms omitted leading to final answer. Condone omission of final bracket '}'. If other brackets omitted, allow recovery if 1 – 0.35294 seen.					
	= 0.647	(B1)	$0.647 \leqslant p < 0.6475$					
		3						

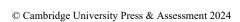
Question	Answer	Marks	Guidance
5(b)	Method 1		
	[1 - P(0 white weeks) =]	M1	$1 - p^3$, $0 , p = 1 - their (a), or correct.$
	$1-(1-0.647)^3$		
	0.956	A1	
	Method 2	R	
	[P(1, 2, 3 white weeks) =]	(M1)	$3 \times q \times (1-q)^2 + 3 \times q^2 \times (1-q) + q^3$, $q = their$ (a), or correct.
	$3 \times 0.647 \times 0.353^2 + 3 \times 0.647^2 \times 0.353 + 0.647^3$		
	0.956	(A1)	
		2	

Question	Answer	Marks	Guidance
5(c)	[Mean = $60 \times 0.8 =$] 48 [Variance = $60 \times 0.8 \times 0.2 =$] 9.6	B1	48 and 9.6, $9\frac{3}{5}, \frac{48}{5}$ seen, allow unsimplified. May be seen in the standardisation formula ($[\sigma =] 3.098 \leqslant \sigma \leqslant 3.1[0]$ implies correct variance). Incorrect notation penalised but values can be used as anticipated in remainder of question.
	$P(X < 47) = P\left(Z < \frac{46.5 - 48}{\sqrt{9.6}}\right)$	M1	Substituting their μ and σ into \pm standardising formula (any number for 46.5), not their σ^2 or $\sqrt{their \sigma}$.
		M1	Use continuity correction 46.5 or 47.5 in <i>their</i> standardised formula. Note: $\frac{\pm 1.5}{\sqrt{9.6}}$ or $\frac{\pm 1.5}{3.098}$ seen gains M2 BOD.
	$[P(Z < -0.4841) = 1 - \Phi(0.4841)]$ $1 - 0.6858$	M1	Appropriate area Φ , from final process, must be a probability. Expect final answer < 0.5. Note: appropriate final answer implies this M1.
	= 0.314	A1	$0.314 \le p < 0.3145$
	12	5	1.5

Question	Answer							Guidance				
6(a)	X	0	1	2	3		B1	Table with correct <i>X</i> values and at least one probability. Values need not be in order, lines may not be drawn, may be				
	P(X=x)	$\frac{24}{60}$	$\frac{26}{60}$	$\frac{9}{60}$	$\frac{1}{60}$			vertical, <i>X</i> and P(<i>X</i>) may be omitted. Condone any additional <i>X</i> values if probability stated as 0.				
		$\frac{2}{5}$	13	3	1	T F					B1	P(X=1) or $P(X=2)$ correct and identified, need not be in table, accept unsimplified.
		0.4	30 0.433	0.15	60 0.0167		B1	Two more correct and identified probabilities, need not be in table, accept unsimplified.				
			1				B1	4 correct probabilities linked with correct outcomes, may not be in table. Decimals correct to at least 3sf. SC B1 for four probabilities summing to 1 placed in a probability distribution table with the correct <i>x</i> values.				
							4					

Question	Answer	Marks	Guidance
6(b)	$[P(Y=0) =] \frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times (1-p)^{2};$ $[P(Y=5) =] \frac{1}{3} \times \frac{1}{4} \times \frac{1}{5} \times p^{2}$	В1	Either $\frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times (1-p)^2$, not $\frac{2}{5} \times (1-p)^2$; or $\frac{1}{3} \times \frac{1}{4} \times \frac{1}{5} \times p^2$, not $\frac{1}{60} \times p^2$.
	$\frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times (1-p)^2 = 6 \times \frac{1}{3} \times \frac{1}{4} \times \frac{1}{5} \times p^2$ $\left[24(1-p)^2 = 6 \times p^2\right]$ $3p^2 - 8p + 4 = 0$	M1	Equating and forming a 3 term quadratic equation. Their $P(Y = 0) = 6 \times their P(Y = 5)$.
	$p = \frac{2}{3}$	A1	Not dependent on B1. A0 if $p = 2$ seen and not clearly rejected. SC B1 if $p = \frac{2}{3}$ obtained from a correct quadratic with more than three terms. If $p = 2$ seen and not clearly rejected, SC B0.
		3	

Question	Answer	Marks	Guidance
7(a)	$\left[\frac{8!}{2!3!}\right] 3360$	В1	
		1	
7(b)	Number of arrangements with 2s at the end – number of arrangements with 2s at the end and the 4s together $2 = 2 - 2 = (444) = 2$	IR	
	$\frac{6!}{3!}$ - 4!	M1	$\frac{6!}{3!} \times r - s$, $r = 1, 2$ and s a positive integer (including 0).
		B1	4! Seen either alone or in $t - 4$!, t an integer value > 24.
		M1	$\frac{6!}{3!} \times r - 4! \times u$, $r = 1$, 2 and $u = 1$, 2.
	= 96	A1	
		4	


Question	Answer						Marks	Guidance
7(c)	7(c) Method 1							
	2s	4s	1,3,5				M1	One correct calculation, unsimplified for an identified scenario containing 1, 2 and/or 1, 4.
	0	0	3	$^{3}C_{3}$	1		A1	Two correct outcomes evaluated, accept unsimplified.
	0	1	2	$^{3}C_{1} \times ^{3}C_{2}$	9	T E	M1	Four correct scenarios added.
	1	0	2	$^{2}C_{1} \times {}^{3}C_{2}$	6			
	1	1	1	$^{2}C_{1} \times {}^{3}C_{1} \times {}^{3}C_{1}$	18			
	[Total 34 ways]							
	[Total number of selections =] ${}^{8}C_{3}$ [= 56]						B1	Used as denominator of probability expression.
	[Prob	[Probability =] $\left[\frac{34}{{}^{8}C_{3}} \right] = \frac{17}{28}, 0.607$						

Question		Answ	er		Marks	Guidance				
7(c)	Method 2									
	Combinat	tions of 3 numbers			(M1)	One correct calculation, unsimplified for an identified scenario containing 1, 2 and/or 1, 4.				
	1,2,3	$^{1}C_{1} \times {}^{2}C_{1} \times {}^{1}C_{1}$	2		(A1)	Five correct outcomes evaluated, accept unsimplified.				
	1,2,4	$^{1}C_{1} \times {}^{2}C_{1} \times {}^{3}C_{1}$	6		(M1)					
	1,2,5	$^{1}C_{1} \times {}^{2}C_{1} \times {}^{1}C_{1}$	2							
	1,3,4	$^{1}C_{1} \times {}^{1}C_{1} \times {}^{3}C_{1}$	3							
	1,3,5	$^{1}C_{1} \times {}^{1}C_{1} \times {}^{1}C_{1}$	1							
	1,4,5	$^{1}C_{1} \times {}^{3}C_{1} \times {}^{1}C_{1}$	3							
	2,3,4	2 C ₁ × 1 C ₁ × 3 C ₁	6							
	2,3,5	$^{2}C_{1} \times {}^{1}C_{1} \times {}^{1}C_{1}$	2							
	2,4,5	$^{2}C_{1} \times {}^{3}C_{1} \times {}^{1}C_{1}$	6							
	3,4,5	$^{1}C_{1} \times {}^{3}C_{1} \times {}^{1}C_{1}$	3							
	[Total 34 [Total nu	ways] mber of selections = $\frac{1}{5}$ 8 C ₃	[= 56]	h. satp	(B1)	⁸ C ₃ or 56 as denominator of probability expression.				
	[Probability =] $\left[\frac{34}{{}^{8}C_{3}}\right] = \frac{17}{28}$, 0.607									

Question		Answer			Marks	Guidance
7(c)	Method 3					
	1,2,3	$\frac{1}{8} \times \frac{2}{7} \times \frac{1}{6} \times 3!$	12 336		(M1)	One correct calculation, unsimplified for an identified scenario containing 1, 2 and/or 1, 4.
	1.2.4				(A1)	Five correct outcomes evaluated, accept unsimplified.
	1,2,4	$\frac{1}{8} \times \frac{2}{7} \times \frac{3}{6} \times 3!$	$\frac{36}{336}$	TP	(M1)	Ten correct scenarios added.
	1,2,5	$\frac{1}{8} \times \frac{2}{7} \times \frac{1}{6} \times 3!$	$\frac{12}{336}$			
	1,3,4	$\frac{1}{8} \times \frac{1}{7} \times \frac{3}{6} \times 3!$	$\frac{18}{336}$			
	1,3,5	$\frac{1}{8} \times \frac{1}{7} \times \frac{1}{6} \times 3!$	$\frac{6}{336}$			
	1,4,5	$\frac{1}{8} \times \frac{3}{7} \times \frac{1}{6} \times 3!$	$\frac{18}{336}$			
	2,3,4	$\frac{2}{8} \times \frac{1}{7} \times \frac{3}{6} \times 3!$	$\frac{36}{336}$. <u> </u>
	2,3,5	$\frac{2}{8} \times \frac{1}{7} \times \frac{1}{6} \times 3!$	$\frac{12}{336}$	Satp	reP	CO
	2,4,5	$\frac{2}{8} \times \frac{3}{7} \times \frac{1}{6} \times 3!$	$\frac{36}{336}$			
	3,4,5	$\frac{2}{8} \times \frac{3}{7} \times \frac{1}{6} \times 3!$	18 336			

	ion Answer Marks Guidance									
Question	Answer					Guidance				
7(c)					(B1)	336 or 8×7×6 seen as a denominator.				
	[Probability] = $\frac{1}{2}$	$\frac{17}{28}$, 0.607			(A1)					
	Method 4									
	444	$\frac{3}{8} \times \frac{2}{7} \times \frac{1}{6}$	<u>6</u> 336	TE	(M1)	1-1 correct calculation, unsimplified for an identified scenario not containing three 4s.				
	445			(A1)	Five correct probabilities evaluated, accept unsimplified.					
7(c)	443	$\frac{3}{8} \times \frac{2}{7} \times \frac{1}{6} \times 3$	18 336		(M1)	Nine correct scenarios subtracted.				
	443	$\frac{2}{8} \times \frac{3}{7} \times \frac{1}{6} \times 3$	18 336							
	442	$\frac{2}{8} \times \frac{3}{7} \times \frac{1}{6} \times 3$	$\frac{36}{336}$		reP					
	441	$\frac{2}{8} \times \frac{3}{7} \times \frac{1}{6} \times 3$	18 336							
	225	$\frac{2}{8} \times \frac{3}{7} \times \frac{1}{6} \times 3$	6 336			co:				
	224	$\frac{2}{8} \times \frac{3}{7} \times \frac{1}{6} \times 3$	18 336							
	223	$\frac{2}{8} \times \frac{3}{7} \times \frac{1}{6} \times 3$	$\frac{6}{336}$							
	221	$\frac{2}{8} \times \frac{3}{7} \times \frac{1}{6} \times 3$	$\frac{6}{336}$							

Question	Answer	Marks	Guidance
		(B1)	336 or $8 \times 7 \times 6$ seen as a denominator.
	[Probability] = $1 - \frac{132}{336}$, $\frac{204}{336}$, 0.607	(A1)	
		5	

Cambridge International AS & A Level

MATHEMATICS 9709/52
Paper 5 Probability & Statistics 1 May/June 2024

MARK SCHEME

Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

	PUBLISHED					
Question	Answer	Marks	Guidance			
1(a)	$[(0.7)^6 \times 0.3] = 0.0353$	B1	$\frac{352947}{10000000}$ or 0.03529 to at least 3sf.			
		1				
1(b)	Method 1					
	$[P(X<6)=] 1-0.7^5$	M1	$1 - 0.7^d$, $d = 5$, 6.			
	= 0.832	A1	Accept 0.83193 to at least 3sf. If M0 scored, SC B1 for 0.8319[3].			
	Method 2					
	$[P(X < 6) =] 0.3 + (0.3)(0.7) + (0.3)(0.7)^{2} + (0.3)(0.7)^{3} + (0.3)(0.7)^{4}$	(M1)	$0.3 + (0.3)(0.7) + (0.3)(0.7)^{2} + (0.3)(0.7)^{3} + (0.3)(0.7)^{4} \Big[+ (0.3)(0.7)^{4} \Big[+ (0.3)(0.7)^{4} \Big] + (0.7)(0.7)^{4} \Big[+ (0.7)(0.7)^{4} \Big] + (0.7)(0.7)^{4} \Big[+ (0.7)(0.7)^{4} \Big[+ (0.7)(0.7)^{4} \Big] + (0.7)(0.7)^{4} \Big[+ (0.7)(0.7)^$			
	= 0.832	(A1)	Accept 0.83193 to at least 3sf. If M0 scored, SC B1 for 0.8319[3].			
		2				
1(c)	$(0.7)^8 \times (0.3)^2 \times {}^9C_1$ or $(0.7)^8 \times (0.3) \times {}^9C_1 \times (0.3)$	M1	$(0.7)^8 \times (0.3)^2 \times k$, k a positive integer, 1 may be implied. No addition/subtraction/additional terms.			
	= 0.0467	Al				

2

Question	Answer	Marks	Guidance
2(a)	Method 1		
	$P(HR) + P(TR) + P(TBR)$ $\frac{1}{3} \times \frac{4}{9} + \frac{2}{3} \times \frac{4}{9} + \frac{2}{3} \times \frac{5}{9} \times \frac{4}{8}$ or $P(HR) + (P(TRR) + P(TRB)) + P(TBR)$	B1	Two of the calculations for P(HR), P(TBR), either P(TR) or P(TRR) + P(TRB) unsimplified, ignore any identification. Condone $\frac{4}{8} = \frac{1}{2}$ in the unsimplified calculation. Condone use of tree diagram to show calculation if values correct at end.
	$\left[\frac{1}{3} \times \frac{4}{9} + \left(\frac{2}{3} \times \frac{4}{9} \times \frac{3}{8} + \frac{2}{3} \times \frac{4}{9} \times \frac{5}{8} \right) + \frac{2}{3} \times \frac{5}{9} \times \frac{4}{8} \right]$	M1	Values of all correct identified scenarios added. Correct branches may be identified on the tree diagram.
	$\[= \frac{4}{27} + \frac{8}{27} + \frac{5}{27} \] = \frac{17}{27}$	A1	0.6296, 0.630 If M0 scored SC B1 for acceptable answers, WWW.
	Method 2		
	$1 - P(HB) - P(TBB) = 1 - \left(\frac{1}{3} \times \frac{5}{9} + \frac{2}{3} \times \frac{5}{9} \times \frac{4}{8}\right) = \left[1 - \frac{5}{27} - \frac{5}{27}\right]$	(B1)	One calculation of P(HB), P(TBB), unsimplified, ignore any identification. 1 – probability must be seen. Condone use of tree diagram to show calculation if values correct at end.
	324	(M1)	1 – values of two correct identified scenarios subtracted. Correct branches may be identified on the tree diagram.
	$=\frac{17}{27}$	(A1)	0.6296, 0.630 If M0 scored SC B1 for acceptable answers, WWW.

PUBLISHED

Question	Answer	Marks	Guidance
2(a)	Method 3		
	$P(HR) + P(T, (1 - no R)) = \frac{1}{3} \times \frac{4}{9} + \frac{2}{3} \left(1 - \left(\frac{5}{9} \times \frac{4}{8} \right) \right) =$	(B1)	Calculation for $P(T, (1 - no R))$ seen unsimplified. Condone use of tree diagram to show calculation if values correct at end.
	$3^{\circ} 9 + 3(1^{\circ} (9^{\circ} 8))$ $\left[\frac{4}{27} + \frac{2}{3}(1 - \frac{20}{27})\right]$ $= \frac{17}{27}$	(M1)	Values of two correct identified scenarios added. Correct branches may be identified on the tree diagram.
		(A1)	0.6296, 0.630 If M0 scored SC B1 for acceptable answers, WWW.
		3	

Question	Answer	Marks	Guidance
2(b)	Method 1		
	$P(\text{head} \mid \text{no reds}) = \frac{P(\text{head} \cap \text{no reds})}{P(\text{no reds})}$ $= \frac{\frac{1}{3} \times \frac{5}{9}}{1 - \frac{17}{27}} = \frac{\frac{5}{27}}{\frac{10}{27}} = \frac{\frac{5}{27}}{\frac{10}{27}} = \frac{\frac{1}{27}}{\frac{10}{27}} = \frac{1}{27}$	M1	$\frac{d}{1-their(\mathbf{a})} \text{ or } \frac{d}{1-\frac{17}{27}} \text{ or } \frac{d}{\frac{10}{27}}, 0 < d < 1.$ Condone $\frac{10}{27} = 0.3704 \text{ or more accurate.}$
	$1 - \frac{17}{27} \frac{10}{27}$	R	
	$=\frac{1}{2}$	A1	OE Condone 0.499[9].
	Method 2		
	$\left[P(\text{head} \mid \text{no reds}) = \frac{P(\text{head} \cap \text{blue})}{P(\text{HB}) + P(\text{TBB})}\right]$ $= \frac{\frac{1}{3} \times \frac{5}{9}}{\frac{1}{3} \times \frac{5}{9} + \frac{2}{3} \times \frac{5}{9} \times \frac{4}{8}} = \frac{\frac{5}{27}}{\frac{10}{27}} =$	(M1)	$\frac{d}{\frac{1}{3} \times \frac{5}{9} + \frac{2}{3} \times \frac{5}{9} \times \frac{4}{8}} \text{ or } \frac{d}{\frac{10}{27}}, 0 < d < 1.$ Condone $\frac{10}{27} = 0.3704$ or more accurate.
	$=\frac{1}{2}$	(A1)	OE Condone 0.499[9].
	ar,p	2	

PUBLISHED

Question	Answer	Marks	Guidance
3(a)	$P(X>184) = P\left(Z > \frac{184 - 131}{54}\right) [= P(Z>0.9815)]$	M1	Use of \pm standardisation formula with 184, 131 and 54, no continuity correction. Condone use of σ^2 , $\sqrt{\sigma}$.
	1 – 0.837 [= 0.163]	M1	Calculating the appropriate probability area (leading to their final answer).
	Percentage [= 0.163 ×100] = 16.3	A1	AWRT
	19	3	
3(b)	$P(X < w) = P(Z < \frac{w - 131}{54}) = 0.2$	B1	$-0.842 \le z < -0.8415$ or $0.8415 < z \le 0.842$ seen.
	$\frac{w - 131}{54} = -0.842$	M1	Use of the ±standardisation formula with 131, 54, w and a z-value (not 0.2, 0.8, 0.158, 0.508[0], 0.492[0], 0.7881, 0.2119, 0.5593, 0.4407).
	w = 85.5	A1	$85.5 \le p \le 85.6$ Signs must be consistent to create a positive answer.
		3	

Question	Answer	Marks	Guidance
4(a)	Median = 32000	B1	Clearly identified, e.g. Q2, med. Accept 32k.
	[UQ = 33500, LQ = 31200] [IQR =] 33500 – 31200	M1	$33300 \le UQ \le 33700 - 31100 \le LQ \le 31200$ Implied if both quartile values are stated and an appropriate IQR is calculated accurately.
	= 2300	A1	WWW Ignore \$ signs. If M0 scored, SC B1 for 2300 WWW. If key ignored consistently: B0 Median = 320 SC M1 $325 \le UQ \le 335 - 311 \le LQ \le 312$ SC A1 23.
		3	

Question	Answer	Marks	Guidance
4(b)	Box-and-whisker plot on provided grid	B1	All five key values for R plotted accurately in standard format using a linear scale with at least three linear values. Labelled R . Condone whiskers through box or at corners of boxes or extending $\frac{1}{2}$ square beyond limit. Scale no less than 1 cm = \$1000. Daylight rule applied to vertical lines of box.
	R 30 200 32 000 33 800 34 400 36 900	B1FT	All five key values for P , FT from (a), plotted accurately in standard format using a linear scale with at least three linear values. Labelled P . Condone whiskers through box or at corners of boxes or extending $\frac{1}{2}$ square beyond limit. Scale no less than 1 cm = \$1000. Daylight rule applied to vertical lines of box.
	P 30 000 31 200 32 000 33 500 36 800		Whiskers not through box (condone $\frac{1}{2}$ square in box) for either, not drawn at corners of boxes. single linear scale for the diagram and labelled 'salaries' (OE) and \$. If only one plot attempted, SC B1 for meeting all the requirements above.
		3	1.5
4(c)	Median because there is an extreme value (\$36800)	BI	Do not accept 'values'. Must identify median and reference either the extreme value (anomaly, outlier, 36 800) or the skew in context (e.g. concentrated in lower values, positive skew).
		1	

PUBLISHED

Question				Ansv	ver			Marks	Guidance
5(a)	[\$7 =] [\$]5 + [\$]2 [Probability =] $\frac{1}{5} \times \frac{2}{4} \times 2 = \frac{1}{5} = 0.2$ Or [Probability =] $0.2 \times 0.5 \times 2 = 0.2$						AT P	B1	AG Must include [\$7], 5, 2 and link the probabilities to the appropriate value $\frac{\left[{}^{1}C_{1}\right] \times {}^{2}C_{1}}{{}^{5}C_{2}} = 0.2.$ $\frac{1}{5} \times \frac{2}{4} + \frac{2}{5} \times \frac{1}{4}, \text{ not } \frac{1}{5} \times \frac{2}{4} + \frac{1}{5} \times \frac{2}{4} \text{ unless 5 and 2 and 5 seen in solution.}$ If all possibilities identified (e.g. outcome table), must be clearly labelled and terms fulfilling the condition identified.
					77	7/		1	
5(b)	P(X=x)	2 0.1	3 0.4	0.1	6 0.2	7 0.2		B1 B1	Table with correct x values and at least one further non-zero probability correct. Condone extra x values if probability stated as 0. Two more correct non-zero probabilities linked with correct outcomes. Accept probabilities not in table if clearly identified. All five probabilities correct. Accept probabilities not in table if clearly identified. SC B1 for four further non-zero probabilities adding to 0.8 if B1 max scored.
								3	

PUBLISHED

Question	Answer	Marks	Guidance
5(c)	$[E(X) = 0.1 \times 2 + 0.4 \times 3 + 0.1 \times 4 + 0.2 \times 6 + 0.2 \times 7]$ 0.2 + 1.2 + 0.4 + 1.2 + 1.4 [= 4.4]	M1	Accept unsimplified expression. May be calculated in the variance, FT <i>their</i> table with at least 5 probabilities, $0 , that sum to 1. FT acceptable at the bold partially evaluated stage.$
	$[Var(X) = 0.1 \times 2^{2} + 0.4 \times 3^{2} + 0.1 \times 4^{2} + 0.2 \times 6^{2} + 0.2 \times 7^{2} - 4.4^{2} $ $0.1 \times 4 + 0.4 \times 9 + 0.1 \times 16 + 0.2 \times 36 + 0.2 \times 49 - 4.4^{2}$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table with at least 4 probabilities, $0 , that may not sum to 1. FT acceptable at the bold partially evaluated stage. Note: if table is correct, 22.6 - (4.4^2 \text{ or } 19.36) implies this M1.$
	= 3.24	A1	CAO $\frac{81}{25}$, $3\frac{6}{25}$ scores A0. Only dependent upon previous M1 (M0 M1 A1 possible). If M0 M0 scored, SC B1 for 3.24 WWW.
		3	

Question	Answer	Marks	Guidance
6(a)	Mean $[=110 \times 0.25] = 27.5$ Variance $[=110 \times 0.25 \times 0.75] = 20.625, \frac{165}{8}$	B1	27.5 and 20.625 (CAO) seen, allow unsimplified. May be in standardisation formula (4.541475 to at least 4sf or $\sqrt{\frac{165}{8}}$ or $\frac{\sqrt{330}}{4}$ implies correct variance). Penalise incorrect identification, condone no identification.
	$P(X < 22) = P\left(Z < \frac{21.5 - 27.5}{\sqrt{20.625}}\right)$	M1	Substituting <i>their</i> 27.5 and <i>their</i> 20.625 into the \pm standardising formula (any number for 21.5), not σ^2 , not $\sqrt{\sigma}$.
		M1	Using continuity correction 21.5 or 22.5 in <i>their</i> standardisation formula.
	$[P(Z < -1.3212) = 1 - \Phi(1.3212)]$ $1 - 0.9068 =$	M1	Appropriate probability area, from final process, must be a probability. May be implied by a sketch of the required probability area. Expect final answer < 0.5.
	0.0932	A1	$0.0932 \le p < 0.09325$ If either M1 M1 not awarded for standardisation and/or M1 not awarded for finding probability area, SC B1 $0.0932 \le p < 0.09325$ WWW.
	4	5	-O'
	Satp	reP	

Question	Answer	Marks	Guidance				
6(b)	Method 1						
	[1 - P(8, 9, 10) =]	M1	One term ${}^{10}C_x (p)^x (1-p)^{10-x}, 0$				
	$1 - ({}^{10}C_8 0.85^8 0.15^2 + {}^{10}C_9 0.85^9 0.15^1 + 0.85^{10})$	A1	Correct unsimplified expression.				
	[=1-(0.275897+0.347425+0.196874)]		Condone omission of last bracket only.				
	= 0.180	B1	0.1795				
	Method 2						
	$ [P(0, 1, 2, 3, 4, 5, 6, 7) =] 0.15^{10} + {}^{10}C_1 0.85 \times 0.15^9 + + {}^{10}C_7 0.85^7 0.15^3 $	(M1)	One term ${}^{10}C_x (p)^x (1-p)^{10-x}, 0$				
		(A1)	Correct unsimplified expression.				
	= 0.180	(B1)	0.1795				
		3					
6(c)	$0.25 \times 0.6 \times 0.15 \times 6$	M1	$0.25 \times 0.6 \times 0.15 \times k$, k an integer > 1 .				
	$0.135, \frac{27}{200}$	A1	<i>1.5</i>				
	"Sato	2					

Question	Answer	Marks	Guidance
7(a)	$\left[\frac{10!}{2!4!}\right] 75600$	B1	
		1	
7(b)	4! × 3!	M1	4! SOI in all terms leading to final answer. Allow 24 if 4! = 24 is seen.
		M1	Ignoring any values used to justify 4!. Either 3! SOI in expression leading to final answer, or at least 6 distinct scenarios identified and added in expression leading to final answer. Condone 3 distinct scenarios × 2. Ignore repeated scenarios.
		A1	$4! \times 3!$ Fully correct unsimplified expression leading to final answer.
	144	B1	www
		4	

Question	Answer	Marks	Guidance
7(c)	Method 1: If denominator is from 7(a), no denominator or incorr	ect denon	ninator
	[Numerator = Number of required arrangements =]	B1	$\frac{5!}{2!}$ seen (arrangements of consonants).
	$\frac{5!}{2!} \times \frac{5!}{4!} \times 2 \ [=600]$	B1	$\frac{5!}{4!}$ seen (arrangements of vowels).
		M1	$\frac{5!}{r} \times \frac{5!}{s} \times 2$, $r = 1$ or 2, $s = 1, 4, 4!$ or 24.
	[Probability =] $\frac{their 600}{their 75600}$	M1	$\frac{their 600}{their (\mathbf{a})} \text{ or } \frac{their 600}{75600}.$
	$=\frac{1}{126}$, 0.00794	A1	Accept $\frac{600}{75600}$ OE.
	Method 2: If denominator 10!		
	[Numerator = Number of required arrangements =]	(B1)	5! seen (arrangements of consonants).
	$5! \times 5! \times 2 = 28800$	(B1)	A second 5! seen (arrangements of vowels).
	74	(M1)	$5! \times 5! \times k$, $k = 1$ or 2.
	[Probability =] $\frac{their 28800}{10!}$	(M1)	
	$=\frac{1}{126}$, 0.00794	(A1)	Accept $\frac{600}{75600}$ OE.

	TODER		
Question	Answer	Marks	Guidance
7(c)	Method 3: Using probabilities		
	$\frac{5}{10} \times \frac{5}{9} \times \frac{4}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2} \times \frac{1}{1} \times 2$	(B1)	$\frac{5}{a} \times \frac{4}{b} \times \frac{3}{c} \times \frac{2}{d} \times \frac{1}{e} \text{ seen.}$ $10 \ge a > b > c > d > e \ge 1 \text{ (arrangements of consonants)}.$
	SPTE	(B1)	A second $\frac{5}{f} \times \frac{4}{g} \times \frac{3}{h} \times \frac{2}{i} \times \frac{1}{j}$ seen. $10 \ge f > g > h > i > j \ge 1$ (arrangements of vowels).
		(M1)	$\frac{5}{a} \times \frac{4}{b} \times \frac{3}{c} \times \frac{2}{d} \times \frac{1}{e} \times \frac{5}{f} \times \frac{4}{g} \times \frac{3}{h} \times \frac{2}{i} \times \frac{1}{j} \times k$ $k = 1 \text{ or } 2.$
		(M1)	$\frac{their 5 \times 4 \times 3 \times 2 \times 1 \times 5 \times 4 \times 3 \times 2 \times 1}{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}.$
	$=\frac{1}{126}$, 0.00794	(A1)	Accept $\frac{28800}{362800}$ OE.
		5	

Cambridge International AS & A Level

MATHEMATICS 9709/53
Paper 5 Probability & Statistics 1 May/June 2024

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2024 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptions for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

- Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

PUBLISHED

Question	Answer						Marks	Guidance	
1(a)	x	2	3	4	5	6		B1	Table with correct <i>X</i> values and at least one correct probability associated with the correct <i>X</i> value.
	P(X=x)	<u>1</u> 36	4 36	<u>10</u> 36	<u>12</u> 36	$\frac{9}{36}$			Values need not be in order, lines may not be drawn, may be vertical, <i>X</i> and P(<i>X</i>) may be omitted. Condone any additional <i>X</i> values if probability stated as 0.
		$\frac{1}{36}$	$\frac{1}{9}$	$\frac{5}{18}$	$\frac{1}{3}$	$\frac{1}{4}$	P	B1	Three other probabilities associated with correct <i>x</i> values, need not be in table, accept unsimplified.
	Decimal equ 0.0278, 0.11			5	6			В1	Five correct probabilities linked with correct outcomes, may not be in table. Decimals correct to at least 3sf. SC B1 for five probabilities summing to 1 placed in a probability distribution table with the correct <i>x</i> values.
								3	

PUBLISHED

Question	Answer	Marks	Guidance
1(b)	$E(X) = \frac{1 \times 2 + 4 \times 3 + 10 \times 4 + 12 \times 5 + 9 \times 6}{36} = \frac{2}{36} + \frac{12}{36} + \frac{40}{36} + \frac{60}{36} + \frac{54}{36} \left[= \frac{14}{3} \text{ or } 4.67 \right]$	M1	Accept unsimplified expression or sum of fractions seen. May be calculated in variance. FT <i>their</i> table with five probabilities summing to $0.999 \le total \le 1 \ (0 .$
	$Var(X) = \frac{1 \times 2^2 + 4 \times 3^2 + 10 \times 4^2 + 12 \times 5^2 + 9 \times 6^2}{36} - \left(\frac{14}{3}\right)^2$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table with 4 or more probabilities. $(0 which need not sum to 1. Note: If table is correct, then \left(\frac{824}{36} \text{ or } \frac{206}{9} \text{ or } 22.89\right) - \left(\frac{196}{9} \text{ or } 21.78 \text{ or } \left(\frac{14}{3}\right)^2\right) implies M1.$
	$[=\frac{824}{36} - \frac{196}{9} = 22.89 - 21.78] = \frac{10}{9}$	A1	$1\frac{1}{9}$, 1.11[1], 1.1
		3	
1(c)	$P(X \text{ even } X > 3) = \frac{\frac{10}{36} + \frac{9}{36}}{\frac{31}{36}}$	M1	$\frac{their P(4) + their P(6)}{their P(4) + P(5) + P(6)}, \text{ all probabilities } (0 If sample space seen in any part of the question, then M1 \frac{their 19}{their 31}.$
	$=\frac{19}{31}$	A1	0.613
		2	

Question	Answer	Marks	Guidance
2(a)	$P\left(Z > \frac{1.93 - 1.64}{0.25}\right) = P(Z > 1.16)$	M1	Using \pm standardisation formula with 1.93, 1.64 and 0.25 substituted, not σ^2 , not $\sqrt{\sigma}$, no continuity correction.
	1 - 0.8770	M1	Appropriate area Φ resulting from a standardisation, from final process, must be probability. Note: the appropriate probability answer implies this M1.
	0.123	A1	$0.123 \le p < 0.12303$ If M0 M0, SC B1 if no standardisation shown.
		3	
2(b)	$\frac{1.56 - \mu}{\sigma} = -0.44$ $1.86 - \mu$	B1	$-0.441 < z_1 < -0.439$ or $0.439 < z_1 < 0.441$ seen.
		B1	$z_2 = 0.674$ or $z_2 = -0.674$ seen, CAO, critical value.
	$\frac{1.86 - \mu}{\sigma} = 0.674$	M1	Use of the ±standardisation formula once with μ , σ equating to a z-value (not 0.33, 0.67, 0.25, 0.75, 0.6293, 0.5987, 0.7486, 0.7734, $(1-0.44)$, $(1-0.674)$). Condone continuity correct ±0.005, not σ^2 , $\sqrt{\sigma}$.
	Solve, obtaining values for μ and σ $\mu = 1.68, \sigma = 0.269$	M1	Solve two equations in μ and σ using the elimination method, substitution method or other appropriate approach to obtain values for both μ and σ .
	$\mu = 1.68, \sigma = 0.269$	A1	AWRT $\mu = 1.68$, $\sigma = 0.269$. If one or both of the M marks have not been awarded, SC B1 for both correct.
		5	

Question	Answer	Marks	Guidance
3(a)	Box A Box B	B1	Correct structure and probabilities for Box A branches.
	5 G	B1	Completely correct structure and one correct probability for a Box B branch including label for G or Y.
	6 G	B1	Completely correct structure and second correct probability on a Box B branch including label G or Y.
	$ \frac{3}{9} $ $ \frac{4}{5+x} $ $ \frac{1+x}{5+x} $ $ Y $	B1	Completely correct structure and remaining two probabilities correct on Box B branches, including labels for G or Y. SC B1 if correct shape diagram but only four correct algebraic probs for GG, GY, YG and YY.
		4	
3(b)	P(same colour) = $\frac{6}{9} \times \frac{5}{5+x} + \frac{3}{9} \times \frac{1+x}{5+x}$	M1	$P(GG) + P(YY) = \left(\frac{6}{9} \text{ or } \frac{3}{9}\right) \times their\left(\frac{5}{5+x}\right) + \left(\frac{3}{9} \text{ or } \frac{6}{9}\right) \times their\left(\frac{1+x}{5+x}\right)$
	$\frac{6}{9} \times \frac{5}{5+x} + \frac{3}{9} \times \frac{1+x}{5+x} = \frac{8}{15}$ and arrange as a linear equation	M1	$15(x+11) = 24(x+5)$ OE Accept sum of their products equated to $\frac{8}{15}$ and rearranged to form a linear equation.
	Solve: $x = 5$	A1	
		3	

Question	Answer	Marks	Guidance
4(a)	Penguins Dolphins	B1	Correct stem, ignore extra values (not in reverse, not split). If a split stem-and-leaf plot is used (i.e. stem values are repeated), the remaining B marks are available.
	9 5 3 6 8 5 5 4 2 4 1 3 8 9 9 9 8 6 0 5 0 1 4 6 6	B1	Correct Penguins labelled on left, leaves in order from right to left and lined up vertically (less than halfway to next column), no commas or other punctuation.
	Penguins 9 5 3 6 8 5 5 4 2 4 1 3 8 9 9 9 8 6 0 5 0 1 4 6 6 8 6 1 6 0 1 4 2 7 1	B1	Correct Dolphins labelled on same diagram, leaves in order and lined up vertically (less than halfway to next column), no commas or other punctuation.
	Key: 2 4 1 means 42 seconds for Penguins and 41 seconds for Dolphins		If the correct data for Penguins & Dolphins is transposed, treat as a single error in Penguins and condone in Dolphins.
		B1	Correct key for their diagram, need both clubs labelled and 'sec' or 's' stated at least once here, or in leaf headings or title.
			If two separate diagrams drawn: SC B1 if both keys meet these criteria.
		4	

Question	Answer	Marks	Guidance
4(b)	Penguins Dolphins 30 35 40 45 50 55 60 65 70 75 Times in seconds	R	
	For Dolphins, median is 51	B1	Plotted on box.
	LQ = 48, UQ = 60	B1	Plotted on box.
	Correct end points for whiskers and diagram labelled Dolphins	B1	Correct end points of whiskers (36 and 71). Whiskers not through box, not drawn at corners of boxes, diagram labelled.
		3	
4(c)	Dolphins have more consistent times than Penguins or Penguins are faster (have faster times) than Dolphins	B1	Reason given in context. Can be reference to either the central tendency or spread.
		1	

Question	Answer	Marks	Guidance
5(a)	$\left[\left(0.35 \right)^4 \times 0.65 = \right] \ 0.00975$	B1	AWRT
		1	
5(b)	$(0.35)^3 \times (0.65)^2 \times 4$	M1	$(0.35)^3 \times (0.65)^2 \times k$, where k is an integer.
	TP		$1 \leqslant k \leqslant 5 \text{ no + or } -$
	= 0.0725	A1	
		2	
5(c)	Method 1		
	$[1 - P(5, 6, 7) =]$ $1 - (^{7}C_{5}0.65^{5}0.35^{2} + ^{7}C_{6}0.65^{6}0.35^{1} + 0.65^{7})$ $[= 1 - (0.29848 + 0.18478 + 0.049022)]$	M1	One term ${}^{7}C_{x}(p)^{x}(1-p)^{7-x}, 0$
		A1	Correct expression, accept unsimplified, no terms omitted leading to final answer
	= 0.468	B1	AWRT
	Method 2		/5/
	$ [P(0, 1, 2, 3, 4) =] 0.35^7 + {}^7C_1 0.65^1 0.35^6 + {}^7C_2 0.65^2 0.35^5 + {}^7C_3 0.65^3 0.35^4 + {}^7C_4 0.65^4 $	(M1)	One term ${}^{7}C_{x}(p)^{x}(1-p)^{7-x}, 0$
	$\begin{bmatrix} 0.35^3 \\ [0.00064 + 0.00836 + 0.04660 + 0.14424 + 0.26787] \end{bmatrix}$	reP	
		(A1)	Correct expression, accept unsimplified, no terms omitted leading to final answer.
	= 0.468	(B1)	AWRT
		3	

Question	Answer	Marks	Guidance
5(d)	[Mean =] $84 \times 0.65 = 54.6$ [Var =] $84 \times 0.65 \times 0.35 = 19.11$	B1	54.6 and 19.11 seen, allow unsimplified. May be seen in the standardisation formula $([\sigma =] \ 4.371 \text{ or } \frac{7\sqrt{39}}{10} \text{ implies correct variance}).$ Incorrect notation is penalised, but condone use of values in standardisation formula.
	$P(X > 50) = P\left(Z > \frac{50.5 - 54.6}{\sqrt{19.11}}\right)$	M1	Substituting their μ and their positive σ into the \pm standardising formula (any number), not their σ^2 , or $\sqrt{their \sigma}$.
		M1	Use continuity correction 49.5 or 50.5 in <i>their</i> standardisation formula. Note: $\frac{\pm 4.1}{\sqrt{19.11}}$ or $\pm \frac{4.1}{4.371}$ seen gains M2 BOD.
	$P(Z > -0.9379) = \Phi(0.9379)$	M1	Appropriate area Φ , from final process, must be a probability.
	0.826	A1	0.8255
		5	

Question	Answer	Marks	Guidance
6(a)	$\left[\frac{9!}{2!3!}\right] 30240$	B1	
		1	
6(b)	Method 1: Number of arrangements with E at each end – Number	er of arrai	ngements with E at each end and the three Rs together
	$\frac{7!}{3!} - 5! =$	B1	$\frac{7!}{3!}$ - e , ${}^{7}P_{4}$ - e , e a positive integer.
		M1	$f - \frac{5!}{r!}, f > 120, r = 1, 2$
	720	A1	If no marks scored SC B1 for $840 - 120 = 720$.
	Method 2: Number of arrangements with E at each end and no R	s togethe	r + No of arrangements with E at each end and two Rs together
	$^{5}C_{3} \times 4! + ^{4}C_{1} \times 5!$ or $\frac{^{5}P_{3}}{3!} \times 4! + ^{5}P_{2} \times 4!$	(B1)	One of ${}^5C_3 \times 4!$, $\frac{{}^5P_3}{3!} \times 4!$, ${}^4C_1 \times 5!$ or ${}^5P_2 \times 4!$ seen.
	3!	(M1)	$a \times 4! + b \times 5!$ where a and b are integers between 1 and 10 inclusive, or $c \times 4! + d \times 4!$ where c and d are integers between 1 and 20 inclusive.
	240 + 480 = 720	(A1)	
		3	

Question	Answer	Marks	Guidance		
6(c)	Method 1				
	Group of 5	B1	Correct no of ways for two correct identified scenarios other than three Rs two Es.		
	$\begin{array}{lll} 3 \text{ Rs } 2 \text{ Es} & = 1 \\ 3 \text{ Rs } 1 \text{ E} = {}^{2}\text{C}_{1} \times {}^{4}\text{C}_{1} & = 8 \end{array}$				
	$3 \text{ Rs } 0 \text{ Es} = {}^{4}\text{C}_{2} = 6$				
	Group of 4				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	$3 \text{ Rs } 0 \text{ Es} = {}^{4}\text{C}_{1} = 4$				
	[Total =] 21	M1	No of ways for five correct identified scenarios added or correct.		
	[Number of ways of splitting into the two groups =] ${}^{9}C_{5}$ (= 126) seen as a denominator	M1	Accept evaluated, accept ⁹ C ₄ .		
	Probability = $\frac{21}{126} = \frac{1}{6}$ (0.167)	A1			

Question	Answer	Marks	Guidance		
6(c)	Method 2				
	3Rs in Group of $5 = {}^6C_2$ = 15	(B1)	One correct case evaluated accurately and linked with correct scenario.		
	$3Rs in Group of 4 = {}^{6}C_{1} = 6$				
	[Total =] 21	(M1)	No of ways for two correct scenarios added or correct.		
	[Number of ways of splitting into the two groups =] ${}^{9}C_{5}$ (= 126) seen as a denominator	(M1)	Accept evaluated, accept ⁹ C ₄ .		
	Probability = $\frac{21}{126} = \frac{1}{6}$ (0.167)	(A1)			
	Method 3: Considering the possible positions of R within the groups				
	3Rs in Group of 5 $ \frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} = \frac{15}{126} $ 3Rs in Group of 4 $ \frac{4}{9} \times \frac{3}{8} \times \frac{2}{7} = \frac{6}{126} $	(B1)	For one correct product unsimplified and linked with correct scenario.		
		(M1)	For second correct product.		
	$\frac{15}{126} + \frac{6}{126}$	(M1)	For adding probabilities of two correct scenarios or correct.		
	Probability = $\frac{21}{126} = \frac{1}{6}$ (0.167)	(A1)			

Question	Answer	Marks	Guidance		
6(c)	Method 4: Probability method				
	Group of 5 $ \frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \times \frac{2}{6} \times \frac{1}{5} \times \frac{5!}{3!2!} = \frac{1}{126} $	(B1)	Two correct probabilities linked with correct scenarios, accept unsimplified.		
	9 8 7 6 5 3!2! 126 1E $\frac{4}{9} \times \frac{3}{8} \times \frac{2}{7} \times \frac{1}{6} \times \frac{2}{5} \times \frac{5!}{3!} = \frac{8}{126}$ 0E $\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \times \frac{4}{6} \times \frac{3}{5} \times \frac{5!}{3!2!} = \frac{6}{126}$ Group of 4 $\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \times \frac{6}{6} \times \frac{4!}{3!} = \frac{6}{126}$	(M1)	Four probabilities with denominators including a factor of $9 \times 8 \times 7 \times 6 \times n$, where n is 1 or 5.		
	$\frac{1+8+6+6}{126}$	(M1)	Probabilities of four correct scenarios added or correct.		
	Probability = $\frac{21}{126} = \frac{1}{6}$ (0.167)	(A1)			
	Z	4			
	satpreP.				

Cambridge International AS & A Level

MATHEMATICS 9709/51

Paper 5 Probability & Statistics 1

October/November 2023

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 18

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

© UCLES 2023 Page 3 of 18

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2023 Page 4 of 18

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2023 Page 5 of 18

Question	Answer	Marks	Guidance
1(a)	[IQR =] 31 - 23.7	M1	$30.5 < UQ < 31.25 - 23.25 < LQ \le 24$ Evidence of graph use must be seen at least once.
	7.3	A1	$7.0 \le IQR \le 7.5$ If M0 scored, SC B1 for $7.0 \le IQR \le 7.5$ www.
		2	
1(b)	[65% of 120 =]78	B1	Seen or implied by use on graph.
	28.5	B1	28 < ans < 29
		2	

Question	Answer	Marks	Guidance				
2(a)	$\left(\frac{21}{36}\right)^4 \left(\frac{15}{36}\right)$	M1	$(1-p)^4 \times p , 0$				
	$=\frac{12005}{248832},0.0482$	A1	0.0482454 to at least 3SF.				
	124						

Question	Answer	Marks	Guidance
2(b)	Method 1		
	$[P(X \le 4) =] 1 - \left(\frac{21}{36}\right)^4$	M1	$1-b^r, b = their (1-p) in 2(a) or correct; r = 4, 5.$
	$=\frac{18335}{20736}$, 0.884	A1	0.884211 to at least 3SF.
		2	
	Method 2		
	$[P(X \le 4) =] \frac{15}{36} + \frac{15}{36} \times \frac{21}{36} + \frac{15}{36} \times \left(\frac{21}{36}\right)^2 + \frac{15}{36} \times \left(\frac{21}{36}\right)^3$	M1	$p + p(1-p) + p(1-p)^2 + p(1-p)^3$ $[+p(1-p)^4]$ FT from 2(a) or correct.
	$=\frac{18335}{20736}$, 0.884	A1	0.884211 to at least 3SF.
		2	

© UCLES 2023 Page 7 of 18

Question	Answer	Marks	Guidance
2(c)	Method 1		
	$[P(0,1,2) =] {}^{8}C_{0} \left(\frac{5}{12}\right)^{0} \left(\frac{7}{12}\right)^{8} + {}^{8}C_{1} \left(\frac{5}{12}\right)^{1} \left(\frac{7}{12}\right)^{7} + {}^{8}C_{2} \left(\frac{5}{12}\right)^{2} \left(\frac{7}{12}\right)^{6}$	M1	One term ${}^{8}C_{x}(q)^{x}(1-q)^{8-x}, 0 < q < 1, x \neq 0, 8.$
	0.01341 + 0.07661 + 0.1915	A1 FT	Correct expression, accept unsimplified, no terms omitted leading to final answer.
	AT PR		FT only with unsimplified expression.
	= 0.282	B1	$0.2815 \leqslant q \leqslant 0.282$
	Method 2		
	$[1 - P(3,4,5,6,7,8) =] 1 - ({}^{8}C_{3} \left(\frac{5}{12}\right)^{3} \left(\frac{7}{12}\right)^{5} + {}^{8}C_{4} \left(\frac{5}{12}\right)^{4} \left(\frac{7}{12}\right)^{4} + \dots + {}^{8}C_{7}$	M1	One term ${}^{8}C_{x}(q)^{x}(1-q)^{8-x}, 0 < q < 1, x \neq 0,8.$
	$\left[\left(\frac{5}{12} \right)^7 \left(\frac{7}{12} \right)^1 + {}^{8}C_{8} \left(\frac{5}{12} \right)^8 \left(\frac{7}{12} \right)^0 \right]$	A1 FT	Correct expression, accept unsimplified, no terms omitted leading to final answer.
	$= 1 - (0.2736 + 0.2443 + \dots + 0.01017 + 9.084 \times 10^{-4})$		FT only with unsimplified expression.
	= 0.282	B1	$0.2815 \leqslant q \leqslant 0.282$
	134	3	

© UCLES 2023 Page 8 of 18

Question	Answer	Marks	Guidance
3(a)	$[P(X < 76) =] P(Z < \frac{76 - 80.5}{6.6})$	M1	Use of \pm standardisation formula with 76, 80.5 and 6.6, condone 6.6^2 or $\sqrt{6.6}$, no continuity correction.
	$[=\Phi(-0.6818) = 1 - \Phi(0.6818) =]$ $1 - 0.7524 = 0.2476$	M1	Calculating the appropriate probability area (leading to their final answer).
	24.8%	A1	$24.75\% < ans \le 24.8\%$ (percentage value required). If A0 scored, SC B1 for $24.75\% < ans \le 24.8\%$ www.
		3	
3(b)	[% of large eggs = $100 - 40 - 24.76 = 35.24$]	B1	$0.378 \le z < 0.3791 \text{ or } -0.3791 < z \le -0.378 \text{ seen.}$
	$[P(Z > \frac{x - 80.5}{6.6}) = 0.40 + 0.2476 = 0.6476]$ $\frac{x - 80.5}{6.6} = 0.378$	M1	Use of \pm standardisation formula with x , 80.5, 6.6 and a z -value (not 0.6476, 0.3524, 0.4, 0.2476) (treat \pm 0.38 as a z -value), not 6.6 2 , not $\sqrt{6.6}$, no continuity correction.
	x = 83[.0]	A1	awrt 83.0
		3	- /

Question	Answer	Marks	Guidance
3(c)	Mean = $150 \times 0.4 = 60$ Var = $150 \times 0.4 \times 0.6 = 36$	B1	60 and 36 seen, allow unsimplified.
	$P(X > 68) = P(Z > \frac{68.5 - 60}{\sqrt{36}})$	M1	Substituting <i>their</i> 60 and <i>their</i> 6 into ±standardisation formula (any number for 68.5), condone <i>their</i> σ^2 and <i>their</i> $\sqrt{\sigma}$.
	AT PR	M1	Using continuity correction 67.5 or 68.5 in <i>their</i> standardisation formula.
	$P(Z > 1.417) = 1 - \Phi(1.417)$ [= 1 - 0.9217]	M1	Appropriate area Φ , from final process, must be a probability.
	0.0783	A1	$0.07825If A0 scored, SC B1 for 0.07825 .$
		5	

Question					Ansv	wer	Marks	KS	Guidance
4(a)	Class width	20	10	5	10	0 15	M1	[1	At least 4 frequency densities calculated by $\frac{f}{cw}$ e.g. $\frac{18}{20}$ (condone
	Frequency density	0.9	4.8	6.8	3.2	1.2			$\frac{J}{cw \pm 0.5}$ if unsimplified).
					1		PR		Accept unsimplified, may be read from graph using <i>their</i> scale, no lower than 1cm = 1 fd.
	F		r -				A1		All bar heights correct on graph (no FT), using their suitable linear scale with at least 3 values indicated, no lower than 1cm = 1 fd.
	\$ 5 S						B1		Bar ends at 120.5, 130.5, 135.5, 145.5, 160.5. 5 bars drawn with a horizontal linear scale, no lower than $1 \text{ cm} = 10 \text{ min}$, with at least 3 values indicated. $100 \le \text{horizontal scale} \le 160$.
	2						B1		Axes labelled frequency density (fd), time (t) and minutes (min, m) oe, or an appropriate title. (Axes may be reversed).
	lop ti	129	ine in miner	ko 150 €3	160				
							atoreo	4	

© UCLES 2023 Page 11 of 18

Question	Answer	Marks	Guidance
4(b)	[Midpoints] 110.5 125.5 133 140.5 153	B1	At least 4 correct mid-points seen, may be by data table or used in formula.
	Mean = $\frac{18 \times 110.5 + 48 \times 125.5 + 34 \times 133 + 32 \times 140.5 + 18 \times 153}{150}$	M1	Correct formula for mean using midpoints ± 0.5 , condone 1 midpoint error within class.
	$=\frac{1989+6024+4522+4496+2754}{150}$		
	= 131.9	A1	Accept 132, $131\frac{9}{10}$, or $\frac{1319}{10}$. Must be identified.
	Variance = $\frac{18 \times 110.5^{2} + 48 \times 125.5^{2} + 34 \times 133^{2} + 32 \times 140.5^{2} + 18 \times 153^{2}}{150} - (their 131.9)^{2}$	M1	Appropriate variance formula with <i>their</i> 5 midpoints within class (not upper bound, lower bound, class width, frequency density, frequency or cumulative frequency). Condone 1 error.
			If correct midpoints seen, accept $ \left\{ \frac{3200 + 41400 + 194400 + 157300 + 153600}{150} or \frac{2630272.5}{150} \right\} $ $-\{131.9^2 \ or \ 17397.61\}.$
	[= 137.54] [Standard deviation =] 11.7	A1	11.7277448 to at least 3SF. Accept 11.6 $\leq \sigma < 11.95$ www. If M0 awarded, SC B1 11.6 $\leq \sigma < 11.95$ www.
	salprer	5	

© UCLES 2023 Page 12 of 18

Question					Answer		Marks	Guidance
5(a)	0.28	+6 <i>p</i> =	=1, <i>p</i>	= 0.12			B1	Using sum of probabilities = 1 to form an equation. Accept $0.28 + p + 2p + 3p = 1$, $p = 0.12$. Substitution of 0.12 into the expression scores B0.
							1	
5(b)	(b) [For fair spinners (blue and green), probability of any score is 0.25 Scenarios to give total 4 or less:]							Correct probability for 1 identified scenario, accept unsimplified, www.
	R	В	G				M1	Add values of 4 correct scenarios, may be implied by correct
	1	1	2	$0.28 \times (0.25)^2$	= 0.0175			unsimplified expressions. No incorrect/repeated scenarios.
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
	1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
	2	1	1	$0.12 \times (0.25)^2$	= 0.0075			
	0.06							If A0 scored, SC B1 for 0.06 www.
						4	3	

© UCLES 2023 Page 13 of 18

Question					Answer		Marks	Guidance
5(c)	[P(X)	is odd)	0 = 0.28	3 + 2×0.12 <i>or</i> 0.24]	= 0.52[0]		B1	Seen alone or as the denominator of a conditional probability fraction. Accept unsimplified.
	R	В	G				M1	Values of at least 5 identified correct scenarios added, accept unsimplified, condone incorrect scenarios in calculation.
	1	1	1	$0.28 \times (0.25)^2$	= 0.0175	DA		anomipmied, condone meoriest secharios in carculation.
	1	1	2	$0.28 \times (0.25)^2$	= 0.0175	S PR		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
	1	1	4	$0.28 \times (0.25)^2$	= 0.0175			
	1	2	1	$0.28 \times (0.25)^2$	= 0.0175			
	1	2	2	$0.28 \times (0.25)^2$	= 0.0175			
	1	3	1	$0.28 \times (0.25)^2$	= 0.0175			
	1	4	1	$0.28 \times (0.25)^2$	= 0.0175	24.801 000	GO.	
	3	1	1	$0.24 \times (0.25)^2$	= 0.015	Satpre		
	[P(pre	oduct	of 3 sco	ores $\leq 4 \cap X$ is odd) =] 0.28×(0.2	$(5)^2 \times 8 + 0.24 \times (0.25)^2$	M1	$0.28 \times (0.25)^2 \times x + 0.24 \times (0.25)^2$, or $0.0175 \times x + 0.015$ where $x = 4, 5, 6, 7$, or 8. Seen alone or as numerator/denominator of a conditional probability fraction.

© UCLES 2023 Page 14 of 18

Question	Answer	Marks	Guidance
5(c)	$ \left[P(\text{product of 3 scores} \leqslant 4 \mid X \text{ is odd}) = \frac{P(\text{product of 3 scores} \leqslant 4 \cap X \text{ is odd})}{P(X \text{ is odd})} = \right] $ $ \frac{0.155}{0.52} $	M1	$\frac{0.28 \times (0.25)^2 \times x + 0.24 \times (0.25)^2}{0.28 + 0.24} x = 4, 5, 6, 7, 8$ or $\frac{their \text{ identified P(product of 3 scores is 4 or less and } X \text{ is odd)}}{their \text{ identified P(odd)}}.$
	$=0.298, \frac{155}{520}, \frac{31}{104}$	A1	0.2980769 to at least 3SF.
		5	

Question	Answer	Marks	Guidance
6(a)	$^{5}\mathrm{C}_{2} \times 2$	M1	${}^{5}C_{2} \times r$, $r = positive integer$, 1 implied, no addition.
		M1	$s \times 2$, $s = {}^{5}C_{2}$ or ${}^{5}P_{2}$ or if ${}^{5}C_{2}$ or ${}^{5}P_{2}$ not present, $s = a$ single integer > 1 or $t! \times 2$, $2 \le t \le 8$, no other terms.
	20	A1	
	Satures	3	

© UCLES 2023 Page 15 of 18

Question	Answer	Marks	Guidance
6(b)	Method 1		
	6 C ₂ × 2× 2× 2× 4!	M1	${}^{6}C_{2} \times 2 \times 2 \times 2 \times t$, $t = positive integer ≥ 1$. ${}^{6}P_{2} \times 2 \times 2 \times t$, $t = positive integer ≥ 1$.
		M1	$u \times 4!$, $u = positive integer > 1$.
	2880	A1	If A0 scored, SC B1 for 2880 nfww.
	Method 2		
	$6! \times 2 \times 2$	M1	$6! \times v$, $v = \text{positive integer} \ge 1$.
		M1	$w \times 2 \times 2$, $w = \text{positive integer} > 1$. condone $w \times 4$, $w = \text{positive integer} > 1$.
	2880	A1	If A0 scored, SC B1 for 2880 nfww.
		3	

Question	Answer	Marks	Guidance			
6(c)	Method 1: Number of arrangements with Rajid and Sue together – Number of arrangements with Rajid and Sue together and at end of line					
	$7! \times 2 - 6! \times 4$	M1	$7! \times 2 - a$, $a = positive integer > 1$.			
		M1	$b-6! \times 4$, $b = positive integer > 2880.$			
		M1	7! \times $c - 6! \times d$, $c = 1,2$ and $d = 1, 4$. 1If A0 scored, SC B1 for 7200 nfww. 11 6! \times $e \times f$, e , $f =$ positive integers $\geqslant 1$. 12 16! \times 2 \times f , $f =$ positive integer $\geqslant 1$. 13 16! Used, SC B1 5! \times 2 \times f , $f =$ positive integer $\geqslant 1$.			
	= 7200	A1	If A0 scored, SC B1 for 7200 nfww.			
	Method 2: Arrangements of 6 people and then place Rajid and Sue					
	6×2×5	M1	$6! \times e \times f$, e , f = positive integers $\geqslant 1$.			
		M1 $6! \times 2 \times f, f = \text{positive integer} \ge 1.$				
		M1	$6! \times e \times 5$, $e = positive integer \geq 1.$			
	7200	A1	If A0, scored SC B1 for 7200 nfww.			
	Method 3: Friends at ends picked first F ^ RS ^ ^ F					
	$^{6}P_{2} \times 5! \times 2$	M1	$^{6}\text{P}_{2} \times e \times f$, $e, f = \text{positive integers} \geqslant 1$.			
	4. satpreP	M1	$^{6}P_{2} \times 5! \times f$, $f = \text{positive integer} \ge 1$. Condone $^{6}C_{2} \times 5! \times f$, $f = \text{positive integer} \ge 1$.			
		M1	6 P ₂ × e × 2, e = positive integer ≥ 1. Condone 6 C ₂ × e × 2, e = positive integer ≥ 1.			
	7200	A1	If A0 scored, SC B1 for 7200 nfww.			

© UCLES 2023 Page 17 of 18

Question	Answer	Marks	Guidance
6(c)	Method 4: RS placed in different possible positions		
	^ RS ^ ^ ^ ^ 6P ₁ × 2 × 5! = 1440 ^ ^ RS ^ ^ ^ ^ 6P ₂ × 2 × 4! = 1440	M1	${}^{6}P_{n} \times a \times (6-n)!$, $a = \text{positive integer}$, $1 \le n \le 5$ seen once.
	$^{\land \land} RS ^{\land \land} ^{6}P_{3} \times 2 \times 3! = 1440$ $^{\land \land} RS ^{\land} ^{6}P_{4} \times 2 \times 2! = 1440$ $^{\land \land} RS ^{\land} ^{6}P_{5} \times 2 \times 1! = 1440$	M1	${}^{6}P_{n} \times 2 \times (6-n)!$, $a = \text{positive integer}$, $1 \le n \le 5$ seen at least 3 times in identified scenarios.
		M1	Add 5 values of appropriate scenarios only. No additional, incorrect or repeated scenarios. Accept unsimplified.
	7200	A1	If A0 scored, SC B1 for 7200 nfww.
		4	

© UCLES 2023 Page 18 of 18

Cambridge International AS & A Level

MATHEMATICS 9709/52

Paper 5 Probability & Statistics 1

October/November 2023

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 21

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

© UCLES 2023 Page 3 of 21

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2023 Page 4 of 21

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2023 Page 5 of 21

Question	Answer	Marks	Guidance
1(a)	p+r+0.55=1	M1	Using sum of probabilities = 1 to form an equation. Accept $p + r = 0.45$ oe.
	p + 2r + 0.45 = 1.1	M1	Use $E(X) = 1.1$ to form an equation. Accept $p + 2r = 0.65$ oe. NB: These marks can be gained in either order; the second M may have an algebraic substitution.
	p = 0.25, r = 0.2	A1	If both Ms not awarded, SC B1 for $p = 0.25$, $r = 0.2$ stated.
		3	
1(b)	$[Var(X) =] [0.4 \times 0^{2} +] their 0.25 [\times 1^{2}] + (their 0.2) \times 2^{2} + 0.15 \times 3^{2} - 1.1^{2}$ $[=[0+] 0.25 + 0.8 + 1.35 - 1.21]$	M1	Correct formula for variance method using their probability distribution table, $0 <$ their $P(x) < 1$.
	$=1.19, 1\frac{19}{100}$	A1	If M0 awarded, SC B1 for 1.19 www. $\frac{119}{100}$ is A0.
	3	2	
	4. satpreP.	•	

© UCLES 2023 Page 6 of 21

Question	Answer	Marks	Guidance	
2(a)	Method 1:	•		
	$[P(5) = 0.2]$ $[P(X < 7) =] 1 - 0.8^{6}$	M1	$1 - 0.8^n, n = 6, 7.$	
	$=0.738, \frac{11529}{15625}$	A1	0.737856 to at least 3SF.	
	Method 2:			
	$[P(X<7) =] 0.2 + 0.2 \times 0.8 + 0.2 \times 0.8^{2} + 0.2 \times 0.8^{3} + 0.2 \times 0.8^{4} + 0.2 \times 0.8^{5}$	M1	$0.2 + 0.2 \times 0.8 + 0.2 \times 0.8^{2} + 0.2 \times 0.8^{3} + 0.2 \times 0.8^{4} + 0.2 \times 0.8^{5} \left(+0.2 \times 0.8^{6} \right)$	
	$=0.738, \frac{11529}{15625}$	A1	0.737856 to at least 3SF.	
		2		

© UCLES 2023 Page 7 of 21

Question	Answer	Marks	Guidance
2(b)	Method 1:		
	$[P(5, 6, 7) =]$ ${}^{10}C_{5} (0.2)^{5} (0.8)^{5} + {}^{10}C_{6} (0.2)^{6} (0.8)^{4} + {}^{10}C_{7} (0.2)^{7} (0.8)^{3}$	M1	One term: ${}^{10}C_x(p)^x(1-p)^{10-x}, 0$
	$[0.02642 + 5.505 \times 10^{-3} + 7.864 \times 10^{-4}]$	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer.
	= 0.0327	B1	awrt
	Method 2:		
	$[P(X < 8) - P(X \le 4) = 1 - P(X \ge 8) - P(X \le 4) =]$ $1 - \{{}^{10}C_8(0.2)^8(0.8)^2 + {}^{10}C_9(0.2)^90.8 + (0.2)^{10}\}$	M1	One term: ${}^{10}C_x(p)^x(1-p)^{10-x}, 0$
	$-\left\{(0.8)^{10} + {}^{10}C_{1}(0.2)(0.8)^{9} + {}^{10}C_{2}(0.2)^{2}(0.8)^{8} + {}^{10}C_{3}(0.2)^{3}(0.8)^{7} + {}^{10}C_{4}(0.2)^{4}(0.8)^{6}\right\}$ $[1 - \{7.373 \times 10^{-5} + 4.096 \times 10^{-6} + 1.024 \times 10^{-7}\} - \{0.1074 + 0.2684 + 0.3020 + 0.2013 + 0.08808\}$	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer.
	= 0.0327	B1	awrt
		3	

© UCLES 2023 Page 8 of 21

Question	Answer	Marks	Guidance
3	[Mean = $200 \times 0.15 = 30$ [Var = $200 \times 0.15 \times 0.85 = 25.5$] 25.5	B1	30 and 25.5, $25\frac{1}{2}, \frac{51}{2}$ seen, allow unsimplified. May be seen in standardisation formula. $[\sigma =] 5.049 \leqslant \sigma \leqslant 5.05[0], \frac{\sqrt{102}}{2}$ implies correct variance. Correct notation is required.
	$[P(X > 40) =] P(Z > \frac{40.5 - 30}{\sqrt{25.5}})$	M1	Substituting <i>their</i> mean and <i>their</i> positive 5.04975 into ±standardisation formula (any number for 40.5), not <i>their</i> σ^2 or $\sqrt{their} \sigma$.
		M1	Using continuity correction 39.5 or 40.5 in <i>their</i> standardisation formula.
	$[1 - \Phi (2.079)]$ $1 - 0.9812$	M1	Appropriate area Φ , from final process, must be a probability.
	= 0.0188	A1	0.01875
	14 4 / 5	5	

© UCLES 2023 Page 9 of 21

Owestion	A	Marks	Guidance
Question	Answer	Marks	Guidance
4(a)	Aces Jets 9 8 6 4 16 6 8 4 3 1 17 0 4 4 5 2 2 1 0 18 1 1 8 8 19 0	B1	Correct stem, ignore extra values (not in reverse, not split). If a split stem-and-leaf plot is used (i.e., stem values are repeated), the remaining B marks are available.
	GATPRES	B1	Correct Aces labelled on left, leaves in order from right to left and lined up vertically, no commas or other punctuation.
	Key: 1 17 0 means 171 cm for the Aces and 170 cm for the Jets	B1	Correct Jets labelled on same diagram, leaves in order and lined up vertically, no commas or other punctuation.
		B1	Correct key for their diagram, need both teams labelled and 'cm' stated at least once here, or in leaf headings or title.
		4	

© UCLES 2023 Page 10 of 21

		Guidance
Median = 173 [cm]	B1	Accept Q ₂ ; must be identified.
IQR =] 181 – 168	M1	$180 \leqslant UQ \leqslant 182 - 166 \leqslant LQ \leqslant 169$ Implied if both quartile values are stated and an appropriate IQR calculated accurately.
3 [cm]	A1	www If M0 scored SC B1 for 13 www.
	3	
ets have a greater variety of heights. ets have a wider range of height. ets have a greater/larger/bigger/wider/'more' spread of heights. Aces have a smaller variety of height etc	B1	[Jets IQR = 18 cm, Range = 24 cm Aces IQR = their 4(b), Range = 18 cm] Comment about spread in context, must include height. Comparison of values does not score until a comment in context is made. If values for range or IQR are stated, they must be correct or FT from 4(b). If more than one comment about spread, mark the final comment. Additional comments about central tendency score B0.
IC 3	QR =] 181 – 168 Its have a greater variety of heights. Its have a wider range of height. Its have a greater/larger/bigger/wider/'more' spread of heights.	QR =] 181 – 168 M1 S [cm] A1 S have a greater variety of heights. ts have a wider range of height. ts have a greater/larger/bigger/wider/'more' spread of heights.

© UCLES 2023 Page 11 of 21

Question	Answer	Marks	Guidance
5(a)(i)	$[P(X<170) =] P(Z<\frac{170-166}{10})$	M1	Use of \pm standardisation formula with 170, 166 and 10 substituted appropriately, condone 10^2 , $\sqrt{10}$, condone continuity correction ± 0.5 .
	[=P(Z<0.4)=] 0.655	A1	$0.655 \le p < 0.6555$ If M0 awarded, SC B1 for correct answer www.
	16	2	
5(a)(ii)	$\left[P\left(Z > \frac{h - 166}{10}\right) = 0.4\right]$	B1	$0.253 \le z \le 0.2535$ or $-0.2535 \le z \le -0.253$ seen.
	$\frac{h-166}{10} = 0.253$	M1	Use of the ±standardisation formula with h , 166, 10 and a z -value (not $1-z$ -value), not 10^2 , $\sqrt{10}$, no continuity correction.
	h=168.53	A1	If M0 scored, SC B1 for $168.53 \le h \le 168.535$, 168.5 .
			SC B1 for 168.54 from $z = 0.254$.
	2	3	
	*SatpreP.		

© UCLES 2023 Page 12 of 21

Question	Answer	Marks	Guidance	
5(b)	$ \left[P(X>0) = P\left(Z > \frac{0-\mu}{\sigma}\right) = \right] P\left(Z > \frac{[0]-\mu}{\frac{2}{3}\mu}\right) $ Or $P\left(Z > \frac{[0]-\frac{3}{2}\sigma}{\sigma}\right)$	M1	Use of the ±standardisation formula with 0, μ and $\frac{2}{3}\mu$ substituted for σ . Or use of the ±standardisation formula with 0, σ and $\frac{3}{2}\sigma$ substituted for μ .	
	= P(Z > -1.5)	A1	-1.5 seen, no additional terms (e.g. $x-1.5$ A0). Condone $Z < 1.5$. If M0 scored, SC B1 $Z > -1.5$ or $Z < 1.5$ seen www.	
	= 0.933 final answer	A1	$0.933 \le p < 0.9333$. If M0 scored, SC B1 0.933 $\le p < 0.9333$ seen www.	
		3		

© UCLES 2023 Page 13 of 21

Question	Answer	Marks	Guidance
6(a)	branches.	B1	1st column, 2 branches identified <i>X</i> , <i>Y</i> with probabilities ½, ½ indicated.
	1/2 BAGX 3/10 B 8/10 R	B1	2nd column (1st marble pick) of 4 branches identified R B R B (oe) and probabilities $\frac{7}{10}, \frac{3}{10}, \frac{4}{5}, \frac{1}{5}$ indicated appropriately.
	1/2 BAGY 415 R 115 B 0 B	B1	3rd column (2nd marble pick) of 8 branches identified R B R
		3	

© UCLES 2023 Page 14 of 21

Question	Answer	Marks	Guidance
6(b)	[P(both same colour) = P(BB) + P(RR) = P(XBB) + P(XRR) + P(YRR) =] $\frac{1}{2} \times \frac{3}{10} \times \frac{2}{10} + \frac{1}{2} \times \frac{7}{10} \times \frac{7}{10} + \frac{1}{2} \times \frac{4}{5} \times \frac{4}{5}$	B1 FT	$[P(BB) =] [\frac{1}{2} \times \frac{3}{10} \times \frac{2}{10} [+\frac{1}{2} \times \frac{1}{5} \times 0] =] \frac{6}{200}$ seen. Accept unsimplified. FT from 6(a) unsimplified only with 3 term probabilities.
	$\[= \frac{6}{200} + \frac{49}{200} + \frac{16}{50}, \ 0.03 + 0.245 + 0.32 \]$	B1 FT	Either $[P(XRR) =]\frac{1}{2} \times \frac{7}{10} \times \frac{7}{10}$ or $[P(YRR) =]\frac{1}{2} \times \frac{4}{5} \times \frac{4}{5}$ seen. FT from 6(a) unsimplified only with 3 term probabilities.
		M1	$[P(BB) + P(XRR) + P(YRR) =]$ $their \frac{6}{200} + their \frac{49}{200} + their \frac{16}{50}$ Accept unsimplified, consistent with tree diagram if not clearly identified by notation.
	$=\frac{119}{200}$, 0.595	A1	
	34. satpreP.co.	4	Special case: if $\frac{1}{2}$ omitted consistently in the tree diagram and the calculation (i.e., no probability for picking the bags), no FT. SC B1 [P(BB) =] $\frac{3}{10} \times \frac{2}{10} \left[+\frac{1}{5} \times 0 \right]$ SC B1 [P(RR) =] $\frac{7}{10} \times \frac{7}{10} + \frac{4}{5} \times \frac{4}{5}$ SC B1 $\frac{3}{10} \times \frac{2}{10} \left[+\frac{1}{5} \times 0 \right] + \frac{7}{10} \times \frac{7}{10} + \frac{4}{5} \times \frac{4}{5}$

© UCLES 2023 Page 15 of 21

Question	Answer	Marks	Guidance
6(c)	$ \begin{bmatrix} P(\text{ bag } Y \text{ different colours}) = \left(\frac{P(\text{bag } Y \cap \text{ different colours})}{P(\text{ different colours})}\right) \\ \frac{\frac{1}{2} \times \frac{4}{5} \times \frac{1}{5} + \frac{1}{2} \times \frac{1}{5}[\times 1]}{1 - their\left(\frac{119}{200}\right)} \text{ or } \frac{\frac{1}{2} \times \frac{4}{5} \times \frac{1}{5} + \frac{1}{2} \times \frac{1}{5}[\times 1]}{\frac{1}{2} \times \frac{7}{10} \times \frac{3}{10} + \frac{1}{2} \times \frac{3}{10} \times \frac{8}{10} + \frac{1}{2} \times \frac{4}{5} \times \frac{1}{5} + \frac{1}{2} \times \frac{1}{5}[\times 1]} $	M1	FT from their 6(a) and their 6(b) with 3 term probabilities unsimplified only or correct. Accept $\frac{\frac{4}{50} + \frac{1}{10}}{\frac{81}{200}}$, $\frac{\frac{2}{25} + \frac{1}{10}}{\frac{81}{200}}$, $\frac{0.08 + 0.1}{0.405}$.
	$= \left[\frac{\frac{9}{50}}{\frac{81}{200}} \right] = \frac{4}{9}, 0.444$	A1	Accept $\frac{36}{81}$, 0.4.
	Ada, Sations O. S.	2	Special case: if ½ omitted consistently in the tree diagram and the calculation (ie no probability for picking the bags), no FT. SC B1 $\frac{\frac{4}{5} \times \frac{1}{5} + \frac{1}{5} [\times 1]}{1 - their \mathbf{6(b)}},$ or $\frac{\frac{4}{5} \times \frac{1}{5} + \frac{1}{5} [\times 1]}{\frac{7}{10} \times \frac{3}{10} + \frac{3}{10} \times \frac{8}{10} + \frac{4}{5} \times \frac{1}{5} + \frac{1}{5} [\times 1]}.$

© UCLES 2023 Page 16 of 21

Question	Answer	Marks	Guidance
7(a)	$\frac{5! \times 4!}{2! \times 2!}$	M1	$\frac{5! \times 4!}{e}$, e a positive integer, 1 can be implied. No other terms on numerator. No addition etc.
		M1	$\frac{f}{2! \times g!}$, f a positive integer, $g = 1, 2$. No other terms on denominator.
	720	A1	
		3	

© UCLES 2023 Page 17 of 21

Question		Answe	Marks	Guidance					
7(b)	Method 1 Number of arrangements with A at each end – Number of arrangements with A at each end and 2 Ds together.								
	$\frac{7!}{2!}$ -6!		B1	$\frac{7!}{2!} - e$, $^{7}P_{5} - e$, e a positive integer or 0.					
					M1	$d - \frac{6!}{r!}$, $d > 720$, $r = 1, 2$.			
	= 1800		A1						
	Method 2 A ^ ^ ^ A and Ds inserted separately								
	$5! \times \frac{{}^{6}P_{2}}{2!}$ or $5! \times \frac{6 \times 5}{2}$ or $5! \times {}^{6}C_{2}$				B1	$5! \times s$, s a positive integer, 1 may be implied.			
	$3! \times \frac{1}{2!}$ of $3! \times \frac{1}{2}$ of $3! \times C_2$					$t \times \frac{6 \times 5}{u}$, t a positive integer > 1, $u = 1, 2$.			
	= 1800		A1						
	Method 3 Number of arrangements with As at each end and Ds placed in different scenarios.								
	Scenario position of first D A D ^ ^ ^ ^ A	515	600	atprep.co.	B1	Correct outcome/value for 1 identified scenario, accept unsimplified, www.			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$5! \times 5$ $5! \times 4$	600 480		M1	Add values of 5 correct scenarios, no incorrect/repeated scenarios.			
	$A \wedge D \wedge A \wedge A$	5! × 3	360						
	A ^ ^ ^ D ^ ^ ^ A	5! × 2	240						
	A ^ ^ ^ D ^ ^ A	5! × 1	120						
	[Total =] 1800								
					3				

© UCLES 2023 Page 18 of 21

Question			Ansv	Marks	Guidance	
7(c)	Method 1:					
	Scenarios				M1	At least one correct unsimplified expression for an identified scenario.
	A D ^ ^	$^{2}C_{1} \times {}^{2}C_{1} \times {}^{5}C_{2}$	= 40			
	ADD^	${}^{2}C_{1} \times [{}^{2}C_{2} \times]{}^{5}C_{1}$	= 10	TPRA		
[Total =] 40 + 10 or 50 soi					A1	www If M0 scored, SC B1 [total =]50 www.
	[Total number	of selections =] ${}^{9}C_{4}$ [=	126]		B1	Accept evaluated, accept as denominator of probability expression. Do not condone ⁹ C ₅ unless there is a clear explanation for selecting the letters not in the group.
	[Probability =]	$\frac{50}{126}$, $\frac{25}{63}$			B1 FT	0.396825 to at least 3SF. FT $\frac{their \text{ attempted } 40+10}{126}$. Numerator must
						be from an attempt to find the 2 appropriate scenarios and must be evaluated.

© UCLES 2023 Page 19 of 21

Question			Answer		Marks	Guidance
7(c)	Method 2:					
	Scenarios A D ^ ^	$\frac{2}{9} \times \frac{2}{8} \times \frac{5}{7} \times \frac{4}{6} \times {}^{4}P_{2}$	$= \frac{960}{3024}, \frac{20}{63}$ $240 5$		M1	Numerator for at least one correct unsimplified expression for an identified scenario. $either \frac{2 \times 2 \times 5 \times 4 \times 12}{a \times b \times c \times d} \text{ or } \frac{2 \times 2 \times 1 \times 5 \times 12}{a \times b \times c \times d}$ $\text{seen, } 6 \leqslant a,b,c,d \leqslant 9.$
	A D D $^{\wedge}$ $\left \frac{2}{9} \times \frac{2}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{^{4}P_{3}}{2!} \right = \frac{240}{3024}, \frac{5}{63}$ [Total Probability =] $\frac{20}{63} + \frac{5}{63}$			A1	$\frac{2\times2\times5\times4\times12}{a\times b\times c\times d} + \frac{2\times2\times1\times5\times12}{a\times b\times c\times d},$ $6 \le a,b,c,d \le 9.$ If M0 scored, SC B1 $\frac{1200}{g}$, $g > 1200$, or $\frac{25}{63}$ seen.	
					B1	$\frac{p}{9} \times \frac{q}{8} \times \frac{r}{7} \times \frac{s}{6}$ present in all scenarios attempted, accept $\frac{t}{3024}$, $t < 3024$.
	$\frac{1200}{3024}, \frac{25}{63}$ oe		334.5	atpreP.co.	B1 FT	0.396825 to at least 3SF. FT $\frac{their \text{ attempted } 960 + 240}{3024}$. Numerator must be from an attempt to find the 2 appropriate scenarios.

© UCLES 2023 Page 20 of 21

Question	Answer	Marks	Guidance			
7(c)	Method 3: selecting the A and then selecting 3 any letters and removing selections without Ds.					
	${}^{2}C_{1} \times ({}^{7}C_{3} - {}^{5}C_{3}) = 2 \times (35 - 10)$	M1	$a \times (^{7}C_{3} - {}^{5}C_{3}), a = 1, 2.$			
	[Total =] 50	A1	www If M0 scored, SC B1 [total =]50 www.			
	[Total number of selections =] ${}^{9}C_{4}$ [= 126]	B1	Accept evaluated, accept as denominator of probability expression. Do not condone ⁹ C ₅ unless there is a clear explanation for selecting the letters not in the group.			
	[Probability =] $\frac{50}{126}$, $\frac{25}{63}$	B1 FT	0.396825 to at least 3SF. FT $\frac{their attempted 40 + 10}{126}$. Numerator must be from an attempt to find the 2 appropriate scenarios.			
	Method 4: Listing outcomes.					
	Either 10 correct outcomes for ADD^ listed or 40 correct outcomes for AD^^ listed	M1				
	50 stated	A1	www If M0 scored, SC B1 [total =]50 www.			
	126 stated or correct outcomes listed	B1				
	[Probability =] $\frac{50}{126}$, $\frac{25}{63}$	B1	0.396825 to at least 3SF. FT $\frac{their attempted 40 + 10}{126}$. Numerator must be from an attempt to find the 2 appropriate scenarios.			
		4				

© UCLES 2023 Page 21 of 21

Cambridge International AS & A Level

MATHEMATICS 9709/53

Paper 5 Probability & Statistics 1

October/November 2023

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Due to a series-specific issue during the live exam series, all candidates were awarded full marks for questions 1 and 4. This published mark scheme for these questions was created alongside the question paper, but has not been used by examiners.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 17

Mathematics-Specific Marking Principles

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

© UCLES 2023 Page 3 of 17

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2023 Page 4 of 17

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2023 Page 5 of 17

Question	Answer	Marks	Guidance
1(a)	$2k+6k+12k+20k=1$, $\left[k=\frac{1}{40}\right]$	M1	Using sum of probabilities = 1 to form an equation in k . Accept $1\times2\times k + 2\times3\times k + 3\times4\times k + 4\times5\times k = 1$.
	$ \begin{array}{ c c c c c c c } \hline X & 1 & 2 & 3 & 4 \\ \hline P(X) & \frac{2}{40} & \frac{6}{40} & \frac{12}{40} & \frac{20}{40} \\ \hline & 0.05 & 0.15 & 0.3 & 0.5 \\ \hline \end{array} $	M1	
	16	A1	Table with correct <i>X</i> values and correct probabilities.
		3	
1(b)	$[E(X) =] [E(X) = \frac{1 \times 2 + 2 \times 6 + 3 \times 12 + 4 \times 20}{40}] \frac{2 + 12 + 36 + 80}{40}$	M1	[E(X) =1×2 k +2×6 k +3×12 k +4×20 k =130 k] Accept unsimplified expression. May be calculated in variance. FT <i>their</i> table with 3 or more probabilities summing to 1 (0 < p < 1). If there are outcomes in the table without probabilities, condone and treat as p = 0.
	$\left[Var(X) = \frac{1^2 \times 2 + 2^2 \times 6 + 3^2 \times 12 + 4^2 \times 20}{40} - (their E(X))^2 = \right]$ $\frac{1 \times 2 + 4 \times 6 + 9 \times 12 + 16 \times 20}{40} - \left(their \frac{13}{4} \right)^2$ $\left[\frac{2 + 24 + 108 + 320}{40} - \left(their \frac{13}{4} \right)^2 \right]$	M1	[Var(X) = $1^2 \times 2k + 2^2 \times 6k + 3^2 \times 12k + 4^2 \times 20k - (130k)^2$] Appropriate variance formula using <i>their</i> (E(X)) value. FT <i>their</i> table with 3 or more probabilities (0 < p < 1) which need not sum to 1 and the highlighted calculation (or less simplified) seen, Note: if table is correct, $\frac{454}{40} \left(\text{or } \frac{227}{20} \text{ or any calculation} \right) - (their E(X))^2 implies M1.$
	$E(X) = \frac{13}{4}, 3\frac{1}{4}, 3.05 \text{ Var}(X) = \frac{63}{80}, 0.7875$	A1	Answers for $E(X)$ and $Var(X)$ must be identified. $E(X)$ may be identified by correct use in variance. Condone E , V , μ , σ etc. If A0 earned, SC B1 for identified correct final solutions.
		3	

© UCLES 2023 Page 6 of 17

Question	Answer	Marks	Guidance
2(a)	$[P(1.42 < X < 1.52) =] P(\frac{1.42 - 1.5}{0.05} < Z < \frac{1.52 - 1.5}{0.05})$	M1	Use of \pm standardisation formula once with 1.5, 0.05 and either 1.42 or 1.52, allow σ^2 or $\sqrt{\sigma}$, no continuity correction.
	$[= P(-1.6 < Z < 0.4) = \Phi(0.4) + \Phi(1.6) - 1]$ = 0.6554 + 0.9452 - 1 or 0.6554 - 0.0548	M1	Calculating the appropriate probability area (leading to their final answer, expect > 0.5).
	= 0.601	A1	$0.6005SC B1 for 0.601 with no standardisation seen.$
		3	
2(b)	$P(X < 0.9) = P(Z < \frac{0.9 - 0.75}{0.9 - 0.75}) = 0.68$	B1	$0.467 < z \le 0.468 \text{ or } -0.468 \le z < -0.467 \text{ seen}$
	$ \left[P(X < 0.9) = P\left(Z < \frac{0.9 - 0.75}{\sigma}\right) = 0.68 \right] $ $ \frac{0.9 - 0.75}{\sigma} = 0.468 $	M1	\pm standardisation formula with 0.9, 0.75, σ equating to a z-value (not 0.32, 0.68, 0.532, 0.7517, 0.2483, 0.6255,). Condone continuity correct \pm 0.05, not σ^2 , $\sqrt{\sigma}$. Condone $\pm \frac{0.15}{\sigma} = 0.468$.
	$\sigma = 0.321, \frac{25}{78}$	A1	$0.3205 \le \sigma < 0.3215$ SC B1 if M0 www.
	4	3	-0.

© UCLES 2023 Page 7 of 17

Question	Answer	Marks	Guidance
3(a)	$[P(WW) = P(AWW) + P(BWW) =]$ $\frac{2}{6} \times \frac{8}{15} \times \frac{7}{14} + \frac{4}{6} \times \frac{6}{15} \times \frac{5}{14}$	M1	Either $\frac{2}{6} \times \frac{8}{15} \times \frac{7}{14}$ or $\frac{4}{6} \times \frac{6}{15} \times \frac{5}{14}$ seen, accept unsimplified.
	0 13 14 0 13 14	M1	$\frac{q}{6} \times \frac{r}{15} \times \frac{r-1}{14} + \frac{6-q}{6} \times \frac{s}{15} \times \frac{s-1}{14}$ seen, no additional terms, accept unsimplified.
	GATE	R	Condone $\frac{q}{6} \times \frac{r}{15} \times \frac{r}{15} + \frac{6-q}{6} \times \frac{s}{15} \times \frac{s}{15}$, $1 \le q \le 5, 1 < r, s < 9$.
	$\[= \frac{56}{630} + \frac{60}{630} = \frac{4}{45} + \frac{2}{21} \] = \frac{58}{315} \text{ or } 0.184$	A1	SC B1 for 58/315 if either M mark withheld.
		3	

Page 8 of 17 © UCLES 2023

Question	Answer	Marks	Guidance
3(b)	$P(B WR \text{ or } RW) = \frac{P(W \& R \text{ from bag } B)}{P(W \text{ and } R)} = \frac{\frac{4}{6} \times \frac{6}{15} \times \frac{7}{14} + \frac{4}{6} \times \frac{7}{15} \times \frac{6}{14}}{\frac{2}{6} \times \frac{8}{15} \times \frac{4}{14} + \frac{2}{6} \times \frac{4}{15} \times \frac{8}{14} + \frac{4}{6} \times \frac{6}{15} \times \frac{7}{14} + \frac{4}{6} \times \frac{7}{15} \times \frac{6}{14}}$	В1	P(W & R from bag B) $= \frac{2}{3} \times \frac{6}{15} \times \frac{7}{14} + \frac{2}{3} \times \frac{7}{15} \times \frac{6}{14} \text{ or } 2 \times \frac{2}{3} \times \frac{6}{15} \times \frac{7}{14} = \frac{4}{15} \text{ or } 0.267]$ Seen alone or as numerator/denominator of conditional probability.
	$\frac{2}{6} \times \frac{8}{15} \times \frac{4}{14} + \frac{2}{6} \times \frac{4}{15} \times \frac{8}{14} + \frac{4}{6} \times \frac{6}{15} \times \frac{7}{14} + \frac{4}{6} \times \frac{7}{15} \times \frac{6}{14}$ or $\frac{2 \times \frac{4}{6} \times \frac{6}{15} \times \frac{7}{14}}{2 \times \frac{2}{6} \times \frac{8}{15} \times \frac{4}{14} + 2 \times \frac{4}{6} \times \frac{6}{15} \times \frac{7}{14}}$	M1	P(WR or RW) = P(W & R from bag A) + P(W & R from bag B) $= a \times \frac{2}{6} \times \frac{8}{15} \times \frac{4}{14} + a \times \frac{4}{6} \times \frac{6}{15} \times \frac{7}{14} \text{ or}$ $= a \times \frac{2}{6} \times \frac{8}{15} \times \frac{4}{14} + their P(W \& R \text{ from bag B}).$ $a = 1 \text{ or } 2.$ [expect $\frac{116}{315}$ or 0.368] Seen alone or as numerator/denominator of conditional probability.
	$ \frac{\frac{168}{630}}{\frac{232}{630}} = \frac{\frac{4}{15}}{\frac{116}{315}} $	M1	$\frac{\textit{their} identified P(W \&R frombag B)}{\textit{their} identified P(WR or RW)}$ Accept unsimplified.
	$=\frac{168}{232}, \frac{21}{29} \text{ or } 0.724$	A1	0.7241379 to at least 3SF.
	Satpi	4	

© UCLES 2023 Page 9 of 17

Question	Answer	Marks	Guidance
4(a)	100 100 (Guan b)	M1	At least 3 points plotted accurately at class upper end points (40,0) (60,14) (65,38) (70,60) (85,106) (100,120). Linear cumulative frequency scale $0 \le cf \le 120$ and linear weight scale $40 \le weight(kg) \le 100$ with at least 3 values identified on each axis. Condone scale reversed.
	20 20 40 60 80 100 Weight (x kg) 80 100	A1	All points plotted correctly, curve drawn (within tolerance) and joined to (40,0). Axes labelled cumulative frequency (cf), weight (w) and kg (kilograms) – or a suitable title.
	120 100 100 80 80 90 40 20		
	40 50 60 70 80 90 100 Weight (x kg)		
		2	
4(b)	$[120 \times 0.65 =]$ 78 seen	M1	May be implied by use on graph.
	76 [kg]	A1	75 < hours < 79. Indication of use of graph required.
		2	

© UCLES 2023 Page 10 of 17

Question	Answer	Marks	Guidance
4(c)	Frequencies: [0] 14 24 22 46 14	B1	At least 5 correct frequencies seen (condone omission of 0).
	Midpoints: 20 50 62.5 67.5 77.5 92.5	B1	At least 5 correct midpoints seen (condone omission of 20).
	Mean = $ \frac{0 \times 20 + 14 \times 50 + 24 \times 62.5 + 22 \times 67.5 + 46 \times 77.5 + 14 \times 92.5}{120} $ $ = \frac{[0] + 700 + 1500 + 1485 + 3565 + 12950}{120} \left[= \frac{8545}{120} \right] $	M1	Correct formula for mean using <i>their</i> midpoints and <i>their</i> frequencies, implied by $\frac{8545}{120}$ if correct midpoints & frequencies seen. May be gained in variance calculation. If midpoints not clearly identified, condone midpoints ± 0.5 .
	= 71.2	A1	Accept $\frac{1709}{24}$, $71\frac{5}{24}$ or 71.208333 to at least 3SF. If M0 scored, SC B1 for $\frac{1709}{24}$, $71\frac{5}{24}$ or 71.208333 to at least 3SF www.
	Variance = $\frac{0 \times 20^{2} + 14 \times 50^{2} + 24 \times 62.5^{2} + 22 \times 67.5^{2} + 46 \times 77.5^{2} + 14 \times 92.5^{2}}{120} - 71.2^{2}$ $\frac{[0] + 35000 + 93750 + 100237.5 + 276287.5 + 119787.5}{120} - \left(\frac{8545}{120}\right)^{2}$ $[= 138.23]$	M1	Correct formula for variance using <i>their</i> midpoints, <i>their</i> frequencies and <i>their</i> mean. Implied by $\frac{625062.5}{120} - \left(\frac{8545}{120}\right)^2$ if correct midpoints & frequencies seen.
	Standard deviation = 11.8	A1	11.757016 to at least 3SF.
		6	

© UCLES 2023 Page 11 of 17

Question	Answer	Marks	Guidance
5(a)(i)	Method 1		
	$[P(2 \le X \le 6) = P(X \le 6) - P(X \le 1) =]1 - (0.7)^6 - (1 - 0.7)$	M1	$1 - 0.7^n$ seen, $n = 5, 6$.
	= 0.582	A1	www 0.582351 to at least 3SF.
	Method 2		
	P(X=2, 3, 4, 5, 6) = 0.7 × 0.3 + 0.7 ² × 0.3 + 0.7 ³ × 0.3 + 0.7 ⁴ × 0.3 + 0.7 ⁵ × 0.3 = 0.21 + 0.147 + 0.1029 + 0.07203 + 0.050421	M1	Sum of first 4 or 5 correct terms – no incorrect terms.
	= 0.582	A1	www 0.582351 to at least 3SF.
		2	
5(a)(ii)	$3\frac{1}{3}$	B1	Condone 3.33, 3.3 or $\frac{10}{3}$ – NOT $\frac{1}{0.3}$.
		1	

© UCLES 2023 Page 12 of 17

Question	Answer	Marks	Guidance	
5(b)	Method 1			
	$[P(3, 4, 5) =] {}^{5}C_{3}(0.3)^{3}(0.7)^{2} + {}^{5}C_{4}(0.3)^{4}(0.7)^{1} + {}^{5}C_{5}(0.3)^{5}(0.7)^{0}$	M1	One term seen ${}^{5}C_{x} (p)^{x} (1-p)^{5-x}, 0$	
	= 0.1323 + 0.02835 + 0.00243	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer.	
	$=0.163, \frac{4077}{25000}$	B1	0.16308 to at least 3SF.	
	Method 2			
	$[1 - P(0, 1, 2) = 1 - ({}^{5}C_{0}(0.3)^{0}(0.7)^{5} + {}^{5}C_{1}(0.3)^{1}(0.7)^{4} + {}^{5}C_{2}(0.3)^{2}(0.7)^{3})$	M1	One term ${}^{5}C_{x} (p)^{x} (1-p)^{5-x}, 0$	
	= 1 - (0.16807 + 0.36015 + 0.3087)	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer.	
	$=0.163, \frac{4077}{25000}$	B1	0.16308 to at least 3SF.	
	1 2	3	1.5	

© UCLES 2023 Page 13 of 17

Question	Answer	Marks	Guidance
5(c)	[Mean = 75×0.3 =] 22.5 [Var = $75 \times 0.3 \times 0.7$ =] 15.75	B1	22.5, 22½ and 15.75, 15 $\frac{3}{4}$ seen, allow unsimplified. ($\sigma = \frac{3\sqrt{7}}{2}$ or 3.9686269 to at least 3SF implies correct variance)
	$[P(X > 20) =] P\left(Z > \frac{20.5 - 22.5}{\sqrt{15.75}}\right)$	M1	Substituting their μ and σ into \pm standardisation formula (any number for 20.5), not σ^2 not $\sqrt{\sigma}$.
		M1	Using continuity correction 19.5 or 20.5 in <i>their</i> standardisation formula.
	$[P(Z > -0.504) = \Phi(0.504)]$ = 0.693	M1	Appropriate area Φ , from final process, must be a probability. Expect final answer > 0.5 . Note: correct final answer implies this M1.
		A1	0.6925
		5	

© UCLES 2023 Page 14 of 17

Question	Answer	Marks	Guidance		
6(a)(i)	Method 1				
	$6! \times 2^6$	M1	$6! \times a$, a integer > 1.		
		M1	$b \times 2^6$, b integer $\geqslant 1$.		
	= 46080	A1	Accurate answer required. SC B1 for 46080 if M0 M0 www.		
	Alternative method for question 6(a)(i)				
	12×10×8×6×4×2	M1	$c \times d \times e \times f \times g \times h$ $2 \le c, d, e, f, g, h \text{ (different integers)} \le 12$		
		M1	Correct unsimplified.		
	= 46080	A1	Accurate answer required. SC B1 for 46080 if M0 M0 www.		
		3			
6(a)(ii)	5! × 5! × 2×2	M1	$5! \times 5! \times k$, k positive integer, 1 may be implied (no adding/subtracting).		
	= 57600	A1			
		2			

© UCLES 2023 Page 15 of 17

Question	Answer	Marks	Guidance
6(b)	Method 1 probabilities of J & K being placed:		
	In the group of 5 $\frac{5}{12} \times \frac{4}{11}$ $\left[= \frac{20}{100}, \frac{5}{20} \right]$	B1	Correct probability for one identified scenario.
	12 11 \[\begin{array}{c cccc} 132 & 33 \end{array}	M1	Denominator 12×11 for all probabilities, (1, 2 or 3 scenarios).
	In the group of 4 $\left[\frac{4}{12} \times \frac{3}{11}\right] \left[=\frac{12}{132}, \frac{1}{11}\right]$	A1	3 correct probabilities, accept unsimplified.
	In the group of 3 $\left[\frac{3}{12} \times \frac{2}{11}\right] \left[=\frac{6}{132}, \frac{1}{22}\right]$	R	
	$\frac{5}{12} \times \frac{4}{11} + \frac{4}{12} \times \frac{3}{11} + \frac{3}{12} \times \frac{2}{11}$	M1	Adding probabilities for 3 correct scenarios.
	$\frac{19}{66}$, 0.288	A1	0.2878787 to at least 3SF.

© UCLES 2023 Page 16 of 17

Question		Ans	wer	Marks	Guidance						
6(b)	Method 2 number	of arrangeme	ents of J & K being placed:								
	In the group of 5	$^{10}\text{C}_3 \times {}^{7}\text{C}_4$	$[= 120 \times 35 = 4200]$	B1	B1 Correct value of one identified scenario seen, accept uns						
	In the group of 4	$^{10}\text{C}_2 \times {}^{8}\text{C}_5$	$[=45 \times 56 = 2520]$	M1	$^{12}\mathbf{C}_a \times ^{12\text{-}a}\mathbf{C}_b, \ a = 3, $	4, 5; b = 3, 4,	$5 (a \neq b)$				
	In the group of 3	$^{10}\text{C}_1 \times {}^{9}\text{C}_5$	[= 10 × 126 = 1260]								
	[Total number of was ${}^{12}C_5 \times {}^7C_4 = 792 \times 35$ or ${}^{12}C_3 \times {}^9C_4$ or ${}^{12}C_4$	= 27720	ng the 3 groups =]	A1	27720 Seen alone or as denominator of probability –accept unsimplified. SC B1 if M0.						
	4200 + 2520 + 1260	= 7980		M1	Values of 3 correct scenarios added, accept unsimplified – or correct.						
	[Probability =] $\frac{798}{2772}$	$\frac{30}{20}, \frac{19}{66}, 0.28$	8	A1	0.2878787 to at least 3SF.						
				5	Note, alternative arrangement calculations possible e.g.						
					In the group of 5 ${}^{10}C_3 \times {}^{7}C_4$ [= 120 × 3.		$[=120 \times 35 = 4200]$				
					In the group of 4 ${}^{10}\text{C}_5 \times {}^5\text{C}_2$ [= 252× 10 = 2520]						
					In the group of 3 ${}^{10}C_5 \times {}^5C_4$ [= 252 × 5 = 1260]						

© UCLES 2023 Page 17 of 17

Cambridge International AS & A Level

MATHEMATICS 9709/51
Paper 5 Probability & Statistics 1 May/June 2023

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 15

	Mathematics Specific Marking Principles					
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.					
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.					
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.					
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).					
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.					
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.					

© UCLES 2023 Page 3 of 15

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2023 Page 4 of 15

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2023 Page 5 of 15

PUBLISHED

Question	Answer	Marks	Guidance
1(a)	Var = $\left[\frac{\Sigma(x-q)^2}{50} - \left(\frac{\Sigma(x-q)}{50}\right)^2 = \right] \frac{14235}{50} - \left(\frac{700}{50}\right)^2$ [= 284.7 - 196 = 88.7]	M1	$\frac{14235}{a} - \left(\frac{700}{a}\right)^2$; where $a = 49, 50, 51$.
	$[sd = \sqrt{88.7} =] 9.42$	A1	9.4180677 rounded to at least 3SF.
1(b)	$\sum x - 50q = 700$ [2865 - 50q = 700]	M1	Forming equation with Σx , $50q$ and 700 .
	$q = 43.3, 43 \frac{3}{10}$	A1	If M0 scored, SC B1 for 43.3 WWW.
		2	

© UCLES 2023 Page 6 of 15

Question	Answer	Marks	Guidance
2(a)	${}^{6}C_{3} \times {}^{8}C_{3}$	M1	6 C ₃ × <i>b</i> or <i>c</i> × 8 C ₃ seen. <i>b</i> , <i>c</i> integers ≥ 1 (1 may be implied).
	1120	A1	
		2	
2(b)	Method 1		
	0 brothers $[{}^{3}C_{0}] \times {}^{11}C_{6}$ 462 1 brother ${}^{3}C_{1} \times {}^{11}C_{5}$ 1386	B1	${}^{3}C_{x} \times {}^{11}C_{6-x}$, with $x = 1$ or 2 seen.
	1 brother ${}^{3}C_{1} \times {}^{11}C_{5}$ 1386 2 brothers ${}^{3}C_{2} \times {}^{11}C_{4}$ 990	M1	Add values of 3 correct scenarios, (may be identified by the appropriate calculations) no incorrect/repeated scenarios, condone use of permutations.
	2838	A1	Only dependent on the M mark. SC B1 for the correct calculation or 2838 seen WWW.
	Method 2		
	$^{14}C_6 - ^{11}C_3$	B1	$^{14}\text{C}_6 - d$, where d a positive integer.
	3003 – 165	M1	$e - {}^{11}\text{C}_3$, where e is a positive integer >165.
	= 2838	A1	
	SatnreP	3	

© UCLES 2023 Page 7 of 15

Question	Answer	Marks	Guidance
3(a)	$\left[\frac{8!}{2!3!}\right] = 3360$	B1	
		1	
3(b)	<u>6!</u> <u>2!2!</u>	M1	$\frac{6!}{2!f!}; f=1,2,3.$
	180	A1	
		2	
3(c)	$ \left[P(OOO CC) = \frac{P(OOO \cap CC)}{P(CC)} = \right] $ $ \frac{5!}{\frac{7!}{3!}} $		$\frac{5!}{g}$ g a positive integer, $g \neq 3360$, 1. Condone numerator of $\frac{5!}{3360g}$.
	3!	M1	$\frac{h}{\frac{7!}{3!}}$ or $\frac{h}{\frac{8!}{3!}}$, where <i>h</i> is a positive integer. Condone division by 3360 in denominator.
	$=\frac{120}{840},\frac{1}{7},0.143$	A1	0.1428571 to at least 3SF. If M0 scored SC B1 for $\frac{1}{7}$ WWW.
		3	

© UCLES 2023 Page 8 of 15

Question	Answer	Marks	Guidance
4(a)	$P(Z > \frac{20 - 14.6}{5.2}) = P(Z > 1.03846)$	M1	Use of \pm standardisation formula with 20, 14.6 and 5.2 not σ^2 , not $\sqrt{\sigma}$, no continuity correction.
	1 - 0.8504	M1	Calculating the appropriate probability area (leading to their final answer).
	0.150	A1	0.1496, 0.149 < $p \le 0.15[0]$. Only dependent on the 2 nd M mark so M0M1A1 possible. SC B1 for 0.149 < $p \le 0.15[0]$ if M0M0A0 awarded.
	[250 × their 0.1496 =] 37, 38	B1 FT	Strict FT <i>their</i> at least 4-figure probability seen anywhere (give BOD if they go on to use 0.150). Final answer must be positive integer, no approximation or rounding stated.
		4	
4(b)	$z_1 = \frac{14.5 - \mu}{14.5 - \mu} = -0.842$	B1	$-0.843 < z_1 < -0.841 \text{ or } 0.841 < z_1 < 0.843$.
	$z_1 = \frac{14.5 - \mu}{\sigma} = -0.842$ $z_2 = \frac{18.5 - \mu}{\sigma} = -0.44$	B1	$-0.441 < z_2 < -0.439 \text{ or } 0.439 < z_2 < 0.441$.
	$z_2 = {\sigma} = -0.44$	M1	Use of the ±standardisation formula once with μ , σ and a z -value (not 0.20, 0.80, 0.67, 0.23, 0.5793, 0.7881, 0.7486, 0.591 or 1- z i.e. 0.158 etc.). Condone continuity correction ±0.05, not σ^2 , $\sqrt{\sigma}$.
	Solve, obtaining values for μ and σ . $\mu = 22.9, \sigma = 9.95$	M1	Solve using the elimination method, substitution method or other appropriate approach to obtain values for both μ and σ .
		A1	AWRT 22.9, 9.95 .
		5	

© UCLES 2023 Page 9 of 15

Question				A	Inswer		Marks	Guidance
5(a)	cw	800	400	800 0.0625	1200	1600	M1	At least 4 frequency densities calculated (F/cw, e.g. $\frac{8}{800} \left(\text{condone} \frac{8}{n}, 799 \leqslant n \leqslant 801 \right) \text{) Accept unsimplified,}$ may be read from graph using <i>their</i> scale.
							A1	
	59	0.06					BI	Bar ends at 50, 850, 1250, 2050, 3250, 4850 read at the axis with a horizontal linear scale with at least 3 values indicated. 50 ≤ horizontal scale ≤ 4850.
	Cues Cues Cues Cues Cues Cues Cues Cues			0.81 0.81 0.81		B1	Axes labelled frequency density (fd) and population (pop) OE, or in a title. Linear vertical scale, with at least 3 values indicated. Vertical axis must cover at least the range $0 \le \text{vertical axis} \le 0.0625$. Axes may be reversed.	
							4	
5(b)	2100 -	3200				4	B1	Accept 2050 – 3250 OE. Condone '4th interval'.
							tpreP 1	
5(c)	3249 –	1250					M1	$2050 \leqslant UQ \leqslant 3250 - 1250 \leqslant LQ \leqslant 2050.$
	1999							Condone $3250 - 1250 = 2000$.
							2	

© UCLES 2023 Page 10 of 15

Questien					MOTE OF			Marks	Cuidonas
Question	Answer							Marks	Guidance
6(a)	[P(X=3)=	$=$] $\frac{3}{4} \times \left(\frac{1}{4}\right)$	$\left(\frac{1}{4}\right)^3 \times 4$					M1	$\frac{3}{4} \times \left(\frac{1}{4}\right)^3 \times q$; q a positive integer (1 may be implied).
	$=\frac{3}{64}$							A1	AG.
							TPR	2	
6(b)	x	0	1	2	3	4		B1	Either $P(1) = \frac{27}{64}, 0.421875$
	P(X=x)	$\frac{81}{256}$	<u>27</u> 64	$\frac{27}{128}$	$\frac{3}{64}$ $\frac{1}{256}$				or $P(2) = \frac{27}{128}$, 0.2109375 correct to at least 3SF. Condone not in table.
									Both values in table. FT P(1) + P(2) = $\frac{81}{128}$, 0.6328125.
								2	
6(c)	[E(X) =] [($0 \times \frac{81}{256}$]	+1×thei	$r\frac{27}{64} + 2z$	\times their $\frac{2}{12}$		$\frac{12}{256} + 4 \times \frac{1}{256}$	M1	Correct method from <i>their</i> probability distribution table with at least 4 terms, $0 < their$ $P(x) < 1$, accept partially evaluated.
									$= 0 + \frac{27}{64} + \frac{54}{128} + \frac{36}{256} + \frac{4}{256}$
	= 1							A1	
								2	

© UCLES 2023 Page 11 of 15

Question	Answer	Marks	Guidance
6(d)	Mean = $96 \times \frac{67}{256} = 25.125$ Var = $96 \times \frac{67}{256} \times \frac{189}{256} = 18.549$	B1	25.125, $25\frac{1}{8}$ and 18.5493 to at least 3SF seen, allow unsimplified (4.3068 $\leq \sigma \leq$ 4.307 implies correct variance).
	$P(X < 20) = P(Z < \frac{19.5 - 25.125}{\sqrt{18.549}})$	M1	Substituting <i>their</i> μ and σ into \pm standardisation formula (any number for 19.5). Condone σ^2 and $\sqrt{\sigma}$.
		M1	Using continuity correction 19.5 or 20.5 in <i>their</i> standardisation formula. Note: $\frac{\pm 5.625}{\sqrt{18.549}}$ seen gains M2 BOD.
	$[=P(Z<-1.306) = 1 - \Phi (1.306)=] 1 - 0.9042 =$	M1	Appropriate area Φ , from final process. Must be a probability.
	0.0958	A1	$0.0957 \leqslant p \leqslant 0.0958$. SC B1 for $0.0957 \leqslant p \leqslant 0.0958$ if B1M0M0M1 scored.
		5	

© UCLES 2023 Page 12 of 15

Question	Answer	Marks	Guidance
7(a)	Method 1		
	$[P(X < 6) = P(X \le 5) =] 1 - 0.8^{5}$	M1	$1 - 0.8^r, r = 5, 6.$
	= 0.672	A1	
	Method 2		
	$[P(X<6) = P(X=1) + P(X=2) + P(X=3) + P(X=4) + P(X=5) =]$ $\frac{1}{5} + \frac{4}{5} \times \frac{1}{5} + \left(\frac{4}{5}\right)^2 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5} + \left(\frac{4}{5}\right)^4 \times \frac{1}{5}$	M1	Condone an extra term $(\frac{4}{5})^5 \times \frac{1}{5}$. First, last and one of the 3 middle terms implies M1.
	= 0.672	A1	
		2	

© UCLES 2023 Page 13 of 15

PUBLISHED

Question	Answer	Marks	Guidance
7(b)	Method 1		
	$[1 - P(0, 1, 2)]$ = 1 - (\frac{12}{2}C_0 (0.8)^{12} + \frac{12}{2}C_1 (0.2)(0.8)^{11} + \frac{12}{2}C_2 (0.2)^2 (0.8)^{10})	M1	One term ${}^{12}C_x(p)^x(1-p)^{12-x}, 0$
	[=1-(0.06872+0.20615+0.28347)]	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer. Correct unsimplified expression or better.
	= 0.442	B1	0.411
	Method 2		
	$ [P(3,4,5,6,7,8,9,10,11,12) =] $ $ {}^{12}C_{3}(0.2)^{3}(0.8)^{9} + {}^{12}C_{4}(0.2)^{4}(0.8)^{8} + + {}^{12}C_{11}(0.2)^{11}(0.8)^{1} + {}^{12}C_{12}(0.2)^{12} $	M1	One term ${}^{12}C_x(p)^x(1-p)^{12-x}, 0$
	$[=0.23622 + 0.13288 + \dots + 1.966 \times 10^{-7} + 4.096 \times 10^{-9}]$	A1	Correct expression, accept unsimplified, leading to final answer. Accept first, last and 8 of the middle terms.
	=0.442	B1	$0.411 .$
		3	

© UCLES 2023 Page 14 of 15

Question	Answer	Marks	Guidance
7(c)	$(0.2)^5 \times 5!$	M1	$(0.2)^5 \times s$, s a positive integer. 1 may be implied.
		M1	$t \times 5!$ where $0 < t < 1$.
	$=0.0384, \frac{24}{625}$	A1	
	Alternative Method for Question 7(c)		
	$\frac{{}^{5}C_{1} \times {}^{4}C_{1} \times {}^{3}C_{1} \times {}^{2}C_{1} \times [{}^{1}C_{1}]}{({}^{5}C_{1})^{5}}$	M1	$({}^5C_1)^5$ or 5^5 as denominator.
		M1	${}^5C_1 \times {}^4C_1 \times {}^3C_1 \times {}^2C_1 \times [{}^1C_1]$ or 5! as numerator.
	$=0.0384, \frac{24}{625}$	A1	
		3	

© UCLES 2023 Page 15 of 15

Cambridge International AS & A Level

MATHEMATICS 9709/52
Paper 5 Probability & Statistics 1 May/June 2023

Paper 5 Probability & Statistics 1 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

© UCLES 2023 [Turn over

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 18

Mathematics Specific Marking Principles	
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

© UCLES 2023 Page 3 of 18

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2023 Page 4 of 18

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2023 Page 5 of 18

Question	Answer	Marks	Guidance
1(a)	$[3k+3k+8k=1,so]k = \frac{1}{14}$	B1	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1 FT	Table with correct values of <i>x</i> , and at least one correct probability linked with outcome. FT <i>their k</i> . Condone any additional <i>X</i> values if probability stated as 0.
		B1 FT	The outcomes in the table must be -2, 2 and 3. 2 further correct probabilities in table or 3 correct probabilities not in table linked to outcomes, or 3 correct FT probabilities in table using <i>their k</i> , or 3 incorrect probabilities summing to 1 in table if <i>k</i> not stated.
			If k not calculated, SC B1 for the below. $ \begin{array}{ c c c c c } \hline x & -2 & 2 & 3 \\ \hline P(x) & 3k & 3k & 8k \\ \hline \end{array} $
		3	

© UCLES 2023 Page 6 of 18

Question	Answer	Marks	Guidance
1(b)	$ \begin{bmatrix} E(X) = -2 \times \frac{3}{14} + 2 \times \frac{3}{14} + 3 \times \frac{8}{14} = \\ -\frac{6}{14} + \frac{6}{14} + \frac{24}{14} \end{bmatrix} $	M1	Accept unsimplified expression. May be calculated in variance. FT <i>their</i> table with 3 probabilities summing to $0.999 \le total \le 1 \ (0 or in terms of k.$
	$\left[\operatorname{Var}(X) = (-2)^{2} \times \frac{3}{14} + 2^{2} \times \frac{3}{14} + 3^{2} \times \frac{8}{14} - \left(their \operatorname{E}(X) \right)^{2} = \right]$ $4 \times \frac{3}{14} + 4 \times \frac{3}{14} + 9 \times \frac{8}{14} - \left(their \frac{12}{7} \right)^{2}$ $\left[\frac{12 + 12 + 72}{14} - \left(their \frac{12}{7} \right)^{2} \right]$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table with 3 or more probabilities $(0 which need not sum to 1, or in terms of k with an expression no more evaluated than shown.$
	$E(X) = \frac{12}{7}, 1.71, 1\frac{5}{7}$ $Var(X) = \frac{192}{49}, 3.92, 3\frac{45}{49}$	A1	Answers for E(X) and Var(X) must be identified. E(X) may be identified by correct use in Variance (condone E, V, μ , σ^2 , etc.). If A0 earned, SC B1 for identified correct final answers.
		3	

Question	Answer	Marks	Guidance
2(a)	[P(no rain) = $0.6 \times (0.8)^3$ =] 0.3072, $\frac{192}{625}$	B 1	Exact value required
		1	

© UCLES 2023 Page 7 of 18

	PUBLISHED			
Question	Answer	Marks	Guidance	
2(b)	$0.6 \times 0.8 \times 0.2$	M1	$a \times b \times c$ where $a, b = 0.6, 0.8, c = 0.2, 0.4, 0.7$. Condone including Wednesday with both 0.3 and 0.7 used.	
	$=0.096[0], \frac{12}{125}$	A1		
	AT PR	2		
2(c)	$P(RDDD) = 0.4 \times 0.3 \times 0.8 \times 0.8 = 0.0768, \frac{48}{625}$ $P(DRDD) = 0.6 \times 0.2 \times 0.3 \times 0.8 = 0.0288, \frac{18}{625}$ $P(DDRD) = 0.6 \times 0.8 \times 0.2 \times 0.3 = 0.0288, \frac{18}{625}$ $P(DDDR) = 0.6 \times 0.8 \times 0.8 \times 0.2 = 0.0768, \frac{48}{625}$	B1	Correct probability for one clearly identified outcome evaluated accept unsimplified. A correct unsimplified expression is not sufficient.	
		M1	Add 4 probability values, $0 , for appropriate identified scenarios. Accept unsimplified.$	
			Ways of identifying scenarios for this mark: Stating the days. All the unsimplified probability calculations exactly as stated in the mark scheme. Identifying the correct branches on a tree diagram and linking with the values.	
			No repeated scenarios. No incorrect scenarios.	
	$0.2112, \frac{132}{625}$	A1	Accept 0.211 If $0/3$ scored SC B1 for 0.2112, $\frac{132}{625}$.	
		3		

© UCLES 2023 Page 8 of 18

Question	Answer	Marks	Guidance
3(a)	Median = 2710	B1	Must be identified, condone Q2. Ignore units throughout.
	2840 – 2610	M1	$2820 \le UQ \le 2850 - 2600 \le LQ \le 2620.$
	230 PR	A1	www If M0 scored SC B1 for 230 www. If key ignored consistently: B0 Median = 271 SC M1 $282 \le UQ \le 285 - 260 \le LQ \le 262$ SC A1 23.
		3	
3(b)	Box-and-whisker plot on provided grid.	B1	All 5 key values for <i>B</i> plotted accurately in standard format using a linear scale with 3 identified values. Labelled <i>B</i> . Scale at least 1 cm = \$100.
	B: 2540 2600 2690 2780 3090 A: 2500 2610 2710 2840 3010	B1FT	All 5 key values for A, FT from (a) , plotted accurately in standard format using a linear scale with 3 identified values. Labelled A. Scale at least 1cm = \$100
		B1	Whiskers not through box for both, not drawn at corners of boxes, single linear scale for the diagram and labelled 'salaries' (oe) and \$.
		3	

© UCLES 2023 Page 9 of 18

Question	Answer	Marks	Guidance
3(c)	Examples: Mean less appropriate than median because of extreme value for company <i>B</i> [at \$3090]. No, extreme value in company B. No, \$3090 is an anomaly.	B1	Must refer to company B, may be implied by appropriate use of \$3090. Must include an indication that the mean is not appropriate. No contradictory statements can be present, e.g. acceptable comment with 'but mean could be used for company A'. Condone reference to \$309.
		1	

Question	Answer	Marks	Guidance
4(a)	$[P(X=4) = (0.8)^3 (0.2) =] 0.1024, \frac{64}{625}$	B1	Condone 0.102.
		1	

© UCLES 2023 Page 10 of 18

Question	Answer	Marks	Guidance
4(b)	$[P(X < 6)] =]1 - 0.8^{5}$	M1	$1-0.8^d$, $d=5, 6$.
	$=0.672, \frac{2101}{3125}$	A1	0.67232 to at least 3SF. If M0 awarded, SC B1 for $\frac{2101}{3125}$ or 0.67232 only.
	Alternative Method for Question 4(b)		
	$[P(X < 6)] =]\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^2\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^3\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^4\left(\frac{1}{5}\right)$	M1	If answer correct, condone omission of 2 from 3 middle terms.
			Allow M1 for $\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^2\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^3\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^4\left(\frac{1}{5}\right) + \left(\frac{4}{5}\right)^5\left(\frac{1}{5}\right)$
	$=0.672, \frac{2101}{3125}$	A1	0.67232 to at least 3SF. If M0 awarded, SC B1 for $\frac{2101}{3125}$ or 0.67232 only.
		2	4/

© UCLES 2023 Page 11 of 18

Question	Answer	Marks	Guidance		
4(c)	$\left[P(X > 0 X \neq 2) = \frac{Y}{P(X \neq 2)} = \right]$		$[P(X > 0 \cap X \neq 2) =] \frac{14}{25}, 0.56[0]$ seen as numerator or denominator of conditional probability fraction.		
	$=\frac{\frac{14}{25}}{\frac{19}{25}}$	M1	$[P(X \neq 2) =] \frac{19}{25}$, 0.76[0] seen as denominator of conditional probability fraction.		
$=\frac{14}{19}$, 0.737	$=\frac{14}{19}$, 0.737	A1	Final answer = $\frac{14}{19}$, 0.7368421 to at least 3SF. If A0, SC B1 for correct final answer www.		
	Alternative Method for Question 4(c)				
	1 2 3 4 5 1 0 1 2 3 4 2 1 0 1 2 3 3 2 1 0 1 2 4 3 2 1 0 1 5 4 3 2 1 0	M1	[Number of outcome $(X > 0 \cap X \neq 2)$ =] 14 seen as numerator or denominator of conditional probability fraction.		
		M1	[Number of outcome $(X \neq 2) =]19$ seen as denominator of conditional probability fraction.		
L	$\left[P(X > 0 X \neq 2) = \frac{\text{Number of outcome}(X > 0 \cap X \neq 2)}{\text{Number of outcomes } X \neq 2} = \right]$ $\frac{14}{19}, 0.737$	A1	Final answer = $\frac{14}{19}$, 0.7368421 to at least 3SF.		
	19'	3			

© UCLES 2023 Page 12 of 18

Question	Answer	Marks	Guidance		
4(d)	$[P(X>2) = 1 - P(0, 1, 2) \text{ with } p = \frac{6}{25}]$	M1	One term ${}^{9}C_{x} (p)^{x} (1-p)^{9-x}, 0$		
	$1 - ({}^{9}C_{0} \left(\frac{19}{25}\right)^{9} + {}^{9}C_{1} \left(\frac{6}{25}\right)^{1} \left(\frac{19}{25}\right)^{8} + {}^{9}C_{2} \left(\frac{6}{25}\right)^{2} \left(\frac{19}{25}\right)^{7})$ $[1 - (0.08459 + 0.2404 + 0.3037)]$	A1	$1 - ({}^{9}C_{0} (1-p)^{9} + {}^{9}C_{1} (p)^{1} (1-p)^{8}$ $+ {}^{9}C_{2} (p)^{2} (1-p)^{7}), \ 0 Correct expression from their p, accept unsimplified, no terms omitted leading to final answer. Condone omission of last bracket only.$		
	0.371	B1	$0.371 \leqslant p < 0.3715$.		
	Alternative Method for Question 4(d)				
	$[P(X>2) = P(3,4,5,6,7,8,9) \text{ with } p = \frac{6}{25}]$	M1	One term ${}^{9}C_{x} (p)^{x} (1-p)^{9-x}, 0$		
	${}^{9}C_{3}\left(\frac{6}{25}\right)^{3}\left(\frac{19}{25}\right)^{6} + {}^{9}C_{4}\left(\frac{6}{25}\right)^{4}\left(\frac{19}{25}\right)^{5} + \dots + {}^{9}C_{8}\left(\frac{6}{25}\right)^{8}\left(\frac{19}{25}\right)^{1} + {}^{9}C_{9}\left(\frac{6}{25}\right)^{9}$ $[0.2238 + 0.1060 + \dots + 7.529 \times 10^{-5} + 2.642 \times 10^{-6}]$	A1	${}^{9}C_{3}(p)^{3}(1-p)^{6} + {}^{9}C_{4}(p)^{4}(1-p)^{5} + + {}^{9}C_{8}$ $(p)^{8}(1-p)^{1} + {}^{9}C_{9}(p)^{9}, 0 Correct expression from their p, accept unsimplified, no terms omitted leading to final answer.$		
	0.371	B1	$0.371 \leqslant p < 0.3715$.		
	774	3			

·satpreP·

© UCLES 2023 Page 13 of 18

PUBLISHED

Question	Answer	Marks	Guidance
5(a)	$[P(15.4 < X < 16.8)] = P(\frac{15.4 - 16.5}{0.6} < Z < \frac{16.8 - 16.5}{0.6})$ $[= P(-1.833 < Z < 0.5)]$	M1	Use of \pm standardisation formula once with 16.5, 0.6 and either 15.4 or 16.8 substituted.
	$[=\Phi(0.5)+\Phi(1.833)-1=]$ $0.6915+0.9666-1$	M1	Calculating the appropriate probability area (leading to their final answer, expect > 0.5). $0.6915 - (1 - 0.9666)$ or $(0.6915 - 0.5) + (0.9666 - 0.5)$ OE are alternatives.
	= 0.658	A1	$0.658 \le p < 0.6585$. If A0 scored, SC B1 for $0.658 \le p < 0.6585$.
	[Expected number =] 0.6581 × 150 = 98, 99	B1 FT	FT <i>their</i> 4SF (or better) probability from a normal calculation. Must be a positive single integer answer. No approximation notation.
		4	
5(b)	$P\left(Z > \frac{17.1 - 18.4}{\sigma}\right) = 0.72$	B1	$0.5825 < z \le 0.583 \text{ or } -0.583 \le z < -0.5825 \text{ seen.}$
	$\left[\frac{17.1 - 18.4}{\sigma}\right] = -0.583$	M1	Use of the \pm standardisation formula with 17.1, 18.4, σ and a z-value (not 0.28, 0.72, 0.4175, 0.2358, 0.7642, 0.6103, 0.3897,). Condone continuity correct \pm 0.05, not σ^2 , $\sqrt{\sigma}$.
	$\sigma = 2.23$	A1	AWRT
		3	

© UCLES 2023 Page 14 of 18

PUBLISHED

Question	Answer	Marks	Guidance
5(c)	[Mean = $120 \times 0.72 =$] 86.4 [Var = $120 \times 0.72 \times 0.28 =$] 24.192	В1	$86.4, 84\frac{2}{5}$ and $24\frac{24}{125}$, 24.192 to at least 3SF seen, allow unsimplified. May be seen in standardisation formula. $(4.918 \leqslant \sigma \leqslant 4.919 \text{ implies correct variance})$ Incorrect notation is penalised.
	$P(X < 80) = P(Z < \frac{79.5 - 86.4}{\sqrt{24.192}})$	M1	Substituting <i>their</i> mean (not 18.4) and <i>their positive</i> 4.9185 into \pm standardisation formula (any number for 79.5), condone <i>their</i> 4.918 ² and \sqrt{their} 4.918.
		M1	Using continuity correction 79.5 or 80.5 in <i>their</i> standardisation formula.
	$[P(Z < -1.4029) = 1 - \Phi(1.403)]$ $1 - 0.9196$	M1	Appropriate area Φ , from final process, must be a probability. Expect final answer < 0.5 . Note: correct final answer implies this M1.
	0.0804	A1	$0.0803 \leqslant p \leqslant 0.0804$
		5	

© UCLES 2023 Page 15 of 18

Question	Answer	Marks	Guidance		
6(a)	$S + 4C + 2R$ ${}^{6}C_{1} \times {}^{8}C_{4} \times {}^{11}C_{2} [= 6 \times 70 \times 55] = 23 \ 100$	M1	e \times $^8C_f \times$ $^{11}C_g$, with $e + f + g = 7$ seen. Trect outcome/value for 1 identified scenario, accept simplified, www. Id values of 3 correct scenarios. To incorrect scenarios, no repeated scenarios. The incorrect scenarios indone $^6C_e \times ^8C_f \times ^{11}C_g$, with $e + f + g = 7$ to identify S, R.		
	$S + 5C + 1R {}^{6}C_{1} \times {}^{8}C_{5} \times {}^{11}C_{1} [= 6 \times 56 \times 11] = 3696$ $S + 6C [+ 0R] {}^{6}C_{1} \times {}^{8}C_{6} [\times {}^{11}C_{0}] [= 6 \times 28] = 168$	B1	Correct outcome/value for 1 identified scenario, accept unsimplified, www.		
	AT PR	M1	Add values of 3 correct scenarios. No incorrect scenarios, no repeated scenarios. Condone ${}^6\text{C}_e \times {}^8\text{C}_f \times {}^{11}\text{C}_g$, with $e+f+g=7$ to identify S, C, R.		
	[Total =] 26964	A1	cao		
		4			
6(b)	$2! \times 3! \times 4! \times 6$	M1	$2! \times 3! \times 4! \times k$, k an integer > 0. 1 can be implied.		
	=1728	A1	If A0 scored SC B1 for 1728 www.		
		2			

© UCLES 2023 Page 16 of 18

Question	Answer	Marks	Guidance
6(c) Method 1			
	$6! \times 7 \times 6 \times 5$	M1	$6! \times k$, k an integer > 0. 1 can be implied.
	TPR	M1	$\frac{m!}{a! \times b!} \times 7 \times n \times r; 6 \leqslant m \leqslant 9; a = 1, 2; b = 1, 4;$ $1 \leqslant n, r \leqslant 6, n \neq r.$
		M1	$\frac{m!}{a! \times b!} \times 7 \times 6 \times 5; 6 \leqslant m \leqslant 9; a = 1, 2; b = 1, 4.$
	151 200	A1	Condone 151 000. If A0 scored SC B1 for 151 200 www.
	Method 2		
	$6! \times {}^{7}P_{3}$	M1	$6! \times k$, k an integer > 0. 1 can be implied.
		M1	$\frac{m!}{a! \times b!} \times {}^{7}P_{q}, \text{ or } \frac{m!}{a! \times b!} \times {}^{7}C_{q} \times q! ; 6 \le m \le 9; a = 1, 2;$ $b = 1, 4; 1 \le q \le 6.$
	Zu. satpreP	M1	$\frac{m!}{a! \times b!} \times {}^{7}P_{3}$, or $\frac{m!}{a! \times b!} \times {}^{7}C_{3} \times 3!$; $6 \le m \le 9$; $a = 1, 2$; $b = 1, 4$.
	151 200	A1	Condone 151 000. If A0 scored SC B1 for 151 200 www.

© UCLES 2023 Page 17 of 18

Question	Answer	Marks	Guidance
6(c)	Method 3		
	$6! \times 35 \times 3!$	M1	$6! \times k$, k an integer > 0. 1 can be implied.
		M1	$\frac{m!}{a! \times b!} \times 35 \times q!; 6 \leqslant m \leqslant 9; a = 1, 2; b = 1, 4; 1 \leqslant q \leqslant 3.$
		M1	$\frac{m!}{a! \times b!} \times 35 \times 6; 6 \leqslant m \leqslant 9; a = 1, 2; b = 1, 4.$
	151 200	A1	Condone 151 000. If A0 scored SC B1 for 151 200 www.
	Method 4		
	$9! - 7!3! - {}^{3}P_{2} \times 6! \times 7 \times 6$ Or	M1	$9! - 7!r! - q$, r an integer > 1 , q an integer ≤ 0 . 0 and 1 may be implied.
	$9! - 7!3! - 3! \times 7! \times 6$ [= 362 880 - 30 240 - 181 440]	M1	$\frac{s!}{a! \times b! \times c!} - 7!3! - q; s = 8, 9; a = 1, 2; b = 1, 3; c = 1, 4;$ $q \text{ an integer} \ge 0. 0 \text{ and } 1 \text{ may be implied.}$
	324	M1	$\frac{1}{a! \times b! \times c!} - \frac{7!3! - ^{3}P_{2} \times 6! \times 6 \times 7}{6! \times 6! \times 6! \times 6!} \leq s \leq 9,$
	SatpreP		or $\frac{s!}{a! \times b! \times c!}$ - 7!3! - 3! × 7! × 6, 6 \leq s \leq 9. a = 1, 2 $b = 1, 3$ $c = 1, 4.1$ may be implied.
	151 200	A1	Condone 151 000. If A0 scored SC B1 for 151 200 www.
		4	

© UCLES 2023 Page 18 of 18

Cambridge International AS & A Level

MATHEMATICS 9709/53
Paper 5 Probability & Statistics 1 May/June 2023

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 16

	Mathematics Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

© UCLES 2023 Page 3 of 16

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2023 Page 4 of 16

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2023 Page 5 of 16

PUBLISHED

Question	Answer	Marks	Guidance
1(a)	$\left[P(HH) = \frac{1}{4}\right] [E(X) =] 4$	B1	
		1	
1(b)	$ \left[P(X=5) = \left(\frac{3}{4}\right)^4 \left(\frac{1}{4}\right) = \right] 0.0791 $	B1	$\frac{81}{1024}$
		1	
1(c)	$[P(X < 7) =]1 - \left(\frac{3}{4}\right)^6$	M1	$1 - p^n$, $0 , n = 6, 7 or$
	or $\frac{1}{4} + \frac{3}{4} \times \frac{1}{4} + \frac{3^2}{4} \times \frac{1}{4} + \dots + \frac{3^5}{4} \times \frac{1}{4}$		$p + p(1-p) + p(1-p)^2 + + p(1-p)^n$, where $n = 4, 5$.
	$=\frac{3367}{4096}$, 0.822	A1	Accept 0.82202148 to at least 3SF.
		2	

© UCLES 2023 Page 6 of 16

Question	Answer	Marks	Guidance
2	Mean = $120 \times 0.4 = 48$ Var = $120 \times 0.4 \times 0.6 = 28.8$	B1	48 and $28\frac{4}{5}$, 28.8 seen, allow unsimplified. (5.366 $\leq \sigma \leq 5.367$ or $\frac{12\sqrt{5}}{5}$ implies correct variance).
	$P(36 \leqslant X \leqslant 54) = P(\frac{35.5 - 48}{\sqrt{28.8}} < Z < \frac{54.5 - 48}{\sqrt{28.8}})$	M1	Substituting <i>their</i> μ and σ into one ±standardisation formula (any number for 35.5 or 54.5), condone σ^2 and $\sqrt{\sigma}$.
		M1	M1 Using continuity correction 35.5, 36.5 or 53.5, 54.5 once in <i>their</i> standardisation formula. Note: $\frac{\pm 12.5}{\sqrt{28.8}}$ or $\frac{\pm 6.5}{\sqrt{28.8}}$ seen gains M2 BOD.
	[=P(-2.3292 < Z < 1.211) =] 0.8871 + 0.9900 - 1	M1	Appropriate area Φ , from final process. Must be a probability. Expect final answer > 0.5 . Note: correct final answer implies this M1.
	= 0.877	A1	$0.877 \le p < 0.8772$.
		5	

© UCLES 2023 Page 7 of 16

Question	Answer	Marks	Guidance
3(a)	$[P(X=4) = 3P(X=2)]$ $4k(4+a) = 3 \times 2k(2+a)$ $16k + 4ak = 12k + 6ak$	M1	Using $P(X = 4) = 3P(X = 2)$ to form an equation in a and k .
	a = 2	A1	If M0 scored, SC B1 for $a = 2$ www.
	3k + 8k + 15k + 24k = 1	M1	Using sum of probabilities = 1 to form an equation in k : k(1+a) + 2k(2+a) + 3k(3+a) + 4k(4+a) = 1.
	$k = \frac{1}{50}$	A1	If M0 scored, SC B1 for $k = \frac{1}{50}$ www.
		4	
3(b)	$\begin{array}{ c c c c c c c }\hline X & 1 & 2 & 3 & 4 \\ \hline P(X) & \frac{3}{50}, 0.06 & \frac{8}{50}, 0.16 & \frac{15}{50}, 0.3 & \frac{24}{50}, 0.48 \\ \hline \end{array}$	B1 FT	X 1 2 3 4 $P(X)$ $k(1+a)$ $2k(2+a)$ $3k(3+a)$ $4k(4+a)$ $0 for all outcomes, must be numerical.$
		1	
3(c)	$Var(X) = \frac{3}{50} \times 1 + \frac{8}{50} \times 2^2 + \frac{15}{50} \times 3^2 + \frac{24}{50} \times 4^2 - 3.2^2$	M1	Correct formula for variance method from their probability distribution table, $0 \le their P(x) \le 1$. Accept $\frac{3+32+135+384}{50} - \frac{256}{25}$.
	$[=11.08-3.2^2=] 0.84[0], \frac{21}{25}$	A1	If M0 score SC B1 for 0.84 www.
		2	

© UCLES 2023 Page 8 of 16

Question	Answer	Marks	Guidance
4(a)	Median = 99 [minutes]	B1	
	[IQR =] 106 - 83	M1	$105 \le UQ \le 112 - 82 \le LQ \le 87.$
	23 [minutes]	A1	www. If M0 scored SC B1 for 23 www.
	TP	3	
4(b)	The times for the Cheetahs are faster than the times for the Panthers	B1	Correct statement comparing central tendency in context.
	The times for the Cheetahs are more spread than the times for the Panthers	B1	Correct statement comparing range/IQR in context.
		2	
4(c)	[Total time including Kenny = $99 \times 20 =]1980$	B1	Accept unsimplified.
	[Kenny's time =] 1980 – 1862	M1	For <i>their</i> 1980 – <i>their</i> 1862.
	= 118 [minutes]	A1	Accept 1 hour 58 mins.
	Alternative Method for Question 4(c)		
	$\frac{1862 + their \text{ Kenny's time}}{20} = 99$ [Kenny's time = $99 \times 20 - 1862$]	B1	$\frac{1862 + their \text{ Kenny's time}}{20} = 99 \text{ seen.}$
	[Kenny's time = $99 \times 20 - 1862$]	M1	For their 99 ×20 – their 1862.
	= 118 [minutes]	A1	Accept 1 hour 58 mins.
		3	

© UCLES 2023 Page 9 of 16

Question	Answer	Marks	Guidance
5(a)	$P(A) = \frac{10}{36}$ $P(B) = \frac{24}{36}$	B1	Accept P(A) = $\frac{10}{36}$, $\frac{5}{18}$, 0.278 and P(B) = $\frac{24}{36}$, $\frac{2}{3}$, 0.667.
	$P(A \cap B) = \frac{8}{36}$	B1	
	$\frac{10}{36} \times \frac{24}{36}$	M1	Their $P(A) \times their P(B)$ seen numerically, $0 \le their P(A), P(B) \le 1$.
	$= \frac{5}{27}, 0.185 \left[\neq \frac{8}{36} \right]$ Events are not independent	A1 FT	Multiplication evaluated correctly and compared with intersection that is not a product of multiplication, conclusion stated, notation $P(A)$, $P(B)$ and $P(A \cap B)$ used.
		4	

© UCLES 2023 Page 10 of 16

Question	Answer	Marks	Guidance
5(b)	$ \left[P(B A') = \frac{P(B \cap A')}{P(A')} = \right] $ $ \frac{16}{36} / P(A') = \frac{1}{3} = \frac$	M1	$[P(B \cap A') =]\frac{16}{36}, 0.4444$ or <i>their</i> P(B) – <i>their</i> P(A \cap B) seen as numerator or denominator of conditional probability fraction.
	$ \frac{16}{36} \left(1 - \frac{10}{36}\right) $	M1	$[P(A') =](1 - \frac{10}{36}), \frac{26}{36}, 0.7222 \text{ or } 1 - \text{their } P(A) \text{ seen as}$ denominator of conditional probability fraction.
	$=\frac{8}{13}$	A1	Final answer $\frac{16}{26}, \frac{8}{13}, 0.6153846$ to at least 3SF.
	Alternative Method for Question 5(b): Direct from outcome tab	les	
	$P(B A') = \frac{\text{Number of outcomes}(B \cap A')}{\text{Number of outcomes}(A')} = $	M1	[Number of outcomes $(B \cap A') =]16$ seen as numerator or denominator of conditional probability fraction.
	$\frac{16}{26}$	M1	Number of outcomes $(A') =]26$ seen as denominator of conditional probability fraction.
	3	A1	Final answer $\frac{16}{26}, \frac{8}{13}, 0.6153846$ to at least 3SF.
	"Sato	3	

© UCLES 2023 Page 11 of 16

Question	Answer	Marks	Guidance
6(a)		B1	±1.282 seen, cao – critical value.
	$\left[\frac{16-28}{\sigma} = -1.282\right]$	M1	Use of the ±standardisation formula with 16, 28, σ and a z-value (not 0.1, 0.9, 0.282, 0.5398, 0.8159) equated to a z-value. Condone continuity correct ±0.5, not σ^2 , $\sqrt{\sigma}$. Condone $\pm \frac{12}{\sigma} = -1.282$.
	$\sigma = 9.36$	A1	
		3	
6(b)	$ [1 - P(0, 1, 2) =] 1 - (^{12}C_0(0.1)^0 (0.9)^{12} + ^{12}C_1 (0.1)^1 (0.9)^{11} + ^{12}C_2 (0.1)^2 (0.9)^{10}) $	M1	M1 One term ${}^{12}C_x (p)^x (1-p)^{12-x}, 0$
	[1 - (0.2824 + 0.3766 + 0.2301)]	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer.
	0.111	B1	0.1108699 rounded to at least 3SF.
	Alternative Method for Question 6(b)		
	$P(3,4,5,6,7,8,9,10,11,12) = {}^{12}C_3(0.1)^3(0.9)^9 + {}^{12}C_4(0.1)^4(0.9)^8 + \dots + {}^{12}C_{11}(0.1)^{11}(0.9)^1 + {}^{12}C_{12}(0.1)^{12}(0.9)^0$	M1	One term ${}^{12}C_x (p)^x (1-p)^{12-x}, 0$
	$[0.08523 + 0.02131 + + 1.08 \times 10^{-10} + 1 \times 10^{-12}]$	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer.
	0.111	B1	0.1108699 rounded to at least 3SF.
		3	

© UCLES 2023 Page 12 of 16

Question	Answer	Marks	Guidance
6(c)	[P(-1.3 < Z < 1.3)]	B1	Identifying at least one of -1.3 or 1.3 as the appropriate z-values.
	$= 2 \Phi(1.3) - 1]$ = 2 × 0.9032 - 1	M1	Calculating the appropriate probability area from 2 symmetrical z -values (leading to their final answer, expect > 0.5).
	$=0.806, \frac{504}{625}$	A1	$0.8064, 0.806 \leqslant p < 0.8065$.
	[In 365 days 0.8064×365] = 294 or 295	B1 FT	Strict FT <i>their</i> at least 4-figure probability (not <i>z</i> -value). Final answer must be positive integer, no approximation or rounding stated.
		4	

© UCLES 2023 Page 13 of 16

Question	Answer	Marks	Guidance		
7(a)	Method 1: Total number of arrangements – number of arrangements with Cs together				
	$\frac{10!}{2!4!} - \frac{9!}{4!} [75600 - 15120]$	M1	$\frac{10!}{a!b!} - c, \ a \neq b, \ a = 1, 2, \ b = 1, 4, \text{ with } c \text{ being a positive integer}$		
		M1	$d - \frac{e!}{4!}$, $e = 8, 9, 10$, with d being a positive integer.		
	= 60480	A1	Exact value only. SC B1 for final answer 60480 www.		
	Method 2: Arrangements ^ ^ C ^ C ^ ^ ^ ^ ^				
	$\frac{8!}{4!} \times \frac{9 \times 8}{2}$	M1	$\frac{8!}{4!} \times f$ seen, with f being a positive integer.		
		M1	$g \times \frac{9 \times 8}{h}$, with g being a positive integer, $h = 1, 2$. $g \times {}^{9}C_{2}$ and $g \times {}^{9}P_{2}$ are acceptable.		
	= 60480	A1	Exact value only. SC B1 for final answer 60480 www.		

© UCLES 2023 Page 14 of 16

Question	Answer	Marks	Guidance	
7(b)	$ \begin{array}{c} AC^{\wedge \wedge}C^{\wedge \wedge}A \\ \frac{6!}{2!} \times 4 \end{array} $	M1	$\frac{6!}{2!} \times s$, with s being a positive integer.	
			$\frac{t!}{r!} \times 4, r = 1, 2, 3 \text{ and } t = 8, 7, 6.$	
	1440	A1		
	Alternative Method for Question 7(b)			
	$\frac{4 \times {}^{6}P_{3} \times 3!}{2!}$	M1	$\frac{^{6}\text{P}_{3}}{2!} \times k$, with k being a positive integer.	
			$4 \times 3! \times \frac{^{6} P_{m}}{n!}$, $m = 2, 3$ and $n = 1, 2, 3$.	
	1440	A1		
		3		

© UCLES 2023 Page 15 of 16

PUBLISHED

Question	Answer	Marks	Guidance	
7(c)	Scenarios $AA 5 C_3 = 10$ $AAA _ 5 C_2 = 10$ $AAAA _ 5 C_1 = 5$	B1	Correct number of ways for identified scenarios of 2 or 3 As, accept unsimplified, www.	
		M1	Add 3 values for 2, 3 and 4 As, no additional, incorrect or repeated scenarios. Accept unsimplified.	
	25	A1		
	Alternative Method 2 for Question 7(c)			
	Scenarios: AAC _ ${}^{4}C_{2} = 6$ AA _ ${}^{4}C_{3} = 4$ AAAC _ ${}^{4}C_{1} = 4$ AAA _ ${}^{4}C_{2} = 6$ AAAAC _ ${}^{1}C_{2} = 6$ AAAAC _ ${}^{4}C_{3} = 4$	B1	Correct total number of ways for identified scenarios of 2 or 3 As, accept unsimplified, www (e.g., both values for AAC^^ and AA^^^ shown would be fine for 2As).	
		M1	Add 6 values of appropriate scenarios only, no additional, incorrect or repeated scenarios. Accept unsimplified.	
	25	A1		
		3		

© UCLES 2023 Page 16 of 16

Cambridge International AS & A Level

MATHEMATICS 9709/52

Paper 5 Probability and Statistics 1

February/March 2023

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2023 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2023 [Turn over

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2023 Page 2 of 15

Mathematics Specific Marking Principles					
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

© UCLES 2023 Page 3 of 15

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2023 Page 4 of 15

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2023 Page 5 of 15

Question				Ans	wer				Marks	Guidance
1(a)		Upper value	60	90	110	140	180	240	B1	May be under data table, condone omission of 4.
		cf	4	12	26	51	58	60		May be read accurately from graph, must include 4.
	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							T	M1	At least 5 points plotted at class upper end points, daylight rule tolerance. Linear cf scale $0 \le cf \le 60$, linear time scale $30 \le time \le 240$ with at least 3 values identified on each axis.
	Application (form)	10 to	Jus. Co.	. 2307					A1	All points plotted correctly. Curve drawn (within tolerance), no ruled segments, and joined to (30,0). Axes labelled 'cumulative frequency' and 'hours [of sunshine]' (OE including appropriate title).
									3	
1(b)	[60 × 0.7	=] 42							M1	42 may be implied by clear use on graph.
	126					2	4		A1 FT	Must be clear evidence on graph of use of 42, e.g. an appropriate mark on either axis, appropriate mark on curve. FT from increasing cf graph only read at 42 only.
								Sa	reP 2	

© UCLES 2023 Page 6 of 15

Question	Answer	Marks	Guidance
1(c)	Midpoints: 45, 75, 100, 125, 160, 210	B1	At least 5 correct mid-points seen, check by data table or used in formula.
	[Mean =] $\frac{4 \times 45 + 8 \times 75 + 14 \times 100 + 25 \times 125 + 7 \times 160 + 2 \times 210}{60}$ $\left[= \frac{6845}{60} \right]$	M1	Correct mean formula using their 6 midpoints (must be within class, not upper bound, lower bound), condone 1 data error If correct midpoints seen accept $\frac{180+600+1400+3125+1120+420}{60}.$
	$= 114, 114 \frac{1}{12}$	A1	Accept 114.1, 114.08[3] If A1 not awarded, SC B1 for 114, 114 $\frac{1}{12}$, 114.1 or 114.08[3].
		3	

Question	Answer	Marks	Guidance
2(a)	$0.6(0.5)^3 + 0.4(0.5)^3 \times 3$	B1	Either $0.6(0.5)^3 + a$ or $b + 0.4(0.5)^3 \times (3or^3C_1)$, $0 < a, b < 1$ seen.
	Satpre .	M1	$0.6(0.5)^3 + 0.4(0.5)^3 \times d$ seen, $d = 1, 3$. Condone $0.075 + 0.05 \times d$, $d = 1, 3$.
	= 0.225	A1	AG full supporting working required. Scenarios identified and linked to calculations.
		3	

© UCLES 2023 Page 7 of 15

Question	Answer	Marks	Guidance
2(b)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1	Either [P(2) =] 0.375, $\frac{3}{8}$ or [P(3) =] 0.275, $\frac{11}{40}$ seen. Condone not in table if identified.
	AT PA	B1 FT	Both values in table. FT $P(2) + P(3) = 0.650$.
		2	
2(c)	$Var(X) = [1^2 \times]0.225 + 2^2 \times their \ 0.375 + 3^2 \times their \ 0.275 + 4^2 \times 0.075 - 2.1^2$	M1	Appropriate variance formula from their probability distribution table with at least 4 terms, $0 < their P(x) < 1$. Condone 4.41 for 2.1^2 . Condone mean clearly recalculated inaccurately. Or $0.225 + 4 \times their 0.375 + 9 \times their 0.275 + 16 \times 0.075 - 2.1^2$ Condone 2.1^2 for 4.41.
	$[5.4-2.1^2] = 0.99[0]$	A1	If M0 awarded SC B1 for 0.99[0] WWW.
	3	2	· ÷

© UCLES 2023 Page 8 of 15

Question	Answer	Marks	Guidance
3(a)	Method 1 for Question 3(a)	<u> </u>	
	$[P(X > 17) = P(18, 19, 20) =]$ ${}^{20}C_{18} (0.8)^{18} (0.2)^{2} + {}^{20}C_{19} (0.8)^{19} (0.2)^{1}$	M1	One term ${}^{20}C_x (p)^x (1-p)^{20-x}, 0$
	$+ {}^{20}C_{20} (0.8)^{20}$ $= 0.13691 + 0.05765 + 0.01153$	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer.
	0.206	B1	Mark the final answer at the most accurate value $0.206 \leqslant p \leqslant 0.2061$.
	Method 2 for Question 3(a)		
	$[P(X > 17) = 1 - P(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17) =]$ $1 - ({}^{20}C_0 (0.8)^0 (0.2)^{20} + {}^{20}C_1 (0.8)^1 (0.2)^{19}$	M1	One term ${}^{20}C_x (p)^x (1-p)^{20-x}, 0$
	$+ {}^{20}\text{C}_{2} (0.8)^{2} (0.2)^{18} + + {}^{20}\text{C}_{16} (0.8)^{16} (0.2)^{4} + {}^{20}\text{C}_{17} (0.8)^{17} (0.2)^{3}) = 1 - (1.048 \times 10^{-14} + 8.389 \times 10^{-13} + 3.188 \times 10^{11} + + 0.2182 + 0.2054)$	A1	Correct expression, accept unsimplified, no terms omitted leading to final answer. If answer correct, condone omission of any 15 of the 16 middle terms.
	0.206	B1	Mark the final answer at the most accurate value $0.206 \leqslant p \leqslant 0.2061$. Condone omission of brackets.
	Sathi	3	
3(b)	$\left[\left(0.8 \right)^4 \left(0.2 \right) = \right] 0.08192, \frac{256}{3125}$	B1	Accept $\frac{8192}{100000}$ OE.
		1	

© UCLES 2023 Page 9 of 15

Question	Answer	Marks	Guidance
3(c)	$(0.8)^5 (0.2)^2 \times 6$	M1	$(0.8)^{5} (0.2)^{2} \times k or (0.8)^{5} (0.2) \times k \times 0.2,$ $2 \le k \le 7.$
	$=0.0786, \frac{8144}{78125}$	A1	$0.0786 \le p < 0.07865, \frac{786432}{10000000}.$ If A0 awarded, SC B1 for correct answer WWW.
		2	

Question	Answer	Marks	Guidance
4	$(1-x) \times 0.7 \times 0.9 = 0.36$	M1	$(1-x)\times a\times b = 0.36$, $a = 0.7$ or 0.3 , $b = 0.9$ or 0.1
		B1	$(1-x)\times0.7\times0.9=0.36$, $(1-x)\times0.63=0.36$, $0.63-0.63x=0.36$ or $1-x=\frac{0.36}{0.63}$ seen. Condone recovery from omission of brackets.
	$x = \frac{3}{7}$	A1	Accept 0.428571 to at least 3 sf. Condone 0.4285 rounding to 0.429. If M0 awarded, SC B1 for $x = \frac{3}{7}$ or 0.428571 to at least 3 sf.
	Satpre	3	

© UCLES 2023 Page 10 of 15

Question	Answer	Marks	Guidance
5	$P(A) = \frac{1}{2}, P(B) = \frac{8}{24} = \frac{1}{3},$	B1	Both stated, accept unsimplified.
	$P(A \cap B) = \frac{1}{6}$	M1	Evidence that independence properties not used.
	$P(A) \times P(B) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$ so events are independent	A1	Evaluated and conclusion stated. $P(A) \times P(B)$ and $P(A \cap B)$ seen.
		3	

Question	Answer	Marks	Guidance
6(a)	$P(X < 74) = P(Z < \frac{74 - 62.3}{8.4}) = P(Z < 1.393)$	M1	Use of \pm standardisation formula with 74, 62.3 and 8.4 substituted appropriately, not 8.4^2 , not $\sqrt{8.4}$, no continuity correction.
	= 0.918	A1	$0.918 \le p \le 0.9185$.
	3	2	.5

© UCLES 2023 Page 11 of 15

Question	Answer	Marks	Guidance
6(b)	$[P(50 < X < 74) = P] \left(\frac{50 - 62.3}{8.4} < Z < \frac{74 - 62.3}{8.4}\right)$ $[P(-1.464 < Z < 1.393)]$	M1	Use of \pm standardisation formula with both 74 (may be seen in 6(a) if <i>their</i> value seen) & 50, 62.3 and 8.4 substituted appropriately. Condone use of 8.4^2 , $\sqrt{8.4}$ and continuity correction ± 0.5 (73.5 or 74.5 and 49.5 or 50.5).
	$[\Phi(1.464) + \Phi(1.393) - 1]$ $0.9285 + 0.9182 - 1$	M1	Calculating the appropriate probability area from stated Φ of z-values (leading to <i>their</i> final answer > 0.5) but not symmetrical values.
	= 0.847	A1	$0.8465 \leqslant p < 0.8475$. SC B1 for $0.8465 \leqslant p < 0.8475$ if M0A0 awarded.
	$(0.8467)^4 = 0.514$	B1 FT	Accept $0.513 \le p \le 0.514$. FT (their 4-figure p) ⁴ , $0 .$
		4	
6(c)	$z_1 = \frac{36 - \mu}{\sigma} = -0.739$	B1	$-0.740 < z_1 < -0.738$ or $0.738 < z_1 < 0.740$.
		B1	$z_2 = \pm 1.282$ (critical value).
	$z_2 = \frac{54 - \mu}{\sigma} = 1.282$	M1	Use of the ±standardisation formula once with μ , σ and a z-value (not 0.23, 0.77, 0.90, 0.10, ±0.261, ±0.282). Condone continuity correction ±0.5, not σ^2 , $\sqrt{\sigma}$.
	Solve, obtaining values for μ and σ $\mu = 42.6$, $\sigma = 8.91$	M1	Solve using the elimination method, substitution method or other appropriate approach to obtain values for both μ and σ .
		A1	$42.58 \le \mu \le 42.6$, $8.90 \le \sigma \le 8.91$.
		5	

© UCLES 2023 Page 12 of 15

Question	Answer	Marks	Guidance				
7(a)	Method 1: Arrangements with 3 Es together – arrangements with 3 Es together and 2 Ds together						
	$\frac{7!}{2!}$ -6!	B1	$\frac{7!}{2!}$ – e , e a positive integer (including 0).				
		M1	f - 6!, f > 6!				
	GAT PA	M1	$\frac{7!}{a!b!} - \frac{6!}{c!d!}$, $a,c = 1, 2$ and $b,d = 1, 3$.				
	1800	A1					
	Method 2: Identified scenarios ^ EEE ^ ^ ^						
	$5 \times \frac{6 \times 5}{2}$	B1	$5! \times j$, j a positive integer ($j = 1$ may be implied).				
		M1	$\frac{k!}{m!} \times \frac{6 \times 5}{2}, \frac{k!}{m!} \times {}^{6}C_{2}, \frac{k!}{m!} \times \frac{{}^{6}P_{2}}{2} \text{ or } k! \times \frac{7 \times 6}{n},$ k a positive integer (k = 1 may be implied), $m = 1, 2, n = 1, 2, 3.$				
	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	M1	$k \times \frac{m \times (m-1)}{n}$ k a positive integer > 1, $m = 10, 9, 8, 7, 6$ and $n = 1, 2$.				
	1800	A1					
		4					

© UCLES 2023 Page 13 of 15

Question	Answer	Marks	Guidance					
7(b)	First 2 marks: Method 1 – Number of arrangements with 2 Ds in one position with 4 letters in between – repeats allowed							
	$7! \times 4 \times 2$	M1	$7! \times s$, $s = positive integer > 1$.					
		M1	$t! \times 4 \times 2, t = 8, 7, 6.$ Condone $t! \times 8$.					
	First 2 marks: Method 2 – Picking 2Ds, arranging 4 letters from remaining letters between and then arranging terms							
	$^{7}P_{4} \times 4 \times 2!$	M1	$^{7}\mathbf{P}_{4} \times a \times b!$, $1 \le a \le 6$ and $b = 1, 2, 3$.					
		M1	$^{7}P_{c} \times 4 \times 2!, c = 3, 4, 5.$					
	First 2 marks: Method 3 – Identified scenarios involving Es between Ds							
	$D^{\land \land \land} D E E E = {}^{4}C_{4} \times 4! \times 4! \times 2! = 1152$	M1	1 identified scenario value correct.					
	D E ^ ^ D E E ^ = ${}^{4}C_{3} \times 4! \times 4! \times 3 \times 2! = 13824$ D E E ^ D E ^ = ${}^{4}C_{2} \times 4! \times 4! \times 3 \times 2! = 20736$ D E E E ^ D ^ ^ = ${}^{4}C_{1} \times 4! \times 4! \times 2! = 4608$	M1	4 appropriate scenarios added, no incorrect.					

© UCLES 2023 Page 14 of 15

Question	Answer	Marks	Guidance
7(b)	Final 3 marks for Methods 1, 2 and 3		
	40320	A1	If A0 scored, SC B1 for 40320 WWW.
	[Total number of arrangements =] [9!=] 362880	B1	Accept unsimplified. May be seen as denominator of probability.
	Probability = $\frac{40320}{362880} = \frac{1}{9}$	B1FT	$\frac{\textit{their}40320}{\textit{their}362880},\text{accept unsimplified.}$ B1FT if $\textit{their}40320$ and $\textit{their}362880$ supported by work in this part. Condone $\textit{their}362880$ supported by calculation in $\textit{7}(\mathbf{a})$.
		5	
7(c)	Scenarios DE	B1	$\begin{array}{c} 1 \ correct \ unsimplified \ outcome/value \ for \ one \ identified \\ scenario \ excluding \ DDEEE. \\ Note: \ ^4C_1 \ cannot \ be \ used \ for \ ^4C_3 \ . \end{array}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Add values of 6 appropriate scenarios, no additional, incorrect or repeated scenarios. Accept unsimplified.
	[Total =] 25	A1	
	atp	3	

© UCLES 2023 Page 15 of 15

Cambridge International AS & A Level

MATHEMATICS 9709/51

Paper 5 Probability & Statistics 1

October/November 2022

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2022 [Turn over

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 15

	Mathematics Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

© UCLES 2022 Page 3 of 15

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2022 Page 4 of 15

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2022 Page 5 of 15

Question	Answer	Marks	Guidance
1	0.12 + p + q + 0.16 + 0.3 = 1	B1	Sum of probabilities = 1 $p + q = 0.42$ OE.
	-0.24 - p + 0.5q + 0.16 + 0.6 = 0.28	B1	Form equation using $E(X) = 0.28$ -p + 0.5q = -0.24 OE. Accept unsimplified.
	Attempt to solve <i>their</i> two equations in <i>p</i> and <i>q</i>	M1	Either Substitution method to form a single equation in either p or q and finding values for both unknowns. Or Elimination method by writing both equations in the same form (usually $ap + bq = c$) and $+$ or $-$ to find an equation in one unknown and finding values for both unknowns.
	q = 0.12, p = 0.3	A1	CAO, both WWW. If M0 awarded SC B1 for both correct WWW.
		4	

© UCLES 2022 Page 6 of 15

Question	Answer	Marks	Guidance
2(a)	$[P(3, 4,7) = 1 - P(0, 1, 2, 8)]$ $= 1 - (^{8}C_{0} \ 0.48^{0} \ 0.52^{8} + ^{8}C_{1} \ 0.48^{1} \ 0.52^{7}$ $+ ^{8}C_{2} \ 0.48^{2} \ 0.52^{6} + ^{8}C_{8} \ 0.48^{8} \ 0.52^{0})$	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}$, for $0 < x < 8, 0 < p < 1$
	= 1 - (0.00534597 + 0.039478 + 0.127544 + 0.0028179)	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.
	0.825	B1	Mark the final answer at the most accurate value. $0.8248 WWW.$
	Alternative method for Question 2(a)		
	$ \begin{aligned} & [P(3, 4, 5, 6, 7) =] \\ ^8C_3 \ 0.48^3 \ 0.52^5 \ + \ ^8C_4 \ 0.48^4 \ 0.52^4 \ + \ ^8C_5 \ 0.48^5 \ 0.52^3 \ + \ ^8C_6 \\ & 0.48^6 \ 0.52^2 \ + \ ^8C_7 \ 0.48^7 \ 0.52^1 \end{aligned} $	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}$, for $0 < x < 8, 0 < p < 1$
		A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.
	0.825	B1	Final answer $0.8248 WWW.$
	4	3	1.5

© UCLES 2022 Page 7 of 15

PUBLISHED

Question	Answer	Marks	Guidance
2(b)	[Mean = $0.52 \times 125 =]65$, [var = $0.52 \times 0.48 \times 125 =]31.2$	B1	65 and 31.2 seen, allow unsimplified. May be seen in standardisation formula. (5.585 $< \sigma \le 5.586$ imply correct variance).
	$[P(X > 72) =]P(Z > \frac{72.5 - 65}{\sqrt{31.2}}) [= P(Z > 1.343)]$	M1	Substituting <i>their</i> 65 and \sqrt{their} 31.2 into ±standardisation formula (any number for 72·5), not <i>their</i> 31.2, \sqrt{their} 5.586.
	SPTP	M1	Using continuity correction 72·5 or 71·5 in <i>their</i> standardisation formula . Note $\frac{\pm 7.5}{\sqrt{31.2}}$ or $\frac{\pm 7.5}{5.586}$ seen gains M2 BOD
	= 1 - 0.9104	M1	Appropriate area Φ , from final process, must be probability.
	0.0896	A1	$0.0896 \le p \le 0.0897 \text{ WWW}.$
		5	

© UCLES 2022 Page 8 of 15

Question	Answer	Marks	Guidance
3(a)	Lions Tigers 9 16	B1	Correct stem can be upside down, ignore extra values (not in reverse).
	9 16 9 8 17 9 9 7 6 1 0 18 0 3 4 7 6 0 0 19 0 1 4 5 7 20 1	B1	Correct Lions labelled on left, leaves in order from right to left and lined up vertically, no commas or other punctuation.
		B1	Correct Tigers labelled on same diagram, leaves in order and lined up vertically, no commas or other punctuation.
			If the correct data for Lions and Tigers is transposed, treat as a single error in Lions and condone in Tigers.
	Key 1 18 3 means 181 cm for Lions and 183 cm for Tigers	B1	Correct single key for their diagram, need both teams identified and 'cm' stated at least once here or in leaf headings or title.
			SC If 2 separate diagrams drawn, SC B1 if both keys meet these criteria (Max B1, B0, B0, B1).
		4	
3(b)	Median = 186 cm	B1	
	[UQ = 190 cm, LQ = 179 cm] IQR = 190 – 179	M1	$189 \le UQ \le 190 - 178 \le LQ \le 180$
	11[cm]	A1	www
	atpi	3	
3(c)	Tigers are (generally) taller	B1	Comparison about central tendency in context.
	Heights of Tigers are slightly less consistent than heights of Lions	B1	Comparison about spread in context. (Condone 'similar spread' in context.)
		2	

© UCLES 2022 Page 9 of 15

Question	Answer	Marks	Guidance
4(a)	$P(X<132) = P(Z < \frac{132-125.4}{18.6}) = P(Z < 0.3548)$	M1	Use of ±standardisation formula with 132 and 125.4 substituted, condone continuity correction 132±0.5 and use of 18.6^2 , $\sqrt{18.6}$
	0.639	A1	$0.6385If M0 scored, SC B1 for 0.6385$
		2	
4(b)	$\frac{108-117}{}=-1.175$	B1	$1.1749 < z \le 1.175 \text{ or } -1.175 \le z < -1.1749$
	σ	M1	108 and 117 substituted in \pm standardisation formula, no continuity correction, not σ^2 , $\sqrt{\sigma}$, equated to a <i>z</i> -value.
	$\sigma = 7.66$	A1	$7.659 \leqslant \sigma \leqslant 7.66$ If M0 scored, SC B1 for $7.659 \leqslant \sigma \leqslant 7.66$
		3	
4(c)	P(-1.5 < Z < 1.5) $[\Phi(1.5) - \Phi(-1.5)]$ $[= 2\Phi(1.5) - 1]$	M1	{Both 1.5 and -1.5 seen as z-values or appropriate use of 1.5 or -1.5} and {no other z-values in part}.
	= $2 \times their 0.9332 - 1$ or their $0.9332 - (1 - their 0.9332)$ or $2 \times (their 0.9332 - 0.5)$	M1	Calculating the appropriate area from stated phis of <i>z</i> -values which must be \pm the same number. Condone <i>their</i> 0.0668 as $(1 - their\ 0.9332)$.
	0.8664	A1	Accept answers wrt 0.866 If A0 scored SC B1 for answers wrt 0.866
	$0.8664^3 = 0.650[36]$	B1 FT	FT their 4SF (or better) probability, accept final answers to 3SF.
		4	

© UCLES 2022 Page 10 of 15

	FUBLIS		
Question	Answer	Marks	Guidance
5(a)	1) 2 1/4 (2) 1/4 (1) 1	B1	1st throw fully correct with probabilities and outcomes identified. (Probabilities $\left(\text{all } \frac{1}{6}\right)$ and outcomes $(1,2,3,4,5,6)$ on branches).
	4) 1/6 (5) 1/8 (6) 1/8	B1	2nd throw fully correct with probabilities and outcomes identified. (Probabilities $\left(\text{all } \frac{1}{6}\right)$ and outcomes $(1,2,3,4,5,6)$ on branches).
	½ (2) ½ (3)		
	×(3)		
	1/6 (G)		<i>1.5</i>
		eP.	-0'
	½ % °		
		2	

© UCLES 2022 Page 11 of 15

PUBLISHED

Question	Answer	Marks	Guidance
5(b)	5 comes from 1+4 or 5: $P(5) = \frac{1}{6} \times \frac{1}{6} + \frac{1}{6} = \frac{7}{36}$	B1	P(5) or P(7) identified and correct unsimplified, accept if supported by correct scenarios shown or from tree diagram .
	6 comes from 1+5 $P(6) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$		
	7 comes from 1+6 or 6+1 $P(7) = \frac{1}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{6} = \frac{2}{36}$		
	8 comes from 6+2 $P(8) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$	R	
	9 comes from 6+3 $P(9) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$		
	$P(A) = \frac{7}{36} + \frac{1}{36} + \frac{2}{36} + \frac{1}{36} + \frac{1}{36}$	M1	Adding only the values from 5 correct scenarios.
	$=\frac{12}{36}=\frac{1}{3}$	A1	Scenarios identified (may be on tree diagram in 5(a)), all probabilities seen, WWW AG.
		3	
5(c)	$P(B) = \frac{1}{3}, P(A \cap B) = \frac{6}{36}$	M1	Both identified and evaluated, consistent with <i>their</i> tree diagram or correct.
	$P(A)P(B) = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$	A1	$P(A) \times P(B)$ seen and evaluated, all notation present and correct. Correct conclusion WWW.
	$\frac{6}{36} \neq \frac{1}{9}$, so not independent		
		2	

© UCLES 2022 Page 12 of 15

Question	Answer	Marks	Guidance
5(d)	$P(B \mid A') = \frac{P(B \cap A')}{P(A')} = \frac{their \frac{6}{36}}{\frac{2}{3}}$	B1	$\frac{6}{36}$ oe as numerator of a fraction.
	$P(A)$ $\frac{2}{3}$	M1	$\frac{their \frac{6}{36} \text{ or } correct}{their 1 - \frac{1}{3} \text{ or } correct} \text{ seen, consistent with } their \text{ tree diagram.}$
	$\frac{1}{4}$, 0.25	A1	
		3	

Question	Answer	Marks	Guidance
6(a)	$5M0W {}^{8}C_{5} [\times {}^{7}C_{0}] = 56$	M1	${}^{8}C_{x} \times {}^{7}C_{5-x}$ for $x = 1, 2, 3, 4$, or 5
	$4M1W {}^{8}C_{4} \times {}^{7}C_{1} = 490$ $3M2W {}^{8}C_{3} \times {}^{7}C_{2} = 1176$	B1	Outcome for 4M1W or 3M2W correct and identified, accept unsimplified.
	TP	M1	Add 3 values of appropriate scenarios, no incorrect scenarios, no repeated scenarios, accept unsimplified. Addition may be implied by final answer.
	[Total =] 1722	A1	Value stated WWW.
	Alternative method for Question 6(a)		
	$2M3W ^{8}C_{2} \times {}^{7}C_{3} = 980$	M1	${}^{8}C_{x} \times {}^{7}C_{5-x}$ for $x = 1, 2, 3, 4,$ or 5
	$1M4W {}^{8}C_{1} \times {}^{7}C_{4} = 280$ $0M5W {}^{8}C_{0} \times {}^{7}C_{5} = 21$	B1	
	[Total = ${}^{15}C_5 - (980 + 280 + 21)$] 3003 - (980 + 280 + 21)	M1	Subtract 3 values of appropriate scenarios from <i>their</i> identified total or correct, no incorrect scenarios, no repeated scenarios, accept unsimplified.
	[Total =] 1722	A1	Value stated WWW.
	12	4	
6(b)	$^{15}\text{C}_3 \times ^{12}\text{C}_5 [\times ^7\text{C}_7] [= 455 \times 792]$	M1	15 C _r × q, r = 3, 5, 7; q a positive integer >1
		M1	$^{15}C_s \times ^{15-s}C_t [\times ^{15-s-t}C_u] \ s = 3,5,7; \ t = 3,5,7 \neq s; \ u = 3,5,7 \neq s,t$
	360360	A1	Final answer. If A0 awarded SC B1 for final answer 360360.
		3	

© UCLES 2022 Page 14 of 15

Question	Answer	Marks	Guidance
6(c)	Method 1: Total number of arrangements with AB together – Arrangements with AB and FG together		
	$6! \times 2 - 5! \times 2 \times 2$	M1	$a! \times 2! \times b$, $a = 5$, 6; $b = 1,2$ seen.
	[= 1440 – 480]	M1	Either $6! \times 2 - c$, $1 < c < 1440$ or $d - 5! \times 2 \times 2$, $1440 < d$
	960	A1	
	Method 2: arrangements with AB together with F and G not together.		
	$2 \times 4! \times 5 \times 4$	M1	$2 \times 4! \times e$, e positive integer >1
		M1	$f \times 5 \times 4$, f positive integer >1 condone $f \times 20$, $f \times {}^{5}C_{2}$, f positive integer >1
	960	A1	
	3		

© UCLES 2022 Page 15 of 15

Cambridge International AS & A Level

MATHEMATICS 9709/52

Paper 5 Probability & Statistics 1

October/November 2022

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2022 [Turn over

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 18

	Mathematics Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

© UCLES 2022 Page 3 of 18

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2022 Page 4 of 18

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2022 Page 5 of 18

PUBLISHED

Question	Answer	Marks	Guidance
1(a)	$0.2 \times x + 0.1 \times 2x + 0.7 \times 0.25 = 0.235$	M1	$0.2 \times x + 0.1 \times 2x + 0.7 \times 0.25$ or $0.2x + 0.2x + 0.175$ seen.
		M1	Equating <i>their</i> 3 term expression (2 terms involving <i>x</i>) to 0.235
	x = 0.15	A1	
		3	
1(b)	$ \begin{bmatrix} P(car not ate) = \frac{P(car not ate)}{P(not ate)} \\ \frac{0.1 \times (1 - 0.3)}{1 - 0.235} \end{bmatrix} $	M1	$0.1 \times (1-2 \times their x)$ or 0.1×0.7 as numerator and $0.2 \times (1-their x) + 0.1 \times (1-2 \times their x) + 0.7 \times 0.75$ with values substituted or $1-0.235$ or 0.765 as denominator of fraction. Condone $0.2 \times (1-their x) + 0.1 \times (1-x their x) + 0.7 \times 0.75$ as denominator consistent with $1(\mathbf{a})$.
	$\left[\frac{0.07}{0.765} = \right]0.0915, \frac{70}{765}, \frac{14}{153}$	A1	0.091503267 to at least 3SF. If M0 scored SC B1 for 0.091503267 to at least 3SF.
		2	

© UCLES 2022 Page 6 of 18

Question	Answer	Marks	Guidance
2(a)	$[P(X<54.8)] = P(Z < \frac{54.8 - 55.6}{1.2})$	M1	Use of \pm standardisation formula, with 54.8, 55.6 and 1.2 substituted. condone $1.2^2, \sqrt{1.2}$ or continuity correction of 54.75 or 54.85
	[=P(Z<-0.6667)]=1-0.7477	M1	Appropriate area Φ , from final process, must be probability.
	= 0.2523	A1	$0.252 \le p \le 0.2525$ If A0 scored S CB1 for $0.252 \le p \le 0.2525$
	[Expected number =] 400×0.2523=100.92 100 or 101	B1 FT	FT <i>their</i> 4SF (or better) probability from a normal calculation. Must be a single integer answer.
		4	
2(b)	$[P(-\frac{1}{2} < Z < \frac{1}{2}) = \Phi(\frac{1}{2}) - \Phi(-\frac{1}{2}) =]$ $2\Phi(\frac{1}{2}) - 1$ $= 2 \times their 0.6915 - 1$ or $their 0.6915 - (1 - their 0.6915)$ or $2 \times (0.6915 - 0.5)$	M1	{Both $\frac{1}{2}$ and $-\frac{1}{2}$ seen as z-values or appropriate use of $+\frac{1}{2}$ or $-\frac{1}{2}$ } and {no other z-values in part}. Condone $\frac{56.2 - 55.6}{1.2}$ and $\frac{55[.0] - 55.6}{1.2}$ seen as z-values.
		M1	Calculating the appropriate area from stated phis of <i>z</i> -values which must be \pm the same number.
	0.383	A1	$0.3829 \le z \le 0.383$ If A0 scored SC B1 for $0.3829 \le z \le 0.383$
	atp	3	

© UCLES 2022 Page 7 of 18

Question	Answer	Marks	Guidance
3(a)	[P(17 or 18) =] $\frac{4}{216} = \frac{1}{54}$, 0.0185(185)	B1	May be seen used in calculation.
	$P(X=6) = \left(\frac{53}{54}\right)^5 \cdot \frac{1}{54}$	M1	$p(1-p)^5$, 0
	0.0169	A1	$0.01686If A0 scored SC B1 for 0.01686$
		3	
3(b)	$[P(X < 8) =] 1 - \left(\frac{53}{54}\right)^7$	M1	$1 - \left(their\left(\frac{53}{54} \text{ or } 0.98148\right) \text{ or correct}\right)^r,$
			$r = 7.8 \ 0 < their \ p < 1$
	0.123	A1	$0.1225 \leqslant p \leqslant 0.123$
	Alternative method for Question 3(b)		
	$[P(X < 8) =]$ $\left(\frac{1}{54}\right) + \left(\frac{53}{54}\right)\left(\frac{1}{54}\right) + \left(\frac{53}{54}\right)^{2}\left(\frac{1}{54}\right) + \left(\frac{53}{54}\right)^{3}\left(\frac{1}{54}\right) + \left(\frac{53}{54}\right)^{4}\left(\frac{1}{54}\right) + \left(\frac{53}{54}\right)^{5}\left(\frac{1}{54}\right) + \left(\frac{53}{54}\right)^{6}\left(\frac{1}{54}\right)$	M1	$q + pq + p^{2}q + p^{3}q + p^{4}q + p^{5}q[+p^{6}q], p+q=1, 0 < p, q < 1, q$ $= their \frac{53}{54}$
	0.123	A1	$0.1225 \leqslant p \leqslant 0.123$
		2	

© UCLES 2022 Page 8 of 18

PUBLISHED

Question	Answer	Marks	Guidance
4(a)	Cw 20 20 10 10 40 Fd 1.6 2.3 9.6 5.2 0.6 Frequency density 11	M1	At least 4 frequency densities calculated $\frac{f}{cw} \operatorname{eg} \frac{32}{20} \left(condone \frac{f}{cw \pm 0.5} if \ unsimplified \right), \text{ accept unsimplified,}$ may be read from graph using <i>their</i> scale no lower than 1 cm = fd 1
		A1	All bar heights correct on graph, using <i>their</i> suitable linear scale with at least 3 values indicated, no lower than 1 cm = fd 2.
		B1	Bar ends at $[0,]$ 20, 40, 50, 60, 100 (at axis), 5 bars drawn $0 \le$ time axis \le 100, linear scale with at least 3 values indicated.
		B1	Axes labelled frequency density (fd), time (t) and minutes (mins, m) or appropriate title. (Axes may be reversed).
		4	

© UCLES 2022 Page 9 of 18

Question	Answer	Marks	Guidance
4(b)	Midpoints 10 30 45 55 80	B1	At least 4 correct midpoints seen (check data table).
	[Mean = 43.2 given] [Var =] $\frac{32 \times 10^2 + 46 \times 30^2 + 96 \times 45^2 + 52 \times 55^2 + 24 \times 80^2}{250} - 43.2^2$ Or $32(10 - 43.2)^2 + 46(30 - 43.2)^2 + 96(45 - 43.2)^2$ $+52(55 - 43.2)^2 + 24(80 - 43.2)^2$ 250	M1	Appropriate variance formula with <i>their</i> 5 midpoints (not upper bound, lower bound, class width, frequency density, frequency or cumulative frequency). Condone 1 frequency error. If correct midpoints seen accept $ \left\{ \frac{3200 + 41400 + 194400 + 157300 + 153600}{250} or \frac{549900}{250} \right\} - \left\{ 43.2^2 or 1866.24 \right\}. $
	$= \left[\frac{549900}{250} - 43.2^2 = 333.36 \right]$ $Sd = 18.3$	A1	www, final answer 18.25814887 to at least 3SF. If M0 earned SC B1 for final answer 18.25814887 to at least 3SF.
		3	

© UCLES 2022 Page 10 of 18

Question	Answer	Marks	Guidance
5(a)	Method 1: Scenarios identified ignoring unbiased coin		
	$P(BH_1 BT_2) = \frac{1}{4} \times \frac{3}{4} = \frac{3}{16}$ 3 1 3	M1	All 3 different calculations seen unsimplified.
	$P(BT_1 BH_2) = \frac{3}{4} \times \frac{1}{4} = \frac{3}{16}$ $P(BH_1 BH_2) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$	R	
	$\frac{3}{16} + \frac{3}{16} + \frac{1}{16} = \frac{7}{16}$	A1	Clear identification of all scenarios , linked probabilities and sum. AG

Question	Answer	Marks	Guidance
5(a)	Method 2: Scenarios identified with all 3 coins		
	$P(H BH_1 BT_2) = \frac{1}{2} \times \frac{1}{4} \times \frac{3}{4} = \frac{3}{32}$	M1	All 6 different calculations seen unsimplified.
	$P(T BH_1 BT_2) = \frac{1}{2} \times \frac{1}{4} \times \frac{3}{4} = \frac{3}{32}$		
	$P(H BT_1 BH_2) = \frac{1}{2} \times \frac{3}{4} \times \frac{1}{4} = \frac{3}{32}$	R	
	$P(T BT_1 BH_2) = \frac{1}{2} \times \frac{3}{4} \times \frac{1}{4} = \frac{3}{32}$		
	$P(H BH_1 BH_2) = \frac{1}{2} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{32}$		
	$P(T BH_1 BH_2) = \frac{1}{2} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{32}$		
	$P(B) = \frac{1+3+3+1+3+3}{32} = \frac{14}{32} = \frac{7}{16}$	A1	Clear identification of all scenarios , linked probabilities and sum. AG
	Method 3: 1- P(BT ₁ BT ₂) ignoring unbiased coin		
	$1 - P(BT_1 BT_2) = 1 - \left(\frac{3}{4}\right)^2$	M1	Calculation seen unsimplified and 1 – probability seen.
	$=\frac{7}{16}$	A1	Clear identification of scenario used, linked probability and calculation. AG

© UCLES 2022 Page 12 of 18

Question	Answer	Marks	Guidance
5(a)	Method 4: 1- P(BT ₁ BT ₂) with all 3 coins		
	$1 - P(H BT_1 BT_2) - P(T BT_1 BT_2) = 1 - \left(\frac{1}{2} \times \frac{3}{4} \times \frac{3}{4}\right) - \left(\frac{1}{2} \times \frac{3}{4} \times \frac{3}{4}\right)$	M1	Both calculations seen unsimplified and $1-2$ probabilities seen.
	$=1-\frac{9}{32}-\frac{9}{32}=\frac{7}{16}$	A1	Clear identification of all scenarios used, linked probabilities and calculation. AG
		2	
5(b)	$\left[P(A B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{2} \times \frac{1}{4} \times \frac{1}{4}}{\frac{7}{16}} = \frac{\frac{1}{32}}{\frac{7}{16}}$	M1	Their identified P(HHH) or correct as numerator and their identified P(B) or correct as denominator. Either numerical expression acceptable.
	$=\frac{1}{14}$, 0.0714	A1	Accept 0.071428 rounded to at least 3SF.
		2	
5(c)	$P(1H) = \frac{1}{2} \times \frac{3}{4} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{4} \times \frac{3}{4} + \frac{1}{2} \times \frac{3}{4} \times \frac{3}{4} = \frac{15}{32}$	B1	Table with correct <i>X</i> values and at least one probability. Condone any additional <i>X</i> values if probability stated as 0.
	$P(2H) = \frac{1}{2} \times \frac{1}{4} \times \frac{1}{4} + \frac{1}{2} \times \frac{3}{4} \times \frac{1}{4} + \frac{1}{2} \times \frac{3}{4} \times \frac{3}{4} = \frac{7}{32}$	B1	P(1) or P(2) correct, need not be in table, accept unsimplified.
	$\begin{array}{c c ccccccccccccccccccccccccccccccccc$	B1	4 correct probabilities linked with correct outcomes, may not be in table. Decimals correct to at least 3 SF.
	32 32 32 32 0.28125 0.46875 0.21875 0.03125		SC B1 for 4 probabilities $(0 sum to 1 \pm 0.005 with P(1) and P(2) incorrect.$
		3	

© UCLES 2022 Page 13 of 18

Question	Answer	Marks	Guidance
6(a)	$[1 - P(10, 11, 12) =]$ $1 - (^{12}C_{10} \ 0.9^{10} \ 0.1^{2} + ^{12}C_{11} \ 0.9^{11} \ 0.1^{1} + ^{12}C_{12} \ 0.9^{12} \ 0.1^{0})$	M1	One term ${}^{12}C_x p^x (1-p)^{12-x}$, for $0 < x < 12, 0 < p < 1$
	= 1 - (0.230128 + 0.376573 + 0.282430)	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.
	0.111	B1	Mark the final answer at the most accurate value, $0.1108 WWW.$
	Alternative method for Question 6(a)		
	$[P(0,1,2,3,4,5,6,7,8,9) =]$ ${}^{12}C_{0} \ 0.9^{0} \ 0.1^{12} \ +{}^{12}C_{1} \ 0.9^{1} \ 0.1^{11} \ +{}^{12}C_{2} \ 0.9^{2} \ 0.1^{10} \ +{}^{12}C_{3} \ 0.9^{3} \ 0.1^{9}$	M1	One term $^{12}C_x p^x (1-p)^{12-x}$, for $0 < x < 12, 0 < p < 1$
	$ \begin{array}{c} +^{12}C_{4}0.9^{4}0.1^{8} +^{12}C_{5} 0.9^{5}0.1^{7} +^{12}C_{6} 0.9^{6}0.1^{6} +^{12}C_{7} 0.9^{7}0.1^{5} +^{12}C_{8} \\ 0.9^{8}0.1^{4} +^{12}C_{9} 0.9^{9}0.1^{3}) \end{array} $	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer. If answer correct condone omission of any 7 of the 8 middle terms.
	0.111	B1	Final answer $0.1108 WWW.$
		3	

© UCLES 2022 Page 14 of 18

Question	Answer	Marks	Guidance
6(b)	[Mean = 80×0.9 =] 72, [Variance = $80 \times 0.9 \times 0.1$] = 7.2	B1	72 and 7.2 seen, allow unsimplified. May be seen in standardisation formula. (2.683 $\leq \sigma < 2.684$ imply correct variance).
	$P(X > 69) = P(Z > \frac{69.5 - 72}{\sqrt{7.2}})$	M1	Substituting <i>their</i> mean and \sqrt{their} variance into \pm standardisation formula (any number for 69·5), not <i>their</i> 7.2, not \sqrt{their} 2.683
	ET P	M1	Using continuity correction 69·5 or 68·5 in <i>their</i> standardisation formula.
	$[= P(Z > -0.9317) =]$ $\Phi(0.9317)$	M1	Appropriate area Φ , from final process, must be probability.
	0.824	A1	$0.8239 \leqslant p \leqslant 0.8243 \text{ WWW}.$
		5	
6(c)	np = 72, $nq = 8$ Both greater than 5, [so approximation is valid]	B1	 np, nq evaluated accurately. both np & nq referenced correctly. 5 or greater than 5 seen.
		1	/6/

Question	Answer	Marks	Guidance
7(a)	7!	M1	$\frac{7!}{b \times c!} b, c = 1,2$ $7! \times \frac{2!}{2!} \times \frac{2!}{2!} \text{ oe, no further terms present.}$
	5040	A1	
		2	

© UCLES 2022 Page 15 of 18

Question	Answer	Marks	Guidance	
7(b)	Method 1 for first 3 marks: Arrangements of 6 letters including Ls between As		n As	
	$5! \times 5 \times 2$	M1	$5! \times d$, d integer > 1	
		M1	$e! \times f \times g, e = 5, 6, 7; f = 1, 5; g = 1, 2; f \neq g,$ 1 can be implicit.	
	1200	A1		
	Method 2 for first 3 marks: Number of arrangements of LL^^^^ – number of arrangements with the Ls split by an A			
	$6! \times 2 - 5! \times 2$	$! \times 2$ M1 $6! \times 2 - h h$ an integer $1 < h < 1$		
		M1	$k-5! \times 2$ k an integer $k > 240$	
	1200	A1		
	Method 3 for first 3 marks: Alternative approaches to Method 1			
	$^{\wedge}A \wedge ^{\wedge} \wedge ^{\wedge}A ^{5}P_{1} \times ^{1}P_{1} \times ^{5}P_{5} \times ^{1}P_{1} = 600$	M1	LL treated as a single unit.	
		M1		
	1200	A1	1.5	

© UCLES 2022 Page 16 of 18

Question	Answer	Marks	Guidance
7(b)	Final 2 marks of Question 7(b)		
	[Total number of arrangements =] $\left[\frac{9!}{2!2!}\right]$ = $\left[\frac{9!}{2!2!}\right]$ = $\left[\frac{9!}{2!2!}\right]$ = $\left[\frac{9!}{2!2!}\right]$	B1	Accept unsimplified. May be seen as denominator of probability.
	Probability = $\frac{1200}{90720}$, $\frac{5}{378}$, 0.0132	B1 FT	their 1200 their 90720 unsimplified B1 FT if their 1200 and their 90720 supported by work in this part.
		5	

© UCLES 2022 Page 17 of 18

Question	Answer	Marks	Guidance
7(c)	Method 1: Scenarios identified Both As and Ls removed	•	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	1 correct, identified outcome/value for A, AL or AAL scenario, accept unsimplified ${}^5C_{5-x}$ cannot be used in place of 5C_x
	$AAL_{}$ ${}^{5}C_{2} = 10$	M1	Add 4 values of appropriate scenarios, no incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations.
	[Total =] 35	A1	Value stated WWW.
	Method 2: 1 A fixed, 1 L removed No other scenarios can be present anywhere in solution		
	$A \wedge \wedge \wedge \wedge ^7C_4$	M1	$^{7}C_h$, $3 \leqslant h \leqslant 5$
		B1	⁷ C ₄ oe, no other terms, scenario identified.
	[Total =] 35	A1	Value stated.
	[Total =] 35 Method 3: 1 A fixed, both Ls removed	A1	Value stated.
	Method 3: 1 A fixed, both Ls removed $A \land \land \land \land = {}^{6}C_{4} = 15$ $A L \land \land \land = {}^{6}C_{3} = 20$	A1 B1	Value stated. Correct outcome/value for 1 identified scenario, accept unsimplified. WWW
	Method 3: 1 A fixed, both Ls removed $A \land \land \land \land = {}^{6}C_{4} = 15$		Correct outcome/value for 1 identified scenario, accept
	Method 3: 1 A fixed, both Ls removed $A \land \land \land \land = {}^{6}C_{4} = 15$ $A L \land \land \land = {}^{6}C_{3} = 20$	B1	Correct outcome/value for 1 identified scenario, accept unsimplified. WWW Add 2 values of appropriate scenarios, no incorrect scenarios, no repeated scenarios, accept unsimplified,

© UCLES 2022 Page 18 of 18

Cambridge International AS & A Level

MATHEMATICS 9709/53

Paper 5 Probability & Statistics 1

October/November 2022

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2022 [Turn over

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 16

	Mathematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

© UCLES 2022 Page 3 of 16

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2022 Page 4 of 16

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2022 Page 5 of 16

Question	Answer	Marks	Guidance
1	$\sum x - 50 \times 20 = 35; \sum x = 1035$ or $\bar{x} = \frac{35}{50} + 20 = \frac{1035}{50} [= 20.7]$	B1	Correct value for $\sum x$ or \overline{x} .
	$\frac{25036}{50} - \left(\frac{\sum x}{50}\right)^2 = \frac{25036}{50} - \left(\frac{1035}{50}\right)^2$	M1	$\frac{25036}{50} - \left(their \left(\frac{\sum x}{50}\right)^2\right)$
	72.23	A1	Exact answer only SC B1 for 72.23 with no substitution in formula.
		3	

Question	Answer	Marks	Guidance
2	Mean = $80 \times 0.32 = 25.6$, var = $80 \times 0.32 \times 0.68 = 17.408$	B1	25.6 and 17.4[08] seen, allow unsimplified. 4.172 implies correct variance.
	$P(X < 20) = P(Z < \frac{19.5 - 25.6}{\sqrt{17.408}}) = P(Z < -1.462)$	M1	Substituting <i>their</i> 25.6 and 17.408 into \pm standardisation formula (any number for 19.5), not σ^2 , $\sqrt{\sigma}$.
		M1	Using continuity correction 19·5 or 20·5 in <i>their</i> standardisation formula.
	$= [1 - \Phi(1.462)] = 1 - 0.9282$	M1	Appropriate area Φ , from final process, must be probability. (Expect final ans < 0.5). Note: the correct final answer may imply M1 from use of calculator.
	0.0718	A1	$0.0718 \leqslant p \leqslant 0.0719$
		5	

© UCLES 2022 Page 6 of 16

Question	Answer	Marks	Guidance
3(a)	Cumulative frequency graph 240 200 160 August 120 40 40 10 20 10 20 30 40 Time taken (t minutes) 280 60	M1 A1	At least 3 points plotted accurately at class upper end points: (20,32), (30, 66), (35, 112), (40, 178), (50, 228), (60, 250). Linear cf scale 0 ≤ cf ≤ 250 and linear time scale 0 ≤ time ≤ 60 with at least 3 values identified on each. All points plotted correct, curve drawn (within tolerance) and joined to (0,0). Axes labelled cumulative frequency (cf), time (t) and minutes (min or m) − or a suitable title. Axes can be the other way round.
		2	
3(b)	Line drawn from 150 on cf axis to meet graph at about t =38 minutes	B1 FT	Must be an increasing cf graph with correct upper bounds. Use of graph must be seen. Expect an answer in range 37 ≤ t ≤ 39 for a correct graph
		1	

© UCLES 2022 Page 7 of 16

Question	Answer	Marks	Guidance
3(c)	[Frequencies] [32] 34 46 66 50 22	B1	May be unsimplified and/or in variance calculation.
	[Midpoints] 10 25 32.5 37.5 45 55	M1	At least 5 correct midpoints seen, may be unsimplified.
	[Variance] = $\frac{32 \times 10^2 + 34 \times 25^2 + 46 \times 32.5^2 + 66 \times 37.5^2 + 50 \times 45^2 + 22 \times 55^2}{250} - 34.4^2$ $[= \frac{333650}{250} - 34.4^2 = 151.24]$	M1	Correct unsimplified Variance formula with <i>their</i> midpoints and <i>their</i> frequencies for var or sd. (– mean ² included)
	[Sd =] 12.3	A1	Awrt WWW SC B1 for 12.3 if second M1 not awarded.
		4	

© UCLES 2022 Page 8 of 16

Question	Answer	Marks	Guidance
4(a)	Method 1: Scenarios identified		
	[no of ways for score of 2 are] 222, 211, 212, 221, 122, 112, 121 [Total options = 64]	B1	7 correct scenarios identified, no incorrect.
	[So P(X = 2) =] $\frac{7}{4 \times 4 \times 4} = \frac{7}{64}$	M1	$\frac{a}{4 \times 4 \times 4}$, $a = their$ number of correct identified scenarios > 4
		A1	Approach identified, WWW.
	Method 2: P(2 on all spinners) + P(2 on two spinners and 1 on one spi	inner) + P(2 on one spinner and 1 on two spinners)
	$\left[\left(\frac{1}{4} \right)^{3} + {}^{3}C_{2} \left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \right) + {}^{3}C_{1} \left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \right) \right]$	B1	$\left(\frac{1}{4}\right)^{3} + {}^{3}C_{2}\left(or^{3}C_{1}\right)\left(\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4}\right) + d , 0 < d < 1$
		M1	$\left(\frac{1}{4}\right)^3 + e\left(\frac{1}{4}\right)^3 + f\left(\frac{1}{4}\right)^3 \ 1 < e < 5 \text{ and } 1 < f < 5$
	$[\text{So P}(X=2)=] = \frac{7}{64}$	A1	Approach identified, WWW.

© UCLES 2022 Page 9 of 16

Question	Answer	Marks	Guidance
	Method 3: P(1 or 2 on each spinner) – P(1 on all spinners)		
	$\left(\frac{1}{2}\right)^3 - \left(\frac{1}{4}\right)^3$	B1	$\left(\frac{1}{2}\right)^3 - b \text{ seen, } 0 < b < 1$
	TPA	M1	$\left(\frac{1}{2}\right)^3 - c^3, 0 < c < \frac{1}{2}$
	[So $P(X=2) = \frac{7}{64}$	A1	Approach identified, WWW.
		3	
4(b)	$P(X=1) = \frac{1}{64}$	B1	P(X = 1) or $P(X = 4)$ correct. Condone answers not in probability distribution table if clearly identified.
	$P(X=4) = \left[1 - \frac{1}{64} - \frac{7}{64} - \frac{19}{64} = \right] \frac{37}{64}$	B1 FT	All 4 probabilities summing to 1.
		2	
4(c)	$P(Y=6) = \left[\left(\frac{3}{4} \right)^5 \times \frac{1}{4} = \right] 0.0593, \frac{243}{4096}$	B1	Accept 0.059326 to 4 or more SF.
	arpi e	1	

© UCLES 2022 Page 10 of 16

PUBLISHED

Question	Answer	Marks	Guidance
4(d)	$\left(\frac{3}{4}\right)^4$	M1	$\left(\frac{3}{4}\right)^g$, $g = 4, 5$ or p^4 where 0
	$=\frac{81}{256}$, 0.316	A1	Accept 0.316406to 4 or more SF.
	Alternative method for Question 4(d)		
	$P(Y>4) = 1 - P(Y \le 4) = 1 - \left(\frac{1}{4} + \frac{3}{4} \times \frac{1}{4} + \left(\frac{3}{4}\right)^2 \times \frac{1}{4} + \left(\frac{3}{4}\right)^3 \times \frac{1}{4}\right)$ $\left[= 1 - \frac{175}{256} \right]$	M1	Correct or $1 - \left(\frac{1}{4} + \frac{3}{4} \times \frac{1}{4} + \left(\frac{3}{4}\right)^2 \times \frac{1}{4} + \left(\frac{3}{4}\right)^3 \times \frac{1}{4} + \left(\frac{3}{4}\right)^4\right)$ or $1 - \left(p + qp + q^2p + q^3p\right)$ where $0 and q = 1 - p$
	$=\frac{81}{256}$, 0.316	A1	Accept 0.316406to 4 or more SF.
		2	

© UCLES 2022 Page 11 of 16

Question	Answer	Marks	Guidance
5(a)	$[P(0, 1, 2) =] {}^{10}C_0 \ 0.1^0 \ 0.9^{10} \ + {}^{10}C_1 \ 0.1^1 \ 0.9^9 \ + {}^{10}C_2 \ 0.1^2 \ 0.9^8$	M1	One term ${}^{10}C_x p^x (1-p)^{10-x}, 0$
	= 0.348678+0.38742+0.19371	A1	Correct expression, accept unsimplified.
	0.930	B1	$0.9298 \leqslant p \leqslant 0.9303$
	Alternative method for Question 5(a)		
	$[1 - P(3, 4, 5, 6, 7, 8, 9, 10) = 1 - ({}^{10}C_3 \ 0.9^7 \ 0.1^3 \ + {}^{10}C_4 \ 0.9^6 \ 0.1^4 \ + {}^{10}C_5 $ $0.9^5 \ 0.1^5 \ + {}^{10}C_6 \ 0.9^4 \ 0.1^6 \ + {}^{10}C_7 \ 0.9^3 \ 0.1^7 \ + {}^{10}C_8 \ 0.9^2 \ 0.1^8 \ + {}^{10}C_9 \ 0.9^1 \ 0.1^9 $ $+ {}^{10}C_{10} \ 0.9^0 \ 0.1^{10})$	M1	One term ${}^{10}C_x p^x (1-p)^{10-x}$, 0
		A1	Correct expression, accept unsimplified.
	0.930	B1	$0.9298 \le p \le 0.9303$
		3	
5(b)	$[P(X > 1.11) =]P(Z > \frac{1.11 - 1.04}{0.06}) = P(Z > 1.167)$	M1	1.11, 1.04 and 0.06 substituted into \pm Standardisation formula, no continuity correction not 0.06^2 or $\sqrt{0.06}$
	=1-0.8784	M1	1- their 0.8784 as final answer, must be probability. (Expect final ans <0.5).
	0.122	A1	$0.1216 \le p \le 0.122$ SC M0 M1 B1 for 0.122 with no standardisation formula.
		3	

© UCLES 2022 Page 12 of 16

Question	Answer	Marks	Guidance
5(c)	$[P(X < w) = P(Z < \frac{w - 1.04}{0.06}) = 0.81]$	B1	$0.8775 < z \le 0.878 \text{ or } -0.878 \le z < -0.8775 \text{ seen.}$
	$\frac{w - 1.04}{0.06} = 0.878$	M1	1.04 and 0.06 substituted in \pm standardisation formula, no continuity correction, not σ^2 , $\sqrt{\sigma}$, equated to a <i>z</i> -value.
	w = 1.09	A1	$1.09 \leqslant w \leqslant 1.093$
	ATPA	3	

Question	Answer	Marks	Guidance
6(a)	9! 2!2!	M1	$\frac{h!}{2 \times j!}$, $h = 7, 8, 9; j = 1, 2$
	90720	A1	
		2	
6(b)	Arrangements with 5 letters between As + Arrangements with 6 letter	rs between	As + Arrangements with 7 letters between As
	With gap of 5: $\frac{7!}{2!} \times 3 = 7560$	M1	$\frac{7!}{2!} \times k$, k positive integer $1 < k < 7$
	With gap of 6: $\frac{7!}{2!} \times 2 = 5040$] With gap of 7: $\frac{7!}{2!} \times 1 = 2520$]	M1	Add their no of ways for 3 identified correct scenarios, no additional incorrect scenarios, accept unsimplified.
	[Total no = $\frac{7!}{2!} \times 6 =$] 15120	A1	
		3	

© UCLES 2022 Page 13 of 16

Question	Answer	Marks	Guidance
6(c)	Method 1: Summing number of ways		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	Correct no of ways for 4 correctly identified scenarios, accept unsimplified.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Add no of ways for 5 or 6 identified correct scenarios, no additional incorrect scenarios, no repeated scenarios, accept unsimplified.
	[Total no of ways not containing more Ts than As =] = 40+10+5+20+10+1 [=86]	A1	All correct and added
	Probability = $\frac{86}{{}^{9}C_{5}}$	M1	their 86 9C5 or their identified total accept numerator unevaluated
	$\frac{86}{126}, \frac{43}{63}, 0.683$	A1	-111
	Method 2: Subtracting no of ways with more Ts from total		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	Correct no of ways for 2 correctly identified scenarios, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations
	34. satpre	M1	Add no of ways for 2 or 3 correct scenarios and subtract from their total no of ways All correct and subtracted
	Total no of ways with more Ts than As =40 ${}^{9}C_{5} - 40 = 86$	A1	
	Probability = $\frac{86}{{}^{9}C_{5}}$	M1	$\frac{\textit{their}86}{9C5 \textit{or their identified total}} \text{accept numerator unevaluated}$

© UCLES 2022 Page 14 of 16

Question	Answer	Marks	Guidance
6(c)	$\frac{43}{63}$, 0.683	A1	
		5	

Question	Answer	Marks	Guidance
7(a)	$[P(SR TR) + P(SW TR) =] \frac{3}{8} \times \frac{2}{7} + \frac{5}{8} \times \frac{3}{7}$	M1	$\frac{3}{8} \times \frac{2}{7} + k$ or $l + \frac{5}{8} \times \frac{3}{7}$ $0 < k, l < 1$
	$=\frac{21}{56},\frac{3}{8},0.375$	A1	SC B1 for $\frac{3}{8}$ with no explanation.
		2	
7(b)	[RRWR, WRRR, WRWR] $\frac{3}{8} \times \frac{2}{7} \times \frac{5}{6} \times \frac{1}{5} + \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} \times \frac{1}{5} + \frac{5}{8} \times \frac{3}{7} \times \frac{4}{6} \times \frac{2}{5}$	M1	$\frac{m}{8} \times \frac{n}{7} \times \frac{o}{6} \times \frac{q}{5} 1 \leqslant m, n, o, q \leqslant 5, \ m \neq n \neq o \neq q$
	$\left[= \frac{1}{56} + \frac{1}{56} + \frac{1}{14} \right]$	A1	Probability for one scenario correct, accept unsimplified.
	56 56 14	M1	Adding probabilities for 3 correct scenarios and no incorrect.
	$=\frac{180}{1680},\frac{3}{28},0.107$	A1	Or 0.1071428 to 4SF or better. SC B1 for 3/28 with inadequate explanation.
		4	

© UCLES 2022 Page 15 of 16

Question	Answer	Marks	Guidance
7(c)	[P(S first disc R T2) =] $\frac{\frac{30}{1680}}{\frac{3}{28}} = \frac{\frac{1}{56}}{\frac{3}{28}}$	M1	$\frac{their P(RRWR)or \frac{3}{8} \times \frac{2}{7} \times \frac{5}{6} \times \frac{1}{5}}{their 7(\mathbf{b}) - must be a prob or \frac{3}{28}}$
	$\frac{1}{6}$, 0.167	A1	
		2	

Cambridge International AS & A Level

MATHEMATICS 9709/51

Paper 5 Probability & Statistics 1

May/June 2022

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

© UCLES 2022 [Turn over

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 15

Ma	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

© UCLES 2022 Page 3 of 15

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2022 Page 4 of 15

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2022 Page 5 of 15

Question	Answer	Marks	Guidance
1(a)	5!	M1	k! where $k = 5$, 6 or 7 Condone × 1 OE
	120	A1	
		2	
1(b)	[Total no of ways =] $\frac{8!}{2!3!}$ [= 3360]	M1	$\frac{8!}{a!b!}$, $a = 1, 2$ $b = 1, 3$ $a \neq b$
	[With 3Es together =] $\frac{6!}{2!}$ [= 360]	M1	$\frac{6!}{c!}$, $c = 1,2$ seen in an addition/subtraction
	[With 3Es not together] = $3360 - 360$	M1	$\frac{8!}{d!e!} - \frac{6!}{f!}$ where $d, f = 1, 2 \& e = 1, 3$
	3000	A1	
		4	

Question	Answer	Marks	Guidance
2(a)	$^{12}\text{C}_4 \times 2$	M1	${}^{g}C_{4} \times h$ $g = 12, 13, h = 1,2$
	990	A1	
	Alternative method for question 2(a)		
	[total – both on – neither on] ${}^{14}C_5 - ({}^{12}C_3 + {}^{12}C_5) = [2002 - 220 - 792]$	M1	${}^{k}C_{5} - ({}^{a}C_{3} + {}^{a}C_{5})$ a = 12, 13 and k = 13, 14
	990	A1	
		2	
2(b)	[Mrs Lan plus] $2W \ 2M {}^{7}C_{2} \times {}^{6}C_{2} = 315$ $3W \ 1M {}^{7}C_{3} \times {}^{6}C_{1} = 210$ $4W {}^{7}C_{4} = 35$	M1	$^{7}C_{r} \times {}^{6}C_{4-r}$ for $r = 2, 3$ or 4
		B1	Outcome for one identifiable scenario correct, accept unevaluated
		M1	Add outcomes for 3 identifiable correct scenarios Note: if scenarios not labelled, they may be identified by seeing ${}^{7}C_{r} \times {}^{6}C_{s} r + s = 4$ to imply r women and s men for both B & M marks only
	[Total =] 560	A1	
		4	

© UCLES 2022 Page 7 of 15

Question						Aı	er	Marks	Guidance
3(a)	Class width	20	10	10	20	30		M1	(Frequency ÷ class width, e.g.
	Frequency density	22	72	92	15	4			$\frac{440}{20} \left(condone \frac{440}{19.5}, \frac{440}{20.5} \right)$ Accept unsimplified, may be read from graph using <i>their</i> scale
	1						PR	A1	All heights correct on graph NOT FT
	Frequency Density							B1	Bar ends at $[0,]$ 20, 30, 40, 60, 90 at axis with a horizontal linear scale with at least 3 values indicated. $0 \le \text{horizontal scale} \le 90$
90 80 70 60 90 40 30	80 70 60 50							B1	Axes labelled frequency density (fd), time (t) and minutes (mins) or in a title. Linear vertical scale, with at least 3 values indicated $0 \le \text{vertical axes} \le 92$ (condone 90 used).
								///	
		S							
	10	10 20	30	40	50 60	70	90 Time taken		
							(? minotes)	1	
								4	

© UCLES 2022 Page 8 of 15

Question	Answer	Marks	Guidance
3(b)	Midpoints 10 25 35 50 75	B1	At least 4 correct midpoints seen
	[Mean = 31.44 given] [Variance = $\frac{440 \times 10^2 + 720 \times 25^2 + 920 \times 35^2 + 300 \times 50^2 + 120 \times 75^2}{2500} - 31.44^2]$ = $\frac{44000 + 450000 + 1127000 + 750000 + 675000}{2500} - 31.44^2$ [= $\frac{3046000}{2500} - 31.44^2 = 229.9264$] Or Variance = $\frac{440(10 - 31.44)^2 + 720(25 - 31.44)^2 + 920(35 - 31.44)^2 + 300(50 - 31.44)^2 + 120(75 - 31.44)^2}{2500}$ = $\frac{202256 + 29860 + 11659 + 103342 + 227697}{2500} = \frac{574814}{2500} = 229.9264$	M1	Correct formula for variance or standard deviation (− mean² included with <i>their</i> midpoints (not upper bound, lower bound, class width, frequency density, frequency or cumulative frequency) and <i>their</i> ∑f if calculated. Condone 1 data error.
	Standard deviation = 15.2	A1	WWW, allow 15.16[3]
	4	3	
3(c)	30–40	B1	
	SatpreP.	1	
3(d)	Stays the same, data still in same intervals	B1	Frequencies unchanged
		1	

© UCLES 2022 Page 9 of 15

Question	Answer	Marks	Guidance
4(a)	$a = P(1 \text{ head}) = 0.7 \times (0.5)^3 + 0.3 \times (0.5)^3 \times 3 = \frac{1}{5}$	B1	Clear statement of unevaluated correct calculation $=\frac{1}{5}$. AG
	$b = 0.7 \times 0.5^{3} \times 3 + 0.3 \times 0.5^{3} \times 3 = \frac{3}{8}$ $c = 0.7 \times 0.5^{3} \times 3 + 0.3 \times 0.5^{3} = \frac{3}{10}$	M1	Clear statement of unevaluated calculation for either b or c
	$c = 0.7 \times 0.5^3 \times 3 + 0.3 \times 0.5^3 = \frac{3}{10}$	A1	For either b or c correct
	$\left[or c = \frac{27}{40} - b \right]$	B1 FT	their b + their $c = \frac{27}{40}$
		4	
4(b)	$\left[E(X) = \frac{3 \times 0 + 16 \times 1 + 30 \times 2 + 24 \times 3 + 7 \times 4}{80} = \right] \frac{176}{80} \text{ or } 2.2$	B1 FT	Correct or accept unsimplified calculation using <i>their</i> values for b and c seen (sum of probabilities = 1)
		1	

© UCLES 2022 Page 10 of 15

Question	Answer	Marks	Guidance					
4(c)	$[P(0, 1, 2) =]^{10}C_0 \ 0.2^0 \ 0.8^{10} + {}^{10}C_1 \ 0.2^1 \ 0.8^9 + {}^{10}C_2 \ 0.2^2 \ 0.8^8$	M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$, for $0 < x < 10, \ 0 < p < 1$					
	0.107374 + 0.268435 + 0.301989	A1	Correct expression, accept unsimplified leading to final answer					
	0.678	B1	0.677					
	Alternative method for question 4(c)							
		M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$, for $0 < x < 10, \ 0 < p < 1$					
		A1	Correct expression, accept unsimplified					
	0.678	B1	0.677					
		4						
4(d)	$0.8^6 \times 0.2 + 0.8^7 \times 0.2 = 0.0524288 + 0.041943$	M1	$p^{l} \times (1-p) + p^{m} \times (1-p), l = 6, 7$ $m = l + 1, 0$					
	0.0944	A1	$0.09437 \le p \le 0.0944$					
	12. Satura 00: C	2						

© UCLES 2022 Page 11 of 15

Question	Answer	Marks	Guidance
5(a)	$P(X<6) = P(Z<\frac{6-5.2}{1.5}) = P(Z<0.5333)$	M1	6, 5.2, 1.5 substituted into \pm standardisation formula, condone 1.5 ² , continuity correction \pm 0.5
	0.703	A1	
		2	
5(b)	$z_{1} = \frac{3-\mu}{\sigma} = -1.329$ $z_{2} = \frac{8-\mu}{\sigma} = 0.878$	B1	$1.328 < z_1 \le 1.329$ or $-1.329 \le z_1 < -1.328$
	$z_2 = \frac{8-\mu}{\sigma} = 0.878$	B1	$0.877 < z_2 \le 0.878$ or $-0.878 \le z_2 < -0.877$
	Solve to find at least one unknown: $\frac{3-\mu}{\sigma} = -1.329$ $\frac{8-\mu}{\sigma} = 0.878$	M1	Use of the \pm standardisation formula once with μ , σ , a z-value (not 0.8179, 0.7910, 0.5367, 0.5753, 0.19, 0.092 etc.) and 3 or 8, condone continuity correction but not σ^2 or $\sqrt{\sigma}$
	$\overline{\sigma} = 0.878$	M1	Use either the elimination method or the substitution method to solve their two equations in μ and σ
	$\sigma = 2.27, \mu = 6.01$	A1	$2.26 \le \sigma \le 2.27, 6.01 \le \mu \le 6.02$
	24 69'	5	

© UCLES 2022 Page 12 of 15

Question	Answer	Marks	Guidance
5(c)	$[P(Z<-1) + P(Z>1)] \Phi(1) - \Phi(-1) =$	M1	Identify 1 and –1 as the appropriate z-values.
	$= 2 - 2 \Phi(1)$ = 2 - 2 \times 0.8413	M1	Calculating the appropriate area from stated phis of z -values which must be \pm the same number
	0.3174	A1	Accept AWRT 0.317
	Number of leaves: $2000 \times 0.3174 = 634.8$ so 634 or 635	B1 FT	FT <i>their</i> 4 s.f. (or better) probability, final answer must be positive integer no approximation or rounding stated
		4	

© UCLES 2022 Page 13 of 15

Question	Answer	Marks	Guidance					
6(a)	$0.6 + 0.4 \times 0.3 = 0.72$ or $1 - 0.4 \times 0.7 = 0.72$	B1	Clear identified calculation AG					
		1						
6(b)	$0.72 \times (0.4 + 0.6 \times 0.2)$	M1	$0.72 \times u, 0 < u < 1$					
	AT PRAIL	M1	$v \times (0.4 + 0.6 \times 0.2)$, or $v \times (1 - 0.6 \times 0.8) \ 0 < v \le 1$ no additional terms SC B1 for $0.72 \times (0.4 + 0.12)$ or $0.72 \times (1 - 0.48)$					
	0.3744	A1	WWW. Condone 0.374. SC B1 for 0.3744 only					
		3						
	Alternative method for question 6(b)							
	[p(P1P2) + p(F1P1P2) + p(P1F2P2) + p(F1P1F2P2)] =	M1	Any two terms unsimplified and correct					
	$0.6 \times 0.4 + 0.4 \times 0.3 \times 0.4 + 0.6 \times 0.6 \times 0.2 + 0.4 \times 0.3 \times 0.6 \times 0.2$	M1	Summing 4 appropriate scenarios by listing or on a tree diagram SC B1 for 0.24 + 0.048 + 0.072 + 0.0144					
	0.3744	A1	WWW. Condone 0.374. SC B1 for 0.3744 only					
	4, 0'	3						
	-SatpreP	•						

© UCLES 2022 Page 14 of 15

Question	Answer	Marks	Guidance
6(c)	$P(\text{fails first or second level} \text{finishes game}) = \frac{P(\text{fails first or second level} \cap \text{finishes game})}{their(\mathbf{b})}$	M1	Either $0.6 \times 0.6 \times 0.2$ or $0.4 \times 0.3 \times 0.4$ seen Condone 0.072 or 0.048 if seen in (b)
	Numerator = $P(S SF) + P(FS S) = 0.6 \times 0.6 \times 0.2 + 0.4 \times 0.3 \times 0.4 = 0.072 + 0.048 = 0.12$	A1	Both correct accept unsimplified expression. No additional terms
	Required probability = $\frac{0.12}{their(\mathbf{b})}$	M1	Their sum of two 3-term probabilities as numerator their (b) or correct
	0.321 or $\frac{25}{78}$	A1	0.3205
		4	

Cambridge International AS & A Level

MATHEMATICS 9709/52

Paper 5 Probability & Statistics 1

May/June 2022

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

© UCLES 2022 [Turn over

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 18

Ma	Mathematics Specific Marking Principles					
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.					
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.					
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.					
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (ISW).					
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.					
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.					

© UCLES 2022 Page 3 of 18

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2022 Page 4 of 18

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2022 Page 5 of 18

Question	Answer	Marks	Guidance
1	$\sum x - \sum 200 = \sum (x - 200)$	B1	Forming a correct 3-term (linear) equation from $\sum x$, $\sum 200$ and $\sum (x-200)$. Accept $6846-200n=446$ OE. Condone 1 sign error.
	$\sum 200 = 200n$	B1	SOI
	[200n = 6846 - 446 = 6400] n = 32	B1	www
		3	

Question				Answei	r		Marks	Guidance
2(a)	x	2	3	4	5	6	B1	Table with correct <i>X</i> values and at least one probability. Condone any additional <i>X</i> values if probability stated as 0.
	p	$\frac{1}{36}$	$\frac{4}{36}$	$\frac{10}{36}$	$\frac{12}{36}$	$\frac{9}{36}$	B1	3 correct probabilities linked with correct outcomes. Accept 3 sf decimals.
		0.02778	0.1111	0.2778	0.3333	0.25	B1	2 further correct probabilities linked with correct outcomes. Accept 3 sf decimals.
					13	v	3	SC B1 for 5 probabilities $(0 that sum to 1 with less than 3 correct probabilities.$

© UCLES 2022 Page 6 of 18

Question	Answer	Marks	Guidance			
2(b)	If method FT from <i>their</i> incorrect (a), expressions for $E(X)$ and $Var(X)$ must be seen at the stage shown in bold (or less simplified) in the scheme with all probabilities ≤ 1 .					
	$\left[E(X) = \frac{1 \times 2 + 4 \times 3 + 10 \times 4 + 12 \times 5 + 9 \times 6}{36} = \right] \frac{2 + 12 + 40 + 60 + 54}{36}$	M1	Accept unsimplified expression. May be calculated in variance. FT <i>their</i> table with 4 or more probabilities summing to $0.999 \le \text{total} \le 1 \ (0 .$			
	$ \left[\operatorname{Var}(X) = \frac{1 \times 2^2 + 4 \times 3^2 + 10 \times 4^2 + 12 \times 5^2 + 9 \times 6^2}{36} - \left(their \operatorname{E}(X) \right)^2 = \right] $ $ \frac{1 \times 4 + 4 \times 9 + 10 \times 16 + 12 \times 25 + 9 \times 36}{36} - \left(their \frac{14}{3} \right)^2 $ $ \left[\frac{4 + 36 + 160 + 300 + 324}{36} - \left(their \frac{14}{3} \right)^2 \right] $	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table with 3 or more probabilities $(0 which need not sum to 1 and the calculation in bold (or less simplified) seen.$			
	$E(X) = \frac{168}{36}, \frac{14}{3}, 4.67$ $Var(X) = \frac{10}{9}, 1\frac{1}{9}, 1.11, \frac{1440}{1296}$	A1	Answers for $E(X)$ and $Var(X)$ must be identified. E(X) may be identified by correct use in Variance. Condone E, V, μ , σ^2 etc. If M0 earned SC B1 for identified correct final answers.			
		3	1.5			

© UCLES 2022 Page 7 of 18

Question Marks Guidance Answer 3(a) Median = 0.355Identified condone Q2. [IQR =] 0.366 - 0.348 $0.365 \le UQ \le 0.369 - 0.343 \le LQ \le 0.349$. Subtraction may be implied by answer. 0.018 If 0/3 scored SC B1 for figs Median = 355 IQR = 18. 3 Box-and-whisker plot on provided grid All 5 key values for B plotted accurately in standard format 3(b)using *their* scale. Labelled *B*. Check accuracy in the middle of vertical line. Company B B1 FT All 5 key values for A, FT from part 3(a), plotted in standard format accurately using their scale. Labelled A. Check accuracy in the middle of vertical line. Whiskers not through box for both, not drawn at corners of **B1** Company A boxes, single linear scale with at least 3 values stated, covering at least 0.34 to 0.38 and labelled diameter (d etc) and cm. Accept as a title. 34 35 Diameter (cm ×10-2) If both plots attempted and plot(s) not labelled, SC B1 for at least 1 fully correct set of values plotted. 3(c) A comparison in context Single comment comparing spread or central tendency in **B1** context. Must reference either diameter or pipes. Not a simple numerical comparison of statistical values such as median, range, IQR or min/max. 1

PUBLISHED

© UCLES 2022 Page 8 of 18

Question	Answer	Marks	Guidance
4(a)	$[P(1.98 < X < 2.03) =]P(\frac{1.98 - 2.02}{0.03} < z < \frac{2.03 - 2.02}{0.03})$ $[= P(-1.333 < z < 0.333)]$	M1	Use of \pm standardisation formula once with 2.02, 0.03 and either 1.98 or 2.03 substituted appropriately. Condone 0.03^2 and continuity correction ± 0.005 , not $\sqrt{0.03}$.
	$[=\Phi(0.333) - (1 - \Phi(1.333))]$ = 0.6304 + 0.9087 - 1	M1	Calculating the appropriate probability area from <i>their</i> z-values. (or $0.6304 - 0.09121$ or $(0.9087 - 0.5) + (0.6304 - 0.5)$ etc)
	0.539	A1	$0.539 \leqslant z < 0.5395$ Only dependent upon 2nd M mark. If M0 scored SC B1 for $0.539 \leqslant z < 0.5395$.
		3	
4(b)	$[P(X>2.6) = \frac{134}{5000} = 0.0268]$ $[P(X<2.6) = 1 - 0.0268 =] 0.9732$	B1	$0.9732 \text{ or } \frac{4866}{5000} \text{ or } \frac{2433}{2500} \text{ seen.}$
	$\frac{2.6-2.55}{\sigma} = 1.93$	M1	Use of ±standardisation formula with 2.6 and 2.55 substituted, no σ^2 , $\sqrt{\sigma}$ or continuity correction.
	2	M1	<i>Their</i> standardisation formula with values substituted equated to z -value which rounds to ± 1.93 .
	$\sigma = 0.0259$	A1	AWRT 0.0259 or $\frac{5}{193}$. If M0 earned, SC B1 for correct final answer.
		4	

© UCLES 2022 Page 9 of 18

Question	Answer	Marks	Guidance
5(a)	$ [P(10, 11, 12) =] $ $ {}^{12}C_{10}0.72^{10}0.28^{2} + {}^{12}C_{11}0.72^{11}0.28^{1} + {}^{12}C_{12}0.72^{12}0.28^{0} $	M1	One term ${}^{12}C_x p^x (1-p)^{12-x}$, for $0 < x < 12$, $0 .$
	= 0.193725 + 0.0905726 + 0.0194084	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.
	0.304	B1	Final answer $0.3036 .$
	Alternative method for question 5(a)		
	$ [1 - P(0,1,2,3,4,5,6,7,8,9) =] $ $ 1 - (^{12}C_0 0.72^0 0.28^{12} + ^{12}C_1 0.72^1 0.28^{11} + ^{12}C_2 0.72^2 0.28^{10} +$	M1	One term $^{12}C_x p^x (1-p)^{12-x}$, for $0 < x < 12, 0 < p < 1$.
	$^{12}C_{3}0.72^{3}0.28^{9} + ^{12}C_{4}0.72^{4}0.28^{8} + ^{12}C_{5}0.72^{5}0.28^{7} + \\ ^{12}C_{6}0.72^{6}0.28^{6} + ^{12}C_{7}0.72^{7}0.28^{5} + ^{12}C_{8}0.72^{8}0.28^{4} + \\ ^{12}C_{9}0.72^{9}0.28^{3})$	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.
	0.304	B1	Final answer $0.3036 .$
		3	
5(b)	Mean = $[0.52 \times 90 =]46.8$, var = $[0.52 \times 0.48 \times 90] = 22.464$	B1	46.8 and 22.464 or 22.46 seen, allow unsimplified, $(4.739 < \sigma \le 4.740 \text{ imply correct variance}).$
	$[P(X<40)=] P\left(z<\frac{39.5-46.8}{\sqrt{22.464}}\right)$	M1	Substituting <i>their</i> mean and <i>their</i> variance into \pm standardisation formula (any number for 39.5), not σ^2 , $\sqrt{\sigma}$.
	$[P(X < 40) =] P\left(z < \frac{1}{\sqrt{22.464}}\right)$	M1	Using continuity correction 39.5 or 40.5 in <i>their</i> standardisation formula.
	= [P(Z < -1.540)] = 1 - 0.9382	M1	Appropriate area Φ , from final process, must be probability.
	0.0618	A1	$0.06175 \le p \le 0.0618$
		5	

© UCLES 2022 Page 10 of 18

Question	Answer	Marks	Guidance
6(a)	$\left[\frac{9!}{2!2!} = \right] 90720$	B1	
		1	
6(b)	Method 1 Arrangements Cs at ends – Arrangements Cs at ends and Os t	ogether	
	[Os not together =] $\frac{7!}{2!}$ - 6! [= 2520 – 720]	M1	$\frac{w!}{2!} - y, w = 6, 7 y \text{ an integer.}$ Condone $2 \times \left(\frac{w!}{2!}\right) - y$.
		M1	a - 6! or $a - 720$, a an integer resulting in a positive answer.
	1800	A1	
	Method 2 identified scenarios R ^ ^ ^ R		
	[Os not together =] $5! \times \frac{6 \times 5}{2!}$ =	M1	$5! \times b, b \text{ integer} > 1.$
	2!	M1	$c \times \left(\frac{6 \times 5}{2!} \text{ or } {}^{6}\text{C}_{2}\text{ or } \frac{{}^{6}P_{2}}{2!} \text{ or } 15\right)$, $c \text{ integer} > 1$.
	1800	A1	
	Satpre	3	

© UCLES 2022 Page 11 of 18

Question	Answer	Marks	Guidance			
6(c)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	Correct outcome/value for 1 identified scenario. Accept unsimplified. WWW			
		M1	Add 5 or 6 values of appropriate scenarios only, no additional incorrect scenarios, no repeated scenarios. Accept unsimplified. Condone use of permutations.			
	[Total =] 50	A1				
		3				
6(d)	Both Os in group with a C Both Os in group without a C One O in a C group, one not One O with each C $ \begin{array}{ll} 5C_2 &= 10 \\ 5C_2 \times {}^3C_2 = 30 \\ 5C_1 \times {}^4C_2 = 30 \\ ({}^5C_1 \times {}^4C_1) \div 2! = 10 \end{array} $	B1	A correct scenario calculated accurately. Accept unsimplified.			
		M1	Add 3 or 4 correct scenario values, no incorrect scenarios, accept repeated scenarios. Accept unsimplified.			
	[Total =] 80	A1				
	Alternative method for question 6(d)					
	CCO O^^ ^^ = ${}^5C_2 = 10$ CC^ O^^ O^^ = ${}^5C_1 \times {}^4C_2 = 30$ CC^ OO^ ^^ = ${}^5C_1 \times {}^4C_1 = 20$	B1	A correct scenario calculated accurately. Accept unsimplified.			
	Total ways of making three groups $\frac{{}^{9}C_{6} \times {}^{6}C_{3}}{2 \times 2 \times 3} = 140$ $140 - (their 10 + their 30 + their 20)$	M1	Total subtract 2 or 3 correct scenario values, no incorrect scenarios. Accept unsimplified.			
	80	A1				
		3				

© UCLES 2022 Page 12 of 18

Question	Answer	Marks	Guidance
7(a)	YYY: $\frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} = \frac{60}{1320}, \frac{1}{22}$	M1	Either $12 \times 11 \times 10$ in denominator or $a \times (a-1) \times (a-2)$, $a = 5, 4, 3$ in numerator seen in at least one expression.
	OOO: $\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} = \frac{24}{1320}, \frac{1}{55}$	A1	One expression $\frac{1}{12} \times \frac{1}{11} \times \frac{1}{10}$, $a = 5, 4, 3$ (consistent in
	RRR: $\frac{3}{12} \times \frac{2}{11} \times \frac{1}{10} = \frac{6}{1320}, \frac{1}{220}$	3/2	expression). Correct order of values in the numerator is essential.
		M1	$\frac{12 \times d \times e + 12 \times d \times e + 12 \times d \times e}{12 \times d \times e + 12 \times d \times e}, \text{ either } d = 11, e = 10 \text{ or } d = 12, e = 12.$
			Condone $\frac{1}{22} + \frac{1}{55} + \frac{1}{220}$ OE
	$[Total =] \frac{90}{1320}, \frac{3}{44}, 0.0682$	A1	0.06818. Dependent only upon the second M mark.

© UCLES 2022 Page 13 of 18

Question	Answer	Marks	Guidance
7(a)	Alternative method for question 7(a)		
	YYY: $\frac{{}^{5}C_{3}}{{}^{12}C_{3}} = \frac{10}{220}, \frac{1}{22}$	M1	Either 12 C ₃ in denominator or a C ₃ in numerator seen in at least one expression.
	OOO: $\frac{{}^{4}C_{3}}{{}^{12}C_{3}} = \frac{4}{220}, \frac{1}{55}$ RRR: $\frac{{}^{3}C_{3}}{{}^{12}C_{3}} = \frac{1}{220}$	A1	One expression $\frac{{}^{a}C_{3}}{{}^{12}C_{3}}$ $a = 5, 4, 3$
	RRR: $\frac{3}{12}C_3 = \frac{3}{220}$	M1	$\frac{{}^{5}C_{3}}{{}^{12}C_{3}} + \frac{{}^{4}C_{3}}{{}^{12}C_{3}} + \frac{{}^{3}C_{3}}{{}^{12}C_{3}}$ Condone $\frac{1}{22} + \frac{1}{55} + \frac{1}{220}$ OE
	$[Total =] \frac{90}{1320}, \frac{3}{44}, 0.0682$	A1	0.06818. Dependent only upon the second M mark.
		4	
7(b)	$[P(YYY \mid all \text{ same colour}) =] \frac{60}{1320} \div \frac{90}{1320}$	M1	their P(YYY) or $\frac{60}{1320}$ or $\frac{1}{22}$ their 7(a) or $\frac{90}{1320}$ or $\frac{3}{44}$
	$\frac{2}{3}$, 0.667	A1	OE
		2	

© UCLES 2022 Page 14 of 18

	1 022101122						
Question	Answer	Marks	Guidance				
7(c)	In each method, the M mark requires the scenarios to be identifiable. This may be implied by a list of scenarios and then the calculations which will be assumed to be in the same order. A correct value/expression will be condoned as identifying the connected scenario.						
	Method 1						
	$[1 - \text{no orange} =]1 - \frac{8}{12} \times \frac{7}{11} \times \frac{6}{10} \text{ or } 1 - \frac{{}^{8}C_{3}}{{}^{12}C_{3}} = 1 - \frac{14}{55}$	B1	$\frac{8}{12} \times \frac{7}{11} \times \frac{6}{10}$ or $\frac{{}^{8}C_{3}}{{}^{12}C_{3}}$ seen, condone $\frac{336}{1320}$ or $\frac{56}{220}$ only, not OE.				
		M1	$1 - \frac{f}{12} \times \frac{g}{d} \times \frac{h}{e}$ Either $d = 11$, $e = 10$ or $d = 12$, $e = 12$				
			or $1 - \frac{{}^{8}C_{3}}{{}^{12}C_{3}}$. Condone $1 - \frac{14}{55}$ OE (not $\frac{41}{55}$).				
	<u>41</u> 55	A1	$0.745 \le p \le 0.74545$ If M0 scored SC B1 $0.745 \le p \le 0.74545$.				

© UCLES 2022 Page 15 of 18

Question	Answer	Marks	Guidance			
7(c)	Method 2					
	$\left(\frac{4}{3} \times \frac{3}{2} \times \frac{2}{4} + \frac{4}{3} \times \frac{5}{3} \times \frac{4}{4} + \right)$	B1	P(1 O)or P(2 O) correct, accept unsimplified.			
	$P(1 O) = \begin{pmatrix} \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} + \frac{4}{12} \times \frac{5}{11} \times \frac{4}{10} + \\ 2 \times \frac{4}{12} \times \frac{5}{11} \times \frac{3}{10} \end{pmatrix} \times 3 = \frac{672}{1320}$	M1	3 correct scenarios added, with at least one 3-term product of form $\frac{f}{12} \times \frac{g}{d} \times \frac{h}{e}$ seen, either $d = 11$, $e = 10$ or $d = 12$, $e = 12$.			
	$P(2O) = \frac{4}{12} \times \frac{3}{11} \times \frac{8}{10} \times 3 = \frac{288}{1320}$ $P(3O) = \frac{24}{1320}$	34				
	[Total =] $\frac{984}{1320} = \frac{41}{55}$, 0.745	A1	$0.745 \le p \le 0.74545$ If M0 scored SC B1 $0.745 \le p \le 0.74545$.			
	Method 3					
	O Y R = ${}^{4}C_{1} \times {}^{5}C_{1} \times {}^{3}C_{1} = 60$ O R R = ${}^{4}C_{1} \times {}^{3}C_{2} = 12$ O Y Y = ${}^{4}C_{1} \times {}^{5}C_{2} = 40$	B1	Number of ways either 1 or 2 orange sweets obtained correctly (112 or 48). Accept unsimplified Note ${}^4C_1 \times {}^8C_2 = 112$ or ${}^4C_2 \times {}^8C_1 = 48$ are correct alternatives.			
$O Y Y = C_1 \times C_2 = -40$ $O O Y = {}^{4}C_{2} \times {}^{5}C_{1} = 30$ $O O R = {}^{4}C_{2} \times {}^{3}C_{1} = 18$ $O O O = {}^{4}C_{3} = 4$ $Total = 164$ $Prob = \frac{164}{{}^{12}C_{3}}$	M1	3 correct scenarios (1, 2 or 3 orange sweets) added on numerator, denominator $^{12}\mathrm{C}_3$				
	$\frac{984}{1320} = \frac{41}{55}, 0.745$	A1	$0.745 \leqslant p \leqslant 0.74545$ If M0 scored SC B1 $0.745 \leqslant p \leqslant 0.74545$.			

© UCLES 2022 Page 16 of 18

Question	Answer	Marks	Guidance
7(c)	Method 4		
	$P(R R O) = \frac{3}{12} \times \frac{2}{11} \times \frac{4}{10} = \frac{1}{55}$	B1	$P(R ^ ^) = \frac{17}{110}$ or $P(Y ^ ^) = \frac{17}{66}$. Accept unsimplified.
	$P(R O) = \frac{3}{12} \times \frac{4}{11} = \frac{1}{11}$	M1	3 correct scenarios added, with at least one 3-term product of
	$P(R Y O) = \frac{3}{12} \times \frac{5}{11} \times \frac{4}{10} = \frac{1}{22}$		form $\frac{f}{12} \times \frac{g}{d} \times \frac{h}{e}$ seen, either $d = 11$, $e = 10$ or $d = 12$, $e = 12$.
	$P(O) = \frac{4}{12} = \frac{1}{3}$		
	$P(Y R O) = \frac{5}{12} \times \frac{3}{11} \times \frac{4}{10} = \frac{1}{22}$		
	$P(Y O) = \frac{5}{12} \times \frac{4}{11} = \frac{5}{33}$		
	$P(Y Y O) = \frac{5}{12} \times \frac{4}{11} \times \frac{4}{10} = \frac{2}{33}$		
	$\frac{984}{1320} = \frac{41}{55}, 0.745$	A1	$0.745 \le p \le 0.74545$ If M0 scored SC B1 0.745 $\le p \le 0.74545$.

© UCLES 2022 Page 17 of 18

Question	Answer	Marks	Guidance
7(c)	Method 5		
	$P(O) = \frac{4}{12} = \frac{1}{3}$		$P(^{\circ}O) = \frac{8}{33} \text{ or } P(^{\circ}O) = \frac{28}{165}. \text{ Accept unsimplified.}$
	$P(^{\circ}O) = \frac{8}{12} \times \frac{4}{11} = \frac{8}{33}$ $P(^{\circ}O) = \frac{8}{12} \times \frac{7}{11} \times \frac{4}{10} = \frac{28}{165}$	M1	3 correct scenarios added, with at least one 3-term product of form $\frac{f}{12} \times \frac{g}{d} \times \frac{h}{e}$ seen, either $d = 11$, $e = 10$ or $d = 12$, $e = 12$ with correct numerator.
	$\frac{984}{1320} = \frac{41}{55}, 0.745$		$0.745 \le p \le 0.74545$ If M0 scored SC B1 $0.745 \le p \le 0.74545$.
		3	

© UCLES 2022 Page 18 of 18

Cambridge International AS & A Level

MATHEMATICS 9709/53

Paper 5 Probability & Statistics 1

May/June 2022

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 14

Matl	nsematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (ISW).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

© UCLES 2022 Page 3 of 14

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column.
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2022 Page 4 of 14

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of

a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2022 Page 5 of 14

Question	Answer	Marks	Guidance
1(a)	Cumulative frequency (cf) graph	M1	At least 3 points plotted accurately at class upper end points (25,16) (50,44) (75,86) (100,104) (150, 132) (200, 150). Linear cf scale $0 \le cf \le 150$ and linear time scale $0 \le time(mins) \le 200$ with at least 3 values identified on each axis.
	Cumulative frequency 160 140 140 200 80 60 40 25 50 75 to 100 125 150 200 Time taken (i minutes)	A1	All points plotted correctly, curve drawn (within tolerance) and joined to (0,0). Axes labelled cumulative frequency (cf), time (t) and minutes (min), or a suitable title.
		2	
1(b)	Line from cumulative frequency = 30 to meet graph at t is between 37.5 and 42	B1 FT	Not from wrong working. Must be an increasing cumulative frequency graph.
		1	

© UCLES 2022 Page 6 of 14

Question	Answer	Marks	Guidance
2(a)	$\left[\frac{123.4}{20}\right] = 6.17$	B1	Accept 6 m 17 cm, $\frac{1234}{200}$.
		1	
2(b)	$\frac{10\text{th} + 11\text{th}}{2} = \frac{5.4 + 5.5}{2} = 5.45 \text{ (m)}$	B1	Accept 5 m 45 cm.
		1	
2(c)	The mean is unduly influenced by an extreme value, 19.4.	B1	Comment must be within context.
		1	

Question	Answer						Marks	Guidance
3(a)	$k = \frac{1}{18} (4k + k + 4k + 9k = 18k = 1)$						B1	SOI
	x	-2	1	2	3		M1	Table with correct <i>x</i> values and at least one probability accurate using <i>their k</i> .
	P(<i>X</i> = <i>x</i>)	$\frac{4}{18}$	$\frac{1}{18}$	$\frac{4}{18}$	$\frac{9}{18}$	C	0.	Values need not be in order, lines may not be drawn, may be vertical, x and $P(X=x)$ may be omitted.
	satpre?							Condone any additional <i>X</i> values if probability stated as 0.
							A 1	Remaining probabilities correct.
							3	

© UCLES 2022 Page 7 of 14

Question	Answer	Marks	Guidance
3(b)	$ \left[E(X) = \frac{4 \times -2 + 1 \times 1 + 4 \times 2 + 9 \times 3}{18} = \right] \\ \frac{-8 + 1 + 8 + 27}{18} $	M1	-8k + k + 8k + 27k May be implied by use in Variance. Accept unsimplified expression. FT <i>their</i> table if probabilities sum to 1 or 0.999. SC B1 28k.
	$\left[\operatorname{Var}(X) = \frac{4 \times (-2)^2 + 1 \times 1^2 + 4 \times 2^2 + 9 \times 3^2}{18} - \left(their \mathrm{E}(X) \right)^2 = \right]$ $= \frac{16 + 1 + 16 + 81}{18} - \left(their \frac{28}{18} \right)^2$	M1	$16k + k + 16k + 81k - (their \text{mean})^2$ FT their table even if probabilities not summing to 1. Note: If table is correct, $\frac{114}{18} - (their \text{E}(X))^2 \text{M1.}$ SC B1 114k - (their \text{mean})^2.
	$E(X) = \frac{14}{9}, 1\frac{5}{9}, 1.56, Var(X) = \frac{317}{81}, 3\frac{74}{81}, 3.91$	A1	Answers for $E(X)$ and $Var(X)$ must be identified. $3.91 \le Var(X) \le 3.914$
		3	

Question	Answer	Marks	Guidance
4(a)	$\left[\left(\frac{5}{6} \right)^7 \times \frac{1}{6} = \right] 0.0465, \frac{78125}{1679616}$	B1	$0.0465 \leqslant p < 0.04652$
	"Sature"	1	

© UCLES 2022 Page 8 of 14

Question	Answer	Marks	Guidance
4(b)	$P(X < 6) = 1 - \left(\frac{5}{6}\right)^5 \text{ or } \frac{1}{6} + \left(\frac{5}{6}\right)\left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^2 \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^3 \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^4 \left(\frac{1}{6}\right)$	M1	$1 - p^n$, $0 , n = 4, 5, 6 or sum of 4, 5 or 6 terms p \times (1 - p)^n for n = 0, 1, 2, 3, 4(5).$
	$0.598, \frac{4651}{7776}$	A1	
	TPR	2	
4(c)	[Probability of total less than 4 is] $\frac{3}{36}$ or $\frac{1}{12}$	B1	SOI
	$[1 - P(0, 1, 2)]$ $= 1 - {\binom{10}{10}} \left(\frac{1}{12}\right)^{0} \left(\frac{11}{12}\right)^{10} + {^{10}C_1} \left(\frac{1}{12}\right)^{1} \left(\frac{11}{12}\right)^{9} + {^{10}C_2} \left(\frac{1}{12}\right)^{2} \left(\frac{11}{12}\right)^{8})$	M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$, for $0 < x < 10$, $0 .$
	1 - (0.418904 + 0.380822 + 0.155791)	A1 FT	Correct expression. Accept unsimplified.
	0.0445	A1	$0.04448 \leqslant p \leqslant 0.0445$
		4	

© UCLES 2022 Page 9 of 14

Question	Answer	Marks	Guidance
5(a)	$[P(142 < X < 205)] = P\left(\frac{142 - 170}{25} < z < \frac{205 - 170}{25}\right)$	M1	Use of \pm standardisation formula once substituting 170, 25 and either 142 or 205 appropriately Condone 25 ² and continuity correction ± 0.5 .
	P(-1.12 < z < 1.4)	A1	Both correct. Accept unsimplified.
	$\Phi(1.4) - (1 - \Phi(1.12)) = 0.9192 + 0.8686 - 1$	M1	Calculating the appropriate area from stated phis of <i>z</i> -values.
	0.788	A1	AWRT, not from wrong working
		4	
5(b)	P(X > 205) = 1 - 0.9192 = 0.0808	B1 FT	Correct or FT from part 5(a).
	$(0.0808 \times 0.30 + their 0.788 \times 0.24) \times 20000$	M1	Correct or their $0.0808 \times 0.30 \times k + their 0.788 \times 0.24 \times k$, k positive integer.
	[\$]4266.24	A1	4265 < income ≤ 4270, not from wrong working
		3	
5(c)	$[P(Z > \frac{w - 182}{20}) = 0.72]$	B1	$0.5828 \leqslant z \leqslant 0.583 \text{ or } -0.583 \leqslant z \leqslant -0.5828 \text{ seen.}$
	$\frac{w - 182}{20} = -0.583$	M1	182 and 20 substituted in \pm standardisation formula, no continuity correction, not σ^2 , $\sqrt{\sigma}$, equated to a z-value.
	w = 170	A1	170 ≤ w < 170.35
		3	

© UCLES 2022 Page 10 of 14

Question	Answer	Marks	Guidance
6(a)	1 st 2 nd 3 rd	B1	First and second jumps correct with probabilities and outcomes identified.
	0.3 S 0.3 S 0.7 F 0.1 S 0.3 S 0.3 S 0.7 F 0.9 F 0.1 S 0.7 F 0.9 F 0.1 S 0.9 F 0.1 S 0.9 F 0.1 S 0.9 F	B1	Third jump correct with probabilities and outcomes identified.
		2	
6(b)	SFF $0.2 \times 0.7 \times 0.9 = 0.126$ FSF $0.8 \times 0.1 \times 0.7 = 0.056$ FFS $0.8 \times 0.9 \times 0.1 = 0.072$	M1	Two or three correct 3 factor probabilities added, correct or FT from part 6(a). Accept unsimplified.
	[Total = probability of 1 success =] $0.254 \left(\frac{127}{500}\right)$	A1	Accept unsimplified.
	[Probability of at least 1 success = $1 - 0.8 \times 0.9 \times 0.9 =]0.352 \left(\frac{44}{125}\right)$	B1 FT	Accept unsimplified.
	P(exactly 1 success at least 1 success)= $\frac{their 0.254}{their 0.352}$	M1	Accept unsimplified.
	$0.722, \frac{127}{176}$	A1	0.7215
		5	

© UCLES 2022 Page 11 of 14

Question	Answer	Marks	Guidance
6(c)	$0.8 \times 0.9 \times 0.9 \times 0.1 \times 0.3 \times 0.3 = 0.005832$ [FFFSSS] $0.2 \times 0.3 \times 0.3 \times 0.7 \times 0.9 \times 0.9 = 0.010206$ [SSSFFF]	M1	$a \times b \times c \times d \times e \times f$ FT from <i>their</i> tree diagram. Either a , b and c all = 0.8 or 0.9 (at least one of each) and d , e and f all = 0.1 or 0.3 (at least one of each). Or a , b , c = 0.2 or 0.3 (at least one of each) and d , e , f = 0.7 or 0.9 (at least one of each).
	TPRA	A1	Either correct. Accept unsimplified.
	[Total =] 0.0160[38]	A1	
		3	

Question	Answer	Marks	Guidance
7(a)	$^{12}\text{C}_5 \times ^{7}\text{C}_4 \ [\times \ ^{3}\text{C}_3]$	M1	12 C _r × q, r = 3, 4, 5 q a positive integer > 1, no + or
		M1	$ \begin{array}{l} ^{12}C_s \times ^{12-s}C_t \left[\times ^{12-s-t}C_u \right] \\ s = 3, 4, 5; t = 3, 4, 5 \neq s; u = 3, 4, 5 \neq s, t \end{array} $
	Alternative method for question 7(a)		
	12! 5\x3\x4!	M1	12! ÷ by a product of three factorials.
		M1	$\frac{n!}{5!\times 3!\times 4!}$
	$[792 \times 35 =] 27720$	A1	CAO
		3	

© UCLES 2022 Page 12 of 14

Question	Answer	Marks	Guidance	
7(b)	4! (Lizo) × 6! (Kenny) × 2! (Martin) × 2! (Nantes)	M1	Product involving at least 3 of 4!, 6!, 2!, 2!	
	× 3! (orders of K, M and N)	M1	$w \times 3!$, w integer > 1.	
	414 720	A1	WWW CAO	
		3		
7(c)	7 C ₄ (adults) × 4 C ₁ × 3 C ₁	M1	$^{7}C_{4} \times b$, b integer > 1 no + or – .	
	420	A1		
		2		
7(d)	K not L ${}^5C_3 \times {}^8C_3 = 560$ L not K ${}^5C_3 \times {}^8C_3 = 560$ L and K ${}^5C_2 \times {}^8C_3 = 560$	M1	${}^{8}C_{3}(\text{or }{}^{8}P_{3}) \times c$ for one of the products or ${}^{5}C_{3}(\text{or }{}^{5}P_{3}) \times c$, positive integer >1 for first 2 products only.	
		M1	Add 2 or 3 correct scenarios only values, no additional incorrect scenarios, no repeated scenarios. Accept unsimplified.	
	[Total or Difference=] 1680	A1		
	Alternative method for question 7(d)			
	Total no of ways – neither L nor K Total = ${}^7C_4 \times {}^8C_3 = 1960$ Neither K nor L = ${}^5C_4 \times {}^8C_3 = 280$	M1	$^{8}C_{3} \times c$, c a positive integer >1.	
		M1	Subtracting the number of ways with neither from their total number of ways.	
	[Total or Difference=] 1680	A1		

© UCLES 2022 Page 13 of 14

Question	Answer	Marks	Guidance
7(d)	Alternative method for question 7(d)		
	Subtracting K and L from sum of K and L K ${}^6C_3 \times {}^8C_3 = 1120$ L ${}^6C_3 \times {}^8C_3 = 1120$ L and K ${}^5C_2 \times {}^8C_3 = 560$ $1120 + 1120 - 560 = 1680$	M1	${}^{8}C_{3} \times c$, c a positive integer >1.
		M1	Subtracting number of ways with both from sum of number of ways with K and number of ways with L.
	[Total or Difference=] 1680	A1	
	19/	3	

© UCLES 2022 Page 14 of 14

Cambridge International AS & A Level

MATHEMATICS 9709/52

Paper 5 Probability & Statistics 1

February/March 2022

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2022 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2022 Page 2 of 15

Math	Mathematics Specific Marking Principles					
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.					
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.					
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.					
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).					
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.					
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.					

© UCLES 2022 Page 3 of 15

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2022 Page 4 of 15

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2022 Page 5 of 15

Question				Ans	swer		Marks	Guidance
1(a)	X	-2	-1	0	1	2	B1	Table with correct X values and at least one probability $0 . Condone any additional X values if probability stated as 0. No repeated X values.$
	P(X)	1/16	3 16	<u>5</u> 16	$\frac{5}{16}$	2 16	B1	1
		0.0625	0.1875	0.3125	0.3125	0.125	B1	2 further correct probabilities linked with correct outcomes, may not be in table No repeated <i>X</i> values. SC if less than 3 correct probabilities seen, award SCB1 Sum of <i>their</i> probabilities, 0 X values = 1 (condone summing to 1±0·01 or better).
1(b)	$ \left[\frac{1}{16} \times -2^{2} + \frac{3}{16} \times -1^{2} \left(+\frac{5}{16} \times 0^{2} \right) + \frac{5}{16} \times 1^{2} + \frac{2}{16} \times 2^{2} - \left(\frac{1}{4}\right)^{2}\right] $ $ \frac{1 \times 4 + 3 \times 1 + 5 \times 0 + 5 \times 1 + 2 \times 4}{16} - 0.25^{2} $					$\sqrt{2^2 - \left(\frac{1}{4}\right)^2}$	M1	
		$\frac{1}{16} = \left] \frac{19}{16},$	1.1875		15	24	A1	Condone 1.188 or 1.19 WWW
							re	

© UCLES 2022 Page 6 of 15

Question	Answer	Marks	Guidance
2(a)	$[P(>2) = 1 - P(0,1,2) =]$ $1 - (^{7}C_{0} \ 0.18^{0} \ 0.82^{7} + ^{7}C_{1} \ 0.18^{1} \ 0.82^{6} + ^{7}C_{2} \ 0.18^{2} \ 0.82^{5})$	M1	One term ${}^{7}C_{x} p^{x} (1-p)^{7-x}, 0$
	= 1 - (0.249285 + 0.383048 + 0.252251) = 1 - 0.88458	A1	Correct unsimplified expression or better Condone omission of brackets if recovered
	0.115	B1	WWW. $0.115 \le p < 0.1155$ not from wrong working
		3	
2(b)	[P(at least 1 day of rain) = $1 - P(0) = 1 - (0.82)^7 = 0.7507$	B1	AWRT 0.751 seen
	[P(exactly 2 periods) =] $0.7507^2 \times (1 - 0.7507) \times 3$	M1	FT their $1 - p^7$ or their 0.7507 if identified, not 0.18, 0.82 Accept $\times^3 C_r$, r=1,2 or $\times^3 P_1$ for $\times 3$ Condone $\times 2$
	0.421	A1	Accept $0.421 \le p \le 0.4215$ SC B1 if $0/3$ scored for final answer only $0.421 \le p \le 0.4215$
		3	

© UCLES 2022 Page 7 of 15

Question			Ans	wer			Marks	Guidance
3(a)						M1	At least 4 frequency densities calculated	
	Class Width	30	15	20	10	25	A1	All heights correct on graph
	Frequency Density 0.7 2 3.4 8.6 1.8				8.6	B1	Bar ends at 0·5, 30·5, 45·5, 65.5, 75.5, 100.5	
					T		(at axis), 5 bars drawn, condone 0 in first bar $0.5 \le \text{time axis} \le 100.5$, linear scale with at least 3 values indicated.	
								Axes labelled: Frequency density (fd), time (t) and mins (or appropriate title). Linear fd scale, with at least 3 values indicated $0 \le \text{fd axis} \le 8.6$
				7//			4	
3(b)	66 – 75						B1	Condone 65.5 – 75.5
							1	
3(c)	Distribution i	s not symm	etrical				B1	Or skewed, ignore nature of skew
							1	

© UCLES 2022 Page 8 of 15

Question	Answer	Marks	Guidance
4(a)	$P(46 < X < 62) = P\left(\frac{46 - 55}{6} < Z < \frac{62 - 55}{6}\right)$	M1	46 or 62, 55 and 6 substituted into \pm standardisation formula once. Condone 6^2 and continuity correction ± 0.5
	$= P\left(-1.5 < Z < \frac{7}{6}\right)$	B1	Both standardisation values correct, accept unsimplified
		M1	Calculating the appropriate area from stated Φ s of z -values, must be probabilities.
	0.812	A1	0.8115
		4	
4(b)	$z = \pm 0.674$	B1	CAO, critical z-value
	$\frac{36-42}{\sigma} = -0.674$	M1	36 and 42 substituted in \pm standardisation formula, no continuity correction, not σ^2 , $\sqrt{\sigma}$, equated to a z-value
	$\sigma = 8.9[0]$	A1	WWW. Only dependent on M.
	2	3	
	Satpre	9.0	

© UCLES 2022 Page 9 of 15

Question	Answer	Marks	Guidance
4(c)	P(male < 46) = 1-their 0.9332 = 0.0668	M1	FT value from part (a) or Correct: $1-\Phi\left(\frac{46-55}{6}\right)$, condone continuity correction, σ^2 , $\sqrt{\sigma}$, and probability found. Condone unsupported correct value stated.
	P(female < 46) = P($Z < \frac{46-42}{their 8.90}$)[= $\Phi(0.449)$] = 0.6732	M1	46, 42 and <i>their</i> 4(b) σ (or correct σ) substituted in ±standardisation formula, condone continuity correction, σ^2 , $\sqrt{\sigma}$, and probability found Condone $\frac{4}{their8.90}$.
	$P(both) = 0.0668 \times 0.6732$	M1	Product of <i>their</i> 2 probabilities (0 < both < 1) Not 0.25 or <i>their</i> final answer to 4(a) used.
	0.0450 or 0.0449	A1	$0.0449 \le p \le 0.0450$
		4	

Question	Answer	Marks	Guidance
5(a)	5 C ₁ × 7 C ₄	M1	$^{7}C_{4} \times k$, k integer $\geqslant 1$ Condone $^{5}P_{1}$ for M1 only
	175 Satores	A1	
		2	

© UCLES 2022 Page 10 of 15

	TODEISHED		
Question	Answer	Marks	Guidance
5(b)	2B 1G 2A ${}^{3}C_{2} \times {}^{4}C_{1} \times {}^{5}C_{2} = 120$ 2B 2G 1A ${}^{3}C_{2} \times {}^{4}C_{2} \times {}^{5}C_{1} = 90$ 2B 3G ${}^{3}C_{2} \times {}^{4}C_{3} = 12$	M1	${}^{3}C_{x} \times {}^{4}C_{y} \times {}^{5}C_{z}$, $x + y + z = 5$, x,y,z integers $\geqslant 1$ Condone use of permutations for this mark
	3 B 1G 1A 3 C ₃ × 4 C ₁ × 5 C ₁ = 20	B1	2 appropriate identified outcomes correct, allow unsimplified
	$^{3}\text{C}_{3} \times ^{4}\text{C}_{2} = 6$	M1	Summing <i>their</i> values for 4 or 5 correct identified scenarios only (no repeats or additional scenarios), condone identification by unsimplified expressions
	[Total =] 248	A1	Note: Only dependent upon M marks
		4	
5(c)	$8! \times 3! \times {}^5P_2$	M1	$8! \times m$, m an integer $\geqslant 1$ Accept $8 \times 7!$ for $8!$
		M1	$3! \times n$, <i>n</i> an integer > 1
		M1	$p \times {}^{5}P_{2}, p \times {}^{5}C_{2} \times 2, p \times 20, p$ an integer > 1 If extra terms present, maximum 2/3 M marks available
	4838400	A1	Exact value required
	3	4	5/

© UCLES 2022 Page 11 of 15

Question	Answer	Marks	Guidance
6(a)	[Probability of lemon = $\frac{3}{15} = \frac{1}{5}$]	B1	0.0524288 rounded to more than 3SF if final answer
	$\left[\left(\frac{4}{5} \right)^6 \times \frac{1}{5} = \right] \frac{4096}{78125}, 0.0524$		
	TPA	1	
6(b)	$\left(1-\frac{1}{5}\right)^6$	M1	or $\left(\frac{4}{5}\right)^6$. FT their $\frac{1}{5}$ or correct. From final answer
			Condone $\left(\frac{4}{5}\right)^5 \text{ or } \left(\frac{1}{5}\right) \times \left(\frac{4}{5}\right)^5 + \left(\frac{4}{5}\right)^6$
	$\frac{4096}{15625}$, 0.262	A1	0.262144 rounded to more than 3SF
	Alternative method for question 6(b)		
	[1 - P(1,2,3,4,5,[6]) =]	M1	From final answer
	$1 - \left(\frac{1}{5} + \frac{4}{5} \times \frac{1}{5} + \left(\frac{4}{5}\right)^2 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5} + \left(\frac{4}{5}\right)^4 \times \frac{1}{5} + \left(\frac{4}{5}\right)^5 \times \frac{1}{5}\right)$		Condone omission of $\left(\frac{4}{5}\right)^5 \times \frac{1}{5}$
	$\frac{4096}{15625}$, 0.262	A1	0.262144 rounded to more than 3SF
		2	

© UCLES 2022 Page 12 of 15

Question	Answer	Marks	Guidance					
6(c)	$\frac{10}{15} \times \frac{9}{14} \times \frac{8}{13}$	M1	$\frac{a}{15} \times \frac{a-1}{14} \times \frac{a-2}{13}$, no additional terms					
	$\frac{24}{91}$, 0·264	A1	0.263736 rounded to more than 3SF					
	Alternative method for question 6(c)							
	$\frac{3}{15} \times \frac{2}{14} \times \frac{1}{13} + 3 \times \frac{3}{15} \times \frac{2}{14} \times \frac{7}{13} + 3 \times \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} + \frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}$	M1	[3Ls + 2Ls1S + 1L2Ss + 3Ss] Condone one numerator error. Condone no multiplications seen if tree diagram complete with probabilities on each branch, scenarios listed and attempt at evaluation					
	$\frac{24}{91}$, 0·264	A1	0.263736 rounded to more than 3SF					
	Alternative method for question 6(c)							
	$1 - \left(\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13} + 3 \times \frac{5}{15} \times \frac{4}{14} \times \frac{10}{13} + 3 \times \frac{5}{15} \times \frac{10}{14} \times \frac{9}{13}\right)$	M1	1 – P(3,2,1 oranges) Condone one numerator error.					
	$\frac{24}{91}$, 0·264	A1	0.263736 rounded to more than 3SF					
	Alternative method for question 6(c)							
	$\frac{^{10}\mathrm{C}_3}{^{15}\mathrm{c}_3}$	M1						
	$\frac{24}{91}$, 0·264	A1	0.263736 rounded to more than 3SF					
		2						

© UCLES 2022 Page 13 of 15

Question	Answer	Marks	Guidance
6(d)	$\frac{7}{15} \times \frac{5}{14} \times \frac{3}{13} \times 3!$	M1	All probabilities of the form: $\frac{7}{a} \times \frac{5}{b} \times \frac{3}{c}$, $13 \le a, b, c \le \underline{15}$
	AT PA	M1	$\frac{e}{f} \times \frac{g}{h} \times \frac{i}{j} \times 3! \ e,f,g,h,i,j \text{ positive integers forming}$ probabilities or 6 identical probability calculations or values added, no additional terms
	$\frac{3}{13}$, 0.231	A1	0·230769 rounded (not truncated) to more than 3SF
	Alternative method for question 6(d)		
	$\frac{{}^{3}C_{1} \times {}^{5}C_{1} \times {}^{7}C_{1}}{{}^{15}C_{3}}$	M1	$\frac{{}^{3}C_{1} \times {}^{5}C_{1} \times {}^{7}C_{1}}{k} , k \text{ integer} > 1$ Condone use of permutations
		M1	$\frac{{}^{3}\text{C}_{a} \times {}^{5}\text{C}_{b} \times {}^{7}\text{C}_{c}}{{}^{15}\text{C}_{3}} \text{, } 0 < a < 3, 0 < b < 5, 0 < c < 7,}$ Condone use of permutations
	$\frac{3}{13}$, 0.231	A1	0.230769 rounded (not truncated) to more than 3SF
		3	

© UCLES 2022 Page 14 of 15

Question	Answer	Marks	Guidance
6(e)	$\frac{\frac{7}{15} \times \frac{6}{14} \times \frac{5}{13} + \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} \times 3}{their(c)} \left[= \frac{14}{65} \div \frac{24}{91} \right]$	B1	$\frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} \times 3 \text{ seen (SSL, SLS, LSS)}$ $\mathbf{SC} \mathbf{B1} \frac{3}{65} \times 3, \frac{126}{2730} \times 3 \text{ seen}$
	SET PA	B1	$\frac{7}{15} \times \frac{6}{14} \times \frac{5}{13} \text{ seen in numerator (SSS)}$ $\mathbf{SCB1} \frac{210}{2730}, \frac{1}{13} \text{ seen in numerator}$
		M1	Fraction with <i>their</i> (c) or correct in denominator $\left(\frac{720}{2730}, \frac{24}{91}, 0.263736\right)$
	$=\frac{49}{60}$, 0.817	A1	Accept 0.816
	Alternative method for question 6(e)		
	$\frac{{}^{7}C_{2} \times {}^{3}C_{1} + {}^{7}C_{3}}{{}^{10}C_{3}}$	B1	$^{7}C_{2} \times ^{3}C_{1}$ seen (SSL, SLS, LSS) SCB1 21 × 3 seen or use of permutations
	34. satpre	B1	⁷ C ₃ seen in numerator (SSS) SCB1 35 seen in numerator or use of permutations
		M1	Fraction with ¹⁰ C ₃ or consistent with <i>their</i> numerator of 6(c) in denominator
	$=\frac{49}{60}$, 0.817	A1	Accept 0.816
		4	

© UCLES 2022 Page 15 of 15

Cambridge International AS & A Level

MATHEMATICS 9709/51

Paper 5 Probability & Statistics 1

October/November 2021

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2021 [Turn over

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 12

Ma	Mathematics Specific Marking Principles					
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.					
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.					
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.					
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).					
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.					
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.					

© UCLES 2021 Page 3 of 12

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2021 Page 4 of 12

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2021 Page 5 of 12

Question	Answer	Marks	Guidance
1(a)	$\left(\frac{3}{4}\right)^6 \frac{1}{4}$	M1	$(1-p)^6 p, 0$
	$0.0445, \frac{729}{16384}$	A1	
	TPR	2	
1(b)	$\left(\frac{3}{4}\right)^9$	M1	$\left(\frac{3}{4}\right)^n \text{ or } p^n, \ 0$
	$0.0751, \frac{19683}{262144}$	A1	
		2	

Question	Answer	Marks	Guidance
2(a)	$\left[\frac{\sum x}{40} - k = \frac{\sum (x - k)}{40}\right]$ $\frac{40 \times 34}{40} - k = \frac{520}{40}$	M1	Forms an equation involving Σx , $\Sigma(x-k)$ and k . Accept at a numeric stage with k .
	k[=34-13]=21	A1	Evaluated.
		2	

© UCLES 2021 Page 6 of 12

Question	Answer	Marks	Guidance
2(b)	Var = $\left[\frac{\sum (x-k)^2}{40} - \left(\frac{\sum (x-k)}{40}\right)^2\right] = \frac{9640}{40} - \left(\frac{520}{40}\right)^2 = [241 - 13^2 =]$	M1	Values substituted into an appropriate variance formula, accept unsimplified.
	72	A1	
	BA	2	

Question	Answer	Marks	Guidance
3	$\left[P(T B') = \frac{P(T \cap B')}{P(B')}\right]$	M1	$0.45 \times a + 0.35 \times b + 0.2[\times 1], a = 0.7, 0.3b = 0.4, 0.6$, seen anywhere.
	$P(B') = 0.45 \times 0.7 + 0.35 \times 0.4 + 0.2 \times 1$ $\left[= 0.655, \frac{131}{200} \right]$	A1	Correct, accept unsimplified.
	$P(T \cap B') = 0.35 \times 0.4 \ [= 0.14, \frac{7}{50}]$	M1	Seen as numerator or denominator of a fraction.
	$P(T \mid B') = \frac{their 0.14}{their 0.655}$	M1	Values substituted into conditional probability formula correctly. Accept unsimplified. Denominator sum of 3 two-factor probabilities (condone omission of 1 from final factor). If clearly identified, condone from incomplete denominator.
	$0.214, \frac{28}{131}$	A1	If 0 marks awarded, SC B1 0.214 WWW.
		5	

© UCLES 2021 Page 7 of 12

Question	Answer	Marks		Guidance				
4(a)	$\begin{bmatrix} x & -1 & 0 & 1 & 2 & 3 \\ p & 1 & 2 & 4 & 2 & 2 \end{bmatrix}$	B1		0	1	2	2	
	p $\frac{1}{12} = 0.0833$ $\frac{2}{12} = 0.167$ $\frac{4}{12} = 0.333$ $\frac{3}{12} = 0.25$ $\frac{2}{12} = 0.167$		- 1	-1	0	1	1	
			0	0	1	2	2	
			1	1	2	3	3	
			substi	tuted, 0	< <i>p</i> < 1.		•	obability obability stated as 0.
		B1	2 corr	ect iden	tified pr	obabilit	ies.	
		B1	All pr	obabilit	ies corre	ect (acce	ept to 3sf).
							abilities: mming to	
		3						
4(b)	$E(X) = -\frac{1}{12} + \frac{4}{12} + \frac{6}{12} + \frac{6}{12} \left[= \frac{15}{12} \right]$	M1	expre	ssion.		se in Var m to 1 ±		ccept unsimplified
	$Var(X) = \frac{1}{12} + 0 + \frac{4}{12} + \frac{12}{12} + \frac{18}{12} - \left(\frac{15}{12}\right)^2$	M1	accep	t probab	ilities n	ot sumn	ning to 1.	$eir (E(X))^2$. FT
			Condo	one $\frac{35}{12}$	$-\left(\frac{15}{12}\right)^2$	$or \frac{35}{12} -$	$\frac{25}{9}$ from	correct table.
	$\left[\frac{35}{12} - \frac{25}{16} = \right] \frac{65}{48}, 1.35$	A1	www	V				
		3						

© UCLES 2021 Page 8 of 12

Question	Answer	Marks	Guidance				
5(a)	[8! =] 40 320	B1	Evaluated, exact value only.				
		1					
5(b)	Method 1 [^^^R^^S^^]						
	$7! \times {}^{8}C_{2} \times 2$	M1	$7! \times k$ seen, k an integer > 1 .				
	GATER	M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n = 7, 8$ or $9, m$ an integer > 1 .				
	282 240	A1	Exact value only. SC B1 for final answer 282 240 WWW.				
	Method 2 [Total number of arrangements – Arrangements with R & S together]						
	$9! - 8! \times 2$	M1	9! - k, k an integer < 362880 .				
		M1	$m - 8! \times n$, m an integer > 40 320, $n = 1,2$.				
	282 240	A1	Exact value only. SC B1 for final answer 282 240 WWW.				
	3	3	•				
5(c)	${}^{9}C_{5} [\times {}^{4}C_{4}]$	M1	${}^{9}C_{x} \left[\times {}^{9-x}C_{9-x}, \right] x = 4, 5. \text{ Condone} \times 1 \text{ for } {}^{9-x}C_{9-x}.$ Condone use of P.				
	126	A1	www				
		2					

© UCLES 2021 Page 9 of 12

Question	Answer	Marks	Guidance
5(d)	[Number of ways with Raman and Sanjay together on back row =] ${}^{7}C_{3}$ [Number of ways with Raman and Sanjay together on front row =] ${}^{7}C_{2}$	M1	${}^{7}C_{x}$ seen, $x = 3$ or 2.
	[Total =] 35 + 21	M1	Summing two correct scenarios.
	56	A1	Evaluated – may be seen used in probability. If M0 scored, SC B1 for 56 WWW.
	Probability = $\frac{their 56}{their (c)} = \frac{56}{126}, \frac{4}{9}, 0.444$	B1 FT	FT <i>their</i> 56 from adding 2 or more scenarios in numerator and <i>their</i> (c) or correct as denominator.
		4	

Question	Answer			Guidance
6(a)	Rebels	Sharks		Correct stem, ignore extra values (not in reverse).
	9 8 5 7 9 6 5 4 3 2 2 0 8		B1	Correct Rebels labelled on left, leaves in order from right to left and lined up vertically, no commas.
	9 5 3 9 2 2 10	B1	Correct Sharks labelled on same diagram, leaves in order and lined up vertically, no commas.	
Key: 8 7 2 means 78 kg for Rebels and 72 kg for Sharks		B1	and 'kg' stated at least once here or in leaf headings or title.	
				SC If 2 separate diagrams drawn, SC B1 if both keys meet these criteria.
			4	

© UCLES 2021 Page 10 of 12

Question	Answer	Marks	Guidance
6(b)	Median = 84 (kg) B1		
	[UQ = 93, LQ = 80] 93 - 80	M1	$95 \leqslant UQ \leqslant 89 - 79 \leqslant LQ \leqslant 82$
	[IQR =] 13 (kg)	A1	www
		3	
6(c)	Box and whisker with end points 75 and 102	B1	Whiskers drawn to correct end points not through box, not joining at top or bottom of box.
	Median and quartiles plotted as found in (b)	B1 FT	Quartiles and median plotted as box graph.
		2	
6(d)	e.g. Average weight of Rebels is higher than average weight of Sharks	B1	Acceptable answers refer to: Range, skew, central tendency within context. E.g. range of Rebels is greater B0 . Range of weights of the rebels is greater B1 . Simple value comparison insufficient.
		1	

© UCLES 2021 Page 11 of 12

Question	Answer	Marks	Guidance
7(a)(i)	$P(X > 142) = P\left(Z > \frac{142 - 125}{24}\right)$	M1	Substitution of correct values into the \pm Standardisation formula, allow continuity correction, not σ^2 , $\sqrt{\sigma}$.
	[= P(Z > 0.7083) =]1 - 0.7604	M1	Appropriate numerical area Φ , from final process, must be probability, expect $p < 0.5$.
	0.2396	A1	$0.239 \le p \le 0.240$ to at least 3sf.
	<i>Their</i> 0.2396 × 365 [= 87.454]	M1	FT their 4sf (or better) probability.
	87 or 88	A1 FT	Final answer must be positive integer, no indication of approximation/rounding, only dependent on previous M mark. SC B1 FT for <i>their</i> 3sf probability × 365 = integer value, condone 0.24 used.
		5	
7(a)(ii)	$P(0, 1) = 0.7604^{10} + {}^{10}C_1 \times 0.2396^1 \times 0.7604^9$ [= 0.064628 + 0.20364]	M1	One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10$, any p .
		A1 FT	Correct unsimplified expression using <i>their</i> probability to at least 3sf from (a)(i) or correct.
	0.268	A1	AWRT, WWW.
	7.53+	3	
7(b)	$z = \pm 1.282$	B1	Correct value only, critical value.
	$\frac{t - 125}{24} = -1.282$	M1	Use of \pm Standardisation formula with correct values substituted, allow continuity correction, σ^2 , $\sqrt{\sigma}$, to form an equation with a <i>z</i> -value and not probability.
	t = 94.2	A1	AWRT, condone AWRT 94.3. Not dependent on B mark.
		3	

© UCLES 2021 Page 12 of 12

Cambridge International AS & A Level

MATHEMATICS 9709/52

Paper 5 Probability & Statistics 1

October/November 2021

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2021 [Turn over

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 16

Ma	athematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

© UCLES 2021 Page 3 of 16

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2021 Page 4 of 16

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2021 Page 5 of 16

PUBLISHED

Question	Answer	Marks	Guidance
1(a)	$\frac{82}{180}, \frac{41}{90}, 0.456$	B1	
		1	
1(b)	$\left[P(M D) = \frac{P(M \cap D)}{P(D)}\right] = \frac{\frac{11}{180}}{\frac{20}{180} + \frac{11}{180}} \text{ or } \frac{0.6011}{0.1722}$	M1	Their identified $\frac{P(M \cap D)}{P(D)}$ or from data table $\frac{11}{20+11}$, accept unsimplified, condone × 180.
	$\frac{11}{31}$, 0.355	A1	Final answer.
		2	

PUBLISHED

Question	Answer	Marks	Guidance
1(c)	$P(F) = \frac{100}{180}, \frac{5}{9}, 0.5556$ OE $P(G) = \frac{82}{180}, \frac{41}{90}, 0.4556$ OE	M1	Their identified $P(F) \times their$ identified $P(G)$ or correct seen, can be unsimplified.
	$P(F \cap G) = \frac{38}{180}, \frac{19}{90}, 0.2111 \text{ OE}$ $P(F) \times P(G) = \frac{100}{180} \times \frac{82}{180} = \frac{41}{162}, 0.2531 \text{ OE } \left[\neq \frac{38}{180} \right]$ Not independent	A1	$\frac{41}{162}, \frac{38}{180}, P(F \cap G)$ and $P(F) \times P(G)$ seen with correct conclusion, WWW. Values and labels must be seen.
	Alternative method for question 1(c)		
	$P(F \cap G) = \frac{38}{180}, \frac{19}{90}, 0.2111 \text{ OE } P(G) = \frac{82}{180}, \frac{41}{90}, 0.4556 \text{ OE}$	M1	P(F G) (OE) unsimplified with <i>their</i> identified probs or correct
	$P(F G) = \frac{\frac{38}{180}}{\frac{82}{180}} = \frac{19}{41}, 0.4634 \text{ OE}$ $\neq P(F) = \frac{100}{180}, \frac{5}{9}, 0.5556 \text{ OE}$ Not independent	A1	$\frac{19}{41}$, $\frac{100}{180}$, $P(F \cap G)$ and $P(F G)$ seen with correct conclusion WWW. Values and labels must be seen.
	4	2	1.5

© UCLES 2021 Page 7 of 16

Question	Answer	Marks	Guidance
2(a)	$^{11}\text{C}_5 \times ^{4}\text{C}_1$	M1	$^{11}\text{C}_5 \times ^{4}\text{C}_1$ condone $^{11}\text{P}_5 \times ^{4}\text{P}_1$ no $^+, -, \times$ or \div .
	1848	A1	CAO as exact.
		2	
2(b)	Method 1 [Identifying scenarios]		
	[Neither selected =] ${}^{13}C_6$ [= 1716] [Only Jane selected =] ${}^{13}C_5$ [= 1287] [Only Kate selected =] ${}^{13}C_5$ [= 1287]	M1	Either ${}^{13}\text{C}_6$ seen alone or ${}^{13}\text{C}_5$ seen alone or \times 2 (condone ${}^{13}\text{P}_n$, $n = 5,6$).
	[Total =] 1716 + 1287 + 1287	M1	Three correct scenarios only added, accept unsimplified (values may be incorrect).
	4290	A1	
	Method 2 [Total number of selections – selections with Jane and Kate both picked]		
	$^{15}C_6 - ^{13}C_4 = 5005 - 715$	M1	$^{15}\text{C}_6 - k$, k a positive integer < 5005, condone $^{15}\text{P}_6$.
		M1	$m - {}^{13}\text{C}_4$, m integer > 715, condone $n - {}^{13}\text{P}_4$, $n > 17 160$.
	4290	A1	50
	Satpr	3	
			SC Where the condition of 2(a) is also applied in 2(b) , the final answer is 1512 SC M1 M1 A0 max. The method marks can be earned for the equivalent stages in each method. Method $1^4C_1 \times ^9C_5 + ^4C_1 \times ^9C_4 \times 2$ Method $2^4C_1 \times ^{11}C_5 - ^4C_1 \times ^9C_3$

© UCLES 2021 Page 8 of 16

PUBLISHED

Question	Answer	Marks	Guidance		
3(a)	For one yellow: YGG + GYG +GGY $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times 3$	M1	$\frac{a}{9} \times \frac{b}{8} \times \frac{c}{7}$, $0 < a,b,c$ integers ≤ 5 , for one arrangement.		
		M1	Their three-factor probability \times 3, ${}^{3}C_{1}$, ${}^{3}C_{2}$ or ${}^{3}P_{1}$, (or repeated adding) no additional terms.		
	$\left[\frac{180}{504} = \right] \frac{5}{14}$	A1	AG. Convincingly shown, including identifying possible scenarios, may be on tree diagram WWW.		
	19	3			
	Alternative method for question 3(a)				
	$\frac{{}^{5}C_{1} \times {}^{4}C_{2}}{{}^{9}C_{3}}$	M1	$\frac{{}^{5}C_{1} \times {}^{4}C_{2}}{{}^{9}C_{r}}, r = 2, 3, 4$		
		M1	$\frac{{}^{5}C_{s} \times {}^{4}C_{t}}{{}^{9}C_{3}}, s+t=3$		
	$\left[\frac{30}{84}\right] = \frac{5}{14}$	A1	AG. Convincingly shown, WWW.		
	74	3	50		
	satpr	eP'			

© UCLES 2021 Page 9 of 16

Question	Answer	Marks	Guidance
3(b)	X 0 1 2 3 P(X) 24 180 240 60	B1	Table with correct <i>X</i> values and one correct probability inserted appropriately. Condone any additional <i>X</i> values if probability stated as 0.
	$\overline{504}$ $\overline{504}$ $\overline{504}$ $\overline{504}$	B1 Second identified correct probability, may not be in table	Second identified correct probability, may not be in table.
	$\begin{bmatrix} = \frac{1}{21}, \\ 0.0476 \end{bmatrix} \begin{bmatrix} = \frac{5}{14}, \\ 0.357 \end{bmatrix} \begin{bmatrix} = \frac{10}{21}, \\ 0.476 \end{bmatrix} \begin{bmatrix} = \frac{5}{42}, \\ 0.119 \end{bmatrix}$	B1	All probabilities identified and correct. SC if less than 2 correct probabilities or X value(s) omitted: SC B1 3 or 4 probabilities summing to one.
		3	
3(c)	$[E(X) =] \frac{840}{504}, \frac{5}{3}, 1.67$	B1	OE Must be evaluated. SC B1 FT correct unsimplified expression from incorrect 3(b) using at least 3 probabilities, $0 .$
		1	

Question	Answer Ma	arks	Guidance
4(a)	<u>9!</u> 3!	M1	$\frac{9!}{e!}, e=2,3$
	60 480	A1	C ^O
	satpre	2	

© UCLES 2021 Page 10 of 16

Question	Answer	Marks	Guidance	
4(b)	$\frac{7!}{3!} \times 2 \times 6$	M1	$\frac{7!}{3!} \times k$ seen, k an integer > 0 .	
		M1	$\frac{m!}{n!} \times 2 \times q 7 \leqslant m \leqslant 9, \ 1 \leqslant n \leqslant 3, \ 1 \leqslant q \leqslant 8 \ \text{all integers}.$	
	SPTP	M1	$\frac{m!}{n!} \times p \times 6 7 \leqslant m \leqslant 9, \ 1 \leqslant n \leqslant 3, \ 1 \leqslant p \leqslant 2 \ \text{all integers.}$ (Accept 3P2 for 6) If M0 M0 M0 awarded, SC M1 for $t \times 12$, t an integer $\geqslant 20$, $\frac{5!}{3!}$.	
	10 080	A1	Exact value.	
	Alternative method for question 4(b)			
	$\frac{{}^{7}P_{2}\times6!\times2}{3!}$	M1	$\frac{6!}{3!} \times k$ seen, k an integer > 0 .	
		M1	$\frac{m!}{n!} \times^7 \mathbf{P}_2 \times q m = 6,9, \ 1 \leqslant n \leqslant 3, \ 1 \leqslant q \leqslant 2 \text{ all integers.}$	
	324	M1	$\frac{m!}{n!} \times {}^{7}P_{r} \times 2 m = 6, 9, 1 \le n \le 3, 1 \le r \le 5 \text{ all integers.}$	
	Satpr	eP.	If M0 M0 M0 awarded, SC M1 for $t \times 84$, t an integer ≥ 20 , $\frac{5!}{3!}$.	
	10 080	A1	Exact value.	

© UCLES 2021 Page 11 of 16

Question	Answer	Marks	Guidance
4(b)	Alternative method for question 4(b)		
	$\frac{7!}{3!} \times 4P2$	M1	$\frac{7!}{3!} \times k$ seen, k an integer > 0.
	TP	M1	$t \times {}^{4}P_{2} \text{ or } 12, t \text{ an integer} \ge 20, \frac{5!}{3!}$.
	SA	M1	$\frac{m!}{n!} \times 4P2 7 \leqslant m \leqslant 9, \ 1 \leqslant n \leqslant 3 \text{ all integers.}$
	10 008	A1	Exact value.
		4	

Question	Answer	Marks	Guidance
5(a)	$[P(0, 1, 2) =] {}^{10}C_0 0.16^0 0.84^{10} + {}^{10}C_1 0.16^1 0.84^9 + {}^{10}C_2 0.16^2 0.84^8$	M1	One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10$, any p .
	= 0.17490 + 0.333145 + 0.28555]		Correct unsimplified expression, or better.
	0.794	A1	$0.7935 , mark at most accurate. If M0 scored, SC B1 for final answer 0.794.$
	2. Sator	3	
5(b)	$(0.84)^7 0.16$	M1	$(1-p)^7 p, 0$
	0.0472	A1	0.0472144 to at least 3sf.
		2	

© UCLES 2021 Page 12 of 16

Question	Answer	Marks	Guidance
5(c)	$4 \times 0.0472 \times (1 - 0.0472)^3$	M1	$4 \times q(1-q)^3$, $q = their$ (b) or correct.
	0.163	A1	$0.163 \le p \le 0.1634$, mark at most accurate from <i>their</i> probability to at least 3sf.
		2	

Question	Answer	Marks	Guidance
6(a)	$ [P(X > 28.6) =]P(Z > \frac{28.6 - 32.2}{9.6}) $ $ [= P(Z > -0.375)] $	M1	28.6, 32.2 and 9.6 substituted appropriately in \pm Standardisation formula once, allow continuity correction of \pm 0.05, no σ^2 , $\sqrt{\sigma}$.
	$[\Phi(their 0.375) =] their 0.6462$	M1	Appropriate numerical area, from final process, must be probability, expect > 0.5 .
	0.646	A1	AWRT
		3	
6(b)	$z = \pm 0.842$	B1	$0.841 \le z \le 0.842$ or $-0.842 \le z \le -0.841$ seen.
	$\frac{t - 32.2}{9.6} = 0.842$	M1	Substituting 32.2 and 9.6 into \pm standardisation formula, no continuity correction, allow σ^2 , $\sqrt{\sigma}$, must be equated to a <i>z</i> -value.
	t = 40.3	A1	$40.28 \le t \le 40.3$ WWW
		3	

© UCLES 2021 Page 13 of 16

Question	Answer	Marks	Guidance
6(c)	$P\left(-\frac{15}{9.6} < Z < \frac{15}{9.6}\right)$ $P(-1.5625 < Z < 1.5625)$	M1	Identifying at least one of $\frac{15}{9.6}$ and $-\frac{15}{9.6}$ as the appropriate z-values or substituting <i>their</i> (32.2 ± 15) into ± Standardisation formula once, no continuity correction, σ^2 nor $\sqrt{\sigma}$. Condone ±1.563 for M1 .
	$[2 \Phi(\frac{15}{9.6}) - 1]$	A1	p = 0.941 AWRT SOI
	$= 2 \times 0.9409 - 1$		Appropriate area $2\Phi - 1$ oe, (eg $1 - 2 \times 0.0591$, $2 \times (0.9409 - 0.5)$ or $0.9409 - 0.0591$), from final process, must be probability > 0.5 .
	0.882	A1	
		4	

Question	Answer	Marks	Guidance
7(a)	Cumulative frequency graph drawn	B1	Axes labelled 'cumulative frequency' (or cf) from 0 to at least 140 and 'distance (or d) [in] m' from 0 to at least 1600, linear scales with at least 3 values stated.
	344.satpr	B1	All plotted correctly at correct upper end points (200 etc.) curve drawn accurately joined to (0, 0) (straight line segments B0) but no daylight above 140. Cf scale no less than 2 cm = 20 children.
		2	

© UCLES 2021 Page 14 of 16

Question	Answer	Marks	Guidance
7(b)	[UQ at 75% of 140 = 105, LQ at 25% of 140 = 35] [IQR:] 700 – 260	M1	Accept $660 \le UQ \le 720 - 240 \le LQ \le 290$. If values are outside our range, FT providing scales linear and increasing cf drawn.
	440	A1	Accept correct evaluation of $660 \le their UQ \le 720 - 240 \le their LQ \le 290$ with clear indication that graph has been used for at least one of 105 or 35.
		2	

Question	Answer	Marks	Guidance							
7(c)	[Mean =] $16 \times 100 + 30 \times 250 + 42 \times 400 + 34 \times 700 + 12 \times 1050 + 6 \times 1400$	B1	Frequencies	16	30	42	34	12	6	
	140		Mid-points	100	250	400	700	1050	1400	
			5 or 6 correct f	reque	ncy va	lues se	een.			
		B1	5 or 6 correct r	nidpo	int val	ues se	en.			
			Values substituted into mean formula using <i>their</i> midpoints which must be in the class – condone 1 data error. Accept $\frac{1600 + 7500 + 16800 + 23800 + 12600 + 8400}{140} \text{ or } \frac{70700}{140}.$ Condone $\frac{70770}{140} \text{ for } \mathbf{M1}.$							
	505	A1	WWW							
	Variance = $ \frac{16 \times 100^2 + 30 \times 250^2 + 42 \times 400^2 + 34 \times 700^2 + 12 \times 1050^2 + 6 \times 1400^2}{140} $ -505^2	M1	midpoints and unsimplified. C Accept:	their 12 Condo 25 000 or 360	frequence 1 de $+6.72$ 0.035.7	ncies (ata erro 0 000 -	includor. $+16.66$ 140 $-\left[505^{2}\right]$	ding for 60 000 + 2 or 255	denomi -13 230 025]	nean) ² and <i>their</i> nator). Accept 000+11760000
	S.d. = $\left[\sqrt{105010.7}\right]$ = 324	A1	WWW							
		6								

© UCLES 2021 Page 16 of 16

Cambridge International AS & A Level

MATHEMATICS 9709/53

Paper 5 Probability & Statistics 1

October/November 2021

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 13

Ma	Mathematics Specific Marking Principles						
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.						
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.						
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.						
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).						
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.						
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.						

© UCLES 2021 Page 3 of 13

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2021 Page 4 of 13

Abbreviations

AFF/OF	Any Equivalent Form	(of answer is equall:	v accentable) / (Or Fauivalent
ALITOL	Ally Equivalent Form	(or answer is equali	y acceptable) / (Ji Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2021 Page 5 of 13

Question	Answer	Marks	Guidance
1	$^{23}C_{17}$	M1	23 C _x or y C ₁₇ or z C ₆ , x, y or z are integers no +, -, × or ÷.
	100947	A1	CAO
		2	

Question		Answer					Mar	·ks	Guidance
2(a)	Z(a) Lakeview Riverside 9 4 0 1 8 8 8 7 6 2 2 0 1 3 4 5 5 3 2 0 3 0 6 7			B1 B1	Correct stem, ignore extra values. Correct Lakeview labelled on left, leaves in order from right to left and lined up vertically, no commas.				
	1 Key: 6 2 3 means 26m	4				Riverside		B1 B1	Correct Riverside labelled on same diagram, leaves in order and lined up vertically, no commas. Correct key for their diagram, need both teams identified and 'm' stated at least once here or in leaf headings or title. SC If 2 separate diagrams drawn: SC B1 if both keys meet these criteria.
					12,			4	
2(b)	UQ = 32, LQ = 19					Satn	rep.	М1	$(30 \le UQ \le 33) - (14 \le LQ \le 22)$
	IQR = 32 - 19 = 13							A1	WWW
								2	

© UCLES 2021 Page 6 of 13

Question	Answer	Marks	Guidance
3(a)	Cw: 5 5 10 10 20	M1	At least 4 frequency densities calculated (f/cw), accept unsimplified and class widths ±1 of true values. May be implied by graph.
	Fd: 4.6 20.4 13.5 7.6 1.2	A1	All heights correct on graph NOT FT
	Stequency density	B1	Bar ends at 0, 5, 10, 20, 30, 50 clear intention not to draw at 4.5 or 5.5 etc.
	25 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 Time, t minutes	B1	Axes labelled: Frequency density (fd), time (t) and mins (or appropriate title). Linear scales between 0 and 20.4 or above on vertical axis, and 0 and 50 or above on the horizontal axis. (Axes may be reversed.)
	4. SatureD	4	
3(b)	$\frac{2.5 \times 23 + 7.5 \times 102 + 15 \times 135 + 25 \times 76 + 40 \times 24}{360}$	M1	Uses at least 4 midpoint attempts (e.g. 2.5 ± 0.5) in correct formula, accept unsimplified expression, denominator either correct or <i>their</i> Σ frequencies .
	$\left[\frac{5707.5}{360}\right] = 15.9, \ 15\frac{41}{48}$	A1	Evaluated.
		2	

© UCLES 2021 Page 7 of 13

Question	Answer	Marks	Guidance
4(a)	$P(X > 43.2) = P(Z > \frac{43.2 - 41.2}{3.6}) = P(Z > 0.5556)$	M1	Use of \pm Standardisation formula once, allow continuity correction, not σ^2 , $\sqrt{\sigma}$.
	$1 - \Phi(0.5556) = 1 - 0.7108$	M1	Appropriate area Φ , from final process, must be probability.
	0.289	A1	AWRT
		3	
4(b)	Probability = $1 - their$ (a) = $1 - 0.2892 = 0.7108$	B1FT	1 – their (a) or correct.
	$0.7108 \times 365 = 259.4$ $259, 260$	B1FT	FT <i>their</i> 4SF (or better) probability, final answer must be positive integer.
		2	
4(c)	$z = \pm 1.645$	B1	CAO, critical z value.
	$\frac{t - 41.2}{3.6} = -1.645$	M1	Use of \pm standardisation formula with μ , σ equated to a z-value, no continuity correction, allow σ^2 , $\sqrt{\sigma}$.
	t = 35.3	A1	- /
	34	3	

Question	Answer	Marks	Guidance
5(a)	$^{5}P_{2} \times ^{7}P_{4}$ or $5 \times 4 \times 7 \times 6 \times 5 \times 4$	M1	${}^{5}P_{x} \times {}^{7}P_{y}, 1 \leqslant x \leqslant 4, 1 \leqslant y \leqslant 6$
	16 800	A1	
		2	

© UCLES 2021 Page 8 of 13

Question	Answer	Marks	Guidance	
5(b)	Method 1 [Identify scenarios]			
	With A and no 5: $8 \times {}^{6}P_{4}$ or $(1 \times 4 \times 6 \times 5 \times 4 \times 3) \times 2$ or $4C1 \times 2! \times 6P4 =$	M1	One number of ways correct, accept unsimplified.	
	2880 With 5 and no A: ${}^4P_2 \times 4 \times {}^6P_3$ or $(4 \times 3 \times 1 \times 6 \times 5 \times 4) \times 4$ or $4P2 \times 6C3 \times 4! = 5760$ With A and 5: $8 \times 4 \times {}^6P_3$ or $(4 \times 1 \times 1 \times 6 \times 5 \times 4) \times 8$ or $4C1 \times 2! \times 6C3 \times 4! = 3840$	M1	Add 2 or 3 identified correct scenarios only, accept unsimplified.	
	[Total =] 12 480	A1	CAO	
	Method 2 [total number of codes – number of codes with no A or 5]			
	No A or 5: $(4 \times 3) \times (6 \times 5 \times 4 \times 3) = 4320$	M1	$^4P_2 \times ^6P_4$ or $^4C_2 \times ^6C_4$ seen, accept unsimplified.	
	Required number = $their$ (a) – $their$ 4320	M1	Their 5(a) (or correct) – their (No A or 5) value.	
	12 480	A1		
	Method 3 [subtracting double counting]			
	With A ${}^4P_1 \times {}^7P_4 \times 2$ or ${}^4C_1 \times 2 \times {}^7C_4 \times 4! = 6720$ With 5 ${}^5P_2 \times {}^6P_3 \times 4$ or ${}^5C_2 \times 2 \times {}^6C_3 \times 4! = 9600$ With A and 5 = ${}^4P_1 \times {}^6P_3 \times 8$ or 4C1 \times 2! \times 6C3 \times 4! \times 8 = 3840	M1	One outcome correct, accept unsimplified.	
	Required number = $6720 + 9600 - 3840$	M1	Adding 'with a' to 'with 5' and subtracting 'A and 5'.	
	12 480	A1	CAO	
		3		

© UCLES 2021 Page 9 of 13

Question	Answer	Marks	Guidance
5(c)	Method 1 – number of successful codes divided by total		
	$(1 \times) 3 \times {}^{5}P_{2}$	M1	$3 \times {}^{5}P_{n}$, $n = 2, 3$. Condone $3 \times {}^{5}C_{2}$, no + or –.
	Probability = $\frac{their 3 \times 5P2}{their 16 800}$	M1	Probability = $\frac{their 60}{their 16 800}$.
	$\frac{1}{280}$, 0.00357	A1	
	Method 2 – product of probabilities of each part of code		
	$\frac{1}{5} \times \frac{1}{4} \times \frac{1}{7} \times \frac{3}{6} \left(\times \frac{5}{5} \times \frac{4}{4} \right) \text{ or } \frac{1}{5} \times \frac{1}{4} \times \frac{3 \times 5P2}{7P4}$	M1	$\frac{1}{5} \times \frac{1}{4} \times k$ where $0 < k < 1$ for considering letters.
		M1	$t \times \frac{1}{7} \times \frac{3}{6}$ or $t \times \frac{3 \times 5P2}{7P4}$ where $0 < t < 1$.
	$\frac{1}{280}$	A1	CAO
	2	3	

© UCLES 2021 Page 10 of 13

Question	Answer	Marks	Guidance
6(a)	p+q+0.65=1	B1	Sum of probabilities = 1.
	p + 2q + 0.15 = 0.55	B1	Use given information.
	Solve 2 linear equations	M1	Either a single expression with one variable eliminated formed or two expressions with both variables on the same side seen with at least one variable value stated.
	$p = 0.3, \frac{3}{10}, q = 0.05, \frac{1}{20}$	A1	CAO, both WWW If M0 with correct answers SC B1.
		4	
6(b)	$Var(X) = their 0.3 + 4 \times their 0.05 + 9 \times 0.05 - 0.55^{2}$	M1	Appropriate variance formula including $(E(X))^2$, accept unsimplified.
	$0.6475 \left[\frac{259}{400} \right]$	A1	CAO (must be exact).
		2	
6(c)	$1 - P(0, 1, 2) = 1 - ({}^{12}C_0 \ 0.3^0 \ 0.7^{12} + {}^{12}C_1 \ 0.3^1 \ 0.7^{11} + {}^{12}C_2 \ 0.3^2 \ 0.7^{10})$	M1	One correct term: ${}^{12}C_x p^x (1-p)^{12-x}$ for $0 < x < 12$, $0 .$
	1 – (0.01384 + 0.07118 + 0.16779)	A1FT	Correct unsimplified expression, or better in final answer. Unsimplified expression must be seen to FT <i>their p</i> from 6(a) or correct.
	0.747	A1	
		3	
6(d)	$(0.95)^8 \times 0.05 = 0.0332 \text{ or } 0.95^8 - 0.95^9 = 0.0332$	B1	Evaluated.
		1	

© UCLES 2021 Page 11 of 13

PUBLISHED

Question	Answer	Marks	Guidance
7(a)	Probabilities: $\frac{x+1}{x+10}$, $\frac{9}{x+10}$, $\frac{x}{x+10}$, $\frac{10}{x+10}$	B1	One probability correct in correct position.
		B1	Another probability correct in correct position.
		B1	Other two probabilities correct in correct positions.
	T PR	3	
7(b)	$\frac{4}{10} \times their \frac{10}{x+10}$	M1	Method consistent with <i>their</i> tree diagram.
	$\frac{4}{x+10}$	A1	AG
		2	

© UCLES 2021 Page 12 of 13

PUBLISHED

Question	Answer	Marks	Guidance
7(c) $\frac{4}{x+10} = \frac{1}{6}$ $x+10 = 24, x=14$	В1	Find value of x. Can be implied by correct probabilities in calculation.	
		B1 FT	$\frac{6}{10} \times their \frac{x+1}{x+10}$ as numerator or denominator of fraction.
	$\frac{\frac{6}{10} \times their \frac{x+1}{x+10}}{\frac{6}{10} \times their \frac{x+1}{x+10} + \frac{4}{10} \times their \frac{x}{x+10}} = \frac{\frac{6}{10} \times \frac{15}{24}}{\frac{6}{10} \times \frac{15}{24} + \frac{4}{10} \times \frac{14}{24}} = \frac{\frac{3}{8}}{\frac{73}{120}}$	M1	$\frac{6}{10} \times their \frac{x+1}{x+10} + \frac{4}{10} \times their \frac{x}{x+10}$ seen anywhere.
		A1 FT	Seen as denominator of fraction.
	$\frac{45}{73}$, 0.616[4]	A1	If B0 M0: SC B1 for $\frac{\frac{3}{8}}{\frac{73}{120}}$ or $\frac{0.375}{0.6083}$ SC B1 $\frac{45}{73}$ or 0.616.
		5	

© UCLES 2021 Page 13 of 13

Cambridge International AS & A Level

MATHEMATICS 9709/51
Paper 5 Probability & Statistics 1 May/June 2021

Paper 5 Probability & Statistics 1 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2021 [Turn over

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 13

Matl	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

© UCLES 2021 Page 3 of 13

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2021 Page 4 of 13

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2021 Page 5 of 13

Question	Answer	Marks	Guidance
1 RRRRB ${}^{8}C_{4} \times {}^{4}C_{1} = 280$ BBBBR ${}^{8}C_{1} \times {}^{4}C_{4} = 8$	BBBBR ${}^{8}C_{1} \times {}^{4}C_{4} = 8$	M1	${}^{8}C_{x} \times {}^{4}C_{y}$ with $x + y = 5$. x, y both integers, $1 \le x \le 5$, $0 \le y \le 4$ condone ${}^{8}C_{1} \times 1$
	RRRR ${}^{8}C_{5} = 56$ [Total =] 344	A1	Two correct outcomes evaluated
		M1	Add 2 or 3 identified correct scenarios only (no additional terms, not probabilities)
		A1	WWW, only dependent on 2nd M mark
		4	SC not all (or no) scenarios identified B1 280 + 8 + 56 DB1 344

Question	Answer	Marks	Guidance
2	$ \left[P\left(\left(\frac{25.2 - (25.5 + 0.50)}{0.4} \right) < z < \left(\frac{25.2 - (25.2 - 0.50)}{0.4} \right) \right) \right] \\ = P\left(-\frac{0.5}{0.4} < z < \frac{0.5}{0.4} \right) $	M1	Use of \pm Standardisation formula once; no continuity correction, σ^2 , $\sqrt{\sigma}$
	$ \begin{bmatrix} = 2\Phi(1.25) - 1 \\ = 2 \times 0.8944 - 1 \end{bmatrix} $	A1	For AWRT 0.8944 SOI
	$= 2 \times 0.8944 - 1$	M1	Appropriate area $2\Phi - 1$ OE, from final process, must be probability
	0.7888	A1	Accept AWRT 0.789
	Number of rods = 0.7888×500 = 394 or 395	B1FT	Correct or FT <i>their</i> 4SF (or better) probability, final answer must be positive integer, not 394.0 or 395.0, no approximation/rounding stated, only 1 answer
		5	

© UCLES 2021 Page 6 of 13

Question	Answer	Marks	Guidance
3(a)	$\left[\frac{8!}{3!}\right] = 6720$	B1	NFWW, must be evaluated
		1	
3(b)	L E D: With LED together: $\frac{6!}{2!}$	M1	$\frac{6!}{k}$ or $\frac{5!x6}{k}$ $k \ge 1$ and no other terms
		M1	$\frac{m}{2!}$, m an integer, $m \ge 5$
	360	A1	CAO
		3	
3(c)	Method using A _ D : Arrange the 6 letters RELESE = $\frac{6!}{3!}$ [= 120]	*M1	$\frac{6!}{3!} \times k \text{ seen, } k \text{ an integer} > 0$
	Multiply by number of ways of placing AD in non-adjacent places $= their \ 120 \times {}^{7}P_{2} \ [= 5040]$	*M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n = 6, 7$ or $8, m$ an integer > 0
	[Probability =] $\frac{their 5040}{their 6720}$	DM1	Denominator = <i>their</i> (a) or correct, dependent on at least one M mark already gained.
	$\frac{5040}{6720}$ or $\frac{3}{4}$ or 0.75	A1	
	Alternative method for Question 3(c)	<u>'</u>	•
	Method using 'Total arrangements – Arrangements with A and D	*M1	Their $6720 - k$, k a positive integer
	together': Their $6720 - \frac{7! \times 2}{3!} = 5040$	*M1	$(m-)\frac{7 \times k}{3!}, k=1,2$

© UCLES 2021 Page 7 of 13

Question	Answer	Marks	Guidance
	[Probability =] $\frac{their 5040}{their 6720}$	DM1	With denominator = <i>their</i> (a) or correct, dependent on at least one M mark already gained.
	$\frac{5040}{6720}$ or $\frac{3}{4}$ or 0.75	A1	
	Alternative method for Question 3(c)		
	Method using '1 – Probability of arrangements with A and D together': $\frac{7!\times 2}{3!} = [1680]$	*M1	$\frac{7 \times k}{3!}, k = 1, 2$
	[Probability =] $\frac{their 1680}{their 6720}$	*M1	With denominator = their (a) or correct
	$1 - \frac{their 1680}{their 6720}$	DM1	1 - m, $0 < m < 1$, dependent on at least one M mark already gained
	$\frac{5040}{6720}$ or $\frac{3}{4}$ or 0.75	A1	
	3	4	

© UCLES 2021 Page 8 of 13

PUBLISHED Question Marks Guidance Answer B1 Fully correct labelled tree diagram for each pair of 4(a)

4(a)	0.3 P P	B1	Fully correct labelled tree diagram for each pair of branches clearly identifying written and practical, pass and fail for each intersection (no additional branches)
	0.8 W1 P 0.3 P P	B1	'One written test' branch all probabilities (or %) correct
	0.8 0.7 PF W2 P 0.6 W2 F 0.7 PF	B1	'Two written tests' branch all probabilities (or %) correct, condone additional branches after W2F with probabilities 1 for PF and 0 for PP
		3	
4(b)	$[P(W1P) \times P(PP) + P(W1F) \times P(W2P) \times P(PP)]$ 0.8×0.3+0.2×0.6×0.3	M1	Consistent with <i>their</i> tree diagram or correct
	$0.276 \text{ or } \frac{69}{250}$	A1	
	12	2	-
4(c)	$P(W1 P) = \frac{P(W1 \cap \text{Practical})}{P(\text{getting place})} = \frac{0.8 \times 0.3}{\text{their}(b)} \left[= \frac{0.24}{0.276} \right]$	M1	Correct expression or FT their (b)
	$\frac{20}{23}$ or $0.87[0]$	A1	
		2	

Page 9 of 13 © UCLES 2021

	T				100	LISHED		
Question			Answer				Marks	Guidance
5(a)	Class width	lass width 10 10 20 20		40	M1	At least 4 frequency densities calculated, accept unsimplified. May be read from graph using <i>their</i> scale, 3SF or correct		
	Frequency Density	1.6	5.4	3.9	1.6	0.5	A1	All heights correct on graph
	Frequency density						B1	Bar ends at 0, 10, 20, etc. with a horizontal linear scale with at least 3 values indicated, $0 \le \text{horizontal axis} \le 100$
	6.0 5.0 4.0 3.0 2.0 1.0	40	60	80 100	Time/t second	breP	B1	Axes labelled: Frequency density (fd), time (t) and seconds. Linear vertical scale, with at least 3 values indicated 0 ≤ vertical axis ≤ 5.4
							4	

© UCLES 2021 Page 10 of 13

Question	Answer	Marks	Guidance
5(b)	Mean =	M1	Uses at least 4 midpoint attempts (e.g. 5 ± 0.5). Accept unsimplified expression, denominator either correct or <i>their</i> Σ frequencies
	$\left[\frac{6430}{200}\right] 32\frac{3}{20} \text{ or } 32.15$	A1	Accept 32.2
	16	2	
5(c)	A value in correct UQ (40–60) – a value in correct LQ (10–20)	M1	
	Greatest possible value is $60 - 10 = 50$	A1	Condone 49. 9
		2	

Question	Answer	Marks	Guidance							
6(a)	$1 - P(10, 11, 12) = 1 - {\binom{12}{10}} \cdot 0.6^{10} \cdot 0.4^{2} + {\binom{12}{11}} \cdot 0.6^{11} \cdot 0.4^{1} + {\binom{12}{12}} \cdot 0.6^{12} \cdot 0.4^{0})$	M1	One term: ${}^{12}C_x p^x (1-p)^{12-x}$ for $0 < x < 12$, any p allowed.							
	[=1-(0.063852+0.017414+0.0021768)]	A1	Correct unsimplified expression, or better.							
	[1 - 0.083443] = 0.917	A1	AWRT							
	Alternative method for Question 6(a)									
	$P(0,1,2,3,4,5,6,7,8,9) = {}^{12}C_00.6^0 0.4^{12} + {}^{12}C_1 0.6^1 0.4^{11} + \dots {}^{12}C_9 0.6^9 $ 0.4^3	M1	One term: ${}^{12}C_x p^x (1-p)^{12-x}$ for $0 < x < 12$, any p allowed.							
	$ \begin{bmatrix} 0.4 \\ [= 0.000016777 + 0.00030199 + 0.0024914 + 0.012457 + 0.042043 + \\ 0.10090 + 0.17658 + 0.22703 + 0.21284 + 0.14189] \end{bmatrix} $	A1	Correct unsimplified expression with at least the first two and last terms							
	0.917	A1	WWW, AWRT							
		3								

© UCLES 2021 Page 11 of 13

Marks Guidance Question Answer [Mean =] 0.6×150 [= 90]; Correct mean and variance. Accept evaluated or 6(b) B1 [Variance =] $0.6 \times 150 \times 0.4$ [= 36] unsimplified $P(X < 81) = P(Z < \frac{80.5 - 90}{6})$ Substituting their mean and variance into M1±standardisation formula (with a numerical value for 80.5), allow σ^2 , $\sqrt{\sigma}$, but not $\mu \pm 0.5$ Using continuity correction 80.5 or 81.5 M1M1 Appropriate area Φ , from final process, must be $\Phi(-1.5833) = 1 - 0.9433$ probability 0.0567 **AWRT** A15 np = 90, nq = 60 both greater than 5 B1 At least nq evaluated and statement >5 required 6(c)

Question	Answer	Marks	Guidance
7(a)	$P(X=3) = \frac{4}{7} \times \frac{3}{6} \times \frac{3}{5}$	M1	$\frac{m}{7} \times \frac{n}{6} \times \frac{o}{5}$ used throughout. condone use of $\frac{1}{2}$
	$\frac{6}{35}$	A1	AG. The fractions must be identified, e.g. P(NC, NC, C), may be seen in a tree diagram.
		2	

1

© UCLES 2021 Page 12 of 13

Question				1	Answei	•		Marks	Guidance
7(b)	<i>x p</i>	1 15 35	2 10 35	3 6 35	$\frac{3}{35}$	5 <u>1</u>		B1	Table with <i>x</i> values and at least one probability Condone any additional <i>x</i> values if probability stated as 0.
		35	35	35	35	35		B1	One correct probability other than $X = 3$ linked to the correct outcome
	AT PR								Two further correct probabilities other than $X = 3$ seen linked to the correct outcome
						9/		B1FT	All probabilities correct, or at least 4 probabilities summing to 1
								4	
7(c)	$[E(X) = 1 \times \frac{15}{35} + 2 \times \frac{10}{35} + 3 \times \frac{6}{35} + 4 \times \frac{3}{35} + 5 \times \frac{1}{35}]$ $E(X) = \frac{15 + 20 + 18 + 12 + 5}{35} \left[= \frac{70}{35} = 2 \right]$								At least 4 correct terms FT <i>their</i> values in (a) with probabilities summing to 1 May be implied by use in Variance, accept unsimplified expression.
	$\operatorname{Var}(X) = \left[\frac{1^2 \times 15 + 2^2 \times 10 + 3^2 \times 6 + 4^2 \times 3 + 5^2 \times 1}{35} - 2^2 = \right]$ $\frac{15 + 40 + 54 + 48 + 25}{35} - 2^2$						$2^2 =$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$. FT <i>their</i> table accept probabilities not summing to 1.
	$ = \frac{1}{3}$	$\left[\frac{82}{35} - 4\right] = \frac{6}{35}$	<u>6</u> 5					A1	N.B. If method FT for M marks from <i>their</i> incorrect (b), expressions for $E(X)$ and $Var(X)$ must be seen unsimplified with all probabilities <1
								3	

© UCLES 2021 Page 13 of 13

Cambridge International AS & A Level

MATHEMATICS 9709/52

Paper 5 Probability & Statistics 1

May/June 2021

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 15

Matl	hematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

© UCLES 2021 Page 3 of 15

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2021 Page 4 of 15

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2021 Page 5 of 15

Question	Answer	Marks	Guidance
1(a)	6	B1	www
		1	
1(b)	$\left(\frac{5}{6}\right)^{3} \frac{1}{6} + \left(\frac{5}{6}\right)^{4} \frac{1}{6} + \left(\frac{5}{6}\right)^{5} \frac{1}{6} + \left(\frac{5}{6}\right)^{6} \frac{1}{6}$	M1	$p^{3}(1-p)+p^{4}(1-p)+p^{5}(1-p)+p^{6}(1-p), 0$
	0.300 (0.2996)	A1	At least 3s.f. Award at most accurate value.
	Alternative method for Question 1(b)		
	$\left(\frac{5}{6}\right)^3 - \left(\frac{5}{6}\right)^7$	M1	$p^3 - p^7, 0$
	0.300 (0.2996)	A1	At least 3s.f. Award at most accurate value.
		2	
1(c)	$1 - \left(\frac{5}{6}\right)^9$	M1	$1 - p^n$, $0 , n = 9, 10$
	0.806	A1	1.5
	Alternative method for Question 1(c)		.0
	$\frac{1}{6} + \frac{1}{6} \left(\frac{5}{6}\right) + \frac{1}{6} \left(\frac{5}{6}\right)^2 + \dots + \frac{1}{6} \left(\frac{5}{6}\right)^8$	etpre Mi	$ p + p(1-p) + p(1-p)^2 + p(1-p)^3 + p(1-p)^4 + p(1-p)^5 + p(1-p)^6 + p(1-p)^7 + p(1-p)^8 (+ p(1-p)^9), 0 As per answer for minimum terms shown$
	0.806	A1	
		2	

© UCLES 2021 Page 6 of 15

Question	Answer	Marks	Guidance
	$ P(X > 1.1) = \frac{72}{2000} (= 0.036) $ $ z = \pm 1.798 $	B1	$1.79 < z \le 1.80, -1.80 \le z < -1.79$ seen
	$\frac{1.1 - 1.04}{\sigma} = 1.798$	B1	1.1 and 1.04 substituted in \pm standardisation formula, allow continuity correction, not σ^2 or $\sqrt{\sigma}$
	$\left[\frac{0.06}{\sigma} = 1.798\right]$	M1	Equate <i>their</i> \pm standardisation formula to a z-value and to solve for the appropriate area leading to final answer (expect $\sigma < 0.5$). $\left(\text{Accept} \pm \frac{0.06}{\sigma} = z - \text{value}\right)$
	$\sigma = 0.0334$	A1	$0.03335 \le \sigma \le 0.0334$. At least 3 3s.f.
		4	

Question	Answer	Marks	Guidance
3(a)	$P(\text{not late}) = 0.4 \times 0.45 + 0.35 \times 0.3 + 0.25 \times (1 - x)$ or $P(\text{late}) = 0.4 \times 0.55 + 0.35 \times 0.7 + 0.25x$	M1	$0.4 \times p + 0.35 \times q + 0.25 \times r,$ p = 0.45, 0.55, q = 0.3, 0.7 and r = (1 - x), x
	0.18 + 0.105 + 0.25 (1 - x) = 0.48 or 0.22 + 0.245 + 0.25x = 0.52	A1	Linear equation formed using sum of 3 probabilities and 0.48 or 0.52 as appropriate. Accept unsimplified.
	x = 0.22	A1	Final answer
		3	
3(b)	$\left[P(train late) = \frac{P(train \cap late)}{P(late)}\right]$	B1	0.35×0.7 or 0.245 seen as numerator of fraction
	$= \frac{0.35 \times 0.7}{1 - 0.48} \text{ or } \frac{0.35 \times 0.7}{0.4 \times 0.55 + 0.35 \times 0.7 + 0.25 \times their 0.22}$	M1	P(late) seen as a denominator with <i>their</i> probability as numerator (Accept $\frac{their\ p}{0.52}$ or $\frac{their\ p}{0.22 + 0.245 + 0.25 \times their\ 0.22}$)
	$= 0.471 \text{ or } \frac{49}{104}$	A1	
		3	/~1

© UCLES 2021 Page 8 of 15

Question			,	Answer			Marks	Guidance
4(a)								Table with correct <i>X</i> values and at least one probability Condone any additional <i>X</i> values if probability stated as 0.
	P(X)	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{9}$	$\frac{3}{9}$	$\frac{2}{9}$	B1	2 correct probabilities linked with correct outcomes, may not be in table.
							B1	3 further correct probabilities linked with correct outcomes, may not be in table. SC if less than 2 correct probabilities seen, award SCB1 for sum of <i>their</i> 4 or 5 probabilities in table = 1
							3	
4(b)	$\begin{bmatrix} E(X) \\ \frac{-1+1+}{9} \end{bmatrix}$	-6+6	9	+ 2×3+3×	2 =		M1	May be implied by use in variance, accept unsimplified expression. FT <i>their</i> table if <i>their</i> 3 or more probabilities sum to 1 or 0.999
	l L	$1 + \left(0^2 \times 2\right) + $	$-1^2 \times 1 + 2^2 \times 9$ $(their E(X))$		-(their E(X	(1)) ²]	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table even if <i>their</i> 3 or more probabilities not summing to 1.
	E(X)=	$=\frac{4}{3}$ or 1.33	and $Var(X)$	$=\frac{16}{9}$ or 1.	78		A1	Answers for $E(X)$ and $Var(X)$ must be identified
							3	N.B. If method FT for M marks from <i>their</i> incorrect (b) , expressions for $E(X)$ and $Var(X)$ must be seen unsimplified with all probabilities <1

© UCLES 2021 Page 9 of 15

Question	Answer	Marks	Guidance
5(a)	$[(0.7)^3 =]0.343$	B1	Evaluated WWW
	Alternative method for Question 5(a)		
	$[(0.15)^3 + {}^3C_1(0.15)^2(0.55) + {}^3C_2(0.15)(0.55)^2 + (0.55)^3 =] 0.343$	B1	Evaluated WWW
	TP	1	
5(b)	$1 - (0.85^9 + {}^{9}C_{1} \ 0.15^{1} \ 0.85^{8} + {}^{9}C_{2} \ 0.15^{2} \ 0.85^{7})$	M1	One term: ${}^{9}C_{x}p^{x}(1-p)^{9-x}$ for $0 < x < 9$, any 0
	[1 - (0.231617 + 0.367862 + 0.259667)]	A1	Correct expression, accept unsimplified.
	0.141	A1	$0.1408 \le $ ans ≤ 0.141 , award at most accurate value.
	Alternative method for Question 5(b)		
	${}^{9}C_{3}0.15^{3}0.85^{6} + {}^{9}C_{4}0.15^{4}0.85^{5} + {}^{9}C_{5}0.15^{5}0.85^{4} + {}^{9}C_{6}0.15^{6}0.85^{3} + {}^{9}C_{7}0.15^{7}0.85^{2} + {}^{9}C_{8}0.15^{8}0.85 + 0.15^{9}$	M1	One term: ${}^{9}C_{x}p^{x}(1-p)^{9-x}$ for $0 < x < 9$, any 0
	$C_70.15^{\circ}0.85^{\circ} + C_80.15^{\circ}0.85 + 0.15^{\circ}$	A1	Correct expression, accept unsimplified.
	0.141	A1	$0.1408 \le $ ans ≤ 0.141 , award at most accurate value.
	1/2	3	1.5

© UCLES 2021 Page 10 of 15

Question	Answer	Marks	Guidance
5(c)	Mean = $[60 \times 0.15 =]9$ Variance = $[60 \times 0.15 \times 0.85 =]7.65$	B1	Correct mean and variance, allow unsimplified. $(2.765 \le \sigma \le 2.77 \text{ imply correct variance})$
	$\left[\left(X \ge 12 \right) = \right] P \left(Z > \frac{11.5 - 9}{\sqrt{7.65}} \right)$	M1	Substituting <i>their</i> mean and variance into \pm standardisation formula (any number for 11.5), not σ^2 or $\sqrt{\sigma}$
	ATP	M1	Using continuity correction 11.5 or 12.5 in <i>their</i> standardisation formula.
	$1 - \Phi(0.9039) = 1 - 0.8169$	M1	Appropriate area Φ , from final process, must be probability.
	0.183	A1	Final AWRT
		5	

Question	Answer	Marks	Guidance
6(a)	<u>8!</u> <u>2!3!</u>	M1	$\frac{8!}{k \bowtie m!} k = 1 \text{ or } 2, m = 1 \text{ or } 3, \text{ not } k = m = 1$ no additional terms
	3360	A1	
	4.824	2	

© UCLES 2021 Page 11 of 15

Question	Answer	Marks	Guidance									
6(b)	Method 1 Arrangements Rs at ends – Arrangements Rs at ends and Os together											
	[Os not together =] $\frac{6!}{3!} - 4!$	M1	$\frac{6!}{k!} - m, \ 1 \le k \le 3, \ m \text{ an integer, condone } 2 \times \left(\frac{6!}{k!}\right) - m.$									
	TP	M1	w-4! or $w-24$, w an integer Condone $w-2 \times 4!$									
	96	A1										
	Method 2 identified scenarios R R, Arrangement No Os togethe	r + 2Os and	d a single O									
	${}^{4}C_{3} \times 3! + {}^{4}C_{2} \times 2 \times 3!$	M1	$^{4}C_{3} \times 3! + r \text{ or } 4 \times 3! + r \text{ or } ^{4}P_{3} \times 3! + r, r \text{ an integer.}$ Condone $2 \times ^{4}C_{3} \times 3! + r \cdot 2 \times 4 \times 3! + r \text{ or } 2 \times ^{4}P_{3} \times 3! + r.$									
		M1	$q + {}^{4}C_{2} \times 3! \times k \text{ or } q + {}^{4}P_{2} \times 3! \times k, k = 1,2, q \text{ an integer}$									
	[24 + 72 =] 96	A1										
		3										
6(c)	Method 1 Identified scenarios											
	OORR ${}^{3}C_{2} \times {}^{2}C_{2} \times [{}^{3}C_{0}] = 3 \times 1 = 3$ ORR ${}^{3}C_{1} \times {}^{2}C_{2} \times {}^{3}C_{1} = 3 \times 1 \times 3 = 9$	B1	Outcomes for 2 identifiable scenarios correct, accept unsimplified.									
	ORR_ ${}^{3}C_{1} \times {}^{2}C_{2} \times {}^{3}C_{1} = 3 \times 1 \times 3 = 9$ OOR_ ${}^{3}C_{2} \times {}^{2}C_{1} \times {}^{3}C_{1} = 3 \times 2 \times 3 = 18$ OR_ ${}^{3}C_{1} \times {}^{2}C_{1} \times {}^{3}C_{2} = 3 \times 2 \times 3 = 18$ OOOR ${}^{3}C_{3} \times {}^{2}C_{1} \times \left[{}^{3}C_{0}\right] = 1 \times 2 = 2$	M1	Add 4 or 5 identified correct scenarios only values, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations.									
	Total 50	A1	All correct and added									
	Probability = $\frac{50}{{}^{8}C_{4}}$	M1	$\frac{\textit{their}'50'}{^{8}C_{4}}$, accept numerator unevaluated									

© UCLES 2021 Page 12 of 15

Question	Answer	Marks	Guidance
6(c) cont'd	$\frac{50}{70}$ or 0.714	A1	
	Method 2 Identified outcomes		
	ORTM ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORTW ${}^{3}C_{1} \times {}^{2}C_{1} = 6$	B1	Outcomes for 5 identifiable scenarios correct, accept unsimplified.
	ORMW ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORRM ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ ORRW ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ ORRT ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ OROR ${}^{3}C_{2} \times {}^{2}C_{2} = 3$ OROT ${}^{3}C_{2} \times {}^{2}C_{1} = 6$ OROM ${}^{3}C_{2} \times {}^{2}C_{1} = 6$ OROW ${}^{3}C_{2} \times {}^{2}C_{1} = 6$ OROO ${}^{3}C_{3} \times {}^{2}C_{1} = 2$	M1	Add 9, 10 or 11 identified correct scenarios only values, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations.
	Total 50	A1	All correct and added
	Probability = $\frac{50}{{}^{8}C_{4}}$	M1	$\frac{their'50'}{^8C_4}$, accept numerator unevaluated.
	$\frac{50}{70}$ or 0.714	A1	
		5	

© UCLES 2021 Page 13 of 15

Question					Ansv	ver			Marks	Guidance
7(a)	Includes	all data							В1	Reference to <i>either</i> including all/raw data or further statistical processes are possible that cannot be found using data from box-and-whisker, eg frequency, mean, mode or standard deviation not only median, IQR, range or spread which can be found from both.
									1	
7(b)	A	mazons		Giants					B1	Correct stem can be upside down, ignore extra values
	4 2	8	17	5 2 4	. /	7	9		B1	Correct Amazons labelled on left, leaves in order from right to left and lined up vertically (less than halfway to next column), no commas or other punctuation.
	8 6 5 2	0	19	2 3			5	5	B1	Correct Giants labelled on same diagram, leaves in order and lined up vertically (less than halfway to next column), no commas or other punctuation.
		5	21						B1	Correct single key for their diagram, need both teams identified and 'cm' stated at least once here or in leaf headings or title.
	Key: 1 1	8 2 meai	ns 181	cm for	Ama	zons ai	nd 1	82 cm for Giants		SC for if 2 separate diagrams drawn, award SCB1 if both keys meet these criteria (Max B1, B0, B0, B1)
							7	3-10-	4	0.
7(c)	[UQ = 20				ı)]			satpr	M1	$201 \le UQ \le 205 - 181 \le LQ \le 184$
	[IQR =]	ZUZ — 18	52 = 2	u (cm)					A1	www
									2	

© UCLES 2021 Page 14 of 15

Question	Answer	Marks	Guidance								
7(d)	$[\Sigma_{11} = 2132 \ \Sigma_{15} = 191.2 \times 15 = 2868]$	B1	Both Σ_{11} and Σ_{15} found. Accept unevaluated.								
	their $2868 = their \ 2132 + (180 + 185 + 190) + h$	M1	Forming an equation for the height using <i>their</i> Σ_{11} and Σ_{15} .								
	181 (cm)	A1									
	Alternative method for Question 7(d)										
	$[\Sigma_{15} = 191.2 \times 15 = 2868$ $\Sigma_{15} = 2687 + h$]	B1	Σ_{15} found using the mean and raw data methods. Accept unevaluated.								
	their 2868 = their 2687 + h	M1	Forming an equation for the height using <i>their</i> Σ_{15} expressions.								
	181 (cm)	A1									
	Alternative method for Question 7(d)										
	$[\Sigma_{15} = 2687 + h]$ $\frac{\Sigma_{15}}{15} = 191.2]$	B1	Σ_{15} found using raw data method and statement on calculating new mean. Accept unevaluated.								
	$\frac{their 2687 + h}{15} = 191.2$	M1	Forming an equation for the height using <i>their</i> Σ_{15} expressions								
	181 (cm)	A1									
		3	N.B. All methods can be presented as a logical numerical argument which can be condoned if clear.								

© UCLES 2021 Page 15 of 15

Cambridge International AS & A Level

MATHEMATICS 9709/53

Paper 5 Probability & Statistics 1

May/June 2021

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2021 [Turn over

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 14

Matl	Mathematics Specific Marking Principles							
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.							
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.							
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.							
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).							
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.							
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.							

© UCLES 2021 Page 3 of 14

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2021 Page 4 of 14

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2021 Page 5 of 14

Question	Answer	Marks	Guidance
1(a)	60	B1	Accept 60 or 61. No decimals
		1	
1(b)	65% of 160 = 104	M1	0.65×160 (=104) seen unsimplified or implied by use on graph
	136 (cm)	A1	Use of graph must be seen. SCB1 correct value (136 only) if neither 104 nor use of graph are evident
		2	
1(c)	UQ: 150 LQ: 76	M1	$UQ - LQ$; $148 \le UQ \le 152$; $74 \le LQ \le 78$.
	IQR = 150 - 76 = 74 [cm]	A1	Must be from 150 - 76
		2	

© UCLES 2021 Page 6 of 14

Question	Answer	Marks	Guidance
2	p + p + 0.1 + q + q = 1	B1	Sum of probabilities = 1
	0.1 + 2q = 3(2p)	B1	Use given information
	Attempt to solve two correct equations in p and q	M1	Either use of Substitution method to form a single equation in either p or q and finding values for both unknowns. Or use of Elimination method by writing both equations in same form (usually $ap + bq = c$) and $+$ or $-$ to find an equation in one unknown and finding values for both unknowns.
	$p = \frac{1}{8}$ or 0.125 and $q = \frac{13}{40}$ or 0.325	A1	CAO, both WWW
		4	

Question	Answer	Marks	Guidance
3(a)	Mean height = $\frac{\Sigma x + \Sigma y}{6+11} = \frac{1050+1991}{6+11} = \frac{3041}{17}$	M1	Use of appropriate formula with values substituted, accept unsimplified.
	178.9	A1	Allow 178.88, $178\frac{15}{17}$, 179
		2	

© UCLES 2021 Page 7 of 14

Question	Answer	Marks	Guidance
3(b)	$\frac{\Sigma x^2 + \Sigma y^2}{6 + 11} = \frac{193700 + 366400}{6 + 11}$	M1	Use of appropriate formula with values substituted, accept unsimplified.
	$Sd^{2} = \frac{560100}{17} - their 178.88^{2} [= 948.289]$	M1	Appropriate variance formula using <i>their</i> mean ² , accept unsimplified expression.
	Standard deviation = 30.8	A1	Accept 30.7
		3	

Question	Answer	Marks	Guidance
4(a)	[Possible cases: 1 1 2, 1 2 1, 2 1 1] Probability = $\left(\frac{1}{6}\right)^3 \times 3$	M1	$\left(\frac{1}{6}\right)^3 \times k$, where k is an integer.
		M1	Multiply a probability by 3, not +, – or ÷
	$\frac{1}{72}$	A1	Accept $\frac{3}{216}$ or $0.013\dot{8}$ or 0.0139
	7	3	
4(b)	$P(18) = \left(\frac{1}{6}\right)^3 \left[= \frac{1}{216} \right]$	B1	
	P(18 on 5th throw) = $\left(\frac{215}{216}\right)^4 \times \frac{1}{216}$	M1	$(1-p)^4 p$, $0 < their p < 1$
	0.00454	A1	
		3	

© UCLES 2021 Page 8 of 14

Question	Answer	Marks	Guidance
5(a)	$z_1 = \frac{4 - \mu}{\delta} = -1.378$	B1	$1.378 \leqslant z_1 \le 1.379 \text{ or } -1.379 \leqslant z_1 \leqslant -1.378$
	$z_2 = \frac{10 - \mu}{\sigma} = 0.842$	B1	$0.841 \leqslant z_2 \leqslant 0.842 \text{ or } -0.842 \leqslant z_2 \leqslant -0.841$
	Solve to find at least one unknown: $\frac{4-\mu}{\sigma} = -1.378$	M1	Use of ±standardisation formula once with μ , σ , a z-value and 4 or 10, allow continuity correction, not σ^2 or $\sqrt{\sigma}$
	$\frac{10-\mu}{\sigma} = 0.842$	M1	Use either the elimination method or the substitution method to solve two equations in μ and σ .
	$\sigma = 2.70 \ \mu = 7.72$	A1	$2.70 \leqslant \sigma \leqslant 2.71 \ 7.72 \leqslant \mu \leqslant 7.73$
		5	
5(b)	$\Phi(2) - \Phi(-2) = 2\Phi(2) - 1$	M1	Identifying 2 and –2 as the appropriate <i>z</i> -values
	2×their 0.9772 – 1	B1	Calculating the appropriate area from stated phis of z-values which must be \pm the same number
	0.9544 or 0.9545	A1	Accept AWRT 0.954
	0.9544 × 800 = 763.52 763 or 764	B1 FT	FT <i>their</i> 4SF (or better) probability, final answer must be positive integer
		4	

© UCLES 2021 Page 9 of 14

PUBLISHED

Question	Answer	Marks	Guidance
6(a)	$\frac{11!}{2!3!}$	M1	11! alone on numerator – must be a fraction. $k! \times m!$ on denominator, $k = 1, 2, m = 1, 3, 1$ can be implied but cannot both = 1. No additional terms
	3326400	A1	Exact value only
	T PR	2	
6(b)	8! = 40320	B1	Evaluate, exact value only
		1	
6(c)	$\frac{9!}{3!} \times 7$	M1	$\frac{9!}{3!} \times k$ seen, k an integer > 0, no +, – or ÷
		M1	$7 \times$ an integer seen in final answer, no +, – or ÷
	423360	A1	Exact value only
	Alternative method for Question 6(c)		
	${}^{9}C_{3} \times 7! \left(\times \frac{3!}{3!} \right)$	M1	$9C3 \times k$ seen, k an integer > 0, no + or –
	3!	M1	$7! \times k$ seen, , k an integer > 0 , no $+$ or $-$
	423360	A1	Exact value only but there must be evidence of $\times \frac{3!}{3!}$

© UCLES 2021 Page 10 of 14

Question	Answer	Marks	Guidance
6(c) cont'd	Alternative method for Question 6(c)		
	$3\times7\times\frac{8!}{2!}$	M1	$3 \times \frac{8!}{2!} \times k$ seen, k an integer > 0, no + or –
		M1	7 × an integer seen in final answer, no +, – or ÷
	423360	A1	Exact value only
	Alternative method for Question 6(c)		
	$7 \times \frac{2}{11} \times \frac{9}{10} \times \frac{8}{9} \times \frac{7}{8} \times \frac{1}{7} \times \text{total no. of arrangements}$	M1	Product of correct five fractions \times <i>k</i> seen, <i>k</i> an integer $>$ 0, no $+$ or $-$
		M1	$7 \times$ 'total no of arrangements' $\times k$ seen, k an integer > 0 , no $+$ or $-$
	423360	A1	Exact value only
	Alternative method for Question 6(c)		
	No E between the Rs $-\frac{{}^{6}C_{3}\times3\times7!}{3!}$ = 100800	M1	Finding the correct number of ways for no, 1 or 2 Es between the Rs, accept unsimplified.
	1E between the Rs $-\frac{{}^{6}C_{2} \times 3 \times 7!}{2!} = 226800$	M1	Adding the number of ways for 3 or 4 correct scenarios
	2Es between the Rs $-{}^{6}C_{1} \times 3 \times 7! = 90720$ 3Es between the Rs $-7! = 5040$		
	$[\text{Total} = 7 \times (20 + 45 + 18 + 1) = 7 \times 84 =]423360$	A1	CAO
		3	

© UCLES 2021 Page 11 of 14

Question	Answer	Marks	Guidance
6(d)	$E E R_{-}$ ${}^{6}C_{2} = 15$	M1	Identifying four correct scenarios only.
	$E E R R^{-}_{-}$ ${}^{6}C_{1} = 6$ $E E E R^{-}_{-}$ ${}^{6}C_{1} = 6$ $E E E R R$ ${}^{6}C_{0} = 1$	B1	Correct number of selections unsimplified for 2 or more scenario.
	TPRA	M1	Adding the number of selections for 3 or 4 identified correct scenarios only, accept unsimplified. ${}^{3}C_{x} \times {}^{2}C_{y} \times {}^{6}C_{z}$, $x+y+z=5$ correctly identifies x Es and y Rs
	[Total =] 28	A1	WWW, only dependent upon 2nd M mark.
	Alternative method for Question 6(d) – Fixing EER first. No other scenarios	can be present anywhere in solution.	
	$E E R ^{\wedge} = {}^{8}C_{2}$	M1	${}^{8}C_{x}$ seen alone or ${}^{8}C_{x} \times k$, , $k = 1$ or 2, 0 <x<8 Condone ${}^{8}P_{x}$ or ${}^{8}P_{x} \times k$, $k = 1$ or 2, 0<x<8< td=""></x<8<></x<8
		B1	${}^{8}C_{2} \times k, \ k = 1 \text{ or } 2 \text{ OE}$
		M1	${}^{8}C_{2} \times k$, $k = 1$ OE and no other terms
	[Total =] 28	A1	Value stated
	3	4	

© UCLES 2021 Page 12 of 14

PUBLISHED

Question	Answer	Marks	Guidance
7(a)(i)	$\frac{40}{800}$ or $\frac{1}{20}$ or 0.05	B1	
		1	
7(a)(ii)	$\frac{177}{223+177+40}$	M1	Their 223 + 177 + 40 seen as denominator of fraction in the final answer, accept unsimplified
	$\frac{177}{440}$ or 0.402	A1	CAO
	Alternative method for Question 7(a)(ii)		
	$P(G \mid S) = \frac{P(G \cap S)}{P(S)} = \frac{\frac{177}{800}}{\frac{223 + 177 + 40}{800}} = \frac{\frac{177}{800}}{\frac{440}{800}} = \frac{\frac{177}{800}}{\frac{11}{20}} \text{ or } 0.55$	M1	Their $P(S)$ seen as denominator of fraction in the final answer, accept unsimplified
	$\frac{177}{440}$ or 0.402	A1	CAO
		2	
7(b)(i)	$P(0, 1, 2) = {}_{^{10}\text{C}_0} (0.35)^0 (0.65)^{10} + {}^{10}\text{C}_1 (0.35)^1 (0.65)^9 + {}^{10}\text{C}_2 (0.35)^2 (0.65)^8$	M1	One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10$, any 0
	0.013463 + 0.072492 + 0.17565	A1	Correct unsimplified expression, or better
	0.262	A1	
		3	

© UCLES 2021 Page 13 of 14

Question	Answer	Marks	Guidance
7(b)(ii)	Mean = 120×0.35 [= 42] Variance = $120 \times 0.35 \times 0.65$ [= 27.3]	B1	Correct mean and variance seen, allow unsimplified
	$P(X>32) = P(Z > \frac{32.5-42}{\sqrt{27.3}}) = P(Z > -1.818)$	M1	Substituting <i>their</i> mean and variance into \pm standardisation formula (any number), condone σ^2 or $\sqrt{\sigma}$
	PRE	M1	Using continuity correction 31.5 or 32.5
	$\Phi(1.818)$	M1	Appropriate area Φ , from final process, must be probability
	0.966	A1	$0.965 \le p \le 0.966$
		5	

© UCLES 2021 Page 14 of 14

Cambridge International AS & A Level

MATHEMATICS 9709/52
Paper 5 Probability and Statistics 1 March 2021

MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2021 [Turn over

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2021 Page 2 of 16

Math	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

© UCLES 2021 Page 3 of 16

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2021 Page 4 of 16

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2021 Page 5 of 16

Question	Answer	Marks	Guidance
1(a)	$\left[\left(\frac{4}{5} \right)^7 \frac{1}{5} = \right] \frac{16384}{390625} \text{ or } 0.0419[43]$	B1	Evaluated, final answer.
		1	
1(b)	$1 - \left(\frac{4}{5}\right)^5 \text{ or } \frac{1}{5} + \frac{4}{5} \times \frac{1}{5} \left(\frac{4}{5}\right)^2 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5} + \left(\frac{4}{5}\right)^4 \times \frac{1}{5}$	M1	$1 - p^{n} n = 5.6$ or $p + pq + pq^{2} + pq^{3} + pq^{4} (+ pq^{5})$ $0Sum of a geometric series may be used.$
	$\frac{2101}{3125}$ or $0.672[32]$	A1	Final answer.
	Alternative method for question 1(b)		
	[P(at least 1 three scored in 5 throws) =] $ \left(\frac{1}{5}\right)^5 + {}^5C_4 \left(\frac{1}{5}\right)^4 \left(\frac{4}{5}\right) + {}^5C_3 \left(\frac{1}{5}\right)^3 \left(\frac{4}{5}\right)^2 + {}^5C_2 \left(\frac{1}{5}\right)^2 \left(\frac{4}{5}\right)^3 + {}^5C_4 \left(\frac{1}{5}\right) \left(\frac{4}{5}\right)^4 $	M1	$(p)^{5} + {}^{5}C_{4}(p)^{4}(q) + {}^{5}C_{3}(p)^{3}(q)^{2} + {}^{5}C_{2}(p)^{2}(q)^{3} + {}^{5}C_{1}(p)(q)^{4}$ or $(p)^{6} + {}^{6}C_{5}(p)^{5}(q) + {}^{6}C_{4}(p)^{4}(q)^{2} + {}^{6}C_{3}(p)^{3}(q)^{3}$ $+ {}^{6}C_{2}(p)^{2}(q)^{4} + {}^{6}C_{1}(p)(q)^{5}, \ 0 At least first, last and one intermediate term is required to show pattern of terms if not all terms stated.$
	$\frac{2101}{3125}$ or 0.672[32]	A1	Final answer.
	at pie	2	

© UCLES 2021 Page 6 of 16

PUBLISHED

Question	Answer	Marks	Guidance
2(a)	$0.2[\times 1] + 0.45 \times 0.4 + 0.35 \times 0.3$	M1	$0.2 \times 1] + 0.45 \times b + 0.35 \times c, b = 0.4, 0.6 c = 0.3, 0.7$
	$0.485 \text{ or } \frac{97}{200}$	A1	
		2	
2(b)	$P(Y \overline{H}) = \frac{P(Y \cap \overline{H})}{P(\overline{H})} = \frac{0.35 \times 0.7}{1 - their(\mathbf{a})} = \frac{0.245}{0.515}$	B1	0.35×0.7 or 0.245 seen as numerator or denominator of fraction.
		M1	0.515 or $1 - their$ (a) or $[0.3 \times 0 +] 0.45 \times d + 0.35 \times e$, where $d = their b'$, $e = their c'$ seen as denominator of fraction.
	$0.476 \text{ or } \frac{49}{103}$	A1	$0.4757 \leqslant p \leqslant 0.476$
		3	

Question	Answer	Marks	Guidance
3(a)	$P\left(\left(\frac{85-96}{18}\right) < z < \left(\frac{100-96}{18}\right)\right)$	M1	Use of \pm standardisation formula once with appropriate values substituted, no continuity correction, not σ^2 or $\sqrt{\sigma}$.
	$P(-0.6111 < z < 0.2222)$ $= \Phi(0.2222) + \Phi(0.6111) - 1$ $= 0.5879 + 0.7294 - 1$	M1	Appropriate area Φ , from final process, must be probability. Use of $(1-z)$ implies M0.
	0.317	A1	Final answer which rounds to 0·317.
		3	

© UCLES 2021 Page 7 of 16

Question	Answer	Marks	Guidance
3(b)	$z = \pm 1.175$	B1	$1.17 \le z \le 1.18 \text{ or } -1.18 \le z \le -1.17$
	$-1.175 = \frac{t - 96}{18}$	M1	An equation using \pm standardisation formula with a z-value, condone σ^2 , $\sqrt{\sigma}$ or continuity correction. E.g. equating to 0.88, 0.12, 0.8106, 0.1894, 0.5478, 0.4522, \pm 0.175 or \pm 2.175 implies M0.
	74·85 or 74·9	A1	$74.85 \leqslant t \leqslant 74.9$
		3	

Question				Ans	wer		Marks	Guidance
4(a)	x prob	1 4k	2 6k	3 6k	4 4k		B1	Table with \times values and one correct probability expressed in terms of k . Condone any additional \times values if probability stated as 0.
							B1	Remaining 3 probabilities correct expressed in terms of k – condone if the first correct probability is not in table.
						TPF	2	
4(b)	$[4k + 6k + 6k + 4k = 1] k = \frac{1}{20} (= 0.05)$						B1	Correct value for k SOI. May be calculated in 4(a). SC B1 If denominator 20k used throughout.
	E(X) = (= 2.5)	$1 \times \frac{4}{20} + 2$	$2 \times \frac{6}{20} + 3$	$6 \times \frac{6}{20} + 4$	$\times \frac{4}{20} = \frac{1}{2}$	$\frac{1}{10} + \frac{12}{20} + \frac{18}{20} + \frac{16}{20}$	M1	Accept unsimplified expression. Condone $4k + 12k + 18k + 16k$. May be implied by use in Variance expression. Special ruling: Allow use of denominator $20k$.
	= (4 + 24) Or	4 + 54 + 6	(4)×their	r0.05 - (t	heir2.5) ²	$\frac{4}{20} - \left(their 2\frac{1}{2}\right)^{2}$ $\frac{6}{20} + (4 - 2.5)^{2} \times \frac{4}{20}$	M1	Appropriate variance formula with <i>their</i> numerical probabilities using <i>their</i> $(E(X))^2$, accept unsimplified, with <i>their k</i> substituted. Special ruling: If denominator $20k$ used throughout, accept appropriate variance formula in terms of k .
	1.05					Satore	A1	AG, NFWW.
							4	

© UCLES 2021 Page 9 of 16

Question			A	nswer				Marks	Guidance
5(a)								B1	Correct cumulative frequencies seen (may be by table or
	Distance	0-4	5-10	11-20	21-30	31-40	41-60		plotted accurately on graph), condone 12 not stated.
	Upper boundary	4.5	10.5	20.5	30.5	40.5	60.5		
	Cumulative frequency	12	28	60	126	146	150		
		10						B1	Axes labelled 'distance (or d) [in] km' from 0 to 60 and 'cumulative frequency' (or cf) from 0 to 150.
		130 manufacture of the state of	/					M1	At least 5 points plotted at upper end points for d (allow upper boundary ± 0.5) with a linear scale for distance, condone $0-4$ interval inaccurate, no scale break on axis. Not bar graph/histogram unless clear indication of upper end point only of each bar.
				SO 40 Dinaso das				A1	All plotted correctly at correct upper end points (4.5 etc.) with both scales linear ($0 \le d \le 60$, $0 \le cf \le 150$), curve drawn accurately joined to (0,0), cf line>150, no daylight if >150.
					14				
						.sa	tpre	4	
5(b)	70% of 150 = 1	105						M1	105 seen or implied by indication on grid.
	Approx. 27							A1 FT	Strict FT <i>their</i> increasing cumulative frequency graph, use of graph must be seen. If no clear evidence of use of graph: SC B1 FT correct value from <i>their</i> increasing cumulative frequency graph.
								2	

© UCLES 2021 Page 10 of 16

Question	Answer	Marks	Guidance
5(c)	Midpoints: 2.25, 7.5, 15.5, 25.5, 35.5, 50.5	B1	At least 5 correct midpoints seen.
	Mean = $\frac{2.25 \times 12 + 7.5 \times 16 + 15.5 \times 32 + 25.5 \times 66 + 35.5 \times 20 + 50.5 \times 4}{150}$ $= \frac{27 + 120 + 496 + 1683 + 710 + 202}{150}$	M1	Using 6 midpoint attempts (e.g. $2 \cdot 25 \pm 0 \cdot 5$), condone one error not omission, multiplied by frequency, accept unevaluated, denominator either correct or <i>their</i> Σ frequencies.
	$\left[= \frac{3238}{150} \right] = 21.6, \ 21\frac{44}{75}$	A1	Evaluated, WWW, accept 21·5[866].
		3	

Question	Answer	Marks	Guidance
6(a)	11! 2!2!2!	M1	11! alone as numerator. $2! \times m! \times n!$ on denominator, $m = 1, 2, n = 1, 2$. no additional terms, no additional operations.
	4989600	A1	Exact answer only.
		2	

© UCLES 2021 Page 11 of 16

Question	Answer	Marks	Guidance						
6(b)	Method 1 R ^ ^ ^ ^ ^ R								
	Arrange the 7 letters CTEPILL = $\frac{7!}{2!}$	B1	$\frac{7!}{2!} \times k$ seen, k an integer > 1 .						
	Number of ways of placing As in non-adjacent places = ${}^{8}C_{2}$ $\frac{7!}{2!} \times {}^{8}C_{2}$	M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n = 7, 8$ or $9, m$ an integer > 1 .						
	9	M1	$\frac{7!}{p!} \times {}^{8}C_{2}$ or $\frac{7!}{p!} \times {}^{8}P_{2}$, p integer $\geqslant 1$, condone 2520×28.						
	= 70560	A1	Exact answer only. SC B1 70560 from M0, M1 only.						
	Method 2 [Arrangements Rs at ends – Arrangements Rs at ends and As together]								
	Total arrangements with R at beg. and end = $\frac{9!}{2!2!}$	M1	$\frac{9!}{2!m!} - k,90720 > k \text{ integer} > 1, m = 1, 2.$						
	Arrangements with R at ends and As together = $\frac{8!}{2!}$ With As not together = $\frac{9!}{2!2!} - \frac{8!}{2!}$	B1	$s - \frac{8!}{2!}$, s an integer >1						
	2!2! 2!	M1	$\frac{9!}{p} - \frac{8!}{q}$, p, q integers ≥ 1 , condone $90720 - 20160$.						
	[90720 – 20160] = 70560	A1	Exact answer only. SC B1 70560 from M0, M1 only.						
		4							

© UCLES 2021 Page 12 of 16

PUBLISHED

Question	Answer	Marks	Guidance						
6(c)	Method 1								
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	5 C _x seen alone or 5 C _x × k , $2 \ge k \ge 1$, k an integer, $0 < x < 5$ linked to an appropriate scenario.						
	$\begin{array}{ccc} R R A A L & C_1 & = 3 \\ R R A A L L & = 1 \end{array}$	A1	$^5C_2 \times k$, $k = 1$ oe or $^5C_1 \times m$, $m = 1,2$ oe alone. SC if 5C_x not seen. B2 for 5 or 10 linked to the appropriate scenario WWW.						
		M1	Add outcomes from 3 or 4 identified correct scenarios only, accept unsimplified. ${}^{2}C_{w} \times {}^{2}C_{x} \times {}^{2}C_{y} \times {}^{5}C_{z}$, $w+x+y+z=6$ identifies w Rs, \times As and y Ls.						
	[Total =] 21	A1	WWW, only dependent on 2nd M mark. Note: ${}^5C_2 + {}^5C_1 + {}^5C_1 + 1 = 21$ is sufficient for 4/4.						
			SC not all (or no) scenarios identified. B1 10 + 5 + 5 + 1 DB1 = 21						
	Method 2 – Fixing RRAL first. N.B. No other scenarios can be present anywhere in solution.								
	$R R A L ^{\wedge} = {}^{7}C_{2}$	M1	⁷ C _x seen alone or ⁷ C _x × k, $2 \ge k \ge 1$, k an integer, $0 < x < 7$. Condone ⁷ P _x or ⁷ P _x × k, $2 \ge k \ge 1$, k an integer, $0 < x < 7$.						
	w. satpre	M1	$^{7}C_{2} \times k, 2 \geqslant k \geqslant 10e$						
		A1	$^{7}\text{C}_{2} \times k$, $k = 1$ oe no other terms.						
	[Total =] 21	A1	Value stated.						
		4							

© UCLES 2021 Page 13 of 16

Cambridge International AS & A Level – Mark Scheme

PUBLISHED

Question	Answer	Marks	Guidance
7(a)(i)	$\left[\frac{104+31}{400}\right] = \frac{135}{400}, \frac{27}{80}, 0.3375$	B1	Evaluated, exact value.
		1	
7(a)(ii)	Method 1		
	$P(M) = \frac{180}{400}, 0.45 \text{ P(S)} = \frac{135}{400}, 0.3375 \text{ P(}M \cap S) = \frac{31}{400}, 0.0775$ $\frac{180}{400} \times \frac{135}{400} = \frac{243}{1600}, 0.151875 \neq \frac{31}{400} \text{ so NOT independent}$	M1	Their $P(M) \times their P(S)$ seen, accept unsimplified.
		A1	$P(M)$, $P(S)$ and $P(M \cap S)$ notation seen, numerical comparison and correct conclusion, WWW.
	Method 2		
	$P(M \cap S) = \frac{31}{400} P(S) = \frac{135}{400} P(M) = \frac{180}{400}$ $P(M S) = \frac{\frac{31}{400}}{\frac{135}{400}} = \frac{31}{135}, 0.2296 \neq \frac{180}{400} \text{ so NOT independent}$	M1	$[P(M S) =] \frac{their P(M \cap S)}{their P(S)} \text{ (oe) seen, accept unsimplified.}$
	".satpre	A1	$P(M)$, $P(S)$ and $P(M \cap S)$ notation seen, numerical comparison and correct conclusion, WWW.
		2	

© UCLES 2021 Page 14 of 16

Question	Answer	Marks	Guidance					
7(b)(i)	Method 1 [1 – P(0,1,2)]							
	$= 1 - ({}^{10}C_0 0.3^0 0.7^{10} + {}^{10}C_1 0.3^1 0.7^9 + {}^{10}C_2 0.3^2 0.7^8)$	M1	10 C _x $p^x (1-p)^{10-x}$ for $0 < x < 10$, $0 , any p.$					
	= 1 - (0.028248 + 0.121061 + 0.233474)	A1	Correct expression, accept unsimplified, condone omission of final bracket, condone recovery from poor notation.					
	= 0.617	A1	Accept $0.61715 \le p \le 0.61722$, WWW.					
	Method 2 [P(3,4,5,6,7,8,9,10) =]							
	$\begin{array}{c} {}^{10}\text{C}_3\ 0.3^3\ 0.7^7 + {}^{10}\text{C}_4\ 0.3^4\ 0.7^6 + {}^{10}\text{C}_5\ 0.3^5\ 0.7^5 \\ + {}^{10}\text{C}_3\ 0.3^6\ 0.7^4 + {}^{10}\text{C}_5\ 0.3^7\ 0.7^3 + {}^{10}\text{C}_5\ 0.3^8\ 0.7^2 \end{array}$	M1	10 C _x $p^x (1-p)^{10-x}$ for $0 < x < 10, 0 < p < 1$, any p .					
	$+ {}^{10}\text{C}_6 0.3^6 0.7^4 + {}^{10}\text{C}_7 0.3^7 0.7^3 + {}^{10}\text{C}_8 0.3^8 0.7^2 + {}^{10}\text{C}_9 0.3^9 0.7^1 + {}^{10}\text{C}_{10} 0.3^{10} 0.7^0$	A1	Correct unsimplified expression.					
	= 0.617	A1	Accept $0.61715 \le p \le 0.61722$, WWW.					
		3						

© UCLES 2021 Page 15 of 16

Question	Answer	Marks	Guidance
7(b)(ii)	[p = 0·3] Mean = 0·3 × 90 = 27; variance = 0·3 × 90 × 0·7 = 18·9	B1	Correct mean and variance, allow unsimplified. Condone $\sigma = 4.347$ evaluated.
	$P(X < 32) = P\left(z < \frac{31.5 - 27}{\sqrt{18.9}}\right)$	M1	Substituting <i>their</i> μ and σ (not σ^2 , $\sqrt{\sigma}$) into the \pm standardising formula with a numerical value for '31.5'.
	T PA	M1	Using either 31·5 or 32·5 within a ±standardising formula with numerical values for <i>their</i> μ and σ (condone σ^2 , $\sqrt{\sigma}$).
	$=\Phi(1.035)$	M1	Appropriate area Φ , from standardisation formula $P(z <)$ in final solution, must be probability.
	= 0.850	A1	Allow $0.8495 , final answer WWW.$
		5	_111

© UCLES 2021 Page 16 of 16

Cambridge International A Level

MATHEMATICS 9709/51

Paper 5 Probability & Statistics 1

October/November 2020

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

© UCLES 2020 [Turn over

Cambridge International A Level – Mark Scheme

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 16

Ma	Mathematics Specific Marking Principles						
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.						
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.						
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.						
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).						
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.						
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.						

© UCLES 2020 Page 3 of 16

Cambridge International A Level – Mark Scheme

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column.
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2020 Page 4 of 16

Cambridge International A Level – Mark Scheme

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2020 Page 5 of 16

Question			Answer							Marks	Guidance
1(a)			Red						M1	Complete outcome space or or listing A and B outcomes	
			1	2	3	4	5	6			or listing A∩B outcomes
		1	2	3	4	5	6	7			
		2	3	4	5	6	7	8	TPA		
	ıe	3	4	5	6	7	8	9			
	Blue	4	5	6	7	8	9	10			
		5	6	7	8	9	10	11			
		6	7	8	9	10	11	12			
	P(A∩I	$(3) = \frac{3}{3}$	<u>5</u>				I			A1	With evidence
										2	

© UCLES 2020 Page 6 of 16

Question	Answer	Marks	Guidance
1(b)	$P(A) \times P(B) = \frac{1}{3} \times \frac{10}{36}$	M1	Their $\frac{1}{3} \times their \frac{10}{36}$ seen
	$\frac{5}{54} \neq \frac{5}{36}$ so not independent	A1	$\frac{5}{54}, \frac{5}{36}$, P(A) × P(B) and P(A \cap B) seen in workings and correct conclusion stated Condone $\frac{5}{36}$ being stated in (a)
	Alternative method for question 1(b)		
	$P(B A) = P(B)$ $P(B A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{5}{36}}{\frac{1}{3}}$	M1	OE, $\frac{their1(a)}{theirP(A)}$ seen
	$\frac{5}{12} \neq \frac{5}{18}$ so not independent	A1	P(A B), P(B), $\frac{5}{12}$, $\frac{5}{18}$ seen in workings and correct conclusion stated Condone $\frac{5}{18} = \frac{10}{36}$ being identified in (a)
	Satore	2	

© UCLES 2020 Page 7 of 16

Question	Answer	Marks	Guidance
2(a)	$0.6 \times 0.7 + 0.4(1 - x) = 0.58$ = 0.42 + 0.4(1 - x) = 0.58	M1	Equation of form $0.6 \times a + 0.4 \times b = 0.58$; a = 0.3, 0.7, b = x, (1 - x)
		B1	Single correct product seen, condone 0·42, in an equation of appropriate form
	x = 0.6	A1	
	Alternative method for question 2(a)	7/6	
	$0.6 \times 0.3 + 0.4x = 0.42$ = 0.18 + 0.4x = 0.42	M1	Equation of form $0.6 \times a + 0.4 \times b = 0.42$; a = 0.3, 0.7, b = x, (1 - x)
		B1	Single correct product seen, condone 0·18, in an equation of appropriate form
	x = 0.6	A1	
		3	
2(b)	$(0.6 \times 0.3)^2$	M1	$(a \times b)^2$, $a = 0.6$, 0.4 and $b = 0.7$, 0.3 , x , $(1-x)$ or 0.18^2 , alone.
	0.0324	A1	1.5
		2	9
3(a)	$P(X > 6) = 0.75^6$	M1	$p^{n}, n = 6, 7 0$
	$0.178, \frac{729}{4096}$	A1	0·17797
		2	

© UCLES 2020 Page 8 of 16

Question				Answer			Marks					Gui	dance
3(b)	1 – P(0, 1	$C_2 0.25^2 0.75^8$)	M1	Binomial term of form ${}^{10}C_x$ $p^x (1-p)^{10-x}$, $0 , any p, x \neq 0, 10$									
	1 - (0.056	63135 + 0.1	1877117 +	0.2815676	5)		A1	Correc	Correct unsimplified expression				1
	0.474						A1	0.474	≤ <i>p</i> ≤	0.474	4		
						TP	3						
4(a)	у	1	2	3	4		B1		1	2	3	4	
	prob	$\frac{7}{16}$	<u>5</u>	$\frac{3}{16}$	$\frac{1}{16}$			1	1	1	2	3	
		16	16	16	16			2	1	2	1	2	
								3	2	1	3	1	
								4	3	2	1	4	
								Probability distribution table with correct scores with at least one probability, allow extra score values if probability of zero stated'					
							B1	One p	robabi	lity (li	nked v	vith co	rrect score) correct
							B1	2 mor	e prob	s (link	ed witl	h corre	ect scores) correct
							B1 FT	4 th pro	b corr	ect, FT	sum	of 3 or	4 terms = 1
							4			_		_	

© UCLES 2020 Page 9 of 16

Question	Answer	Marks	Guidance
4(b)	$P(2 \text{even}) = \frac{\frac{5}{16}}{\frac{6}{16}}$	M1	$\frac{\textit{their}P(2)}{\textit{their}P(2) + \textit{their}P(4)}$ seen or correct outcome space.
	$\frac{5}{6}$ or 0.833	A1	
		2	
5(a)	$P(X > 4.2) = P(z > \frac{4.2 - 3.5}{0.9})$ = P(z > 0.7778)	M1	Using \pm standardisation formula, no $\sqrt{\sigma}$ or σ^2 , continuity correction
	1 – 0.7818	M1	Appropriate area Φ , from standardisation formula $P(z>)$ in final solution
	0.218	A1	
		3	
5(b)	z = -1.282	B1	±1.282 seen (critical value)
	$\frac{t-3.5}{0.9} = -1.282$	M1	An equation using \pm standardisation formula with a z-value, condone $\sqrt{\sigma}$, σ^2 and continuity correction
	t = 2.35	A1	AWRT, only dependent on M mark
		3	

© UCLES 2020 Page 10 of 16

Question	Answer	Marks	Guidance				
5(c)	$P(2.8 < X < 4.2) = 1 - 2 \times their 5(a)$ $\equiv 2(1 - their 5(a)) - 1$ $\equiv 2(0.5 - their 5(a))$ $= 0.5636$	B1 FT	FT from <i>their</i> 5(a) < 0.5 or correct Accept unevaluated probability OE Accept 0.564				
	Number of days = $365 \times 0.5636 = 205.7$	M1	$365 \times their p$				
	So, 205 (days)	A1 FT	Accept 205 or 206, not 205·0 or 206·0 no approximation/rounding stated FT must be an integer value				
	Alternative method for question 5(c)						
	$P\left(\frac{2.8 - 3.5}{0.9} < z < \frac{4.2 - 3.5}{0.9}\right)$	B1	0.5635				
	$= \Phi(0.7778) - (1 - \Phi0.7778)$ $= 0.7818 - (1 - 0.7818)$ $= 0.5636$		OE				
	Number of days = $365 \times 0.5636 = 205.7$	M1	$365 \times their p$				
	So, 205 (days)	A1 FT	Accept 205 or 206, not 205·0 or 206·0 no approximation/rounding stated FT must be an integer value				
	Satore	3					

© UCLES 2020 Page 11 of 16

Question	Answer	Marks	Guidance
6(a)	150 140 130 130 130 100 100 100 100 10	M1	At least 4 points plotted at upper end points, with both scales linear with at least 3 values indicated
	Correct cumulative frequency curve	A1	All plotted correctly with curve drawn joined to (0, 0), axes labelled cumulative frequency, time, minutes
	arbit	2	
6(b)	$150 \times 0.76 = 114$	M1	114 SOI, may be on graph
	k = 45 (mins)	A1 FT	Clear indication that <i>their</i> graph has been used, tolerance ±1mm
		2	

© UCLES 2020 Page 12 of 16

Question	Answer	Marks	Guidance
6(c)	Frequencies: 12 36 58 28 16	B1	Correct frequencies seen
	Mean = $\frac{10 \times 12 + 25 \times 36 + 35 \times 58 + 50 \times 28 + 80 \times 16}{150}$	B1	At least 4 correct midpoints seen and used
	$\frac{120 + 900 + 2030 + 1400 + 1280}{150}$	M1	Correct formula with <i>their</i> midpoints (not upper boundary, lower boundary, class width or frequency density).
	$38.2, 38\frac{1}{5}$	A1	
	Variance = $\frac{12 \times 10^2 + 36 \times 25^2 + 58 \times 35^2 + 28 \times 50^2 + 16 \times 80^2}{150} - mean^2$ $= \frac{1200 + 22500 + 71050 + 70000 + 102400}{150} - mean^2$	M1	Substitute <i>their</i> midpoints and frequencies (condone use of cumulative frequency) in correct variance formula, must have '– <i>their</i> mean ² '
	(Standard deviation = $\sqrt{321.76}$) = 17.9	A1	
		6	
7(a)	<u>8!</u> <u>2!</u>	M1	$\frac{8!}{k} = \frac{7 \times 8}{k}$, where $k \in \mathbb{N}$, $\frac{a!}{2(!)}$, where $a \in \mathbb{N}$
	20160	A1	
	arpi	2	

© UCLES 2020 Page 13 of 16

Question	Answer	Marks	Guidance	
7(b)	Total number of ways: $\frac{10!}{2!3!}$ (=302400) (A)	B1	Accept unsimplified	
	With Ps together: $\frac{9!}{3!}$ (= 60 480) (B)	B1	Accept unsimplified	
	With Ps not together: 302 400 – 60 480	M1	$\frac{10!}{m} - \frac{9!}{n}$, m, n integers or (A) – (B) if clearly identified	
	241 920	A1		
	Alternative method for question 7(b)			
	<u>8!</u>	B1	$k \times 8!$ in numerator, k a positive integer, no \pm	
	3!	B1	$m \times 3!$ in denominator, m a positive integer, no \pm	
	$\times \frac{9 \times 8}{2}$	M1	Their $\frac{8!}{3!}$ multiplied by ${}^{9}C_{2}$ or ${}^{9}P_{2}$ no additional terms	
	241 920	A1	Exact value, WWW	
	3	4		

© UCLES 2020 Page 14 of 16

Question	Answer	Marks	Guidance
7(c)	Probability = $\frac{\text{Number of ways Es at beginning and end}}{\text{Total number of ways}}$ Probability = $\frac{\frac{8!}{2!}}{\frac{10!}{2 \times 3!}} = \frac{20160}{302400}$	M1	$\frac{\left(\frac{8!}{k!}\right)}{\frac{10!}{k!l!}} \ 1 \leqslant k, l \in \mathbb{N} \leqslant 3, \text{ FT denominator from 7(b) or correct}$
	$\frac{1}{15}$, 0.0667	A1	
	Alternative method for question 7(c)		
	Probability = $\frac{3}{10} \times \frac{2}{9}$	M1	$\frac{a}{10} \times \frac{a-1}{9} a = 3,2$
	$\frac{1}{15}$, 0.0667	A1	
	Alternative method for question 7(c)		
	Probability = $\frac{1}{10} \times \frac{1}{9} \times 3!$	M1	$\frac{1}{10} \times \frac{1}{9} \times m!, m = 3, 2$
	$\frac{1}{15}$, 0.0667	A1	
		2	

© UCLES 2020 Page 15 of 16

Question	Answer	Marks	Guidance
7(d)	Scenarios:	M1	${}^{5}C_{x}$ seen alone, $1 \le x \le 4$
	PEEE ${}^{5}C_{0} = 1$ PEE_ ${}^{5}C_{1} = 5$ PE_ ${}^{5}C_{2} = 10$ P_ ${}^{5}C_{3} = 10$	M1	Summing the number of ways for 3 or 4 correct scenarios (can be unsimplified), no incorrect scenarios
	Total = 26	A1	
		3	

Cambridge International A Level

MATHEMATICS 9709/52

Paper 5 Probability & Statistics 1

October/November 2020

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

© UCLES 2020 [Turn over

Cambridge International A Level – Mark Scheme

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 14

Ma	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

© UCLES 2020 Page 3 of 14

Cambridge International A Level – Mark Scheme

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column.
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2020 Page 4 of 14

Cambridge International A Level – Mark Scheme

PUBLISHED

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2020 Page 5 of 14

Question	Answer	Marks	Guidance
1(a)	$1 - \left(\frac{5}{6}\right)^{5}$ or $\frac{1}{6} + \frac{5}{6} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{2} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{3} \times \frac{1}{6} + \left(\frac{5}{6}\right)^{4} \times \frac{1}{6}$	M1	$1 - p^{n} $
	$0.598, \frac{4651}{7776}$	A1	
		2	
1(b)	$(1 - P(0, 1, 2))$ $1 - \left(\left(\frac{5}{6}\right)^{10} + {}^{10}C_1\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^9 + {}^{10}C_2\left(\frac{1}{6}\right)^2\left(\frac{5}{6}\right)^8\right)$	M1	$^{10}C_x p^x (1-p)^{10-x}, 0$
	1 - (0.1615056 + 0.3230111 + 0.290710)	A1	Correct expression, accept unsimplified, condone omission of final bracket
	0.225	A 1	$0.2247 , WWW$
		3	

© UCLES 2020 Page 6 of 14

Question	Answer	Marks	Guidance
2(a)	$P(1 \text{ red}) = \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} \times 3$	M1	$\frac{a}{8} \times \frac{b}{7} \times \frac{c}{6} \times k \text{ or } \frac{5}{d} \times \frac{3}{e} \times \frac{2}{f} \times 3, 1 \le a, b, c \le 5, d, e, f \le 8, a, b, c,$ $d, e, f, k \text{ all integers.} 1 < k \le 3,$
	15 56	A1	AG, WWW
	Alternative method for question 2(a)		
	$\frac{{}^{5}C_{1}^{3}C_{2}}{{}^{8}C_{3}}$	M1	$\frac{{}^{a}C_{1} \times {}^{b}C_{2}}{{}^{8}C_{3}} \text{ or } \frac{{}^{5}C_{d} \times {}^{3}C_{e}}{{}^{8}C_{3}} \text{ or }$ $\frac{{}^{5}C_{d} \times {}^{3}C_{e} \left(or {}^{a}C_{1} \times {}^{b}C_{2}\right)}{{}^{5}C_{3} \times {}^{3}C_{0} + {}^{5}C_{2} \times {}^{3}C_{1} + {}^{5}C_{1} \times {}^{3}C_{2} + {}^{5}C_{0} \times {}^{3}C_{3}},$ $a + b = 8, d + e = 3$
	$\frac{15}{56}$	A1	AG, WWW, $\frac{15}{56}$ must be seen
		2	
2(b)	x 0 1 2 3 Prob. 1 15 30 15 10 5	B1	Probability distribution table with correct outcomes with at least one probability less than 1, allow extra outcome values if probability of zero stated.
	Prob. $\frac{1}{56}$ $\frac{15}{56}$ $\frac{30}{56} = \frac{15}{28}$ $\frac{10}{56} = \frac{5}{28}$	B1	2 of P(0), P(2) and P(3) correct
	0.0179 0.268 0.536 0.179	B1 FT	4 th probability correct or FT sum of 3 or more probabilities = 1, with P(1) correct
		3	

© UCLES 2020 Page 7 of 14

Question	Answer	Marks	Guidance
2(c)	$Var(X) = \frac{(0^2 \times 1) + 1^2 \times 15 + 2^2 \times 30 + 3^2 \times 10}{56} - \left(\frac{15}{8}\right)^2$ $= \frac{15}{56} + \frac{120}{56} + \frac{90}{56} - \left(\frac{15}{8}\right)^2$	M1	Substitute <i>their</i> attempts at scores in correct variance formula, must have ' – mean²' (FT if mean calculated) (condone probabilities not summing to 1 for this mark)
	$\frac{225}{448}$, 0·502	A1	
		2	

Question	Answer	Marks	Guidance
3(a)	$P(X > 11.3) = P(z > \frac{11.3 - 10.1}{1.3}) = P(z > 0.9231)$	M1	Using \pm standardisation formula, no $\sqrt{\sigma}$ or σ^2 , continuity correction
	1 – 0.822	M1	Appropriate area Φ , from standardisation formula $P(z>)$ in final solution
	0.178	A1	0.1779
		3	1.5
3(b)	z = -0.674	B1	±0.674 seen (critical value)
	$\frac{t - 10.1}{1.3} = -0.674$	M1	An equation using \pm standardisation formula with a z-value, condone $\sqrt{\sigma}$ or σ^2 , continuity correction.
	t = 9.22	A1	AWRT. Only dependent on M1
		3	

© UCLES 2020 Page 8 of 14

Question	Answer	Marks	Guidance
3(c)	$P(8.9 < X < 11.3) = 1 - 2 \times their 3(a)$ $= 2(1 - their 3(a)) - 1$ $= 2(0.5 - their 3(a))$ $= 0.644$	B1 FT	FT from <i>their</i> 3(a) < 0.5 or correct, accept unevaluated probability OE
	Number of days = 90×0.644 = 57.96	M1	$90 \times their \ p \ seen, \ 0$
	So 57 (days)	A1 FT	Accept 57 or 58, not 57·0 or 58·0, no approximation/rounding stated FT must be an integer value
	Alternative method for question 3(c)		
	$P\left(\frac{8 \cdot 9 - 10 \cdot 1}{1 \cdot 3} < z < \frac{11 \cdot 3 - 10 \cdot 1}{1 \cdot 3}\right)$ $= \Phi(0 \cdot 9231) - \left(1 - \Phi(0 \cdot 9231)\right) \text{ oe}$ $= 0 \cdot 822 - (1 - 0 \cdot 822)$ $= 0 \cdot 644$	B1	Accept unevaluated probability
	Number of days = 90×0.644 = 57.96	M1	$90 \times their \ p \ seen, \ 0$
	So 57 (days)	A1 FT	Accept 57 or 58, not 57·0 or 58·0, no approximation/rounding stated FT must be an integer value
		3	

© UCLES 2020 Page 9 of 14

Question	Answer	Marks	Guidance
4(a)	0.75 Fine 0.8 Fine 0.25 Rainy 0.4 Fine 0.6 Rainy	B1	All probabilities correct, may be on branch or next to 'Fine/Rainy' Ignore additional branches.
4(b)	$0.8 \times 0.75 + 0.2 \times 0.4 \ \ (= 0.6 + 0.08)$	M1	Correct or FT from <i>their</i> diagram unsimplified, all probabilities $0 . Partial evaluation only sufficient when correct. Accept working in 4(b) or by the tree diagram.$
	$0.68, \frac{17}{25}$	A1	From supporting working
		2	

© UCLES 2020 Page 10 of 14

Question	Answer	Marks	Guidance
4(c)	$0.8 \times 0.75 \times 0.25 + 0.8 \times 0.25 \times 0.6$	M1	$a \times b \times c + a \times 1 - b \times d$, $0 < c$, $d \le 1$, a , b consistent with <i>their</i> tree diagram or correct, no additional terms
	0.15 + 0.12	A1	At least one term correct, accept unsimplified
	0.27	A1	Final answer
		3	
4(d)	$P(Y) = their (c) + 0.2 \times 0.4 \times 0.25 + 0.2 \times 0.6 \times 0.6$ (= 0.362)	B1 FT	their (c) + $e \times f \times g + e \times (1-f) \times h$, $0 < g$, $h \le 1$, e , f consistent with their tree diagram, or correct
	$P(X Y) = \frac{their(c)}{their P(Y)} = \frac{0.27}{0.362}$	M1	their 4(c) (or correct)/their previously calculated and identified P(Y) or a denominator involving 3 or 4 3-factor probability terms consistent with <i>their</i> tree diagram & third factor 0
	$0.746, \frac{373}{500} \text{ or } \frac{135}{181}$	A1	(0.7458)
		3	

© UCLES 2020 Page 11 of 14

Question			Answer		Marks	Guidance
5(a)	Dados		Linva		B1	Correct stem can be upside down, ignore extra values
	8 6		0 2 9 0 1 2 5 6		B1	Correct Dados labelled, leaves in order and lined up vertically (less than midway to next column), no commas etc, no extra terms
	8 2	2	2 6	AT PA	B1	Correct Linva on opposite side of stem labelled, leaves in order and lined up vertically (less than midway to next column), no commas etc, no extra terms
	2	4	0		B1	Correct single key for their diagram, need both resorts identified and 'cm' stated at least once here or in leaf headings or title.
	KEY 6 3 2 means 36 and 32		(snow) in Dados (snow) in Linva			SC If 2 separate diagrams drawn, SCB1 if both keys meet these criteria B0B1B0SCB1 max.
					4	
5(b)	Median or Q2 = 15 (cm)				B1	Correct
	UQ or Q3 = 28 cm, LQ or Q1 = 10 cm IQR = 28 - 10				M1	$22 \leqslant UQ \leqslant 36 - 8 \leqslant LQ \leqslant 10$
	18 (cm)		12		A1	www
			5	· ·	3	9
5(c)	On average the snowfall in Davos is higher				B1 FT	FT from <i>their</i> 5(b) values for Dados. Statement comparing central tendency in context
	The amount of snowfall in Linva varies more than in Davos				B1 FT	Statement comparing spread in context Note: simply stating and comparing the values is not sufficient.
					2	

© UCLES 2020 Page 12 of 14

Question	Answer	Marks	Guidance				
6(a)	⁹ C ₆ (× ³ C ₃)		${}^{9}C_{k} \times n, k = 6, 3, n = 1,2$ oe Condone ${}^{9}C_{6} + {}^{3}C_{3}, {}^{9}P_{6} \times {}^{3}P_{3}$				
	84	A1	Accept unevaluated.				
		2					
6(b)	Number with 3 Baker children = ${}^{6}C_{2}$ or 15	B1	Correct seen anywhere, not multiplied or added				
	Total no of selections = ${}^{9}C_{5}$ or 126 Probability = $\frac{\text{number of selections with 3 Baker children}}{\text{total number of selections}}$	M1	Seen as denominator of fraction				
	$\frac{15}{126}$, 0·119		OE, e.g. $\frac{5}{42}$				
	Alternative method for question 6(b)						
	$\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \left(\times \frac{6}{6} \right) \left(\times \frac{5}{5} \right) \times {}^{5}C_{3}$	B1	⁵ C ₃ (OE) or 10 seen anywhere, multiplied by fractions only, not added				
		M1	$\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \left(\times \frac{6}{6} \right) \left(\times \frac{5}{5} \right) \times k , 1 \le k, k \text{ integer}$				
	$\frac{15}{126}$, 0·119	A1	OE, e.g. $\frac{5}{42}$				
		3					

© UCLES 2020 Page 13 of 14

Question	Answer	Marks	Guidance				
6(c)	[Total no of arrangements = 9!] [Arrangements with men together = 8! × 2]	M1	9! – k or 362880 – k, k an integer<362 880				
	Not together: 9! –						
	8! × 2		$8! \times 2(!)$ or 80 640 seen anywhere				
	282 240	A1	Exact value				
	Alternative method for question 6(c)						
	$7! \times 8 \times 7$	B1	$7! \times k$, k positive integer > 1				
		M1	$m \times 8 \times 7$, $m \times {}^{8}P_{2}$, $m \times {}^{8}C_{2}$ m positive integer > 1				
	282 240	A1	Exact value				
		3					
6(d)	7! × 2 × 7		$7! \times k$, k positive integer > 1 If $7!$ not seen, condone $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times (1) \times k$ or $7 \times 6! \times k$ only				
	3	M1	$m \times 2 \times 7$, m positive integer > 1				
	70 560	A1					
	Satpre	3					

© UCLES 2020 Page 14 of 14

Cambridge International A Level

MATHEMATICS 9709/53

Paper 5 Probability & Statistics 1

October/November 2020

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Cambridge International A Level – Mark Scheme

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 14

Ma	Mathematics Specific Marking Principles					
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.					
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.					
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.					
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).					
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.					
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.					

© UCLES 2020 Page 3 of 14

Cambridge International A Level – Mark Scheme

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column.
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

© UCLES 2020 Page 4 of 14

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2020 Page 5 of 14

Question	Answer	Marks	Guidance
1(a)	$P(56 < X < 66) = P\left(\frac{56 - 62}{5} < z < \frac{66 - 62}{5}\right)$ $= P(-1.2 < z < 0.8)$	M1	Using \pm standardisation formula at least once, no $\sqrt{\sigma}$ or σ^2 , allow continuity correction
	$\Phi(0.8) + \Phi(1.2) - 1$ = 0.7881 + 0.8849 - 1	M1	Appropriate area Φ , from standardisation formula in final solution
	0.673	A1	
		3	
1(b)	z = 1.127	B1	$\pm (1.126 - 1.127)$ seen, 4 sf or more
	$\frac{60t - 62}{5} = 1.127$ $60t = 5.635 + 62 = 67.635$	M1	z-value = $\pm \frac{(60t - 62)}{5}$ condone z-value = $\pm \frac{(t - 62)}{5}$ no continuity correction, condone $\sqrt{\sigma}$ or σ^2
	t = 1.13	A1	CAO
		3	

© UCLES 2020 Page 6 of 14

Question	Answer	Marks	Guidance
2(a)	$\left(\frac{5}{6}\right)^8$	M1	p^8 , $0 , no x, + or -$
	0.233	A1	
		2	
2(b)	36	B1	
	16	1	
2(c)	$P(X=10) + P(X=11) = \left(\frac{35}{36}\right)^9 \frac{1}{36} + \left(\frac{35}{36}\right)^{10} \frac{1}{36}$	M1	OE, unsimplified expression in form $p^9q + p^{10}q$, $p + q = 1$, no \times
	0.0425	A1	
		2	

Question	Answer	Marks	Guidance	
3(a)	Scenarios: $6W \ 0M \ ^{9}C_{6} = 84$	M1	Correct number of ways for either 5 or 4 women, accept unsimplified	
	5W 1M ${}^{9}C_{5} \times {}^{5}C_{1} = 126 \times 5 = 630$ 4W 2M ${}^{9}C_{4} \times {}^{5}C_{2} = 126 \times 10 = 1260$	M1	Summing the number of ways for 2 or 3 correct scenarios (can be unsimplified), no incorrect scenarios.	
	Total = 1974	A1		
		3		
3(b)	Total number of ways = ${}^{14}C_6$ (3003) Number with sister and brother = ${}^{12}C_4$ (495) Number required = ${}^{14}C_6$ –	M1	¹⁴ C ₆ – a value	
	$^{12}\text{C}_4 = 3003 - 495$	M1	12 C _x or n C ₄ seen on its own or subtracted from <i>their</i> total, $x \le 6$, $n \le 13$	
	2508	A1		
	Alternative method for question 3(b)			
	Number of ways with neither = ${}^{12}C_6 = 924$	M1	12 C ₆ + a value	
	Number of ways with either brother or sister (not both) = ${}^{12}C_5 \times 2$ (= 792×2) = 1584	M1	12 C _x × 2 or n C ₅ × 2 seen on its own or added to <i>their</i> number of ways with neither, $x \le 5$, $n \le 12$	
	Number required = 924 + 1584 = 2508	A1		
		3		

© UCLES 2020 Page 8 of 14

Question	Answer	Marks	Guidance
4(a)	$0.65^7 + {}^7C_1 \ 0.65^6 \ 0.35^1 + {}^7C_2 \ 0.65^5 \ 0.35^2$	M1	Binomial term of form ${}^{7}C_{x}$ $p^{x}(1-p)^{7-x}$, $0 , any p, x \neq 0, 7$
	0.049022 + 0.184776 + 0.29848	A1	Correct unsimplified answer
	0.532	A1	
	ATP	3	
4(b)	Mean = $142 \times 0.35 = 49.7$ Variance = $142 \times 0.35 \times 0.65 = 32.305$	B1	Correct unsimplified np and npq (condone $\sigma = 5.684$ evaluated)
	$P(X > 40) = P(z > \frac{40.5 - 49.7}{\sqrt{32.305}})$	M1	Substituting their μ and σ (no $\sqrt{\sigma}$ or σ^2) into ±standardisation formula with a numerical value for '40.5'
	P(z > -1.619)	M1	Using either 40.5 or 39.5 within a ±standardisation formula
		M1	Appropriate area Φ , from standardisation formula $P(z >)$ in final solution, must be probability
	0.947	A1	Correct final answer
	3	5	1.5

© UCLES 2020 Page 9 of 14

Question	Answer	Marks	Guidance		
5(a)	Total number of ways = $\frac{8!}{3!2!}$ (= 3360)	B1	Correct unsimplified expression for total number of ways		
	Number of ways with V and E in correct positions = $\frac{6!}{2 \times 2!}$ (= 180)	B1	$\frac{6!}{2 \times 2!}$ alone or as numerator in an attempt to find the number of ways with V and E in correct positions. No \times , \pm		
	Probability = $\frac{180}{3360} \left(= \frac{3}{56} \right)$ or 0.0536	B1 FT	Final answer from their $\frac{6!}{2 \times 2!}$ divided by their total number of ways		
	Alternative method for question 5(a)				
	$\frac{1}{8} \times \frac{3}{7}$	M1	$\frac{a}{8} \times \frac{b}{7}$ seen, no other terms (correct denominators)		
		M1	$\frac{1}{c} \times \frac{3}{d}$ seen, no other terms (correct numerators)		
	$\frac{3}{56}$ or 0.0536	A1	1.5		
	74	3			

© UCLES 2020 Page 10 of 14

Question	Answer	Marks	Guidance		
5(b)	Rs together and Es together: 5! (120)	B1	Alone or as numerator of probability to represent the number of ways with Rs and Es together, no \times , +, $-$		
	Es together: $\frac{6!}{2!} (= 360)$	B1	Alone or as denominator of probability to represent the number of ways with Es together, no \times , + or –		
	Probability = $\frac{5!}{\frac{6!}{2!}}$	M1	$\frac{their 5!}{their \frac{6!}{2!}}$ seen		
	$\frac{1}{3}$	A1	OE		
	Alternative method for question 5(b)				
	P(Rs together and Es together): $\frac{5!}{their \text{ total number of ways}} \left(= \frac{1}{28} \right)$	B1			
	P(Es together): $\frac{6!}{\frac{2!}{their} \text{ total number of ways}} \left(=\frac{3}{28}\right)$	B1	Alone or as numerator of probability to represent the P(Rs and Es together), no \times , +, –		
	Probability = $\frac{\frac{1}{28}}{\frac{3}{28}}$	M1	Alone or as denominator of probability to represent the P(Es together), no \times , + or –		
	$\frac{1}{3}$	A1	OE, $\frac{their\frac{1}{28}}{their\frac{3}{28}}$ seen		
		4			

© UCLES 2020 Page 11 of 14

Question	Answer	Marks	Guidance
6(a)	Scenarios:	M1	One 3 factor probability with 3, 3, 5 as denominators
	HHT: $\frac{2}{3} \times \frac{2}{3} \times \frac{1}{5} = \frac{4}{45}$ HTH: $\frac{2}{3} \times \frac{1}{3} \times \frac{4}{5} = \frac{8}{45}$ THH: $\frac{1}{3} \times \frac{2}{3} \times \frac{4}{5} = \frac{8}{45}$	M1	3 factor probabilities for 2 or 3 correct scenarios added, no incorrect scenarios
	3^3^5 45	$\geq \lambda$	
	Total = $\frac{20}{45} = \frac{4}{9}$	A1	AG, Total of 3 products with clear context
		3	
6(b)	x 0 1 2 3 Prob. 1 8 20 16	B1	Probability distribution table with correct outcomes with at least one probability, allow extra outcome values if probability of zero stated'
	Prob. $\frac{1}{45}$ $\frac{8}{45}$ $\frac{20}{45}$ $\frac{16}{45}$	B1	2 of P(0), P(1) and P(3) correct
		B1 FT	3 or 4 probabilities sum to 1 with P(2) correct
	3	3	1.51
6(c)	$Var(X) = \frac{0^2 \times 1 + 1^2 \times 8 + 2^2 \times 20 + 3^2 \times 16}{45} - \left(\frac{32}{15}\right)^2$ $= \frac{8}{45} + \frac{80}{45} + \frac{144}{45} - \left(\frac{32}{15}\right)^2$	M1	Substitute <i>their</i> attempts at scores in correct variance formula, must have '– mean ² ' (FT if calculated) (condone probs not summing to 1); must be at least 2 non-zero values
	$\frac{136}{225}$ or 0.604	A1	
		2	

© UCLES 2020 Page 12 of 14

Question	Answer	Marks	Guidance
7(a)	Class widths: 5, 5, 10, 20, 30	M1	At least 3 class widths correct and used in a calculation
	Frequency density: 2, 1, 2.6, 1.6, 0.6	M1	At least 3 correct frequency densities unsimplified – FT <i>their</i> class widths
	Finequency Density A. 3.0 2.5	A1	All correct heights on a histogram using a linear vertical scale from zero – no FT
		B1	Correct upper bar ends (5.5, 10.5, 20.5, 40.5, 70.5) and 4 correct lower bar ends of 5.5, 10.5, 20.5, 40.5. Condone 0 or 1.
		B1	Linear scales with at least 3 values indicated on each axis, vertical scale from 0, axes labelled 'fd' and 'no. of (incorrect) notes', or better.
	1.5 1.0 0.5 0.5 10.5 20.5 30.5 40.5 50.5 00.5 70.5 Number of incorrect notes		
	Satpre	5	
7(b)	LQ: 11 – 20 UQ: 21 – 40	B1	Both UQ and LQ correct
	Greatest $IQR = 40 - 11 = 29$	B1 FT	Subtract lower end of <i>their</i> LQ interval from upper end of <i>their</i> UQ interval
		2	

© UCLES 2020 Page 13 of 14

Question	Answer	Marks	Guidance
7(c)	Midpoints: 3 8 15.5 30.5 55.5	M1	At least 4 midpoints correct and used
	Mean = $\frac{3 \times 10 + 8 \times 5 + 15.5 \times 26 + 30.5 \times 32 + 55.5 \times 18}{91}$ = $\frac{30 + 40 + 403 + 976 + 999}{91}$ = $\frac{2448}{91}$	M1	Correct formula with <i>their</i> midpoints (not upper boundary, lower boundary, class width, frequency density, frequency or cumulative frequency)
	$26.9, \ 26\frac{82}{91}$	A1	Accept 26 or 27
		3	

© UCLES 2020 Page 14 of 14

Cambridge International AS & A Level

MATHEMATICS 9709/51
Paper 5 Probability & Statistics 1 May/June 2020

MARK SCHEME

Maximum Mark: 50

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE™ and Cambridge International A & AS Level components, and some Cambridge O Level components.

© UCLES 2020 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 13

Mathematics Specific Marking Principle	S
--	---

- Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

© UCLES 2020 Page 3 of 13

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

© UCLES 2020 Page 4 of 13

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2020 Page 5 of 13

Prob of 4 (from 1,3, 3,1 or 2,2) = $\frac{3}{36} = \frac{1}{12}$ AG	B1
36 12	
	1
$Mean = \frac{1}{\frac{1}{12}} = 12$	B1
	1
$\left(\frac{11}{12}\right)^5 \times \frac{1}{12} = 0.0539 \text{ or } \frac{161051}{2985984}$	B1
	1
$1-\left(\frac{11}{12}\right)^7$	M1
$0.456 \text{ or } \frac{16344637}{35831808}$	A1
	2
	$\frac{11}{12} \int_{12}^{5} \times \frac{1}{12} = 0.0539 \text{ or } \frac{161051}{2985984}$ $-\left(\frac{11}{12}\right)^{7}$

Question	Answer	Marks
2(a)	6!	M1
	720	A1
		2
2(b)	Total number: $\frac{9!}{3!2!}(30240)$	M1
	Number with Ls together = $\frac{8!}{3!}$ (6720)	M1
	Number with Ls not together = $\frac{9!}{3!2!} - \frac{8!}{3!}$ = 30 240 - 6720	M1
	23 520	A1
	Alternative method for question 2(b)	,
	$\frac{7!}{3!} \times \frac{8 \times 7}{2}$	
	$7! \times k$ in numerator, k integer ≥ 1	M1
	$8 \times 7 \times m$ in numerator or $8C2 \times m$, m integer ≥ 1	M1
	3! in denominator	M1
	23 520	A1
		4

© UCLES 2020 Page 7 of 13

Question					Answer		Marks
3(a)	x	0	1	2	3		B1
	Probability	1 56	15 56	30 56	10 56		
	(B1 for probab	bility distributi	on table with o	correct outcom	e values)		
	$P(0) = \frac{3}{8} \times \frac{2}{7} \times$	$\frac{1}{6} = \frac{1}{56}$					M1
	$P(1) = \frac{5}{8} \times \frac{3}{7} \times$						
	$P(2) = \frac{5}{8} \times \frac{4}{7} \times$						
	$P(3) = \frac{5}{8} \times \frac{4}{7} \times$						
	`	minator 8×7×6	+++				
	Any one proba	ability correct ((with correct o	outcome)			A1
	All probabiliti	es correct					A1
				2			4
3(b)	1-P(8, 9, 10)	$= 1 - \left[{}^{10}C_8 0.6 \right]$	$64^80.36^2 + {}^{10}C$	$C_9 0.64^9 0.36^1 +$	0.64^{10}	P.C	M1
	1-(0.164156	+ 0.064852 + 0	0.11529)				M1
	0.759						A1
							3

© UCLES 2020 Page 8 of 13

Question	Answer	Marks
4	Scenarios: $2P \ 3V \ 2G$ $^8C_2 \times ^4C_2 \times ^6C_3 = 28 \times 6 \times 20 = 3360$ $2P \ 4V \ 1G$ $^8C_2 \times ^4C_1 \times ^6C_4 = 28 \times 4 \times 15 = 1680$ $3P \ 3V \ 1G$ $^8C_3 \times ^4C_1 \times ^6C_3 = 56 \times 4 \times 20 = 4480$ $4P \ 2V \ 1G$ $^8C_4 \times ^4C_1 \times ^6C_2 = 70 \times 4 \times 15 = 4200$ (M1 for $^8C_r \times ^4C_r \times ^6C_r$ with $\sum r = 7$)	M1
	Two unsimplified products correct	B1
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total: 13 720	A1
		4

Question	Answer	Marks
5(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Fully correct labelled tree for method of transport with correct probabilities.	B1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the prob 0	B1
		2
5(b)	$0.35 \times 0.3 + 0.44 \times 0.8 (+0)$	M1
	0.457	A1
		2

© UCLES 2020 Page 10 of 13

Question	Answer	Marks
5(c)	$P(\text{not B} \text{not fruit}) = \frac{P(B' \cap F')}{P(F')}$	M1
	$\frac{0.35\times0.7+0.21\times1}{1-their(\mathbf{b})}$	M1
	0.455 0.543 (M1 for 1 – <i>their</i> (b) or summing three appropriate 2-factor probabilities, correct or consistent with <i>their</i> tree diagram as denominator)	M1
	$0.838 \text{ or } \frac{455}{543}$	A1
		4

Question	Answer	Marks
6(a)	$P\left(\frac{50-54}{6.1} < z < \frac{60-54}{6.1}\right) = P\left(-0.6557 < Z < 0.9836\right)$	M1
	Both values correct	A1
	$\Phi (0.9836) - \Phi (-0.6557) = \Phi (0.9836) + \Phi (0.6557) - 1$ = 0.8375 + 0.7441 - 1 (Correct area)	M1
	0.582	A1
		4

© UCLES 2020 Page 11 of 13

Question	Answer	Marks
6(b)	$\frac{45-\mu}{\sigma} = -0.994$	B1
	$\frac{56-\mu}{\sigma} = 1.372$	B1
	One appropriate standardisation equation with μ , σ , z-value (not probability) and 45 or 56.	M1
	$11 = 2.366 \ \sigma$ (M1 for correct algebraic elimination of μ or σ from <i>their</i> two simultaneous equations to form an equation in one variable)	M1
	σ = 4.65, μ = 49.6	A1
		5

Question	Answer	Marks
7(a)	Class widths: 10, 5, 15, 20, 10	M1
	Frequency density = frequency/their class width: 1.8, 4.8, 2, 1, 0.8	M1
	All heights correct on diagram (using a linear scale)	A1
	Correct bar ends	B1
	Bar ends: 10.5, 15.5, 30.5, 50.5, 60.5	B1
		5
7(b)	11 – 15 and 31 – 50	B1
	Greatest $IQR = 50 - 11 = 39$	B1
		2
7(c)	Mean = $\frac{18 \times 5.5 + 24 \times 13 + 30 \times 23 + 20 \times 40.5 + 8 \times 55.5}{100} = \frac{2355}{100} = 23.6$	B1
	$Var = \frac{18 \times 5.5^2 + 24 \times 13^2 + 30 \times 23^2 + 20 \times 40.5^2 + 8 \times 55.5^2}{100} - mean^2$	M1
	$\frac{77917.5}{100} - \text{mean}^2 = 224.57$	A1
	Standard deviation = 15.0 (FT their variance)	A1 FT
		4

© UCLES 2020 Page 13 of 13

Cambridge International AS & A Level

MATHEMATICS 9709/52
Paper 5 Probability & Statistics 1 May/June 2020

MARK SCHEME
Maximum Mark: 50

Published	

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE™ and Cambridge International A & AS Level components, and some Cambridge O Level components.

© UCLES 2020 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 14

Ma	thematics Specific Marking Principles	
	Unless a particular method has been specified in the question, full marks may be awarded for any correct n marks will be awarded for a scale drawing.	nethod. However, if a calculation is required then no

- Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

© UCLES 2020 Page 3 of 14

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

© UCLES 2020 Page 4 of 14

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2020 Page 5 of 14

Question	Answer	Marks
1	$\sum x - 50n = 144$	B1
	50n + 144 = 944	M1
	n=16	A1
		3

Question	Answer	Marks
2(a)	$\frac{56}{500}$ or $\frac{14}{125}$ or 0.112	B1
		1
2(b)	$P(D S) = \frac{P(D \cap S)}{P(S)} = \frac{120}{280}$	M1
	$\frac{120}{280}$ or $\frac{3}{7}$	A1
		2

© UCLES 2020 Page 6 of 14

Question	Answer	Marks
2(c)	P(hockey) = $\frac{220}{500}$ = 0.44 P(Amos or Benn) = $\frac{242}{500}$ = 0.484	M1
	P(hockey \cap A or B) = $\frac{104}{500}$ = 0.208 P(H) × P(A U B) = P(H \cap (A U B)) if independent	
	$\frac{220}{500} \times \frac{242}{500} = \frac{1331}{6250}$ so not independent	A1
		2

Question	Answer	Marks
3(a)	Median = 0.238	B1
	UQ = 0.245, LQ = 0.231, So IQR = 0.245 – 0.231	M1
	0.014	A1
	'satorep'	3

© UCLES 2020 Page 7 of 14

Question	Ans	wer						Marks			
3(b)			LQ	M	UQ						
	A	0.220	0.231 FT	0.238 FT	0.245 FT	0.254					
	В	0.211	0.224	0.232	0.243	0.256					
	Medians and quartiles correctly plotted for A or B										
	End	End points correct for A or B									
	Completely correct, including scale										
								3			
3(c)	Leng (B1	gths of ro	ods produce parison of co	d by machin entral tender	ne A are lon	ger.		B1			
	Lengths of rods produced by machine A are less spread out (B1 for comparison of spread)										
					2			2			

© UCLES 2020 Page 8 of 14

Question	Answer	Marks
4(a)	$P(X < 25) = P(z < \frac{25 - 40}{12}) = P(z < -1.25)P(X < 25) = P(z <)$	M1
	1 - 0.8944	M1
	0.106	A1
	T PR	3
4(b)	0.8944 divided by 3 (M1 for 1 - <i>their</i> (a) divided by 3)	M1
	0.298 AG	A1
		2
4(c)	0.2981 gives z = 0.53	B1
	$\frac{h-40}{12} = 0.53$	M1
	h = 46.4	A1
		3

Question	Answ	er						Mark		
5(a)		1	1	2	2	3		M		
	1	1	1	2	2	3				
	2	2	2	2	2	3				
	3	3	3	3	3	3	PAN			
	$\frac{7}{15}$ A	G			/	5		A		
5(b)	x		1		2	3		В		
	Prob	ability	$\frac{2}{15}$	1	<u>6</u> 15	7/15				
	P(1) or P(2) correct									
	3 rd probability correct, FT sum to 1									
						2,	-0.			

© UCLES 2020 Page 10 of 14

Question	Answer	Marks
5(c)	$E(X) = \frac{2+12+21}{15} = \frac{35}{15} = \frac{7}{3}$	B1
	$Var(X) = \frac{1^2 \times 2 + 2^2 \times 6 + 3^2 \times 7}{15} - \left(\frac{7}{3}\right)^2$	M1
	$\frac{22}{45}(0.489)$	A1
		3

Question	Answer	Marks
6(a)	<u>8!</u> 3!	M1
	6720	A1
	12//.5/	2

© UCLES 2020 Page 11 of 14

Question	Answer	Marks
6(b)	Total number = $\frac{10!}{2!3!}$ (302400) (A)	B1
	With Es together = $\frac{9!}{3!}$ (60480) (B)	B1
	Es not together = $their(A) - their(B)$	M1
	241920	A1
	Alternative method for question 6(b)	
	$ \frac{8!}{3!} \times \frac{9 \times 8}{2} $	
	$8! \times k$ in numerator, k integer ≥ 1 , denominator ≥ 1	B1
	$3! \times m$ in denominator, m integer ≥ 1	B1
	Their $\frac{8!}{3!}$ Multiplied by ${}^{9}C_{2}$ (OE) only (no additional terms)	M1
	241920	A1
	satpre	4

© UCLES 2020 Page 12 of 14

Question	Answer	Marks
6(c)	Scenarios: $E M M M$ ${}^{5}C_{0} = 1$ $E M M_{-}$ ${}^{5}C_{1} = 5$ $E M_{-}$ ${}^{5}C_{2} = 10$	M1
	Summing the number of ways for 2 or 3 correct scenarios	M1
	Total = 16	A1
		3

Question	Answer	Marks
7(a)	$ 1 - P(10, 11, 12) = 1 - [^{12}C_{10}0.72^{10}0.28^2 + ^{12}C_{11}0.72^{11}0.28^1 + 0.72^{12}] $	M1
	1 - (0.19372 + 0.09057 + 0.01941)	A1
	0.696	A1
		3
7(b)	$0.28^3 \times 0.72 = 0.0158$	B1
	32 69	1

© UCLES 2020 Page 13 of 14

Question	Answer	Marks
7(c)	Mean = $100 \times 0.72 = 72$ Var = $100 \times 0.72 \times 0.28 = 20.16$	M1
	P(less than 64) = P $\left(z < \frac{63.5 - 72}{\sqrt{20.16}}\right)$ (M1 for substituting <i>their</i> μ <i>and</i> σ into ±standardisation formula with a numerical value for '63.5')	M1
	Using either 63.5 or 64.5 within a ±standardisation formula	M1
	Appropriate area Φ , from standardisation formula $P(z <)$ in final solution $= P(z < -1.893)$	M1
	0.0292	A1
		5

Cambridge International AS & A Level

MATHEMATICS 9709/53
Paper 5 Probability & Statistics 1 May/June 2020

MARK SCHEME

Maximum Mark: 50

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE™ and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 13

Mat	hematics Specific Marking Principles	
	Unless a particular method has been specified in the question, full marks may be awarded for any correct marks will be awarded for a scale drawing.	nethod. However, if a calculation is required then no

- Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
- Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

© UCLES 2020 Page 3 of 13

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

© UCLES 2020 Page 4 of 13

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2020 Page 5 of 13

Question	Answer	Marks
1(a)	0.2 C 0.4 NE 0.2 C 0.4 NE 0.45 B 0.9 E 0.35 W 1 E 0 NE	
	Fully correct labelled tree for method of transport with correct probabilities.	B1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the probability 0.	B1
		2
1(b)	$P(C E) = \frac{P(C \cap E)}{P(E)} = \frac{0.2 \times 0.6}{0.2 \times 0.6 + 0.45 \times 0.1 + 0.35 \times 1}$	M1
	Summing three appropriate 2-factor probabilities	M1
	$\frac{0.12}{0.515}$	A1
	$0.233 \text{ or } \frac{12}{515}$	A1
		4

© UCLES 2020 Page 6 of 13

Question	Answer	Marks
2(a)	$0.22^3 = 0.0106$	B1
		1
2(b)	$P(2, 3, 4) = {}^{16}C_2 \ 0.22^2 0.78^{14} + {}^{16}C_3 0.22^3 0.78^{13} + {}^{16}C_4 0.22^4 0.78^{12}$	M1
	0.179205 + 0.235877 + 0.216221	A1
	0.631	A1
		3

Question	Answer	Marks
3(a)	$P(X < 21) = P\left(z < \frac{21 - 15.8}{4.2}\right) = \Phi(1.238)$	M1
	0.892	A1
		2
3(b)	$z = \pm 0.674$	B1
	$\frac{k-15.8}{4.2} = 0.674$	M1
	18.6	A1
		3

© UCLES 2020 Page 7 of 13

Question					Answer	Marks
4(a)	-1	0	0	1		
	0	1	1	2		
	2	3	3	4		
	x		-1	0	1 2 3 4	
	Probal	oility	1/12	3 12	$\frac{3}{12}$ $\frac{2}{12}$ $\frac{2}{12}$ $\frac{1}{12}$	
	Probabi	lity dist	ribution t	able with	correct scores with at least one probability	B1
	At least	4 proba	bilities c	orrect		B1
	All prol	babilitie	s correct			B1
						3
4(b)	E(X) =	<u>-1+0+</u>	$\frac{-3+4+6}{12}$	$\frac{+4}{12} = \frac{16}{12}$	$=\frac{4}{3}$	B1
	Var(X)	$=\frac{1+0}{}$	12	$\frac{8+16}{}$ $-$	$\left(\frac{4}{3}\right)^2$	M1
	$\frac{37}{18} (= 2)$	2.06)				A1
						3

© UCLES 2020 Page 8 of 13

Question	Answer	Marks
5(a)	$\frac{1}{\frac{1}{4}} = 4$	B1
		1
5(b)	$\frac{9}{64} \ (=0.141)$	B1
		1
5(c)	$P(X < 6) = 1 - \left(\frac{3}{4}\right)^5$ $ET (A = 1 - 1) + A = 1 + A = $	M1
	(FT their probability/mean from part (a))	
	0.763	A1
		2
5(d)	Mean = $80 \times 0.25 = 20$ Var = $80 \times 0.25 \times 0.75 = 15$	M1
	P(more than 25) = P $\left(z > \frac{25.5 - 20}{\sqrt{15}}\right)$	M1
	P(z > 1.42)	M1
	1-0.9222	M1
	0.0778	A1
		5

© UCLES 2020 Page 9 of 13

Question	Answer	Marks
6(a)	A B	
	2 6	
	5 2 0 3 0 1 5 8	
	9 7 2 1 1 4 1 2 2 7 9	
	3 2 5 2	
	4 6	
	KEY 1 4 2 means \$41 000 for A and \$42 000 for B	
	Correct stem	В
	Correct A on LHS	В
	Correct B on same diagram	В
	Correct key for their diagram, both companies identified and correct units	В
	12 - 1.5	
6(b)	Median = [\$]42 000	В
	LQ = [\$]35 000 UQ = [\$]52 000	В
	IQR = [\$]17 000 (FT if $49000 \le UQ \le 53000 - 32000 \le LQ \le 41000$)	B1 F

© UCLES 2020 Page 10 of 13

Question	Answer	Marks
6(c)	Sum of given 11 numbers is 433 000	M1
	Sum of 12 numbers, including new = $38500 \times 12 = 462000$	M1
	Difference = new salary = [\$]29 000	A1
		3

Question	Answer			
7(a)	$\frac{9!}{2!2!} = 90720$	B 1		
		1		
7(b)	<u>6!</u> <u>2!</u>	M1		
	360	A1		
		2		

© UCLES 2020 Page 11 of 13

Question	Answer	Marks
7(c)	2 Es together = $\frac{8!}{2!}$ (= 20160)	M1
	Es not together = 90720 – 20160 = 70560	M1
	Probability = $\frac{70560}{90720}$	M1
	$\frac{7}{9}$ or 0.778	A1
	Alternative method for question 7(c)	
	^^_^_^_	
	$\frac{7!}{2!} \times \frac{8 \times 7}{2} = 70560$	
	$7! \times k$ in numerator, k integer $\geqslant 1$, denominator $\geqslant 1$	M1
	Multiplying by ⁸ C ₂ OE	M1
	Probability = $\frac{70560}{90720}$	M1
	$\frac{7}{9}$ or 0.778	A1
		4

© UCLES 2020 Page 12 of 13

Question	Answer	Marks
7(d)	Scenarios are: $E L_{} {}^{5}C_{3} 10$ $E E L_{-} {}^{5}C_{2} 10$ $E_{} {}^{5}C_{4} 5$ $E E_{} {}^{5}C_{3} 10$	M1
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total = 35	A1
		3

Cambridge International AS & A Level

MATHEMATICS 9709/52
Paper 5 Probability and Statistics March 2020

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

© UCLES 2020 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 2 of 14

Ma	Mathematics-Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

© UCLES 2020 Page 3 of 14

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

© UCLES 2020 Page 4 of 14

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the

light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2020 Page 5 of 14

Question	Answer	Marks	Guidance
1	38 C _r or n C ₃₄	M1	Either expression seen OE, no other terms, condone x1
	$^{38}C_{34}$	A1	Correct unsimplified OE
	73815	A1	If M0, SCB1 ³⁸ C ₃₄ x <i>k</i> , <i>k</i> an integer
		3	

Question	Answer	Marks	Guidance
2(a)	$\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^3 + \left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^4$	M1	One correct term with 0
	$=\frac{4}{27} + \frac{8}{81} + \frac{16}{243} \left(= \frac{2432}{7776} \right)$	A1	Correct expression, accept unsimplified
	$=\frac{76}{243} \text{ or } 0.313$	A1	
		3	

© UCLES 2020 Page 6 of 14

Question	Answer	Marks	Guidance
2(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	Probability distribution table with correct values of <i>x</i> , no additional values unless with probability of 0 stated, at least one non-zero probability included
	$P(0) = \left(\frac{2}{3}\right)^3$	B1	1 correct probability seen (may not be in table) or 3 or 4 non-zero probabilities summing to 1
	$P(1) = \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^2 \times 3$	B1	All probabilities correct
	$P(2) = \left(\frac{2}{3}\right) \left(\frac{1}{3}\right)^2 \times 3$ $P(3) = \left(\frac{1}{3}\right)^3$		
	$P(3) = \left(\frac{1}{3}\right)^3$		
		3	- ///
2(c)	$E(X) = \left[0 \times \frac{8}{27}\right] + 1 \times \frac{12}{27} + 2 \times \frac{6}{27} + 3 \times \frac{1}{27}$	M1	Correct method from <i>their</i> probability distribution table with at least 3 terms, $0 \le their P(x) \le 1$, accept unsimplified
	$= \left[\frac{0}{27}\right] + \frac{12}{27} + \frac{12}{27} + \frac{3}{27}$		0.00
	= 1	A1	
		2	

© UCLES 2020 Page 7 of 14

Question	Answer	Marks	Guidance
3(a)	$P(X > 87) = P\left(Z > \frac{87 - 82}{\sigma}\right) = 0.22$	M1	Using \pm standardisation formula, not σ^2 , not $\sqrt{\sigma}$, no continuity correction
	$P\left(Z < \frac{5}{\sigma}\right) = 0.78$	B1	AWRT ±0.772 seen B0 for ±0.228
	$\left(\frac{5}{\sigma}\right) = 0.772$	PF	RA
	$\sigma = 6.48$	A1	
		3	
3(b)	$P\left(-\frac{4}{\sigma} < Z < \frac{4}{\sigma}\right) = P\left(-0.6176 < Z < 0.6176\right)$	M1	Using ± 4 used within a standardisation formula (SOI), allow σ^2 , $\sqrt{\sigma}$ and continuity correction
		M1	Standardisation formula applied to both <i>their</i> ±4
	$\Phi = 0.7317$ Prob = $2\Phi - 1 = 2(0.7317) - 1$	M1	Correct area $2\Phi-1$ oe linked to final solution
	= 0.463	A1	- /.5/
	24	4	60.

© UCLES 2020 Page 8 of 14

Question	Answer	Marks	Guidance
4(a)	R ^ ^ ^ ^ ^ ^ R 9! 3!6!	M1	9! Alone on numerator, $3! \times k$ or $6! \times k$ on denominator
	= 84	A1	
		2	
4(b)	^ (B B B) ^ ^ ^ ^ ^	M1	$\frac{7!}{6!} \times k$ or $7k$ seen, k an integer > 0
	$\frac{7!}{6!} \times \frac{8 \times 7}{2}$	M1	$m \times n(n-1) or m \times {}^{n}C_{2} or m \times {}^{n}P_{2}$, $n=7, 8 \text{ or } 9, m \text{ an integer} > 0$
		M1	n = 8 used in above expression
	= 196	A1	
	Alternative for question 4(b)		
	[Arrangements, blues together – Arrangements with blues together and reds together =] $\frac{9!}{2!6!} - \frac{8!}{6!}$	M1	9! Seen alone or as numerator with subtraction
	= [252 - 56]	M1	8! Seen alone or as numerator in a second term and no other terms
		M1	All terms divided by 6! x k, k an integer
	= 196	A1	
		4	

© UCLES 2020 Page 9 of 14

Question	Answer	Marks	Guidance
5(a)	$1 - P(6, 7, 8)$ = 1 - (\delta C_6 0.7^6 0.3^2 + \delta C_7 0.7^7 0.3^1 + 0.7^8)	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}, 0$
	= 1 - 0.55177	A1	Correct unsimplified expression, or better
	= 0.448	A1	
	Alternative method for question 5(a)	PF	2/1
	$P(0, 1, 2, 3, 4, 5) = 0.3^8 + {}^{8}C_{1} 0.7^{1} 0.3^{7} + {}^{8}C_{2} 0.7^{2} 0.3^{6} + {}^{8}C_{3} 0.7^{3} 0.3^{5} + {}^{8}C_{4} 0.7^{4} 0.3^{4} + {}^{8}C_{5} 0.7^{5} 0.3^{3}$	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}, 0$
		A1	Correct unsimplified expression, or better
	= 0.448	A1	
		3	
5(b)	Mean = $120 \times 0.7 = 84$ Var = $120 \times 0.7 \times 0.3 = 25.2$	B1	Correct mean and variance, allow unsimplified
	P(more than 75) = P $\left(z > \frac{75.5 - 84}{\sqrt{25.2}}\right)$	M1	Substituting <i>their</i> μ and σ into the ±standardising formula (any number), not σ^2 , not $\sqrt{\sigma}$
	7.53	M1	Using continuity correction 75.5 or 74.5
	P(z > -1.693)	M1	Appropriate area Φ , from final process, must be a probability
	= 0.955	A1	Allow 0.9545
		5	

© UCLES 2020 Page 10 of 14

Question	Answer	Marks	Guidance
6(a)	Box A Box B	B1	Both correct probs, box A
	10 Red	B1	2 probs correct for box B
	$\frac{10}{15}$ Red	B1	All correct probs for box B
	$ \begin{array}{c c} \hline $	PF	
		3	
6(b)	$\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{9}{15}$	M1	Two 2 factor terms added, correct or FT their 6(a).
	$= \frac{44}{120} \left[\frac{11}{30} \text{ or } 0.367 \right]$	A1	OE
		2	

© UCLES 2020 Page 11 of 14

Question	Answer	Marks	Guidance
6(c)	$P(A \text{ blue} B \text{ blue}) = \frac{P(A \text{ blue} \cap B \text{ blue})}{P(B \text{ blue})}$	M1	their $\frac{1}{8} \times \frac{6}{15}$ seen as numerator or denom of fraction
	$= \frac{\frac{1}{8} \times \frac{6}{15}}{\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{6}{15}} = \frac{\frac{1}{20}}{\frac{41}{120}}$		
	6PT	M1	their $\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{6}{15}$ seen
		M1	their $\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{6}{15}$ seen as denominator
	$=\frac{6}{41}$ or 0.146	A1	
		4	

© UCLES 2020 Page 12 of 14

Question	Answer	Marks	Guidance
7(a)	15, 63, 129, 150	B1	Correct cumulative frequencies seen (may be on graph)
	150	B1	$0 \le \text{Horizontal axis} \le 30, 0 \le \text{vertical axis} \le 150 \text{ Labels}$ correct: length cm, cf
	130	M1	At least 3 points plotted at upper end points (e.g. allow 9, 9.5, 10) with a linear horizontal scale.
	The state of the s	A1	Linear vertical scale, all points at correct upper end points (9.5 etc.), curve drawn accurately, joined to (0,0) (condone (-0.5, 0))
	The second second	4	D:00
7(b)	60% of 150 = 90		90 seen or implied by use on graph
	Approx. 16.5 [cm]	A1FT	FT <i>their</i> increasing cumulative frequency graph, Use of graph must be seen. If no clear evidence of use of graph SCB1FT correct value from <i>their</i> graph
		2	

© UCLES 2020 Page 13 of 14

Question	Answer	Marks	Guidance
7(c)	Midpoints: 4.75, 12, 17, 25	M1	At least 3 correct midpoints used (39449.4375 implies M1)
	Var = $\frac{4.75^2 \times 15 + 12^2 \times 48 + 17^2 \times 66 + 25^2 \times 21}{150} - 15.295^2$	M1	Using midpoints ± 0.5 in correct var formula, including subtraction of <i>their</i> μ^2 .
	= 29.1	A1	
		3	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/61

Paper 6

October/November 2019

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Cambridge International AS/A Level – Mark Scheme

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 12

Cambridge International AS/A Level – Mark Scheme

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

© UCLES 2019 Page 3 of 12

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be

varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

© UCLES 2019 Page 4 of 12

Question	Answer		Guidance		
1	$0.8 \times 0.6 + 0.2(1-x) = 0.63$	M1	Equation of form $0.8 \times A + 0.2 \times B = C$, A,B involving $1 - x$ and 0.6 or 0.4 and $C = 0.63$ or 0.37		
	0.2x = 0.05	M1	Correct unsimplified equation		
	x = 0.25	A1			
	Alternative method for question 1				
	$0.8 \times 0.4 + 0.2x = 1 - 0.63$	M1	Equation of form $0.8 \times A + 0.2 \times B = C$, A,B involving x and 0.6 or 0.4 and $C = 0.63$ or 0.37		
	0.2x = 0.05	M1	Correct unsimplified equation		
	x = 0.25	A1			
		3			

© UCLES 2019 Page 5 of 12

Question	Answer		Guidance
2(i)	$1 - ({}^{10}\text{C}_2\ 0.42^8\ 0.58^2 + {}^{10}\text{C}_9\ 0.42^9\ 0.58^1 + 0.42^{10})$		Binomial term of form ${}^{10}\text{C}_a p^a (1-p)^b \ 0$
		A1	Correct unsimplified expression
	0.983	A1	
	TP	3	
2(ii)	$1 - P(0) > 0.995 \ 0.58^n < 0.005$	M1	Equation or inequality involving 0.58" or 0.42" and 0.995 or 0.005
	$n > \frac{\log 0.005}{\log 0.58}$ $n > 9.727$	M1	Attempt to solve using logs or Trial and Error. May be implied by their answer (rounded or truncated)
	n=10	A1	CAO
		3	

Question		Answer		Marks	Guidance
3(i)	$\sum x = 60 \times 20$	=1200	3	B1	
	$\frac{\sum x^2}{20} - 60^2 = 4^2$		1. satp	M1	Correct variance formula used, condone = 4
	$\sum x^2 = 3616 \times 20$	= 72320		A1	Exact value
				3	

© UCLES 2019 Page 6 of 12

Question	Answer	Marks	Guidance
3(ii)	$\sum x = 1200 + 550 = 1750$ $\sum x^2 = 72320 + 40500 = 112800$	M1	Summing both values of $\sum x$ and $\sum x^2$
	Mean = $\frac{their1750}{30} = 58.3$	B1FT	FT their 1750 (not 550 or 1200)/their(20+10), accept unsimplified
	Variance = $\frac{their 112820}{30} - \left(\frac{their 1750}{30}\right)^2 (=357.89)$	M1	substitute <i>their</i> Σx and Σx^2 into correct variance formula
	s.d. = 18.9	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	$\frac{1}{4} + p + p + \frac{3}{8} + 4p = 1$	M1	Unsimplified sum of probabilities equated to 1
	$p = \frac{1}{16}$	A1	If method FT from <i>their</i> incorrect (i), expressions for $E(X)$ and $Var(X)$ must be seen unsimplified with all probabilities <1, condone not adding to 1
	The	2	-,0

© UCLES 2019 Page 7 of 12

Question	Answer	Marks	Guidance
4(ii)	$[E(X)] = -\frac{1}{4} + \frac{1}{16} + \frac{6}{8} + 1 = \frac{25}{16}$	M1	May be implied by use in Variance, accept unsimplified
	$[Var(X)] = \frac{1}{4} + \frac{1}{16} + \frac{12}{8} + \frac{16}{4} - \left(their\frac{25}{16}\right)^2$	M1	Substitute into correct variance formula, must have '– their mean ² '
	$\frac{863}{256}$ or 3.37	A1	OE
		3	
4(iii)	$P(X=2 X>0) = \frac{P(X=2)}{P(X>0)} = \frac{\frac{3}{8}}{\frac{11}{2}}$	M1	Conditional probability formula used consistent with their probabilities
	$P(X > 0) = \frac{11}{16}$		
	$\frac{6}{11}$ or 0.545	A1	
		2	

© UCLES 2019 Page 8 of 12

Question	Answer	Marks	Guidance
5(i)	156 – 55 = 99	B1	98 ≤ answer < 100
		1	
5(ii)	90% of 160 = 144	M1	144 seen, may be marked on graph
	(L =) 22	A1	
		2	
5(iii)	Median = 15.6 UQ = 18.8, LQ = 12.7	B1	15.5 < median < 15.8
	IQR = 18.8 – 12.7	M1	18.5 < UQ < 19 – 12.5 < LQ < 13
	6.1	A1	$6.0 \leqslant IQR \leqslant 6.2$
		3	
5(iv)	The Median higher for Ransha (1st set of data)	B1	Any correct comparison of central tendency, must mention median
	IQR lower for Ransha (1st set of data)	B1	Any correct comparison of spread, must refer to IQR
	12	2	

© UCLES 2019 Page 9 of 12

Question	Answer	Marks	Guidance
6(i)	$\frac{9!}{2!} = 181440$	B1	Exact value
		1	
6(ii)	Total no of ways = $\frac{12!}{2!4!}$ = 9 979 200 (A)	B1	Accept unevaluated
	With Ss together = $\frac{11!}{4!}$ = 1 663 200 (B)	B1	Accept unevaluated
	With Ss not together = $(B) - (A)$	M1	Correct or $\frac{12!}{m} - \frac{8!}{n}$, m, n integers > 1 or <i>their</i> identified total – <i>their</i> identified Ss together
	8 316 000	A1	Exact value
	Alternative method for question 6(ii)		
	_T_E_E_P_L_E_C_H_A_E_	B1	$10! \times k$ in numerator k integer $\geqslant 1$
	$\frac{10!}{4!} \times \frac{11 \times 10}{2!}$	B1	$4! \times k$ in numerator k integer $\geqslant 1$
	$\frac{\textit{their} 10!}{\textit{their} 4!} \times {}^{11}\text{C}_2 \text{ or } {}^{11}\text{P}_2$	M1	OE
	8 316 000	A1	Exact value
		4	

© UCLES 2019 Page 10 of 12

Question	Answer	Marks	Guidance
6(iii)	SEEE:1	M1	${}^{6}C_{x}$ seen alone or times $K > 1$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	⁶ C ₃ or ⁶ C ₂ or ⁶ C ₁ alone
	Add 3 or 4 correct scenarios	M1	No extras
	Total = 42	A1	
		4	

Question	Answer	Marks	Guidance
7(i)	$P(46 < X < 53) = P\left(\frac{46 - 49.2}{2.8} < Z < \frac{53 - 49.2}{2.8}\right)$	M1	Using \pm standardisation formula for either 46 or 53, no continuity correction, σ^2 or $\sqrt{\sigma}$
	P(-1.143 < Z < 1.357)	A1	Both standardisations correct unsimplified
	$\Phi(1.357) + \Phi(1.143) - 1$ = 0.9126 + 0.8735 - 1	M1	Correct final area
	0.786	A1	Final answer
	Patpi	4	

© UCLES 2019 Page 11 of 12

Question	Answer	Marks	Guidance
7(ii)	$\frac{t - 49.2}{2.8} = -1.406$	B1	±1.406 seen
		M1	An equation using \pm standardisation formula with a z-value, condone σ^2 or $\sqrt{\sigma}$
	45.3	A1	
		3	
7(iii)	P(X < 46) = 0.1265	M1	Calculated or ft from (i)
	$P(2PB < 46) = 3(1 - 0.1265)0.1265^{2}$	M1	$3(1-p)p^2$, 0
	0.0419	A1	
		3	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/62

Paper 6

October/November 2019

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 12

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

© UCLES 2019 Page 3 of 12

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only

ISW Ignore Subsequent Working

SOI Seen Or Implied

SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be

varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

NFWW Not From Wrong Working

© UCLES 2019 Page 4 of 12

Question	Answer	Marks	Guidance
1(i)	Median = 51 UQ = 57.5, LQ = 40	B1	
	IQR = UQ - LQ	M1	$55 \leqslant UQ \leqslant 62 - 38 \leqslant LQ \leqslant 45$
	17.5	A1	NFWW
	TP	3	
1(ii)	Result will be disproportionately affected by 110	B1	Affected by an extreme/large value There is a large outliercontains outliers such as 110 Not 'mean affected by extreme values'
		1	

Question	Answer	Marks	Guidance		
2(i)	$0.4x + 0.6 \times 2x = 0.36 \text{ or } 0.4(1-x) + 0.6(1-2x) = 0.64$	M1	0.4a + (1 - 0.4)b = 0.36 or 0.64 , a,b terms involving x		
	$ \begin{array}{c} 1.6x = 0.36 \\ x = 0.225 \end{array} $	A1	Fully justified by algebra AG		
	3	2	_0.		
-satpreP					

© UCLES 2019 Page 5 of 12

Question	Answer	Marks	Guidance
2(ii)	P(H L')=	M1	Correct numerical numerator of a fraction. Allow unsimplified.
	$\frac{0.4(1-x)}{1-0.36} = \frac{0.4 \times (1-0.225)}{0.64} = \frac{0.4 \times 0.775}{0.4 \times 0.775 + 0.6 \times 0.55}$		
		M1	Denominator 0.36 or 0.64. Allow unsimplified.
	$\frac{31}{64}$ or 0.484	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	0.5 2.4 3 1.4 0.4	M1	At least 3 frequency densities calculated (frequency \div class width) e.g. $\left(\frac{10}{20}, \frac{10}{19} \text{ or } \frac{10}{19.5}\right)$ may be read from graph using <i>their</i> scale, 3SF or exact
	All heights correct on graph.	A1	
	Bar ends of 9.5, 29.5, 39.5, 59.5, 89.5	B1	
	Axes labelled: Frequency density (fd) and speed/km h^{-1} (or appropriate title). Linear scales $9.5 \le horizontal axis \le 89.5$, $0 \le horizontal axis \le 3$, $0 \le horizontal axis \ge 3$	B1	
		4	

© UCLES 2019 Page 6 of 12

Question	Answer	Marks	Guidance
3(ii)	$\frac{19.5 \times 10 + 34.5 \times 24 + 44.5 \times 30 + 54.5 \times 14 + 74.5 \times 12}{their 90}$ $= \frac{195 + 828 + 1335 + 763 + 894}{90}$ $= \frac{4015}{90} \text{ or } \frac{803}{18}$	M1	Uses at least 4 midpoint attempts (e.g. 19.5 ± 0.5). Allow unsimplified expression.
	$44\frac{11}{18}$ or 44.6 (km h ⁻¹)	A1	Final answer not an improper fraction NFWW
		2	

Question	Answer	Marks	Guidance
4(i)	$P(8, 9, 10) = {}^{10}C_8 \ 0.66^8 \ 0.34^2 + {}^{10}C_9 \ 0.66^9 \ 0.34^1 + 0.66^{10}$	M1	Correct binomial term, ${}^{10}C_a \ 0.66^a (1-0.66)^b$ $a+b=10, \ 0 < a,b < 10$
		A1	Correct unsimplified expression
	0.284	B1	CAO
	3	3	<i>1.5</i>

© UCLES 2019 Page 7 of 12

Question	Answer	Marks	Guidance
4(ii)	$np = 0.66 \times 150 = 99$ $npq = 0.66 \times (1 - 0.66) \times 150 = 33.66$	B1	Accept evaluated or unsimplified μ , σ^2 numerical expressions, condone $\sigma = \sqrt{33.66} = 5.8017 \text{ or } 5.802$ CAO
	$P(X > 84) = P\left(Z > \frac{84.5 - 99}{\sqrt{33.66}}\right)$	M1	\pm Standardise, $\frac{x-their 99}{\sqrt{their 33.66}}$, condone σ^2 , x a value
		M1	84.5 or 83.5 used in <i>their</i> standardisation formula
	(=P(Z>-2.499))	M1	Correct final area
	0.994	A1	Final answer (accept 0.9938)
			SC if no standardisation formula seen, B2 $P(Z > -2.499) = 0.994$
		5	

© UCLES 2019 Page 8 of 12

Question				Answer				Marks	Guidance
5(i)			T			1		B1	Table with correct values of x , at least 1 probability, all
	x	-1	0	1	2	3	4		probabilities ≤ 1
	p	$\frac{1}{12}$	1/12	$\frac{3}{12}$	$\frac{2}{12}$	3 12	<u>2</u> 12		
							P	B1	2 probabilities correct, may not be in table
								B1	2 more probabilities correct, may not be in table
					//			B1	All correct, values in table SC1 No more than 1 correct probability and at least 5 probabilities summing to 1 in table
								4	
5(ii)	[E(X)] :	$= \left(\frac{-1+0}{2}\right)^{-1}$	+3+4+9	$\left(\frac{1+8}{12}\right) = \frac{22}{12}$	3 2			M1	May be implied by use in variance. Allow unsimplified expression
	$[Var(X)] = \frac{1+0+3+8+27+32(=71)}{12} - \left(\frac{23}{12}\right)^2$							M1	Appropriate variance formula using <i>their</i> $E(X)^2$
	2.24 or	$\frac{323}{144}$ or 2	35 144		1/2	4.5	atn	A1	CAO
							arpi	3	

© UCLES 2019 Page 9 of 12

Question	Answer	Marks	Guidance
6(i)	$P(X<45) = P\left(Z < \frac{45-40}{8}\right)$ = P(Z<0.625)	M1	\pm Standardise, no continuity correction, σ^2 or $\sqrt{\sigma}$, formula must be seen
	0.734(0)	A1	CAO
	AT P	2	
6(ii)	1-2(1-(i))=2(i)-1=2((i)-0.5)	M1	Use result of part (i) or recalculated to find area OE
	0.468	A1ft	0 < FT from (i) < 1 or correct.
		2	
6(iii)	P(X<10) = 48/500 = 0.096 $z = -1.305$	B1	$z = \pm 1.305$
	P(X>24) = 76/500 = 0.152 $z = 1.028$	B1	$z = \pm 1.028$
	$10 - \mu = -1.305\sigma$ $24 - \mu = 1.028\sigma$	M1	Form 1 equation using 10 or 24 with μ , σ , z -value. Allow continuity correction, not σ^2 , $\sqrt{\sigma}$
	$14 = 2.333\sigma$	M1	OE Solve two equations in σ and μ to form equation in one variable
	$\sigma = 6.[00], \mu = 17.8[3]$	A1	CAO, WWW
		5	

© UCLES 2019 Page 10 of 12

Question	Answer	Marks	Guidance			
7(i)	6! = 720	B1	Evaluated			
		1				
7(ii)	Total no of arrangements: $\frac{9!}{2!3!} = 30240$	B1	Accept unevaluated			
	No with Ts together = $\frac{8!}{3!}$ = 6720	B1	Accept unevaluated			
	With Ts not together: 30 240 – 6720	M1	correct or $\frac{9!}{m} - \frac{8!}{n}$, m, n integers > 1 or <i>their</i> identified total – <i>their</i> identified Ts together			
	23 520	A1	CAO			
	Alternative method for question 7(ii)					
	$\frac{7!}{3!} \times \frac{8 \times 7}{2}$	B1	$7! \times (k > 0)$ in numerator, cannot be implied by $^{7}P_{2}$, etc.			
		B1	$3! \times (k > 0)$ in denominator			
	4. Sator	M1	$\frac{\text{their 7!}}{\text{their 3!}} \times {}^{8}C_{2} \text{ or } {}^{8}P_{2}$			
	23 520	A1	CAO			
		4				

© UCLES 2019 Page 11 of 12

Question	Answer	Marks	Guidance
7(iii)	Number of arrangements = $\frac{7!}{3!}$ Probability = $\frac{their \frac{7!}{3!}}{their \frac{9!}{3!2!}} = \frac{840}{30240}$	M1	their identified number of arrangements with T at ends their identified total number of arrangements $\frac{7!}{or \frac{m}{9!}} m, n \text{ integers} > 1$
	$\frac{1}{36}$ or 0.0278	A1	Final answer
		2	
7(iv)	OOT_{-} ${}^{4}C_{2}=6$	M1	${}^{4}C_{x}$ seen alone or ${}^{4}C_{x}$ x $k \ge 1$, k an integer, $0 < x < 4$
	$ \begin{array}{ll} OOTT_{-} & {}^{4}C_{1}=4 \\ OOOT_{-} & {}^{4}C_{1}=4 \\ OOOTT & = 1 \end{array} $	A1	${}^{4}C_{2} \times k, k = 1 \text{ oe or } {}^{4}C_{1} \times m, m = 1 \text{ oe alone}$
		M1	Add 3 or 4 identified correct scenarios only, accept unsimplified
	(Total) = 15	A1	CAO, WWW Only dependent on 2nd M mark
	2	4	0.
	Satp	eP.	

© UCLES 2019 Page 12 of 12

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/63

Paper 6

October/November 2019

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond
 the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 11

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

© UCLES 2019 Page 3 of 11

Abbreviations

AWRT

WWW	Without Wrong Working
SC	Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
SOI	Seen Or Implied
ISW	Ignore Subsequent Working
CWO	Correct Working Only
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

© UCLES 2019 Page 4 of 11

Answer Which Rounds To

Question	Answer	Marks	Guidance
1(i)	$\frac{120}{300} = 0.4$	B1	OE
		1	
1(ii)	P(male) × P(not piano) = $\frac{160}{300} \times \frac{225}{300} \left(\frac{8}{15} \times \frac{3}{4} \right) = \frac{2}{5}$	M1	$P(M) \times P(P')$ seen Can be unsimplified but the events must be named in a product
	As P(male \cap not piano) also = $\frac{120}{300} = \frac{2}{5}$	A1	Numerical comparison and correct conclusion
	The events are Independent		
	Alternative method for question 1(ii)		
	P(male \cap not piano) = $\frac{120}{300}$; P(not piano) = $\frac{225}{300}$	M1	P(M P') or P(P' M) unsimplified seen with <i>their</i> probs with correctly named events
	$P(M \mid \text{not piano}) = \frac{\frac{120}{300}}{\frac{225}{300}} = \frac{120}{225} = \frac{8}{15} = P(\text{male})$ or $P(\text{not piano} \mid M) = \frac{\frac{120}{300}}{\frac{160}{300}} = \frac{120}{160} = \frac{3}{4} = P(\text{not piano})$	A1	Numerical comparison with P(M) or P(P') and correct conclusion
	Therefore the events are Independent		
		2	

© UCLES 2019 Page 5 of 11

Question	Answer	Marks	Guidance
2(i)	$\frac{9!}{2!3!} = 30240$	B1	9! Divided by at least one of 2! or 3!
		B1	Exact value
		2	
2(ii)	DR: $\frac{7!}{2!2!}$ = 1260 DO: $\frac{7!}{3!}$ = 840	B1	7! Seen alone or as numerator in a term, can be multiplied not + or –
		B1	One term correct, unsimplified
	Total = 2100	B 1	Final answer
		3	

Question	Answer	Marks	Guidance
3(i)	$3A 2D 2M : {}^{6}C_{3} \times {}^{5}C_{2} \times {}^{4}C_{2} (= 1200)$ $4A 2D 1M : {}^{6}C_{4} \times {}^{5}C_{2} \times {}^{4}C_{1} (= 600)$ $3A 3D 1M : {}^{6}C_{3} \times {}^{5}C_{3} \times {}^{4}C_{1} (= 800)$	M1	${}^{6}C_{x} \times {}^{5}C_{y} \times {}^{4}C_{z}, x + y + z = 7$
	Satore	A1	2 correct products, allow unsimplified
		M1	Summing their totals for 3 correct scenarios only
	Total = 2600	A1	Correct answer SC1 ${}^{6}C_{3} \times {}^{5}C_{2} \times {}^{4}C_{1} \times {}^{9}C_{1} = 7200$
		4	

© UCLES 2019 Page 6 of 11

Question	Answer	Marks	Guidance
3(ii)	$^{7}C_4 \times 1$	B1	⁷ C ₃ or ⁷ C ₄ seen anywhere
	35	B1	
		2	

Question	Answer	Marks	Guidance
4(i)	P(h < 148) = 0.67	B1	$z = \pm 0.44$ seen
	$\frac{h - 148}{8} = 0.44$	M1	$z\text{-value} = \pm \frac{(h-148)}{8}$
	151.52 ≈ 152	A1	CAO
		3	
4(ii)	$P(144 < X < 152) = P\left(\frac{144 - 148}{8} < Z < \frac{152 - 148}{8}\right)$	M1	Using \pm standardisation formula for either 144 or 152, $\mu = 148$, $\sigma = 8$ and no continuity correction, allow σ^2 or $\sqrt{\sigma}$
	$= P\left(-\frac{1}{2} < Z < \frac{1}{2}\right) = 0.6915 - (1 - 0.6915) = 2 \times 0.6915 - 1$	M1	Correct final area legitimately obtained from $phi(their z_2) - phi(their z_1)$
	= 0.383	A1	Final probability answer
	0.383 × 120 = 45.96 Accept 45 or 46 only	B1FT	Their prob (to 3 or 4 sf) \times 120, rounded to a whole number or truncated
		4	

© UCLES 2019 Page 7 of 11

Question	Answer	Marks	Guidance
5(i)	Correct labels and scales	B1	Axes labelled 'cumulative frequency' (or cf) and 'time (or t) [in] min(utes)', linear scales from 0 to 90 and 0 to 200 with at least 3 values marked on each axis.
	7 correctly plotted points above upper boundaries joined in a curve or line segments	B1	(0, 0); (10, 16); (20, 50); (30, 106); (50, 146); (70,176); (90,200)
	TPA	2	
5(ii)	29	B1	28 ≤ median ≤ 30
		1	
5(iii)	120 seen	M1	For seeing 120 in a calculation or marked on the graph
	37	A1FT	36 ≤ Ans ≤ 39 or FT from <i>their</i> graph SC1 unsupported answer in range
		2	
5(iv)	Frequencies 16 34 56 40 30 24	B1	Seen. Allow unsimplified
	Est. Mean = $\frac{5 \times 16 + 15 \times 34 + 25 \times 56 + 40 \times 40 + 60 \times 30 + 80 \times 24}{200}$	M1	At least 4 correct midpoints (5, 15, 25, 40, 60, 80) used in a calculation
	$\frac{7310}{200}$	M1	Summing products of <i>their</i> 6 mid-points (not lower or upper bound or class width) \times <i>their</i> frequencies / 200 (or <i>their</i> Σ f), unsimplified
	36.55	A1	Accept 36.6
		4	

© UCLES 2019 Page 8 of 11

Question	Answer	Marks	Guidance
6(i)	$P(RR) = \frac{3}{8} \times \frac{2}{7} = \frac{3}{28}$	B1	OE
		1	
6(ii)	$\frac{3}{8} \times \frac{5}{7} + \frac{5}{8} \times \frac{3}{7}$	M1	Method shown, numerical calculations identified, may include replacements
	$=\frac{15}{28}$	A1	AG, Fully correct calculations
	Alternative method for question 6(ii)		
	$1 - (P(RR) + P(WW))$ $1 - \left(\frac{3}{28} + \frac{5}{8} \times \frac{4}{7}\right)$	M1	Method shown, numerical calculations identified, may include replacements
	$=\frac{15}{28}$	A1	AG, Fully correct calculations
	3	2	S
6(iii)	P(first red second red) = $\frac{their (i)}{their (i) + \frac{5}{8} \times \frac{3}{7}} = \frac{\frac{3}{8} \times \frac{2}{7}}{\frac{3}{8} \times \frac{2}{7} + \frac{5}{8} \times \frac{3}{7}} = \frac{\frac{3}{28}}{\frac{21}{56}}$	M1	Conditional probability formula used consistent with <i>their</i> probabilities or correct
	$=\frac{2}{7}$	A1	OE
		2	

© UCLES 2019 Page 9 of 11

Question				An	swer	Marks	Guidance
6(iv)	x	0	1	2		B1	Probability distribution table with correct values of <i>x</i> and at least one correct probability placed. Extra <i>x</i> values allowed
	p	$\frac{10}{28}$	$\frac{15}{28}$	$\frac{3}{28}$			with probability of zero stated.
		28	28	28			
					AT PR	B1FT	Fully correct FT P(2) = their (i), P(1) = their (ii), $\Sigma(p) = 1$.
					19	2	
6(v)	$E(X) = \frac{3}{4}$	$\frac{30}{56} + \frac{12}{56} = \frac{12}{56}$	$\frac{42}{46} \left(=\frac{3}{4}\right)$			B1	May be implied by use in variance formula
	Var(<i>X</i>) =	$= \frac{30}{56} + \frac{24}{56}$	$-\left(their\frac{3}{2}\right)$	$\left(\frac{3}{4}\right)^2$		M1	Substitute into correct variance formula, must have '— their mean²' Must be for 2 or more non-zero x-values
	$\frac{45}{112}$ or 0).402				A1	Correct final answer
					3	3	

Question	Answer	Marks	Guidance
7(i)(a)	$P(0, 1, 2) = {}^{6}C_{0} 0.3^{0} 0.7^{6} + {}^{6}C_{1} 0.3^{1} 0.7^{5} + {}^{6}C_{2} 0.3^{2} 0.7^{4}$	M1	Binomial term of form ${}^{6}C_{x}p^{x}(1-p)^{6-x}$ $0 any p, x \neq 6,0$
	0.1176 + 0.3025 + 0.3241	A1	Correct unsimplified answer
	0.744	A1	Correct final answer
		3	

© UCLES 2019 Page 10 of 11

Question	Answer	Marks	Guidance
7(i)(b)	P(support neither choir) = $1 - (0.3 + 0.45) = 0.25$	M1	0.25^n seen alone, $1 < n \le 6$
	P(6 support neither choir) = 0.25^6 = 0.000244 or $\frac{1}{4096}$	A1	Correct final answer
	- Dr	2	
7(ii)	Mean = $240 \times 0.25 = 60$ Variance = $240 \times 0.25 \times 0.75 = 45$	B1FT	Correct unsimplified $240p$ and $240pq$ where p = their P(support neither choir) or 0.25
	$P(X < 50) = P\left(Z < \frac{49.5 - 60}{\sqrt{45}}\right) = P(Z < -1.565)$	M1	Substituting their μ and σ (condone σ^2) into the ±Standardisation Formula with a numerical value for '49.5'.
		M1	Using continuity correction 49.5 or 50.5 within a standardisation expression
	1 – 0.9412	M1	Appropriate area Φ from standardisation formula P(z<) in final solution, (< 0.5 if z is -ve, > 0.5 if z is +ve)
	0.0588	A1	Correct final answer
	3	5	5/

© UCLES 2019 Page 11 of 11

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/61

Paper 6 May/June 2019

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- · marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2019 Page 2 of 11

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 3 of 11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2019 Page 4 of 11

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2019 Page 5 of 11

varied in the light of a particular circumstance)

Question	Answer	Marks	Guidance
1(i)	$\Sigma(t-120) = -25 + 6 - 3 + 15 + 0 + 5 - 6 - 1 + 16 = 7$	M1	Attempt to sum both $(t - 120)$ and $(t - 120)^2$ Correct ans using $\Sigma t - 9 \times 120$ and $\Sigma (t - 120)^2$ M1A1
	$\Sigma(t - 120)^2 = 25^2 + 6^2 + 3^2 + 15^2 + 0^2 + 5^2 + 6^2 + 1^2 + 16^2$ = 1213	A1	Both correct, www, SC correct ans no working B1B1
		2	
1(ii)	$Var = \frac{\sum (t - 120)^2}{9} - \left(\frac{\sum (t - 120)}{9}\right)^2 = \frac{their 1213}{9} - \left(\frac{their 7}{9}\right)^2$	M1	Using two coded values in correct formula including finding Σt from 7 etc
	= 134(.2)	A1	Correct answer SC if correct variance obtained by another method from raw data give SCB1
		2	

Question	Answer	Marks	Guidance
2	Jameel: P(plum) = $\frac{5}{8}$, Rosa: P(plum) = $\frac{x}{x+6}$ $\frac{5}{8} \times \frac{x}{x+6} = \frac{1}{4}$	M1	Their 2 probabilities for P(plum) multiplied and equated to 1/4
		A1	Correct equation oe
	(x =) 4	A1	SC correct answer with no appropriate equations i.e. common sense B1
		3	

© UCLES 2019 Page 6 of 11

Question	Answer	Marks	Guidance
3	$P(X) = \frac{3}{36} \left(\frac{1}{12} oe \right)$	B1	
	$P(Y) = \frac{12}{36} \left(\frac{1}{3} oe \right)$	B1	
	$P(X \cap Y) = \frac{1}{36}$	M1	Independent method to find $P(X \cap Y)$ without multiplication, either stated or by listing or circling numbers on a probability space diagram. OR condititional prob with a single fraction numerator
	$P(X) \times P(Y) = P(X \cap Y)$, independent	A1	Numerical comparison and conclusion, www
		4	

Question	Answer	Marks	Guidance
4	Median Maths = 40	M1	Indication of finding medians, such as mark on graph or reference marks to 700 pupils, condone poor terminology such as 'mean'
	Median English = 55	A1	Both values correct, condone 54 <english<56 54,="" 56="" a0<="" but="" get="" td=""></english<56>
	Median of English is larger than median of Maths	B1	Correct statement, median must be referenced within answer. No credit if statement references 'means'
	Range Maths is 100 or IQ range Maths = $80 - 12 = 68$	M ₁	Evidence of finding either both ranges or both IQ ranges i.e. see a minus
	Range English is 60 or IQ range English = $62 - 42 = 20$	A1	Both ranges or IQR correct
	Maths marks have more spread then English marks	B1	Correct conclusion. Accept standard deviation but must see some figures
		6	

© UCLES 2019 Page 7 of 11

Question	Answer	Marks	Guidance
5(i)	(P > 12) = P(13, 14, 15)	M1	Binomial term of form ${}^{15}C_x p^x (1-p)^{15-x} \ 0$
	$= {}^{15}C_{13}(0.65)^{13}(0.35)^2 + {}^{15}C_{14}(0.65)^{14}(0.35)^1 + (0.65)^{15}$	A1	Correct unsimplified answer
	= 0.0617	A1	SC if use np and npq with justification give $(12.5 - 9.75)/\sqrt{3.41}$ M1 1–F(1.489) A1 0.0681 A0
	TP	3	
5(ii)	mean = $250 \times 0.65 = 162.5$ variance = $250 \times 0.65 \times 0.35 = 56.875$	B1	Correct unsimplified <i>np</i> and <i>npq</i>
	$P(<179) = P(z < \frac{178.5 - 162.5}{\sqrt{56.875}}) = P(z < 2.122)$	M1	Substituting their μ and σ (condone σ^2) into the Standardisation Formula with a numerical value for '178.5'. Continuity correct not required for this M1. Condone \pm standardisation formula
	Using continuity correction 178.5 or 179.5	M1	
	= 0.983	A1	Correct final answer
		4	

Question	Answer	Marks	Guidance
6(i)	P(loses \$1) = P(F and F) = 0.8×0.8	M1	$0.8 \times 0.8 \text{ or } (1 - 0.2)(1 - 0.2) \text{ or } P(F) \times P(F) \text{ or } P(F) + P(F) \text{ seen or implied}$
	= 0.64 AG	A1	Must see probabilities multiplied together with final answer and a clear probability statement or implied by labelled tree diagram
		2	

© UCLES 2019 Page 8 of 11

Question	Answer		Ma	arks	Guidance		
6(ii)	Amount	1	0.50	2		B 1	−1 linked with 0.64 in table
	gained (\$)	-1	0.50	2		B 1	0.5 seen in table
	Prob		0.16	0.2		B 1	0.16 seen in table linked to their 0.5
					PA	B1	FT P(2.00 gained) = $0.36 - P(0.50 \text{ gained})$ or correct, and all amount gained linked correctly in table
						4	
6(iii)	E(winnings) = -1×0 . = $-(\$)0.16$, -16 cent		$6+2\times0.2$			В1	FT Accept (\$)0.16 or 16 cents loss. FT unsimplified E(winnings) from their table provided $\Sigma p = 1$
						1	

Question	Answer	Marks	Guidance
7(i)	$P(<700) = P\left(z < \frac{700 - 830}{120}\right) = P(z < -1.083)$	M1	Using \pm standardisation formula, no continuity correction, not σ^2 or $\sqrt{\sigma}$
	= 1 - 0.8606	M1	Appropriate area Φ from standardisation formula P(z<) in final probability solution, (<0.5 if z is -ve, >0.5 if z is +ve)
	= 0.1394	A1	Correct final probability rounding to 0.139
	Expected number of female adults = $430 \times their \ 0.1394$ = 59.9 So 59 or 60	B1	FT their 3 or 4 SF probability, rounded or truncated to integer
		4	

© UCLES 2019 Page 9 of 11

Question	Answer	Marks	Guidance
7(ii)	P(giraffe $< 830+w$) = 95% so $z = 1.645$	B1	±1.645 seen (critical value)
	$\frac{\left(830+w\right)-830}{120} = \frac{w}{120} = 1.645$	M1	An equation using the standardisation formula with a z-value (not $1-z$), condone σ^2 or $\sqrt{\sigma}$ not 0.8519, 0.8289
	w = 197	A1	Correct answer
	TP	3	
7(iii)	P(male > 950) = 0.834, so $z = -0.97$	B1	± 0.97 seen
	$\frac{950 - 1190}{\sigma} = -0.97$	M1	Using \pm standardisation formula, condone continuity correction, σ^2 or $\sqrt{\sigma}$, condone equating with non z-value not 0.834, 0.166
	$\sigma = 247$	A1	Condone $-\sigma = -247$. www.
		3	

Question	Answer	Marks	Guidance
8(i)	$({}^{9}C_{4} =) 126$	B1	
	3	1	
8(ii)	$^{7}\mathrm{C}_{2}$	B1	⁷ C _x or ^y C ₂ (implied by correct answer) or ⁷ P _x or ⁷ P _y , seen alone
	= 21	B1	correct answer
		2	

© UCLES 2019 Page 10 of 11

Question	Answer	Marks	Guidance		
8(iii)	_ C ₁ (B ₁ B ₂ B ₃) C ₂ _ C ₃ _ C ₄ _ C ₅ _ C ₆	B1	3! or 6! seen alone or multiplied by k > 1 need not be an integer		
	3! × 6! × 7	B1	3! and 6! seen multiplied by k > 1, integer, no division		
	= 30240	B1	Exact value		
	Alternative method for question 8(iii)				
	C ₁ (B ₁ B ₂ B ₃) C ₂ C ₃ C ₄ C ₅ C ₆	B1	3! or 7! seen alone or multiplied by $k > 1$ need not be an integer		
	3! × 7!	B1	3! and 7! seen multiplied by $k > or = 1$, no division		
	= 30240	B1	Exact value		
		3			
8(iv)	$C_1 _C_2 _C_3 _C_4 _C_5 _C_6$	B1	6! or 4! X 6P2 seen alone or multiplied by k > 1, no division (arrangements of cars)		
	6! × 5P3 or 6! × 5 × 4 × 3 or 6! x 3! x10	B1	Multiply by 5P3 oe i.e. putting Bs in between 4 of the Cs OR multiply by $3! \times n$ where $n = 7, 8, 9, 10$ (number of options)		
	= 43200	B1	Correct answer		
	2	3			

© UCLES 2019 Page 11 of 11

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

 MATHEMATICS
 9709/62

 Paper 6
 May/June 2019

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- · marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

© UCLES 2019 Page 2 of 15

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 3 of 15

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2019 Page 4 of 15

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied

Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be

Penalties

SR

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2019 Page 5 of 15

varied in the light of a particular circumstance)

Question	Answer	Marks	Guidance		
1	$P(S) = \frac{1}{2}$	B1			
	$P(T) = \frac{16}{36} \left(\frac{4}{9}\right)$	B1			
	$P(S \cap T) = \frac{10}{36} \left(\frac{5}{18}\right)$	M1	$P(S \cap T)$ found by multiplication scores M0 M1 awarded if <i>their</i> value is identifiable in their sample space diagram or Venn diagram or list of terms or probability distribution table (oe)		
	$P(S) P(T) \neq P(S \cap T)$ so not independent	A1	8/36, 10/36 P(S) × P(T) and P($S \cap T$) seen in workings and correct conclusion stated, www		
	Alternative method for question 1				
	$P(S) = \frac{1}{2}$	B1			
	$P(T) = \frac{16}{36} \left(\frac{4}{9}\right)$	B1			
	$P(S \cap T) = \frac{10}{36} \left(\frac{5}{18}\right)$	M1	$P(S \cap T)$ found by multiplication scores M0 M1 awarded if <i>their</i> value is identifiable in their sample space diagram or Venn diagram or list of terms or probability distribution table (oe)		
	$P(S T) = \frac{10}{16} \text{ or } P(T S) = \frac{10}{18}$ $P(S T) \neq P(S) \text{ or } P(T S) \neq P(T) \text{ so not independent}$	A1	Either 18/36, 10/16,P(S) and P(S T) seen in workings and correct conclusion stated, www Or 16/36, 10/18, P(T) and P(T S) seen in workings and correct conclusion stated, www		
		4			

© UCLES 2019 Page 6 of 15

Question	Answer	Marks	Guidance
2	$P(<28.9) = P\left(z < \frac{28.9 - 30}{1.5}\right)$	B1	Using \pm standardising formula, no continuity correction, not σ^2 or $\sqrt{\sigma}$,
	= P(z < -0.733) $= 1 - 0.7682$	M1	Appropriate area Φ from standardisation formula $P(z <)$ in final probability solution, Must be a probability, e.g. $1-0.622$ is M0
	= 0.2318	A1	Correct final probability rounding to 0.232. (Only requires M1 not B1 to be awarded
	Number of cartridges is <i>their</i> 0.2318×8 = 1.85, so 2 (Also accept 1 but not both)	B1	FT using <i>their</i> 4 SF (or better) value, ans. rounded or truncated to integer, no approximation indicated.
		4	

© UCLES 2019 Page 7 of 15

Question	Answer	Marks	Guidance	
3(i)	P(at most 7) = 1 – P(8, 9, 10) = 1 – ${}^{10}C8(0.35)^{8}(0.65)^{2} - {}^{10}C_{9}(0.35)^{9}(0.65)^{1} - (0.35)^{10}$	M1	Use of normal approximation M0 Binomial term of form ${}^{10}C_xp^x(1-p)^{10-x}$ $0 any p, x \ne 10,0$	
	[=1-0.004281-0.0005123-0.00002759]	A1	Correct unsimplified (or individual terms evaluated) answer seen Condone $1 - A + B + C$ leading to correct solution	
	= 0.995	B1	B1 not dependent on previous marks.	
	Alternative method for question 3(i)			
	P(at most 7) = P(0,1,2,3,4,5,6,7)	M1	Binomial term of form ${}^{10}C_x p^x (1-p)^{10-x}$ $0 any p, x \ne 10,0$	
	$= (0.65)^{10} + {}^{10}C1(0.35)^{1}(0.65)^{9} + + {}^{10}C_{7}(0.35)^{7}(0.65)^{3}$	A1	Correct unsimplified answer or individual terms evaluated seen	
	= 0.995	B1		
		3		
3(ii)	$ 1 - (0.65)^n > 0.99 0.01 > (0.65)^n $	M1	Equation or inequality with $(0.65)^n$ and 0.01 or $(0.35)^n$ and 0.99 only (Note $1-0.99$ is equivalent to 0.01 etc.)	
	n > 10.69	M1	Solving their $a^n = c$, $0 < a,c < 1$ using logs or Trial and Error If answer inappropriate, at least 2 trials are required for Trial and Error M mark	
	smallest $n = 11$	A1	CAO	
	, sai	pr3	P.	

© UCLES 2019 Page 8 of 15

Question	Answer	Marks	Guidance
4	$z = 0.842 = \left(\frac{121 - \mu}{\sigma}\right)$ so $0.842\sigma = 121 - \mu$	B1	\pm 0.842 seen but B0 if 1 \pm 0.842 oe seen
	σ) so 0.0420 121 μ	M1	One appropriate standardisation equation with a z-value, μ , σ and 121 or 102, condone continuity correction. Not 0.158, 0.42,
	$z = -0.58 = \left(\frac{102 - \mu}{\sigma}\right)$ so $-0.58\sigma = 102 - \mu$	B1	$\pm 0.58(0)$ seen but B0 if 1 ± 0.58 oe seen
	Solving	M1	Correct algebraic elimination of μ or σ from <i>their</i> two simultaneous equations to form an equation in one variable, condone 1 numerical slip
	$\sigma = 13.4 \mu = 110$	A1	If M0A0 scored (i.e. no algebraic elimination seen), SC B1 can be awarded for both answers correct
			Consistent use of σ^2 or $\sqrt{\sigma}$ throughout apply MR penalty to A mark or SC B mark.
		5	

© UCLES 2019 Page 9 of 15

Question		Ans	wer		Marks	Guidance
5(i)			5/9	T)	B1	First pair of branches labels and probs correct (6/7 and 1/7 or rounding to 0.857 and 0.143)
		T	1 10			(Labelling must be logicallye.g. (T and T) or (T and Not T) would be acceptable)
	6/7		4/9	C	B1	Either of second top pair or bottom of branches labels and probs correct
	1/7	\sim _C	6/9	T		
			3/9	C	B1	Both second pairs of branches labels and probs correct. No additional / further branches.
					3	
5(ii)	No of toffees				B1	P(1) correct
	taken (T)	0	1	2	B1	P(0) or P(2) correct
	prob	$\frac{3}{63}$, 0.0476(2)	$\frac{30}{63}$, 0.476(2)	$\frac{30}{63}$, 0.476(2)	B1	FT Correct values in table, any additional values of T have stated probability of zero. For FT $\Sigma p = 1$,
				4.50	3	0.0
5(iii)	$E(X) = \frac{90}{63} \ (\frac{10}{7})$) (1.43)			B1	Not FT
					1	

© UCLES 2019 Page 10 of 15

Question	Answer	Marks	Guidance		
5(iv)	$P(1^{\text{st}} C \mid 2^{\text{nd}} T) = \frac{P(C \cap T)}{P(T)} = \frac{\frac{1}{7} \times \frac{6}{9}}{\frac{1}{7} \times \frac{6}{9} + \frac{6}{7} \times \frac{5}{9}} = \frac{\frac{6}{63}}{\frac{36}{63}}$	B1	$P(C \cap T)$ attempt seen as numerator of a fraction, consistent with <i>their</i> tree diagram or correct		
	$P(T) = \frac{1}{7} \times \frac{6}{9} + \frac{6}{7} \times \frac{5}{9} = \frac{36}{63}$	M1	Summing 2 appropriate two-factor probabilities, consistent with <i>their</i> tree diagram or correct seen anywhere		
	AT	A1	$\frac{36}{63}$ oe or correct unsimplifed expression seen as numerator or denominator of a fraction		
	$\frac{1}{6}$ oe	A1	Final answer		
		4			

Question	Answer	Marks	Guidance
6(i)	Advantage: comment referring to spread or range or shape	B1	Comments referring to quartiles, IQR, Range, median, shape, skewness, data distribution, spread score B1 Any comments with reference to mean or standard deviation or any other 'disadvantage' will score B0 Comments referring to '5-value plot', comparison with another data set, overview or ease of drawing/plotting/reading require an appropriate advantage statement.
	Disadvantage: comment referring to limited data information provided	B1	Comments referring to no individual data, no information about the number of values, unable to calculate mean, standard deviation, variance and mode score B1 Any comments with reference to median, shape or any other 'advantage' will score B0 Comments referring to 'size of data set' or 'average' require an appropriate disadvantage statement. Comments referring to outliers are ignored in all cases (as outliers are not in the syllabus content) unless supported by an appropriate advantage / disadvantage statement. If comments not clearly identified, assume first comment is the advantage.
		2	- /.5/

© UCLES 2019 Page 12 of 15

Question	Answer	Marks	Guidance
6(ii)	Not mean as data skewed by one large value	B1	Comment which identifies 768 (or 'a very large number') as the problem. Condone the use of 'outlier'
	Not mode as frequencies all the same	B1	Comment which indicates that no mode exists (e.g. all the data is different, there is no repeated number, all the values are different)
	Median	B1	Median identified as choice, dependent upon statements for mean and mode being given, even if incorrect or very general.
	SC: Mean is identified as most suitable		
	Not mode as frequencies all the same	SCB1	Comment which indicates that no mode exists
	Not median as not all values used	SCB1	Comment which indicates limitation of median e.g. median is not in middle of range.
		3	
6(iii)(a)	LQ = 256 or 256.5 Med = 280 UQ = 329 Min 190 max 375	B1	Median, UQ and LQ values seen, may not be identified or identified correctly. (Not read from box plot unless value stated)
		B1	FT Median and quartiles plotted in box on graph, linear scale
	150 200 250 300 350 400 time minutes	B1	Correct end points, whiskers from ends of box but not through box, not at top or bottom of box
	· Sa	B1	Uniform scale from 190 to 375 (need at least 3 linear identified points min) and labelled 'time' and 'minutes' (can be in title)
			No time axis or time axis with no scale attempt, Max B1B0B0B0
		4	

© UCLES 2019 Page 13 of 15

Question	Answer	Marks	Guidance
6(iii)(b)	IQR = their 329 - their 256 = 73 or 72.5		FT Must follow through only from <i>their</i> stated values (condone if correct quartiles stated here), not reading from graph.
		1	

Question	Answer	Marks	Guidance
7(a)	${}^{6}C_{3} \times {}^{3}C_{2} \times {}^{1}C_{1}$	M1	6 C _a × $^{6-a}$ C _b × $^{6-a-b}$ C _{6-a-b} seen oe $^{6-a-b}$ C _{6-a-b} can be implied by 1 or omission, condone use of permutations,
	$=20\times3$	A1	Any correct method seen no addition/additional scenarios
	= 60	A1	Correct answer
	Alternative method for question 7(a)		
	$\frac{{}^{6}P_{6}}{{}^{3}P_{3} \times {}^{2}P_{2} \times {}^{1}P_{1}} = \frac{6!}{3! \times 2!}$	M1 $^{6}P_{6} / (^{n}P_{n} \times k)$ with $3 \ge n > 1$ and $6 \ge k$ an integer ≥ 1 , not $6!/1$	$^{6}P_{6} / (^{n}P_{n} \times k)$ with $3 \ge n > 1$ and $6 \ge k$ an integer ≥ 1 , not $6!/1$
	${}^{3}P_{3} \times {}^{2}P_{2} \times {}^{1}P_{1} 3 \times 2!$	A1	Correct method with no additional terms
	= 60	A1	Correct answer
	13	3	
7(b)(i)	$\frac{4!}{3!} \times \frac{3!}{2!} \times 2$	M1	A single expression with either $4!/3! \times k$ or $3!/2! \times k$, k a positive integer seen oe (condone 2 identical expressions being added)
		M1	Correctly multiplying <i>their</i> single expression by 2 or 2 identical expressions being added.
	= 24	A1	Correct answer
		3	

© UCLES 2019 Page 14 of 15

Question	Answer	Marks	Guidance		
7(b)(ii)	Total no of arrangements = $\frac{7!}{2!3!}$ = 420 (A)		Accept unsimplified		
	No with 2s together = $\frac{6!}{3!}$ = 120 (B)	B1	Accept unsimplified		
	With 2s not together: their (A) – their (B)		Subtraction indicated, possibly by <i>their</i> answer, no additional terms present		
	= 300 ways	A1	Exact value www		
	Alternative method for question 7(b)(ii)				
	3_7_7_7_8_				
	$\frac{5!}{3!} \times \frac{6 \times 5}{2}$	B1	$k \times 5!$ in numerator, k a positive integer		
		B1	$m \times 3!$ In denominator, m a positive integer		
		M1	Their 5!/3! multiplied by ⁶ C ₂ only (no additional terms)		
	= 300 ways	A1	Exact value www		
	Z	4	· /·5/		

© UCLES 2019 Page 15 of 15

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/63

Paper 6 May/June 2019

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- · marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2019 Page 2 of 14

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 3 of 14

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2019 Page 4 of 14

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent				
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)				
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)				
CWO	Correct Working Only – often written by a 'fortuitous' answer				
ISW	Ignore Subsequent Working				
SOI	Seen or implied				
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be				

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2019 Page 5 of 14

varied in the light of a particular circumstance)

Question	Answer	Marks	Guidance
1(i)	$P(79 < X < 91) = P\left(\frac{79 - 85}{6.8} < Z < \frac{91 - 85}{6.8}\right)$ $= P(-0.8824 < Z < 0.8824)$	M1	Using ± standardisation formula for either 79 or 91, no continuity correction
	$= \Phi(0.8824) - \Phi(-0.8824)$ = 0.8111 - (1 - 0.8111)	M1	Correct area ($\Phi-\Phi$) with one +ve and one –ve z-value or $2\Phi-1$ or $2(\Phi-0.5)$
	= 0.622	A1	Correct answer
	19	3	
1(ii)	z = -1.751	B1	± 1.751 seen
	$-1.751 = \frac{t - 85}{6.8}$	M1	An equation using \pm standardisation formula with a <i>z</i> -value, condone σ^2 or $\sqrt{\sigma}$
	t = 73.1	A1	Correct answer
		3	

© UCLES 2019 Page 6 of 14

Question	Answer	Marks	Guidance
2(i)	0.4 R	B1	Fully correct labelled tree with correct probabilities for 'Send'
	0.4 R 0.3 0.6 NR 0.2 email 0.85 NR 0.5 social media 0.4 NR	B1	Fully correct labelled branches with correct probabilities for the 'reply'
		2	

© UCLES 2019 Page 7 of 14

Question	Answer	Marks	Guidance
2(ii)	$P(email NR) = \frac{P(email \cap NR)}{P(NR)} = \frac{0.2 \times 0.85}{0.3 \times 0.6 + 0.2 \times 0.85 + 0.5 \times 0.4}$	M1	$P(email) \times P(NR)$ seen as numerator of a fraction, consistent with <i>their</i> tree diagram
	$=\frac{0.17}{0.18+0.17+0.2}=\frac{0.17}{0.55}$	M1	Summing three appropriate 2-factor probabilities, consistent with <i>their</i> tree diagram, seen anywhere 0.55 oe (can be unsimplified) seen as denom of a fraction
	$=0.309, \frac{17}{55}$	A1	
		A1	Correct answer
		4	

Question	Answer	Marks	Guidance
3(i)	9! × 2	B1	9! seen multiplied by $k \ge 1$, no addition
	= 725760	B1	Exact value
	2	2	1.5
3(ii)	Eg (K ₁ K ₂ K ₃ K ₄ K ₅) A A A (U ₁ U ₂) A	B1	2! or 5! seen mult by k > 1, no addition (arranging Us or Ks)
	$= 5! \times 2! \times 6!$	B1	6! Seen mult by k > 1, no addition (arranging AAAAKU)
	= 172800	B1	Exact value
		3	

© UCLES 2019 Page 8 of 14

Question	Answer	Marks	Guidance
4(i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	One unsimplified product correct
		M1	Summing the number of ways for 2 or 3 correct scenarios (can be unsimplified), no incorrect scenarios
	Total 672 ways	A1	Correct answer
	19	3	

Question	Answer	Marks	Guidance						
4(ii)	Total number of selections = ${}^{12}C_6 = 924$ (A)	M1	12 C _x – (subtraction seen), accept unsimplified						
	Selections with males together = ${}^{10}C_4 = 210$ (B)	A1	Correct unsimplified expression						
	Total = (A) - (B) = 714	A1	Correct answer						
	Alternative method for question 4(ii)								
	No males + Only male 1 + Only male 2 = ${}^{10}C_6 + {}^{10}C_5 + {}^{10}C_5$	M1	10 C _x + 2 x 10 C _y , $x \neq y$ seen, accept unsimplified						
	= 210 + 252 + 252	A1	Correct unsimplified expression						
	= 714	A1	Correct answer						
	Alternative method for question 4(ii)								
	Pool without male 1 + Pool without male 2 – Pool without either male	M1	$2 \times {}^{11}C_x - {}^{10}C_x$						
	$= {}^{11}C_6 + {}^{11}C_6 - {}^{10}C_6$ = $462 + 462 - 210$	A1	Correct unsimplified expression						
	= 714	A1	Correct answer						
	34	3	-,O '						

© UCLES 2019 Page 10 of 14

Question	Answer	Marks	Guidance
5(i)	$P(0, 1, 2) = (0.66)^{14} + {}^{14}C_{1}(0.34)(0.66)^{13} + {}^{14}C_{2}(0.34)^{2}(0.66)^{12}$	M1	Binomial term of form ${}^{14}C_x p^x (1-p)^{14-x} \ 0$
	= 0.0029758 + 0.02146239 + 0.071866	A1	Correct unsimplified answer
	= 0.0963	A1	Correct answer
		3	
5(ii)	Mean = $600 \times 0.34 = 204$, Var = $600 \times 0.34 \times 0.66 = 134.64$	B1	Correct unsimplified np and npq (or sd = 11.603 or Variance = 3366/25)
	$P(<190) = P\left(z < \frac{189.5 - 204}{\sqrt{134.64}}\right) = P(z < -1.2496)$	M1	Substituting their μ and σ , (no σ^2 or $\sqrt{\sigma}$) into the Standardisation Formula with a numerical value for '189.5'. Condone \pm standardisation formula
	√134.64)	M1	Using continuity correction 189.5 or 190.5 within a Standardisation formula
	$=1-\Phi (1.2496)$	M1	Appropriate area Φ from standardisation formula P(z<) in final solution, (<0.5 if z is -ve, >0.5 if z is +ve)
	= 1 - 0.8944 = 0.106	A1	Correct final answer
	3	5	1.5

© UCLES 2019 Page 11 of 14

Question	Answer								Marks	Guidance
6(i)	score	1	2	3	4	6	9		B1	Probability distribution table with correct scores, allow extra score values if probability of zero stated
	prob	$\frac{3}{15}$	$\frac{4}{15}$	$\frac{4}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{1}{15}$		B1	2 probabilities (with correct score) correct
		15	15	15	15	15	15		B1	3 or more correct probabilities with correct scores
									B1	FT $\Sigma p = 1$, at least 4 probabilities
						3			4	
6(ii)	$mean = \frac{(3 + 1)^2}{2}$	1:	- 4 + 12 + 5	$\frac{9)}{15} = \frac{48}{15}$	(3.2)				B1	
	$Var = \frac{(3+16+36+16+72+81)}{15} - (their 3.2)^2$								M1	FT Substitute <i>their</i> attempts at scores in correct var formula, must have "– mean ² " (condone probabilities not summing to 1)
	$=\frac{224}{15} - 3.2^2 = 4.69 \left(\frac{352}{75}\right)$								A1	
									3	
6(iii)	Score of 4, 6	6, 9			13				M1	Identifying relevant scores from their mean and their table
	Prob $\frac{4}{15}$ (0.	267)				Th.	Sat	pr	Al	Correct answer SC B1 for 4/15 with no working
									2	

© UCLES 2019 Page 12 of 14

Question	Answer	Marks	Guidance
7(i)	Thaters School Whitefay Park School	B1	Correct stem can be upside down, ignore extra values,
	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	B1	Correct Thaters School labelled on left, leaves in order from right to left and lined up vertically, no commas
	Thaters School Whitefay Park School	B1	Correct Whitefay Park School labelled on same diagram on right hand side in order from left to right and lined up vertically, no commas
	Key 8 4 5 represents 48 minutes for Thaters School and 45 minutes for Whitefay Park School.	B1	FT Correct key for <i>their</i> diagram, need both teams identified and 'minutes' stated at least once here or in leaf headings or title.
			SC If 2 separate diagrams drawn, SCB1 if both keys meet these criteria
		4	
7(ii)	LQ = 50 UQ = 61.5	B1	Both quartiles correct
	IQ range = $61.5 - 50 = 11.5$	B1	FT $61 \le UQ \le 62 - 48 \le LQ \le 52$
		2	
7(iii)	$\Sigma(x - 60)^2 = (-15)^2 + (-13)^2 + (-7)^2 + (-4)^2 + (-4)^2 + 1^2 + 4^2 + 6^2 + 9^2 + 13^2 + 23^2 + 15^2 + 18^2$	M1	Summing squares with at least 5 correct unsimplified terms
	= 1856	Al	Exact value
		2	

© UCLES 2019 Page 13 of 14

Question	Answer	Marks	Guidance
7(iv)	Var = mean of coded squares – (coded mean) ² $= \frac{\sum (x-60)^2}{13} - \left(\frac{\sum (x-60)}{13}\right)^2$	M1	Using two coded values in correct formula (variance or sd)
	$Var = \frac{their 1856}{13} - \left(\frac{46}{13}\right)^2$ = 130	A1	Correct answer SC if correct variance obtained by another method give SCB1
		2	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/62

Paper 6 Probability and Statistics

March 2019

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2019 Page 2 of 13

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 3 of 13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2019 Page 4 of 13

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied

Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be

Penalties

SR

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2019 Page 5 of 13

varied in the light of a particular circumstance)

Question	Answer	Marks	Guidance
1(i)	$0.6 \times 0.2 + 0.4 \times 0.32$	M1	Addition of 2 two-factor terms $0.6 \times a + 0.4 \times b$
	$=0.248, \frac{31}{125}$	A1	CAO
		2	
1(ii)	Method 1	RA	
	$P(GS Not Red socks) = \frac{0.4 \times 0.68}{1 - (i)}$	B1	Correct [unsimplified] numerator seen in fraction
		M1	1 – their (i) as denominator in fraction
	$=0.362, \frac{17}{47}$	A1	
	Method 2		
	P(GS Not Red socks) = $\frac{0.4 \times 0.68}{0.6 \times 0.8 + 0.4 \times 0.68}$	B1	Correct [unsimplified] numerator seen in fraction
	3	M1	Correct or (their (i))' as denominator in fraction
	$=0.362, \frac{17}{47}$	A1	5
		3	

© UCLES 2019 Page 6 of 13

Question	Answer	Marks	Guidance
2(i)	$\sigma^{2} = \frac{\sum (x-c)^{2}}{n} - \left(\frac{\sum (x-c)}{n}\right)^{2}$ $3.2^{2} = \frac{3099.2}{40} - \left(\frac{\sum (x-c)}{40}\right)^{2}$	M1	Use correct formula with values substituted
	$\frac{\left(\frac{\sum(x-c)}{40}\right)^2 = 67.24 :}{\sum(x-c) = 40 \times \sqrt{67.24}}$	M1	Rearrange to make their $\left(\frac{\sum (x-c)}{40}\right)^2$ the subject, unsimplified.
	= 328	A1	Exact value, cao
		3	_ \
2(ii)	$\sum x - 40c = their (i)$ $Mean = \frac{their (i)}{40} + 50$ $= 58.2$	B1FT	FT their (i)
		1	1.51

© UCLES 2019 Page 7 of 13

Question	Answer	Marks	Guidance
3(i)	$P(X<132) = P\left(Z < \frac{132 - 140}{12}\right) = P(Z < -0.6667)$	M1	Using \pm standardisation formula, no continuity correction, not σ^2 or $\sqrt{\sigma}$
	=1-0.7477	M1	Appropriate area Φ from standardisation formula $P(z<)$ in final solution
	= 0.252 awrt	A1	Condone linear interpolation = 0.25243
		3	
3(ii)	P(time>k) = 0.675, z = -0.454	B1	±0.454 seen
	$\frac{k - 140}{12} = -0.454$	M1	An equation using the standardisation formula with a <i>z</i> -value (not $1-z$), condone σ^2 or $\sqrt{\sigma}$
	k = 135, 134.6, 134.55	A1	B0M1A1 max from -0.45
		3	

Question			Answ	er		Marks	Guidance
4(i)			3 9k	B1	Probability distribution table with correct values of x , no additional values unless with probability 0 stated, at least one correct probability including k		
	15k = 1,					M1	Equating $\Sigma p = 1$, may be implied by answer
	$k = \frac{1}{15}$						If 0 scored, SCB2 for probability distribution table with correct numerical probabilities.
						3	

© UCLES 2019 Page 8 of 13

Question	Answer	Marks	Guidance
4(ii)	Method 1		
	$E(X) = 8k + 27k = 35k = \frac{35}{15} = \frac{7}{3}$	B1FT	FT if 0< their k<1
	$Var(X) = (k + k + 16k + 81k) - (35k)^{2}$	M1	Correct formula for variance, in terms of k at least – must have '– mean ² '(ft).
	$=1.16, \frac{52}{45}$	A1	
	Method 2		
	$E(X) = \frac{8}{15} + \frac{27}{15} = \frac{35}{15} = \frac{7}{3}$	B1FT	FT if 0< their k<1
	$Var(X) = \frac{1}{15} + \frac{1}{15} + \frac{16}{15} + \frac{81}{15} - \left(\frac{7}{3}\right)^2$	M1	Subst <i>their</i> values in correct var formula – must have '– mean²'(ft) (condone probs not summing to exactly 1)
	= 1.16 (= 52/45)	A1	Using their values from (i)
		3	1.51

© UCLES 2019 Page 9 of 13

Question		Answ	er	Marks	Guidance
5(i)	Dolphins		Sharks	B1	Correct stem can be upside down, ignore extra values,
		5	9	B1	Correct Dolphin must be on LHS,
	9 5 5 3 2 5 3 2	6	4 6 8	B1	Correct Sharks on either LHS or RHS of back-to-back. Alignment ± half a space, no late entries squeezed in, no crossing out if shape is changed. Condone a separate RHS stem-and-leaf diagram
	2 2 0	8	0 4	B1FT	Correct single key for <i>their</i> single diagram, need both teams identified and 'kg' stated at least once here or in leaf headings or title.
			Key: 3 6 4 means 63 kg for Dolphins and 64 kg for Sharks		
				4	
5(ii)	Median = 72 LQ = 65, UQ = 80,			B1	72 <uq<82 62<lq<72<="" td="" –=""></uq<82>
	IQR = 80 - 65			M1	nfww
	= 15		13	A1	SCB1 if M0 scored for LQ = 65 and UQ = 80
			12	3	-9

© UCLES 2019 Page 10 of 13

Question	Answer	Marks	Guidance
6(i)	$P(4, 5, 6) = {}^{6}C_{4} 0.35^{4} 0.65^{2} + {}^{6}C_{5} 0.35^{5} 0.65^{1} + 0.35^{6}$	M1	Binomial term of form ${}^6\mathrm{C}_x p^x (1-p)^{6-x}$ $0 any p, x \neq 6, 0$
		A1	Correct unsimplified answer
	= 0.117	A1	
		3	
6(ii)	$1 - 0.65^n > 0.95$ $0.65^n < 0.05$	M1	Equation or inequality involving '0.65" or 0.35" and '0.95 or 0.05'
	$n > \frac{\log 0.05}{\log 0.65} = 6.95$	M1	Attempt to solve <i>their</i> exponential equation using logs or Trial and Error.
	n = 7	A1	CAO
		3	
6(iii)	Mean = $0.35 \times 100 = 35$ Variance = $0.35 \times 0.65 \times 100 = 22.75$	B1	Correct unsimplified <i>np</i> and <i>npq</i> ,
	$P\left(z > \frac{39.5 - 35}{\sqrt{22.75}}\right) = P(z > 0.943)$	M1	Substituting their μ and σ (condone σ^2) into the \pm Standardisation Formula with a numerical value for '39.5'.
	T.Sata	M1	Using continuity correction 39.5 or 40.5
	= 1-0.8272	M1	Appropriate area Φ from standardisation formula P(z>) in final solution, (>0.5 if z is -ve, <0.5 if z is +ve)
	= 0.173	A1	Final answer
		5	

© UCLES 2019 Page 11 of 13

Question	Answer	Marks	Guidance
7(i)	<u>9!</u> <u>2!3!</u>	M1	9! alone on numerator, 2! and/or 3! on denominator
	= 30240	A1	Exact value, final answer
		2	
7(ii)	A^^^A	B1	Final answer
	Arrangements = $\frac{6!}{2!}$ = 360		
		1	
7(iii)	$M \wedge M \wedge \wedge \wedge \wedge \wedge \wedge \\ = \frac{7!}{3!} \times 7$	M1	7! in numerator, (considering letters not M)
		M1	Division by 3! only (removing repeated As)
		M1	Multiply by 7 (positions of M-M)
	= 5880	A1	Exact value, final answer
	Method 2 (choosing letter between Ms)		
	$1 \times \frac{6!}{2!} \times 7 + 4 \times \frac{6!}{3!} \times 7$	M1	6! in sum of 2 expressions $a6! + b6!$
		M1	Multiply by 7 in both expressions (positions of M-M)
	= 2520 + 3360	M1	$\frac{c}{2!} + \frac{d}{3!}$ seen (removing repeated As)
	= 5880	A1	Exact value

© UCLES 2019 Page 12 of 13

Question	Answer	Marks	Guidance
7(iii)	Method 3		
	(MAM) ^ ^ ^ ^ = 7!/2! = 2520	M1	7! in numerator (considering 6 letters + block)
	$(MA'M) ^ ^ ^ ^ ^ ^ = 7!/3! \times 4 = 840 \times 4 = 3360$	M1	Division by 2! and 3! seen in different terms
	Total = 2520 + 3360	M1	Summing 5 correct scenarios only
	= 5880	A1	Exact value
		4	
7(iv)	$M A^{4} = {}^{4}C_{1} = 4$	B1	Final answer
		1	
7(v)	$M ^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$	M1	Either option M M ^ or M ^ ^ correct, accept unsimplified
	M M A : = 1 M A A : = 1 $(M A_{-}: {}^{4}C_{1} = 4)$	M1	Add 4 or 5 correct scenarios only
	Total = 16	A1	Value must be clearly stated
	Method 2		-9°
	$M M^{5} = {}^{5}C_{1} = 5$		Either option M M ^ or M ^ correct, accept unsimplified
	$M ^{\wedge \wedge} = {}^5C_2 = 10$	M1	Adding 2 or 3 correct scenarios only
	MAA = = 1 Total = 16	A1	Value must be clearly stated
		3	

© UCLES 2019 Page 13 of 13

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS
Paper 6
October/November 2018
MARK SCHEME
Maximum Mark: 50
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- · marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2018 Page 2 of 13

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 3 of 13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2018 Page 4 of 13

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2018 Page 5 of 13

Question	Answer	Marks	Guidance
1	${}^{9}C_{4} \times {}^{5}C_{3} \times {}^{2}C_{2}$	B1	⁹ C ₄ or ⁹ C ₃ or ⁹ C ₂ seen (1st group)
	$=126\times10\times1$	B1	^{5 or 7} C ₃ or ^{6 or 7} C ₄ or ^{6 or 5} C ₂ times an integer (2nd group)
	=1260	B1	Correct answer
		3	

		RA	
Question	Answer	Marks	Guidance
2(i)	6p + 0.1 = 1 $p = 0.15$	B1	Correct answer
		1	
2(ii)	$Var(X) = 1 \times p + 1 \times 2p + 4 \times 2p + 16 \times 0.1 - 1.15^{2}$	M1	Correct unsimplified formula, <i>their p</i> substituted (allow 1 error)
	$0.15 + 0 + 0.3 + 1.2 + 1.6 - 1.15^{2}$ = 1.9275 = 1.93 (3sf)	A1	Correct answer
		2	

© UCLES 2018 Page 6 of 13

Question	Answer	Marks	Guidance
3(i)	Scenarios are: $4V + 1C + 1DB$: ${}^{11}C_4 \times {}^5C_1 \times {}^4C_1$	M1	$^{11}\text{C}_{\text{a}} \times ^{5}\text{C}_{\text{b}} \times ^{4}\text{C}_{\text{c}}, a+b+c=6,$
	$4V + 2C:$ ${}^{11}C_4 \times {}^5C_2$ $5V + 1C:$ ${}^{11}C_5 \times {}^5C_1$	B1	2 correct unsimplified options
	6600 + 3300 + 2310	M1	Add 2 or 3 correct scenarios only
	= 12210	A1	Correct answer
	19	4	
3(ii)	4! × 3!	M1	k multiplied by 3! or 4!, k an integer ≥ 1
		A1	Correct unsimplified expression
	= 144	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
4(a)	$P(X < 29.4) = P(Z < \frac{29.4 - 31.4}{\sqrt{3.6}})$ = P(Z < -1.0541)	M1	Standardise, no cc, must have sq rt.
	= 1 - 0.8540	M1	Obtain 1 – prob
	= 0.146	A1	Correct final answer
		3	

© UCLES 2018 Page 7 of 13

Question	Answer	Marks	Guidance
4(b)	$P(X < 12) = \frac{42}{400} = 0.105 \text{ and } P(X > 19) = \frac{58}{400} = 0.145$	M1	Eqn with μ, σ and a z-value. Allow cc, wrong sign, but not $\sqrt{\sigma}$ or σ^2
	$\frac{12-\mu}{\sigma} = -1.253$	B1	Any form with z value rounding to ± 1.25
	$\frac{19-\mu}{\sigma}=1.058$	B1	Any form with z value rounding to ± 1.06
	$12 - \mu = -1.253\sigma$ $19 - \mu = 1.058\sigma$	M1	Solve 2 equations in μ , σ eliminating to 1 unknown
	$7 = 2.307\sigma$ or $36.455 + 2.307\mu = 0$ oe		
	$\mu = 15.8, \sigma = 3.03$	A1	Correct answers
		5	

Question	Answer	Marks	Guidance
5(i)	$\begin{vmatrix} 1 - (P(7) + P(8) + P(9)) \\ = 1 - ({}^{9}C_{7} \ 0.8^{7} \times 0.2^{2} \ + {}^{9}C_{8} \ 0.8^{8} \times 0.2^{1} + {}^{9}C_{9} \ 0.8^{9} \times 0.2^{0}) \end{vmatrix}$	M1	Any binomial term of form ${}^{9}C_{x}p^{x}(1-p)^{9-x}, x \neq 0$
	Satn	M1	Correct unsimplified expression
	= 1 - (0.3019899 + 0.3019899 + 0.1342177) = 0.262	A1	Correct answer
		3	

© UCLES 2018 Page 8 of 13

Question	Answer	Marks	Guidance
5(ii)	Mean = $200 \times 0.8 = 160$: var = $200 \times 0.8 \times 0.2 = 32$	B1	Both unsimplified
	$P(X > 166) = P(Z > \frac{166.5 - 160}{\sqrt{32}})$	M1	Standardise, $z = \pm \frac{x - their 160}{\sqrt{their 32}}$ with square root
		M1	166.5 or 165.5 seen in attempted standardisation expression
	= P(Z > 1.149) = 1 - 0.8747	M1	$1-a$ Φ -value, correct area expression, linked to final answer
	= 0.125	A1	Correct final answer
		5	
5(iii)	np = 160, $nq = 40$: both > 5 (so normal approx. holds)	B1	Both parts required
		1	

Question Answer Marks Guidance 6(i) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 ODEN		
Appropriate linear scales starting at (0,0), axes labelled cf and Rainfall, mm B1 Correct graph, points plotted at ucb, allow straight lines 2 6(ii) Read off from increasing graph at cf = 150	Question	Answer	Marks	Guidance
2 M1 Read off from increasing graph at cf = 150	6(i)	250 0 200 0 20 40 60 80 100 120	B1	
6(ii) M1 Read off from increasing graph at cf = 150			B1	Correct graph, points plotted at ucb, allow straight lines or curve
			2	
42 A1 Correct answer $(41 \le r \le 43)$	6(ii)		M1	Read off from increasing graph at cf = 150
		42	A1	Correct answer $(41 \le r \le 43)$
2			2	

© UCLES 2018 Page 10 of 13

Question	Answer	Marks	Guidance
6(iii)	Frequencies 52, 42, 48, 30, 50, 28	B1	Correct frequencies
	Mean age = $(10 \times 52 + 25 \times 42 + 35 \times 48 + 45 \times 30 + 60 \times 50 + 85 \times 28) / 250$	B1	Correct midpoints (allow one error)
	=9980/250	M1	Using Σfx/250 with mid-points attempt, not cf, cw, lb, ub
	= 39.9(2) oe	A1	Correct answer
	Variance = $10^{2} \times 52 + 25^{2} \times 42 + 35^{2} \times 48 + 45^{2} \times 30 + 60^{2} \times 50 + 85^{2} \times 28) / 250 - $ mean ² $= 539.59$	M1	Attempt at variance using their midpoints and their mean
	$\sigma = 23.2$	A1	Correct answer for sd
		6	

Question	Answer	Marks	Guidance
7(i)	52/160 = 13/40, 0.325	B1	oe
		1	-,0
7(ii)	P(boy) = 96/160: P(Music) = 52/160 P(boy and Music) = 40/160	M ₁	Use of $P(B) \times P(M) = P(B \cap M)$, appropriate probabilities used
	$96/160 \times 52/160 \neq 40/160$: Not independent	A1	Numerical comparison and conclusion stated
		2	

© UCLES 2018 Page 11 of 13

Question	Answer	Marks	Guidance
7(iii)	Method 1		
	P(not Music/girl) = P(not Music and girl)/P(girl) (27/160) / (64/160)	M1	Appropriate probabilities in a fraction
	$=\frac{27}{64}$	A1	Correct answer www implies method
	Method 2		
	Direct from table	M1	$27/a \text{ or } b/64, a \neq 160$
	<u>27</u> 64	A1	Correct answer www implies method
		2	N-111
7(iv)	$P(B M) \times P(B NM) \times P(G NM)$ or $P(G M) \times P(B NM) \times P(B NM)$	M1	One scenario identified with 3 probs multiplied
	40/160 × 56/159 × 52/158 or 12/160 × 56/159 × 55/158	A1	One scenario correct (ignore multiplying factor)
	× 3! × 3!/2!	B1	Both multiplying factors correct
	$\begin{array}{c} 0.17387 \\ P = 0.17387 + 0.02759 \end{array}$	M1	Both cases attempted and added (multiplying factor not required), accept unsimplified
	= 0.201	A1	Correct answer, oe
	Note: If score in this part is 0, award SCB1 for $\frac{1}{160} \times \frac{1}{159} \times \frac{1}{158} \times k$, for positive integer k , seen		

© UCLES 2018 Page 12 of 13

Question	Answer	Marks	Guidance
7(iv)	Method 2		
	$ \frac{\binom{40}{1} \times \binom{56}{1} \times \binom{52}{1} + \binom{12}{1} \times \binom{56}{2}}{\binom{160}{3}} $	M1	One scenario identified with 2 or 3 combination multiplied
		A1	One scenario correct
		B1	Denominator correct
	$\frac{116480 + 18480}{669920}$	M1	Both scenarios attempted, and added, seen as a numerator of a fraction
	$\frac{1687}{8374}$	A1	Correct answer, oe
		5	

© UCLES 2018 Page 13 of 13

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS
Paper 6
October/November 2018
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2018 Page 2 of 16

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 3 of 16

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2018 Page 4 of 16

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2018 Page 5 of 16

Question	Answer	Marks	Guidance
1(i)	11! 4!4!2!	M1	$\frac{11!}{4 \times k} or \frac{11!}{2 \times k}, k \text{ a positive integer}$
	= 34650	A1	Correct final answer
		2	
1(ii)	Method 1	R	
	$P(SS) = \frac{4}{11} \times \frac{3}{10} = \frac{12}{110} \ (= 0.10911)$	B1	One of P(SS), P(PP) or P(II) correct, allow unsimplified
	$P(PP) = \frac{2}{11} \times \frac{1}{10} = \frac{2}{110} \ (= 0.01818)$ $P(II) = \frac{4}{11} \times \frac{3}{10} = \frac{12}{110} \ (= 0.10911) \frac{4}{11} \times \frac{3}{10}$	M1	Sum of probabilities from 3 appropriate identifiable scenarios (either by labelling or of form $\frac{4}{11} \times \frac{a}{b} + \frac{2}{11} \times \frac{c}{b} + \frac{4}{11} \times \frac{a}{b}$ where $a = 4$ or 3, $b = 11$ or 10 , $c = 2$ or 1)
	$Total = \frac{26}{110} = \frac{13}{55} \text{ oe } (0.236)$	A1	Correct final answer
	Method 2		
	Total number of selections = ${}^{11}C_2 = 55$ Selections with 2 Ps = 1	B1	Seen as the denominator of fraction (no extra terms) allow unsimplified
	Selections with 2 Ss = ${}^{4}C_{2} = 6$ Selections with 2 Is = ${}^{4}C_{2} = 6$,	M1	Sum of 3 appropriate identifiable scenarios (either by labelling or values, condone use of permutations. May be implied by 2,12,12)
	Total selections with 2 letters the same = 13 Probability of 2 letters the same = $\frac{13}{55}$ oe (0.236)	A1	Correct final answer, without use of permutations
		3	

© UCLES 2018 Page 6 of 16

Question			A	nswer			Marks	Guidance
2(i)		= 0.225; .215: UQ = 0.	236				B1	Correct median (Q ₂)
	IQR = 0.236 - 0.215						M1	$0.232 < UQ (Q_3) < 0.238 - 0.204 < LQ (Q_1) < 0.219$
		= 0.021				TF	A1	www Omission of all decimal points MR-1 If M0 awarded SCB1 for both LQ = 0.215: UQ = 0.236 seen
					9/		3	
2(ii)	A	0.21 0.22	0.23 0.2	24 0.25	0.26 Time second	S	B1	Linear scale between 0.20 to 0.26 (condone omission of 0.26) axis labelled (time and seconds), at least one box plot attempted, no lines through boxes, whiskers not at corner of boxes
					2		B1 ft	Labelled correct graph for A, (ft their median/quartiles), condone lines through boxes, whiskers at corner of boxes
	A	0.200	0.215	0.225	0.236	0.250	B1	Labelled correct graph for B, condone lines through boxes, whiskers at corner of boxes
	В	0.205	0.217	0.235	0.245	0.258		SC If B0B0 scored because graphs not labelled/labels reversed SCB1 if both 'correct' Penalty MR-1 if graphs plotted on separate axes unless both scales align exactly.
							3	

© UCLES 2018 Page 7 of 16

Question	Answer	Marks	Guidance
3(i)	Method 1		
	$P(3) + P(4) + P(5) = {}^{5}C_{3} \ 0.75^{3} \times 0.25^{2} +$	M1	One binomial term ${}^5C_x p^x (1-p)^{5-x}$, $x \neq 0$ or 5, any p
	$^{5}C_{4} \ 0.75^{4} \times 0.25^{1} + {^{5}C_{5}} \ 0.75^{5} \times 0.25^{0}$	M1	Correct unsimplified expression
	= 0.26367 + 0.39551 + 0.23730 = 0.896 (459/512)	A1	Correct final answer, allow 0.8965 (isw) but not 0.897 alone
	Method 2		
	$1 - P(0) - P(1) - P(2) = 1 - {}^{5}C_{0} \ 0.75^{0} \times 0.25^{5}$	M1	One binomial term ${}^5C_x p^x (1-p)^{5-x}$, $x \neq 0$ or 5, any p
	$- {}^{5}C_{1} \ 0.75^{1} \times 0.25^{4} - {}^{5}C_{2} \ 0.75^{2} \times 0.25^{3}$	M1	Correct simplified expression
	= 1 - 0.00097656 - 0.014648 - 0.087891 $= 0.896 (459/512)$	A1	Correct final answer, allow 0.8965 (isw) but not 0.897 alone
		3	

© UCLES 2018 Page 8 of 16

Question	Answer	Marks	Guidance
3(ii)	Method 1		
	P(C,C) + P(C,C') + P(C',C) 0.8 × 0.9	B1	Unsimplified prob completed on both days
	$0.8 \times 0.1 + 0.2 \times 0.6$	M1	Unsimplified prob $0.8 \times a + 0.2 \times b$, $a = 0.1$ or 0.4 , $b = 0.6$ or 0.9
	= 0.92 oe	A1	Correct final answer
	Method 2		
	$1 - P(C',C') = 1 - 0.2 \times 0.4$	B1	Unsimplified prob completed on no days
		M1	$1 - 0.2 \times a$, $a=0.1$ or 0.4 allow unsimplified
	= 0.92	A1	Correct final answer
		3	

Question		Answer	Marks	Guidance
4(i)	5! × 6! ×2	3	B1	$k \times 5!$ or $m \times 6!$ (k,m integer, $k,m \ge 1$), no inappropriate addition
		3	B1	$n \times 5! \times 6!$ (<i>n</i> integer, $n \ge 1$), no inappropriate addition
	= 172800	Satp	B1	Correct final answer, isw rounding (www scores B3) All marks based on their final answer
			3	

© UCLES 2018 Page 9 of 16

Question	Answer	Marks	Guidance
4(ii)	\dots G \dots G \dots G \dots G \dots No. ways girls placed \times No. ways boys placed in gaps =	M1	$k \times 6!$ or $k \times {}^{7}P_{5}$ (k is an integer, $k \ge 1$) no inappropriate add. $({}^{7}P_{5} \equiv 7 \times 6 \times 5 \times 4 \times 3 \text{ or } {}^{7}C_{5} \times 5!)$
	$6! \times {}^{7}P_{5}$	M1	Correct unsimplified expression
	= 1814400	A1	Correct exact final answer (ignore subsequent rounding)
	TP	3	

Question	Answer	Marks	Guidance
5(i)	$\frac{15.5 \times 12 + 910}{12 + 20}$	M1	Unsimplified total age divided by <i>their</i> total members (not 12, 20 or 2)
	=34.25 or 34 ¹ / ₄ (years)	A1	Correct exact answer (isw rounding), oe (34 years 3 months)
		2	
5(ii)	Considering Juniors: variance = $\frac{\sum x^2}{12} - 15.5^2 = 1.2^2$	M1	$\frac{\sum x^2}{k} - 15.5^2 = 1.2^2, k = 12 \text{ or } 20$
	$\sum x^2 = 2900.28$	A1	Answer wrt 2900
	Considering whole group: $\sum z^2 = \sum x^2 + \sum y^2 = 2900.28 + 42850 = 45750$ Variance = $\frac{\sum z^2}{32} - \mu^2 = \frac{their 45750}{12 + 20} - (their 34.25)^2$ (= 256.63)	M1	Their 45750 > 42850 (not 85700 or rounding to 1.8×10^9) in correct variance or std deviation formula (Σx^2 and addition may not be seen)
	s d = 16.0(2)	A1	Correct final answer, condone 16.03
		4	

© UCLES 2018 Page 10 of 16

Question	Answer	Marks	Guidance
6(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	-2, -1 , 0 , 1 , 2 , 3 seen as top line of a pdf table with at least 1 probability OR attempting to evaluate P(-2), P(-1), P(0), P(1), P(2), P(3) (condone additional values with $p=0$ stated)
		B1	At least 4 probs correct (need not be in table)
		B1	All probs correct in a table
		3	
6(ii)	$E(X) = \frac{-2 \times 1 - 1 \times 2 + 0 + 1 \times 3 + 2 \times 2 + 1 \times 3}{12} = 0.5$	M1	Unsimplified expression for mean using <i>their</i> pdf table (or correct) with at least 2 non-zero values (may be seen in variance). Numerator terms may be implied by values.
	$Var(X) = \frac{(-2)^2 \times 1 + (-1)^2 \times 2 + 1^2 \times 3 + 2^2 \times 2 + 3^2 \times 1}{12} - (their \ 0.5)^2$	M1	Unsimplified expression for variance using <i>their</i> pdf table (or correct) with at least 2 non-zero values and <i>their</i> E(X). Numerator terms may be implied by values. If $-k^2$ is seen for $(-k)^2$, the method must be confirmed by seeing value used correctly
	26/12 - 1/4 = 23/12	A1	Correct final answer
	3	3	/· · · · ·

© UCLES 2018 Page 11 of 16

	Method 1		
P	P(X non-zero) = 9/12	B1ft	If Binomial distribution used $0/3$ P(X non-zero) ft from <i>their</i> pdf table, $\Sigma p=1$ oe
P	$P(X=1 \mid X \text{ non-zero}) = \frac{P(X=1 \cap X \text{ non-zero})}{P(X \text{ non-zero})} = \frac{\frac{3}{12}}{\frac{9}{12}}$	M1	Their $P(X = 1)$ /their $P(X \text{ non-zero})$ from their pdf table oe
	= 1/3 oe	A1	Correct final answer www
N	Method 2		
P	$P(X=1 \mid X \text{ non-zero}) = \frac{Number of outcomes}{Number of non-zero outcomes}$	B1ft	Number of non-zero outcomes (expect 9) ft from <i>their</i> outcome table or pdf table numerators oe
		M1	a/b, $a = their$ 3 from their outcome table or pdf table numerators, $b = their$ 9 (not 12)
	$=\frac{3}{9}=\frac{1}{3}$ oe	A1	Correct final answer www
	2	3	1.5

© UCLES 2018 Page 12 of 16

Question	Answer	Marks	Guidance
7(a)(i)	$P(X < 4) = P\left(Z < \frac{4 - 3.24}{0.96}\right)$	M1	±Standardisation formula, no cc, no sq rt, no square
	= P (Z < 0.7917) = 0.7858	A1	0.7855 or $p = 0.786$ Cao (implies M1A1 awarded), may be seen used in calculation
	their $0.7858 \times 365 = 286$ (or 287)	B1ft	Their probability × 365 provided 4sf probability seen. FT answer rounded or truncated to nearest integer. No approximation notation used.
		3	
7(a)(ii)	$P(X < k) = P(Z < \frac{k - 3.24}{0.96}) = 0.8$	B1	$(z=) \pm 0.842$ seen
	$\frac{k - 3.24}{0.96} = 0.842$	M1	$z = \pm \frac{k - 3.24}{0.96}$, allow cc, sq rt or square equated to a z-value (0.7881, 0.2119, 0.158, 0.8, 0.2 etc. are not acceptable)
	k = 4.05	A1	Correct final answer, www
		3	/5/
7(a)(iii)	P(-1.5 < Z < 1.5) =	M1	$\Phi(z=1.5)$ or $\Phi(z=-1.5)$ seen used or $p=0.9332$ seen
	$\Phi(1.5) - \Phi(-1.5) = 2\Phi(1.5) - 1$ = 2 × 0.9332 - 1 oe	M1	Correct final area expression using their probabilities
	= 0.866	A1	Correct final answer
		3	

© UCLES 2018 Page 13 of 16

Question	Answer	Marks	Guidance
7(b)	$P(Y>0) = P\left(Z > \frac{0-\mu}{\sigma}\right) \equiv P\left(Z > \frac{0-\mu}{3\mu/4}\right) \text{ or }$ $P\left(Z > \frac{0-\left(\frac{4\sigma}{3}\right)}{\sigma}\right)$	M1	±Standardisation attempt in terms of one variable no sq rt or square, condone ±0.5 as cc
	= P(Z > -4/3)	A1	Correct unsimplified standardisation, no variables
	= 0.909	A1	Correct final answer
		3	

© UCLES 2018 Page 14 of 16

Alternative methods for Question 1(ii)

Method 3

$$P(S,S') = \frac{4}{11} \times \frac{7}{10} = \frac{28}{110}$$

$$P(P,P') = \frac{2}{11} \times \frac{9}{10} = \frac{18}{110}$$

$$P(I,I') = \frac{4}{11} \times \frac{7}{10} = \frac{28}{110}$$

$$P(M,M') = \frac{1}{11} \times \frac{10}{10} = \frac{10}{110}$$

$$Total = \frac{84}{110}$$

$$P(Same) = 1 - \frac{84}{110} = \frac{26}{110}$$

B1 one of products correct

M1 1 – sum of probabilities from 4 appropriate scenarios

A1 Correct final answer

Method 4

$$PP' = \frac{2 \times 9}{2} = 9$$

$$SS' = \frac{4 \times 7}{2} = 14$$

$$II' = \frac{4 \times 7}{2} = 14$$

$$MM' = \frac{1 \times 10}{2} = 5$$

Total number of ways = $\frac{10 \times 11}{2} = 55$

Number of ways of letters repeating = 55 - (9 + 14 + 14 + 5) = 13

$$P(Same) = \frac{13}{55}$$

B1 ¹¹C₂ seen as the denominator of fraction (no extra terms) allow unsimplified

M1 1 – sum of 4 appropriate scenarios

A1 Correct final answer

Maximum Mark: 50

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/63
Paper 6 October/November 2018
MARK SCHEME

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2018 Page 2 of 15

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 3 of 15

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2018 Page 4 of 15

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
۸۰	
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2018 Page 5 of 15

Question	Answer	Marks	Guidance
1	Method 1		
	M M M M	M1	$k \times 5!$ (120) or $k \times 6P2$ (30), k is an integer ≥ 1 ,
	No. ways men placed \times No. ways women placed in gaps = $5! \times {}^{6}P_{2}$	M1	Correct unsimplified expression
	= 3600	A1	Correct answer
	Method 2	RE	
	Number with women together = $6! \times 2$ (1440) Total number of arrangements = $7!$ (5040)	M1	$6! \times 2$ or $7! - k$ seen, k is an integer ≥ 1
	Number with women not together = $7! - 6! \times 2$	M1	Correct unsimplified expression
	= 3600	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
2(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	-2, -1, 0, 1, 2, 3 seen as top line of a pdf table OR attempting to evaluate P(-2), P(-1), P(0), P(1), P(2), P(3),
		B1	At least 4 probs correct (need not be in table)
		B1	All probs correct in a table
		3	

© UCLES 2018 Page 6 of 15

Question	Answer	Marks	Guidance
2(ii)	$E(X) = \frac{-4 - 4 + 0 + 4 + 4 + 3}{18} = \frac{1}{6}$	M1	Correct unsimplified expression for the mean using their table, $\Sigma p = 1$, may be implied
	$Var(X) = \frac{8+4+0+4+8+9}{18} - \left(\frac{1}{6}\right)^2$ $= 11/6 - 1/36 (1.8333 - 0.02778)$	M1	Correct, unsimplified expression for the variance using their table, and their mean subtracted. Allow $\Sigma p \neq 1$
	= 65/36, (1.81)	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
3(i)	First Ball Second Ball	B1	Fully correct labelled tree and correct probabilities for 'First Ball'
	R 2/8 B 5/8 Y 1/8 R 3/8 B 4/8 1/8	RE	
		B1	Correct probabilities (with corresponding labels) for 'Second Ball'
		2	
3(ii)	$P(RR) + P(BB) = 3/8 \times 2/8 + 5/8 \times 4/8 = 3/32 + 5/16$	M1	Correct unsimplified expression from their tree diagram, $\Sigma p = 1$ on each branch
	= 13/32 (0.406)	A1	Correct answer
	Jarbi	2	

© UCLES 2018 Page 8 of 15

Question	Answer	Marks	Guidance
3(iii)	$P(RB) = 3 / 8 \times 5 / 8 = 15/64$	M1	$P(\text{1st ball red}) \times P(\text{2nd ball blue})$ from their tree diagram seen unsimplified as numerator or denominator of a fraction Allow $\Sigma p \neq 1$ on each branch
	$P(B) = 3/8 \times 5/8 + 5/8 \times 4/8 = 35/64$	M1	Correct unsimplified expression for P(B) from their tree diagram seen as denominator of a fraction. Allow $\Sigma p \neq 1$ on each branch
	$P(R B) = P(RB) / P(B) = (15/64) \div (35/64) = 3/7 (0.429)$	A1	Correct answer
	10	3	

Question	Answer	Marks	Guidance
4(i)	Total number of selections = ${}^{12}C_7 = 792$	B1	Seen as denominator of fraction
	Selections with boy included = ${}^{11}C_6$ or ${}^{12}C_7 - {}^{11}C_7 = 462$	M1	Correct unsimplified expression for selections with boy included seen as numerator of fraction
	Probability = 462/792 = 7/12 (0.583)	A1	Correct answer
	OR		
	prob of boy not included = $11/12 \times 10/11 \times \times 5/6 = 5/12$	B1	Correct unsimplified prob
	1 – 5/12	M1	Subtracting prob from 1
	= 7/12	A1	Correct answer
		3	

© UCLES 2018 Page 9 of 15

Question	Answer	Marks	Guidance
4(ii)	Method 1		
	Scenarios are: $2G + 5B$: ${}^{4}C_{2} \times {}^{8}C_{5} = 336$	B1	One unsimplified product correct
	$3G + 4B:$ ${}^{4}C_{3} \times {}^{8}C_{4} = 280$ $4G + 3B:$ ${}^{4}C_{4} \times {}^{8}C_{3} = 56$	M1	No of selections (products of ⁿ C _r and ⁿ P _r) added for 2, 3 and 4 girls with no of girls and no of boys summing to 7
	Total = 672	A1	Correct total
	Probability = 672/792 (28/33) (0.848)	A1ft	Correct answer – 'total'/('total no of selections' from i)
	Method 2		
	$0G + 7B$ ${}^{4}C_{0} \times {}^{8}C_{7} = 8$	B1	One unsimplified no of selections correct
	$ \begin{array}{ll} 1G + 6B & {}^{4}C_{1} \times {}^{8}C_{6} = 112 \\ Total = 8 + 112 = 120 \end{array} $	M1	No of selections (products of ⁿ C _r and ⁿ P _r) added for 0 and 1 girls with no of girls and no of boys summing to 7
	$(^{12}C_7 - 120)/792$ or $1 - 120/792$	A1	792 - 120 = 672 or $1 - 120/792$
	Probability = 672/792 (28/33) (0.848)	A1ft	'672' over '792' from i
	Method 3 (probability)		1.5
	$ 1 - P(0) - P(1) = 1 - (8/12 \times 7/11 \times \times 2/6) - (8/12 \times \times 3/7 \times 4/6 \times 7) $	B1	One correct unsimplified prob for 0 or 1
	= 1 - 1/99 - 14/99	M1	Subtracting 'P(0)' and 'P(1)' (using products of 7 fractions with denominators from 12 to 6) from 1
		A1	Both probs correct unsimplified
	= 84/99 = 28/33	A1ft	1 - 'P(0)' - 'P(1)'

© UCLES 2018 Page 10 of 15

Question	Answer	Marks	Guidance
4(ii)	Method 4 (probability)		
	P(2) + P(3) + P(4) =	B1	One correct unsimplified prob for 2, 3 or 4
	42/99 + 35/99 + 7/99	M1	Adding 'P(2)', 'P(3)' and P(4)' (using products of 7 fractions with denominators from 12 to 6)
	TP	A1	Three probs correct unsimplified
	= 84/99 = 28/33	A1ft	'P(2)'+ 'P(3)' + 'P(4)'
		4	

Question	Answer	Marks	Guidance
5(i)	$z_1 = \pm \frac{90 - 120}{24} = -\frac{5}{4}, \ z_2 = \pm \frac{140 - 120}{24} = \frac{5}{6}$	M1	At least one standardisation, no cc, no sq rt, no sq using 120 and 24 and either 90 or 140
	$=\Phi\left(\frac{20}{24}\right)-\Phi\left(-\frac{30}{24}\right)$	A1	-5/4 and 5/6 unsimplified
	$= \Phi(0.8333) - (1 - \Phi(1.25))$ = 0.7975 - (1 - 0.8944) or 0.8944 - 0.2025 = 0.6919	M1	Correct area $\Phi - \Phi$ legitimately obtained and evaluated from phi(their z_2) – phi (their z_1)
	= 0.692 AG	A1	Correct answer obtained from 0.7975 and 0.1056 oe to 4sf or 0.6919 seen www
		4	

© UCLES 2018 Page 11 of 15

Question	Answer	Marks	Guidance
5(ii)	Method 1		
	Probability = P(2, 3, 4) = $0.692^2(1 - 0.692)^2 \times {}^4C_2 + 0.692^3(1 - 0.692) \times {}^4C_3 + 0.692^4$	M1	Any binomial term of form $4C_x p^x (1-p)^{4-x}$, $x \neq 0$ or 4
		B1	One correct bin term with $n = 4$ and $p = 0.692$,
	= 0.27256 + 0.40825 + 0.22931	M1	Correct unsimplified expression using 0.692 or better
	= 0.910	A1	Correct answer
	Method 2:		
	1 - P(0, 1) =	M1	Any binomial term of form $4C_x p^x (1-p)^{4-x}$, $x \neq 0$ or 4
	$1 - 0.692^{0}(1 - 0.692)^{4} \times {}^{4}C_{0} - 0.692^{1}(1 - 0.692)^{3} \times {}^{4}C_{1}$	B1	One correct bin term with $n = 4$ and $p = 0.692$
	= 1 - 0.00899 - 0.0808757	M1	Correct unsimplified expression using 0.692 or better
	= 0.910	A1	Correct answer
	4	4	1.51

© UCLES 2018 Page 12 of 15

Question	Answer	Marks	Guidance
6(i)	$P(X>1800) = 0.96$, so $P(Z>\frac{1800-2000}{\sigma}) = 0.96$	B1	± 1.75 seen
	$\Phi(\frac{200}{\sigma}) = 0.96$	M1	$z = \pm \frac{1800 - 2000}{\sigma}$, allow cc, allow sq rt, allow sq equated to a
	$\frac{200}{\sigma} = 1.751$	R	z-value
	$\sigma = 114$	A1	Correct final answer www
		3	
6(ii)	Mean = $300 \times 0.2 = 60$ and variance = $300 \times 0.2 \times 0.8 = 48$	B1	Correct unsimplified mean and variance
	$P(X < 70) = P(Z > \frac{69.5 - 60}{\sqrt{48}})$	M1	$Z = \pm \frac{x - their 60}{\sqrt{their 48}}$
	$=\Phi(1.371)$	M1	69.5 or 70.5 seen in an attempted standardisation expression as cc
	=0.915	A1	Correct final answer
		4	1.5
6(iii)	np = 60, $nq = 240$: both > 5, (so normal approximation holds)	B1	Both parts evaluated are required
	·Satpr	eP ₁	

© UCLES 2018 Page 13 of 15

Question		Answe	er	Marks	Guidance
7(i)			1	B1	Correct stem, up or down
	Anvils		Brecons		
	8	15			
	9 5	16	6		
	5 3 2 0	17	0 1 2 2 8	R	
	4 1 0	18	1 2 3 3		
	6	19	2		
			Key: 5 16 6 means 165 cm for Anvils and 166 cm for Brecons		
				B1	Correct Anvils labelled on left, leaves in order from right to left and lined up vertically, no commas
				B1	Correct Brecons labelled on same diagram on right hand side in order from left to right and lined up vertically, no commas
			13	B1	Correct key, not split, both teams, at least one with cm
			12.801	4	3
7(ii)	Median = 173		atpi	B1	Correct median (or Q2)
	LQ = 169; UQ = 181 IQR = 181 – 169			M1	Either UQ = 181 ± 4 , or LQ = 169 ± 4 and evaluating UQ – LQ
	= 12			A1	Correct answer from 181 and 169 only
				3	

© UCLES 2018 Page 14 of 15

Question	Answer	Marks	Guidance
7(iii)	$\Sigma x = 1923 + 166 + 172 + 182 (= 2443)$ $\Sigma x^2 = 337221 + 166^2 + 172^2 + 182^2 (= 427485)$	M1	Correct unsimplified expression for $\sum x$ and $\sum x^2$, may be implied
	$Mean = \frac{\sum x}{14} = \frac{2443}{14} = 174.5$	M1	Correct unsimplified mean
	Variance = $\frac{\sum x^2}{14} - \left(\frac{\sum x}{14}\right)^2 = \frac{427485}{14} - \left(\frac{2443}{14}\right)^2$	M1	Correct unsimplified variance using 14, their Σx and their Σx^2 , not using 1923 and/or 337221
	S d = 9.19	A1	Correct answer
		4	

Maximum Mark: 50

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/61 Paper 6 May/June 2018 MARK SCHEME

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE™ is a registered trademark.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- · marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2018 Page 2 of 13

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 3 of 13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2018 Page 4 of 13

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/	OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent			
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)			
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)			
CWO	Correct Working Only – often written by a 'fortuitous' answer			
ISW	Ignore Subsequent Working			
SOI	Seen or implied			
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be			

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2018 Page 5 of 13

varied in the light of a particular circumstance)

Question	Answer	Marks	Guidance
1	$\Sigma(x - 10) = 186 - 12 \times 10 = 66$	B1	Correct answer
	$\frac{\Sigma(x-10)^2}{12} - \left(\frac{\Sigma(x-10)}{12}\right)^2 = 4.5^2$	M1	Consistent substituting in the correct coded variance formula OR Valid method for Σx^2 then expanding $\Sigma (x-10)^2$, 3 terms with at least 2 correct
	$\Sigma(x-10)^2 = 606$	B1	Correct answer
		3	

Question	Answer	Marks	Guidance
2(i)	LQ = 18, Median = 25, $UQ = 50$	B1	median correct
		B1	LQ and UQ correct
		B1	Quartiles and median plotted as box graph with linear scale min 3 values
		Blft	Whiskers drawn to correct end points with linear scale, not thr' box, not joining at top or bottom of box. Ft their UQ and LQ. Whiskers must be with ruler If scale non-linear or non-existent SCB1if all 5 data values (quartiles and end points) have values shown and all are correct numerically and fulfil the 'box' and 'whiskers ruled line' requirements
		B1	Label to include 'distance or travelled' and 'km,' allow 'total km', linear scale, numbered at least 5 – 70.
		5	

© UCLES 2018 Page 6 of 13

Question	Answer	Marks	Guidance
2(ii)	1.5 × IQR = 48 Method 1 LQ - 48 = -ve, (i.e. < 0) UQ + 48 = 98 (i.e. > 70)	M1	Attempt to find 1.5 × their IQR and add to UQ or subt from LQ
	hence no outliers	A1	Correct conclusion from correct working, need both ends. No need to state comparisons.
	Method 2 LQ - 5 = 13 (< 48) 70 - UQ = 20 (< 48)	M1	Compare their $1.5 \times IQR$ (= 48) > gap (20) between UQ and max 70 or LQ and min 5
	Hence no outliers	A1	Correct conclusion from correct working, need both ends. No need to state comparisons
		2	

© UCLES 2018 Page 7 of 13

Question	Answer	Marks	Guidance
3(i)	$P(RB) + P(BR) = \frac{4}{12} \times \frac{8}{11} + \frac{8}{12} \times \frac{4}{11}$ oe	M1	Multiply 2 probs together and summing two 2-factor probs, unsimplified, condone replacement
	P(diff colours) = $\frac{64}{132} \left(\frac{16}{33}\right) (0.485)$ oe	A1	Correct answer
	Method 2 $1 - P(BB) - P(RR) = 1 - \frac{4}{12} \times \frac{3}{11} - \frac{8}{12} \times \frac{7}{11}$	M1	Multiply 2 probs together and subtracting two 2-factor probs from 1, unsimplified, condone replacement
	$P(\text{diff colours}) = \frac{64}{132} \left(\frac{16}{33}\right) \text{ oe}$	A1	Correct answer
	Method 3 $P(\text{diff colours}) = \frac{\binom{^{4}C_{1} \times {^{8}C_{1}}}{^{12}C_{2}}$	M1	Multiply 2 combs together and dividing by a combination
	$=\frac{16}{33}$	A1	Correct answer
	2	2	- /.5/
3(ii)	Number of red socks012Prob $\frac{14}{33}$ $\frac{16}{33}$ $\frac{3}{33}$	B1 tore	Prob distribution table drawn, top row correct, condone additional values with $p=0$ stated
		B1	P(0) or P(2) correct to 3sf (need not be in table)
		B1	All probs correct to 3sf, condone P(0) and P(2) swapped if correct
		3	

© UCLES 2018 Page 8 of 13

Question	Answer	Marks	Guidance
3(iii)	$E(X) = 1 \times \frac{16}{33} + 2 \times \frac{3}{33} = \frac{16}{33} + \frac{6}{33} = \frac{22}{33} \left(\frac{2}{3}\right)$	B1ft	ft their table if 0, 1, 2 only, 0
		1	

Question	Answer	Marks	Guidance
4(a)	$z_1 = 2.4$	B1	± 2.4 seen accept 2.396
	$z_2 = -0.5$	B1	± 0.5 seen
	$2.4 = \frac{36800 - \mu}{\sigma}$	M1	Either standardisation eqn with z value, not 0.5082, 0.7565, 0.0082, 0.6915, 0.3085, 0.6209, 0.0032 or any other probability
	$-0.5 = \frac{31000 - \mu}{\sigma}$	M1	Sensible attempt to eliminate μ or σ by substitution or subtraction from their 2 equations (z-value not required), need at least 1 value stated
	$\sigma = 2000$ $\mu = 32000$	A1	Both correct answers
	2	5	- /.5/
4(b)	$P(X < 3\mu) = P\left(z < \frac{3\mu - \mu}{(4\mu/3)}\right)$ or $P = \left(z < \frac{(9\sigma/4) - (3\sigma/4)}{\sigma}\right)$	MI	Standardise, in terms of one variable, accept σ^2 or $\sqrt{\sigma}$
	or $P = \left(z < \frac{(90/4) - (30/4)}{\sigma}\right)$		
	$P\left(z < \frac{6}{4}\right)$	M1	$\frac{6}{4}$ or $\frac{6}{4\sigma}$ seen
	= 0.933	A1	Correct final answer
		3	

© UCLES 2018 Page 9 of 13

Question	Answer	Marks	Guidance
5(i)	$P(4, 5, 6) = {}^{15}C_4(0.22)^4(0.78)^{11} + {}^{15}C_5(0.22)^5(0.78)^{10} +$	M1	One binomial term ${}^{15}C_x p^x (1-p)^{15-x}$ 0
	$^{15}\text{C}_6(0.22)^6(0.78)^9$	A1	Correct unsimplified expression
	= 0.398	A1	Correct answer
		3	
5(ii)	$\mu = 145 \times 0.22 = 31.9$ $\sigma^2 = 145 \times 0.22 \times 0.78 = 24.882$	B1	Correct unsimplified mean and variance
	$P(x > 26) = P\left(z > \frac{26.5 - 31.9}{\sqrt{24.882}}\right) = P(z > -1.08255)$	M1	Standardising must have sq rt
		M1	25.5 or 26.5 seen as a cc
	$=\Phi(1.08255)$	M1	Correct area Φ , must agree with their μ
	= 0.861	A1	Correct final answer accept 0.861, or 0.860 from 0.8604 not from 0.8599
		5	

© UCLES 2018 Page 10 of 13

Question	Answer	Marks	Guidance
6(i)	P(SLL) = $(0.3)(0.55)(0.55) = 0.09075 \left(\frac{363}{4000}\right)$	M1	P(SLL), P(SRR), P(SSL) or P(SSR) seen
	P(SRR) = $(0.3)(0.15)(0.15) = 0.00675 \left(\frac{27}{4000}\right)$	A1	Two correct options 0.09075 or 0.00675 can be unsimplified
	Total = ${}^{3}C_{1} \times P(SLL) + {}^{3}C_{1} \times P(SRR)$ = $0.27225 + 0.02025$	M1	Summing 6 prob options not all identical
	Prob = 0.293 accept 0.2925 $(\frac{117}{400})$	A1	Correct answer
		4	
6(ii)	$P(SSS \mid all same dir^{n}) = \frac{P(SSS \ and \ same \ dir^{n})}{P(same \ direction)}$	B1	$(0.3)^3$ oe seen on its own as num or denom of a fraction
		M1	Attempt at P(SSS+LLL+RRR) seen anywhere
	$= \frac{0.3 \times 0.3 \times 0.3}{(0.15)^3 + (0.55)^3 + (0.3)^3}$	A1	$(0.15)^3 + (0.55)^3 + (0.3)^3$ oe seen as denom of a fraction
	$=0.137(\frac{108}{787})$	A1	Correct answer
		4	

© UCLES 2018 Page 11 of 13

Question	Answer	Marks	Guidance
7(i)	$\frac{9!}{2!2!} = 90720$	B1	Must see 90720
		1	
7(ii)	Method 1 * * * * * * A	B1	5! seen multiplied (arrangement of consonants allowing repeats)
	No. arrangements of consonants × ways of inserting vowels =	B1	$^6\text{P}_4$ oe (i.e. $6 \times 5 \times 4 \times 3$, $^6C_4 \times 4!$) seen mult (allowing repeats) no extra terms
	$\frac{5!}{2!} \times \frac{^6P_4}{2!}$	B1	Dividing by at least one 2! (removing at least one set of repeats)
	Answer $\frac{^{6}P_{4}}{2!} \times \frac{5}{2} = 10800$	B1	Correct final answer
		4	
7(iii)	${}^{5}C_{3} = 10$	M1	5C_x or 5P_x seen alone, $x = 2$ or 3
	7.50	A1	Correct final answer not from ⁵ C ₂
		2	

© UCLES 2018 Page 12 of 13

Question	Answer	Marks	Guidance
7(iv)	Method 1 Considering separate groups	M1	Considering two scenarios of MME or EEM or MMEE with attempt, may be probs or perms
	MME** = ${}^{5}C_{2}$ = 10 MEE** = ${}^{5}C_{2}$ = 10 MMEE* = ${}^{5}C_{1}$ = 5	M1	Summing three appropriate scenarios from the four need 5C_x seen in all of them
	$ME^{***} = {}^{5}C_{3} = 10 \text{ see (iii) } Total = 35$	A1	Correct final answer
	Method 2 Considering criteria are met if ME are chosen	M1	$^{7}C_{x}$ only seen, no other terms
		M1	^x C ₃ only seen, no other terms
	ME *** = ${}^{7}C_{3} = 35$	A1	Correct final answer
		3	

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

Paper 6

MARK SCHEME

MARK SCHEME

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE™ is a registered trademark.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2018 Page 2 of 16

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 3 of 16

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise,
 A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2018 Page 4 of 16

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working

SOI Seen or implied

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2018 Page 5 of 16

Question	Answer	Marks	Guidance
1(i)	38	B1	
		1	
1(ii)	Median = 38.5	B1	CAO
	IQR = 40 - 38	M1	$39 < UQ < 45 - 36 < LQ \le 38$
	= 2	A1	If M0 awarded SCB1 for both UQ = 40 or 40.5 and LQ = 38 or 37.75 seen
		3	

Question	Answer	Marks	Guidance
2(i)	Method 1 $P(M \cap H) = \frac{3}{4} \times \frac{3}{5} = \frac{9}{20} (0.45)$	B1	Seen, accept unsimplified
	$P(F \text{ or } M \cap H) = \frac{1}{4} + \frac{9}{20} = \frac{14}{20}$	M1	Numerical attempt at $P(F) + P(M \cap H)$
	4 20 20	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) OE	A1	Correct final answer
	Method 2 $P(M \cap H') = \frac{3}{4} \times \frac{2}{5} = \frac{6}{20} (0.3)$	B1	Seen, accept unsimplified
	$P(F \text{ or } M \cap H) = 1 - P(M \cap H')$	M1	Numerical attempt at $1 - P(M \cap H')$
	$=1-\frac{3}{4}\times\frac{2}{5}$	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) OE	A1	Correct final answer

Question	Answer	Marks	Guidance
2(i)	Method 3 $P(F \cap H' \text{ or } H) = \frac{1}{4} \times \frac{1}{5} + \frac{1}{4} \times \frac{4}{5} + \frac{3}{4} \times \frac{3}{5}$	B1	$\frac{3}{4} \times \frac{3}{5} \left(\frac{9}{20}\right)$ or $\frac{1}{4} \times \frac{4}{5} \left(\frac{4}{20}\right)$ or $\frac{3}{4} \times \frac{3}{5} + \frac{1}{4} \times \frac{4}{5} \left(\frac{13}{20}\right)$ seen
	$=\frac{1}{20}+\frac{4}{20}+\frac{9}{20}$	M1	Numerical attempt at $P(F \cap H') + P(F \cap H) + P(M \cap H)$
	20 20 20	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) oe	A1	Correct final answer
	Method 4 – Venn diagram style approach $P(F \cup H) = P(F) + P(H) - P(F \cap H)$	B1	$\frac{3}{4} \times \frac{3}{5} \left(\frac{9}{20}\right)$ or $\frac{1}{4} \times \frac{4}{5} \left(\frac{4}{20}\right)$ or $\frac{3}{4} \times \frac{3}{5} + \frac{1}{4} \times \frac{4}{5} \left(\frac{13}{20}\right)$ seen
	$= \frac{1}{4} + \frac{1}{4} \times \frac{4}{5} + \frac{3}{4} \times \frac{3}{5} - \frac{1}{4} \times \frac{4}{5}$	M1	Numerical attempt at $P(F) + P(H) - P(F \cap H)$
	$= \frac{1}{4} + \frac{4}{20} + \frac{9}{20} - \frac{4}{20}$	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) oe	A1	Correct final answer
	34	4	60

Question	Answer	Marks	Guidance
2(ii)	Method 1 $(P(M) \times P(H) =) \frac{3}{4} \times their \frac{13}{20} = \frac{39}{80}$ $(P(M \cap H) =) \frac{3}{4} \times \frac{3}{5} = 0.45$	M1	Unsimplified, or better, legitimate numerical attempt at $P(M) \times P(H)$ and $P(M \cap H)$ Descriptors $P(M \cap H)$ and $P(M) \times P(H)$ seen, correct numerical evaluation and comparison, conclusion stated
	$\frac{39}{80}$ (0.4875) \neq 0.45, not independent	A1	
	Method 2 $P(M H) = \frac{P(M \cap H)}{P(H)} = \frac{\frac{9}{20}}{\text{their } \frac{13}{20}} = \frac{9}{13}$ $P(M) = \frac{3}{4}$	M1	Unsimplified, or better, numerical attempt at $P(H)$ and $P(M \cap H)$, $P(M)$
	$\frac{9}{13} \neq \frac{3}{4}$, not independent	A1	Descriptors $P(M \cap H)$, $P(H)$ and $P(M)$ OR $P(M H)$ and $P(M)$ seen, numerical evaluation and comparison, conclusion stated Any appropriate relationship can be used, the M is awarded for an unsimplified, or better, numerical attempt at the terms required, the A mark requires the correct descriptors, numerical evaluation and comparison and the conclusion
		2	

© UCLES 2018 Page 9 of 16

Question	Answer	Marks	Guidance
3(i)	z = -1.282	B1	±1.282 seen
	$-1.282 = \frac{440 - \mu}{9}$	M1	\pm Standardisation equation with 440, 9 and μ , equated to a z-value, (not 1 – z-value or probability e.g. 0.1841, 0.5398, 0.6202, 0.8159)
	$\mu = 452$	A1	Correct answer rounding to 452, not dependent on B1
		3	
3(ii)	P(z > 1.8) = 1 - 0.9641 = 0.0359	B1	
	Number = 0.0359 × 150 = 5.385	M1	$p \times 150, 0$
	(Number of cartons =) 5	A1FT	Accept either 5 or 6, not indicated as an approximation, e.g. \sim , about FT their $p \times 150$, answer as an integer
		3	

Question	Answer	Marks	Guidance
4(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	Prob distribution table drawn, top row correct with at least one probability $0 entered, condone additional values with p = 0 stated$
	$P(0) = \frac{5}{7} \times \frac{4}{6} \times \frac{3}{5} = \frac{2}{7} (0.2857)$	B1	One probability correct (need not be in table)
	$P(1) = \frac{2}{7} \times \frac{5}{6} \times \frac{4}{5} \times {}^{3}C_{1} = \frac{4}{7} (0.5713)$	B1	Another probability correct (need not be in table).
	$P(2) = \frac{2}{7} \times \frac{1}{6} \times \frac{5}{5} \times {}^{3}C_{2} = \frac{1}{7} (0.1429)$	B1	Values in table, all probs correct (to 3SF) or 3 probabilities summing to 1
		4	
4(ii)	Var (X) = $1 \times \frac{4}{7} + 4 \times \frac{1}{7} - (\frac{6}{7})^2$ = $\frac{8}{7} - (\frac{6}{7})^2$	M1	Unsimplified correct numerical expression for variance or <i>their</i> probabilities from (i) $0 in unsimplified variance expression$
	$=\frac{20}{49}$ or 0.408	A1	Correct answer (0.40816) nfww Final answer does not imply the method mark
	·Sat	ore ²	2.

© UCLES 2018 Page 11 of 16

Question	Answer	Marks	Guidance
			Guidante
5(i)	a = 40	B1	
		1	
5(ii)	Mean = $\frac{0.5 \times 14 + 1.5 \times 46 + 3.5 \times 102 + 7.5 \times their 40 + 20 \times 40}{242}$	M1	Numerator: 5 products with at least 3 acceptable mid-points × appropriate frequency FT (i). Denominator: 242 CAO
	$=\frac{1533}{242}$	PR	$\frac{1533}{242}$ implies M1, but if FT an unsimplified expression required
	$=6\frac{81}{242}$ or 6.33	A1	CAO (6.3347 rounded to 3 or more SF)
		2	
5(iii)	fd = 14, 46, 34, $(\frac{their(i)}{5}) = 10$ 8, 2	M1	Attempt at fd [f/(attempt at cw)] or scaled freq
	fd 50 40 —	A1FT	Correct heights seen on diagram with linear vertical scale from $(x, 0)$ FT their $\frac{a}{5}$ only
	30 -	B1	Correct bar widths (1:1:3:5:20) at axis, visually no gaps, with linear horizontal scale from $(0, y)$, first bar starting at $(0,0)$
	20 – 10 – 5 10 15 20 25 30 Length phone call /mins	pr B1	Labels (time, mins, and fd(OE) seen, some may be as a title) and a linear scale with at least 3 values marked on each axis. (Interval notation not acceptable)
		4	

© UCLES 2018 Page 12 of 16

Question	Answer	Marks	Guidance
6(a)(i)	(AAAIU) * * * * Arrangements of vowels/repeats × arrangements of (consonants & vowel group) =	M1	$k \times 5!$ (k is an integer, $k \ge 1$)
	5!×5! 3!	M1	$\frac{m}{3}$! (<i>m</i> is an integer, $m \ge 1$) Both Ms can only be awarded if expression is fully correct
	= 2400	A1	Correct answer
		3	
6(a)(ii)	E.g. R * * * T * * * L. Arrangements of consonants RL, RS, SL = ${}^{3}P_{2}$ = 6 Arrangements of remaining letters = $\frac{6!}{3!}$ = 120	M1	$k \times \frac{6!}{3!}$ or $k \times {}^{3}P_{2}$ or $k \times {}^{3}C_{2}$ or $k \times 3!$ or $k \times 3 \times 2$ (k is an integer, $k \ge 1$) no irrelevant addition
	Total 120 × 6	M1	Correct unsimplified expression or $\frac{6!}{3!} \times {}^{3}C_{2}$
	= 720 ways	A1	Correct answer
	2	3	• /.5/

© UCLES 2018 Page 13 of 16

Question	Answer	Marks	Guidance
6(b)	Method 1 N(2) R(8) Br(4) 1 2 1 = $2 \times {}^{8}C_{2} \times 4 = 224$	M1	Multiply 3 combinations, ${}^{2}C_{x} \times {}^{8}C_{y} \times {}^{4}C_{z}$. Accept ${}^{2}C_{1} = 2$ etc.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	3 or more options correct unsimplified
	$\begin{bmatrix} 2 & 0 & 2 & = 1 \times 1 \times^{4} C_{2} = 6 \\ 1 & 0 & 3 & = 2 \times 1 \times 4 = 8 \end{bmatrix}$	M1	Summing <i>their</i> values of 4 or 5 legitimate scenarios (no extra scenarios)
	Total = 366 ways	A1	Correct answer
	Method 2 ¹⁴ C ₄ – (2N2R or 1N3R or 4R or 3R1B or 2R2B or 1R3B or 4B)	M1	$^{^{14}}\text{C}_4 - k$ ' seen, k an integer from an expression containing $^8\text{C}_x$
	$1001 - (1 \times {}^{8}C_{2} + 2 \times {}^{8}C_{3} + {}^{8}C_{4} + {}^{8}C_{3} \times 4 + {}^{8}C_{2} \times {}^{4}C_{2} + 8 \times 4 + 1)$	A 1	4 or more 'subtraction' options correct unsimplified, may be in a list
	1001 – (28 + 112 + 70 + 224 + 168 + 32 + 1)	M1	Their ¹⁴ C ₄ – [their values of 6 or more legitimate scenarios] (no extra scenarios, condone omission of final bracket)
	= 366	A 1	Correct answer
		4	

© UCLES 2018 Page 14 of 16

Question	Answer	Marks	Guidance
7(i)	Method 1 P(< 11) = 1 - P(11, 12, 13)	M1	Binomial expression of form ${}^{13}C_x$ $(p)^x(1-p)^{13-x}$, $0 < x < 13$, 0
	$=1-{}^{13}C_{11}(0.6)^{11}(0.4)^2-{}^{13}C_{12}(0.6)^{12}(0.4)-(0.6)^{13}$	M1	Correct unsimplified answer
	= 0.942	A1	CAO
	Method 2 P(< 11) = P(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)	M1	Binomial expression of form ${}^{13}C_x$ $(p)^x(1-p)^{13-x}$ $0 < x < 13$, 0
	$= (0.4)^{13} + {}^{13}C_{1}(0.4)^{12}(0.6) + \dots + {}^{13}C_{10}(0.4)^{3}(0.6)^{10}$	M1	Correct unsimplified answer
	= 0.942	A1	CAO
		3	
7(ii)	$\mu = 130 \times 0.35 = 45.5$ var = $130 \times 0.35 \times 0.65 = 29.575$	B 1	Correct unsimplified mean and var (condone $\sigma^2 = 29.6$, $\sigma = 5.438$)
	$P(\ge 50) = P\left(z > \frac{49.5 - 45.5}{\sqrt{29.575}}\right) = P(z > 0.7355)$	M1	Standardising, using $\pm \left(\frac{x - their mean}{their \sigma}\right)$, $x = value to standardise$ 49.5 or 50.5 seen in \pm standardisation equation
	$=1-\Phi(0.7355)$	M1	Correct final area
	=1-0.7691	M1	60
	= 0.231	O A1	Correct final answer
		5	

© UCLES 2018 Page 15 of 16

Question	Answer	Marks	Guidance
7(iii)	$1 - (0.65)^n > 0.98 \text{ or } 0.02 > (0.65)^n$	M1	Eqn or inequality involving, 0.65^n and 0.02 or 0.35^n and 0.98
	n > 9.08	M1	Attempt to solve their eqn or inequality by logs or trial and error
	n = 10	A1	CAO
		3	

© UCLES 2018 Page 16 of 16

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/63

Paper 6 May/June 2018

MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE™, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE™ is a registered trademark.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- · marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2018 Page 2 of 14

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 3 of 14

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2018 Page 4 of 14

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied

Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be

Penalties

SR

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2018 Page 5 of 14

varied in the light of a particular circumstance)

Question	Answer	Marks	Guidance
1(i)	15–19 (kg) cao	B1	kg not necessary; condone 14.5 – 19.5
	Total:	1	
1(ii)	fd = 1.2, 2.4, 2.8, 1, 0.32	M1	Attempt at fd [f/(attempt at cw)] or scaled freq (may be implied by 4 correct)
	$3 - \uparrow$ fd	A1	Correct heights seen on diagram with linear vertical scale from $(x, 0)$
	2-	B1	Correct bar widths (1:1:1:2:5) visually no gaps with linear horizontal scale from $(9.5,y)$ and first bar starting at $(9.5,y)$
	1-	B1	Histogram, using attempted fds, with labels (mass, kg and fd seen) and at least 3 linearly spaced values on each axis.
			Horizontal axis must range from at least 9.5 to 59.5
	9.5 19.5 39.5 59.5 Mass (kg)		If horizontal axis clearly starts from zero, either a break in the scale must be indicated or the scale must be linear from zero.

© UCLES 2018 Page 6 of 14

Question	Answer	Marks	Guidance	
2(i)	z = 0.674	B1	z value ± 0.674	
	$0.674 = \frac{03}{\sigma}$	M1	±Standardising with 0 and equating to a z-value	
	$\sigma = 4.45$	A1	Correct answer www ie not ignoring a minus sign	
	Total:	3		
2(ii)	(ii) P(0, 1)		Any bin of form ${}^{8}C_{x}(0.75)^{x}(0.25)^{8-x}$ any x	
	$= (0.75)^8 + {}^{8}C_{1}(0.25)(0.75)^7$	M1	Correct unsimplified answer, may be implied by numerical values	
	0.1001 + 0.2670 = 0.367	A1	Correct answer	
	Method 2 $1 - P(8,7,6,5,4,3,2) = 1 - (0.25)^8 - {}^8C_1(0.75)(0.25)^7 - \dots$ $- {}^8C_2(0.75)^6 (0.25)^2$		Any bin of form ${}^{8}C_{x}(0.75)^{x}(0.25)^{8-x}$ any x	
			Correct unsimplified answer	
	= 0.367	A1	Correct answer	
	Total:	3	- /.5/	

© UCLES 2018 Page 7 of 14

	· · · · · · · · · · · · · · · · · · ·	, DEIOTIES				
Question	Answer	Marks	Guidance			
3(i)	(1-x) and 0.45 (or 0.3)	B1	Seen, either on tree diagram or elsewhere			
	Beginners: $0.7 \times x + `0.45' \times `(1-x)' = 0.5$ Or Advanced: $`0.3' \times x + 0.55 \times `(1-x)' = 0.5$ Or $0.7 \times x + `0.45' \times `(1-x)' = `0.3' \times x + 0.55 \times `(1-x)'$	M1	One of the three correct probability equations			
	x = 0.2 oe	A1	Correct answer			
	Total:	3				
3(ii)	$P(M \mid A) = \frac{P(M \cap A)}{P(A)} = \frac{0.2 \times 0.3}{0.5}$	M1	$i' \times 0.3$ as num or denom of a fraction			
	P(A) 0.5	M1	0.5 (or $(1 - i) \times 0.55 + i \times 0.3$ unsimplified) seen as denom of a fraction			
	$=0.12\left(\frac{3}{25}\right)$	A1	Correct answer			
	Total:	3				

© UCLES 2018 Page 8 of 14

Question	Answer	Marks	Guidance
4(i)	$Mean = (30 \times 1500 + 21 \times 2400)/51$	M1	Multiply by 30 and 21, summing and dividing total by 51 $\left(\frac{45000 + 50400}{51}\right)$
	= 1870 (1870.59)	A1	correct answer (to 3sf)
	Total:	2	
4(ii)	$230^2 = \frac{\Sigma x_F^2}{30} - 1500^2$ so $\Sigma x_F^2 = 69087000$	M1	One correct substitution into a correct variance formula
	$230 = \frac{1300}{30} - 1300 \text{ so } 2x_F = 69.087.000$	A1	Correct Σx_F^2 (rounding to 69 000 000 2sf)
	$160^2 = \frac{\Sigma x_L^2}{21} - 2400^2 \text{ so } \Sigma x_L^2 = 121497600$	A1	Correct Σx_L^2 (rounding to 121 000 000 3sf)
	New var = $\frac{69087000 + 121497600}{51} - 1870.588^2 = 237853$	M1	using ' Σx_F^2 '+ '' Σx_L^2 dividing by 51 and subtracting 'i' squared.
	51		(Correct ' Σx_F^2 ' + '' $\Sigma x_L^2 = 190584600$)
	New sd = 488	A1	Correct answer accept anything between 486 and 490
	Total:	5	- /.5/

© UCLES 2018 Page 9 of 14

Question	Answer	Marks	Guidance
5(i)	$P(0) = 0.6 \times 0.25 \times 0.5 = 0.075$ $P(1) = 0.4 \times 0.25 \times 0.5 + 0.6 \times 0.75 \times 0.5 + 0.6 \times 0.25 \times 0.5 = 0.35$	B1	0, 1, 2, 3 seen as top line of a pdf table OR attempting to evaluate P(0), P(1), P(2) and P(3)
	$P(2) = 0.4 \times 0.75 \times 0.5 + 0.4 \times 0.25 \times 0.5 + 0.6 \times 0.75 \times 0.5 = 0.425$ $P(3) = 0.4 \times 0.75 \times 0.5 = 0.15$	M1	Multiply 3 probabilities together from 0.4 or 0.6, 0.25 or 0.75, 0.5 with or without a table
	No of heads 0 1 2 3	M1	Summing 3 probabilities for P(1) or P(2) with or without a table
	Prob 0.075 0.35 0.425 0.15	B1	One correct probability seen.
		A1	All correct in a table
	Total:	5	
5(ii)	$E(X) = 0.35 + 2 \times 0.425 + 3 \times 0.15 = 1.65 \left(\frac{33}{20} \text{ oe}\right)$	M1	Correct unsimplified expression for the mean using their table, $\sum p = 1$; can be implied by correct answer
5(ii)	$Var(X) = 0.35 + 4 \times 0.425 + 9 \times 0.15 - 1.65^{2}$	M1	Correct unsimplified expression for the variance using their table and their mean ² subtracted, $\sum p = 1$
	$= 0.678 (0.6775) \left(\frac{271}{400} \text{ oe}\right)$	A1	Correct answer
	Total:	tor3	P ·

© UCLES 2018 Page 10 of 14

Question	Answer	Marks	Guidance
6(i)	$z_1 = \pm \frac{4.1 - 5.7}{0.8} = -2$ $z_2 = \pm \frac{5 - 5.7}{0.8} = -0.875$	M1	At least one standardising no cc no sq rt no sq using 5.7 and 0.8 and either 4.1 or 5
	P(Toffee Apple) = $P(d < 5.0) - P(d < 4.1)$ = $P(z < -0.875) - P(z < -2)$ = $\Phi(-0.875) - \Phi(-2)$ = $\Phi(2) - \Phi(0.875)$	M1	Correct area $\Phi - \Phi$ legitimately obtained – need 2 negative z-values or 2 positives – not one of each
	= 0.9772 - 0.8092 = 0.168 (or 0.1908 - 0.0228)	A1	Correct final answer
	Total:	3	
6(ii)	$np = 250 \times 0.168 = 42$, $npq = 34.944$	B1ft	Correct unsimplified mean and var – ft their prob for (i) providing $(0 Implied by \sigma = \sqrt{34.944} = 5.911$
	$P(<50) = P\left(z < \frac{49.5 - 42}{\sqrt{34.944}}\right) = P(z < 1.2687)$	M1	± Standardising using 50, their mean and sd; must have sq rt.
	$1(<30) - 1(2<\sqrt{34.944}) - 1(2<1.2087)$	M1	49.5 or 50.5 seen as a cc
	$=\Phi(1.2687)$	M1	Correct area $\Phi(> 0.5 \text{ for } + z \text{ and } < 0.5 \text{ for } -z)$ in their final answer
	= 0.898	A1	Correct final answer
	Total:	tor5	P.

© UCLES 2018 Page 11 of 14

Question	Answer	Marks	Guidance
7(i)	****E**** Other letters arranged in $\frac{8!}{2!3!}$	M1	Mult by 8! or ⁸ P ₈ oe (arrangements ignoring repeats)
	2!3! = 3360 ways	A1	Correct final answer www
	OR	M1	Correct numerator (161 280)
	$\frac{8 \times 7 \times 6 \times 5 \times 4 \times 4 \times 3 \times 2 \times 1}{4!2!} = 3360 \text{ ways}$		Correct final answer www
	Total:	2	
7(ii)	* * * *	M1	k mult by ${}^{6}C_{4}$ or ${}^{6}P_{4}$ oe (ways to insert Es ignoring repeats), k can = 1
	Arrangements other letters × ways Es inserted $= \frac{5!}{2!} \times {}^{6}C_{4} \left(\frac{5!}{2!} \times \frac{{}^{6}P_{4}}{4!} \right)$		or k mult by $\frac{5!}{2!}$
			Correct unsimplified expression or $\frac{5!}{2!} \times {}^6P_4$
	= 900 ways	A1	Correct answer
	OR Total no of ways – no of ways with Es touching 9!/(4! × 2!) – or 7 560 –	M1	7560 unsimplified – k
	$\frac{6!}{2!} + {}^{6}P_{2} \times \frac{5!}{2!} + \frac{{}^{6}P_{2}}{2!} \times \frac{5!}{2!} + \frac{{}^{6}P_{3}}{2! \times \frac{5!}{2!}}$ $= 360 + 1800 + 900 + 3600 = 6660$	M1	Attempting to find four ways of Es touching (4 Es, 3Es and a single, 2 lots of 2 Es, 2 Es and 2 singles)
	7 560 – 6 660 = 900	A1	Correct answer

© UCLES 2018 Page 12 of 14

Question	Answer	Marks	Guidance
7(ii)	OR Adding the number of ways with the first E in the 1 st (E ₁), 2 nd (E ₂) or 3 rd (E ₃) position. $\frac{5!}{2!} (E_1 + E_2 + E_3) \text{ where } E_1 = 10, E_2 = 4, E_3 = 1$	M1	For any values for E ₁ , E ₂ and E ₃
	2! (-1 -2 -3)	M1	For any two correct values of E ₁ , E ₂ and E ₃
	$\frac{5!}{2!}$ (E ₁ + E ₂ + E ₃)		
	600 + 240 + 60 = 900	A 1	Correct answer
	Total:	3	
7(iii)	EENN* in 3 ways	B1	Numerical value must be stated
	Total:	1	

© UCLES 2018 Page 13 of 14

Question	Answer	Marks	Guidance		
7(iv)	EE *** with no N: 1 way	M1	Identifying the three different scenarios of EE, EEE or EEEE		
	EEN** 3C2 or listing 3 ways EENN* 3 ways from (iii)	A1	Total no of ways with two Es $(7 \text{ or } 3 + 3 + 1)$		
	EEE** with no N: 3 ways EEEN* 3 ways EEENN 1 way	A1	Total no. of ways with 3 Es (7)		
	EEEE* no N 3 ways EEEEN 1 way Total 18 ways	A1	Correct answer stated		
	Method List containing ways with 2Es, 3Es and 4Es	M1	At least 1 option listed for each of EE^^^, EEE^^		
	List containing ways with 2Es, 3Es and 4Es List containing at least 8 correct different ways List of all 18 correct ways	A1	Ignore repeated options		
	Total 18	A1	Ignore repeated/incorrect options		
		A1	Correct answer stated		
	Total:	4			

© UCLES 2018 Page 14 of 14

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/62

Paper 6 Probability and Statistics

March 2018

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\rm \rlap{R}\hskip-1pt B}$ IGCSE is a registered trademark.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2018 Page 2 of 12

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2018 Page 3 of 12

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2018 Page 4 of 12

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting. PA -1

© UCLES 2018 Page 5 of 12

varied in the light of a particular circumstance)

Question	Answer									Marks	Guidance
1	1000 REGOLENCY 1000 PM					-0-		•	M1 A1	Attempt to plot cumulative frequencies at ucb and all points joined between $(3,y_1)$ and $(14,y_2)$. Cf table not required. Linear scales starting at $(0,0)$ and axes labelled cf and time in mins, all points correct; (allow straight lines or curves)	
	CUMULATIV	200 0 5 TIME, IN MIN					10 15 ITES			M1	450 seen in median attempt on increasing CF graph (independent);
	t	0	3	4	5	6	8	10	14		
	cf	0	120	300	500	660	770	850	900		
	Median value: 4.8 (minutes)									A1 FT	Correct $(4.7 \le m < 4.9)$ or FT from reading their increasing graph at cf = 450
										4	

© UCLES 2018 Page 6 of 12

Question	Answer	Marks	Guidance
2(i)	1 L: ${}^{6}C_{2}$ = 15	B1	
		1	
2(ii)	No L: ${}^{6}C_{3} = 20$ (1 L: ${}^{6}C_{2} = 15$)	M1	Either 0L or 2L correct unsimplified
	2 L: ⁶ C ₁ = 6	M1	Summing the 3 correct scenarios
	Total = 41	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	(10/160 =) 1/16, 0.0625	B1	OE
		1	
3(ii)	(90/160) = 9/16, 0.5625	B1	OE
		1	(5)
3(iii)	P(red/hatchback) = P(red hatchback) / P(hatchback) = 40/160 / 90/160	M1	Appropriate probabilities in a fraction
	= 4/9	A1	OE
			Altn method: Direct from table M1 for $40/a$ or $b/90$, $a \neq 160$ A1 for $40/90$ oe
		2	

© UCLES 2018 Page 7 of 12

Question	Answer	Marks	Guidance
3(iv)	EITHER: $P(\text{red}) \times P(\text{hatchback}) = \frac{72}{160} \times \frac{90}{160} \neq \frac{40}{160}$	(M1	Use correct approach with appropriate probabilities substituted
	Not independent	A1)	Numerical comparison and conclusion stated
	OR: $P(\text{red/hatchback}) = 40/90 \text{ and } \frac{40}{90} \neq \frac{72}{160}$	(M1	Use correct approach with appropriate probabilities substituted
	Not independent	A1)	Numerical comparison and conclusion stated
		2	

Question	Answer	Marks	Guidance
4(i)	$\Sigma p = 1: 0.2 + 0.1 + p + 0.1 + q = 1: p+q = 0.6$	M1	Unsimplified sum of probabilities equated to 1
	$\Sigma px = 1.7$: $-0.4 + 0 + p + 0.3 + 4q = 1.7$:	M1	Unsimplified Sum of px equated to 1.7
	p + 4q = 1.8	M1	Solve simult. equations to find expression in p or q
	p = 0.2, q = 0.4	A1	
	Satpre	4	
4(ii)	$Var(X) = \sum px^2 - 1.7^2 = 4x0.2 + 1p + 9x0.1 + 16q - 1.7^2$ = 8.3 -2.89	M1	Use correct unsimplified expression for variance
	= 5.41	A1	
		2	

© UCLES 2018 Page 8 of 12

Question	Answer	Marks	Guidance
5(i)	$24.25n - 20n = 136$ Or $\frac{136}{n} + 20 = 24.25$	M1	Unsimplified correct equation
	n = 32	A1	
	TPF	2	
5(ii)	Using coded information: Variance = $\frac{2888}{32} - \left(\frac{136}{32}\right)^2$	M1	unsimplified expression for variance
	= 72.1875 = 72.19	A1	accept answers 72.2 SOI
	Using uncoded information: Variance = $\frac{\sum x^2}{32} - 24.25^2$ Equate with 72.1875 to give	M1	Equate two expressions for variance and solve
	$\sum x^2 = 21128$	A1	
		4	
	n. satpre	P.C	

© UCLES 2018 Page 9 of 12

Question	Answer	Marks	Guidance
6(i)	$3! \times \frac{4!}{3!} \times 2$	M1	3! oe seen multiplied by integer ≥ 1, no addition
	3!	M1	4!/3! oe seen multiplied by integer > 1, no addition
	= 48	A1	
		3	
6(ii)	EITHER: Even = Total number of arrangements – Odd numbers $= 7!/3! - 3 \times \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{3!} = (7!/3! - 6!/2!)$ $= 840 - 360$	B1	7!/3! —
		B1	6!/2! OE
	= 480	B1	
	OR: No of arrangements ending in 8: $\frac{6!}{3!}$	B1	No. ending in 8 or no. ending in 6 correct unsimplified
	No ending in 6: 6!/2!	B1	Both correct and added unsimplified
	Total: $\frac{6!}{3!} + 6!/2 = 120 + 360 = 480$	B1	; S
	V. sator	3	

© UCLES 2018 Page 10 of 12

Question	Answer	Marks	Guidance
7(i)	$P(X > 410) = 225/6000 = 0.0375$ $P\left(Z > \frac{410 - 400}{\sigma}\right) = 0.0375 : 0.9625$	M1	Use $1 - 225/6000 = 0.9625$ to find z value
	$z \text{ value} = \pm 1.78$	A1	z value: ± 1.78
	$\frac{10}{\sigma} = 1.78$	M1	$(410-400)/\sigma = their z$ (must be a z value)
	$\sigma = 5.62$	A1	
		4	
7(ii)	We need $P(Z < -1.5)$ and $P(Z > 1.5)$	M1	Attempt at P(Z < -1.5) or P(Z > 1.5) 1 – Φ (1.5) seen
	$\Phi(-1.5) + 1 - \Phi(1.5)$ = 2 - 2\Phi(1.5)	M1	Or equivalent expression with values
	$=2-2\times0.9332=0.1336\ (0.134)$	A1	Correct to 3sf
	Number expected = 500 × 0.1336 = 66.8: 66 or 67 packets	B1ft	0.1336 used or FT their 4sf probability times 500, (not 0.9625 or 0.0375) rounded or truncated
	Satpre	4	

© UCLES 2018 Page 11 of 12

Question	Answer	Marks	Guidance
8(i)	$P(4) + P(5) = {}^{5}C_{4} \left(\frac{1}{4}\right)^{4} \left(\frac{3}{4}\right)^{1} + {}^{5}C_{5} \left(\frac{1}{4}\right)^{5} \left(\frac{3}{4}\right)^{0}$	M1	One binomial term, with $p < 1$, $n=5$, $p+q=1$
	= 0.014648 + 0.00097656	M1	Add 2 correct unsimplified binomial terms
	$= 0.0156 \text{ or } \frac{1}{64}$	A1	
		3	
8(ii)	$1 - P(0) > 0.995: \ 0.75^n < 0.005$	M1	Equation or inequality involving 0.75 ⁿ and 0.005 or 0.25 ⁿ and 0.995
	$n\log 0.75 < \log 0.005$ n > 18.4:	M1	Attempt to solve <i>their</i> exponential equation using logs, or trial and error May be implied by their answer
	n = 19	A1	
		3	
8(iii)	p = 0.25, n = 160: mean = 160 x 0.25 (= 40) variance = 160 x 0.25 x 0.75 (=30)	B1	Correct unsimplified mean and variance
	$P(X < 50) = P\left(Z < \frac{49.5 - 40}{\sqrt{30}}\right)$	M1	Use standardisation formulae must include square root.
	$P(X < 50) = P \left(Z < \frac{500}{\sqrt{30}} \right)$	M1	Use continuity correction ± 0.5 (49.5 or 50.5)
	= P(Z < 1.734) = 0.959	A1	Correct final answer
		4	

© UCLES 2018 Page 12 of 12

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/61

Paper 6

October/November 2017

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2017 Page 2 of 11

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2017 Page 3 of 11

Question	Answer	Marks	Guidance
1	p + q = 0.45	M1	Equation involving $\Sigma P(x) = 1$
	0.15 + 2p + 1.2 + 6q = 3.05	M1	Equation using $E(X) = 3.05$
	q = 0.2	M1	Solving simultaneous equations to one variable
	p = 0.25	A1	Both answers correct
		4	

		2017	
Question	Answer	Marks	Guidance
2(i)	Points (5.5,10), (8.5,25), (11.5,42), (16.5,46), (25.5,48)	B1	Correct cfs values seen listed, in or by table or on graph, 0 not required
	cf 50 40	B1	Axes labelled "cumulative frequency" (or cf) and "time [or t etc.] (in) seconds (or sec etc.)". Linear scales – cf 0–48, time 2.5 – 25.5 (ignore <2.5 on time.) At least 3 values stated on each axis, but (0,0) can be implied without stating.
	20 10 0 5 10 15 20 25 time(sec)	B1	All points plotted accurately, (5, 10) etc. scores B0 . Curve or line segments drawn starting at (5.5,10) and passing within '1 scale unit' vertically and horizontally of plotted points
		3	

© UCLES 2017 Page 5 of 11

Question	Answer	Marks	Guidance
2(ii)	48 - 35 = 13 t = 6.5 sec	M1	Subt 35 (checked ±1 mm on graph) from 48 or 50,
	t = 6.5 sec	A1	$6 \leqslant \text{Ans} \leqslant 7$
		2	

Question	Answer	Marks	Guidance
3(i)	p = 0.207	B1	
		1	
3(ii)	$Var = 30 \times 0.207 \times 0.793 = 4.92$	B1	
		1	
3(iii)	$P(\geqslant 2) = 1 - P(0, 1)$	M1	
	$= 1 - (0.793)15 - {15 \choose 1} (0.207)(0.793)14$	M1	1 - P(0, 1) seen $n = 15$ $p = $ any prob
	= 0.848	A1	· /.5/
	74	3	CO.

Question	Answer	Marks	Guidance
4(i)	$\frac{(48.7 \times 12 + 38.1 \times 7)}{19}$	M1	Accept unsimplified (may be separate calculations)
	= 44.8	A1	
		2	
4(ii)	$7.65^2 = \frac{\Sigma x^2}{12} - 48.7^2 \Sigma x^2 = 29162.55$	M1	Substitution in one correct variance formula
	$4.2^2 = \frac{\Sigma y^2}{7} - 38.1^2 \qquad \Sigma y^2 = 10284.75$	A1	One Σx^2 or Σy^2 correct (can be rounded to 4sf))
	Combined var = $\frac{(29162.55 + 1028475)}{19} - 44.79^2$	M1	Using their Σx^2 and Σy^2 and their 4(i) in the variance formula
	$=\frac{39447.3}{19}-44.79^2$		
	Combined $\sigma = 8.37$ or 8.36	A1	
	2	4	· /.5/

Question	Answer	Marks	Guidance
5(i)	GNS	B1	Must see at least 4 probs correct including one with an <i>x</i> in, correct shape
	$ \begin{array}{ccc} & x \\ & & \\$	B1	Shape, clear labels/annotation and all probs correct
	0.18 F 0.1 Not GNS	PF	
		2	
5(ii)	$0.82x + 0.18 \times 0.9 = 0.285$	M1	Eqn with x in , two 2-factors on one side
	x = 0.15	A1	
		2	
5(iii)	$P(E \mid notGNS) = \frac{P(E \cap notGNS)}{P(notGNS)}$	M1	Attempt at P(E∩not GNS) seen as num or denom of fraction
	$\frac{P(\text{notGNS}) - P(\text{notGNS})}{P(\text{notGNS})}$	M1	Attempt at P(not GNS) seen anywhere
	$=\frac{0.82\times0.85}{1-0.285}=0.975$	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
6(a)(i)	$^{40}P_5$	M1	40 P _x or y P ₅ oe seen, can be mult by $k \ge 1$
	= 78 960 960	A1	
		2	
6(a)(ii)	not front row e.g. WEJ** in $3 \times 3! = 18$ ways	B1	3! seen mult by $k \ge 1$
	7 rows in 7 × 18= 126 ways	B1	mult by 7
	front row: e.g. *MA** in $4 \times 2 = 8$ ways	M1	attempt at front row arrangements and multiplying by the 7 other rows arrangements, need not be correct
	Total $126 \times 8 = 1008$	A1	
		4	
6(b)	EITHER: e.g. *R** in ${}^{8}C_{3}$ ways = 56 ways *L** in ${}^{8}C_{3}$ = 56 ways	(M1	Considering either R or L only in team
	**** in ${}^{8}C_{4} = 70$ ways	M1*	Considering neither in team
	2	DM1	summing 3 scenarios
	Total 182 ways	A1)	GO.
	OR1: No restrictions ${}^{10}C_4 = 210$ ways	(M1	¹⁰ C ₄ − , Considering no restrictions with subtraction
	$*RL* = {}^{8}C_{2} = 28$	M1*	Considering both in team
	210 – 28	DM1	subt
	= 182 ways	A1)	

Question	Answer	Marks	Guidance
6(b)	OR2: R out in ${}^{9}C_{4} = 126$ ways L out in ${}^{9}C_{4} = 126$ ways	(M1	Considering either R out or L out
	Both out in ${}^{8}C_{4} = 70$	M1*	Considering both out
		DM1	Summing 2 scenarios and subtracting 1 scenario
	126 + 126 - 70 = 182 ways.	A1)	
	19	4	

Question	Answer	Marks	Guidance
7(i)	$P(<570) = P\left(z < \frac{570 - 500}{91.5}\right) = P(z < 0.7650)$ $= 0.7779$	M1	Standardising for either 570 or 390, no cc, no sq, no √
	$P(<390) = P\left(z < \frac{390 - 500}{91.5}\right) = P(z < -1.202)$	A1	One correct z value
	= 1 - 0.8853 = 0.1147	A1	One correct Φ, final solution
	Large:0.222 (0.2221) Small: 0.115 (0.1147)	A1	Correct small and large
	Medium: 0.663 (0.6632)	A1FT	Correct Medium rounding to 0.66 or ft 1 – (their small + their large)
		5	

		. OBLIGITE	2017
Question	Answer	Marks	Guidance
7(ii)	$1.645 = \left(\frac{x - 500}{91.5}\right)$	B1	± 1.645 seen (critical value)
		M1	Standardising accept cc, sq, sq rt
	x = 651	A1	650 ≤ Ans ≤ 651
		3	
7(iii)	P(x > 610) = 0.1147 (symmetry)	M1	Attempt to find upper end prob $x > 610$ or $\Phi(x)$, ft their P(< 390) from (i)
	$0.3 + 0.1147 = 0.4147 \Rightarrow \Phi(x) = 0.5853$	M1	Adding 0.3 to <i>their</i> $P(x > 610)$ or subt 0.5 from $\Phi(x)$ or $0.8853 - 0.3$
	z = 0.215 or 0.216	M1	Finding $z = \Phi^{-1}(0.5853)$
	$0.215 = \frac{k - 500}{91.5}$	M1	Standardising and solving, accept cc, sq, sq rt
	k = 520	A1	
	2	5	- /.5/

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/62
Paper 6 October/November 2017
MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2017 Page 2 of 14

October/November 2017

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent		
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)		
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)		
CWO	Correct Working Only – often written by a 'fortuitous' answer		
ISW	Ignore Subsequent Working		
SOI	Seen or implied		
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)		

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2017 Page 3 of 14

	. 021.02						
Question	Answer	Marks	Guidance				
1	EITHER: $(\Sigma x =) 11.5n = 27 + 10n$	(M1	Expanding brackets and forming a three term equation involving 27 and at least one term in n , without x				
		M1	10n or 11.5n seen in expression without x (1.5n = 27 implies M2)				
	n = 18	A1)					
	$OR:$ $11.5 = \frac{27}{10} + 10$	(M1	Dividing coded sum by n and forming a three term equation involving 11.5 and at least one term in n , without x				
	n n	M1	$27/n$ seen in expression without x $(1.5 = \frac{27}{n} \text{ implies M2})$				
	n = 18	A1)					
		3					

Question	Answer	Marks	Guidance
2(i)	points (50, 14), (80, 62), (100, 132), (120, 140)	B1	Correct cfs values seen listed, in or by table or on graph, 0 not required
	cf 200	B1	Axes labelled 'cumulative frequency' (or cf) and 'circumference [or cir or c etc.] (in) cm'. Linear scales – c.f. 0–140 circumference 40–120 (ignore <40 on circ.) At least 3 values stated on each axis, but (0,0) can be implied without stating.
	0 20 40 60 80 100 120 Circumference cm	B1	All points plotted accurately
		3	
2(ii)	140 – 54 = 86	M1	Finding correct value from graph (checked ±1 mm) or linear interpolation. Subtraction from 140 can be implied
	Percentage = 61.4%	A1	60.5% ≤ Ans ≤ 64.5%
		2	

Question	Answer	Marks	Guidance
3(i)	EITHER: $P(X=3) = P(RRB) = \frac{2}{6} \times \frac{1}{5} \times \frac{4}{4}$	(M1	probabilities in order $\frac{2}{p} \times \frac{1}{q} \times \frac{4}{r}$, $p, q, r \le 6$ and $p \ge q \ge r, r \ge 4$, accept \times 1 as $\frac{4}{r}$.
	$=\frac{1}{15}$ AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
	OR1: $P(X=3) = P(RRB) = \frac{{}^{2}C_{2}}{{}^{6}C_{2}} \times \frac{{}^{4}C_{1}}{{}^{4}C_{1}}$	(M1	probabilities stated clearly, $\times \frac{{}^4C_1}{{}^4C_1}$ or \times 1 or $\times \frac{4}{4}$ included
	$=\frac{1}{15}$ AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
	OR2: $P(X=3) = P(RRB) = \frac{{}^{2}C_{1}}{{}^{6}C_{1}} \times \frac{{}^{1}C_{1}}{{}^{5}C_{1}} \times \frac{{}^{4}C_{1}}{{}^{4}C_{1}}$	(M1	probabilities in order $\frac{{}^2C_1}{{}^pC_1} \times \frac{{}^1C_1}{{}^qC_1} \times \frac{{}^4C_1}{{}^rC_1} p, q, r \le 6$ and $p \ge q \ge r, r \ge 4$ $(\times \frac{{}^4C_1}{{}^4C_1} \text{ or } \times 1 \text{ or } \times \frac{4}{4} \text{ acceptable})$
	= 1/15 AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
	·Sat	pre	

	1 ODLIGHED								
Question				Answei	•	Marks	Guidance		
3(ii)	P(1) =	$P(B) = \frac{4}{6}$	$(\frac{2}{3} = 0)$	0.667)		B1	Probability distribution table drawn with at least 2 correct x values and at least 1 probability. All probabilities $0 \le p \le 1$.		
	P(2) =	$P(2) = P(RB) = \frac{2}{6} \times \frac{4}{5} = \frac{4}{15} (= 0.267)$					P(1) or P(2) correct unsimplified, or better, and identified.		
	P(3) = P(RRB) = $\frac{2}{6} \times \frac{1}{5} \times \frac{4}{4} = \frac{1}{15}$ (= 0.0667)					B1	All probabilities in table, evaluated correctly OE. Additional <i>x</i> values must have a stated probability of 0		
	x	x 1 2 3							
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			19					
						3			

Question	Answer	Marks	Guidance
4(i)	$P(4, 2H) = \frac{1}{4} \times {}^{4}C_{2} \times (\frac{1}{3})^{2} (\frac{2}{3})^{2}$	M1	Multiplying their 2H expression by ¼ [P(4)]
	4 2 3 3	M1	Remaining factor is $(\frac{1}{3})^2(\frac{2}{3})^2$ [or $\frac{4}{81}$] multiplied by integer value
			$k \geqslant 1 \text{ OE}$
	$=\frac{2}{27} (0.0741)$	A1	
	19	3	
4(ii)	P(3, 3H) = $\frac{1}{4} \times (\frac{1}{3})^3 = \frac{1}{108} (0.00926)$	B1	
		1	
4(iii)	$P(1, 1H) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12} (0.08333)$	M1	Correct expression for 1 of P(1, 1H), P(2, 2H), P(4, 4H) Unsimplified (or better)
	P(2, 2H) = $\frac{1}{4} \times (\frac{1}{3})^2 = \frac{1}{36} (0.02778)$ P(3, 3H) = $\frac{1}{4} \times (\frac{1}{3})^3 = \frac{1}{108} (0.009259)$	M1	Summing their values for 3 or 4 appropriate outcomes for the 'game' with no additional outcomes.
	$P(4, 4H) = \frac{1}{4} \times (\frac{1}{3})^4 = \frac{1}{324} (0.003086)$.co.
	$Prob = \frac{10}{81} \ (0.123)$	A1	
		3	

Question	Answer	Marks	Guidance				
5(i)	EITHER: P(> 2) = 1 - P(0, 1, 2)	(M1	Binomial term of form ${}^{30}C_x p^x (1-p)^{30-x}$, $0 any p$				
	$ = 1 - (0.96)^{30} - {}^{30}C_1(0.04)(0.96)^{29} - {}^{30}C_2(0.04)^2(0.96)^{28} $ $ (= 1 - 0.2938 0.3673 0.2219) $	A1	Correct unsimplified answer				
	= 1-0.883103 = 0.117 (0.116896)	A1)					
	OR: $P(>2) = P(3,4,5,6,30)$	(M1	Binomial term of form ${}^{30}C_x p^x (1-p)^{30-x}$, $0 any p$				
	$= {}^{30}C_3(0.04)^3(0.96)^{27} + {}^{30}C_4(0.04)^4(0.96)^{26} + \dots + (0.04)^{30}$	A1	Correct unsimplified answer				
	= 0.117	A1)					
		3					

Question	Answer	Marks	Guidance				
5(ii)	$np = 280 \times 0.1169 = 32.73, npq = 280 \times 0.1169 \times 0.8831 = 28.9$	M1 FT	Correct unsimplified <i>np</i> and <i>npq</i> , FT their <i>p from</i> (i),				
	$P(\geqslant 30) = P\left(z > \frac{29.5 - 32.73}{\sqrt{28.9}}\right) = P(z > -0.6008)$	M1	Substituting <i>their</i> μ and $\sigma(\sqrt{npq} \text{ only})$ into the Standardisation Formula				
		M1	Using continuity correction of 29.5 or 30.5				
	GAT	M1	Appropriate area Φ from standardisation formula $P(z >)$ in final solution				
	= 0.726	A1					
		5					

Question	Answer	Marks	Guidance
6(a)(i)	EITHER: 3**, 4**, 6**, 8**	(M1	5P_2 or $^5C_2 \times 2!$ or 5×4 OE (considering final 2 digits)
	options $4 \times 5 \times 4 = 80$	M1	Mult by 4 or summing 4 options (considering first digit)
		A1)	Correct final answer
	OR: Total number of values: $6 \times 5 \times 4 = 120$	(M1	Calculating total number of values (with subtraction seen)
	Number of values less than 300: $2 \times 5 \times 4 = 40$	M1	Calculating number of unwanted values
	Number of evens = $120 - 40 = 80$	A1)	Correct final answer
		3	

Question	Answer	Marks	Guidance
6(a)(ii)	3**, 4**, 6**, 8** EITHER: options 4 × 6 × 4 (last)	(M1	6 linked to considering middle digit e.g. multiplied or in list
		M1	Multiply an integer by 4 × 4 (condone × 16) (No additional figures present for both M's to be awarded)
	= 96	A1)	
	OR: Total number of values $4 \times 6 \times 6 = 144$	(M1	Calculating total number of values (with subtraction seen)
	Number of odd values $4 \times 6 \times 2 = 48$	M1	Calculating number of unwanted values
	Number of evens = $144 - 48 = 96$	A1)	
		3	
6(b)(i)	252	B1	
		1	

Question	Answer	Marks	Guidance
6(b)(ii)	B (6)G(4)		
	5 0 in ${}^{6}C_{5}(\times^{4}C_{0}) = 6 \times 1 = 6$ 4 1 in ${}^{6}C_{4} \times {}^{4}C_{1} = 15 \times 4 = 60$ 3 2 in ${}^{6}C_{3} \times {}^{4}C_{2} = 20 \times 6 = 120$	M1	Multiplying 2 combinations ${}^{6}C_{q} \times {}^{4}C_{r}$, $q + r = 5$, or ${}^{6}C_{5}$ seen alone
		M1	Summing 2 or 3 appropriate outcomes, involving perm/comb, no extra outcomes.
	Total = 186 ways	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	$P(>65) = P\left(z > \frac{65 - 61.4}{12.3}\right) = P(z > 0.2927)$	M1	Standardising no continuity correction, no square or square root, condone \pm standardisation formula
		M1	Correct area (< 0.5)
	= 1 - 0.6153 = 0.385	A1	
	12	3	1.5

Question	Answer	Marks	Guidance
7(ii)	P(<65) = 0.6153 so P(< k) = 0.25 + 0.6153 = 0.8653	B 1	
	z = 1.105	B1	$z = \pm 1.105$ seen or rounding to 1.1
	$1.105 = \frac{k - 61.4}{12.3}$	M1	standardising allow \pm , cc, sq rt, sq. Need to see use of tables backwards so must be a z-value, not $1-z$ value.
	k = 75.0	A1	Answers which round to 75.0. Condone 75 if supported.
		4	
7(iii)	$2.326 = \frac{97.2 - \mu}{\sigma}$	B1	± 2.326 seen (Use of critical value)
	$-0.44 = \frac{55.2 - \mu}{\sigma}$	B1	± 0.44 seen
		M1	An equation with a <i>z</i> -value, μ , σ and 97.2 or 55.2, allow $\sqrt{\sigma}$ or σ^2
	12	M1	Algebraic elimination μ or σ from <i>their</i> two simultaneous equations
	$\mu = 61.9$ $\sigma = 15.2$	AI	both correct answers
		5	

Maximum Mark: 50

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/63
Paper 6 October/November 2017
MARK SCHEME

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
 - When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results.
 Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2017 Page 2 of 13

October/November 2017

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only – often written by a 'fortuitous' answer

ISW Ignore Subsequent Working

SOI Seen or implied

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be

varied in the light of a particular circumstance)

Penalties

MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2017 Page 3 of 13

	-		201	
Question	Answer	Marks	Guidance	
1	EITHER: P(at least 1 completes) = $1 - P(0 \text{ people complete})$ = $1 - (0.8)^3$	(M1	Fully correct unsimplified expression $1 - (0.8)^3$ OE	
	$=0.488\left(\frac{61}{125}\right)$	A1)		
	OR1: P(1, 2, 3) = ${}^{3}C_{1}(0.2)(0.8)^{2} + {}^{3}C_{2}(0.2)^{2}(0.8) + (0.2)^{3}$	(M1	Unsimplified correct 3 term expression	
	$=0.488\left(\frac{61}{125}\right)$	A1)		
	$OR2:$ $0.2 + 0.8 \times 0.2 + 0.8 \times 0.8 \times 0.2$	(M1	Unsimplified sum of 3 correct terms	
	$=0.488\left(\frac{61}{125}\right)$	A1)		
		2		

Question	Answer	Marks	Guidance
2	$\Sigma(x - 45) = 1218 - 20 \times 45 = 318$	B1	
	$\frac{\Sigma(x-45)^2}{20} - \left(\frac{\Sigma(x-45)}{20}\right)^2 = 4.2^2$	M1	Fully correct substitution in the correct coded variance formula with their $\Sigma(x-45)$ OR valid method for $\Sigma x^2 = 74529$ ($4.2^2 = \frac{\Sigma x^2}{20} - \left(\frac{1218}{20}\right)^2$) and expanding $\Sigma(x-45)^2$ correctly $= \Sigma x^2 - 90\Sigma x + 20 \times 45^2 = '74529' - 90 \times 1218 + 40500 = 5409$
	$\Sigma (x - 45)^2 = 5409$	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	Pass	M1	Correct shape
	0.85 Pass 0.65 Pass Fail 0.35 Fail	A1 2	All correct labels and probabilities

Question	Answer	Marks	Guidance
3(ii)	$P(F \mid P) = \frac{P(F \cap P)}{P(P)}$	M1	P(P) consistent with their tree diagram seen anywhere
	$= \frac{0.15 \times 0.65}{0.85 + 0.15 \times 0.65} \text{ or } \frac{0.15 \times 0.65}{1 - 0.15 \times 0.35}$	A1	Correct unsimplified $P(P)$ seen as num or denom of a fraction
	$=\frac{0.0975}{0.9475}$	M1	$P(F \cap P)$ found as correct product or consistent with their tree diagram seen as num or denom of a fraction
	$=\frac{39}{379}=0.103$	A1	
		4	

Question	Answer						Iarks	Guidance
4(i)	x	-3	0	5	32		B 1	At least 3 different correct values of X (can be unsimplified)
	Prob	1/6	1/2	1/6	1/6		B1	Four correct probabilities in a Probability Distribution table
							B1	Correct probs with correct values of X
					15		3	60/

	-	OBLIGIT	2011
Question	Answer	Marks	Guidance
4(ii)	E(X) = -3/6 + 5/6 + 32/6 = 34/6 = 17/3 (5.67)	M1	Subst their attempts at scores in correct formula as long as 'probs' sum to 1
	$Var(X) = 9/6 + 25/6 + 1024/6 - (34/6)^2$	M1	Subst their attempts at scores in correct var formula
	$=144\left(\frac{1298}{9}\right)$	A1	Both answers correct
		3	

Question	Answer	Marks	Guidance		
5(i)		B1	Stem, digits 5, 7, 9 can be missing here, can be upside down		
	0 2 2 5 6 9 1 0 0 0 2 2 3 3 4 7 7 8 8	B1	All leaves in correct order increasing from stem, (5, 7 and 9 can be missing), condone commas		
	2 8 8 3 4 5 8 4 4 5	B1	Reasonable shape, requires all values of the stem, only one line for each stem and leaves must be lined up. Can be upside down or sideways. No commas. Condone one 'leaf' error.		
	6 5 7 8 2 8 9 10 4 key 2 8 means 28 medals	B1	Correct key must state 'medals' or have 'medals' in leaf heading or title		
	10 7 Rey 2 6 means 26 medars	4			

Question	Answer	Marks	Guidance
5(ii)	Med = 17		Median correct
	LQ = 10 UQ = 35	B1	LQ and UQ correct
	0 10 20 30 40 50 60 70 80 90 100 110	B1	Uniform scale from 2 to 104 (need 3 identified points min) and label including medals (can be in title)
		B1 FT	Correct box med and quartiles on diagram, FT their values
	Number of medals	B1	Correct end-whiskers from ends of box but not through box
		5	

Question	Answer	Marks	Guidance
6(i)	$^{18}P_5$	M1	18 P _x or y P ₅ OE seen, $0 < x < 18$ and $5 < y < 18$, can be mult by $k \ge 1$
	= 1 028 160	A1	
		2	

Question	Answer	Marks	Guidance
6(ii)	EITHER: e.g. ***(CCCCC)************ in 5!×14 ways	(B1	5! OE mult by $k \ge 1$, considering the arrangements of cars next to each other
	= 1680	B1	Mult by 14 OE, (or 14 on its own) considering positions within the line
	P (next to each other) = 1680/1 028 160	M1	Dividing by (i) for probability
	P(not next to each other) = $1 - 1680/1 028 160$	M1	Subtracting prob from 1 (or their '5! × 14' from (i))
	$=0.998\left(\frac{611}{612}\right) \text{ OE}$	A1)	
	$\frac{OR1:}{\frac{5! \times 14!}{18!}} = 0.001634$	(B1	5! OE mult by $k \ge 1$ (on its own or in numerator of fraction) considering the arrangements of cars next to each other
		B1	Multiply by 14!, (or 14! on its own) considering all ways of arranging spaces with 5 cars together
		M1	Dividing by 18!, total number of ways of arranging spaces
	1 – 0.001634	M1	Subtracting prob from 1 (or '5! × 14!' from 18!)
	= 0.998(366)	A1)	0.
	OR2: 4 together $-2 \times 5! \times 14C12 = 21840$ 3, 1, 1 $-3 \times 5! \times 14C11 = 131040$ 3, 2 $-2 \times 5! \times 14C12 = 21840$ 2,2,1 $-3 \times 5! \times 14C11 = 131040$ 2,1,1,1 $-4 \times 5! \times 14C10 = 480480$ 1,1,1,1,1 $-5! \times 14C9 \text{ or } 14P5 = 240240$	(M1	Listing the six correct scenarios (only): 4 together; 3 together and 2 separate; 3 together and 2 together; two sets of 2 together and 1 separate; 2 together and 3 separate; 5 separate.
		M1	Summing total of the six scenarios, at least 2 correct unsimplified

Question	Answer	Marks	Guidance
	Total = 1 026 480	A1	Total of 1 026 480
		M1	Dividing their 1 026 480 by their 6(i)
	$1\ 026\ 480\ \div 1\ 028\ 160 = 0.998(366)$	A1)	
		5	

Question	Answer	Marks	Guidance
6(iii)	R(5) W(4) B(3) Scenarios No. of ways	B1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Summing no more than 7 scenario totals containing at least 6 correct scenarios
	Total = 205	A1	
	OR		
	¹² C ₃ –	M1	Seeing '12C ₃ -', considering all selections of 3 cars
	- ⁵ C ₃	M1	Subt ⁵ C ₃ OE, removing only red selections
	$-{}^{4}C_{3}$	M1	Subt ⁴ C ₃ OE, removing only white selections
	$-{}^{3}C_{3}$	M1	Subt ³ C ₃ OE, removing only black selections
	= 205	A1	Correct answer
-	2,	5	-0.

Question	Answer	Marks	Guidance
7(i)	$P(t > 6) = P\left(z > \frac{6 - 5.3}{2.1}\right) = P(z > 0.333)$	M1	Standardising, no continuity correction, no sq, no sq rt
	= 1 - 0.6304	M1	Correct area 1 – Φ (< 0.5), final solution
	= 0.370 or 0.369	A1	
		3	2/1
7(ii)	z = 1.645	B1	± 1.645
	$1.645 = \frac{x - 5.3}{2.1}$	M1	Standardising, no continuity correction, allow sq, sq rt. Must be equated to a z-value
	x = 8.75 or 8.755 or 8.7545	A1	
		3	
7(iii)	n = 10, p = 0.05	M1	Bin term ${}^{10}C_x p^x (1-p)^{10-x}$
	$P(0, 1, 2) = (0.95)^{10} + {}^{10}C_{1}(0.05)(0.95)^{9} + {}^{10}C_{2}(0.05)^{2}(0.95)^{8}$	M1	Correct unsimplified answer
	= 0.988 (0.9885 to 4 sf)	A1	
	12	3	
7(iv)	P(misses bus) = P(t < 0)	*M1	Seeing t linked to zero
	$= P\left(z < \frac{0-5.3}{2.1}\right) = P(z < -2.524) = 1 - \Phi(2.524)$ $= 1 - 0.9942$	DM1	Standardising with $t = 0$, no continuity correction, no sq, no sq rt
	= 0.0058	A1	
		3	

© UCLES 2017

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/61 May/June 2017 Paper 6 MARK SCHEME Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have

Published

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

considered the acceptability of alternative answers.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A
 or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect
 working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2017 Page 2 of 12

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2017 Page 3 of 12

varied in the light of a particular circumstance)

Question	Answer	Marks	Guidance
1(i)	EITHER: $\frac{\sum x}{30} - k = \frac{315}{30} = 10.5$	(M1	Dividing 315 by ±30 and + or – from 50.5 need both and no more
	k = 5.5 - 10.5 = 40	A1)	Correct answer from correct working
	OR: $\sum x = 50.5 \times 30 = 1515$, $1515 - 30k = 315$	(M1	Mult by 50.5 by 30 and $+$ or $-$ 315 and dividing by \pm 30 need all these
	k = 40	A1)	Correct answer from correct working. 1200 gets M0
	Total:	2	
1(ii)	EITHER: $var = 4022/30-10.5^2 (=23.817)$	(M1	Subst in correct coded variance formula
	sd = 4.88	A1)	
	OR: $\sum x^2 - 2(40) \sum x + 30(40)^2 = 4022, \sum x^2 = 77222$ $Var = 77222/30 - 50.5^2 (= 23.817)$	(M1	Expanding with $\pm 40\Sigma x$ and $\pm 30(40)^2$ seen
	sd = 4.88	A1)	
	Total:	2	

© UCLES 2017 Page 4 of 12

Question	Answer	Marks	Guidance	
2	P(R) = 4/36 = 1/9	M1	Attempt at $P(R)$ by probability space diag or listing more than half the options, must see a prob, just a list is not enough	
	P(T) = P(O, E) + P(E, O) = 1/4 + 1/4 = 1/2 OR P(R T) = 1/9	M1	Attempt at $P(T)$ or $P(R T)$ involving more than half the options	
	$P(R \cap T) = P(3, 4) + P(4, 3) = 2/36 = 1/18 \text{ OR } P(R T) = 1/9$		Value stated, not from $P(R) \times P(T)$ e.g. from probability space diagram	
	As $P(R) \times P(T) = P(R \cap T)$ OR as $P(R \mid T) = P(R)$	M1	Comparing product values with $P(R \cap T)$, or comparing $P(R T)$ with $P(R)$	
	The events are independent.	A1	Correct conclusion must have all probs correct	
	Total:	5		

© UCLES 2017 Page 5 of 12

PUBLISHED

Question	Answer	Marks	Guidance
3(i)	7/10 W 3/5 W 1/10 D 1/10 L 1/3 D 1/3 L 1/5 L 1/20 D 13/20 L	M1	Correct shape i.e. 3 branches then 3 by 3 branches, labelled and clear annotation Condone omission of lines for first match result providing the probabilities are there.
		A1	All correct probs with fully correct shape and probs either fractions or decimals not 1.5/5 etc.
	Total:	2	

© UCLES 2017 Page 6 of 12

Question	Answer	Marks	Guidance
3(ii)	$P(L_1 \text{ given } W_2) = \frac{P(L_1 \cap W_2)}{P(W_2)}$	M1	Attempt at P(L1∩W2) as a two-factor prod only as num or denom of a fraction
	$= \frac{1/5 \times 3/10}{3/5 \times 7/10 + 1/5 \times 1/3 + 1/5 \times 3/10}$	M1	Attempt at P(W2) as sum of appropriate 3 two-factor probs OE seen anywhere
	AT PR	A1	Unsimplified correct P(W2) num or denom of a fraction
	$=\frac{3/50}{41/75}=9/82(0.110)$	A1	
	Total:	4	

PUBLISHED

Question	Answer	Marks	Guidance
4(i)	fd 16, 14, 11, 505, 2.5	M1	Attempt at fd (must be at least 3 freq/cw) – may be implied by graph
	fd 20 - 15 - 10 - 5 - 10 - 5 - 10 - 5 - 10 - 10	A1	Correct heights seen on graph i.e. must see a gap for fd = 2.5 etc.
	0 20 40 60 80 100 120 140 time sec		
		B1	Correct end points of bars and correct widths
		B1	labels fd, sec. Time can be optional. Linear axes, condone $0 \le t \le 20$ etc.
	Total:	4	

© UCLES 2017 Page 8 of 12

Question	Answer	Marks	Guidance
4(ii)	$(10 \times 320 + 30 \times 280 + 50 \times 220 + 80 \times 220 + 120 \times 100) / 1140$	M1	using $\Sigma fx / n$ with mid-point attempt ± 0.5 , not ends not class widths
	= 45.8	A1	
	Total:	2	
5(i)	p = 0.07	B1	
	$P(2) = {}^{20}C_2(0.07)^2(0.93)^{18}$	M1	Bin term ${}^{20}C_x p^x (1-p)^{20-x}$ their p
	= 0.252	A1	
	Total:	3	
5(ii)	P(at least 1 cracked egg)=1-(0.93) ²⁰ =1-0.2342	M1	Attempt to find P(at least1 cracked egg) with their p from (i) allow $1 - P(0, 1)$ OE
	= 0.766	A1	Rounding to 0.766
	Total:	2	
5(iii)	$(0.7658)^{n} < 0.01$	M1	Eqn or inequal containing (their 0.766) ⁿ or (their 0.234) ⁿ , together with 0.01 or 0.99
	n = 18	A1	
	Total:	2	

© UCLES 2017 Page 9 of 12

Question	Answer	Marks	Guidance
6(a)(i)	z = 0.674	B1	rounding to ± 0.674 or 0.675
	$0.674 = \frac{6.8 - \mu}{0.25\mu}$	M1	standardising, no cc, no sq rt, no sq, σ may still be present on RHS
	AT PRA	M1	subst and sensible solving for μ must collect terms, no z-value needed can be 0.75 or 0.7734 need a value for μ
	$\mu = 5.82$	A1	
	Total:	4	
6(a)(ii)	$P(X < 4.7) = P\left(z < \frac{4.7 - 5.819}{1.4548}\right)$	M1	± standardising no cc, no sq rt, no sq unless penalised in (a)(i)
	$= \phi(-0.769) = 1 - 0.7791$	M1	correct side for their mean i.e. 1–φ (final solution)
	= 0.221	A1	
	Total:	3	
6(b)	$P(<15.75) = P\left(z < \frac{15.75 - 16}{0.2}\right) = 1 - P(z < 1.25) = 1 - 0.8944 = 0.1056 \text{ and}$	*M1	Standardising for 15.75 or 16.25 no cc no sq no sq rt unless penalised in (a)(i) or (a)(ii)
	P(>16.25) = 0.1056 by sym	D1	
	P(usable) = 1 - 0.2112 = 0.7888	B1	2ф– 1 OE for required prob, (final solution)
	Usable rods=1000 × 0.7888 =	DM1	Mult their prob by 1000 dep on recognisable attempt to standardise
	788 or 789	A1	
	Total:	4	

© UCLES 2017 Page 10 of 12

Question	Answer							Marks	Guidance
7(a)	EITHER: e.g. xxxxx =5! for the other children							(B1	5! OE seen alone or mult by integer $k \ge 1$, no addition
	Put y	in 6 ways	s, then 5	then 4	for the youngest c	hildren		B1	Mult by 6P3 OE
	Answ	er 5! × 6]	P3 = 144	400				B1)	Correct answer
	OR: $total - 3 tog - 2 tog = 8! - 6!3! - 6! \times 2 \times 5 \times 3 = 14400$					(B1	$8! - 6! \times k \geqslant 1$ seen		
					19			B1	6!3! or $6! \times 2 \times 5 \times 3$ seen subtracted
					1///			B1)	Correct answer
							Total:	3	
7(b)	D 2	W 2	M 1	=	6C2 × 4C2 × 1	= 90		B1	One correct unsimplified option
	3	1	1	=	6C3 × 4 × 1	= 80		M1	Summing 2 or more 3-factor options which can contain perms or 3 factors added. The 1 can be implied
	1	3	1	=	6 × 4C3 × 1	= 24		M1	Summing the correct 3 unsimplified outcomes only
	Total=194 ways							A1	
						Sat	Total:	4	

© UCLES 2017 Page 11 of 12

Question					Answer			Marks	Guidance
7(c)	C 2	D 1	S 1	=	$^{26}C_2 \times 9 \times 5 \times 4!$	= 351 000		M1	summing 2 or more options of the form (2 1 1), (1 2 1), (1 1 2), can have perms, can be added
	1				$26 \times {}^{9}C_{2} \times 5 \times 4! =$			M1	4 relevant products seen excluding 4! e.g. $26 \times 9 \times 8 \times 5$ or $26 \times {}^9P_2 \times 5$ for 2nd outcome, condone $26 \times 9 \times 5 \times 37$ as being relevant
	1	1	2	=	$26 \times 9 \times {}^{5}C_{2} \times 4! =$	56 160	PR	M1	mult all terms by 4! or 4!/2!
	Tota	al = 51	9 480		16			A1	
							Total:	4	

© UCLES 2017 Page 12 of 12

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

Paper 6

May/June 2017

MARK SCHEME

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.

 Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2017 Page 2 of 11

The following abbreviations may be used in a mark scheme or used on the scripts:

|--|

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2017 Page 3 of 11

Question	Answer	Marks	Guidance
1(i)	$4 \times 5.5 + 3x + 90 = 8 \times 29$	M1	An expression to work out total cost of individual items = $8 \times \text{mean}$, $x \text{ may be implied}$.
	112 + 3x = 232 x = 40	A1	Correct complete unsimplified expression / calculation
	(Cost = \$)40	A1	Units not required
	Total:	3	
1(ii)	sd = 0 so all cost the same	M1	Must see comment interpreting sd = 0, OE
	shirts cost $4 \times \$26 = \104 AG	A1	See $4 \times \$26$, $\$130 - \26 OE. Must have a final value of $\$104$ stated
	Total:	2	
2(i)	med = 3.2	B1	Accept 3.2 ± 0.05
	$UQ = 3.65 \le uq \le 3.7 \text{ LQ} = 2.55 \le lq \le 2.6$	M1	UQ – LQ, UQ greater than their 'median', LQ less than their 'median'
	$IQR = 1.05 \leqslant iqr \leqslant 1.15$	A1	Correct answer from both LQ and UQ in given ranges
	Total:	3	
2(ii)	134 – 24 = 110	B1	Accept $108 \le n \le 112$, <i>n</i> an integer
	Total:	1	

© UCLES 2017 Page 4 of 11

Question	Answer	Marks	Guidance
2(iii)	200 - 12 = 188 less than length <i>l</i>	M1	188 seen, can be implied by answer in range, mark on graph.
	<i>l</i> = 4.5 cm	A1	Correct answer accept $4.4 \le l \le 4.5$
	Total:	2	
3(i)	$k(-2)^2$ is the same as $k(2)^2 = 4k$	B1	need to see $-2^2 k$, $2^2 k$ and $4k$, algebraically correct expressions OE
	Total:	1	
3(ii)	$\begin{array}{ c c c c c c c }\hline x & -2 & -1 & 2 & 4 \\ \hline Prob & 4k & k & 4k & 16k \\ \hline \end{array}$	B1	-2, -1 , 2 , 4 only seen in a table, together with at least one attempted probability involving k
	4k + k + 4k + 16k = 1	M1	Summing 4 probs equating to 1. Must all be positive (table not required)
	k = 1/25 (0.04)	A1	CWO
	Total:	3	///
3(iii)	E(X) = -8k + -k + 8k + 64k = 63k	M1	using Σpx unsimplified. FT their k substituted before this stage, no inappropriate dividing
	= 63/25 (2.52)	A1	
	Total:	2	

© UCLES 2017 Page 5 of 11

Question	Answer	Marks	Guidance
4	P(score is 6) = $P(3, 3)$	M1	Realising that score 6 is only P(3, 3)
	$= r^2 = 1/36$ $r = 1/6$	A1	Correct ans [SR B2 $r = 1/6$ without workings]
	P(2, 3) + P(3, 2) = 1/9 qr + rq = 1/9	M1	Eqn involving qr (OE) equated to 1/9 (r may be replaced by their 'r value')
	q/6 + q/6 = 1/9	M1	Correct equation with their 'r value' substituted
	q = 1/3	A1	Correct answer seen, does not imply previous M's
	p = 1 - 1/6 - 1/3 = 1/2	B1 FT	FT their p + their q =1, 0
	Total:	6	
5(i)	$(z=)\frac{4.2-3.9}{\sigma}$	M1	Standardising, not square root of σ , not σ^2
	z = 0.916 or 0.915	B1	Accept $0.915 \leqslant \pm z \leqslant 0.916$ seen
	$\sigma = 0.328$	A1	Correct final answer (allow 20/61 or 75/229)
	Total:	3	S//

Question	Answer	Marks	Guidance
5(ii)	z = 4.4 - 3.9/their 0.328 or $z = 3.4 - 3.9$ /their 0.328 = 1.5267 = -1.5267	M1	Standardising attempt with 3.4 or 4.4 only, allow square root of σ , or σ^2
	$\Phi = 0.9364$	A1	$0.936 \leqslant \Phi \leqslant 0.937 \text{ or } 0.063 \leqslant \Phi \leqslant 0.064 \text{ seen}$
	$Prob = 2\Phi - 1 = 2(0.9364) - 1$	M1	Correct area $2\Phi - 1OE$ i.e. $\Phi = -(1 - \Phi)$, linked to final solution
	= 0.873	A1	Correct final answer from $0.9363 \le \Phi \le 0.9365$
	Total:	4	
5(iii)	dividing (0.5) by a larger number gives a smaller <i>z</i> -value or more spread out as sd larger or use of diagrams	*B1	No calculations or calculated values present e.g. (σ =)0.656 seen Reference to spread or z value required
	Prob is less than that in (ii)	DB1	Dependent upon first B1
	Total:	2	
6(i)	EITHER: Route 1 A******** in 9! / 2!2!5! = 756 ways	(*M1	Considering AA and BB options with values
	B******* in 9! / 4!5! = 126 ways	A1	Any one option correct
	756 + 126	DM1	Summing their AA and BB outcomes only
	Total = 882 ways	A1)	

© UCLES 2017 Page 7 of 11

Question	Answer	Marks	Guidance
	OR1: Route 2 $A^{********}A$ in ${}^{9}C_{5} \times {}^{4}C_{2} = 756$ ways	(M1	Considering AA and BB options with values
	$B^{********}B$ in ${}^{9}C_{4} \times {}^{5}C_{5} = 126$ ways	A1	Any one option correct
	756 + 126	DM1	Summing their AA and BB outcomes only
	Total = 882	A1)	
	Total:	4	

Question	Answer	Marks	Guidance
6(ii)	EITHER: (The subtraction method) As together, no restrictions 8! / 2!5! = 168	(*M1	Considering all As together – 8! seen alone or as numerator – condone × 4! for thinking A's not identical
	As together and Bs together $7! / 5! = 42$	M1	Considering all As together and all Bs together – 7! seen alone or numerator
	AT PA	M1	Removing repeated Bs or Cs – Dividing by 5! either expression or 2! 1st expression only – OE
	Total 168 – 42	DM1	Subt their 42 from their 168 (dependent upon first M being awarded)
	= 126	A1)	
	OR1: As together, no restrictions ${}^{8}C_{5}$ x ${}^{3}C_{1} = 168$	(*M1	⁸ C₅ seen alone or multiplied
		M1	⁷ C ₅ seen alone or multiplied
	As together and Bs together ${}^{7}C_{5}$ x ${}^{2}C_{1} = 42$	M1	First expression x 3C_1 or second expression x 2C_1
	Total 168 – 42	DM1	Subt their 42 from their 168 (dependent upon first M being awarded)
	= 126	A1)	
	OR2: (The intersperse method)	(M1	Considering all "As together" with Cs – Mult by 6!
	(AAAA)CCCCC then intersperse B and another B	M1	<i>Removing repeated Cs</i> – Dividing by 5!– [Mult by 6 implies M2]
		*M1	Considering positions for Bs – Mult by 7P2 oe –

© UCLES 2017 Page 9 of 11

Question	Answer	Marks	Guidance
	$\frac{6!}{5!} \times 7 \times 6 \div 2$	DM1	Dividing by 2! Oe – removing repeated <i>B</i> s (dependent upon 3rd M being awarded)
	= 126	A1)	
	Total:	5	
7(i)	$P(H) = P(BH) + P(SH) = 0.6 \times 0.05 + 0.4 \times 0.75$	M1	Summing two 2-factor probs using 0.6 with 0.05 or 0.95, and 0.4 with 0.75 or 0.25
	$= 0.330 \text{ or } \frac{33}{100}$	A1	Correct final answer accept 0.33
	Total:	2	
7(ii)	$P(S H) = \frac{P(S \cap H)}{P(H)} = \frac{0.4 \times 0.75}{0.33} = \frac{0.3}{0.33}$	M1 FT	Their $\frac{P(S \cap H)}{P(H)}$ unsimplified, FT from (i)
	$=\frac{10}{11}$ or 0.909	A1	
	Total:	2	
7(iii)	Var (B) = $45 \times 0.6 \times 0.4$ Var (S)= $45 \times 0.4 \times 0.6$	B1	One variance stated unsimplified
	Variances same	B1	Second variance stated unsimplified and at least one variance clearly identified, and both evaluated <i>or</i> showing equal <i>or</i> conclusion made
			SR B1 – Standard Deviation calculated Fulfil all the criteria for the variance method but calculated to Standard Deviation
	Total:	2	

Question	Answer	Marks	Guidance
7(iv)	$ 1 - P(0, 1) = 1 - [(0.6)^{10} + {}^{10}C_1(0.4)(0.6)^9] = 1 - 0.0464 OR P(2,3,4,5,6,7,8,9,10) = {}^{10}C_2(0.4)^2(0.6)^8 + + {}^{10}C_9(0.4)^9(0.6) + (0.4)^{10} $	M1 M1	··1 \ 1 / 1
	= 0.954	A1	
	Total:	3	

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

Paper 6

May/June 2017

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

 ${\rm \rlap{R}\hskip-1pt B}$ IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.

 Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

© UCLES 2017 Page 2 of 9

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE Any Equivalent Form (of answer is equally acceptate
--

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2017 Page 3 of 9

Question	Answer	Marks	Guidance
1	P(6) = 0.3	B1	SOI
	P(sum is 9) = P(3, 6) + P(4, 5) + P(5, 4) + P(6, 3)	M1	Identifying the four ways of summing to 9 (3,6), (6,3) (4,5) and (5,4)
	$= (0.03 + 0.02) \times 2$	M1	Mult 2 probs together to find one correct prob of (3,6), (6,3) (4,5) or (5,4) unsimplified
	= 0.1	A1	OE
	Total:	4	
2	$np = 270 \times 1/3 = 90, npq = 270 \times 1/3 \times 2/3 = 60$	B1	Correct unsimplified np and npq, SOI
	$P(x>100) = P(z>\frac{99.5-90}{\sqrt{60}}) = P(z>1.2264)$	M1 M1	±Standardising using 100 need sq rt Continuity correction, 99.5 or 100.5 used
	=1-0.8899	M1	Correct area $1 - \Phi$ implied by final prob. < 0.5
	= 0.110	A1	777
	Total:	5	
3(i)	$P(S) = 0.65 \times 0.6 + 0.35 \times 0.75$	M1	Summing two 2-factor probs or 1 – (sum of two 2-factor probs)
	= 0.653 (261/400)	Al	
	Total:	2	

Question	Answer	Marks	Guidance
3(ii)	$P(Std L) = \frac{P(Std \cap L)}{P(L)} = \frac{0.35 \times 0.25}{1 - 0.6525} = 0.0875/0.3475$	M1	'P(Std)' × 'P(L/Std)' as num of a fraction. Could be from tree diagram in 3(i).
		M1	Denominator (1 - their (i)) or their (i) or 0.65×0.4 (or $0.6) + 0.35 \times 0.25$ (or 0.75) = $0.26+0.0875$ or P(L) from their tree diagram
	= 0.252 (35/139)	A1	
	Total:	3	
4(a)	$P(x>0) = P\left(z > \pm \frac{0-\mu}{\sigma}\right)$ $= P\left(z > \frac{-\mu}{\mu/1.5}\right) \text{ or } P\left(z > \frac{-1.5\sigma}{\sigma}\right)$	M1	\pm Standardising, in terms of μ and/or σ with 0 in numerator, no continuity correction, no $\sqrt{}$
	$= P\left(z > \frac{-\mu}{\mu/1.5}\right) \text{ or } P\left(z > \frac{-1.5\sigma}{\sigma}\right)$		
	= P(z > -1.5)	A1	Obtaining z value of ± 1.5 by eliminating μ and σ , SOI
	= 0.933	A1	
	Total:	3	
4(b)	z = -1.151	B1	$\pm z$ value rounding to 1.1 or 1.2
	$-1.151 = \frac{70 - 120}{s}$	M1	\pm Standardising (using 70) equated to a z-value, no cc, no squaring, no $$
	$\sigma = 43.4 \text{ or } 43.5$	A1	
	Totals:	3	

Question	Answer	Marks	Guidance
5(i)	constant probability (of completing)	B1	Any one condition of these two
	independent trials/events	B1	The other condition
	Totals:	2	
5(ii)	$P(5, 6, 7) = {}^{7}C_{5}(0.7)^{5}(0.3)^{2} + {}^{7}C_{6}(0.7)^{6}(0.3)^{1} + (0.7)^{7}$	M1 A1	Bin term ${}^{7}C_{x}(0.7)^{x}(0.3)^{7-x}$, $x \neq 0, 7$ Correct unsimplified answer (sum) OE
	= 0.647	A1	
	Total:	3	
5(iii)	P(0, 1, 2, 3, 4) = 1 - their '0.6471' = 0.3529	M1	Find P(\leq 4) either by subtracting their (ii) from 1 or from adding Probs of 0,1,2,3,4 with n =7 (or 10) and p = 0.7
	$P(3) = {}^{10}C_3(0.3529)^3(0.6471)^7$	M1	$^{10}\text{C}_3$ (their 0.353) ³ (1 – their 0.353) ⁷ on its own
	= 0.251	A1	
6(a)(i)	First digit in 2 ways. $2 \times 4 \times 3 \times 2$ or $2 \times 4P3$	M1	1, 2 or 3 × 4P3 OE as final answer
	Total = 48 ways	A1	1.5
	Total:	2	CO.
6(a)(ii)	$2 \times 5 \times 5 \times 3$	M1 M1	Seeing 5 ² mult; this mark is for correctly considering the middle two digits with replacement Mult by 6; this mark is for correctly considering the first and last digits
	= 150 ways	A1	
	Totals:	3	

Question	Answer	Marks	Guidance
6(b)(i)	OO**** in ¹⁸ C ₄ ways		18 C _x or the sum of five 2-factor products with $n = 14$ and 4, may be × by 2C2: $4C0 \times 14C4 + 4C1 \times 14C3 + 4C2 \times 14C2 + 4C3 \times 14C1 + 4C4$ (× 14C0)
	= 3060	A1	
	Totals:	2	

Question	Answer	Marks	Guidance		
6(b)(ii)	Choc Not Choc 0 $6=1 \times {}^{16}C_6 = 8008 \ 0.2066$ 1 $5={}^{4}C_1 \times {}^{16}C_5 = 17472 \ 0.4508$ 2 $4={}^{4}C_2 \times {}^{16}C_4 = 10920 \ 0.2817$ OR	B1	The correct number of ways with one of 0, 1 or 2 chocs, unsimplified or any three correct number of ways of combining choc/oat/ginger, unsimplified		
	Choc Oats Ginger 0 0 6 0 1 5 0 2 4 1 0 5 1 1 4 1 2 3 2 0 4 2 1 3 2 2 2				
	Total = 36400 ways	M1	sum the number of ways with 0, 1 and 2 chocs and two must be totally correct, unsimplified OR sum the nine combinations of choc, ginger, oats, six must be totally correct, unsimplified		
	Probability = $36400/{}^{20}C_6$	M1	dividing by ²⁰ C ₆ (38760) oe		
	= 0.939 (910/969)	A1			
	Totals:	4			
7(i)	freq = $fd \times cw \ 10, \ 40, \ 120, \ 30$	M1 A1	Attempt to multiply at least 3 fds by their 'class widths'		
	Totals:	2			

	- ODLIGHED							
Question	Answer						Marks	Guidance
7(ii)	length	< 5	< 10	< 20	< 25		B1	3 or more correct cfs heights on graph 10, 50, 170, 200
	cf 10 50 170 200 cf 200 150 100 50 25 length (cm)						M1 A1	Labels correct cf and length(cm), linear scales from zero (allow 0.5 on horizontal axis) Attempt (at least three) at plotting at upper end points (either 5 or 5.5, 10 or 10.5 etc.) Starting at (0, 0) polygon or smooth curve increasing with plotted points at lengths 5, 10, 20 and 25
							4	
7(iii)	median = 14	.2			10	tais.	B1	Median (accept 13.2 – 15.2)
	'18.5' - '10'			2			M1	Subt their LQ from their UQ if reasonable from their graph
	IQ range = 8.5					A1FT	Correct FT using LQ = 10 and UQ between 17.5 and 19.5	
	Totals:						ore3	
7(iv)	mean = $(2.5 \times 10 + 7.5 \times 40 + 15 \times 120 + 22.5 \times 30) / 200$				M1	Using mid points (\pm 0.5) and their frequencies from 7(i) in correct formula		
	= 14						A1	
	Totals:					tals:	2	

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/62

Paper 6 Probability and Statistics

March 2017

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.

 Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

© UCLES 2017 Page 2 of 9

AEF/OE Any Equivalent Form (of answer is equally acceptate
--

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \(\bightarrow \)" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2017 Page 3 of 9

Question	Answer	Marks	Guidance
1	1.6 -1.5 2.3 1.4 -0.6 -0.9 2.5 1.9 2.4 1.9 2.8 1.0	M1	Subtracting 1760, allow max 2 slips
	Mean = 1.23	A1	
	sd = 1.39	A1	
	Mean of $x = 1761.23$, sd of $x = 1.39$	A1√	ft their coded mean and sd.
			SR B1 correct mean and sd without use of coded process
	Total:	4	

Question	Answer	Marks	Guidance
2	$\frac{{}^{12}C_3 \times {}^{28}C_4}{{}^{40}C_7}$	M1	Using combinations with attempt to evaluate 2 terms in num. and 1 in denom.
		M1	Correct numerator or denominator unsimplified
	= 0.242	A1	
	OR		
	$P(GGG) = \frac{12}{40} \times \frac{11}{39} \times \frac{10}{38} \times \frac{28}{37} \times \frac{27}{36} \times \frac{26}{35} \times \frac{25}{34} \times {}^{7}C_{3}$	M1	Multiplying 3 green probs with 4 non-green probs, without replacement
		M1	Multiplying by ⁷ C ₃
	= 0.242	A1	
	Total:	3	

© UCLES 2017 Page 4 of 9

Question	Answer	Marks	Guidance
3	$np = 160 \times 0.1 (16) \ npq = 160 \times 0.1 \times 0.9 (14.4)$	B1	Correct unsimplified np and npq
	$P(>17) = P\left(z > \frac{17.5 - 16}{\sqrt{14.4}}\right) = P(z > 0.3953)$	M1	Standardising need √
		M1	16.5 or 17.5 seen in standardised eqn for continuity correction
	= 1 - 0.6536	M1	Correct area from their mean $(1 - \Phi)$, final solution
	= 0.346	A1	
	Total:	5	

Question	Answer	Marks	Guidance
4(i)	LQ = 0.7495 Med = 0.7507 UQ = 0.7517	M1	Attempt to find all 3 quartiles can be implied, Condone LQ=0.7496, Med=0.7506, UQ=0.7515
		B1	Correct median line in box using their scale
	0.747 0.748 0.749 0.750 0.751 0.752 0.753 Wt kg	pre	o.co.
		A1	Correct quartiles in box
		B1	Correct end whiskers(not dots or boxes), lines not through box,
		B1	Correct uniform scale from at least 0.7473 to 0.7532, and label (wt) kg oe can be seen in title or scale
	Total:	5	

© UCLES 2017 Page 5 of 9

Question	Answer	Marks	Guidance
4(ii)	Normal	B1	
	Symmetrical/peaks in middle or tails off quickly	B1	Need symm + another reason
	Total:	2	

Question	Answer	Marks	Guidance
5(i)	$^{12}C_{1} + ^{12}C_{3} + ^{12}C_{5} + ^{12}C_{7} + ^{12}C_{9} + ^{12}C_{11}$	M1	Summing at least 4 12 C _x combinations with $x = \text{odd numbers}$
		A1	Correct unsimplified answer (can be implied by final answer)
	= 2048	A1	Correct answer
	Total:	3	
5(ii)	$7! \times {}^8P_4$	B1	7! seen alone or multiplied only (cupcakes ordered)
		M1	multiplying by ⁸ P ₄ o.e (placing brownies)
	= 8467200	A1	correct answer
	Total:	3	
5(iii)	9! / (6! × 2!)	B1	9! oe seen alone or as numerator
		M1	dividing by at least one of 6!,2! (removing repeated shortbread or gingerbread biscuits) ignore 4! if present
	= 252	A1	correct answer
	Total:	3	

© UCLES 2017 Page 6 of 9

Question	Answer							Marks	Guidance
6(i)	$P(2) = P(0,2) = 2/10 \times 4/6$							M1	Mult 2 probs seen (or complete listing of all options)
	= 2/15						AG	A1	Correct answer legit obtained
						ŗ	Total:	2	
6(ii)	x	0	1	2	3	5		B1	Correct values for x in table. Any additional values must have $P(x)=0$ stated
	P(X=x)	2/30	5/30	4/30	13/30	6/30			
								B1	One correct prob other than P(2) or P(3)
								B1	Correct P(3)
					77			B1	All correct
						,	Total:	4	
6(iii)	P(A1 Sum :	$3) = \frac{P(1)}{1}$	$A1 \cap Sun$ $P(Sum3)$	$\left(\frac{m3}{m3}\right) = \frac{5/m}{m^2}$	10×4/6 13/30			M1	Attempt at $P(A1 \cap Sum 3)$ as num or denom of a fraction, can be by counting
								M1	Their P(3) from (ii) as num or denom of a fraction
	= 10/13(0.7	(69)				4		A1	
						7.5	Total:	3	

© UCLES 2017 Page 7 of 9

Question	Answer	Marks	Guidance
7(a)(i)	$0.674 = \frac{8.8 - \mu}{\sigma} \implies 0.674\sigma = 8.8 - \mu$	B1	±0.674 seen
	$-0.935 = \frac{7.7 - \mu}{\sigma} \implies -0.935\sigma = 7.7 - \mu$	B1	± 0.935 seen (condone ± 0.934)
		M1	An eqn with a z-value, μ and σ allow sq rt, sq cc
		M1	sensible attempt to eliminate μ or σ by substitution or subtraction
	$\sigma = 0.684$ $\mu = 8.34$	A1	correct answers (from –0.935)
	Total:	5	
7(a)(ii)	$P(<8.2) = P\left(z < \frac{8.2 - 7.9}{0.44}\right)$	M1	Standardising no cc no sq rt no sq
		M1	Correct area ie Φ , final solution
	= P(z < 0.6818) = 0.7524	A1	Correct prob rounding to 0.752
	$P(3) = {}^{5}C_{3} (0.7524)^{3} (0.2476)^{2}$	M1	Binomial 5C_x powers summing to 5, any p , $\Sigma p = 1$
	= 0.261	A1	5.0
	Total:	5	

© UCLES 2017 Page 8 of 9

Question	Answer		Guidance
7(b)	$P(< 1.5\mu) = P\left(z < \frac{1.5\mu - \mu}{\mu}\right) = P(z < 0.5)$		standardising with μ and $\sigma(\sigma)$ may be replaced by μ)
		DM1	just one variable
	= 0.692	A1	
	Total:	3	

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/61

Paper 6 October/November 2016

MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	61

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.

 Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	61

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	61

1	z = 0.674	M1		±0.674 seen
1	$0.674 = \frac{k - 20}{7}$			
	$0.674 = {7}$	M1		Standardising no cc, no sq, no sq rt
	<i>k</i> = 24.7	A1	[3]	•
2	diff 0 1 2 3 4 5	B1		0, 1, 2, 3, 4, 5 seen in table
	prob 6/36 10/36 8/36 6/36 4/36 2/36			heading or considering all different differences
		M1		Attempt at finding prob of any difference
	F (0.10.16.10.16.10.26	A1		1 correct prob
	Expectation = $(0+10+16+18+16+10)/36$ = $70/36$	M1		Probs summing to 1
	= 1.94	A1	[5]	
3 (i)	$0.9 \times 0.95 \times 0.85 \times 0.1 = 0.0727$	B1	[1]	
(ii)	P(0, 1, 2)	M1		Bin term ${}^{12}C_x(p)^x(1-p)^{12-x}p$
	= $(0.9)^{12} + {}^{12}C_1 (0.1)(0.9)^{11} + {}^{12}C_2 (0.1)^2 (0.9)^{10}$			$< 1, x \neq 0$ Bin expression $p = 0.1$ or $0.9, n$
	= 0.889		[3]	= 12, 2 or 3 terms
(iii)	$X \sim B(50, 0.85)$			50×0.85 seen oe can be
	Expectation = $50 \times 0.85 (= 42.5)$			implied Correct unsimplified mean and
	$Var = 50 \times 0.85 \times 0.15 \ (= 6.375)$	A1	[2]	var
4 (i)	$P(<1) = P\left(z < \frac{1-1.04}{0.017}\right) = P(z < -2.353)$	M1		Standardising no cc, no √ or sq
	= 1 - 0.9907	M1 A1	[2]	1 – Φ (final process)
	= 0.0093		[3] [1]	
(ii)	expected number $1000 \div 1.04 = 961$ or 962			Or anything in between
(iii)	iii) $z = -1.765$ $-1.765 = \frac{1-\mu}{0.017}$ =1.03			± 1.76 to 1.77
				Standardising must have a z-
			[3]	value, allow √ or sq
(iv)	expected number = $1000 \div 1.03 = 971$ or 970	B1√	[1]	Or anything in between, ft their (iii)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	61

5	(a)	e.g. P*N*P*P*L	M1		Mult by 5! in num
		$=\frac{5!}{3!}\times\frac{^{6}P_{4}}{2!}$	M1		Dividing by 3! or 2!
		= 3600	M1 A1	[4]	Mult by ⁶ P ₄ oe
(b)	(i)	$^{7}C_{5} \times ^{5}C_{4} \times ^{2}C_{1} \times ^{2}C_{1}$	M1		Mult 4 combs of which three are correct
		= 420	A1	[2]	are correct
	(ii)	both in team	M1		Evaluating both in team and
		${}^{6}C_{4} \times {}^{4}C_{3} \times 2 \times 2 = 240$	M1		subtracting from (i) 240 seen can be unsimplified ft their 420, their 240
		420 - 240 = 180 ways	A1		120, then 210
		OR Bat in bowl out + bowl in bat out + both out	M1		summing 2 or 3 options not
		$= {}^{6}C_{4} \times {}^{4}C_{3} \times 2 \times 2 + {}^{6}C_{5} \times {}^{4}C_{3} \times 2 \times 2 + {}^{6}C_{5} \times {}^{4}C_{4} \times 2 \times 2$	A1		both in team 2 or 3 options correct
		= 60 + 96 + 24 = 180 ways	A1		unsimplified Correct ans from correct working
		OR Bat in bowl out + bat out = $60 + {}^{6}C_{5} \times {}^{5}C_{4} \times 2 \times 2 = 60 + 120 = 180$ ways	M1 A1 A1	[3]	As above, or bowl in bat out + bowl out
6	(i)	$P(B, B) = 1/4 \times 2/5$	M1		Multiplying two different probs
		= 1/10	A1	[2]	
	(ii)	P(X=1) = P(R,R) + P(B,B) = 3/4 × 4/5 + 1/10 = 14/20 (7/10)	M1 M1 A1	[3]	Finding P(R, R) (=3/5) Summing two options
(iii)	P(B B)	M1		their (i) seen as num or denom of a fraction
		$= \frac{P(B \cap B)}{P(B)} = \frac{1/10}{3/4 \times 1/5 + 1/4 \times 2/5}$	M1		$3/4 \times p_1 + 1/4 \times p_2$ seen anywhere
			A1		1/4 (unsimplified) seen as num or denom of a fraction, www
		= 2/5	A1	[4]	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	61

7	(i)	Factory A	Factory <i>B</i> 3 1 5 8	M1		Attempt at ordering factory <i>B</i>
		9 9 8 8 7 4 3 0	4 24789	B1		Correct stem
		5 3 1 1 1	6 4	B1		Correct leaves factory A
	Key: 9 4 2 represents 0.049g for factory		B1		Correct leaves factory B	
		A and 0.042 g for factory B		B1	[5]	Correct key need factory A and factory B and units
	(ii)	median factory $B =$	0.048 g	B1		using their key i.e. 48, 0.48 etc
		IQR = UQ - LQ = 0.055 - 0.04		M1		Subt their LQ from their UQ for factory B
		= 0.015	T PD	A1	[3]	
	(iii)	generally heavier in Masses more spread		B1 B1	[2]	oe must refer to context, e.g. mass

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/62

Paper 6

October/November 2016

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	62

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.

 Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	62

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	62

			1		
1		$P(C \text{ given L}) = \frac{P(C \cap L)}{P(L)}$	M1		$P(C \cap L)$ seen as num or denom of a fraction
		$= \frac{0.65 \times 0.1}{0.65 \times 0.1 + 0.3 \times 0.15 + 0.05 \times 0.6}$	A1		Correct unsimplified $P(C \cap L)$ as numerator
		0.005	M1		Summing three 2-factor products seen anywhere
		$=\frac{0.065}{0.14}$	A1		0.14 (unsimplified) seen as num or denom of a fraction
		$=0.464, \frac{13}{28}$	A1	[5]	oe
2	(i)	$P(1 \text{ T-shirt}) = \frac{{}^{3}C_{1} \times {}^{9}C_{2}}{{}^{12}C_{3}}$	B1 B1		Correct num unsimplified Correct denom unsimplified
		= 27/55 AG	B1	[3]	Answer given, so process needs to be convincing
		OR $3/12 \times 9/11 \times 8/10 \times {}^{3}C_{1}$ oe	M1 M1	2/	Mult 3 probs diff denoms (not a/3 x b/4 x c/5) Mult by 3C_1 oe
		= 27/55 AG	A1		Answer given, so process needs to be convincing
	(ii)	X 0 1 2 3 Prob 84/220 27/55 27/220 1/220	B1		0, 1, 2, 3 only seen in top line (condone additional values if Prob stated as 0)
		1100 0 11223 2 1100 2 11223	B1 B1 B1√	[4]	One correct prob, correctly placed in table One other correct prob, correctly placed in table One other correct prob ft $\Sigma p = 1$, 4 values in table
3	(i)	Bin (7, 0.8) P(6, 7) = ${}^{7}C_{6} (0.8)^{6} (0.2)^{1} + (0.8)^{7}$ = 0.577	M1 M1 A1	[3]	$^{7}C_{n}$ p ⁿ $(1-p)^{7-n}$ seen Correct unsimplified expression for P(6,7)
	(ii)	mean = $100 \times 0.2 = 20$	B1		Correct unsimplified mean and var
		Var = $100 \times 0.2 \times 0.8 = 16$ P(at most 30) = $P\left(z < \frac{30.5 - 20}{\sqrt{16}}\right)$	M1 M1 M1	P	Standardising must have sq rt, their μ , variance cc either 29.5 or 30.5 Correct area Φ , from final process
		= P(z < 2.625) = 0.996	A1	[5]	*
4	(i)	$P(< 4.5) = P\left(z < \frac{4.5 - 4.2}{0.6}\right) = P(z < 0.5)$ = 0.6915	M1		Standardising once no cc no sq no sq rt
		$P(<3.5) = P\left(z < \frac{3.5 - 4.2}{0.6}\right) = P(z < -1.167)$ $= 1 - 0.8784 = 0.1216$	M1		$\Phi_1 - (1 - \Phi_2) [P_1 - P_2, 1 > P_1 > 0.5, 0.5 > P_2 > 0]$ oe
		0.6915 - 0.1216 = 0.570	A1	[3]	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	62

(iii)	$z = 1.175$ $1.175 = \frac{t - 4.2}{0.6}$ $t = 4.91$ $(0.88)^{n} < 0.003$ $n > \lg (0.003)/\lg (0.88)$ $n > 45.4$ $n = 46$	B1 M1 A1 M1 A1	[3]	± 1.17 to 1.18 seen Standardising no cc, allow sq, sq rt with z – value (not ± 0.8106 , 0.5478, 0.4522, 0.1894, 0.175 etc.) Correct answer from z = 1.175 seen (4sf) Inequality or eqn in 0.88, power correctly placed using n or ($n\pm 1$), 0.003 or (1 – 0.003) oe Attempt to solve by logs or trial and error (may be implied by answer) Correct integer answer
5 (i)	cw 5, 5, 10, 20, 40 fd 8, 6, 1.8, 1.7, 0.2 fd 8 0 10 20 30 40 50 60 70 80 90 Capacity (1000s)	M1 M1 A1 B1	[5]	cw either 4 or 5 etc fd or scaled freq [f/their cw attempt] fd may be ÷ 1000 Correct heights seen accurately on diagram Correct bar ends, accurately plotted on axis Labels fd and capacity (thousands) Correct horizontal scale required. Vertical scale linear from 0
(ii)	$(5\times40+10\times30+17.5\times18+32.5\times34+62.5\times8)/130$ = 2420/130 = 18.6 thousand	M1	[2]	$\Sigma fx/130$ where x is mid point attempt (value within class, not end pt or cw)
(iii)	median group = $8 - 12$ thousand LQ group = $3 - 7$ thousand	B1 B1	[2]	Thousands not needed

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	62

6	(i)	e.g. (OAEE)(CPNHGN) or cv $\frac{4!}{2!} \times \frac{6!}{2!} \times 2 = 8640$	M1 M1 A1	[3]	4!/2! or 6!/2! seen anywhere All multiplied by 2 oe
	(ii)	First Method Total ways = 10!/2!2! = 907200 EE together in 9!/2! ways = 181440 EE not together = 907200 - 181440 = 725760 OR Second Method	B1 M1 M1 A1	[4]	Total ways together correct EE together attempt alone Considering total – EE together
		C P N H G N O A in 8!/2! ways	B1		8!/2! Seen
		Insert E in 9 ways	M1		Interspersing an E, x n where n=7,8,9. Condone additional factors.
		Insert 2nd E in 8 ways, \div 2 Total = $8!/2! \times 9 \times 8 \div 2 = 725760$	M1 A1		Mult by $9\times8(\div2)$, ${}^{9}C_{2}$ or ${}^{9}P_{2}$ only oe
0 100 100 100 100	(iii)	First Method EN** in ${}^{6}C_{2}$ ways $= 15 \text{ different ways}$	M1 M1		6 C _x or y C ₂ seen alone or mult by $k > 1$, x<6, y>2 $(1x1x)^6$ C ₂ seen strictly alone or added to their EENN only
		EENN in 1 way Total 16 ways OR Second Method	B1 A1	[5]	
		Listing with at least 8 different correct options Listing all correct options Total = 15 different ways EENN in 1 way Total 16 ways	M1 M1 A1 B1 A1		Value stated or implied by final answer correct value stated
		·Satı	ore	P	Award 16 SRB2 if no method is present

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/63

Paper 6

October/November 2016

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	63

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.

 Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	63

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	63

1		total ways ${}^{10}C_5 = 252$ MW together e.g. (MW)*** in ${}^{8}C_3$ ways = 56 MW not together = $252 - 56$ = 196 ways OR 1 $2 {}^{8}C_4 + {}^{8}C_5$ $2 {}^{8}C_4 = 2x70 = 140; {}^{8}C_5 = 56$ $2 {}^{8}C_4 + {}^{8}C_5 = 196$ OR 2 $2 {}^{9}C_5 - {}^{8}C_5$ $2 {}^{9}C_5 = 2 \times 126 = 252; {}^{8}C_5 = 56$ $2 {}^{9}C_5 - {}^{8}C_5 = 196$	M1 B1 A1 M1 B1 A1 M1 A1	[3]	 10C₅ or 252 252 and 56 seen, may be unsimplified 2 ⁿC₄+ ⁿC₅ 140 and 56 seen may be unsimplified 2 ⁹C₅ 252 and 56 seen, may be unsimplified
2	(i)	$p = 1/3$ $P(\geqslant 2) = 1 - P(0, 1) = 1 - (2/3)^4 - {}^{4}C_{1}(1/3)(2/3)^3$ or $P(2,3,4) = {}^{4}C_{2}(1/3)^{2}(2/3)^{2} + {}^{4}C_{3}(1/3)^{3}(2/3) + (1/3)^{4}$ $= \frac{11}{27}, 0.407$	M1 M1 A1	[3]	Bin term ${}^4C_x p^x (1-p)^{4-x}$ $0Correct unsimplified answer$
	(ii)	P(sum is 5) = P(1, 1, 1, 2) ×4 = $(1/3)^4 \times 4$ = $\frac{4}{81}$, 0.0494	M1 M1 A1	[3]	1, 1, 1, 2 seen or 4 options Mult by (1/3) ⁴
3	(i)	e.g. **5 in ${}^{3}P_{2}$ ways = 6 **7 in ${}^{3}P_{2}$ = 6 Total 12 AG OR listing 457, 547, 467, 647, 567, 657, 475, 745 465, 645, 675, 765 Total 12 AG	M1 M1 A1 M1 M1	[3]	Recognising ends in 5 or 7, can be implied Summing ends in 5 + ends in 7 oe Correct answer following legit working Listing at least 5 different numbers ending in 5 Listing at least 5 different numbers ending in 7
	(ii)	1 digit in 2 ways 2 digits in *5 or *7 = ${}^{3}P_{1} \times 2 = 6$ 4 digits in ***5 or ***7 = ${}^{3}P_{3} \times 2 = 12$ Total ways = 32	M1 A1 A1	[3]	Consider at least 3 options with different number of digits. If no working, must be 3 or 4 from 2, 6, 12, 12 One option correct from 1, 2 or 4 digits
4	(i)	64/250, 0.256	B1	[1]	oe
	(ii)	190/250, 0.76(0)	B1	[1]	oe

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	63

/***	D/10 00/250 0/25	3.54		W D D D
(iii)	P(X) = 80/250 = 8/25	M1		attempt at P(X)
	P(Y) = 100/250 = 2/5	M1		attempt at P(Y)
	$P(X \cap Y) = 32/250 = 16/125$	B 1		oe
	$P(X) \times P(Y) = \frac{8}{25} \times \frac{2}{5} = \frac{16}{125}$	M1		comparing $P(X) \times P(Y)$ and $P(X \cap Y)$ so long as independence has not been assumed
	Since $P(X) \times P(Y) = P(X \cap Y)$ therefore independent	A1	[5]	correct answer with all working correct
5 (i)	cf 60 45	B1		Horizontal axis from min of 140 to 190 and vertical axis from 0 to minimum of 60 and two CF graphs on the same set of axes.
	30 boys	B1		Labels: CF; height (ht) in cm; girls; boys in correct places
	15	B1		CF graph going through (150, 0), (160, 20), (170, 43), (180, 55) and (190, 60)
	140 150 160 170 180 190 Ht in cm	B1	[4]	CF graph going through (140, 0), (150, 12), (160,33), (170,50), (180, 60) [and (190, 60)]
(ii)	42 (± 1) shorter than 165.	M1		Line or reading from 165 on their cf graph oe subtracting from 60
	(18(± 1))/60×100 = 30% (± 1.7%)	M1 A1	[3]	
(iii)	can see which is taller; see which of boys or girls is more spread out	B1	[1]	any sensible comment in context
6 (i)	$P(\text{small}) = P\left(z < \frac{95 - 150}{50}\right)$	M1	.0	± standardising using 95, no cc, no sq, no sq rt
	= P(z < -1.1) $= 1 - 0.8643$ $= 0.136$	M1 A1	[3]	1 - Φ (in final answer)
(ii)	z = 1.282	B 1		± rounding to 1.28
	$1.282 = \frac{x - 150}{50}$	M1		Standardised eqn in their z allow cc
	x = 214 g	A1	[3]	
(iii)	P(small) = 0.1357, P(large) = 0.1357 symmetry $P(\text{medium}) = 1 - 0.1357 \times 2 = 0.7286 \text{ AG}$	B1	[1]	Correct answer legit obtained
(b)	Expected cost per banana = $0.1357 \times 10 + 0.1357 \times 25 + 0.7286 \times 20 = 19.3215$ cents Total cost of 100 bananas = 1930 (cents) (\$19.30)	*M1 DM1 A1	[3]	Attempt at multiplying each 'prob' by a price and summing Mult by 100

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9709	63

7 (i	$P(2) = {}^{7}C_{2}(0.1)^{2}(0.9)^{5}$ = 0.124	M1 A1	[2]	Bin term ${}^{7}C_{2}p^{2}(1-p)^{5}$ 0
(iii	$(0.15)^{1}(0.1)^{2}(0.75)^{2} \times 5!/2!2!$	M1 M1		Mult probs for options, $(0.15)^a(0.1)^b(0.75)^c$ where $a + b + c$ sum to 5 Mult by 5!/2!2! oe
	= 0.0253 or 81/3200	A1	[3]	Hait of 5.12.2. 00
(iii	mean = 365×0.15 (= 54.75 or $219/4$) Var = $365 \times 0.15 \times 0.85$ (= 46.5375 or $3723/80$)	B1		Correct unsimplified mean and var, oe
	$P(x > 44) = P\left(z > \frac{44.5 - 54.75}{\sqrt{46.5375}}\right)$ $= P(z > -1.5025)$	M1 M1 M1		± Standardising need sq rt cc either 44.5 (or 43.5)
	= 0.933	A1	[5]	Correct answer accept 0.934

Cambridge International Advanced Subsidiary and Advanced Level

 MATHEMATICS
 9709/61

 Paper 6
 May/June 2016

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	61

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.

 Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or
 which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A
 or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For
 Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to
 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2016	9709	61

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	61

Question	Answer	Marks	Guidance
1	$z = 1.037$ $1.037 = \frac{1.8 - 1.62}{\sigma}$	B1 M1	Rounding to 1.04 Standardising attempt allow cc no sq rt must have a <i>z</i> -value i.e. not 0.8023 or 0.5596.
	$\sigma = 0.18/1.037 = 0.174$	A1 [3]	
2	P (throwing a 4) = $(1 - 0.4) / 4$ = 0.15	M1 A1	Sensible attempt to find P(1) Correct answer
	P(at most 1) = P(0, 1) or 1 – P(2, 3) = $(0.85)^3 + {}^3C_1 (0.15) (0.85)^2$	M1 M1	A binomial term with ${}^{3}C_{n}$ oe any p Binomial expression with ${}^{3}C_{n}$ P(0, 1) or $1 - P(2, 3)$ p = 0.15 or 0.85
	= 0.939	A1 [5]	p = 0.13 of 0.83
3 (i)	P (cup of coffee) = $0.6 \times 0.9 + 0.4 \times 0.3$ = 0.66	M1 A1 [2]	Summing two 2-factor probabilities Correct answer accept 0.660
(ii)	P(Not on time no cup of coffee)	M1	0.4×0.7 seen as num or denom of a fraction
	$= \frac{P(\text{noton time} \cap \text{no cup})}{P(\text{no cup})} = \frac{0.4 \times 0.7}{1 - 0.66}$	M1	Attempt at P(no cup) as $0.1 \times p_1 + 0.7 \times p_2$ or as $1 - (i)$ seen anywhere
	$= \frac{0.28}{0.34} = 0.824$	A1 [3]	
4	$[P(X=0)] = P(B, B) = 5/7 \times 4/6 = 10/21$	M1	Attempt to find P(0) or P(1) or P(2) can be seen as P(BB) etc. or table unsimplified
	$[P(X=1)] = P(G,B) + P(B,G) = 2/7 \times 5/6 \times 2$ = 10/21	A1	P(1) or P(BG)+P(GB) correct
	$[P(X=2)] = P(G, G) = 2/7 \times 1/6 = 1/21$	A1	P(0) or $P(2)$ correct must see X value
	E(X) = 0 + 10/21 + 2/21 = 4/7 (0.571)	B1√	Correct answer ft their probs P(1) and P(2)
	$Var(X) = 0 + 10/21 + 4/21 - (4/7)^{2}$ = 50/147 (0.340)	M1 A1 [6]	Attempt at $\Sigma x^2 p - [E(X)]^2$
5 (i)	$P(x < 3.0) = P\left(z < \frac{3.0 - 2.6}{0.25}\right) + P(z < 1.6) = 0.945$	M1 M1 A1 [3]	Standardising no sq rt no cc Correct area i.e. prob > 0.5 legit
(ii)	$X \sim B(500, 0.9452) \sim N(472.6, 25.898)$ $P\left(z > \frac{479.5 - 472.6}{\sqrt{25.89848}}\right) = P(z > 1.3558)$ $= 1 - 0.9125 = 0.0875$	M1 M1 M1 M1 A1 [5]	500 ×'0.9452' and 500×'0.9452'×('1 – 0.9452') seen oe Standardising must have sq rt. All M marks indep cc either 479.5 or 480.5 seen correct area i.e. < 0.5

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	61

Q	uestion	Answer	Marks	Guidance
	(iii)	500× 0.9452 and 500× (1–0.9452) are both > 5	B1 √ [1]	must see at least $500 \times 0.0548 > 50e$ ft their (i) accept $np > 5$, $nq > 5$ if both not $npq > 5$
6	(a) (i)	$9 \times 9 \times 8$ $= 648$	M1 M1 A1 [3]	Logical listing attempt
		OR $900 - 28 \times 9 = 648$		
	(ii)	$(7in 1 \times 8 \times 4 = 32 ways)$	M1	Listing #s starting with 7 or 9 and ending odd
		8 in 1 × 8 × 5 = 40 9 in 1 × 8 × 4 = 32	M1 M1	
	(b)	Total 104 ways R(6) T(5) D(4)	A1 [4]	
		$223 = {}^{6}C_{2} \times {}^{5}C_{2} \times {}^{4}C_{3} = 600$ $232 = {}^{6}C_{2} \times {}^{5}C_{3} \times {}^{4}C_{2} = 900$ $322 = {}^{6}C_{3} \times {}^{5}C_{2} \times {}^{4}C_{2} = 1200$	M1 M1	Mult 3 combs, ${}^{6}C_{x} \times {}^{5}C_{y} \times {}^{4}C_{z}$ Summing 2 or 3 three-factor outcomes can be perms, + instead of \times
		Total = 2700	A1 A1 [4]	2 options correct unsimplified
7	(i)	cf 16, 56, 104, 130, 160	M1	Attempt at cf table (up to 160) no graph needed accept %cf but give final
		160 cf 120	B1	linear scale minimum 0 to 160 and 0 to 120
		80 40	M1	Attempt to plot points at (30, 16), (50, 56), (70,104), (90, 130), (140, 160) up to 2 errors can have a polygon
		50 100 150 Amount spent \$	A1 [4]	All points correct from their scale and joined up, with (0,0) as well
	(ii)	median \$59	B1√	accept 57–60 or ft their graph if used lb, midpts instead of ub or assume linear interpolation.
		IQR = 82 - 43 = \$39	M1 A1√ [3]	Subt a (sensible) LQ from a sensible UQ (generous) Ans ft need a cf graph and UQ 80–84, LQ

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	61

Question	Answer	Ma	rks	Guidance
(iii)	160 - 149 = 11 OR 115 is mid pt of last interval so # of shoppers is $30/2 = 15$ (can be implied)	M1 A1	[2]	41–46 Subtracting from 160 can be implied Correct answer accept 9–16
(iv)	mean = $(15 \times 16 + 40 \times 40 + 60 \times 48 + 80 \times 26 + 115 \times 30)/160$ = $10250/160 = $64.1 = 64.1	M1 A1	[2]	Using $\Sigma x f/160$ with mid-points

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/62
Paper 6 May/June 2016

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	62

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2016	9709	62

AEF	Any Equivalent Form (of answer is equally acceptable)		
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)		
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)		
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)		
CWO	Correct Working Only – often written by a 'fortuitous' answer		
ISW	Ignore Subsequent Working		
MR	Misread		
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)		
sos	See Other Solution (the candidate makes a better attempt at the same question)		
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)		

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	62

Qu		Answer	Marks	Notes
1	(i)	0.8 M 0.65 T 0.2 NM 0.5 M 0.07 C 0.5 NM HC 1 M	M1	Correct shape with either one branch after HC or 2 branches with 0 prob seen correct Labelled and clear annotation
		NM	A1 [2]	All probs correct
	(ii)	$P(C \mid milk) = \frac{P(coffee \cap milk)}{P(milk)}$ $= \frac{0.28 \times 0.5}{0.65 \times 0.8 + 0.28 \times 0.5 + 0.07(\times 1)}$ $= \frac{0.14}{0.73}$	M1	Attempt at P(coffee∩ milk)as a two-factor prod only seen as num or denom of a fraction Summing appropriate three 2-factor products seen anywhere (can omit the 1)
		=0.192	A1 [3]	Correct answer oe
2	(i) (ii)	0.72 $np = 180 \times 0.72, npq = 180 \times 0.72 \times 0.28$ $X \sim N(129.6, 36.288)$ $P(x > 115) = P\left(z > \frac{115.5 - 129.6}{\sqrt{36.288}}\right)$ = P(z > -2.341) = 0.990	B1 [1] B1√ M1 M1 M1 A1 [5]	180×0.72 , $180 \times 0.72 \times 0.28$ seen, their values or correct Standardising (\pm) must have sq rt cc either 115.5 or 114.5 seen Correct area, Φ from final answer attempt fully correct method
3	(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 M1 A1 [3]	Probability Distribution Table, either k or correct numerical values Summing probs involving k to = 1, 3 or 4 terms
	(ii)	$E(X) = 1/10 + 4/10 + 9/10 + 16/10 = 3$ $Var(X) = 1/10 + 8/10 + 27/10 + 64/10 - 3^{2}$ $= 1$	B1 M1 A1 [3]	Correct mean Correct method seen for var, their k and μ

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	62

4	(i)	$p = 0.66X \sim B(15, 0.66)$ P(at least 14) = P(14, 15) =	M1	Bin term ${}^{15}C_x p^x (1-p)^{15-x}$ seen any p
		P(at least 14) = P(14, 15) = ${}^{15}C_{14} (0.66)^{14} (0.34) + (0.66)^{15}$	M1	Unsimplified correct expression for
		= 0.0171	A1 [3]	P(14,15)
	(ii)	$(0.87)^{n} < 0.04$	M1 M1	Eqn involving 0.87, power of n, 0.04 only Solving by logs or trial and error(can be implied). Must be exponential equation
		n=24	A1 [3]	Trade de Criponomias equation
5	(i)	Bronlea Rogate 6 3 0 4 5 7 7 7 4 3 1 0 1 3 5 6 8 8 7 5 4 2 1 2 3 3 6 3 2 3 4 5 4	B1 B1 B1	Correct single stem Correct ordered leaves Bronlea Correct ordered leaves Rogate Correct overall shape
		Key 3 1 5 represents 13 kph for Bronlea and 15 kph for Rogate	B1 [5]	Single key must have both towns and units consistent with their values
	(ii)	median Bronlea = 23 km per hour IQ range Rogate = $23 - 7$	B1 M1	Units not necessary Subt their LQ <14 from their UQ>14 from Rogate leaf
		= 16	A1 [3]	
	(iii)	Rogate is less windy than Bronlea	B1 [1]	Not a comparison of a statistic but interpretation of information
6	(i)	$P(x > 10.2) = P\left(z > \frac{10.2 - 9.5}{1.3}\right)$	M1	Standardising allow cc, sq rt, sq
		= P(z > 0.53846) $= 1 - 0.7046$ $= 0.295$	M1 A1 [3]	$1 - \Phi$ final solution attempt
	(ii)	$z = -1.282$ $-1.282 = \frac{t - 9.5}{1.3}$	B1 M1	\pm rounding to 1.28 seen Standardising correctly can be \pm z value here
		t = 7.83	A1 [3]	Correct answer from $z = -1.282$ only
	(iii)	P(x < 8.8) = 0.2954 by symmetry Days = 365×0.2954 = 107 or 108	B1 M1 A1 [3]	oe method, FT <i>their 0.2954 from (i)</i> Mult a probability <1 by 365 Correct answer (no decimals)
7	(a) (i)	$\frac{10!}{2!3!} = 302400$	B1 [1]	Exact value only, isw rounding

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	62

(ii)	e.g. *W******W*, **W*****W, W******W**	M1	8! Seen mult or alone. Cannot be embedded (arrangements of other 8 letters).
	$\frac{8!}{3!}$ × 3(for the Ws)	M1	Dividing by 3! (removing repeated L's)
	3! S(161 tille 1/15)	M1	Mult by 3 (different W positions) may be sum of 3 terms
	= 20160	A1 [4]	
(b)	S(5) A(7) C(4) 1 3 2 : $5 \times {}^{7}C_{3} \times {}^{4}C_{2} = 1050$ 1 4 1 : $5 \times {}^{7}C_{4} \times 4 = 700$	M1	Mult 3 combinations, 5C_x , 7C_y , 4C_z (not 5 x 7 x 4)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	2 correct options unsimplified
	(Outcomes : Options)	M1	Summing only 3 or 4 correct outcomes involving combs or perms
	Total = 3990	A1 [4]	

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS 9709/63
Paper 6 May/June 2016

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	63

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	63

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
MR PA	Misread Premature Approximation (resulting in basically correct work that is insufficiently accurate)
	Premature Approximation (resulting in basically correct work that is insufficiently

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	63

	Qu	Answer		Ma	rks	Guidance	
1	(i)	Wears specs	Not wears specs	Total 25	B1		One correct row or col including total
		Not RH 2	3	5			other than the Total row/column
		Total 8	22		B 1	[2]	All correct
	(ii)	P(X) = 25/30, P(Y) =	= 8/30		M1		P(X) or $P(Y)$ from their table or correct from question (denom 30) oe
		$P(X) \times P(Y) = 25/30$ $P(X \cap Y) = 6/30 = 1/3$			M1		Comparing their $P(X) \times P(Y)$ (values substituted) with their evaluated $P(X \cap Y)$ – not $P(X) \times P(Y)$
		Not independent		TF	A1	[3]	
2	(i)	girls	(9)		B1		Labels 'time' and 'seconds', 'boys' and 'girls' on correct plots and scaled line
		boys			B1		One box and whisker all correct on graph paper – ignore boy or girl label
		4 6 8		Time in secon	B1	[3]	Second box and whisker all correct (on graph paper and ignore boy/girl label) on SAME scaled line.
	(ii)	girls smaller range of	or IQ range th	nan boys /girls	s B1		Any 2 comments – MUST be a
		less spread out oe girls generally quick median soys media boys almost symme	n (not mean)	oe	B1	[2]	comparison
3	(i)	P(0) = 6/36, P(1) =	10/36, P(2) =	8/36	B1		Table oe seen with 0, 1, 2, 3, 4, 5 (6 if
		P(3) = 6/36, P(4) = 4	4/36, P(5) = 2	2/36	B1 M1 A1	[4]	P(6) = 0) Any three probs correct $\Sigma p = 1$ and at least 3 outcomes All probs correct
	(ii)	mean score = $(0 \times 6 +$	1×10 +16 +1	8 +16+10)/36	6 M1		Using $\sum xp$ (unsimplified) on its own – condone
		= 70/36 (35/18, 1.94	l)		A1	[2]	$\sum p \text{ not } = 1$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	63

	Qu	Answer	Ma	rks	Guidance
4	(i)	1845/9 (= 205) c = 2205 - 205 = 2000	M1 A1		Accept (1845± anything)/ 9
		OR $\Sigma x = 2205 \times 9 \ (= 19845)$ $\Sigma x - \Sigma c = 1845$	M1		For 2205 × 9 seen
		$\Sigma c = 19845 - 1845 = 18000$ $c = 2000$	A1	[2]	
	(ii)	$var = \frac{477450}{9} - 205^2$ = 11025	M1 A1		For $\frac{477450}{9}$ – (their coded mean) ²
		OR var = $\frac{43857450}{9} - 2205^2$	M1		For their $\Sigma x^2/9 - 2205^2$ where Σx^2 is obtained from expanding $\Sigma (x-c)^2$ with
		= 11025	A1	[2]	$2c\Sigma x$ seen
	(iii)	new total = $2120.5 \times 10 = 21205$	M1		Attempt at new total
		new price = 21205 – 19845 = 1360	A1	[2]	
5	(i)	z = 1.015	B 1		Accept z between ± 1.01 and 1.02
		$1.015 = \frac{70 - 69}{\sigma}$	M1		Standardising
		$\sigma = 0.985 (200/203)$	A1	[3]	
	(ii)	58 + 9 = 67	M1		58 + 9 seen or implied (or 69-58 or 69-9)
		$P(>67) = P\left(z > \frac{67 - 69}{0.9852}\right)$	M1		Standardising $\pm z$ no cc allow their sd (must be $\pm ve$)
		24. Satpre	00.		Alt. 1 69-58 =11, P(>9)=P $\left(z > \frac{9-11}{0.9852}\right)$
		Sarbre			Alt.2 69-9 =60, P(>58) =P $\left(z > \frac{58-60}{0.9852}\right)$
		= P(z > -2.03) = 0.9788	M1		Correct prob area
		300 × 0.9788	M1		Multiply their prob (from use of tables) by 300
		= 293.6 so 293	A1	[5]	- accept 293 or 294 from fully correct working

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9709	63

Qu	Answer	Ma	rks	Guidance
6 (i)	7560 ways	B1	[1]	
(ii)	RxxxxxxG in $\frac{7!}{4!}$	B1		7! alone seen in num or 4! alone in denom Must be in a fraction. $\frac{7!\times 2}{4!\times 2}$ gets full marks
	= 210 ways	B1	[2]	
(iii)	eg EEEExxxxx in $\frac{6!}{2!}$	B1		6! or 5! \times 6 seen in numerator or on own Can be 6! \times k but not 6! \pm k
	= 360 ways	B1	[2]	Can be of who but not of ± h
(iv)	1 R eg RVG or RVN or RGN = 3	B1	[1]	
(v)	no Rs eg VGN or 3C3 ways = 1 2 Rs eg RRV or 3C1 ways = 3	M1		Summing at least 2 options for R
	Total = 7	A1 A1	[3]	Correct outcome for no Rs or 2 Rs – evaluated
7 (i)		M1 M1		Bin term with ${}^{12}C_r p^r (1-p)^{12-r}$ seen $r\neq 0$ any $p<1$ Summing 2 or 3 bin probs $p=0.65$ or 0.35 , $n=12$
	= 0.541	A1	[3]	
(ii)	$P(\overline{RRR}R) = 0.35 \times 0.35 \times 0.35 \times 0.65$ $= 0.0279$	M1 A1	[2]	Mult 4 probs either $(0.35)^3(0.65)$ or $(0.65)^3(0.35)$
(iii)	P(7) = 0.2039 (unsimplified)	B1		$^{12}\text{C}_7 (0.65)^7 (0.35)^5$
	Mean = 250×'0.2039' (= 50.9798) Var = 250×'0.2039' × '(1 – 0.2039)' (= 40.5851)	B1		Correct unsimplified np and npq using 'their 0.2039' but not 0.65 or 0.35
	$P(>54) = P\left(\frac{54.5 - 50.9798}{\sqrt{40.5851}}\right)$ $= P(z > 0.5526)$	M1 M1		Standardising need sq rt – must be from working with 54 cc either 53.5 or 54.5
	$= 1 - \Phi(0.5526) = 1 - 0.7098$	M1		correct area $<$ 0.5 i.e. $1 - \Phi$ - must be from working with 54
	= 0.290	A1	[6]	

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the March 2016 series

9709 MATHEMATICS

9709/62

Paper 6 (Probability and Statistics), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE® and Cambridge International A and AS Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9709	62

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9709	62

AEF AG	Any Equivalent Form (of answer is equally acceptable) Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √*" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9709	62

1	(i)	$\Sigma x = 862$				B1	1	Must be stated or replaced in (ii) Can see (i) and (ii) in any order	
	(ii)	362/10 + a = a = 50	= 86.2			M1 A1	2	86.2 ± 36.2 seen oe Correct answer, nfww	
2		No of W Prob $P(0) = 8/10$			6/90	B1 M1		0, 1, 2, seen in table with attempt at prob.3-factor prob seen with different denoms.	
		P(1W) = P(1W	/90 W, W, NW)	•		M1 A1	4	Mult by 3 All correct	
3	(i)	P(R) [(1, 4) = 10/64	,(2,5), (3,6),((4,7),(5,8)]	× 2/64	M1 A1	2	List of at least 4 different options or possibility space diagram Correct answer	
	(ii)	P(S) = [(3,8)] $(5,7)(5,6)(6,6)$ $(5,5)(6,6)(7,6)$ $= 28/64$	8)(6,7)(7,8)		(5,8)	M1	2	List of at least 14 different options or ticks oe from possibility space Correct answer	
	(iii)	$P(R \cap S) = 4/64 \neq 10/64$ Events are n	4 × 28/64	ent		B1 M1	3	Comparing their $P(R \cap S)$ with (i) ×(ii) with values Correct answer	
4	(i)	32		5		B1	1	.5/	
!=	(ii)	freqs 0 fd 0 cf		9 4 0.6 0.2	Satpr	M1	Ċ	attempt at fd or scaled freq (at least 3 f/cw attempt)	
		<u>2</u> 4				A1		correct heights seen on diagram	
		1				B1		Correct bar ends	
		0 10 2	T T T T T T T T T T T T T T T T T T T		70 80 Γime (mins)	B1	4	Labels fd and time (mins) and linear axes or squiggle	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9709	62

(iii)	$(17.5 \times 18 + 35 \times 32 + 52.5 \times 9 + 70 \times 4)/63$	M1		$\Sigma fx/63$ where x is midpoint attempt not
	= 2187.5/63 = 34.7	A1	2	end pt or cw Correct answer
5 (i)	P(Abroad given camping) $= \frac{P(A \cap C)}{}$	M1 A1		Attempt at $P(A \cap C)$ seen alone anywhere Correct answer seen as num or denom of a
	$-\frac{1}{P(A \cap C) + P(H \cap C)}$ 0.35×0.15	M1		fraction
	$= \frac{0.33 \times 0.13}{0.35 \times 0.15 + 0.65 \times 0.4}$	A1		Attempt at $P(C)$ seen anywhere Correct unsimplified answer seen as num
	$=\frac{0.0525}{}$			or denom of a fraction
	0.3125 = 0.168	A1	5	Correct answer
(ii)	$(0.65)^{n} < 0.002$	M1		Eqn with 0.65 or 0.35, power n , 0.002 or
	$n > \lg (0.002)/\lg(0.65)$	M1		0.998 Attempt to solve their eqn by logs or trial
	n = 15	A1	3	and error need a power Correct answer
			3	
6 (i)	$^{15}P_5$ = 360360	M1 A1	2	oe, can be implied Not ¹⁵ C ₅ Correct answer
(ii)	$5 \times 10 \times 4 \times 9 \times 3$ $= 5400$	M1 A1	2	Mult 5 numbers Correct answer
(iii)	M(5) F(10) 3 2 = ${}^{5}C_{3} \times {}^{10}C_{2} = 450 \text{ ways}$ 4 1 = ${}^{5}C_{4} \times {}^{10}C_{1} = 50$ 5 0 = ${}^{5}C_{5} \times {}^{10}C_{0} = 1$ Total = 501 ways	M1 M1	3	Mult 2 combs, ${}^5C_x \times {}^{10}C_y$ Summing 2 or 3 two-factor options, x + y = 5 Correct answer
(iv)	(Couple) M(4) F(9) ManWife + 3 $0 = {}^{4}C_{3} \times {}^{9}C_{0} = 4$ ManWife + 2 $1 = {}^{4}C_{2} \times {}^{9}C_{1} = 54$	M1 M1	O	Mult 2 combs ${}^{4}C_{x}$ and ${}^{9}C_{y}$ Summing both options $x + y = 3$, gender correct
	Total = 58	A1	3	Correct answer
7 (i)	z = -1.645	B1		± 1.64 to 1.65 seen
	$-1.645 = \frac{0.9 - m}{0.35}$	M1		Standardising with a z-value accept $(0.35)^2$
	m = 1.48	A1	3	Correct answer
(ii)	$P(<2) = P\left(z < \frac{2 - 1.476}{0.35}\right)$	M1		Standardising no sq, FT their m, no cc
	= P(z < 1.50) = 0.933	M1 A1		Correct area i.e. F Accept correct to 2sf here
	$ Prob = (0.9332)^4 \\ = 0.758 $	M1 A1	5	Power of 4, from attempt at $P(z)$ Correct answer

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9709	62

(iii)	$P(t > 0.6\mu) = P\left(z > \frac{0.6\mu - \mu}{\mu/3}\right)$	M1		Standardising attempt with 1 or 2 variables
	= P(z > -1.2) = 0.885	M1 A1	3	Eliminating μ or σ Correct final answer

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	61

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work
 only. A and B marks are not given for fortuitously "correct" answers or results obtained
 from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *q* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	61

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	4 Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2015	9709	61

1		$p = 0.76$ P(fewer than 10) = 1 - P(10, 11) $= 1 - (0.76)^{10}(0.24)^{11}C_{10} - (0.76)^{11}$ $= 1 - 0.219$ $= 0.781$	M1 M1 M1 A1	[4]	Any binomial term ${}^{11}C_xp^x(1-p)^{11-x}, \ 0 Any binomial term {}^nC_x(0.76)^x(0.24)^{n-x} 1 - P(10, 11) oe binomial expression Correct answer$
2		$\mu = 54.1$ $z = -1.11$ $-1.11 = \frac{50.9 - 54.1}{\sigma}$ $\sigma = 2.88$	B1 B1 M1	[4]	Stated or evaluated Accept rounding to \pm 1.1 Standardising no cc no sq rt Correct answer
3	(i)	a = 9/cw = $9/2 = 4.5$ 1.5 = b/4 so $b = 6$	M1 A1 A1	[3]	Using fd = f/cw Correct a Correct b
	(ii)	fd 6- 4- 2- 60 62 64 66 68 70 72 Time in minutes	B1√ B1	[3]	Correct heights ft their <i>b</i> Correct widths, ie 3, 2, 3, 4 starting either 60 or 59.5 Labels fd, time or minutes and squiggle and bars from 59.5 to 71.5
4	(i)	$\overline{x} = 80 - 147/30 = 80 - 4.9$ = 75.1 sd = $\sqrt{\frac{952}{30} - \left(\frac{147}{30}\right)^2} = \sqrt{7.72}$ sd = 2.78	M1 A1 M1	[4]	For $-147/30$ oe seen Correct answer $952/30 - (\pm \text{ their coded mean})^2$ Correct answer
	(ii)	$P(x > 160) = P\left(z > \frac{160 - 148.6}{18.5}\right)$ $= P(z > 0.616)$ $= 1 - 0.7310$ $= 0.269$	M1 M1 A1	[3]	Standardising no cc no sq rt $1-\Phi$ Correct answer

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	61

5 (i)	5 (i) eg **(EEEE)*** Number of ways = $\frac{6!}{2!2!}$ = 180	M1 M1 A1 [3]	Mult by 6! oe Dividing by 2!2! oe Correct answer
(ii)	S*******T or T*******S Number of ways = $\frac{7!}{4!2!} \times 2$ = 210	M1 M1 A1 [3]	Mult by 7! Or dividing by one of 2! or 4! Mult by 2 Correct answer
(iii)	exactly one E in ⁶ C ₃ ways = 20	M1 M1 A1 [3]	⁶ C _x as a single answer ^x C ₃ as a single answer correct answer
6 (i)	0.4 S 0.6 F 0.6 F 0.6 F	M1 A1 A1 [3]	3 pairs S (bank, log in, success oe) and F oe seen no extra bits. Exactly 3 pairs, must be labelled Correct diagram with all probs correct
(ii)	x 0 1 2 3 Prob 0.4 0.144 0.216	B1 M1 A1 B1 [4]	P(0) correct Multiplying two of more factors of 0.4 and 0.6 One more correct prob One more correct prob
(iii)	$E(X) = 0.24 + 2 \times 0.144 + 3 \times 0.216$ = 1.176 (1.18)	M1 A1 [2]	Using $\Sigma p_i x_i$ Correct answer
7 (i)	let P(2, 4, 6) all = p then P(1, 3, 5) all = 2p 3p + 6p = 1 p = 1/9 so prob (3) = $2/9$ (0.222)	M1 M1 A1 [3]	Using P(even) = 2P(odd) or vice versa oe Summing P(odd+ even) or P(1, 2, 3, 4, 5, 6) = 1 Correct answer
(ii)	$P(5, 5, 6) = 2/9 \times 2/9 \times 1/9 \times {}^{3}C_{2}$ $= 4/243 (0.0165)$	M1 M1 A1 [3]	Mult three probs together Mult by 3 oe ie summing 3 options Correct answer
(iii)	$\mu = 100 \times 1/3 = 33.3, \ \sigma = 100 \times 1/3 \times 2/3 = 22.2$ $P(x \le 37) = P\left(z \le \frac{37.5 - \frac{100}{3}}{\sqrt{\frac{200}{9}}}\right) = P(z \le 0.8839)$	B1 M1 M1 M1	Unsimplified 100/3 and 200/9 seen Standardising need sq rt 36.5 or 37.5 seen correct area using their mean
	= 0.812	A1 [5]	Correct answer

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/62

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2015	9709	62

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2015	9709	62

AEF AG	Any Equivalent Form (of answer is equally acceptable) Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	62

1	$\sum x - 100n = 216$ $2416 - 100n = 216$ $n = 22$ OR $\frac{2416}{n} = \frac{216}{n} + 100$ $n = 22$	B1 B1 B1 3 B1 B1	$\Sigma x - 100n$ seen Subst 2416 for their Σx Correct answer 2416/n seen or $216/n + 100$ oe eg $\Sigma x/n - 100 = 216/n$ correct equation Correct answer
2	P(no men) $\frac{{}^{9}C_{6}}{{}^{16}C_{6}} = \frac{84}{8008} = \frac{21}{2002} = \frac{3}{286}$ = 0.0105 OR $\frac{9}{16} \times \frac{8}{15} \times \frac{7}{14} \times \frac{6}{13} \times \frac{5}{12} \times \frac{4}{11} = 0.0105$	B1 B1 B1 3 B1 B1 B1	9 C $_6$ seen anywhere 16 C $_6$ seen as denom of fraction oe Correct final answer $(9 \times 8 \times 7 \times 6 \times 5 \times 4)$ seen anywhere Correct unsimplified denom Correct final answer
3 (i)	$\frac{1}{4}$	B1 1	
(ii)	$\left(\frac{3}{4}\right)^4 \left(\frac{1}{4}\right) = \frac{81}{1024} = 0.0791$	M1 A1 2	Expression of form $p^4(1-p)$ only, $p = 1/4$ or $3/4$ Correct answer
(iii)	P(all diff) = $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times 4!$ = $\frac{3}{32}$ (0.0938) OR $1 \times \frac{3}{4} \times \frac{2}{4} \times \frac{1}{4} = \frac{3}{32}$	M1 M1 A1 3	4! on numerator seen mult by $k \ge 1$ or $3 \times 2 \times 1$ on num oe, must be in a fraction. 4^4 on denom or 4^3 on denom with the $3 \times 2 \times 1$ Correct answer
4 (i)	Two in same taxi: ${}^{6}C_{2} \times {}^{4}C_{4} \times 2 \text{ or } {}^{6}C_{2} + {}^{6}C_{4}$ = 30	M1 M1 A1 3	⁶ C ₄ or ⁶ C ₂ oe seen anywhere 'something' ×2 only or adding 2 equal terms Correct final answer
(ii)	MJS in taxi $({}^{5}C_{1} \times 2 \times 2) \times {}^{4}P_{4}$ $= 480$	M1 M1 M1	⁵ P ₁ , ⁵ C ₁ or 5 seen anywhere Mult by 2 or 4 oe Mult by ⁴ P ₄ oe eg 4! or 4× ³ P ₃ or can be part of 5! Correct final answer

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2015	9709	62

	I			
5 (i)	team A	team B	B1	Correct stem can be upside down, ignore extra values, allow 70, 80 etc with
	7	5 7 9		suitable numerical key
	4 4 2 8	2 3 4 6	B1	Correct team A must be on LHS,
	9 8 7 6 1 9	4 5 6		alignment \pm half a space, no late entries
	9 7 4 0 10	1 8		squeezed in, no crossing out if shape is
	6 5 11	1 3 5		changed
	2 12		B1	Correct team <i>B</i> in single diagram can be
				either LHS or RHS
		for team A and 94 kg for B	B1 4	Correct key or keys for their diagram/s,
	Rey 1 5 1 means 51 kg	Tor tourn 71 and 71 kg for B	D1 4	need both teams, at least one kg.
(ii)	LQ = 91 UQ = 109		B1	Both quartiles correct
	IQ range = 18		B1 √ 2	Correct IQR ft wrong quartiles, LQ < UQ, not
				12 – 4 etc
Z***\	D 4000		2.65	
(iii)	$\sum x_{15} = 1399$ $\sum x_{16} = 16 \times 93.9 = 1502.$	1	M1 M1	Attempt at Σx_{15} for either team Mult 93.9 by 16 attempt
	New wt = $1502.4 - 1399$		A1 3	Correct answer
(()				
6 (i)		Spinner A		\ \ \ \
		2 3 3		
			B1 1	/ / /
	-3 (-2)	-1 0 0		
	Spinner B -2 -1	0 (1) 1		1/
	$\begin{bmatrix} & B & & & \\ & & -1 & & 0 \end{bmatrix}$	2 2		
	-1 0			
	1 2	3 4 4	0	
/AN				
(ii)	$\begin{vmatrix} x & -2 & -1 & 0 \end{vmatrix}$	1 2 3 4	M1	Their values in (i) as the top line, seen listed in (ii) or used in part (iii)
	1 2 4		M1	Attempt at probs seen evaluated, need at
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		least 4 correct from their table
	10 10 16	10 10 10 10	A1 3	Correct table seen
(iii)	E(X) = 1	2	M1	Attempt at $E(X)$ from their table if $\Sigma p = 1$
	$Var(X) = ((-2)^2 + 2 + 3)$	$+12+9+32)/16-1^2$	M1	Evaluating $\Sigma x^2 p$ – [their $E(X)$] ² allow $\Sigma p \neq 0$
	$=\frac{62}{16}-1$			1 but all <i>p</i> 's <1
	10			
	$= \left(\frac{23}{8}\right) (2.875)$		A1 3	Correct answer
	(- /	(9+8+4+0+3+4+18)/16	M1	
		, ,		
	$=\frac{46}{16}=2.875$		M1 A1	
			Δ1	

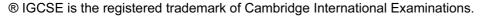
Page 6	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2015	9709	62

(iv)	P(even given +ve)	M1	Counting their even numbers and dividing
	· · · · · ·		by their positive numbers
	$=\frac{5}{9}$	A1 2	Correct answer
	OR P(even given +ve) = $\frac{\left(\frac{5}{16}\right)}{\left(\frac{9}{16}\right)}$	M1	Using cond prob formula not P(E) × P(+ve) need fraction over fraction accept any of $\frac{5/16 or 6/16 or 9/16}{9/16 or 10/16 or 13/16}$
	$= \frac{5}{9}(0.556)$	A1	Correct answer
7 (a) (i)	$P(x > 3900) = P\left(z > \frac{3900 - 4520}{560}\right)$	M1	Standardising no cc no sq rt no sq
	$= P(z > -1.107) = \Phi(1.107)$	M1	Correct area Φ ie > 0.5
	= 0.8657 Number of days = $365 \times 0.0.8657$	A1	Prob rounding to 0.866
	= 315 or 316 (315.98)	B1 √ 4	Correct answer ft their wrong prob if previous A0, $p < 1$, ft must be accurate to 3sf
(ii)	z = 1.165	B1	± 1.165 seen
	$1.165 = \frac{8000 - m}{560}$	M1	Standardising eqn allow sq, sq rt, cc, must have z-value eg not 0.122, 0.878, 0.549, 0.810.
	m = 7350 (7347.6)	A1 3	Correct answer rounding to 7350
(iii)	$P(0, 1) = (0.878)^6 + {}^6C_1(0.122)^1(0.878)^5$	M1	Binomial term ${}^{6}C_{x} p^{x} (1-p)^{6-x} 0$
	13	M1	seen Correct unsimplified expression
	= 0.840 accept 0.84 Normal approx. to Binomial. M0, M0, A0	A1 3	Correct answer
(b)	$P(<2\mu) = P\left(z > \frac{2\mu - \mu}{\sigma}\right) = P\left(z < 1.5\right)$	M1 M1	Standardising with μ and σ Attempt at one variable and cancel
	= 0.933	A1 3	Correct answer

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS


9709/63 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2015	9709	63

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2015	9709	63

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2015	9709	63

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		B1		$\Sigma(t-2.5) = 75 \text{ B0 until} \div 250$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$sd = \sqrt{\frac{96.1}{250} - (0.3)^2}$	M1		Subst in variance formula both terms coded
		, == -	A1	3	Correct answer
		Alt: $\Sigma(t-2.5)^2$ expanded	Or		
a 1 3		$\Sigma t^2 = 2033.6$	B 1		
a 2 (i) P(X) = $\frac{20}{28} \left(\frac{5}{7}\right)$ (0.714),71.4% BI 1 oc (ii) P(F) = $\frac{20}{28} \times \frac{1}{4} \times \frac{8}{28} \times \frac{6}{10} = \frac{7}{20}$ M1 Summing two 2-factor probs created by One of ½ or ½ multiplied by 20/28 or 8/28 Added to 4/10 or 6/10 × altn population prob (iii) P(X F) = $\frac{5/28}{7/20} = \frac{25}{49}$ (0.510) M1 Their unsimplified country X probability (5/28) as num or denom of a fraction Or (their fair hair population) ÷ (total fair hair pop) A1 2 Correct answer 3 (i) P(S) = $\frac{3}{16}$ M1 Sensible attempt at P(S) P(S∩T) = $\frac{2}{16}$ M1 Sensible attempt at P(T) P(S) × P(T) = $\frac{3}{64} \neq \frac{2}{16}$ M1 Correct P(S∩T) Not independent A1 5 Correct conclusion following all correct working (ii) not exclusive since P(S∩T) ≠ 0 Or counter example e.g. 1 and 3 Or P(SUT) ≠ P(S) + P(T) with values 4 (i) z = 1.127 Correct Sensible attempt at P(S) P(T) with value and statement. B1 ± 1.127 seen accept rounding to ±1.13 Standardising no cc no sq rt, with attempt at a z z z z (not ±0.8078, ±0.5517, ±0.13, ±0.87)		$sd = \sqrt{\frac{2033.0}{250}} - 2.8^2$	M1		
(iii) $P(F) = \frac{20}{28} \times \frac{1}{4} \times \frac{8}{28} \times \frac{6}{10} = \frac{7}{20}$ M1 Summing two 2-factor probs created by One of $\frac{7}{4}$ or $\frac{7}{4}$ multiplied by 20/28 or 8/28 Added to 4/10 or 6/10 × altn population prob Correct answer (iii) $P(X F) = \frac{5/28}{7/20} = \frac{25}{49}(0.510)$ M1 Their unsimplified country X probability (5/28) as num or denom of a fraction Or (their fair hair population) ÷ (total fair hair pop) A1 2 Correct answer 3 (i) $P(S) = \frac{3}{16}$ P(T) = $\frac{4}{16}$ M1 Sensible attempt at P(T) P(T) = $\frac{2}{16}$ P(T) = $\frac{3}{64} \neq \frac{2}{16}$ M1 Sensible attempt at P(T) M1 Correct P(T) P(T) = $\frac{3}{64} \neq \frac{2}{16}$ M1 comp P(T) with P(T) (their values), evaluated Not independent A1 5 Correct conclusion following all correct working (ii) not exclusive since P(T) = 0 Or counter example e.g. 1 and 3 Or P(T) not obtained from P(T) with value and statement. FI their P(T), not obtained from P(T) × P(T), with value and statement. B1 T 1.127 = T 1.13 Standardising no cc no sq rt, with attempt at		= 0.543	A1	3	expression, 250 and 2.0 in variance formula
A1 2 Correct answer (iii) $P(X F) = \frac{5/28}{7/20} = \frac{25}{49} (0.510)$ M1 Their unsimplified country X probability (5/28) as num or denom of a fraction Or (their fair hair population) ÷ (total fair hair pop) A1 2 Correct answer 3 (i) $P(S) = \frac{3}{16}$ $P(T) = \frac{4}{16}$ M1 Sensible attempt at $P(S)$ M1 Sensible attempt at $P(T)$ $P(S) = \frac{3}{64} \neq \frac{2}{16}$ M1 Correct $P(S \cap T)$ $P(S) \times P(T) = \frac{3}{64} \neq \frac{2}{16}$ M1 Correct $P(S \cap T)$ $P(S) \times P(T) = \frac{3}{64} \neq \frac{2}{16}$ M1 Correct $P(S \cap T)$ M1 comp $P(S) \times P(T)$ with $P(S \cap T)$ (their values), evaluated Not independent A1 5 Correct conclusion following all correct working (ii) not exclusive since $P(S \cap T) \neq 0$ Or counter example e.g. 1 and 3 Or $P(S \cup T) \neq P(S) + P(T)$ with values B1 FT their $P(S \cap T)$, not obtained from $P(S) \times P(T)$, with value and statement. FT their $P(S \cap T)$, not obtained from $P(S) \times P(T)$, with value and statement. Standardising no ce no sq rt, with attempt at $T \in T$ at $T \in T$ at $T \in T$ and $T \in T$	2 (i)	$P(X) = \frac{20}{28} \left(\frac{5}{7}\right) (0.714),71.4\%$	B1	1	oe
A1 2 Correct answer (iii) $P(X F) = \frac{5/28}{7/20} = \frac{25}{49} (0.510)$ M1 Their unsimplified country X probability (5/28) as num or denom of a fraction Or (their fair hair population) ÷ (total fair hair pop) A1 2 Correct answer 3 (i) $P(S) = \frac{3}{16}$ $P(T) = \frac{4}{16}$ M1 Sensible attempt at $P(S)$ M1 Sensible attempt at $P(T)$ $P(S) = \frac{3}{64} \neq \frac{2}{16}$ M1 Correct $P(S \cap T)$ $P(S) \times P(T) = \frac{3}{64} \neq \frac{2}{16}$ M1 Correct $P(S \cap T)$ $P(S) \times P(T) = \frac{3}{64} \neq \frac{2}{16}$ M1 Correct $P(S \cap T)$ M1 comp $P(S) \times P(T)$ with $P(S \cap T)$ (their values), evaluated Not independent A1 5 Correct conclusion following all correct working (ii) not exclusive since $P(S \cap T) \neq 0$ Or counter example e.g. 1 and 3 Or $P(S \cup T) \neq P(S) + P(T)$ with values B1 FT their $P(S \cap T)$, not obtained from $P(S) \times P(T)$, with value and statement. FT their $P(S \cap T)$, not obtained from $P(S) \times P(T)$, with value and statement. Standardising no ce no sq rt, with attempt at $T \in T$ at $T \in T$ at $T \in T$ and $T \in T$	(ii)	$P(F) = \frac{20}{100} \times \frac{1}{100} \times \frac{8}{100} \times \frac{6}{100} = \frac{7}{100}$	M1		Summing two 2-factor probs created by
(iii) $P(X F) = \frac{5/28}{7/20} = \frac{25}{49}(0.510)$ M1 Their unsimplified country X probability (5/28) as num or denom of a fraction Or (their fair hair population) + (total fair hair pop) A1 2 Correct answer 3 (i) $P(S) = \frac{3}{16}$ $P(T) = \frac{4}{16}$ M1 Sensible attempt at $P(S)$ M1 Sensible attempt at $P(S)$ M1 Sensible attempt at $P(T)$ M1 Correct $P(S \cap T)$ $P(S \cap T) = \frac{2}{16}$ $P(S) \times P(T) = \frac{3}{64} \neq \frac{2}{16}$ M1 Correct $P(S \cap T)$ with $P(S \cap T)$ (their values), evaluated Not independent A1 5 Correct conclusion following all correct working (ii) not exclusive since $P(S \cap T) \neq 0$ Or counter example e.g. 1 and 3 Or $P(S \cup T) \neq P(S) + P(T)$ with values A1 5 Their unsimplified country X probability (5/28) as num or denom of a fraction Or (their fair hair population) + (total f		28 4 28 10 20	F		One of 1/4 or 3/4 multiplied by 20/28 or 8/28
(6) 28) as film of denom of a fraction of their fair hair population) \div (total fair hair population) \div (sometimeness) \bullet (total fair hair population) \div (total fair hair population) \bullet (tota			A1	2	1 1
Or (their fair hair population) \div (total fair hair pop) A1 2 Correct answer 3 (i) $P(S) = \frac{3}{16}$ $P(T) = \frac{4}{16}$ M1 Sensible attempt at $P(S)$ $P(S) \times P(T) = \frac{2}{16}$ $P(S) \times P(T) = \frac{3}{64} \neq \frac{2}{16}$ M1 Correct $P(S \cap T)$ $P(S) \times P(T) = \frac{3}{64} \neq \frac{2}{16}$ M1 comp $P(S) \times P(T)$ with $P(S \cap T)$ (their values), evaluated Not independent A1 5 Correct conclusion following all correct working (ii) not exclusive since $P(S \cap T) \neq 0$ Or counter example e.g. 1 and 3 Or $P(S \cup T) \neq P(S) + P(T)$ with values $P(T) = \frac{1}{16}$ M1 FT their $P(S \cap T)$, not obtained from $P(S) \times P(T)$, with value and statement. B1 $\Rightarrow 1.127$ seen accept rounding to $\Rightarrow 1.13$ Standardising no cc no sq rt, with attempt at z $\Rightarrow 9.76$ A1 3 (not $\Rightarrow 0.8078, \Rightarrow 0.5517, \Rightarrow 0.13, \Rightarrow 0.87$)	(iii)	$P(X F) = \frac{5/28}{7/20} = \frac{25}{49}(0.510)$	M1		
3 (i) $P(S) = \frac{3}{16}$ M1 Sensible attempt at $P(S)$ Sensible attempt at $P(S)$ Sensible attempt at $P(T)$ M1 Sensible attempt at $P(T)$ Sensible attempt					Or (their fair hair population) ÷ (total fair
P($S \cap T$) = $\frac{2}{16}$ P($S \cap T$) = $\frac{3}{64} \neq \frac{2}{16}$ Not independent Not independent A1 5 Correct P($S \cap T$) with P($S \cap T$) (their values), evaluated Not exclusive since P($S \cap T$) $\neq 0$ Or counter example e.g. 1 and 3 Or P($S \cap T$) with values B1 \uparrow Their P($S \cap T$), not obtained from P($S \cap T$) \times P($T \cap T$), with value and statement. B1 \uparrow 1 \downarrow 1			A1	2	Correct answer
P($S \cap T$) = $\frac{2}{16}$ P($S \cap T$) = $\frac{3}{64} \neq \frac{2}{16}$ Not independent Not independent A1 5 Correct P($S \cap T$) with P($S \cap T$) (their values), evaluated Not exclusive since P($S \cap T$) $\neq 0$ Or counter example e.g. 1 and 3 Or P($S \cap T$) with values B1 \uparrow Their P($S \cap T$), not obtained from P($S \cap T$) \times P($T \cap T$), with value and statement. B1 \uparrow 1 \downarrow 1	3 (i)	$P(S) = \frac{3}{16}$	M1		Sensible attempt at P(S)
P($S \cap T$) = $\frac{2}{16}$ P($S \cap T$) = $\frac{3}{64} \neq \frac{2}{16}$ Not independent Not independent A1 5 Correct P($S \cap T$) with P($S \cap T$) (their values), evaluated Not exclusive since P($S \cap T$) $\neq 0$ Or counter example e.g. 1 and 3 Or P($S \cap T$) with values B1 \uparrow Their P($S \cap T$), not obtained from P($S \cap T$) \times P($T \cap T$), with value and statement. B1 \uparrow 1 \downarrow 1		$P(T) = \frac{4}{T}$	M1		Sensible attempt at P(<i>T</i>)
P(S) × P(T) = $\frac{3}{64} \neq \frac{2}{16}$ M1 comp P(S) × P(T) with P(S∩T) (their values), evaluated Not independent A1 5 Correct conclusion following all correct working (ii) not exclusive since P(S∩T) ≠ 0 Or counter example e.g. 1 and 3 Or P(SUT) ≠ P(S)+P(T) with values B1 \uparrow 1 FT their P(S∩T), not obtained from P(S) × P(T), with value and statement. B1 \uparrow 1 Standardising no cc no sq rt, with attempt at z $\sigma = 9.76$ A1 3 (not ±0.8078, ±0.5517, ±0.13, ±0.87)		16			
P(S) × P(T) = $\frac{3}{64} \neq \frac{2}{16}$ M1 comp P(S) × P(T) with P(S∩T) (their values), evaluated Not independent A1 5 Correct conclusion following all correct working (ii) not exclusive since P(S∩T) ≠ 0 Or counter example e.g. 1 and 3 Or P(SUT) ≠ P(S)+P(T) with values B1 \uparrow 1 FT their P(S∩T), not obtained from P(S) × P(T), with value and statement. B1 \uparrow 1 Standardising no cc no sq rt, with attempt at z $\sigma = 9.76$ A1 3 (not ±0.8078, ±0.5517, ±0.13, ±0.87)		sato	re		
Not independent A1 5 Correct conclusion following all correct working (ii) not exclusive since $P(S \cap T) \neq 0$ Or counter example e.g. 1 and 3 Or $P(SUT) \neq P(S) + P(T)$ with values B1 \uparrow^{h} 1 FT their $P(S \cap T)$, not obtained from $P(S) \times P(T)$, with value and statement. B1 \uparrow^{h} 1 \downarrow^{h} 1 Standardising no cc no sq rt, with attempt at z $\sigma = 9.76$ A1 3 (not $\pm 0.8078, \pm 0.5517, \pm 0.13, \pm 0.87$)			B1		Correct $P(S \cap T)$
(ii) not exclusive since $P(S \cap T) \neq 0$ Or counter example e.g. 1 and 3 Or $P(S \cup T) \neq P(S) + P(T)$ with values 4 (i) $z = 1.127$ $1.127 = \frac{136 - 125}{\sigma}$ $\sigma = 9.76$ B1 ϕ Standardising no cc no sq rt, with attempt at z $\sigma = 9.76$ Not exclusive since $P(S \cap T) \neq 0$ $P(T)$, not obtained from $P(S) \times P(T)$, with value and statement. B1 ϕ 1 ϕ 1 ϕ 1 ϕ 2 ϕ 3 ϕ 3 ϕ 4 ϕ 3 ϕ 4 ϕ 4 ϕ 6 ϕ 6 ϕ 6 ϕ 8 ϕ 6 ϕ 6 ϕ 8 ϕ 6 ϕ 9 ϕ 6 ϕ 8 ϕ 9 ϕ 6 ϕ 9 ϕ 6 ϕ 9 ϕ 6 ϕ 9 ϕ 6 ϕ 9 ϕ		$P(S) \times P(T) = \frac{3}{64} \neq \frac{2}{16}$	M1		* ` ' ` ' ` ' ` ' ` ' ` ' ` ' ` ' ` ' `
Or counter example e.g. 1 and 3 Or $P(SUT) \neq P(S) + P(T)$ with values B1 \downarrow^h 1 P(T), with value and statement. 4 (i) $z = 1.127$ $1.127 = \frac{136 - 125}{\sigma}$ $\sigma = 9.76$ B1 ± 1.127 seen accept rounding to ± 1.13 M1 Standardising no cc no sq rt, with attempt at z (not $\pm 0.8078, \pm 0.5517, \pm 0.13, \pm 0.87$)		Not independent	A1	5	E
Or $P(SUT) \neq P(S) + P(T)$ with values B1 1	(ii)	` / '			` ''
$1.127 = \frac{136 - 125}{\sigma}$ $\sigma = 9.76$ M1 Standardising no cc no sq rt, with attempt at z (not ±0.8078, ±0.5517, ±0.13, ±0.87)		, ,	B1 √	1	P(T), with value and statement.
$\sigma = 9.76$ at z (not $\pm 0.8078, \pm 0.5517, \pm 0.13, \pm 0.87$)	4 (i)		B1		\pm 1.127 seen accept rounding to \pm 1.13
$\sigma = 9.76$ A1 3 (not $\pm 0.8078, \pm 0.5517, \pm 0.13, \pm 0.87$)		$1.127 = \frac{136 - 125}{\sigma}$	M1		
, , , , , , , , , , , , , , , , , , , ,		σ = 9.76	A1	3	(not ± 0.8078 , ± 0.5517 , ± 0.13 , ± 0.87)

Page 5	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2015	9709	63

5	(ii) (a)	$P(131 < x < 141) = P\left(\frac{131 - 125}{9.76} < z < \frac{141 - 125}{9.76}\right)$ $= \Phi(1.639) - \Phi(0.6147)$ $= 0.9493 - 0.7307$ $= 0.2186$ Number = 0.2186 × 170 = 37 or 38 or awrt 37.2 e.g. **(AAOOOI)***** $\frac{8!}{2!2!} \times \frac{6!}{2!3!} = 604800$	M1 M1 M1 A1 4 B1 M1 A1 3	Standardising once with their sd, no $\sqrt{,^2}$, allow cc Correct area $\Phi 2 - \Phi 1$ Mult by 170, P<1 Correct answer, nfww 8! (8 × 7!) or 6! seen anywhere, either alone or in numerator) Dividing by at least 3 of 2!2!2!3! (may be fractions added) Correct answer
	(b)	C(7) E(6) A(4) 1	M1 A1 M1* DM1 A1 5	Mult 3 appropriate combinations together assume $6={}^6C_1$, $1={}^4C_0$ etc., $\sum r=4$, C&E both present At least 3 correct unsimplified products Listing at least 4 different correct options Summing at least 4 outcomes, involving 3 combs or perms, $\sum r=4$ Correct answer SC if CE removed, M1 available for listing at least 4 different correct options for remaining 2. DM1 for ${}^7C_1 \times {}^6C_1 \times (\text{sum of at least 4 outcomes})$
6	(i)	fd 0.9, 3, 4.2, 5.2, 1.4 fd 5 4 2 2 20.5 30.5 40.5 50.5 60.5 70.5 80.5 ht metres	M1 A1 B1 B1 4	Attempt at scaled freq [f/(attempt at cw)] Correct heights seen on diagram Scale no less than 1cm to 1 unit Correct bar widths visually no gaps Labels (ht/metres and fd or freq per 20 m etc.) and end points at 20.5 etc. condone 2 end point errors, scale no less than 1cm to 5m for 20,30 unless clearly accurate, linear scale between 20.5 and 80

Page 6	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2015	9709	63

(ii)	$(30.5 \times 18 + 43 \times 15 + 48 \times 21 + 55.5 \times 52 + 70.5 \times 28)/134$	M1		Attempt at unsimplified, mid points (at least 4 within 0.5)
	$=\frac{7062}{134}=52.701$	M1 A1		Attempt at Σfx their mid points ÷ 134 Correct mean rounding to 53
	Var = $(30.5^2 \times 18 + 43^2 \times 15 + 48^2 \times 21 + 55.5^2 \times 52 + 70.5^2 \times 28)/134 - 52.701^2$ = $392203.5/134 - 52.701^2 = 149.496$	M1		Attempts at Σfx^2 their mid points \div their Σf mean ²
	sd = 12.2	A1	5	Correct answer, nfww
7 (i)	$P(0, 1, 2) = (0.92)^{19} + {}^{19}C_1(0.08)(0.92)^{18} + {}^{19}C_2(0.08)^2(0.92)^{17}$	M1 M1		Binomial term ${}^{19}C_{x}p^{x}(1-p)^{19-x}$ seen $0Correct unsimplified expression$
	= 0.809	A1	3	Correct answer (no working SC B2)
(ii)	P(at least 1) = 1 - P(0) = 1 - P(0.92) ⁿ > 0.90 0.1 > (0.92) ⁿ n > 27.6	M1 M1		Eqn with their 0.92 ⁿ , 0.9 or 0.1, 1 not nec Solving attempt by logs or trial and error, power eqn with one unknown power
	Ans 28	A1	3	Correct answer, not approx., \approx , \geqslant , $>$, \leqslant , $<$
(iii)	$np = 1800 \times 0.08 = 144$ $npq = 132.48$	B1		correct unsimplified np and npq seen accept 132.5, 132, 11.5, awrt 11.51
	P(at least 152) = P $\left(z > \left(\frac{151.5 - 144}{\sqrt{132.48}}\right)\right)$	M1 M1		standardising, with $$ cont correction 151.5 or 152.5 seen
	= P(z > 0.6516) $= 1 - 0.7429$	M1		correct area $1 - \Phi$ (probability)
	= 0.257	A1	5	correct answer
(iv)	Use because 1800 ×0.08 (and 1800 × 0.92 are both) > 5	B1	1	$1800 \times 0.08 > 5$ is sufficient $np > 5$ is sufficient if clearly evaluated in (iii)
				If <i>npq</i> >5 stated then award B0

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	61

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	61

AEF	Any Equivalent Form (of answer is equally acceptable)		
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)		
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)		
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)		
CWO	Correct Working Only – often written by a 'fortuitous' answer		
ISW	Ignore Subsequent Working		
MR	Misread		
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)		
sos	See Other Solution (the candidate makes a better attempt at the same question)		
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)		

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	61

1		$P(x < 3.273) = 0.5 - 0.475 = 0.025$ $z = -1.96$ $\frac{3.2 - \mu}{0.714} = -1.96$ $\mu = 4.60s$	M1 A1 M1 A1 [4]	Attempt to find z-value using tables in reverse ±1.96 seen Solving their standardised equation z-value not nec Correct ans accept 4.6
2	(i)	UQ 5.5 - 7.0 cm	B1 [1]	
	(ii)	fd 5.33, 25, 28, 20.7, 6, fd 30	M1	Attempt at fd or scaled freq [fr/cw]
		25 - 20 - 15 -	A1	Correct heights seen on graph
		10 - 5 -	B1	Correct bar widths no gaps
		0 2 4 6 8 10 length in cm	B1 [4]	Labels (fd and length/cm) and correct bar ends
3	(i)	$P(A) = \frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{1}{3} = \frac{4}{9}$	M1 M1	Sensible attempt at P(A) Sensible attempt at P(B)
		$P(B) = \frac{27}{36} = \frac{3}{4}$	B1 M1	correct $P(A \cap B)$ Cf $P(A \cap B)$ with $P(A) \times P(B)$ need at least 1 correct
		$P(A \cap B) = \frac{12}{36} = \frac{1}{3}$	A1 [5]	Correct conclusion following all correct working
		$P(A) \times P(B) = \frac{4}{9} \times \frac{3}{4} = \frac{1}{3}$ Independent as $P(A \cap B) = P(A) \times P(B)$	P.	
	(ii)	Not mutually exclusive because $P(A \cap B)$ $\neq 0$ Or give counter example e.g. 1 and 6	B1√ [1]	ft their $P(A \cap B)$
4	(i)	$(1-x)0.9 + x \times 0.24 = 0.801$	M1	Eqn with sum of two 2-factor probs = 0.801
		x = 0.15	A1 A1 [3]	Correct equation Correct answer

Page 5	Page 5 Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	61

(ii)	$P(\ge 100 \text{ times given } \le 3 \text{ views})$ $\frac{P(\ge 100 \text{ times } \cap \ge 3 \text{ views})}{P(\ge 3 \text{ views})} =$ $\frac{0.85 \times 0.1}{0.85 \times 0.1 + 0.15 \times 0.76 \text{ or } 1 - 0.801}$ $= 0.427$	B1 M1 A1 A1 [4]	0.85×0.1 seen on its own as num or denom of a fraction Attempt at $P(\ge 3 \text{ views})$ either $(0.85 \times p_1 + 0.15 \times p_2)$ or $1 - 0.801$ seen anywhere Correct unsimplified $P(\ge 3 \text{ views})$ as num or denom of a fraction Correct answer
5 (i)	new mean = $\frac{9 \times 7.1 + 18 \times 5.2}{27}$ = 5.83	M1 A1 [2]	Mult by 9 and 18 and dividing by 27 correct answer
(ii)	1.45 ² = so $\frac{\sum x_t^2}{9}$ = 472.6125 mm $0.96^2 = \frac{\sum x_g^2}{18} - 5.2^2 \text{ so}$ $\sum x_g^2 = 503.3088$	M1 A1 A1	subst in a correct variance formula sq rt or not correct Σx_t^2 (rounding to 470) correct Σx_g^2 (rounding to 500)
	New sd ² $\frac{472.6^2 + 503.3^2}{27} - 5.83^2 = 2.117$ New sd = 1.46	M1 A1 [5]	using $\Sigma x_t^2 + \Sigma x_g^2$, dividing by 27 and subt comb mean ² correct answer
6 (i)	$P(5, 6, 7) = {}^{8}C_{5}(0.68)^{5}(0.32)^{3} + {}^{8}C_{6}(0.68)^{6}(0.32)^{2} + {}^{8}C_{7}(0.68)^{7}(0.32)$ $= 0.722$	M1 M1 A1 A1 [4]	Binomial term ${}^8C_x p^x (1-p)^{8-x}$ seen $0Summing 3 binomial termsCorrect unsimplified answerCorrect answer$
(ii)	$np = 340, npq = 108.8$ $P(x > 337) = P\left(z > \frac{337.5 - 340}{\sqrt{108.8}}\right)$ $= P(z > -0.2396)$ $= 0.595$	B1 M1 M1 M1 A1 [5]	Correct (unsimplified) mean and var standardising with sq rt must have used 500 cc either 337.5 or 336.5 correct area (> 0.5) must have used 500 correct answer
(iii)	np(340) > 5 and $nq(160) > 5$	B1 [1]	must have both or at least the smaller, need numerical justification
7 (a) (i)	$\frac{9!}{2!2!3!} = 15120 \text{ ways}$	B1 B1 [2]	Dividing by 2!2!3! Correct answer

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	61

(ii)	******* in $\frac{8!}{2!2!3!}$ = 1680 ways	B1	Correct ways end in 3
	*******7 in $\frac{8!}{2!3!}$ = 3360 ways	B1	Correct ways end in 7
	Total even		
	= 15120 - 1680 - 3360	M1	Finding odd and subt from 15120 or their (i)
	= 10080 ways OR	A1 [4]	` '
	********2 in 8!/2!3! = 3360 ways	B1	One correct way end in even
	*******6 in 8!/2!2!3! = 1680 ways	B1	correct way end in another even
	******** 8 in 8!/2!2!! = 5040ways	M1	Summing 2 or 3 ways
	Total = 10080 ways	A1	Correct answer
	OR		
	"15120" $\times 6/9 = 10080$	M2	Mult their (i) by 2/3 oe
		A2	Correct answer
(b)	T(3) S(6) G(14)		
	1 1 3 in $3 \times 6 \times {}^{14}C_3 = 6552$	M1	Mult 3 (combinations) together
	1 3 1 in $3 \times {}^{6}C_{3} \times 14 = 840$		assume $6 = {}^{6}C_{1}$ etc
	3 1 1 in $1 \times 6 \times 14 = 84$	M1	Listing at least 4 different options
	2 2 1 in ${}^{3}C_{2} \times {}^{6}C_{2} \times 14 = 630$	M1	Summing at least 4 different
	3 1 1 in $1\times6\times14 = 84$ 2 2 1 in ${}^{3}C_{2}^{6}C_{2}\times14 = 630$ 2 1 2 in ${}^{3}C_{2}\times6^{14}C_{2} = 1638$ 1 2 2 in $3^{6}C_{2}^{14}C_{2} = 4095$		options
	1 2 $2 \text{ in } 3 \times {}^{6}\text{C}_{2} \times {}^{14}\text{C}_{2} = 4095$	B1	At least 3 correct numerical options
	Total ways = 13839 (13800)	A1 [5]	Correct answer

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/62

Paper 6 (paper 6), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	62

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *q* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	62

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √*" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	62

1	P(3, 4, 5) =	M1		Bin expression of form ${}^{10}C_x(p)^x(1-p)^{10-x}$ any x any p
	$\begin{bmatrix} {}^{10}\text{C}_{3} \left(\frac{1}{6}\right)^{3} \left(\frac{5}{6}\right)^{7} + {}^{10}\text{C}_{4} \left(\frac{1}{6}\right)^{4} \left(\frac{5}{6}\right)^{6} + {}^{10}\text{C}_{5} \left(\frac{1}{6}\right)^{5} \\ \left(\frac{5}{6}\right)^{5} \end{bmatrix}$	A1		Correct unsimplified answer accept (0.17, 0.83), (0.16, 0.84), (0.16, 0.83), (0.17, 0.84) or more accurate
	(6)	A1	3	Correct answer
	= 0.222			
2	mid points 13, 30.5, 40.5, 50.5, 73	M1		Attempt at midpoints at least 3 correct
	Mean = $ \frac{4 \times 13 + 24 \times 30.5 + 38 \times 40.5 + 34 \times 50.5 + 20 \times 73}{120} $ $ = \frac{5500}{120} = 45.8 $	M1 A1		Using their midpoints i.e. cw, ucb, 1/2 cw and freqs into correct formula must be divided by 120 Correct answer from correct working
	$var = \frac{4 \times 13^{2} + 24 \times 30.5^{2} + 38 \times 40.5^{2} + 34 \times 50.5^{2} + 20 \times 73^{2}}{120} - (45.8)^{2}$ $= \frac{278620}{120} - 45.8^{2}$ $= 2321.8333 - 45.8^{2}$ $sd = 14.9$	M1	5	Evaluating $\frac{\sum fx^2}{120} - \text{their } \overline{x}^2 \text{ must see their } 45.8^2$ subtracted allow cw etc
3 (i)	- Sator	B1 B1 √		LQ = 2.6 med = 3.8–3.85, UQ = 6.4–6.6 Correct quartiles and median on graph ft
	0 1 2 3 4 5 6 7 8 9 10	B1		linear from 2–10 End whiskers correct not through box
	time in sec	B1	4	Label need seconds and linear 2–10 axis or can have 5 values on boxplot no line provided correct
(ii)	$1.5 \times IQR = 1.5 \times 3.8 = 5.7$	M1		Attempt to find 1.5 × IQR and add to UQ or subt from LQ OR compare 1.5 × IQR
	LQ - 5.7 = -ve, $UQ + 5.7 = 12.1$ i.e. > 10 So no outliers AG	A1	2	with gap 3.6 between UQ and max 10 Correct conclusion from correct working need both
4 (i)	$0.3 \times 0.72 + 0.7 \times x = 0.783$ $x = 0.81$	M1 A1 A1	3	Eqn with sum of two 2-factor probs =0.783 Correct equation Correct answer

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	62

F				
(ii)	$P(S \text{ given not like}) = \frac{P(S \cap NL)}{P(NL)}$	B1		0.3×0.28 seen on its own as num or denom of a fraction
	$= \frac{0.3 \times 0.28}{0.3 \times 0.28 + 0.7 \times 0.19 \text{ or } 1 - 0.783}$	M1		Attempt at P(NL) either $(0.3 \times p_1) + (0.7 \times p_2)$ or $1 - 0.783$ seen anywhere
	= 0.387 (12/31)	A1		Correct unsimplified $P(NL)$ as num or denom of a fraction
	,	A1	4	Correct answer
5 (i)	P(2Es 1O) = $\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times {}^{3}C_{2} = \frac{3}{5}$ (0.6) OR $C_{2}(C_{1}, 10) = {}^{3}C_{2} \times {}^{2}C_{1} = 6$	M1 M1 A1	3	$5\times4\times3$ seen in denom Mult a prob by ${}^{3}C_{2}$ oe Correct answer ${}^{3}C_{x}$ or ${}^{y}C_{2}$ or ${}^{2}C_{1}$ oe seen mult by $k \ge 1$ in
	P(2Es 1O) = $\frac{{}^{3}C_{2} \times {}^{2}C_{1}}{{}^{5}C_{3}} = \frac{6}{10}$	IVII		$\begin{array}{cccc} C_x & \text{of} & C_2 & \text{of} & C_1 & \text{oc} & \text{sectiminat} & \text{oy} & \kappa \geq 1 & \text{in} \\ \text{num} & & & & & & & & & \\ \end{array}$
	= 0.6	M1 A1		⁵ C ₃ seen in denom Correct answer
	OR 241, 247, 261, 267, 461, 467 = 6 options 124 126 127 146 147 167 246 247 267 467	M1 M1		List at least 3 of 241, 247, 261, 267, 461, 467 5C_3 or list to get all 10 options in denom see below
	Prob = 6/10	A1		Correct answer
(ii)	124 126 127 146 147 167 246 247 267 467	M1 A1 B1 B1 B1	5	Attempt at listing with at least 7 correct All correct and no others or all 60 1, 2, 4 only seen in top row Any two correct All correct
6 (a) ($ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Di	3	All collect
6 (a) (i	Number of ways = $\frac{5!}{3!}$ = 20	B1 B1 B1	3	5! Seen in num oe or alone mult by $k \ge 1$ 3! Seen in denom can be mult by $k \ge 1$ Correct final answer
(i:) B(AAA)NNS			
	Number of ways = $\frac{5!}{2!}$ or 5P_3 = 60	M1 M1 A1	3	5! seen as a num can be mult by $k \ge 1$ Dividing by 2! Correct final answer
(b)	$^{14}C_9$ total options = 2002 T and M both in $^{12}C_7$ = 792 Ans 2002 – 792 = 1210 OR	M1 B1 A1	3	¹⁴ C ₉ or ¹⁴ P ₉ in subtraction attempt ¹² C ₇ (792) seen Correct final answer
	Neither in ${}^{12}C_9 = 220$ One in ${}^{12}C_8 = 495$ Other in ${}^{12}C_8 = 495$	M1 B1		Summing 2 or 3 options at least 1 correct condone ${}^{12}P_9 + {}^{12}P_8 + {}^{12}P_8$ here only Second correct option seen accept another 495 or if M1 not awarded, any correct option

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9709	62

	total = 1210	A1	Correct final answer
7 (a) (i)	prob = $p\left(z < \frac{30 - 35.2}{4.7}\right)$ = $P(z < -1.106)$ = $1 - 0.8655 = 0.1345$ $0.1345 \times 52 = 6.99$	M1 M1 A1 A1 4	Standardising no sq rt no cc no sq $1-\Phi$ Correct ans rounding to 0.13 Correct final answer accept 6 or 7 if 6.99 not seen but previous prob 0,1345 correct
(ii)	$\Phi(t) = 0.648 \qquad z = 0.380$ $0.380 = \frac{t - 35.2}{4.7}$ $t = 37.0$	B1 M1 A1 3	0.648 seen standardising allow cc, sq rt,sq, need use of tables not 0.148, 0.648, 0.352, 0.852 correct answer rounding to 37.0
(b)	$\frac{7 - \mu = -0.8\sigma}{\sigma} \text{so} 7 - \mu = -0.8\sigma$ $\frac{10 - \mu}{\sigma} = 0.44 \text{so} 10 - \mu = 0.44\sigma$ $\mu = 8.94 \qquad \sigma = 2.42$	B1 B1 M1 M1 A1 5	\pm 0.8 seen \pm 0.44 seen An eqn with z-value, μ and σ no sq rt no cc no sq Sensible attempt to eliminate μ or σ by subst or subtraction, need at least one value Correct answers

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/63

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	63

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	63

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	63

1		z = 1.136		B1		\pm 1.136 seen, not \pm 1.14,
		$1.136 = \frac{195 - \mu}{22}$		M1		Standardising, no cc no sq rt, equated to their z not 0.128 or 0.872
		$\mu = 170$		A1	[3]	Correct answer, nfww
2	(i)					All values may be decimals or %
		Kitchen Kitchen To	otal	B1		2 probabilities correct
		On time 1/10 1/10		B1		2 further probabilities correct
		Not on 1/2 4/3	5			
		Total 3/5 4/10		B1	[3]	2 further probabilities correct
1	(ii)	P(not on time given kitchen mess) = $\frac{1}{3}$	2/5	M1		A cond prob fraction seen (using corresponding combined outcomes and total)
		= 5/6 o.e.		A1	[2]	FT from their values, 3sf or better, <1, 3/5ft<1
3		$\mu = 300 \times 0.072 = 21.6, \ \sigma^2 = 20.0448$		B1		300×0.072 seen and 300×0.072×0.928 seen or implied
		$P(x < 18) = P\left(z < \frac{17.5 - 21.6}{\sqrt{20.0448}}\right)$		M1		$(\sigma = 4.4771, \sigma^2 = 20(.0))$ oe ±Standardising, their mean/var, with sq root
		=P(z < -0.9157)		M1		Cont corr 17.5 or 18.5
		= 1 - 0.8201		M1		Correct area 1 - Φ
		= 0.180		A1	[5]	Answer wrt 0.180, nfww
4	(i)	$P(1 W) = 6/9 \times 3/8 + 3/9 \times 6/8$		M1		summing 2 two-factor probs (condone replacement) not ½×½ + ½×½
		$= \frac{1}{2} AG$	tore	A1	[2]	Correct answer, fully justified
		OR $\frac{{}^{6}C_{1} \times {}^{3} C_{1}}{{}^{9}C_{2}}$		M1		Using combinations consistent, correct format
		$= \frac{1}{2} AG$		A1		Correct answer, fully justified
	(ii)	$P(\overline{W}, \overline{W}) = 3/9 \times 2/8 = 6/72 (1/12)$		B1		Distribution table with 0,1,2 only
		$P(W,W) = 6/9 \times 5/8 = 30/72 (5/12)$ $x = 0 = 1 = 2$		B1		$P(W,W)$ or $P(\overline{W},\overline{W})$ correct
			12	B1 √	[3]	$P(W,W) + P(\overline{W},\overline{W}) = 0.5$
	(iii)	E(X) = 16/12 (4/3) (1.33) isw		B1	[1]	Condone 1(.3) if correct working seen, nfww

Page 5	ge 5 Mark Scheme		Paper
	Cambridge International AS/A Level – May/June 2015	9709	63

5 (i)	$P(large) = 1 - \Phi\left(\frac{29 - 21.7}{6.5}\right)$ $= 1 - \Phi(1.123) = 1 - 0.8692$ $= 0.1308$ $P(0,1) = (0.8692)^{8} + {}^{8}C_{1}(0.1308)(0.8692)^{7}$ $= 0.718$	M1 M1 A1 M1 M1	[6]	Standardising no cc no sq rt Correct area $1 - \Phi$ Rounding to 0.13 Any bin term with ${}^{8}C_{x}p^{x}(1-p)^{8-x}$ 0 $ Summing bin P(0) + P(1) only with n = 8, oe Correct ans$
(ii)	$= 1 - (0.8692)^n > 0.98$ $(0.8692)^n < 0.02$ Least number = 28	M1 M1 A1	[3]	eq/ineq involving their (0.8692) ⁿ or (0.1308) ⁿ , 0.02 or 0.98 oe with or without a 1 solving attempt (could be trial and error) – may be implied by their answer correct answer
6 (i)	3.5 4.0 4.5 5.0 nitrogen content	B1 M1 A1	[3]	Uniform axes cf and nitrogen content labelled, at least 0 to 70 and 3.5 to 4.8 seen 5 points plotted correctly on graph paper 3.5 3.8 4.0 4.2 4.5 4.8 0 6 18 41 62 70 All points correct and a reasonable curve (condone 1 missed point) or line segments.
(ii)	70 – their 55 = 15 = 21.4%	M1 A1	[2]	Subt a value > 41 from 70 (or $n/70$, $n<29$) Correct ans, accept $18.5-22$
(iii)	median = 4.15	B1	[1]	Accept 4.1< median < 4.2, nfww

Page 6	Mark Scheme S		Paper
	Cambridge International AS/A Level – May/June 2015	9709	63

(iv)	nit 3.5- 3.8- 4.0- 4.2- 4.5- cont 3.8 4.0 4.2 4.5 4.8 fr 6 12 23 21 8 fd 20 60 115 70 26.7	M1 M1	Attempt at freqs, at least 3 correct, ignore labelling Attempt at fd as f/cw only at least 3 correct FT (Accept f/cw \times k)
	120 100 80 60 40	A1	Correct heights seen on graph (plot at 4.8,27 A0) Graph paper must be used (3 correct relative heights implies M1M1)
	3.5 4.0 4.5 5.0	B1 B1 [5]	Correct bar ends seen on graph – graph paper used Correct linear scale and labels.
	nitrogen content		
7 (i)	W S D 1 1 3 = $6 \times 4 \times^{3} C_{3} = 24$ 1 3 1 = $6 \times^{4} C_{3} \times 3 = 72$ 3 1 1 = ${}^{6}C_{3} \times 4 \times 3 = 240$ 1 2 2 = $6 \times^{4}C_{2} \times^{3}C_{2} = 108$ 2 1 2 = ${}^{6}C_{2} \times 4 \times^{3}C_{2} = 180$	M1 M1 M1	Listing at least 4 different options Mult 3 (combs) together assume $6 = {}^{6}C_{1}$, $\Sigma r = 5$ Summing at least 4 different evaluated/unsimplified options >1
	$2 2 1 = {}^{6}C_{2} \times {}^{4}C_{2} \times 3 = 270$ $Total = 894$	B1 A1 [5]	At least 3 correct unsimplified options Correct answer
(ii)	$^{3}P_{2} \times ^{10}P_{8}$	B1	³ P ₂ oe seen multiplied either here or
(11)		B1	in (iii) $k^{10}P_x$ seen or k^vP_8 with no addition,
	= 10886400	B1 [3]	$k \ge 1$, $y > 8$, $x < 10$ Correct answer, nfww
(iii)	DSWSWSWSWD or DWSWSWSWSD D in ${}^{3}P_{2}$ ways = 6 S in ${}^{4}P_{4}$ ways = 24	B1	If ³ P ₂ has not gained credit in (ii) may be awarded ⁴ P ₄ or ⁶ P ₄ oe seen multiplied or common in all terms (no division)
	W in $^{6}P_{4}$ = 360 Swap SW in 2 ways Total = 103680 ways	B1 B1 [3]	Mult by 2 (condone 2!) Correct answer, 3sf or better, nfww

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2014	9709	61

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol № implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *q* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2014	9709	61

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2014	9709	61

1	mean = $(5 + (-2) + 12 + 7 + (-3) + 2 + (-6) + 4 + 0 + 8) / 10$	B1		
	= 2.7 var = $(5^2 + (-2)^2 + + 8^2) / 10 - 2.7^2 =$ $35.1 - 2.7^2$	M1		Subst in correct var formula must have - mean ²
	= 27.8	A1	3	Correct answer
2	(i) $0.24 + 0.35 + 2k + k + 0.05 = 1$ k = 0.12	M1 A1	2	Summing probs = 1 Correct answer
	(ii) model number is 1	В1	1	
	(iii) mean = $1 \times 0.35 + 2 \times 0.24 + 3 \times 0.12 +$	B1		1.39 seen
	4×0.05 P(>1.39) = P(2, 3, 4) = 0.41	M1 B1	3	Finding $P(X > \text{their mean})$ Correct ans following mean or mode only
3	P(8) = P(H 4 4) + P(T 2 4) + P(T 4 2)	M1		$\frac{1}{3}$ or $\frac{2}{3}$ mult by dice related prob, seen anywhere
	$= \frac{1}{3} \times \frac{1}{16} + \frac{2}{3} \times \frac{1}{16} + \frac{2}{3} \times \frac{1}{16}$	M1		Summing two or three 2-factor probs involving $\frac{1}{3}$ and $\frac{2}{3}$
	$= \frac{5}{48}$	A1		$\frac{5}{48}$ oe seen as num or denom of a fraction
	$P(H \mid 8) = \frac{P(H \cap 8)}{P(8)}$	B1		$\frac{1}{48}$ oe seen as num or denom of a fraction
	$= \frac{\frac{1}{48}}{\frac{5}{48}} = \frac{1}{5}$	A1	5	Correct ans
	$\frac{3}{48}$			0.
4	(i) median $A = 0.52$	B1	34	
	LQ = 0.41 UQ = 0.79	B1 B1ft	3	ft wrong units
	•	Diit	3	it wrong units
	(ii)			
A		B1		2 correct boxes ft (i) OK if superimposed
В		B1		2 pairs correct whiskers lines up to box not inside
0	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Time in secs	B1	3	Correct uniform scale need at least 4 values on it. No scale no marks unless perfect A and B with all 10 values shown, in which case score B1B1B0

Page 5	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2014	9709	61

	(iii)	Smartphone <i>B</i> is quicker, slightly less variable, etc.	B1	1	oe sensible answer
5	(i)	1.2 = 15p $p = 0.08$	M1		Attempt to find p using $1.2 = 15p$
		$Var = npq = 15 \times 0.08 \times 0.92 = 1.104$ AG	A1	2	Correct answer
	(ii)	$P(0, 1, 2) = (0.92)^{15} + {}^{15}C_{1}(0.08)(0.92)^{14} + {}^{15}C_{2}(0.08)^{2}(0.92)^{13} = 0.887$	M1 M1 A1	3	Binomial expression ${}^{15}C_xp^x(1-p)^{15-x}$ $0Correct unsimplified expression for P(0, 1, 2)Correct answer$
	(iii)		M1		Attempt at $P(0)$ or $1 - P(0)$
		$-(0.92)^{15}$ = 0.7137 P(at least 1 faulty screw in 7 packets) = ${}^{8}C_{7}(0.713)^{7}(0.2863)$	A1 M1		Rounding to 0.71 Binomial expression ${}^{8}C_{7}p^{7}(1-p)$ 0
		= 0.216	A1	4	Correct answer
6	(i)	$z_1 = \frac{70 - 66.4}{5.6} = 0.6429$	M1	3	Standardising one variable, no cc, no sq rt
		$z_2 = \frac{72.5 - 66.4}{5.6} = 1.089$	M1		Correct area $\Phi_2 - \Phi_1$
		$\Phi(1.089) - \Phi(0.643) = 0.8620 - 0.7399$	A1		Correct answer rounding to 0.12
		= 0.1221 $0.1221 \times 250 = 30.5$ 30 or 31 sheep	M1 A1ft	5	Mult by 250 Correct answer ft their 0.1221
	(ii)	66.4 - 59.2 = 7.2 66.4 + 7.2 = 73.6	M1 A1	2	Subt from 66.4 Correct answer
	(iii)	z = 0.674	B1		$\pm 0.674 \text{ or } 0.675 \text{ seen}$
		$\frac{67.5 - \mu}{4.92} = 0.674$	M1		Standardising with a z-value no cc no sq rt
		$\mu = 64.2$	A1	3	Correct answer
7	(i)	W(8) M(5) 4 2 = ${}^{8}C_{4} \times {}^{5}C_{2} = 700$ 5 1 = ${}^{8}C_{5} \times {}^{5}C_{1} = 280$ 6 0 = ${}^{8}C_{6} \times {}^{5}C_{0} = 28$ Total = 1008	M1 M1 A1 A1	4	Mult 2 combs, ${}^{8}C_{x} \times {}^{5}C_{y}$ Summing 2 or 3 options 2 correct options unsimplified Correct answer
	(ii)	M1 and MMWWW = ${}^{3}C_{2} \times {}^{8}C_{3} = 168$	M1		Summing 3 options
		M2 and MMWWW = ${}^{3}C_{2} \times {}^{8}C_{3} = 168$ Neither and MMMWWW = ${}^{3}C_{1} \times {}^{8}C_{3} =$	B1		One correct option
		56 Total = 392	A1	3	Correct answer
		OR total, no restrictions = ${}^5C_3 \times {}^8C_3 = 560$	M1		Subt 2 men together from no restrictions
		M1M2 and MWWW = ${}^{3}C_{1} \times {}^{8}C_{3} = 168$ 560 - 168 = 392	B1 A1		One correct of 560 or 168 Correct answer

Page 6	6 Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2014	9709	61

(iii) e.g. WWMWWW = 5! (women) × 4 = 480	M1 M1 A1 3	5! Seen mult by integer ≥ 1 Mult by 4 Correct answer
OR 6! – MWWWWW – WWWWWM = 6! – 5! – 5! = 480	M1 M1 A1	6! seen with a subtraction 5! or 2 × 5! Seen subtracted Correct answer

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/62

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2014	9709	62

Marks are of the following three types:

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	62

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through №" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2014	9709	62

			1	
1	⁴⁸ C.	43	B1 B1	48 seen in a single term combination oe 43 or 5 seen in a single term combination oe Both can be mult by integer $k \ge 1$
	= 1	712304 (1710000)	B1 3	Correct final answer
2	(i)	6! ×5! = 86400	B1 B1 B1 3	6! oe seen multiplied by integer $k \ge 1$ 5! oe seen multiplied by integer $k \ge 1$ Correct final answer
	(ii)	$6! \times 7 \times 6 \times 5 \times 4$	B1 B1	6! seen mult by integer $k \ge 1$ Mult by ${}^{7}P_{4}$ oe
		= 604800	B1 3	Correct final answer
3	(i)	1 1 1 2 or 1 1 2 1 or 1 2 1 1 or 2 1 1 1	M1	One of 1 1 1 2 seen
		$Prob = \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times 4$	M1	Mult a prob by 4 or $(\frac{1}{6})^4 \times \text{integer } k \ge 1$
		TP	R	seen
		$=\frac{1}{324} (0.00309)$	A1 3	Correct answer
	(ii)	$P(1,2) = {}^{7}C_{1} \times (1/324) (323/324)^{6} + {}^{7}C_{2}(1/324)^{2}(323/324)^{5}$	M1	Bin term ${}^{7}C_{x}p^{x}(q)^{7-x}$, $0.99 \le p + q \le 1$
		$^{7}\text{C}_{2}(1/324)^{2}(323/324)^{5}$	M1 M1	Using their <i>p</i> from (i) in a bin term Correct unsimplified answer
		= 0.0214	A1 4	Correct answer
4	(i)	W = wrong, C = correct	M1	3 branches first qn and 2 by 2 for second qn only
		$\frac{1}{2}$ W		1.5
	$\frac{1}{3}$	$\frac{1}{2}$ C C C	M1	One branch twice for third qn or two branches twice with 0 and 1 seen on branches
\leq		$\frac{1}{3}$ $\frac{1}{2}$ W 1	B1	Any two of $\frac{1}{3}$, $\frac{1}{2}$ and 1 seen as probs
		$\frac{1}{3}$ C C	A1 4	Probs all correct and sensible labels NB SR for 4 outcomes instead of 3, M1 B1 only
		C	M1	2 branches first qn and 1 by 2 for second qn only
OR		$\frac{1}{2}$ W	M1	One branch once for third qn or two branches with 0 and 1 seen on branches
		$\mathbb{Z}^{\mathbb{Z}}$	B1	Any two of $\frac{1}{3}$ or $\frac{2}{3}$, $\frac{1}{2}$ and 1 seen as probs
<	$\frac{2}{3}$	$\frac{1}{2}$ C	A1	Probs all correct and sensible labels
	$\frac{1}{3}$	C		

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2014	9709	62

(ii)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1	1, 2, 3 seen only oe 2 correct probs
$P(1) = P(C) \text{ say } = \frac{1}{3}$ $P(2) = P(WC) = \frac{1}{6}$ $P(WC) = \frac{1}{6} \text{ total } P(2)$ $= \frac{1}{3}$		
$P(3) = P(WWC) = \frac{1}{6} P(WWC) =$	B1	3 correct probs
$\frac{1}{6} \text{ total P(3)} = \frac{1}{3}$ $E(X) = 1 \times \frac{1}{3} + 2 \times \frac{1}{3} + 3 \times \frac{1}{3} = 2$	B1 √ 4	Correct answer ft their probs provided $0.999 \le \Sigma p \le 1$
5 (a) (i) $P(x < 8) = P\left(z < \frac{8 - 7.15}{0.88}\right)$ = Φ (0.9659)	M1	Standardising \pm , no cc no sq rt no sq
= 0.833	A1 2	Correct answer
(ii) $z = 0.674$	B1	Accept \pm 0.674 or 0.675 only
$\frac{q - 7.15}{0.88} = 0.674$	M1	Standardised eqn = \pm their z-value, allow sq or sq rt if already penalised in (i)
q = 7.74	A1 3	Correct answer
(b) $P(Y > 4\mu) = P(z > \left(\frac{4\mu - \mu}{(3\mu/2)}\right)) = P(z > 2)$ = 1 - 0.9772 = 0.0228	M1 A1 A1 3	Standardising no sq rt, no cc, no sq, one variable $z = \pm 2$ seen correct ans SR B1 if made-up values used
3		and 0.0228 obtained

Page 6	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2014	9709	62

6 (i) ht CF	<10.5 <15.5 <20.5 <25.5 <30.5 22 54 132 172 200	B1	At least 4 CFs correct seen on graph
cf 200		B1	Labels correct, i.e. all of ht, cm, cf
144 100 —		M1	Attempt at upper end points either 10 or 10.5 or 11 at least 4 upper end points
	3.5 10.5 20.5 30.5 ht(cm)	A1 4	All correct, i.e. points joined up from (3.5, 0) to (10.5, 22)to (30.5, 200) Straight lines or curve
(ii)	72% less, i.e. 144 less than ht h . $h = 22.5$ cm	M1 A1 2	144 used can be implied single value in range 21 to 23 inclusive
(iii)	$var = (7^2 \times 22 + 13^2 \times 32 + 18^2 \times 78 + 23^2 \times 40 + 28^2 \times 28)/200 - 18.39^2$ $= 74870/200 - 18.39^2$	M1	Using mid points attempt 7 ± 0.5 in correct var formula incl – mean ²
	$= 374.35 - 18.39^{2}$ $= 36.1579$	B1	At least 4 correct midpoints
	sd = 6.01	A1 3	Correct ans
7 (i)	$P (4, 5, 6) = (0.75)^{4} (0.25)^{4} \times {}^{8}C_{4} + (0.75)^{5} (0.25)^{3} \times {}^{8}C_{5} + (0.75)^{6} (0.25)^{2} \times {}^{8}C_{6}$	M1	Bin term $p^r (1-p)^{8-r} \times {}^{8}C_r$ seen any p
	3	M1	Correct unsimplified answer
	= 0.606	A1 3	Correct ans
(ii)	$np = 160 \times 0.75 = 120$ $npq = 30$	B1	Unsimplified mean and var correct
	$P(>114) = P\left(z > \left(\frac{114.5 - 120}{\sqrt{30}}\right)\right)$ $= P(z > -1.004)$	M1 M1 M1	Standardising, need sq rt Cont correction either 114.5 or 113.5 Correct area consistent with their working
	$= \Phi(1.004) = 0.842$	A1 5	Correct ans
(iii)	np and nq both > 5	B1 1	Need both

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/63 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2014	9709	63

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 A and B marks are not given for fortuitously 'correct' answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *q* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2014	9709	63

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through \'' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2014	9709	63

			1		1
1		-2.326	B1		$\pm 2.325 \text{ to } \pm 2.33 \text{ seen}$
		$\frac{0-260}{\sigma} = -2.326$	M1		Standardising and = or $<$ their z , no cc, sq, sq rt
	σ=	= 4.30	A1	3	Correct ans
2	(i)	0.7 - 2.4 + 2.2 - 0.5 + 6.3 + 4.9 + 0 + 0.3 = 11.5	B1	1	
	(ii)	$(0.7^2 + 2.4^2 + 2.2^2 + 0.5^2 + 6.3^2 + 4.9^2 + 0.3^2)$ = 75.13 (75.1)	B1	1	
	(iii)	mean = 63.4375 Variance = $75.13/8 - (11.5/8)^2$ = 7.32	B1√ M1 A1	3	ft 62 + their (i)/8 their(ii)/8 - ((i)/8) ² correct answer
		OR mean = $507.5/8 = 63.4375$ Var = $32253/8 - 63.4375^2 = 7.32$	B1 M1		subst in correct variance or standard deviation formula correct answer – allow 6.62, 6.93–7.04, 7.260–7.325
					Marks can be awarded in (i) or (ii) if not 'contradicted' by further working
3	(i)		B1 B1	2	(Implied by P(12) with power 12) Accept 0.014
	(ii)	P(fewer than 10) = 1- P (10, 11, 12) = $1 - {}^{12}C_{10} \times (0.7)^{10}(0.3)^2 - 12 \times (0.7)^{11}(0.3)$ - $(0.7)^{12}$	M1		Binomial term ${}^{12}C_r(0.7)^r(0.3)^{12-r}$ or ${}^{12}C_r(p)^r(q)^{12-r}$, $0.99 \le p+q \le 1.00$
		= 1 - 0.2528 $= 0.747$	A1 A1	3	Correct unsimplified expression oe Correct answer

Page 5	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2014	9709	63

4 (i) Stem	leaf	B1	Correct stem (or reversed order)
1 2 3 4	457899 1223456688 0268 12567	B1 2	Correct leaves, ordered in numerical sequence, with ½ 'column' tolerance
Key 1 4	represents 14 glasses (of water)	B1 3	Key must include 'glasses' or similar drinking item
(ii) LQ = 20	Med = 26 UQ = 37	B1 B1 B1√	Correct median Correct quartiles Correct on diagram ft any wrong med or quartiles. Linear scale based upon 3 quartiles plotted
10 20	30 40 50	B1	Correct end points of attached whiskers not through box
	Glasses of water	B1 5	Linear axis, label, both must be seen
	gram in correct relative positions ached whiskers not through box	B2	
correct relative to		B1	
	$=P\left(z < \frac{1.2 - 1.9}{0.55}\right) = P(z < -1.2727)$ $(1.273) = 1 - 0.8986$	M1	Standardising for wt 1.2 or 2.5, no cc, sq, sq rt May be awarded in (ii) if not attempted in (i) Accept 0.102
= 0.101 $P(>2.5)$	4 =P $\left(z < \frac{2.5 - 1.9}{0.55}\right)$ =P $\left(z > 1.0909\right)$	A1	First correct proportion seen
$= 1 - \Phi$ $= 0.138$	(1.0909) = 1 - 0.8623	A1	Second correct proportion seen
	t wt < 2.5) = 1 - 0.101 - 0.138	M1	Third proportion 1 – their previous 2 proportions or correct attempt for remaining proportion
= 0.761		A1√ 5	Correct answer or 1 – <i>their</i> 2 previous correct proportions
z = -1.5		M1 A1	Valid method to obtain $P(x > k)$ or $P(x < k)$ ± 1.536 seen accept 3sf rounding to 1.53 or 1.54
-1.536	$=\frac{k-1.9}{0.55}$	M1	Attempt to solve equation with their 'correct' area z value, k, 1.9 and 0.55
k=1.06		A1 4	Correct answer or rounding to 1.05

Page 6	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2014	9709	63

6	(a) 1^{*****3} or 3^{*****1} or 2^{*****2} = $6^5 \times 3$ = 23328	M1 M1 A1 3	Mult by 6 ⁵ (for middle 5 dice outcomes) Mult by 3 or summing 3 different combinations (for end dice outcomes) Correct answer accept 23 300
	(b) W J H 1 1 7 = ${}^{9}C_{1} \times {}^{8}C_{1} \times 1 = 72$ 1 7 1 = ${}^{9}C_{1} \times {}^{8}C_{7} \times 1 = 72$ 7 1 1 = ${}^{9}C_{7} \times {}^{2}C_{1} \times 1 = 72$ 1 3 5 = ${}^{9}C_{1} \times {}^{8}C_{3} \times 1 = 504$ mult by 3! 3 3 3 = ${}^{9}C_{3} \times {}^{6}C_{3} \times 1 = 1680$	M1 A1 A1 M1	Multiplying 3 combinations (may be implied) 1 unsimplified correct answer (72, 504, 1680, 216 or 3024) A 2 nd unsimplified different correct answer Summing options for 1,1.7 or 1,3,5 oe (mult by 3 or 3!) Summing at least 2 different options of the 3
	Total 4920	A1 6	Correct ans
	If no marks gained Listing all 10 different outcomes	SCM1	If games replaced M1M1M1 max available If factorials used M0M1M1 max available
7	(a) (i) $P(X=3) = P(GRR) + P(RGR)$ $\frac{2}{4} \times \frac{2}{3} \times \frac{1}{2} + \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}$ $\frac{1}{3}$ AG	M1 M1 A1 3	Mult 3 probs Summing 2 options Correct working with appropriate justification
	(ii) X 2 3 4 Prob $\frac{1}{6}$ $\frac{1}{3}$ $\frac{1}{2}$	В1	values 2, 3, 4 only in table Condone <i>X</i> =0,1 if P(X)=0 stated
	$P(X=2) = P(RR) = \frac{2}{4} \times \frac{1}{3} = \frac{1}{6}$	B1	One correct prob other than (i)
	$P(X=4) = 1 - \left(\frac{1}{6} + \frac{1}{3}\right) = \frac{1}{2}$ Or P(GGRR) + P(RGGR) + P(GRGR)	bre	
	$= \left(\frac{2}{4} \times \frac{1}{3} \times \frac{2}{2} \times \frac{1}{1}\right) \times 3 = \frac{1}{2}$	B1 √ 3	Second correct prob ft 1 – their previous 2 probs

Page 7	Mark Scheme S		Paper
	Cambridge International AS/A Level – October/November 2014	9709	63

	I	T
(iii) P(3 orange at least 2 O) = $\frac{P(3O)}{}$		
P(at least 2O)		
P(3 orange) = P(OOO)	M1	Attempt at P(OOO) one three-factor option,
$=\frac{5}{7}\times\frac{4}{6}\times\frac{3}{5}=\frac{2}{7}$	A1	not added Correct unsimplified num of a fraction
P(at least 2O) = P(YOO) + P(OYO) + P(OYO	711	Correct unsimplified fluir of a fraction
$P(OOY) + \frac{2}{7}$		
$= \frac{2}{7} \times \frac{5}{6} \times \frac{4}{5} + \frac{5}{7} \times \frac{2}{6} \times \frac{4}{5} + \frac{5}{7} \times \frac{4}{6} \times \frac{2}{5} + \frac{2}{7}$	M1	Attempt at P(at least 2O) sum 3 or 4 three-factor options
$=\frac{6}{7}$	A1	Correct unsimplified answer seen anywhere
P(30 at least 2O) = $\frac{2}{7} \div \frac{6}{7} = \frac{1}{3}$ (0.333)	A1 5	Correct answer evaluated
Alternative 1		
3 Orange = 5C_3	M1	Attempt at combinations for 3 orange oe, not
6	A1	added Correct unsimplified num of a fraction
	111	Correct unshipmed num of a fraction
At least 2 Orange = ${}^5C_2 \times {}^2C_1 + {}^5C_3$	M1	Attempt at combinations for at least 2 orange
	A1	condone omission of +5C ₃
⁵ C ₂ 1		Correct unsimplified answer seen anywhere
P(3O at least 2O) = $\frac{{}^{5}C_{3}}{{}^{5}C_{2} \times {}^{2}C_{1} + {}^{5}C_{3}} = \frac{1}{3}$	A1 5	Correct answer evaluated
$C_2 \wedge C_1 + C_3 = S$		
Alternative 2		
No Yellow = ${}^{2}C_{0}$	M1	Attempt at combinations for 0 yellow oe, not
	A1	added Correct unsimplified num of a fraction
3	711	Correct unshipfiffed fluiff of a fraction
No more than 1 Yellow = ${}^{2}C_{1} + {}^{2}C_{0}$	M1	Attempt at combinations for no more than 1
· Sat	hre	yellow. Condone omission of +2C0
$^{2}C_{0}$ 1	A1	Correct unsimplified answer seen anywhere
$P(3O \mid \text{at least } 2O) = \frac{{}^{2}C_{0}}{{}^{2}C_{1} + {}^{2}C_{0}} = \frac{1}{3}$	A1 5	Correct answer evaluated
$C_1 \cap C_0 = S$		
Misread – with replacement		
MR-1 applied to first Accuracy Mark earned	M1	Attempt at P(OOO) one three factor option oe
5 5 5 125		not added
$P(3O) = \frac{5}{7} \times \frac{5}{7} \times \frac{5}{7} = \frac{125}{343}$	A1	Correct unsimplified num of a fraction
$P(\text{ct lengt } 20) = 5 \cdot 5 \cdot 2 \cdot 3 \cdot (5)^3$		
P(at least 2O) = $\frac{5}{7} \times \frac{5}{7} \times \frac{2}{7} \times {}^{3}C_{2} + \left(\frac{5}{7}\right)^{3}$	M1	Attempt at P(at least 2O) sum of 3 or 4 three
. ,	A1	factor options Correct unsimplified seen anywhere
5		and the second s
$P(3O at least 2O) = \frac{5}{11}$	A1 4	Answer evaluated
11	max	

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	61

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↑ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *q* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	61

AEF	Any Equivalent Form (of answer is equally acceptable)		
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)		
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)		
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)		
CWO	Correct Working Only – often written by a 'fortuitous' answer		
ISW	Ignore Subsequent Working		
MR	Misread		
	Misieau		
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)		
PA SOS	Premature Approximation (resulting in basically correct work that is insufficiently		

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through "marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	61

			T
P(21.6 < x < 28.7)			
$= P\left(\left(\frac{21.6 - 24}{4.7}\right) < z < \left(\frac{28.7 - 24}{4.7}\right)\right)$	M1 A1		Standardising; no cc, no sq rt One rounding to $\Phi(0.841 \text{ or } 0.695)$
$= P(-0.5106 < z < 1) = \Phi(1) - \Phi(-0.5106)$	M1		$\Phi_1 + \Phi_2 - 1$
=0.8413-(1-0.6953)			
= 0.537 (0.5366)	A1	4	Correct answer
$1.751 = \frac{12 - \mu}{\sigma}$	B1		Rounding to ±1.75 seen
$0.468 = \frac{9 - \mu}{\sigma}$	B1		±0.468 seen
ATE	M1		An eqn with a z-value, μ and σ no $\sqrt{\sigma}$, no σ^2
σ = 2.34	M1		Sensible attempt to eliminate μ or σ by
$\mu = 7.91$	A1	5	substitution or subtraction, need a value correct answers
(i) constant / given p, independent trials, fixed / given no. of trials, only two	B1		Any one correct
outcomes	B1	2	Any 3 correct
(ii) $P(x \ge 3) = 1 - P(0, 1, 2)$	M1		Any binomial expression $p^r(1-p)^{18-r}$ ¹⁸ C _r seen
$= 1 - [(0.85)^{18} + (0.85)^{17}(0.15) \times 18 + (0.85)^{16}(0.15)^2 \times {}^{18}C_{2}]$	M1		1 - P(0, 1, 2), any n,p,q
		3	Correct answer
- Sati	ore	0	
4	M1		6 Cx / 8 Cx seen or 4 C ₂ mult by 4 fractions (last 2 can be implied)
OR P(2) = $\frac{6}{8} \times \frac{5}{7} \times \frac{2}{6} \times \frac{1}{5} \times {}^{4}C_{2} = \frac{3}{14}$ AG	A1	2	Answer legit obtained
(ii) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1 B1		2, 3, 4 only in top line one correct prob other than P(2)
1100 3/17 0/17 3/17	B1√	3	third correct prob ft $\Sigma = 1$
(iii) $Var(X) = \frac{12}{14} + \frac{72}{14} + \frac{48}{14} - 3^2$	M1		using $\sum x^2p - 3^2$ (or their $\{E(X)\}^2$) must be evaluated
$=\frac{3}{7}$ (0.429)	A1	2	correct answer
	$= P\left(\left(\frac{21.6-24}{4.7}\right) < z < \left(\frac{28.7-24}{4.7}\right)\right)$ $= P(-0.5106 < z < 1) = \Phi(1) - \Phi(-0.5106)$ $= 0.8413 - (1 - 0.6953)$ $= 0.537 (0.5366)$ $1.751 = \frac{12 - \mu}{\sigma}$ $0.468 = \frac{9 - \mu}{\sigma}$ $0.468 = \frac{9 - \mu}{\sigma}$ (i) constant / given p, independent trials, fixed / given no. of trials, only two outcomes (ii) $P(x \ge 3) = 1 - P(0, 1, 2)$ $= 1 - [(0.85)^{18} + (0.85)^{17}(0.15) \times 18 + (0.85)^{16}(0.15)^2 \times {}^{18}C_2]$ $= 0.520$ (i) $P(\text{exactly }2) = \frac{{}^{6}C_{2}}{{}^{8}C_{4}} = \frac{15}{70} = \frac{3}{14} \text{ AG}$ $OR P(2) = \frac{6}{8} \times \frac{5}{7} \times \frac{2}{6} \times \frac{1}{5} \times {}^{4}C_{2} = \frac{3}{14} \text{ AG}$ (ii) $\frac{x}{\text{Prob}} = \frac{3}{3/14} \times \frac{3}{8/14} = \frac{3}{3/14}$ (iii) $Var(X) = \frac{12}{14} + \frac{72}{14} + \frac{48}{14} - 3^2$	$= P\left(\left(\frac{21.6-24}{4.7}\right) < z < \left(\frac{28.7-24}{4.7}\right)\right) \qquad \text{M1}$ $= P\left(-0.5106 < z < 1\right) = \Phi(1) - \Phi(-0.5106) \qquad \text{M1}$ $= 0.8413 - (1 - 0.6953) \qquad \text{B1}$ $= 0.537 \ (0.5366) \qquad \text{A1}$ $1.751 = \frac{12 - \mu}{\sigma} \qquad \text{B1}$ $0.468 = \frac{9 - \mu}{\sigma} \qquad \text{B1}$ $(i) \text{constant / given } p, \text{ independent trials, fixed / given no. of trials, only two outcomes}$ $(ii) P(x \ge 3) = 1 - P(0, 1, 2) \qquad \text{M1}$ $= 1 - \left[(0.85)^{18} + (0.85)^{17}(0.15) \times 18 + (0.85)^{16}(0.15)^2 \times {}^{18}C_2\right] \qquad \text{M1}$ $= 0.520 \qquad \text{A1}$ $(i) P\left(\text{exactly } 2\right) = \frac{^{6}C_2}{^{8}C_4} = \frac{15}{70} = \frac{3}{14} \text{ AG} \qquad \text{M1}$ $OR \ P(2) = \frac{6}{8} \times \frac{5}{7} \times \frac{2}{6} \times \frac{1}{7} \times {}^{4}C_2 = \frac{3}{14} \text{ AG} \qquad \text{A1}$ $(ii) \frac{x}{\text{Prob}} = \frac{3}{3/14} \times \frac{3}{8/14} = \frac{3}{14} = $	$= P\left(\left(\frac{21.6-24}{4.7}\right) < z < \left(\frac{28.7-24}{4.7}\right)\right) \qquad \text{M1}$ $= P\left(-0.5106 < z < 1\right) = \Phi(1) - \Phi(-0.5106) \qquad \text{M1}$ $= 0.8413 - (1-0.6953) \qquad \text{A1} \qquad 4$ $1.751 = \frac{12-\mu}{\sigma} \qquad \text{B1}$ $0.468 = \frac{9-\mu}{\sigma} \qquad \text{B1}$ $0.468 = \frac{9-\mu}{\sigma} \qquad \text{M1}$ $\mu = 7.91 \qquad \text{A1} \qquad 5$ (i) constant / given p, independent trials, fixed / given no. of trials, only two outcomes $1 - P\left(0.85\right)^{18} + (0.85)^{17}(0.15) \times 18 + (0.85)^{16}(0.15)^2 \times {}^{18}C_2\right) \qquad \text{M1}$ $= 0.520 \qquad \text{A1} \qquad 3$ (i) $P\left(\text{exactly } 2\right) = \frac{{}^{6}C_2}{{}^{8}C_4} = \frac{15}{70} = \frac{3}{14} \text{AG} \qquad \text{M1}$ $OR P\left(2\right) = \frac{6}{8} \times \frac{5}{7} \times \frac{2}{6} \times \frac{1}{5} \times {}^{4}C_2 = \frac{3}{14} \text{AG} \qquad \text{A1} \qquad 2$ (ii) $\frac{x}{\text{Prob}} = \frac{3}{3/14} \times \frac{4}{8/14} = 3^2$ M1 (iii) $Var\left(x\right) = \frac{12}{14} + \frac{72}{14} + \frac{48}{14} - 3^2$ M1

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	61

5	(i)	$P(X \text{ and } P) = \frac{1}{4} \times \frac{4}{9} = \frac{1}{9}$	M1		Mult a playground prob with a P prob
		$P(Y \text{ and } P) = \frac{1}{4} \times \frac{2}{12} = \frac{1}{24}$	A1		One correct prob
		$P(Z \text{ and } P) = \frac{1}{2} \times \frac{1}{16} = \frac{1}{32}$	M1		Summing at least two 2-factor probs
		$P(P) = \frac{53}{288} = 0.184$	A1	4	Correct answer
	(ii)	$P(Y \mid C) = \frac{P(Y \cap C)}{P(C)}$	M1		Attempt at $P(Y \cap C)$ as numerator of a fraction
		$\frac{1}{4} \times \frac{1}{12}$	M1		Attempt at $P(C)$ in form of summing two 2-
		$\frac{\frac{1}{4} \times \frac{1}{12}}{\frac{1}{4} \times \frac{1}{12} + \frac{1}{2} \times \frac{4}{16}}$	A1		factor products, seen anywhere Correct unsimplified $P(C)$ seen anywhere
		1			
		$=\frac{\frac{1}{48}}{\frac{7}{48}}=\frac{1}{7}$			
		$\frac{7}{48}$ 7	A1	4	Correct answer
6	(i)	$\frac{6!}{2!} = 360$	B1 B1	2	6! Seen alone Dividing by 2! only
	(ii)	$\frac{4!}{2!} \times \frac{4!}{3!}$	B1 B1		4! seen mult Dividing by 2! or 3! (Mult by 4 implied
		= 48	B1	3	B1B1) Correct answer
((iii)	1N and 1A: N A xx in ${}^{3}C_{2}$ = 3 ways	M1 A1	2	³ C _x or ^x C ₂ seen alone Correct answer
((iv)	0 A : Nxxx = 1 way 2 As: NAAx in ${}^{3}C_{1}$ = 3 ways 3 As: NAAA in 1 way	M1 M1	φ.	Finding ways with 0 or 2 or 3 As Summing 3 or 4 options
		Total = 8 ways	A1	3	Correct answer

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	61

7 (i) class widths 5, 15, 15, 25, 20	M1	Attempt at class widths
$fd = \frac{24}{5}, \frac{9}{15}, \frac{21}{15}, \frac{15}{25}, \frac{42}{20}$	B1	Correct widths of bars, with or without halves, seen on diagram
= 4.8, 0.6, 1.4, 0.6, 2.1 fd		
5 1	M1	Attempt at fd or scaled freq
4 —		
	A1	Correct heights seen on graph ft their fd
'''1 		
10.5 20.5 30.5 40.5 50.5 60.5 70.5 80.5 errors	B1 5	Correct labels, scales and halves
(ii) mean =		
$\frac{\left(3 \times 24 + 13 \times 9 + 28 \times 21 + 48 \times 15 + 70.5 \times 42\right)}{111}$	M1 M1	Using mid points using $(\Sigma \text{ their } fx) / \text{ their } 111$
= 40.2 errors	A1 3	correct answer
(iii) LQ in 6 – 20 UQ in 61 – 80 Least value of IQ range is 61 – 20 = 41	B1 B1 B1√ ^h 3	ft any or both wrong quartile ranges if sensible

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/62

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	62

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↑ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *q* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	62

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	
	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
PA SOS	Premature Approximation (resulting in basically correct work that is insufficiently

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through "marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	62

1			0.12) = P(0 1	2 3)			M1		Any binomial term ${}^{19}C_x p^x (1-p)^{19-x}$, 0
	$= (0^{19}C_2)^{19}$	$(0.12)^{19}$	$+{}^{19}C_{1}(0.88)^{1}$	(2,3) $(0.12)^{1}(0.12)$	$(88)^{18} + (0.12)^3 (0$	0.88) ¹⁶	M1		Any binomial term ${}^{n}Cx(0.12 \text{ or } 0.88)^{x}(0.88 \text{ or } 0.12)^{n-x}$
							M1		P(0, 1, 2, 3) binomial expr with at least 2 consistent terms
	= 0.813					A1	4	Correct answer	
2	1	2	(2)Y3(2 2	$= 7 \times 1$	× 1 = 7		B1		One unsimplified correct 3-factor product of combinations
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		B1 M1		A second unsimplified correct 3-factor product of combinations				
		al = 23		- C ₃ ^	C ₁ ^ C	1 – 140	A1	4	Summing 3 or 4 options allow perms, wrong combs but second numbers must sum to 5 etc. Correct answer
3	(i)	P(RF	R = 0.6	× 0.7 =	0.42		B1		Only 2 factors
	(-)	P(AA	(4) = 0.4	× 0.75 =	= 0.3		B1 B1√	7	Only 2 factors
	P(2 sets in match) = 0.72					BIA	3	ft previous answers	
	(ii) $\frac{P(A \text{ wins and 2 sets})}{P(2 \text{ sets})} = \frac{P(AA)}{P(2 \text{ sets})}$				sets)	B1√^		Correct num or correct denom of a fraction ft their (i)	
	$=\frac{0.3}{0.72}=\frac{5}{12}\left(0.417\right)$					B1√ ^ħ	2	Correct answer ft their or recovered AA/their or recovered (i)	
4	4 (i) A:P(H) = $2/3$, P(T) = $1/3$ B: P(H) = $1/4$, P(T) = $3/4$					M1		Using some of 2/3, 1/3, ½ or 3/4 in a calculation involving prod of 3 probs	
						$\begin{array}{c} -P(TTH) \\ 2/3 \times 3/4) \end{array}$	M1		Summing 3 options not all the same
			+ (1/3	× 1/3 ×	1/4) = 13	3/36 AG	A1	3	Correct answer
		x	0	1	2	3			2:00
	(ii)	P	3/36	13/36	16/36	4/36	B1	10	0, 1, 2, 3 seen for table no probs needed, table not absolutely necessary if calcs shown
	$P(0H) = P(TTT) = 1/3 \times 1/3 \times 3/4 = 1/12$			B1		One prob correct other than (i) condone 0.083 for 0.0833			
	$P(2H) = P(HHT) + P(HTH) + P(THH)$ = $(2/3 \times 2/3 \times 3/4) + (2/3 \times 1/3 \times 1/4)$ + $(1/3 \times 2/3 \times 1/4) = 4/9 \text{ not } 2/3 \times 2/3$			B1		A second prob correct need 3 factors can be implied			
	$P(3H) = P(HHH) = 2/3 \times 2/3 \times 1/4 = 1/9$				< 1/4 = 1/9	B1√	4	A third prob correct ft $23/36 - \Sigma$ their 2 probs	
	(iii)	E(<i>X</i>)	= 13/36	5 + 32/36	5 + 12/36	6	M1		Attempt to evaluate $\sum xp$ at least 3 vals of x in
		: 	= 57/36	(19/12)	(1.58)		A1	2	table Correct answer

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	62

5 (i) 5! × 3! or 6!	B1	5! or 3! or 6! oe seen mult or alone
= 720	B1 2	Correct final answer
(ii) $3**4, 3**8, 4**8$ = $5 \times 4 + 5 \times 4 + 5 \times 4 = 60$	M1 B1 A1 3	considering at least 2 types of 4-figure options ending with 4 or 8 and starting with 3 or 4 One option correct unsimplified can be implied Correct final answer
(iii) $5, *5, **5,$ $= 1 + 7 + 7^{2}$ $= 57$	M1 M1 A1 3	Appreciating that the number must end in 5 (can be implied) summing numbers ending in 5 with at least 2 different numbers of digits Correct final answer
6 (i) 6	B1 1	Must see in (i)
(ii) freqs 4 6 30 9 8 fd 8 12 30 18 8	M1	Attempt at scaled freq or fd (must be f/cw) at least three f/cw
30	A1	Correct heights seen on graph
2 0 - 1 0	B1	Correct-looking widths from 10, 10.5 etc. no gaps no extra lines
10 11 12 13 14 Time (sec)	B1 4	Labels and linear axes or squiggle need time or secs, fd,
(iii) $E(X) = (10.25 \times 4 + 10.75 \times 6 + 11.5 \times 30 + 12.25 \times 9 + 13 \times 8)/57$ = 11.7(11.662)	M1 A1	Using mid-point attempt (not end points) with their freq or cf at least 2 sensible ones Correct mean
$Var(X) = (10.25^{2} \times 4 + 10.75^{2} \times 6 + 11.5^{2} \times 30 + 12.25^{2} \times 9 + 13^{2} \times 8) / 57 - (11.662)^{2}$	M1	numerical attempt at correct variance formula with mean ² subt ft their "midpoints" i.e. ucb, cw, etc.
= 0.547	A1 4	accept answers between 0.547 and 0.610 condone 0.6, 0.60

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	62

7		z = -0.842	B1		± rounding to 0.84 seen
		$P(x > 1.35) = P\left(z > \frac{1.35 - 1.9}{\sigma}\right)$	M1		$\pm \frac{1.35 - 1.9}{\sigma}$ = a prob or a z-value NOT 0.8 or 0.2
					allow a 1
		$-0.842 = -0.55/\sigma$			
		$\sigma = 0.653$	A1	3	Correct answer from correct working
	(ii)	$P(x < 2) = P\left(z < \frac{2 - 1.9}{0.6532}\right)$	M1		\pm standardising no continuity correction their σ
		= P(z < 0.1531)			
		= 0.561	A1	2	Correct answer
	(iii)	X~N(160, 32)	B1		Unsimplified 160 and 32 seen
		P(162.5 < x < 173.5) =			
		$P\left(\frac{162.5 - 160}{\sqrt{32}} < z < \frac{173.5 - 160}{\sqrt{32}}\right)$	M1		Standardising need sq rt
		P(0.442 < z < 2.386)	M1		Any of 162.5, 163.5, 172.5, 173.5 seen
		$=\Phi(2.386)-\Phi(0.442)$	M1		$\Phi_2 - \Phi_1$ oe
		= 0.9915 - 0.6707 $= 0.321$	A1 A1	6	One correct Φ to 3sf Correct answer accept 0.320

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/63

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	63

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↑ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *q* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	63

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	63

1	(i)	7 4 key 3		6 7 8 9	Children 3 4 1 2 7 8 2 7 1 3 4 6 9 2 5 and s for child		B1 B1	3	Single stem and key correct – including adults, children and seconds Right hand leaves correct shape Left hand leaves correct shape
	(ii)	Two Child Adul Adul	from: dren's es ts estima	timates	s more spre ver ical wherea	ad out	B1 B1	2	oe oe oe
2	,	$npq = $ $\left(z < \left(\frac{z}{z}\right)\right)$	$\frac{29.5 - 36}{\sqrt{30.857}}$	$\left(\frac{6}{5}\right) + I$	$\sqrt{7} = 30.857$ $P\left(z > \left(\frac{44.5}{\sqrt{30}}\right)\right)$	$\left(\frac{5-36}{0.857}\right)$	B1 M1 M1		Unsimplified 36 and 30.857 seen, oe any standardising, sq rt needed any continuity correction either 29.5, 30.5, 43.5, 44.5
	= P (z < -1.170) + P(z > 1.530) $= 1 - 0.8790 + 1 - 0.9370$ $= 0.184$			M1 A1	5	correct area $2-(\Phi_1+\Phi_2)$ correct answer			
	(ii)	np ar	nd <i>nq</i> are	both >	> 5		B1	1	must have both
3	(i)	OR	$=$ 6 C ₃ \times 3			v.se	M1 OR	e	Using combinations ${}^{a}C_{b} \times {}^{c}C_{d}/{}^{e}C_{f}$
	$\frac{{}^{6}C_{3} \times {}^{3}C_{2}}{{}^{6}C_{5} + {}^{6}C_{4} \times {}^{3}C_{1} + {}^{6}C_{3} \times {}^{3}C_{2} + {}^{6}C_{2} \times {}^{3}C_{3}}$ OR $3/9 \times 2/8 \times 6/7 \times 5/6 \times 4/5 \times {}^{5}C_{2} = 10/21$ $= 60/126 \text{ AG}$		M1 OR M1 A1	2	Mult 5 probs with a ${}^{p}C_{q}$ If ${}^{5}C_{2}$ replace by 10, oe must be justified Legit method, as answer given				
	(ii) x	Prob	0 2/42	1 15/42	2 20/42	3 5/42	B1		0, 1, 2, 3 only seen in table. Condone $x = 4,5$ in table if $P(x) = 0$ or blank and values in table for $x = 0,1,2,3$
		P(1)	$= {}^{6}C_{5}/{}^{9}C$ $= {}^{6}C_{4} \times {}^{3}$ $= {}^{6}C_{2} \times {}^{3}$	$^{3}C_{1}/^{9}C_{5}$	26 = 45/126 6 = 15/126		B1 B1 B1√	4	Any correct prob other than P(2) Any other correct prob $\Sigma P(x) = 1, 3 < n(x) < 6$

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	63

4	(i)	new mean $\frac{172.6 \times 28 - 161.8}{27} = 173$	M1 A1	2	Mult by 28, subt 161.8 and dividing by 27 or 28 Correct ans
	(ii)	original $\Sigma x^2 = (4.58^2 + 172.6^2) \times 28$	M1		Subst in formula to find Σx^2 and attempt to make Σx^2 subject, with 2 terms both squared
		= 834728.6 (835000)	A1		Correct answer
		Remaining $\Sigma x^2 = 834728.6 - 161.8^2$ = 808549.36	M1		Subtract 161.8 ² from their original Σx^2
		sd of remaining = $\sqrt{\frac{808549.36}{27} - 173^2}$			
		= 4.16	A1	4	Correct ans, accept 4.15 or 3.93
5	(i)	z = -1.282	B1		Rounding to \pm 1.28 seen
		$-1.282 = \frac{t - 6.5}{1.76}$	M1		Standardising, no cc, no sq or sq rt, $z \neq \pm 0.9, \pm 0.1$
		t = 4.24	A1	3	Correct answer, accept 4.25
	(ii)	P(z < 1) = 0.8413	M1		z = 1 used to find a probability
		P(within 1sd of mean) = $2\Phi - 1$ = 0.6826	B1		correct prob, accept answer rounding to 0.66, 0.67, 0.68, not from wrong working. If quoted, then implies first M1.
		$P(8, 9) = {}^{9}C_{8}(0.6826)^{8}(0.3174) + (0.6826)^{9}$	M1 M1		Binomial term $p^r(1-p)^{9-r}{}^9C_r$, 9C_r must be seen Binomial expression for P(8)+P(9), any p
		= 0.167	A1	5	Correct ans
6	(i)	$P(B \text{ champ}) = 0.7 \times 0.7 = 0.49$	B1	1	
	(ii)	P (B champ) = $P(WW) + P(WLW) + P(LWW)$ = $(0.7 \times 0.7) + (0.7 \times 0.3 \times 0.7) + (0.3 \times 0.7 \times 0.7)$	M1	e	Summing at least 2 options, at least one of which is 3-factor
		= 0.49 + 0.147 + 0.147	B1		0.147 seen, unsimplified
		= 0.784	A1	3	Correct answer
	(iii)	$P(T2 T) = \frac{P(T2 \cap T)}{P(T)}$	M1		Attempt $P(T2 \cap T)$ seen anywhere sum of 2 terms
		$=\frac{0.3\times0.3+0.7\times0.3\times0.3}{0.216}$	A1		Correct unsimplified num of a fraction
		= 0.708	M1 A1	4	Dividing by their $(1 - (ii))^{1/2}$ oe Correct answer

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	63

7 (i)	(a)	6! (×) 4! OR (×) 4 × 3	M1 M1		Seen in a single term expression as numerator Seen in a single term expression as numerator (denominator may be 1)
		÷ 2!2!3! OR ÷ 2!3!	M1		Seen in a single term expression as denominator
		Total 720 ways	A1	4	Correct ans
(i)	(b)	$1******3 = \frac{7!}{3!2!} = 420$ $3******1 = 420$ $3*****3 = 420$	B1 M1		$\frac{7!}{3!2!}$ seen oe Attempting to evaluate and sum at least 2 of 1***3, 3***1, 3***3
		Total = 1260 ways	A1	3	Correct ans
(ii)	(a)	$5 \times 4 \times 3 = 60 \text{ ways } (^5P_3)$	M1 A1	2	⁵ P ₃ or ⁵ C ₃ ×3! (can be implied) Correct ans
(ii)	(b)	2** in 212, 213, 214, 216, 221, 223, 224, 226, 231, 232, 233, 234, 236, 241, 242, 243, 246 261, 262, 263, 264, 266	M1	K	Listing attempt starting with 2, at least 10 correct entries
		Total = 22 ways	A1	2	Correct ans
		Alternative Methods: $3 \times {}^{4}C_{1} + 2 \times {}^{5}C_{1}$	M1		$p \times {}^{4}\text{C}_{1} + q \times {}^{5}\text{C}_{1}$, oe $p + q > 2$
		OR ${}^{5}P_{2} + {}^{2}C_{1}$	OR M1		⁵ P ₂ seen
		OR ${}^{4}P_{2} + 2 \times {}^{4}P_{1} + {}^{2}C_{1}$	OR M1		Any 2 terms added

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/61 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *q* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

AEF	Any Equivalent Form (of answer is equally acceptable)					
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)					
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)					
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)					
CWO	Correct Working Only – often written by a 'fortuitous' answer					
ISW	Ignore Subsequent Working					
MR	Misread					
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)					
SOS	See Other Solution (the candidate makes a better attempt at the same question)					
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)					

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through "marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

1			
Summing 2 two-factor products seen anum/denom of a fraction Summing 2 two-factor answer Summing 2 two-factor products seen anum/denom of a fraction Summing 2 two-factor products seen anum/denom of a fraction Summing 2 two-factor products seen anum/denom of a fraction Summing 2 two-factor products seen anum/denom of a fraction Summing 2 two-factor products seen anum/denom of a fraction Summing 2 two-factor products seen anum/denom of a fraction Summing 2 two-factor products	$1 \qquad \qquad Y $	B1	- ·
2 either 55/90 (11/18) or 95/160 (19/32) seen P(M and $18 - 60$) = 0.6 × 55/90 + 0.4 × 95/160 (= 29/48 or 0.604) P($18 - 60$) = 0.6 × 55/90 + 0.4 × 95/160 (= 29/48 or 0.604) P($18 - 60$) = $16 - 8 \times 5 \times 10^{-1}$ and $18 \times 5 \times 10^{-1}$ correct answer 3 $\Sigma(x - 5) = 116 - 18 \times 5 \times 10^{-1}$ and 18×10^{-1} correct answer 3 $\Sigma(x - 5)^2 = 257$ A1 Subst in correct var formula all uncoded $\Sigma(x - 5)^2 = 257$ OR coded mean = $58/9 - 5 = 1.444$ M1 Subtracting $18 \times 5 \times 10^{-1}$ correct answer $\Sigma(x - 5)^2 = 257 \times 105 \times 10^{-1}$ A1 Subtracting 18×10^{-1} Subtracting $18 \times 10^{-$	X	B1	Y same mean as X but higher and thinner
or 95/160 (19/32) seen P(M and 18 - 60) = 0.6 × 55/90	10 20 30 40 50 60 70	B1ft 3	Z same shape as Y but mean at 50 ft wrong Y
$ \begin{array}{c} = 0.367 (11/30) \\ P(18-60) = 0.6 \times 55/90 + 0.4 \times 95/160 \\ (= 29/48 \text{or} 0.604) \\ P(M \mid 18-60) = \frac{P(M \cap 18-60)}{P(18-60)} \\ = 88/145 (0.607) \\ \hline \\ 3 \Sigma(x-5) = 116-18 \times 5 \\ = 26 \\ \hline \\ \frac{\Sigma(x-5)^2}{18} - \left(\frac{26}{18}\right)^2 = \frac{967}{18} - \left(\frac{58}{9}\right)^2 \\ \hline \\ 0R coded mean = 58/9 - 5 = 1.444 \\ \hline \\ \Sigma(x-5)^2 = 257 \\ \hline \\ 0R coded mean = 58/9 - 5 = 1.444 \\ \hline \\ \Sigma(x-5)^2 = 27 - 10\Sigma x + 25 \times 18 \\ = 967 - 1160 + 450 = 257 \\ \hline \\ 4 \textbf{(i)} \\ \hline \\ 200 300 400 500 600 700 800 900 1000 \\ \hline \\ House price, 000's dollars \\ \hline \\ (ii) 1.5 \times 170 = 255 \\ \hline \\ Expensive houses above \\ 690 + 170 \times 1.5 = 945 \\ i.e. 957 \text{ and } 986 \text{ thousands of dollars} \\ \hline \end{array} \begin{array}{c} \text{of a fraction} \\ \text{M1} \\ \text{Subming 2 two-factor products seen} \\ \text{anywhere} \\ \text{Correct answer} \\ \text{Subst in correct var formula all coded vals} \\ \text{Subst in correct var formula all coded vals} \\ \text{Subst in correct var formula all uncoded} \\ \text{Subst in correct answer} \\ \text{Subtracting 5 from true mean and mult by 18} \\ \text{Correct answer} \\ \text{Expanding } \Sigma(x-5)^2 \text{ 3 terms needed} \\ \text{Any 2 terms correct} \\ \text{Correct answer} \\ \text{Correct endian} \\ \text{Correct endian} \\ \text{Correct endian} \\ \text{Correct endian} \\ \text{Correct endions of whiskers not through box} \\ \text{M1} \\ \text{M2} \\ \text{M3} \\ \text{M4} \\ \text{M5} \\ \text{M6} \\ \text{M6} \\ \text{M6} \\ \text{M7} \\ \text{M8} \\ \text{M8} \\ \text{M8} \\ \text{M9} \\$		B1	oe
anywhere $(= 29/48 \text{ or } 0.604)$ $P(M \mid 18 - 60) = \frac{P(M \cap 18 - 60)}{P(18 - 60)}$ $= 88/145 (0.607)$ $= 88/145 (0.607)$ $= 26$ $\frac{\Sigma(x - 5)}{18} - \left(\frac{26}{18}\right)^2 = \frac{967}{18} - \left(\frac{58}{9}\right)^2$ $= \frac{5}{18} - \left(\frac{26}{18}\right)^2 = \frac{967}{18} - \left(\frac{58}{9}\right)^2$ $= \frac{5}{18} - \left(\frac{58}{18}\right)^2 = \frac{967}{18} - \left(\frac{58}{9}\right)^2$ $= \frac{5}{18} - \left(\frac{58}{18}\right)^2 = \frac{967}{18} - \left(\frac{58}{9}\right)^2$ $= \frac{5}{18} - \left(\frac{58}{9}\right)^2 = \frac{5}{18} - $	· · · · · · · · · · · · · · · · · · ·	M1	1
$= 88/145 (0.607) \qquad \text{A1} \qquad 5 \qquad \text{Correct answer}$ $3 \Sigma(x-5) = 116 - 18 \times 5 \\ = 26 \\ \frac{\Sigma(x-5)^2}{18} - \left(\frac{26}{18}\right)^2 = \frac{967}{18} - \left(\frac{58}{9}\right)^2 \qquad \text{M1} \qquad \text{Subst in correct var formula all coded vals Subst in correct var formula all uncoded}$ $\Sigma(x-5)^2 = 257 \qquad \text{A1} \qquad 5 \qquad \text{Correct answer}$ $OR \ \text{coded mean} = 58/9 - 5 = 1.444 \qquad \text{M1} \qquad \text{Subtracting 5 from true mean and mult by 18}$ $\Sigma(x-5)^2 = 2x^2 - 10\Sigma x + 25 \times 18 \qquad \text{A1} \qquad \text{Correct answer}$ $\Sigma(x-5)^2 = 2x^2 - 10\Sigma x + 25 \times 18 \qquad \text{M1} \qquad \text{Expanding } \Sigma(x-5)^2 \text{ 3 terms needed}$ $A1 \qquad \text{A1} \qquad \text{Correct answer}$ $4 \qquad \text{(i)} \qquad \qquad \text{Expanding } \Sigma(x-5)^2 \text{ 3 terms needed}$ $A1 \qquad \text{Correct answer}$ $4 \qquad \text{(ii)} \qquad \qquad \text{Elinear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct quartiles}$ $B1 \qquad \qquad \text{Expanding } \Sigma(x-5)^2 \text{ 3 terms needed}$ $A1 \qquad \text{Correct answer}$ $4 \qquad \text{(ii)} \qquad \qquad \text{Elinear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct quartiles}$ $B1 \qquad \qquad \text{Correct an points of whiskers not through box}$ $\text{(iii)} 1.5 \times 170 = 255 \qquad \text{M1} \qquad \text{Mult their IQ range by 1.5}$ $\text{Expensive houses above}$ $690 + 170 \times 1.5 = 945$ $\text{i.e. 957 and 986 thousands of dollars}$ $\text{A1} \qquad 2 \qquad \text{Correct answers from correct wkg need thousands of dollars}$	(= 29/48 or 0.604)	M1	
3 $\Sigma(x-5) = 116-18 \times 5$ $= 26$ $\frac{\Sigma(x-5)^2}{18} - \left(\frac{26}{18}\right)^2 = \frac{967}{18} - \left(\frac{58}{9}\right)^2$ M1 Subst in correct var formula all coded vals Subst in correct var formula all uncoded $\Sigma(x-5)^2 = 257$ A1 5 Correct answer OR coded mean = $58/9 - 5 = 1.444$ $\Sigma(x-5) = 1.444 \times 18 = 26$ M1 Subtracting 5 from true mean and mult by 18 $\Sigma(x-5)^2 = \Sigma x^2 - 10\Sigma x + 25 \times 18$ $= 967 - 1160 + 450 = 257$ M1 Expanding $\Sigma(x-5)^2$ 3 terms needed Any 2 terms correct Correct answer 4 (i) B1 Linear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct quartiles B1 Linear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct quartiles B1 Correct end points of whiskers not through box (ii) $1.5 \times 170 = 255$ Expensive houses above $690 + 170 \times 1.5 = 945$ i.e. 957 and 986 thousands of dollars A1 2 Correct answers from correct wkg need thousands of dollars	$P(M \mid 18 - 60) = \frac{P(M \cap 18 - 60)}{P(18 - 60)}$	A1	
$\frac{26}{18} - \left(\frac{26}{18}\right)^2 = \frac{967}{18} - \left(\frac{58}{9}\right)^2$ A1 Correct answer $\frac{\Sigma(x-5)^2}{18} - \left(\frac{26}{18}\right)^2 = \frac{967}{18} - \left(\frac{58}{9}\right)^2$ A1 Subst in correct var formula all coded vals Subst in correct var formula all uncoded $\Sigma(x-5)^2 = 257$ A1 Subtracting 5 from true mean and mult by 18 $\Sigma(x-5)^2 = \Sigma x^2 - 10\Sigma x + 25 \times 18$ $= 967 - 1160 + 450 = 257$ A1 Subtracting 5 from true mean and mult by 18 $\Sigma(x-5)^2 = \Sigma x^2 - 10\Sigma x + 25 \times 18$ $= 967 - 1160 + 450 = 257$ A1 Expanding $\Sigma(x-5)^2$ 3 terms needed A1 Any 2 terms correct Correct answer Linear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct median Correct quartiles Linear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct median Correct end points of whiskers not through box M1 Mult their IQ range by 1.5 Expensive houses above 690 + 170 × 1.5 = 945 i.e. 957 and 986 thousands of dollars A1 2 Correct answer	= 88/145 (0.607)	A1 5	Correct answer
$\Sigma(x-5)^2 = 257$ OR coded mean = $58/9 - 5 = 1.444$ $\Sigma(x-5) = 1.444 \times 18 = 26$ M1 $\Sigma(x-5)^2 = \Sigma x^2 - 10\Sigma x + 25 \times 18$ $= 967 - 1160 + 450 = 257$ M1 $Expanding \Sigma(x-5)^2 3 \text{ terms needed}$ Any 2 terms correct Correct answer 4 (i) B1 $Uinear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct quartiles B1 B1 Correct end points of whiskers not through box (ii) 1.5 \times 170 = 255 Expensive houses above 690 + 170 \times 1.5 = 945 i.e. 957 and 986 thousands of dollars A1 2 Correct answer Correct answer A1 Correct answer Correct answer A1 Correct answer Correct end points of whiskers not through box M1 Mult their IQ range by 1.5 Correct answers from correct wkg need thousands of dollars$	= 26		
OR coded mean = $58/9 - 5 = 1.444$ $\Sigma(x - 5) = 1.444 \times 18 = 26$ $\Sigma(x - 5)^2 = \Sigma x^2 - 10\Sigma x + 25 \times 18$ $= 967 - 1160 + 450 = 257$ M1 A1 Expanding $\Sigma(x - 5)^2$ 3 terms needed Any 2 terms correct Correct answer 4 (i) B1 Linear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct median Correct quartiles B1 Correct end points of whiskers not through box (ii) $1.5 \times 170 = 255$ Expensive houses above $690 + 170 \times 1.5 = 945$ i.e. 957 and 986 thousands of dollars A1 2 Correct answers from correct wkg need thousands of dollars	$\frac{\Sigma(x-5)^2}{18} - \left(\frac{26}{18}\right)^2 = \frac{967}{18} - \left(\frac{58}{9}\right)^2$		
$\Sigma(x-5) = 1.444 \times 18 = 26$ $\Sigma(x-5)^2 = \Sigma x^2 - 10\Sigma x + 25 \times 18$ $= 967 - 1160 + 450 = 257$ M1 A1 Correct answer Expanding $\Sigma(x-5)^2$ 3 terms needed Any 2 terms correct Correct answer 4 (i) B1 Linear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct quartiles B1 Correct end points of whiskers not through box (ii) $1.5 \times 170 = 255$ M1 Mult their IQ range by 1.5 Expensive houses above 690 + 170 × 1.5 = 945 i.e. 957 and 986 thousands of dollars A1 2 Correct answer Correct answer Expanding $\Sigma(x-5)^2$ 3 terms needed Any 2 terms correct Correct answer M1 Linear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct quartiles Correct answer Correct answer Correct answers from correct wkg need thousands of dollars	$\Sigma(x-5)^2 = 257$	A1 5	Correct answer
4 (i) B1 Linear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct median Correct quartiles B1 Correct end points of whiskers not through box (ii) 1.5 × 170 = 255 Expensive houses above 690 + 170 × 1.5 = 945 i.e. 957 and 986 thousands of dollars A1 Any 2 terms correct Correct answer Linear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct median Correct end points of whiskers not through box M1 Mult their IQ range by 1.5 Correct answers from correct wkg need thousands of dollars			· ·
Linear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct median Correct quartiles 4 Correct end points of whiskers not through box (ii) 1.5 × 170 = 255 Expensive houses above 690 + 170 × 1.5 = 945 i.e. 957 and 986 thousands of dollars B1 Linear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct median Correct end points of whiskers not through box Mult their IQ range by 1.5 Correct answers from correct wkg need thousands of dollars		A1	Any 2 terms correct
Linear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct median Correct quartiles 4 Correct end points of whiskers not through box (ii) 1.5 × 170 = 255 Expensive houses above 690 + 170 × 1.5 = 945 i.e. 957 and 986 thousands of dollars B1 Linear scale or 5 values shown and labels or in heading, need thousands of dollars, Correct median Correct end points of whiskers not through box Mult their IQ range by 1.5 Correct answers from correct wkg need thousands of dollars	4 (2)	nref	
B1 Correct quartiles	4 (1)		in heading, need thousands of dollars,
House price, 000's dollars B1 4 Correct end points of whiskers not through box (ii) 1.5 × 170 = 255 Expensive houses above 690 + 170 × 1.5 = 945 i.e. 957 and 986 thousands of dollars A1 2 Correct answers from correct wkg need thousands of dollars			
Expensive houses above $690 + 170 \times 1.5 = 945$ i.e. 957 and 986 thousands of dollars A1 2 Correct answers from correct wkg need thousands of dollars		B1 4	•
i.e. 957 and 986 thousands of dollars A1 2 Correct answers from correct wkg need thousands of dollars	(ii) 1.5 × 170 = 255	M1	Mult their IQ range by 1.5
	$690 + 170 \times 1.5 = 945$	A1 2	
(iii) doesn't show all the data items B1 1 Need to see 'individual items' oe			thousands of dollars
	(iii) doesn't show all the data items	B1 1	Need to see 'individual items' oe

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

5	(i)	z = -1.406	B1		Rounding to ±1.41 seen
		$\frac{c - 14.2}{3.6} = -1.406$	M1		Standardising allow sq rt no cc
		3.6 $c = 9.14$	A1	3	Correct answer
((ii)	$P\left(\frac{15-14.2}{3.6}\right) < z < \left(\frac{16-14.2}{3.6}\right)$	M1		2 attempts at standardising no cc no sq rt
		$= \Phi(0.5) - \Phi(0.222)$ = 0.6915 - 0.5879	M1		Subt two Φs (indep mark)
		= 0.1036	A1		Needn't be entirely accurate, rounding to 0.10
		P(at least 2) = $1 - P(0, 1)$ = $1 - (0.8964)^7 - (0.8964)^6 (0.1036)_7 C_1$	M1		Binomial term with ${}_{7}C_{r}p^{r}(1-p)^{7-r}$ seen $r \neq 0$ any $p < 1$
		= 1 - 0.8413	M1		1 - P(0), 1 - P(1), 1 - P(0, 1) seen their p
		= 0.159	A1	6	Correct answer accept 3sf rounding to 0.16
6	(i)	M R O $3 1 2 = 7C3 \times 5C1 \times 8C2 = 4900$	M1		Summing more than one 3term option involving combs (can be added)
		3 $2 1 = 7C3 \times 5C2 \times 8C1 = 2800$	M1		Mult 3 combs only (indep)
		2 $2 = 7C2 \times 5C2 \times 8C2 = 5880$	A1		1 option correct unsimplified
		Total = 13580	A1	4	Correct answer
((ii)	4 groups in 4! ways 3 mountain in 3! ways	M1		4! seen mult by something
		2 ordinary in 2! ways	M1		Mult by 3! for racing or 2! for ordinary
		$4! \times 3! \times 2 = 288$	A1	3	Correct answer
(i	iii)	e.g. s O x x x x O s s s Ordinary in 2!	M1		2! or 4! seen mult
		Rest of bikes in 4!	M1	31	Mult by 5 (ssssb)
		Bikes and spaces 5 groups in 5 ways $2! \times 4! \times 5 = 240$	A1	3	Correct answer

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	61

7 (i	7 (i) if throw H then smallest score is 2 $P(T, 1) = 1/2 \times 1/4 = 1/8 \text{ AG}$						s 2		B1 B1	2	Or equivalent
(ii)	P(3) from	n tw	o dice =	= 2/1	6 seen			B1		From (1, 2) and (2, 1)
$P(H, 3) = 1/2 \times 2/16 = 2/32$ $P(T, 3) = 1/2 \times 1/4 = 1/8$ So $P(3) = 6/32 = 3/16$ AG					M1 A1 A1	4	Summing P(H, 3) and P(T, 3) One correct Correct answer must see clear reasoning				
(iii	(iii)										
X		1 2	3	4	5	6	7	8	B1		One correct prob
Prob		5/32		7/32		3/32			B1 B1	3	A second correct prob A third correct prob
(iv) $P(Q \cap R) = 0$ or 'if you throw a tail you can't get a 7'					ail yo	ou	M1		Stating $P(Q \cap R) = 0$ or implying by words		
		Yes they	are	exclusi	ve			T	A1dep	2	Dep on previous M

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/62 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 A and B marks are not given for fortuitously 'correct' answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

AEF	Any Equivalent Form (of answer is equally acceptable)					
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)					
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)					
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)					
CWO	Correct Working Only – often written by a 'fortuitous' answer					
ISW	Ignore Subsequent Working					
MR	Misread					
PA						
	Premature Approximation (resulting in basically correct work that is insufficiently accurate)					
sos						

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through √ marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

1		$P(x < -2.4) = P\left(z < \frac{-2.4 - 1.5}{3.2}\right)$	M1		Standardising no cc can have sq
		= P(z < -1.219) = 1 - 0.8886	M1		Correct area, i.e. < 0.5
		= 0.111	A1	[3]	Correct answer rounding to 0.111
2	(i)	$P(C \cap < 50) = 0.35 \times 0.2 = 0.07$	B1	[1]	
	(ii)	$P(C \mid <50) = \frac{P(C \cap <50)}{P(<50)}$	M1	[4]	Summing three 2-factor products seen anywhere (can omit the 1)
		$= \frac{0.35 \times 0.2}{0.25 \times 0.3 + 0.35 \times 0.2 + 0.4(\times 1)}$	A1		0.545 (unsimplified) seen as num or denom of a fraction
		$=\frac{0.07}{0.545}$	M1		Attempt at P(C \cap < 50) as 2-factor prod only seen as num or denom of a fraction
		= 0.128 (14/109)	A1		Correct answer
3	(i)	$z = 0.878$ $\frac{190 - 160}{2} = 0.878$	B1 M1		$\pm 0.878, 0.88$, rounding to 0.88 seen $(190 - 160)/\sigma = \text{something}$
		σ $\sigma = 34.2$	A1	[3]	Correct answer
	(ii)	P(at least 1) = 1 - P(0)	M1		Using $1 - P(0)$, $1 - P(0, 1)$, $P(1,2 12)$ or $P(2, 12)$ with $p = 0.19$ or 0.81 , terms must be
		$= 1 - (0.81)^{12} = 0.920$	A1	[2]	evaluated to get the M1 Correct answer accept 0.92
4	(i)	number = $1.5 \times 50 = 75$ (AG)	B1	[1]	Must see 1.5×50
	(ii)	freqs are 10, 25, 50, 75, 30 (15, 15) Mean = $(10 \times 125 + 25 \times 162.5 + 50 \times 187.5 + 75 \times 225 + 20 \times 200)/100$	M1 A1 M1	0.5	Attempt at freqs not fd Correct freqs attempt at mid points not cw or ucb or lcb
		$+75 \times 225 + 30 \times 300)/190$ = $40562.5/190 = 213 (213.48)$	A1		correct mean
		$sd^{2} = 10 \times 125^{2} + 25 \times 162.5^{2} + 50 \times 187.5^{2} + 75 \times 225^{2} + 30 \times 300^{2})/190 - (213.48)^{2}$	M1		subst their Σfx^2 in correct variance formula
		sd = 46.5 or 46.6	A1	[6]	
	(iii)	have used the mid-point of each interval and not the raw data	B1	[1]	

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

5	(i)	$P(4, 5, 6) = (0.22)^{4}(0.78)^{4}8C4 + (0.22)^{5}(0.78)^{3}8C5 + (0.22)^{6}(0.78)^{2}8C6$	M1 M1		Bin term with ${}_{8}C_{r} p^{r} (1-p)^{8-r}$ seen $r \neq 0$ any $p < 1$ Summing 2 or 3 bin probs $p = 0.22$,
		= 0.0763	A1	[3]	n = 8 Correct answer
	(ii)	prob = 0.13 mean = $300 \times 0.13 = 39$ var = $300 \times 0.13 \times 0.87 = 33.93$	B1 B1ft		Correct prob can be implied Correct unsimplified np and npq ft wrong 0.13
		P(30 < x < 50) = P	M1		Standardising a value need sq rt
		$\left(\frac{30.5 - 39}{\sqrt{33.93}} < z < \frac{49.5 - 39}{\sqrt{33.93}}\right)$	M1		Cont correction 30.5 / 31.5 or 48.5/49.5 only
		= P(-1.4592 < z < 1.8026)	M1		Correct area $\Phi_1 + \Phi_2 - 1$ oe
		$= \Phi(1.8026) + \Phi(1.4592) - 1$ = 0.9643 + 0.9278 - 1 = 0.892	A1	[6]	Rounding to correct answer SC P(31,49)=300C31(0.13) ³¹ (0.87) ²⁶⁹ + +300C49 etc.) B1B1
6	(i)	1663200	B1	[1]	
	(ii)	M xxxxxxxx M	M1		9! or 9P9 seen
		Number of ways = $\frac{9!}{3!2!}$ = 30240	A1	[2]	Correct answer
	(iii)	4 vowels together = $8! \times 4/2!2!$ = 40320	M1 M1		8!/2!2! seen mult by something 4 oe 4!/3! or 4C1 etc. seen mult by something
		1663200 - 40320 = 1622880	B1	[3]	Correct answer SC 7!/2!2! × 8P4 or 7! × 8P4/3! Or 7!/2!2! × 8P4/3! M1
	(iv)	Exactly 2 Es 4C2 = 6 Exactly 3 Es 4C1 = 4 Total = 10 ways	M1 B1 A1	[3]	Summing 2 options One option correct Correct answer
		OR 5C2 = 10	M2 A1		M1 for k5C2 Correct ans

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

7	(i)	options (3, 4, 4,) or (4, 3, 4) or (4, 4, 3) Probs (4/10 × 6/9 × 5/8) ×3C1 = 360/720 = ½ AG	M1 M1	[3]	Summing three 3-factor options oe $10 \times 9 \times 8$ seen in denom
		/2 / IG	711	[J]	Correct answer
		$OP_{6}^{6}C_{2}\times_{4}C_{1} = 1$	M1		One of 6C2 or 4C1 seen in num
		$OR \frac{{}_{6}C_{2} \times {}_{4}C_{1}}{{}_{10}C_{3}} = \frac{1}{2} AG$	M1		10C3 in denom
			A1		Correct answer
	(ii)		B1	[4]	9, 10, 11, 12 only seen
	sum Prob	9 10 11 12 24/720 216/720 360/720 120/720	B1		One correct prob other than P(11), with
		D(2, 2, 2) A/10 · · 2/0 · · 2/0 · · 2/10 · · 2/10 · · · 2/10 · · · 2/10 · · · 2/10 · · · 2/10 · · · 2/10 · · · 2/10 · · · 2/10 · · · 2/10 · · · · · · · · · · · · · · · · · · ·	B1		or without replacement Another correct prob
		$P(3, 3, 3) = 4/10 \times 3/9 \times 2/8 = 24/720 (1/30)$ $P(3, 3, 4) = 4/10 \times 3/9 \times 6/8 \times 3C1$	DI		Another correct prob
		= 216/720 (3/10)			
		$P(4, 4, 4) = 6/10 \times 5/9 \times 4/8 = 120/720(1/6)$	B1		Σ all 4 probs = 1
	(iii)	$P(R) = 0.5 P(S) = 0.4 P(R \cap S) = 120/720$	B1	[3]	$P(R \cap S) = 120/720 (1/6)$
	` /		M1		Numerical attempt to compare P(R and S)
		$P(R \cap S) = 120/720 \neq P(R) \times P(S)$			with $P(R) \times P(S)$ provided $P(R \cap S) \neq 1/5$
		Not indep	A1ft		Correct conclusion ft wrong $P(R \cap S) \neq 1/5$, $P(S)$ correct
	(iv)	$P(R \cap S) \neq 0$ or there is an overlap between R and S (34,4) Not exclusive $\sum xf/\sum f$	B1ft	[1]	Correct answer following correct reasoning ft wrong non zero $P(R \cap S)$

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/63 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 A and B marks are not given for fortuitously 'correct' answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
1014/	
ISW	Ignore Subsequent Working
MR	Misread
MR	Misread Premature Approximation (resulting in basically correct work that is insufficiently

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through √ marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

1 bars are not touching oe	B1	Sensible reason involving not touching, no gaps, class boundaries, group data not continuous (may be the negative)
Area not rep by frequency, not used fd, not labelled fd	B1 2	Must be frequency density oe. Wrong height not sufficient. (Best 2 reasons awarded)
$P(13.6 < X < 14.8) = P\left(\frac{13.6 - 14}{0.52} < z < \frac{14.8 - 14}{0.52}\right)$	M1	Standardising 1 expression, no cc, no sq rt, no sq, ±, mean on num.
$= P(-0.7692 < z < 1.538)$ $= \Phi(1.538) - [1 - \Phi(0.7692)]$ $= 0.9380 - [1 - 0.7791]$	M1 A1	Φ 1 + Φ 2 – 1 (indep) oe (Φ 2 – Φ 1 if cc used) Correct probability rounding to 0.72 here
$= 0.7171$ $P(8) = (0.7171)^{8}(0.2829)^{2}{}_{10}C_{8}$	M1	Binomial expression 10C8 p^8q^2 , $\Sigma p + q = 1$, any p
= 0.252	A1 :	5 Correct answer (rounding to 0.252)
3 (i) $(p =)0.85$ P(< 12) = 1 - P(12, 13, 14) $= 1 - [(0.85)^{12}(0.15)^{2}_{14}C_{12} + (0.85)^{13}(0.15)_{14}C_{13} + (0.85)^{14}]$	B1 M1	(p =)0.85 oe seen anywhere Summing 2 or 3 consistent bin probs, any
	A1 3	p < 1, n = 14 (or summing 12 or 13 consistent bin probs) Correct answer
(ii) $(0.85)^n \ge 0.1$ $n \le 14.2$ $n = 14$	M1 M1 A1	Eqn or inequality in 0.85(or 0.15), <i>n</i> , 0.1, <i>n</i> as a power Attempt to solve (can be implied) if <i>n</i> a power Correct answer – must be equals, not approx. MR allowed for 0.01, M1M1A0 max.
4 (i) (220×20 + 118×25)/45 = 163	M1 A1	Mult by 20 and 25 and dividing their sum by 45 Correct answer, 163.3 or 490/3 oe acceptable
(ii) $\Sigma x_o^2 / 20 - 220^2 = 32^2$ $\Sigma x_o^2 = 988480$	M1 A1	Subst in correct variance formula Correct Σx_0^2
$\sum x_l^2 / 25 - 118^2 = 12^2$ $\sum x_l^2 = 351700$	A1	correct Σx_l^2
$\Sigma x_o^2 + \Sigma x_l^2 = 1340180$ New var = 1340180/45 - (7350/45) ² = 3100 - 3120	M1 A1	Subst their combined results in correct var formula Correct answer

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

5 (a)	$P(X < q + 82) = 0.72$ $z = 0.583$ $\frac{\pm q}{7.4} \text{ or } \frac{\pm 2q}{7.4} = z \text{ or probabilty (o.e.)}$	M1 M1		Rounding to \pm 0.58 or \pm 0.15 seen Standardising, no cc, no sq, no sq rt
	q = 4.31	A1	3	correct answer
(b)	$\frac{0.5\mu - \mu}{\sigma} = \frac{\pm 0.5\mu}{\sigma}$	M1		Standardising attempt some μ/σ allow cc, sq rt, sq Can be implied
	$\frac{0.2\sigma^2}{\sigma} = -0.2\sigma = -0.580$	B1 M1		±0.580 seen (accept $\pm0.58)$ substituting to eliminate μ or σ , arriving at numerical solution, any z value or probability – not dependent
	$\sigma = 2.90$ $\mu = 3.36$	A1	4	both answers correct, accept 2.9
6 (i)	$\frac{8!}{3!2!2!} = 1680$	M1 A1	2	8! Divided by at least one of 3!2!2! oe Correct answer
(ii)	5! = 120	M1 A1	2	5! Seen (not added, may be divided/multipled) Correct answer
(iii)	<u>5!4!</u> <u>3!2!2!</u>	B1 M1		5! Or 4! Seen in sum or product in numerator (denominator may by 1) $\frac{k5!4!}{3!2!2!}$ in a numerical expression
	= 120	A1	3	Correct final answer
(iv)	GG with AA, AE, EE, RA, RE, RT, TA, TE, = 8 ways GGG with A, E, R, T = 4 ways	M1 A1	eľ	Summing 2 options (could be lists) 1 correct option
	Total = 12 ways	A1	3	Correct answer

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	63

_			
7 (i)	P(same) = P(1, 1) + P(3, 3) + P(5, 5)	M1	Summing 3 two-factor options
	$= \frac{2}{9} \times \frac{1}{8} + \frac{4}{9} \times \frac{3}{8} + \frac{3}{9} \times \frac{2}{8}$	M1	Multiplying terms by one less in the numerator or denominator
	= 5/18 (0.278)	A1 3	Correct answer
	Alt. method: $ \frac{2C 2+4C2+3C2}{9C2} $ or $ \frac{2\times 1+3\times 4+2\times 3}{9C2\times 2} $ oe		M1 for numerator, M1 for denominator, A1 correct answer
(ii)	$P(5,\overline{5}) + P(\overline{5},5)$	M1 M1	Mult 2 probs whose numerators sum to 9 o.e. Summing 2 options or mult by 2 (may be 4 options)
	$= \frac{3}{9} \times \frac{6}{8} + \frac{6}{9} \times \frac{3}{8} = \frac{36}{72} = \frac{1}{2} \text{ or } 0.5$	A1 3	Correct answer
	Alt. method:		
	$\frac{6C1\times3C1(\times2)}{9C2(\times2)} oe$		M1 for numerator, M1 for denominator, A1 correct answer
(iii)	$P(5 \cap \overline{5}) = \frac{3}{9} \times \frac{6}{8} = \frac{1}{4}$	M1	Attempt at P(5 and not 5) seen as numerator or denominator of a fraction
	$P(\overline{5}) = \frac{1}{4} + \frac{6}{9} \times \frac{5}{8} = 48/72 = 0.6666$	M1	Attempt at P(not 5) sum of 2 two-factor terms seen anywhere
	$P(5_1 \overline{5}_2) = \frac{1/4}{48/72} = 3/8$	A1	Correct P($\overline{5}$) as numerator or denominator in fraction
	= 0.375	A1 4	Correct answer
(iv)		210	
	$ \begin{array}{c ccccc} x & 0 & 1 & 2 \\ \hline P(X=x) & 5/12 & 1/2 & 1/12 \\ \end{array} $	B1	Values 0, 1, 2 seen in table with at least 1 prob
	$P(0) = P(\overline{5}, \overline{5}) = \frac{6}{9} \times \frac{5}{8} = 30/72 (5/12)$ (0.4166)	В1	Correct P(0) unsimplified
	P(1) = 0.5 from part (ii)		
	P(2) = 6/72 (1/12) (0.0833) from part (i)	B1ft 3	If $x=0,1,2(,3)$ ft $\Sigma p = 1$, no -ve values, all probabilities <1

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/61 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	61

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	61

AEF	Any Equivalent Form (of answer is equally acceptable)		
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)		
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)		
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)		
CWO	Correct Working Only – often written by a 'fortuitous' answer		
ISW	Ignore Subsequent Working		
MR			
IVIIX	Misread		
PA	Misread Premature Approximation (resulting in basically correct work that is insufficiently accurate)		
	Premature Approximation (resulting in basically correct work that is insufficiently		

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through "marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	61

		-			
1	(i)	$sd^2 = 1957.5/30 - (234/30)^2$ sd = 2.1	M1 A1	[2]	Subst in formula or expand Accept 2.10
	(ii)	86 = 234/30 + c c = 78.2	M1 A1	[2]	234/30 seen
2		$np = 350 \times 1/7 (= 50)$ $npq = 350 \times 1/7 \times 6/7 (= 42.857)$	B1 M1		Correct unsimplified <i>np</i> and <i>npq</i> standardising, with or without cc, must have sq rt
		$P(x 47) = P\left(z > \frac{46.5 - 50}{\sqrt{42.857}}\right) =$ $P(z > -0.5346)$	M1 M1		continuity correction 46.5 or 47.5 correct area ie > 0.5 must be a Φ
		= 0.704	A1	[5]	correct answer
3	(i)	females: med \$22 700 LQ \$21700 UQ \$24 000	B1 B1	[2]	Any 2 correct All correct
	(ii)	males	B1		Uniform scale and labels must see Salary, \$000
		females	B1		Correct graph for females ft their quartiles. Line not through box
		20 21 22 23 24 25 26 27 Salary in \$000	B1	[3]	Correct graph for males
4	(a)	$P(y < 0) = P\left(z < \frac{0 - \mu}{\mu/2}\right)$	M1		Standardising containing 0 (can be implied) and μ only
		= P(z < -2)	A1		z < -2 seen
		= 1 - 0.9772 = 0.0228	A1	[3]	Correct answer
(b)		P(x > 2.1) = 253/8000 = 0.031625 $P(x < 2.1) = 0.968375 = \Phi(z)$	M1	0.0	1 – their 253/8000 used to obtain a z-value
		$z = 1.857$ or 1.858 or 1.859 = $\frac{2.1 - 2.04}{\sigma}$	A1		Rounded to 1.86 seen
		$\sigma = 0.0323$	M1		Solving for σ using their z val must be a z val
			A1	[4]	Correct answer
5	(i)	$X \sim \text{Bin} (12, 0.2)$	B1 B1 B1	[3]	Bin or B 12 0.2 or 1/5
	(ii)	$P(X=3,4,5) = 0.2^{3}0.8^{9}_{12}C_{3} + 0.2^{4}0.8^{8}_{12}C_{4}$	M1		Bin exprerssion with any p
		$+ 0.2^{5}0.8^{7}_{12}C_{5}$ $= 0.23622 + 0.13287 + 0.05315$ $= 0.422$	A1ft A1	[3]	Correct unsimplified expression, their p Correct answer

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	61

	(iii)	$P(X=0) < 0.01$ $0.8^{n} < 0.01$ $n = 21$	M1 M1 A1	[3]	Statement involving P(X = 0) and 0.01 can be implied Equn involving '0.8', 0.01 or 0.99 Correct answer
6	(i)	4! × 3! × 5! × 2! × 4! = 829440	B1 B1 B1	[3]	4!, 3!, 5!, 2 seen multiplied 1, not in denominator Mult by 4! Correct answer
	(ii)	$8! \times 9 \times 8 \times 7 \times 6 \times 5 \times 4$ $= 2438553600 (2.44 \times 10^{9})$	B1 B1 B1	[3]	8! seen multiplied 1 Mult by ₉ P ₆ Correct answer
	(iii)	8C3 × 5C3 × 2C2 = 560	B1 B1 B1	[3]	8C3 seen mult 5C3 seen mult Correct answer
7	(i)	number of balls in B is $5+x+1=x+6$ P(Y) = $x/(x+6)$ AG	B1	[1]	Sensible reason
	(ii)	$box A \qquad box B$ $\frac{6}{x+6} W$	B1		both correct for box A
		8/10 Y	B1		1 correct
		$\frac{5}{x+6}W$	B1		1 correct
		$\frac{x+1}{x+6}$ Y	B1	[4]	1 correct
	(iii)	$P(W_B) = \frac{6}{x+6} = \frac{1}{3}$	M1		their $\frac{6}{x+6} = 1/3$ or $x/x+6 = 2/3$
		x = 12 AG	A 1	[2]	Verification or solving legit

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	61

(iv)	$P(Y) = \frac{8}{10} \times \frac{12}{18} + \frac{2}{10} \times \frac{13}{18}$ $= \frac{61}{90}$	M1 A1		Attempt at P(, Y) involving 2 two-factor fractions, seen anywhere. Correct P(Y) seen as num or denom of a fraction
	$P(= (AY BY) = \frac{P(AY \cap BY)}{P(Y)}$ $= \frac{2}{10} \times \frac{13}{18} / \frac{61}{90}$	В1		$(2/10) \times (13/18)$ seen as num or denom of a fraction
	$=\frac{13}{61}(0.213)$	A1	[4]	Correct answer

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/62 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	62

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↑ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	62

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently
	accurate)
SOS	

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through "marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Page 4 Mark Scheme		Paper
	GCE AS/A LEVEL – May/June 2013	9709	62

1		z = 1.452	B1		Rounding to ± 1.45
		$1.452 = \frac{20 - \mu}{\mu/5}$	B1		$\frac{20 - \mu}{\mu/5}$ or $\frac{20 - 5\sigma}{\sigma}$ seen oe
		$\mu = 15.5$	B1	[3]	rounding to correct answer
2		$\overline{x} = 50 + 81.4/22 = 53.7$	M1		Attempt to find variance using coding
		$var = 671/22 - 3.7^2 = 16.81(16.8)$	A1		in both, correct formula Correct answer using their var and their mean with
		$16.81 = \Sigma x^2 / 22 - 53.7^2$	M1		uncoded formula for both
		= 63811(63800)	A1	[4]	correct answer
		OR			
		$\Sigma x - 22 \times 50 = 81.4 \ (\Sigma x = 1181.4)$ $\Sigma x^2 - 100\Sigma x + 22 \times 50^2 = 671$	M1 M1		expanded eqn with 22×50 seen expanded eqn with 2 or 3 terms
			A 1		correct
		$\Sigma x^2 = 671 + 118140 - 55000 = 63811$ $Var = \Sigma x^2 / 22 - (\Sigma x / 22)^2 = 16.81$	A1 A1		correct answer correct answer
3	(i)	P(x < 440)			
		$= P\left(z < \frac{440 - 445}{3.6}\right) = 1 - \Phi(1.389)$	M1		Standardising no cc no sq or sq rt
		= 1 - 0.9176	M1		Correct area $(1 - \Phi)$ oe (indep)
		Ans = 0.0824	A1	[3]	Rounding to correct answer accept 0.0825
	(ii)	z = 1.881	M1		±1.88 or 1.881 or 1.882 or 1.555 seen±
		$\frac{c}{3.6} = 1.881$	M1		Equation with $\pm c/3.6$ or $2c/3.6$ only = z or prob (can be implied)
		c = 6.77	A1	[3]	Correct answer accept 6.78
4	(i)	p = 4/9 or 5/9 P(at least 2) = 1 - P(0, 1) = 1 - $(5/9)^5$ - $(4/9)(5/9)^4$ ₅ C ₁	B1 M1		Binomial term ${}_{5}C_{x}p^{x}(1-p)^{5-x}$ seen
		= 0.735	A1	[3]	Correct answer
	(ii)	$np = 96 \ npq = 32 \ p = P \ (\le k)$	M1		Using $np = 96 npq = 32$ to obtain eqn in 1 variable
		$p = 2/3 \ q = 1/3 \ n = 144$ k = 6	A1 A1ft		1/3 or 2/3 seen or implied Correct k ft $k = 9p$
		n = 144	A1	[4]	correct n

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	62

5 (i	Stem leaf 0 1 4 6 8 1 0 3 4 4 4 5 5 5 6 6 6 6 7 8 8 2 0 1 5 7 8 3 1 4 5 5 7	B1		Correct stem condone a space under the 1 Correct leaves must be single digits and one line for each stem value or 2 lines each stem value
	Key 1 4 represents \$140	B1ft	[3]	Correct key must have \$, ft 2 special cases
(ii		B1		
	LQ = 140 UQ = 210 IQ range = UQ - LQ	M1		Subt their LQ from their UQ
	TH			
	= 70	A1	[3]	Correct answer cwo
(iii	$1.5 \times IQ \text{ range} = 105$	M1		Mult their IQ range by 1.5 can be implied
	Lower outlier is below 35 Upper outlier is above 315	A1ft		Correct limits ft their IQ range and quartiles
	Outliers 10, 450, 570	A1	[3]	Correct outliers
6 (i	1. 28 $2 = 4C2 \times 9C8 \times 2C2 = 54$	M1 M1		Mult 3 combs, 2C2 may be implied $4Cx \times 9Cy \times 2Cz$ Summing 2 or 3 three-factor options
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1		2 options correct unsimplified
			[4]	2 options correct unsimplified Correct answer
(ii	4 6 2 = $4C4 \times 9C6 \times 2C2 = 84$ Total = 282 ways	A1	[4]	
(ii	4 6 2 = $4C4 \times 9C6 \times 2C2 = 84$ Total = 282 ways	A1 A1 M1	[4]	Correct answer $4! \times 6! \times 2!$ oe seen multiplied by int ≥ 1
(ii	$4 6 2 = 4C4 \times 9C6 \times 2C2 = 84$ $Total = 282 ways$ $4! \times 6! \times 2! \times 3!$	A1 A1 M1 M1	G ^O	Correct answer $4! \times 6! \times 2!$ oe seen multiplied by int ≥ 1 $3!$ seen mult by int ≥ 1
(ii	$4 6 2 = 4C4 \times 9C6 \times 2C2 = 84$ $Total = 282 ways$ $4! \times 6! \times 2! \times 3!$ $= 207360 (207000)$	A1 A1 M1	[4]	Correct answer $4! \times 6! \times 2!$ oe seen multiplied by int ≥ 1 $3!$ seen mult by int ≥ 1 Correct answer
(ii	$4 6 2 = 4C4 \times 9C6 \times 2C2 = 84$ $Total = 282 \text{ ways}$ $4! \times 6! \times 2! \times 3!$ $= 207360 (207000)$	A1 A1 M1 M1	G ^O	Correct answer $4! \times 6! \times 2!$ oe seen multiplied by int ≥ 1 $3!$ seen mult by int ≥ 1
	$4 6 2 = 4C4 \times 9C6 \times 2C2 = 84$ $Total = 282 \text{ ways}$ $4! \times 6! \times 2! \times 3!$ $= 207360 (207000)$ $8 \text{ J and O trees in } 8! = 40320 \text{ ways}$	A1 A1 M1 M1 A1 B1	G ^O	Correct answer $4! \times 6! \times 2!$ oe seen multiplied by int ≥ 1 $3!$ seen mult by int ≥ 1 Correct answer $8!$ seen mult by int ≥ 1 no division $9P4$ oe or $7P4$ or $8P4$ seen mult by int
	4 6 2 = 4C4×9C6×2C2 = 84 Total = 282 ways 4! × 6! × 2! × 3! = 207360 (207000) 8 J and O trees in 8! = 40320 ways 9 gaps × 8 × 7 × 6 = 121,927,680 (122,000,000)	A1 A1 M1 M1 A1 B1 M1	[3]	Correct answer $4! \times 6! \times 2!$ oe seen multiplied by int ≥ 1 $3!$ seen mult by int ≥ 1 Correct answer $8!$ seen mult by int ≥ 1 no division $9P4$ oe or $7P4$ or $8P4$ seen mult by int ≥ 1 no division
(iii	4 6 2 = 4C4×9C6×2C2 = 84 Total = 282 ways 4! × 6! × 2! × 3! = 207360 (207000) 8 J and O trees in 8! = 40320 ways 9 gaps × 8 × 7 × 6 = 121,927,680 (122,000,000) SR 4C2×9C2×2C2×9C6	A1 A1 M1 A1 B1 M1 A1	[3]	Correct answer $4! \times 6! \times 2!$ oe seen multiplied by int ≥ 1 $3!$ seen mult by int ≥ 1 Correct answer $8!$ seen mult by int ≥ 1 no division $9P4$ oe or $7P4$ or $8P4$ seen mult by int ≥ 1 no division

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	62

(iii)	SR1 12! – 9! 4!	M1		
	SR2 $\frac{9P4}{4!}$ or $\frac{8!}{6! 2!}$ or both	M1		
7 (i)	$P(T,B) = \frac{5}{12} \times \frac{2}{10} = \frac{1}{12} (0.0833)$	M1 A1	[2]	Mult their $P(T)$ by $2/9$ or $2/10$ only Correct answer
(ii)	$P(C_S \cap C_A) = \frac{7}{12} \times \frac{4}{10} = \frac{28}{120} (0.2333)$	M1		Mult their $P(C_S)$ by 3/9 or 4/10 seen as num or denom of a fraction
	$P(C_A) = \frac{7}{12} \times \frac{4}{10} + \frac{5}{12} \times \frac{3}{10} = \frac{43}{120} (0.3583)$	M1		Summing 2 two-factor products to find $P(C_A)$ seen anywhere
	$P(C_S C_A) = \frac{P(C \cap C)}{P(C_A)} = \frac{28/120}{43/120}$	A1		Correct unsimplified $P(C_A)$ seen as num or denom of a fraction
	$=\frac{28}{43}(0.651)$	A1	[4]	Correct answer
(iii)	x 0 1 2 Prob 7/24 19/40 7/30	B1		x = 0, 1, 2, can be implied from table or working
	P(X=0) = P(T, B) + P(T, T)	M1		1 or 2 two-factor products, denoms 12 and 10 or 12 and 9, implied if ans is correct
	$= \frac{5}{12} \times \frac{2}{10} + \frac{5}{12} \times \frac{5}{10} = \frac{7}{24} (0.292)$	A1		One correct unsimplified
	$P(X=2) = P(C, C) = \frac{7}{12} \times \frac{4}{10} = \frac{28}{120} (0.233)$	B1) · C	One other correct unsimplified
	$P(X=1) = 1 - 7/24 - 28/120 = \frac{19}{40}(0.475)$	B1ft	[5]	Third correct ft 1 – P(2 of their probs))

CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/63 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	63

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or
 which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A
 or B mark is not given if a correct numerical answer arises fortuitously from incorrect working.
 For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal
 to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	63

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a "fortuitous" answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	63

1	$P(Q) = \frac{4}{36} \text{ or } P(S) = \frac{1}{2}$	B1		oe
	$P(Q \cap S) = \frac{2}{36}$ or $P(S Q) = \frac{1}{2}$ or	B1		oe
	$P(Q S) = \frac{2}{18}$			
	$P(Q \cap S) = P(Q) \times P(S)$ or $P(S Q) = P(S)$ or $P(Q S) = P(Q)$	M1		Comparing correct pair of terms $0 \le \text{all probabilities} < 1$
	Independent	A1	[4]	Correct conclusion must have all probs correct
2	P(at least 2) = P(2, 3) or 1 - P(0, 1)	M1		Summing, or 1–, two different three-factor prob expressions, ${}_{3}C_{2}$ not needed
	$= \frac{5}{12} \times \frac{4}{11} \times \frac{7}{10} \times {}_{3}C_{2} + \frac{5}{12} \times \frac{4}{11} \times \frac{3}{10}$	M1 M1		12, 11, 10 seen or implied in denominator Mult a prob by ${}_{3}C_{2}$ or ${}_{3}C_{1}$ oe
	$=\frac{4}{11}(0.364)$	A1	[4]	Correct answer
	11	M1	[-]	₅ C ₃ seen added in numerator
	OR $\frac{(_5C_3) + (_5C_2 \times _7C_1)}{_{12}C_3}$	M1		${}_{5}C_{2}$ seen mult alone or in numerator
	3	M1		$_{12}^{3}$ C ₃ seen in denom
		A1		Correct answer
3 (i)	P(tall) = P $\left(z > \frac{70 - 50}{16}\right)$ = P(z > 1.25)	M1		+ve/-ve Standardising no cc no sq rt no sq
	= 1 - 0.8944 = 0.106	A1	[2]	Correct answer
(ii)	P(short) = (1 - 0.1056)/3	M1		Subt their (i) from 1 or their (i) and multiplying
				by $\frac{1}{3}$ or $\frac{2}{3}$
	= 0.2981	A1 ft		Rounding to 0.298, only ft for $\frac{(1-(i))}{3}$
	z = -0.53	A1		\pm z-value rounding to 0.53, condone \pm 0.24
	$-0.53 = \frac{x - 50}{16}$	M1		Standardising with their z value (not a probability), no cc sq rt etc.
	x = 41.5	A1	[5]	Correct answer
(ii)	P(short) = $(1 - 0.1056)/3$ = 0.2981 z = -0.53 $-0.53 = \frac{x - 50}{16}$	M1 A1 ft A1 M1	е	Subt their (i) from 1 or their (i) and multiplying by $\frac{1}{3}$ or $\frac{2}{3}$ Rounding to 0.298, only ft for $\frac{(1-(i))}{3}$ \pm z-value rounding to 0.53, condone \pm 0.24 Standardising with their z value (not a probability), no cc sq rt etc.

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	63

4 (i) $(0.8)^n < 0.001$	M1	Eqn or inequ involving 0.8^n or 0.2^n
		and 0.001 or 0.999
n > 30.9	M1	Trial and error or logs (can be implied)
n=31	A1 [3]	Correct answer MR 0.01, max available M1M1A0
		Will old final available with the
(ii) $\mu = 120 \times 0.2 = 24$ $\sigma^2 = 120 \times 0.2 \times 0.8 = 19.2$	B1	24 and 19.2 or $\sqrt{19.2}$ seen
$\sigma^2 = 120 \times 0.2 \times 0.8 = 19.2$	M1	Standardising with or without cc, must have sq
(32.5-24)		rt in denom
$P(x < 33) = P \times \left(z < \frac{32.5 - 24}{\sqrt{19.2}}\right)$	M1	Continuity correction 32.5 or 33.5
= P(z < 1.9398)		
= 0.974	A1 [4]	Correct answer
5 (a) $P(W_2) = P(W_1W_2) + P(L_1W_2)$	B1	0.3×0.6 alone as num or denom of a fraction
$= 0.3 \times 0.6 + 0.7 \times 0.15$	M1	Attempt at $P(W_2)$ as sum of two 2-factor options seen anywhere
= 0.285	P	seen any where
$P(W_1 W_2) = \frac{P(W_1 \cap W_2)}{P(W_2)} = \frac{0.18}{0.285}$	A1	Correct unsimplified P(W ₂) as num or denom of
$P(W_2) \qquad 0.285$		a fraction
-0.632 12	A 1 [A]	Compet answer
$=0.632, \frac{12}{19}$	A1 [4]	Correct answer
(b) $x+4$ oe seen	B1	Seen anywhere
$\frac{10}{15} \times \frac{7}{x+4} = \frac{7}{18}$	M1	Mult two probabilities, one containing x and
$15^{\circ} x + 4 18$	1411	7 _
		equating to $\frac{7}{18}$
	A1	Correct unsimplified equation
<i>x</i> = 8	A1 [4]	Correct answer
C (D (40.0) (50.10)	D.1	
6 (i) (40, 0), (50, 12) etc. up to (90, 144)	B1	Axes, (cf) and labels (kg), uniform scales from at least 0–140 and 40.5–69.5 either way round
cf points	atore	at least 0-140 and 40.5-09.5 Citilet way found
140		
5p /		
40 50 60 70 80 90 kg	B1 [2]	All points correct, sensible scale (not 12),
		polygon or smooth curve
(ii) 90 weigh loss than 67.2 les	M1	Subt 64 from 144
(ii) 80 weigh less than 67.2 kg	M1 A1 ft [2]	Subt 64 from 144 Accept anything between 67 and 68
c = 67.2		ft from incorrect graph
	İ	<i>U</i> 1

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	63

(iii) freqs 12, 22, 30, 28, 52	M1 A1		frequencies attempt not cf Correct freqs
mean wt = $(45 \times 12 + 55 \times 22 + 62.5 \times 30 + 67.5 \times 28 + 80 \times 52)$ / 144	M1		Using mid points attempt, i.e. 44.5, 45, 45.5, in correct mean formula, unsimplified, no cfs, condone 1 error.
= 9675 / 144 = 67.2 kg	A1		Correct mean
Var $(45^2 \times 12 + 55^2 \times 22 + 62.5^2 \times 30 + 67.5^2 \times 28 + 80^2 \times 52) / 144 - (9675/144)^2 = 127.59$	M1		Substituting their mid-pts squared (may be class widths, lower or upper bound) in correct var formula even with cfs with their mean ²
sd = 11.3, allow 11.2	A1	[6]	Correct answer
7 (i)			
S(10) R(14) P(6) 1 2 4 = 10C1×14C2×6C4= 13650	M1		Summing 2 or more 3-factor options perms or combs
1 3 $3 = 10C1 \times 14C3 \times 6C3 = 72800$	M1		Mult 3 combs or 4 combs with $\Sigma r = 7$
$2 2 3 = 10C2 \times 14C2 \times 6C3 = 81900$	B1		2 options correct, unsimplified
Total = 168350 or 168000	A1	[4]	Correct answer
(ii) 2! × 2! × 5!	M1		2! × 2! oe, seen mult by an integer ≥1, no division
	M1		Mult by 5!, or 5! alone, seen mult by an integer ≥ 1 no division
= 480	A1	[3]	Correct answer
If M0 earned $\frac{2! \times 2!}{2! \times 2!}$ or $\frac{5!}{3!}$ or both,	SCM1		
seen mult by an integer ≥ 1 Or $2!\times 2!\times 5!$ divided by a value			
(iii) spaniels and retrievers in 4! ways	M1		4! seen multiplied by an integer >1
gaps in 5P3 or $5 \times 4 \times 3$ ways	M1		Mult by 5P3 oe
= 1440	A1	[3]	Correct answer
If M0 earned	SCM1		$_5$ C $_3$ oe
$\frac{4!}{2! \times 2!} \text{ or } \frac{{}_{5}P_{3}}{3!} \text{ or both, seen multiplied}$ by an integer > 1			
or			
$7! - 5! \times 3!$	M1		oe
$-\{(4! \times 2 \times 4 \times 3!) +$	M1		oe, e.g. $6 \times 5 \times 4 \times 4!$
$(4! \times 3 \times 4 \times 3!)$	A1		
= 1440	Al		
If M0 earned			
$3! \times 2! \times 2!$ used as a denominator in			
all 4 terms	SCM1		Marks cannot be earned from both methods.