

Cambridge International A Level

MATHEMATICS

9709/61 May/June 2023

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

9709/61

	Mathematics Specific Marking Principles			
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.			
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.			
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.			
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).			
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.			
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.			

Cambridge International A Level – Mark Scheme PUBLISHED Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/61

Cambridge International A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	20540/6012300 = 0.0034163	B1	
	$[1000 \times 0.0034163 = 3.4163]$		
	Po(3.4163)	B1	Could be implied by expression seen.
	$e^{-their '3.4163'}(1 + 3.4163 + \frac{3.4163^2}{2!} + \frac{3.4163^3}{3!}) OR$ $e^{-their '3.4163'}(1 + 3.4163 + 5.8356 + 6.6453) \text{ or } 0.03283 + 0.1122 + 0.1916 + 0.21819)$	M1	Allow any λ . Allow with one end error. Must see expression.
	= 0.555 (3sf)	A1	CAO SC No working: B1 B1 (Po must be stated) B1 correct answer (max 3/4). SC Binomial: B1 B0 B1 correct answer (max 2/4).
		4	
1(b)	n = 1000 > 50	B1	Must show comparison with 50.
	<i>np</i> = 3.4163 < 5	B1	Must show comparison with 5.
		2	SC B1 : $n > 50$ (or n large), $np < 5$. SC B1 : n large, p small.

Question	Answer	Marks	Guidance
2(a)	$\frac{1}{2} \times 2 \times 1$ or $\int_{0}^{2} \frac{1}{2} x dx = 1$, which is the correct area under a pdf.	B1	Calculation and result.
	$f(x) \ge 0$	B1	Condone $f(x) > 0$ or 'Line is above <i>x</i> -axis' OE.
		2	

9709/61

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2023

Question	Answer	Marks	Guidance
2(b)	$\frac{1}{2}\pi r^2 = 1$	M1	Area of semi-circle equated to 1 OE. Missing factor of ½ gets M1A0.
	$r = \sqrt{\frac{2}{\pi}}$ or 0.798 (3sf)	A1	
		2	
2(c)(i)	Area to the left of 15 is greater than 0.5	B1	OE, e.g. 'The distribution of X is skewed to the right / positively skewed, suggesting the median will be less than the mid-point of the interval.' or 'The distribution of X is skewed to the right / positively skewed' or 'It is a decreasing function suggesting the median will be less than the mid-point of the interval'.
		1	
2(c)(ii)	$\int_{10}^{20} \left(\frac{40}{x} - \frac{x}{10}\right) \mathrm{d}x$	M1	Integration of $xh(x)$ attempted. Ignore limits.
	$\left[40\ln x - \frac{x^2}{20}\right]_{10}^{20}$	A1	Correct integration and limits (can be implied by final answer).
	$= 40 \ln 2 - 15 \text{ or } 12.7 (3 \text{ sf})$	A1	
		3	

Question	Answer	Marks	Guidance
3	Assume SD still = 5.2	B1	OE i.e. 'Assume the SD remains unchanged'.
	$H_0: \mu = 24.0 H_1: \mu > 24.0$	B1	Or population mean; not just mean.
	$\frac{25.8-24.0}{\frac{5.2}{\sqrt{50}}}$	M1	For standardising (could be implied). Must have $\sqrt{50}$.
	= 2.448	A1	Or $P(\overline{X} > 25.8) = 0.0071$.
	`2.448' > 2.326	M1	Or 0.0071 < 0.01 . For valid comparison.
	[Reject H_0] There is evidence that (mean) amount of wheat is greater.	A1FT	OE. FT their z_{calc} . In context, not definite, eg not 'Mean amount of wheat is greater' No contradictions CV method: CV= 25.71 M1A1 25.71<25.8 M1 A1FT or CV=24.09 M1 A1 24.09>24 M1 A1FT.
		6	

Question	Answer	Marks	Guidance
4(a)	$z \times \sqrt{\frac{11.2}{n}} = 1.4076 \div 2$	M1	Any <i>z</i> , but must be a <i>z</i> .
	z = 1.881 or 1.882	B1	
	$\begin{bmatrix} n = \left(\frac{1.881}{0.7038}\right)^2 \times 11.2 \end{bmatrix}$ n = 80	A1	Must be a whole number.
		3	

Question	Answer	Marks	Guidance
4(b)	Jan, Feb and March not typical of whole year.	B1	Or, e.g., weather is different at different times of year.
		1	
4(c)	$0.94^3 \times 0.06 \times 4$	M1	
	= 0.199 (3 sf)	A1	
		2	

Question	Answer	Marks	Guidance
5(a)	$2.0^2 + 20 \times 3.4^2$	M1	
	= 235.2	A1	
		2	
5(b)	$E(C-3B) = 50 + 20 \times 1010 - 3 \times 6730$ or 60	B1	
	$Var(C-3B) = 235.2' + 9 \times 15^2$ or 2260.2	M1	FT <i>their</i> values from (a) .
	$\begin{bmatrix} C - 3B \sim N('60', '2260.2') \end{bmatrix} = \frac{0 - 60}{\sqrt{2260.2}} \qquad [= -1.262]$	M1	Standardising with their values (could be implied).
	$1 - \Phi(`-1.262') = \Phi(`1.262')$	M1	Probability area consistent with their values.
	= 0.897 (3 sf)	A1	
		5	

Question	Answer	Marks	Guidance
6	$\frac{5}{4} \left(\frac{1+2^2+6^2+1+a^2}{5} - \left(\frac{1+2+6+1+a}{5} \right)^2 \right) = \frac{11}{2}$ or $\frac{1}{4} \left((42+a^2) - \frac{(10+a^2)}{5} \right) = \frac{11}{2}$	M1*	OE attempted or e.g., $\frac{42+a^2}{5} - \left(\frac{10+a}{5}\right)^2 = \frac{22}{5}$. Allow use of biased i.e., without $\frac{5}{4}$.
	$4a^2 - 20a + 0 = 0 \text{ or } a^2 - 5a + 0 = 0$	DM1	Two- or three-term quadratic equation in <i>a</i> , with at least two terms correct.
	<i>a</i> = 5	A1	Ignore $a = 0$, if seen.
		3	

Question	Answer	Marks	Guidance
7(a)	H ₀ : $\lambda = 7.6$ [or 1.9] H ₁ : $\lambda < 7.6$ [or 1.9]	B1	Or Population mean = 7.6 or μ (not just 'mean'). Or Population mean < 7.6 or μ .
		1	

Question	Answer	Marks	Guidance
7(b)	Mean = 7.6	B1	Seen.
	$P(X \le 2) = e^{-7.6} \left(1 + 7.6 + \frac{7.6^2}{2}\right) \qquad [= 0.0188 \text{ or } 0.0187]$	M1	OE.
	$P(X \le 3) = e^{-7.6} (1 + 7.6 + \frac{7.6^2}{2} + \frac{7.6^3}{3!}) \qquad [= 0.0554 \text{ or } 0.0553]$	M1	OE. Expression must be seen in at least one probability calculation.
	0.0188 or 0.0187 and 0.0554 or 0.0553	A1	A1 for both values.
	Critical region is $X \leq 2$	A1	Dep on both M marks. SC No Poisson expression seen in either prob scores B1 for 0.0188 or 0.0187 and B1 for 0.0554 or 0.0553 and B1 for CR.
	P(Type I error) = P($X \le 2$) = 0.0188 or 0.0187 (3 sf)	B1FT	FT <i>their</i> $P(X \le 2)$ or <i>their</i> CR.
		6	
7(c)	Concluding that the (mean) no. of accidents has reduced when it has not.	B1	OE. Must be in context. Accept: 'It is believed that the booklet has helped to improve safety when actually it has not'.
		1	
7(d)	3 not in critical region.	M1	FT their CR or $P(X \le 3) = 0.0554 > 0.05$.
	No evidence mean number of accidents has decreased.	A1FT	In context. Cannot be a definite statement, e.g., 'mean number accidents has not decreased'.
		2	

9709/61

Question	Answer	Marks	Guidance
7(e)	N(98.8, 98.8)	B1	May be implied.
	$\frac{100.5 - 98.8}{\sqrt{98.8}} [= 0.171]$	M1	For standardising (could be implied by correct answer). Allow with wrong or no continuity correction.
	$1 - \Phi(`0.171`)$	M1	For probability area consistent with their working.
	= 0.432 (3 sf)	A1	
		4	

Cambridge International A Level

MATHEMATICS

9709/62 May/June 2023

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

Cambridge International A Level – Mark Scheme PUBLISHED Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$0.23 \pm z \times \sqrt{\frac{0.23 \times (1 - 0.23)}{200}}$	M1	Expression of correct form. Any z , but $z = 0.8328$ scores B0M0.
	z = 1.811 or 1.812	B1	
	0.176 to 0.284 (3 sf)	A1	Must be an interval.
		3	

Question	Answer	Marks	Guidance
2(a)	$\mathrm{E}(W) = \mathrm{Var}(W).$	B1	Allow 'they are the same' OE. Must be = not \approx (and not both = and \approx). Condone E(W) = λ and Var(W)= λ .
		1	
2(b)	$np \approx np(1-p)$, hence $1-p$ must be close to 1	B1	OE. Must see formulae and $q = 1 - p$ must be seen or implied and conclusion made.
		1	

Question	Answer	Marks	Guidance
2(c)	$\lambda = 1.4$	B1	Seen.
	$1 - e^{-1.4}(1 + 1.4 + \frac{1.4^2}{2})$ or $1 - e^{-1.4}(1 + 1.4 + 0.98)$ or $1 - (0.2466 + 0.3452 + 0.2417)$	M1	Allow any λ ; allow one end error. Expression must be seen (accept correct sigma notation).
	= 0.167 (3 sf) or 0.166	A1	Use of Binomial scores SCB1 for 0.167 or 0.166 . No working: 0.167 [or 0.166] SC B1. Note: λ =1.4 and 0.167 with no working seen scores SC B1B1. Use of Normal scores B0M0.
		3	

Question	Answer	Marks	Guidance
3(a)	Est (μ) = 3.25 = 13/4 or 1625/500	B1	
	Est(σ^2) = $\frac{500}{499} (\frac{5663.5}{500} - "3.25"^2)$ or $\frac{1}{499} \left(5663.5 - \frac{1625^2}{500} \right)$	M1	Expression of correct form.
	= 0.766 (3 sf) or 1529/1996	A1	Biased variance of 0.7645 scores M0A0.
		3	

Question	Answer	Marks	Guidance
3(b)	H ₀ : Pop mean (or μ) = '3.25' H ₁ : Pop mean (or μ) \neq '3.25'	B1FT	Not just 'mean'. FT their 3.25 .
	$\frac{2.95-"3.25"}{\sqrt{"0.766"\div60}}$	M1	Standardising with their values. Must have $\sqrt{60}$.
	= -2.655	A1	Or $P(\bar{X} < 2.95) = 0.0039$ or 0.00396 or 0.00397. SC FT their biased est(σ^2), i.e. 0.7645 to give $z = 2.658$ A1.
	'2.655' > 2.576 or '-2.655' < -2.576	M1	For valid comparison, e.g. 0.0039 or 0.00396 or 0.00397 < 0.005, or 0.0078 < 0.01, or 0.00792 < 0.01.
	[Reject H_0] There is evidence that (mean) mass in (country B) is different (from country A).	A1FT	OE. Must be in context and not definite, e.g., not 'Mean mass is not different', No contradictions. Context needs either 'mass' or 'countries' OE.
			SC, Use of one-tail test. '2.655' > 2.326 or 0.0039 < 0.01 M1A0 (Max B0M1A1M1A0 3/5).
			Accept critical value method. Either: Xcrit=2.959 M1A1 2.95<2.959 M1A1FT with correct conclusion, or Xcrit=3.241 M1A1 3.25>3,241 M1A1FT with correct conclusion.
		5	

Question	Answer	Marks	Guidance
4(a)	Books received independently or singly or randomly.	B1	OE. Must be in context. If more than one condition given, ignore extras.
		1	

Question	Answer	Marks	Guidance
4(b)	$e^{-15.3} \times \frac{15.3^{10}}{10!}$	M1	Allow incorrect λ .
	= 0.0439 (3sf)	A1	SC No working shown but correct answer seen scores B1.
		2	
4(c)	N(153, 153)	B1	Seen or implied.
	$\frac{180.5 - 153}{\sqrt{153}} \qquad [= 2.223]$	M1	For standardising with their values (can be implied). Allow with wrong or missing continuity correction.
	1 -•\$(`2.223')	M1	For correct probability area consistent with their values.
	= 0.0131 (3sf)	A1	
		4	
4(d)	$(\lambda =) 5.1 + 2.5$ [= 7.6]	B1	Give at early stage (seen or implied).
	$1 - e^{-7.6}(1 + 7.6 + \frac{7.6^2}{2} + \frac{7.6^3}{3!}) = 1 - e^{-7.6}(1 + 7.6 + 28.88 + 73.16)$ = 1 - (0.0005005 + 0.003803 + 0.01445 + 0.03661)	M1	Allow incorrect λ . Allow one end error. Must see an expression (accept correct sigma notation).
	= 0.945 (3sf)	A1	SC No working, 0.945 B1(could be implied) SC B1.
		3	

May/June 2023

Question	Answer	Marks	Guidance
5(a)	E(X - Y) = 1 Var(X - Y) = 5	B1	Seen or implied, OE e.g. $X - Y - 2$.
	$\frac{2-1}{\sqrt{5}} \ [= 0.447] \qquad \qquad \frac{-2-1}{\sqrt{5}} \ [= -1.342]$	M1	Standardising with their values must come from a combination.
	$1 - \Phi('0.447') \qquad \Phi('-1.342') = 1 - \Phi('1.342)$	M1	Correct probability area consistent with their values.
	= 0.327 or 0.328 = 0.0898 or 0.0899	A1	Seen or implied.
	Probability that difference is more than $2 = 0.417$ (3 sf) or 0.418	A1	
		5	
5(b)(i)	E(X) = 62 + 1.5(42) [= 125]	B1	OE.
	$Var(X) = 158 + 1.5^2 \times 108$ [= 401]	B1	Correct expression OE.
	$\frac{90-"125"}{\sqrt{"401"}} \ [=-1.748]$	M1	Correct standardisation using their $E(X)$ and $Var(X)$. Must both be from a combination attempt. Ignore any attempted continuity correction.
	Φ('1.748')	M1	Correct probability area consistent with their stated values.
	= 0.960 or 96.0% (3 sf)	A1	Allow 0.96 or 96%.
		5	
5(b)(ii)	Unlikely. A candidate who does well in Theory is likely to do well in Practical.	B1	Need both. Accept 'unlikely', 'not independent', 'dependent', 'not realistic', or similar; and accept 'both testing knowledge from the same syllabus', 'theory and practical share same content' or similar statement.
		1	

Question	Answer	Marks	Guidance
6(a)	$(1-\frac{1}{3})^{10}$	M1	
	= 0.0173 (3 sf)	A1	No working scores SC B1.
		2	
6(b)	$1 - (1 - p)^{10} = 0.8926$	M1	Accept $1 - q^{10} = 0.8926$. Equation must be in p or in q but not both.
	$1 - p = 0.1074^{0.1} \qquad [= 0.800]$	M1	For valid attempt to solve their (binomial) equation in p^{10} or q^{10} .
	p = 0.200 (3 sf) or 0.2	A1	
		3	

Question	Answer	Marks	Guidance
7(a)(i)	$\frac{1}{2} \times 4 \times a = 1$	M1	For use of area = 1 or let $f(x) = kx$ and attempt $\int_0^4 kx dx = 1$.
	$[a = \frac{1}{2}] f(x) = \frac{1}{8}x$	A1	$k \left[\frac{x^2}{2} \right]_0^4 = 1; 8k = 1; k = \frac{1}{8} .$ $f(x) = \frac{1}{8} x \text{ or } k = \frac{1}{8} .$
		2	

Question	Answer	Marks	Guidance
7(a)(ii)	$\int_0^4 x \times \frac{1}{8} x \mathrm{d}x$	M1	Attempt to integrate $x \times their$ f(x). Ignore limits accept in terms of k.
	$\left[\frac{x^3}{24}\right]_0^4$	Alft	Their integral and correct limits accept in terms of <i>k</i> .
	$=\frac{8}{3}$ or 2.67 (3 sf)	A1	Note: Final answer of $64k/3$ scores $2/3$.
		3	
7(b)	$\frac{a-1}{a} = \frac{1}{\sqrt{2}}$	M1	Or attempt $\int_{0}^{1} g(w)dw = \frac{1}{2}$ i.e. $\int_{0}^{1} (\frac{2}{a} - \frac{2}{a^2}w)dw = \frac{1}{2}$, or integral from 1 to <i>a</i> . g(w) must be linear of form $g(w) = mw$ (+ <i>c</i>). Or area attempt: attempt to calculate heights using their linear equation ($h_1=2/a$ and $h_2=-2/a^2+2/a$) and use in either area trapezium = 0.5, or area trapezium =area small triangle or area small triangle = 0.5. Area trapezium = $1/2 \times 1$ ($2/a + -2/a^2 + 2/a$) Area triangle = $1/2(a - 1)(-2/a^2 + 2/a)$) Note: alternative expression for $h_1 = (a - 2)/(a - 1)$.
	$a\sqrt{2}-\sqrt{2}=a$	A1	Or $a^2 - 4a + 2 = 0$. Any correct equation in <i>a</i> , <i>a</i> not in denominator.
	$a = 2 + \sqrt{2} = 3.41$	A1	
		3	

Cambridge International A Level

MATHEMATICS

9709/63 May/June 2023

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

Cambridge International A Level – Mark Scheme PUBLISHED Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$\frac{3}{2}\int_{0}^{1}(x-x^{3})dx$	M1	Attempt to integrate $xf(x)$; ignore limits.
	$=\frac{3}{2}\left[\frac{x^2}{2}-\frac{x^4}{4}\right]_0^1$	A1	Correct integration and limits.
	$=\frac{3}{8}$	A1	
		3	

Question	Answer	Marks	Guidance
2(a)	180, 227	B1	One correct. Ignore incorrect numbers.
		B1	Both correct and no extra numbers seen. (Allow other correct use of list of digits).
		2	
2(b)	These numbers are not independent of the previous numbers OR Only a finite number of digits used	B1	Already used these numbers, so therefore not random. Does not include numbers not in the list, therefore not random (not random or biased needs a reason).
	Only a linite number of digits used		
		1	

Question	Answer	Marks	Guidance
3(a)	z = 1.645	B1	
	$z \times \frac{\sqrt{\frac{x}{100} \times (1 - \frac{x}{100})}}{100} = 0.07896$	M1	OE. Equation of correct form. Accept $p = x/100$. Any <i>z</i> . Allow missing factor of 2.
	$[x(100-x) = 100^3 \times 0.07896^2 \div 1.645^2]$ $x^2 - 100x + 2304 = 0$	A1	Any correct (likely scalar multiple) three-term quadratic equation in x or p with simplified coefficients. Accept $p^2 - p + 0.2304 = 0$ or $p(1-p) = 0.2304$.
	x = 36 or 64	A1	
		4	
3(b)	$0.1^2 = 0.01$	B1	Accept either.
		1	

May/June 2023

Question	Answer	Marks	Guidance	
4	Method 1: Based on mass			
	Mean = $7 \times 65.2 = 456.4$	B1		
	$Var = 7 \times 3.6^2 [= 90.72]$	M1		
	$22\ 000/50 = 440$ used in standardising equation	M1		
	$\frac{440' - 456.4'}{\sqrt{90.72'}} = -1.722 \text{ no mixed methods}$	M1	For standardising with their values. No mixed methods.	
	$\phi(-`1.722') = 1 - \phi(`1.722')$	M1	For correct probability area consistent with their values.	
	= 0.0425 or 0.0426	A1	Note: accept alt method using per day. N(65.2, $\frac{3.6^2}{7}$). No mixed methods.	
	Method 2: Based on profit			
	Mean = $7 \times 65.2 \times 50 = 22820$	B1		
	$Var = 7 \times 3.6^2$	M1		
	$Var = 50^2 \times 90.72' [= 226800]$	M1		
	$\frac{22000 - 22820'}{\sqrt{226800'}} = -1.722 \text{ no mixed methods}$	M1	For standardising with their values. No mixed methods.	
	$\phi(-`1.722') = 1 - \phi(`1.722')$	M1	For correct probability area consistent with their values.	
	= 0.0425 or 0.0426	A1		
		6		

9709/63

Question	Answer	Marks	Guidance
5(a)	$\overline{x} = 1700/50 = 34$	B1	
	Est(σ^2) = $\frac{50}{49} \left(\frac{59050}{50} - 34^2 \right)$ or $\frac{1}{49} \left(59050 - \frac{1700^2}{50} \right)$	M1	$\operatorname{Est}(\sigma^2) = \frac{59050}{50} - 34^2 \text{ biased scores M0.}$
	= 25.5 (3 sf) or $\frac{1250}{49}$	A1	= 25 scores A0.
		3	
5(b)	H ₀ : Population mean time = 32.4 H ₁ : Population mean time $\neq 32.4$	B1	Not just 'mean' but allow just ' μ '.
	$\frac{34 - 32.4}{\frac{\sqrt{25.5'}}{\sqrt{50}}}$	M1	Must have $\sqrt{50}$ and not 50. FT <i>their</i> mean and var. Can be implied.
	= 2.24 (3 sf)	A1	or P($\overline{T} > 34$) = 0.0125. SC use of biased var (25) $z = 2.26$ or $p = 0.0119$, allow M1A1.
	·2.24' < 2.326	M1	Or $0.0125 > 0.01$ for a valid comparison.
	[Not reject H ₀] Insufficient evidence that (mean) time has changed	A1FT	In context, not definite, e.g. not 'Time not changed'. No contradictions. Note: accept CV method $x_{cri} = 34.06$ for M1A1. Compares $34 < 34.06$ for M1, conclusion for A1. Condone $x = 32.34$ M1A1: compares $32.4 > 32.34$ for M1, conclusion for A1.
		5	SC for using a one-tail method. Award max 3/5 (B0 M1 A1 M1 A0).

May/June 2023

Question	Answer	Marks	Guidance
5(c)	Distribution of times in the population is normal	B1	Accept answers with no context here. Accept underlying distribution for population.
		1	

Question	Answer	Marks	Guidance
6(a)	$X \sim \text{Po}(2.5)$	B1	SOI.
	$e^{-2.5}(1+2.5+\frac{2.5^2}{2}+\frac{2.5^3}{3!})$	M1	Any λ . Allow one end error.
	= 0.758 (3 sf)	A1	SC use of binomial B1 for 0.758.
			SC when no working is shown, $X \sim Po(2.5)$ seen scores B1, 0.758 seen also scores B1.
		3	
6(b)	$E(X) = \frac{5}{2}$ or 2.5, $Var(X) = \frac{4999}{2000}$ or 2.4995	*B1	Just an answer of 2.5 for the variance is not sufficient. However, 2.4995 is sufficient.
	These are almost equal	DB1	Condone 'equal'.
		2	

Question	Answer	Marks	Guidance
7(a)	$\frac{1}{2}\pi \left(\sqrt{\frac{2}{\pi}}\right)^2$	M1	
	= 1, which is the area under a PDF [and $f(x) \ge 0$]	A1	Result and statement are both needed.
		2	
7(b)	$\cos^{-1}\left(\frac{\sqrt{\frac{1}{\pi}}}{\sqrt{\frac{2}{\pi}}}\right) = \frac{\pi}{4}$	B1	AG. Accept alternative approaches, e.g. using Pythagoras, tangent, or isosceles right-angle triangles. Answer should be convincingly obtained and all correct.
	Area of sector = $\frac{1}{4}$	B1	
	Area of triangle $AOB = \frac{1}{2}OA \times OB = \frac{1}{2} \times \sqrt{\frac{1}{\pi}} \times \sqrt{\frac{2}{\pi} - \frac{1}{\pi}}$ or Area of triangle $AOB = \frac{1}{2}OA \times OB \times \sin(AOB) = \frac{1}{2} \times \sqrt{\frac{1}{\pi}} \times \sqrt{\frac{2}{\pi}} \sin \frac{\pi}{4}$	M1	Accept alternative approaches. Note: $AB = \sqrt{0.7979^2 - 0.5642^2}$ [= 0.5642] Allow values to 3sf.
	$\frac{1}{2\pi}$ or 0.1592	A1	
	$(\frac{1}{4}) - (\frac{1}{2\pi})$ or $(0.25) - (0.1592)$	M1	Attempt area of sector – area of triangle <i>AOB</i> .
	$=\frac{1}{4}-\frac{1}{2\pi}$ or 0.0908 (3sf)	A1	

9709/63

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2023

Question	Answer	Marks	Guidance
7(b)	Alternative Method for Question Q7(b): Using integration		
	Find equation of curve $x^2 + y^2 = \frac{2}{\pi}$	M1	
	$y = \sqrt{\frac{2}{\pi} - x^2}$	A1	
	Attempt to integrate (any limits)	M1	
	Use of correct limits $\sqrt{\frac{1}{\pi}}$ to $\sqrt{\frac{2}{\pi}}$	B1	
	Correct integration with correct limits	A1	
	$=\frac{1}{4}-\frac{1}{2\pi}$ or 0.0908 (3sf)	A1	Correct final answer.
		6	
Question	Answer	Marks	Guidance
----------	--	-------	---
8(a)	H ₀ : Pop mean no. people = 3.03 or 1.01 (per 20 min) H ₁ : Pop mean no. people > 3.03 or 1.01 (per 20 min)	B1	These must not just be 'mean', but allow just ' λ ' or ' μ '.
	Use of $P_0(3.03)$	M1	
	$= 1 - e^{-3.03} (1 + 3.03 + \frac{3.03^2}{2} + \frac{3.03^3}{3!} + \frac{3.03^4}{4!} + \frac{3.03^5}{5!})$ = 1 - e^{-3.03} (1 + 3.03 + 4.5905 + 4.6364 + 3.5120 + 2.128) = 1 - (0.04832 + 0.1464 + 0.2218 + 0.2240 + 0.1697 + 0.1028)	M1	Allow incorrect λ . Allow one end error. Must see Poisson expression used.
	= 0.0870 (3sf) [0.0869727]	A1	Allow 0.087 .
	0.0870 > 0.05	M1	For a valid comparison.
	(Do not reject H_0) Insufficient evidence to believe (mean) number of people has increased	A1FT	Conclusion stated must be in context, not definite and include no contradictions (e.g. not 'mean number people has not increased').
		6	If only $P(x = 6)$ award max 2/6 (single term not valid).
			SC No working B1 B2 M1 A1. Award maximum 5/6.

Question	Answer	Marks	Guidance
8(b)	$"0.0869727" - e^{-3.03} \times \frac{3.03^6}{6!}$	M1	OE. Must see Poisson expression (may be in part (a)).
	or $0.869727 - e^{-3.03}(1.0748)$		
	or 0.869727 – 0.05193		
	or $1 - e^{-3.03} (1 + 3.03 + \frac{3.03^2}{2} + \frac{3.03^3}{3!} + \frac{3.03^4}{4!} + \frac{3.03^5}{5!} + \frac{3.03^6}{6!})$		
	0.0350 or 0.0351	A1	Accept 0.035. SC no working seen, award B1 for 0.0350, 0.0351 or 0.035.
		2	
8(c)	Concluding that the (mean) number of people (using the path per 20 mins in the evening) has increased when it has not	B1	OE. Conclusion must be in context.
		1	
8(d)	A value for the true mean	B1	Allow without context for this mark.
	Number of people using the path per 20 mins in the evening.	B1	Condone equivalent comment on three randomly chosen 20-minute periods.
		2	

Cambridge International A Level

MATHEMATICS

Paper 6 Probability and Statistics 2 MARK SCHEME Maximum Mark: 50 9709/62 February/March 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2023 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

Cambridge International A Level – Mark Scheme PUBLISHED Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\left[\frac{49}{140} = 0.35\right]$		
	$0.35 \pm z \ \sqrt{\frac{0.35(1-0.35)}{140}}$	M1	Use of formula of correct form, ft <i>their</i> $\frac{49}{140}$, any <i>z</i> (not a probability).
	z = 2.326	B1	Accept 2.326 to 2.329.
	Confidence interval = 0.256 to 0.444 (3 sf)	A1	Must be an interval.
		3	
1(b)	Find a smaller percentage confidence interval/ lower level of confidence	B1	ISW if 2 reasons given. Just saying 'use smaller z' oe B0. Accept a correct example e.g. 90% (even if not qualified with statement).
		1	

Question	Answer	Marks	Guidance
2(a)	2(a) Orders arrive at constant mean rate (must say mean or rate) Orders arrive at random Orders arrive independently Orders arrive singly		Must be in context (accept 25.2 as context).
		B1	Any one reason correctly stated.
		B1	A second reason correctly stated.
			SC B1: both correct, not in context.
		2	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
2(b)(i)	$\lambda = \frac{3}{8} \times 25.2 \ [= 9.45]$	B1	
	$e^{-9.45'}(\frac{9.45^3}{3!} + \frac{9.45^4}{4!} + \frac{9.45^5}{5!})$ or $e^{-9.45'}(140.65 + 332.29 + 628.03)$ or $0.01107 + 0.02615 + 0.04942$	M1	Allow any λ . Allow end errors. Expression must be seen.
	= 0.0866 (3 sf)	A1	If M0 allow SC B1 for 0.0866 no working seen.
		3	
2(b)(ii)	$e^{-3.15} \times 3.15$ or $(1 - e^{-3.15}(1 + 3.15))$ or 0.135 or 0.822 (3 sf)	B1	
	$e^{-3.15} \times 3.15 \times (1 - e^{-3.15}(1 + 3.15))$	M1	M1 for product of two Poisson probabilities $P(1) \times (1 - P(0,1))$ (no end errors accepted). Accept any λ .
	$\times 2 \text{ or } 0.111 \times 2$	M1	M1 for <i>their</i> product of two Poisson probabilities (accept end errors) \times 2. Accept any λ
	0.222 (3 sf)	A1	
		4	
2(c)	N(113.4, 113.4)	B1	SOI
	$\frac{120.5-113.4}{\sqrt{113.4}} \ [= 0.667]$	M1	Standardise with <i>their</i> values. Allow wrong or no cc. Must have $$.
	$1 - \phi(their `0.667')$	M1	For probability area consistent with <i>their</i> values.
	= 0.252 (3 sf)	A1	
		4	

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(a)	1-2(a+b) or $1-2a$ or $0.5-a-b$ or $1-(a+b)$ or $a+a+b$	M1	OE. Seen or implied – may be on the diagram (or for correct un-simplified final expression).
	$P(0.6 \le X \le 1.8) = 1 - 2a - b$	A1	Accept $1 - (2a + b)$.
		2	
3(b)(i)	$k\int_{0}^{3} (9x^2 - 6x^3 + x^4) dx = 1$	M1	Attempt integrate $f(x)$ ignore limits and '= 1'.
	$k \left[\frac{9x^3}{3} - \frac{6x^4}{4} + \frac{x^5}{5} \right]_0^3 = 1$	A1	Correct integration seen, correct limits.
	$k imes rac{81}{10} = 1, k = rac{10}{81}$	A1	AG. Convincingly obtained. No errors seen. (Must see integration).
		3	
3(b)(ii)	$\frac{\frac{10}{81}}{\int_{0}^{3}} (9x^{4} - 6x^{5} + x^{6}) dx$ $\left[\frac{10}{81} \left[\frac{9x^{5}}{5} - x^{6} + \frac{x^{7}}{7}\right]_{0}^{3}\right] [= \frac{18}{7} \text{ or } 2.57]$	M1	Attempt integrate $x^2 f(x)$ between 0 and 3 condone missing k. Must see integration or correct answer of 18/7 seen or implied.
	$\frac{18}{7}$ - '1.5' ²	M1	Their integral of $x^2 f(x) - 1.5^2$ (or their mean ²).
	$=\frac{9}{28}$ or 0.321	A1	
		3	

Question	Answer	Marks	Guidance
4(a)	$e^{-5.7}(1+5.7+\frac{5.7^2}{2!})$ or $e^{-5.7}(1+5.7+16.245)$ or $0.003346+0.01907+0.05436$	M1	Allow one end error. Must see this expression.
	= 0.0768 (3 sf)	A1	SC B1 for unsupported answer of 0.0768.
		2	
4(b)	$e^{-0.9}(1+0.9+\frac{0.9^2}{2!})$	M1	Attempted; allow one end error (must see expression).
	$= 1 - e^{-0.9}(1 + 0.9 + \frac{0.9^2}{2!}) = 1 - e^{-0.9}(1 + 0.9 + 0.405) = 1 - (0.4066 + 3659 + 0.1647)$	A1	Correct expression $P(X \ge 3)$ no end errors (must see expression).
	= 0.0629 (3 sf)	A1	SC B2 for unsupported answer of 0.0629.
		3	

Question	Answer	Marks	Guidance
5(a)	D = L - 2S $E(D) = 410 - 2(206) = -2$	B1	SOI. OE using 2S–L.
	$Var(D) = 3.6^2 + 4 \times 3.7^2 [= 67.72]$	B1	SOI
	$\frac{0-(-2)}{\sqrt{67.72^2}}$ [= 0.243]	M1	For standardising using <i>their</i> values.
	$1 - \phi(their `0.243')$	M1	For probability area consistent with <i>their</i> values.
	= 0.404 (3 sf)	A1	As final answer.
		5	

Question	Answer		Marks	Guidance
5(b)	$T_L \sim N(4100, 10 \times 3.6^2)$	$T_s \sim N(4120, 20 \times 3.7^2)$	B1	One of N(4100, 129.6) or N(4120, 273.8) USED (unchanged) in a standardising equation.
	$\boxed{\frac{4080-4100}{\sqrt{129.6'}} \ (=-1.757)}$	$\frac{4080-4120}{\sqrt{273.8'}} \ (=-2.417)$	M1	Standardising with either <i>their</i> N(4100, 129.6) or N(4120, 273.8) or their N(,) (could be from a combination).
	$1 - \phi(`-1.757`) = \phi(1.757)$	$1 - \phi(-2.417') = \phi(2.417)$	M1	One area consistent with <i>their</i> working (could be from a combination). Do not ISW.
	= 0.9605 or 0.961	= 0.9921 or 0.9922 or 0.992	A1	Both of these correct. Do not ISW.
	$0.6 \times$ 'their 0.9605' + 0.4 × 'their 0.992	1'	M1	Must be using probabilities.
	= 0.973 (3 sf)		A1	
			6	

Question	Answer	Marks	Guidance
6(a)	He is expecting a decrease (in μ)	B1	OE
		1	
6(b)	-2.02 < -1.96	M1	For valid comparison. Allow 2.02 > 1.96 or 0.0217 < 0.025 or 0.9783 > 0.975
	(Reject H_0) There is evidence to suggest that this year's (mean) time is less than 25	A1	OE (such as evidence to support Akash's belief), in context, not definite. No contradictions.
		2	

Question	Answer	Marks	Guidance
6(c)	$1 - \phi(2.14) = 0.0162$	M1	
	1.62	A1	Allow 1.62% or 1.6 or 1.6%.
	$\alpha \ge 1.62 (3 \text{ sf})$	A1ft	FT <i>their</i> 1.62. Allow $\alpha \ge 1.62\%$ or 1.6 or 1.6%. Condone >.
		3	
6(d)	$\frac{24.8-m}{3.9\div10}$	M1	For standardising.
	$\frac{24.8-m}{3.9\div10} = -1.645$	M1	Equate <i>their</i> standardised value to -1.645 (signs must be consistent).
	m = 25.4 (3 sf)	A1	
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50 9709/61 May/June 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	thematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$Est(\mu) = \frac{2520}{200} \ [= 12.6]$	B1	OE
	$\operatorname{Est}(\sigma^2) = \frac{200}{199} \left(\frac{31582}{200} - {}^{\prime}12.6{}^{\prime}{}^2\right) \text{or } \frac{1}{199} \left(31852 - \frac{2520^2}{200}\right)$	M1	Allow M1 if $\frac{200}{199}$ omitted
	$= 0.5025 \text{ or } 0.503 \text{ or } \frac{100}{199}$	A1	CWO or $\sigma = 0.7088$ or 0.709
	z = 1.96	B1	
	$(12.6) \pm z \times \sqrt{(0.5025) \div 200)}$	M1	For expression of correct form Any <i>z</i> but must be <i>z</i>
	CI = 12.5 to 12.7 (3 sf)	A1	CWO Must be an interval Note: Use of biased can score maximum B1 M1 A0 B1 M1 A0
		6	
1(b)	$0.95 \times 40 = 38$	B1	Give at early stage
		1	

Question	Answer	Marks	Guidance
2	H ₀ : P(correct) = $\frac{1}{6}$	B1	Allow $p = \frac{1}{6}$
	H ₁ : P(correct) > $\frac{1}{6}$		Allow $p > \frac{1}{6}$
	$1 - ({}^{15}C_4 \times (\frac{5}{6})^{11} \times (\frac{1}{6})^4 + {}^{15}C_3 \times (\frac{5}{6})^{12} \times (\frac{1}{6})^3 + {}^{15}C_2 \times (\frac{5}{6})^{13} \times (\frac{1}{6})^2 + 15 \times (\frac{5}{6})^{14} \times \frac{1}{6} + (\frac{5}{6})^{15})$	M1	Expression must be seen Allow one end error
	0.0898 or 0.0897 (3 sf)	A1	SC if M0 scored allow SCB1 for 0.0898 or 0.0897
	0.0898 < 0.1	M1	Valid comparison For valid comparison with 0.9 (0.9102 > 0.9 seen the previous M1and A1 can be recovered
	[Reject H_0] There is evidence (at the 10% level) that Arvind can predict scores	FTA1	Not definite, e.g. not 'He can predict' or 'Claim true' In context and no contradictions
		5	

Question	Answer	Marks	Guidance
3	$D = X - (Y_1 + Y_2 + Y_3) \text{ OE}$ E(D) = 6.2 -2.4 × 3 [= -1] OE	B1	Give at early stage
	$Var(D) = 0.36 + 3 \times 0.25 [= 1.11]$	B1	Give at early stage
	$\frac{0 - (-1)}{\sqrt{1.11'}} [= 0.949]$	M1	No standard deviation/variance mixes Var must come from a combination attempt
	1 – Φ('0.949')	M1	Area consistent with <i>their</i> values
	= 0.171 (3 s.f.)	A1	
		5	

Question	Answer	Marks	Guidance
4(a)	$E(Y) = \frac{20}{4} [=5], Var(Y) = 20 \times \frac{1}{4} \times \frac{3}{4} [=\frac{15}{4}]$	B1	Both OE, SOI
	$\operatorname{Var}(X) = 2$	B1	SOI or standard deviation = $\sqrt{2}$
	$\mathrm{E}(X-3Y)=-13$	B1	
	$Var(X-3Y) = 2 + 9 \times \frac{15}{4} = 35.75$]	M1	Correct formula using <i>their</i> values
	Standard deviation of $(X - 3Y) = 5.98$ (3 s.f.) or $\frac{1}{2}\sqrt{143}$	A1	CWO
		5	

Question	Answer	Marks	Guidance
4(b)	(0, 0) and (1, 15)	M1	
	$e^{-2} \times (\frac{3}{4})^{20} + e^{-2} \times 2 \times {}^{20}C_{15}(\frac{3}{4})^5 (\frac{1}{4})^{15}$	M1	
	0.000430 (3 sf)	A1	CWO (must have evidence of addition) Allow 0.00043 or $4.3(0) \times 10^{-4}$
		3	

Question	Answer	Marks	Guidance
5(a)	$\lambda = 4.5$	B1	
	$1 - e^{-4.5} \left(1 + 4.5 + \frac{4.5^2}{2!} + \frac{4.5^3}{3!} + \frac{4.5^4}{4!}\right)$	M1	Allow one end error Allow any λ. Poisson expressions must be seen
	= 0.468 (3 sf)	A1	If M0 awarded allow SC B1 for 0.468
		3	
5(b)	$\lambda = 162$ (X ~ Po(162) \Rightarrow X ~ N(162, 162))	B1	
	$\frac{149.5 - `162'}{\sqrt{`162'}} \text{ and } \frac{160.5 - `162'}{\sqrt{`162'}}$ (= -0.982 and -0.118)	M1	One of these; allow with incorrect or no continuity correction
	$\Phi(`0.982') - \phi(`0.118')$ oe	M1	Area consistent with <i>their</i> values (both standardisations must be seen)
	= 0.290 (3 sf)	A1	Allow 0.29
		4	

9709/61

Question	Answer	Marks	Guidance
5(c)	$\lambda = \frac{13.5}{6} + 3.6 \times \frac{2}{3}$ OE or 4.65	M1	Attempt to find λ
	$e^{-4.65}\left(\frac{4.65^4}{4!} + \frac{4.65^5}{5!} + \frac{4.65^6}{6!}\right)$	M1	Allow any λ Allow one end error Poisson terms not be seen
	0.494 (3 sf)	A1	If M0 allow SC B1 for 0.494
		3	
6(a)	$\frac{a}{2}$	B 1	
		1	
6(b)	$\frac{1}{4}$	B 1	
		1	
6(c)	$\mathbf{f}(x) = \frac{1}{a}$	B1	SOI (may be seen in part (a) or part (b))
	$\mathrm{E}(X) = \frac{a}{2}$	B 1	SOI
	$\int_0^a \frac{1}{a} x^2 \mathrm{d}x$	M1	Attempt integrate <i>their</i> $f(x) \times x^2$ with correct limits
	$= \left[\frac{x^3}{3a}\right]_0^a = \frac{a^2}{3}$	A1	
	$\frac{a^2}{3} - (\frac{a}{2})^2$ or $\frac{a^2}{3} - \frac{a^2}{4} [= \frac{a^2}{12} \text{ AG}]$	A1	Must see previous line and answer No errors seen
		5	

Question	Answer	Marks	Guidance
6(d)	$P(X < \frac{b}{3}) = \frac{p}{3}$	M1	SOI (could be on a diagram) OR by integration: prob = 1-(2/3)(b/a)
	$P(\frac{b}{3} < X < a - \frac{b}{3}) = 1 - \frac{2p}{3}$	A1	
		2	

Question	Answer	Marks	Guidance
7(a)	H_0 : pop mean run time = 28.2 mins H_1 : pop mean run time < 28.2 mins	B1	Allow ' μ '. Not 'mean journey time'
		1	
7(b)	$\frac{27 - 28.2}{4/\sqrt{40}} \ [= -1.897]$	M1	For standardising Must have $\sqrt{40}$
	$\Phi(<`-1.897') = 1 - \Phi(`1.897')$	M1	For correct area consistent with these values
	0.0289 (3 sf)	A1	
		3	
7(c)	H ₀ is not rejected so	M1	
	Type II error can be made and Type I error cannot be made	A1	Both needed (accept 'only a Type II error could be made')
		2	

Cambridge International AS & A Level

MATHEMATICS

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50 9709/62 May/June 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then
	no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$72.3 \pm z \sqrt{\frac{64.3}{50}}$	M1	Expression of correct form (allow only one side for M1). Must be a z value
	z = 1.751	B1	Accept 1.75 if nothing better seen
	CI is 70.3 to 74.3 metres (3 s.f.)	A1	Allow without units Must be an interval
		3	
1(b)	Not random sample	B1	Need 'random' or 'not representative/biased because' OE
		1	

Question	Answer	Marks	Guidance
2	H ₀ : Pop mean height = 2.3 H ₁ : Pop mean height > 2.3	B1	Not just 'mean' Allow μ
	$ \frac{2.4 - 2.3}{\frac{0.4}{\sqrt{60}}} $	M1	For standardising, must have $\sqrt{60}$
	1.936 or 1.937 or 1.94	A1	
	`1.936` < 1.96	M1	Valid comparison with 1.96 Or 2.64% > 2.5% OE Accept 1.936 < 2.24 or 2.64% > 1.25% OE if $H_1\mu \neq 2.3$
	[Do not reject H_0] No evidence that (mean) height (with fertiliser) is more than without	A1 FT	FT <i>their z</i> In context, not definite. E.g. not 'Mean height is not greater' with no contradictions No FT for 2 tail test (max B0 M1 A1 M1 A0 3/5) Accept critical values method 2.401 (M1 A1) 2.4 < 2.401 (M1) Condone 2.299 (M1 A1) < 2.3 (M1) A1 conclusion
		5	

Question	Answer	Marks	Guidance
3(a)	Poisson	B1	SOI
	Mean = 3.6	B1	Can be awarded for N(3.6,)
	$e^{-3.6}(1+3.6+\frac{3.6^2}{2})$	M1	Allow any λ Allow one end error Expression must be seen
	0.303 (3 s.f.)	A1	If M0 awarded allow SC B1 for 0.303 SC Use of binomial: B1 for answer 0.300 (3 sf)
		4	
3(b)	[Binomial with] 200 > 50	B1	
	$[200 \times 0.018 =] 3.6 < 5 \text{ or } [p =] 0.018 < 0.1$	B1	If B0 B0 then SC <i>n</i> large, <i>p</i> small: B1 or <i>n</i> large $np < 5$: B1 or $n > 50$ and either $np < 5$ or $p < 0.1$: B1
		2	

Question	Answer	Marks	Guidance
4(a)	H ₀ : Pop mean = 4.6 [or 9.2] H ₁ : Pop mean < 4.6 [or 9.2]	B1	or $\lambda = 4.6$ or μ (Not just 'mean') or $\lambda < 4.6$
		1	

9709/62

Question	Answer	Marks	Guidance
4(b)	Use of Poisson with $\lambda = 9.2$	B1	SOI
	$P(X \le 3) = e^{-9.2}(1 + 9.2 + \frac{9.2^2}{2} + \frac{9.2^3}{3!}) = 0.0184 \text{ or } 0.018 [< 0.02]$	M1	At least one of these attempted correct λ (with Poisson expression seen not implied)
	$P(X \le 4) = 0.0184 + e^{-9.2} \times \frac{9.2^4}{4!} = 0.0486 \text{ or } 0.049 [> 0.02]$	*A1	Both correct SC Use of $\lambda = 4.6$ scores B1 for P(X = 0) = 0.01[0][1] and P(X ≤ 1) = 0.056[3]only
	CR is $X \leq 3$	DA1	From CWO and at least one comparison seen SC If M0 awarded allow *B1 for both 0.018 and 0.049 or better and DB1 for correct critical region from CWO and at least one comparison seen.
		4	
4(c)	5 is not in critical region OR P(X \leq 5) =0.104 > 0.02 so [not reject H ₀] no evidence that number of cars arriving is now fewer	M1 A1 FT	For a comparison (i.e. 5 > 3) OE In context, not definite No contradictions e.g. not 'No. of cars arriving is not fewer' ft <i>their</i> critical region if used (but must be from Poisson and integers)
		2	
4(d)	No, because H ₀ was not rejected	B1 FT	OE, FT <i>their</i> (c)
		1	

Question	Answer	Marks	Guidance
4(e)	N(276, 276)	B1	SOI
	$\frac{300.5 - 276}{\sqrt{276}} \ [= 1.475]$	M1	Standardising with <i>their</i> values Allow with wrong or no continuity correction
	$1 - \phi(`1.475') = 0.0701 \ (3 \text{ s.f.})$	A1	SC Use of Poisson: B1 for answer 0.0727 (3 sf)
		3	

Question	Answer	Marks	Guidance
5(a)	$\frac{3}{16} \int_{2}^{4} (4x^2 - x^3) \mathrm{d}x$	M1	Attempt to integrate <i>x</i> f(<i>x</i>) Ignore limits (must see a power increase for attempted integration)
	$=\frac{3}{16}\left[\frac{4x^{3}}{3}-\frac{x^{4}}{4}\right]_{2}^{4}$	M1	Attempt integrate $xf(x)$ with correct limits (must see a power increase for attempted integration)
	$=\frac{3}{16}\left(\frac{256}{3}-64-(\frac{32}{3}-4)\right)=\frac{11}{4}$ (AG)	A1	Correct substitution of correct limits (at least 2 terms seen) and answer seen. No errors seen i.e. NO recovery of errors and no non-exact decimals (e.g. 21.33) seen
		3	

May/June 2022

Question	Answer	Marks	Guidance
5(b)	$\frac{3}{16}\int_{2}^{4} (4x^3 - x^4) \mathrm{d}x$	*M1	Attempt to integrate $x^2 f(x)$ with correct limits (integration must be seen not implied. Must see a power increase for attempted integration)
	$=\frac{3}{16} \left[x^4 - \frac{x^5}{5} \right]_2^4 \left[= \frac{39}{5} \text{ or } 7.8 \right]$ Var(X) = ' $\frac{39}{5}$ ' - $\left(\frac{11}{4}\right)^2$	DM1	<i>their</i> $\int x^2 f(x) dx - (\frac{11}{4})^2$, with $\int x^2 f(x) dx$ evaluated, not necessarily simplified
	$=\frac{19}{80}$ or 0.2375 (or 0.238 (3 sf))	A1	SC If M0 then score B1 for $\frac{39}{5}$ and B1 for $\frac{19}{80}$
		3	
5(c)	$\frac{3}{16}\int_{2}^{3}(4x-x^{2})dx$	M1	Attempt to integrate correct integral and limits must see a power increase for attempted integration Oe (Integrate 3 to 4) OR ALTERNATIVE METHOD integrate from m to 4 or 2 to m and equate to 0.5 to obtain cubic $(m^3 - 6m^2 + 24 = 0 \text{ oe})$ (NB Integrating from m to 3 and equating to 0.5M0)
	$= \frac{3}{16} \left[2x^2 - \frac{x^3}{3} \right]_2^3 \left[= \frac{3}{16} \left(18 - 9 - \left(8 - \frac{8}{3} \right) \right) \right] \left[= \frac{11}{16} \right]$ $\frac{11}{16} - \frac{1}{2}$	M1	Their $\int f(x) dx - \frac{1}{2}$ oe $(1/2 - 5/16)$ OR ALTERNATIVE METHOD <i>m</i> obtained from cubic (<i>m</i> = 2.69459) and attempt to integrate f(x) from ' <i>their m</i> ' (2 < <i>m</i> < 4) to 3 must see a power increase for attempted integration and limits substituted
	$\frac{3}{16}$ or 0.1875	A1	Condone 0.187 or 0.188
		3	

Question	Answer	Marks	Guidance
6(a)	$E(D) = 53 - (4 \times 14) = -3$	B1	OE Give at early stage
	$Var(D) = 11 + 4^2 \times 3 [= 59]$	B1	or $\sqrt{(11+4^2 \times 3)}$ (= 7.68 (3 s.f.)) Give at early stage
	$\frac{0 - (-3)}{\sqrt{59}} \ [= 0.391]$	M1	For standardising with <i>their</i> values (var must be from a combination attempt) Ignore continuity correction attempts
	1 – Φ('0.391')	M1	For area consistent with <i>their</i> values
	0.348 (3 s.f.)	A1	As final answer
		5	
6(b)	$E(T) = 12 \times 53 + 25 \times 14 [= 986]$	B1	Give at early stage (N.B. accept $E(T - 1000) = -14$)
	$Var(T) = 12 \times 11 + 25 \times 3 [= 207]$	B1	Or $\sqrt{(12 \times 11 + 25 \times 3)}$ (= 14.4 (3sf)) Give at early stage
	$\frac{1000 - 986}{\sqrt{207}} \ [= 0.973]$	M1	For standardising with <i>their</i> values (var must be from a combination attempt) Ignore continuity correction attempts
	Φ('0.973')	M1	For area consistent with <i>their</i> values
	0.835 (3 sf)	A1	As final answer
		5	
May/June 2022

Question	Answer	Marks	Guidance
7	$\bar{X} \sim N(2.9, \frac{2.9}{100})$ OR Totals method N(290, 290)	B1	B1 for N(2.9,) OR N(290,)
	100	B1	B1 for Var = $\frac{2.9}{100}$ OR for var = 290 SOI
	$\frac{2.88 - 2.90}{\sqrt{\frac{2.9}{100}}} \ [= -0.1174] \text{ OR } \frac{288 - 290}{\sqrt{290}}$	M1	Standardising with <i>their</i> values Allow without –ve sign AND/OR with incorrect continuity correction No mixed methods
	1-Φ('0.1174')	M1	For area consistent with <i>their</i> values
	0.453 (3 sf)	A1	As final answer
	Alternative method for question 7		
	$\overline{X} \sim N(2.9, \frac{2.9}{100})$ OR Totals method N(290, 290)	B1	B1 for N(2.9,) OR N(290,)
		B1	B1 for Var = $\frac{2.9}{100}$ OR Var = 290 stated or implied
	$\frac{(2.88 - \frac{1}{200}) - 2.90}{\sqrt{\frac{2.9}{100}}} = -0.1468 \text{ [OR } (287.5 - 290)/\sqrt{290}$	M1	Standardising with <i>their</i> values Allow without –ve sign AND/OR with incorrect continuity correction No mixed methods
	1 - \oplus(`0.1468`)	M1	For area consistent with <i>their</i> values
	0.442 (3 sf)	A1	As final answer
		5	

Cambridge International A Level

MATHEMATICS

9709/63 May/June 2022

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Math	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Cambridge International A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	$\frac{\frac{1300 + \frac{1}{200} - 1250}{\frac{480}{10}}}{\frac{480}{10}} \text{ or } \frac{\frac{1300 - 1250}{\frac{480}{10}}}{\frac{10}{10}} [= 1.042]$	M1	Allow with incorrect or omitted continuity correction Must have 10 Accept totals method
	1 – Φ('1.042')	M1	For area consistent with <i>their</i> values
	0.149 (3 s.f.)	A1	
		3	

Question	Answer	Marks	Guidance
2(a)	Conclude more than 10% of the students are left handed when this is not true	B1	OE. Must be in context (accept use of p). Need the context of one tail test.
		1	
2(b)	$ \begin{array}{c} 1 - (0.9^{20} + 20 \times 0.9^{19} \times 0.1 + {}^{20}C_2 \times 0.9^{18} \times 0.1^2 + {}^{20}C_3 \times 0.9^{17} \times 0.1^3 + {}^{20}C_4 \times \\ 0.9^{16} \times 0.1^4) \end{array} $	M2	M2: fully correct M1: attempt $1 - P(X = 0, 1, 2, 3, 4)$; allow $1 - P(X = 0, 1, 2, 3, 4, 5)$ or $1 - P(X = 0, 1, 2, 3)$ need 1 the method mark cannot be implied
	0.0432 (3 s.f.)	A1	If M0 awarded allow SC B2 for 0.0432
		3	

Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2022

Question	Answer	Marks	Guidance
2(c)	$ \begin{array}{c} 0.7^{20} + 20 \times 0.7^{19} \times 0.3 + {}^{20}C_2 \times 0.7^{18} \times 0.3^2 + {}^{20}C_3 \times 0.7^{17} \times 0.3^3 + {}^{20}C_4 \times 0.7^{16} \\ \times 0.3^4 \end{array} $	M1	Attempt to find $P(\leq 4)$ using B(20,0.3) Allow one end error The method mark cannot be implied
	0.238 or 0.237 (3 s.f.)	A1	If M0 awarded allow SC B1 for 0.238 or 0.237
		2	

Question	Answer	Marks	Guidance
3(a)	Batteries unusable after testing or Population too big or too costly or too time consuming to use the whole population oe	B1	
		1	
3(b)	$H_0: \mu = 150$ $H_1: \mu < 150$	B1	Or population mean = 150; not just 'mean' = 150
	$\frac{147 - 150}{\sqrt{225} \div \sqrt{120}}$	M1	Allow with continuity correction Need $\sqrt{120}$
	-2.191	A1	Condone – 2.19
	-2.191 < -2.054 [or -2.055]	M1	OE. For valid comparison with 2.054 or 2.055 Or 0.0143 (or 0.0142) < 0.02 For two tail test allow comp -2.326 OE if H ₁ : $\mu \neq 150$ (can score B0M1A1M1A0 max 3/5)
	[Reject Ho] There is evidence that the (mean) life of type B is less than type A (or less than 150)	A1 FT	In context, not definite with no contradictions Accept critical value method 147.19 M1A1 147 < 147.19 M1 conclusion A1 Or 150 > 149.81
		5	

Question	Answer	Marks	Guidance
3(c)	$147 \pm z \times \frac{15}{\sqrt{120}}$	M1	Expression of correct form must be a <i>z</i> value
	z = 1.881 [or 1.882]	B1	
	144 to 150 (3 s.f.)	A1	Must be an interval Incorrect z value can only score M1B0A0
		3	

Question	Answer	Marks	Guidance
4(a)	<i>T</i> ~N(515, 74)	B1	B1 for N(515,) give at early stage
		B1	B1 for $Var = 45 + 25 + 4 = 74$ give at early stage
	$\frac{500 - 515'}{\sqrt{74'}} = -1.744$	M1	Standardise with <i>their</i> values. No standard deviation/variance mix Need combination for variance. Allow continuity correction.
	Φ('1.744')	M1	Area consistent with <i>their</i> working
	0.959 or 0.96[0] (3 s.f.)	A1	
		5	

Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2022

Question	Answer	Marks	Guidance
4(b)	E(S-1.4R) = 300-1.4x200 = 20	B1	Give at early stage
	$Var(S-1.4R) = 45 + 1.4^2 \times 25 = 94$	B1	Give at early stage SC: if B0B0 awarded allow SC B1 for 14 and 105.84
	$\frac{0-(20)}{\sqrt{94'}} \ [=-2.063]$	M1	Standardise with <i>their</i> values. No standard deviation/variance mix. Need combination for variance.
	1 – Φ(' 2.063')	M1	Area consistent with <i>their</i> working
	0.0196 (3 s.f.)	A1	
		5	

Question	Answer	Marks	Guidance
5(a)	$\lambda = 6.6$	B1	
	$e^{-6.6} \times \frac{6.6^6}{6!}$	M1	Any λ
	0.156 (3 s.f.)	A1	If M0 awarded SC B1 for 0.156
		3	
5(b)	$1 - e^{-2.2} (1 + 2.2 + \frac{2.2^2}{2} + \frac{2.2^3}{3!} + \frac{2.2^4}{4!})$	M1	Allow one end error. Need $1 - \dots$ Any λ
	0.0725 (3 s.f.)	A1	If M0 awarded SC B1 for 0.0725
		2	

Cambridge International A Level – Mark Scheme **PUBLISHED**

May/June 2022

Question	Answer	Marks	Guidance
5(c)	N(26.4, 26.4)	B1	Give at early stage 2.2×12
	$\frac{19.5 - '26.4'}{\sqrt{26.4'}} = -1.343$	M1	Standardising with <i>their</i> values. Allow wrong or no continuity correction
	$\phi(-1.343') = 1 - \phi(1.343')$	M1	Area consistent with <i>their</i> working
	0.0897 or 0.0896 (3 s.f.)	A1	
		4	

Question	Answer	Marks	Guidance
6(a)	$\frac{13+a}{5}$	B1	Accept $\frac{2+3+3+5+a}{5}$. Do not ignore subsequent working
		1	
6(b)	$\frac{5}{4} \left(\frac{47+a^2}{5} - \left(\frac{13+a}{5} \right)^2 \right) = 4 \text{ or } \frac{1}{4} \left(47+a^2 - \frac{\left(13+a\right)^2}{5} \right) = 4$	M1	Use of correct formula using <i>their</i> value from (a), in terms of <i>a</i> , and equate to 4
	$2a^2 - 13a - 7 = 0$	A1	Any correct three-term quadratic equation rearranged to a form ready to solve
	<i>a</i> = 7	A1	Condone the other value of $a\left(-\frac{1}{2}\right)$
		3	

Question	Answer	Marks	Guidance
7(a)(i)	1	B1	no ambiguity
		1	
7(a)(ii)	$\frac{1}{2}$	B1	No ambiguity
		1	
7(a)(iii)	$[q =] \frac{1}{2}p$	B1	Accept $2q = p$
		1	
7(b)	$p\int_{0}^{a} (a^{2} - x^{2}) \mathrm{d}x = 1$	M1	Attempt to integrate $f(x)$ and equated to 1
	$\frac{2}{3}a^3p = 1$	A1	OE, simplified
	$"\frac{3}{2a^{3}}"\int_{0}^{a} (a^{2}x - x^{3}) dx = 3 \text{ or } "\frac{3}{2a^{3}}"\int_{0}^{a} (a^{2}x - x^{3}) dx = 3$	M1	Attempt to integrate $xf(x)$, with multiplier <i>p</i> or $\frac{3}{2a^3}$ or <i>their p</i> , and equate to 3
	$p \times \frac{a^4}{4} = 3$	A1	May be implied by next line
	" $\frac{3}{2a^3}$ "× $\frac{a^4}{4} = 3$	M1	OE. Substitute from one equation into the other. FT <i>their</i> equations
	<i>a</i> = 8	A1	
		6	

Cambridge International A Level

MATHEMATICS

Paper 6 Probability and Statistics 2 MARK SCHEME Maximum Mark: 50 9709/62 February/March 2022

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2022 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Math	ematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
1(a)	Est $(\mu) = \frac{1199}{6}$ or 199.833 or 200 or $\frac{2398}{12}$ [mm]	B1	Accept in any form
	Est $(\sigma^2) = \frac{12}{11} \left(\frac{479226}{12} - \frac{'1199'^2}{6} \right)$ or $\frac{1}{11} \left('479226' - \frac{'2398'^2}{6} \right)$	M1	Use of their values in correct formula (may be implied)
	$= 2.33 (3 \text{ sf}) [\text{mm}^2]$	A1	Accept $\frac{7}{3}$
		3	
1(b)	Small sample	B1	Accept not 'not representative' unless qualified.
		1	

Question	Answer	Marks	Guidance
2	$B(300, \frac{1}{5}) \to N(60, 48)$	B1	SOI
	$\frac{45.5-60}{\sqrt{48}}$	M1	Condone with wrong or no continuity correction
	= -2.093	A1	
	`2.093' > 1.96	M1	Valid comparison Note: φ('–2.093') (= 0.0182), 0.0182< 0.025
	[Evidence to reject H ₀] There is evidence that P(landing on blue) $\neq \frac{1}{5}$	A1 FT	Allow 'There is evidence that the spinner is biased.' In context, not definite, no contradictions Condone critical values method (critical value 46.42 M1 A1 and 45.5 < '46.42' M1 for valid comparison A1 for correct conclusion)
			SC: 0.0182 unsupported: 0.0182 < 0.025 And there is evidence that the spinner is biased. In context, not definite B1 only
		5	

Question	Answer	Marks	Guidance
3	est(p) = 0.4	B1	
	$[0.4' + z\sqrt{\frac{0.4' \times (1-0.4')}{500}} = 0.445]$	M1	OE Use of <i>their</i> 0.4 in a correct expression
	$z \left[= 0.045 \div \sqrt{\frac{0.4 \times (1 - 0.4)}{500}} \right] = 2.054$	A1	Condone 2.053 and 2.05
	0.98 - (1 - 0.98)	M1	
	96% confidence	A1	CWO, must be integer
		5	

Question	Answer	Marks	Guidance
4(a)	$H_0: \mu = 25.5$ $H_1: \mu < 25.5$	B1	
	$\frac{23.7 - 25.5}{5.2 \div \sqrt{40}}$	M1	Must have $\sqrt{40}$
	= -2.189	A1	
	'2.189' < 2.326	M1	For valid comparison
			For two-tailed test: allow compare 2.576 if $H_1: \mu \neq 25.5$
	[Accept H ₀] No evidence that mean time has decreased	A1 FT	In context, not definite, no contradictions FT <i>their</i> 2.189 but no FT for two-tailed test N.B. Use of two-tailed test can score max B0 M1 A1 M1 A0 Condone use of critical value method (23.59 M1 A1 and 23.7 > 23.59 M1 A1 correct conclusion or 25.612 M1 A1 and 25.5 < 25.612 M1 A1 with correct conclusion)
		5	
4(b)	No, because H ₀ was not rejected	B1 FT	FT <i>their</i> conclusion in (a)
		1	

Question	Answer	Marks	Guidance
5(a)	Mean = 5×18.3 and Variance = 5×2.5^2 [= N(91.5, 31.25)]	B1	SOI
	$\frac{95 - 91.5}{\sqrt{31.25'}} \qquad [= 0.626]$	M1	FT <i>their</i> mean and variance
	1 – Φ('0.626')	M1	For finding area consistent with <i>their</i> values
	0.266 (3 sf)	A1	
		4	
5(b)	$\mathrm{E}(D)=0$	B1	Or $E(D-1) = -1$
	$Var(D) = 2.5^2 \times 2$ [= 12.5]	B1	
	$\frac{1-0}{\sqrt{12.5'}}$ [= 0.283] or $\frac{-1-0}{\sqrt{12.5'}}$ [= -0.283]	M1	FT <i>their</i> E and Var
	$\Phi(`0.283') - (1 - \phi(0.283)) [= 0.6115 - 0.3885]$	M1	For finding area consistent with <i>their</i> values
	0.223 (3 sf)	A1	
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(a)	Quadratic curve, hence symmetrical	B1	OE. Allow sketch and 'symmetrical' or just 'curve symmetrical'
		1	
6(b)	$-k\int_{1}^{3}(x^{2}-4x+3)\mathrm{d}x=1$	M1	Attempt to integrate $f(x)$ and '= 1'. Ignore limits at this stage
	$-k\left[\frac{x^3}{3} - 2x^2 + 3x\right]_1^3$	A1	Fully correct expression (correct integration and limits)
	$-k \times \left[0 - \frac{4}{3}\right] = 1$ or $k \times \frac{4}{3} = 1$	A1	AG, OE. Correctly substitute limits and '= 1' and correctly obtain result with no errors seen.
	$\left[k = \frac{3}{4}\right]$		
		3	
6(c)	$-\frac{3}{4}\int_{1}^{3} \left(x^{4}-4x^{3}+3x^{2}\right) \mathrm{d}x$	M1	Attempt to integrate x^2 f(x) from 1 to 3
	$-\frac{3}{4} \times \left[\frac{x^5}{5} - x^4 + x^3\right]_{1}^{3}$	A1	Correct integration and limits
	$\left[= \frac{3}{4} \times \frac{28}{5} = \frac{21}{5} \right]$		
	$\left[\frac{21}{5} - 2^2\right] = 0.2$	A1	
		3	

9709/62

Question	Answer	Marks	Guidance
6(d)	$-\frac{3}{4}\int_{2.5}^{3} (x^2 - 4x + 3) \mathrm{d}x$	M1	OE. Attempt to integrate $f(x)$, from 2.5 to 3 (or 1 to 2.5)
	$= -\frac{3}{4} \times \left[\frac{x^3}{3} - 2x^2 + 3x\right]_{2.5}^3 = \frac{5}{32} \text{ or } 0.15625$	A1	
	$1 - \left(1 - \frac{5}{32}\right)^3$	M1	OE. FT their $\frac{5}{32}$.
	= 0.399 (3 sf)	A1	
		4	

Question	Answer	Marks	Guidance
7(a)(i)	$0.024 \times 50 = 1.2$ and $0.018 \times 60 = 1.08$	B1	
	$(1 - e^{-1.2}(1 + 1.2)) \times (1 - e^{-1.08}(1 + 1.08))$	M1	For $(1 - e^{-\lambda}(1+\lambda)) \times (1 - e^{-\mu}(1+\mu))$ any λ, μ ($\lambda \neq \mu$) Allow one end error on either or both terms
	= 0.0991 (3 sf)	A1	Unsupported answer scores maximum SC B1 B1 SC Use of binomial 0.0994 scores B1 only
		3	
7(a)(ii)	$\lambda = 0.024 \times 50 + 0.018 \times 60$	M1	or <i>their</i> 1.2 + 1.08 (NB 0.024+0.018 is M0)
	$1 - e^{-2.28} \times \left(1 + 2.28 + \frac{2.28^2}{2!} + \frac{2.28^3}{3!}\right)$	M1	any λ and allow one end error
	= 0.197 (3 sf)	A1	Unsupported answer scores maximum SC B2
		3	
7(b)	$\mathrm{e}^{-\lambda} = \left[\mathrm{e}^{-\mu}\right]^2 = \mathrm{e}^{-2\mu}$	M1	
	$e^{-\lambda} \times \frac{\lambda^2}{2} = k \left[e^{-\mu} \times \mu \right]^2$	M1	
	$e^{-2\mu} \times 2\mu^2 = k \times e^{-2\mu} \times \mu^2$	M1	OE. Use of $\lambda = 2\mu$ to find equation in μ and k only (or λ and k only)
	<i>k</i> = 2	A1	
		4	

Cambridge International AS & A Level

MATHEMATICS

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50 9709/61 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Math	ematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	N(12.5,)	B1	
	Variance = 0.4096	B1	Accept 0.410 (3sf), condone $\frac{10.24}{25}$
		2	
1(b)	$\frac{13 - '12.5'}{\sqrt{0.4096'}} [= 0.781]$	M1	For standardising with <i>their</i> values. Accept standardising with 12.
	$\phi(0.781') - (1 - \Phi(0.781'))$	M1	For attempting to find <i>their</i> central area.
	0.565 (3sf)	A1	
		3	

Question	Answer	Marks	Guidance
2	N(45.2, 45.2)	B1	SOI
	$\frac{60.5 - 45.2}{\sqrt{45.2}} \ [= 2.276]$	M1	Allow with wrong or no continuity correction.
	1 -ф('2.276')	M1	
	0.0114	A1	
		4	

Question	Answer	Marks	Guidance
3	$est(p) = 0.2$ accept $\frac{15}{75}$	B1	SOI
	$2 \times z \times \sqrt{\frac{0.2 \times 0.8}{75}} = 0.162$	M1	Expression of the correct form. Condone missing $2x$.
	$z\left[=0.081\times\sqrt{\frac{75}{0.2\times0.8}}\right]=1.754$	A1	Correct z. Condone 3sf accuracy.
	$\Phi(`1.754') = 0.96[03]$ '0.96' - (1 - '0.96')	M1	OE. Using <i>their z</i> to find alpha.
	$\alpha = 92$	A1	Following correct working.
		5	

Question	Answer	Marks	Guidance
4(a)	$\frac{1}{18} \int_{0}^{1.2} (9 - x^2) dx$	M1	Attempt to integrate $f(x)$, ignore limits. Must see an increase of power.
	$\frac{1}{18} \left[9x - \frac{x^3}{3} \right]_{0}^{1.2}$	A1	Correct integration and correct limits.
	$\frac{71}{125}$ or 0.568	A1	SC unsupported answer scores B2 only.
		3	

October/November 2021

Question	Answer	Marks	Guidance
4(b)	$\frac{1}{18}\int_{0}^{3}(9x-x^{3})\mathrm{d}x$	M1	Attempt to integrate $xf(x)$, ignore limits. Must see an increase of power.
	$\frac{1}{18} \left[\frac{9x^2}{2} - \frac{x^4}{4} \right]_0^3$	A1	Correct integration and correct limits.
	$\frac{9}{8}$ or 1.125	A1	SC unsupported answer scores B2 only.
		3	
4(c)	$\frac{1}{18} \left[9x - \frac{x^3}{3} \right]_0^m = 0.5$	M1	Attempt to integrate $f(x)$ with correct limits and $= 0.5$. OE. Accept limits <i>m</i> to 3. Allow <i>x</i> instead of <i>m</i> .
	$\frac{1}{18} \left[9m - \frac{m^3}{3} \right] - 0.5 = 0$	A1	Any correct cubic equation in <i>m</i> or <i>x</i> .
	$m^3 - 27m + 27 = 0$	A1	AG. Correctly obtain this equation. No errors seen.
		3	

Question	Answer	Marks	Guidance
5(a)(i)	Po(0.025)	B1	For Poisson and correct parameter.
	n = 2500 > 50, np = 0.025 < 5	B1	Must show 2500 and 0.025. Accept $p = \frac{1}{100000} < 0.1$ in place of $np = 0.025 < 5$.
		2	

October/November 2021

Question	Answer	Marks	Guidance
5(a)(ii)	$1 - e^{-0.025}$	M1	Allow any λ . FT <i>their</i> (a)(i) if normal; must have continuity correction.
	0.0247 (3sf)	A1	Must be from Poisson. Unsupported correct answer scores B1 instead of M1 A1 .
		2	
5(b)	$H_0: p = 0.3$ $H_1: p < 0.3$	B1	
	$\begin{array}{c} 0.7^{28} + 28 \times 0.7^{27} \times 0.3 + {}^{28}\text{C}_2 \times 0.7^{26} \times 0.3^2 + {}^{28}\text{C}_3 \times 0.7^{25} \times 0.3^3 + {}^{28}\text{C}_4 \times \\ 0.7^{24} \times 0.3^4 \end{array}$	M1	Use of B(28, 0.3). Addition of terms must be intended. Allow one term wrong or omitted or extra.
	0.0474	A1	Unsupported correct answer scores B1 instead of M1 A1 .
	0.0474 > 0.02 [Not reject H ₀]	M1	Valid comparison.
	No evidence that suspicion is true.	A1 ft	Not definite e.g. not 'Suspicion is not true', in context, no contradictions.
			SC use of N(8.4, 5.88) leading to $0.054 > 0.2$ OE can score B1 only for comparison and correct conclusion. Correct hypotheses with <i>p</i> will also score B1.
		5	

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(a)	est $\mu = 14$ accept $\frac{560}{40}$	B1	
	est $\sigma^2 = \frac{40}{39} \left(\frac{7850}{40} - 14^2 \right)$ or $\frac{1}{39} \left(7850 - \frac{560^2}{40} \right)$	M1	
	0.25641 or 0.256 (3sf)	A1	Accept $\frac{10}{39}$ Without $\frac{40}{39}$ i.e. biased: est $\sigma^2 = 0.25$ M0 A0 .
		3	
6(b)	E(S-T) = 14.2 - `14' [= 0.2]	B1 FT	FT their 14.
	Var(S - T) = 0.3 + 0.256 [= 0.55641]	B1 FT	Accept $\frac{217}{390}$ FT <i>their</i> 0.256 including FT biased. Var(S - T) = 0.55.
	$\frac{0.1 - 0.2'}{\sqrt{0.55641'}} \ [= -0.134]$	M1	Standardising with <i>their</i> values (note biased gives –0.135). FT <i>their</i> E & Var.
	$P(S - T > 0.1) = 1 - \Phi(`-0.134') = \Phi(`0.134')$	M1	Finding correct area consistent with <i>their</i> values.
	0.553 (3sf)	A1	Use of biased gives 0.554 (3sf) can score the A1. Similar scheme for $P(T-S) < -0.1$. Similar scheme for $S - T - 0.1 > 0$. And $T - S + 0.1 < 0$.
		5	

October/November 2021

Question	Answer	Marks	Guidance
7(a)	$H_0: \mu = 64.6$ $H_1: \mu < 64.6$	B 1	Allow population mean, not just 'mean'.
	$[\pm]\frac{63.5 - 64.6}{5.2 \div \sqrt{100}}$	M1	Standardising. Must have $\sqrt{100}$.
	[±]-2.115	A1	Accept -2.12 (3sf)
	2.115' > 1.96 or $-2.115' < -1.96$ [do not accept H ₀]	M1	Valid comparison ($0.0172 < 0.025$ for area comparison).
	There is evidence that $\mu < 64.6$	A1 FT	Not definite, e.g. not ' μ < 64.6'. in context. No contradictions. Accept critical value method leading to 63.5 < 63.58 or 64.6 > 64.52.
		5	
7(b)	$\frac{m - 64.6}{5.2 \div \sqrt{100}} = -1.96$	M1	Finding the critical value using N $\left(64.6, \frac{5.2}{\sqrt{100}}\right)$ and a <i>z</i> value.
	m = 63.5808	A1	
	$\frac{63.5808 - 62.7}{5.2 \div \sqrt{100}} \ [= 1.694]$	M1	Standardising using N $\left(62.7, \frac{5.2}{\sqrt{100}}\right)$ and a critical value.
	1 – Φ('1.694')	M1	For area consistent with <i>their</i> values.
	0.0451	A1	Accept answers that round to 0.045.
		5	

Cambridge International AS & A Level

MATHEMATICS

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50 9709/62 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.
Math	ematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/62

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

October/November 2021

Question	Answer	Marks	Guidance
1(a)	$\frac{20.5}{40} = 0.5125$	B1	Accept 0.513 or $\frac{41}{80}$. Condone $\frac{20.5}{40}$.
	$\frac{40}{39} \left(\frac{10.728}{40} - (0.5125^{2}) \right) \text{ or } \frac{1}{39} \left(10.728 - \frac{20.50^{2}}{40} \right)$	M1	Biased variance (0.005544 or $\frac{887}{160000}$) scores M0 A0 .
	0.0056859 or 0.00569 (3 sf) or $\frac{887}{156000}$	A1	САО
		3	
1(b)	$[11 \times 0.5125' + 0.5]) = 6.1375 \text{ or } \frac{491}{80} \text{ or } 6.14 \text{ (3sf)}$	B1 FT	FT their 0.5125
	$11^2 \times 0.0056859$	M1	With nothing added. Using <i>their</i> variance in (a) (no sd/var confusion)
	0.688 (3sf)	A1	CAO
		3	

Question	Answer	Marks	Guidance
2(a)	E.g. Bias towards students who play instruments or only music students or e.g. the six will possibly be friends/have similar music preferences	B1	OE Or any reason that some are excluded e.g. because it is lunchtime or because the music building is chosen or any suggestion that opinions may not be independent. Note: 'not representative of all students' needs qualifying
		1	

Question	Answer	Marks	Guidance
2(b)	28, 119, 207	B1	B1 for 28, 119 (condone 028).
		B1	B1 for 207 and only 3 values stated.
		2	

Question	Answer	Marks	Guidance
3(a)	$0.25 \pm z \sqrt{\frac{0.25 \times 0.75}{140}}$	M1	Expression of correct form (allow M1 for just one side stated). Must be a <i>z</i> -value.
	z = 2.054 or 2.055	B1	
	0.175 to 0.325 (3sf)	A1	Must be an interval.
		3	
3(b)	$\begin{array}{l} 0.90 \times 0.95 \times 0.01 \\ + \ 0.90 \times 0.05 \times 0.99 \\ + \ 0.10 \times 0.95 \times 0.99 \end{array}$	M1 M1	M1 for one correct triple product. M1 for all correct and added.
	0.147	A1	SC If zero scored award B1 for a 2 or 3 term expression of the form $0.90 \times 0.95 \ [\times c]$ OE. $(0 < c \le 1)$
		3	

Question	Answer	Marks	Guidance
4(a)	Fireworks are destroyed when tested.	B1	
		1	
4(b)	H ₀ : Pop mean time lasted (or μ) = 30 H ₁ : Pop mean time lasted (or μ) < 30	B1	Not just 'mean'.
	$\pm \frac{29-30}{\frac{5}{\sqrt{100}}}$	M1	For standardising. Must have $\sqrt{100}$. Use of totals N(3000,2500) giving $\frac{(2900-3000)}{\sqrt{2500}}$ scores M1 . No mixed methods.
	±-2	A1	
	-2 > -2.326 [Do not reject H ₀]	M1	Accept –2.326 to –2.329. Valid comparison or area comparison 0.0228>0.01 or 0.9772<0.99. Accept CR method 28.837<29 or 30.163>30.
	There is not enough evidence that mean time lasted is less than 30 seconds OR Not enough evidence to support the inspector's suspicion	A1 FT	In context (if used need mean or time / condone average instead of mean), not definite, e.g. not 'mean time lasted is not less than 30 seconds'. No contradictions. Note 2 tailed test can score B0 M1 A1 M1 (comparison with 2.574–2.579) A0 (no FT).
		5	
4(c)	Yes. Because population distribution is unknown [condone not Normal].	B1	Both needed. Condone X for parent population.
		1	

October/November 2021

Question	Answer	Marks	Guidance
5(a)	$e^{-2}(1+2+\frac{2^2}{2!})$	M1	$P(X < 3)$ any λ . Allow one end error.
	0.677 (3sf)	A1	Unsupported correct answer scores SC B1 only.
		2	
5(b)	N(40, 40)	M1	SOI
	$\frac{50.5 - 40}{\sqrt{40}} \ [= 1.660]$	M1	For standardising with <i>their</i> values. Allow with wrong or no cc must have square root.
	$P(z > 1.660') = 1 - \Phi(1.660')$	M1	Correct area consistent with <i>their</i> working.
	0.0485 or 0.0484 (3sf)	A1	
		4	
5(c)	$\lambda = 10$	B1	Condone mean = 10.
	$e^{-10}\left(\frac{10^8}{8!} + \frac{10^9}{9!} + \frac{10^{10}}{10!} + \frac{10^{11}}{11!}\right)$	M1	Allow any λ (allow one end error).
	0.477 (3sf)	A1	Unsupported correct answer scores SC B2 only.
		3	

Question	Answer	Marks	Guidance
6(a)	H ₀ : P(0) = $\frac{1}{10}$ H ₁ : P(0) < $\frac{1}{10}$	B1	Accept p.
		1	
6(b)	For B(30,0.1)	M1	Used not just stated.
	$P(X=0) = 0.9^{30} [= 0.0424] [<0.1]$	M1	
	$P(X=0 \text{ or } 1) = 0.9^{30} + 30 \times 0.9^{29} \times 0.1 = 0.184 [>0.1]$	B1	Accept 0.184 or 0.183.
	Rejection region is 0 zeros	A1	Dependent on M1 M1 and at least one comparison, no errors seen. SC One unsupported correct answer 0.0424/0.184(or 0.183) and correct rejection region scores B1; with comparison with 0.1 scores B2. Two unsupported correct answers 0.0424 and 0.184(or 0.183) and correct rejection region scores B2 or if with one comparison with 0.1 scores B3.
		4	
6(c)	0.0424	B1	FT <i>their</i> (b) must have a critical region (only follow though Binomial), dependent on answer < 0.1.
		1	

9709/62

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

October/November 2021

Question	Answer	Marks	Guidance
6(d)	$Bin(30, \frac{1}{40})$	B1	SOI
	$1 - 0.975^{30}$	M1	FT <i>their</i> rr and with Bin(30, 1/40)).
	0.532 (3dp)	A1	SC Unsupported correct answer scores B2 only.
		3	
6(e)	Not concluding that the probability is less than $\frac{1}{10}$, when in fact it is.	B1	In context.
		1	

Question	Answer	Marks	Guidance
7(a)(i)	$k \int_{0}^{2} (4x - x^2) \mathrm{d}x = 1$	M1	Attempt integral $f(x)$ and = 1. Ignore limits (must see a power increase for attempted integration).
	$k \left[\frac{4x^2}{2} - \frac{x^3}{3} \right]_0^2 = 1$	A1	Correct integration and correct limits.
	$k \times \frac{16}{3} = 1 \left[k = \frac{3}{16} \right]$	A1	OE AG Convincingly obtained. At least one interim step. No errors seen.
		3	

October/November 2021

Question	Answer	Marks	Guidance
7(a)(ii)	$\frac{3}{16}\int_{0}^{2}(4x^{2}-x^{3})dx$	M1	Attempt integral $xf(x)$. Ignore limits. (must see a power increase for attempted integration). Condone missing k .
	$\frac{3}{16} \left[\frac{4x^2}{2} - \frac{x^3}{3} \right]_0^2$	A1	Correct integration and correct limits. Condone missing k .
	$\frac{5}{4}$	A1	Unsupported correct answer scores SC B2 only.
		3	
7(b)	Symmetrical frequency density graph, 0 to 5, showing area 0.2 to left of a	B1	With <i>a</i> to the left of centre.
	Either 0.2 between 5– a and 5-or 0.8 between 0 and 5– a	B1	Shown on graph or stated (5– a seen or implied). <i>a</i> must be non-numerical.
	[P(2.5 < Y < 5 - a)] = 0.3	B1	Must be clearly final answer. <i>a</i> must be non-numerical.
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50 9709/63 October/November 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Math	ematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/63

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	N(12.5,)	B1	
	Variance = 0.4096	B1	Accept 0.410 (3sf), condone $\frac{10.24}{25}$
		2	
1(b)	$\frac{13-12.5'}{\sqrt{0.4096'}} \ [= 0.781]$	M1	For standardising with <i>their</i> values. Accept standardising with 12.
	$\phi(0.781') - (1 - \Phi(0.781'))$	M1	For attempting to find <i>their</i> central area.
	0.565 (3sf)	A1	
		3	

Question	Answer	Marks	Guidance
2	N(45.2, 45.2)	B1	SOI
	$\frac{60.5 - 45.2}{\sqrt{45.2}} \ [= 2.276]$	M1	Allow with wrong or no continuity correction.
	1 -ф('2.276')	M1	
	0.0114	A1	
		4	

Question	Answer	Marks	Guidance
3	$est(p) = 0.2$ accept $\frac{15}{75}$	B1	SOI
	$2 \times z \times \sqrt{\frac{0.2 \times 0.8}{75}} = 0.162$	M1	Expression of the correct form. Condone missing $2x$.
	$z\left[=0.081\times\sqrt{\frac{75}{0.2\times0.8}}\right]=1.754$	A1	Correct z. Condone 3sf accuracy.
	$\Phi(`1.754') = 0.96[03]$ '0.96' - (1 - '0.96')	M1	OE. Using <i>their z</i> to find alpha.
	$\alpha = 92$	A1	Following correct working.
		5	

Question	Answer	Marks	Guidance
4(a)	$\frac{1}{18} \int_{0}^{1.2} (9 - x^2) dx$	M1	Attempt to integrate $f(x)$, ignore limits. Must see an increase of power.
	$\frac{1}{18} \left[9x - \frac{x^3}{3} \right]_{0}^{1.2}$	A1	Correct integration and correct limits.
	$\frac{71}{125}$ or 0.568	A1	SC unsupported answer scores B2 only.
		3	

October/November 2021

Question	Answer	Marks	Guidance
4(b)	$\frac{1}{18}\int_{0}^{3}(9x-x^{3})\mathrm{d}x$	M1	Attempt to integrate $xf(x)$, ignore limits. Must see an increase of power.
	$\frac{1}{18} \left[\frac{9x^2}{2} - \frac{x^4}{4} \right]_0^3$	A1	Correct integration and correct limits.
	$\frac{9}{8}$ or 1.125	A1	SC unsupported answer scores B2 only.
		3	
4(c)	$\frac{1}{18} \left[9x - \frac{x^3}{3} \right]_0^m = 0.5$	M1	Attempt to integrate $f(x)$ with correct limits and $= 0.5$. OE. Accept limits <i>m</i> to 3. Allow <i>x</i> instead of <i>m</i> .
	$\frac{1}{18} \left[9m - \frac{m^3}{3} \right] - 0.5 = 0$	A1	Any correct cubic equation in <i>m</i> or <i>x</i> .
	$m^3 - 27m + 27 = 0$	A1	AG. Correctly obtain this equation. No errors seen.
		3	

Question	Answer	Marks	Guidance
5(a)(i)	Po(0.025)	B1	For Poisson and correct parameter.
	n = 2500 > 50, np = 0.025 < 5	B1	Must show 2500 and 0.025. Accept $p = \frac{1}{100000} < 0.1$ in place of $np = 0.025 < 5$.
		2	

October/November 2021

Question	Answer	Marks	Guidance
5(a)(ii)	$1 - e^{-0.025}$	M1	Allow any λ . FT <i>their</i> (a)(i) if normal; must have continuity correction.
	0.0247 (3sf)	A1	Must be from Poisson. Unsupported correct answer scores B1 instead of M1 A1 .
		2	
5(b)	$H_0: p = 0.3$ $H_1: p < 0.3$	B1	
	$ \begin{array}{c} 0.7^{28} + 28 \times 0.7^{27} \times 0.3 + {}^{28}C_2 \times 0.7^{26} \times 0.3^2 + {}^{28}C_3 \times 0.7^{25} \times 0.3^3 + {}^{28}C_4 \times \\ 0.7^{24} \times 0.3^4 \end{array} $	M1	Use of B(28, 0.3). Addition of terms must be intended. Allow one term wrong or omitted or extra.
	0.0474	A1	Unsupported correct answer scores B1 instead of M1 A1 .
	0.0474 > 0.02 [Not reject H ₀]	M1	Valid comparison.
	No evidence that suspicion is true.	A1 ft	Not definite e.g. not 'Suspicion is not true', in context, no contradictions.
			score B1 only for comparison and correct conclusion. Correct hypotheses with p will also score B1.
		5	

9709/63

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(a)	est $\mu = 14$ accept $\frac{560}{40}$	B1	
	est $\sigma^2 = \frac{40}{39} \left(\frac{7850}{40} - 14^2 \right)$ or $\frac{1}{39} \left(7850 - \frac{560^2}{40} \right)$	M1	
	0.25641 or 0.256 (3sf)	A1	Accept $\frac{10}{39}$ Without $\frac{40}{39}$ i.e. biased: est $\sigma^2 = 0.25$ M0 A0 .
		3	
6(b)	E(S-T) = 14.2 - `14' [= 0.2]	B1 FT	FT their 14.
	Var(S - T) = 0.3 + 0.256 [= 0.55641]	B1 FT	Accept $\frac{217}{390}$ FT <i>their</i> 0.256 including FT biased. Var(S - T) = 0.55.
	$\frac{0.1 - 0.2'}{\sqrt{0.55641'}} \ [= -0.134]$	M1	Standardising with <i>their</i> values (note biased gives –0.135). FT <i>their</i> E & Var.
	$P(S - T > 0.1) = 1 - \Phi(`-0.134') = \Phi(`0.134')$	M1	Finding correct area consistent with <i>their</i> values.
	0.553 (3sf)	A1	Use of biased gives 0.554 (3sf) can score the A1. Similar scheme for $P(T-S) < -0.1$. Similar scheme for $S - T - 0.1 > 0$. And $T - S + 0.1 < 0$.
		5	

Question	Answer	Marks	Guidance
7(a)	$H_0: \mu = 64.6$ $H_1: \mu < 64.6$	B 1	Allow population mean, not just 'mean'.
	$[\pm]\frac{63.5 - 64.6}{5.2 \div \sqrt{100}}$	M1	Standardising. Must have $\sqrt{100}$.
	[±]-2.115	A1	Accept -2.12 (3sf)
	$(2.115) > 1.96 \text{ or } (-2.115) < -1.96 \text{ [do not accept } H_0]$	M1	Valid comparison ($0.0172 < 0.025$ for area comparison).
	There is evidence that $\mu < 64.6$	A1 FT	Not definite, e.g. not ' μ < 64.6'. in context. No contradictions. Accept critical value method leading to 63.5 < 63.58 or 64.6 > 64.52.
		5	
7(b)	$\frac{m - 64.6}{5.2 \div \sqrt{100}} = -1.96$	M1	Finding the critical value using N $\left(64.6, \frac{5.2}{\sqrt{100}}\right)$ and a <i>z</i> value.
	m = 63.5808	A1	
	$\frac{63.5808 - 62.7}{5.2 \div \sqrt{100}} \ [= 1.694]$	M1	Standardising using N $\left(62.7, \frac{5.2}{\sqrt{100}}\right)$ and a critical value.
	1 – Φ('1.694')	M1	For area consistent with <i>their</i> values.
	0.0451	A1	Accept answers that round to 0.045.
		5	

Cambridge International A Level

MATHEMATICS

9709/61 May/June 2021

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

9709/61

Math	ematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International A Level – Mark Scheme PUBLISHED Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/61

Cambridge International A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$\lambda = (3.1 + 1.7) \times 2$	M1	Attempt combined mean. Allow 3.1 + 1.7 for M1
	= 9.6	A1	Correct mean
	$1 - e^{-9.6} \left(1 + 9.6 + \frac{9.6^2}{2} + \frac{9.6^3}{3!}\right)$	M1	Allow incorrect mean. Allow one end error.
	= 0.986 (3 sf)	A1	SC If 9.6 seen and unsupported 0.986 M1A1B1. SC Unsupported correct answer of 0.986 only if 9.6 also not seen scores B2 only.
		4	

Question	Answer	Marks	Guidance
2(a)	$\pm \frac{123 - 125}{\frac{6}{\sqrt{40}}} [= -2.108]$	M1	Must have $\sqrt{40}$ No standard deviation/variance mix. Ignore any continuity correction attempts for this mark.
	$P(z < -2.108') = 1 - \Phi(-2.108')$	M1	For correct probability area consistent with <i>their</i> working.
	= 0.0175 or 0.0176 (3 sf)	A1	
		3	
2(b)	No, population is normal	B1	Need both.
		1	

Question	Answer	Marks	Guidance
3	$1 - \frac{20}{27} \text{ or } \frac{20}{27} - \frac{1}{2}$ $\frac{20}{27} - \left(1 - \frac{20}{27}\right) \text{ or } \left(\frac{20}{27} - \frac{1}{2}\right)$	M1	For either expression seen.
	$\frac{13}{27}$	A1	OE. Accept 0.481 or 0.482.
		2	

Question	Answer	Marks	Guidance
4	$\frac{3820}{100}$ [= 38.2]	B1	
	$\frac{100}{99} \left(\frac{182200}{100} - 38.2^{\prime 2} \right) \text{ or } \frac{1}{99} \left(182200 - \frac{3820^2}{100} \right)$	M1	Use of biased (362.76) scores M0
	$=\frac{12092}{33}$ or 366.424 or 366 (3 sf)	A1	Accept SD=19.1422 or 19.1(3sf)
	$`38.2' \pm z \times \sqrt{\frac{'366.424'}{100}}$	M1	Expression of the correct form must be a <i>z</i> -value.
	z = 1.881 or 1.882	B1	Seen.
	34.6 to 41.8 (3 sf)	A1	Allow use of biased giving (34.6,41.8) Must be an interval.
		6	

May/June 2021

Question	Answer	Marks	Guidance
5(a)	$Po\left(\frac{2}{15}\right)$	M1	SOI. Allow Po(0.133).
	$P(X \ge 1) = 1 - e^{-\frac{2}{15}}$	M1	Allow incorrect λ allow one end error
	= 0.125 (3 sf)	A1	SC Partially unsupported final answer: $Po\left(\frac{2}{15}\right)$ stated B1 then unsupported 0.125 B1 SC Use of Binomial (0.1248) B1 only Use of Normal scores M0
		3	

Question	Answer	Marks	Guidance
5(b)	$\lambda = \frac{n}{75000}$	B1	
	$e^{-\frac{n}{75000}} > 0.9$	M1	Allow '=' Allow incorrect λ
	$-\frac{n}{75000} > \ln 0.9 [n < 7902.04]$	M1	Attempt ln both sides
	Largest value of <i>n</i> is 7902	A1	CWO. Must be an integer.
	Alternative method for Question 5(b)		
	$e^{-\mu} > 0.9$	M1	Allow '='
	$-\mu > \ln 0.9 [\mu < 0.10536]$	M1	Attempt ln both sides
	$n = \mu \times 75000$	B1	
	Largest value of <i>n</i> is 7902	A1	CWO. Must be an integer.
	Alternative method for Question 5(b)		
	$\frac{74999}{75000}$	B1	
	$\left(\frac{74999}{75000}\right)^n > 0.9$	M1	
	$n\ln\frac{74999}{75000} > \ln 0.9$	M1	Attempt ln or log both sides
	Largest value of <i>n</i> is 7901	A1	CWO Must be an integer
		4	

May/June 2021

Question	Answer	Marks	Guidance
6	$\mathrm{E}(X)=3$	B1	N.B. $E(X)=108k$ is B0 until correct k substituted in.
	$k \int_{0}^{6} (6x - x^{2}) dx = 1$	M1	Attempt integration of $f(x)$ and =1. Ignore limits at this stage.
	$k \left[3x^2 - \frac{x}{3} \right]_0^0 [=1]$		
	$k\left(108 - \frac{216}{3}\right) = 1$	A1	
	$k = \frac{3}{108} \text{ or } \frac{1}{36}$		
	$'\frac{3}{108}'\int_{0}^{6}(6x^{3}-x^{4})dx$	*M1	Attempt integration of <i>their</i> $k \times x^2 f(x)$. Ignore limits at this stage. Accept in terms of <i>k</i> .
	$=\frac{3}{108}\left[\frac{3x^4}{2} - \frac{x^5}{5}\right]_0^6 = 10.8$		
	'10.8' – '3' ²	DM1	Their 10.8 (from use of limits 0 and 6) minus their $(E(X))^2$. Accept in terms of k: 388.8k–(108k) ²
	$\frac{9}{5}$ or 1.8	A1	CWO. Must be convincingly obtained as AG.
		6	

Question	Answer	Marks	Guidance
7(a)	$E(T)=3\times55+6\times27[=327]$	B1	OE. Accept unsimplified.
	$Var(T) = 3 \times 3^2 + 6 \times 2.5^2 [= 64.5]$	B1	Accept unsimplified.
	$\frac{340 - 327'}{\sqrt{64.5'}} = 1.619$	M1	Must have $$
	$P(z < '1.619') = \Phi('1.619')$	M1	Correct probability area consistent with <i>their</i> working.
	0.947 (3 sf)	A1	
		5	
7(b)	$E(L-S_1-S_2) = 55 - 2 \times 27 [=1]$	B1	OE e.g. $E(S_1+S_2-L)=-1$. Accept unsimplified.
	$Var(L-S_1-S_2) = 3^2 + 2 \times 2.5^2 [= 21.5]$	B1	Accept unsimplified.
	$\frac{0-'1'}{\sqrt{21.5'}} \ [=-0.216]$	M1	Standardising with <i>their</i> values. Must come from a combination attempt.
	$P(L-S_1-S_2 > 0) = \Phi(`0.216')$	M1	Correct probability area consistent with <i>their</i> working.
	0.586 or 0.585 (3 sf)	A1	
		5	

May/June 2021

Question	Answer	Marks	Guidance
8(a)	Not representative (of all students in the school)	B1	OE idea of 'not being representative' e.g. different grades in the school have different characteristics/proportions Don't accept 'not random' or 'biased' without further explanation.
		1	
8(b)	H ₀ : P(not correct uniform) = 0.15 H ₁ : P(not correct uniform) < 0.15	B1	Allow " <i>p</i> "
		1	
8(c)	Any two probs attempted using B(50,0.15)	M1	
	$P(X \le 3) = 0.85^{50} + 50 \times 0.85^{49} \times 0.15 + {}^{50}C_2 \times 0.85^{48} \times 0.15^2 + {}^{50}C_3 \times 0.85^{47} \times 0.15^3$	M1	Attempt the tail probability $P(0,1,2,3)$ with $B(50,0.15)$ must be added.
	$P(X \le 4) = 0.04605 + {}^{50}C_4 \times 0.85^{46} \times 0.15^4$	M1	OE. <i>Their</i> $P(X \le 3) + P(X = 4)$ or $P(0,1,2,3,4)$ with B(50,0.15) must be added.
	$P(X \le 3) = 0.0460 \text{ or } 0.0461 [<0.05]$ P(X \le 4) = 0.112 or [>0.05]	A1	Both correct. OR if $P(X \le 4)$ not seen; $P(4)=0.06606$ and $0.06606>0.05$ and $P(X \le 3)=0.0460$ scores M1 A1
	P(Type I) = 0.0460 or 0.0461 (3 sf)	A1	Dependent on second M1. SC If M1M1M1A0 scored allow A1FT for incorrect $P(X \le 3)$ as long as <0.05
		5	

May/June 2021

Question	Answer	Marks	Guidance
8(d)	4 is outside critical region (\leq 3) OE or P($X \leq$ 4) = 0.112 which is > 0.05	M1	FT working from (c).
	No evidence that proportion not wearing the correct uniform has decreased (Accept Ho)	A1	In context not definite, e.g. not 'Proportion has not decreased'. No contradiction.
		2	
8(e)	Not rejected H ₀	*B1 FT	FT If Reject H_0 in (d)
	Type II	DB1 FT	FT Type I
		2	

Cambridge International AS & A Level

MATHEMATICS

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50 9709/62 May/June 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.
Math	nematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International AS & A Level – Mark Scheme PUBLISHED Mark Scheme Notes

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

9709/62

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

May/June 2021

Question	Answer	Marks	Guidance
1(a)	$H_0: p = \frac{1}{4}$	B1	or $H_0: \mu = 25$ or $H_1: \mu \neq 25$
	$\mathrm{H}_1: p \neq \frac{1}{4}$		
		1	
1(b)	$N\left(25,\frac{75}{4}\right)$	B1	SOI. Allow B1 for N $\left(25, \frac{75}{4}\right)$ or N(0.25, 0.001875) SOI.
	$\pm \frac{15.5 - 25}{\sqrt{\frac{75}{4}}} \text{ or } \frac{\frac{15.5}{100} - 0.25}{\sqrt{\frac{0.25 \times 0.75}{100}}}$	M1	Standardise with <i>their</i> N(25,) Allow with no or wrong continuity correction.
	± -2.194 (2.19)	A1	
	-2.326 < -2.194 or $0.0141 > 0.01$ or $0.9859 < 0.99$	M1	For valid comparison (accept 2.326 to 2.329)
	No evidence to reject that the probability is $\frac{1}{4}$	A1 FT	OE must be in context and not definite, e.g. not 'Claim untrue'. No contradictions. FT <i>their z</i> ; dependent on two-tailed test (one-tailed test can score B1 M1 A1 M1 A0) SC for use of Binomial B(100,0.25) $P = 0.0111$ for B1 and then comparison with 0.01 and correct conclusion for B1, maximum 2 out of 5 marks.
		5	

Question	Answer	Marks	Guidance
2(a)	$Var(X) = 400 \times 0.01 \times 0.99 \ (= 3.96)$	M1	
	$Var(4X+2) = 16 \times Var(X)$	M1	For $16 \times their \operatorname{Var}(X)$
	63.36	A1	Accept 63.4
		3	
2(b)(i)	Po(4)	B1	
	n = 400 > 50 and either $np = 4 < 5$ or $p=0.01 < 0.1$	B1	Must quote values 400 and 4 or clearly see $n=400$ and $np=4$ (or $p=0.01$) in working
		2	
2(b)(ii)	$e^{-4}\left(\frac{4^2}{2!} + \frac{4^3}{3!} + \frac{4^4}{4!} + \frac{4^5}{5!}\right)$	M1	FT <i>their</i> '4' Allow one end error FT from (b)(i) Use of Normal allow M1 for attempt at standardising (with correct continuity correction) using <i>their</i> N(4,3.96) and attempt at probability. FT from (b)(i) Use of Binomial allow M1 for attempt at P(2,3,4,5) Binomial terms clearly seen and added
	0.694 (3 sf)	A1	CWO SCB1 only for unsupported answer of 0.694
		2	

Question	Answer	Marks	Guidance
3(a)	$\frac{1}{2}p(p-1) = 1$	M1	For area =1 For verification methods accept $\frac{1}{2} \times 2 \times 1 = 1$ or $\frac{1}{2} \times 2 \times (p-1) = 1$ or $\frac{1}{2} \times 1 \times p = 1$ as indication that area=1
	<i>p</i> = 2	A1	AG - Convincing method and answer. Must see quadratic rearranged to =0 and no errors seen. N.B. Accept convincing verification methods (e.g. statement such as 'assume $p = 2$ ' or 'if $p = 2$ ' or 'using $p = 2$ ' or showing by clear substitution that $p = 2$ fits $\frac{1}{2}p(p-1) = 1$ with clear conclusion)
		2	
3(b)	Gradient = 2 equation of line is $y = 2x + c$ line passes through (1, 0), hence $c = -2$	M1	Award for attempting equation of line $y=mx+c$ with $m = 2, -2, \frac{1}{2}$ or $-\frac{1}{2}$ and numerical c ($c \neq 0$)
	y = 2x - 2	A1	May be seen in (a) M1 can be implied by correct answer
	$2\int_{1}^{2} (x^2 - x) \mathrm{d}x$	M1	For attempting $\int x f(x) dx$. Ignore limits, FT <i>their</i> equation.
	$2\left[\frac{x^3}{3} - \frac{x^2}{2}\right]_1^2$	A1 FT	Correct integration FT <i>their</i> $f(x)$ and correct limits
	$\frac{5}{3}$ or 1.67 (3 sf)	A1	
		5	

9709/62

Question	Answer	Marks	Guidance
4(a)	Mean = 15.0+32.0+8.6 [= 55.6]	B1	Allow unsimplified
	Var = $1.1^2 + 3.5^2 + 1.2^2$ [= 14.9]	B1	Allow unsimplified
		2	
4(b)	$\frac{60 - "55.6"}{\sqrt{"14.9"}} [= 1.140]$	M1	FT <i>their</i> 55.6 and 14.9 Ignore continuity correction
	1 – φ("1.140")	M1	For correct probability area consistent with <i>their</i> working
	0.127 (3 sf)	Al	CWO
		3	
4(c)	$\frac{54.5 - "55.6"}{\sqrt{\frac{"14.9"}{15}}} \text{ or } \frac{817.5 - 834}{\sqrt{223.5}} [= -1.104]$	M1	FT <i>their</i> 55.6 and 14.9 No mixed methods
	$1 - \phi("1.104")$	M1	For correct probability area consistent with their working
	0.135 (3 sf)	A1	As final answer
		3	

Question	Answer	Marks	Guidance
5(a)	Conclude that (population) mean time has changed (or is not 42.4) although μ has not changed (or is still 42.4)	B1	OE. In context.
		1	
5(b)	H ₀ : population mean (or μ) = 42.4 H ₁ : population mean (or μ) \neq 42.4	B1	Not just 'mean'. (could be seen in (a))
	$\pm \frac{45.6 - 42.4}{\sqrt{38.2 \div 20}}$	M1	For standardising (must have $\sqrt{20}$)
	± 2.315	A1	
	2.240 < `2.315'	M1	For valid comparison (accept 2.241) or $P(z > 2.315) = 0.0103 < 0.0125$ oe
	There is evidence that μ or mean time has changed	A1 FT	FT <i>their z</i> In context, not definite. No contradictions. Note: Accept correct alternative methods SC : One tail test no FT. Can score B0 M1 A1 M1 (comparison with 1.96) A0 (maximum 3 out of 5)
		5	

Question	Answer	Marks	Guidance
6(a)	est $(\mu) = \frac{7570}{100}$ (= 75.7)	B1	
	$\operatorname{est}(\sigma^{2}) = \frac{100}{99} \left(\frac{\sum h^{2}}{100} - '75.7'^{2} \right) \text{ or } \frac{1}{99} \left(588050 - \frac{7570^{2}}{100} \right)$ $= \frac{100}{99} \left(\frac{588050}{100} - '75.7'^{2} \right) [= 151.525]$	M1	Attempted (Note: Biased variance (150.01) scores M0)
	= 152 (3 sf)	A1	Or $\frac{15001}{99}$
		3	
6(b)	$`75.7' \pm z \sqrt{\frac{'151.525'}{100}}$	M1	For expression of correct form. Must be a <i>z</i> value. Condone just + or just
	<i>z</i> = 2.576	B1	Accept 2.574 to 2.579
	72.5 to 78.9	A1 FT	FT biased variance only Must be an interval
		3	
6(c)	0.99 ⁴	B1	
	0.961 (3 sf)	B1	
		2	

9709/62

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

May/June 2021

Question	Answer	Marks	Guidance
7(a)	$e^{-4.2} \times \frac{4.2^4}{4!}$	M1	P(4), allow any λ
	0.194 (3 sf)	A1	As final answer. SC Unsupported correct answer scores B1 only.
		2	
7(b)	$1 - e^{-8.4} \left(1 + 8.4 + \frac{8.4^2}{2} + \frac{8.4^3}{3!} \right)$	M1	Allow M1 with incorrect λ . Accept one end error.
	0.968 (3 sf)	A1	As final answer. SC Unsupported correct answer scores B1 only.
		2	
7(c)	N(50.4, 50.4)	M1	SOI
	$\frac{39.5 - 50.4}{\sqrt{50.4}} [= -1.535]$	M1	Allow wrong or no continuity correction. Must have $$
	$\Phi(`-1.535') = 1 - \Phi(`1.535')$	M1	For correct probability area consistent with <i>their</i> working.
	0.0624 (3 sf) or 0.0623	A1	
		4	

Cambridge International A Level

MATHEMATICS

9709/63 May/June 2021

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	thematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Cambridge International A Level – Mark Scheme PUBLISHED Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$\lambda = 10 \times 1.36 [= 13.6]$	M1	
	$E(amount) = 5 \times 13.6 = [\$]68$	A1	
	$Var(amount) = 5^2 \times 13.6 [= 340]$	M1	$5^2 \times$
		M1	$\ldots \times$ their λ
	Standard Deviation = $[\$]18.4(4)$ (3 s.f.)	A1	CAO condone $2\sqrt{85}$
		5	

Question	Answer	Marks	Guidance
2(a)	Conclude (mean) (journey) time has not decreased when in fact it has.	B 1	OE in context
		1	
2(b)	H ₀ : Pop mean (or μ) = 1.4 H ₁ : Pop mean (or μ) < 1.4	B1	May be seen in (a)
	$\frac{1.36 - 1.4}{\frac{0.12}{\sqrt{50}}}$	M1	Accept totals method $\frac{68-70}{\sqrt{50} \times 0.12}$ No mixed methods or no standard deviation/variance mixes
	-2.357 or - 2.36	A1	Correct z or correct area if used
	-2.357 < -1.96 or 0.0092 < 0.025 or 0.9908 > 0.975 Or CV method 1.36 < 1.367	M1	valid comparison
	There is evidence that (mean) (journey) times have decreased	A1 FT	in context not definite no contradictions NB use of two tail test scores max B0M1A1M1A0 no ft for two tail test
		5	
2(c)	H ₀ was rejected OE	*B1 FT	FT H ₀ was accepted OE
	Type I	DB1 FT	FT Type II
		2	

Question	Answer	Marks	Guidance
3(a)(i)	$H_0: \lambda = 2.4$ $H_1: \lambda > 2.4$	B1	Accept λ or μ Accept 2.4 or 0.8 (per year)
		1	
3(a)(ii)	$1 - e^{-2.4} (1 + 2.4 + \frac{2.4^2}{2} + \frac{2.4^3}{3!} + \frac{2.4^4}{4!})$	M1	Any λ ; allow one end error
	0.0959 (3 sf)	A1	SC unsupported answer 0.0959 scores B1 only not M1A1
	0.0959 > 0.05	M1	Valid comparison Use of 0.9041 < 0.95 can recover either M1A1 or B1
	There is evidence that Jane's claim not justified or There is insufficient evidence to support Jane's claim	A1 FT	OE. In context, not definite, e.g. not 'Jane is wrong', no contradictions. Condone omission of Jane.
		4	
3(b)	Mean not constant so Poisson model not valid	B1	
		1	

Question	Answer	Marks	Guidance
4(a)	$\frac{4509}{90}$ [= 50.1]	B1	
	$\frac{90}{89} \left(\frac{225950}{90} - 50.1^{2}\right) \text{ or } \frac{1}{89} \left(225950 - \frac{4509^{2}}{90}\right)$	M1	Attempted. Use of biased = 0.5455 scores M0A0
	$\frac{491}{890}$ or 0.552 (3 sf)	A1	
		3	
4(b)	$50.1' \pm z \sqrt{\frac{491}{890}}{90}$	M1	Expression of the correct form, allow any <i>z</i> -value but must be a <i>z</i> -value
	z = 2.326	B 1	Accept 2.326 to 2.329
	49.9 to 50.3 (3 sf)	A1	FT from biased variance. Must be an interval.
		3	
4(c)	Population of masses is unknown	B 1	Accept population of masses is not normal
		1	
4(d)	1 - 0.98	M1	0.02 seen
	$0.02 \div 2 = 0.01$	A1	As final answer
		2	

May/June 2021

Question	Answer	Marks	Guidance
5(a)	Po(2.5)	B1	Accept Poisson with mean = 2.5 not just np = 2.5
	$n = 25\ 000 > 50$ and np (or λ) = 2.5 which is < 5 or $n = 25\ 000 > 50$ and $p = 0.0001 < 0.1$	B1	Must see 2.5 (or 0.0001) and 25000 OE, not just $np < 5$ (or $p < 0.1$) and $n > 50$
		2	
5(b)	$e^{-2.5}(1+2.5+\frac{2.5^2}{2}+\frac{2.5^3}{3!})$	M1	Any λ , accept one end error. FT binomial from part (a) scores M1 only for equivalent binomial expressions FT normal from part (a) must use correct continuity correction and tables scores M1 only for complete method
	0.758 (3 sf)	A1	Unsupported answer of 0.758 scores B1 instead of M1A1
		2	
5(c)	$e^{-2.5} \times \frac{2.5^k}{(k)!} = 2e^{-2.5} \times \frac{2.5^{k+1}}{(k+1)!}$	M1	Any λ FT binomial from (a) scores M1 only for equivalent binomial expression FT from (a) normal for equivalent expressions continuity correction must be included
	<i>k</i> = 4	A1	No errors seen SC $k = 4$ unsupported scores B1 only, but see full Poisson expressions for P(4) and P(5) and 0.134 scores M1A1
		2	

Question	Answer	Marks	Guidance
5(d)	$1 - e^{-\lambda} = 0.963$	M1	Accept <i>their</i> attempt at λ
	$\lambda = -\ln 0.037 (= 3.2968 \text{ or } 3.30 \text{ or } 3.3)$	M1	Correct use of lns
	$n = 33\ 000\ (3\ \mathrm{sf})$	A1	Allow $n = 32950$ to 33 050 (must be an integer) SC use of binomial leading to 32 967 scores B1 for $(0.9999)^n = 0.037$ B1 for 33 000 to 3sf (32 967)
		3	
6(a)	$P(X > 10) = \int_{10}^{20} \frac{3}{8000} (x - 20)^2 dx$	M1	Attempt integration of $f(x)$, ignore limits.
	$= \left[\frac{3}{8000} \times \frac{(x-20)^3}{3}\right]_{10}^{20} \text{ or } \frac{3}{8000} \left[\frac{x^3}{3} - \frac{40x^2}{2} + 400x\right]_{10}^{20}$ $= \frac{1}{8000} \left[0 - (-10)^3\right]$	M1	Substitute correct limits 10 to 20 or $1 - \dots$ limits 0 to 10 in <i>their</i> integral
	$\frac{1}{8}$ or 0.125	A1	SC Unsupported answer of $\frac{1}{8}$ scores B1 only
	$\left(\frac{1}{8}\right)^2 = \frac{1}{64}$ or 0.0156 (3 sf)	B1 FT	FT <i>their</i> $P(X > 10)$ dependent on first M1 gained
		4	

9709/63

Question	Answer	Marks	Guidance
6(b)	$\int_0^{20} \frac{3}{8000} (x^3 - 40x^2 + 400x) \mathrm{d}x$	M1	Attempt integration of $xf(x)$. Ignore limits.
	$\frac{\frac{3}{8000} \left[\frac{x^4}{4} - \frac{40x^3}{3} + \frac{400x^2}{2}\right]_0^{20}}{\frac{3x}{8000} \times \frac{(x-20)^3}{3}} - \frac{1}{8000} \left(\frac{(x-20)^4}{4}\right)$	A1	Correct integral (by expanding or by parts)
	$\frac{3}{8000} \left[\frac{160000}{4} - \frac{40 \times 8000}{3} + 200 \times 400 \right]$	M1	Subst correct limits in their (4th degree) integral
	5	A1	
		4	
6(c)	$\int_0^m \frac{3}{8000} (x - 20)^2 dx = 0.5$	M1	Attempt to integrate $f(x)$ and equate to 0.5. Ignore limits.
	$\left[\frac{3}{8000} \times \frac{(x-20)^3}{3}\right]_0^m = 0.5 \text{ or } \frac{3}{8000} \left[\frac{x^3}{3} - \frac{40x^2}{2} + 400x\right]_0^m = 0.5$ $\frac{1}{8000} \left[(m-20)^3 - (-20)^3\right] = 0.5$	M1	Attempt integral and substitute limits 0 and m or m and 20 and = 0.5
	$(m-20)^3 = -4000$	A1	AG. Found convincingly.
	$(m = 20 + \sqrt[3]{-4000})$ m = 4.13 (3 sf)	B1	
		4	

Question	Answer	Marks	Guidance
6(d)	Doesn't allow for trains > 20 mins late or Doesn't allow for trains being early	B1	or any relevant comment e.g. trains on Sun may be different to trains on Mon
		1	

Cambridge International AS & A Level

MATHEMATICS

Paper 6 Probability and Statistics 2 MARK SCHEME Maximum Mark: 50 9709/62 March 2021

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Math	nematics Specific Marking Principles
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. Μ However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above). .
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 . decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column. .
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. •
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded. •

9709/62

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

9709/62

Question	Answer	Marks	Guidance
1(a)	Est(μ) = $\frac{4820}{60}$ or $\frac{241}{3}$ or 80.3 (3 sf)	B1	
	$\operatorname{Est}(\sigma^2) = \frac{60}{59} \left(\frac{392050}{60} - \left(\frac{4820}{60}\right)^2\right)$	M1	Use of biased (80.72) score M0 A0.
	82.0904 $\left(\frac{14530}{177}\right)$ to 82.635 or SD = 9.0604 to 9.0904 (3sf)	A1	
	<i>z</i> = 2.326	B 1	
	$\frac{4820}{60} \pm z \times \sqrt{\frac{82.0904}{60}}$	M1	Expression of the correct form – must be z value.
	77.6 to 83.1 (3 sf)	A1	CWO Use of biased 77.6 to 83.0(3) can score B1M1A1 (max 4/6).
		6	
1(b)	Population distribution of times unknown	B 1	Accept 'not normal'.
		1	

9709/62

March 2	2021
---------	------

Question	Answer	Marks	Guidance
2(a)	$\frac{1}{2} \times \frac{1}{2} k \times k = 1$	M1	Or use of $\int_{0}^{k} \left(-\frac{1}{2}x + \frac{1}{2}k \right) dx = 1$ and attempt at integral.
	<i>k</i> = 2	A1	Unsupported answers M0 A0. Do not accept ±2.
		2	
2(b)	$\mathbf{f}(x) = -\frac{1}{2}x + 1$	B1 FT	FT their k from $y = -\frac{1}{2}x + \frac{1}{2}k$.
	$\int_{0}^{2} (-\frac{1}{2}x^{2} + x) dx = \left[-\frac{x^{3}}{6} + \frac{x^{2}}{2} \right]_{0}^{2}$	M1	Attempt integration of $xf(x)$ limits 0 to k . FT <i>their</i> $f(x)$. Could be in terms of k .
	$\frac{2}{3}$ or 0.667 (3 sf)	A1	
		3	

Question	Answer	Marks	Guidance
2(c)	$\int_{p}^{1} (-\frac{1}{2}x+1) dx \ [= 0.25]$	M1	FT their equation of line ; correct integral and limits (could be reversed) stated or $\frac{1}{2}(1-p)(1-\frac{1}{2}p+\frac{1}{2})$ [= 0.25].
	$\begin{bmatrix} -\frac{x^2}{4} + x \end{bmatrix}_p^1 = 0.25$ $-\frac{1}{4} + 1 + \frac{p^2}{4} - p = 0.25$	M1	Attempt substitution of correct limits (not reversed) into their integral or attempt expand must equal 0.25. OE
	$p^2 - 4p + 2 = 0$	M1	Obtain 3-term quadratic set equal to 0, obtain at least 1 solution.
	$p = 2 - \sqrt{2}$ or 0.586	A1	CAO
		4	

Question	Answer	Marks	Guidance
3(a)	One-tail because investigating whether "higher"	B 1	OE. Must have both parts.
		1	
3(b)	H ₀ : Population mean (or μ) in city same as for others H ₁ : Population mean (or μ) in city greater than for others	B1 FT	If (a) two-tail: H ₀ : Pop mean (or μ) in city same as for others. H ₁ : Pop mean (or μ) in region different from others.
	2.41 > 2.326 or $0.008 < 0.01$ or $0.992 > 0.99$	M1	If (a) two-tail: 2.41 < 2.576 or 0.992 < 0.995.
	There is evidence that buildings are higher [on average].	A1 FT	In context, not definite. No contradictions. If (a) two-tail: There is no evidence that the [average] height of buildings is different.
		3	

March 2

Question	Answer	Marks	Guidance
4(a)	$B(1000, \frac{1}{400})$	B1	Accept Bin and $n = 1000, \ p = \frac{1}{400}$.
		1	
4(b)	Po(2.5)	B2	B1 for Po. B1 for $\lambda = 2.5$.
		2	
4(c)(i)	$e^{-2.5} \times \frac{2.5^4}{4!}$	M1	FT <i>their</i> (b) for Normal must have a continuity correction. Allow any λ
	0.134 (3 sf)	A1	CWO
		2	
4(c)(ii)	$e^{-2.5}\left(\frac{2.5^2}{2!} + \frac{2.5^3}{3!} + \frac{2.5^4}{4!}\right)$	M1	FT <i>their</i> (b) for Normal must have a continuity correction. Allow with one term extra or omitted or wrong. Allow any λ .
	0.604 (3 sf)	A1	CWO
		2	
4(d)	$\lambda = 2.5 \times 0.7 \text{ or } \lambda = 700 \times \frac{1}{400} [= 1.75]$	M1	Must see λ or use of Poisson.
	$1 - e^{-1.75}$	M 1	Allow any λ . Allow $1 - P(0,1)$.
	0.826	A1	SC B1 Use of B(700,0.0025) leading to 0.826.
		3	

Question	Answer	Marks	Guidance
5(a)	$E(L_1+L_2+L_3+S_1+S_2+S_3+S_4) = 3 \times 5.10 + 4 \times 2.51 [= 25.34]$	B 1	OE $(E(3L + 4S - 25.5) = -0.16)$
	$Var(L_1+L_2+L_3+S_1+S_2+S_3+S_4) = 3 \times 0.0102 + 4 \times 0.0036 \ [= 0.045]$	B1	or $SD = \frac{3\sqrt{2}}{20} = 0.2121$.
	$\frac{25.5 - 25.34'}{\sqrt{0.045'}} \ [= 0.754]$	M1	No SD/variance mix. Standardising with <i>their</i> values (must be from a combination attempt).
	Φ('0.754')	M1	For the correct area consistent with <i>their</i> working.
	0.775 (3 sf)	A1	
		5	
5(b)	$E(L-2S) = 5.10 - 2 \times 2.51 [= 0.08]$	B 1	OE
	$Var(L - 2S) = 0.0102 + 2^2 \times 0.0036 \ [= 0.0246]$	B 1	Or $SD = 0.1568$.
	$\frac{0-0.08'}{\sqrt{0.0246'}} \ [=-0.510]$	M1	No SD/variance mix. Standardising with <i>their</i> values (must be from a combination attempt).
	$P(Z > '-0.510') = \phi(`0.510')$	M1	For the correct area consistent with <i>their</i> working.
	0.695 (3 sf)	A1	
		5	

Question	Answer	Marks	Guidance
6(a)	H ₀ : population proportion = 0.08 OE H ₁ : population proportion > 0.08 OE	B1	Allow ' $p = 0.08$ ' etc.
	$P(X \ge 4) = 1 - P(X \le 3) = 1 - (0.92^{25} + 25 \times 0.92^{24} \times 0.08 + {}^{25}C_2 \times 0.92^{23} \times 0.08^2 + {}^{25}C_3 \times 0.92^{22} \times 0.08^3)$	M1	Allow 1 – (one term omitted or extra or wrong).
	0.135 (3 sf)	A1	
	0.135 > 0.05	M1	Valid comparison. Note: '0.865'<0.95 can score M1 A1 and can recover previous M1 A1 for 0.865.
	There is no evidence that proportion owning Chantor has increased	A1 FT	In context. Not definite, e.g. not 'Proportion not increased'. No contradictions.
		5	
6(b)	H ₀ was not rejected.	*B1 FT	H_0 was rejected (consistent with (a)).
	Hence Type II might have been made.	DB1 FT	Type I error.
		2	
6(c)	$P(X \ge 5) = 1 - P(X \le 4)$ = 1-((1-0.1351) + ²⁵ C ₄ × 0.92 ²¹ × 0.08 ⁴) [= 0.0451]	*M1	Attempted. Note: If critical region method used in (a) marks can be awarded here.
	0.0451 < 0.05	A1	Comparison of 0.045[1] with 0.05. Note: If critical region method used in (a) marks can be awarded here.
	P(Type I error) = 0.0451 or 0.0452	A1	Dependent on M1* only. SC Unsupported answers score: B1 for 0.0451<0.05 and B1 for final answer 0.0451 only.
		3	

Cambridge International AS & A Level

MATHEMATICS

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50 9709/61 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.
Ма	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column.
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$Po\left(\frac{2}{3}\right)$	B1	Poisson with correct mean stated (to at least 3 sf) or implied in working.
	$1 - e^{-\frac{2}{3}} \left(1 + \frac{2}{3}\right)$	M1	$1 - P(X = 0 \text{ or } 1)$; allow incorrect λ ; allow one end error
	= 0.144 (3 sf)	A1	SC B1 for use of binomial or no working shown leading to correct final answer.
		3	
1(b)	$n > 50$ and $np = \frac{2}{3} < 5$ or $n > 50$ and $p = \frac{1}{300} < 0.1$	B1	Accept p or np clearly stated in part (a). Do not accept n is large and p is small.
		3	
1(c)	$Po\left(\frac{11}{3}\right)$	B1	Poisson with correct mean stated (to at least 3sf) or implied in working.
	$e^{-\frac{11}{3}} \left(1 + \frac{11}{3} + \frac{\left(\frac{11}{3}\right)^2}{2!} + \frac{\left(\frac{11}{3}\right)^3}{3!} \right)$	M1	$P(X = 0, 1, 2, 3)$; allow incorrect λ ; allow one end error. Must not be multiplied by any additional values.
	= 0.501 (3 sf)	A1	As final answer.
		3	

9709/61

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
2(a)	$\frac{\frac{102}{250} \times \frac{250 - 102}{250}}{250} (= 0.000966144)$ $\frac{102}{250} \pm z\sqrt{0.000966144}$	M1	Any <i>z</i> but must be a <i>z</i> value. One side of the interval scores M1.
	<i>z</i> = 1.645	B1	
	Confident Interval is 0.357 to 0.459 (3 sf)	A1	Must be an interval.
		3	
2(b)	Estimate of mean $\left(\frac{50460}{250}\right) = \201.84	B1	Allow without units. Allow 3s.f. \$202.
	$\frac{250}{249} \left(\frac{19854200}{250} - \left(\frac{50460}{250} \right)^2 \right) \text{ or } \frac{1}{249} \left(19854200 - \frac{50460^2}{250} \right)$	M1	
	Estimate of variance = 38832.75 dollars ² or 38800 (3 sf)	A1	Allow with missing units. (Calculation of biased gives 38 700 scores M0A0)
		3	
2(c)	e.g. Every house doesn't have an equal chance of being selected or most houses have no chance of being selected.	B1	Or other similar e.g. Houses in streets with few houses are more likely to be selected. Not just 'biased', OE, without explanation
		1	

Question	Answer	Marks	Guidance
3	F - 0.5M	M1	SOI
	$\sim N(17, 27^2 + 0.25 \times 55^2)$	B1	for 102 – 0.5(170) (= 17) or 34
		B1	for $27^2 + 0.25 \times 55^2$ (= 1485.25) or $2^2 \times 27^2 + 55^2$ (= 5941)
	$\frac{0-17'}{\sqrt{1485.25'}} \ (=-0.4411)$	M1	Must have an attempt at combining F and M. No standard deviation/variance errors.
	$P(F - 0.5M < 0) = \phi('-0.4411') = 1 - \phi('0.4411')$	M1	Correct area consistent with <i>their</i> figures.
	= 0.330 (3 sf)	A1	Allow 0.33 if no greater accuracy given
	Alternative method for question 3		
	2F – M		
	$\sim N(34, 2^2 \times 27^2 + 55^2)$	B1	for 102 – 0.5(170) (= 17) or 34
		B1	for $27^2 + 0.25 \times 55^2$ (= 1485.25) or $2^2 \times 27^2 + 55^2$ (= 5941)
	$\frac{0-'34'}{\sqrt{5941'}} \ (=-0.4411)$	M1	Must have an attempt at combining F and M. No standard deviation/variance errors.
	$P(2F - M < 0) = \phi('-0.4411') = 1 - \phi('0.4411')$	M1	Correct area consistent with <i>their</i> figures.
	= 0.330 (3 sf)	A1	Allow 0.33 if no greater accuracy given
		6	

9709/61

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(a)	$(k=) \frac{1}{a}$	B1	
		1	
4(b)	(Mean =) their $k \times \frac{a^2}{2} \left(=\frac{a}{2}\right)$	B1 FT	OE seen. FT <i>their k</i>
	$\frac{1}{a}\int_{0}^{a}x^{2}\mathrm{d}x\left(=\frac{a^{2}}{3}\right)$	M1	Attempt at correct integral and use of limits. Accept in terms of k or incorrect k .
	$-\left(\frac{a}{2}\right)^{2}\left(=\frac{a^{2}}{12}\right)$	M1	For subtracting mean ² , allow if integration not complete. FT incorrect values of k .
	$\left(\frac{a^2}{12}=3\right)a=6$	A1	Can be in terms of <i>k</i> .
		4	

Question	Answer	Marks	Guidance
5(a)	√2.1 or 1.45 (3 sf)	B1	
		1	
5(b)	$\lambda = 4.2$	B1	
	$1 - e^{-4.2}(1 + 4.2)$	M1	$1 - P(X \le 1)$ any λ , allow one end error.
	= 0.922 (3 sf)	A1	
		3	
5(c)	$\lambda = 6.3$	M1	$P(X = 5, 6, 7)$ any λ , allow one end error.
	$e^{-6.3}\left(\frac{6.3^{3}}{5!} + \frac{6.3^{6}}{6!} + \frac{6.3^{7}}{7!}\right)$		
	= 0.455 (3 sf)	A1	
		2	
5(d)	$H_0: \lambda = 6.3$ $H_1: \lambda < 6.3$	B1	Accept μ , accept 2.1 (per week)
	$P(X \le 2) = e^{-6.3} \left(1 + 6.3 + \frac{6.3^2}{2!} \right)$	M1	
	= 0.0498 or 0.0499	A1	Accept 0.0499
	`0.0498' < 0.1	M1	For valid comparison. For CV method the comparison can be '2 lies in CR of $X \le 2$ '
	There is evidence that mean number of absences has decreased.	A1 FT	In context, not definite, e.g. not 'Mean number of absences has decreased.' No contradictions.
		5	

Question	Answer	Marks	Guidance
5(e)	H ₀ rejected	*B1 FT	OE
	Hence Type I error possible	DB1 FT	
		2	
6(a)	$\frac{40 - 38.4}{\underline{6.9}} = 1.270 \frac{38 - 38.4}{\underline{6.9}} = -0.3175$	M1	M1 for either correct expression must have $\sqrt{30}$ (condone continuity correction)
	$\sqrt{30}$ $\sqrt{30}$	A1	A1 for ± 1.270 or for 1.27 or AWRT
		A1	A1 for \pm (-0.3175) must be opposite sign or for 0.317 or 0.318 or AWRT
	$\Phi((1.270)) - (1 - \phi(0.3175))$	M1	For correct method consistent with <i>their</i> values
	= 0.523 (3 sf) or 0.522	A1	
		5	
6(b)(i)	2-tail because looking for 'change', not decrease or increase	B1	OE
		1	

Question	Answor	Marks	Cuidance
Question			Guidance
6(b)(ii)	H ₀ : Population mean journey time (or μ) = 38.4 H ₁ : Population mean journey time (or μ) \neq 38.4	B1	Not just 'mean journey time'
	$\frac{40.2 - 38.4}{\frac{6.9}{\sqrt{30}}}$	M1	For standardising (must have $\sqrt{30}$)
	= 1.429	A1	
	`1.429` < 1.645	M1	For valid comparison (area comparison $0.0765 > 0.05$)
	There is no evidence that mean journey time has changed.	A1 FT	In context. Not definite (e.g. not 'mean journey time has not changed'). No contradictions. FT <i>their</i> '1.429' (Note use of 1-tail test scores B0 M1A1M1(comparison with 1.282) A0 max)
	Alternative method for question 6(b)(ii) – critical values metho	d	
	H ₀ : Population mean journey time (or μ) = 38.4 H ₁ : Population mean journey time (or μ) \neq 38.4	B1	Not just 'mean journey time'
	$38+1.645\left(\frac{6.9}{\sqrt{30}}\right)$	M1	
	= 40.47	A1	
	40.2 < 40.47	M1	For valid comparison
	There is no evidence that mean journey time has changed.	A1 FT	In context. Not definite (e.g. not 'mean journey time has not changed'). No contradictions.
		5	

Question	Answer	Marks	Guidance
6(b)(iii)	Yes, because population distribution unknown.	B1	Allow: Yes, because population distribution not normal.
		1	

Cambridge International AS & A Level

MATHEMATICS

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50 9709/62 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method А mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are FT given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT ٠ above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 • decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column. ٠
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise. ٠
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	Poisson, any λ	M1	Used
	$1 - e^{-3} \left(1 + 3 + \frac{3^2}{2} \right)$	M1	Allow one end error
	= 0.577 (3sf)	A1	SC Use of Binomial (or unsupported correct answer) scores B1 only
		3	

Question	Answer	Marks	Guidance
2(a)	$\frac{56}{300} \pm z \times \sqrt{\frac{\frac{56}{300} \times \frac{244}{300}}{300}}$	M1	For expression of the correct form. Must be a <i>z</i> value
	<i>z</i> = 2.054 or 2.055	B1	
	0.14(0) to 0.233 (3sf) or 0.141 to 0.233 (3sf)	A1	Must be an interval
		3	
2(b)	$\frac{1}{6}$ (= 0.167) This is within confidence interval, so no reason to believe die is biased.	B1 FT	Note if confidence interval set up with $\frac{1}{6}, \frac{56}{300}$ it should be the value used here. FT <i>their</i> confidence interval. Not definite, e.g. not 'Die not biased'.
		1	

9709/62

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(a)	$\frac{1}{2} \times 3 \times c = 1$ $(c = \frac{2}{3} AG)$	B1	Must see this line, oe, and result (Alternative method involving equation of line $\left(y = \left(\frac{-c}{3}\right)x + c\right)$ must have all relevant working shown)
		1	
3(b)	$\left(\frac{1}{3}\right)^2$	M1	Allow M1 for $\frac{1}{3}$ seen as a linear scale factor or Attempt to find equation of line (of form y = mx + c where c \neq 0) and interval from 2 to 3 OE or Attempt to find the point (2, $\frac{2}{9}$) using the equation of the line (of form y = mx +c where c \neq 0) and then use area of triangle
	$=\frac{1}{9}$ or 0.111(3sf)	A1	
		2	

Question	Answer	Marks	Guidance
3(c)	Equation of line is $y = \frac{2}{3} - \left(\frac{2}{3} \div 3\right)x$	*M1	OE Must be of form $y = mx + c$ ($c \neq 0$).
	$E(X) = \int_{0}^{3} \left(\frac{2}{3}x - \frac{2}{9}x^{2}\right) dx$	DM1	Attempt integration $x \times their$ f(x), ignore limits
	$=\left[\frac{x^2}{3} - \frac{2x^3}{27}\right]_0^3$	A1 FT	Correct integration and limits. FT <i>their</i> equation of line
	= 1	A1	
		4	

Question	Answer	Marks	Guidance
4	$est(\mu) = \frac{1850}{200}$ or 9.25	B1	
	$\operatorname{est}(\sigma^2) = \frac{200}{199} \left(\frac{17850}{200} - \left(\frac{1850}{200} \right)^2 \right) \text{ or } \frac{1}{199} \left(17850 - \frac{1850^2}{200} \right)$	M1	
	$= 3.71 \text{ or } 3.7060 \text{ or } \frac{1475}{398}$	A1	
	$H_0: \mu = 8.9$ $H_1: \mu \neq 8.9$	B1	Accept Population mean (not just mean)
	$\frac{\frac{1850}{200} - 8.9}{\sqrt{\frac{"3.706"}{200}}}$	M1	Use of biased variance (3.6875) still scores M1
	= 2.57(3sf) (or using areas $0.00507 - 0.0051$)	A1	Accept 2.58 (3sf) or using areas 0.0049–0.005 where biased variance used.
	2.24 < 2.57 or 0.00507 < 0.0125	M1	For valid comparison with 2.240 or 2.241 or valid comparison with 0.0125 Accept 2.24 < 2.58 or 0.00496 < 0.0125 where biased variance used
	(Reject H ₀) There is evidence that μ is not 8.9	A1 FT	Not definite, e.g. NOT ' $\mu \neq 8.9$ ' Must be in context. No contradictions. (Accept cv method) (Note: Use of 1 tail test scores Max B1M1A1B0M1A1M1A0, max 6 out of 8)
		8	

Question	Answer	Marks	Guidance
5(a)	Customers arrive independently or singly or at random	B1	Any one of these in context
		1	
5(b)	$e^{-2.3} \times \frac{2.3^3}{3!}$	M1	Attempt correct expression seen
	= 0.203 (3sf)	A1	
		2	
5(c)	Po(4.6)	B1	SOI
	$1 - e^{-4.6} \left(1 + 4.6 + \frac{4.6^2}{2!} + \frac{4.6^3}{3!} \right)$	M1	Correct expression, with any λ , allow one end error
	= 0.674 (3sf)	A1	As final answer.
		3	
5(d)	$P(\text{none arrive}) = e^{-2.3} (= 0.10026)$	M1	Must be clearly <i>their</i> P(none arrive)
	${}^{5}C_{2}(e^{-2.3})^{2}(1-e^{-2.3})^{3}$	M1	FT <i>their</i> e ^{-2.3}
	= 0.0732 or 0.0733 (3sf)	A1	
		3	

Question	Answer	Marks	Guidance
6(a)	H ₀ : P(contains offer) = $\frac{1}{3}$ H ₁ : P(contains offer) < $\frac{1}{3}$	B1	Allow <i>p</i> for P(contains offer) but not just proportion
	P(0,1 or 2 offers in 20 H ₀) = $\left(\frac{2}{3}\right)^{20} + 20 \left(\frac{2}{3}\right)^{19} \left(\frac{1}{3}\right) + {}^{20}C_2 \left(\frac{2}{3}\right)^{18} \left(\frac{1}{3}\right)^2$	M1	
	= 0.0176 (3sf)	A1	
	`0.0176' < 0.1	M1	For valid comparison. SC comparison of 0.982(4) > 0.9 scores M1 and recovers the previous M1 A1
	(Reject H ₀) No evidence (at 10% level) to support manufacturers claim	A1 FT	In context. Not definite. No contradictions. (Note 2 tail test scores max B0M1A1M1A0, max 3 out of 5) Accept critical region method: M1 A1 for correctly finding critical region of < 4 ; 2 in critical region M1; A1 conclusion SC Use of Normal approximation $N\left(\frac{20}{3}, \frac{40}{9}\right)$ scores B1 M1 A0 M1 A1 max; the first M1 for $\frac{\left(2.5 - \frac{20}{3}\right)}{\sqrt{\left(\frac{40}{9}\right)}}$ requires use of correct continuity correction and the comparison $0.024 < 0.1$ OE must be a valid comparison
		5	

Question	Answer	Marks	Guidance
6(b)	$1 - P(X \leq 3)$	M1	M1 for $1 - ($ one term omitted or extra or incorrect $)$ or omit ' $1 - $ '
	$=1-\left[\left(\frac{6}{7}\right)^{20}+20\left(\frac{6}{7}\right)^{19}\left(\frac{1}{7}\right)+{}^{20}C_2\left(\frac{6}{7}\right)^{18}\left(\frac{1}{7}\right)^2+{}^{20}C_3\left(\frac{6}{7}\right)^{17}\left(\frac{1}{7}\right)^3\right]$	A1	for all correct expression
	= 0.318 (3sf)	A1	As final answer.
		3	
6(c)	Concluding that prop is 1 in 3 when it is actually less(1 in 7)	B1	OE, in context.
		1	

Question	Answer	Marks	Guidance
7(a)	$\begin{array}{l} P(S > L + 200) = P(S - L > 200) \\ E(S - L) = 380 - 210 \; (=170) \; \text{or} \; E(S - L - 200) = 380 - 210 - 200 \\ (= -30) \end{array}$	B1	These may be implied by next line
	Var(S - L) = 140+80 (=220) or $Var(S-L-200)= 140+80$ (=220)	B1	
	$\frac{200 - "170"}{\sqrt{"220"}} \text{ or } \frac{0 - "-30"}{\sqrt{"220"}} \ (= 2.023)$	M1	Standardising with <i>their</i> values (must be from a combination attempt) Allow with attempted continuity correction.
	1 - φ("2.023")	M1	Area consistent with their values
	= 0.0216 (3sf)	A1	(0.0234 with continuity correction)
		5	

Question	Answer	Marks	Guidance
7(b)	$E(total cost) = 380 \times 20 + 210 \times 50 (= 18\ 100)$	B1	or \$181
	$Var(total cost) = 140 \times 20^2 + 80 \times 50^2 (= 256\ 000)$	B1	or 25.6 (dollar ²) These may be implied by next line
	$\frac{19000 - "18100"}{\sqrt{"256000"}} \text{ or } \frac{190 - "181"}{\sqrt{"25.6"}} \ (= 1.778)$	M1	Standardising with <i>their</i> values (must be from a combination attempt). No mixed methods. Allow with attempted continuity correction.
	φ ("1.778")	M1	Area consistent with <i>their</i> values
	= 0.962 or 0.963 (3 sf)	A1	(0.953 or 0.954 with continuity correction)
		5	

Cambridge International AS & A Level

MATHEMATICS

Paper 6 Probability & Statistics 2 MARK SCHEME Maximum Mark: 50 9709/63 October/November 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

9709/63

Ма	Mathematics Specific Marking Principles				
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.				
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.				
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.				
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).				
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.				
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.				

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 - A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
 - For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
 - The total number of marks available for each question is shown at the bottom of the Marks column.
 - Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
 - Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$Po\left(\frac{2}{3}\right)$	B1	Poisson with correct mean stated (to at least 3 sf) or implied in working.
	$1 - e^{-\frac{2}{3}} \left(1 + \frac{2}{3}\right)$	M1	$1 - P(X = 0 \text{ or } 1)$; allow incorrect λ ; allow one end error
	= 0.144 (3 sf)	A1	SC B1 for use of binomial or no working shown leading to correct final answer.
		3	
1(b)	$n > 50$ and $np = \frac{2}{3} < 5$ or $n > 50$ and $p = \frac{1}{300} < 0.1$	B1	Accept p or np clearly stated in part (a). Do not accept n is large and p is small.
		3	
1(c)	$Po\left(\frac{11}{3}\right)$	B1	Poisson with correct mean stated (to at least 3sf) or implied in working.
	$e^{-\frac{11}{3}} \left(1 + \frac{11}{3} + \frac{\left(\frac{11}{3}\right)^2}{2!} + \frac{\left(\frac{11}{3}\right)^3}{3!} \right)$	M1	$P(X = 0, 1, 2, 3)$; allow incorrect λ ; allow one end error. Must not be multiplied by any additional values.
	= 0.501 (3 sf)	A1	As final answer.
		3	

9709/63

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
2(a)	$\frac{\frac{102}{250} \times \frac{250 - 102}{250}}{250} (= 0.000966144)$ $\frac{102}{250} \pm z\sqrt{0.00096614'}$	M1	Any <i>z</i> but must be a <i>z</i> value. One side of the interval scores M1.
	<i>z</i> = 1.645	B 1	
	Confident Interval is 0.357 to 0.459 (3 sf)	A1	Must be an interval.
		3	
2(b)	Estimate of mean $\left(\frac{50460}{250}\right) = \201.84	B1	Allow without units. Allow 3s.f. \$202.
	$\frac{250}{249} \left(\frac{19854200}{250} - \left(\frac{50460}{250} \right)^2 \right) \text{ or } \frac{1}{249} \left(19854200 - \frac{50460^2}{250} \right)$	M1	
	Estimate of variance = 38832.75 dollars ² or 38800 (3 sf)	A1	Allow with missing units. (Calculation of biased gives 38 700 scores M0A0)
		3	
2(c)	e.g. Every house doesn't have an equal chance of being selected or most houses have no chance of being selected.	B1	Or other similar e.g. Houses in streets with few houses are more likely to be selected. Not just 'biased', OE, without explanation
		1	

Question	Answer	Marks	Guidance
3	F - 0.5M	M1	SOI
	$\sim N(17, 27^2 + 0.25 \times 55^2)$	B1	for 102 – 0.5(170) (= 17) or 34
		B1	for $27^2 + 0.25 \times 55^2$ (= 1485.25) or $2^2 \times 27^2 + 55^2$ (= 5941)
	$\frac{0-17'}{\sqrt{1485.25'}} \ (=-0.4411)$	M1	Must have an attempt at combining F and M. No standard deviation/variance errors.
	$P(F - 0.5M < 0) = \phi('-0.4411') = 1 - \phi('0.4411')$	M1	Correct area consistent with <i>their</i> figures.
	= 0.330 (3 sf)	A1	Allow 0.33 if no greater accuracy given
	Alternative method for question 3		
	2F – M		
	$\sim N(34, 2^2 \times 27^2 + 55^2)$	B1	for 102 – 0.5(170) (= 17) or 34
		B1	for $27^2 + 0.25 \times 55^2$ (= 1485.25) or $2^2 \times 27^2 + 55^2$ (= 5941)
	$\frac{0-'34'}{\sqrt{5941'}} \ (=-0.4411)$	M1	Must have an attempt at combining F and M. No standard deviation/variance errors.
	$P(2F - M < 0) = \phi('-0.4411') = 1 - \phi('0.4411')$	M1	Correct area consistent with <i>their</i> figures.
	= 0.330 (3 sf)	A1	Allow 0.33 if no greater accuracy given
		6	

9709/63

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(a)	$(k=) \frac{1}{a}$	B1	
		1	
4(b)	(Mean =) their $k \times \frac{a^2}{2} \left(=\frac{a}{2}\right)$	B1 FT	OE seen. FT <i>their k</i>
	$\frac{1}{a}\int_{0}^{a}x^{2}\mathrm{d}x\left(=\frac{a^{2}}{3}\right)$	M1	Attempt at correct integral and use of limits. Accept in terms of k or incorrect k .
	$-\left(\frac{a}{2}\right)^2 \left(=\frac{a^2}{12}\right)$	M1	For subtracting mean ² , allow if integration not complete. FT incorrect values of k .
	$\left(\frac{a^2}{12}=3\right)a=6$	A1	Can be in terms of <i>k</i> .
		4	

Question	Answer	Marks	Guidance
5(a)	√2.1 or 1.45 (3 sf)	B1	
		1	
5(b)	$\lambda = 4.2$	B1	
	$1 - e^{-4.2}(1 + 4.2)$	M1	$1 - P(X \le 1)$ any λ , allow one end error.
	= 0.922 (3 sf)	A1	
		3	
5(c)	$\lambda = 6.3$	M1	$P(X = 5, 6, 7)$ any λ , allow one end error.
	$e^{-6.3}\left(\frac{6.3^5}{5!} + \frac{6.3^6}{6!} + \frac{6.3^7}{7!}\right)$		
	= 0.455 (3 sf)	A1	
		2	
5(d)	$H_0: \lambda = 6.3$ $H_1: \lambda < 6.3$	B1	Accept μ , accept 2.1 (per week)
	$P(X \le 2) = e^{-6.3} \left(1 + 6.3 + \frac{6.3^2}{2!} \right)$	M1	
	= 0.0498 or 0.0499	A1	Accept 0.0499
	`0.0498' < 0.1	M1	For valid comparison. For CV method the comparison can be '2 lies in CR of $X \le 2$ '
	There is evidence that mean number of absences has decreased.	A1 FT	In context, not definite, e.g. not 'Mean number of absences has decreased.' No contradictions.
		5	

Question	Answer	Marks	Guidance
5(e)	H ₀ rejected	*B1 FT	OE
	Hence Type I error possible	DB1 FT	
		2	
6(a)	$\frac{40 - 38.4}{\frac{6.9}{\sqrt{30}}} = 1.270 \frac{38 - 38.4}{\frac{6.9}{\sqrt{30}}} = -0.3175$	M1	M1 for either correct expression must have $\sqrt{30}$ (condone continuity correction)
		A1	A1 for ± 1.270 or for 1.27 or AWRT
		A1	A1 for \pm (-0.3175) must be opposite sign or for 0.317 or 0.318 or AWRT
	$\Phi((1.270') - (1 - \phi(0.3175'))$	M1	For correct method consistent with <i>their</i> values
	= 0.523 (3 sf) or 0.522	A1	
		5	
6(b)(i)	2-tail because looking for 'change', not decrease or increase	B1	OE
		1	

Question	Answer	Marks	Guidance	
6(b)(ii)	H ₀ : Population mean journey time (or μ) = 38.4 H ₁ : Population mean journey time (or μ) \neq 38.4	B1	Not just 'mean journey time'	
	$\frac{40.2 - 38.4}{\frac{6.9}{\sqrt{30}}}$	M1	For standardising (must have $\sqrt{30}$)	
	= 1.429	A1		
	`1.429` < 1.645	M1	For valid comparison (area comparison $0.0765 > 0.05$)	
	There is no evidence that mean journey time has changed.	A1 FT	In context. Not definite (e.g. not 'mean journey time has not changed'). No contradictions. FT <i>their</i> '1.429' (Note use of 1-tail test scores B0 M1A1M1(comparison with 1.282) A0 max)	
	Alternative method for question 6(b)(ii) – critical values method			
	H ₀ : Population mean journey time (or μ) = 38.4 H ₁ : Population mean journey time (or μ) \neq 38.4	B1	Not just 'mean journey time'	
	$38+1.645\left(\frac{6.9}{\sqrt{30}}\right)$	M1		
	= 40.47	A1		
	40.2 < 40.47	M1	For valid comparison	
	There is no evidence that mean journey time has changed.	A1 FT	In context. Not definite (e.g. not 'mean journey time has not changed'). No contradictions.	
		5		
Question	Answer	Marks	Guidance	
-----------	---	-------	---	
6(b)(iii)	Yes, because population distribution unknown.	B1	Allow: Yes, because population distribution not normal.	
		1		

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/51 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles	Mathematics	Specific	Marking	Principles	
---	-------------	----------	---------	------------	--

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks
1(a)	Prob of 4 (from 1,3, 3,1 or 2,2) = $\frac{3}{36} = \frac{1}{12}$ AG	B1
		1
1(b)	Mean = $\frac{1}{\frac{1}{12}} = 12$	B1
		1
1(c)	$\left(\frac{11}{12}\right)^5 \times \frac{1}{12} = 0.0539 \text{ or } \frac{161051}{2985984}$	B1
		1
1(d)	$1 - \left(\frac{11}{12}\right)^7$	M1
	$0.456 \text{ or } \frac{16344637}{35831808}$	A1
		2

Question	Answer	Marks
2(a)	6!	M1
	720	A1
		2
2(b)	Total number: $\frac{9!}{3!2!}(30240)$	M1
	Number with Ls together = $\frac{8!}{3!}(6720)$	M1
	Number with Ls not together = $\frac{9!}{2!2!} - \frac{8!}{2!}$	M1
	= 30240 - 6720	
	23 520	A1
	Alternative method for question 2(b)	
	$\frac{7!}{3!} \times \frac{8 \times 7}{2}$	
	$7! \times k$ in numerator, k integer ≥ 1	M1
	$8 \times 7 \times m$ in numerator or $8C2 \times m$, <i>m</i> integer ≥ 1	M1
	3! in denominator	M1
	23 520	A1
		4

Question					Answer	Marks
3(a)	x	0	1	2	3	B1
	Probability	$\frac{1}{56}$	$\frac{15}{56}$	$\frac{30}{56}$	$\frac{10}{56}$	
	(B1 for probab	oility distributi	on table with c	orrect outcom	e values)	
	$P(0) = \frac{3}{8} \times \frac{2}{7} \times \frac{2}{7}$ $P(1) = \frac{5}{8} \times \frac{3}{7} \times \frac{3}{7} \times \frac{1}{7}$ $P(2) = \frac{5}{8} \times \frac{4}{7} \times \frac{1}{7} \times \frac{1}{$	$\frac{1}{6} = \frac{1}{56}$ $\frac{2}{6} \times 3 = \frac{15}{56}$ $\frac{3}{6} \times 3 = \frac{30}{56}$ $\frac{3}{6} = \frac{10}{56}$ minator 8×7×6)			M1
	Any one proba	ability correct	(with correct o	utcome)		A1
	All probabiliti	es correct				A1
						4
3(b)	1 – P(8, 9, 10)	$= 1 - \left[{}^{10}C_8 0 \right]$	$64^8 0.36^2 + {}^{10}C$	$_{9}0.64^{9}0.36^{1}+$	0.64^{10}	M1
	1-(0.164156	+ 0.064852 + 0).11529)			M1
	0.759					A1
						3

Question	Answer	Marks
4	Scenarios: 2P 3V 2G ${}^{8}C_{2} \times {}^{4}C_{2} \times {}^{6}C_{3} = 28 \times 6 \times 20 = 3360$ 2P 4V 1G ${}^{8}C_{2} \times {}^{4}C_{1} \times {}^{6}C_{4} = 28 \times 4 \times 15 = 1680$ 3P 3V 1G ${}^{8}C_{3} \times {}^{4}C_{1} \times {}^{6}C_{3} = 56 \times 4 \times 20 = 4480$ 4P 2V 1G ${}^{8}C_{4} \times {}^{4}C_{1} \times {}^{6}C_{2} = 70 \times 4 \times 15 = 4200$ (M1 for ${}^{8}C_{r} \times {}^{4}C_{r} \times {}^{6}C_{r}$ with $\sum r = 7$)	M1
	Two unsimplified products correct	B1
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total: 13 720	A1
		4

Question	Answer	Marks
5(a)	$\begin{array}{c} 0.3 \\ 0.35 \\ 0.44 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.2 \\$	
	Fully correct labelled tree for method of transport with correct probabilities.	B1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the prob 0	B1
		2
5(b)	$0.35 \times 0.3 + 0.44 \times 0.8 (+0)$	M1
	0.457	A1
		2

Question	Answer	Marks
5(c)	$P(\text{not B} \text{not fruit}) = \frac{P(B' \cap F')}{P(F')}$	M1
	$\frac{0.35 \times 0.7 + 0.21 \times 1}{1 - their(\mathbf{b})}$	M1
	$\frac{0.455}{0.543}$ (M1 for 1 – <i>their</i> (b) or summing three appropriate 2-factor probabilities, correct or consistent with <i>their</i> tree diagram as denominator)	M1
	0.838 or $\frac{455}{543}$	A1
		4

Question	Answer	Marks
6(a)	$P\left(\frac{50-54}{6.1} < z < \frac{60-54}{6.1}\right) = P\left(-0.6557 < Z < 0.9836\right)$	M1
	Both values correct	A1
	$\Phi (0.9836) - \Phi (-0.6557) = \Phi (0.9836) + \Phi (0.6557) - 1$ = 0.8375 + 0.7441 - 1 (Correct area)	M1
	0.582	A1
		4

Question	Answer	Marks
6(b)	$\frac{45-\mu}{\sigma} = -0.994$	B1
	$\frac{56-\mu}{\sigma} = 1.372$	B1
	One appropriate standardisation equation with μ , σ , z-value (not probability) and 45 or 56.	M1
	11 = 2.366 σ (M1 for correct algebraic elimination of μ or σ from <i>their</i> two simultaneous equations to form an equation in one variable)	M1
	$\sigma = 4.65, \mu = 49.6$	A1
		5

Question	Answer	Marks
7(a)	Class widths: 10, 5, 15, 20, 10	M1
	Frequency density = frequency/ <i>their</i> class width: 1.8, 4.8, 2, 1, 0.8	M1
	All heights correct on diagram (using a linear scale)	A1
	Correct bar ends	B1
	Bar ends: 10.5, 15.5, 30.5, 50.5, 60.5	B1
		5
7(b)	11-15 and 31-50	B1
	Greatest $IQR = 50 - 11 = 39$	B1
		2
7(c)	Mean = $\frac{18 \times 5.5 + 24 \times 13 + 30 \times 23 + 20 \times 40.5 + 8 \times 55.5}{100} = \frac{2355}{100} = 23.6$	B1
	$Var = \frac{18 \times 5.5^2 + 24 \times 13^2 + 30 \times 23^2 + 20 \times 40.5^2 + 8 \times 55.5^2}{100} - mean^2$	M1
	$\frac{77917.5}{100} - \text{mean}^2 = 224.57$	A1
	Standard deviation = 15.0 (FT <i>their</i> variance)	A1 FT
		4

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/52 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks
1	$\sum x - 50n = 144$	B1
	50n + 144 = 944	M1
	<i>n</i> = 16	A1
		3

Question	Answer	Marks
2(a)	$\frac{56}{500}$ or $\frac{14}{125}$ or 0.112	B1
		1
2(b)	$P(D S) = \frac{P(D \cap S)}{P(S)} = \frac{120}{280}$	M1
	$\frac{120}{280} \text{ or } \frac{3}{7}$	A1
		2

Question	Answer	Marks
2(c)	$P(hockey) = \frac{220}{500} = 0.44$ $P(Amos \text{ or } Benn) = \frac{242}{500} = 0.484$	M1
	$P(\text{hockey} \cap A \text{ or } B) = \frac{104}{500} = 0.208$ $P(H) \times P(A \cup B) = P(H \cap (A \cup B)) \text{ if independent}$	
	$\frac{220}{500} \times \frac{242}{500} = \frac{1331}{6250}$ so not independent	A1
		2

Question	Answer	Marks
3(a)	Median = 0.238	B1
	UQ = 0.245, LQ = 0.231, So $IQR = 0.245 - 0.231$	M1
	0.014	A1
		3

uestion	Ans	swer				
3(b)			LQ	М	UQ	
	A	A 0.220	0.220 0.231 FT	0.238 FT	0.245 FT	0.254
	В	0.211	0.224	0.232	0.243	0.256
	Mee	dians and	quartiles c	correctly plo	tted for A or	r <i>B</i>
	End	l points co	orrect for A	l or B		
	Con	npletely o	correct, inc	luding scale		
(c)	Len (B1	gths of ro for comp	ods produce parison of c	ed by machi central tende	ne A are lor ency)	nger.
Lengths of rods produced by machine <i>A</i> (B1 for comparison of spread)					ne A are les	s spread ou

Question	Answer	Marks
4(a)	$P(X < 25) = P\left(z < \frac{25 - 40}{12}\right) = P(z < -1.25)P(X < 25) = P(z < -1.25)P(z < -1.25)P($	M1
	1-0.8944	M1
	0.106	A1
		3
4(b)	0.8944 divided by 3 (M1 for 1 - <i>their</i> (a) divided by 3)	M1
	0.298 AG	A1
		2
4(c)	0.2981 gives $z = 0.53$	B1
	$\frac{h-40}{12} = 0.53$	M1
	<i>h</i> = 46.4	A1
		3

Question	Answer							Marks
5(a)		1	1	2	2	3		M1
	1	1	1	2	2	3		
	2	2	2	2	2	3		
	3	3	3	3	3	3		
	$\frac{7}{15}$ AG							A1
								2
5(b)	x		1	2		3		B1
	Probabi	lity	$\frac{2}{15}$	$\frac{6}{15}$		$\frac{7}{15}$		
	P(1) or $P(2)$ cor	(2) corre	ct					B1
3 rd probability correct, I				um to 1				B1
								3

Question	Answer	Marks
5(c)	$E(X) = \frac{2+12+21}{15} = \frac{35}{15} = \frac{7}{3}$	B1
	$Var(X) = \frac{1^2 \times 2 + 2^2 \times 6 + 3^2 \times 7}{15} - \left(\frac{7}{3}\right)^2$	M1
	$\frac{22}{45}(0.489)$	A1
		3

Question	Answer	Marks
6(a)	$\frac{8!}{3!}$	M1
	6720	A1
		2

Question	Answer	Marks			
6(b)	Total number = $\frac{10!}{2!3!}$ (302400) (A)	B1			
	With Es together = $\frac{9!}{3!}$ (60480) (B)	B1			
	Es not together = $their(A) - their(B)$	M1			
241920					
Alternative method for question 6(b)					
	$\frac{\overset{\wedge}{8!}}{\overset{9\times8}{3!}\times \overset{\wedge}{2}} \overset{\wedge}{2} \overset{\vee}{2} \vee$				
	8! × k in numerator, k integer \geq 1, denominator \geq 1	B1			
	$3! \times m$ in denominator, <i>m</i> integer ≥ 1	B1			
	<i>Their</i> $\frac{8!}{3!}$ Multiplied by ${}^{9}C_{2}$ (OE) only (no additional terms)	M1			
241920		A1			
		4			

Question	Answer	Marks
6(c)	Scenarios: $E M M M = {}^{5}C_{0} = 1$ $E M M = {}^{5}C_{1} = 5$ $E M _ {}^{5}C_{2} = 10$	M1
	Summing the number of ways for 2 or 3 correct scenarios	M1
	Total = 16	A1
		3

Question	Answer									
7(a)	$1 - P(10, 11, 12) = 1 - [{}^{12}C_{10}0.72^{10}0.28^2 + {}^{12}C_{11}0.72^{11}0.28^1 + 0.72^{12}]$									
	(0.19372 + 0.09057 + 0.01941)									
	0.696									
		3								
7(b)	$0.28^3 \times 0.72 = 0.0158$	B1								
		1								

Question	Answer	Marks						
7(c)	Mean = $100 \times 0.72 = 72$ Var = $100 \times 0.72 \times 0.28 = 20.16$							
	P(less than 64) = P $\left(z < \frac{63.5 - 72}{\sqrt{20.16}}\right)$ (M1 for substituting <i>their</i> μ and σ into ±standardisation formula with a numerical value for '63.5')	M1						
	Using either 63.5 or 64.5 within a ±standardisation formula							
	Appropriate area Φ , from standardisation formula P(z<) in final solution = P(z < -1.893)	M1						
	0.0292							
		5						

Cambridge International AS & A Level

MATHEMATICS

Paper 5 Probability & Statistics 1 MARK SCHEME Maximum Mark: 50 9709/53 May/June 2020

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE[™] and Cambridge International A & AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer									
1(a)	$\begin{array}{c} 0.6 \\ 0.2 \\ 0.45 \\ 0.45 \\ 0.35 \\ W \\ 1 \\ 0 \\ NE \end{array}$									
	Fully correct labelled tree for method of transport with correct probabilities.									
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the probability 0.	B1								
		2								
1(b)	$P(C E) = \frac{P(C \cap E)}{P(E)} = \frac{0.2 \times 0.6}{0.2 \times 0.6 + 0.45 \times 0.1 + 0.35 \times 1}$	M1								
	Summing three appropriate 2-factor probabilities	M1								
	$\frac{0.12}{0.515}$	A1								
	0.233 or $\frac{12}{515}$	A1								
		4								

Question	Answer								
2(a)	$.22^3 = 0.0106$								
		1							
2(b)	$P(2, 3, 4) = {}^{16}C_2 \ 0.22^2 \\ 0.78^{14} + {}^{16}C_3 \\ 0.22^3 \\ 0.78^{13} + {}^{16}C_4 \\ 0.22^4 \\ 0.78^{12}$								
	0.179205 + 0.235877 + 0.216221								
	0.631	A1							
		3							

Question	Answer								
3(a)	$P(X < 21) = P\left(z < \frac{21 - 15.8}{4.2}\right) = \Phi(1.238)$	M1							
	.892								
		2							
3(b)	$z = \pm 0.674$	B1							
	$\frac{k-15.8}{4.2} = 0.674$	M1							
	18.6	A1							
		3							

Question	Answer									Marks	
4(a) -1 0 0 1											
	0	1	1	2							
	2	3	3	4							
	x		-1	0	1	2	3	4			
	Probat	oility	$\frac{1}{12}$	$\frac{3}{12}$	$\frac{3}{12}$	$\frac{2}{12}$	$\frac{2}{12}$	$\frac{1}{12}$			
	Probability distribution table with correct scores with at least one probability										
	At least 4 probabilities correct All probabilities correct										
										3	
4(b) $E(X) = \frac{-1+0+3+4+6+4}{12} = \frac{16}{12} = \frac{4}{3}$											
	$Var(X) = \frac{1+0+3+8+18+16}{12} - \left(\frac{4}{3}\right)^2$ $\frac{37}{18} (= 2.06)$										
										3	
Question	Answer	Marks									
----------	--	-------									
5(a)	$\frac{1}{\frac{1}{4}} = 4$	B1									
		1									
5(b)	$\frac{9}{64}$ (=0.141)	B1									
		1									
5(c)	$P(X < 6) = 1 - \left(\frac{3}{4}\right)^5$	M1									
	(FT <i>their</i> probability/mean from part (a))										
	0.763	A1									
		2									
5(d)	$Mean = 80 \times 0.25 = 20$ Var = 80 × 0.25 × 0.75 = 15	M1									
	P(more than 25) = P $\left(z > \frac{25.5 - 20}{\sqrt{15}}\right)$	M1									
	P(z > 1.42)	M1									
	1-0.9222	M1									
	0.0778	A1									
		5									

Question	1 Answer	Marks				
6(a)	AB					
	2 6					
	5 2 0 3 0 1 5 8					
	9 7 2 1 1 4 1 2 2 7 9					
	3 2 5 2					
	4 6					
	KEY 1 4 2 means \$41,000 for A and \$42,000 for B					
	Correct stem					
	Correct A on LHS					
	Correct B on same diagram	B1				
	Correct key for <i>their</i> diagram, both companies identified and correct units	B1				
		4				
6(b)	Median = [\$]42 000					
	$LQ = [\$]35\ 000$ $UQ = [\$]52\ 000$					
	$IQR = [\$]17\ 000 (FT if 49000 \le UQ \le 53000 - 32000 \le LQ \le 41000)$					

Question	Answer	Marks
6(c)	Sum of given 11 numbers is 433 000	M1
	Sum of 12 numbers, including new = $38500 \times 12 = 462000$	M1
	Difference = new salary = [\$]29 000	A1
		3

Question	Answer	Marks
7(a)	$\frac{9!}{2!2!} = 90\ 720$	B 1
		1
		1
7(b)	$\frac{6!}{2!}$	M1
	360	A1
		2

Question	Answer	Marks
7(c)	2 Es together = $\frac{8!}{2!}$ (= 20160)	M1
	Es not together = $90720 - 20160 = 70560$	M1
	$Probability = \frac{70560}{90720}$	M1
	$\frac{7}{9}$ or 0.778	A1
	Alternative method for question 7(c)	
	$\frac{7!}{2!} \times \frac{8 \times 7}{2} = 70560$	
	7! × k in numerator, k integer ≥ 1 , denominator ≥ 1	M1
	Multiplying by ⁸ C ₂ OE	M1
	$Probability = \frac{70560}{90720}$	M1
	$\frac{7}{9}$ or 0.778	A1
		4

Question	Answer	Marks
7(d)	Scenarios are: $E L _ _ 5C_3 = 10$ $E E L _ 5C_2 = 10$ $E _ 5C_4 = 5$ $E E _ _ 5C_3 = 10$	M1
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total = 35	A1
		3

Cambridge International A Level

MATHEMATICS

Paper 6 Probability and Statistics MARK SCHEME Maximum Mark: 50 9709/62 March 2020

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Ma	Mathematics-Specific Marking Principles		
1	Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.		
2	Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.		
3	Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.		
4	Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).		
5	Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.		
6	Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.		

Cambridge International A Level – Mark Scheme PUBLISHED Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- **B** Mark for a correct result or statement independent of method marks.
- **DM** or **DB** When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - **FT** Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Cambridge International A Level – Mark Scheme **PUBLISHED**

Abbreviations

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working

SOI Seen Or Implied

- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

|--|

Question	Answer	Marks	Guidance
1	$(\lambda =) \frac{5}{12} = 0.417$ or better	B1	
	$1 - e^{-\frac{5}{12}} \left(1 + \frac{5}{12}\right)$	M1	$1 - P(X = 0 \text{ or } 1)$, by Poisson, using any λ , allow 1 - P(X = 0 or 1 or 2) for M1
	= 0.0661 or 0.0662 (3 sf)	A1	Final answer SC use of Binomial (from 0.06607) B1 only
		3	

Question	Answer	Marks	Guidance
2	$2 \times z \times \frac{3.2}{10} = 1.25$	M1	OE Allow without '2 \times '
	z = 1.953	A1	SOI
	$\phi(`their 1.953') (= 0.9746)$	M1	
	= 1 - 2(1 - `0.9746') = 0.9492	M1	OE
	$\alpha = 94.9 \text{ or } 95$	A1	CWO
		5	

Question	Answer	Marks	Guidance
3(a)	est $(\mu) = 37.6$ or $\frac{1504}{40}$ or $\frac{188}{5}$	B1	
	est $(\sigma^2) = \frac{40}{39} \left[\frac{57760}{40} - 37.6^2 \right] = 31.0154 = \frac{2016}{65}$	M1	Correct substitution in any correct formula $\frac{1}{39} \left[57760 - \frac{1504^2}{40} \right]$
	= 31.(0) (3 sf)	A1	Accept $\frac{2016}{65}$ or $31\frac{1}{65}$
		3	
3(b)	H ₀ : Pop mean (or μ) = 39.2 H ₁ : Pop mean (or μ) < 39.2	B1	Both. Not just 'mean'
	$\frac{\frac{'37.6'-39.2}{\sqrt{'31.0154'}}}{\sqrt{40}}$	M1	Allow use of biased variance (30.2), must have $\sqrt{40}$
	= -1.817	A1	SC FT use of biased = -1.840 for A1
	'1.817' > 1.645 OE	M1	Valid comparison ' <i>their</i> 1.817' with 1.645 or valid area comparison 0.0346 < 0.05 OE
	There is evidence that mean time has decreased	A1FT	FT <i>their</i> 1.817; in context, not definite, no contradictions SC For 2 tail test: $H_1: \mu \neq 39.2$ and comp 1.96, max B0M1A1M1A0 (no FT for final mark)
		5	

|--|

Question	Answer	Marks	Guidance
4(a)	$\lambda (= 0.4 \times 365 \div 50) = 2.92$	B1	
	$e^{-2.92}(1+2.92+\frac{2.92^2}{2})$	M1	Any λ . Allow one end error
	= 0.441 (3 sf)	A1	
		3	
4(b)	$e^{-\lambda} > 0.95$	M1	Allow '=' throughout
	$-\lambda > \ln 0.95 \text{ or } \lambda < 0.051293 \text{ OE}$	M1	Attempt ln both sides
	'0.051293' × 50 ÷ 0.4 (= 6.411)	M1	
	Largest <i>n</i> is 6 (3 sf) Allow $n = 6$ or $n \le 6$ (NOT $n < 6$ or $n \ge 6$ as final answer)	A1	SC Trial and Improvement M1 for $e^{-\lambda} > 0.95$ SOI; M1 for $\lambda = n \times \frac{0.4}{50}$; M1 for use of both n = 6 giving 0.9531 and $n = 7$ giving 0.9455; A1 $n = 6$
		4	

Question	Answer	Marks	Guidance
5(a)	$\frac{3}{4000} \int_{5}^{10} (100 - x^2) dx$ $= \frac{3}{4000} \left[100x - \frac{x^3}{3} \right] \frac{10}{5}$	M1	Attempt integration of $f(x)$, ignore limits. Condone omission of $\frac{3}{4000}$
	$= \frac{3}{4000} \left(1000 - \frac{1000}{3} - 500 + \frac{125}{3} \right)$	M1	Correct limits 5 and 10. OE SOI
	= 0.156 (3 sf) or $\frac{5}{32}$	A1	For fully correct working seen including substitution of limits
		3	
5(b)	$\frac{3}{4000} \int_{p}^{10} (100 - x^2) \mathrm{d}x = \frac{1}{4}$	M1	Attempt integration of $f(x)$ with any limits and $=\frac{1}{4}$ or $=\frac{3}{4}$ seen. Condone omission of $\frac{3}{4000}$
	$\frac{3}{4000} \left[100x - \frac{x^3}{3} \right] \frac{10}{p} = \frac{1}{4}$	A1	Correct integration with correct limits seen (or implied for limits p and 10) and = $\frac{1}{4}$ OE Condone omission of $\frac{3}{4000}$
	$\frac{3}{4000} \left(1000 - \frac{1000}{3} - 100p + \frac{p^3}{3} \right) = \frac{1}{4}$	M1	Attempt substitution correct limits in their integration of $f(x)$. Accept limits 0 to p if clearly seen, accept limits -10 and p . Substitution must be seen.
	e.g. $\frac{2000}{3} - 100p + \frac{p^3}{3} = \frac{1000}{3}$ $p^3 - 300p + 1000 = 0$	A1	AG No errors seen
		4	

March 2	2020
---------	------

Question	Answer	Marks	Guidance
5(c)	Curve is symmetrical about $x = 0$	B1	May be implied by sketch. No contradictions or integrate $f(x)$ between $-q$ and $+q$ and equate to 0.5 leading to q^3 -300 q + 1000 = 0 oe
	<i>q</i> = 3.47	B1	
		2	

Question	Answer	Marks	Guidance
6(a)	N(310, 50)	B1	SOI
	$\frac{300-310'}{\sqrt{50'}} \ (=-1.414)$	M1	Standardise using their values
	$\Phi(`-1.414') = 1 - \phi(`1.414')$	M1	Area consistent with their values
	= 0.0786 or 0.0787 (3 sf)	A1	As final answer
		4	

Question	Answer	Marks	Guidance
6(b)	P(L-2S>0)	M1	OE SOI
	E(X) = 200-2x110 or = -20	B1	OE seen
	$Var = 30 + 2^2 \times 20 \text{ or} = 110$	B1	Seen
	$\frac{N(-20, 110)}{\frac{0 - ('-20')}{\sqrt{110'}}} (= 1.907)$	M1	Standardising with their values. Mean and variance must come from a combination attempt.
	1 – Φ('1.907')	M1	Correct area consistent with their working
	= 0.0283 (3 sf)	A1	Final answer
		6	

Question	Answer	Marks	Guidance
7(a)	$P(X \le n) \ (n \le 20)$ attempted, using B(20, 0.95)	M1	OE
	$P(X \le 17)$ or $P(X \le 16)$ attempted, using B(20, 0.95)	M1	OE
	$(P(X \le 17)) = 0.0755 \text{ and } (P(X \le 16)) = 0.0159$	A1	OE (0.925 and 0.984) both correct
	Rej region is $X \le 16$ or $X < 17$	A1	Dependent on M1M1 and previous answers correct to at least 0.075/0.076 and 0.016 or 0.92/0.93 and 0.98 Correct unsupported answers of 0.0755 and 0.0159 OE scores M1 M1 A0
		4	

March	2020
-------	------

Question	Answer	Marks	Guidance
7(b)	0.0159	B1	FT <i>their</i> rejection region, from Binomial in a , if P(X in rejection region) < 0.025
		1	
7(c)	Use of B(20, 0.7)	M1	
	P(X > 16 p = 0.7)	M1	Correct method using B(20, 0.7)
	= 0.107	A1	
		3	

MATHEMATICS

9709/72 October/November 2019

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark. awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or М errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically DM or DB says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B FT marks are given for correct work only.

Cambridge International A Level – Mark Scheme **PUBLISHED**

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
1(i)	Binomial	B1	
	$n = 500$ and $p = \frac{1}{150}$ or 0.00667	B1	Or $B\left(500, \frac{1}{150}\right)$ for B1B1
		2	
1(ii)	Poisson	B1	
	<i>n</i> large and mean = $\frac{10}{3}$ or 3.3 or better, which is < 5	B1	Accept $n > 50$
		2	
1(iii)	$1 - e^{-\frac{10}{3}} \times \left(1 + \frac{10}{3} + \frac{\left(\frac{10}{3}\right)^2}{2}\right)$	M1	1-P(X=0, 1, 2)
	= 1 - 0.353	A1	Correct expression with λ =3.3 or better
	= 0.647 (3 sf)	A1	SC Use of Binomial scores B1 for 0.648. Use of Normal scores B1 for 0.67(0) to 0.677
		3	

Question	Answer	Marks	Guidance
2(i)(a)	Assume standard deviation for the region is 7.1	B1	Or standard deviation is same as for whole population OE
	$\frac{63.2 - 65.2}{\frac{7.1}{\sqrt{n}}} = -2.182$	M1	Attempt to find correct equation (accept +2.182)
	$n = \{-2.182 \times 7.1 \div (-2)\}^2$	A1	Any correct expression for <i>n</i> or \sqrt{n} . SOI
	n = 60	A1	CWO. Must be an integer
		4	
2(i)(b)	H ₀ : population mean (or μ) = 65.2 H ₁ : population mean (or μ) < 65.2	B1	Not just 'mean'
	2.182 > 1.751	M1	Or valid area comparison.
	There is evidence that animals are shorter in this region	A1	CWO. No contradictions
		3	
2(ii)	Population unknown or population not given as normal	B1	Allow population not normal. Accept distribution of X unknown.
		1	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3(i)	$est(\mu) = \frac{25110}{50}$ (= 502.2)	B1	
	$\operatorname{est}(\sigma^2) = \frac{50}{49} \left(\frac{12610300}{50} - \frac{25110}{50}\right)^2 \left(=\frac{50}{49} \times \frac{58}{50} = 1.1836\right)$	M1	OE
	1.18 (3 sf) or $\frac{58}{49}$	A1	Accept SD = 1.0879
	z = 2.054 or 2.055	B1	
	$502.2 \pm z \times \frac{\sqrt{1.1836'}}{\sqrt{50}}$	M1	Must be of correct form.
	501.9 to 502.5 (1dp)	A1	CWO. Must be in interval. SC accept use of biased variance (1.16) for M1 A1
		6	
3(ii)	More confident or z would be greater, Hence wider.	B1	OE Reason needed
		1	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(i)	$\frac{1}{2} \times a \times \frac{a}{2} = 1$ or $\frac{1}{2} \int_{0}^{a} x dx = 1$	M1	Attempt at triangle area or integral $f(x)$ and $= 1$,
	$\frac{a^2}{4} = 1 \text{ OE}$		
	<i>a</i> = 2	A1	
		2	
4(ii)	$\frac{1}{2}\int_{0}^{2}x^{2}\mathrm{d}x$	M1	Attempt integral $xf(x)$
	$= \left[\frac{x^3}{6}\right]_0^2$	M1	Correct integral and limits 0 to their 'a'
	$\left(=\frac{8}{6}\right)=\frac{4}{3}$	A1	AG CWO
		3	

Question	Answer	Marks	Guidance	
4(iii)	$P\left(X < \frac{4}{3}\right) = \frac{1}{2} \int_{0}^{\frac{4}{3}} x dx$	M1	Attempt integral $f(x)$ between correct limits	
	$=\frac{4}{9}$	A1	or $\frac{5}{9}$	
	$P(E(X) < X < m) = \frac{1}{2} - \frac{4}{9}$	M1	or $\frac{5}{9} - \frac{1}{2}$	
	$\frac{1}{18}$	A1		
	Alternative method for question 4(iii)			
	Attempt to find <i>m</i>	M1		
	$m = \sqrt{2}$	A1		
	Integrate $f(x)$ between $\frac{4}{3}$ and $\sqrt{2}$ '	M1		
	$\frac{1}{18}$	A1		
		4		

Question	Answer	Marks	Guidance
5(i)	mean = 3250 var. = 61	B1	Or mean = 325 var. = $\frac{6.1}{10}$
	$\frac{3240 - 3250}{\sqrt{61}} (= -1.280)$	M1	Standardise with their values (no mixed methods)
	$\phi(-1.280') = 1 - \phi(1.280)$	M1	Area consistent with their figures
	0.100	A1	Allow 0.1
		4	
5(ii)	$E(D) = 325 - 2 \times 167 = -9$	B1	Accept ±9
	$Var(D) = 6.1 + 2^2 \times 5.6 \ (= 28.5)$	B1	
	$\frac{0 - (-9)}{\sqrt{28.5}} (= 1.686)$	M1	Standardising with <i>their</i> values. Must have a combination attempt on denominator and $$
	1 - φ('1.686')	M1	Area consistent with their figures
	0.0459	A1	
		5	

Question	Answer	Marks	Guidance
6(i)	H ₀ : Pop mean (or λ or μ) is 1.1 H ₁ : Pop mean (or λ or μ) is more than 1.1	B1	
	$P(X \ge 4) = 1 - e^{-1.1} \left(1 + 1.1 + \frac{1.1^2}{2} + \frac{1.1^3}{3!} \right)$	M1	Correct expression for either $P(X \ge 4)$ or $P(X \ge 5)$
	0.0257	A1	Correct value of either $P(X \ge 4)$ or $P(X \ge 5)$
	$P(X \ge 5) = 0.0257 - e^{-1.1} \times \frac{1.1^4}{4!} = 0.00544$	B1	B1 for the other value (Note use of $P(X < 4) = 0.9743$ and $P(X < 5) = 0.99456$ can score only if comparison with 0.99 seen)
	0.00544 < 0.01 < 0.0257	M1	OE stated (valid comparison)
	There is evidence mean has increased	B1	SC $P(X \ge 6) = 0.000968$ M1A1 Conclusion B1
		6	
6(ii)	Concluding mean has increased when it has not	B1	In context
	<u>'0.00544'</u>	B1FT	FT <i>their</i> $P(X \ge 5)$, dep < 0.01
		2	
6(iii)	$e^{-7.0} \left(1 + 7 + \frac{7^2}{2} + \frac{7^3}{3!} + \frac{7^4}{4!} \right)$	M1	Correct expression for $P(X \le 4 \lambda = 7.0)$
	0.173 (3 sf)	A1	
		2	

MATHEMATICS

9709/73 October/November 2019

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Method mark. awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or М errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically DM or DB says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
 - Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B FT marks are given for correct work only.

Cambridge International A Level – Mark Scheme **PUBLISHED**

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only
- ISW Ignore Subsequent Working
- SOI Seen Or Implied
- SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)
- WWW Without Wrong Working
- AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(i)	9.6, 12.4	B1 B1	
		2	
1(ii)	6.6, 49.6	B1 B1	
		2	

Question	Answer	Marks	Guidance
2(i)	$\left(\lambda\left(=2\times2.4\right)=4.8\right)$	M1	Any λ
	$e^{-4.8} \left(1 + 4 + \frac{4.8^2}{2} + \frac{4.8^3}{3!} \right)$		
	0.294 (3 sf)	A1	
		2	
2(ii)	$(\lambda (= 60 \times 2.4) = 144)$ N('144', '144')	M1	N and $\sigma^2 = \mu$ SOI
	$\frac{139.5 - 144'}{\sqrt{144'}} (= -0.375)$	M1	Allow with no continuity correction
	φ('0.375')	M1	Correct area consistent with their working
	0.646 (3 sf)	A1	
		4	

Question	Answer	Marks	Guidance
3(i)	Assume population is normally distributed	B1	
	$\overline{x} = 25.9$	B1	Allow $\frac{259}{10}$
	<i>z</i> =2.17	B1	
	$'25.9'\pm z\times\frac{3}{\sqrt{10}}$	M1	Must have correct form and <i>z</i> .
	23.8 to 28.0 (3 sf)	A1	CWO
		5	
3(ii)	0.03^2 (=0.0009)	B1	
		1	

Question	Answer	Marks	Guidance
4	Assume trains are independent OR probability of being on time is constant	B1	Must be in context
	H ₀ : P(on time)=0.92 H ₁ : P(on time)<0.92	B1	Both. Allow 'p' or π
	$1 - \left({}^{20}\text{C}_{17} \times 0.92^{17} \times 0.08^3 + {}^{20}\text{C}_{18} \times 0.92^{18} \times 0.08^2 + 20 \times 0.92^{19} \times 0.08 + 0.92^{20} \right)$	M1	Allow one end error Must have 1 –
	=0.0706 (3 sf)	A1	
	Compare with 0.05	M1	Valid comparison needed
	No evidence that percentage less than 92%	A1FT	OE No contradictions. <u>Method using normal approximation:</u> If the first B1B1 is earned then: $CV - 1.566 \left(from \frac{16.5 - 20 \times 0.92}{\sqrt{20 \times 0.92 \times 0.08}}, with continuity correction \right)$ or CV=1.978 (without continuity correction) comp z=1.645 No evidence that % decreased (1.566) or evidence that % decreased (1.978) is awarded SC2 after B marks
		6	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(i)	Po(3)	B1	SOI
	$e^{-3}\left(\frac{3^3}{3!} + \frac{3^4}{4!} + \frac{3^5}{5!}\right)$	M1	Allow one or two extra terms (2 or 6 or both)
	0.493 (3 sf)	A1	
		3	
5(ii)	A correct equation from $P(0) = P(2)$	M1	
	$\left(\text{leading to } 1 = \frac{\lambda^2}{2}\right)$		
	$\lambda = \sqrt{2} \text{ or } 1.41 \text{ (3 sf)}$	A1	CWO
		2	
Question	Answer	Marks	Guidance
-----------	--	-------	---
5(iii)(a)	Correct inequality $\left(\text{leading to } \frac{5 \cdot 2^n}{n!} < \frac{5 \cdot 2^{n+1}}{(n+1)!} \right)$	B1	
		1	
5(iii)(b)	$n+1 < 5.2$ or $1 < \frac{5.2}{n+1}$	M1	Simplify to a stage without exponentials, powers or factorials.
	Largest <i>n</i> is 4	A1	
		2	

Question	Answer	Marks	Guidance
6(i)	$k \int_{0}^{3} (3x - x^2) dx = 1$	M1	Attempt to integrate $f(x)$ and = 1
	$k \left[\frac{3}{2} x^2 - \frac{x^3}{3} \right]_0^3$ $k \left(\frac{27}{2} - \frac{27}{3} \right) = 1$	A1	Correct integral and limits
	$k = \frac{2}{9}$	A1	AG No errors seen
		3	

9709/73

October/November 2019

Question	Answer	Marks	Guidance
6(ii)	$\frac{2}{9}\int_{1}^{2} (3x - x^{2}) dx = \frac{2}{9} \left[\frac{3}{2}x^{2} - \frac{x^{3}}{3} \right]_{1}^{2} = \frac{2}{9} \times \left(6 - \frac{8}{3} - \frac{3}{2} + \frac{1}{3} \right)$	M1	Attempt to integrate $f(x) dx$ with limits 1 and 2 OE
	$\frac{13}{27}$ or 0.481 (3 sf)	A1	
		2	
6(iii)	$y = 3x - x^2$ symmetrical about $x = \frac{3}{2}$	M1	Attempt $\frac{2}{9} \int_{0}^{3} (3x^2 - x^3) dx$
	$E(X) = \frac{3}{2}$	A1	
	$\frac{2}{9}\int_{0}^{3} (3x^{3} - x^{4}) \mathrm{d}x$	M1	Attempt to integrate $x^2 f(x)$
	$=\frac{2}{9}\left[\frac{3x^4}{4} - \frac{x^5}{5}\right]_0^3 \left(=\frac{2}{9} \times \frac{243}{20} = \frac{27}{10}\right)$	M1	Subtract their $(E(X))^2$ from their integral $x^2f(x)$ with correct limits substituted
	$\frac{27'}{10} - \left(\frac{3'}{2}\right)^2$		
	$\frac{9}{20}$ or 0.45	A1	
		5	

Cambridge International A Level – Mark Scheme **PUBLISHED**

October/November 2019

Question	Answer	Marks	Guidance
7(i)	H ₀ : Pop mean=546 H ₁ : Pop mean>546	B1	Both. Allow just μ , but not just 'mean'
	$\frac{\frac{581 - 546}{120}}{\frac{120}{\sqrt{40}}}$	M1	Standardising. Need $\frac{120}{\sqrt{40}}$
	=1.845 allow 1.844	A1	Allow 1.84 or 1.85 AWRT
	1.845<1.96	M1	OE. Or area comparison 0.0325>0.025 or large probabilities
	No evidence that mean weekly income has increased	A1FT	No contradictions. If $H_1: \neq$, and 2.241 used, max B0M1A1M1A0
		5	
7(ii)	$\frac{a - 546}{\frac{120}{\sqrt{40}}} = 1.96$	M1	Standardise to find <i>a</i> . Need $\frac{120}{\sqrt{40}}$ and 546 and a value of <i>z</i>
	<i>a</i> = 583.19	A1	Allow 583 to 3sf
	$\frac{'583.19'-595}{\frac{120}{\sqrt{40}}}(=-0.622)$	M1	Standardise. Need $\frac{120}{\sqrt{40}}$ and 595
	$\phi(-0.622')=1-\phi(0.622')$	M1	Consistent area
	0.267	A1	
		5	

MATHEMATICS

9709/71 May/June 2019

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	Mean = 115	B1	
	SD = 40	B1	
		2	
1(ii)	Mean = $15 \times 115' = 1725$	B1ft	
	15×40^{2} (= 24000)	M1	or SD = $\sqrt{15 \times 40^{\circ}}$. ft their (i)
	$SD = \sqrt{24000}$ SD = 155 (cents) (3 sf)	A1	Accept $\sqrt{24000}$ SC: Allow correct answers in dollars
		3	

Question	Answer	Marks	Guidance
2(i)	Assume sd still 4.8 or is unchanged	B1	or Assume the 150 times can be treated as a random sample / are independent
	H ₀ : Pop mean = 26.5 H ₁ : Pop mean > 26.5	B1	Allow ' μ ' but not just 'mean'
	$\frac{27.5 - 26.5}{\frac{4.8}{\sqrt{150}}}$	M1	Standardise, with $$ Accept CV method
	= 2.552	A1	
	Comp with <i>z</i> -value '2.552' > 2.326	M1	or comp $1 - \Phi(2.552)$ with 0.01 1 - 0.9946 = 0.0054 < 0.01
	There is evidence time has increased	A1ft	oe No contradictions (2 tail test scores max. B1 B0 M1 A1 M1 (for comparison with 2.576) A0 no ft)
		6	

Question	Answer	Marks	Guidance
2(ii)	No because pop is normal so distr of \overline{X} is normal	B1	Condone just 'No because pop is normal'
		1	

Question	Answer	Marks	Guidance
3(i)	H ₀ : P(6) = $\frac{1}{6}$ H ₁ : P(6) < $\frac{1}{6}$	B1	
	$\left(\frac{5}{6}\right)^{30} + 30(\frac{1}{6}) \times (\frac{5}{6})^{29} + {}^{30}C_2(\frac{1}{6})^2 \times (\frac{5}{6})^{28}$	M1	Allow one term incorrect, omitted or extra
	= 0.103	A1	
	`0.103` > 0.05	M1	
	No evidence (at 5% level) that die biased	A1ft	oe No contradictions
		5	
3(ii)	$\left(\frac{5}{6}\right)^{30} + 30(\frac{1}{6}) \times (\frac{5}{6})^{29}$	M1	
	P(Type I) = 0.0295	A1	
		2	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(a)(i)	$0.5 \times 1/a = \left(\frac{0.5}{a}\right)$	M1	Or attempt to integrate $f(x)$ (=1/a) between 0 and 0.5
	$=\frac{1}{2a}$ oe	A1	Accept 0.5/a for A1
		2	
4(a)(ii)	$\frac{a}{2}$	B1	
		1	
4(a)(iii)	$\int_0^a \frac{x^2}{a} dx - (\frac{a}{2})^2$	M1	Integ their $x^2 f(x)$ from 0 to <i>a</i> and sub their mean ²
	$Var(X) = \frac{a^2}{3} - \frac{a^2}{4}$ $(Var(X) = \frac{a^2}{12} AG)$	A1	Must see this line oe
		2	
4(b)	$\int_{2}^{b} \frac{3}{2(t-1)^2} \mathrm{d}t$	M1	Attempt integ $g(t)$ ignore limits
	$\left[-\frac{3}{2(t-1)}\right]_2^b$	A1	Correct integral
	$-\frac{3}{2}\left(\frac{1}{(b-1)}-1\right) = \frac{3}{4}$ $\left(1-\frac{1}{(b-1)}=\frac{1}{2}\right)$	M1	Attempt subst correct limits in their integ and $=\frac{3}{4}$
	<i>b</i> = 3	A1	
		4	

Question	Answer	Marks	Guidance
5(a)(i)	$e^{-2.3}(\frac{2.3^2}{2} + \frac{2.3^3}{3!} + \frac{2.3^4}{4!})$	M1	Allow one end error
	= 0.585	A1	
		2	
5(a)(ii)	$(\lambda) = 4.6$	B1	
	$1 - e^{-4.6} (1 + 4.6 + \frac{4.6^2}{2})$	M1	any λ , Allow one end error
	= 0.837 (3 sf)	A1	
		3	
5(a)(iii)	$S \sim N(115, 115)$	B1	May be implied
	$\frac{110.5 - 115}{\sqrt{115}} \qquad (= -0.420)$	M1	Allow with wrong or no cc OR no $$
	$1 - \Phi(`0.420')$ (= 1 - 0.66	3) M1	
	= 0.337	A1	Accept alternative method using N(2.3, 2.3) no mixed methods.
		4	
5(b)	$e^{-\lambda} \times \frac{\lambda^3}{3!} = e^{-\lambda} \times \frac{\lambda^5}{5!}$	M1	
	$\lambda^3 = \frac{\lambda^5}{4 \times 5}$ or $\lambda^2 = 20$ oe	A1	any correct simplification without $e^{-\lambda}$ or !
	$\lambda = \sqrt{20} \text{ or } 2\sqrt{5} \text{ or } 4.47 (3 \text{ sf})$	A1	
		3	

Question	Answer	Marks	Guidance
6(i)	Biased towards people who like tennis Excludes people who don't like tennis	B1	or other sensible
		1	
6(ii)	Obtain a list of all people in the town	B1	
	Use random numbers	B1	or, e.g. pick numbers from a hat or other sensible
		2	
6(iii)	$\operatorname{Var}(p) = \frac{\frac{47}{350}(1 - \frac{47}{350})}{350} \ (= 0.000332152)$	M1	
	<i>z</i> = 1.645	B1	
	$\frac{47}{350} \pm z \sqrt{\frac{\frac{47}{350}(1 - \frac{47}{350})}{350}}$	M1	Must be a <i>z</i> value
	0.104 to 0.164 (3 sf)	A1	Must be an interval
		4	
6(iv)	1.25 × 1.645 (= 2.056)	M1	or 1.25 × their width ÷ 2 ÷ their $\sqrt{\frac{47}{350}(1-\frac{47}{350})}$ (Complete method)
	$\Phi(2.056)$ (= 0.980)	M1	Attempt $\Phi(\text{their } z)$
	x = 96 (2 sf)	A1	Allow 0.96 (2 sf) CWO
		3	

MATHEMATICS

9709/72 May/June 2019

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	0.0842 (3 sf)	B1	
		1	
1(ii)	$e^{-5} \ge \frac{5^n}{n!} = e^{-5} \ge \frac{5^{n+1}}{(n+1)!}$	B1	or $\frac{5^n}{n!} = \frac{5^{n+1}}{(n+1)!}$ or better ISW
		1	
1(iii)	$1 = \frac{5}{n+1}$ $n = 4$	B1	
		1	

Question	Answer	Marks	Guidance
2(i)	Normal with mean 372	B1	
	$sd = \frac{54}{\sqrt{36}}$	M1	or variance = $\frac{54^2}{36}$ M1
	(= 9)	A1	(= 81) A1
		3	
2(ii)	Pop normal	B1	Allow X is normal
		1	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3(i)	$\operatorname{Est}(\mu) = 1.85$	B1	
	$\operatorname{Est}(\sigma^2) = \frac{50}{49} \left(\frac{175.25}{50} - 1.85^{\prime 2} \right)$	M1	Allow $\sqrt{\frac{50}{49} \left(\frac{175.25}{150} - 1.85^{\prime 2}\right)}$ or 0.0290 for M1
	$= 0.0842 (3 \text{ sf}) \text{ or } \frac{33}{392}$	A1	Cao If $\frac{50}{49}$ omitted (giving var = 0.0825 or sd = 0.287) M0A0
		3	
3(ii)	H ₀ : Pop mean time = 1.9 (h) H ₁ : Pop mean time < 1.9 (h)	B1	Allow ' μ ' but not just 'mean'
	$\pm \frac{1.85 - 1.9}{\sqrt{\frac{'0.0842'}{50}}}$	M1	$\pm \frac{1.85 - 1.9}{\frac{0.290'}{\sqrt{50}}}$ Accept totals method (92.5–95) / $\sqrt{4.21}$
	=-1.22	A1	= -1.22
	$\operatorname{comp} z = -1.645$	M1	Or other valid comparison 0.888 or 0.889 < 0.95 OR 0.111 or 0.112>0.05
	No evidence that mean time < 1.9 h	A1	FT their z. Correct conclusion. No contradictions If $\frac{50}{49}$ not used in (1): var = 0.8225, sd = 0.907, cr = 1.17 can score all marks in (ii) Note- 2 tail test can score B0 M1 A1 M1 (comparison with 1.96) A0 (no ft) max3/5
		5	

Question	Answer	Marks	Guidance
4	Use of $1.5X_1 - X_2$ or similar	B1	
	$E(1.5X_1 - X_2) = 1.5(110) - 110 (= 55)$	B1	or $E(X_1 - 1.5X_2) = 110 - 1.5(110) (= -55)$
	Var $(1.5X_1 - X_2) = 1.5^2 \times 1050 + 1050$ (or 3412.5)	M1	Correct expression or result
	$\frac{0-55}{\sqrt{3412.5'}}$ or $\frac{0-(-55)}{\sqrt{3412.5'}}$ (= ± 0.942)	M1	Their '55'. Allow incorrect var (dep > 0 and \neq 1050)
	1 – Φ('0.942')	M1	Area consistent with their working
	= 0.173	A1	
	Ans 0.346 (3 sf)	B1	FT double their prob (must be <1)
		7	

Question	Answer	Marks	Guidance
5(i)	$H_0: p = 0.1$ $H_1: p < 0.1$	B1	
		1	
5(ii)	B(40, 0.1) stated or implied by use of	B1	e.g. by ${}^{40}C_x$ or $0.9^p \times 0.1^q$ $(p + q = 40)$
	$0.9^{40} + 40 \times 0.9^{39} \times 0.1$	M1	Correct working (if seen). If working not seen, M1 may be implied by 0.0805
	= 0.0805	A1	
		3	

Question	Answer	Marks	Guidance
5(iii)	<i>z</i> = 1.645	B 1	seen
	$\frac{6}{80} \pm z \sqrt{\frac{\frac{6}{80} \times \frac{(80-6)}{80}}{80}}$	M1	Formula of correct form. Must be a 'z'
	= 0.0266 to 0.123 (3 sfs)	A1	Allow 0.03 to 0.12 or better Must be an interval
		3	
5(iv)	10% (or manufacturer's claim) is within CI Hence no reason to question claim	B1	 FT Allow '10% is within CI, accept claim' oe Must include both parts. No contradictions. FT their CI Note if CI is centred on 0.1 allow ft 0.075 is within CI, accept claim
		1	

Question	Answer	Marks	Guidance
6(i)	$a\int_{1}^{b}\frac{1}{x^2}dx = 1$	M1	Attempt int $f(x)$ and = 1, ignore limits
	$a\left[-\frac{1}{x}\right]\frac{b}{1} = 1$	A1	correct integ and limits = 1
	$a[1 - \frac{1}{b}] = 1 \text{ or } a \times \frac{b-1}{b} = 1$ $b = \frac{a}{a-1} \text{ AG}$	A1	No errors seen
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(ii)	$a\int_{1}^{\frac{3}{2}} \frac{1}{x^2} dx = \frac{1}{2}$	M1	Attempt int $f(x)$ with limits 1 to $\frac{3}{2}$ and $=\frac{1}{2}$
	$a\left[-\frac{1}{x}\right]\frac{\overline{2}}{1} = \frac{1}{2}$		
	$a [1 - \frac{2}{3}] = \frac{1}{2}$	A1	oe correct equn in a
	$a=\frac{3}{2}, b=3$	A1	Both
		3	
6(iii)	$\frac{3}{2}\int_{1}^{3}\frac{1}{x}dx$	M1	Attempt int $xf(x)$, ignore limits – condone missing a
	$=\frac{3}{2}\left[\ln x\right]_{1}^{3}$	A1	FT Correct integ and <i>their</i> limits 1 to b – condone missing a
	$=\frac{3}{2}\ln 3 \text{ or } 1.65 (3 \text{ sf})$	A1	FT <i>their</i> a and b (valid b i.e. >1)
		3	

Question	Answer	Marks	Guidance
7(i)	Max no. of passengers plane can take oe	B1	oe e.g. No of passengers who bought tickets
		1	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(ii)	$\lambda = 3.2$	B1	
	$e^{-3.2}\left(\frac{3.2^3}{3!} + \frac{3.2^4}{4!} + \frac{3.2^5}{5!}\right)$	M1	Any λ . Allow one end error
	= 0.5146 = 0.515 (3 sfs)	A1	SR Use of Bin(640,0.005) scores B1 (only) for 0.516
		3	
7(iii)	<i>n</i> > 50	B1	Accept n is large
	np = 1.6, which is < 5 or p=0.005 which is <0.1	B1	Allow $np = 3.2$
		2	
7(iv)	H ₀ : Pop mean (for 5 days) = 8 H ₁ : Pop mean (for 5 days) < 8	B1	or Pop mean (for 1 day) = 1.6 Pop mean (for 1 day) < 1.6 Allow λ or μ but not just 'mean'
	$e^{-8}(1+8+\frac{8^2}{2!})$	M1	Any $\lambda \neq 1.6$ No end errors. Accept use of Bin(1600,0.005) P(0,1,2)=0.0136
	= 0.0138	A1	
	Comp 0.025	M1	Valid comparison
	Evidence that mean no. failing to arrive has decreased	A1	FT their '0.0138' or '0.0136'. No contradictions
		5	

MATHEMATICS

9709/73 May/June 2019

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$0.6 \pm z \sqrt{\frac{0.4 \times 0.6}{100}}$	M1	Recognisable value of z
	z = 2.326	B1	2.326 to 2.329
	0.486 to 0.714 (3 sf)	A1	Must be an interval
		3	

Question	Answer	Marks	Guidance
2	$\frac{50}{49} \left(\frac{4361}{50} - \overline{x}^2\right) = 9.62$	M1	or $\left(\frac{4361}{49} - \frac{(\Sigma x)^2}{50 \times 49}\right) = 9.62$ BOD regarding symbols used
	$\overline{x}^2 = \frac{4361}{50} - 9.62 \times \frac{49}{50} = 77.7924$	A1	$(\Sigma x)^2 = 4361 \times 50 - 9.62 \times 50 \times 49 = 194481$ or $\Sigma x = 441 \ (\Sigma x)$ or (\overline{x}) must be correctly identified
	$\overline{x} = 8.82 (3 \text{ sf})$	A1	SC use of 'biased' leading to 8.81 B1
		3	

Question	Answer	Marks	Guidance
3(i)	<i>D</i> more likely to be chosen	B1	oe, e.g. $P(D) > P(A)$ e.g. $P(A)=P(B)=P(C)=1/6$ $P(D)=1/2$ no contradictions
		1	
3(ii)	Reject scores of 5 or 6	B1	or other correct: choose D when the score is 4
		1	

Question	Answer	Marks	Guidance
3(iii)	AB AC AD BC BD CD	B1	
	Allocate as follows: 1: AB; 2: AC; 3: AD; 4: BC; 5: BD 6: CD	B1	or similar
		2	

Question	Answer	Marks	Guidance
4	Total ~ N(1208,)	B1	
	Var(total) (= $10 \times 1.2 + 20 \times 0.7 (+ 0)$) = 26	B1	May be implied by next line
	$\pm \frac{1200 - "1208"}{\sqrt{"26"}} \qquad (= -1.569)$	M1	FT their mean and var of total mass, e.g. allow 1200 and 11.24 (from $10 \times 1.2^2 + 20 \times 0.7^2$)
	1 – Φ("1.569")	M1	Correct area consistent with their working
	= 0.0583 (3 sf)	A1	
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5	H ₀ : Pop mean = 20 H ₁ : Pop mean \neq 20	B1	Accept µ
	$\frac{\Sigma x}{6}$ (= $\frac{126.9}{6}$ = 21.15)	M1	Attempted or 126.9 and 11.64 attempted
	$\frac{'21.15'-20}{\sqrt{\frac{1.94}{6}}}$	M1	Must have $\sqrt{6}$ or $\frac{120-126.9}{\sqrt{11.64}}$ no mixed method
	= 2.022	A1	
	$2(1 - \phi(2.022)) 2 (1 - 0.9784) = 0.0432)$	M1	FT $2 \times (1 - '.9784')$
	$\alpha = 4.32 (3 \text{ sf})$	A1	FT Allow 4.3 or 4, if correct working seen, or clearly implied, as far as 0.0216 FT their z, no error seen One-tail test scores maximum 3/6
		6	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(i)	$\frac{\frac{3}{a^{3}}\int_{0}^{a}x^{2}dx}{\left(=\frac{3}{a^{3}}\left[\frac{x^{3}}{3}\right]_{0}^{a}\right)}$	M1	Attempt to integrate $f(x)$ with limits 0 and a (condone missing $\frac{3}{a^3}$)
	$=\frac{3a^3}{3a^3}$	A1	$\frac{3a^3}{3a^3} - 0$ or better seen
	= 1 Hence f is pdf for all a	A1	Answer = 1 and comment
		3	
6(ii)	$\frac{3}{a^3} \int_0^2 x^2 dx = 0.5$ $\frac{3}{a^3} \left[\frac{x^3}{3} \right]_0^2 = 0.5$	M1	Attempt to integrate f(x)=0.5, limits 0 and 2 oe, condone missing $\frac{3}{a^3}$
	$\frac{3}{a^3} \times \frac{8}{3} = 0.5$ oe	A1	$\frac{2^3}{3} - 0$ or better, condone missing $\frac{3}{a^3}$
	$a^3 = 16 \text{ or } a = \sqrt[3]{16}$ (= 2.52 AG)	A1	Convincingly obtained Note: Attempt to verify 2.52, M1 as stated except not equated to 0.5.A1 as stated, A1 for evaluation to 0.499apprx 0.5
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(iii)	$ \frac{3}{16} \int_{0}^{2.52} x^{3} dx \text{or } \frac{3}{16} \int_{0}^{a} x^{3} dx \\ = \frac{3}{16} \left[\frac{x^{4}}{4} \right]_{0}^{2.52} \text{or } \frac{3}{16} \left[\frac{x^{4}}{4} \right]_{0}^{a} $	M1	Attempt integ <i>x</i> f(<i>x</i>), correct limits, condone missing $\frac{3}{a^3}$
	$=\frac{3}{16}\times\frac{40.317}{4}$	A1	$\frac{2.52^4}{4} - 0$ or better, condone missing $\frac{3}{a^3}$
	= 1.89 (3 sf)	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	Use of Po(2.8)	M1	May be implied
	$1 - e^{-2.8}(1 + 2.8 + \frac{2.8^2}{2}))$	M1	Any λ allowing one end error
	= 0.531or 0.53(0) (3 sf)	A1	SC Binomial 0.534 B1
		3	
7(ii)	Use of Po(5.8)	M1	May be implied
	$e^{-5.8} \times \frac{5.8^6}{6!}$	M1	Any λ
	= 0.16(0) (3 sf)	A1	
		3	

Question	Answer	Marks	Guidance
7(iii)	Use of N(58, 58)	M1	May be implied or N(58, 55.38)
	$\frac{50.5 - 58'}{\sqrt{58'}} \ (= -0.985)$	M1	Standardised with their values, allow wrong or incorrect cc
	Φ('0.985')	M1	Correct area consistent with their working
			or $\Phi("1.008)$
	= 0.838 (3 sf)	A1	or 0.843
		4	

Question	Answer	Marks	Guidance
8(i)	H ₀ : $p = \frac{1}{4}$ H ₁ : $p > \frac{1}{4}$	B1	
	$ \frac{{}^{10}C_6(\frac{1}{4})^6(\frac{3}{4})^4 + {}^{10}C_7(\frac{1}{4})^7(\frac{3}{4})^3 + {}^{10}C_8(\frac{1}{4})^8(\frac{3}{4})^2 + }{10(\frac{1}{4})^9(\frac{3}{4}) + (\frac{1}{4})^{10}} $	M1	Correct terms, allow one term incorrect or omitted or extra or summing all correct terms from 0 to 5 allow one term incorrect or omitted or extra
	= 0.0197	A1	or 0.9803
	comp '0.0197' with 0.01	M1	Valid comparison with 0.01 or valid comparison with 0.99
	No evidence to conclude $p > \frac{1}{4}$	A1	FT No contradictions Use of two-tail test can score BOM1A1M1(comparison with 0.005) A0
		5	
8(ii)	${}^{10}C_7(\frac{1}{4})^7(\frac{3}{4})^3 + {}^{10}C_8(\frac{1}{4})^8(\frac{3}{4})^2 + 10(\frac{1}{4})^9(\frac{3}{4}) + (\frac{1}{4})^{10}$	M1	Their P(X ≥ 6) - ${}^{10}C_6 (0.25)^6 (0.75)^4$
	P(Type I) = 0.00351 (3 sf)	A1	Accept 0.00348 to 0.00351
		2	
8(iii)	C.R is $X \ge 7$ P(Type II) = 1 – P($X \ge 7 \mid p = \frac{3}{5}$) =	M1	May be implied
	$1 - \left({}^{10}\text{C7}\left(\frac{3}{5}\right)^{7}\left(\frac{2}{5}\right)^{3} + {}^{10}\text{C8}\left(\frac{3}{5}\right)^{8}\left(\frac{2}{5}\right)^{2} + 10\left(\frac{3}{5}\right)^{9}\left(\frac{2}{5}\right) + \left(\frac{3}{5}\right)^{10}\right)$	M1	Accept $1 - P(X \ge 8 p = \frac{3}{5})$ or $1 - P(X \ge 6 p = \frac{3}{5})$
	= 0.618	A1	
		3	

MATHEMATICS

9709/72 March 2019

Paper 7 Probability and Statistics MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	<i>z</i> = 2.326	B1	
	$62.3 \pm z \frac{13.2}{\sqrt{200}}$	M1	Any z. Expression of correct form. Must be a 'z'
	60.1 to 64.5 (3 sfs)	A1	Must be an interval
		3	
1(ii)	Yes, because pop not (given to be) normal, or pop distribution unknown	B1	No contradictions
		1	

Question	Answer	Marks	Guidance
2	$\mathrm{E}(X-3Y)=0.2$	B1	oe
	$Var(X-3Y) = 12.1 + 9 \times 8.6 (= 89.5)$	B1	
	$\frac{0 - 0.2}{\sqrt{89.5''}} \qquad (= -0.021)$	M1	For area consistent with their working
	Φ('0.021')	M1	
	= 0.508 (3 sfs)	A1	
		5	

Question	Answer	Marks	Guidance
3	H ₀ : $\lambda = 32$ H ₁ : $\lambda < 32$	B1	Accept 'population mean' (µ)
	$X \sim N(32, 32)$	B1	seen or implied
	$\frac{21.5-32}{\sqrt{32}}$	M1	Standardise with their values. Allow with no or wrong cc
	= -1.856 cv of z = -2.054 (or -2.055 or -2.053)	A1	
	`1.856' < 2.054	M1	Valid comparison or comp ϕ ("1.856") with 0.98 i.e. 0.9682 < 0.98 oe
	No evidence that fewer accidents at B than at A	A1f	No contradictions Note Use of CV method x = 20.38 M1 A1 comparison $21.5 > 20.38$ M1 conc A1
		6	

Question	Answer	Marks	Guidance
4(i)	$\overline{x} = \frac{420}{50} = 8.4$	B 1	
	$s^{2} = \frac{50}{49} \left(\frac{27530}{50} - \left(\frac{420}{50} \right)^{2} \right)$	M1	Or $1/49(27530 - (420)^2/50)$
	= 489.8(36)	A1	Must see ≥ 4 sf
		3	

Question	Answer	Marks	Guidance
4(ii)	$\Phi^{-1}(0.9377) = 1.536$	B1	
	$\frac{5-8.4'}{\sqrt{\frac{490}{n}}} = -1.536$	M1	Attempting to standardise – must have correct form
	$n = \left(\frac{1.536}{3.4}\right)^2 \times 490 \qquad (= 100.0048)$	M1	Attempting numerical expression for n or \sqrt{n} (must have used a 'z' value) may be implied by answer
	n = 100	A1	No errors seen. Must be whole number
		4	

Question	Answer	Marks	Guidance
5(i)	$1 - e^{-1.8}(1 + 1.8)$	M1	Accept any λ . Accept 1–P(0,1,2)
	= 0.537 (3 sf)	A1	
		2	
5(ii)	$\lambda = 2.2$	B1	
	$e^{-2.2}\left(1+2.2+\frac{2.2^2}{2!}+\frac{2.2^3}{3!}+\frac{2.2^4}{4!}\right)$	M1	Attempt expr'n for $P(X \le 4)$, allow one end error, allow any λ
	= 0.928 (3 sf) or 0.927	A1	
		3	

Question	Answer	Marks	Guidance
5(iii)	$1 - e^{-1.8t} \ge 0.99$ or $1 - e^{-\lambda} \ge 0.99$	M1	Condone = signs/incorrect inequality signs
	$e^{-1.8t} \leq 0.01$ or $e^{-\lambda} \leq 0.01$ -1.8t $\leq \ln 0.01$	M1	Valid attempt take logs (must have single term on each side)
	$t \ge 2.56$ She must watch for at least 2.56 (hours)	A1	or 2 hours, 34 mins or better. No errors seen
		3	

Question	Answer	Marks	Guidance
6(i)	Test is for "difference" oe	B1	Test is not for 'increase' or 'decrease' oe No contradictions
		1	
6(ii)	0.05	B1	
	Conclude mean time is different when it is not	B1	oe, in context
		2	

Question	Answer	Marks	Guidance
6(iii)	Assume $\sigma = 6.4$	B1	
	H ₀ : pop mean = 91.4 H ₁ : pop mean \neq 91.4	B1	Allow μ , but not 'mean'
	$\overline{x} = \frac{568.5}{6} (= 94.75)$	B 1	
	$\frac{\frac{.94.75'-91.4}{.000}}{\frac{.6.4}{.000}}$	M1	Must have $\sqrt{6}$
	= 1.282 cv of $z = 1.96$	A1	
	`1.282` < 1.96	M1	Valid comparison or comp ϕ ("1.282") with 0.975 0.9(001) < 0.975 or 0.0999 (or 0.1) > 0.025 consistent use of one tail test can score M1 for comparison with 1.6450e but not A1ft oe. No contradictions. ft their z.
	No evidence mean time different	A1 ft	CV method x = 96.52 M1 A1 94.75 < 96.52 M1 Cone A1
		7	

March 2	019
---------	-----

Question	Answer	Marks	Guidance
7(i)	$\sqrt{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{4}}\cos x dx$	M1	Attempt integ $f(x)$ with correct limits
	$=\sqrt{2} \left[\sin x \right] \frac{\frac{\pi}{4}}{\frac{\pi}{6}}$		
	$=\frac{2-\sqrt{2}}{2}$ oe or 0.293 (3 sf)	A1	SC Final answer of 0.707 scores B1sc
		2	
7(ii)	$\sqrt{2} \int_0^m \cos x dx = 0.5$	M1	Attempt to integ $f(x) \& = 0.5$. Ignore limits. Condone missing $\sqrt{2}$
	$\sqrt{2} [\sin x]_{0}^{m} = 0.5$ $\sqrt{2} \sin m = 0.5$	A1	Correct integral and limits 0 to unknown & = 0.5 Condone missing $\sqrt{2}$
	$\sin m = \frac{1}{2\sqrt{2}} \text{ oe}$	M1	For rearranging their expression to the form $\sin m = \dots$ ($\sin m = 0.35355\dots$ or 0.354) seen or implied
	m = 0.361 (3 sfs)	A1	No errors seen (Note 20.705 can score M1 A1 M1 A0)
		4	

March	2019
-------	------

Question	Answer	Marks	Guidance
7(iii)	$\sqrt{2}\int_0^{\frac{\pi}{4}} x\cos x dx$	M1	Attempt to integ $xf(x)$. Ignore limits. Condone missing $\sqrt{2}$
	$= \sqrt{2} \{ [x(\sin x)] \frac{\pi}{4} - \int_0^{\frac{\pi}{4}} \sin x dx \}$	M1	Attempt to integ by parts leading to expression of form $\pm x \sin x \pm \cos x$ with correct limits
	$= \sqrt{2} \left\{ \frac{\pi}{4\sqrt{2}} - 0 - \left[-\cos x \right] \frac{\pi}{4} \right\}$	A1	For $\sqrt{2}(x\sin x - (-\cos x))$ with correct limits
	$=\sqrt{2} \left\{ \frac{\pi}{4\sqrt{2}} + \cos \frac{\pi}{4} - 1 \right\}$	A1	
	$=\frac{\pi}{4} + 1 - \sqrt{2}$ oe or 0.371 (3 sf)		
		4	

MATHEMATICS

9709/71 October/November 2018

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	$176 \pm z \times \frac{7.2}{\sqrt{200}}$	M1	need correct form must be z
	<i>z</i> = 2.24	B1	allow 2.241 and 2.242
	175 to 177	A1	cwo
		3	
1(ii)	Sample random	B1	oe. both words essential
		1	

Question	Answer	Marks	Guidance
2(i)	$H_0: p = \frac{1}{3}$ $H_1: p < \frac{1}{3}$	B1	
		1	
2(ii)	0.0084 < 0.01	B1	Allow P(N \leq 36) < 0.01 or 1%
	There is evidence that p has decreased	B1 dep	Allow 'p has decreased' or $p < \frac{1}{3}$
		2	
2(iii)	150	B1	
		1	

Question	Answer	Marks	Guidance
3	$\frac{12.2 - 12}{2.5 / \sqrt{n}}$	M1	Standardisation. Allow cc. need correct form incl sqrt
	(=) 1.96	B1	Correct z
	$\sqrt{n} = 1.96 \times 2.5 \div 0.2$	M1	Rearrange equation in n or sqrt n with numerical z to the stage $n=$ or sqrt $n =$ allow arithmetical slips only
	n = 600	A1	accept 601 SR whole number ans from 595 to 605 can score full marks if fully justified
		4	

Question	Answer	Marks	Guidance
4(i)	$\lambda = 10 \times 0.25 + 10 \times 0.36$ (= 6.1)	B1	
	$1 - e^{-6.1} \left(1 + 6.1 + \frac{6.1^2}{2} + \frac{6.1^3}{3!}\right)$	M1	$1 - P(X \leq 3)$, any λ Allow one end error
	= 0.857	A1	Allow 0.858
		3	
4(ii)	$\lambda = 61$	B1 ft	Ft from (i)
	N('61', '61')	M1	N with $\mu = \lambda$, any λ . May be implied
	$\frac{59.5-61}{\sqrt{61'}}$ (= -0.192)	M1	Standardise with their mean and variance Allow no or wrong cc. not 61/100
	$\Phi(`-0.192') = 1 - \Phi(`0.192')$	M1	Correct area consistent with their working
	= 0.424	A1	
		5	

Question	Answer	Marks	Guidance
5(i)	$T_1 + T_2 \sim N(5, 0.4^2 + 0.5^2)$	B1	or N(5, 0.41)
	$\frac{6-5}{\sqrt{0.41'}}$ (= 1.562)	M1	Allow cc
	Φ('1.562')	M1	Correct area consistent with their working
	= 0.941	A1	
		4	
5(ii)	Var $(T_2 - 1.2T_1) = 0.5^2 + 1.2^2 \times 0.4^2$ (= 0.4804)	B1	Or similar using $1.2T_1 - T_2$
	$T_2 - 1.2T_1 - N(0.16, 0.4804)$	B1 ft	Only ft attempt at combination. no ft for neg var.
	$\frac{0-0.16'}{\sqrt{0.4804'}} (= -0.231)$	M1	Standardise with their mean and variance. Allow cc
	$P(T_2 - 1.2T_1) > 0$		
	$= \Phi(`0.231')$	M1	Correct area consistent with their working
	= 0.591 (3 sfs)	A1	
		5	

Question	Answer	Marks	Guidance
6(i)	$k\int_2^6 x^{-1} \mathrm{d}x = 1$	M1	Attempt integrate $f(x) \& = 1$. Ignore limits
	$k[\ln x]_{2}^{6} = 1$ $k(\ln 6 - \ln 2) = 1 \text{ or } k \ln 3 = 1$ $k = \frac{1}{\ln 3}$ AG	A1	correct sub of correct limits in correct integral leading to correct ans. No errors seen.
		2	
6(ii)	$\frac{1}{\ln 3} \int_2^6 1 \mathrm{d}x$	M1	Attempt integ $xf(x)$. Ignore limits
	$= \frac{1}{\ln 3} \left[x \right]_{2}^{6} (= \frac{1}{\ln 3} (6 - 2))$	A1	Correct integral and limits
	$=\frac{4}{\ln 3}=3.64$ AG	A1	No errors seen
		3	
6(iii)	$P(X < E(X)) = \frac{1}{\ln 3} \int_{2}^{3.64} x^{-1} dx$	M1	Attempt integ $f(x)$ from 2 to $\frac{4}{\ln 3}$ or 3.64 oe
	$= \frac{1}{\ln 3} \left[\ln x \right]^{3.64}_{2}$ = $\frac{1}{\ln 3} \left(\ln 3.64 - \ln 2 \right) (= 0.545)$	A1	Correct sub correct limits into correct integral
	P(m < X < E(X)) = "0.545" - 0.5	M1	Subt 0.5 from their $P(X \le E(X))$ art 0.045. ft their $P(X \le E(X) \ge 0.5)$
	= 0.045 (2 sfs)	A1	equivalent method M1 method for median-need 0.5 and limits 2 to m or m to 6 A1 sqrt 12 or 3.464 M1 calc area from "3.464" to 3.64 A1 0.045 or better, not 0.046
		4	

Question	Answer	Marks	Guidance
7(i)	$H_0: \mu = 51 H_1: \mu < 51$	B1	Or popn mean
	$\overline{x} = \frac{7480}{150} = 49.8667 = 49.9$	B1	
	$s^{2} = \frac{150}{149} \left(\frac{380000}{150} - \left(\frac{748}{15}\right)^{2}\right)$ = 46.9620 = 47.0 or s = 6.85	M1	Correct subst in s^2 or $\sqrt{s^2}$ formula Biased var scores M0
	$\frac{49.8667-51}{\sqrt{\frac{46.962^{\circ}}{150}}} \text{ allow } \frac{49.9-51}{\sqrt{\frac{47^{\circ}}{150}}}$	M1	Allow 49.8667 to 49.9 in numerator Need sqrt 150
	= (-) 2.025 = (-) 1.965	A1	Accept 2.02 or 2.03 Accept –2.0264 –1.9651 provided correct working
	$\operatorname{comp} z = 1.96$	M1	or comp $1 - \phi(2.025)$ with 0.025
	There is evidence that $\mu < 51$	A1 ft	no contradictions biased var B1B1M0M1A0M1A1ft (max 5/7)
			accept cv method $x_{crit} = 49.9028$ M1A1 49.867 < 49.9 M1A1
		7	
7(ii)	$\frac{\bar{x}-51}{\frac{6.856}{\sqrt{150}}} = -1.96$	M1	Need 51 and sqrt 150 and correct form
	$\overline{x} = 51 - 1.097 = 49.9$ Rejection region is $\overline{x} < 49.9$	A1	This may have been found in part (i)
	$\frac{49.9-49}{\frac{6.856}{\sqrt{150}}}$ (= 1.608 to 1.614)	M1	Need 49 and sqrt 150 and correct form
	$P(\bar{x} > 49.9 \mid \mu = 49) = 1 - \Phi(`1.608')$	M1	
	P(Type II error) = 0.0539	A1	Allow 0.0533 to 0.0539
		5	

MATHEMATICS

9709/72 October/November 2018

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
1	$e^{-2.3}\left(\frac{2.3^2}{2} + \frac{2.3^3}{3!} + \frac{2.3^4}{4!}\right)$	M2	M1 for one term wrong or one end error or $1 - P(2, 3, 4)$
	= 0.585 (3 sf)	A1	
		3	

Question	Answer	Marks	Guidance
2(i)	<i>z</i> = 1.96	B1	seen
	$330.1 \pm z \times \frac{4.8}{\sqrt{180}}$	M1	Must be of correct form. Any z
	= 329.4 to 330.8 (1 dp)	A1	Must be to 1 dp. Must be an interval.
		3	
2(ii)	Yes, because vol of all cans not stated to be normal	B1	Or Yes, population not stated to be normal
		1	

Question	Answer	Marks	Guidance
3	$E(T) = 2 \times 250 + 5 \times 160 \ (= 1300)$	B1	
	$Var(T) = 2 \times 10 + 5 \times 9 \ (= 65)$	B1	
	$\frac{1310-1300'}{\sqrt{65'}} (= 1.240)$	M1	Standardise using their values (must come from a combination attempt). Ignore cc
	1 - \phi(`1.240')	M1	Correct area consistent with their working
	= 0.1075	A1	Allow 0.107 to 0.108 (no errors seen)
		5	

Question	Answer	Marks	Guidance
4(i)	$\int_0^a \frac{k}{(x+1)^2} \mathrm{d}x = 1$	M1	Any attempt integ $f(x)$ and $= 1$. Ignore limits
	$-\left[\frac{k}{(x+1)}\right]_{0}^{a} = 1$ $-k(\frac{1}{a+1}-1) = 1$	M1	Attempt subst correct limits into correct integral
	$k \times \frac{a}{a+1} = 1$ and $k = \frac{a+1}{a}$ AG	A1	No errors seen
		3	

Question	Answer	Marks	Guidance
4(ii)	Max time allowed by model (for runners to finish)	B1	Allow: All runners finish in time <i>a</i> or less or Longest time (taken by any runner) oe
		1	
4(iii)	$\frac{a+1}{a} \int_{0}^{0.5} \frac{1}{(x+1)^2} \mathrm{d}x = \frac{3}{4}$	M1	Attempt integ f(x) and $=\frac{3}{4}$; ignore limits oe. Condone missing / incorrect k
	$-\frac{a+1}{a} \left[\frac{1}{(x+1)}\right]_{0}^{0.5} = \frac{3}{4}$ $-\frac{a+1}{a} \left(\frac{2}{3} - 1\right) = \frac{3}{4}$	M1	Attempt subst correct limits into correct integral. Condone missing / incorrect k
	a = 0.8 oe	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	$\hat{\mu} = \frac{126}{70}$ or $\frac{9}{5}$ or 1.8 oe	B1	
	$\Sigma x^2 f = 286$	B1	Seen or implied
	Est(σ^2) = $\frac{70}{69} (\frac{\Sigma x^2 f}{70} - '1.8'^2)$	M1	oe attempted
	= 0.858 or 296 / 345	A1	Note: Final answer for var 0.846 (biased) and no working implies B1 for 286
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(ii)	H ₀ : $\mu = 1.9$ H ₁ : $\mu < 1.9$	B1	Or 'pop mean'; not just 'mean'
	$\frac{1.8-1.9}{\sqrt{\frac{0.858'}{70}}}$	M1	Standardise with their values from (i). Must have sqr 70. No SD / Var mix
	= -0.903	A1	Accept ±
	0.903 < 1.645	M1	comp 1.645 allow comp 1.96 if H ₁ : $\mu \neq 1.9$ or comp 1 – $\phi(`0.903')=0.182$ or 0.183 with 0.05 (or 0.025 if H ₁ : $\mu \neq 1.9$)
	No evidence that mean no courts in S is less than in N	Alft	No contradictions. ft their 0.903, but not comp 1.96 i.e. no ft for a 2 tail test Accept cv method: cv = 1.718 M1A1 1.718 < 1.8 M1 conclusion A1 (cv centred on 1.8 gives 1.982 M1A1 and M1 for 1.982 > 1.9 A1 conclusion)
		5	
5(iii)	Type II because H ₀ was not rejected	B1ft	ft their conclusion, i.e. if H_0 rejected, 'Type I because H_0 rejected' B1 Answer must be consistent with their conclusion. No conclusion in (ii) will score B0
		1	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(i)	$H_{0}: p = 0.15$ $H_{1}: p < 0.15$ (N(60 × 0.15, 60 × 0.15 × 0.85)) = N(9, 7.65)	B1	Accept H ₀ : $\mu = 9$ H ₁ : $\mu < 9$ Use of Normal approximation: $(N(0.15, \frac{0.15 \times 0.85}{60}))$ = N(0.15, 0.002125)
	$\frac{6.5-'9'}{\sqrt{7.65'}}$	M1	For standardising (or $\frac{\frac{6}{60} + \frac{0.5}{60} - 0.15'}{\sqrt{0.002125'}} = -0.904$) Allow wrong or no cc
	= -0.904	A1	Accept ±
	`0.904' < 1.282	M1	Valid comparison of z values or $\phi(-0.904') = 0.183 > 0.1$ ft their 0.904
	No evidence train late less often	A1ft	Use of Bin (60,0.15) to give Pr ($\leq = 6$) = 0.1848 M1A1 Valid comparison with 0.1 M1 Conclusion A1ft
		5	
6(ii)	$0.1 + z \times \sqrt{\frac{0.1 \times 0.9}{60}} = 0.150$	M1	For $\sqrt{(0.1 \times 0.9 / 60)}$ seen
		M1	for $0.1 + z \times = 0.150$ or $2z = 0.1$
	<i>z</i> = 1.291	A1	
	φ('1.291') (= 0.90(16))	M1	for correct method to find α
	$\alpha = 80$	A1ft	ft their <i>z</i> . Must be a +ve non-zero integer < 100
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(i)	$e^{-5.6} \times \frac{5.6^3}{3!}$	M1	Allow any λ
	= 0.108 (3 sf)	A1	
		2	
7(ii)	P(X=2 & Y=1) = $e^{-2.1} \times \frac{2.1^2}{2} \times e^{-3.5} \times 3.5$ (0.2700 × 0.10569 = 0.028538)	M1	
	$\frac{P(X = 2 \& Y = 1)}{P(X+Y=3)}$ attempted = $\frac{0.028538'}{0.108234}$	M1	For attempt at fraction with their (i) as denominator or $\frac{2.1^2}{2} \times 3.5 \div \frac{5.6^3}{3}$ M2
	= 0.264 (3 sf)	A1	
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
7(iii)	Var(X) = 2.1	B1	soi
	$\overline{X} \sim N(2.1, \frac{2.1}{100})$ or N(210,210)	B 1	soi B1 for N(2.1,)
		B1	B1 for $\frac{2.1}{100}$ oe Standardise with their values. Allow with or without cc or with incorrect cc
	$\frac{\frac{2.2-2.1}{\sqrt{2.1}}}{\sqrt{100}} \text{ oe } (220-210) / \sqrt{210} \ (=0.690)$	M1	or $\frac{2.2+0.5+100-2.1}{\sqrt[4]{210}}$ or $(220.5-210)/\sqrt{210}$ (= 0.725) no mixed methods
	1 - φ('0.690')	M1	Correct area consistent with their working or $1 - \phi(`0.725')$
	= 0.245 (3 sf)	A1	= 0.234 (3 sf)
		6	

MATHEMATICS

9709/73 October/November 2018

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.
| Question | Answer | Marks | Guidance |
|----------|---|-------|-----------------------------|
| 1(i) | $176 \pm z \times \frac{7.2}{\sqrt{200}}$ | M1 | need correct form must be z |
| | <i>z</i> = 2.24 | B1 | allow 2.241 and 2.242 |
| | 175 to 177 | A1 | cwo |
| | | 3 | |
| 1(ii) | Sample random | B1 | oe. both words essential |
| | | 1 | |

Question	Answer	Marks	Guidance
2(i)	$H_0: p = \frac{1}{3}$ $H_1: p < \frac{1}{3}$	B1	
		1	
2(ii)	0.0084 < 0.01	B1	Allow P(N \leq 36) < 0.01 or 1%
	There is evidence that <i>p</i> has decreased	B1 dep	Allow 'p has decreased' or $p < \frac{1}{3}$
		2	
2(iii)	150	B1	
		1	

Question	Answer	Marks	Guidance
3	$\frac{12.2 - 12}{2.5 / \sqrt{n}}$	M1	Standardisation. Allow cc. need correct form incl sqrt
	(=) 1.96	B1	Correct z
	$\sqrt{n} = 1.96 \times 2.5 \div 0.2$	M1	Rearrange equation in n or sqrt n with numerical z to the stage $n=$ or sqrt $n =$ allow arithmetical slips only
	n = 600	A1	accept 601 SR whole number ans from 595 to 605 can score full marks if fully justified
		4	

Question	Answer	Marks	Guidance
4(i)	$\lambda = 10 \times 0.25 + 10 \times 0.36$ (= 6.1)	B1	
	$1 - e^{-6.1} \left(1 + 6.1 + \frac{6.1^2}{2} + \frac{6.1^3}{3!}\right)$	M1	$1 - P(X \leq 3)$, any λ Allow one end error
	= 0.857	A1	Allow 0.858
		3	
4(ii)	$\lambda = 61$	B1 ft	Ft from (i)
	N('61', '61')	M1	N with $\mu = \lambda$, any λ . May be implied
	$\frac{59.5-61}{\sqrt{61'}}$ (= -0.192)	M1	Standardise with their mean and variance Allow no or wrong cc. not 61/100
	$\Phi(`-0.192') = 1 - \Phi(`0.192')$	M1	Correct area consistent with their working
	= 0.424	A1	
		5	

Question	Answer	Marks	Guidance
5(i)	$T_1 + T_2 \sim N(5, 0.4^2 + 0.5^2)$	B1	or N(5, 0.41)
	$\frac{6-5}{\sqrt{0.41'}}$ (= 1.562)	M1	Allow cc
	Φ('1.562')	M1	Correct area consistent with their working
	= 0.941	A1	
		4	
5(ii)	Var $(T_2 - 1.2T_1) = 0.5^2 + 1.2^2 \times 0.4^2$ (= 0.4804)	B1	Or similar using $1.2T_1 - T_2$
	$T_2 - 1.2T_1 - N(0.16, 0.4804)$	B1 ft	Only ft attempt at combination. no ft for neg var.
	$\frac{0-0.16'}{\sqrt{0.4804'}} (= -0.231)$	M1	Standardise with their mean and variance. Allow cc
	$P(T_2 - 1.2T_1) > 0$		
	$= \Phi(0.231')$	M1	Correct area consistent with their working
	= 0.591 (3 sfs)	A1	
		5	

Question	Answer	Marks	Guidance
6(i)	$k\int_2^6 x^{-1} \mathrm{d}x = 1$	M1	Attempt integrate $f(x) \& = 1$. Ignore limits
	$k[\ln x]_{2}^{6} = 1$ $k(\ln 6 - \ln 2) = 1 \text{ or } k \ln 3 = 1$ $k = \frac{1}{\ln 3}$ AG	A1	correct sub of correct limits in correct integral leading to correct ans. No errors seen.
		2	
6(ii)	$\frac{1}{\ln 3} \int_2^6 1 \mathrm{d}x$	M1	Attempt integ $xf(x)$. Ignore limits
	$= \frac{1}{\ln 3} \left[x \right]_{2}^{6} (= \frac{1}{\ln 3} (6 - 2))$	A1	Correct integral and limits
	$=\frac{4}{\ln 3}=3.64$ AG	A1	No errors seen
		3	
6(iii)	$P(X < E(X)) = \frac{1}{\ln 3} \int_{2}^{3.64} x^{-1} dx$	M1	Attempt integ $f(x)$ from 2 to $\frac{4}{\ln 3}$ or 3.64 oe
	$= \frac{1}{\ln 3} \left[\ln x \right]^{3.64}_{2}$ = $\frac{1}{\ln 3} \left(\ln 3.64 - \ln 2 \right) (= 0.545)$	A1	Correct sub correct limits into correct integral
	P(m < X < E(X)) = "0.545" - 0.5	M1	Subt 0.5 from their $P(X \le E(X))$ art 0.045. ft their $P(X \le E(X) \ge 0.5)$
	= 0.045 (2 sfs)	A1	equivalent method M1 method for median-need 0.5 and limits 2 to m or m to 6 A1 sqrt 12 or 3.464 M1 calc area from "3.464" to 3.64 A1 0.045 or better, not 0.046
		4	

Question	Answer	Marks	Guidance
7(i)	$H_0: \mu = 51$ $H_1: \mu < 51$	B1	Or popn mean
	$\overline{x} = \frac{7480}{150} = 49.8667 = 49.9$	B1	
	$s^{2} = \frac{150}{149} \left(\frac{380000}{150} - \left(\frac{748}{15}\right)^{2}\right)$ = 46.9620 = 47.0 or s = 6.85	M1	Correct subst in s^2 or $\sqrt{s^2}$ formula Biased var scores M0
	$\frac{49.8667-51}{\sqrt{\frac{46.962^{\circ}}{150}}} \text{ allow } \frac{49.9-51}{\sqrt{\frac{147^{\circ}}{150}}}$	M1	Allow 49.8667 to 49.9 in numerator Need sqrt 150
	= (-) 2.025 = (-) 1.965	A1	Accept 2.02 or 2.03 Accept –2.0264 –1.9651 provided correct working
	$\operatorname{comp} z = 1.96$	M1	or comp $1 - \phi(2.025)$ with 0.025
	There is evidence that $\mu < 51$	A1 ft	no contradictions biased var B1B1M0M1A0M1A1ft (max 5/7)
			accept cv method $x_{crit} = 49.9028$ M1A1 49.867 < 49.9 M1A1
		7	
7(ii)	$\frac{\bar{x}-51}{\frac{6.856}{\sqrt{150}}} = -1.96$	M1	Need 51 and sqrt 150 and correct form
	$\overline{x} = 51 - 1.097 = 49.9$ Rejection region is $\overline{x} < 49.9$	A1	This may have been found in part (i)
	$\frac{49.9-49}{\frac{6.856}{\sqrt{150}}}$ (= 1.608 to 1.614)	M1	Need 49 and sqrt 150 and correct form
	$P(\bar{x} > 49.9 \mid \mu = 49) = 1 - \Phi(`1.608')$	M1	
	P(Type II error) = 0.0539	A1	Allow 0.0533 to 0.0539
		5	

MATHEMATICS

9709/71 May/June 2018

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$est(\mu) (= 153.2 \div 75) = 2.04 (3 sf)$	B1	
	$\operatorname{est}(\sigma^2) = \frac{75}{74} \left(\frac{340.24}{75} - "2.04267"^2\right) \operatorname{oe}$	M1	
	= 0.369 (3 sf)	A1	Accept 0.368
		3	

Question	Answer	Marks	Guidance
2(i)	$\frac{20}{100} \pm z \times \sqrt{\frac{0.2 \times (1-0.2)}{100}}$	M1	Any z
	<i>z</i> = 1.881 or 1.882	B1	
	= 0.125 to 0.275	A1	
		3	
2(ii)	$\frac{1}{6}$ is within this range No evidence of bias concerning 2	B1ft	Both statements needed
		1	

Question	Answer	Marks	Guidance
3	N(153, 153)	B1	Seen or implied
	$\frac{139.5-153}{\sqrt{1153''}} \qquad (=-1.091)$	M1	Allow with wrong or no cc
	$\phi("-1.091") = 1 - \phi("1.091")$	M1	For area consistent with their working
	= 0.138 (3 sf)	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	mean= 155.1	B1	
	var = $1.5^2 \times 10.2$ (= 22.95) sd = $\sqrt{22.95}$	M1	or $1.5 \times \sqrt{10.2}$
	= 4.79	A1	
		3	

Question	Answer	Marks	Guidance
4(ii)	mean = 103.4 + "155.1" (= 258.5) var = 10.2 + "22.95" (=33.15)	B1ft	Both. ft their 155.1 and 22.95. Accept sd.
	$\frac{250-"258.5"}{\sqrt{"33.15"}} \qquad (=-1.476)$	M1	Standardising – no sd/var mix. Their mean/sd must be from an attempt at combination
	$1 - \phi(-1.476) = \phi(1.476)$	M1	For area consistent with their working
	= 0.930 (3 sf)	A1	Allow 0.93
		4	

Question	Answer	Marks	Guidance
5(i)	$\frac{14 - 14.2}{\frac{3.1}{\sqrt{50}}} \qquad (= -0.456)$	M1	For stand'n; must have $\sqrt{50}$
	1 – Φ("0.456")	M1	for area consistent with their working
	= 0.324 (3 sfs)	A1	
		3	
5(ii)	No because <i>n</i> large	B1	Accept $n > 30$
		1	
5(iii)	$H_0: \mu = 14.2$ $H_1: \mu < 14.2$	B1	or 'pop mean', but not just 'mean'
	$\frac{13.5 - 14.2}{\frac{3.1}{\sqrt{100}}}$	M1	For stand'n; must have $\sqrt{100}$
	= -2.258	A1	
	comp –2.054 (or –2.055)	M1	Valid comparison of z values or areas $(0.0119 < 0.02)$
	There is evidence (at 2% level) that mean mass in this area < 14.2	A1ft	Ft their z. Correct conclusion no contradictions
		5	

Question	Answer	Marks	Guidance
6(i)	$\int_5^{10} \frac{k}{x^2} \mathrm{d}x = 1$	M1	Attempt integration $f(x)$ and '= 1'; ignore limits
	$\left[-\frac{k}{x}\right]_{5}^{10} = 1 \text{ oe}$	A1	Correct integration and limits and '= 1'
	$\left(\frac{k}{5} - \frac{k}{10} = 1\right)$		
	k = 10 AG	A1	No errors seen
		3	
6(ii)	$10\int_{5}^{10}\frac{1}{x}\mathrm{d}x$	M1	Attempt integ $xf(x)$; ignore limits.
	$10[\ln x] \frac{10}{5}$		or 10(ln 10 – ln 5)
	$= 10\ln 2 \mathbf{AG}$	A1	No errors seen
		2	
6(iii)	$10\int_{9}^{10}\frac{1}{x^{2}}dx$	M1	Attempt integ $f(x)$ with correct limits
	$(10\left[-\frac{1}{x}\right]\frac{10}{9})$		
	$10\left[-\frac{1}{10}+\frac{1}{9}\right]$	A1	Substitute correct limits in correct integration
	$=\frac{1}{9}$ or 0.111 (3 sf)	A1	
		3	
6(iv)	$\int_5^a \frac{k}{x^2} \mathrm{d}x = 0.6$	M1	Attempt integration of $f(x)$ with correct limits and = 0.6
	$10\left[-\frac{1}{x}\right]_{5}^{a} = 0.6$		
	$10[\frac{1}{5} - \frac{1}{a}] = 0.6$	A1	Substitute correct limits in correct integration
	$a = \frac{50}{7}$ or 7.14 (3 sf)	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	Po(1.0)	B1	Seen or implied
	$e^{-1}(1+1+\frac{1^2}{2})$	M1	Allow any λ . Allow one end error.
	= 0.920 (3 sfs)	A1	
		3	
7(ii)	$P(X > 3) = 1 - e^{-1.5} (1 + 1.5 + \frac{1.5^2}{2} + \frac{1.5^3}{3!})$	M1	Allow any λ . Allow one end error
	= 0.0656	A1	
		2	
7(iii)(a)	Incorrectly concluding that more absences than usual when there are not oe	B1	In context
		1	
7(iii)(b)	H ₀ : $\lambda = 1.5$ (or 0.3) H ₁ : $\lambda > 1.5$ (or 0.3)	B1	Or μ Both
	$P(X > 4) = "0.0656" - e^{-1.5} \times \frac{1.5^4}{4!}$ = 0.0186 (3 sf)	M1	or $1 - e^{-1.5} (1 + 1.5 + \frac{1.5^2}{2} + \frac{1.5^3}{3!} + \frac{1.5^4}{4!})$
	P(Type I) = 0.0186 or 0.0185	A1ft	Ft their $P(X > 4)$ if less than 0.05
		3	
7(iii)(c)	P(X > 3) = "0.0656"	B1ft	Ft their (ii)
	0.0656 > 0.05	M1	
	No evidence of more than usual male absences	A1ft	Ft their P(X>3). Correct conclusion. No contradictions.
		3	

MATHEMATICS

9709/72 May/June 2018

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$\lambda = 4.4$	B1	
	$P(X < 4) = e^{-4.4} (1 + 4.4 + \frac{4.4^2}{2} + \frac{4.4^3}{3!})$	M1	Allow any λ allow one end error
	= 0.359	A1	
		3	

Question	Answer	Marks	Guidance
2	A: N(6, 4.8)	B1 B1	B1 for N(6,) for either A or B. B1 for 4.8 (or 2.19^2) (or SD=2.19)
	B: N(6, 2.4)	B1	B1 For 2.4 (or 1.55 ²) (or SD=1.55) (SR 3/3 but error seen withhold B1 so 2/3 scored)
		3	

Question	Answer	Marks	Guidance
3(i)	$52 \pm z \times \frac{6.5}{\sqrt{15}}$	M1	Expression of the correct form. Any z
	<i>z</i> = 1.96	B1	Seen or used
	48.7 to 55.3 (3 sf)	A1	Must be an interval
		3	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

Question	Answer	Marks	Guidance
3(ii)	Narrower because more information or because $\frac{\sigma}{\sqrt{n}}$ smaller	B1	oe Accept 'sample size is larger' 'more employees' 'width inversely proportional to sq root of n' 'if n increases width decreases' '95% CI is 49.7 to 54.3' or similar. No contradictions
		1	

Question	Answer	Marks	Guidance
4(i)	$Est(\mu) = 495.9$	B1	Accept 496
	$\operatorname{Est}(\sigma^2) = \frac{10}{9} \left(\frac{2459283}{10} - "495.9"^2 \right)$	M1	Attempt Σx^2 and subst in correct formula (1/9("2459283" – "4959" ² /10)). May be implied by correct answer
	= 12.8 (3 sf) or 383/30	A1	(Note: Biased var "11.49" scores M0 A0)
		3	
4(ii)	$H_{0}: \mu = 505 H_{1}: \mu < 505 \frac{75660 - 505}{150} 3.6 \div \sqrt{150}$	B1	Allow 'Pop mean' but not just 'mean'
	= -2.04	M1	Correct stand'n; must have $\sqrt{150}$. No sd/var mixes. Condone sample SD (3.58/3.39) Accept standardisation of totals ((75660-75750)/44.091) Accept CV method
		A1	Accept +2.04 (Note: if valid area comparison done 0.0207/0.0206 or 0.979 needed for A1)
	$comp \ z = -2.054$	M1	Valid comparison of z's or area (0.0207/6>0.02; 0.979(3)<0.98)
	No evidence (at 2%) that machine pkts mean mass < 505	A1ft	oe No contradictions. SC Two tail test can score B0 M1 A1 M1 for comparison with 2.326 A0 (max 3/5)
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

Question	Answer	Marks	Guidance
4(iii)	Large sample, so sample mean approx normally distr'd	B1	Allow just 'Sample is large' or ' <i>n</i> is large' n>30
		1	

Question	Answer	Marks	Guidance
5(i)	$\frac{1}{2} \times a \times b = 1$	M1	Attempt Δ area = 1 or $\int (b-bx/a) dx = 1$ with correct limits
	$b = \frac{2}{a}$	A1	
		2	
5(ii)	$\operatorname{grad} = -\frac{2}{a^2} \text{ or } -\frac{b}{a}$	B1	allow without '-' sign (could be implied or seen in (i))
	$y - \left(\frac{2}{a}\right) = \operatorname{grad} \times x \text{ or } y = \operatorname{grad} \times (x - a)$	M1	correct use of $y = mx + c$ or $y - y_1 = m(x - x_1)$ with (0,b) or (a,0) including attempt at substitution of their b
	$y - (\frac{2}{a}) = -\frac{2}{a^2} x \text{ or } y = -\frac{2}{a^2} (x - a)$ and $y = \frac{2}{a} - \frac{2}{a^2} x$ AG	A1	No errors seen
		3	

Question	Answer	Marks	Guidance
5(iii)	$\int_{0}^{a} \left(\frac{2}{a}x - \frac{2}{a^2}x^2\right) \mathrm{d}x$	M1	Attempt int $xf(x)$ ignore limits
	$= \left[\frac{1}{a}x^2 - \frac{2}{3a^2}x^3\right]_{0}^{a}$	A1	Correct integration ignore limits
	$a - \frac{2}{3}a = 0.5$	M1	Sub correct limits into their integral and $= 0.5$
	<i>a</i> = 1.5	A1	
		4	

Question	Answer	Marks	Guidance
6(i)	Accidents occur independently or randomly	B1	In context. Allow 'singly'.
		1	
6(ii)	$e^{-2.5} \times \frac{2.54}{4!}$	M1	Poisson P(4), allow any λ
	= 0.134 (3 sfs)	A1	
		2	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

Question	Answer	Marks	Guidance
6(iii)	$\lambda = \frac{25}{12}$ or 2.08(333)	B1	
	$1 - e^{-\frac{25}{12}}\left(1 + \frac{25}{12} + \frac{25^2}{2!} + \frac{25^3}{12}\right)$	M1	1 – Poisson P(0, 1, 2, 3), allow any λ allow one end error
	= 0.158 (3 sfs)	A1	As final answer
		3	
6(iv)	$N(\frac{1825}{84}, \frac{1825}{84})$ or $N(21.7(26), 21.7(26))$	B1	Stated or implied
	$\frac{\frac{29.5 - 1825}{84}}{\sqrt{\frac{1825}{84}}}$	M1	Allow with wrong or no cc with their mean/sd
	Ф("1.668")	M1	Correct area consistent with their working
	= 0.952 (3 sfs)	A1	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

Question	Answer	Marks	Guidance	
7(i)	$ \begin{array}{l} H_0: P(10) = 0.1 \\ H_1: P(10) > 0.1 \end{array} $	B1	Both. Allow 'p' for P(10)	
	B(9,0.1) P($X \ge 3$) = 1 - (0.9 ⁹ + 9×0.9 ⁸ × 0.1 + ⁹ C ₂ × 0.9 ⁷ × 0.1 ²)	M1	Allow one extra term in bracket	
	= 0.05297 or 0.053(0)	A1		
	comp 0.01	M1	Valid comparison. (comparison with 0.99 can recover previous M1 A1 for 0.9470)	
	No evidence (at 1% level) to reject H_0 Claim not justified	A1ft	No contradictions	
		5		
7(ii)	H ₀ not rejected oe	B1		
		1		
7(iii)	P(X ≥ 4) = "0.05297" - ${}^{9}C_{3} \times 0.9^{6} \times 0.1^{3}$	M1	or 1–(0.9 ⁹ + 9 × 0.9 ⁸ × 0.1 + ${}^{9}C_{2} × 0.9^{7} × 0.1^{2} + {}^{9}C_{3} × 0.9^{6} × 0.1^{3}$)	
	= 0.00833	A1	Note: 0.05297 and 0.00833 both needed in (i) or (iii) to justify CV	
	Hence crit value is 4	B1	Allow without working. Or in (i) May be implied by attempt at $P(X < 4)$ below	
	B(9,0.5) P($X < 4$)	M1	stated or implied	
	$= 0.5^9 + 9 \times 0.5^8 \times 0.5 + {}^9C_2 \times 0.5^7 \times 0.5^2 + {}^9C_3 \times 0.5^6 \times 0.5^3$	M1	Attempt $P(X < 4)$ with $p = 0.5$	
	P(Type II) = 0.254 (3 sf)	A1		
		6		

MATHEMATICS

9709/73 May/June 2018

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	Po(2.25)	B 1	Stated or implied
	$e^{-2.25}(1+2.25+\frac{2.25^2}{2})$	M1	Allow any λ , one end error
	= 0.609 (3 sf)	A1	SC B1 Use of B(75,0.03) leading to 0.608
		3	
1(ii)	μ = 2.25, which is less than 5; n large	B1	Allow np<5 and n large or p<0.1 and n>50, no contradictions
		1	

Question	Answer	Marks	Guidance
2(i)	213, 165, 73, 196 Allow 073	B1	For 3-digit no, < 265, consisting of three consecutive integers from given digits, backwards or forward. (73 or 073 counts as a 3-digit no.)
		B1	For another three such. Other answers may be valid. If other method used, method must be clear
		2	

Question	Answer	Marks	Guidance
2(ii)	$\frac{510}{25} = \frac{102}{5}$ or 20.4	B1	
	$\left[\frac{25}{24}\left[\frac{13225}{25} - \left(\frac{102}{5}\right)^2\right]\right]$	M1	$\frac{1}{24} \left(13225 - \frac{510^2}{25} \right)$
	118 (3 sf) or $\frac{2821}{24}$	A1	
		3	
2(iii)	(Average) weekly earnings of all students in Amy's year	B1	Not 'All students in Amy's year'
		1	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

Question	Answer	Marks	Guidance
3	$\frac{\frac{8}{64} \times (1 - \frac{8}{64})}{64} \qquad (= \frac{7}{4096} \text{ or } 0.00171)$	M1	OE, e.g. $\frac{\frac{1}{8} \times \frac{7}{8}}{64}$
	$2 \times z \sqrt{"\frac{7}{4096}"} = 0.130$	M1	Correct equation using their variance
	z = 1.572	A1	
	$ \phi("1.572") (= 0.942) (0.942 - (1 - 0.942) = 0.884) $	M1	$2\phi(\text{their } z) - 1$
	$\alpha = 88$	A1	САО
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

Question	Answer	Marks	Guidance
4(i)	No of males leaving (to do eng) each yr has const mean or	B1	One of these or any equiv statement in context.
	Males leave (to do eng) indep of other males leaving (to do eng) or		
	Males leave (to do eng) at random		
		1	
4(ii)	$\lambda = 3.9$	B1	
	$1 - e^{-3.9} (1 + 3.9 + \frac{3.9^2}{2!} + \frac{3.9^3}{3!})$	M1	Any λ . Allow one end error or extra term.
	0.546753 or 0.547 (3 sf)	A1	
		3	
4(iii)	$P(F = 0 \text{ and } M > 3) = e^{-0.8} \times \left[1 - e^{-3.1} \left(1 + 3.1 + \frac{3.1^2}{2!} + \frac{3.1^3}{3!} \right) \right]$ (= 0.16857)	M1	Attempt $P(F = 0) \times P(M > 3)$ allow one end error for $P(M > 3)$ provided $\lambda = 3.1$
	$\frac{P(F=0 \text{ and } M>3)}{P(M+F>3)}$ $\frac{"0.16857"}{"0.54675"}$	M1	Attempted, allow any probability/their (ii) provided the answer is <1
	= 0.308 (3 sf)	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	Assume (pop) sd same (0.3) H_0 : Pop mean = 2.4	B1	
	H_1 : Pop mean $\neq 2.4$	B1	Allow ' μ ' but not just 'mean'
	$\pm \frac{2.3 - 2.4}{\frac{0.3}{\sqrt{30}}}$	M1	Must have $\sqrt{30}$, Critical region approach (2.293, 2.507) or (2.193, 2.407)
	$=\pm 1.826$	A1	
	$\operatorname{comp} z = \pm 1.96$	M1	Valid comparison (e.g. compare 0.034 with 0.025)
	No evidence that mean time changed	A1f	In context, allow accept H_0 if correctly defined, no contradictions.
			One-tail test can score B1, B0, M1, A1, M1, A0 Max 4/6
		6	
5(ii)(a)	0.05	B1	
		1	
5(ii)(b)	Concluding mean time has not changed when it has.	B1	OE, must have e.g. conclude/accept SR Allow mean has decreased if a one tailed test in Part (i)
		1	

Cambridge International A Level – Mark Scheme PUBLISHED

May/June 2018

Question	Answer	Marks	Guidance
6(i)	$E(T) = 4.5 + 2.3 \qquad (= 6.8) Var(T) = 1.12 + 0.72 \qquad (= 1.7)$	M1	Both methods seen or implied
	$\frac{8.5 - "6.8"}{\sqrt{"1.7"}} \qquad (= 1.304)$	M1	Correct stand'n using their μ and σ^2 must be a combination of the two variables
	φ("1.304")	M1	Area consistent with their working
	= 0.904 (3 sf)	A1	
		4	
6(ii)	$E(D) = 4.5 - 2 \times 2.3$ or -0.1	M1	
	$Var(D) = 1.1^2 + 2^2 \times 0.7^2$ or 3.17	M1	Both can seen or implied
	$\frac{0 - (-0.1')}{\sqrt{3.17'}} \qquad (= 0.056)$	M1	Correct stand'n using their μ and σ^2 must be a Combination of the two variables
	1 – \phi("0.056")	M1	Area consistent with their working
	= 0.478 (3 sf)	A1	
		5	

9709/73

Question	Answer	Marks	Guidance
7(i)	$k \int_{1}^{2} \left(\frac{1}{x^{2}} + \frac{1}{x^{3}}\right) dx = 1$	M1	Attempt integ $f(x) \& = 1$; ignore limits
	$k\left[-\frac{1}{x} - \frac{1}{2x^2}\right]_1^2 = 1$	A1	Correct integral & limits & '= 1'
	$k\left[-\frac{1}{2} - \frac{1}{8} + 1 + \frac{1}{2}\right] = 1$	A1	Sufficient working must be shown, no errors seen
	$k = \frac{8}{7}$ AG		
		3	
7(ii)	$\frac{8}{7} \int_{1}^{2} (\frac{1}{x} + \frac{1}{x^{2}}) dx$	M1	Attempt integ $xf(x)$, ignore limits
	$=\frac{8}{7}\left[\ln x - \frac{1}{x}\right]_{1}^{2}$	A1	Correct integral & limits, condone missing k
	$=\frac{8}{7}(\ln 2 + \frac{1}{2})$ or 1.36 (3 sf)	A1	
		3	

Question	Answer	Marks	Guidance
7(iii)	$\frac{\frac{8}{7} \int_{1}^{1.5} \left(\frac{1}{x^2} + \frac{1}{x^3}\right) dx}{= \frac{8}{7} \left[-\frac{1}{x} - \frac{1}{2x^2}\right]_{1}^{1.5}$	M1	Attempt integration $f(x)$ between 1 and 1.5 or between 1.5 and 2
	$=\frac{44}{63}$ or 0.698	A1	Or $\frac{19}{63}$ or 0.302
	$(\frac{44}{63})(1-(\frac{44}{63}))^2$	M1	FT their $\frac{44}{63}$
	× 3	M1	Independent provided answer is <1
	= 0.191	A1	
		5	

MATHEMATICS

9709/72 March 2018

Paper 7 Probability and Statistics MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always **whole marks** (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$\frac{5-4.9}{\frac{2.21}{\sqrt{75}}}$ (= 0.392)	M1	Correct stand'n. Must have √75
	1 – Φ("0.392")	M1	Correct area consistent with working
	= 0.348 (3 sfs)	A1	
		3	

Question	Answer	Marks	Guidance
2	$\lambda = 98.4$	B1	
	N(98.4, 98.4) seen or implied	B1	
	$\frac{90.5-"98.4"}{\sqrt{"98.4"}} \qquad (=-0.796)$	M1	allow with wrong or no cc. No sd/var mix.
	ф("0.796")	M1	Correct area consistent with working
	= 0.787 (3 sf)	A1	
		5	

Question	Answer	Marks	Guidance
3(i)	$\mathrm{E}(H_A)=6$	B1	
	$Var(H_A) = 5 \times 0.03^2$	M1	
	= 0.0045 or 9/2000	A1	
		3	
3(ii)	$\mathrm{E}(H_A-2H_B)=0$	B1	From 6–6
	$Var(H_A - 2H_B) = '0.0045' + 4 \times 5 \times 0.02^2$	M2	Allow M1 for '0.0045' $- 4 \times 5 \times 0.02^{2}$ or '0.0045' $+ 2 \times 5 \times 0.02^{2}$ or '0.0045' $+ 4 \times 0.02^{2}$ or '0.0045' $+ 4 \times 5^{2} \times 0.02^{2}$
	= 0.0125 (3 sf) or 1/80	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	(Po)(2.4)	B1	seen or implied
	$e^{-2.4} \left(1 + 2.4 + \frac{2.4^2}{2} + \frac{2.4^3}{3!}\right)$	M1	allow + P(4)/one end error. Allow wrong λ
	= 0.779 (3 sfs)	A1	Final answer (Note: accept combination method)
		3	
4(ii)	H ₀ : λ (or mean) = 3.6 (or 0.9) H ₁ : λ (or mean) < 3.6 (or 0.9)	B1	Accept μ for both
	$e^{-3.6}(1+3.6)$	M1	Allow any λ
	= 0.126	A1	
	0.126 > 0.1	M1	Valid comparison. (Comparison with 0.9 could recover previous M1A1)
	No evidence that fewer than usual sold	A1FT	Correct conclusion. No contradictions
		5	

Question	Answer	Marks	Guidance
5(i)	$H_0: P(Orange) = 0.17 H_1: P(Orange) < 0.17$	B1	or H_0 : $p = 0.17 H_1$: $p < 0.17$
5(ii)	Wrongly concluding that % age is less than 17%	B1	OE in context allow "fewer than 3 orange in packet even though average 17% is correct"
		1	
5(iii)	B(30, 0.17) stated or implied	M1	eg by $0.17^{p} \times 0.83^{q} (p + q = 30)$ or ${}^{30}C_{r} (r < 30)$
	$\frac{(1-0.17)^{30}+30(1-0.17)^{29}\times0.17+{}^{30}C_2(1-0.17)^{28}\times0.17^2}{0.17^2}$	M1	correct, but allow + ${}^{30}C_3(1-0.17)^{27} \times 0.17^3$
	= 0.0949 (3 sf)	A1	(SR: use of N(5.1,4.233) M1 standardising (with or without cc) M1 max 2/3)
		3	

Question	Answer	Marks	Guidance
5(iv)	$P(\geq 3 \text{ orange } p = 0.05)$	M1	stated or attempted; can be implied
	$= 1 - [(0.95)^{30} + 30(0.95)^{29} \times 0.05 + {}^{30}C_2(0.95)^{28} \times 0.05^2]$	M1	allow + ${}^{30}C_3(0.95)^{27} \times 0.05^3$ in bracket, or ans 0.0608
	= 0.188 (3 sfs)	A1	
		3	

Question	Answer	Marks	Guidance
6(i)	$1 - 6 \int_{0.3}^{0.7} (x - x^2) \mathrm{d}x$	M1	or $2 \times 6 \int_{0}^{0.3} (x - x^2) dx$ or similar correct expression before integration
	$1 - \left[6(\frac{x^2}{2} - \frac{x^3}{3})\right] \frac{0.7}{0.3}$	A1	or similar correct expression after integration
	$1 - 6\left[\frac{0.7^2}{2} - \frac{0.7^3}{3} - \frac{0.3^2}{2} + \frac{0.3^3}{3}\right]$	M1	Attempt subst correct limits in this or other correct expression
	= 0.432 (or 54/125)	A1	(SR1 Omission of '1-' scores B2 for 0.568 or 71/125) (SR2 Omission of '2x' scores B2 for 0.216 or 27/125)
		4	
6(ii)	Correct shape between $x = 0$ and 1	B1	No curve outside this range.
	E(X) = 0.5	B1	
		2	
6(iii)	$6\int_{0}^{1} (x^{3} - x^{4}) dx$ = $\left[6\left(\frac{x^{4}}{4} - \frac{x^{5}}{5}\right) \right]_{0}^{1}$	M1	attempt int $x^2 f(x)$, ignore limits
	$6\left[\frac{1^4}{4} - \frac{1^5}{5}\right] \tag{= 0.3}$	M1	attempt subst correct limits in correct integ
	$Var(X) = '0.3' - '0.5'^{2}$ = 0.05	A1FT	FT their mean, dep their $Var(X) > 0$
		3	

Question	Answer	Marks	Guidance
7(i)	$\bar{x} = 11.83$	B1	
	$11.83 \pm z \ \frac{0.1}{\sqrt{10}}$	M1	any z
	<i>z</i> = 2.576	B1	accept 2.574 to 2.579
	[11.75 to 11.91]	A1	or equiv. Accept 11.7 to 11.9
		4	
7(ii)	No because pop normal (so \overline{X} normally distr)	B1	
		1	
7(iii)	11.7 not within CI	B1FT	
		1	
7(iv)	No because 95% CI is narrower than 99% CI	B1	OE
		1	
7(v)	Σx^2 (= 1399.67)	M1	attempted
	$\operatorname{Est}(\sigma^2) = \frac{10}{9} \left(\frac{"1399.67"}{10} - \left(\frac{"118.3"}{10} \right)^2 \right) \operatorname{OE}$	M1	correct sub of their Σ s into correct formula
	= 0.0201 (3 sf) or 181/9000	A1	
		3	

MATHEMATICS

9709/71 October/November 2017

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer		Marks	Guidance
1	$\frac{40.5-31}{\sqrt{31}}$	(= 1.706)	M1	standn correct but allow with no or incorrect cc
	1 – ¢("1.706")		M1	indep correct area consistent with working
	= 0.0441 (3 sf) or 0.0440		A1	not 0.044
			3	

Question	Answer	Marks	Guidance
2	Poisson	B1	seen or implied
	$\lambda = 4.03$	B1	seen or implied
	$e^{-4.03}(1+4.03+\frac{4.03^2}{2!})$	M1	any λ ; e.g. allow $\lambda = 4$ no extra or missing terms
	= 0.234 (3 sf)	A1	
		4	

Question	Answer	Marks	Guidance
3	$\frac{\frac{153}{200} + z \times \sqrt{\frac{\frac{153}{200} \times \frac{200 - 153}{200}}{200}} = 0.835$ (Var(P _s) = 0.000898875) (s.d. 0.02998)	M1	
	z = 2.335	A1	allow 2.33 or 2.34
	$2\Phi(z)-1$	M1	or equivalent method indep
	$\alpha = 98$	A1	allow 98.0 but not e.g. 98.04
		4	

Question	Answer	Marks	Guidance
4(i)	$300.1 \pm z \times \frac{0.9}{\sqrt{75}}$	M1	allow any value of <i>z</i>
	<i>z</i> = 2.576	B1	allow 2.574 to 2.579
	299.83 to 300.37 (2 dps)	A1	answer must be seen to 2 dps need an interval
		3	
4(ii)	CI includes 300 so claim supported or justified or probably true	B1 FT	or equivalent FT from CI in (i)
		1	

Question	Answer	Marks	Guidance
5(i)	$\frac{1}{4}\int_{0}^{2} (x^{2} + x) dx \qquad (= \frac{1}{4} \left[\frac{x^{3}}{3} + \frac{x^{2}}{2} \right]_{0}^{2})$	M1	Attempt integ $xf(x)$, ignore limits
	$= \frac{1}{4} \left(\frac{8}{3} + 2 \right) (-0)$	A1	Subst correct limits in correct integration
	$=\frac{7}{6}$ OE or 1.17 (3 sf)	A1	
		3	
5(ii)	$\frac{1}{4}\int_{0}^{m} (x+1) \mathrm{d}x = 0.5 \left(=\frac{1}{4}\left[\frac{x^{2}}{2} + x\right]_{0}^{m} = 0.5\right)$	M1	attempt integ $f(x)$, limits 0 to unknown (or unknown to 2) and = 0.5
	$\frac{\frac{1}{4}(\frac{m^2}{2}+m)=0.5}{m^2+2m-4=0}$	A1	a correct equation in <i>m</i> (any form)
	$m = \frac{-2\pm\sqrt{4+16}}{2} \text{ OE}$		or $\sqrt{5} - 1$
	m = 1.24	A1	must reject the negative value if there
		3	

Question	Answer	Marks	Guidance
6(i)	Mean = $3.2 \times 90 = 288$	B1	
	Variance = $0.4^2 \times 90^2$	M1	
	= 1296	A1	
		3	
6(ii)	Mean = $288' + 4.3 \times 95 = 696.5$	B1 FT	
	Variance = $(1296) + 0.6^2 \times 95^2 = 4545$	B1 FT	FT their (i)
	$\frac{670-696.5}{\sqrt{4545}} \qquad (= -0.393)$	M1	FT Var provided both given Vars used standardising (ignore cc) no sd / Var mix
	$1 - \phi(`-0.393') = \phi(`0.393)$	M1	correct area consistent with their working (i.e. their mean)
	= 0.653 (3 sf)	A1	
		5	

Question	Answer	Marks	Guidance
7(i)	H_0 : mean no. sales = 3.5	B1	or " = 0.7 (per day)"
	H_1 : mean no. sales > 3.5	M1	allow ' λ ' or ' μ ' but not just 'mean'
	$P(X \ge 5) = 1 - e^{-3.5}(1 + 3.5 + \frac{3.5^2}{2!} + \frac{3.5^3}{3!} + \frac{3.5^4}{4!})$	M1	
	= 0.275	A1	allow 0.274
	Comp with 0.10	M1	valid comparison using Poisson
	No evidence (at 10%) to believe that sales per day have increased	A1 FT	correct conclusion FT no contradictions
		6	

Question	Answer	Marks	Guidance
7(ii)	$\lambda = 3.9$	B1	
	$e^{-3.9} \times \frac{3.9^2}{2!}$	M1	any $\lambda \neq 0.7$ or 0.6), single term
	= 0.154 (3 sf)	A1	
		3	

Question	Answer	Marks	Guidance
8(i)	$\overline{x} = 27/150 \ (= 0.18)$	B1	
	$s = \sqrt{\frac{150}{149}} \times \sqrt{\frac{5.01}{150} - 0.18^2} \text{ or variance}$ (= 0.031729) (var = 3/2980 = 0.0010067)	M1	or var = $1/149(5.01 - 27.0^2/150)$
	H ₀ : Pop mean = 0.185 H ₁ : Pop mean < 0.185	B1	allow just ' <i>µ</i> '
	$\frac{0.18 - 0.185}{\frac{0.031729'}{\sqrt{150}}}$	M1	standardising, need $\sqrt{150}$
	= (-) 1.930 (3 sfs) or 1.93	A1	
	Comp with $z = (-) 2.326$	M1	$\begin{array}{l} \mbox{consistent signs} \\ \mbox{or using probs } 0.0268 > 0.01 \mbox{ or } 0.9732 \\ < 0.99 \\ \mbox{or using } x_{crit} \ 0.18 > 0.17897 \end{array}$
	There is no evidence (at 1% level) that concentration with drug is less than without drug	A1 FT	conclusion FT no contradictions
		7	

Question	Answer	Marks	Guidance
8(ii)	$\frac{cv - 0.185}{\frac{0.031729'}{\sqrt{150}}} \ (= -2.326)$	M1	must use 0.185 and $\sqrt{150}$
	= 0.17897 or 0.179	A1	acceptance region (for H_0) is > 0.179
	$\frac{"0.17897" - 0.175}{\frac{'0.031729'}{\sqrt{150}}} \qquad (=1.534)$	M1	must use 0.175 and $\sqrt{150}$
	1 –	M1	indep mark
	= 0.0625 (3 sf)	A1	Accept 0.0610 to 0.0628
		5	

MATHEMATICS

9709/72 October/November 2017

Paper 7 Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

October/November 2017

Question	Answer	Marks	Guidance
1(a)(i)	Po(2.54)	M1	seen or implied $Po(2540 \times 0.001)$
	$1 - e^{-2.54}(1 + 2.54)$	M1	any λ Allow 1 end error
	= 0.721 (3 sf)	A1	
		3	
1(a)(ii)	<i>n</i> large and <i>p</i> small (or $np (= 2.54) < 5$)	B1	<i>n</i> > 50, <i>p</i> < 0.1
		1	
1(b)	$\mu = 5.6$	B1	
	$\sigma = 2.37 (3 \text{ sf})$	B1	Accept √5.6
		2	

Question	Answer	Marks	Guidance
2(i)	$4820 \pm z \times \frac{1420}{\sqrt{125}}$	M1	Must be a <i>z</i> value
	z = 2.326	B1	Accept 2.326 - 2.329
	4524/4525 to 5115/5116 or 4520 to 5120 (3 sf)	A1	Must be an interval
		3	

9709/72

Cambridge International AS/A Level – Mark Scheme PUBLISHED

October/November 2017

Question	Answer	Marks	Guidance
2(ii)	$\overline{x} = 4840$	B1	or width = 280 or half width = 140
	$4840 + 1.96 \times \frac{1420}{\sqrt{n}} = 4980$ OE	M1	or $140 = 1.96 \times \frac{1420}{\sqrt{n}}$ OE
	n = 395	A1	CAO must be an integer
		3	

Question	Answer	Marks	Guidance
3(i)	$\overline{m} = \frac{98.2}{100} = 0.982$	B1	Accept either
	$s = \sqrt{\frac{100}{99}} \times \sqrt{\frac{104.52}{100} - 0.982^2} (= 0.28582)$ or var = 0.08169	M1	
	H ₀ : Pop mean mass = 1.01 H ₁ : Pop mean mass < 1.01	B1	not just 'mean', but allow just ' μ '
	$\pm \frac{0.982 - 1.01}{\frac{0.28582}{\sqrt{100}}}$	M1	$\pm \frac{0.982 - 1.01}{\frac{0.284387}{\sqrt{100}}} $ M1
	$= -0.980 (3 \text{ sf}) \text{ accept } \pm$	A1	$= -0.985 (3 \text{ sfs}) \text{ accept } \pm \text{A1}$
	Comp with $z = -1.645$ (or areas $0.1635 > 0.05$)	M1	Valid comparison of z's or area's
	No evidence that (mean) mass is less than 1.01	A1 FT	Correct conclusion FT their z
		7	

Question	Answer	Marks	Guidance
3(ii)	Distr of X normal (so distr of \overline{X} normal) Must state or imply No	B1	X/parent population
		1	

Question	Answer	Marks	Guidance
4(i)	$k \int_{0}^{a} \frac{1}{\sqrt{x}} dx = 1$	M1	Attempt int $f(x)$ and = 1 ignore limits
	$(2k[x^{0.5}]_0^a = 1)$	A1	OE; a correct eqn in $k \& a$ after sub limits
	$2ka^{0.5} = 1$ or $a = \frac{1}{4k^2}$		
	$k \int_{0}^{a} \frac{x}{\sqrt{x}} dx = 3$	M1	Attempt int $xf(x)$ and = 3
	e.g. $\frac{2}{3}ka^{1.5} = 3$ or $a^3 = \frac{81}{4k^2}$	A1	OE; a correct eqn in k and a after sub limits
	e.g. $a^2 = 81$ or e.g. $k^2 = \frac{81}{4 \times 9^3}$	M1	Attempt eliminate one letter
	<i>a</i> = 9	A1	Convincingly obtained
	e.g. $k = \frac{9}{54}$	A1	
	$k = \frac{1}{6} $ AG		
		7	

9709/72

Cambridge International AS/A Level – Mark Scheme PUBLISHED

October/November 2017

Question	Answer	Marks	Guidance
4(ii)	$\frac{1}{6} \int_{0}^{m} \frac{1}{\sqrt{x}} dx = 0.5$ OE	M1	Attempt int $f(x)$, unknown limit and $= 0.5$
	$\frac{1}{3}m^{0.5} = 0.5$	A1	a correct equn in <i>m</i> after sub limits
	m = 2.25	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	E(X - Y) = 56-43 (= 13)	B1	
	$Var(X-Y) = 6^2 + 5^2$ (= 61)	M1	
	$\frac{0-13}{\sqrt{61'}}$ (= -1.664)	M1	Ignore any attempted cc/no SD/var mixes. var must be attempt at a combination
	$1 - \phi('-1.664') = \phi('1.664')$	M1	For area consistent with their working
	= 0.952 (3 sf)	A1	Similar scheme for use of $Y - X$
		5	

Question	Answer	Marks	Guidance
5(ii)	E(M) = 56 + 1.5(43) (= 120.5)	B1	
	$Var(M) = 6^2 + 1.5^2 \times 5^2$ (= 92.25)	M1	
	$\frac{135-120.5}{\sqrt{92.25}} \qquad (=1.510)$	M1	Ignore any attempted cc/no SD/var mixes. var must be attempt at a combination
	1 – φ('1.510')	M1	For area consistent with their working
	= 0.0655 or 0.0656 or 6.55% or 6.56% (3 sf) As final answer	A1	Allow 6.6% or 6.5% or 7% if correct working seen
		5	

Question	Answer	Marks	Guidance
6(i)	H ₀ : Pop mean no. defectives = 5.15 H ₁ : Pop mean no. defectives < 5.15	B1	or '= 1.03 (per day)' not just 'mean', but allow just ' λ ' or ' μ '
	$P(X \leq 2)$	M1	Attempted. Any one term error/end error/incorrect λ /expression 1
	$= e^{-5.15} \left(1 + 5.15 + \frac{5.15^2}{2} \right)$	M1	Correct expression attempted
	= 0.113	A1	
	Comp with 0.1	M1	Valid comparison
	No evidence to believe mean no. of defectives has decreased	A1 FT	Correct conclusion (FT their value) No contradictions
		6	

October/November 2017

Question	Answer	Marks	Guidance
6(ii)	BOTH P(X ≤ 1) = e ^{-5.15} (1 + 5.15) (= 0.0357) AND P(X ≤ 2) = = e ^{-5.15} (1 + 5.15 + $\frac{5.15^2}{2}$)= (0.113)	B1*	(Could be seen in (i))
	Comp either with 0.1	DB1	One comparison with 0.01 (could be seen in (i))
	$P(Type \ I \ error) = 0.0357 \ (3 \ sf)$	B1	
		3	
6(iii)	Actually mean = 1.03 but conclude that mean < 1.03	B1	Mean no. of defectives not reduced, but conclude that it is reduced.
		1	

MATHEMATICS

9709/73 October/November 2017

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

9709/73

Question	Answer		Marks	Guidance
1	$\frac{40.5-31}{\sqrt{31}}$	(= 1.706)	M1	standn correct but allow with no or incorrect cc
	1 – ¢("1.706")		M1	indep correct area consistent with working
	= 0.0441 (3 sf) or 0.0440		A1	not 0.044
			3	

Question	Answer	Marks	Guidance
2	Poisson	B1	seen or implied
	$\lambda = 4.03$	B1	seen or implied
	$e^{-4.03}(1+4.03+\frac{4.03^2}{2!})$	M1	any λ ; e.g. allow $\lambda = 4$ no extra or missing terms
	= 0.234 (3 sf)	A1	
		4	

Question	Answer	Marks	Guidance
3	$\frac{\frac{153}{200} + z \times \sqrt{\frac{\frac{153}{200} \times \frac{200-153}{200}}{200}} = 0.835$ (Var(P _s) = 0.000898875) (s.d. 0.02998)	M1	
	z = 2.335	A1	allow 2.33 or 2.34
	$2\Phi(z)-1$	M1	or equivalent method indep
	$\alpha = 98$	A1	allow 98.0 but not e.g. 98.04
		4	

Question	Answer	Marks	Guidance
4(i)	$300.1 \pm z \times \frac{0.9}{\sqrt{75}}$	M1	allow any value of <i>z</i>
	<i>z</i> = 2.576	B1	allow 2.574 to 2.579
	299.83 to 300.37 (2 dps)	A1	answer must be seen to 2 dps need an interval
		3	
4(ii)	CI includes 300 so claim supported or justified or probably true	B1 FT	or equivalent FT from CI in (i)
		1	

Question	Answer	Marks	Guidance
5(i)	$\frac{1}{4}\int_{0}^{2} (x^{2} + x) dx \qquad (= \frac{1}{4} \left[\frac{x^{3}}{3} + \frac{x^{2}}{2} \right]_{0}^{2})$	M1	Attempt integ $xf(x)$, ignore limits
	$= \frac{1}{4} \left(\frac{8}{3} + 2\right) (-0)$	A1	Subst correct limits in correct integration
	$=\frac{7}{6}$ OE or 1.17 (3 sf)	A1	
		3	
5(ii)	$\frac{1}{4}\int_{0}^{m} (x+1) \mathrm{d}x = 0.5 \left(=\frac{1}{4}\left[\frac{x^{2}}{2} + x\right]_{0}^{m} = 0.5\right)$	M1	attempt integ $f(x)$, limits 0 to unknown (or unknown to 2) and = 0.5
	$\frac{\frac{1}{4}(\frac{m^2}{2} + m) = 0.5}{m^2 + 2m} = 0$	A1	a correct equation in <i>m</i> (any form)
	$m = \frac{-2\pm\sqrt{4+16}}{2}$ OE		or $\sqrt{5} - 1$
	m = 1.24	A1	must reject the negative value if there
		3	

Question	Answer	Marks	Guidance
6(i)	Mean = $3.2 \times 90 = 288$	B1	
	Variance = $0.4^2 \times 90^2$	M1	
	= 1296	A1	
		3	
6(ii)	Mean = $288' + 4.3 \times 95 = 696.5$	B1 FT	
	Variance = $(1296) + 0.6^2 \times 95^2 = 4545$	B1 FT	FT their (i)
	$\frac{\frac{670-696.5}{\sqrt{4545}}}{(=-0.393)}$	M1	FT Var provided both given Vars used standardising (ignore cc) no sd / Var mix
	$1 - \phi(`-0.393') = \phi(`0.393)$	M1	correct area consistent with their working (i.e. their mean)
	= 0.653 (3 sf)	A1	
		5	

Question	Answer	Marks	Guidance
7(i)	H_0 : mean no. sales = 3.5	B1	or " = 0.7 (per day)"
	H_1 : mean no. sales > 3.5	M1	allow ' λ ' or ' μ ' but not just 'mean'
	$P(X \ge 5) = 1 - e^{-3.5}(1 + 3.5 + \frac{3.5^2}{2!} + \frac{3.5^3}{3!} + \frac{3.5^4}{4!})$	M1	
	= 0.275	A1	allow 0.274
	Comp with 0.10	M1	valid comparison using Poisson
	No evidence (at 10%) to believe that sales per day have increased	A1 FT	correct conclusion FT no contradictions
		6	

Question	Answer	Marks	Guidance
7(ii)	$\lambda = 3.9$	B1	
	$e^{-3.9} \times \frac{3.9^2}{2!}$	M1	any $\lambda \neq 0.7$ or 0.6), single term
	= 0.154 (3 sf)	A1	
		3	

Question	Answer	Marks	Guidance
8(i)	$\overline{x} = 27/150 \ (= 0.18)$	B1	
	$s = \sqrt{\frac{150}{149}} \times \sqrt{\frac{5.01}{150} - 0.18^2} \text{ or variance}$ (= 0.031729) (var = 3/2980 = 0.0010067)	M1	or var = $1/149(5.01 - 27.0^2/150)$
	H ₀ : Pop mean = 0.185 H ₁ : Pop mean < 0.185	B1	allow just ' <i>µ</i> '
	$\frac{0.18 - 0.185}{\frac{0.031729'}{\sqrt{150}}}$	M1	standardising, need $\sqrt{150}$
	= (-) 1.930 (3 sfs) or 1.93	A1	
	Comp with $z = (-) 2.326$	M1	$\begin{array}{l} \mbox{consistent signs} \\ \mbox{or using probs } 0.0268 > 0.01 \mbox{ or } 0.9732 \\ < 0.99 \\ \mbox{or using } x_{crit} \ 0.18 > 0.17897 \end{array}$
	There is no evidence (at 1% level) that concentration with drug is less than without drug	A1 FT	conclusion FT no contradictions
		7	

Question	Answer	Marks	Guidance
8(ii)	$\frac{cv - 0.185}{\frac{0.031729'}{\sqrt{150}}} \ (= -2.326)$	M1	must use 0.185 and $\sqrt{150}$
	= 0.17897 or 0.179	A1	acceptance region (for H_0) is > 0.179
	$\frac{"0.17897" - 0.175}{\frac{'0.031729'}{\sqrt{150}}} $ (=1.534)	M1	must use 0.175 and $\sqrt{150}$
	1 –	M1	indep mark
	= 0.0625 (3 sf)	A1	Accept 0.0610 to 0.0628
		5	

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

9709/71 May/June 2017

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR 1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA 1 This is deducted from A or B marks in the case of premature approximation. The PA 1 penalty is usually discussed at the meeting.
| Question | Answer | Marks | Guidance |
|----------|---|-------|---|
| 1(i) | Poisson with $\lambda = 0.2$ | B1 | |
| | $1 - e^{-0.2} \left(1 + 0.2 + \frac{0.2^2}{2} \right)$ | M1 | 1 – Poisson P(0, 1, 2, 3) attempted, any λ , allow one end error |
| | = 0.00115 (3 sf) | A1 | SR: using Bin, ans 0.00115: B1 |
| | Total: | 3 | |
| 1(ii) | <i>n</i> large (n > 50) | B1 | |
| | np = 0.2 < 5 or p small | B1 | |
| | Total: | 2 | |
| 2 | Assume sd still = 3.8 | B1 | or sd unchanged |
| | $H_0: \mu = 64.0$ $H_1: \mu < 64.0$ | B1 | |
| | $\frac{63.3-64.0}{\frac{3.8}{\sqrt{100}}}$ | M1 | Standardising with their values (no sd / var mixes) Must have $\sqrt{100}$ |
| | = -1.842 | A1 | |
| | comp "1.842" with <i>z</i> -value
"1.842" < 1.96 | M1 | comp +ve with +ve or -ve with -ve
or comp Φ ("1.842") with 0.975
0.9672 < 0.975 OE |
| | No evidence that heights are shorter | A1FT | OE FT their <i>z</i> _{cale} |
| | Total: | 6 | |

Question	Answer	Marks	Guidance
3(a)	$7.1 \pm z \times \sqrt{\frac{2.6}{75}}$	M1	Expression of correct form must be z (note MR var = 2.6 ² can score M1) seen
	<i>z</i> = 1.751	B1	
	6.77 to 7.43 (3 sfs)	A1	Must be an interval
	Total:	3	
3(b)	0.04 ³	M1	Allow 0.08 ³ for M1
	= 0.000064	A1	
	Total:	2	
3(c)	e.g. Particular day or time of day	B1	Allow "Not random"
	Total:	1	
4(i)	Greater area where $x < 7.5$ than $x > 7.5$	B1	Allow Graph higher for $x < 7.5$ than for $x > 7.5$ or Graph decreasing or equiv expl'n
	Total:	1	
4(ii)	$\int_{5}^{10} \frac{k}{x^2} \mathrm{d}x = 1$	M1	Attempt Integ $f(x) = 1$ ignore limits
	$k\left[-\frac{1}{x}\right]\frac{10}{5} = 1$	A1	Correct integration and limits
	$k \times \frac{1}{10} = 1$		
	<i>k</i> = 10 AG	A1	No errors seen
	Total:	3	

Question	Answer	Marks	Guidance
4(iii)	$10\int_{5}^{10}\frac{1}{x} dx$	M1	Attempt Integ $xf(x)$ ignore limits
	$= 10 [\ln x]_{5}^{10}$ = 10(ln10 - ln5)	M1	Correct integration and limits
	$= 10\ln 2 \text{ or } 6.93 (3 \text{ sf})$	A1	OE
	Total:	3	
4(iv)	$10\int_{5}^{10} 1 \mathrm{d}x - "6.93"^2$	M1	Attempt (Integ $x^2 f(x)$) – (E(x)) ² . No limits M0
	= 1.95 (accept 1.96)	A1	Use of 6.93 gives 1.97 A0
	Total:	2	
5(i)	<i>W</i> ~ N(6210, 171.88)	B2	seen or implied. B1 each parameter
	$\frac{6200 - "6210"}{\sqrt{"171.88"}} \qquad (= -0.763)$	M1	Standardising with their values. No sd / var mix
	1 – Φ("0.763")	M1	For area consistent with their mean
	= 0.223 (3 sfs)	A1	
	Total:	5	

Question	Answer	Marks	Guidance
5(ii)	E(C - 2B) = -50	M1	"6210"–2(3130) (or E(2B–C)=50
	Var(C – 2B) = "171.88" + $2^2 \times 12.1^2$ (= 757.52)	M1	
	$\frac{0 - (-50)}{\sqrt{757.52"}} \qquad (= 1.817)$	M1	Standardising with their values
	Φ("1.817")	M1	For area consistent with their mean
	= 0.965 (3 sfs)	A1	
	Total:	5	
6(i)	mean = 6.6	B1	B1 for 6.6 (could be scored in iii)
	$P(X \le 1) = e^{-6.6} (1 + 6.6) = 0.0103$	M1	Allow incorrect λ in both probs
	$P(X \le 2) = e^{-6.6} (1 + 6.6 + \frac{6.6^2}{2}) = 0.0400$	M1A1	A1 for both values
	CR is $X \leq 1$	DA1	Dep on at least one M
	P(Type I error) = P($X \le 1$) = 0.0103	B1FT	FT their $P(X \le 1)$
	Total:	6	
6(ii)	Wrongly concluding that (mean) no of (sports) injuries has decreased	B1	Must be in context
	Total:	1	

May/June 2017

Question	Answer	Marks	Guidance
6(iii)	$H_0: \lambda = 6.6 H_1: \lambda < 6.6$	B1	Can be scored in (i). Allow μ or $\lambda / 1.1$ or 6.6 or P(X \le 2) = 0.0400 > 0.02
	2 not in CR	M1	
	No evidence mean no. of injuries has decreased	A1FT	
	Total:	3	
6(iv)	N(39.6, 39.6)	B1	May be implied
	$\frac{29.5 - 39.6}{\sqrt{39.6}} \qquad (= -1.605)$	M1	Allow with wrong or no cc
	$\Phi(\text{``-1.605''}) = 1 - \Phi(\text{``1.605''})$	M1	For area consistent with their mean
	= 0.0543 (3 sfs)	A1	
	Total:	4	

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

9709/72 May/June 2017

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

9709/72

Question	Answer	Marks	Guidance
1	$\frac{0.801 \times (1 - 0.801)}{2000} \qquad (= 0.0000797)$	M1	
	$0.801 \pm z \times \sqrt{"0.0000797"}$	M1	Allow any <i>z</i> -value
	z = 1.96	B1	
	0.784 to 0.818 (3 sf)	A1	As final answer. Must be an interval Allow 0.783 to 0.819
	Total:	4	
2(i)	E(X) = 4.197	B1	
	Var(X) = 4.196	B1	Both to 3dp or better
	Total:	4	
2(ii)	$E(X) \approx Var(X)$	B1	Condone =
2(iii)	$e^{-4.1968} \left(1 + 4.1968 + \frac{4.1968^2}{2} + \frac{4.1968^3}{3!} + \frac{4.1968^4}{4!} \right)$	M1	Any λ . Allow with one end error
	= 0.59(0) (3 sfs)	A1	Allow 0.591
	Total:	2	

9709/72

Question	Answer	Marks	Guidance
3(i)	Est (μ) = 923/400 or 2.3075 or 2.31 (3 sf)	B1	
	$\operatorname{Est}(\sigma^2) = \frac{400}{399} \left(\frac{3170}{400} - "2.3075"^2 \right) \operatorname{OE}$	M1	
	= 2.60696 or 2.61 (3 sf)	A1	(Note: Biased Var= 2.600 scores M0)
	Total:	3	
3(ii)	H ₀ : Pop mean (or μ) = "2.31" or "2310" H ₁ : Pop mean (or μ) > "2.31" or "2310"	B1 FT	
	$\pm \frac{2.6-"2.310"}{\sqrt{2.60696+50}} = 1.27$	M1 A1	Standardising using their values, Accept 1.28
	Comp 1.645 (OE)	M1	Valid comparison z values or areas
	No evidence that incomes in the region greater	A1 FT	OE FT their <i>z</i> . No contradictions (No FT for 2 tail test – max score B0 M1 A1 M1 for comp 1.96 A0) Note: Accept alternative CV method
	Total:	5	

Question	Answer	Marks	Guidance
4(i)	$0.75^{20} + 20 \times 0.75^{19} \times 0.25 + {}^{20}C_2 \times 0.75^{18} \times 0.25^2$	M1	No end errors
	= 0.0913	A1	As final answer
	Total:	2	
4(ii)	H ₀ : Pop proportion=0.25 H ₁ : Pop proportion<0.25	B1	Allow p or π , not "proportion" (Accept anywhere in the question)
	$0.75^{25} + 25 \times 0.75^{24} \times 0.25$	M1	Must be B(25,0,25) No end errors
	= 0.00702	A1	
	comp 0.01	M1	Valid comparison
	There is evidence that the claim is not justified	A1 FT	OE. No contradictions
	Total:	5	

Question	Answer	Marks	Guidance
5(i)	$0.5 \times 1 \times h = 0.25$ h = 0.5 grad = 0.5	M1	$P(X < 2) = 4 \times P(X < 1)$ M1
	f(x) = 0.5x	A1	P(X < 2) = 1 A1 $a = 2$ A1
	$0.5 \times a \times 0.5a = 1$	M1	$0.5 \times 2 \times h' = 1$ M1 h' = 1
	<i>a</i> = 2	A1	grad = 0.5
	P(X < 2) = 1	A1	f(x) = 0.5x A1
	Total:	5	
5(ii)	$\int_0^m 0.5x dx = 0.5$	M1	Attempt $\int f(x) dx = 0.5$ Ignore limits
	$=\left[\frac{x^2}{4}\right]_0^m = 0.5$	A1FT	Correct integration (ft $f(x)$) & limits = 0.5
	$m = \sqrt{2}$ or 1.41 (3 sf)	A1	or by similarity $m = \frac{1}{\sqrt{2}} \times 2$ M2
			$=\sqrt{2}$ A1
	Total:	3	

Question	Answer	Marks	Guidance
6(i)	$e^{-2.4} \times \frac{2.4^2}{2!}$	M1	Allow incorrect λ
	= 0.261 (3 sfs)	A1	
	Total:	2	
6(ii)	N(60, 60)	B1	seen or implied
	$\frac{54.5-60}{\sqrt{60}} \qquad (=-0.710)$	M1	allow with wrong or missing cc
	$1 - \phi("-0.710") = \phi("0.710")$	M1	For area consistent with their working
	= 0.761 (3 sf)	A1	
	Total:	4	
6(iii)	$\lambda = 3.6 + 12 \div 7 (= 186/35)$ (= 5.314)	M1	
	$e^{-5.314} \left(1 + 5.314 + \frac{5.314^2}{2} + \frac{5.314^3}{3!} \right)$	M1	Allow incorrect λ . Allow one end error.
	= 0.224 (3 sfs)	A1	
	Total:	3	

Question	Answer	Marks	Guidance
7(a)	$E(X_1+X_2) = 2 \times 4.2 = 8.4$ Var(X ₁ +X ₂) = 2 × 1.1 ² = 2.42	B1	Both. Seen or implied (or $sd = 1.56$)
	$\frac{10-8.4}{\sqrt{2.42}}$ (= 1.029)	M1	Standardising with their mean and var (no sd/var mix)
	1 – φ("1.029")	M1	For area consistent with their working
	= 0.152 (3 sf)	A1	
	Total:	4	
7(b)	E(X) = 20.5	B1	
	$Var(X) = 105 + 0.5^2 \times 15$ (= 108.75)	M1	correct expression oe
	$\frac{0^{-"20.5"}}{\sqrt{"108.75"}} \qquad (=-1.966)$	M1	correct standardisation using their E & V (no sd/var mix) ignore any attempted cc
	$\phi("-1.966") = 1 - \phi("1.966")$ (= (1 - 0.9754))	M1	For area consistent with their working
	= 0.0246 or 2.46% (3 sf)	A1	Accept 0.0247
	Total:	5	

MATHEMATICS

9709/73 May/June 2017

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says
 otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier
 marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

<u>Penalties</u>

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	573, 43 (or 043), 289	B1B1B1	Ignore incorrect numbers. But allow other correct use of table (i.e. 573, 650, 431)
	Total:	3	
2(i)	z = 1.751	B1	
	$\frac{103}{200} \pm z \sqrt{\frac{\frac{103}{200} \times (1 - \frac{103}{200})}{200}}$ oe	M1	all correct except for recognisable value of <i>z</i> , allow for one side only
	= 0.453 to 0.577 (3 sf) as final answer	A1	must be an interval
	Total:	3	
2(ii)	0.08 oe 8%, 8/100	B1	
3	$10 \times 0.46^2 (= 2.116) \text{ or } \frac{0.46}{\sqrt{10}}$	B1	SOI
	Total mass of ore ~ N(70, 2.116) or ~N $\left(7, \left(\frac{0.46}{\sqrt{10}}\right)^2\right)$	B1	
	$\pm \frac{71 - 70''}{\sqrt{2.116''}}$ or $\pm \frac{7.1 - 7.0''}{0.46 / \sqrt{10}}$ (= 0.687)	M1	correct, using their sd or $\sqrt{\text{(their var)}}$ e.g. allow $\frac{71-70^{\circ}}{4.6}$ for M1
	1 – φ("0.687")	M1	for correct area consistent with their working
	= 0.246 (3 sf)	A1	
	Total:	5	

Question	Answer	Marks	Guidance
4(i)	$\overline{x} = 6.7/200 \ (= 67/2000 = 0.0335)$	B1	
	$s^{2} = \frac{200}{199} \times \left(\frac{0.2312}{200} - "0.0335"^{2}\right)$	M1	$s^2 = \frac{0.2312}{200} - 0.0335^2$ M0
	= 0.0000339(2) = 27/796000	A1	= 0.00003375 A0
	Total:	3	
4(ii)	H ₀ : Pop mean level = 0.034 H ₁ : Pop mean level $\neq 0.034$	B1	not just "mean", but allow just " μ "
	$\frac{\frac{030335"-0.034}{\sqrt{0.00003392"}}}{\sqrt{200}}$	M1	must have $\sqrt{200}$ $\frac{0.0335 - 0.034}{\frac{\sqrt{00.0003375^{\circ}}}{\sqrt{200}}}$ M1
	$= -1.21(4) (3 \text{ sfs}) (-1.22 \leftrightarrow -1.21)$	A1	= -1.217 (3 sfs) A1
	Comp with $z = -1.645$ (or 0.1124>0.05)	M1	0.112 > 0.05 valid comparison <i>z</i> or areas
	No evidence that (mean) pollutant level has changed, accept H_0 (if correctly defined)	A1FT	correct conclusion no contradictions SR: One tail test: B0 , M1A1 as normal, M1 (comparison with 1.282 consistent signs) A0
	Total:	5	

Question	Answer	Marks	Guidance
5(i)(a)	$X \sim N(42, 42)$	B1	stated or implied
	$\frac{39.5 - "42"}{\sqrt{"42"}} \ (= -0.386)$	M1	allow with wrong or no cc
	$1 - \phi ("-0.386") = \phi ("0.386")$	M1	correct area consistent with their working
	= 0.65(0) (3 sf)	A1	
	Total:	4	
5(i)(b)	42 > (e.g. 15) or mean is large	B1	$\lambda > 15$ or higher, $\lambda = large$ ignore subsequent work if not undermining what already written
	Total:	1	
5(ii)(a)	$Y \sim \text{Po}(1.2)$	B1	stated or implied
	$1 - e^{-1.2}(1 + 1.2 + \frac{1.2^2}{2})$	M1	allow any λ allow one end error
	= 0.121 (3 sf)	A1	Using binomial: 0.119 SR B1
	Total:	3	
5(ii)(b)	$60 \times 0.02 = 1.2 < 5$ or mean is small	B1FT	or large <i>n</i> small <i>p</i> FT Poisson only
	Total:	1	

Question	Answer	Marks	Guidance
6(i)	$k \int_{0}^{1} (x - x^2) \mathrm{d}x = 1$	M1	Attempt integ $f(x)$ and "= 1", ignore limits
	$= k \left[\frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 = 1$	A1	correct integration, limits 0 and 1
	$= k \left[\frac{1}{2} - \frac{1}{3} \right] = 1 \text{ or } \frac{k}{6} = 1$	A1	correctly obtained, no errors seen
	Total:	3	
6(ii)	E(X) = 0.5	B1	
	$6\int_{0}^{1} (x^3 - x^4) \mathrm{d}x$	M1	Attempt integ $x^2 f(x)$, limits 0 to 1
	$(= 6\left[\frac{1}{4} - \frac{1}{5}\right] = 0.3)$ "0.3" - "0.5" ²	M1	their int $x^2 f(x)$ – their $(E(X))^2$ dep +ve result
	= 0.05(=1/20)	A1	
	Total:	4	
6(iii)	$6\int_{0.4}^{1} (x-x^2) \mathrm{d}x$	M1	ignore limits, eg M1 for $6 \int_{0.4}^{2} (x - x^2) dx$
	$= 6\left\{\frac{1}{2} - \frac{1}{3} - \left(\frac{0.4^2}{2} - \frac{0.4^3}{3}\right)\right\}$	A1FT	subst correct limits into correct integration
	= 0.648(= 81/125)	A1	condone incorrect "k" for A1
	Total:	3	

Question	Answer	Marks	Guidance
7(i)	H_0 : Pop mean no. accidents = 5.64 H_1 : Pop mean no. accidents < 5.64	B1	or "= 0.47 (per month)" not just "mean", but allow just " λ " or " μ "
	Use of $\lambda = 5.64$	B1	used in a Poisson calculation
	$= e^{-5.64} \left(1 + 5.64 + \frac{5.64^2}{2} \right)$	M1	Allow incorrect λ in otherwise correct
	= 0.08(0)	A1	
	Comp with 0.05	M1	Valid comparison (Poisson only), no contradictions.
	No evidence to believe mean no. of accidents has decreased; accept H_0 (if correctly defined)	A1FT	Normal distribution: M0M0
	Total:	6	
7(ii)	Mean < 0.47 but conclude that this is not so	B1	(Mean) no. of accidents reduced , but conclude not reduced. Must be in context.
	Total:	1	
7(iii)	(Need greatest x such that $P(X \le x) < 0.05$) $P(X \le 1) = e^{-5.64} (1 + 5.64) = 0.024$ $P(X \le 2) = 0.08$	B1	Both, could be seen in (i)
	Hence rejection region is $X \leq 1$	B1	Can be implied
	With $\lambda = 12 \times 0.05 = 0.6$, $1 - P(X \le 1) = 1 - e^{-0.6}(1 + 0.6)$	M1	$\lambda = 0.6 \text{ and } 1 - P(X \le 1)$
	= 0.122 (3 sf)	A1	Normal scores 0
	Total:	4	

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

9709/72 March 2017

Paper 7 Probability and Statistics MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through [↓]" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$Var(Ps) = \frac{0.3(1-0.3)}{120} \ (= 0.00175)$	M1	Attempt correct values in correct formula
	$0.3 \pm z \sqrt{"0.00175"}$	M1	must be a <i>z</i> -value, not a prob
	<i>z</i> = 1.645	B1	
	CI = 0.231 to 0.369 (3 sf)	A1	
	Total:	4	

Question	Answer	Marks	Guidance
2(i)	(H ₁): $\mu \neq 6.4$	B1	
	Total:	1	
2(ii)	comp 2.43 with a <i>z</i> -value $z = 2.576$ AND	M1	oe valid comparison
	No evidence that μ is not 6.4 or do not reject $\mu = 6.4$	A1	Allow "Accept $\mu = 6.4$ " Must mention μ , not just "H ₀ " or "H ₁ "
	Total:	2	
2(iii)	Testing for an increase in μ , or for a decrease in μ , rather than a change	B1	Any equiv statement
	Total:	1	

Question	Answer	Marks	Guidance
3(i)	$\frac{53-52}{6.1\div\sqrt{75}}$ (= 1.420)	M1	
	$\frac{51-52}{6.1\div\sqrt{75}} \qquad (=-1.420)$	M1	or –"1.420" seen
	Φ("1.420") – Φ("–1.420")	M1	
	= 0.844 (3 sfs)	A1	
	Total:	4	
3(ii)	Need to assume \overline{X} (approx.) normally distributed	B1	or X not stated to be normally distributed
	Total:	1	

Question	Answer	Marks	Guidance
4(i)	$(\lambda =) 4.5$	B1	
	$e^{-4.5}(1+4.5+\frac{4.5^2}{2!})$	M1	Allow any λ . Allow one end error
	= 0.174	A1	
	Total:	3	
4(ii)	Accept reduction in mean no. of missed appts although untrue	B1	or Mean is 0.9 (or 4.5) but < 3 missed appts. In context
	Total:	1	
4(iii)	$P(X \ge 3)$	M1	Attempted
	$= 1 - e^{-1}(1 + 1 + \frac{1^2}{2!})$	M1	Allow any λ except 4.5 or 0.9, Allow one end error
	= 0.0803 (3 sfs)	A1	
	Total:	3	

Question	Answer	Marks	Guidance
5(a)(i)	<i>k</i> = 1	B1	
	Total:	1	
5(a)(ii)	f_2 : area > 1 (area \neq 1)	B1	oe
	f ₃ : includes negative values of f ₃	B1	oe
	Total:	2	
5(b)(i)	$6\int_{-a}^{a} (a^2 - x^2) dx = 1$	M1	Integ $f(x) = 1$, ignore limits
	$6[a^2x - \frac{x^3}{3}]_{-a}^a = 1$	A1	Correct integral and limits
	$6(2a^{3} - \frac{2a^{3}}{3}) = 1$ $\frac{24a^{3}}{3} = 1 \text{ or } 8a^{3} = 1$ $a = 1/2$ AG	A1	Correctly obtained. No errors seen. (SR Verification scores M1A1 only max 2/3)
	Total:	3	

Question	Answer	Marks	Guidance
5(b)(ii)	0	B1	
	Total:	1	
5(b)(iii)	$6\int_{-0.5}^{0.5} \left(\frac{x^2}{4} - x^4\right) dx$ (= 6\[\frac{x^3}{12} - \frac{x^5}{5}\]_{-0.5}^{0.5} = 0.05) Var = 0.05 - 0^2	M1	attempt int $x^2 f(x)$ & correct limits
	= 0.05 oe	A1	cao; allow omission of -0^2
	Total:	2	

Question	Answer	Marks	Guidance
6(i)	Assume cartons are random sample(s)	B1	or masses of cartons are independent of each other oe
	E(T) = 816.4 Var(T) = 1570.08	B1	Both
	$z = \frac{900 - "816.4"}{\sqrt{"1570.08"}} \qquad (= 2.110)$	M1	
	1 – Φ("2.110")	M1	
	= 0.0174 = 1.74% (3 sfs)	A1	% only (accept 1.7% if 0.0174 seen)
	Total:	5	
6(ii)	P(F - S > 0) stated or implied	M1	$\mathbf{P}(S-F\leq 0)$
	$\begin{array}{l} 62.0 - 78.8 (= -16.8) \\ \& \ 10.0^2 + 12.6^2 (= 258.76) \end{array}$	B1	78.8 - 62.0 (= 16.8) & 12.62 + 10.02 (= 258.76)
	$z = \frac{0 - ("-16.8")}{\sqrt{"258.76"}} \ (= 1.044)$	M1	$z = \frac{0^{-"16.8"}}{\sqrt{"258.76"}} \ (= -1.044)$
	1 – Φ("1.044")	M1	$\Phi(\text{``-1.044''}) = 1 - \Phi(\text{``1.044''})$
	(= 1 - 0.8517) = 0.148 (3 sfs)	A1	
	Total:	5	

Question	Answer	Marks	Guidance
7(i)	Planes arrive at constant mean rate	B1	
	Planes arrive at random	B1	or Planes arrive independently Must be in context
	Total:	2	
7(ii)(a)	$(\lambda =) 5.2 \div 4$	M1	
	$e^{-1.3}(\frac{1.3^2}{2}+\frac{1.3^3}{3!})$	M1	Allow any λ , allow one end error
	= 0.330 (3 sfs)	A1	Accept 0.33
	Total:	3	
7(ii)(b)	7(ii)(b) $1 - e^{-3.467} \times (1 + 3.467 + \frac{3.467^2}{2!} + \frac{3.467^3}{3!})$		Allow any λ except 5.2 or 1.3, allow one end error
	= 0.456 (3 sfs)	A1	
	Total:	2	
7(iii)	N(52, 52) stated or implied	B1	
	$\frac{60.5-52}{\sqrt{52}}$ (= 1.179)	M1	ft their mean and var. Allow wrong or no cc or no $$
	Φ("1.179")	M1	
	= 0.881 (3 sf)	A1	
	Total:	4	

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

9709/71 October/November 2016

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	71

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓^{*} implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	71

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Sc	Syllabus	Paper				
	Cambridge International A Level – October/November 2016				9709	71]
1	$\left(\frac{508}{8}\right) = 63.5$ ($\Sigma r^2 = 32360.12$)	B1					
	$\frac{8}{7} \left(\frac{32360.12}{8} - 63.5^{2} \right)$	M1		oe			
	= 14.6 (3 sf) or 2553/175	A1	[3]	From correct worki	ng		
2 (i)	H ₀ : P(6) = $^{1}/_{6}$ H ₁ : P(6) < $^{1}/_{6}$	B1	[1]	Allow H ₀ : $p = \frac{1}{6}$	H ₁ : $p < {}^1/_6$		
(ii)	$\left(\frac{5}{6}\right)^{15}$ = 0.065 > 0.05	M1 A1	[2]	Correct result and c SR if 2 tail test follo 0.065 > 0.025	comparison n owed allow 2	leeded for A A1 for	.1
(iii)	$\left(\frac{5}{6}\right)^{16} = 0.054 \text{ and } \left(\frac{5}{6}\right)^{17} = 0.045$	M1		both			
	Smallest <i>n</i> is 17	A1	[2]	No errors seen			
	OR $\left(\frac{5}{6}\right)^n < 0.05$ and attempt to solve	M1					
	smallest <i>n</i> is 17	A1					
3 (i)	$(\lambda) = 3.6 \div 3 = 1.2$	B1		1.2 seen			
	= 0.0338 (3 sf)	A1	[3]	Anow any λ As final answer			
(ii)	$N(60 \times 3.6, 60 \times 3.6)$	M1		Stated or implied			
	$\frac{240.5-216'}{\sqrt{216'}} \qquad (= 1.667)$	M1		Allow with no or w	rong cc (no	sd/var mixes	s)
	$1-\Phi(`1.667')$ = 0.0478 (3 sf)	M1 A1	[4]	Area consistent with their working			
				SR use of Poisson (0.0497 score	s 4/4	
4 (i)	6080 (litres) 106 (litres)	B1 B1	[2]				
(ii)	E(21Y - 2X) = 635 Var(21Y - 2X) = 21 ² × 12 ² + 2 ² × 53 ² (= 74740)	B1 B1		correct expression of	or result or se	d = 273 seer	1
	$\frac{0-635}{\sqrt{74740'}} \qquad (=-2.323)$	M1		no sd/var mixes			
	$1-\Phi(`-2.323') = \Phi(`2.323')$ = 0.99(0) (3 sf)	M1 A1	[5]	Area consistent wit No errors seen	h their work	ing	
5 (a)	$63 \pm z \times \frac{9}{\sqrt{100}}$	M1	B1	Expression of corre	ect form, any	Ζ	
	z = 1.645 61.5 to 64.5 (3 sf)	B1 A1	[3]	Seen Must be an interval			

Ρ	age !	5	Mark Sc	heme			Syllabus	Paper
			Cambridge International A Leve	el – Oct	tober/N	November 2016 9709 71		
			I	1	1			
	(b)	(i)	$z = \frac{1.96}{2}$ (= 0.98)	M1		Allow $\frac{\text{any } z}{2}$		
	()	()	$\Phi(``0.98")$ (= 0.8365)			2		
			"0.8365" - (1 - "0.8365")	M1				
			(= 0.673)					
			$\alpha = 67.3 (3 \text{ sf})$	AI	[3]	Allow 67 from correct working		
		·····				1		
		(11)	$4 = (2x'z'x'\sigma')/\sqrt{n}$		[2]	Attempt to solve equal $SP_{1}P_{1}$ for $n = 100$	ju of correct	form
			<i>n</i> – 200	AI	[4]	SK BI 101 <i>n</i> - 100		
6	(i)		m_X, m_Y, m_Z, m_W or X, Y, Z, W	B2	[2]	B1 if two adjacent	means interc	hanged, i.e.
						m_Y, m_X, m_Z, m_W or	m_X, m_Z, m_Y, m_Y	n_W
						or m_X , m_Y , m_W , m_Z	r ravarad	
	(• • • •		3 f 4 4 -				.	
	(11)	(a)	$\int \frac{4}{81} x^4 dx$	M1		Attempt int $xf(x)$. Is	gnore limits	
			$= \left \frac{4}{81} \frac{x^5}{5} \right _{0}^{5}$	A1		Correct integration and limits (condone		
						missing 4/81)		
			$=\frac{4}{81} \times \frac{3^5}{5}$ or $\frac{4}{81} \times \frac{243}{5}$ or $\frac{972}{405}$ oe			Must see correct expression as well		
						$as \frac{12}{5}$ or 2.4		
			$=\frac{12}{5}$ or 2.4 AG	A1	[3]	No errors seen		
					[-]			
		(h)	$\int_{1}^{3} \frac{2.4}{\int_{1}^{4} u^{3} du} = 2 \int_{1}^{3} \frac{1}{\int_{1}^{4} u^{3} du}$	M1		Attempt int $f(x)$ ion	oro limita	
		(U)	$\int_{24} \frac{1}{81} x dx \qquad \text{ of } 1 - \int_{0} \frac{1}{81} x dx$	IVII		Attempt int $I(x)$ ign	lore mints	
			2.7 0					
			$= \left[\frac{4}{81}\frac{x^4}{4}\right]_{-1}^{-3}$ or $1 - \left[\frac{4}{81}\frac{x^4}{4}\right]_{-1}^{-2}$	A1		Correct integration	and limits (c	ondone
						missing 4/81)	,	
			$= 1 - \frac{4}{81} \times \frac{2.4^4}{4}$ oe					
			81 4		507	. ~ 1		
			$=\frac{309}{625}$ or 0.59(0) (3 sf)	Al	[3]	As final answer		
		ക	1	R1	٢1٦			
		(U)	1 1					

Page 6	Mark Scheme					Paper			
	Cambridge International A Leve	9709	71						
7 (i)	H ₀ : Pop mean time (or μ) = 20.5 H ₁ : Pop mean time (or μ) < 20.5	B1		Not just "mean"					
	$\frac{20.3-20.5}{1.2\pm\sqrt{100}}$	M1		Allow without √ sign (accept ±1.667/1.67)					
	= -1.667 or 0.0478/0.952 if areas compared	A1							
	'1.667' < 1.751 (or '-1.667' > -1.751) No evidence that (pop) mean time	M1		Correct comparison 1.751/1.75 oe valic (0.0478 > 0.04)	n of their z_{calc} l comparison	with of areas			
	has decreased	A1ft	[5]	No contradictions	(ft their z)				
(ii)	$\frac{cv-20.5}{1.2 \div \sqrt{100}} = -1.751$ cv = 20.29 or 20.3	M1* A1							
	$\frac{20.29^{\circ}-20.1}{1.2 \div \sqrt{100}}$ (= 1.583 or 1.582)	DM1		Allow $\frac{20.3-20.1}{1.2 \div \sqrt{100}}$ (= 1		M1			
	$1 - \Phi(`1.583') = 0.0567 - 0.0569 (3 \text{ sf})$	M1 A1	[5]	$1 - \Phi(`1.667') = 0.0478 (3 \text{ sf})$		M1 A1			
(iii)	Concluding (mean) time not decreased when in fact it has.	B1	[1]	Must be in context oe					

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

9709/72 October/November 2016

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.
Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	72

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓^{*} implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	72

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Sc	Syllabus	Paper				
	Cambridge International A Leve	el – Oc	tober/N	lovember 2016	9709	72]
1	$\left(\frac{508}{8}\right) = 63.5$ ($\Sigma r^2 = 32360.12$)	B1					
	$\frac{8}{232360.12} - (63.5)^2$	M1		oe			
	= 14.6 (3 sf) or 2553/175	A1	[3]	From correct worki	ng		
2 (i)	H ₀ : P(6) = $^{1}/_{6}$ H ₁ : P(6) < $^{1}/_{6}$	B1	[1]	Allow H ₀ : $p = \frac{1}{6}$	H ₁ : $p < {}^1/_6$		
(ii)	$\left(\frac{5}{6}\right)^{15} = 0.065 > 0.05$	M1 A1	[2]	Correct result and comparison needed for A1 SR if 2 tail test followed allow A1 for 0.065 > 0.025			
(iii)	$\left(\frac{5}{6}\right)^{16} = 0.054 \text{ and } \left(\frac{5}{6}\right)^{17} = 0.045$	M1		both			
	Smallest <i>n</i> is 17	A1	[2]	No errors seen			
	OR $\left(\frac{5}{6}\right)^n < 0.05$ and attempt to solve $n\ln\left(\frac{5}{6}\right) < \ln 0.05$	M1					
	smallest <i>n</i> is 17	A1					
3 (i)	$(\lambda) = 3.6 \div 3 = 1.2$	B1		1.2 seen			
	$1 - e^{-1.2} \left(1 + 1.2 + \frac{1.2^2}{2} + \frac{1.2^3}{3!} \right)$	M1		Allow any λ			
	= 0.0338 (3 sf)	A1	[3]	As final answer			
(ii)	N(60 × 3.6, 60 × 3.6)	M1		Stated or implied			
	$\frac{240.5-216'}{\sqrt{216'}} \qquad (= 1.667)$	M1		Allow with no or w	rong cc (no	sd/var mixes	s)
	$1-\Phi((1.667))$	M1	Г 4 1	Area consistent wit	h their work	ing	
	- 0.0478 (3 \$1)	AI	[4]	SR use of Poisson (0.0497 score	s 4/4	
4 (i)	6080 (litres) 106 (litres)	B1 B1	[2]				
(ii)	E(21Y - 2X) = 635 Var(21Y - 2X) = 21 ² × 12 ² + 2 ² × 53 ² (= 74740)	B1 B1		correct expression of	or result or se	d = 273 seer	1
	$\frac{0-635}{\sqrt{74740'}} \qquad (= -2.323)$	M1		no sd/var mixes			
	$1-\Phi(`-2.323') = \Phi(`2.323')$ = 0.99(0) (3 sf)	M1 A1	[5]	Area consistent with their working No errors seen			
5 (a)	$63 \pm z \times \frac{9}{\sqrt{100}}$	M1	B1	Expression of corre	ect form, any	Ζ	
	z = 1.645 61.5 to 64.5 (3 sf)	B1 A1	[3]	Seen Must be an interval			

Pa	age !	5	Mark Sc	heme			Syllabus Pa		
			Cambridge International A Leve	el – Oct	tober/N	lovember 2016	9709	72	
						1			
	(b)	(i)	$z = \frac{1.96}{2} (= 0.98)$ $\Phi(``0.98") (= 0.8365)$ ``0.8365" - (1 - ``0.8365")	M1 M1		Allow $\frac{\text{any } z}{2}$			
			$\alpha = 67.3 (3 \text{ sf})$ (1 0.0500) (= 0.673)	A1	[3]	Allow 67 from corr	rect working		
		(ii)	$4=(2x'z'x'\sigma')/\sqrt{n}$ n=200	M1 A1	[2]	Attempt to solve ec SR B1 for $n = 100$	u of correct	form	
6	(i)		m_X, m_Y, m_Z, m_W or X, Y, Z, W	B2	[2]	B1 if two adjacent means interchanged, i.e. m_Y, m_X, m_Z, m_W or m_X, m_Z, m_Y, m_W or m_X, m_Y, m_W, m_Z B1 for correct order reversed.			
	(ii)	(a)	$\int_{0}^{3} \frac{4}{81} x^4 \mathrm{d}x$	M1		Attempt int $xf(x)$. Ignore limits			
			$= \left[\frac{4}{81} \frac{x^5}{5}\right]_0^3$	A1		Correct integration missing 4/81)	and limits (c	ondone	
			$=\frac{4}{81} \times \frac{3^5}{5}$ or $\frac{4}{81} \times \frac{243}{5}$ or $\frac{972}{405}$ oe			Must see correct ex as $\frac{12}{5}$ or 2.4	pression as v	vell	
			$=\frac{12}{5}$ or 2.4 AG	A1	[3]	No errors seen			
		(b)	$\int_{2.4}^{3} \frac{4}{81} x^{3} dx \qquad \text{or } 1 - \int_{0}^{2.4} \frac{4}{81} x^{3} dx$	M1		Attempt int $f(x)$ ign	ore limits		
			$= \left[\frac{\frac{4}{81} \frac{x^4}{4}}{2.4}\right]_{2.4}^3 \text{or } 1 - \left[\frac{\frac{4}{81} \frac{x^4}{4}}{0}\right]_{0}^{2.4}$	A1		Correct integration and limits (condone missing 4/81)			
			$= 1 - \frac{4}{81} \times \frac{2.4^4}{4}$ oe						
			$=\frac{369}{625}$ or 0.59(0) (3 sf)	A1	[3]	As final answer			
		(c)	1	B1	[1]				

Page 6	Mark Scheme					Paper
	Cambridge International A Level – October/November 2016					72
				1		
7 (i)	H ₀ : Pop mean time (or μ) = 20.5 H ₁ : Pop mean time (or μ) < 20.5	B1		Not just "mean"		
	$\frac{20.3-20.5}{1.2 \div \sqrt{100}}$	M1		Allow without \sqrt{si}	gn	
	= -1.667 or 0.0478/0.952 if areas compared	A1		(accept ±1.667/1.6		
	'1.667' < 1.751 (or '-1.667' > -1.751) No evidence that (pop) mean time	M1		Correct comparison 1.751/1.75 oe valic (0.0478 > 0.04)	n of their z_{calc} l comparison	with of areas
	has decreased	A1ft	[5]	No contradictions	(ft their z)	
(ii)	$\frac{cv-20.5}{1.2 \div \sqrt{100}} = -1.751$ cv = 20.29 or 20.3	M1* A1				
	$\frac{20.29^{\circ}-20.1}{1.2 \div \sqrt{100}}$ (= 1.583 or 1.582)	DM1		Allow $\frac{20.3-20.1}{1.2 \div \sqrt{100}}$ (= 1	.667)	M1
	$1 - \Phi(`1.583') = 0.0567 - 0.0569 (3 \text{ sf})$	M1 A1	[5]	$1 - \Phi(`1.667') = 0.0478 (3 \text{ sf})$		M1 A1
(iii)	Concluding (mean) time not decreased when in fact it has.	B1	[1]	Must be in context oe		

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

9709/73 October/November 2016

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	73

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ↓^{*} implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	73

- AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- SOI Seen or implied
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓" " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

[Page 4 Mark Scheme				Syllabus	Paper	
		Cambridge International A Level – C	October/	Nover	nber 2016 9709 73		
			1				
1		$e^{-3.5}(1+3.5+\frac{3.5^2}{21})$					
		= 0.321 (3 sf)	M2		Allow M1 if ex	xtra term e^{-3}	$5 \times \frac{3.5^3}{21}$ or "
					1 " or omit I	P(0)	5!
			A1	[3]			
2	(i)	59	B1	[1]			
	(ii)	Any <i>x</i> such that $0.687 \le x \le 0.693$ (3					
	()	st)	B1	[1]	or 0.69 or " (0.686 < 0.	693 rec "
	(iii)	Possible repeats	B1	[1]			
3		N(178,)	B1		stated or implie	ed	
		$Var = 3.2^2 + 4.1^2 + 3.8^2 \text{ or } 41.49$	B1		or sd = 6.44 stated or implied need $\sqrt{15}$ but allow var / sd mix for		
		$\frac{175-178'}{2}$ (= '-1 804')	M1				
		√'41.49'÷√15 (= =1.804)			"41.49" allow cc for m	ethod marks	
		$\Phi(-1\ 804) = 1 - \Phi(-1\ 804)$	M1		independent M	1 for area / j	prob
		= 0.0356 (3 sf)	A1	5.63	consistent with	n working	
				[5]			
4		$\frac{11.8-11}{1.6\div\sqrt{n}} = 1.645$	M1		M1 for $\frac{11.8-11}{1.6 \div \sqrt{n}}$ =	= any z	
		$\frac{11.8-11}{1.6\div\sqrt{n}} = 1.96$			allow var / sd r	nix for 1.6 b	but need \sqrt{n}
					B1 for each con	rrect z	
		n = 10.8 (allow 11) n = 15.4 (allow 15)	B1				
		<i>n</i> 15.4 (allow 15)	BI				
			A1		for both		
						17	
		Possible values are 11, 12, 13, 14, 15	A1	[5]	not for just 11	$\leq n \leq 15$ oe	

	Page 5	Mark Scheme	9			Syllabus	Paper
		Cambridge International A Level – C	October/I	Nover	nber 2016	9709	73
5	(i)	H ₀ : P(free gift) = 0.3 or $p = 0.3$ H ₁ : P(free gift) < 0.3 or $p < 0.3$	B1	[1]			
	(ii)	P(X ≤ 2) = $0.7^{20} + 20 \times 0.7^{19} \times 0.3 + {}^{20}C_2 \times 0.7^{18} \times 0.3^2$ = 0.03548 or 0.0355	M1* A1		$P(X \leq 2)$ attempted		
		P(X ≤ 3) = '0.03548' + ${}^{20}C_3 \times 0.7^{17} \times 0.3^3$ (= 0.107)	M1*		$P(X \leq 3)$ atter	npted	
		One comparison with 0.05 seen	M1*		or implied by $P(X \le 2)$ and	fully correct $P(X \leq 3)$	methods for
		$P(Type \ I \ error) = 0.0355 \ (3 \ sf)$	DA1 √*	[5]	dep on all 3 N	ſs	
	(iii)	$P(X \le 3) = `0.107'$ `0.107' > 0.05 or $cv = 2$ and compare $3 > 2$	M1		Compare their $P(X \le 3)$ with 0.05		
		No evidence to reject claim oe	A1 √*	[2]	No evidence that 30% is not correct oe ft their 0.107		
6	(i)	est(μ) = 3.4 est(σ^2)= $\frac{100}{99}(\frac{1356}{100} - 3.4'^2)$ = 2.02(0202)	B1 M1 A1		1 / 99 (1356 – 340 ² /100) or 200/99		
		<i>z</i> = 1.96	B1				
		$3.4 \pm z \times \sqrt{\frac{2.020202'}{100}}$ = 3.12 to 3.68 (3 sf)	M1 A1	[6]	correct working only allow from unbiased or biased variance		
	(ii)	Mean should be 3	B1*		stated or impl	ied	
		CI does not include 3 Machine probably not working properly	DB1√ [™]	[2]	their CI or evidence that		
7	(i)	$1 - e^{-1} (1 + 1) \qquad (= 0.26424) 1 - e^{-1.5} (1 + 1.5 + \frac{1.5^2}{2!}) (= 0.19115)$	B1 B1		B1 for either λ correct. B1 for either correct expression with correct λ product of their values for ≤ 2 and ≤ 3 from Poisson, need correct form "1", but allow incorrect λ values and end errors		
		ʻ0.26424' × ʻ0.19115'	M1				
		= 0.0505 (3 sf)	A1		accept 0.0504		
				[4]			

	Page 6	Mark Schem	e			Syllabus	Paper
		Cambridge International A Level – 0	October/	Nover	nber 2016	9709	73
	(ii)	$\lambda = 30$ N(30, 30)	B1 B1√ [^]		seen or implie	ed, need N(λ,	λ)
		$\frac{35.5-30}{\sqrt{30}}$ (= 1.004)	M1		allow with wr	ong or no cc	or no $$
		Φ ('1.004')	M1		consistent wit	h their worki	ing
		= 0.842 (3 sf)	A1	[5]			
8	(i)	$\sigma_X, \sigma_Z, \sigma_Y, \sigma_W$ or X, Z, Y, W	B2		B1 if two adjacent sds interchanged, ie σ_Z , σ_X , σ_Y , σ_W or σ_X , σ_Y , σ_Z , σ_W or σ_X , σ_Z , σ_W , σ_Y		
				[2]	B1 for correct order reversed		
	(ii) (a)	Mean = 0 stated or found or " -0 " seen	B1				
		$\frac{1}{18}\int_{-3}^{3}x^{4}dx = 0$	M1		Attempt integ Allow withou	ral ² f(x). Ign t "– 0"	ore limits
		$= \frac{1}{18} \left[\frac{x^{5}}{5} \right]_{-3}^{-3}$ = $\frac{1}{18} \left[\frac{3^{5}}{5} + \frac{3^{5}}{5} \right]$ oe = 5.4					
		sd = $\sqrt{5.4}$ or $\sqrt{\frac{1}{18} \left[\frac{3^5}{5} + \frac{3^5}{5}\right]}$ or 2.324 sd = 2.32 (3 sf) AG	A1	[3]	Must see \sqrt{co} or 2.324 or be	rrect express tter	ion or 5.4
	(b)	$\frac{1}{18} \int_{2.324'}^{3} x^2 dx$	M1		Attempt to int	egrate $f(x)$, i	gnore limits
		$\frac{1}{18} \left[\frac{x^3}{3} \right]' \frac{3}{2.324}' = \frac{1}{18} \left[\frac{3^3}{3} - \frac{'2.324'^3}{3} \right]$	A1		Sub correct lin	mits into corr	rect integral
		= 0.268 (3 sf)	A1	[3]	Allow 0.269		
	(c)	0	B1	[1]			
	()			[1]			

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

Paper 7 MARK SCHEME Maximum Mark: 50 9709/71 May/June 2016

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9709	71

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme S		Paper
	Cambridge International A Level – May/June 2016	9709	71

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through $\sqrt{}$ ' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9709	71

Note: '(3 sfs)' means	answer which rounds t	to to 3 sfs'. If a	correct ans seen	to > 3 sfs, ISW	for later rounding.
Penalise < 3 sfs only	once in paper.				

1		B(200, $\frac{1}{6}$) \rightarrow N($\frac{100}{3}$, $\frac{250}{9}$)	B1		seen or implied
		$\frac{25.5-\frac{100}{3}}{\sqrt{\frac{250}{9}}}$	M1		allow with wrong or no cc
		= -1.486	A1		(Accept alternative correct methods)
		comp '1.486' with 1.282	M1		or comp ('1.486') with 0.1
		Evidence to reject H_0 There is some evidence that $p < \frac{1}{6}$			
		or, e.g. It is likely that $p < \frac{1}{6}$ oe	A1 ft	[5]	No contradictions
2	(i)	Each employee has an equal chance of being chosen	B1	[1]	oe
	(ii)	Est $(\mu) = 4$	B 1		
		Est $(\sigma^2) = \frac{10}{9} (\frac{199.22}{10} - 4'^2)$	M1		sub in correct formula attempted
		= 4.36 (3 sf)	A1	[3]	working may not be seen
	(iii)	Distances travelled by all employees at the firm	B1	[1]	oe
3	(i)	$((0.5672 + 0.6528) \div 2) = 0.61$	B1	[1]	
	(ii)	$0.61' + z\sqrt{\frac{0.61' \times (1 - 0.61')}{350}} = 0.6528$	M1		oe
		$z = 0.0428 \times \sqrt{\frac{700}{'0.61' \times (1-'0.61')}}$ oe	M1		correct rearrangement of correct equn, ft '0.61'
		= 2.321 98% confidence	A1 A1 ft	[4]	ft their z (dep on both Ms)

Pa	age 5	Mark Scheme					Paper
		Cambridge International A Lev	/el – Ma	ay/Jur	าе 2016	71	
							
4	(i)	$H_0: \mu = 12.5$					
		$H_1: \mu \neq 12.5$	B 1				
		$\frac{13.5-12.5}{4.2}$	M1		allow 4.2 ÷ 50		
		= 1.68(4)	Δ1				
		1.00(1)					
		'1.684' < 1.96	M1		comp 1.96 allow	v comp 1.645	5 if H1: μ >
					12.5	•	
					or comp 1 – ('	1.684') with	0.025
		No evidence that mean time has	A1 ft	[5]	No contradiction	ns	
		changed			ft their 1.684, bu	it not comp	1.645
	(ii)	0.05	R1	[1]			
	(II)	0.05	DI	[1]			
5	(i)	$T \sim N(6 \times 2.4, 6 \times 0.3^2)$					
		(= N(14.4, 0.54))	M1		seen or implied		
		$\frac{16-14.4'}{10.54'}$ (= 2.177)	M1		ft their E and Va	ar; allow with	hout $$
		V 0.54			(Accept alternat	ive method	
					$N(2.4,(0.3^2)/6))$	1	
		1 – ('2.177')	M1		correct area con	sistent with t	heir
					working		
		= 0.0147 (3 sf)	A1	[4]			
	(ii)	D = Y 11 Y					
	(II)	$D = A_1 = 1.1A_2$ F(D) = -0.24	R1				
		$Var(D) = 0.3^2 + 1.1^2 \times 0.3^2 (= 0.1989)$	M1				
		$\frac{0-(-0.24)}{(-0.24)}$ (= 0.538)	M1		ft their E and Va	ar allow wit	hout $$
		$\sqrt{0.1989}$ (0.000)					nout v
		(*0.538*)	M1		correct area con	cictont with t	hoir
		(0.558)	1411		working		.11011
		= 0.705 (3 sf)	A1	[5]			
-							
6	(i)	2 m	B1	[1]	allow without u	nits	
		r ²					
	(ii)	$k \int_{0} x^{2} (2-x) dx = 1$	M1		attempt integ f(x	x) and '= 1'.	Ignore
					limits		
		$\left[k\left[\frac{2x}{3}-\frac{x}{4}\right]_{0}\right]$	A1		correct integrati	on and limits	5
		$k \times \begin{bmatrix} 16 \\ 4 \end{bmatrix} = 1 \text{ or } k \times 4 = 1 \text{ or } k$					
		$\kappa \sim \left[\frac{3}{3} - 4\right] = 1$ of $\kappa \sim \frac{3}{3} - 1$ of					
		$k = \frac{3}{4} \mathbf{AG}$	A1	[3]	No errors seen		
	(iii)	$\frac{3}{4}\int_{-\infty}^{2}x^{3}(2-x)dx$	M1		attempt integ xf	(x), condone	missing k
	. /				1	())	0
		$=\frac{3}{4} \times \left[\frac{2x^4}{4} - \frac{x^5}{5}\right]^2$	A1		correct integrati	on and limits	s, condone
		° ∟ * ° J0			missing k		
				[0]	11	•,	
		1.2 m oe	Al	[3]	allow without u	nıts	

Page 6		Mark Scheme S					Paper
		Cambridge International A Level – May/June 2016			9709	71	
(iv)		$\frac{\frac{3}{4}}{4} \int_{0}^{1} x^{2} (2-x) dx$ $(= \frac{3}{4} \times (\frac{2}{4} - \frac{1}{4}))$	$\mathbf{M1} \qquad \text{attempt integ } \mathbf{f}(x) \\ \text{missing } k$		c), 0 to 1, con	done	
		$=\frac{5}{16}$ or 0.3125 oe	A1				
		$400 \times \frac{5}{16} = 125$	A1 ft	[3]	ft their $\frac{5}{16}$		
7 (a) ((i)	$0.01 \times 80 \text{ and } 0.015 \times 60$ (1 - e ^{-0.8}) × (1 - e ^{-0.9}) = 0.327 (3 sf)	M1 M1 A1	[3]	$(1 - e^{-\lambda}) \times (1 - e^{-\lambda})$ allow one end end	(λ, μ) any λ, μ (<i>i</i> rror	$\lambda \neq \mu$)
(i	ii)	$\lambda = 0.02 \times 40 + 0.015 \times 60$	M1		or their $0.8 + 0.9$)	
		$e^{-1.7} \times (1 + 1.7 + \frac{1.7^2}{2})$ = 0.757 (3 sf)	M1 A1	[3]			
(b)		$e^{-\lambda} \times \lambda = p$ and $e^{-\lambda} \times \frac{\lambda^2}{2} = 1.5p$	M1		or $e^{-\lambda} \times \frac{\lambda^2}{2} = 1.3$ implied	$5 \times e^{-\lambda} \times \lambda$ set	en or
		$\lambda = 3$	A1				
		$p = e^{-3} \times 3$ = 0.149 (3 sf)	M1 A1	[4]	their λ		

[Total for paper 50]

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

Paper 7 MARK SCHEME Maximum Mark: 50 9709/72 May/June 2016

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9709	72

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9709	72

AEF	Any Equivalent Form (of answer is equally acceptable)			
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)			
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)			
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)			
CWO	Correct Working Only – often written by a 'fortuitous' answer			
ISW	Ignore Subsequent Working			
MR	Misread			
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)			
SOS See Other Solution (the candidate makes a better attempt at the same question)				

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR 1 A penalty of MR 1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through $\sqrt[A]{}$ ' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR 2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA 1 This is deducted from A or B marks in the case of premature approximation. The PA 1 penalty is usually discussed at the meeting.

Page 4 Mark Scheme Syllabus			Paper					
			Cambridge International A Level –	May	/Jun	ie 2016 9709 72		
				<u> </u>				
1			$\frac{6.2}{\sqrt{50}}$ or $\frac{6.2^2}{50}$	B 1		seen or implied		
			$\frac{51-53}{6.2\div\sqrt{50}}$ (= -2.281)	M1		allow without ÷	√ 50	
			$P(z > `-2.281') = \phi(`2.281')$ = 0.989 (3 sf)	M1 A1	[4]	for finding corre working as final answer	ect area consi	stent with
2	(i)		Conclude less than 90% satisfied when this is not true oe	B11		In context		
	(ii)		$1 - (0.9^{15} + 15 \times 0.9^{14} \times 0.1) + {}^{15}C_2 \times 0.9^{13} \times 0.1^2 + {}^{15}C_3 \times 0.9^{12} \times 0.1^3) = 0.0556 (3 \text{ sf}) \text{ or } 0.0555$	M1 M1 A1	[3]	Attempt (1–)P(2 end error Attempt fully co	X = 15, 14, 13,	12) allow 1 sion
3	(i)		Pop too big or takes too long oe or testing destroys articles oe	B1	[1]	or too expensive or pop inaccessi	e oe ble oe	
	(ii)	(a)	z = 1.96	B 1		seen		
			65 7 ± $z \times \frac{\sqrt{15}}{2}$	M1		Expression of co	orrect form (1	must be 'z'
			= 64.9 to 66.5 (3 sf)	A1	[3]	must be 65.7)		
					[0]	Must be an inter	val	
		(h)	CI does not include 64 7			allow 64 7 not w	vithin CI	
		(~)	Probably has affected (or increased) mean					
			bounce ht.	B 1√	[1]	both needed. ft t	their CI ft 65	7/64.7 mix
4			H ₀ : λ (or μ) = 42			Or pop weekly 1	mean $= 2.1$ et	c.
			$H_1: \lambda \text{ (or } \mu) \neq 42$	B1		allow 'population	on mean' not	just 'mean'
			$Po(42) \sim N(42, 42)$ stated or implied	B 1√		ft their '42' (Ac	cept alt meth	od
			<u>53.5–42</u>	M1		N(2.1,2.1/20)		
			$\sqrt{42}$ = 1.77(4) (or 0.028 for error comparison)	A 1		allow with wron	a or no co	
				Π		Accept alt method with or without	od using N(2 cc	.1,2.1/20)
			comp 1.96	M1		Valid comp z or 0.025 seen	1 – ('1.774	4') with
			No evidence that mean has changed	A1√	[6]	allow comp 1.64 No contradiction > 42	45 if $H_1: \lambda$ (or ns. No ft for]	$f(\mu) > 42$ H ₁ : λ (or μ)
						Note – accept of cv method)	ther valid me	thods(e.g.

F	Page 5	Mark Scheme			Syllabus	Paper		
		Cambridge International A Level – May/June 2016			9709	72		
5	(i)		$\frac{T \sim N(520, 70)}{\frac{530 - 520}{\sqrt{70'}}} \ (= 1.195)$	B1 B1		for N(520,) or standardising w	N(500,) if ith 510	
			('1.195') = 0.884 (3 sf)	M1 M1 A1	[5]	ft their E and Var; allow without $$ finding correct area consistent with working CWO		
	(ii)		E(T) = -10 Var(T) = 50 + 4.1 ² × 20 (= 386.2) $\frac{0-(-10)}{\sqrt{386.2'}}$ (= 0.509) 1 - ('0.509') = 0.305 (3 sf)	B1 B1 M1 M1	[5]	or +10 for T < 0 Seen or implied ft their E and Var; allow without $$ finding correct area consistent with working CWO		
6	(i)		$\lambda = 6.8 e^{-6.8} \times \frac{6.8^5}{5!} = 0.135 (3 \text{ sf})$	B1 M1 A1	[3]	any λ		
	(ii) (a)	$e^{-3.4}(1+3.4+\frac{3.4^2}{2}+\frac{3.4^3}{3!}+\frac{3.4^4}{4!})$	M1		any λ , allow one	e end-error	
			= 0.744 (3 sf)	A1	[2]			
	(b)	$(0.744' + e^{-3.4} \times \frac{3.4^2}{5!})$ = 0.87(0) (3 sf) or 0.871	M1 A1	[2]	or complete met end-error	hod, any $λ$, a	llow one
	(iii)		$P(X \le 6) = `0.870' + e^{-3.4} \times \frac{3.4^6}{6!}$ = 0.94	M1 A1	[3]	or complete method, any λ fully correct un-simplified expression of better		
				Π	[9]	(0.94 or better)	numericai ju	suncation
7	(a)		0.3 or 1 – 0.6 or 0.4 or 0.2 seen 0.8	M1 A1	[2]			
	(b) (i)	$k \int_{0}^{1.5} (2.25 - x^2) dx = 1$ $k \left[2.25 x - x^3 \right]^{1.5} = 1$	M1		attempt integ f(x limits	(c) and $(= 1)$.	Ignore
			$\kappa \lfloor 2.25x - \frac{x}{3} \rfloor_{0} = 1$	AI		correct integration	on and limits	
			$k \times [3.375 - 1.125] = 1 \text{ or } k \times \frac{9}{4} = 1 \text{ oe}$		[0]	N		
			$k = \frac{\tau}{9} \mathbf{A} \mathbf{G}$	Al	[3]	No errors seen		

Page 6	Mark Scheme			Syllabus	Paper				
	Cambridge International A Level –	May/Jur	ne 2016	9709	72				
(ii)	$\frac{4}{9} \int_0^{1.5} (2.25x - x^3) dx$	M1	attempt integ <i>x</i> f	(x), ignore lin g <i>k</i>	nits,				
	$= \frac{4}{9} \left[2.25 \frac{x^2}{2} - \frac{x^4}{4} \right]^{1.5} = 0.5625 \text{ or } 0.563$	A1	correct integrati missing k	on and limits	s, condone				
	Mean no. of hours = 56.25 or 56.3 56 hrs 15 mins	A1 A1∜ [4]	ft their 0.5625						
(iii	Max x is 1.5, less than 2.9 or $150 < 290$	B1 [1]	Needs numerica	l justification	n				
(iv	any <i>a</i> such that $2.9 \le a \le 5$	B1 [1]							
	Total for paper	50							

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

9709/73 May/June 2016

Paper 7 MARK SCHEME Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9709	73

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- The symbol I implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9709	73

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √^k" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4Mark SchemeSyllabusPaperCambridge International A Level – May/June 2016970973

Qu	Answer	Marks	Notes
1	$192.4 \pm z \sqrt{\frac{43.6}{150}}$	M1	Allow $\frac{43.6}{\sqrt{150}}$ Allow one side for M1
	<i>z</i> = 2.326 to 2.329 191 to 194 (3 sf)	B1 A1 [3]	Condone $\sqrt{(43.6/149)}$ oe CWO
2	H _o : Pop mean yield = 8.2 H ₁ : Pop mean yield > 8.2 $(\pm) \frac{8.7-8.2}{1.2/\sqrt{16}}$	B1 M1	or $\mu = 8.2$ (not just "mean") $\mu > 8.2$ Allow without $\sqrt{\text{sign}}$ (Allow cc)
	= $(\pm)1.667$ Comp z = 1.645 Or Area comparison 0.0475-0.0478) Reject H ₀ Evidence that mean yield has increased	A1 M1 A1√ [*] [5]	Or comp 1 - $\Phi('1.667')$ with 0.05 Valid Comparison z-values (same sign) or areas No Contradictions No follow through for 2 tail test
3 (i)	Use of Poisson Mean = 2.4 $1 - e^{-2.4}(1 + 2.4 + \frac{2.4^2}{2})$ = 0.43(0) (3 sf)	B1 B1 M1 A1 [4]	Allow any λ (Allow one end error) Final answer SR Use of binomial: B1 for ans 0.431 (3 sf)
(ii)	240 > 50 or n>50 240 × 0.01 = 2.4 < 5 or np<5 or p<0.1	B1 B1 [2]	SR <i>n</i> large, <i>p</i> small: B1
4 (i)	H ₀ : Pop mean = 2.5 (or 7.5) H ₀ : Pop mean < 2.5 (or 7.5)	B1	or $\lambda = 2.5$ (Not just "mean") Allow μ or $\lambda < 2.5$
	$\lambda = 7.5$ P(X \le 2) = e ^{-7.5} (1+7.5+ $\frac{7.5^2}{2}$) = 0.0203 P(X \le 3)=0.0203 + e ^{-7.5} × $\frac{7.5^3}{3!}$ = 0.0591	M1 A1	Either $P(X \leq 2)$ or $P(X \leq 3)$, allow any λ Both Correct
	CR is $X \leq 2$	A1	Clear statement
	Reject H_0 Evidence that no of sightings fewer	A1 √[5]	Follow through their CR/their $P(X \leq 2)$
(ii)	P(Type I) = 0.0203 (3 sf)	B1 √ [1]	ft their $P(X \le 2)$
(iii)	H ₀ was rejected oe	B1 [1]	or Type II is P(not reject H ₀)oe
5 (i)	$k\int_{5}^{10} (10t - t^2) dt = 1$	M1	Attempt to integrate, ignore limits
	$k \left[5t^2 - \frac{t^3}{3} \right]_{5}^{10} = 1$	A1	Correct integral and limits
	$k(500 - \frac{1000}{3} - (125 - \frac{125}{3})) = 1$ $k \times \frac{250}{3} = 1$		
	$(k = \frac{3}{250} \mathbf{AG})$	A1 [3]	No errors seen; No inexact decimals seen

Page 5Mark SchemeSyllabusPaperCambridge International A Level – May/June 2016970973

Qu	Answer	Mai	rks	Notes
(ii)	$\frac{3}{250} \int_{5}^{10} (10t^2 - t^3) \mathrm{d}t$	M1		Attempt to integrate, ignore limits
	$= \frac{3}{250} \left[\frac{10t^3}{3} - \frac{t^4}{4} \right]_{5}^{10}$	A1		Correct integral and limit. Condone missing k
	$= \frac{3}{250} \left(\frac{10000}{3} - \frac{10000}{4} - \left(\frac{1250}{3} - \frac{625}{4} \right) \right)$ = 6.875 or 55/8	A1	[3]	Allow 6.88
(iii)	$P(T < E(T) = \frac{3}{250} \left[5t^2 - \frac{t^3}{3} \right]'' \frac{6.875''}{5}$	M1*		ft their $E(T)$
	= 0.5361 " 0.5361 " - 0.5 P(<i>T</i> between F(<i>T</i>) & median = 0.0361	DM1	[* [3]	allow 0.036
		Π	[3]	Alternative Method Integrate f(t)limits 5 and m equated to 0.5 M1*
				Integrate f(t)limits their 6.736 (provided between 5 and 10) and their 6.875DM1
				Allow without "minutes"
(iv)	10 (minutes)	B 1	[1]	
6 (i)	$\lambda = 3.9$ $e^{-3.9} \times \frac{3.9^4}{4!}$	B1 M1		M1 allow any λ
	= 0.195	A1	[3]	SR Combination method B1 for $\lambda = 1.6$ AND $\lambda = 2.3$ used in combination method (at least 3 combinations) M1 All correctly combined and added
(ii)	$\bar{X} \sim N(1.6, \frac{1.6}{75})$	B1 B1	[2]	B1 for N(1.6,)stated B1 for Var = $\frac{1.6}{75}$ stated SR, not stated but all implied in (iii): B1
(iii)	$\frac{1.7-1.6}{\sqrt{\frac{1.6}{75}}} (= 0.685)$ 1- $\Phi(``0.685")$ = 0.247 (3 sf)	M1 M1 A1	[3]	For standardising (using their values or correct values .Ignore cc Correct area consistent with their working Accept use of 1/2n correction leading to 0.233. NB Use of Poisson sum Po(120) and N(120,120) with μ =127.5 leads to 0.247, or 0.233 with cc
(iv)	X not normally distr. So CLT needed	B 1	[1]	Not "it"

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2016	9709	73

Qu	Answer	Marks	Notes
7 (i)	E(T) = 20.8 Var(T) = 20 × 0.03 ² + 0.01 ² (= 0.0181) $\frac{20.6 - 20.8}{\sqrt{0.0181^{\circ}}} (= -1.487)$ 1 - $\Phi(``1.487'')$ = 0.0684 to 0.686	B1 B1 M1 M1 A1 [5]	or $\sqrt{(20 \times 0.03^2 + 0.01^2)} = 0.135$ (3sf) For standardising (σ must come from combination) Area consistent with their working Any answer within range
(ii)	E(D) = 0 Var(D) = 2 × 0.0181(= 0.0362) $\frac{0.02-0}{\sqrt{0.0362}}$ (= 0.105)	B1√ [*] M1	Both (Seen or implied) Allow without $$
	$\Phi(``0.105") = 0.5418 \text{ or } 1-\Phi(0.015)$ =0.4582 $\Phi(``0.105") - (1 - \Phi(``0.105"))$ (= 0.5418 - 0.4582) = 0.0836/0.0837	A1 M1 A1 [5]	Allow to 3st or $1 - 2(1 - \Phi(``0.105"))$ $(= 1 - 2 \times 0.4582)$

MARK SCHEME for the March 2016 series

9709 MATHEMATICS

9709/72

Paper 7 (Probability and Statistics), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE[®] and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9709	72

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9709	72

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓^k" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	e 4 Mark Scheme			Syllabus	Paper]	
		Cambridge International AS/A Level – March 2016					72	
1		$E(X) = \frac{10}{3}$ oe $Var(X) = \frac{25}{9}$ oe E(Y) = 10 $Var(Y) = 5$	B1 B1		For $E(X)$ and $Var(X)$ For $E(Y)$ and $Var(Y)$ OR For $E(X)$ and $E(Y)$ For $Var(X)$ and $Var(Y)$			
		$E(X + Y) = \frac{40}{3} \text{ oe} \text{or } 13.3 \text{ (3 sf)}$ Var $(X + Y) = "\frac{25}{9}" + "5"$ sd = $\frac{\sqrt{70}}{3}$ oe \qquad \text{or } 2.79 \text{ (3 sf)}	B1 M1 A1	[5]	For adding 2 (appropriate) variances or sd = or $\sqrt{2} \times \frac{5}{3}$			
2		H ₀ : P(hit target) = 0.65 H ₁ : P(hit target) > 0.65	B1		Allow $p = 0.65$ Allow $p > 0.65$			
		${}^{20}C_2 \times 0.35^2 \times 0.65^{18} + 19 \times 0.35 \times 0.65^{19} \\ + 0.65^{20} \\ = 0.0121 \text{ (3 sf)}$	M1 A1		Allow one end error. Allow p/q mix. Allow (1 for M mark A mark recovered following valid comparisor			r (1-) son
		Comp 0.01 There is no evidence (at the 1% level) that she has improved	M1 A1√ ^Å	[5]	 For valid comparison She has probably not improved. No contradictions. (SR Use of Normal M0, but M1A1 for valid comparison could be awarded) 			d
3	(i)	H_0 : pop mean journey time = 35.2 mins H_1 : pop mean journey time < 35.2 mins	B1		Allow "µ". Not "m	ean journey t	ime"	
		$\frac{\frac{34.7-35.2}{5.6/\sqrt{25}}}{(=-0.446)}$	M1		For standardising ($(\sqrt{25} \text{ needed})$		
		$\Phi(<"-0.446") = 1 - \Phi("0.446")$ = 0.328 (3 sf)	M1 A1	[4]	For correct area co As final answer	nsistent with	their working	ng
((ii)	H_0 <i>is</i> rejected but Type II error can only be made if H_0 is <i>not</i> rejected	B1	[1]	Allow just "H ₀ is re	ejected." oe		
4		$\frac{X - 2Y \sim N(0.1, 0.2^2 + 4 \times 0.1^2) \text{ soi}}{(= N(0.1, 0.08))}$	B1 B1		B1 for ± 0.1 B1 for	$r 0.2^2 + 4 \times 0$.1 ²	
		$\frac{0-0.1}{\sqrt{0.08^{n}}} \qquad (=-0.354)$	M1		For standardising.	Allow without	ut √ sign	
		$\Phi("-0.354") = 1 - \Phi("0.354")$ = 0. 362 (3 sf)	M1 A1	[5]	For correct area co	nsistent with	their working	ng
5	(i)	$Est(\mu) = \frac{14910}{150} (= 99.4)$ $Est(\sigma^2) = \frac{150}{149} (\frac{1525000}{150} - "99.4"^2)$ $= 288.228$	B1 M1 A1		Allow M1 if $\frac{150}{149}$ o	mitted		
		z = 2.576 "99.4" $\pm z \times \sqrt{288.228 \div 150}$ CI = 95.8 to 103 (3 sf)	B1 M1 A1	[6]	Accept 2.574–2.57 Any z (NB Use of biased	'9 Var can scor	re 5/6 max)	
((ii)	100 lies within this CI Hence yes	B1√ [^]	[1]	Both needed, ft the	eir CI		

Page 5Mark SchemeSyllabusPaperCambridge International AS/A Level – March 2016970972

	(iii)	To avoid bias or Necessary to enable statistical inference	B1	[1]	Or any equivalent
6	(i)	$\lambda = 3.3 \times \frac{25}{30} = 2.75$ e ^{-2.75} (1 + 2.75 + $\frac{2.75^2}{2}$) = 0.481 (3 sf)	B1 M1 A1	[3]	Allow any λ Allow one end error As final answer. Accept 0.482
	(ii) (a)	$\lambda (= 3.3 \times \frac{365}{30}) = 40.15$ (X ~ Po(40.15) \Rightarrow X ~ N(40.15, 40.15)) $\frac{50.5 - "40.15"}{\sqrt{"40.15"}}$ (= 1.633)	B1 M1		Accept 40.1 or 40.2 Allow with incorrect or no cc OR no $\sqrt{\text{sign}}$
		$1 - \Phi("1.633") = 0.0513 (3 \text{ sf})$	M1 A1	[4]	For correct area consistent with their working Accept 0.0512
	(b)	$\lambda > 15$	B1	[1]	or similar
	(iii)	$\lambda = \frac{73}{30} \text{ oe or } 1.1 + 1.33 = 2.43 (3 \text{ sf})$ $1 - e^{-2.43} (1 + 2.43 + \frac{2.43^2}{2} + \frac{2.43^3}{3!}) = 0.228 (3 \text{ sf})$	B1 M1 A1	[3]	Allow any λ . Allow one end error
7	(a) (i)	$E(X) = 1.5$ $\frac{2}{9} \int_{0}^{3} (3x^{3} - x^{4}) dx$ $= \frac{2}{9} \left[\frac{3x^{4}}{4} - \frac{x^{5}}{5} \right]_{0}^{3}$ $= \frac{2}{9} \left[\frac{243}{4} - \frac{243}{5} \right] \qquad (= 2.7)$	B1 M1		Attempt integ $x^2 f(x)$ ignore limits Sub correct limits into correct integral
		$Var(X) (= 2.7 - 1.5^2) = 0.45$ oe	A1√ [^]	[4]	Ft their $E(X)$, but no ft for –ve Var.
	(ii)	0.5	B1	[1]	
	(iii)	$(1 - \frac{13}{27}) \div 2$ = $\frac{7}{27}$ or 0.259	M1 A1	[2]	or $\frac{2}{9} \int_{2}^{3} (3x - x^2) dx$ oe As final answer
	(b)	$\frac{\frac{1}{2} \times 2 \times 2a = \frac{1}{2}}{a = \frac{1}{4}}$ or $\int_0^2 ax dx = \frac{1}{2}$ $\frac{\frac{1}{2} \times b \times \frac{1}{4}b = 1}{b = 1} \text{ or } \int_0^b \frac{1}{4}x dx = 1$ or $b = 2 \times \sqrt{2}$ $b = 2\sqrt{2}$	M1 A1 M1 A1√ ^A	[4]	Attempt correct equation in 'a' or $\frac{1}{2} \times b \times ab = 1$ or $\int_{0}^{b} axdx = 1$ attempt correct equation in (a and) b Allow $b = \sqrt{8}$ or 2.83 (3 sf) Ft incorrect <i>a</i> , both M s needed
			Total paper	for 50	

Cambridge International Advanced Level

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/71

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9709	71

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.
| Page 3 | Mark Scheme | Syllabus | Paper |
|--------|---|----------|-------|
| | Cambridge International A Level – October/November 2015 | 9709 | 71 |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓^k" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme				Syllabus	Paper	
		Cambridge International A Level – Oc	tober	/Noven	nber 2015	9709	71	
1		$\lambda = (1.2 + 2.3) \div 2$ = 1.75 (1.75 ² - 1.75 ³)	M1 A1		Attempt com Correct mean	bined mean,	allow 1.2 +	2.3
		$ e^{-1.75} \left(\frac{1.75}{2} + \frac{1.75}{3!} \right) $ = 0.421 (3 sf)	M1 A1	[4]	Allow incorrect mean. Allow end errors (1 and/or 4)			
			Tota	l: 4				
2	(i)	$\frac{6}{\sqrt{120}}$ oe seen	B1		Or 6 ² /120 oe seen			
		$\frac{30-29}{\left(\frac{6}{\sqrt{120}}\right)} \qquad (=1.826)$	M1		± Allow withou	ut √120. No s	d/var mix	
		$P(z > `1.826') = 1 - \Phi(`1.826')$ = 0.034 (2 sf)	M1 A1	[4]	Correct tail consistent with their working 0.0339			
	(ii)	No n is large (\geq 30)	B1		1 st B1 for either comment			
		Sample mean is (appr) normally distrib or The CLT applies oe	B1	[2]	2 nd B1 for'No (No mark for	o'with 2 nd cor 'No' alone)	mment	
			Tota	l: 6				
3	(i)	$\frac{3420}{60}(=57)$	B1					
		$\frac{60}{59} \left(\frac{195200}{60} - 57'^2 \right) \qquad (= 4.40678)$ $= 4.41 (3 \text{ sf})$	M1		Oe			
			A1	[3]	As final answ	ver		
	(ii)	$57'\pm z\sqrt{\frac{4.40678'}{60}}$	M1					
		<i>z</i> = 2.326	B1		2.326 - 2.329	expected (accept 2.3)	3 if no bette	r
		[56.4 to 57.6] (3 sf)	A1	[3]	seen) NB: use of biased variance in (ii) can score in full			
			Tota	l: 6				

	Page 5	Mark Scheme			Syllabus	Paper		
		Cambridge International A Level – Oc	tober/Noven	nber 2015	9709	71		
4	(i)	$k\int_{1}^{2} (3-x)dx = 1$	M1	Attempt $\int \mathbf{f}(x)$ $\frac{k}{2}(\mathbf{h}_1 + \mathbf{h}_2) =$	Attempt $\int f(x) = 1$, ignore limits or $\frac{k}{2}(h_1 + h_2) = 1$			
		$k\left[3x - \frac{x^2}{2}\right]_1^2 = 1$	A1	Correct integr $\frac{k}{2}(2+1) = 1$	Correct integration & limits or $\frac{k}{2}(2+1) = 1$			
		(k(6-2-(3-0.5)) = 1) $k \times 1.5 = 1 \text{ or } k \times \frac{3}{2} = 1 \text{ or } k = \frac{1}{1.5} \text{ oe}$ $k = \frac{2}{3} \text{ AG}$	A1 [3]	No errors see	n			
	(ii)	$\frac{2}{3} \int_{1}^{m} (3-x) dx = 0.5 \text{ oe } \int \text{from m to } 2$	M1*	Attempt Int fo	(x) = 0.5, ign	ore limits oe		
		$\left(\frac{2}{3}\left[3x - \frac{x^2}{2}\right]_1^m = 0.5\right)$ $\frac{2}{3}\left[3m - \frac{m^2}{2} - 2.5\right] = 0.5$	dep M1*	Sub of correct limits into their integral.				
		$m^2 - 6m + 6.5 = 0$ oe	A1	Any correct 3 =2.5	B-term QE =	0 or (m–3) ²		
		$\left(m = \frac{6 \pm \sqrt{36 - 4 \times 6.5}}{2} = 1.42 \text{ or } 4.58\right)$ m = 1.42 (3 sf)	A1 [4]	or $\frac{6-\sqrt{10}}{2}$ oe	; single corre	ect ans		
			Total: 7					

	Page 6	Mark Scheme				Syllabus	s Paper	
		Cambridge International A Level – O	ctober	/Noven	nber 2015	9709	71	
5	(i)	Po(1.6) stated or implied	M1					
		$P(X > 3) = 1 - e^{-1.6} \left(1 + 1.6 + \frac{1.6^2}{2} + \frac{1.6^3}{3!} \right)$	M1		Allow M1 for and allow one	r 1 − P($X \le$ e end error	≤3), incorrect ⁄	٦
		= 0.0788 (3 sf)	A1	[3]	SR Use of Bi	n scores B	1 only for 0.07	788
	(ii)	$\lambda = \frac{n}{2500}$ $e^{-\frac{n}{2500}} < 0.05 \qquad \text{Allow} =$	B1 M1		$e^{-\mu} < 0.05$	M1 $\frac{2}{2}$	$\frac{499}{500}$ B 2499) ⁿ a c	81
		Allow incorrect λ - $\frac{n}{2} < \ln 0.05$ Attempt ln bs	M1		$-\mu < \ln 0.05$	M1 n	$\left \frac{2499}{2500} \right < 0.05$ M $\ln \frac{2499}{2500} < \ln 0.0$	1 05
		2500 n > 7489.3 (1 dp) Smallest $n = 7490$	A1	[4]	$(\mu > 2.9957)$ $n = \mu \times 2500$ Smallest $n = 7$	B1 S1 7490 A1	Mmallest $n = 748$ A	1 88 .1
			Tota	l: 7				
6	(i)	$E(T) = 9 \times 78 + 7 \times 66$ (= 1164)	B 1		Or $9 \times 78 + 7$	× 66 – 12	00	
		$Var(T) = 9 \times 7^{2} + 7 \times 5^{2} (= 616)$ $\frac{1200 - 1164'}{\sqrt{616'}} (= 1.450)$	B1 M1		± Allow with	out √		
		$P(z < 1.450) = \Phi (1.450)$ = 0.927 (3 sf)	M1 A1	[5]	Correct tail co	onsistent v	vith their mean	l
	(ii)	E(D) = 66 - 78 (= -12)	B 1		Both needed			
		Var(D) = $7^2 + 5^2$ (= 74) $\frac{0 - ('-12')}{\sqrt{74}}$ (= 1.395)	M1		± Allow with	out √		
		$P(D > 0) = 1 - \Phi$ ('1.395') 0.0815 (3 sf)	M1 A1	[4]	Correct tail co Similar schen	onsistent w ne for P(M	vith their mean I – W) < 0	l
			Tota	l: 9				

Page 7	Mark Scheme			Syllabus	Paper		
	Cambridge International A Level – Oc	tober/Nove	mber 2015	9709	71		
	-						
7 (i)	Prob could be different later in day or on a different day oe	B1 [1]	or any explar or "Not rando	or any explanation why not random or "Not random" or "Not representative"			
(ii)	Looking for decrease (or improvement) H ₀ : P(not arrive) = 0.2 H ₁ : P(not arrive) < 0.2	B1 B1 [2]	oe Allow " $p = 0$.2"			
(iii)	Concluding that prob has <u>decreased</u> (or publicity has worked) when it hasn't oe	B1 [1]	In context	In context			
(iv)	P(X = 0) and P(X = 1) attempted P(X \le 2) = $0.8^{30} + 30 \times 0.8^{29} \times 0.2 + \frac{30}{C_2} \times 0.8^{28} \times 0.2^2$ (= 0.0442) P(X \le 3) = $0.8^{30} + 30 \times 0.8^{29} \times 0.2 + \frac{30}{C_2} \times 0.8^{28} \times 0.2^2 + \frac{30}{C_3} \times 0.8^{27} \times 0.2^3$ = 0.123 cr is X < 2	M1 M1 B1	B(30, 0.2) Not nec'y added May be implied by calc P($X \le 2$) or P($X \le 3$) Attempt P($X \le 2$) Or '0.0442' + ³⁰ C ₃ × 0.8 ²⁷ × 0.2 ³ = 0.123		123		
	P(Type I) = 0.0442 (3 sf)	A1 [5]					
(v)	3 is outside cr No evidence that <i>p</i> has decreased (or that publicity has worked)	M1 A1 √ [2]	Comparison of 3 with their cr or $P(X \le 3) = 0.123$ which is > 0.05 Correct conclusion. No contradictions		s		
		Total: 11					
		Total for paper: 50					

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9709	72

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9709	72

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓^k" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme				Syllabus	Paper	
		Cambridge International A Level – Oc	tober	/Noven	nber 2015	9709	72	
1		$\lambda = (1.2 + 2.3) \div 2$ = 1.75 $e^{-1.75} \left(\frac{1.75^2}{2} + \frac{1.75^3}{3!} \right)$	M1 A1 M1		Attempt com Correct mean Allow incorre Allow end er	Attempt combined mean, allow 1.2 Correct mean Allow incorrect mean. Allow end errors (1 and/or 4)		- 2.3
		= 0.421 (3 sf)	A1	[4]				
			Tota	l: 4				
2	(i)	$\frac{6}{\sqrt{120}}$ oe seen	B1		Or $6^2/120$ oe seen			
		$\frac{30-29}{\left(\frac{6}{\sqrt{120}}\right)} \qquad (=1.826)$	M1		± Allow withou	ut √120. No s	sd/var mix	
		$P(z > `1.826') = 1 - \Phi(`1.826')$ = 0.034 (2 sf)	M1 A1	[4]	Correct tail consistent with their working 0.0339			
	(ii)	No n is large (≥ 30)	B1		1 st B1 for either comment			
		Sample mean is (appr) normally distrib or The CLT applies oe	B1	[2]	2 nd B1 for'No (No mark for	o'with 2 nd co 'No' alone)	mment	
			Tota	l: 6				
3	(i)	$\frac{3420}{60}(=57)$	B1					
		$\frac{60}{59} \left(\frac{195200}{60} - 57^{2} \right) \qquad (= 4.40678)$ = 4.41 (3 sf)	M1		Oe			
			A1	[3]	As final answ	/er		
	(ii)	$57' \pm z \sqrt{\frac{4.40678'}{60}}$	M1					
		<i>z</i> = 2.326	B1		2.326 - 2.329) (accept 2.33	3 if no bette	er
		[56.4 to 57.6] (3 sf)	A1	[3]	seen) NB: use of biased variance in (ii) can score in full			1
			Tota	l: 6				

	Page 5	Mark Scheme			Syllabus	Paper		
		Cambridge International A Level – Oc	tober/Noven	nber 2015	9709	72		
			r					
4	(i)	$k\int_{1}^{2} (3-x)dx = 1$	M1	Attempt $\int f(x)$ $\frac{k}{2}(h_1 + h_2) =$	Attempt $\int f(x) = 1$, ignore limits or $\frac{k}{2}(h_1 + h_2) = 1$			
		$k\left[3x - \frac{x^2}{2}\right]_1^2 = 1$	A1	Correct integration & limits or $\frac{k}{2}(2+1) = 1$				
		(k(6-2-(3-0.5)) = 1) $k \ge 1.5 = 1 \text{ or } k \ge \frac{3}{2} = 1 \text{ or } k = \frac{1}{2} \text{ or } k = \frac{1}{2}$						
		$k = \frac{2}{3} \operatorname{AG}$ 1.5 C	A1 [3]	No errors see	n			
	(ii)	$\frac{2}{3} \int_{1}^{m} (3-x) dx = 0.5$ or $\int from m \text{ to } 2$	M1*	Attempt Int f	(x) = 0.5, ign	ore limits oe		
		$\left(\frac{2}{3}\left[3x - \frac{x^2}{2}\right]_1^m = 0.5\right)$		Or use of area	a of trapeziu	m		
		$\frac{2}{3} \left[3m - \frac{m^2}{2} - 2.5 \right] = 0.5$	dep M1*	Sub of correct Or trapezium Any correct 3 =2.5	et limits into using 1 and 8-term QE =	their integral. m/m and 2 0 or (m–3) ²		
		$m^2 - 6m + 6.5 = 0$ oe	A1					
		$\left(m = \frac{6 \pm \sqrt{36 - 4 \times 6.5}}{2} = 1.42 \text{ or } 4.58\right)$ m = 1.42 (3 sf)	A1 [4]	or $\frac{6-\sqrt{10}}{2}$ or	; single corre	ect ans		
			Total: 7					

	Page 6	Mark Scheme				Syllabu	s Paper	_
		Cambridge International A Level – C	ctober	/Noven	nber 2015	9709	72]
5	(i)	Po(1.6) stated or implied P(X > 3) = 1 - e^{-1.6} \left(1 + 1.6 + \frac{1.6^2}{2} + \frac{1.6^3}{2!} \right)	M1 M1		Allow M1 for	$r 1 - P(X \leq$	≤3), incorrect	λ
		(2 3!) = 0.0788 (3 sf)	A1	[3]	and allow one SR Use of Bi	e end error n scores B	1 only for 0.0	788
	(ii)	$\lambda = \frac{n}{2500}$ $e^{-\frac{n}{2500}} < 0.05$ Allow = Allow incorrect λ	B1 M1		$e^{-\mu} < 0.05$	M1 $\frac{2}{2}$	$\frac{2499}{2500} = \frac{2499}{2500} + \frac{2499}{2500} + \frac{2}{2500} + \frac{2}{2} + 2$	B1 5
		$-\frac{n}{2500} < \ln 0.05$ Attempt ln bs n > 7489.3 (1 dp) Smallest $n = 7490$	M1 A1	[4]	$-\mu < \ln 0.05$ ($\mu > 2.9957$) $n = \mu \times 2500$ Smallest $n = 1$	M1 n B1 S1 7490 A1	$\ln \frac{2499}{2500} < \ln 0.$ mallest $n = 74$	11 .05 11 88 A1
			Tota	l: 7				
6	(i)	$E(T) = 9 \times 78 + 7 \times 66 \qquad (= 1164)$ $Var(T) = 9 \times 7^2 + 7 \times 5^2 \qquad (= 616)$	B1 B1		Or 9 × 78 + 7	' × 66 – 12	200	
		$\frac{1200 - 1164'}{\sqrt{616'}} \qquad (= 1.450)$ $P(z < 1.450) = \Phi (1.450)$ $= 0.927 (3 \text{ sf})$	M1 M1 A1	[5]	± Allow with Correct tail co	out √ onsistent v	vith their mear	n
	(ii)	E(D) = 66 - 78 (= -12) $Var(D) = 7^2 + 5^2$ (= 74)	B1		Both needed			
		$\frac{0 - ('-12')}{\sqrt{74}} \qquad (= 1.395)$	M1		± Allow with	out √		
		$P(D > 0) = 1 - \Phi$ ('1.395') 0.0815 (3 sf)	M1 A1	[4]	Correct tail co Similar scher	onsistent v ne for P(N	with their mean (1 – W) < 0	n
			Tota	l: 9				
	-				-			

Page 7	Mark Scheme			Syllabus	Paper		
	Cambridge International A Level – Oc	tober/Nover	nber 2015	9709	72		
			_				
7 (i)	Prob could be different later in day or on a different day oe	B1 [1]	or any explar or "Not rando	or any explanation why not random or "Not random" or "Not representative"			
(ii)	Looking for decrease (or improvement) H ₀ : P(not arrive) = 0.2 H ₁ : P(not arrive) < 0.2	B1 B1 [2]	oe Allow " $p = 0$	oe Allow " $p = 0.2$ "			
(iii)	Concluding that prob has <u>decreased</u> (or publicity has worked) when it hasn't oe	B1 [1]	In context	In context			
(iv)	P(X = 0) and P(X = 1) attempted P(X \le 2) = $0.8^{30} + 30 \times 0.8^{29} \times 0.2 + \frac{30}{C_2} \times 0.8^{28} \times 0.2^2$ (= 0.0442) P(X \le 3) = $0.8^{30} + 30 \times 0.8^{29} \times 0.2 + \frac{30}{C_2} \times 0.8^{28} \times 0.2^2 + \frac{30}{C_3} \times 0.8^{27} \times 0.2^3$ = 0.123	M1 M1 B1	B(30, 0.2) Not nec'y added May be implied by calc $P(X \le 2)$ or $P(X \le 3)$ Attempt $P(X \le 2)$ Or '0.0442' + ${}^{30}C_3 \times 0.8^{27} \times 0.2^3 = 0.123$			123	
	cr is $X \le 2$ P(Type I) = 0.0442 (3 sf)	A1 A1 [5]					
(v)	3 is outside cr No evidence that <i>p</i> has decreased (or that publicity has worked)	M1 A1 ∲ [2]	Comparison of 3 with their cr or $P(X \le 3) = 0.123$ which is > 0.05 Correct conclusion. No contradictions		5		
		Total: 11					
		Total for paper: 50					

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/73

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9709	73

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^k implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9709	73

AEF Any Equivalent Form (of answer is equally acceptable)

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ↓^k" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA 1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme			Syllabus Paper
	Cambridge International A Level -	- Octobe	er/Nov	ember 2015 9709 73
1 (i)	N(352,) Variance = 2.9	B1 B1	[2]	no recovery in (ii) for each B mark accept sd = $\sqrt{2.9} = 1.70(29)$ stated
(ii)	$\frac{354 - 352}{\sqrt{2.9}} \qquad (= 1.174)$	M1		with their mean and var Or $\frac{354.05 - 352}{\sqrt{2.9}}$ or correct restart (= 1.204)
	1 – Φ('1.174')	M1		(accept sd/var mix)1 $-\Phi((1.204')) = 0.114 (3 \text{ sf})$
	= 0.120 (3 sf)	A1	[3]	Incorrect cc can score M1M1A0
Total			[5]	
2	$(\Phi^{-1}(0.99) =)$ 2.326 seen N(λ , λ) seen or implied	B1 M1		must be Φ^{-1} , not Φ
	$\frac{55.5 - \lambda}{\sqrt{\lambda}} = + "2.326"$	M1		allow with wrong or no cc & Φ(0.99) (= 0.8389) must = " z " or attempt at z (0.99 / 0.01 M0)
	$\sqrt{\lambda} = \frac{-"2.326" \pm \sqrt{"2.326"^2 + 4 \times 55.5}}{2}$ $(= 6.377 \text{ or} - 8.703))$	M1		for correct method of solving their quad in $\sqrt{\lambda}$ and squaring to find λ
	$\lambda = 40.7 (3 \text{ sf})$	A1	[5]	cao, one ans only Without cc, $\lambda = 40.2$: lose final A1
Total			[5]	
3 (i)	0.4 or 2/5 or 26/65	B1	[1]	no recovery in (ii) for the B mark
(ii)	" 0.4 " + $z \times \sqrt{\frac{0.4 \times 0.6}{65}} = 0.516$ oe	M1		or "0.4" $-z \times \sqrt{\frac{0.4 \times 0.6}{65}} = 0.284$ or
	$z = \left(0.116 \times \sqrt{\frac{65}{0.4 \times 0.6}}\right) = 1.909$	A1		$z \times \sqrt{\frac{0.4 \times 0.6}{65}} = 0.116$ oe
	(Φ('1.909') = 0.97(18)) 2 ('0.97' - 1)	M1	Γ4٦	for fully correct method to find α from their z
	$\alpha = 94$	Al	[4]	allow 94.36 or 94.4 or 94.374
Total			[5]	

[Page 5	Mark Scher	Syllabus	Paper			
		Cambridge International A Level -	- Octobe	r/Nov	ember 2015	9709	73
				r	Γ		
4	(i)	$k \int_{-2}^{2} (4 - x^2) \mathrm{d}x = 1$	M1		attempt Integral	f(x) = 1, igno	ore limits
		$k[4x - \frac{x^3}{3}]_{-2}^2 = 1$	A1		correct integration	on & limits	
		$\left(k\left(8-\frac{8}{3}-\left(-8-\left(-\frac{8}{3}\right)=1\right)\right)\right)$					
		$k \times \frac{32}{3} = 1$ oe Not e.g. $k \times 10.7 = k$					
		$k = \frac{3}{32} \mathbf{AG}$	A1	[3]	exact answer co	rrectly found	l
	(ii)	Inverted parabola, vertex on y axis	B 1		parabola must fi	nish on x axi	is at ± 2 , v axis)
		$\mathrm{E}(X)=0$	B1	[2]			· · · · · · · · · · · · · · · · · · ·
	(iii)	$\frac{3}{32}\int_{-2}^{1}(4-x^2)\mathrm{d}x$	M1		or $1 - \frac{3}{32} \int_{1}^{2} (4 - 1)^{2}$	x^2)dx	ignore limits
		$\frac{3}{32} \left[4x - \frac{x^3}{3}\right]_{-2}^{1}$	A1		or $1 - \frac{3}{32} [4x - $	$\left[\frac{x^3}{3}\right]_1^2$	
		$\frac{3}{32} \left(4 - \frac{1}{3} - \left(-8 - \left(-\frac{8}{3}\right)\right)\right)$			correct integration = $1 - \frac{3}{32}(8 - \frac{8}{3})$	on and correct $-(4-\frac{1}{3})$	et limits
		$=\frac{27}{32}$ or 0.844 (3 sf)	A1	[3]		5	
Г	`otal			[8]			

	Page 6	Mark Scher	Syllabus	Paper			
		Cambridge International A Level –	- Octobe	r/Nov	ember 2015	9709	73
5	(a)	$\lambda = 4.5$	B1 M1			. 1	
		e = (= 0.011109)	IVI I		alone allow any	λ	
		$\left(\frac{99}{99}\right)^{+30}$ (= 0.010860)	M1				
		(100)					
		$\left(\frac{0.011109'-0.010860'}{0.010860}\times 100\right)$					
		= 2.29% (3 sf)	A1	[4]			
	(b)	H ₀ : P(6) = $\frac{1}{6}$ or $p = \frac{1}{6}$					
		$\mathbf{H} = \mathbf{D}(\mathbf{C}) \leq 1$ and $\mathbf{c} \leq 1$					
		$H_1: P(6) < \frac{1}{6} \text{ or } p < \frac{1}{6}$	B 1		Both needed		
		$\left(\frac{5}{-1}\right)^{25} + 25\left(\frac{5}{-1}\right)^{24} \times \frac{1}{-1} + {}^{25}C_{2}\left(\frac{5}{-1}\right)^{25} \times \left(\frac{1}{-1}\right)^{2}$	M1		allow one error	(extra term/	missing
		(6) (6) 6 (6) (6)			term / incorrect	term)	C
					CR method: atte	empt at least	P(0) and $P(0)$
					and 1) (0.010	and 0.06 <	0.1)
		= 0.189 (3 sf)	A1		CR is 0,1 and m	nust see 0.189	9 for A1
		comp 0.1	M1		valid comp '0.1	89' with 0.1	oe
					valid compariso	on of 2 with C	CR
		No reason to believe die biased	A1	[5]	correct conclusi	on their 0	180
		The reason to beneve are blased		[2]	no contradiction	isin, i then of	.109
T	- 4 - 1			[0]			
1	otai			[9]			
6	(i)	Ho: $\mu = 2.60$					
		$H_1: \mu > 2.60$	B 1		allow pop mean	, not just 'me	ean'
		⊥ 2.64 – 2.6					
		$\pm \frac{1}{0.2 \div \sqrt{75}}$	M1				
		$= \pm 1.732$	A1		accept \pm 1.73 (3	3 sf)	
		'1.732' > 1.645			valid compariso $($ or $0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.0416 < 0.041$	on with 1.645	
		Reject Ho. There is evidence that μ has			and correct cond	clusion 📌 the	ir 1.732
		increased	B1 √°	[4]	no contradiction	15	
1					(or CV method)	$x_{crit} = 2.638$	M1A1
					comp 2.64 > 2.6	558 and conc	ш вт я)
1					SR two tail test,	, using 1.96 (or using
					0.025) can scor	e B0M1A1B	1ft max 3/4

Page 7	Mark Schei	Syllabus	Paper			
	Cambridge International A Level -	- Octobe	er/Nov	ember 2015	9709	73
			r	1		
(ii)	$\frac{x-2.6}{0.2 \div \sqrt{75}} = 1.645 \qquad (x = 2.638)$	M1				
	$\pm \frac{2.036 - 2.06}{0.2 \div \sqrt{75}}$	MI		for standardising using 2.68	g with their "	2.638 "
	$= \pm 1.819$	A1		accept 1.82 (3 s	sf)	
	$\Phi(`-1.819') = 1 - \Phi(`1.819')$	M1		indep M mark, o area/prob consi	calculate corrections of the correction of the c	ect eir working
	= 0.0345 or 0.0344	A1	[5]	area/prob consistent with their working		
Total			[9]			
7 (i)	est $\mu = 2.087$	B 1		allow 2.09		
	est $\sigma^2 = \frac{100}{99} \left(\frac{435.57}{100} - 2.087^2 \right)$	M1		1/99 (435.57 –	208.7 ² /100))
	= 0.000132(3232) or 131/990000	A1	[3]	without $\frac{100}{99}$: 0.	.000131 M04	A 0
(ii)	E(Y-X) = 2.12 - 2.087 (= 0.033)	B 1		or 2.12 – 2.087 0 allow 2.09 for	– 0.01 for Y 2.087	- X - 0.01 <
	Var(Y - X) = 0.000144 + `0.00013232' = 0.000276(32)	M1 A1		or $\sqrt{(0.012^2 + `0)}$ = 0.016623	0.00013232')	M1 A1
	$\frac{0.01-0.033'}{\sqrt{0.00027632'}} \qquad (=-1.384)$	M1			& Var($Y - X$ ombination o) f the two
	$\Phi(`-1.384') = 1 - \Phi(`1.384')$	M1		correct area/pro	ob consistent	with their
	= 0.0832	A1	[6]	SR use of biased and (ii) scores in (ii) B1 and M1M1 A1 f (6/6 available)	d var (0.000 M1 A1 for 0 for 0.0827	131) in (i) .000275
Total			[9]			
	Total for paper		[50]			

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/71

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9709	71

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9709	71

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)

- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9709	71

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise < 3 sfs only once in paper.

1		$\frac{1}{2}a^2 = 1$	M1		or $\int_{0}^{a} x dx = 1$
		$a = \sqrt{2}$	A1		Allow 1.41 or better
		$\int_{0}^{\sqrt{2}} x^2 \mathrm{d}x$	M1		ignore limits
		$= \left[\frac{x^3}{3}\right]_0^{\sqrt{2}}$	A1f		correct integral and limits, but ft their a
		$=\frac{\left(\sqrt{2}\right)^3}{3} = \text{or } \frac{2^{1.5}}{3} \text{ or } \frac{2.83}{3} \text{ or } 0.9428$	A1	[5]	must see this numerical expression, or equiv SR Equating $\int x f(x)$ to 0.943 scores M1 Solving to find $a = 1.41$ scores A1
		(= 0.943 AG)			
			[To	tal 5]	
2	(i)	H ₀ : $p = 0.2$ or $\mu = 10$ H ₁ : $p > 0.2$ or $\mu > 10$	B1	[1]	
	(ii)	N(10, 8) seen or implied	B1		or N $\left(0.2, \frac{0.2 \times 0.8}{0.2 \times 0.8}\right)$
		$\frac{125-10}{\sqrt{2}}$ or $\frac{\frac{125}{50}-02}{\sqrt{2}}$	M1		50
		$\sqrt{8} \qquad \sqrt{\frac{0.2 \times 0.8}{50}}$ $= 0.884$	A1		For standardising allow with no or wrong cc
		comp 1.282	M1f		Allow area comparison with 0.188 or comp 1.645 if $H_1 p \neq 0.2$
		Claim not justified or No evidence to support claim	Alf	[5]	Allow accept H_0 provided correctly defined. Follow through their test statistic ;dep 1–tail test No Contradictions
					SR; Use of B(50,0.2) scores B1 provided at least two probabilities calculated. M1 For finding P($X \ge 13$) allow one end error. A1 for 0.186
			[Tot	al: 6]	

P	Page 5 Mark Scheme				Syllabus	Paper	
		Cambridge International A Le	evel –	May/Ju	une 2015	9709	71
					I		
3	(i)	34 2.22 + 1.32 + 2.62 (=13.29)	B1 B1	[2]	Accept 13.3 or 3.0	65^2 Allow at	early stage
	(ii)	$\frac{33-34'}{\sqrt{\frac{13.29'}{70}}} \qquad (=-2.295)$	M1		correct standardis	ation method	l for either
		$\frac{3.5-3.4}{\sqrt{\frac{13.29'}{70}}} \qquad (= 2.295)$ $\Phi(`2.295') - \Phi(`-2.295')$	M1		For attempt to use tables to find the probability between two <i>z</i> values ,may be implied by next line		
			M1		For a correct meth between their two	nod to find th	e area
		$= \Phi(2.295) - (1 - \Phi(2.295))$ oe	A1	[4]			
		= 0.978 (3 sf)					
			[To	tal: 6]			
4	(i)	H ₀ : pop mean (or μ) = 12.4 H ₁ : pop mean (or μ) > 12.4	B1		not just "mean"		
		$\frac{12.9-12.4}{2.1+\sqrt{50}}$	M1		Allow with 50 ins	stead of $\sqrt{50}$	
		1.684	Al	5.43			
		comp cv $z = 1.96$ No evidence that pop mean time has increased	BII	[4]	or $P(z > 1.684) =$ Allow accept H_0 i Ft their test statist	0.0461 > 0 f correctly de ic. No contra	.025 efined. adictions
	(ii)	Not reject (or accept) that mean time is unchanged (or is 12.4) oe	B1				
		although mean time has increased (or is more than 12.4) oe	B1	[2]			
	(iii)	True (or new) mean	B1	[1]			
			[To	tal: 7]			

Page	Page 6 Mark Scheme				Syllabus	Paper
	Cambridge International A Le	evel –	May/Ju	une 2015	9709	71
				1		
5 (i)	4200/80 (=52.5)	B1				
	$=\frac{80}{72}\left(\frac{229\ 000}{229\ -152.5^{\prime 2}}\right)$ (= 107.595)	M1				
	79(80)	A1	[3]			
	= 108 (3 sr)					
(ii)	$52.5' \pm z \sqrt{\frac{107.595'}{80}}$	M1		Correct form – m	ust be <i>z</i> -valu	e – allow one
	<i>z</i> = 2.326	B1		Seen		
	49.8 to 55.2	A1f	[3]	ft their 52.5 and 1 interval	07.595. Mus	t be an
(iii)	49	B1	[1]			
		[Tot	tal: 7]			
6 (i)	$e^{-\frac{10}{3}} \times \frac{\left(\frac{10}{3}\right)^2}{2}$	M1		P(2), allow any λ		
	= 0.198 (3 sf)	A1	[2]			
(ii)	$1 - e^{-2} \left(1 + 2 + \frac{2^2}{2} \right)$	M1 M1		M1 allow any λ as Correct expression	nd/ <u>or</u> 1 end en on , correct λ	rror
	= 0.323 (3 sf)	A1	[3]			
(iii)	$N\left(\frac{200}{3},\frac{200}{3}\right)$	M1		seen or implied		
	$\frac{49.5 - \frac{200}{3}}{\sqrt{\frac{200}{3}}} \qquad (= -2.102)$	M1		For standardising cc No sd/var mix	allow <u>either</u>	wrong or no
	$\Phi('-2.102') = 1 - \Phi('2.102')$ = 0.0178 (3 sf)	M1 A1	[4]	For finding area c working	consistent wit	th their
		[Tot	tal: 9]			

Page	7 Mark Sche	me			Syllabus	Paper
	Cambridge International A Lo	Cambridge International A Level – May/June 2015				71
	1			ſ		
7 (i)	7E(X) + 5E(Y) - 2 (= 7 × 8 + 5 × 3) - 2	M1		allow incorrect m	eans	
	= 69	A1	[2]			
(ii)	Var(X) = 1.6, Var(Y) = 3 16Var(X) + 9Var(Y) (= 16×1.6 + 9 × 3)	B1 M1 M1		both M1 for mult by 10 M1 for add witho multipliers	6 and 9; allow ut '+ 3'; allow	w with '+ 3' w incorrect
(iii)	= 52.6 X = 10, Y = 2 and X = 9, Y = 0	A1 B1	[4]	both pairs seen or	implied	
	$0.8^{10} \times e^{-3} \times \frac{3^2}{2} \text{ or } 10 \times 0.8^9 \times 0.2 \times e^{-3}$ $0.8^{10} \times e^{-3} \times \frac{3^2}{2} + 10 \times 0.8^9 \times 0.2 \times e^{-3}$ $= 0.0374/5$	M1 M1 A1	[4]	or 0.0241 or 0.012 product all correct	34 (3sf) one o	correct
		[Tot	al: 10]			

[Total for paper 50]

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge International A Level – May/June 2015	9709	72

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme S		Paper
	Cambridge International A Level – May/June 2015	9709	72

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
CD	Special Puling (detailing the mark to be given for a specific wrong solution, or a

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme S		Paper
	Cambridge International A Level – May/June 2015	9709	72

1	Var = $16 \times 9 + 25 \times 36$ (= 1044) sd = 32.3 or $6\sqrt{29}$ or $\sqrt{1044}$	B1 M1 A1	M1 for 16 (or 4 ²) & 25 (or 5 ²) used M1 for add any multiples of 9 and 36 only
	Total	3	
2 (i)	$H_0: \lambda = 0.5$ $H_1: \lambda > 0.5$	B1 1	or Pop mean = 0.5, not just Mean = 0.5 or Pop mean (per m ²)= 0.1 Accept μ instead of λ
(ii)	$1 - e^{-0.5}(1 + 0.5)$ = 0.0902 (3 sf) comp 0.1 Claim justified or there is evidence to support claim	M1 A1 M1 A1√ 4	$1 - P(X = 0,1)$ attempted, any λ . Allow 1 end error Allow 0.09 Valid comparison NB 0.9098>0.9 recovers M1A1 M1 oe Accept 'Reject H ₀ ' if correctly defined No contradictions.
	Total	5	
3	$\lambda = 5 \times 0.15$ (= 0.75) E(amount) = 200 × 0.75 = 150	M1 A1	
	Var(weekly no of hole–in–ones) = 0.75 Var(amount) = $200^2 \times 0.75$ = $30,000$	B1√ ^Å M1 A1 5	Allow 200 ² × their variance (with nothing added/subtracted at any stage) (SR probability table can score M1A0 srB1 if var rounds to 30,000 (2sf))
	Total	5	
4 (i)	Conclude flight times affected	B1	Or accept pop mean changed from 6.2
	when in fact they have not been.	B1 2	although pop mean has not changed from 6.2
(ii) (iii)	H ₀ : Pop mean (or μ) = 6.2 H ₀ : Pop mean (or μ) \neq 6.2 $\frac{5.98 - 6.2}{0.8}$ $\sqrt{40}$ = -1.739 (±) Accept (±)1.74 comp z = 1.96 No evidence that flight times affected H ₀ was not rejected oe Type II	B1 M1 A1 B1√ ^A 4 B1* ^A B1*dep 2	Allow with 40 instead of $\sqrt{40}$ Allow SD/Var mix (CV method 5.952 or 6.2279 M1 A1) For valid comparison or P(z < -1.739) = 0.041 > 0.025 or 5.98 > 5.952 or 6.2 < 6.228 and correct conclusion If in (ii) H ₀ was rejected, then: H ₀ rejected B1; Type I B1dep
	Total	8	

Page 5	Mark Scheme		Paper
	Cambridge International A Level – May/June 2015	9709	72

5 (i)	14800/50 or 296 50 (4390000 120 cm^2) (107 500	B1 M1	Oe
	$\frac{1}{49} \left(\frac{1}{50} - \frac{1296}{2} \right) (= 187.755)$ = 188 (3 sf)	A1 3	
(ii)	$2 \times z \times \sqrt{\frac{187.755'}{50}} = 5.45 \qquad \text{oe}$ $z = 1.406 \text{ or } 1.405$	M1 A1	If '2 ×' omitted: $z \times \sqrt{\frac{'187.755'}{50}} = 5.45$ M1 z = 2.812 or 2.810 A0
	$\Phi(`1.406`) \qquad (= 0.92 \text{ or } 0.9199)$ $\alpha = 84 (2 \text{ sf}) \qquad \text{allow } 83.98$	M1 A1 4	$\Phi(`2.812`) (= 0.9975)$ $\alpha = 99.5 \text{ or } 99 \text{ or } 100 \text{M1 A0}$ For complete method to find α SR use of biased var(184) scores M1A1(1.4205) A=84.5 M1A1
(iii)	0.96^4 = 0.849 (3 sf)	M1 A1 2	
	Total	9	
6 (i)	$k \int_{0}^{15} (225 - t^2) \mathrm{d}t = 1$	M1	Attempt integ $f(x)$ and = 1. Ignore limits
	$k \left[225t - \frac{t^3}{3} \right]_0^{15} = 1$	A1	Correct integration and limits
	$k \times [3375 - 1125] = 1$ or $k \times 2250 = 1$	A1 3	No errors seen
	$(k = \frac{1}{2250} \text{ AG})$		
(ii)	$\frac{1}{2250}\int_{10}^{15}(225-t^2)\mathrm{d}t$	M1	Attempt integ, ignore limits
	$(=\frac{1}{2250}\left[225t - \frac{t^3}{3}\right]_{10}^{15})$	A1	Or $1-\int_{0}^{10}$ Correct integration and limits.
	$= \frac{1}{2250} \left[2250 - (2250 - \frac{1000}{3}) \right]$ $= \frac{4}{27} \text{ or } 0.148 (3 \text{ sf})$	A1 3	
(iii)	$\frac{1}{2250} \int_{0}^{15} (225t - t^3) \mathrm{d}t$	M1*	Attempt integ $xf(x)$, ignore limits
	$=\frac{1}{2250}\left[\frac{225t^2}{2}-\frac{t^4}{4}\right]^{15}_{0}$	A1	Correct integration and limits. Condone missing k
	$= \frac{1}{10000000000000000000000000000000000$	M1*dep	Sub correct limits into their integral
	$= \frac{2250}{8} \operatorname{cr} 5.625 \text{ or } 5.63 \text{ (3 sf)}$	A1 4	Accept 5 mins 37 or 38 secs
	o Total	10	
	Total	10	

Page 6	Mark Scheme		Paper
	Cambridge International A Level – May/June 2015	9709	72

7 (i)	Poisson	B1		
	(Actually binomial with) n > 50 and np (or λ) (= 2.1) which is < 5	B1 B1	3	Allow without "binomial" Accept n large Accept p small (p < 0.1)
(ii)	$\lambda = 2.1$ e ^{-2.1} $\left(1 + 2.1 + \frac{2.1^2}{2} + \frac{2.1^3}{3!}\right)$	B1 M1		Attempt P(0,1,2,3) any λ allow 1 end error SR ₁ Ft Normal N(2.1,2.1) B1 standardising M1
	= 0.839 (3 sf)	A1	3	0.833 A1 SR ₂ Ft Binomial B(10500,0.0002) B1 calculating binomial prob P(0,1,2,3) M1 = 0.8386 A1
(iii)	$P(X \ge 1) = 1 - e^{-2.1}$ (= 0. 87754)	M1		Any λ
	$P(X=1,2,3) = e^{-2.1} \left(2.1 + \frac{2.1^2}{2} + \frac{2.1^3}{3!} \right)$ (= 0.71619)	M1		Or '0.839' - $e^{-2.1}$ Any λ
	$\frac{P(X=1,2,3)}{P(X>1)}$	M1		Allow any attempted $\frac{P(X=1,2,3)}{P(X>1)}$ Any λ
	$ \left(= \frac{0.71619}{0.87754} \right) $ = 0.816 (3 sf)	A1	4	SR ₁ Ft Normal P(>0.5)=0.86523 M1 P(1,2,3)=0.698 M1 0.698/0.86523 = 0.807 M1A1 SR ₂ FT Binomial M1 M1 M1 A1
	Total	10		
	Total for paper	50		

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/73

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme S		Paper
	Cambridge International A Level – May/June 2015	9709	73

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- The symbol I implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme S		Paper
	Cambridge International A Level – May/June 2015	9709	73

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a

See Other Solution (the candidate makes a better attempt at the same question)

case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

SOS

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √^k" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4		Mark Sche	Mark Scheme				
		Cambridge International A Le	June 2015	9709	73		
1	(i)	Eg: Only students who use canteen The five will probably be friends	B1 B1	[2]	or any reason that some are excluded B1 each sensible reason must be in context		
	(ii)	2–digits ignore > 82 (anything too big) Ignore repeats	B1 B1 B1	[3]			
			[Total 5]				
2	(i)	$H_0: P(correct) = \frac{1}{8}$			Or $H_0 p = 1/8$ $H_1 p > 1/8$		
		$H_1: P(correct) > \frac{1}{8}$	B1	[1]			
	(ii)	$1 - \left(\left(\frac{1}{8}\right)^{10} + 10\left(\frac{1}{8}\right)^9 \left(\frac{7}{8}\right) + {}^{10}C_2\left(\frac{1}{8}\right)^8 \left(\frac{7}{8}\right)^2 \right)$	M1		M1 for attempt at correct expression accept 1 error only, e.g. 1 term extra, omitted or wrong, or omit "1–" or incorrect p/a		
			A1		Correct expression		P' 1
		= 0.120 (3 sf) or 0.119	A1	[3]	Note Use of Poisson only for expression	in (ii) could 1 –P(0,1,2))	l score M1 L = 1.25
	(iii)	12%	B1f	[1]	ft their (ii) Must be a	a probability	
			Total 5				
3	(i)	$Var(p_s) = \frac{0.22 \times (1 - 0.22)}{100}$	M1		pq/100		
		$\left(=\frac{429}{250000}\mathrm{or}0.001716\right)$					
		$0.22 \pm z \sqrt{\frac{429}{250000}}$	M1		Expression of correc Any <i>z</i> (must be a z v	et form with value) accept	their variance one side only
		<i>z</i> = 2.17 or 2.168/9 or 2.171	B1		Seen		
		0.13(0) to 0.31(0) (2 sf)	A1	[4]	Must be an interval		
	(ii)	$(2) \times (1 - 0.97) \times 0.97$ = 0.0582	M1 A1	[2]			
			Tot	al 6			
Page 5Mark SchemeSyllabusPaperCambridge International A Level – May/June 2015970973

4	(i)	$\left(\frac{1508}{50}\right) = 30.16 (30.2)$	B1		Allow any form
		$\frac{50}{49} \left(\frac{51825}{50} - \left('30.16'^2 \right) \right)$	M1		(129.46367)
		= 129 (3 sf) Or 130	A1	[3]	
	(ii)	$(1.5 \times `30.16' + 10) = 55.24$	B1ft		ft their 30.16
		$(1.5^2 \times `129')$	M1		$1.5^2 \times$ their(129) with nothing added at any stage
		= 291 (3 sf)	Alft	[3]	Allow 290
			Tota	16	
5	(i)	Cables broken or not all cables can be accessed oe or Too many cables oe or too time consuming oe	B1	[1]	e.g. previous days' stocks may have gone
	(ii)	H ₀ : Pop mean brk str (or μ) = 5 H ₁ : Pop mean brk str (or μ) < 5	B1		Not just "mean"
		$(\pm)\frac{4.95-5}{\frac{0.15}{\sqrt{60}}}$	M1		Allow 60 instead of $\sqrt{60}$
		(=±2.582)	A1		
		comp ±2.326 There is evidence that mean breaking strength is less than it should be Or reject H_0 (H_0 correctly defined)	B1 ft	[4]	Ft their -2.582 (No ft 2 tailed test) Correct comparison shown, no errors seen. Accept area comparison 0.0049 with 0.01 [CR method $(x - 5)/(0.15/\sqrt{60})$ = -2.326 M1 A1 leading to $x = 4.955$ compared to 4.95and correct conclusion B1ft OR ($(x - 4.95)/(0.15/\sqrt{60})$ leading to 4.995 M1 A1 compared to 5and correct conclusion B1ft]
	(iii)	Population not necessarily normal so yes	B1 B1dep	[2]	SR B1 For "it" is not necc normal (no mention of population) AND Yes
			Tota	17	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9709	73

Γ

6 (i) $e^{-3.5} \times \frac{3.5^3}{3!}$	M1		$P(X=3)$ any λ
	= 0.216 (3 sf)	A1	[2]	
(i	i) N(42, 42) stated or implied	B1		
	$\frac{29.5 - 42}{\sqrt{42}} \qquad (= -1.929)$	M1		Allow with wrong or no cc \underline{OR} without $$
	$P(z > `-1.929') = \Phi(`1.929')$ = 0.973 (3 sf)	M1 A1	[4]	For correct area consistent with their working
(ii	i) $(\lambda) = 2.4$	B1		
	$1 - e^{-2.4} \left(1 + 2.4 + \frac{2.4^2}{2} + \frac{2.4^3}{3!} \right)$	M1 M1		for $1 - P(X \le 3)$, any λ allow one end error Correct expression any λ
	= 0.221 (3 sf)	A1	4	NB For combination method B1 attempting 10 combinations with λ =1, λ =1.4 M1 6 expressions M1 10 expressions 0.221 A1
		Total 1	10	
7 (i) $\frac{3}{4} \int_{0}^{c} (cx - x^{2}) dx = 1$	M1		Attempt integ $f(x)$ and = 1. Ignore limits
	$\frac{3}{4} \left[\frac{cx^2}{2} - \frac{x^3}{3} \right]_0^c = 1$	A1		Correct integration and limits (condone c = 2
	$\frac{3}{4}\left(\frac{c^3}{2} - \frac{c^3}{3}\right) = 1 \text{ or } \frac{3}{4} \times \frac{c^3}{6} = 1 \text{ or } \frac{c^3}{8} = 1$	A1	[3]	No errors seen
	$(c = 2 \mathbf{AG})$			
(i	i) Inverted parabola Through (0, 0) and (2, 0) and zero elsewhere	B1 B1		Must not extend beyond [0,2]
	Median = 1	B1	[3]	
(ii	i) $\frac{3}{4} \int_{0}^{1.5} (2x - x^2) dx$	M1		Attempt integ $f(x)$ ignore limits
	$=\frac{3}{4}\left[x^{2}-\frac{x^{3}}{3}\right]^{1.5}_{0}$	A1		Correct integration ignore limits
	$\frac{3}{4} \left(1.5^2 - \frac{1.5^3}{3} \right)$	B1		Use of correct limits [0,1.5] or 1–[1.5,2]
	$=\frac{27}{32}$ or 0.844 (3 sf)	A1	[4]	

Page 7	Mark Sche	Mark Scheme S				
	Cambridge International A Le	9709	73			
(iv)	$\left(\frac{27}{32} - \frac{1}{2} \text{ or } 0.844 - 0.5\right)$					
	$=\frac{11}{32}$ or 0.344 (3 sf)	B1f [1]	ft their (iii) For use not use "hence" and	of symmetry l start again H	Note If do 31 for cwo	
		Total 11				

Total for paper 50

Cambridge International Advanced Level

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/71

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	71

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	71

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme					Paper	
		Cambridge International A Level – October/November 2014			nber 2014	9709	71	
								-
1		$N(-35, 60^{2} + 4 \times 28^{2}) \qquad N(35, 60^{2} + 4 \times 28^{2})$ $\frac{0 - (-35)}{\sqrt{6736'}} (= 0.426) \qquad \frac{0 - 35}{\sqrt{6736'}} (= -0.426)$	B1 B1 M1		for $\pm(175 - 2)$ for $60^2 + 4 \times 2$ For standardis variance. Allo For use of tab	× 105) or ± 3 28 ² or 6736 sing with the bw without volues and findi- th working	35 eir mean and / ing area	1
		$ \begin{array}{l} 1 - \Phi(``0.426") \\ = 0.335 (3 \text{ sf}) \end{array} $	M1 A1	5				
			Total: 5					
2	(i)	(Bin) with $n > 50$ and mean (or np) < 5 Po(1.5)	B1 B1		Accept n 'larg Poisson with implied	ge', p 'small correct mear	, 1 stated or	1.
		$1 - e^{-1} = 0.777 (3 \text{ sf})$	A1	4	allow 1 end end end SR If zero sco 0.778 / 0.779	(X = 0); and rror pred use of E scores B1	Bin leading t	λ; :0
	(ii)	$3.5 \\ e^{-3.5} \left(\frac{3.5^4}{4!} + \frac{3.5^5}{5!} + \frac{3.5^6}{6!} \right)$	B1 M1		Correct mean Poisson P(X = allow 1 end er	stated or im = 4, 5, 6); all rror	plied ow incorrec	tλ;
		= 0.398 (3 sf)	A1	3				
			Total: 7					
3	(a)	$\int_{0}^{0.5} (1.5t - 0.75t^2) dt \text{o.e.}$	M1		Attempt int f((t)		
		$= \begin{bmatrix} 0.75t^2 - 0.25t^3 \end{bmatrix}_{0}^{0.5} \text{ o.e.}$	A1		Correct integr	ration and lir	nits	
		$=\frac{1}{32}$ or 0.156 (3 sf)	A1	3				
	(b) (i)	$\frac{1}{2}\pi a^2 = 1 \text{or } \pi a^2 = 2 \text{oe}$	M1		Attempt to fir	nd the area a	nd equate to	o 1
		$a = \sqrt{\frac{2}{\pi}}$ or 0.798 (3 sf)	A1	2				
	(ii)	0	B1	1				
	(iii)	Symmetry stated, seen or implied 0.8	M1 A1	2	Could be a dia As final answ	agram er		
			Total: 8					
4	(i)	$Var(P_s) = \frac{\frac{33}{150} \times \frac{150 - 33}{150}}{150} (= 0.001144)$ z = 2.576	M1 B1		Seen. Accept	t 2.574 to 2.5	579	
		$\frac{33}{150} \pm z\sqrt{0.001144}$	M1		Expression of	f correct form	n. Any z	
		= 0.133 to 0.307 (3 sf)	A1	4	Must be an in	terval		

	Page 5	Mark Scheme			Syllabus	Paper	
		Cambridge International A Level – Oc	nber 2014	9709	71		
	(ii)	$\frac{\frac{19035}{150}}{\frac{150}{149}} (= 126.9 = 127(3 \text{ sf}))$ $\frac{150}{149} \left(\frac{4054716}{150} - \left(\frac{19035}{150} \right)^2 \right) \text{ o.e.}$ $= 11001.17 \text{ or } 11000(3 \text{ sf})$	B1 M1 A1 3	For use of a	For use of a correct formula		
	(iii)	4-digit nos. each digit 0-9 Ignore nos > 9526 Ignore repeats	B1 B1 B1 3	Some valid w random nos from valid m from valid m SR If zero sc method for d can score B1 NB Systema scheme with generating a	vay of genera ethod ore, full expl rawing numb tic sampling f first B1 for s random starti	ting 4 digit anation of bers out of a h follows the ome way of ing point.	hat
			Total: 10				
5	(i)	$\frac{4.8}{\sqrt{40}}$	B1	or $\frac{4.8^2}{40}$. Act totals method	cept 4.8√40 o 1	$r 4.8^2 \times 40$ f	for
		$\frac{50.3 - 49.5}{\frac{4.8}{\sqrt{40}}} \qquad (= 1.054)$	M1	For standard ± Accept totals methods	ising with the method. No	vir SD Accep mixed	ot
		$1 - \Phi(`1.054') = 0.146 (3 \text{ sf})$	M1 A1 4	For use of tal consistent wi	bles and findi ith their work	ing area ing	
	(ii) (a)	Looking for decrease	B1 1				
	(b)	H ₀ : Pop mean time spent (or μ) = 49.5 H ₁ : Pop mean time spent (or μ) < 49.5 $\frac{1920}{40} - 49.5$ (= -1.976)	B1	Not just "me For standard	an time spent		
		$\frac{4.8}{\sqrt{40}}$	1011	Accept totals	s method; CV ethods	40 method.	
		'1.976' > 1.555 (or '-1.976' < -1.555) There is evidence that mean time has	M1 A1 4	For valid cor 0.024 < 0.06 CWO_No.co	nparison (are)	a comparison	n
		decreased.					
	(c)	Population normally distr so No	B1 1	Both needed			

Total: 10

	Page 6	Mark Scheme				Syllabus	Paper	
		Cambridge International A Level – Oc	tober/N	lovem	nber 2014	9709	71	
					1			
6	(i)	$\lambda = 4.65$	B1					
		$e^{-4.65} imes rac{4.65^4}{4!}$	M1		Poisson P(X=	= 4) with any	λ	
		= 0.186 (3 sf)	A1	3				
	(ii)	$\lambda = 3.875$	B1					
		$= e^{-3.875} \left(1 + 3.875 + \frac{3.875^2}{2!} \right) = 0.257 (3 \text{ sf})$	M1 A1	3	P(X=0, 1, 2) Attempted, an As final answ	ny λ ver		
	(iii)	$\lambda = 1.5$	B1					
		$1 - e^{-1.5} \left(1 + 1.5 + \frac{1.5^2}{2!} \right)$ = 0.191 (3 sf)	M1 A1	3	1 - P(X=0, 1) Attempted, and As final answ	λ , 2) ny λ		
	(iv)	He will reject H.	R1					
	(1)		Ы	1				
			Total:	10				

Cambridge International Advanced Level

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	72

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	72

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	Mark Scheme				Syllabus	Paper	
		Cambridge International A Level – Oc	tober/No	ven	nber 2014	9709	72	
1		$N(25, (0^2 + 4 + 20^2)) = N(25, (0^2 + 4 + 20^2))$	D1		for 1 (175 - 2	105)		
1		$N(-35, 60^{\circ} + 4 \times 28^{\circ})$ $N(35, 60^{\circ} + 4 \times 28^{\circ})$	BI B1		for $\pm (1/5 - 2)$	$\times 105$) or ±: 28 ² or 6736	35	
		$\frac{0 - (-35)}{\sqrt{6736'}} (= 0.426) \qquad \frac{0 - 35}{\sqrt{6736'}} \ (= -0.426)$	M1		For standardi variance. Alle	sing with the	eir mean and	1
		$1 - \Phi(``0.426'') = 0.335 (3 \text{ sf})$	M1 A1	5	For use of tables and finding area consistent with working			
			Total: 5					
2	(i)	(Bin) with $n > 50$ and mean (or np) < 5 Po(1.5)	B1 B1		Accept n 'lar Poisson with	ge', p 'small correct mear	, n stated or	
		$1 - e^{-1.5}$	M1		Poisson 1 – P	P(X=0); allo	w incorrect	λ;
		= 0.777 (3 sf)	A1	4	allow 1 end e SR If zero sc 0.778 / 0.779	error ored use of E scores B1	Bin leading t	0
	(ii)	$3.5 \\ e^{-3.5} \left(\frac{3.5^4}{4!} + \frac{3.5^5}{5!} + \frac{3.5^6}{6!} \right)$	B1 M1		Correct mean Poisson P(X = allow 1 end e	a stated or im = 4, 5, 6); all error	plied ow incorrec	t λ;
		= 0.398 (3 sf)	A1	3				
			Total: 7					
3	(a)	$\int_{0.5}^{0.5} (1.5t - 0.75t^2) dt \text{o.e.}$	M1		Attempt int f	(<i>t</i>)		
		$= \left[0.75t^2 - 0.25t^3 \right]_{0}^{0.5} \text{ o.e.}$	A1		Correct integ	ration and lii	nits	
		$=\frac{5}{32}$ or 0.156 (3 sf)	A1	3				
	(b) (i)	$\frac{1}{2}\pi a^2 = 1 \text{or } \pi a^2 = 2 \text{oe}$	M1		Attempt to fin	nd the area a	nd equate to) 1
		$a = \sqrt{\frac{2}{\pi}}$ or 0.798 (3 sf)	A1	2				
	(ii)	0	B1	1				
	(iii)	Symmetry stated, seen or implied 0.8	M1 A1	2	Could be a di As final answ	lagram ver		
			Total: 8					
4	(i)	$Var(P_s) = \frac{\frac{33}{150} \times \frac{150 - 33}{150}}{150} (= 0.001144)$	M1		Seen. Accep	t 2.574 to 2.5	579	
		z = 2.576	B1		_			
		$\frac{z}{150} \pm z\sqrt{0.001144'}$	M1		Expression of	f correct form	n. Any z	
		= 0.133 to 0.307 (3 sf)	A1	4	Must be an ir	nterval		

	Page 5	Mark Scheme	tober/Nover	mber 2014	Syllabus	Paper 72	
		Cambridge International A Level – Ot			5705	12	
	(ii)	$\frac{19035}{150} (= 126.9 = 127(3 \text{ sf}))$ $\frac{150}{149} \left(\frac{4054716}{150} - \left(\frac{19035}{150} \right)^2 \right) \text{ o.e.}$ $= 11001.17 \text{ or } 11000(3 \text{ sf})$	B1 M1 A1 3	For use of a o	correct formu	la	
	(iii)	4-digit nos. each digit 0-9 Ignore nos > 9526 Ignore repeats	B1 B1 B1 3	Some valid v random nos from valid m from valid m SR If zero sc method for d can score B1 NB Systemat scheme with generating a	vay of genera hethod hore, full expl rawing numb tic sampling f first B1 for s random starti	ting 4 digit anation of bers out of a ha follows the ome way of ing point.	ıt
			Total: 10				
5	(i)	$\frac{4.8}{\sqrt{40}}$	B1	or $\frac{4.8^2}{40}$. Activities totals method	cept 4.8√40 c 1	or $4.8^2 \times 40$ for	r
		$\frac{50.3 - 49.5}{\frac{4.8}{\sqrt{40}}} \qquad (= 1.054)$	M1	For standardi ± Accept totals methods	ising with the method. No	eir SD Accept mixed	
		$1 - \Phi(`1.054')$ = 0.146 (3 sf)	M1 A1 4	For use of tal consistent wi	bles and findi ith their work	ng area ing	
	(ii) (a)	Looking for decrease	B1 1				
	(b)	H ₀ : Pop mean time spent (or μ) = 49.5 H ₁ : Pop mean time spent (or μ) < 49.5 $\frac{1920}{49.5}$ - 49.5	B1	Not just "me	an time spent		
		$\frac{-40}{\frac{4.8}{\sqrt{40}}} \qquad (=-1.976)$	M1	For standard Accept totals No mixed mo	ising. Allow - s method; CV ethods	$\frac{4.8}{40}$ method.	
		'1.976' > 1.555 (or '-1.976' < -1.555)	M1	For valid cor 0.024 < 0.06	nparison (are)	a comparison	
		There is evidence that mean time has decreased.	A1 4	CWO. No co	ontradictions	in conclusions	
	(c)	Population normally distr so No	B1 1	Both needed			
			Total: 10				

	Page 6	Mark Scheme				Syllabus	Paper	
		Cambridge International A Level – Oc	tober/l	Novem	nber 2014	9709	72	
			1					
6	(i)	$\lambda = 4.65$	B1					
		$e^{-4.65} imes rac{4.65^4}{4!}$	M1		Poisson P(X=	= 4) with any	λ	
		= 0.186 (3 sf)	A1	3				
	(ii)	$\lambda = 3.875$	B1					
		$= e^{-3.875} \left(1 + 3.875 + \frac{3.875^2}{2!} \right) = 0.257 (3 \text{ sf})$	M1 A1	3	P(X=0, 1, 2) Attempted, as final answ) ny λ wer		
	(iii)	$\lambda = 1.5$	B1					
		$1 - e^{-1.5} \left(1 + 1.5 + \frac{1.5^2}{2!} \right)$	M1	2	1 - P(X=0, 1) Attempted, at	1, 2) ny λ		
			AI	3	As final answ	ver		
	(iv)	He will reject H ₀ .	B1	1				
			Total	: 10				

Cambridge International Advanced Level

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/73

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	73

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^k implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International A Level – October/November 2014	9709	73

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √^k" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark	Scheme			Syllabus	Paper
	Cambridge International A	Level –	Octob	er/November 2014	9709	73
			1			
1 (i)	"Different" being investigated	B 1	[1]	Oe ("changed", "not equ	ual to")	
(ii)	H ₀ : Pop mean (or μ) in region same as elsewhere			Must be "pop mean", no Can be awarded in (i)	ot just "mean	"
	H ₁ : Pop mean (or μ) in region diff from elsewhere	B1		oe		
	1.91 < 2.054 (or 2.055) or -1.91 > -2.054	M1		or P(z > 1.91) = 0.0281 or 0.972 < 0.98 Accept	> 0.02 or 0.0 2.05 if nothin	562 > 0.04 ng better
	No evidence that mean is different	A1	[3]	seen. inequality sign incorrect M1A0 no contradictions "accept H_0 " provided H_0 reasonably well defined		
Total			[4]			
2 (i)	$\frac{1}{2}c^2 = 1$	M1		Area of triangle = 1 or i	ntegral of kx	with limits
	$c = \sqrt{2}$ or 1.41 (3 sf)	A1	[2]	o and c and equated to 1		
(ii)	f(x) = x or y = x	B 1		Seen or implied, e.g. by awarded anywhere in th	next line. Ca e question. In	n be nplied by
	$\int_{a}^{1} x dx = 0.1$	M1		(a + 1) in area of trapez Ignore limits. Must be in equated to 0.1. Or trapez	ium. ntegral of <i>kx</i> zium area.	and
	$\left[\frac{x^2}{2}\right]_a^1 = 0.1$	A1√ [^]		Correct limits, ft incorre	ect kx.	
	$1-a^2 = 0.2$ a = 0.894 (3 sf)	A1	[4]	$\sqrt{\left(\frac{4}{5}\right)}$ oe		
(iii)	$\int_{0}^{\sqrt{2}} x^2 dx$	M1		Ignore limits; ft their f(x	c) but not $\int x$	dx
Tatal	$\left[\frac{x^3}{3}\right]_0^{\sqrt{2}}$ $=\frac{2}{3}\sqrt{2} \text{ or } \mathbf{0.943 \text{ or }} \sqrt{\left(\frac{8}{3}\right)}$	A1√ ^k	[2]	ft their c, dep 0 < ans <	their c. Not f	t their $f(x)$
Total			[ð]			

P	age 5	Marl	k Schem	e		Syllabus	Paper
		Cambridge International A	Level –	Octob	er/November 2014	9709	73
			1	1	I		
3	(i)	$Est(\mu) = \frac{7220}{80}$ or 90.25	B 1		Accept 90.3		
		$\operatorname{Est}(\sigma^{2}) = \frac{80}{79} \left(\frac{656060}{80} - \left(\frac{7220}{80} \right)^{2} \right)$	M1		$\frac{1}{79} \left(656060 - \frac{7220^2}{80} \right)$		
		$= 56.3924 \text{ or } \frac{4455}{79}$	A1				
		<i>z</i> = 2.17	B1		Accept 56.4		
		$\frac{7220}{80} \pm z \times \sqrt{\frac{'56.3924'}{80}}$	M1		Expression of correct for	orm	
		= 88.4 to 92.1 (3 sf)	A1	[6]	Must be an interval (N.B. biased var gives & possible B1M0A0B1M	88.4 to 92.1 s 1A1)	cores
	(ii)	Pop normal No	B1 B1dep	[2]	X normal or full definiti SR B1 for "no" <u>and</u> rele normal	on of pop no evant referen	ormal ce to
Т	otal			[8]			
4	(i)	$4 \times 125 + 6 \times 130 (= 1280)$ $4 \times 30^2 + 6 \times 32^2 (= 9744)$	B1 B1		Give at early stage. Cou (If B0B0 then 1.28 and B1B1).	lld be implie 0.009744 car	d by 220. n score
		$(\pm)\frac{1500 - 1280}{\sqrt{9744}} (= 2.229)$	M1		Standardising. Accept s combination attempt.	d/var mix. M	lust be from
		Ф("2.229")	M1		Use of tables and correct their working	et area consis	tent with
		= 0.987 (3 sf)	A1	[5]	cwo		
	(ii)	125 - 0.9(130) (= 8) (or -8) $30^2 + 0.9^2(32^2) (= 1729.44)$	B1 B1		Give at early stage. (If I 0.008 and 0.0017944 fo	B0B0 scored r B1B1)	then accept
		$(\pm) \frac{0-8'}{\sqrt{1729.44'}} \ (=-0.192)$	M1		Accept sd/var mix. Mus combination.	t come from	a linear
		Φ('0.192')	M1		Use of tables and correct their working (unclear N	t area consis	tent with
		= 0.576 (3 sf)	A1	[5]	then working (uncreal r	10)	
Т	otal			[10]			

Page 6	Mark Scheme				Syllabus	Paper
	Cambridge International A Level	- Octob	er/No	vember 2014	9709	73
		•		-		
5 (i)	H ₀ : population proportion = 0.1 oe	R1		Allow " $p = 0.1$ "	and " $p > 0.1$ "	,
	11]. population proportion > 0.1 oc	DI				
	$P(X \ge 4) = 1 - P(X \le 3) =$					
	$1 - \begin{pmatrix} 0.9^{18} + 18 \times 0.9^{17} \times 0.1 + \\ 18 & 0.9^{16} - 0.1^2 & 18 & 0.9^{15} - 0.1^3 \end{pmatrix}$	M1		Allow $1 - ($ one te	erm omitted	or extra or
	= 0.0982 (3 sf)	A1		wrong) (note CR method	0.0982 and	$CR \ge 5$ for
	Comp 0.08	M1		A1) Valid comparison recovered previo	n (0.9018 < (us A1). Or 4).92 also is not in
	No evidence that more reach 1m	A1√ [^]	[5]	CR Dep M1M1 no co "Accept H ₀ " prov	ontraditions vided H_0 defi	ined
(ii)	Not rejected H ₀ Type II	B1√ B1dep √	[2]	Ft their (i) If (i) "reject H ₀ " error	then ft gives	Type I
(;;;)	$P(X \sim 5) (-0.0292)$	M1		Attournt $D(V > $	(0,0)	o _ ,
(111)	$P(X \ge 3) (= 0.0282)$			Attempt $P(X \ge 1)$	3 e.g. 0.096	52 -
	0.0282 < 0.08	D 14		$^{16}C_4 \times 0.9^{14} \times 0.1^{16}$	⁴ oe. Valid c	comp of
				their ≥ 5 (if CR	method used	, could be
	P(Type I error) = 0.0282 (3 sf)	A1	[3]	awarded in (1))		
Total			[10]			
6 (i)	$e^{-3.84} \times \frac{3.84^4}{10}$	M1		Poisson $P(X = 4)$), any λ	
	4! = 0.195 (3 sf)	A1	[2]			
(ii)	1.44	B1		Seen		
	$1 - e^{-1.44} \left(1 + 1.44 + \frac{1.44^2}{2} \right)$	M1		Any λ , allow one	e end error, n	eed "1 –"
	= 0.176	A1	[3]			
(iii)	<i>X</i> ~N(41, 41)	B 1		Seen or implied		
	$\frac{40.5 - 41}{\sqrt{41}} (= -0.078) \frac{59.5 - 41}{\sqrt{41}} (= 2.889)$ $\Phi(`2.889') - \Phi(`-0.078')$	M1M1		M1M0 if no cc o in both	r incorrect co	c OR no $√$
	$= \Phi(`2.889') - (1 - \Phi(`0.078'))$ = 0.9981 - (1 - 0.5311)	M1		Use of tables and	l correct area	consistent
	= 0.529 (3sf)	A 1	[5]	with their workin	ig.	
	- 0.527 (381)		[2]	- WU		
Total			[10]			

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/71

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	71

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	71

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	71

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise < 3 sfs only once in paper.

1	N(483.2, 537.92) or N(483.2, 23.2 ²)	B1	or $\frac{8.2}{\sqrt{8}}$ or $\frac{8.2^2}{8}$ seen or implied
	$\frac{436 - 483.2}{\sqrt{537.92}} \text{ or } \frac{436 - 483.2}{23.2} (= -$	M1	or $\frac{\frac{436}{8} - 60.4}{8.2/\sqrt{8}}$ standardising (no mixed methods)
	$\Phi(``-2.035'') = 1 - \Phi(``2.035'')$ = 0.021 or 2.1%	M1 A1 [4]	Correct area consistent with their working
		[Total: 4]	
2	$\frac{70}{69} \times 2.70 = 2.73913$	M1A1	
	$3.61 \pm z \sqrt{\frac{"2.73913"}{70}}$	M1	or $3.61 \pm z \sqrt{\frac{2.70}{69}}$ M2A1(implied)
			without $\frac{70}{69}$: $3.61 \pm z \sqrt{\frac{2.70}{70}}$ M0A0M1
	z = 1.96 3.22 to 4.00 (3 sf)	B1 A1 [5]	z = 1.96 B1 3.23 to 3.99(4.00) (3 sf) A1 Answer must be an interval
		[Total: 5]	
		[10tal: 5]	
3	$H_0: \mu = 250$ $H_1: \mu > 250$	B1	Both hypotheses
3	$H_{0}: \mu = 250$ $H_{1}: \mu > 250$ $\frac{250.06 - 250}{0.2 \div \sqrt{40}}$	B1 M1 A1	Both hypotheses M1 for standardising, must have √40. Accept cv method
3	H ₀ : $\mu = 250$ H ₁ : $\mu > 250$ $\frac{250.06 - 250}{0.2 \div \sqrt{40}}$ = 1.90 comp with $z = 1.645$ Claim is justified or There is evidence that claim is true	B1 M1 A1 M1 A1 √ [5]	Both hypotheses M1 for standardising, must have √40. Accept cv method For valid comparison "1.90" with 1.645 or area comparison or CVs Correct conclusion. No contradictions NB 2-tail test scores B0 M1 A1 M1 (use 1.96) A0
3	H ₀ : $\mu = 250$ H ₁ : $\mu > 250$ $\frac{250.06 - 250}{0.2 \div \sqrt{40}}$ = 1.90 comp with $z = 1.645$ Claim is justified or There is evidence that claim is true	B1 M1 A1 M1 A1 √* [5] [Total: 5]	Both hypotheses M1 for standardising, must have √40. Accept cv method For valid comparison "1.90" with 1.645 or area comparison or CVs Correct conclusion. No contradictions NB 2-tail test scores B0 M1 A1 M1 (use 1.96) A0
3 4 (i)	H ₀ : $\mu = 250$ H ₁ : $\mu > 250$ $\frac{250.06 - 250}{0.2 \div \sqrt{40}}$ = 1.90 comp with $z = 1.645$ Claim is justified or There is evidence that claim is true B(3500, 0.001) Poisson with mean = 3.5 n > 50 and $np < 5$	[10tal: 5] B1 M1 A1 M1 A1 √ [5] [Total: 5] B1 <	Both hypotheses M1 for standardising, must have $\sqrt{40}$. Accept cv method For valid comparison "1.90" with 1.645 or area comparison or CVs Correct conclusion. No contradictions NB 2-tail test scores B0 M1 A1 M1 (use 1.96) A0 or Po(3.5) Both. Or $n > 50$ and $\lambda < 5$ or $3.5 < 5$
3 4 (i) (ii)	H ₀ : $\mu = 250$ H ₁ : $\mu > 250$ $\frac{250.06 - 250}{0.2 \div \sqrt{40}}$ = 1.90 comp with $z = 1.645$ Claim is justified or There is evidence that claim is true B(3500, 0.001) Poisson with mean = 3.5 n > 50 and $np < 5e^{-3.5}(1 + 3.5 + \frac{3.52}{2} + \frac{3.53}{3!})= 0.527 (2 dp)$	B1 M1 A1 M1 A1 √ [5] [Total: 5] B1 B1 <th>Both hypotheses M1 for standardising, must have $\sqrt{40}$. Accept cv method For valid comparison "1.90" with 1.645 or area comparison or CVs Correct conclusion. No contradictions NB 2-tail test scores B0 M1 A1 M1 (use 1.96) A0 or Po(3.5) Both. Or $n > 50$ and $\lambda < 5$ or $3.5 < 5$ Allow any λ</th>	Both hypotheses M1 for standardising, must have $\sqrt{40}$. Accept cv method For valid comparison "1.90" with 1.645 or area comparison or CVs Correct conclusion. No contradictions NB 2-tail test scores B0 M1 A1 M1 (use 1.96) A0 or Po(3.5) Both. Or $n > 50$ and $\lambda < 5$ or $3.5 < 5$ Allow any λ
3 4 (i) (ii)	H ₀ : $\mu = 250$ H ₁ : $\mu > 250$ $\frac{250.06 - 250}{0.2 \div \sqrt{40}}$ = 1.90 comp with $z = 1.645$ Claim is justified or There is evidence that claim is true B(3500, 0.001) Poisson with mean = 3.5 n > 50 and $np < 5e^{-3.5}(1 + 3.5 + \frac{3.52}{2} + \frac{3.53}{3!})= 0.537 (3 dp)$	[10tal: 5] B1 M1 A1 M1 A1 √ [5] [Total: 5] B1 <	Both hypotheses M1 for standardising, must have $\sqrt{40}$. Accept cv method For valid comparison "1.90" with 1.645 or area comparison or CVs Correct conclusion. No contradictions NB 2-tail test scores B0 M1 A1 M1 (use 1.96) A0 or Po(3.5) Both. Or $n > 50$ and $\lambda < 5$ or $3.5 < 5$ Allow any λ

Page 5		Mark So	cheme			Syllabus	Paper
		GCE A LEVEL –	May/Ju	ne 20 ⁻	14	9709	71
5 (i)	0.25(1 + (=1.25 A	$(4+9) - 1.5^2$ G)	B1	[1]			
(ii)	$\frac{1.4-1.5}{\sqrt{\frac{5}{4}\div 300}}$	_ (= -1.549))	M1		$\frac{1.4 - \frac{1}{600} - 1.5}{\sqrt{\frac{5}{4} \div 300}}$	5 - (= -1.52	3)
	$\Phi(``-1.54) = 0.0607$	M1 A1	[3]	$\Phi(``-1.523") = 1 - \Phi(``1.523")$ = 0.0639 (3 sf)			
(iii)	Large sa $(\overline{X} (appropriate))$	mple or large <i>n</i> rox) normally distr)	B1	[1]			
	Central I			[1]			
			[Tot	al: 5]			
6 (i)	H ₀ : Rate H ₁ : Rate 1 - P(17) $1 - ({}^{20}C_1 \times 0.9^{18} + 0.133)$	= 0.9 < 0.9 , 18, 19, 20) $_{7} \times 0.1^{3} \times 0.9^{17} + {}^{20}C_{18} \times 0.1^{2}$ $- 20 \times 0.1 \times 0.9^{19} + 0.9^{20})$ (3 sf)	B1 M1 M1 A1	[4]	p = 0.9 p < 0.9 Use of B(20, Allow 1–P(1	,0.1) 8,19,20) or 1–P(1	6,17,18,19,20)
(ii)	Type II H ₀ will r	not be rejected	B1 B1	[2]	or Stephan w No contradic	vill conclude stand	dard not fallen
			[Tot	al: 6]			

Page 6		Mark Scl	Syllabus	Paper]			
		GCE A LEVEL – N	lay/Ju	ne 20 ⁻	14	9709	71	
7 (i)	$\int_{1}^{a} \frac{k}{x} dx =$	1	M1		Int $f(x)$ & eq	quate to 1. Ignore limits		
	$k[\ln x] \frac{a}{1}$	= 1	A1		Correct integration and limits and = 1			
	$k \ln a = 1$ $k = 1/\ln a$		A1	[3]	AG			
(ii)	$\frac{1}{\ln a} \int_{1}^{a} dx$	or $k \int_{1}^{a} 1 dx$	M1		Int $xf(x)$. Ign	ore limits		
	$=\frac{1}{\ln a}[x]$	$\begin{bmatrix} a \\ 1 \end{bmatrix}$ or $k[x] \begin{bmatrix} a \\ 1 \end{bmatrix}$	A1		Correct integ (condone mi	gration and limits ssing k)		
	$=\frac{1}{\ln a}(a)$	-1)	A1	[3]				
(iii)	$\frac{1}{\ln a} \int_{1}^{m} \frac{1}{x} dx$	dx = 0.5	M1		Int $f(x)$ and equate to 0.5. Ignore limits			
	$\frac{1}{\ln a} [\ln x]$	$\left[r \right] \frac{m}{1} = 0.5$	A1		Correct integ (condone mi	t integration and limits (1 to m or m in ne missing k)		
	$\frac{1}{\ln a} \ln m$	= 0.5						
	$\ln m = 0.5 \ln a$ $m = \sqrt{a}$		A1 A1	[4]	or $\ln m = \ln a^{0.5}$			
			[Tota	l: 10]				
8 (i)	V: canno W: canno	t have neg value ot have non-integer value	B1 B1	[2]				
(ii)	(a) $e^{-\lambda} =$ (Hen	$p \text{ and } \lambda e^{-\lambda} = 2.5p$ ce $\lambda = 2.5 \text{ AG}$)	B1	[1]	or equiv exp	lanation		
(ii)	(b) 1 – e	$-2.5(1+2.5+\frac{2.52}{2})$	M1		Allow one e	nd error		
	= 0.4	-56 (3 sf)	A1	[2]				
(iii)	$\Phi^{-1}(0.57$	93) $= -0.2$	B1					
	$N(\mu,\mu)$ s	een or implied	M1					
	$\frac{40.5-\mu}{\sqrt{\mu}}$	= "-0.2"	M1		Allow no cc	or incorrect cc		
	μ + "-0.2	$2^{"}\sqrt{\mu} - 40.5 = 0$						
	$\sqrt{\mu} = \frac{"0}{}$	$.2"\pm\sqrt{"0.2"^2+4\times40.5}$	M1		For solving	quadratic in $\sqrt{\mu}$ (o	r μ)	
		(= 6.4647)			Ignore other	answer for $\sqrt{\mu}$, but	It not for μ	
	$\mu = 41.8$	(3 sf)	A1	[5]				
			[Tota	l: 10]				

[Total for paper 50]

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	72

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper	
	GCE A LEVEL – May/June 2014	9709	72	

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4		Mark Scheme				Syllabus	Paper	
		GCE A LEVEL – Ma	ıy/Jun	e 20	14	9709	72	
1	$\frac{\Sigma x}{8} = \frac{2}{3}$	$\frac{006}{8} = 250.75 \text{ or } 251 (3 \text{ s.f.})$	B1		Any equivale			
	$(\Sigma x^2 = 5)$	03274)						
	$\frac{8}{7} \left(\frac{"503274"}{8} - "250.75"^2 \right)$		M1		For use of formula of correct form			
	= 38.5 o	.e. (accept 6.204 ²)	A1	[3]	cao (as final a	nnswer)		
2	(X + Y -	$(Z) \sim N(8,)$						
	μ=8 (or -	-8)	B1		seen or implie	ed		
	Var(X+	$(Y-Z) = 2^2 + 1.5^2 + 1.8^2$ (= 9.49)	B1		– award at early stage			
	$\frac{0-8}{\sqrt{9.49'}}$	(= -2.597)	M1		For standardising (accept sd/var mixes, but variance must be a combination of at least 2 X, Y, Z)			
	Φ('-2.59	$(97') = 1 - \Phi((2.597'))$	M1		For area consistent with their working			
	= 0.0047	7	A1	[5]				
3	H ₀ : Pop	mean (or μ or λ) = 50 (or 5)						
	H ₁ : Pop	mean (or μ or λ) \neq 50 (or 5)	B1		Not just "mea	ın"		
	$\frac{60.5-50}{\sqrt{50}}$	<u>0</u> (±)	M1		For standardi	sing with N(50,50)) or N(5,5/ $\sqrt{10}$)	
	= (±)1.4	85 OR 0.0687 OR C.V	A1		Allow M1 wi correction OF (accept c.v m	th wrong or no co R no √ ethod M1, A1 for	ntinuity 61.63 or	
	1.485 < No evide	1.645 or 0.0687 > 0.05 ence that mean changed	M1 A1√ [≜]	[5]	48.868) For valid com (S.R For cv c final A1 if cc	nparison (zs or are omparison 61.63 used)	as or cv) only award	
					or if $H_1: \lambda > 5$ No evid mean (i.e. if one-tai	0, 1.485 < 1.96 n changed l test, max B0 M1	M1 A0 A1 M1 A0)	

Page 5		je 5	Mark Sche	Syllabus	Paper			
			GCE A LEVEL – Ma	y/Jun	e 20)14	9709	72
4 (i)	$\lambda = 4.5$		B1		seen		
		$1 - e^{-4.5}$	$\left(1+4.5+\frac{4.5^2}{2}\right)$	M1		any λ . Allow	one end error	
		= 0.826	(3 s.f.)	A1	[3]			
(i	i)	$e^{-\lambda}=0.52$	23	B1				
		$(-\lambda = \ln \lambda)$	0.523)					
		$\lambda = 0.643$	8 (3 s.f.)	B1	[2]			
(ii	i)	$e^{-\mu} \times \frac{\mu^3}{3!}$	$= 24 \times e^{-\mu} \times \mu$	B1				
		$\frac{\mu^2}{6} = 2$	4	M1		For a simplifi cancelled and	ed expression in μ no factorials.	² with $e^{-\mu}$ and μ
		$\mu = 12$		A1	[3]			
5 (i)	$p = \frac{184}{400}$	or 0.46	B1		Used		
		<i>z</i> = 1.96		B1		Seen		
		"0.46" ∃	$z \times \sqrt{\frac{"0.46"(1-"0.46")}{400}}$	M1		Using express	sion of correct for	n
		= 0.411	to 0.509	A1	[4]	Must be an in	terval	
(i	i)	0.5 with	in CI					
		Claim no	ot supported or not justified	B1√ [^]	[1]	Both needed.	No contradictions	. ft their (i)
(ii	i)	$z \times \sqrt{\frac{"0}{}}$	$\frac{46''(1-''0.46'')}{400} = 0.05$	M1		Allow M1 for	$t_z \times \sqrt{\frac{"0.46"(1-"0.46")}{400}}$	0.46") = 0.1
		<i>z</i> = 2.000	6	A1				
		Φ('2.006	5') = 0.9775					
		$\alpha = 0.97$	775' – (1 – '0.9775')	M1		or $1 - 2(1 - 4)$	0.9775')	
		= 95.5%		A1	[4]			

Page 6		Mark Sche	Syllabus	Paper				
		GCE A LEVEL – Ma	ay/Jun	e 20)14	9709	72	
	1							
6 (i)	$k \int_{0}^{4} (16t - 0) dt$	$-t^3$)d $t = 1$	M1		Int $f(t) = 1$ ign	ignore limits		
	$k \left[8t^2 - \frac{t}{2} \right]$	$\left[\frac{4}{4}\right]\frac{4}{0} = 1$	A1		correct integration with correct limits			
	$k(128 - k \times 64 =$	64) = 1 o.e. 1						
	$\left(k=\frac{1}{64}\right)$	AG	A1	[3]	must be convinced (AG)			
(ii)	$\frac{1}{64} \int_{0}^{1} (16)$	$(t-t^3)\mathrm{d}t$	M1		Int f(<i>t</i>) betwee < 1 , 1 and 4)	en 0 and 1 (accept	t 0 and a value	
	$=\frac{1}{64}\left[8\right]$	$t^2 - \frac{t^4}{4} \bigg] \frac{1}{0}$	A1		correct integration and correct limits (ignore "k")			
	$=\frac{1}{64}\left[8\right]$	$-\frac{1}{4}$						
	$=\frac{31}{256}$ c	or 0.121094	A1					
	$\left(\frac{31}{256}\right)^2$	= 0.0147 (3 s.f.) o.e.	В1√^	[4]] ft their " $\frac{31}{256}$ "			
iii	$\frac{1}{64} \int_{0}^{4} (16)$	$t^2 - t^4$)dt	M1		Int <i>t</i> f(<i>t</i>) ignore	e limits		
	$=\frac{1}{64}\left[\frac{1}{64}\right]$	$\frac{6t^3}{3} - \frac{t^5}{5} \bigg] \frac{4}{0}$	A1		correct integr (ignore "k")	ation and correct	limits	
	$=\frac{1}{64}\left(\frac{1}{64}\right)$	$\frac{024}{3} - \frac{1024}{5}$						
	$=\frac{32}{15}$ or	2.13 (3 s.f.) o.e.	A1	[3]				

Page 7		Mark Scheme					bus	Paper
		GCE A LEVEL – Ma	ay/Jun	e 20)14	970)9	72
7 (i)	2 nd More re or Leng or 1 st do represen	presentative of all appointments ths may vary during the day es not include later appts so not tative	B1 B1	[2]	Any implicat throughout da	tion that times or conditions vary		
(ii)	0.01 o.e Conclud when th	ing that times spent are too long ey are not.	B1 B1	[2]	Concluding than 10 mins	hat the mean time spent is more when it is not. Must be in conte:		
(iii)	H ₀ : Pop H ₁ : Pop $\frac{147-10}{\frac{12}{\sqrt{12}}}$ = (±)2.2 done)	mean appt time (or μ) = 10 mean appt time (or μ) > 10 (±) 92 or (0.0109 if area comparison	B1 M1 A1		Both correct. μ , but not just Allow incorrect Must have $\sqrt{1}$ (accept totals method)	Allow "mean" ect <u>147</u> 12 2	10 + 2. = 12.28	$326 \times \frac{3.4}{\sqrt{12}} \text{ M1}$ 8 A1
	"2.292" (No evid No rease	< 2.326 o.e. dence to reject $H_{0.}$) on to believe appts are too long	M1 A1√*	[5]	For valid comparison Comp "2.292" with 2.326 Or 0.0109 with 0.01 Or 147/12 with 12.28 Dep 2.326, ft their "2.292" No contradictions		<u>147</u> <	12.28 M1
(iv)	Normal	population	B1	[1]	Must have "p	opulation	" or equ	iv

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/73

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9709	73

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √* implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.
| Page 3 | Mark Scheme | Syllabus | Paper |
|--------|-----------------------------|----------|-------|
| | GCE A LEVEL – May/June 2014 | 9709 | 73 |

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page	e 4	Mark Sc	heme		Syllabus Paper			
		GCE A LEVEL – N	/lay/J	une 2	2014	9709	73	
1	e ⁻⁴ (1 +	4)	M1 M1		M1 for P(0 or Expression of c (allow 1 end er	l) using Poisson, correct form corre ror)	any λ ct λ	
	= 0.09	16 (3 s.f.)	A1	[3]	SR Use of Bin(P(0,1) allow or	100000, 1/25000) scores M1 for e end error. A1 0.0916		
2	$ht = \frac{1}{2}$	seen	B1		or $y = \frac{1}{8}x$			
	$\frac{1}{2} \times m$	$\times \left(\frac{m}{4} \times "\frac{1}{2}"\right) = \frac{1}{2}$	M1		$\frac{1}{2} \times m \times ("\frac{1}{8}"m$	$) = \frac{1}{2}$ or $\frac{m^2}{16}$	$=\frac{1}{2}$ o.e.	
	N.B. B	1 M1 must be consistent			Or Integrating with limits 0 ar	linear function of m or m and 4 as	form $y = kx$ nd equated to	
	$m = \sqrt{8}$	or $2\sqrt{2}$ or 2.83 (3 s.f.)	A1	[3]	0.0			
3	<i>p</i> = 0.5	6	B1		Used			
	$0.56' \pm z \times \sqrt{\frac{0.56 \times 0.44}{100}}$		M1		Equation of con Must be z	rrect form condon	ejust+veor-ve	
	<i>z</i> = 2.17, or 2.169 or 2.171		B1					
	0.452 t	o 0.668 (3 s.f.)	A1	[4]	Seen Must be an inte	erval		
4	$\overline{x} = 1.$	65	B1					
	$est(\sigma^2)$	$=\frac{100}{99}\left(\frac{276.25}{100}-1.65^2\right)$	B1					
	= 0.040	0404 = 4/99						
	$(\pm)\frac{1}{\sqrt{-\frac{1}{2}}}$	<u>.65 – 1.6</u> <u>).040404''</u> 100	M1		Without $\frac{100}{99}$:	$\frac{1.65 - 1}{\sqrt{\frac{"0.04}{100}}}$	<u>.6</u> B1 B0 M1	
	= (±) 2.487/2.488 accept 2.49 Or 0.0065/0.0064 if area comparison done		A1			= 2.50	A1	
					CV Method M 1.6106	l must use 1.96 A	1 for 1.639 or	
	comp	with 1.96	M1		For valid comp area/area cv)	arison (z/z Signs o	consistent or	
	There	is evidence that μ is not 1.6	A1√	[6]	Accept Reject	H_0 No contradicti	ons	

	Page	9 5	Mark Sc	heme	eme		Syllabus	Paper
			GCE A LEVEL – I	/lay/J	une 2	2014	9709	73
5	(i)	Longe	st lifetime	B1	[1]	Must be in con	text	
	(ii)	$\int_{1}^{a} \frac{k}{x^2} dx$	c = 1	M1		Int $f(x)$ and equ	ate to 1. Ignore li	mits
		$k\left[-\frac{1}{x}\right]$	$\frac{a}{1} = 1$	A1		Correct integra	l and limits	
		$\left(k\left[-\frac{1}{a}+1\right]=1\right)$						
		$k\left[\frac{-1+a}{a}\right]$	$\left[\frac{a}{a}\right] = 1 \text{or } k(-1+a) = a$					
		$k = \frac{a}{a}$	$\frac{d}{-1}$ AG	A1	[3]	Must be convir	nced (AG)	
	(iii)	$\frac{5}{3} \int_{1}^{2.5} \frac{1}{x} dx \text{or } k \int_{1}^{2.5} \frac{1}{x} dx$		M1		Int $xf(x)$. Ignore	e limits	
		$= \frac{5}{3} [\ln x] \frac{2.5}{1} \text{or } k[\ln x] \frac{2.5}{1}$		A1		Correct integra (Accept "k" or	ect integral and limits ept "k" or "their k")	
		$=\frac{5}{3}\ln \frac{1}{3}$	2.5 or 1.53 (3 s.f.)	A1	[3]			
6	(i)	H ₀ : <i>p</i> = H ₁ : <i>p</i> <	= 0.2 < 0.2	B1		(Allow π)		
		P(0 or	1 5s in 25 H ₀)	M1		$0.8^{25} + 25 \times 0.8^{25}$ P(0) or P(1) or "0.0274"	$b^{24} \times 0.2$ Use of B both – may be im	(25,1/5) and plied by
		$= 0.02^{\circ}$	74 (3 s.f.)	A1				
		Comp	with 0.025	M1		Valid comparis	on	
		No evi suppor	dence (at 2.5% level) to t claim	A1√	[5]	No contradictions SR Use of Normal N(5,4) leading to $z = 1.75$ or 0.0401 B1* H ₀ $\mu = 5$ H ₁ $\mu < 5$ B1. Comparison 1.75 < 1.96 or 0.0401 > 0.025 B1* dep		
	(ii)	Norma	1	B1				
		$\mu = 20$	0, $\sigma^2 = 160$ or $\sigma = \sqrt{160}$	B1	[2]			
	(iii)	Conclu produc althoug	nding that the machine tes the right proportion of 5s, gh it doesn't.	B1	[1]	Not concluding few 5s although o.e. No contract	that the machine it does. Must be lictions	produces too in context

	Page 6			Mark Sc	heme	•		Syllabus	Paper
			GCE A	A LEVEL – M	May/J	une 2	2014	9709	73
7	(i)	Consta	unt mean (or averag	ge) rate	B1	[1]	Constant mean	per day (or week	, etc.) o.e.
	(ii)	$e^{-\frac{4}{7}} \times = 0.092$	$\frac{4^2}{7}$ or $e^{-0.571}$ > 22 or 0.0921 (3 s.1	< <u>0.571²</u> <u>2!</u> f.)	M1 A1	[2]	Expression for	P(2) allow any λ	
	(iii)	$\lambda = \underline{40}$	or 5.71		B1				
		$7 \\ 1 - e^{-}$	$\frac{\frac{40}{7}}{\left(1+\frac{40}{7}+\frac{\frac{40}{7}^{2}}{\frac{2!}{2!}}-\frac{\frac{40}{7}}{\frac{2!}{2!}}\right)}$	$+\frac{\frac{40^{3}}{7}}{3!}\right)$	M1		Allow any λ all	low one end error	
		= 0.82	1 (3 s.f.)		A1	[3]			
	(iv)	$\frac{24}{7}$ o.	.e. 3 s.f. or better s	een	B1				
		$e^{-\frac{4}{7}}$ × 0	$e^{-\frac{24}{7}} \times \frac{\frac{24}{7}^{5}}{5!}$		M1		M1 for P(0) × P(5) any consistent λ		
		= 0.072	23 (3 s.f.)		A1	[3]			
8	(i)	X+2.5	5 <i>Y</i> ~ N(127, 44.25)		B1 B1		B1 for 127 Al B1 for 44.25 or Allow at early May be implied	llow at early stage r 6.65 stage $(13 + 2.5^2 \times$ d by next line	(57 + 2.5 × 28) 5)
		$(\pm)\frac{140}{\sqrt{10}}$	<u>)-"127"</u> '44.25"		M1		For standardisi	ng	
		= ±(1.	954)		M1		For area consis	stent with their wo	rking
		1 – Φ ('	"1.954")						
		= 0.02	54/0.0253 (3 s.f.)		A1	[5]			
	(ii)	X - Y ~	~ N(29, 18)		B1 B1		B1 for 29 Give B1 for 18 Give May be implied	e at early stage (5' at early stage (13 d by next line	7 – 28) + 5)
		$\frac{20 - "2}{\sqrt{"18}}$	<u>29"</u>	(= -2.121)	M1		For Standardis	ing	
		1 – Φ (*	"-2.121") = Φ("2.	121")	M1		For area consis	stent with their wo	rking
		= 0.98	3 (3 s.f.)		A1	[5]			

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/71

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	71

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	71

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

F	Page 4	Mark Sc	Scheme			Syllabus	Paper	
		GCE A LEVEL – Octob	ber/No	ovem	ber 2013	9709	71	
								
1 λ	$=\frac{1}{30}$		B1		0.e			
1	$1 - e^{-\frac{1}{30}}$				1 - P(X = 0) by	Poisson, any λ al	low 1 end error	
=	= 0.0328 (3 s.f.)				1 - P(X=0) by	$1 - P(X=0)$ by Poisson, correct λ no end errors		
			A1			· (1 C* 1	0.0220 D2	
				[4]	Correct answer	, no working scor	0.0328 B2 res B2	
2 z =	= 2.576		B1		Seen (accept 2.	.574 to 2.579)		
2	$\times z \times \frac{0.17}{\sqrt{n}} =$	0.2 oe	M1		Allow without	2 ×' OR with incorrect z age equ of correct form (with		
n	$=(\frac{2\times 0.17\times 2}{0.2})$	$(2.576)^2$ oe (= 19.2)	M1		Attempt to arra			
St	nallest n is 20	0	A 1	Г и Л	correct z and '2	$2\times$ ' into the form	$n = or \sqrt{n} =$	
			AI	[4]				
3 (i)	$\operatorname{est}(\mu) = 2$	2866 or 2870 (3 s.f.)	B1		Accept 143300	/50 o.e.		
	est $(\sigma^2) =$	$\frac{1}{49}(410900000 - \frac{143300^2}{50})$	M1		Correct subst in	n correct formula		
	(= 4126.53	3)						
	= 4130 (3	sf)	A1	[3]				
(ii)	H ₀ : Pop m	ean (or μ) = 2850						
()	H_1 : Pop m	tean (or μ) \neq 2850	B1		Both. Not just	'mean'		
	$\frac{143300}{50}$ -2	2850	M1		Allow '4126.53	3' without $$, bu	ıt must have all	
	$\sqrt{4126.5}$	53'			$\sqrt{50}$	·		
	$\sqrt{50}$		Δ1		Or correct c y	(2867.81) for alt 1	nethod	
	= 1 761		M1		For valid comp	parison of z values	, areas or c.v.	
	·1.761' <	1.96	A1f		Dep 1.96; ft the	eir 1.761		
	No eviden	ce mean distance changed			If $H_1: \mu > 2850$) and c.f. 1.645 ,		
				[5]	(c.v. for 1 tail t	est 2864.94)		
4 (3)	2 – 2 9		P 1		seen	,		
4 (1)	$\lambda = 2.8$	2.8^{2}	DI		seen			
	$e^{-2.8}(1+2)$	$2.8 + \frac{2.8}{2}$)	M1		any λ allow on	e end error		
	= 0.469 (3	s.f.) or 0.47(0)	A1	[3]	As final answe	r		
(ii)	$e^{-0.7n} \ge 0.9$	$0.99 \qquad \text{or } e^{-\lambda} \ge 0.99$	M1		Allow '=' through	ughout		
	$-0.7n \ge \ln$	n 0.99 or $-\lambda \ge \ln 0.99$	M1		Attempt ln both	h sides		
	$n \le 0.014$	36 or $\lambda \le 0.01005$	A1		Can be implied	l. Accept 3 s.f.		
	*0.01436' or *0.0100	× 150 /5' × 150 ÷ 0.7	M1		Note $e^{-(0.7/150)r}$	$i \ge 0.99$ scores 1^{st}	and 3 rd M1	
	Max perio	d is 2.15 mins (3 sf)	A1	[5]	T & I leading t	o ans 2.2 mins, SO	C: B2	

	Page 5 Mark Sc)		Syllabus	Paper	
		GCE A LEVEL – Octol	ber/N	ovem	ber 2013	9709	71	
			1		1			
5 (i)	$\int_{0}^{2} k(x-2)^{2}$	dx = 1	M1		Attempt to inte and $= 1$	grate $f(x)$ with co	rrect limits	
	$\left(\left\lfloor \frac{k(x-2)^3}{3} \right\rfloor\right)$	$\frac{2}{0} = 1$)			Must see this 1	no on hotten o o i	8 _ 1	
	$k \left[0 - \left(-\frac{6}{3} \right) \right]$)] = 1	AI		Must see this h	ne or better, e.g. <i>I</i>	$a \times \frac{-}{3} = 1$	
	$k = \frac{3}{8} \mathbf{AG}$			[2]				
(ii)	$\frac{3}{8}\int_{d}^{2} (x-2) dx$	$(x^{2})^{2} dx = 0.2$ $(x^{3})^{2} = 0.2$	M1		$\int f(x)dx \text{ with limits d and 2 or 0 and d,} \\ and = 0.2 \text{ or } =0.8 \\ Condone missing 'k' \\ Reasonable attempt to integrate from a correct}$			
	$\frac{3}{8} \begin{bmatrix} 3 \\ 0 - \frac{(d)}{3} \end{bmatrix}$	$\begin{bmatrix} -2 \\ 3 \end{bmatrix}^3 = 0.2$ oe	M1					
	$((d-2)^3 =$	_ = -1.6)			expression, wit expression in d Condone missi	xpression, with limits substituted to give xpression in d ³ .		
	d = 0.83(0) (3 s.f.)	A1	[3]		0		
(iii)	$\frac{3}{8}\int_{0}^{2}x(x-2)$	$(2)^2 dx$	M1		Attempt integ a missing k	cf(x); ignore limit	s, condone	
	$(=\frac{3}{8}\int_{0}^{5}x^{3}$	$4x^2 + 4xdx$)			$\left(\frac{3}{8}\right[x \times \frac{(x-2)^3}{3}$	$-\int \frac{(x-2)^3}{3} dx \bigg _0^2$		
	$= \frac{3}{8} \left \frac{x^4}{4} - \frac{x^4}{4} \right $ $= \frac{1}{4}$	$\frac{4x^3}{3} + 2x^2 \Big]_0^2$	A1		$=\frac{3}{8}\left[x \times \frac{(x-2)^3}{3}\right]$	$-\frac{(x-2)^4}{12}\Big]_0^2$	dana miasina k	
	2		A1	[3]	Correct integra	tion & limits, con	done missing k	
6 (i)	P(Type I) 1-(${}^{6}C_{4} \times ($	= 1 - P(\geq 4 assuming $p = 0.7$) $0.7^4 \times 0.3^2 + {}^6C_5 \times 0.7^5 \times 0.3$	M1		or P(\leq 3 assum ⁶ C ₃ ×0.7 ³ ×0.3 ³ +	$\lim_{1 \to 6} p = 0.7$) Ma	y be implied $2\times0.7\times0.3^5$	
	$+0.7^{6}$)		M1		$+0.3^{6}$	-2	1	
	(= 1 - 0.74) = 0.256 (3)	44) (s.f.)	A1	[3]	Allow one end error = 0.256 (3 s.f.) SR if zero scored allow B1 for use of B(6, 0. in any two or more terms			
(ii)	$P(Type II) = {}^{6}C_{4} \times 0.$	$P = P (\geq 4 \text{ assuming } p = 0.35)$ $35^4 \times 0.65^2 + 0.05^2 + 0.65^2 + 0.65^2 + 0.65^2 + 0.65^2 + 0.65^2 + 0.65^2 + 0.65^2 + 0.65^2 + 0.65^2 + 0.65^2 + 0.05^2 + 0.$	M1		May be implied Allow one end	d error		
	${}^{6}C_{5} \times 0.1$ = 0.117	$35^{\circ} \times 0.65 + 0.35^{\circ}$	M1 A1	[3]	SR if zero scored allow B1 for use of B(6, 0.35) in any two or more terms			
(iii)	Type 1	reject Luigi's belief although	B1					
	it might be	e true.	B1	[2]	In context			

Р	Page 6 Mark Sch				Syllabus	Paper
		GCE A LEVEL – Oct	9709	71		
7 (i)	(i) N(10.61, 0.1017) $\frac{11-10.61}{\sqrt{0.1017'}} (= 1.223)$ $\Phi(`1.223')$ $= 0.889 (3 \text{ s.f.})$		B1 M1 M1 A1 [4]	o.e. Stated or in form) Allow without For attempt to their working	mplied (accept in $$ find correct area c	un-simplified
(ii)	$P(K - 1.2.)$ $Var = 0.03$ $(= 0.12110$ $N(-0.324,)$ $\frac{0 - (-0.324)}{\sqrt{0.12110}}$ $1 - \Phi(`0.9)$ $= 0.176 (3)$	$\begin{array}{l} 4 > 0 \) \\ 576 + 1.2^2 \times 0.0441 \\ 04) \\ 0.121104) \\ \frac{4}{4'} (= 0.931) \\ 031') \\ 5 \ s.f.) \end{array}$	M1 B1 B1 M1 M1 A1 [6]	Or similar state o.e. May be im form) Allow without For attempt to their working	ed or implied plied (accept in u find correct area c	n-simplified consistent with

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	72

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	72

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

F	Page 4	Mark Sc	Scheme			Syllabus	Paper	
		GCE A LEVEL – Octob	ber/No	ovem	ber 2013	9709	72	
r					-			
1 λ =	$=\frac{1}{30}$		B1		0.e			
1 -	$1 - e^{-\frac{1}{30}}$				1 - P(X = 0) by	Poisson, any λ al	low 1 end error	
= (= 0.0328 (3 s.f.)				1 - P(X=0) by	$1 - P(X=0)$ by Poisson, correct λ no end errors		
			A1			· (1 C* 1	0.0220 D2	
				[4]	Correct answer	, no working scor	0.0328 B2 res B2	
2 z =	= 2.576		B1		Seen (accept 2.	.574 to 2.579)		
2 >	$\times z \times \frac{0.17}{\sqrt{n}} =$	0.2 oe	M1		Allow without	'2 ×' OR with incorrect z nge equ of correct form (with		
n =	$= \left(\frac{2 \times 0.17 \times 2}{0.2}\right)$	$(2.576)^2$ oe (= 19.2)	M1		Attempt to arra			
Sn	nallest <i>n</i> is 20	0	A 1	[4]	correct z and ²	$2\times$ ' into the form i	n = or \sqrt{n} =	
			D1	[,]				
3 (i)	$est(\mu) = 2$	$\frac{1}{2866} \text{ or } 2870 \ (3 \text{ s.f.})$	BI		Accept 143300	/50 o.e.		
	$\operatorname{est}(\sigma^2) =$	$\frac{1}{49}(410900000 - \frac{143300^2}{50})$	M1		Correct subst in	n correct formula		
	(=4126.53)	3)	A 1	[2]				
	= 4130 (3	SI)	A1	[3]				
(ii)	H ₀ : Pop m	ean (or μ) = 2850	DI			 . 		
	H ₁ : Pop m	ean (or μ) \neq 2850	BI		Both. Not just	mean'		
	$\frac{143300}{50}$	2850	M1		Allow '4126.5.	3' without $$, bu	it must have all	
	$\frac{\sqrt{4126.5}}{\sqrt{50}}$	<u>53'</u>			$\sqrt{50}$			
	V 30		A1		Or correct c.v.	(2867.81) for alt 1	method	
	= 1.761		M1		For valid comp	parison of z values	, areas or c.v.	
	'1.761' <	1.96	AII		If H_1 : $\mu > 2850$) and c f 1.645		
	No eviden	ce mean distance changed			max B0M1A11	M1A0		
				[5]	(c.v. for 1 tail t	est 2864.94)		
4 (i)	$\lambda = 2.8$		B1		seen			
	$e^{-2.8}(1+2)$	$2.8 + \frac{2.8^2}{2})$	M1		any λ allow on	e end error		
	= 0.469 (3	s.f.) or 0.47(0)	A1	[3]	As final answe	r		
(ii)	$e^{-0.7n} \ge 0.9$	$0.99 \qquad \text{or } e^{-\lambda} \ge 0.99$	M1		Allow '=' throu	ughout		
$-0.7n \ge \ln 0.99 \text{or } -\lambda \ge \ln 0.9$		n 0.99 or $-\lambda \ge \ln 0.99$	M1		Attempt In both	h sides		
	<i>n</i> ≤ 0.014	36 or $\lambda \le 0.01005$	A1		Can be implied	l. Accept 3 s.f.		
	'0.01436'	$\times 150$ 5' × 150 ÷ 0.7	M1		Note $e^{-(0.7/150)r}$	$i \ge 0.99$ scores 1^{st}	and 3^{rd} M1	
	Max perio	d is 2.15 mins (3 sf)	A1	[5]	T & I leading t	o ans 2.2 mins, SO	C: B2	

Page 5 Mark Se		heme Syllabus			Syllabus	Paper	
		GCE A LEVEL – Octo	ber/N	ovem	ber 2013	9709	72
r			1				
5 (i)	$\int_{0}^{2} k(x-2)^{2}$	dx = 1	M1		Attempt to inte and $= 1$	Attempt to integrate $f(x)$ with correct limit and = 1	
	$\left(\left[\frac{k(x-2)^3}{3}\right]\right)$	$\frac{2}{0} = 1$)					
	$k \left[0 - \left(-\frac{3}{3} \right) \right]$)] = 1	AI		Must see this h	ine or better, e.g. <i>I</i>	$x \times \frac{1}{3} = 1$
	$k = \frac{3}{8} \mathbf{AG}$			[2]			
(ii)	$\frac{3}{8}\int_{d}^{2}(x-2)$	$^{2} dx = 0.2$	M1		$\int f(x) dx \text{ with lin} \\ and = 0.2 \text{ or } = \\ Condone \text{ missi} \end{cases}$	nits d and 2 or 0 a 0.8 ng 'k'	nd d,
	$\left(\frac{3}{8}\right\lfloor\frac{(x-2)}{3}$	$-\int_{a}^{b} d = 0.2$					
	$\frac{3}{8}\left[0-\frac{(d)}{2}\right]$	$\left[\frac{-2)^3}{3}\right] = 0.2$ oe	M1		Reasonable atte expression, wit	empt to integrate : th limits substitute	from a correct ed to give
	$((d-2)^3 =$	= -1.6)			expression in d	3 .	
	<i>d</i> = 0.83(0	0) (3 s.f.)	A1	[3]		пд к	
(iii)	$\frac{3}{8}\int_{0}^{2}x(x-2)$	$(2)^2 dx$	M1		Attempt integ	xf(x); ignore limits	s, condone
	$(=\frac{3}{8}\int_{0}^{2}x^{3}$	$4x^2 + 4xdx$)			$\frac{1}{\left(\frac{3}{8}\right]} x \times \frac{(x-2)^3}{3}$	$-\int \frac{(x-2)^3}{3} dx \Big]_0^2$	
	$= \frac{3}{8} \left\lfloor \frac{x^4}{4} - \frac{x^4}{4} \right\rfloor$	$\frac{4x^3}{3} + 2x^2 \Big]_0^2$	A1		$=\frac{3}{8}\left[x \times \frac{(x-2)^3}{3}\right]$	$-\frac{(x-2)^4}{12}\Big]_0^2$	
	$=\frac{1}{2}$				Correct integra	tion & limits, con	done missing k
			A1	[3]			
6 (i)	$P(Type I) = 1 - ({}^{6}C_{4} \times 0)$	= 1 - P(\geq 4 assuming p = 0.7) 0.7 ⁴ ×0.3 ² + ⁶ C ₅ × 0.7 ⁵ × 0.3	M1		or P(\leq 3 assum ${}^{6}C_{3} \times 0.7^{3} \times 0.3^{3} +$	$\lim_{-6} p = 0.7) \text{ Ma}_{-6} C_2 \times 0.7^2 \times 0.3^4 + 6 C_2$	y be implied $C_1 \times 0.7 \times 0.3^5$
	$+0.7^{\circ})$ (= 1 - 0.7	44)	M1		+ 0.3° Allow one end	error	
	= 0.256 (3)	s.f.)	A1	[3]	= 0.256 (3 s.f.)	CITO	
					SR if zero scor in any two or n	ed allow B1 for u nore terms	se of B(6, 0.7)
(ii)	$P(Type II) = {}^{6}C_{4} \times 0.$	$P = P (\geq 4 \text{ assuming } p = 0.35)$ $35^4 \times 0.65^2 + 10^{-10}$	M1		May be implied Allow one end	d error	
	${}^{6}C_{5} \times 0.1$	$35^{\circ} \times 0.65 + 0.35^{6}$	M1 A1		SR if zero scor	ed allow B1 for u	se of $B(6, 0.35)$
	- 0.117			[3]	SK If zero scored allow B1 for use of B(6, 0.35) in any two or more terms		
(iii)	Type 1	rojant I ujoj's baliaf although	B1				
	it might b	e true.	B1	[2]	In context		

Р	age 6	Mark S	cheme		Syllabus	Paper
		GCE A LEVEL – October/November 2013			9709	72
7 (i)	$N(10.61, 0)$ $\frac{11-10.61'}{\sqrt{0.1017'}}$ $\Phi(`1.223')$ $= 0.889 (3)$).1017) (= 1.223)) s.f.)	B1 M1 M1 A1 [4]	o.e. Stated or in form) Allow without For attempt to their working	mplied (accept in $$ find correct area c	un-simplified
(ii)	P(K - 1.2x) Var = 0.03 (= 0.12110) N(-0.324, <u>0-(-0.324</u> , <u>0-(-0.324</u> , <u>1 - Φ(`0.9550)</u> = 0.176 (3)	$A > 0)$ 576 + 1.2 ² × 0.0441 04) 0.121104) $\frac{1}{4^{7}}$ (= 0.931) 31') s.f.)	M1 B1 B1 M1 M1 A1 [6]	Or similar state o.e. May be im form) Allow without For attempt to their working	ed or implied plied (accept in us $$ find correct area c	n-simplified consistent with

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/73

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	73

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √* implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	73

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4		Mar	Mark Scheme				Paper
		GCE A LEVEL – C	October/I	Novem	ber 2013	9709	73
1	Est(µ	u) = 1.8775 or 1.88 (3 sf)	B1		Accept 751/40	0 (not 150.2/80)	
	Est(a	$\sigma^2) = \frac{80}{79} \left(\frac{820.24}{80} - "1.8775"^2 \right)$	M1		Correct subt'n	in correct formula $150.2^{2}/80$	ı
	= 6.8	31316 or 6.81 (3 sf)	A1		1/79 (820.24 -	- 130.2 /80)	
	<i>z</i> = 1	.96	B1		Seen		
	"1.87	$775" \pm z \times \sqrt{\frac{6.81316"}{80}}$	M1				
	= 1.3	31 to 2.45 (3 sf)	A1	6	Must be an inte NB use of bias	erval. ed var can still sco	ore A1.
Total				[6]			
2 (i)	Assu	me sd unchanged or	B1		Oe e.g. var und	changed	
	H ₀ : F H ₁ : F	Pop mean speed (or μ) = 62.3 Pop mean speed (or μ) < 62.3	B 1		Both. Not just	"Mean "	
	$\frac{59.9}{1}$	$\frac{0-62.3}{0.4}$	M1		Accept sd/var	mixes, but must ha	ave √ 75
	= - 1 Com No e decre	$999 \text{ or} - 2.00 \text{ (allow } + \text{ or} - \frac{1}{2}$ pare $-2.054 \text{ or} -2.055$ vidence that mean speed eased	A1 M1 A1 ft	6	Correct z value Valid comparis No contradictio	e (or correct critic son of z 's/areas/cr ons. Do not ft 2-ta	al value) itical values ail test.
(ii)	Pop o Yes	distribution unknown	B1 B1	2			
Total				[8]			
3 (i)	$\int_{0}^{10} \frac{1}{2}$	$\frac{1}{2500} (100t^3 - t^5) dt$	M1		Attempt integ a	$t^2 \mathbf{f}(t)$	
	(= -2	$\frac{1}{500} \left[25t^4 - \frac{t^6}{6} \right] \frac{10}{0} = \frac{100}{3} $					
	" <u>100</u> 3	$\frac{1}{2}$ "- $(\frac{16}{3})^2$	M1		For E (T^2) – ($E(T))^{2}$	
	$=\frac{44}{9}$	- or 4.89 (3 sf)	A1	3			
(ii)	$\int_{n}^{10} \frac{1}{2}$	$\frac{1}{2500} \left(100t - t^3\right) \mathrm{d}t$	M1		Attempt integ $f(t)$, ignore limits		
	$\frac{1}{2500}$	$\frac{1}{9} \left[50t^2 - \frac{t_4}{4} \right] = 0.1$	M1		Attempt integ $f(t)$, limits <i>n</i> to 10 or 0 to <i>n</i> Equated to 0.1 or 0.9. Not need to be matched		
	$\frac{1}{2500}$	$\frac{1}{0} \left 2500 - \left(50n^2 - \frac{n^4}{4} \right) \right = 0.1$	M1		0.1/0.9 matched to correct limits and used		s and used
	$(n^4 - (n^2 -$	$200n^2 + 9000 = 0)$ (68 3772 $n = 8.27$)	M1		Correct method	d of solution of a (QE in n ²
	n = 8	(00.5772, n = 0.27)	A1	5	Must be single	ans only	
Total				[8]			

	Page 5		Mark Scheme			Syllabus	Paper		
			GCE A LEVEL – Oc	ctober/	Novem	ber 2013	9709	73	
4	(i) (a)	$e^{-2.1} \times \frac{2}{-1}$	$\frac{1^3}{3!}$ alone	M1 A1	2	Allow any λ . A e.g. P (3, 0)	llow sum of 3 or	4 rel products,	
	(b)	$e^{-1.2} \times \frac{1.2^3}{3!} \times e^{-0.9}$		M1	2	$P (Fem = 3) \times P (Fem = 2) \times $	× P (Opp = 0) or × P (Opp = 1)		
		$+ e^{-1.2} \times$	$\frac{1.2^2}{2!} \times e^{-0.9} \times 0.9$	M1		P(3,0) + P(2,1)		
		= 0.115		Al	3	As final answe	r		
	(ii)	N (30, 3 34.5-30	(-0.8216)	B1 M1		seen or implied	ا with their N (ک ک)	
		$\sqrt{30}$ 1 – ϕ ("	0 822")	M1		Allow with no	or incorrect cc or	no V	
		= 0.206	(3sf)	A1	4	Area consisten	t with their working	ng	
Т	otal								
5	(i)	E (X) = 3 (1 ² + 2 ² - "3.5" ² (= $\frac{35}{12}$ A	$3.5 + 3^2 + 4^2 + 5^2 + 6^2) \div 6 - $ G)	B1 B1	2	21/6 oe, must see co working	prrect expression a	and no incorrect	
	(ii)	Attempt	$P(X < 3) \text{ or } 1 - P(X \ge 3)$	M1		seen or implied	1		
		N (3.5, 3–"3.5"	$\frac{12}{12}$ (- 2.070)	M1		2.99–"3.5"	1		
		$\sqrt{\frac{35}{12}/5}$	= (-2.070)	NI I		or $\frac{\sqrt{35}}{\sqrt{\frac{35}{12}}/50}$	(= -2.111)		
		Φ ("-2.0 = 0.0192	$(170") = 1 - \Phi((2.070"))$	M1		Φ ('-2.111') = = 0.0174 or 0 Consistent area	$1 - \Phi$ ('2.111') .0173		
		as final a	answer	A1	5	As final answe or valid total m Allow with inc have ÷50	r nethod correct cc (e.g. 2.5) OR no √.Must	
	(iii)	Die is bi numbers	ased (towards lower	B1 indep		Comment impl	lying die is biased		
		Mean of 3) or Equal scores	$550 \text{ throws} \ge 3 \text{ (Allow > }$ l nos of high and low	B1 indep	2	Comment impl indicate bias (or indicate bia	ying results of ex	p't do not numbers)	
		or More	high scores			Both must be i	n context		
Т	otal				[9]				

P	age 6		Mark	Schem	e		Syllabus	Paper
			GCE A LEVEL – O	ctober/l	Novem	ber 2013	9709	73
6 (i)	N(51 1012	00, 5)	5×45 ²) or N(5100,	B 1		seen or implied	1	
	$\frac{5200}{\sqrt{"1}}$)—"5 1012	$\frac{100"}{5"}$ (= 0.994)	M1		standardising w area consistent	vith their new mea with their workin	an and new var g with normal
	Φ ("(0.99	4")	M1				
	= 0.8	340 ((3 sf)	A1	4			
(ii)	Use of E (E Var (2092)	of E -3L (E - 6)	-3L or similar L = -260 $3L = 52^{2} + 9 \times 45^{2}$ or	M1 B1 B1		2800 – 3 x 102	0	
	$\frac{0-(")}{\sqrt{"2}}$	-26 092	$\frac{0")}{\overline{0"}}$ (= 1.797)	M1		with a pos var	with 45^2 and 52^2	combined
	$1 - \Phi$	Þ ("	.797")	M1		consistent area	, must clearly be o	D
	= 0.0)361	(3 sf) or 0.0362	A1	6		, ,	
					-	P $(3L - E < 0)$:	similar scheme	
						SR: use of 3E - stand 0 with the	– L, M1, 7380 B1 ese values M1, M	, 26361 B1 0A0 max 4/6
Total					[10]			

MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/71

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	71

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	71

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \sqrt{n} " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	71

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise < 3 sfs only once in paper.

1	(i)	One of each is more likely P(one of each = 0.5), P(HH) = 0.25	B1 B1 [2]	or P(TT) = 0.25				
	(ii)	Choose Charlie only if H then T Throw again if T then H	B1 B1 [2]	or similar e.g. HH for A, HT for B, TT for C or vice versa				
2		H ₀ : Pop mean = 17 H ₁ : Pop mean \neq 17	B1	Both correct. Allow μ , but not just "mean"				
		$\frac{18.2 - 17}{\frac{2.4}{5}}$	M1	Allow incorrect 18.2. Must have $\sqrt{5}$	$17 \pm 1.96 \ \frac{2.4}{\sqrt{5}} M1$			
		$\sqrt{5}$ = 1.12 (3 sf)	A1		=(14.9, 19.1) A1			
		'1.12' < 1.96 oe	M1	Comp '1.12' with 1.96 or area '0.132' with 0.025	`14.9`<18.2<`19.1' M1			
		Claim can be accepted	A1ft	ft their '1.12'				
			[5]	If H_1 : $\mu > 17$ and cf 1.645: can score max B0M1A1M1A1ft				
3		Var(total) = $6(3.2^2 + 2.6^2) (+ 0)$) (= 102) Total ~ N(1528, 102))	B1 B1	For mean (1528)oe and for varian May be implied by use of N(1528	nce (102) 8, 10.1 ²)			
		$\frac{1550 - "1528"}{\sqrt{"102"}} \qquad (= 2.178)$	M1	For standardising. No SD/Var mi	X			
		$ \frac{1 - \Phi(``2.178'')}{= 0.0147 (3 \text{ sf})} $	M1 A1 [5]	For correct area consistent with v	vorking			
4	(i)	$est(\mu) = 2005/200 = (10.025)$ $est(\sigma^{2}) = \frac{1}{99} 20175 - \frac{2005^{2}}{200})$ = 0.376 (3 sf)	B1 M1 A1 [3]	Correct subst in correct formula				
	(ii)	$\frac{10-10.025'}{\sqrt{0.376256'}} \qquad (=-0.288)$	M1	Allow without $$, but $\div\sqrt{50}$ essent	tial			
		$ \bigvee 50 1 - \Phi(`0.288') = 0.387 (3 sf) $	M1 A1 [3]	(Use of 'biased' variance can stil	l score fully in (ii))			

_	Page 5		Mark Scheme			Syllabus	Paper
			GCE AS/A LEVEL	– May/Jı	une 2013	9709	71
	(iii)	Yes; (assur although di	ned distr of \overline{X} normal) istr of X unknown	B1 B1 [2]			
5	(i)	B(520, 0.00 Po(4.16) n = 500 wh np = 4.16 v	08) hich is large, which is < 5 or p small <0.1	B1 B1B1 B1 [4]	Po: B1, $\lambda = 4.16$: Both needed	B1	
	(ii)	(a) $1 - e^{-4.16}(1 + 4.16 + \frac{4.16^2}{2} + \frac{4.16^3}{3!})$ = 0.597 (3 sf) (b) $e^{-4.16} \times \frac{4.16^n}{n!} > e^{-4.16} \times \frac{4.16^{n+1}}{(n+1)!}$ $1 > \frac{4.16}{n+1}$ n > 3.16 Smallest <i>n</i> is 4		M1 A1 [2]	1–P(0,1,2,3) any λ	allow one end e	rror
				M1 A1 A1 [3]	any λ or equiv equn with (Calculation of P(0 least 3 attempted, λ	ny λ r equiv equn without e and without factorials Calculation of P(0), P(1),P(5) scores M1 for at east 3 attempted, A1 all correct, A1 for n = 4)	
6	(i)	$\frac{1}{2} \int_4^t \frac{1}{\sqrt{t}} dt$ $\left[\sqrt{t}\right]_4^t = 0.$ $((\sqrt{t} - 2) = t = 8.41 \text{ (m)}$	$= 0.9 \text{ or } \frac{1}{2} \int_{t}^{9} \frac{1}{\sqrt{t}} dt = 0.1$ 9 or $\left[\sqrt{t}\right]_{t}^{9} = 0.1$ 0.9 or $(3 - \sqrt{t}) = 0.1$) ins) (3 sf)	M1 A1 A1 [3]	Attempt integ f(<i>t</i>) Correct integration	with unknown li a & limits = 0.9 d	mit and 0.9/0.1. or 0.1.
	(ii)	$\frac{1}{2} \int_{4}^{9} \frac{t}{\sqrt{t}} dt \text{oe}$ $\frac{1}{2} \left[\frac{t1.5}{1.5} \right]_{4}^{9} \text{oe}$ $= \frac{19}{3}$ $\frac{1}{2} \int_{4}^{9} \frac{t2}{\sqrt{t}} dt \text{oe}$ $\left(= \frac{1}{2} \left[\frac{t2.5}{2.5} \right]_{4}^{9} = \frac{211}{5} \right)$ $= \frac{'211'}{5} - \left(\frac{'19'}{3} \right)^{2}$ $= \frac{94}{45} \text{ or } 2.09 \text{ (3 sf)}$		M1 A1 A1 M1 M1 A1 [6]	Attempt integ $tf(t)$. Correct integration Attempt integ $t^2f(t)$ integ $t^2f(t) - (integ$. Ignore limits a & limits). Ignore limits f $tf(t))^2$ attempted	1

	P	Page 6 Mark So				Syllabus	Paper		
			GCE AS/A LEVEL	– May/J	une 2013	9709	71		
				1	1				
7	(i)	Conclude d	lie is biased when it isn't oe	B1	In context		~)		
		${}^{5}C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{3}$	${}^{5}C_{3}\left(\frac{1}{6}\right)\left(\frac{5}{6}\right) + 5\left(\frac{1}{6}\right)\left(\frac{5}{6}\right) + \left(\frac{1}{6}\right) + 5$		or $1 - \left({}^{5}C_{2} \left(\frac{1}{6} \right)^{2} \left(\frac{5}{6} \right)^{3} + 5 \left(\frac{1}{6} \right) \left(\frac{5}{6} \right)^{4} + \left(\frac{5}{6} \right)^{3} \right)$				
		$=\frac{23}{648}$ or (0.0355 (3 sf)	A1 [3]	allow 1 end error				
	·····		2						
	(11)	State or attempt P(0, 1, 2) with $p = \frac{2}{3}$		M1	Or 1– P(3,4,5)				
		${}^{5}C_{2}\left(\frac{2}{2}\right)^{2}\left(\frac{1}{2}\right)^{3}+5\left(\frac{2}{2}\right)\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{5}$		M1	Attempt at correct	expression			
		(3)	(3)(3)(3)(3)	A1	Allow 0.21				
		$=\frac{17}{81}$ or 0.2	210 (3 sf)	[3]					
	(iii)	Ect Vor(D)	$0.625 \times (1 - 0.625)$						
		$LSt Var(T_s)$	80	M1					
		$(=\frac{3}{1024})$							
		z = 2.054 (or 2.055)		B1					
		$0.625 \pm z \times$	$\sqrt{\frac{3}{1024}}$	M1	Any z				
		= 0.514 to	0.736 (3 sf)	A1					
				[4]					

MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	72

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	72

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \sqrt{n} " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4		Mark Scheme			Syllabus	Paper	
L			GCE AS/A LEVEL – M	ay/June	2013	9709	72	
1	(i)	Binomial		B1				
		п	p = 400, p = 0.012	B1 [2]	Both. Not $p = 1$ Or B(400, 0.01	Both. Not <i>p</i> = 1.2% Or B(400, 0.012): B1B1		
	(ii)	Poisson		B1				
		<i>n</i> large and	I mean = 4.8, which is < 5	B1 [2]	n large, p small			
	(iii)	$1 - e^{-4.8} (1 + 4.8 + \frac{4.8^2}{2})$			P($X = 0, 1, 2$); allow any λ ; allow one end error			
	= 0.857/0.858				(Normal/Binon	nial in (ii) can so	core M1 only)	
			[]	Fotal: 6]				
2	(i)	$\frac{2}{3}\int_{1}^{2}x^{2}\mathrm{d}x$		M1	Attempt integ.	xf(x); ignore lim	iits	
		$= \frac{2}{3} \left[\frac{x^3}{3} \right]_1^2$		A1	Correct integra	tion and limits		
		(ii) $= \frac{14}{9}$ or 1.56 o.e. $\frac{2}{3} \int_{1}^{14} x dx$		A1 [3]				
	(ii)			M1	Attempt integ.	f(<i>x</i>); with limits		
		$\left(=\frac{2}{3}\left\lfloor\frac{x}{3}\right\rfloor_{1}\right)$						
		$= \frac{115}{243} \text{ or } 0.473 (3 \text{ s.f.})$ $\frac{115}{243} < \frac{1}{2} \text{ o.e.}$		A1 [2]				
	(iii)			M1	Comparison of	prob. or values		
	Hence mean < median				ft (i) or (ii)			
			נ]					

	Page 5		Mark Scheme			Syllabus	Paper
			GCE AS/A LEVEL –	May/June	2013	9709	72
3	(i)	$\frac{73.1 - 75.2}{\frac{5.7}{\sqrt{n}}}$ n = {-1.50	$\frac{1}{2} = -1.563$ $53 \times 5.7 \div (-2.1) \}^2$	M1 A1	For standardisi Any correct ex May be implied	ng (with \sqrt{n}) pression for <i>n</i> or d by ans.	· √ <i>n</i> .
		n A	a = 18 Assume s.d. for the region is 5.7	A1 B1 [4]			
	(ii)	H_0 : pop mo H_0 : pop mo 1.563 com Evidence t	ean (or μ) = 75.2 ean (or μ) < 75.2 p 1.555 hat plants shorter	B1 M1 A1 [3]	Both (could be stated in (i)) For comparison of z values / areas / x values CWO. No contradictions		
4	(i)	$est(\mu) = 9750/150 = (65)$ $est(\sigma^2) = \frac{1}{149} (647500 - \frac{9750^2}{150})$		B1 M1	Correct subst. in correct formula		la
	(ii)	= 92.3 (3 s.f.) z = 2.326		A1 [3]			
	()	z = 2.326 '65' $\pm z \times \frac{\sqrt{92.28188'}}{\sqrt{150}}$		M1	Any z		
		=	= 63.2 to 66.8 (3 s.f.)	A1 [3]	(Use of 'biased	l' can still score	here)
	(iii)	0.02^{2}		M1	Allow M1 for (0.02 seen	
		=	= 0.0004 o.e.	A1 [2]			

[Page 6		Mark Scheme			Syllabus	Paper	
			GCE AS/A LEVEL –	May/June	2013	9709	72	
r				1	1			
5	(i)	$6 \times 510 + 6$	70 = (3130)	B1				
		$6 \times 12^2 + $	$4^2 = (880)$	B1				
		N(3130, 880)						
		$\frac{3050-3130}{\sqrt{880}} \qquad (=-2.697)$		M1	Poth With the	ir meen and vori	anco(>0) Allow	
	$\frac{3150-3130}{\sqrt{880}}$		(=0.6/4)	1011	Both. With their mean and variance(≥ 0) Allo without $$			
	$\Phi(`0.674') - (1 - \Phi((= 0.7499 - 0.0035)))$		- (1 - Φ('2.697')) - 0.0035)	M1	Use of tables a with their work	nd attempt to fir	id area consistent	t
		=	= 0.746 (3 sf)	A1 [5]				
	(ii)	i) $510 - 8 \times 70 = (-50)$ $12^2 + 8^2 \times 4^2 = (1168)$ P - 8C ~ N(-50, 1168)		B1 B1	o.e. $+50; 510/3$ o.e. $(12/8)^2 + 4$	8 -70; - (510/8 -	- 70)	
		$\frac{0-(-50)}{\sqrt{1168}}$	(= 1.463)	M1	For standardisi their mean and	ng with attempt variance(≥0).Al	"P-8C" oe with llow without $$	
		1 – Φ('1.4	63')	M1	Use of tables a with their work	nd attempt to fir	d area consistent	t
		=	= 0.0717 (3 s.f.)	A1 [5]				
	[Total: 10]							

	Page 7		Mark Scheme			Syllabus	Paper	
			GCE AS/A LEVEL – M	ay/June	2013	9709	72	
6	(i)	H ₀ : Pop mean (or λ or μ) is 5.3 H ₁ : Pop mean (or λ or μ) is less than 5.3 P(X < 1) = e ^{-5.3} (1 + 5.3)		B1	Both			
		$P(X \le 2) =$	$e^{-5.3}(1+5.3+\frac{5.3^2}{2})/P(X=2)$	M1	Both attempted	l		
		$P(X \le 1) = 0.0314 \text{ or } 0.0315$ & $P(X \le 2) = 0.102/P(X=2)=0.7071$		A1	Both correct			
		CR is 0 or 1 cases		A1	Dep. M1 and $P(X \le 1) < 0.05 < P(X \le 2)$			
		No evidence mean has decreased		B1f[5]	ft their CR	ft their CR		
	(ii)	Concluding mean has decreased when it		B1	In context			
		'0.0314 or	0.0315'	B1ft[2]	ft their $P(X \le 1)$), dep. < 0.05		
	(iii)	(Po(18.4)) N(18.4, 18.4)		B1 B1ft	Stated or implie B1 for N(18.4,	ed); B1f fo	or var. = 18.4	
		$\frac{20.5 - 18.4}{\sqrt{18.4}} \qquad (= 0.490)$		M1	For standardisin without $$	ng with or witho	out cc.Allow	
		$1 - \Phi(`0.4)$	90')	M1	Use of tables an with their work	nd attempt to fin	d area consistent	
		= 0.312 (3 s.f.)						
_			[Te				_	

MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/73

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	73

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013		73

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \sqrt{n} " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4		e 4	Mark Scheme			Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2013		2013	9709	73	
1	(i)	9.3		B1 1	1			
	(ii)	27.9		B 1	l			
	(iii)	E(S) = E(S - 7) Var (S -	17.4, $E(T) = 19.4$ T = -2.0, T = -7.2	M1 A1 B1ft 3	For subtractin non-numerica ft (i) & (ii) A negative answ	For subtracting their E[S] – E[T] can be non-numerical ft (i) & (ii) Adding (i) and (ii) ft non- negative answers only		
				[Total: 5]			
2		Assume prob of H ₀ : P(sc	e shots independent OR scoring constant core) = 0.82	B1	In context	In context		
		$H_1: P(sc$	core) > 0.82	B1	Both. Allow	<i>`p</i> `		
		20 × 0.8 = 0.102 No evid	$32^{19} \times 0.18 + 0.82^{20}$ (3 sf) Hence that improved	M1 A1 B1f	For use of Bi and/or P(20) Valid compa 0.82) and con errors in 0.10 Normal appra acceptable he CR = 1.222 (need cc) comp z = 1.2	For use of Bin(20,0.82)and either P(19) and/or P(20) attempted Valid comparison seen (with 0.05 if H ₁ p≠ 0.82) and correct conclusion ft numerical errors in 0.102 only Normal approx'n: B1 B1 (μ = 16.4 acceptable here) if earned, then: CR = 1.222 (from $\frac{18.5 - 20 \times 0.82}{\sqrt{20 \times 0.82 \times (1 - 0.82)}}$, need cc)		
					No evidence Same scheme	comp $z = 1.282$ No evidence that improved SC 1 Same scheme for proportions		
				[Total: 5]			
3	(i)	$\overline{x} = 93$ $z = 1.75$	30/15 =(62) 1	B1 B1				
		'62' $\pm z$	$\times \frac{12}{\sqrt{15}}$	M1	Any z			
		= 56.6 t	o 67.4 (3 sf)	A1 4	4 Must be an in	nterval		
	(ii)	92% of	such intervals will contain μ	B1 1	Accept P(Th	Accept P(This interval contains μ) = 0.92		
	(iii)	Each po equally	ossible sample of this size is likely	B1 1	Each membe chosen	Each member of pop equally likely to be chosen		
	[Total: 6]							

Page 5		e 5	Mark Scheme			Syllabus	Paper	
GCE AS/A LEVEL -		– May/.	June 2	2013 9709 7		73		
				-				
4	(i)	$e^{-2} \times 2$ ($e^{-5} \times \frac{5^4}{5!}$	$(\times) e^{-3} \times \frac{3^4}{4!}$	M1 B1		Correct exp'n for P(1) with λ =2 OR P(4) with λ =3 Correct exp'n dep M1B1		
		$\frac{162}{625} \text{ or }$	0.259 (3 sf)	M1 A1	4			
	(ii)	$(e^{-2} \times \frac{2}{r})$ $3 \times 2^{r} =$ $(\Rightarrow 3 \times 2^{r})$	$\frac{r}{!} = \frac{2}{3} e^{-2} \Longrightarrow)$ $2 \times r! \text{ OR } 2^{r-1} = \frac{1}{3} \times r!$ $2^{r-1} = r!)$	B1		Legitimately shown		
		$3 \times 2^3 =$	24 OR 3! = 24 seen	B1	2	Legitimately	shown on either	equation
			I					
				[Tot	tal: 6]			
5	(i)	$\int_{1}^{\infty} \frac{k}{x^3} dx$	x = 1	M1		All correct, ir to integrate	ncluding limits a	nd an attempt
		$\left\lfloor -\frac{k}{2x^2} \right\rfloor$ $0 - \left(-\frac{k}{2}\right]$	$\int_{1}^{1} = 1$ $\frac{5}{2} = 1$	A1	2	or $0 + \frac{k}{2} = 1$ convincing	or $\frac{k}{2} = 1$ AG m	nust be
	(ii)	$\int_{1}^{2} \frac{2}{x^{3}} dx$ $= \left[-\frac{1}{x^{2}} \right]$	$\begin{bmatrix} x \\ - \end{bmatrix}_{1}^{2}$	M1		Attempt integ $f(x)$; ignore limits		
	(;;;)	$=\frac{3}{4}$		A1	2			
	(111)	$\int_{1}^{\infty} \frac{z}{x^2} dx$	x	M1		Attempt integ	g <i>x</i> f(<i>x</i>); ignore lin	nits
		$= \left\lfloor -\frac{2}{x} \right\rfloor$ $= 2$	1	A1 A1	3	Correct & con	rrect limits	
	[Total: 7]							

Page 6		e 6	Mark Scheme			Syllabus	Paper	
			GCE AS/A LEVEL	GCE AS/A LEVEL – May/June 2013			9709	73
r						1		
6	(i)	λ (= 1.4	$(\times 2.5) = 3.5$	B1				
		$1 - e^{-3.5}$	$(1+3.5+\frac{3.5^2}{2.5^2}+\frac{3.5^3}{2.5^3})$					
		1 0	2 3!	M1	•	Any λ allow one end error		
		= 0.463	(3 sf)	Al	3			
	(ii)	$(\lambda = 67)$	$2 \times 1.4 = 940.8$					
	(11)	N(940.8	3, 940.8)	B1		Seen or impli	ied	
		<u>999.5 –</u>	-940.8 (= 1.914)					
		$\sqrt{94}$	$\frac{1}{0.8}$ (-1.914)	M1		Allow with wrong or no cc . no sd/var		
		Ф('1.91	4')	M1		mixes		
		= 0.972	(3 sf)	Al	4			
				[Total:	7]			
7	(i)	Assume	e sd unchanged or 4500	B1				
		H ₀ : Pop	mean = 34600	D 1		D 4 41	• . ••	
		H_1 : Pop	mean > 34600	BI		Both. Allow	just μ , but not ju	st "mean"
		35400-	- 34600					
		45	500	M1		Allow without $\sqrt{90}$		
			90					
		= 1.687	/1.686 (1.69)	A1				
		cf 1.645	5 < 1.686	M1		Valid comparison (or 0.0458/0.0459 < 0.05		
		Evidenc	that mean wkly profit has	A1 f	6	0133380 < 3. If $H_1 \neq and$	1 96 used max	34020)
		merease	ed	7111	U	B1B0M1A1N	MIA1f No contra	adictions
	(ii)	Distr'n	of X unknown.	B1*		Allow not No	ormal	
		Vec		B1* den	r			
		105		DI dep	2			
	(iii)	0.05 or	5%	B1	1			
	(:)	244	00					
	(IV)	$\frac{a-346}{4500}$	$\frac{000}{0} = 1.645$	M1		Attempt to fi	nd ev must see (+) 1.645 allow
		$\frac{+300}{\sqrt{90}}$	<u>_</u>	1011		without $\sqrt{90}$	If found in (i) as	vard when
		a = 353	80	A1		used	ii iouiiu iii (i) u	
		<u>35</u> 380-	-36500 (= -2.361)					
		45	$\frac{100}{100}$ (2.301)	M1				
		$\sqrt{2}$	90	M1		Stondardiai	with their " CV	" must use
		$1 - \Phi(')$	2.361')		6	$\sqrt{90}$	g with their CV	must use
		= 0.009	1	² 1 1	U	120		
						Correct tail		
			[Total· 1	141				
	[10tal: 14]				1 4]			