Cambridge International A Level

MATHEMATICS

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$20540 / 6012300=0.0034163$	B1	
	$[1000 \times 0.0034163=3.4163]$		
	$\mathrm{Po}(3.4163)$	B1	Could be implied by expression seen.
	$\begin{aligned} & \mathrm{e}^{\text {their' } 3.4163^{\prime}}\left(1+3.4163+\frac{3.4163^{2}}{2!}+\frac{3.4163^{3}}{3!}\right) \text { OR } \\ & \mathrm{e}^{\text {their '3.4163' }}(1+3.4163+5.8356+6.6453) \text { or } 0.03283+0.1122+0.1916+ \\ & 0.21819) \end{aligned}$	M1	Allow any λ. Allow with one end error. Must see expression.
	$=0.555(3 \mathrm{sf})$	A1	CAO SC No working: B1 B1 (Po must be stated) B1 correct answer (max 3/4). SC Binomial: B1 B0 B1 correct answer (max 2/4).
		4	
1(b)	$n=1000>50$	B1	Must show comparison with 50.
	$n p=3.4163<5$	B1	Must show comparison with 5.
		2	SC B1: $n>50$ (or n large), $n p<5$. SC B1: n large, p small.

Question	Answer	Marks	
$2(\mathrm{a})$	$\frac{1}{2} \times 2 \times 1$ or $\int_{0}^{2} \frac{1}{2} x \mathrm{~d} x=1$, which is the correct area under a pdf.	B1	Calculation and result.
	$\mathrm{f}(x) \geqslant 0$	B1	Condone $\mathrm{f}(x)>0$ or 'Line is above x-axis' OE.
		$\mathbf{2}$	

PUBLISHED

Question	Answer	Marks	Guidance
2(b)	$\frac{1}{2} \pi r^{2}=1$	M1	Area of semi-circle equated to 1 OE . Missing factor of $1 / 2$ gets M1A0.
	$r=\sqrt{\frac{2}{\pi}}$ or $0.798(3 \mathrm{sf})$	A1	
		2	
2(c)(i)	Area to the left of 15 is greater than 0.5	B1	OE, e.g. 'The distribution of X is skewed to the right positively skewed, suggesting the median will be less than the mid-point of the interval.' or 'The distribution of X is skewed to the right / positively skewed' or 'It is a decreasing function suggesting the median will be less than the mid-point of the interval'.
		1	
2(c)(ii)	$\int_{10}^{20}\left(\frac{40}{x}-\frac{x}{10}\right) \mathrm{d} x$	M1	Integration of $x \mathrm{~h}(x)$ attempted. Ignore limits.
	$\left[40 \ln x-\frac{x^{2}}{20}\right]_{10}^{20}$	A1	Correct integration and limits (can be implied by final answer).
	$=40 \ln 2-15$ or 12.7 (3sf)	A1	
		3	

Question	Answer	Marks	Guidance
3	Assume SD still $=5.2$	B1	OE i.e. 'Assume the SD remains unchanged'.
	$\mathrm{H}_{0}: \mu=24.0 \mathrm{H}_{1}: \mu>24.0$	B1	Or population mean; not just mean.
	$\frac{25.8-24.0}{\frac{5.0}{\sqrt{50}}}$	M1	For standardising (could be implied). Must have $\sqrt{ } 50$.
	$=2.448$	A1	Or $\mathrm{P}(\bar{X}>25.8)=0.0071$.
	${ }^{\prime} 2.448{ }^{\prime}>2.326$	M1	Or $0.0071<0.01$. For valid comparison.
	[Reject H_{0}] There is evidence that (mean) amount of wheat is greater.	A1FT	OE. FT their $z_{\text {calc }}$. In context, not definite, eg not 'Mean amount of wheat is greater' No contradictions CV method: $\mathrm{CV}=25.71$ M1A1 $25.71<25.8$ M1 A1FT or CV=24.09 M1 A1 $24.09>24 \mathrm{M} 1 \mathrm{~A} 1 \mathrm{FT}$.
		6	

Question	Answer	Marks	
$4(\mathrm{a})$	$z \times \sqrt{\frac{11.2}{n}}=1.4076 \div 2$	M1	Any z, but must be a z.
	$z=1.881$ or 1.882	B1	
	$\left[n=\left(\frac{1.881}{0.7038}\right)^{2} \times 11.2\right]$ $n=80$	A1	Must be a whole number.
		$\mathbf{3}$	

Question	Answer	Marks	
$4(\mathrm{~b})$	Jan, Feb and March not typical of whole year.	B1	Or, e.g., weather is different at different times of year.
		$\mathbf{1}$	
	$0.94^{3} \times 0.06 \times 4$	$\mathbf{M 1}$	
	$=0.199(3 \mathrm{sf})$	$\mathbf{A 1}$	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
5(a)	$2.0^{2}+20 \times 3.4^{2}$	M1	
	$=235.2$	A1	
		2	
5(b)	$\mathrm{E}(\mathrm{C}-3 \mathrm{~B})=50+20 \times 1010-3 \times 6730$ or 60	B1	
	$\operatorname{Var}(\mathrm{C}-3 \mathrm{~B})={ }^{\prime} 235.2 `+9 \times 15^{2} \quad$ or 2260.2	M1	FT their values from (a).
	$\begin{aligned} & {\left[\mathrm{C}-3 \mathrm{~B} \sim \mathrm{~N}\left({ }^{\prime} 600^{\prime},{ }^{\prime} 2260.2^{\prime}\right)\right]} \\ & =\frac{0-60}{\sqrt{2260.2}} \end{aligned}$ $[=-1.262]$	M1	Standardising with their values (could be implied).
	$1-\Phi\left({ }^{\prime}-1.262{ }^{\prime}\right)=\Phi\left({ }^{\prime} 1.262^{\prime}\right)$	M1	Probability area consistent with their values.
	$=0.897(3 \mathrm{sf})$	A1	
		5	

PUBLISHED

Question	Answer	Marks	Guidance
6	$\begin{aligned} & \frac{5}{4}\left(\frac{1+2^{2}+6^{2}+1+a^{2}}{5}-\left(\frac{1+2+6+1+a}{5}\right)^{2}\right)=\frac{11}{2} \\ & \text { or } \frac{1}{4}\left(\left(42+a^{2}\right)-\frac{\left(10+a^{2}\right)}{5}\right)=\frac{11}{2} \end{aligned}$	M1*	OE attempted or e.g., $\frac{42+a^{2}}{5}-\left(\frac{10+a}{5}\right)^{2}=\frac{22}{5}$. Allow use of biased i.e., without $\frac{5}{4}$.
	$4 a^{2}-20 a+0=0$ or $a^{2}-5 a+0=0$	DM1	Two- or three-term quadratic equation in a, with at least two terms correct.
	$a=5$	A1	Ignore $a=0$, if seen.
		3	

Question	Answer	Marks	Guidance
7(a)	$\begin{aligned} & \left.\mathrm{H}_{0}: \lambda=7.6 \text { [or } 1.9\right] \\ & \left.\mathrm{H}_{1}: \lambda<7.6 \text { [or } 1.9\right] \end{aligned}$	B1	$\begin{aligned} & \text { Or Population mean }=7.6 \text { or } \mu \text { (not just 'mean'). } \\ & \text { Or Population mean }<7.6 \text { or } \mu \text {. } \end{aligned}$
		1	

Question	Answer	Marks	Guidance
7(b)	Mean $=7.6$	B1	Seen.
	$\mathrm{P}(X \leqslant 2)=\mathrm{e}^{-7.6}\left(1+7.6+\frac{7.6^{2}}{2}\right) \quad[=0.0188$ or 0.0187$]$	M1	OE.
	$\mathrm{P}(X \leqslant 3)=\mathrm{e}^{-7.6}\left(1+7.6+\frac{7.6^{2}}{2}+\frac{7.6^{3}}{3!}\right) \quad[=0.0554$ or 0.0553$]$	M1	OE. Expression must be seen in at least one probability calculation.
	0.0188 or 0.0187 and 0.0554 or 0.0553	A1	A1 for both values.
	Critical region is $X \leqslant 2$	A1	Dep on both M marks. SC No Poisson expression seen in either prob scores B1 for 0.0188 or 0.0187 and B1 for 0.0554 or 0.0553 and B1 for CR.
	$\mathrm{P}($ Type I error $)=\mathrm{P}(X \leqslant 2)=0.0188$ or $0.0187(3 \mathrm{sf})$	B1FT	FT their $\mathrm{P}(X \leqslant 2)$ or their CR .
		6	
7(c)	Concluding that the (mean) no. of accidents has reduced when it has not.	B1	OE. Must be in context. Accept: 'It is believed that the booklet has helped to improve safety when actually it has not'.
		1	
7(d)	3 not in critical region.	M1	FT their CR or $\mathrm{P}(X \leq 3)=0.0554>0.05$.
	No evidence mean number of accidents has decreased.	A1FT	In context. Cannot be a definite statement, e.g., 'mean number accidents has not decreased’.
		2	

Question	Answer	Marks	Guidance
7(e)	$\mathrm{N}(98.8,98.8)$	B1	May be implied.
	$\frac{100.5-98.8}{\sqrt{98.8}} \quad[=0.171]$	M1	For standardising (could be implied by correct answer). Allow with wrong or no continuity correction.
	$1-\Phi\left({ }^{\prime} 0.171\right.$ ')	M1	For probability area consistent with their working.
	$=0.432(3 \mathrm{sf})$	A1	
		4	

Cambridge International A Level

MATHEMATICS

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous

GENERIC MARKING PRINCIPLE 4

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
$4 \quad$ Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

PUBLISHED

Question	Answer	Marks	Guidance
1	$0.23 \pm z \times \sqrt{\frac{0.23 \times(1-0.23)}{200}}$	M1	Expression of correct form. Any z, but $z=0.8328$ scores B0M0.
	$z=1.811$ or 1.812	B1	
	0.176 to $0.284(3 \mathrm{sf})$	A1	Must be an interval.
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2(a)	$\mathrm{E}(W)=\operatorname{Var}(W)$.	B1	Allow 'they are the same' OE. Must be $=$ not $\approx($ and not both $=$ and $\approx)$. Condone $\mathrm{E}(W)=\lambda$ and $\operatorname{Var}(W)=\lambda$.
		1	
2(b)	$n p \approx n p(1-p)$, hence $1-p$ must be close to 1	B1	OE. Must see formulae and $q=1-p$ must be seen or implied and conclusion made.
		1	

PUBLISHED

Question	Answer	Marks	Guidance
$2(\mathrm{c})$	$\lambda=1.4$	B1	Seen.
	$1-\mathrm{e}^{-1.4}\left(1+1.4+\frac{1.4^{2}}{2}\right)$ or $1-\mathrm{e}^{-1.4}(1+1.4+0.98)$ or 1- $(0.2466+0.3452+0.2417)$	M1	Allow any λ; allow one end error. Expression must be seen (accept correct sigma notation).
	$=0.167(3 \mathrm{sf})$ or 0.166	A1	Use of Binomial scores SCB1 for 0.167 or 0.166. No working: 0.167 [or 0.166$] ~ S C ~ B 1 . ~$ Note: $\lambda=1.4$ and 0.167 with no working seen scores SC B1B1. Use of Normal scores B0M0.
		$\mathbf{3}$	

Question	Answer	Marks	
$3(\mathrm{a})$	Est $(\mu)=3.25=13 / 4$ or $1625 / 500$	B1	
	Est $\left(\sigma^{2}\right)=\frac{500}{499}\left(\frac{5663.5}{500}-4.25^{\prime 2}\right)$ or $\frac{1}{499}\left(5663.5-\frac{1625^{2}}{500}\right)$	M1	Expression of correct form.
	$=0.766(3 \mathrm{sf})$ or $1529 / 1996$	A1	Biased variance of 0.7645 scores M0A0.
		$\mathbf{3}$	

PUBLISHED

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Marks \& Guidance

\hline \multirow[t]{8}{*}{3(b)} \& $\mathrm{H}_{0}:$ Pop mean $($ or $\mu)=‘ 3.25$,
$\mathrm{H}_{1}:$ Pop mean $($ or $\mu) \neq{ }^{`} 3.25{ }^{\prime}$ \& B1FT \& Not just 'mean'. FT their 3.25 .

\hline \& $$
\frac{2.95-" 3.25 "}{\sqrt{00.766^{\prime \prime} \div 60}}
$$ \& M1 \& Standardising with their values. Must have $\sqrt{ } 60$.

\hline \& $=-2.655$ \& A1 \& | Or $\mathrm{P}(\bar{X}<2.95)=0.0039$ or 0.00396 or 0.00397 . |
| :--- |
| SC FT their biased est $\left(\sigma^{2}\right)$, i.e. 0.7645 to give $z=2.658$ A1. |

\hline \& ${ }^{\prime} 2.655$ ' >2.576 or ' -2.655 ' <-2.576 \& M1 \& For valid comparison, e.g. 0.0039 or 0.00396 or 0.00397 <0.005, or $0.0078<0.01$, or $0.00792<0.01$.

\hline \& | [Reject H_{0}] |
| :--- |
| There is evidence that (mean) mass in (country B) is different (from country A). | \& A1FT \& OE. Must be in context and not definite, e.g., not ‘Mean mass is not different', No contradictions. Context needs either 'mass' or 'countries' OE.

\hline \& \& \& | SC, Use of one-tail test. |
| :--- |
| '2.655' >2.326 or $0.0039<0.01$ M1A0 (Max B0M1A1M1A0 3/5). |

\hline \& \& \& | Accept critical value method. Either: |
| :--- |
| Xcrit $=2.959$ M1A1 $2.95<2.959$ M1A1FT with correct conclusion, or |
| Xcrit=3.241 M1A1 3.25>3,241 M1A1FT with correct conclusion. |

\hline \& \& 5 \&

\hline
\end{tabular}

Question	Answer	Marks	Guidance
$4(\mathrm{a})$	Books received independently or singly or randomly.	B1	OE. Must be in context. If more than one condition given, ignore extras.
		$\mathbf{1}$	

PUBLISHED

Question	Answer	Marks	Guidance
4(b)	$\mathrm{e}^{-15.3} \times \frac{15.3^{10}}{10!}$	M1	Allow incorrect λ.
	$=0.0439$ (3sf)	A1	SC No working shown but correct answer seen scores B1.
		2	
4(c)	$\mathrm{N}(153,153)$	B1	Seen or implied.
	$\frac{180.5-153}{\sqrt{153}} \quad[=2.223]$	M1	For standardising with their values (can be implied). Allow with wrong or missing continuity correction.
	$1-\phi\left({ }^{\prime} 2.223\right.$ ')	M1	For correct probability area consistent with their values.
	$=0.0131$ (3sf)	A1	
		4	
4(d)	$(\lambda=) 5.1+2.5 \quad[=7.6]$	B1	Give at early stage (seen or implied).
	$\begin{aligned} & 1-\mathrm{e}^{-7.6}\left(1+7.6+\frac{7.6^{2}}{2}+\frac{7.6^{3}}{3!}\right)=1-\mathrm{e}^{-7.6}(1+7.6+28.88+73.16) \\ & =1-(0.0005005+0.003803+0.01445+0.03661) \end{aligned}$	M1	Allow incorrect λ. Allow one end error. Must see an expression (accept correct sigma notation).
	$=0.945(3 \mathrm{sf})$	A1	SC No working, 0.945 B1(could be implied) SC B1.
		3	

PUBLISHED

Question	Answer	Marks	Guidance
5(a)	$\mathrm{E}(X-Y)=1 \operatorname{Var}(X-Y)=5$	B1	Seen or implied, OE e.g. $X-Y-2$.
	$\frac{2-1}{\sqrt{5}}[=0.447] \quad \frac{-2-1}{\sqrt{5}}[=-1.342]$	M1	Standardising with their values must come from a combination.
	$1-\Phi\left({ }^{\prime} 0.447 '\right) \quad \Phi('-1.342 ')=1-\Phi\left({ }^{\prime} 1.342\right)$	M1	Correct probability area consistent with their values.
	$=0.327$ or $0.328=0.0898$ or 0.0899	A1	Seen or implied.
	Probability that difference is more than $2=0.417(3 \mathrm{sf})$ or 0.418	A1	
		5	
5(b)(i)	$\mathrm{E}(X)=62+1.5(42) \quad[=125]$	B1	OE.
	$\operatorname{Var}(X)=158+1.5^{2} \times 108 \quad[=401]$	B1	Correct expression OE.
	$\frac{90-" 125 "}{\sqrt{" 401 "}}[=-1.748]$	M1	Correct standardisation using their $\mathrm{E}(X)$ and $\operatorname{Var}(X)$. Must both be from a combination attempt. Ignore any attempted continuity correction.
	$\Phi\left({ }^{\prime} 1.748\right.$ ')	M1	Correct probability area consistent with their stated values.
	$=0.960$ or $96.0 \%(3 \mathrm{sf})$	A1	Allow 0.96 or 96\%.
		5	
5(b)(ii)	Unlikely. A candidate who does well in Theory is likely to do well in Practical.	B1	Need both. Accept 'unlikely’, 'not independent', 'dependent', 'not realistic', or similar; and accept 'both testing knowledge from the same syllabus', 'theory and practical share same content' or similar statement.
		1	

PUBLISHED

Question	Answer	Marks	Guidance
6(a)	$\left(1-\frac{1}{3}\right)^{10}$	M1	
	$=0.0173$ (3 sf)	A1	No working scores SC B1.
		2	
6(b)	$1-(1-p)^{10}=0.8926$	M1	Accept $1-q^{10}=0.8926$. Equation must be in p or in q but not both.
	$1-p=0.1074^{0.1} \quad[=0.800]$	M1	For valid attempt to solve their (binomial) equation in p^{10} or q^{10}.
	$p=0.200(3 \mathrm{sf})$ or 0.2	A1	
		3	

Question	Answer	Marks	Guidance
7(a)(i)	$\frac{1}{2} \times 4 \times a=1$	M1	For use of area $=1$ or let $\mathrm{f}(x)=k x$ and attempt $\int_{0}^{4} k x \mathrm{~d} x=1$.
	$\left[a=\frac{1}{2}\right] \mathrm{f}(x)=\frac{1}{8} x$	A1	$\begin{aligned} & \left.k\left[\frac{x^{2}}{2}\right]\right]_{0}^{4}=1 ; 8 k=1 ; k=\frac{1}{8} . \\ & \mathrm{f}(x)=\frac{1}{8} x \text { or } k=\frac{1}{8} . \end{aligned}$
		2	

PUBLISHED

Question	Answer	Marks	Guidance
7(a)(ii)	$\int_{0}^{4} x \times \frac{1}{8} x \mathrm{~d} x$	M1	Attempt to integrate $x \times$ their $\mathrm{f}(x)$. Ignore limits accept in terms of k.
	$\left[\frac{x^{3}}{24}\right]^{4}$	A1ft	Their integral and correct limits accept in terms of k.
	$=\frac{8}{3} \text { or } 2.67(3 \mathrm{sf})$	A1	Note: Final answer of $64 \mathrm{k} / 3$ scores $2 / 3$.
		3	
7(b)	$\frac{a-1}{a}=\frac{1}{\sqrt{2}}$	M1	Or attempt $\int_{0}^{1} \mathrm{~g}(w) \mathrm{d} w=\frac{1}{2}$ i.e. $\int_{0}^{1}\left(\frac{2}{a}-\frac{2}{a^{2}} w\right) \mathrm{d} w=\frac{1}{2}$, or integral from 1 to a. $\mathrm{g}(w)$ must be linear of form $\mathrm{g}(w)=m w(+c)$. Or area attempt: attempt to calculate heights using their linear equation ($h_{1}=2 / a$ and $h_{2}=-2 / a^{2}+2 / a$) and use in either area trapezium $=0.5$, or area trapezium $=$ area small triangle or area small triangle $=0.5$. Area trapezium $=1 / 2 \times 1\left(2 / a+-2 / a^{2}+2 / a\right)$ Area triangle $\left.=1 / 2(a-1)\left(-2 / a^{2}+2 / a\right)\right)$ Note: alternative expression for $h_{1}=(a-2) /(a-1)$.
	$a \sqrt{2}-\sqrt{2}=a$	A1	Or $a^{2}-4 a+2=0$. Any correct equation in a, a not in denominator.
	$a=2+\sqrt{2}=3.41$	A1	
		3	

Cambridge International A Level

MATHEMATICS

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

PUBLISHED

Question	Answer	Marks	
1	$\frac{3}{2} \int_{0}^{1}\left(x-x^{3}\right) \mathrm{d} x$	M1	Attempt to integrate $x f(x)$; ignore limits.
	$=\frac{3}{2}\left[\frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{1}$	A1	Correct integration and limits.
	$=\frac{3}{8}$	A1	

Question	Answer	Marks	Guidance
2(a)	180, 227	B1	One correct. Ignore incorrect numbers.
		B1	Both correct and no extra numbers seen. (Allow other correct use of list of digits).
		2	
2(b)	These numbers are not independent of the previous numbers OR Only a finite number of digits used	B1	Already used these numbers, so therefore not random. Does not include numbers not in the list, therefore not random (not random or biased needs a reason).
		1	

Question	Answer	Marks	Guidance
3(a)	$z=1.645$	B1	
	$z \times \frac{\sqrt{\frac{x}{100} \times\left(1-\frac{x}{100}\right)}}{100}=0.07896$	M1	OE. Equation of correct form. Accept $p=x / 100$. Any z. Allow missing factor of 2 .
	$\left[x(100-x)=100^{3} \times 0.07896^{2} \div 1.645^{2}\right]$ $x^{2}-100 x+2304=0$	A1	Any correct (likely scalar multiple) three-term quadratic equation in x or p with simplified coefficients. Accept $p^{2}-p+0.2304=0$ or $p(1-p)=0.2304$.
	$x=36$ or 64	A1	
		4	
3(b)	$0.1^{2}=0.01$	B1	Accept either.
		1	

PUBLISHED

Question	Answer	Marks	Guidance
4	Method 1: Based on mass		
	Mean $=7 \times 65.2=456.4$	B1	
	$\operatorname{Var}=7 \times 3.6^{2}[=90.72]$	M1	
	$22000 / 50=440$ used in standardising equation	M1	
	$\frac{\prime 440^{\prime}-456.4^{\prime}}{\sqrt{90.72^{\prime}}}[=-1.722]$ no mixed methods	M1	For standardising with their values. No mixed methods.
	$\phi\left(-{ }^{\prime} 1.722\right.$ ' $=1-\phi\left({ }^{\prime} 1.722\right.$ ' $)$	M1	For correct probability area consistent with their values.
	$=0.0425$ or 0.0426	A1	Note: accept alt method using per day. $\mathrm{N}\left(65.2, \frac{3.6^{2}}{7}\right)$. No mixed methods.
	Method 2: Based on profit		
	Mean $=7 \times 65.2 \times 50=22820$	B1	
	$\operatorname{Var}=7 \times 3.6^{2}$	M1	
	$\operatorname{Var}=50^{2} \times{ }^{\text {' } 90.72}{ }^{\prime}[=226800]$	M1	
	$\frac{22000-22820^{\prime}}{\sqrt{226800^{\prime}}}[=-1.722]$ no mixed methods	M1	For standardising with their values. No mixed methods.
	$\phi(-1.722 \times)=1-\phi\left({ }^{\prime} 1.722\right.$ ' $)$	M1	For correct probability area consistent with their values.
	$=0.0425$ or 0.0426	A1	
		6	

PUBLISHED

Question	Answer	Marks	Guidance
5(a)	$\bar{x}=1700 / 50=34$	B1	
	$\operatorname{Est}\left(\sigma^{2}\right)=\frac{50}{49}\left(\frac{59050}{50}-34^{2}\right)$ or $\frac{1}{49}\left(59050-\frac{1700^{2}}{50}\right)$	M1	$\operatorname{Est}\left(\sigma^{2}\right)=\frac{59050}{50}-34^{2}$ biased scores M0.
	$=25.5(3 \mathrm{sf}) \text { or } \frac{1250}{49}$	A1	$=25$ scores A0.
		3	
5(b)	H_{0} : Population mean time $=32.4$ H_{1} : Population mean time $\neq 32.4$	B1	Not just 'mean' but allow just ' μ '.
	$\frac{34-32.4}{\frac{\sqrt{25.5^{\prime}}}{\sqrt{50}}}$	M1	Must have $\sqrt{50}$ and not 50. FT their mean and var. Can be implied.
	$=2.24$ (3 sf)	A1	or $\mathrm{P}(\bar{T}>34)=0.0125$. SC use of biased var (25) $z=2.26$ or $p=0.0119$, allow M1A1.
	' 2.24 ' < 2.326	M1	Or $0.0125>0.01$ for a valid comparison.
	[Not reject H_{0}] Insufficient evidence that (mean) time has changed	A1FT	In context, not definite, e.g. not 'Time not changed’. No contradictions. Note: accept CV method $\mathrm{x}_{\text {cri }}=34.06$ for M1A1. Compares $34<34.06$ for M1, conclusion for A1. Condone $x=32.34 \mathrm{M} 1 \mathrm{~A} 1$: compares $32.4>32.34$ for M1, conclusion for A1.
		5	SC for using a one-tail method. Award max $3 / 5$ (B0 M1 A1 M1 A0).

PUBLISHED

Question	Answer	Marks	Guidance
$5(\mathrm{c})$	Distribution of times in the population is normal	B1	Accept answers with no context here. Accept underlying distribution for population.
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
6(a)	$X \sim \operatorname{Po}(2.5)$	B1	SOI.
	$\mathrm{e}^{-2.5}\left(1+2.5+\frac{2.5^{2}}{2}+\frac{2.5^{3}}{3!}\right)$	M1	Any λ. Allow one end error.
	$=0.758(3 \mathrm{sf})$	A1	SC use of binomial B1 for 0.758 . SC when no working is shown, $X \sim \operatorname{Po}(2.5)$ seen scores B1, 0.758 seen also scores B1.
		3	
6(b)	$\mathrm{E}(X)=\frac{5}{2} \text { or } 2.5, \operatorname{Var}(X)=\frac{4999}{2000} \text { or } 2.4995$	*B1	Just an answer of 2.5 for the variance is not sufficient. However, 2.4995 is sufficient.
	These are almost equal	DB1	Condone 'equal'.
		2	

PUBLISHED

Question	Answer	Marks	Guidance
7(a)	$\frac{1}{2} \pi\left(\sqrt{\frac{2}{\pi}}\right)^{2}$	M1	
	$=1$, which is the area under a PDF [and $\mathrm{f}(x) \geq 0$]	A1	Result and statement are both needed.
		2	
7(b)	$\cos ^{-1}\left(\frac{\sqrt{\frac{1}{\pi}}}{\sqrt{\frac{2}{\pi}}}\right)=\frac{\pi}{4}$	B1	AG. Accept alternative approaches, e.g. using Pythagoras, tangent, or isosceles right-angle triangles. Answer should be convincingly obtained and all correct.
	Area of sector $=\frac{1}{4}$	B1	
	Area of triangle $A O B=\frac{1}{2} O A \times O B=\frac{1}{2} \times \sqrt{\frac{1}{\pi}} \times \sqrt{\frac{2}{\pi}-\frac{1}{\pi}}$ or Area of triangle $A O B=\frac{1}{2} O A \times O B \times \sin (A O B)=\frac{1}{2} \times \sqrt{\frac{1}{\pi}} \times \sqrt{\frac{2}{\pi}} \sin \frac{\pi}{4}$	M1	Accept alternative approaches. Note: $\mathrm{AB}=\sqrt{0.7979^{2}-0.5642^{2}} \quad[=0.5642]$ Allow values to 3sf.
	$\frac{1}{2 \pi}$ or 0.1592	A1	
	${ }^{\prime} \frac{1}{4},-\quad \frac{1}{2 \pi} \text { ' or ' } 0.25 \prime-‘ 0.1592$	M1	Attempt area of sector - area of triangle $A O B$.
	$=\frac{1}{4}-\frac{1}{2 \pi} \text { or } 0.0908(3 \mathrm{sf})$	A1	

Question	Answer	Marks	Guidance
7(b)	Alternative Method for Question Q7(b): Using integration		
	Find equation of curve $x^{2}+y^{2}=\frac{2}{\pi}$	M1	
	$y=\sqrt{\frac{2}{\pi}-x^{2}}$	A1	
	Attempt to integrate (any limits)	M1	
	Use of correct limits $\sqrt{\frac{1}{\pi}}$ to $\sqrt{\frac{2}{\pi}}$	B1	
	Correct integration with correct limits	A1	
	$=\frac{1}{4}-\frac{1}{2 \pi} \text { or } 0.0908(3 \mathrm{sf})$	A1	Correct final answer.
		6	

PUBLISHED

Question	Answer	Marks	Guidance
8(a)	H_{0} : Pop mean no. people $=3.03$ or 1.01 (per 20 min) H_{1} : Pop mean no. people >3.03 or 1.01 (per 20 min)	B1	These must not just be 'mean', but allow just ' λ ' or ' μ '.
	Use of $\mathrm{P}_{\mathrm{O}}(3.03)$	M1	
	$\begin{aligned} & =1-\mathrm{e}^{-3.03}\left(1+3.03+\frac{3.03^{2}}{2}+\frac{3.03^{3}}{3!}+\frac{3.03^{4}}{4!}+\frac{3.03^{5}}{5!}\right) \\ & =1-\mathrm{e}^{-3.03}(1+3.03+4.5905+4.6364+3.5120+2.128) \\ & =1-(0.04832+0.1464+0.2218+0.2240+0.1697+0.1028) \end{aligned}$	M1	Allow incorrect λ. Allow one end error. Must see Poisson expression used.
	$=0.0870$ (3sf) [0.0869727]	A1	Allow 0.087 .
	$0.0870>0.05$	M1	For a valid comparison.
	(Do not reject H_{0}) Insufficient evidence to believe (mean) number of people has increased	A1FT	Conclusion stated must be in context, not definite and include no contradictions (e.g. not 'mean number people has not increased').
		6	If only $\mathrm{P}(x=6)$ award max $2 / 6$ (single term not valid). SC No working B1 B2 M1 A1. Award maximum 5/6.

Question	Answer	Marks	Guidance
8(b)	$" 0.0869727 "-e^{-3.03} \times \frac{3.03^{6}}{6!}$ or $0.869727-\mathrm{e}^{-3.03}(1.0748)$ or $0.869727-0.05193$ or $1-\mathrm{e}^{-3.03}\left(1+3.03+\frac{3.03^{2}}{2}+\frac{3.03^{3}}{3!}+\frac{3.00^{4}}{4!}+\frac{3.03^{5}}{5!}+\frac{3.00^{6}}{6!}\right)$	M1	OE. Must see Poisson expression (may be in part (a)).
	0.0350 or 0.0351	A1	Accept 0.035. SC no working seen, award B1 for $0.0350,0.0351$ or 0.035 .
		2	
8(c)	Concluding that the (mean) number of people (using the path per 20 mins in the evening) has increased when it has not	B1	OE. Conclusion must be in context.
		1	
8(d)	A value for the true mean	B1	Allow without context for this mark.
	Number of people using the path per 20 mins in the evening.	B1	Condone equivalent comment on three randomly chosen 20-minute periods.
		2	

Cambridge International A Level

MATHEMATICS

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2023 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

PUBLISHED

Question	Answer	Marks	Guidance
1(a)	$\left[\frac{49}{140}=0.35\right]$		
	$0.35 \pm z \sqrt{\frac{0.35(1-0.35)}{140}}$	M1	Use of formula of correct form, ft their $\frac{49}{140}$, any z (not a probability).
	$z=2.326$	B1	Accept 2.326 to 2.329 .
	Confidence interval $=0.256$ to 0.444 (3 sf)	A1	Must be an interval.
		3	
1(b)	Find a smaller percentage confidence interval/ lower level of confidence	B1	ISW if 2 reasons given. Just saying 'use smaller z' oe B0. Accept a correct example e.g. 90% (even if not qualified with statement).
		1	

Question	Answer	Marks	
2(a)	Orders arrive at constant mean rate (must say mean or rate) Orders arrive at random Orders arrive independently Orders arrive singly	$\mathbf{B 1}$	Any one reason correctly stated.
		$\mathbf{B 1}$	A second reason correctly stated.
		SC B1: both correct, not in context.	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
2(b)(i)	$\lambda=\frac{3}{8} \times 25.2[=9.45]$	B1	
	$\begin{aligned} & \mathrm{e}^{-9.45^{\prime}}\left(\frac{9.45^{3}}{3!}+\frac{9.45^{4}}{4!}+\frac{9.45^{5}}{5!}\right) \text { or } \mathrm{e}^{-9.45^{\prime}}(140.65+332.29+628.03) \text { or } 0.01107+ \\ & 0.02615+0.04942 \end{aligned}$	M1	Allow any λ. Allow end errors. Expression must be seen.
	$=0.0866(3 \mathrm{sf})$	A1	If M0 allow SC B1 for 0.0866 no working seen.
		3	
2(b)(ii)	$\mathrm{e}^{-3.15} \times 3.15$ or $\left(1-\mathrm{e}^{-3.15}(1+3.15)\right)$ or 0.135 or $0.822(3 \mathrm{sf})$	B1	
	$\mathrm{e}^{-3.15} \times 3.15 \times\left(1-\mathrm{e}^{-3.15}(1+3.15)\right)$	M1	M1 for product of two Poisson probabilities $\mathrm{P}(1) \times(1-$ $\mathrm{P}(0,1)$) (no end errors accepted). Accept any λ.
	$\times 2$ or 0.111×2	M1	M1 for their product of two Poisson probabilities (accept end errors) $\times 2$. Accept any λ
	0.222 (3 sf)	A1	
		4	
2(c)	$\mathrm{N}(113.4,113.4)$	B1	SOI
	$\frac{120.5-113.4}{\sqrt{113.4}}[=0.667]$	M1	Standardise with their values. Allow wrong or no cc. Must have $\sqrt{ }$.
	$1-\phi$ (their '0.667')	M1	For probability area consistent with their values.
	$=0.252(3 \mathrm{sf})$	A1	
		4	

Question	Answer	Marks	Guidance
3(a)	$1-2(a+b)$ or $1-2 a$ or $0.5-a-b$ or $1-(\mathrm{a}+\mathrm{b})$ or $\mathrm{a}+\mathrm{a}+\mathrm{b}$	M1	OE. Seen or implied - may be on the diagram (or for correct un-simplified final expression).
	$\mathrm{P}(0.6 \leq X \leq 1.8)=1-2 a-\mathrm{b}$	A1	Accept $1-(2 a+b)$.
		2	
3(b)(i)	$k \int_{0}^{3}\left(9 x^{2}-6 x^{3}+x^{4}\right) \mathrm{d} x=1$	M1	Attempt integrate $\mathrm{f}(x)$ ignore limits and ' $=1$ '.
	$k\left[\frac{9 x^{3}}{3}-\frac{6 x^{4}}{4}+\frac{x^{5}}{5}\right]_{0}^{3}=1$	A1	Correct integration seen, correct limits.
	$k \times \frac{81}{10}=1, k=\frac{10}{81}$	A1	AG. Convincingly obtained. No errors seen. (Must see integration).
		3	
3(b)(ii)	$\begin{aligned} & \frac{10}{81} \int_{0}^{3}\left(9 x^{4}-6 x^{5}+x^{6}\right) \mathrm{d} x \\ & {\left[\frac{10}{81}\left[\frac{9 x^{5}}{5}-x^{6}+\frac{x^{7}}{7}\right]_{0}^{3}\right]\left[=\frac{18}{7} \text { or } 2.57 \ldots\right]} \end{aligned}$	M1	Attempt integrate $x^{2} \mathrm{f}(x)$ between 0 and 3 condone missing k. Must see integration or correct answer of $18 / 7$ seen or implied.
	$\frac{18}{7}-{ }^{\prime} 1.5{ }^{\prime}$	M1	Their integral of $x^{2} \mathrm{f}(x)-1.5^{2}$ (or their mean ${ }^{2}$).
	$=\frac{9}{28}$ or 0.321	A1	
		3	

Question	Answer	Marks	Guidance
4(a)	$\mathrm{e}^{-5.7}\left(1+5.7+\frac{5.7{ }^{2}}{2!}\right)$ or $\mathrm{e}^{-5.7}(1+5.7+16.245)$ or $0.003346+0.01907+0.05436$	M1	Allow one end error. Must see this expression.
	$=0.0768(3 \mathrm{sf})$	A1	SC B1 for unsupported answer of 0.0768 .
		2	
4(b)	$\mathrm{e}^{-0.9}\left(1+0.9+\frac{0.9^{2}}{2!}\right)$	M1	Attempted; allow one end error (must see expression).
	$\begin{aligned} & =1-\mathrm{e}^{-0.9}\left(1+0.9+\frac{0.9^{2}}{2!}\right)=1-\mathrm{e}^{-0.9}(1+0.9+0.405)=1-(0.4066+3659+ \\ & 0.1647) \end{aligned}$	A1	Correct expression $\mathrm{P}(X \geqslant 3)$ no end errors (must see expression).
	$=0.0629(3 \mathrm{sf})$	A1	SC B2 for unsupported answer of 0.0629
		3	

Question	Answer	Marks	Guidance
5(a)	$D=L-2 S \quad E(D)=410-2(206)=-2$	B1	SOI. OE using 2S-L.
	$\operatorname{Var}(\mathrm{D})=3.6^{2}+4 \times 3.7^{2} \quad[=67.72]$	B1	SOI
	$\frac{0-(-2)}{\sqrt{67.72^{\prime}}} \quad[=0.243]$	M1	For standardising using their values.
	$1-\phi$ (their '0.243')	M1	For probability area consistent with their values.
	$=0.404(3 \mathrm{sf})$	A1	As final answer.
		5	

PUBLISHED

Question		wer	Marks	Guidance
5(b)	$\mathrm{T}_{\mathrm{L}} \sim \mathrm{N}\left(4100,10 \times 3.6^{2}\right)$	$\mathrm{T}_{\mathrm{S}} \sim \mathrm{N}\left(4120,20 \times 3.7^{2}\right)$	B1	One of $\mathrm{N}(4100,129.6)$ or $\mathrm{N}(4120,273.8)$ USED (unchanged) in a standardising equation.
	$\frac{4080-4100}{\sqrt{129.6}}(=-1.757)$	$\frac{4080-4120}{\sqrt{273 \cdot 8^{\prime}}}(=-2.417)$	M1	Standardising with either their $\mathrm{N}(4100,129.6)$ or $\mathrm{N}(4120,273.8)$ or their $\mathrm{N}(\ldots, \ldots)$ (could be from a combination).
	$1-\phi\left({ }^{{febd341dd-de6a-4f7e-8ab5-c18dd6bccafd}}-2.417{ }^{\prime}\right)=\phi(2.417)$	M1	One area consistent with their working (could be from a combination). Do not ISW.	
	$=0.9605$ or 0.961	$=0.9921$ or 0.9922 or 0.992	A1	Both of these correct. Do not ISW.
	$0.6 \times$ 'their 0.9605 ' $+0.4 \times$ 'their 0.9921 '		M1	Must be using probabilities.
	$=0.973$ (3 sf)		A1	
			6	

Question	Answer	Marks	Guidance
6 (a)	He is expecting a decrease (in μ)	B1	OE
	6(b)	$-2.02<-1.96$	$\mathbf{1}$

Question	Answer	Marks	Guidance
6(c)	$1-\phi(2.14)[=0.0162]$	M1	
	1.62	A1	Allow 1.62% or 1.6 or 1.6%.
	$\alpha \geqslant 1.62$ (3 sf)	A1ft	FT their 1.62 . Allow $\alpha \geqslant 1.62 \%$ or 1.6 or 1.6%. Condone $>$.
		3	
6(d)	$\frac{24.8-m}{3.9+10}$	M1	For standardising.
	$\frac{24.8-m}{3.9 \div 10}=-1.645$	M1	Equate their standardised value to -1.645 (signs must be consistent).
	$m=25.4$ (3 sf)	A1	
		3	

Cambridge International AS \& A Level

MATHEMATICS	$9709 / 61$
Paper 6 Probability \& Statistics 2	May/June 2022
MARK SCHEME	

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most
Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\operatorname{Est}(\mu)=\frac{2520}{200}[=12.6]$	B1	OE
	$\operatorname{Est}\left(\sigma^{2}\right)=\frac{200}{199}\left(\frac{31582}{200}-{ }^{\prime} 12.6^{\prime 2}\right) \quad$ or $\frac{1}{199}\left(31852-\frac{2520^{2}}{200}\right)$	M1	Allow M1 if $\frac{200}{199}$ omitted
	$=0.5025 \text { or } 0.503 \text { or } \frac{100}{199}$	A1	CWO or $\sigma=0.7088$ or 0.709
	$z=1.96$	B1	
	${ }^{\prime} 12.6{ }^{\prime} \pm z \times \sqrt{ }{ }^{0.5025}{ }^{\prime} \div 200$	M1	For expression of correct form Any z but must be z
	$\mathrm{CI}=12.5$ to $12.7(3 \mathrm{sf})$	A1	CWO Must be an interval Note: Use of biased can score maximum B1 M1 A0 B1 M1 A0
		6	
1(b)	0.95×40 [$=38]$	B1	Give at early stage
		1	

Question	Answer	Marks	Guidance
2	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(\text { correct })=\frac{1}{6} \\ & \mathrm{H}_{1}: \mathrm{P}(\text { correct })>\frac{1}{6} \end{aligned}$	B1	$\begin{aligned} & \text { Allow } p=\frac{1}{6} \\ & \text { Allow } p>\frac{1}{6} \end{aligned}$
	$\begin{aligned} & 1-\left({ }^{15} \mathrm{C}_{4} \times\left(\frac{5}{6}\right)^{11} \times\left(\frac{1}{6}\right)^{4}+{ }^{15} \mathrm{C}_{3} \times\left(\frac{5}{6}\right)^{12} \times\left(\frac{1}{6}\right)^{3}+{ }^{15} \mathrm{C}_{2} \times\left(\frac{5}{6}\right)^{13} \times\left(\frac{1}{6}\right)^{2}+15 \times\right. \\ & \left.\left(\frac{5}{6}\right)^{14} \times \frac{1}{6}+\left(\frac{5}{6}\right)^{15}\right) \end{aligned}$	M1	Expression must be seen Allow one end error
	0.0898 or 0.0897 (3 sf)	A1	SC if M0 scored allow SCB1 for 0.0898 or 0.0897
	$0.0898<0.1$	M1	Valid comparison For valid comparison with $0.9(0.9102>0.9$ seen the previous M1and A1 can be recovered
	[Reject H_{0}] There is evidence (at the 10% level) that Arvind can predict scores	FTA1	Not definite, e.g. not 'He can predict' or 'Claim true' In context and no contradictions
		5	

Question	Answer	Marks	Guidance
3	$\begin{aligned} & D=X-\left(Y_{1}+Y_{2}+Y_{3}\right) \mathrm{OE} \\ & \mathrm{E}(D)=6.2-2.4 \times 3[=-1] \mathrm{OE} \end{aligned}$	B1	Give at early stage
	$\operatorname{Var}(D)=0.36+3 \times 0.25[=1.11]$	B1	Give at early stage
	$\frac{0-(-1)}{\sqrt{{ }^{1.11^{\prime}}}}[=0.949]$	M1	No standard deviation/variance mixes Var must come from a combination attempt
	$1-\Phi\left({ }^{\prime} 0.949{ }^{\text {' }}\right.$)	M1	Area consistent with their values
	$=0.171$ (3 s.f.)	A1	
		5	

Question	Answer	Marks	Guidance
$4(\mathrm{a})$	$\mathrm{E}(Y)=\frac{20}{4}[=5], \operatorname{Var}(Y)=20 \times \frac{1}{4} \times \frac{3}{4}\left[=\frac{15}{4}\right]$	B1	Both OE, SOI
	$\operatorname{Var}(X)=2$	B1	SOI or standard deviation $=\sqrt{2}$
	$\mathrm{E}(X-3 Y)=-13$	B1	
	$\operatorname{Var}(X-3 Y)=2+9 \times \frac{15}{4},[=35.75]$	M1	Correct formula using their values
	Standard deviation of $(X-3 Y)=5.98\left(3\right.$ s.f.) or $\frac{1}{2} \sqrt{143}$	A1	CWO
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
$4(\mathrm{~b})$	$(0,0)$ and $(1,15)$	M1	
	$\mathrm{e}^{-2} \times\left(\frac{3}{4}\right)^{20}+\mathrm{e}^{-2} \times 2 \times{ }^{20} \mathrm{C}_{15}\left(\frac{3}{4}\right)^{5}\left(\frac{1}{4}\right)^{15}$	M1	
	$0.000430(3 \mathrm{sf})$	A1	CWO (must have evidence of addition) Allow 0.00043 or $4.3(0) \times 10^{-4}$
		$\mathbf{3}$	

Question	Answer	Marks	Guidance																
5(a)	$\lambda=4.5$	B1																	
	$1-\mathrm{e}^{-4.5}\left(1+4.5+\frac{4.5^{2}}{2!}+\frac{4.5^{3}}{3!}+\frac{4.5^{4}}{4!}\right)$	M1	Allow one end error Allow any λ. Poisson expressions must be seen																
	$=0.468(3 \mathrm{sf})$	A1	If M0 awarded allow SC B1 for 0.468																
		3																	
5(b)	$\begin{aligned} & \lambda=162 \\ & (X \sim \operatorname{Po}(162) \Rightarrow X \sim \mathrm{~N}(162,162)) \end{aligned}$	B1																	
	\[\begin{aligned}	\frac{149.5-{ }^`} 162^{\prime}}{\sqrt{162^{\prime}}} \text { and } \frac{160.5-‘ 162^{\prime}}{\sqrt{962^{\prime}}} \\ & (=-0.982 \text { and }-0.118) \end{aligned} \] & M1 & One of these; allow with incorrect or no continuity correction \\ \hline & \(\Phi\left({ }^{\prime} 0.982\right.\) ') - \(\phi\left({ }^{(} 0.118\right.\) ') oe & M1 & Area consistent with their values (both standardisations must be seen) \\ \hline & \(=0.290(3 \mathrm{sf})\) & A1 & Allow 0.29 \\ \hline & & 4 & \\ \hline \end{tabular} \begin{tabular}{\|c	c	c	c	} \hline Question & Answer & Marks & Guidance \\ \hline \multirow[t]{4}{*}{5(c)} & \(\lambda=\frac{13.5}{6}+3.6 \times \frac{2}{3}\) OE or 4.65 & M1 & Attempt to find \(\lambda\) \\ \hline & \[e^{-4.65}\left(\frac{4.65^{4}}{4!}+\frac{4.65^{5}}{5!}+\frac{4.65^{6}}{6!}\right) \] & M1 & Allow any \(\lambda\) Allow one end error Poisson terms not be seen \\ \hline & 0.494 (3 sf) & A1 & If M0 allow SC B1 for 0.494 \\ \hline & & 3 & \\ \hline \multirow[t]{2}{*}{6(a)} & \(\frac{a}{2}\) & B1 & \\ \hline & & 1 & \\ \hline \multirow[t]{2}{*}{6(b)} & \(\frac{1}{4}\) & B1 & \\ \hline & & 1 & \\ \hline \multirow[t]{6}{*}{6(c)} & \[\mathrm{f}(x)=\frac{1}{a} \] & B1 & SOI (may be seen in part (a) or part (b)) \\ \hline & \[\mathrm{E}(X)=\frac{a}{2} \] & B1 & SOI \\ \hline & \(\int_{0}^{a} \frac{1}{a} x^{2} \mathrm{~d} x\) & M1 & Attempt integrate their \(\mathrm{f}(x) \times x^{2}\) with correct limits \\ \hline & \[=\left[\frac{x^{3}}{3 a}\right]_{0}^{a}=\frac{a^{2}}{3} \] & A1 & \\ \hline & \[\frac{a^{2}}{3}-\left(\frac{a}{2}\right)^{2} \text { or } \frac{a^{2}}{3}-\frac{a^{2}}{4}\left[=\frac{a^{2}}{12} \quad \text { AG }\right] \] & A1 & Must see previous line and answer No errors seen \\ \hline & & 5 & \\ \hline \end{tabular} \begin{tabular}{	c	l	r	r	} \hline Question & Answer & Marks & \multicolumn{1}{c	}{ Guidance } \\ \hline \multirow{4}{*}{\(6(\mathrm{~d})\)} & \(\mathrm{P}\left(X<\frac{b}{3}\right)=\frac{p}{3}\) & M1 & \begin{tabular}{l} SOI (could be on a diagram) \\ OR by integration: prob \(=1-(2 / 3)(\mathrm{b} / \mathrm{a})\) \end{tabular} \\ \cline { 2 - 4 } & \(\mathrm{P}\left(\frac{b}{3}<X<a-\cdot \frac{b}{3}\right)=1-\frac{2 p}{3}\) & A1 & \\ \cline { 2 - 4 } & & \(\mathbf{2}\) & \\ \hline \end{tabular} \begin{tabular}{	c	c	c	c	} \hline Question & Answer & Marks & Guidance \\ \hline \multirow[t]{2}{*}{7(a)} & \(\mathrm{H}_{0}\) : pop mean run time \(=28.2\) mins \(\mathrm{H}_{1}\) : pop mean run time \(<28.2\) mins & B1 & Allow ' \(\mu\) '. Not 'mean journey time' \\ \hline & & 1 & \\ \hline \multirow[t]{4}{*}{7(b)} & \[\frac{27-28.2}{4 / \sqrt{40}}[=-1.897] \] & M1 & For standardising Must have \(\sqrt{ } 40\) \\ \hline & \(\Phi\left(<^{`-1.897\right.\) ' {f4a995d80-1768-4147-980e-d4011c0225d0} ' {f8199f09b-1dd5-4bee-9967-d4a18318a0ae}	M1	For correct area consistent with these values
	0.0289 (3 sf)	A1																	
		3																	
	H_{0} is not rejected so...	M1																	
	Type II error can be made and Type I error cannot be made	A1	Both needed (accept 'only a Type II error could be made')																
		2																	

Cambridge International AS \& A Level

MATHEMATICS

9709/62
Paper 6 Probability \& Statistics 2
May/June 2022
MARK SCHEME
Maximum Mark: 50
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2022 series for most
Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1 (a)	$72.3 \pm z \sqrt{\frac{64.3}{50}}$	M1	Expression of correct form (allow only one side for M1). Must be a z value
	$z=1.751$	B1	Accept 1.75 if nothing better seen
	CI is 70.3 to 74.3 metres (3 s.f.)	A1	Allow without units Must be an interval
		$\mathbf{3}$	$\mathbf{B 1}$
	Not random sample	Need 'random' or 'not representative/biased because...' OE	

Question	Answer	Marks	Guidance
2	H_{0} : Pop mean height $=2.3$ H_{1} : Pop mean height >2.3	B1	Not just 'mean' Allow μ
	$\frac{2.4-2.3}{\frac{0.4}{\sqrt{60}}}$	M1	For standardising, must have $\sqrt{60}$
	1.936 or 1.937 or 1.94	A1	
	${ }^{\prime} 1.936$ ' <1.96	M1	Valid comparison with 1.96 Or $2.64 \%>2.5 \%$ OE Accept $1.936<2.24$ or $2.64 \%>1.25 \%$ OE if $\mathrm{H}_{1} \mu \neq 2.3$
	[Do not reject H_{0}] No evidence that (mean) height (with fertiliser) is more than without	A1 FT	FT their z In context, not definite. E.g. not 'Mean height is not greater' with no contradictions No FT for 2 tail test (max B0 M1 A1 M1 A0 3/5) Accept critical values method 2.401 (M1 A1) $2.4<2.401$ (M1) Condone 2.299 (M1 A1) < 2.3 (M1) A1 conclusion
		5	

Question	Answer	Marks	Guidance
3(a)	Poisson	B1	SOI
	Mean $=3.6$	B1	Can be awarded for $\mathrm{N}(3.6, \ldots)$
	$e^{-3.6}\left(1+3.6+\frac{3.6^{2}}{2}\right)$	M1	Allow any λ Allow one end error Expression must be seen
	0.303 (3 s.f.)	A1	If M0 awarded allow SC B1 for 0.303 SC Use of binomial: B1 for answer 0.300 (3 sf)
		4	
3(b)	[Binomial with] $200>50$	B1	
	[200 $\times 0.018=] 3.6<5$ or [p=] $0.018<0.1$	B1	If B0 B0 then SC n large, p small: B 1 or n large $n p<5$: B1 or $n>50$ and either $n p<5$ or $p<0.1$: B1
		2	

Question	Answer	Marks	Guidance
4(a)	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }=4.6\left[\begin{array}{l} \text { or } 9.2 \end{array}\right] \\ & \mathrm{H}_{1}: \text { Pop mean }<4.6\left[\begin{array}{l} \text { or } 9.2 \end{array}\right] \end{aligned}$	B1	$\begin{aligned} & \text { or } \lambda=4.6 \text { or } \mu \text { (Not just 'mean') } \\ & \text { or } \lambda<4.6 \end{aligned}$
		1	

Question	Answer	Marks	Guidance
4(b)	Use of Poisson with $\lambda=9.2$	B1	SOI
	$\mathrm{P}(X \leqslant 3)=\mathrm{e}^{-9.2}\left(1+9.2+\frac{9.2^{2}}{2}+\frac{9.2^{3}}{3!}\right)=0.0184 \text { or } 0.018[<0.02]$	M1	At least one of these attempted correct λ (with Poisson expression seen not implied)
	$\mathrm{P}(X \leqslant 4)=0.0184+\mathrm{e}^{-9.2} \times \frac{9.2^{4}}{4!}=0.0486 \text { or } 0.049[>0.02]$	*A1	Both correct SC Use of $\lambda=4.6$ scores B 1 for $\mathrm{P}(\mathrm{X}=0)=0.01[0][1]$ and $\mathrm{P}(\mathrm{X} \leqslant 1)=0.056[3]$ only
	CR is $X \leqslant 3$	DA1	From CWO and at least one comparison seen SC If M0 awarded allow *B1 for both 0.018 and 0.049 or better and DB1 for correct critical region from CWO and at least one comparison seen.
		4	
4(c)	5 is not in critical region $\mathrm{OR} \mathrm{P}(\mathrm{X} \leqslant 5)=0.104>0.02$ so [not reject H_{0}] no evidence that number of cars arriving is now fewer	$\begin{array}{r} \text { M1 } \\ \text { A1 FT } \end{array}$	For a comparison (i.e. $5>3$) OE In context, not definite No contradictions e.g. not 'No. of cars arriving is not fewer' ft their critical region if used (but must be from Poisson and integers)
		2	
4(d)	No, because H_{0} was not rejected	B1 FT	OE, FT their (c)
		1	

Question	Answer	Marks	Guidance
4(e)	$\mathrm{N}(276,276)$	B1	SOI
	$\frac{300.5-276}{\sqrt{276}}[=1.475]$	M1	Standardising with their values Allow with wrong or no continuity correction
	$1-\phi\left({ }^{\prime} 1.475{ }^{\prime}\right)=0.0701(3$ s.f. $)$	A1	SC Use of Poisson: B1 for answer 0.0727 (3 sf)
		3	
Question	Answer	Marks	Guidance
5(a)	$\frac{3}{16} \int_{2}^{4}\left(4 x^{2}-x^{3}\right) \mathrm{d} x$	M1	Attempt to integrate $x \mathrm{f}(x)$ Ignore limits (must see a power increase for attempted integration)
	$=\frac{3}{16}\left[\frac{4 x^{3}}{3}-\frac{x^{4}}{4}\right]_{2}^{4}$	M1	Attempt integrate $x \mathrm{f}(x)$ with correct limits (must see a power increase for attempted integration)
	$=\frac{3}{16}\left(\frac{256}{3}-64-\left(\frac{32}{3}-4\right)\right)=\frac{11}{4}(\mathbf{A G})$	A1	Correct substitution of correct limits (at least 2 terms seen) and answer seen. No errors seen i.e. NO recovery of errors and no non-exact decimals (e.g. 21.33) seen
		3	

Question	Answer	Marks	Guidance
5(b)	$\frac{3}{16} \int_{2}^{4}\left(4 x^{3}-x^{4}\right) \mathrm{d} x$	*M1	Attempt to integrate $x^{2} \mathrm{f}(x)$ with correct limits (integration must be seen not implied. Must see a power increase for attempted integration)
	$\begin{aligned} & =\frac{3}{16}\left[x^{4}-\frac{x^{5}}{5}\right]_{2}^{4}\left[=\frac{39}{5} \text { or } 7.8\right] \\ & \operatorname{Var}(X)=\cdot \frac{39}{5},-\left(\frac{11}{4}\right)^{2} \end{aligned}$	DM1	their $\int x^{2} \mathrm{f}(x) \mathrm{d} x-\left(\frac{11}{4}\right)^{2}$, with $\int x^{2} \mathrm{f}(x) \mathrm{d} x$ evaluated, not necessarily simplified
	$=\frac{19}{80} \text { or } 0.2375(\text { or } 0.238(3 \mathrm{sf}))$	A1	SC If M0 then score B1 for $\frac{39}{5}$ and B1 for $\frac{19}{80}$
		3	
5(c)	$\frac{3}{16} \int_{2}^{3}\left(4 x-x^{2}\right) \mathrm{d} x$	M1	Attempt to integrate correct integral and limits must see a power increase for attempted integration Oe (Integrate 3 to 4) OR ALTERNATIVE METHOD integrate from m to 4 or 2 to m and equate to 0.5 to obtain cubic $\left(\mathrm{m}^{3}-6 \mathrm{~m}^{2}+\right.$ $24=0$ oe) (NB Integrating from m to 3 and equating to 0.5 M 0)
	$\begin{aligned} & =\frac{3}{16}\left[2 x^{2}-\frac{x^{3}}{3}\right]_{2}^{3}\left[=\frac{3}{16}\left(18-9-\left(8-\frac{8}{3}\right)\right)\right]\left[=\frac{11}{16}\right] \\ & \frac{11}{16},-\frac{1}{2} \end{aligned}$	M1	Their $\int \mathrm{f}(x) \mathrm{d} x-\frac{1}{2}$ oe $(1 / 2-5 / 16)$ OR ALTERNATIVE METHOD m obtained from cubic ($m=$ 2.69459) and attempt to integrate $\mathrm{f}(\mathrm{x})$ from 'their m ' $(2<$ $m<4$) to 3 must see a power increase for attempted integration and limits substituted
	$\frac{3}{16}$ or 0.1875	A1	Condone 0.187 or 0.188
		3	

Question	Answer	Marks	Guidance
6(a)	$\mathrm{E}(D)=53-(4 \times 14)=-3$	B1	OE Give at early stage
	$\operatorname{Var}(D)=11+4^{2} \times 3[=59]$	B1	$\text { or } \sqrt{\left(11+4^{2} \times 3\right)}(=7.68(3 \text { s.f. }))$ Give at early stage
	$\frac{0-(-3)}{\sqrt{59}}[=0.391]$	M1	For standardising with their values (var must be from a combination attempt) Ignore continuity correction attempts
	$1-\Phi\left({ }^{\prime} 0.391\right.$ ')	M1	For area consistent with their values
	0.348 (3 s.f.)	A1	As final answer
		5	
6(b)	$\mathrm{E}(T)=12 \times 53+25 \times 14[=986]$	B1	Give at early stage (N.B. accept $\mathrm{E}(T-1000)=-14)$
	$\operatorname{Var}(T)=12 \times 11+25 \times 3[=207]$	B1	$\operatorname{Or} \sqrt{(12 \times 11+25 \times 3)}(=14.4(3 \mathrm{sf}))$ Give at early stage
	$\frac{1000-986}{\sqrt{207}}[=0.973]$	M1	For standardising with their values (var must be from a combination attempt) Ignore continuity correction attempts
	$\Phi\left({ }^{\prime} 0.973\right.$ ')	M1	For area consistent with their values
	0.835 (3 sf)	A1	As final answer
		5	

Question	Answer	Marks	Guidance
7	$\bar{X} \sim \mathrm{~N}\left(2.9, \frac{2.9}{100}\right)$ OR Totals method $\mathrm{N}(290,290)$	B1	B1 for $\mathrm{N}(2.9, \ldots)$ OR $\mathrm{N}(290, \ldots)$
		B1	B 1 for $\mathrm{Var}=\frac{2.9}{100}$ OR for var $=290 \mathrm{SOI}$
	$\frac{2.88-2.90}{\sqrt{\frac{2.9}{100}}}[=-0.1174] \text { OR } \frac{288-290}{\sqrt{290}}$	M1	Standardising with their values Allow without -ve sign AND/OR with incorrect continuity correction No mixed methods
	1- Φ (${ }^{\prime} 0.1174$ ')	M1	For area consistent with their values
	0.453 (3 sf)	A1	As final answer
	Alternative method for question 7		
	$\bar{X} \sim \mathrm{~N}\left(2.9, \frac{2.9}{100}\right)$ OR Totals method $\mathrm{N}(290,290)$	B1	B1 for $\mathrm{N}(2.9, \ldots)$ OR $\mathrm{N}(290, \ldots)$
		B1	B 1 for $\operatorname{Var}=\frac{2.9}{100}$ OR Var $=290$ stated or implied
	$\frac{\left(2.88-\frac{1}{200}\right)-2.90}{\sqrt{\frac{2.9}{100}}}[=-0.1468] \text { OR }(287.5-290) / \sqrt{ } 290$	M1	Standardising with their values Allow without -ve sign AND/OR with incorrect continuity correction No mixed methods
	$1-\phi\left({ }^{\prime} 0.1468\right.$ ')	M1	For area consistent with their values
	0.442 (3 sf)	A1	As final answer
		5	

Cambridge International A Level

MATHEMATICS	$9709 / 63$
Paper 6 Probability \& Statistics 2	May/June 2022
MARK SCHEME	

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most
Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	
1	$\frac{1300+\frac{1}{200}-1250}{\frac{480}{10}}$ or $\frac{1300-1250}{\frac{480}{10}}[=1.042]$	M1	Guidance Allow with incorrect or omitted continuity correction Must have 10 Accept totals method
	$1-\Phi\left({ }^{\prime} 1.042\right.$ ')	$\mathbf{M 1}$	For area consistent with their values
	0.149 (3 s.f.)	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2(a)	Conclude more than 10% of the students are left handed when this is not true	B1	OE. Must be in context (accept use of p). Need the context of one tail test.
		1	
2(b)	$\begin{aligned} & 1-\left(0.9^{20}+20 \times 0.9^{19} \times 0.1+{ }^{20} \mathrm{C}_{2} \times 0.9^{18} \times 0.1^{2}+{ }^{20} \mathrm{C}_{3} \times 0.9^{17} \times 0.1^{3}+{ }^{20} \mathrm{C}_{4} \times\right. \\ & \left.0.9^{16} \times 0.1^{4}\right) \end{aligned}$	M2	M2: fully correct M1: attempt $1-\mathrm{P}(X=0,1,2,3,4)$; allow $1-\mathrm{P}(X=0,1,2,3,4,5)$ or $1-\mathrm{P}(\mathrm{X}=0,1,2,3)$ need $1-\ldots$ the method mark cannot be implied
	0.0432 (3 s.f.)	A1	If M0 awarded allow SC B2 for 0.0432
		3	

Question	Answer	Marks	Guidance
$2(\mathrm{c})$	$0.7^{20}+20 \times 0.7^{19} \times 0.3+{ }^{20} \mathrm{C}_{2} \times 0.7^{18} \times 0.3^{2}+{ }^{20} \mathrm{C}_{3} \times 0.7^{17} \times 0.3^{3}+{ }^{20} \mathrm{C}_{4} \times 0.7^{16}$ $\times 0.3^{4}$	$\mathbf{M 1}$	Attempt to find P($\leqslant 4)$ using $\mathrm{B}(20,0.3)$ Allow one end error The method mark cannot be implied
	0.238 or 0.237 (3 s.f.)	$\mathbf{A 1}$	If M0 awarded allow SC B1for 0.238 or 0.237
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
3(a)	Batteries unusable after testing or Population too big or too costly or too time consuming to use the whole population oe	B1	
		1	
3(b)	$\begin{aligned} & \mathrm{H}_{0}: \mu=150 \\ & \mathrm{H}_{1}: \mu<150 \end{aligned}$	B1	Or population mean $=150$; not just 'mean' $=150$
	$\frac{147-150}{\sqrt{225} \div \sqrt{120}}$	M1	Allow with continuity correction Need $\sqrt{120}$
	-2.191	A1	Condone - 2.19
	$-2.191<-2.054$ [or -2.055]	M1	OE. For valid comparison with 2.054 or 2.055 Or 0.0143 (or 0.0142) <0.02 For two tail test allow comp -2.326 OE if $\mathrm{H}_{1}: \mu \neq 150$ (can score B0M1A1M1A0 max 3/5)
	[Reject Ho] There is evidence that the (mean) life of type B is less than type A (or less than 150)	A1 FT	In context, not definite with no contradictions Accept critical value method 147.19 M1 A1 $147<147.19$ M1 conclusion A1 Or $150>149.81$
		5	

PUBLISHED

Question	Answer	Marks	Guidance
3(c)	$147 \pm z \times \frac{15}{\sqrt{120}}$	M1	Expression of correct form must be a z value
	$z=1.881$ [or 1.882]	B1	
	144 to 150 (3 s.f.)	A1	Must be an interval Incorrect z value can only score M1B0A0
		3	

Question	Answer	Marks	Guidance
4(a)	$T \sim \mathrm{~N}(515,74)$	B1	B1 for $\mathrm{N}(515, .$.$) give at early stage$
		B1	B1 for Var $=45+25+4=74$ give at early stage
	$\frac{500-' 515^{\prime}}{\sqrt{ } 74^{\prime}}[=-1.744]$	M1	Standardise with their values. No standard deviation/variance mix Need combination for variance. Allow continuity correction.
	$\Phi(' 1.744 ’)$	M1	Area consistent with their working
	0.959 or 0.96[0] (3 s.f.)	A1	
		5	

Question	Answer	Marks	Guidance
4(b)	$\mathrm{E}(S-1.4 R)=300-1.4 \times 200=20$	B1	Give at early stage
	$\operatorname{Var}(S-1.4 R)=45+1.4^{2} \times 25=94$	B1	Give at early stage SC: if B0B0 awarded allow SC B1 for 14 and 105.84
	$\frac{0-(20)}{\sqrt{ }{ }^{94}}[=-2.063]$	M1	Standardise with their values. No standard deviation/variance mix. Need combination for variance.
	$1-\Phi\left({ }^{\prime} 2.063\right.$ ')	M1	Area consistent with their working
	0.0196 (3 s.f.)	A1	
		5	

Question	Answer	Marks	Guidance
5(a)	$\lambda=6.6$	B1	
	$\mathrm{e}^{-6.6} \times \frac{6.6^{6}}{6!}$	M1	Any λ
	0.156 (3 s.f.)	A1	If M0 awarded SC B1 for 0.156
		3	
5(b)	$1-\mathrm{e}^{-2.2}\left(1+2.2+\frac{2.2^{2}}{2}+\frac{2.2^{3}}{3!}+\frac{2.2^{4}}{4!}\right)$	M1	Allow one end error. Need $1-\ldots$ Any λ
	0.0725 (3 s.f.)	A1	If M0 awarded SC B1 for 0.0725
		2	

PUBLISHED

Question	Answer	Marks	Guidance
5(c)	$\mathrm{N}(26.4,26.4)$	B1	Give at early stage 2.2×12
	$\frac{19.5--^{\prime} 26.4^{\prime}}{\sqrt{\prime 26.4^{\prime}}}[=-1.343]$	M1	Standardising with their values. Allow wrong or no continuity correction
	$\phi('-1.343 ')=1-\phi\left({ }^{\prime} 1.343 '\right)$	M1	Area consistent with their working
	0.0897 or 0.0896 (3 s.f.)	A1	
		4	

Question	Answer	Marks	Guidance
6(a)	$\frac{13+a}{5}$	B1	Accept $\frac{2+3+3+5+a}{5}$. Do not ignore subsequent working
		1	
6(b)	$\frac{5}{4}\left(\frac{47+a^{2}}{5}-\left(\frac{13+a}{5}\right)^{2}\right)=4$ or $\frac{1}{4}\left(47+a^{2}-{\left.\frac{(13+a)^{2}}{5}\right)=4 ~}_{\text {a }}\right.$	M1	Use of correct formula using their value from (a), in terms of a, and equate to 4
	$2 a^{2}-13 a-7=0$	A1	Any correct three-term quadratic equation rearranged to a form ready to solve
	$a=7$	A1	Condone the other value of $a\left(-\frac{1}{2}\right)$
		3	

Question	Answer	Marks	Guidance
7(a)(i)	1	B1	no ambiguity
		1	
7(a)(ii)	$\frac{1}{2}$	B1	No ambiguity
		1	
7(a)(iii)	$[q=] \frac{1}{2} p$	B1	Accept $2 q=p$
		1	
7(b)	$p \int_{0}^{a}\left(a^{2}-x^{2}\right) \mathrm{d} x=1$	M1	Attempt to integrate $\mathrm{f}(x)$ and equated to 1
	$\frac{2}{3} a^{3} p=1$	A1	OE, simplified
	$" \frac{3}{2 a^{3}} " \int_{0}^{a}\left(a^{2} x-x^{3}\right) \mathrm{d} x=3 \text { or } " \frac{3}{2 a^{3}} \int_{0}^{a}\left(a^{2} x-x^{3}\right) \mathrm{d} x=3$	M1	Attempt to integrate $x \mathrm{f}(x)$, with multiplier p or $\frac{3}{2 a^{3}}$ or their p, and equate to 3
	$p \times \frac{a^{4}}{4}=3$	A1	May be implied by next line
	$" \frac{3}{2 a^{3}} " \times \frac{a^{4}}{4}=3$	M1	OE. Substitute from one equation into the other. FT their equations
	$a=8$	A1	
		6	

Cambridge International A Level

MATHEMATICS

9709/62
Paper 6 Probability and Statistics 2
February/March 2022
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2022 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Question	Answer	Marks	Guidance
1(a)	$\text { Est }(\mu)=\frac{1199}{6} \text { or } 199.833 \text { or } 200 \text { or } \frac{2398}{12}[\mathrm{~mm}]$	B1	Accept in any form
	Est $\left(\sigma^{2}\right)=\frac{12}{11}\left(\frac{479226}{12}-\frac{1199^{\prime 2}}{6}\right)$ or $\frac{1}{11}\left(4779226^{\prime}-\frac{2398^{\prime 2}}{6}\right)$	M1	Use of their values in correct formula (may be implied)
	$=2.33(3 \mathrm{sf})\left[\mathrm{mm}^{2}\right]$	A1	$\text { Accept } \frac{7}{3}$
		3	
1(b)	Small sample	B1	Accept not 'not representative' unless qualified.
		1	

PUBLISHED

Question	Answer	Marks	Guidance
2	$\mathrm{B}\left(300, \frac{1}{5}\right) \rightarrow \mathrm{N}(60,48)$	B1	SOI
	$\frac{45.5-60}{\sqrt{48}}$	M1	Condone with wrong or no continuity correction
	$=-2.093$	A1	
	'2.093'> 1.96	M1	Valid comparison Note: $\phi('-2.093 ')(=0.0182)$, $0.0182<0.025$
	[Evidence to reject H_{0}] There is evidence that P (landing on blue) $\neq \frac{1}{5}$	A1 FT	Allow 'There is evidence that the spinner is biased.' In context, not definite, no contradictions Condone critical values method (critical value 46.42 M1 A1 and $45.5<' 46.42^{\prime}$ M1 for valid comparison A1 for correct conclusion)
			SC: 0.0182 unsupported: $0.0182<0.025$ And there is evidence that the spinner is biased. In context, not definite B1 only
		5	

Question	Answer	Marks	Guidance
3	$\operatorname{est}(p)=0.4$	B1	
	$' 0.4^{\prime}+z \sqrt{\frac{0.4^{\prime} \times\left(1-{ }^{\prime} 0.4^{\prime}\right)}{500}}[=0.445]$	M1	OE Use of their 0.4 in a correct expression
	$z\left[=0.045 \div \sqrt{\frac{\mathrm{0.4}^{\prime} \times\left(1-{ }^{\prime} 0.4^{\prime}\right)}{500}}\right]=2.054$	A1	Condone 2.053 and 2.05
	0.98-($1-0.98$)	M1	
	96\% confidence	A1	CWO, must be integer
		5	

Question	Answer	Marks	Guidance
4(a)	$\begin{aligned} & \mathrm{H}_{0}: \mu=25.5 \\ & \mathrm{H}_{1}: \mu<25.5 \end{aligned}$	B1	
	$\frac{23.7-25.5}{5.2 \div \sqrt{40}}$	M1	Must have $\sqrt{40}$
	$=-2.189$	A1	
	'2.189'<2.326	M1	For valid comparison For two-tailed test: allow compare 2.576 if $\mathrm{H}_{1}: \mu \neq$ 25.5
	[Accept H_{0}] No evidence that mean time has decreased	A1 FT	In context, not definite, no contradictions FT their 2.189 but no FT for two-tailed test N.B. Use of two-tailed test can score max B0 M1 A1 M1 A0 Condone use of critical value method (23.59 M1 A1 and $23.7>23.59 \mathrm{M} 1 \mathrm{~A} 1$ correct conclusion or 25.612 M 1 A 1 and $25.5<25.612 \mathrm{M} 1 \mathrm{~A} 1$ with correct conclusion)
		5	
4(b)	No, because H_{0} was not rejected	B1 FT	FT their conclusion in (a)
		1	

Question	Answer	Marks	Guidance
5(a)	Mean $=5 \times 18.3$ and Variance $=5 \times 2.5^{2} \quad[=\mathrm{N}(91.5,31.25)]$	B1	SOI
	$\frac{95-' 91.5}{\sqrt{ } 31.25^{\prime}} \quad[=0.626]$	M1	FT their mean and variance
	$1-\Phi\left({ }^{\prime} 0.626{ }^{\prime}\right)$	M1	For finding area consistent with their values
	0.266 (3 sf)	A1	
		4	
5(b)	$\mathrm{E}(D)=0$	B1	Or $\mathrm{E}(\mathrm{D}-1)=-1$
	$\operatorname{Var}(D)=2.5^{2} \times 2 \quad[=12.5]$	B1	
	$\frac{1-0}{\sqrt{12.5^{\prime}}}[=0.283] \quad \text { or } \quad \frac{-1-0}{\sqrt{\prime 12.5^{\prime}}}[=-0.283]$	M1	FT their E and Var
	$\Phi\left({ }^{\prime} 0.283 `\right)-(1-\phi(0.283))[=0.6115-0.3885]$	M1	For finding area consistent with their values
	0.223 (3 sf)	A1	
		5	

Question	Answer	Marks	Guidance
6(a)	Quadratic curve, hence symmetrical	B1	OE. Allow sketch and 'symmetrical' or just 'curve symmetrical'
		1	
6(b)	$-k \int_{1}^{3}\left(x^{2}-4 x+3\right) \mathrm{d} x=1$	M1	Attempt to integrate $\mathrm{f}(x)$ and ' $=1$ '. Ignore limits at this stage
	$-k\left[\frac{x^{3}}{3}-2 x^{2}+3 x\right]_{1}^{3}$	A1	Fully correct expression (correct integration and limits)
	$\begin{aligned} & -k \times\left[0-\frac{4}{3}\right]=1 \quad \text { or } \quad k \times \frac{4}{3}=1 \\ & {\left[k=\frac{3}{4}\right]} \end{aligned}$	A1	AG, OE. Correctly substitute limits and ' $=1$ ' and correctly obtain result with no errors seen.
		3	
6(c)	$-\frac{3}{4} \int_{1}^{3}\left(x^{4}-4 x^{3}+3 x^{2}\right) \mathrm{d} x$	M1	Attempt to integrate $x^{2} \mathrm{f}(x)$ from 1 to 3
	$\begin{aligned} & -\frac{3}{4} \times\left[\frac{x^{5}}{5}-x^{4}+x^{3}\right]_{1}^{3} \\ & {\left[=\frac{3}{4} \times \frac{28}{5}=\frac{21}{5}\right]} \end{aligned}$	A1	Correct integration and limits
	$\left[\frac{21}{5}-2^{2}\right]=0.2$	A1	
		3	

Question	Answer	Marks	Guidance
6(d)	$-\frac{3}{4} \int_{2.5}^{3}\left(x^{2}-4 x+3\right) \mathrm{d} x$	M1	OE. Attempt to integrate $\mathrm{f}(x)$, from 2.5 to 3 (or 1 to 2.5)
	$=-\frac{3}{4} \times\left[\frac{x^{3}}{3}-2 x^{2}+3 x\right]_{2.5}^{3}=\frac{5}{32}$ or 0.15625	A1	
	$1-\left(1-\frac{5}{32}\right)^{3}$	M1	OE. FT their $\frac{5}{32}$.
	$=0.399(3 \mathrm{sf})$	A1	
		4	

PUBLISHED

Question	Answer	Marks	Guidance
7(a)(i)	$0.024 \times 50[=1.2]$ and $0.018 \times 60[=1.08]$	B1	
	$\left(1-\mathrm{e}^{-1.2}(1+1.2)\right) \times\left(1-\mathrm{e}^{-1.08}(1+1.08)\right)$	M1	For $\left(1-\mathrm{e}^{-\lambda}(1+\lambda)\right) \times\left(1-\mathrm{e}^{-\mu}(1+\mu)\right)$ any $\lambda, \mu(\lambda \neq \mu)$ Allow one end error on either or both terms
	$=0.0991(3 \mathrm{sf})$	A1	Unsupported answer scores maximum SC B1 B1 SC Use of binomial 0.0994 scores B1 only
		3	
7(a)(ii)	$\lambda=0.024 \times 50+0.018 \times 60$	M1	or their $1.2+1.08$ ($\mathrm{NB} 0.024+0.018$ is M0)
	$1-\mathrm{e}^{-2.28} \times\left(1+2.28+\frac{2.28^{2}}{2!}+\frac{2.28^{3}}{3!}\right)$	M1	any λ and allow one end error
	$=0.197(3 \mathrm{sf})$	A1	Unsupported answer scores maximum SC B2
		3	
7(b)	$\mathrm{e}^{-\lambda}=\left[\mathrm{e}^{-\mu}\right]^{2}=\mathrm{e}^{-2 \mu}$	M1	
	$\mathrm{e}^{-\lambda} \times \frac{\lambda^{2}}{2}=k\left[\mathrm{e}^{-\mu} \times \mu\right]^{2}$	M1	
	$\mathrm{e}^{-2 \mu} \times 2 \mu^{2}=k \times \mathrm{e}^{-2 \mu} \times \mu^{2}$	M1	OE. Use of $\lambda=2 \mu$ to find equation in μ and k only (or λ and k only)
	$k=2$	A1	
		4	

Cambridge International AS \& A Level

MATHEMATICS
 9709/61
 Paper 6 Probability \& Statistics 2
 October/November 2021
 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\mathrm{N}(12.5, \ldots$.	B1	
	Variance $=0.4096$	B1	Accept $0.410(3 \mathrm{sf})$, condone $\frac{10.24}{25}$
		2	
1(b)	$\frac{13-' 12.5^{\prime}}{\sqrt{{ }^{\prime} 0.4096^{\prime}}}[=0.781]$	M1	For standardising with their values. Accept standardising with 12.
	$\phi(` 0.781$ ') - (1-Ф(`0.781'))	M1	For attempting to find their central area.
	0.565 (3sf)	A1	
		3	

Question	Answer	Marks	Guidance
2	$\mathrm{~N}(45.2,45.2)$	B1	SOI
	$\frac{60.5-45.2}{\sqrt{45.2}}[=2.276]$	M1	Allow with wrong or no continuity correction.
	$1-\phi\left({ }^{\prime} 2.276\right.$ ' $)$	M1	
	0.0114	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
3	$\operatorname{est}(p)=0.2 \text { accept } \frac{15}{75}$	B1	SOI
	$2 \times z \times \sqrt{\frac{0.2 \times 0.8}{75}}=0.162$	M1	Expression of the correct form. Condone missing $2 x$.
	$z\left[=0.081 \times \sqrt{\frac{75}{0.2 \times 0.8}}\right]=1.754$	A1	Correct z. Condone 3sf accuracy.
	$\begin{aligned} & \Phi\left({ }^{‘} 1.754 ’\right)=0.96[03] \\ & ' 0.96^{\prime}-\left(1-1-0.96^{\prime}\right) \end{aligned}$	M1	OE. Using their z to find alpha.
	$\alpha=92$	A1	Following correct working.
		5	

Question	Answer	Marks	Guidance
$4(\mathrm{a})$	$\frac{1}{18} \int_{0}^{1.2}\left(9-x^{2}\right) \mathrm{d} x$	M1	Attempt to integrate $\mathrm{f}(x)$, ignore limits. Must see an increase of power.
	$\frac{1}{18}\left[9 x-\frac{x^{3}}{3}\right]^{1.2}$	$\mathbf{A 1}$	Correct integration and correct limits.
	$\frac{71}{125}$ or 0.568	$\mathbf{A 1}$	SC unsupported answer scores $\mathbf{B 2}$ only.
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4(b)	$\frac{1}{18} \int_{0}^{3}\left(9 x-x^{3}\right) \mathrm{d} x$	M1	Attempt to integrate $x \mathrm{f}(x)$, ignore limits. Must see an increase of power.
	$\frac{1}{18}\left[\frac{9 x^{2}}{2}-\frac{x^{4}}{4}\right]^{3}$	A1	Correct integration and correct limits.
	$\frac{9}{8} \text { or } 1.125$	A1	SC unsupported answer scores B2 only.
		3	
4(c)	$\frac{1}{18}\left[9 x-\frac{x^{3}}{3}\right] \begin{aligned} & m \\ & 0\end{aligned}=0.5$	M1	Attempt to integrate $f(x)$ with correct limits and $=0.5$. OE. Accept limits m to 3 . Allow x instead of m.
	$\frac{1}{18}\left[9 m-\frac{m^{3}}{3}\right]-0.5=0$	A1	Any correct cubic equation in m or x.
	$m^{3}-27 m+27=0$	A1	AG. Correctly obtain this equation. No errors seen.
		3	

Question	Answer	Marks	Guidance
$5(\mathrm{a})(\mathrm{i})$	$\operatorname{Po}(0.025)$	$\mathbf{B 1}$	For Poisson and correct parameter.
	$n=2500>50, n p=0.025<5$	B1	Must show 2500 and 0.025. Accept $\mathrm{p}=\frac{1}{100000}<0.1$ in place of $n p=0.025<5$.
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
5(a)(ii)	$1-\mathrm{e}^{-0.025}$	M1	Allow any λ. FT their (a)(i) if normal; must have continuity correction.
	0.0247 (3sf)	A1	Must be from Poisson. Unsupported correct answer scores B1 instead of M1 A1.
		2	
5(b)	$\begin{aligned} & \mathrm{H}_{0}: p=0.3 \\ & \mathrm{H}_{1}: p<0.3 \end{aligned}$	B1	
	$\begin{aligned} & 0.7^{28}+28 \times 0.7^{27} \times 0.3+{ }^{28} \mathrm{C}_{2} \times 0.7^{26} \times 0.3^{2}+{ }^{28} \mathrm{C}_{3} \times 0.7^{25} \times 0.3^{3}+{ }^{28} \mathrm{C}_{4} \times \\ & 0.7^{24} \times 0.3^{4} \end{aligned}$	M1	Use of $\mathrm{B}(28,0.3)$. Addition of terms must be intended. Allow one term wrong or omitted or extra.
	0.0474	A1	Unsupported correct answer scores B1 instead of M1 A1.
	$0.0474>0.02$ [Not reject H_{0}]	M1	Valid comparison.
	No evidence that suspicion is true.	A1 ft	Not definite e.g. not 'Suspicion is not true', in context, no contradictions. SC use of $\mathrm{N}(8.4,5.88)$ leading to $0.054>0.2$ OE can score B1 only for comparison and correct conclusion. Correct hypotheses with p will also score B 1 .
		5	

Question	Answer	Marks	Guidance
6(a)	$\text { est } \mu=14 \text { accept } \frac{560}{40}$	B1	
	est $\sigma^{2}=\frac{40}{39}\left(\frac{7850}{40}-14^{2}\right)$ or $\frac{1}{39}\left(7850-\frac{560^{2}}{40}\right)$	M1	
	0.25641 or 0.256 (3sf)	A1	Accept $\frac{10}{39}$ Without $\frac{40}{39}$ i.e. biased: est $\sigma^{2}=0.25$ M0 A0.
		3	
6(b)	$\mathrm{E}(S-T)=14.2-{ }^{\prime} 14$ ' [= 0.2]	B1 FT	FT their 14.
	$\operatorname{Var}(S-T)=0.3+^{{fc2602253-e05d-4563-b23b-442c1744ef0d}}[=0.55641]$	B1 FT	Accept $\frac{217}{390}$ FT their 0.256 including FT biased. $\operatorname{Var}(S-T)=0.55$
	$\frac{0.1--^{\prime} 0.2^{\prime}}{\sqrt{\prime 0.55641^{\prime}}}[=-0.134]$	M1	Standardising with their values (note biased gives -0.135). FT their E \& Var.
	$\mathrm{P}(S-\mathrm{T}>0.1)=1-\Phi\left({ }^{`}-0.134{ }^{\prime}\right)=\Phi\left({ }^{\prime} 0.134{ }^{\prime}\right)$	M1	Finding correct area consistent with their values.
	0.553 (3sf)	A1	Use of biased gives 0.554 (3sf) can score the A1. Similar scheme for $\mathrm{P}(T-S)<-0.1$. Similar scheme for $\mathrm{S}-\mathrm{T}-0.1>0$. And T-S $+0.1<0$.
		5	
Question	Answer	Marks	Guidance
:---:	:---:	:---:	:---:
7(a)	$\begin{aligned} & \mathrm{H}_{0}: \mu=64.6 \\ & \mathrm{H}_{1}: \mu<64.6 \end{aligned}$	B1	Allow population mean, not just 'mean'.
	$[\pm] \frac{63.5-64.6}{5.2 \div \sqrt{100}}$	M1	Standardising. Must have $\sqrt{100}$
	$[\pm]-2.115$	A1	Accept -2.12 (3sf)
	'2.115'>1.96 or ' -2.115 ' < -1.96 [do not accept H_{0}]	M1	Valid comparison (0.0172<0.025 for area comparison).
	There is evidence that $\mu<64.6$	A1 FT	Not definite, e.g. not ' $\mu<64.6$ '. in context. No contradictions. Accept critical value method leading to $63.5<63.58$ or $64.6>64.52$.
		5	
7(b)	$\frac{m-64.6}{5.2 \div \sqrt{100}}=-1.96$	M1	Finding the critical value using $\mathrm{N}\left(64.6, \frac{5.2}{\sqrt{100}}\right)$ and a z value.
	$m=63.5808$	A1	
	$\frac{63.5808-62.7}{5.2 \div \sqrt{100}}[=1.694]$	M1	Standardising using $\mathrm{N}\left(62.7, \frac{5.2}{\sqrt{100}}\right)$ and a critical value.
	$1-\Phi\left({ }^{\prime} 1.694\right.$)	M1	For area consistent with their values.
	0.0451	A1	Accept answers that round to 0.045 .
		5	

Cambridge International AS \& A Level

MATHEMATICS
 9709/62
 Paper 6 Probability \& Statistics 2
 October/November 2021
 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Marks \& Guidance

\hline \multirow[t]{4}{*}{1(a)} \& $\frac{20.5}{40}=0.5125$ \& B1 \& $$
\text { Accept } 0.513 \text { or } \frac{41}{80} \text {. Condone } \frac{20.5}{40} .
$$

\hline \& $\frac{40}{39}\left(\frac{10.728}{40}-\left({ }^{\prime} 0.5125^{\prime 2}\right)\right)$ or $\frac{1}{39}\left(10.728-\frac{20.50^{2}}{40}\right)$ \& M1 \& Biased variance (0.005544 or $\frac{887}{160000}$) scores M0 A0.

\hline \& $$
0.0056859 \text { or } 0.00569(3 \mathrm{sf}) \text { or } \frac{887}{156000}
$$ \& A1 \& CAO

\hline \& \& 3 \&

\hline \multirow[t]{4}{*}{1(b)} \& $$
\left.\left[11 \times{ }^{`} 0.5125 \prime+0.5\right]\right)=6.1375 \text { or } \frac{491}{80} \text { or } 6.14(3 \mathrm{sf})
$$ \& B1 FT \& FT their 0.5125

\hline \& $11^{2} \times{ }^{\prime} 0.0056859$ ' \& M1 \& | With nothing added. |
| :--- |
| Using their variance in (a) (no sd/var confusion) |

\hline \& 0.688 (3sf) \& A1 \& CAO

\hline \& \& 3 \&

\hline
\end{tabular}

Question	Answer	Marks	Guidance
2(a)	E.g. Bias towards students who play instruments or only music students	B1	OE Or any reason that some are excluded e.g. because it is lunchtime or because the music building is chosen or any suggestion that opinions may not be independent. Note: 'not representative of all students' needs qualifying
	or e.g. the six will possibly be friends/have similar music preferences	$\mathbf{1}$	

Question	Answer	Marks	
2 (b)	$28,119,207$	B1	B1 for 28, 119 (condone 028).
		B1	B1 for 207 and only 3 values stated.
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
3(a)	$0.25 \pm z \sqrt{\frac{0.25 \times 0.75}{140}}$	M1	Expression of correct form (allow M1 for just one side stated). Must be a z-value.
	$z=2.054$ or 2.055	B1	
	0.175 to 0.325 (3sf)	A1	Must be an interval.
		3	
3(b)	$\begin{aligned} & 0.90 \times 0.95 \times 0.01 \\ & +0.90 \times 0.05 \times 0.99 \\ & +0.10 \times 0.95 \times 0.99 \end{aligned}$	M1 M1	M1 for one correct triple product. M1 for all correct and added.
	0.147	A1	SC If zero scored award B1 for a 2 or 3 term expression of the form $0.90 \times 0.95\left[\times_{c}\right]$ OE. $(0<c \leqslant 1)$
		3	

Question	Answer	Marks	Guidance
4(a)	Fireworks are destroyed when tested.	B1	
		1	
4(b)	H_{0} : Pop mean time lasted (or μ) $=30$ H_{1} : Pop mean time lasted (or μ) <30	B1	Not just 'mean'.
	$\pm \frac{29-30}{\frac{5}{\sqrt{100}}}$	M1	For standardising. Must have $\sqrt{100}$. Use of totals $\mathrm{N}(3000,2500)$ giving $\frac{(2900-3000)}{\sqrt{2500}}$ scores M1. No mixed methods.
	±-2	A1	
	$-2>-2.326$ [Do not reject H_{0}]	M1	Accept -2.326 to -2.329 . Valid comparison or area comparison $0.0228>0.01$ or $0.9772<0.99$. Accept CR method $28.837<29$ or $30.163>30$.
	There is not enough evidence that mean time lasted is less than 30 seconds OR Not enough evidence to support the inspector's suspicion	A1 FT	In context (if used need mean or time / condone average instead of mean), not definite, e.g. not 'mean time lasted is not less than 30 seconds'. No contradictions. Note 2 tailed test can score B0 M1 A1 M1 (comparison with 2.574-2.579) A0 (no FT).
		5	
4(c)	Yes. Because population distribution is unknown [condone not Normal].	B1	Both needed. Condone X for parent population.
		1	

Question	Answer	Marks	Guidance
5(a)	$\mathrm{e}^{-2}\left(1+2+\frac{2^{2}}{2!}\right)$	M1	$\mathrm{P}(X<3)$ any λ. Allow one end error.
	0.677 (3sf)	A1	Unsupported correct answer scores SC B1 only.
		2	
5(b)	$\mathrm{N}(40,40)$	M1	SOI
	$\frac{50.5-40}{\sqrt{40}}[=1.660]$	M1	For standardising with their values. Allow with wrong or no cc must have square root.
	$\mathrm{P}(z>$ '1.660' $)=1-\Phi\left({ }^{\prime} 1.660{ }^{\prime}\right)$	M1	Correct area consistent with their working.
	0.0485 or 0.0484 (3sf)	A1	
		4	
5(c)	$\lambda=10$	B1	Condone mean $=10$.
	$\mathrm{e}^{-10}\left(\frac{10^{8}}{8!}+\frac{10^{9}}{9!}+\frac{10^{10}}{10!}+\frac{10^{11}}{11!}\right)$	M1	Allow any λ (allow one end error).
	0.477 (3sf)	A1	Unsupported correct answer scores SC B2 only.
		3	

Question	Answer	Marks	Guidance
6(a)	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(0)=\frac{1}{10} \\ & \mathrm{H}_{1}: \mathrm{P}(0)<\frac{1}{10} \end{aligned}$	B1	Accept p .
		1	
6(b)	For B(30,0.1)	M1	Used not just stated.
	$\mathrm{P}(X=0)=0.9^{30}[=0.0424][<0.1]$	M1	
	$\mathrm{P}(X=0$ or 1$)=0.9^{30}+30 \times 0.9^{29} \times 0.1=0.184[>0.1]$	B1	Accept 0.184 or 0.183 .
	Rejection region is 0 zeros	A1	Dependent on M1 M1 and at least one comparison, no errors seen. SC One unsupported correct answer 0.0424/0.184(or 0.183) and correct rejection region scores B1; with comparison with 0.1 scores B2. Two unsupported correct answers 0.0424 and 0.184 (or 0.183) and correct rejection region scores $\mathbf{B 2}$ or if with one comparison with 0.1 scores B3.
		4	
6(c)	0.0424	B1	FT their (b) must have a critical region (only follow though Binomial), dependent on answer <0.1.
		1	

Question	Answer	Marks	
$6(\mathrm{~d})$	$\operatorname{Bin}\left(30, \frac{1}{40}\right)$	$\mathbf{B 1}$	SOI
	$1-0.975^{30}$	M1	FT their rr and with Bin(30, $1 / 40)$).
	$0.532(3 \mathrm{dp})$	$\mathbf{A 1}$	SC Unsupported correct answer scores B2 only.
		Not concluding that the probability is less than $\frac{1}{10}$, when in fact it is.	$\mathbf{3}$
		$\mathbf{B 1}$	In context.
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
7(a)(i)	$k \int_{0}^{2}\left(4 x-x^{2}\right) \mathrm{d} x=1$	M1	Attempt integral $\mathrm{f}(x)$ and $=1$. Ignore limits (must see a power increase for attempted integration).
	$k\left[\frac{4 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{2}=1$	A1	Correct integration and correct limits.
	$k \times \frac{16}{3}=1\left[k=\frac{3}{16}\right]$	A1	OE AG Convincingly obtained. At least one interim step. No errors seen.
		3	

Question	Answer	Marks	Guidance
7(a)(ii)	$\frac{3}{16} \int_{0}^{2}\left(4 x^{2}-x^{3}\right) \mathrm{d} x$	M1	Attempt integral $x \mathrm{f}(x)$. Ignore limits. (must see a power increase for attempted integration). Condone missing k.
	$\frac{3}{16}\left[\frac{4 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{2}$	A1	Correct integration and correct limits. Condone missing k.
	$\frac{5}{4}$	A1	Unsupported correct answer scores SC B2 only.
		3	
7(b)	Symmetrical frequency density graph, 0 to 5 , showing area 0.2 to left of a	B1	With a to the left of centre.
	Either 0.2 between 5-a and 5-or 0.8 between 0 and 5-a	B1	Shown on graph or stated ($5-a$ seen or implied). a must be non-numerical.
	$[\mathrm{P}(2.5<\mathrm{Y}<5-a)]=0.3$	B1	Must be clearly final answer. a must be non-numerical.
		3	

Cambridge International AS \& A Level

MATHEMATICS
 9709/63
 Paper 6 Probability \& Statistics 2
 October/November 2021
 MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\mathrm{N}(12.5, \ldots$.	B1	
	Variance $=0.4096$	B1	Accept 0.410 (3sf), condone $\frac{10.24}{25}$
		2	
1(b)	$\frac{13-' 12.5^{\prime}}{\sqrt{{ }^{\prime} 0.4096^{\prime}}}[=0.781]$	M1	For standardising with their values. Accept standardising with 12.
	$\phi\left({ }^{\prime} 0.781\right.$ ') - (1-Ф(‘0.781'))	M1	For attempting to find their central area.
	0.565 (3sf)	A1	
		3	

Question	Answer	Marks	Guidance
2	$\mathrm{~N}(45.2,45.2)$	B1	SOI
	$\frac{60.5-45.2}{\sqrt{45.2}}[=2.276]$	M1	Allow with wrong or no continuity correction.
	$1-\phi\left({ }^{\prime} 2.276\right.$ ' $)$	M1	
	0.0114	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
3	$\operatorname{est}(p)=0.2 \quad \operatorname{accept} \frac{15}{75}$	B1	SOI
	$2 \times z \times \sqrt{\frac{0.2 \times 0.8}{75}}=0.162$	M1	Expression of the correct form. Condone missing $2 x$.
	$z\left[=0.081 \times \sqrt{\frac{75}{0.2 \times 0.8}}\right]=1.754$	A1	Correct z. Condone 3sf accuracy.
	$\begin{aligned} & \Phi\left({ }^{(} 1.754^{\prime}\right)=0.96[03] \\ & 0.96^{\prime}-\left(1-0.96^{\prime}\right) \end{aligned}$	M1	OE. Using their z to find alpha.
	$\alpha=92$	A1	Following correct working.
		5	

Question	Answer	Marks	Guidance
$4($ a)	$\frac{1}{18} \int_{0}^{1.2}\left(9-x^{2}\right) \mathrm{d} x$	M1	Attempt to integrate $\mathrm{f}(x)$, ignore limits. Must see an increase of power.
	$\frac{1}{18}\left[9 x-\frac{x^{3}}{3}\right]_{0}^{1.2}$	A1	Correct integration and correct limits.
	$\frac{71}{125}$ or 0.568	A1	SC unsupported answer scores B2 only.
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4(b)	$\frac{1}{18} \int_{0}^{3}\left(9 x-x^{3}\right) \mathrm{d} x$	M1	Attempt to integrate $x \mathrm{f}(x)$, ignore limits. Must see an increase of power.
	$\frac{1}{18}\left[\frac{9 x^{2}}{2}-\frac{x^{4}}{4}\right]^{3}$	A1	Correct integration and correct limits.
	$\frac{9}{8} \text { or } 1.125$	A1	SC unsupported answer scores B2 only.
		3	
4(c)	$\frac{1}{18}\left[9 x-\frac{x^{3}}{3}\right] \begin{aligned} & m \\ & 0\end{aligned}=0.5$	M1	Attempt to integrate $f(x)$ with correct limits and $=0.5$. OE. Accept limits m to 3 . Allow x instead of m.
	$\frac{1}{18}\left[9 m-\frac{m^{3}}{3}\right]-0.5=0$	A1	Any correct cubic equation in m or x.
	$m^{3}-27 m+27=0$	A1	AG. Correctly obtain this equation. No errors seen.
		3	

Question	Answer	Marks	Guidance
$5(\mathrm{a})(\mathrm{i})$	$\operatorname{Po}(0.025)$	$\mathbf{B 1}$	For Poisson and correct parameter.
	$n=2500>50, n p=0.025<5$	B1	Must show 2500 and 0.025. Accept $\mathrm{p}=\frac{1}{100000}<0.1$ in place of $n p=0.025<5$.
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
5(a)(ii)	$1-\mathrm{e}^{-0.025}$	M1	Allow any λ. FT their (a)(i) if normal; must have continuity correction.
	0.0247 (3sf)	A1	Must be from Poisson. Unsupported correct answer scores B1 instead of M1 A1.
		2	
5(b)	$\begin{aligned} & \mathrm{H}_{0}: p=0.3 \\ & \mathrm{H}_{1}: p<0.3 \end{aligned}$	B1	
	$\begin{aligned} & 0.7^{28}+28 \times 0.7^{27} \times 0.3+{ }^{28} \mathrm{C}_{2} \times 0.7^{26} \times 0.3^{2}+{ }^{28} \mathrm{C}_{3} \times 0.7^{25} \times 0.3^{3}+{ }^{28} \mathrm{C}_{4} \times \\ & 0.7^{24} \times 0.3^{4} \end{aligned}$	M1	Use of $\mathrm{B}(28,0.3)$. Addition of terms must be intended. Allow one term wrong or omitted or extra.
	0.0474	A1	Unsupported correct answer scores B1 instead of M1 A1.
	$0.0474>0.02$ [Not reject H_{0}]	M1	Valid comparison.
	No evidence that suspicion is true.	A1 ft	Not definite e.g. not 'Suspicion is not true', in context, no contradictions. SC use of $\mathrm{N}(8.4,5.88)$ leading to $0.054>0.2$ OE can score B1 only for comparison and correct conclusion. Correct hypotheses with p will also score B1.
		5	

Question	Answer	Marks	Guidance
6(a)	$\text { est } \mu=14 \text { accept } \frac{560}{40}$	B1	
	est $\sigma^{2}=\frac{40}{39}\left(\frac{7850}{40}-14^{2}\right)$ or $\frac{1}{39}\left(7850-\frac{560^{2}}{40}\right)$	M1	
	0.25641 or 0.256 (3sf)	A1	Accept $\frac{10}{39}$ Without $\frac{40}{39}$ i.e. biased: est $\sigma^{2}=0.25$ M0 A0.
		3	
6(b)	$\mathrm{E}(S-T)=14.2-{ }^{\prime} 14$ ' [= 0.2]	B1 FT	FT their 14.
	$\operatorname{Var}(S-T)=0.3+^{{ff69bbede-a6d1-4e70-b0f6-8e9cad5af4de}}[=0.55641]$	B1 FT	Accept $\frac{217}{390}$ FT their 0.256 including FT biased. $\operatorname{Var}(S-T)=0.55$
	$\frac{0.1--^{\prime} 0.2^{\prime}}{\sqrt{\prime 0.55641^{\prime}}}[=-0.134]$	M1	Standardising with their values (note biased gives -0.135). FT their E \& Var.
	$\mathrm{P}(S-\mathrm{T}>0.1)=1-\Phi\left({ }^{`}-0.134{ }^{\prime}\right)=\Phi\left({ }^{\prime} 0.134{ }^{\prime}\right)$	M1	Finding correct area consistent with their values.
	0.553 (3sf)	A1	Use of biased gives 0.554 (3sf) can score the A1. Similar scheme for $\mathrm{P}(T-S)<-0.1$. Similar scheme for $\mathrm{S}-\mathrm{T}-0.1>0$. And T-S $+0.1<0$.
		5	
Question	Answer	Marks	Guidance
:---:	:---:	:---:	:---:
7(a)	$\begin{aligned} & \mathrm{H}_{0}: \mu=64.6 \\ & \mathrm{H}_{1}: \mu<64.6 \end{aligned}$	B1	Allow population mean, not just 'mean'.
	$[\pm] \frac{63.5-64.6}{5.2 \div \sqrt{100}}$	M1	Standardising. Must have $\sqrt{100}$.
	[\pm]-2.115	A1	Accept -2.12 (3sf)
	'2.115'>1.96 or ' -2.115 ' < -1.96 [do not accept H_{0}]	M1	Valid comparison ($0.0172<0.025$ for area comparison).
	There is evidence that $\mu<64.6$	A1 FT	Not definite, e.g. not ' $\mu<64.6$ '. in context. No contradictions. Accept critical value method leading to $63.5<63.58$ or $64.6>64.52$.
		5	
7(b)	$\frac{m-64.6}{5.2 \div \sqrt{100}}=-1.96$	M1	Finding the critical value using $\mathrm{N}\left(64.6, \frac{5.2}{\sqrt{100}}\right)$ and a z value.
	$m=63.5808$	A1	
	$\frac{63.5808-62.7}{5.2 \div \sqrt{100}}[=1.694]$	M1	Standardising using $\mathrm{N}\left(62.7, \frac{5.2}{\sqrt{100}}\right)$ and a critical value.
	$1-\Phi\left({ }^{\prime} 1.694\right.$)	M1	For area consistent with their values.
	0.0451	A1	Accept answers that round to 0.045 .
		5	

Cambridge International A Level

MATHEMATICS
 9709/61
 Paper 6 Probability \& Statistics 2
 May/June 2021
 MARK SCHEME

Maximum Mark: 50
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

PUBLISHED

Question	Answer	Marks	Guidance
1	$\lambda=(3.1+1.7) \times 2$	M1	Attempt combined mean. Allow $3.1+1.7$ for M1
	$=9.6$	A1	Correct mean
	$1-\mathrm{e}^{-9.6}\left(1+9.6+\frac{9.6^{2}}{2}+\frac{9.6^{3}}{3!}\right)$	M1	Allow incorrect mean. Allow one end error.
	$=0.986(3 \mathrm{sf})$	A1	SC If 9.6 seen and unsupported 0.986 M1A1B1. SC Unsupported correct answer of 0.986 only if 9.6 also not seen scores B2 only.
		4	

Question	Answer	Marks	Guidance
2(a)	$\pm \frac{123-125}{\frac{6}{\sqrt{40}}}[=-2.108 \ldots]$	M1	Must have $\sqrt{ } 40$ No standard deviation/variance mix. Ignore any continuity correction attempts for this mark.
	$\mathrm{P}\left(z<{ }^{\prime}-2.108^{\prime}\right)=1-\Phi\left({ }^{\prime} 2.108^{\prime}\right)$	M1	For correct probability area consistent with their working.
	$=0.0175$ or $0.0176(3 \mathrm{sf})$	A1	
		3	
2(b)	No, population is normal	B1	Need both.
		1	

Question	Answer	Marks	Guidance
3	$\begin{aligned} & 1-\frac{20}{27} \text { or } \frac{20}{27}-\frac{1}{2} \\ & \frac{20}{27}-\left(1-\frac{20}{27}\right) \text { or }\left(\frac{20}{27}-\frac{1}{2}\right) \end{aligned}$	M1	For either expression seen.
	$\frac{13}{27}$	A1	OE. Accept 0.481 or 0.482 .
		2	

Question	Answer	Marks	Guidance
4	$\frac{3820}{100}[=38.2]$	B1	
	$\frac{100}{99}\left(\frac{182200}{100}-' 38.2^{\prime 2}\right)$ or $\frac{1}{99}\left(182200-\frac{3820^{2}}{100}\right)$	M1	Use of biased (362.76) scores M0
	$=\frac{12092}{33}$ or 366.424 or $366(3 \mathrm{sf})$	A1	Accept SD=19.1422 or 19.1(3sf)
	$‘ 38.2^{\prime} \pm z \times \sqrt{\frac{366.424^{\prime}}{100}}$	M1	Expression of the correct form must be a z-value.
	$z=1.881$ or 1.882	B1	Seen.
	34.6 to $41.8(3 \mathrm{sf})$	A1	Allow use of biased giving (34.6,41.8) Must be an interval.
		6	

Question	Answer	Marks	Guidance
5(a)	$\operatorname{Po}\left(\frac{2}{15}\right)$	M1	SOI. Allow Po(0.133).
	$\mathrm{P}(X \geqslant 1)=1-\mathrm{e}^{-\frac{2}{15}}$	M1	Allow incorrect λ allow one end error
	$=0.125(3 \mathrm{sf})$	A1	SC Partially unsupported final answer: Po $\left(\frac{2}{15}\right)$ stated B1 then unsupported 0.125 B1 SC Use of Binomial (0.1248) B1 only Use of Normal scores M0
		3	

Question	Answer	Marks	Guidance
5(b)	$\lambda=\frac{n}{75000}$	B1	
	$\mathrm{e}^{-\frac{n}{55000}}>0.9$	M1	Allow '=' Allow incorrect λ
	$-\frac{n}{75000}>\ln 0.9 \quad[n<7902.04]$	M1	Attempt \ln both sides
	Largest value of n is 7902	A1	CWO. Must be an integer.
	Alternative method for Question 5(b)		
	$\mathrm{e}^{-\mu}>0.9$	M1	Allow '='
	$-\mu>\ln 0.9 \quad[\mu<0.10536]$	M1	Attempt \ln both sides
	$n=\mu \times 75000$	B1	
	Largest value of n is 7902	A1	CWO. Must be an integer.
	Alternative method for Question 5(b)		
	$\frac{74999}{75000}$	B1	
	$\left(\frac{74999}{75000}\right)^{n}>0.9$	M1	
	$n \ln \frac{74999}{75000}>\ln 0.9$	M1	Attempt ln or log both sides
	Largest value of n is 7901	A1	CWO Must be an integer
		4	

Question	Answer	Marks	Guidance
6	$\mathrm{E}(X)=3$	B1	N.B. $\mathrm{E}(X)=108 k$ is B 0 until correct k substituted in.
	$\begin{aligned} & k \int_{0}^{6}\left(6 x-x^{2}\right) \mathrm{d} x=1 \\ & k\left[3 x^{2}-\frac{x^{3}}{3}\right]{ }_{0}^{6}[=1] \end{aligned}$	M1	Attempt integration of $\mathrm{f}(x)$ and $=1$. Ignore limits at this stage.
	$\begin{aligned} & k\left(108-\frac{216}{3}\right)=1 \\ & k=\frac{3}{108} \text { or } \frac{1}{36} \end{aligned}$	A1	
	$\begin{aligned} & \frac{3}{108} \int_{0}^{6}\left(6 x^{3}-x^{4}\right) \mathrm{d} x \\ & \left.=\frac{3}{108}\left[\frac{3 x^{4}}{2}-\frac{x^{5}}{5}\right]\right]_{0}^{6}=10.8 \end{aligned}$	*M1	Attempt integration of their $k \times x^{2} \mathrm{f}(x)$. Ignore limits at this stage. Accept in terms of k.
	'10.8' - '3' ${ }^{\prime 2}$	DM1	Their 10.8 (from use of limits 0 and 6) minus their $(\mathrm{E}(X))^{2}$. Accept in terms of $k: 388.8 k-(108 k)^{2}$
	$\frac{9}{5} \text { or } 1.8$	A1	CWO. Must be convincingly obtained as AG.
		6	

Question	Answer	Marks	Guidance
7(a)	$\mathrm{E}(T)=3 \times 55+6 \times 27[=327]$	B1	OE. Accept unsimplified.
	$\operatorname{Var}(T)=3 \times 3^{2}+6 \times 2.5^{2}[=64.5]$	B1	Accept unsimplified.
	$\frac{340-' 327^{\prime}}{\sqrt{ } 64.5^{\prime}}[=1.619]$	M1	Must have $\sqrt{ }$
	$\mathrm{P}\left(z<' 1.619{ }^{\prime}\right)=\Phi\left(1.619{ }^{\prime}\right)$	M1	Correct probability area consistent with their working.
	0.947 (3 sf)	A1	
		5	
7(b)	$\mathrm{E}\left(L-S_{1}-S_{2}\right)=55-2 \times 27[=1]$	B1	OE e.g. E $\left(S_{1}+S_{2}-L\right)=-1$. Accept unsimplified.
	$\operatorname{Var}\left(L-S_{1}-S_{2}\right)=3^{2}+2 \times 2.5^{2}[=21.5]$	B1	Accept unsimplified.
	$\frac{0--^{\prime} 1}{\sqrt{{ }^{21.5^{\prime}}}}[=-0.216]$	M1	Standardising with their values. Must come from a combination attempt.
	$\mathrm{P}\left(L-S_{1}-S_{2}>0\right)=\Phi\left({ }^{\prime} 0.216^{\prime}\right)$	M1	Correct probability area consistent with their working.
	0.586 or 0.585 (3 sf)	A1	
		5	

PUBLISHED

Question	Answer	Marks	Guidance
8(a)	Not representative (of all students in the school)	B1	OE idea of 'not being representative' e.g. different grades in the school have different characteristics/proportions.... Don't accept 'not random' or 'biased' without further explanation.
		1	
8(b)	$\mathrm{H}_{0}: \mathrm{P}($ not correct uniform $)=0.15$ $\mathrm{H}_{1}: \mathrm{P}($ not correct uniform $)<0.15$	B1	Allow " p "
		1	
8(c)	Any two probs attempted using $\mathrm{B}(50,0.15)$	M1	
	$\begin{aligned} & \mathrm{P}(X \leqslant 3)=0.85^{50}+50 \times 0.85^{49} \times 0.15+{ }^{50} \mathrm{C}_{2} \times 0.85^{48} \times 0.15^{2}+{ }^{50} \mathrm{C}_{3} \times 0.85^{47} \times \\ & 0.15^{3} \end{aligned}$	M1	Attempt the tail probability $\mathrm{P}(0,1,2,3)$ with $\mathrm{B}(50,0.15)$ must be added.
	$\mathrm{P}(X \leqslant 4)=0.04605+{ }^{50} \mathrm{C}_{4} \times 0.85^{46} \times 0.15^{4}$	M1	OE. Their $\mathrm{P}(X \leqslant 3)+\mathrm{P}(X=4)$ or $\mathrm{P}(0,1,2,3,4)$ with $\mathrm{B}(50,0.15)$ must be added.
	$\begin{aligned} & \mathrm{P}(X \leqslant 3)=0.0460 \text { or } 0.0461[<0.05] \\ & \mathrm{P}(X \leqslant 4)=0.112 \text { or }[>0.05] \end{aligned}$	A1	Both correct. OR if $\mathrm{P}(\mathrm{X} \leqslant 4)$ not seen; $\mathrm{P}(4)=0.06606$ and $0.06606>0.05$ and $\mathrm{P}(\mathrm{X} \leqslant 3)=0.0460$ scores M1 A1
	$\mathrm{P}($ Type I$)=0.0460$ or $0.0461(3 \mathrm{sf})$	A1	Dependent on second M1. SC If M1M1M1A0 scored allow A1FT for incorrect $\mathrm{P}(X \leqslant 3)$ as long as <0.05
		5	

Question	Answer	Marks	Guidance
$8(\mathrm{~d})$	4 is outside critical region $(\leqslant 3) \mathrm{OE} \mathrm{or} \mathrm{P}(X \leqslant 4)=0.112$ which is >0.05	M1	FT working from (c).
	No evidence that proportion not wearing the correct uniform has decreased (Accept Ho)	A1	In context not definite, e.g. not 'Proportion has not decreased'. No contradiction.
	$8(\mathrm{e})$	Not rejected H_{0}	$\mathbf{2}$

Cambridge International AS \& A Level

MATHEMATICS

9709/62
Paper 6 Probability \& Statistics 2
May/June 2021
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\begin{aligned} & \mathrm{H}_{0}: p=\frac{1}{4} \\ & \mathrm{H}_{1}: p \neq \frac{1}{4} \end{aligned}$	B1	or $\mathrm{H}_{0}: \mu=25$ or $\mathrm{H}_{1}: \mu \neq 25$
		1	
1(b)	$\mathrm{N}\left(25, \frac{75}{4}\right)$	B1	SOI. Allow B1 for $\mathrm{N}\left(25, \frac{75}{4}\right)$ or $\mathrm{N}(0.25,0.001875)$ SOI.
	$\pm \frac{15.5-25}{\sqrt{\frac{75}{4}}} \text { or } \frac{\frac{15.5}{100}-0.25}{\sqrt{\frac{0.25 \times 0.75}{100}}}$	M1	Standardise with their $\mathrm{N}(25, \ldots)$ Allow with no or wrong continuity correction.
	±-2.194 (2.19)	A1	
	$-2.326<-2.194$ or $0.0141>0.01$ or $0.9859<0.99$	M1	For valid comparison (accept 2.326 to 2.329)
	No evidence to reject that the probability is $\frac{1}{4}$	A1 FT	OE must be in context and not definite, e.g. not 'Claim untrue'. No contradictions. FT their z; dependent on two-tailed test (one-tailed test can score B1 M1 A1 M1 A0) SC for use of Binomial $\mathrm{B}(100,0.25) \mathrm{P}=0.0111$ for B 1 and then comparison with 0.01 and correct conclusion for B 1 , maximum 2 out of 5 marks.
		5	

Question	Answer	Marks	Guidance
2(a)	$\operatorname{Var}(X)=400 \times 0.01 \times 0.99(=3.96)$	M1	
	$\operatorname{Var}(4 X+2)=16 \times \operatorname{Var}(X)$	M1	For $16 \times$ their $\operatorname{Var}(X)$
	63.36	A1	Accept 63.4
		3	
2(b)(i)	$\mathrm{Po}(4)$	B1	
	$n=400>50$ and either $n p=4<5$ or $p=0.01<0.1$	B1	Must quote values 400 and 4 or clearly see $n=400$ and $n p=4$ (or $p=0.01$) in working
		2	
2(b)(ii)	$e^{-4}\left(\frac{4^{2}}{2!}+\frac{4^{3}}{3!}+\frac{4^{4}}{4!}+\frac{4^{5}}{5!}\right)$	M1	FT their '4' Allow one end error FT from (b)(i) Use of Normal allow M1 for attempt at standardising (with correct continuity correction) using their $\mathrm{N}(4,3.96)$ and attempt at probability. FT from (b)(i) Use of Binomial allow M1 for attempt at $P(2,3,4,5)$ Binomial terms clearly seen and added
	0.694 (3 sf)	A1	CWO SCB1 only for unsupported answer of 0.694
		2	

Question	Answer	Marks	Guidance
3(a)	$\frac{1}{2} p(p-1)=1$	M1	For area $=1$ For verification methods accept $\frac{1}{2} \times 2 \times 1=1$ or $\frac{1}{2} \times 2 \times(p-1)=1$ or $\frac{1}{2} \times 1 \times p=1$ as indication that area $=1$
	$p=2$	A1	AG - Convincing method and answer. Must see quadratic rearranged to $=0$ and no errors seen. N.B. Accept convincing verification methods (e.g. statement such as 'assume $p=2$ ' or 'if $p=2$ ' or 'using $p=2$ ' or showing by clear substitution that $p=2$ fits $\frac{1}{2} p(p-1)=1$ with clear conclusion)
		2	
3(b)	Gradient $=2$ equation of line is $y=2 x+c$ line passes through $(1,0)$, hence $c=-2$	M1	Award for attempting equation of line $y=m x+c$ with $m=2,-2$, $\frac{1}{2}$ or $-\frac{1}{2}$ and numerical $c(c \neq 0)$
	$y=2 x-2$	A1	May be seen in (a) M1 can be implied by correct answer
	$2 \int_{1}^{2}\left(x^{2}-x\right) \mathrm{d} x$	M1	For attempting $\int x \mathrm{f}(x) \mathrm{d} x$. Ignore limits, FT their equation.
	$2\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{1}^{2}$	A1 FT	Correct integration FT their $\mathrm{f}(x)$ and correct limits
	$\frac{5}{3} \text { or } 1.67(3 \mathrm{sf})$	A1	
		5	

Question	Answer	Marks	Guidance
4(a)	Mean $=15.0+32.0+8.6[=55.6]$	B1	Allow unsimplified
	$\operatorname{Var}=1.1^{2}+3.5^{2}+1.2^{2}[=14.9]$	B1	Allow unsimplified
		2	
4(b)	$\frac{60-" 55.6 "}{\sqrt{114.9 "}} \quad[=1.140]$	M1	FT their 55.6 and 14.9 Ignore continuity correction
	$1-\phi(" 1.140$ ")	M1	For correct probability area consistent with their working
	0.127 (3 sf)	A1	CWO
		3	
4(c)	$\frac{54.5-" 55.6 "}{\sqrt{\frac{" 14.9 "}{15}}} \text { or } \frac{817.5-834}{\sqrt{223.5}}[=-1.104]$	M1	FT their 55.6 and 14.9 No mixed methods
	1-ф("1.104")	M1	For correct probability area consistent with their working
	0.135 (3 sf)	A1	As final answer
		3	

Question	Answer	Marks	Guidance
5(a)	Conclude that (population) mean time has changed (or is not 42.4) although μ has not changed (or is still 42.4)	B1	OE. In context.
		1	
5(b)	H_{0} : population mean $($ or $\mu)=42.4$ H_{1} : population mean $($ or $\mu) \neq 42.4$	B1	Not just 'mean'. (could be seen in (a))
	$\pm \frac{45.6-42.4}{\sqrt{38.2 \div 20}}$	M1	For standardising (must have $\sqrt{20}$)
	± 2.315	A1	
	$2.240<{ }^{\text {' } 2.315}$ '	M1	For valid comparison (accept 2.241) or $\mathrm{P}(z>2.315)=0.0103<0.0125$ oe
	There is evidence that μ or mean time has changed	A1 FT	FT their z In context, not definite. No contradictions. Note: Accept correct alternative methods SC: One tail test no FT. Can score B0 M1 A1 M1 (comparison with 1.96) A0 (maximum 3 out of 5)
		5	

Question	Answer	Marks	Guidance
6(a)	$\operatorname{est}(\mu)=\frac{7570}{100}(=75.7)$	B1	
	$\begin{aligned} & \operatorname{est}\left(\sigma^{2}\right)=\frac{100}{99}\left(\frac{\sum h^{2}}{100}-75.7^{\prime 2}\right) \text { or } \frac{1}{99}\left(588050-\frac{7570^{2}}{100}\right) \\ & =\frac{100}{99}\left(\frac{588050}{100}-175.7^{\prime 2}\right)[=151.525] \end{aligned}$	M1	Attempted (Note: Biased variance (150.01) scores M0)
	$=152(3 \mathrm{sf})$	A1	$\text { Or } \frac{15001}{99}$
		3	
6(b)	$‘ 75.7 ’ \pm z \sqrt{\frac{' 151.525^{\prime}}{100}}$	M1	For expression of correct form. Must be a z value. Condone just + or just -.
	$z=2.576$	B1	Accept 2.574 to 2.579
	72.5 to 78.9	A1 FT	FT biased variance only Must be an interval
		3	
6(c)	0.99^{4}	B1	
	0.961 (3 sf)	B1	
		2	

Question	Answer	Marks	Guidance
7(a)	$\mathrm{e}^{-4.2} \times \frac{4.2^{4}}{4!}$	M1	$\mathrm{P}(4)$, allow any λ
	0.194 (3 sf)	A1	As final answer. SC Unsupported correct answer scores B1 only.
		2	
7(b)	$1-\mathrm{e}^{-8.4}\left(1+8.4+\frac{8.4^{2}}{2}+\frac{8.4^{3}}{3!}\right)$	M1	Allow M1 with incorrect λ. Accept one end error.
	0.968 (3 sf)	A1	As final answer. SC Unsupported correct answer scores B1 only.
		2	
7(c)	$\mathrm{N}(50.4,50.4)$	M1	SOI
	$\frac{39.5-50.4}{\sqrt{50.4}} \quad[=-1.535]$	M1	Allow wrong or no continuity correction. Must have
	$\Phi\left({ }^{\prime}-1.535{ }^{\prime}\right)=1-\Phi\left({ }^{\prime} 1.535{ }^{\prime}\right)$	M1	For correct probability area consistent with their working.
	$0.0624(3 \mathrm{sf})$ or 0.0623	A1	
		4	

Cambridge International A Level

MATHEMATICS
 9709/63
 Paper 6 Probability \& Statistics 2
 May/June 2021
 MARK SCHEME

Maximum Mark: 50
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous

GENERIC MARKING PRINCIPLE 4

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$\lambda=10 \times 1.36[=13.6]$	M1	
	$\mathrm{E}($ amount $)=5 \times 13.6=[\$] 68$	A1	
	Var(amount $)=5^{2} \times 13.6[=340]$	M1	$5^{2} \times \ldots$
		M1	$\ldots \times$ their λ
	Standard Deviation $=[\$] 18.4(4)(3$ s.f. $)$	A1	CAO condone $2 \sqrt{85}$
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
2(a)	Conclude (mean) (journey) time has not decreased when in fact it has.	B1	OE in context
		1	
2(b)	H_{0} : Pop mean $($ or $\mu)=1.4$ H_{1} : Pop mean $($ or $\mu)<1.4$	B1	May be seen in (a)
	$\frac{1.36-1.4}{\frac{0.12}{\sqrt{50}}}$	M1	Accept totals method $\frac{68-70}{\sqrt{50} \times 0.12}$ No mixed methods or no standard deviation/variance mixes
	-2.357 or -2.36	A1	Correct z or correct area if used
	$\begin{aligned} & -2.357<-1.96 \text { or } 0.0092<0.025 \text { or } 0.9908>0.975 \\ & \text { Or CV method } 1.36<1.367 \end{aligned}$	M1	valid comparison
	There is evidence that (mean) (journey) times have decreased	A1 FT	in context not definite no contradictions NB use of two tail test scores max B0M1A1M1A0 no ft for two tail test
		5	
2(c)	H_{0} was rejected OE	*B1 FT	FT H_{0} was accepted OE
	Type I	DB1 FT	FT Type II
		2	

Question	Answer	Marks	Guidance
3(a)(i)	$\begin{aligned} & \mathrm{H}_{0}: \lambda=2.4 \\ & \mathrm{H}_{1}: \lambda>2.4 \end{aligned}$	B1	Accept λ or μ Accept 2.4 or 0.8 (per year)
		1	
3(a)(ii)	$1-\mathrm{e}^{-2.4}\left(1+2.4+\frac{2.4^{2}}{2}+\frac{2.4^{3}}{3!}+\frac{2.4^{4}}{4!}\right)$	M1	Any λ; allow one end error
	0.0959 (3 sf)	A1	SC unsupported answer 0.0959 scores B1 only not M1A1
	$0.0959>0.05$	M1	Valid comparison Use of $0.9041<0.95$ can recover either M1A1 or B1
	There is evidence that Jane's claim not justified or There is insufficient evidence to support Jane's claim	A1 FT	OE. In context, not definite, e.g. not 'Jane is wrong', no contradictions. Condone omission of Jane.
		4	
3(b)	Mean not constant so Poisson model not valid	B1	
		1	

Question	Answer	Marks	Guidance
4(a)	$\frac{4509}{90}[=50.1]$	B1	
	$\frac{90}{89}\left(\frac{225950}{90}-{ }^{\prime} 50.1^{\prime 2}\right)$ or $\frac{1}{89}\left(225950-\frac{4509^{2}}{90}\right)$	M1	Attempted. Use of biased $=0.5455$ scores M0A0
	$\frac{491}{890}$ or $0.552(3 \mathrm{sf})$	A1	
		3	
4(b)	${ }^{\prime} 50.1, \pm z \sqrt{\frac{\frac{491}{890}}{}{ }^{\prime}}$	M1	Expression of the correct form, allow any z-value but must be a z-value
	$z=2.326$	B1	Accept 2.326 to 2.329
	49.9 to 50.3 (3 sf)	A1	FT from biased variance. Must be an interval.
		3	
4(c)	Population of masses is unknown	B1	Accept population of masses is not normal
		1	
4(d)	1-0.98	M1	0.02 seen
	$0.02 \div 2=0.01$	A1	As final answer
		2	

PUBLISHED

Question	Answer	Marks	Guidance
5(a)	$\mathrm{Po}(2.5)$	B1	Accept Poisson with mean $=2.5$ not just $\mathrm{np}=2.5$
	$n=25000>50$ and $n p($ or $\lambda)=2.5$ which is <5 or $n=25000>50$ and $\mathrm{p}=0.0001<0.1$	B1	Must see 2.5 (or 0.0001) and 25000 OE, not just $n p<5$ (or $\mathrm{p}<0.1$) and $n>50$
		2	
5(b)	$\mathrm{e}^{-2.5}\left(1+2.5+\frac{2.5^{2}}{2}+\frac{2.5^{3}}{3!}\right)$	M1	Any λ, accept one end error. FT binomial from part (a) scores M1 only for equivalent binomial expressions FT normal from part (a) must use correct continuity correction and tables scores M1 only for complete method
	0.758 (3 sf)	A1	Unsupported answer of 0.758 scores B1 instead of M1A1
		2	
5(c)	$\mathrm{e}^{-2.5} \times \frac{2.5^{k}}{(k)!}=2 \mathrm{e}^{-2.5} \times \frac{2.5^{k+1}}{(k+1)!}$	M1	Any λ FT binomial from (a) scores M1 only for equivalent binomial expression FT from (a) normal for equivalent expressions continuity correction must be included
	$k=4$	A1	No errors seen SC $k=4$ unsupported scores B1 only, but see full Poisson expressions for $\mathrm{P}(4)$ and $\mathrm{P}(5)$ and 0.134 scores M1A1
		2	

PUBLISHED

Question	Answer	Marks	Guidance
5(d)	$1-\mathrm{e}^{-\lambda}=0.963$	M1	Accept their attempt at λ
	$\lambda=-\ln 0.037(=3.2968$ or 3.30 or 3.3$)$	M1	Correct use of lns
	$n=33000(3 \mathrm{sf})$	A1	Allow $n=32950$ to 33050 (must be an integer) SC use of binomial leading to 32967 scores B1 for $(0.9999)^{\mathrm{n}}=0.037$ B1 for 33000 to $3 \mathrm{sf}(32967)$
		3	
6(a)	$\mathrm{P}(X>10)=\int_{10}^{20} \frac{3}{8000}(x-20)^{2} \mathrm{~d} x$	M1	Attempt integration of $\mathrm{f}(x)$, ignore limits.
	$\begin{aligned} & =\left[\frac{3}{8000} \times \frac{(x-20)^{3}}{3}\right]_{10}^{20} \text { or } \frac{3}{8000}\left[\frac{x^{3}}{3}-\frac{40 x^{2}}{2}+400 x\right]_{10}^{20} \\ & =\frac{1}{8000}\left[0-(-10)^{3}\right] \end{aligned}$	M1	Substitute correct limits 10 to 20 or $1-\ldots$ limits 0 to 10 in their integral
	$\frac{1}{8} \text { or } 0.125$	A1	SC Unsupported answer of $\frac{1}{8}$ scores B1 only
	$\left(\frac{1}{8}\right)^{2}=\frac{1}{64}$ or $0.0156(3 \mathrm{sf})$	B1 FT	FT their $\mathrm{P}(X>10)$ dependent on first M1 gained
		4	

PUBLISHED

Question	Answer	Marks	Guidance
6(b)	$\int_{0}^{20} \frac{3}{8000}\left(x^{3}-40 x^{2}+400 x\right) \mathrm{d} x$	M1	Attempt integration of $x \mathrm{f}(x)$. Ignore limits.
	$\begin{aligned} & \frac{3}{8000}\left[\frac{x^{4}}{4}-\frac{40 x^{3}}{3}+\frac{400 x^{2}}{2}\right]_{0}^{20} \\ & \text { or }\left(\frac{3 x}{8000} \times \frac{(x-20)^{3}}{3}\right)-\frac{1}{8000}\left(\frac{(x-20)^{4}}{4}\right) \end{aligned}$	A1	Correct integral (by expanding or by parts)
	$\frac{3}{8000}\left[\frac{160000}{4}-\frac{40 \times 8000}{3}+200 \times 400\right]$	M1	Subst correct limits in their (4th degree) integral
	5	A1	
		4	
6(c)	$\int_{0}^{m} \frac{3}{8000}(x-20)^{2} \mathrm{~d} x=0.5$	M1	Attempt to integrate $\mathrm{f}(x)$ and equate to 0.5 . Ignore limits.
	$\begin{aligned} & {\left[\frac{3}{8000} \times \frac{(x-20)^{3}}{3}\right]_{0}^{m}=0.5 \text { or } \frac{3}{8000}\left[\frac{x^{3}}{3}-\frac{40 x^{2}}{2}+400 x\right]_{0}^{m}=0.5} \\ & \frac{1}{8000}\left[(m-20)^{3}-(-20)^{3}\right]=0.5 \end{aligned}$	M1	Attempt integral and substitute limits 0 and m or m and 20 and $=0.5$
	$(m-20)^{3}=-4000$	A1	AG. Found convincingly.
	$\begin{aligned} & (m=20+\sqrt[3]{-4000}) \\ & m=4.13(3 \mathrm{sf}) \end{aligned}$	B1	
		4	

Question	Answer	Marks	Guidance
$6(\mathrm{~d})$	Doesn't allow for trains >20 mins late or Doesn't allow for trains being early	B1	or any relevant comment e.g. trains on Sun may be different to trains on Mon
		$\mathbf{1}$	

Cambridge International AS \& A Level

MATHEMATICS	$\mathbf{9 7 0 9 / 6 2}$
Paper 6 Probability and Statistics 2	March $\mathbf{2 0 2 1}$
MARK SCHEME	

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\operatorname{Est}(\mu)=\frac{4820}{60}$ or $\frac{241}{3}$ or $80.3(3 \mathrm{sf})$	B1	
	$\operatorname{Est}\left(\sigma^{2}\right)=\frac{60}{59}\left(\frac{392050}{60}-\left(\frac{4820}{60}\right)^{2}\right)$	M1	Use of biased (80.72) score M0 A0.
	$82.0904\left(\frac{14530}{177}\right)$ to 82.635 or $\mathrm{SD}=9.0604$ to 9.0904 (3sf)	A1	
	$z=2.326$	B1	
	$\frac{4820}{60} \pm z \times \sqrt{\frac{82.0904^{\prime}}{60}}$	M1	Expression of the correct form - must be z value.
	77.6 to 83.1 (3 sf)	A1	CWO Use of biased 77.6 to 83.0 (3) can score B1M1A1 (max 4/6).
		6	
1(b)	Population distribution of times unknown	B1	Accept 'not normal'.
		1	

Question	Answer	Marks	Guidance
2(a)	$\frac{1}{2} \times \frac{1}{2} k \times k=1$	M1	Or use of $\int_{0}^{k}\left(-\frac{1}{2} x+\frac{1}{2} k\right) \mathrm{d} x=1$ and attempt at integral.
	$k=2$	A1	Unsupported answers M0 A 0 . Do not accept ± 2.
		2	
2(b)	$\mathrm{f}(x)=-\frac{1}{2} x+1$	B1 FT	FT their k from $y=-\frac{1}{2} x+\frac{1}{2} k$
	$\int_{0}^{2}\left(-\frac{1}{2} x^{2}+x\right) \mathrm{d} x=\left[-\frac{x^{3}}{6}+\frac{x^{2}}{2}\right]_{0}^{2}$	M1	Attempt integration of $x \mathrm{f}(x)$ limits 0 to k. FT their $\mathrm{f}(x)$. Could be in terms of k.
	$\frac{2}{3} \text { or } 0.667(3 \mathrm{sf})$	A1	
		3	

Question	Answer	Marks	Guidance
2(c)	$\int_{p}^{1}\left(-\frac{1}{2} x+1\right) \mathrm{d} x[=0.25]$	M1	FT their equation of line; correct integral and limits (could be reversed) stated or $\frac{1}{2}(1-p)\left(1-\frac{1}{2} p+\frac{1}{2}\right)[=$ $0.25]$.
	$\begin{aligned} & {\left[-\frac{x^{2}}{4}+x\right]_{p}^{1}=0.25} \\ & -\frac{1}{4}+1+\frac{p^{2}}{4}-p=0.25 \end{aligned}$	M1	Attempt substitution of correct limits (not reversed) into their integral or attempt expand must equal 0.25 . OE
	$p^{2}-4 p+2=0$	M1	Obtain 3-term quadratic set equal to 0 , obtain at least 1 solution.
	$p=2-\sqrt{ } 2$ or 0.586	A1	CAO
		4	

Question	Answer	Marks	Guidance
3(a)	One-tail because investigating whether "higher"	B1	OE. Must have both parts.
		1	
3(b)	H_{0} : Population mean (or μ) in city same as for others H_{1} : Population mean (or μ) in city greater than for others	B1 FT	If (a) two-tail: H_{0} : Pop mean (or μ) in city same as for others. H_{1} : Pop mean (or μ) in region different from others.
	$2.41>2.326$ or $0.008<0.01$ or $0.992>0.99$	M1	If (a) two-tail: $2.41<2.576$ or $0.992<0.995$.
	There is evidence that buildings are higher [on average].	A1 FT	In context, not definite. No contradictions. If (a) two-tail: There is no evidence that the [average] height of buildings is different.
		3	

Question	Answer	Marks	Guidance
4(a)	$\mathrm{B}\left(1000, \frac{1}{400}\right)$	B1	Accept Bin and $n=1000, p=\frac{1}{400}$
		1	
4(b)	$\mathrm{Po}(2.5)$	B2	B1 for Po. B1 for $\lambda=2.5$.
		2	
4(c)(i)	$\mathrm{e}^{-2.5 \times} \times \frac{2.5^{4}}{4!}$	M1	FT their (b) for Normal must have a continuity correction. Allow any λ
	0.134 (3 sf)	A1	CWO
		2	
4(c)(ii)	$e^{-2.5}\left(\frac{2.5^{2}}{2!}+\frac{2.5^{3}}{3!}+\frac{2.5^{4}}{4!}\right)$	M1	FT their (b) for Normal must have a continuity correction. Allow with one term extra or omitted or wrong. Allow any λ.
	0.604 (3 sf)	A1	CWO
		2	
4(d)	$\lambda=2.5 \times 0.7$ or $\lambda=700 \times \frac{1}{400}[=1.75]$	M1	Must see λ or use of Poisson.
	$1-\mathrm{e}^{-1.75}$	M1	Allow any λ. Allow $1-\mathrm{P}(0,1)$.
	0.826	A1	SC B1 Use of $\mathrm{B}(700,0.0025)$ leading to 0.826 .
		3	

Question	Answer	Marks	Guidance
5(a)	$\mathrm{E}\left(L_{1}+L_{2}+L_{3}+S_{1}+S_{2}+S_{3}+S_{4}\right)=3 \times 5.10+4 \times 2.51[=25.34]$	B1	$\mathrm{OE}(\mathrm{E}(3 \mathrm{~L}+4 \mathrm{~S}-25.5)=-0.16)$
	$\operatorname{Var}\left(L_{1}+L_{2}+L_{3}+S_{1}+S_{2}+S_{3}+S_{4}\right)=3 \times 0.0102+4 \times 0.0036[=0.045]$	B1	$\text { or } \mathrm{SD}=\frac{3 \sqrt{2}}{20}=0.2121$
	$\frac{25.5-^{\prime} 25.34^{\prime}}{\sqrt{\prime 0.045^{\prime}}}[=0.754]$	M1	No SD/variance mix. Standardising with their values (must be from a combination attempt).
	$\Phi\left({ }^{\prime} 0.754\right.$ '	M1	For the correct area consistent with their working.
	0.775 (3 sf)	A1	
		5	
5(b)	$\mathrm{E}(\mathrm{L}-2 \mathrm{~S})=5.10-2 \times 2.51[=0.08]$	B1	OE
	$\operatorname{Var}(\mathrm{L}-2 \mathrm{~S})=0.0102+2^{2} \times 0.0036[=0.0246]$	B1	Or SD=0.1568 .
	$\frac{0--^{\prime} 0.08^{\prime}}{\sqrt{{ }^{0.0246 '}}}[=-0.510]$	M1	No SD/variance mix. Standardising with their values (must be from a combination attempt).
	$\mathrm{P}\left(Z>{ }^{\prime}-0.510^{\prime}\right)=\phi\left({ }^{\prime} 0.510^{\prime}\right)$	M1	For the correct area consistent with their working.
	0.695 (3 sf)	A1	
		5	

Question	Answer	Marks	Guidance
6(a)	H_{0} : population proportion $=0.08 \mathrm{OE}$ H_{1} : population proportion $>0.08 \mathrm{OE}$	B1	Allow ' $p=0.08$ ' etc.
	$\begin{aligned} & \mathrm{P}(X \geq 4)=1-\mathrm{P}(X \leq 3)= \\ & 1-\left(0.92^{25}+25 \times 0.92^{24} \times 0.08+{ }^{25} \mathrm{C}_{2} \times 0.92^{23} \times 0.08^{2}+{ }^{25} \mathrm{C}_{3} \times 0.92^{22} \times 0.08^{3}\right) \end{aligned}$	M1	Allow 1 - (one term omitted or extra or wrong).
	0.135 (3 sf)	A1	
	$0.135>0.05$	M1	Valid comparison. Note: ‘ $0.865^{\prime}<0.95$ can score M1 A1 and can recover previous M1 A1 for 0.865 .
	There is no evidence that proportion owning Chantor has increased	A1 FT	In context. Not definite, e.g. not 'Proportion not increased'. No contradictions.
		5	
6(b)	H_{0} was not rejected.	*B1 FT	H_{0} was rejected (consistent with (a)).
	Hence Type II might have been made.	DB1 FT	Type I error.
		2	
6(c)	$\begin{aligned} & \mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4) \\ & =1-\left((1-0.1351)+{ }^{25} \mathrm{C}_{4} \times 0.92^{21} \times 0.08^{4}\right)[=0.0451] \end{aligned}$	*M1	Attempted. Note: If critical region method used in (a) marks can be awarded here.
	$0.0451<0.05$	A1	Comparison of 0.045 [1] with 0.05 . Note: If critical region method used in (a) marks can be awarded here.
	$\mathrm{P}($ Type I error $)=0.0451$ or 0.0452	A1	Dependent on M1* only. SC Unsupported answers score: B1 for $0.0451<0.05$ and B1 for final answer 0.0451 only.
		3	

Cambridge International AS \& A Level

MATHEMATICS	$9709 / 61$
Paper 6 Probability \& Statistics 2	October/November 2020
MARK SCHEME	

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\operatorname{Po}\left(\frac{2}{3}\right)$	B1	Poisson with correct mean stated (to at least 3 sf) or implied in working.
	$1-\mathrm{e}^{-\frac{2}{3}}\left(1+\frac{2}{3}\right)$	M1	$1-\mathrm{P}(X=0$ or 1$)$; allow incorrect λ; allow one end error
	$=0.144(3 \mathrm{sf})$	A1	SC B1 for use of binomial or no working shown leading to correct final answer.
		3	
1(b)	$n>50$ and $n p=\frac{2}{3}<5$ or $n>50$ and $p=\frac{1}{300}<0.1$	B1	Accept p or $n p$ clearly stated in part (a). Do not accept n is large and p is small.
		3	
1(c)	$\operatorname{Po}\left(\frac{11}{3}\right)$	B1	Poisson with correct mean stated (to at least 3sf) or implied in working.
	$\mathrm{e}^{-\frac{11}{3}}\left(1+\frac{11}{3}+\frac{\left(\frac{11}{3}\right)^{2}}{2!}+\frac{\left(\frac{11}{3}\right)^{3}}{3!}\right)$	M1	$\mathrm{P}(X=0,1,2,3)$; allow incorrect λ; allow one end error. Must not be multiplied by any additional values.
	$=0.501 \quad(3 \mathrm{sf})$	A1	As final answer.
		3	

Question	Answer	Marks	Guidance
2(a)	$\begin{aligned} & \frac{\frac{102}{250} \times \frac{250-102}{250}}{250}(=0.000966144) \\ & \frac{102}{250} \pm z \sqrt{{ }^{\prime 0.00096614 '}} \end{aligned}$	M1	Any z but must be a z value. One side of the interval scores M1.
	$z=1.645$	B1	
	Confident Interval is 0.357 to 0.459 (3 sf)	A1	Must be an interval.
		3	
2(b)	Estimate of mean $\left(\frac{50460}{250}\right)=\$ 201.84$	B1	Allow without units. Allow 3s.f. \$202.
	$\frac{250}{249}\left(\frac{19854200}{250}-\left(\frac{50460}{250}\right)^{2}\right)$ or $\frac{1}{249}\left(19854200-\frac{50460^{2}}{250}\right)$	M1	
	Estimate of variance $=38832.75$ dollars 2 or $38800(3 \mathrm{sf})$	A1	Allow with missing units. (Calculation of biased gives 38700 scores M0A0)
		3	
2(c)	e.g. Every house doesn't have an equal chance of being selected or most houses have no chance of being selected.	B1	Or other similar e.g. Houses in streets with few houses are more likely to be selected. Not just 'biased', OE, without explanation
		1	

Question	Answer	Marks	Guidance
3	F -0.5 M	M1	SOI
	$\sim \mathrm{N}\left(17,27^{2}+0.25 \times 55^{2}\right)$	B1	for $102-0.5(170)(=17)$ or 34
		B1	for $27^{2}+0.25 \times 55^{2}(=1485.25)$ or $2^{2} \times 27^{2}+55^{2}(=5941)$
	$\frac{0-17^{\prime}}{\sqrt{\prime 1485.25^{\prime}}}(=-0.4411)$	M1	Must have an attempt at combining F and M. No standard deviation/variance errors.
	$\mathrm{P}(\mathrm{F}-0.5 \mathrm{M}<0)=\phi\left({ }^{\prime}-0.4411^{\prime}\right)=1-\phi\left({ }^{\prime} 0.4411^{\prime}\right)$	M1	Correct area consistent with their figures.
	$=0.330(3 \mathrm{sf})$	A1	Allow 0.33 if no greater accuracy given
	Alternative method for question 3		
	$2 \mathrm{~F}-\mathrm{M}$		
	$\sim \mathrm{N}\left(34, \quad 2^{2} \times 27^{2}+55^{2}\right)$	B1	for $102-0.5(170)(=17)$ or 34
		B1	for $27^{2}+0.25 \times 55^{2}(=1485.25)$ or $2^{2} \times 27^{2}+55^{2}(=5941)$
	$\frac{0-' 34^{\prime}}{\sqrt{5941^{\prime}}}(=-0.4411)$	M1	Must have an attempt at combining F and M. No standard deviation/variance errors.
	$\mathrm{P}(2 \mathrm{~F}-\mathrm{M}<0)=\phi\left({ }^{\prime}-0.4411{ }^{\prime}\right)=1-\phi\left({ }^{\prime} 0.4411^{\prime}\right)$	M1	Correct area consistent with their figures.
	$=0.330(3 \mathrm{sf})$	A1	Allow 0.33 if no greater accuracy given
		6	

Question	Answer	Marks	Guidance
4(a)	$(k=) \frac{1}{a}$	B1	
		1	
4(b)	$(\mathrm{Mean}=)$ their $k \times \frac{a^{2}}{2} \quad\left(=\frac{a}{2}\right)$	B1 FT	OE seen. FT their k
	$\frac{1}{a} \int_{0}^{a} x^{2} \mathrm{~d} x\left(=\frac{a^{2^{\prime}}}{3}\right)$	M1	Attempt at correct integral and use of limits. Accept in terms of k or incorrect k.
	$-\left(\frac{a^{\prime}}{2}\right)^{2}\left(=\frac{a^{2}}{12}\right)$	M1	For subtracting mean ${ }^{2}$, allow if integration not complete. FT incorrect values of k.
	$\left(\frac{a^{2}}{12}=3\right) a=6$	A1	Can be in terms of k.
		4	

Question	Answer	Marks	Guidance
5(a)	$\sqrt{ } 2.1$ or 1.45 (3 sf)	B1	
		1	
5(b)	$\lambda=4.2$	B1	
	$1-\mathrm{e}^{-4.2}(1+4.2)$	M1	$1-\mathrm{P}(X \leqslant 1)$ any λ, allow one end error.
	$=0.922(3 \mathrm{sf})$	A1	
		3	
5(c)	$\begin{aligned} & \lambda=6.3 \\ & \mathrm{e}^{-6.3}\left(\frac{6.3^{5}}{5!}+\frac{6.3^{6}}{6!}+\frac{6.3^{7}}{7!}\right) \end{aligned}$	M1	$\mathrm{P}(X=5,6,7)$ any λ, allow one end error.
	$=0.455(3 \mathrm{sf})$	A1	
		2	
5(d)	$\begin{aligned} & \mathrm{H}_{0}: \lambda=6.3 \\ & \mathrm{H}_{1}: \lambda<6.3 \end{aligned}$	B1	Accept μ, accept 2.1 (per week)
	$\mathrm{P}(X \leqslant 2)=\mathrm{e}^{-6.3}\left(1+6.3+\frac{6.3^{2}}{2!}\right)$	M1	
	$=0.0498$ or 0.0499	A1	Accept 0.0499
	${ }^{\prime} 0.0498$ ' < 0.1	M1	For valid comparison. For CV method the comparison can be ' 2 lies in CR of $X \leqslant 2$ '
	There is evidence that mean number of absences has decreased.	A1 FT	In context, not definite, e.g. not 'Mean number of absences has decreased.' No contradictions.
		5	

Question	Answer	Marks	Guidance
5(e)	H_{0} rejected	*B1 FT	OE
	Hence Type I error possible	DB1 FT	
		2	
6(a)	$\frac{40-38.4}{6.9}=1.270 \quad \frac{38-38.4}{6.9}=-0.3175$	M1	M1 for either correct expression must have $\sqrt{ } 30$ (condone continuity correction)
	$\begin{array}{ll} \sqrt{30} & \sqrt{30} \end{array}$	A1	A1 for ± 1.270 or for 1.27 or AWRT
		A1	A1 for $\pm(-0.3175)$ must be opposite sign or for 0.317 or 0.318 or AWRT
	$\Phi\left({ }^{\prime} 1.270\right.$ ' - ($1-\phi\left({ }^{\prime} 0.3175{ }^{\prime}\right)$	M1	For correct method consistent with their values
	$=0.523(3 \mathrm{sf})$ or 0.522	A1	
		5	
6(b)(i)	2-tail because looking for 'change', not decrease or increase	B1	OE
		1	

Question	Answer	Marks	Guidance
6(b)(ii)	H_{0} : Population mean journey time $($ or $\mu)=38.4$ H_{1} : Population mean journey time (or μ) $\neq 38.4$	B1	Not just 'mean journey time'
	$\frac{40.2-38.4}{\frac{6.9}{\sqrt{30}}}$	M1	For standardising (must have $\sqrt{ } 30$)
	$=1.429$	A1	
	${ }^{\prime} 1.429$ ' < 1.645	M1	For valid comparison (area comparison $0.0765>0.05$)
	There is no evidence that mean journey time has changed.	A1 FT	In context. Not definite (e.g. not 'mean journey time has not changed'). No contradictions. FT their ' 1.429 ' (Note use of 1-tail test scores B0 M1A1M1 (comparison with 1.282) A0 max)
	Alternative method for question 6(b)(ii) - critical values method		
	H_{0} : Population mean journey time (or μ) $=38.4$ H_{1} : Population mean journey time (or μ) $\neq 38.4$	B1	Not just 'mean journey time'
	$38+1.645\left(\frac{6.9}{\sqrt{30}}\right)$	M1	
	$=40.47$	A1	
	$40.2<40.47$	M1	For valid comparison
	There is no evidence that mean journey time has changed.	A1 FT	In context. Not definite (e.g. not 'mean journey time has not changed'). No contradictions.
		5	

Question	Answer	Marks	Guidance
6(b)(iii)	Yes, because population distribution unknown.	B1	Allow: Yes, because population distribution not normal.
		$\mathbf{1}$	

Cambridge International AS \& A Level

MATHEMATICS

9709/62
Paper 6 Probability \& Statistics 2
October/November 2020
MARK SCHEME
Maximum Mark: 50
Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	Poisson, any λ	M1	Used
	$1-\mathrm{e}^{-3}\left(1+3+\frac{3^{2}}{2}\right)$	$\mathbf{M 1}$	Allow one end error
	$=0.577(3 \mathrm{sf})$	$\mathbf{A 1}$	SC Use of Binomial (or unsupported correct answer) scores B1 only
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2(a)	$\frac{56}{300} \pm z \times \sqrt{\frac{\frac{56}{300} \times \frac{244}{300}}{300}}$	M1	For expression of the correct form. Must be a z value
	$z=2.054$ or 2.055	B1	
	0.14 (0) to 0.233 (3sf) or 0.141 to 0.233 (3sf)	A1	Must be an interval
		3	
2(b)	$\frac{1}{6}(=0.167)$ This is within confidence interval, so no reason to believe die is biased.	B1 FT	Note if confidence interval set up with $\frac{1}{6}, \frac{56}{300}$ it should be the value used here. FT their confidence interval. Not definite, e.g. not 'Die not biased'.
		1	

Question	Answer	Marks	Guidance
3(a)	$\begin{aligned} & \frac{1}{2} \times 3 \times c=1 \\ & \left(c=\frac{2}{3} \quad \mathbf{A G}\right) \end{aligned}$	B1	Must see this line, oe, and result (Alternative method involving equation of line $\left(y=\left(\frac{-c}{3}\right) x+c\right)$ must have all relevant working shown)
		1	
3(b)	$\left(\frac{1}{3}\right)^{2}$	M1	Allow M1 for $\frac{1}{3}$ seen as a linear scale factor or Attempt to find equation of line (of form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ where c $\neq 0$) and interval from 2 to 3 OE or Attempt to find the point ($2, \frac{2}{9}$) using the equation of the line (of form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ where $\mathrm{c} \neq 0$) and then use area of triangle
	$=\frac{1}{9} \text { or } 0.111(3 \mathrm{sf})$	A1	
		2	

Question	Answer	Marks	Guidance
3(c)	Equation of line is $y=\frac{2}{3}-\left(\frac{2}{3} \div 3\right) x$	*M1	OE Must be of form $\mathrm{y}=\mathrm{mx}+\mathrm{c}(\mathrm{c} \neq 0)$.
	$\mathrm{E}(X)=\int_{0}^{3}\left(\frac{2}{3} x-\frac{2}{9} x^{2}\right) \mathrm{d} x$	DM1	Attempt integration $x \times$ their $\mathrm{f}(x)$, ignore limits
	$=\left[\frac{x^{2}}{3}-\frac{2 x^{3}}{27}\right] \begin{aligned} & 3 \\ & 0\end{aligned}$	A1 FT	Correct integration and limits. FT their equation of line
	$=1$	A1	
		4	

Question	Answer	Marks	Guidance
4	$\operatorname{est}(\mu)=\frac{1850}{200} \text { or } 9.25$	B1	
	$\operatorname{est}\left(\sigma^{2}\right)=\frac{200}{199}\left(\frac{17850}{200}-\left(\frac{1850}{200}\right)^{2}\right)$ or $\frac{1}{199}\left(17850-\frac{1850^{2}}{200}\right)$	M1	
	$=3.71 \text { or } 3.7060 \text { or } \frac{1475}{398}$	A1	
	$\begin{aligned} & \mathrm{H}_{0}: \mu=8.9 \\ & \mathrm{H}_{1}: \mu \neq 8.9 \end{aligned}$	B1	Accept Population mean (not just mean)
	$\frac{\frac{1850}{200}-8.9}{\sqrt{\frac{" 3.706 "}{200}}}$	M1	Use of biased variance (3.6875) still scores M1
	$=2.57(3 \mathrm{sf})($ or using areas $0.00507-0.0051)$	A1	Accept 2.58 (3sf) or using areas $0.0049-0.005$ where biased variance used.
	$2.24<2.57$ or $0.00507<0.0125$	M1	For valid comparison with 2.240 or 2.241 or valid comparison with 0.0125 Accept $2.24<2.58$ or $0.00496<0.0125$ where biased variance used
	(Reject H_{0}) There is evidence that μ is not 8.9	A1 FT	Not definite, e.g. NOT ' $\mu \neq 8.9^{\prime}$ Must be in context. No contradictions. (Accept cv method) (Note: Use of 1 tail test scores Max B1M1A1B0M1A1M1A0, max 6 out of 8)
		8	

Question	Answer	Marks	Guidance
5(a)	Customers arrive independently or singly or at random	B1	Any one of these in context
		1	
5(b)	$\mathrm{e}^{-2.3} \times \frac{2.3^{3}}{3!}$	M1	Attempt correct expression seen
	$=0.203(3 \mathrm{sf})$	A1	
		2	
5(c)	Po(4.6)	B1	SOI
	$1-\mathrm{e}^{-4.6}\left(1+4.6+\frac{4.6^{2}}{2!}+\frac{4.6^{3}}{3!}\right)$	M1	Correct expression, with any λ, allow one end error
	$=0.674(3 \mathrm{sf})$	A1	As final answer.
		3	
5(d)	$\mathrm{P}($ none arrive $)=\mathrm{e}^{-2.3}(=0.10026)$	M1	Must be clearly their P (none arrive)
	${ }^{5} \mathrm{C}_{2}\left(\mathrm{e}^{-2.3}\right)^{2}\left(1-\mathrm{e}^{-2.3}\right)^{3}$	M1	FT their $\mathrm{e}^{-2.3}$
	$=0.0732$ or 0.0733 (3sf)	A1	
		3	

Question	Answer	Marks	Guidance
6(a)	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(\text { contains offer })=\frac{1}{3} \\ & \mathrm{H}_{1}: \mathrm{P}(\text { contains offer })<\frac{1}{3} \end{aligned}$	B1	Allow p for P (contains offer) but not just proportion
	$\begin{aligned} & \mathrm{P}\left(0,1 \text { or } 2 \text { offers in } 20 \mid \mathrm{H}_{0}\right) \\ & =\left(\frac{2}{3}\right)^{20}+20\left(\frac{2}{3}\right)^{19}\left(\frac{1}{3}\right)+{ }^{20} \mathrm{C}_{2}\left(\frac{2}{3}\right)^{18}\left(\frac{1}{3}\right)^{2} \end{aligned}$	M1	
	$=0.0176(3 \mathrm{sf})$	A1	
	${ }^{\prime} 0.0176$ ' <0.1	M1	For valid comparison. SC comparison of $0.982(4)>0.9$ scores M1 and recovers the previous M1 A1
	(Reject H_{0}) No evidence (at 10% level) to support manufacturers claim	A1 FT	In context. Not definite. No contradictions. (Note 2 tail test scores max B0M1A1M1A0, max 3 out of 5) Accept critical region method: M1 A1 for correctly finding critical region of $<4 ; 2$ in critical region M1; A1 conclusion SC Use of Normal approximation $\mathrm{N}\left(\frac{20}{3}, \frac{40}{9}\right)$ scores B1 M1 A0 M1 A1 max; the first M1 for $\frac{\left(2.5-\frac{20}{3}\right)}{\sqrt{\left(\frac{40}{9}\right)}}$ requires use of correct continuity correction and the comparison $0.024<0.1$ OE must be a valid comparison
		5	

Question	Answer	Marks	Guidance
6(b)	$1-\mathrm{P}(X \leqslant 3)$	M1	M1 for 1 - (one term omitted or extra or incorrect) or omit '1-'
	$=1-\left[\left(\frac{6}{7}\right)^{20}+20\left(\frac{6}{7}\right)^{19}\left(\frac{1}{7}\right)+{ }^{20} \mathrm{C}_{2}\left(\frac{6}{7}\right)^{18}\left(\frac{1}{7}\right)^{2}+{ }^{20} \mathrm{C}_{3}\left(\frac{6}{7}\right)^{17}\left(\frac{1}{7}\right)^{3}\right]$	A1	for all correct expression
	$=0.318(3 \mathrm{sf})$	A1	As final answer.
		3	
6(c)	Concluding that prop is 1 in 3 when it is actually less(1 in 7)	B1	OE, in context.
		1	

Question	Answer	Marks	Guidance
7(a)	$\begin{aligned} & \mathrm{P}(\mathrm{~S}>\mathrm{L}+200)=\mathrm{P}(\mathrm{~S}-\mathrm{L}>200) \\ & \mathrm{E}(\mathrm{~S}-\mathrm{L})=380-210(=170) \text { or } \mathrm{E}(\mathrm{~S}-\mathrm{L}-200)=380-210-200 \\ & (=-30) \end{aligned}$	B1	These may be implied by next line
	$\operatorname{Var}(\mathrm{S}-\mathrm{L})=140+80(=220)$ or $\operatorname{Var}(\mathrm{S}-\mathrm{L}-200)=140+80(=220)$	B1	
	$\frac{200-" 170 "}{\sqrt{" 220 "}} \text { or } \frac{0-"-30 "}{\sqrt{" 220 "}}(=2.023)$	M1	Standardising with their values (must be from a combination attempt) Allow with attempted continuity correction.
	1 - ("2.023") $^{\text {(}}$	M1	Area consistent with their values
	$=0.0216$ (3sf)	A1	(0.0234 with continuity correction)
		5	

Question	Answer	Marks	Guidance
7(b)	$\mathrm{E}($ total cost) $)=380 \times 20+210 \times 50(=18100)$	B1	or \$181
	$\operatorname{Var}($ total cost $)=140 \times 20^{2}+80 \times 50^{2}(=256000)$	B1	or 25.6 (dollar ${ }^{2}$) These may be implied by next line
	$\frac{19000-" 18100 "}{\sqrt{" 256000 "}} \text { or } \frac{190-" 181 "}{\sqrt{" 25.6 "}}(=1.778)$	M1	Standardising with their values (must be from a combination attempt). No mixed methods. Allow with attempted continuity correction.
	$\phi(" 1.778$ ")	M1	Area consistent with their values
	$=0.962$ or $0.963(3 \mathrm{sf})$	A1	(0.953 or 0.954 with continuity correction)
		5	

Cambridge International AS \& A Level

MATHEMATICS	$9709 / 63$
Paper 6 Probability \& Statistics 2	October/November 2020
MARK SCHEME	

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles
1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3
Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

- A or B marks are given for correct work only (not for results obtained from incorrect working) unless follow through is allowed (see abbreviation FT above).
- For a numerical answer, allow the A or B mark if the answer is correct to 3 significant figures or would be correct to 3 significant figures if rounded (1 decimal place for angles in degrees).
- The total number of marks available for each question is shown at the bottom of the Marks column.
- Wrong or missing units in an answer should not result in loss of marks unless the guidance indicates otherwise.
- Square brackets [] around text or numbers show extra information not needed for the mark to be awarded.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1(a)	$\operatorname{Po}\left(\frac{2}{3}\right)$	B1	Poisson with correct mean stated (to at least 3 sf) or implied in working.
	$1-\mathrm{e}^{-\frac{2}{3}}\left(1+\frac{2}{3}\right)$	M1	$1-\mathrm{P}(X=0$ or 1$)$; allow incorrect λ; allow one end error
	$=0.144(3 \mathrm{sf})$	A1	SC B1 for use of binomial or no working shown leading to correct final answer.
		3	
1(b)	$n>50$ and $n p=\frac{2}{3}<5$ or $n>50$ and $p=\frac{1}{300}<0.1$	B1	Accept p or $n p$ clearly stated in part (a). Do not accept n is large and p is small.
		3	
1(c)	$\operatorname{Po}\left(\frac{11}{3}\right)$	B1	Poisson with correct mean stated (to at least 3sf) or implied in working.
	$\mathrm{e}^{-\frac{11}{3}}\left(1+\frac{11}{3}+\frac{\left(\frac{11}{3}\right)^{2}}{2!}+\frac{\left(\frac{11}{3}\right)^{3}}{3!}\right)$	M1	$\mathrm{P}(X=0,1,2,3)$; allow incorrect λ; allow one end error. Must not be multiplied by any additional values.
	$=0.501 \quad(3 \mathrm{sf})$	A1	As final answer.
		3	

Question	Answer	Marks	Guidance
2(a)	$\begin{aligned} & \frac{\frac{102}{250} \times \frac{250-102}{250}}{250}(=0.000966144) \\ & \frac{102}{250} \pm z \sqrt{{ }^{\prime} 0.00096614^{\prime}} \end{aligned}$	M1	Any z but must be a z value. One side of the interval scores M1.
	$z=1.645$	B1	
	Confident Interval is 0.357 to 0.459 (3 sf)	A1	Must be an interval.
		3	
2(b)	Estimate of mean $\left(\frac{50460}{250}\right)=\$ 201.84$	B1	Allow without units. Allow 3s.f. \$202.
	$\frac{250}{249}\left(\frac{19854200}{250}-\left(\frac{50460}{250}\right)^{2}\right)$ or $\frac{1}{249}\left(19854200-\frac{50460^{2}}{250}\right)$	M1	
	Estimate of variance $=38832.75$ dollars 2 or $38800(3 \mathrm{sf})$	A1	Allow with missing units. (Calculation of biased gives 38700 scores M0A0)
		3	
2(c)	e.g. Every house doesn't have an equal chance of being selected or most houses have no chance of being selected.	B1	Or other similar e.g. Houses in streets with few houses are more likely to be selected. Not just 'biased', OE, without explanation
		1	

Question	Answer	Marks	Guidance
3	$\mathrm{F}-0.5 \mathrm{M}$	M1	SOI
	$\sim \mathrm{N}\left(17,27^{2}+0.25 \times 55^{2}\right)$	B1	for $102-0.5(170)(=17)$ or 34
		B1	for $27^{2}+0.25 \times 55^{2}(=1485.25)$ or $2^{2} \times 27^{2}+55^{2}(=5941)$
	$\frac{0-17{ }^{\prime}}{\sqrt{1485.25 '}}(=-0.4411)$	M1	Must have an attempt at combining F and M. No standard deviation/variance errors.
	$\mathrm{P}(\mathrm{F}-0.5 \mathrm{M}<0)=\phi\left('-0.4411^{\prime}\right)=1-\phi\left({ }^{\prime} 0.4411^{\prime}\right)$	M1	Correct area consistent with their figures.
	$=0.330(3 \mathrm{sf})$	A1	Allow 0.33 if no greater accuracy given
	Alternative method for question 3		
	$2 \mathrm{~F}-\mathrm{M}$		
	$\sim \mathrm{N}\left(34, \quad 2^{2} \times 27^{2}+55^{2}\right)$	B1	for $102-0.5(170)(=17)$ or 34
		B1	for $27^{2}+0.25 \times 55^{2}(=1485.25)$ or $2^{2} \times 27^{2}+55^{2}(=5941)$
	$\frac{0-34{ }^{\prime}}{\sqrt{ } 5941^{\prime}}(=-0.4411)$	M1	Must have an attempt at combining F and M. No standard deviation/variance errors.
	$\mathrm{P}(2 \mathrm{~F}-\mathrm{M}<0)=\phi\left({ }^{\prime}-0.44111^{\prime}\right)=1-\phi\left({ }^{(} 0.4411^{\prime}\right)$	M1	Correct area consistent with their figures.
	$=0.330(3 \mathrm{sf})$	A1	Allow 0.33 if no greater accuracy given
		6	

Question	Answer	Marks	Guidance
4(a)	$(k=) \frac{1}{a}$	B1	
		1	
4(b)	$(\mathrm{Mean}=)$ their $k \times \frac{a^{2}}{2} \quad\left(=\frac{a}{2}\right)$	B1 FT	OE seen. FT their k
	$\frac{1}{a} \int_{0}^{a} x^{2} \mathrm{~d} x\left(=\frac{a^{2^{\prime}}}{3}\right)$	M1	Attempt at correct integral and use of limits. Accept in terms of k or incorrect k.
	$-\left(\frac{a^{\prime}}{2}\right)^{2}\left(=\frac{a^{2}}{12}\right)$	M1	For subtracting mean ${ }^{2}$, allow if integration not complete. FT incorrect values of k.
	$\left(\frac{a^{2}}{12}=3\right) a=6$	A1	Can be in terms of k.
		4	

Question	Answer	Marks	Guidance
5(a)	$\sqrt{ } 2.1$ or 1.45 (3 sf)	B1	
		1	
5(b)	$\lambda=4.2$	B1	
	$1-\mathrm{e}^{-4.2}(1+4.2)$	M1	$1-\mathrm{P}(X \leqslant 1)$ any λ, allow one end error.
	$=0.922(3 \mathrm{sf})$	A1	
		3	
5(c)	$\begin{aligned} & \lambda=6.3 \\ & \mathrm{e}^{-6.3}\left(\frac{6.3^{5}}{5!}+\frac{6.3^{6}}{6!}+\frac{6.3^{7}}{7!}\right) \end{aligned}$	M1	$\mathrm{P}(X=5,6,7)$ any λ, allow one end error.
	$=0.455(3 \mathrm{sf})$	A1	
		2	
5(d)	$\begin{aligned} & \mathrm{H}_{0}: \lambda=6.3 \\ & \mathrm{H}_{1}: \lambda<6.3 \end{aligned}$	B1	Accept μ, accept 2.1 (per week)
	$\mathrm{P}(X \leqslant 2)=\mathrm{e}^{-6.3}\left(1+6.3+\frac{6.3^{2}}{2!}\right)$	M1	
	$=0.0498$ or 0.0499	A1	Accept 0.0499
	${ }^{\prime} 0.0498$ ' < 0.1	M1	For valid comparison. For CV method the comparison can be ' 2 lies in CR of $X \leqslant 2$ '
	There is evidence that mean number of absences has decreased.	A1 FT	In context, not definite, e.g. not 'Mean number of absences has decreased.' No contradictions.
		5	

Question	Answer	Marks	Guidance
5(e)	H_{0} rejected	*B1 FT	OE
	Hence Type I error possible	DB1 FT	
		2	
6(a)	$\frac{40-38.4}{6.9}=1.270 \quad \frac{38-38.4}{6.9}=-0.3175$	M1	M1 for either correct expression must have $\sqrt{ } 30$ (condone continuity correction)
	$\begin{array}{ll} \sqrt{30} & \sqrt{30} \end{array}$	A1	A1 for ± 1.270 or for 1.27 or AWRT
		A1	A1 for $\pm(-0.3175)$ must be opposite sign or for 0.317 or 0.318 or AWRT
	$\Phi\left({ }^{\prime} 1.270\right.$ ' - ($1-\phi\left({ }^{\prime} 0.3175{ }^{\prime}\right)$	M1	For correct method consistent with their values
	$=0.523(3 \mathrm{sf})$ or 0.522	A1	
		5	
6(b)(i)	2-tail because looking for 'change', not decrease or increase	B1	OE
		1	

Question	Answer	Marks	Guidance
6(b)(ii)	H_{0} : Population mean journey time $($ or $\mu)=38.4$ H_{1} : Population mean journey time (or μ) $\neq 38.4$	B1	Not just 'mean journey time'
	$\frac{40.2-38.4}{\frac{6.9}{\sqrt{30}}}$	M1	For standardising (must have $\sqrt{ } 30$)
	$=1.429$	A1	
	'1.429'<1.645	M1	For valid comparison (area comparison $0.0765>0.05$)
	There is no evidence that mean journey time has changed.	A1 FT	In context. Not definite (e.g. not 'mean journey time has not changed'). No contradictions. FT their ' 1.429 ' (Note use of 1-tail test scores B0 M1A1M1 (comparison with 1.282) A0 max)
	Alternative method for question 6(b)(ii) - critical values method		
	H_{0} : Population mean journey time (or μ) $=38.4$ H_{1} : Population mean journey time ((r μ) $\neq 38.4$	B1	Not just 'mean journey time'
	$38+1.645\left(\frac{6.9}{\sqrt{30}}\right)$	M1	
	$=40.47$	A1	
	$40.2<40.47$	M1	For valid comparison
	There is no evidence that mean journey time has changed.	A1 FT	In context. Not definite (e.g. not 'mean journey time has not changed'). No contradictions.
		5	

Question	Answer	Marks	Guidance
6(b)(iii)	Yes, because population distribution unknown.	B1	Allow: Yes, because population distribution not normal.
		$\mathbf{1}$	

Cambridge International AS \& A Level

MATHEMATICS
9709/51
Paper 5 Probability \& Statistics 1
May/June 2020
MARK SCHEME

Maximum Mark: 50

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks
1(a)	Prob of $4\left(\right.$ from 1,3, 3,1 or 2,2) $=\frac{3}{36}=\frac{1}{12} \quad$ AG	B1
		1
1(b)	$\text { Mean }=\frac{1}{\frac{1}{12}}=12$	B1
		1
1(c)	$\left(\frac{11}{12}\right)^{5} \times \frac{1}{12}=0.0539 \text { or } \frac{161051}{2985984}$	B1
		1
1(d)	$1-\left(\frac{11}{12}\right)^{7}$	M1
	$0.456 \text { or } \frac{16344637}{35831808}$	A1
		2

Question	Answer	Marks
2(a)	$6!$	M1
	720	A1
		2
2(b)	Total number: $\frac{9!}{3!2!}(30240)$	M1
	Number with Ls together $=\frac{8!}{3!}(6720)$	M1
	$\begin{aligned} & \text { Number with Ls not together }=\frac{9!}{3!2!}-\frac{8!}{3!} \\ & =30240-6720 \end{aligned}$	M1
	23520	A1
	Alternative method for question 2(b)	
	$\frac{7!}{3!} \times \frac{8 \times 7}{2}$	
	$7!\times k$ in numerator, k integer ≥ 1	M1
	$8 \times 7 \times m$ in numerator or $8 \mathrm{C} 2 \times m, m$ integer ≥ 1	M1
	3 ! in denominator	M1
	23520	A1
		4

Question	Answer	Marks
4	Scenarios: 2P 3V 2G $\quad{ }^{8} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{3}=28 \times 6 \times 20=3360$ 2P 4V 1G $\quad{ }^{8} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{4}=28 \times 4 \times 15=1680$ 3P 3V 1G $\quad{ }^{8} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{3}=56 \times 4 \times 20=4480$ $4 \mathrm{P} 2 \mathrm{~V} \mathrm{1G} \quad{ }^{8} \mathrm{C}_{4} \times{ }^{4} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{2}=70 \times 4 \times 15=4200$ (M1 for ${ }^{8} \mathrm{C}_{\mathrm{r}} \times{ }^{4} \mathrm{C}_{\mathrm{r}} \times{ }^{6} \mathrm{C}_{\mathrm{r}}$ with $\sum r=7$)	M1
	Two unsimplified products correct	B1
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total: 13720	A1
		4

Question	Answer	Marks
5(a)	Fully correct labelled tree for method of transport with correct probabilities.	B1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the prob 0	B1
		2
5(b)	$0.35 \times 0.3+0.44 \times 0.8(+0)$	M1
	0.457	A1
		2

Question	Answer	Marks
5(c)	$\mathrm{P}(\text { not } \mathrm{B} \mid \text { not fruit })=\frac{\mathrm{P}\left(\mathrm{~B}^{\prime} \cap \mathrm{F}^{\prime}\right)}{\mathrm{P}\left(\mathrm{~F}^{\prime}\right)}$	M1
	$\frac{0.35 \times 0.7+0.21 \times 1}{1-\text { their }(\mathbf{b})}$	M1
	$\frac{0.455}{0.543}$ (M1 for 1 - their (b) or summing three appropriate 2-factor probabilities, correct or consistent with their tree diagram as denominator)	M1
	$0.838 \text { or } \frac{455}{543}$	A1
		4

Question	Answer	Marks
6(a)	$\mathrm{P}\left(\frac{50-54}{6.1}<z<\frac{60-54}{6.1}\right)=\mathrm{P}(-0.6557<Z<0.9836)$	M1
	Both values correct	A1
	$\begin{aligned} & \Phi(0.9836)-\Phi(-0.6557)=\Phi(0.9836)+\Phi(0.6557)-1 \\ & =0.8375+0.7441-1 \\ & \text { (Correct area) } \end{aligned}$	M1
	0.582	A1
		4

Question	Answer	Marks
6(b)	$\frac{45-\mu}{\sigma}=-0.994$	B1
	$\frac{56-\mu}{\sigma}=1.372$	B1
	One appropriate standardisation equation with μ, σ, z-value (not probability) and 45 or 56.	M1
	$11=2.366 \sigma$ (M1 for correct algebraic elimination of μ or σ from their two simultaneous equations to form an equation in one variable)	M1
	$\sigma=4.65, \mu=49.6$	A1
		5

Question	Answer	Marks
7(a)	Class widths: $10,5,15,20,10$	M1
	Frequency density $=$ frequency/their class width: $1.8,4.8,2,1,0.8$	M1
	All heights correct on diagram (using a linear scale)	A1
	Correct bar ends	B1
	Bar ends: $10.5,15.5,30.5,50.5,60.5$	B1
		5
7(b)	11-15 and 31-50	B1
	Greatest $\mathrm{IQR}=50-11=39$	B1
		2
7(c)	$\text { Mean }=\frac{18 \times 5.5+24 \times 13+30 \times 23+20 \times 40.5+8 \times 55.5}{100}=\frac{2355}{100}=23.6$	B1
	$\operatorname{Var}=\frac{18 \times 5.5^{2}+24 \times 13^{2}+30 \times 23^{2}+20 \times 40.5^{2}+8 \times 55.5^{2}}{100}-\text { mean }^{2}$	M1
	$\frac{77917.5}{100}-\text { mean }^{2}=224.57$	A1
	Standard deviation $=15.0$ (FT their variance)	A1 FT
		4

Cambridge International AS \& A Level

MATHEMATICS
9709/52
Paper 5 Probability \& Statistics 1
May/June 2020
MARK SCHEME

Maximum Mark: 50

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks
1	$\sum x-50 n=144$	B1
	$50 n+144=944$	M1
	$n=16$	A1
		3

Question		Answer	Marks
2(a)	$\frac{56}{500} \text { or } \frac{14}{125} \text { or } 0.112$		B1
			1
2(b)	$\mathrm{P}(\mathrm{D} \mid \mathrm{S})=\frac{\mathrm{P}(\mathrm{D} \cap \mathrm{~S})}{\mathrm{P}(\mathrm{~S})}=\frac{120}{280}$		M1
	$\frac{120}{280} \text { or } \frac{3}{7}$		A1
			2

Question	Answer	Marks
2(c)	$\begin{aligned} & \mathrm{P}(\text { hockey })=\frac{220}{500}=0.44 \\ & \mathrm{P}(\text { Amos or Benn })=\frac{242}{500}=0.484 \\ & \mathrm{P}(\text { hockey } \cap \mathrm{A} \text { or } \mathrm{B})=\frac{104}{500}=0.208 \\ & \mathrm{P}(\mathrm{H}) \times \mathrm{P}(\mathrm{~A} \mathrm{U} \mathrm{~B})=\mathrm{P}(\mathrm{H} \cap(\mathrm{~A} \mathrm{U} \mathrm{~B})) \text { if independent } \end{aligned}$	M1
	$\frac{220}{500} \times \frac{242}{500}=\frac{1331}{6250}$ so not independent	A1
		2

Question	Answer	Marks
$3(\mathrm{a})$	Median $=0.238$	B1
	$\mathrm{UQ}=0.245, \mathrm{LQ}=0.231$, $\mathrm{So} \mathrm{IQR}=0.245-0.231$	M1
	0.014	A1
		$\mathbf{3}$

Question	Answer	Marks
4(a)	$\mathrm{P}(X<25)=\mathrm{P}\left(z<\frac{25-40}{12}\right)=\mathrm{P}(z<-1.25) \mathrm{P}(X<25)=\mathrm{P}(z<)$	M1
	1-0.8944	M1
	0.106	A1
		3
4(b)	0.8944 divided by 3 (M1 for 1 - their (a) divided by 3)	M1
	0.298 AG	A1
		2
4(c)	0.2981 gives $z=0.53$	B1
	$\frac{h-40}{12}=0.53$	M1
	$h=46.4$	A1
		3

Question	Answer	Marks
$5(\mathrm{c})$	$\mathrm{E}(X)=\frac{2+12+21}{15}=\frac{35}{15}=\frac{7}{3}$	B1
	$\operatorname{Var}(X)=\frac{1^{2} \times 2+2^{2} \times 6+3^{2} \times 7}{15}-\left(\frac{7}{3}\right)^{2}$	M1
	$\frac{22}{45}(0.489)$	A1
		$\mathbf{3}$

Question		Answer	Marks
6(a)	$\frac{8!}{3!}$		M1
	6720		A1
			2

Question	Answer	Marks
6(b)	$\text { Total number }=\frac{10!}{2!3!}(302400) \quad(\mathrm{A})$	B1
	With Es together $=\frac{9!}{3!}(60480)$	B1
	Es not together $=$ their $(\mathrm{A})-$ their (B)	M1
	241920	A1
	Alternative method for question 6(b)	
	$-\hat{8}_{\frac{8}{3!}}^{3!} \times \frac{\wedge^{\wedge}}{2}-\hat{8}^{\wedge}-{ }^{\wedge}-{ }^{\wedge}-{ }^{\wedge}-{ }^{\wedge}-{ }^{\wedge}-$	
	$8!\times k$ in numerator, k integer ≥ 1, denominator ≥ 1	B1
	$3!\times m$ in denominator, m integer ≥ 1	B1
	Their $\frac{8!}{3!}$ Multiplied by ${ }^{9} \mathrm{C}_{2}$ (OE) only (no additional terms)	M1
	241920	A1
		4

Question	Answer	Marks
6(c)	Scenarios: $\begin{array}{ll} \text { EMM M } & { }^{5} \mathrm{C}_{0}=1 \\ \text { EMM }_{-} & { }^{5} \mathrm{C}_{1}=5 \\ \text { EM M }_{--} & { }^{5} \mathrm{C}_{2}=10 \end{array}$	M1
	Summing the number of ways for 2 or 3 correct scenarios	M1
	Total $=16$	A1
		3

Question	Answer	Marks
7(a)	$\begin{aligned} & 1-\mathrm{P}(10,11,12) \\ & \left.=1-{ }^{12} \mathrm{C}_{10} 0.72^{10} 0.28^{2}+{ }^{12} \mathrm{C}_{11} 0.722^{11} 0.28^{1}+0.72^{12}\right] \end{aligned}$	M1
	$1-(0.19372+0.09057+0.01941)$	A1
	0.696	A1
		3
7(b)	$0.28^{3} \times 0.72=0.0158$	B1
		1

Question	Answer	Marks
7(c)	$\begin{aligned} & \text { Mean }=100 \times 0.72=72 \\ & \text { Var }=100 \times 0.72 \times 0.28=20.16 \end{aligned}$	M1
	$\mathrm{P}(\text { less than } 64)=\mathrm{P}\left(z<\frac{63.5-72}{\sqrt{20.16}}\right)$ (M1 for substituting their μ and σ into \pm standardisation formula with a numerical value for ' 63.5 ')	M1
	Using either 63.5 or 64.5 within a \pm standardisation formula	M1
	Appropriate area Φ, from standardisation formula $\mathrm{P}(z<\ldots)$ in final solution $=\mathrm{P}(z<-1.893)$	M1
	0.0292	A1
		5

Cambridge International AS \& A Level

MATHEMATICS9709/53
Paper 5 Probability \& Statistics 1

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working

AWRT Answer Which Rounds To

Question	Answer	Marks
1(a)	Fully correct labelled tree for method of transport with correct probabilities.	B1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the probability 0 .	B1
		2
1(b)	$\mathrm{P}(\mathrm{C} \mid \mathrm{E})=\frac{\mathrm{P}(\mathrm{C} \cap \mathrm{E})}{\mathrm{P}(\mathrm{E})}=\frac{0.2 \times 0.6}{0.2 \times 0.6+0.45 \times 0.1+0.35 \times 1}$	M1
	Summing three appropriate 2-factor probabilities	M1
	$\frac{0.12}{0.515}$	A1
	$0.233 \text { or } \frac{12}{515}$	A1
		4

Question	Answer	Marks
2(a)	$0.22^{3}=0.0106$	B1
		1
2(b)	$\mathrm{P}(2,3,4)={ }^{16} \mathrm{C}_{2} 0.22{ }^{2} 0.78{ }^{14}+{ }^{16} C_{3} 0.22{ }^{3} 0.78{ }^{13}+{ }^{16} C_{4} 0.22^{4} 0.78{ }^{12}$	M1
	$0.179205+0.235877+0.216221$	A1
	0.631	A1
		3

Question	Answer	Marks
3(a)	$\mathrm{P}(\mathrm{X}<21)=\mathrm{P}\left(z<\frac{21-15.8}{4.2}\right)=\Phi(1.238)$	M1
	0.892	A1
		2
3(b)	$z= \pm 0.674$	B1
	$\frac{k-15.8}{4.2}=0.674$	M1
	18.6	A1
		3

Question	Answer	Marks
5(a)	$\frac{1}{\frac{1}{4}}=4$	B1
		1
5(b)	$\frac{9}{64}(=0.141)$	B1
		1
5(c)	$\mathrm{P}(\mathrm{X}<6)=1-\left(\frac{3}{4}\right)^{5}$ (FT their probability/mean from part (a))	M1
	0.763	A1
		2
5(d)	$\begin{aligned} & \text { Mean }=80 \times 0.25=20 \\ & \operatorname{Var}=80 \times 0.25 \times 0.75=15 \end{aligned}$	M1
	$\mathrm{P}(\text { more than } 25)=\mathrm{P}\left(z>\frac{25.5-20}{\sqrt{15}}\right)$	M1
	$\mathrm{P}(z>1.42)$	M1
	1-0.9222	M1
	0.0778	A1
		5

Question	Answer	Marks
$6(\mathrm{c})$	Sum of given 11 numbers is 433000	
	Sum of 12 numbers, including new $=38500 \times 12=462000$	M1
	Difference $=$ new salary $=[\$] 29000$	M1
		A1

Question	Answer	Marks
7(a)	$\frac{9!}{2!2!}=90720$	B1
		1
7(b)	$\frac{6!}{2!}$	M1
	360	A1
		2

Question	Answer	Marks
7(c)	$2 \text { Es together }=\frac{8!}{2!}(=20160)$	M1
	Es not together $=90720-20160=70560$	M1
	$\text { Probability }=\frac{70560}{90720}$	M1
	$\frac{7}{9} \text { or } 0.778$	A1
	Alternative method for question 7(c)	
	$\begin{aligned} & -\wedge_{-} \wedge_{-} \wedge_{-} \wedge_{-}{ }^{\wedge}-{ }^{\wedge}-{ }_{-}- \\ & \frac{7!}{2!} \times \frac{8 \times 7}{2}=70560 \end{aligned}$	
	$7!\times k$ in numerator, k integer $\geqslant 1$, denominator $\geqslant 1$	M1
	Multiplying by ${ }^{8} \mathrm{C}_{2} \mathrm{OE}$	M1
	$\text { Probability }=\frac{70560}{90720}$	M1
	$\frac{7}{9} \text { or } 0.778$	A1
		4

Question	Answer	Marks
7(d)	Scenarios are:	M1
	$\text { E L _ } \quad{ }^{5} \mathrm{C}_{3} \quad 10$	
	$\text { EEL-- } \quad{ }^{5} \mathrm{C}_{2} \quad 10$	
	$\begin{array}{lll} \mathrm{E}_{-}-{ }^{5} \mathrm{C}_{4} & 5 \end{array}$	
	$\mathrm{E} \overline{\mathrm{E}}_{---}^{---}{ }^{5} \mathrm{C}_{3} \quad 10$	
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total $=35$	A1
		3

Cambridge International A Level

MATHEMATICS	$\mathbf{9 7 0 9 / 6 2}$
Paper 6 Probability and Statistics	March $\mathbf{2 0 2 0}$
MARK SCHEME	

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mathematics-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working

SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1	$(\lambda=) \frac{5}{12}=0.417$ or better	$\mathbf{B 1}$	
	$1-\mathrm{e}^{-\frac{5}{12}}\left(1+\frac{5}{12}\right)$	$\mathbf{M 1}$	$1-\mathrm{P}(X=0$ or 1), by Poisson, using any λ, allow $1-\mathrm{P}(X=0$ or 1 or 2) for M1
	$=0.0661$ or $0.0662(3 \mathrm{sf})$	$\mathbf{A 1}$	Final answer SC use of Binomial (from $0.06607 \ldots) \mathrm{B} 1$ only
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	$2 \times z \times \frac{3.2}{10}=1.25$	M1	OE Allow without ' $2 \times$ '
	$z=1.953$	A1	SOI
	$\phi('$ their $1.953 ')(=0.9746)$	M1	
	$\begin{aligned} & =1-2(1-‘ 0.9746 ’) \\ & =0.9492 \end{aligned}$	M1	OE
	$\alpha=94.9$ or 95	A1	CWO
		5	

Question	Answer	Marks	Guidance
3(a)	$\text { est }(\mu)=37.6 \text { or } \frac{1504}{40} \text { or } \frac{188}{5}$	B1	
	$\operatorname{est}\left(\sigma^{2}\right)=\frac{40}{39}\left[\frac{57760}{40}-37.6^{2}\right]=31.0154=\frac{2016}{65}$	M1	Correct substitution in any correct formula $\frac{1}{39}\left[57760-\frac{1502^{2}}{40}\right]$
	$=31 .(0)(3 \mathrm{sf})$	A1	Accept $\frac{2016}{65}$ or $31 \frac{1}{65}$
		3	
3(b)	H_{0} : Pop mean $($ or $\mu)=39.2$ H_{1} : Pop mean $($ or $\mu)<39.2$	B1	Both. Not just 'mean'
	$\frac{37.6^{\prime}-39.2}{\frac{\sqrt{31.0154^{\prime}}}{\sqrt{40}}}$	M1	Allow use of biased variance (30.2), must have $\sqrt{ } 40$
	$=-1.817$	A1	SC FT use of biased $=-1.840$ for A1
	${ }^{\prime} 1.817{ }^{\prime}>1.645 \mathrm{OE}$	M1	Valid comparison 'their 1.817 ' with 1.645 or valid area comparison $0.0346<0.05 \mathrm{OE}$
	There is evidence that mean time has decreased	A1FT	FT their 1.817; in context, not definite, no contradictions SC For 2 tail test: $\mathrm{H}_{1}: \mu \neq 39.2$ and comp 1.96, max B0M1A1M1A0 (no FT for final mark)
		5	

Question	Answer	Marks	Guidance
4(a)	$\lambda(=0.4 \times 365 \div 50)=2.92$	B1	
	$\mathrm{e}^{-2.92}\left(1+2.92+\frac{2.92^{2}}{2}\right)$	M1	Any λ. Allow one end error
	$=0.441(3 \mathrm{sf})$	A1	
		3	
4(b)	$\mathrm{e}^{-\lambda}>0.95$	M1	Allow ' $=$ ' throughout
	$-\lambda>\ln 0.95$ or $\lambda<0.051293$ OE	M1	Attempt \ln both sides
	${ }^{\prime} 0.051293 ' \times 50 \div 0.4(=6.411)$	M1	
	Largest n is $6(3 \mathrm{sf})$ Allow $n=6$ or $n \leqslant 6$ (NOT $n<6$ or $n \geqslant 6$ as final answer)	A1	SC Trial and Improvement M1 for $\mathrm{e}^{-\lambda}>0.95$ SOI; M1 for $\lambda=n \times \frac{0.4}{50}$; M1 for use of both $n=6$ giving 0.9531 and $n=7$ giving 0.9455 ; A1 $n=6$
		4	

Question	Answer	Marks	Guidance
5(a)	$\begin{aligned} & \frac{3}{4000} \int_{5}^{10}\left(100-x^{2}\right) \mathrm{d} x \\ & =\frac{3}{4000}\left[100 x-\frac{x^{3}}{3}\right]_{5}^{10} \end{aligned}$	M1	Attempt integration of $\mathrm{f}(x)$, ignore limits. Condone omission of $\frac{3}{4000}$
	$=\frac{3}{4000}\left(1000-\frac{1000}{3}-500+\frac{125}{3}\right)$	M1	Correct limits 5 and 10. OE SOI
	$=0.156(3 \mathrm{sf}) \text { or } \frac{5}{32}$	A1	For fully correct working seen including substitution of limits
		3	
5(b)	$\frac{3}{4000} \int_{p}^{10}\left(100-x^{2}\right) \mathrm{d} x=\frac{1}{4}$	M1	Attempt integration of $\mathrm{f}(x)$ with any limits and $=\frac{1}{4}$ or $=\frac{3}{4}$ seen. Condone omission of $\frac{3}{4000}$
	$\frac{3}{4000}\left[100 x-\frac{x^{3}}{3}\right]_{p}^{10}=\frac{1}{4}$	A1	Correct integration with correct limits seen (or implied for limits p and 10) and $=\frac{1}{4} \mathrm{OE}$ Condone omission of $\frac{3}{4000}$
	$\frac{3}{4000}\left(1000-\frac{1000}{3}-100 p+\frac{p^{3}}{3}\right)=\frac{1}{4}$	M1	Attempt substitution correct limits in their integration of $\mathrm{f}(x)$. Accept limits 0 to p if clearly seen, accept limits -10 and p. Substitution must be seen.
	$\begin{aligned} & \text { e.g. } \frac{2000}{3}-100 p+\frac{p^{3}}{3}=\frac{1000}{3} \\ & p^{3}-300 p+1000=0 \end{aligned}$	A1	AG No errors seen
		4	

PUBLISHED

Question	Answer	Marks	Guidance
$5(\mathrm{c})$	Curve is symmetrical about $x=0$	B1	May be implied by sketch. No contradictions or integrate $\mathrm{f}(x)$ between $-q$ and $+q$ and equate to 0.5 leading to $q^{3}-300 q+1000=0 \quad$ oe
	$q=3.47$	$\mathbf{B 1}$	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
$6(\mathrm{a})$	$\mathrm{N}(310,50)$	$\mathbf{B 1}$	SOI
	$\frac{300-{ }^{\prime} 310^{\prime}}{\sqrt{\prime 50^{\prime}}}(=-1.414)$	$\mathbf{M 1}$	Standardise using their values
	$\Phi\left({ }^{\prime}-1.414^{\prime}\right)=1-\phi\left({ }^{\prime} 1.414{ }^{\prime}\right)$	$\mathbf{M 1}$	Area consistent with their values
	$=0.0786$ or $0.0787(3 \mathrm{sf})$	$\mathbf{A 1}$	As final answer
		$\mathbf{4}$	

PUBLISHED

Question	Answer	Marks	Guidance
6(b)	$\mathrm{P}(L-2 S>0)$	M1	OE SOI
	$\mathrm{E}(X)=200-2 \times 110$ or $=-20$	B1	OE seen
	Var $=30+2^{2} \times 20$ or $=110$	B1	Seen
	$\begin{aligned} & \mathrm{N}(-20,110) \\ & \frac{0-\left(\left(^{\prime}-20^{\prime}\right)\right.}{\sqrt{110^{\prime}}}(=1.907) \end{aligned}$	M1	Standardising with their values. Mean and variance must come from a combination attempt.
	$1-\Phi\left({ }^{\prime} 1.907 \times\right.$)	M1	Correct area consistent with their working
	$=0.0283(3 \mathrm{sf})$	A1	Final answer
		6	

Question	Answer	Marks	Guidance
$7(\mathrm{a})$	$\mathrm{P}(X \leqslant n)(n \leqslant 20)$ attempted, using B(20, 0.95)	M1	OE
	$\mathrm{P}(X \leqslant 17)$ or $\mathrm{P}(X \leqslant 16)$ attempted, using B(20, 0.95$)$	$\mathbf{M 1}$	OE
	$(\mathrm{P}(X \leqslant 17))=0.0755$ and $(\mathrm{P}(X \leqslant 16))=0.0159$	$\mathbf{A 1}$	$\mathrm{OE}(0.925$ and 0.984$)$ both correct
	Rej region is $X \leqslant 16$ or $\mathrm{X}<17$	$\mathbf{A 1}$	Dependent on M1M1 and previous answers correct to at least $0.075 / 0.076$ and 0.016 or $0.92 / 0.93$ and 0.98 Correct unsupported answers of 0.0755 and 0.0159 OE scores M1 M1 A0
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
7(b)	0.0159	B1	FT their rejection region, from Binomial in a, if $\mathrm{P}(X$ in rejection region $)<0.025$
		1	
7(c)	Use of B(20, 0.7)	M1	
	$\mathrm{P}(X>16 \mid p=0.7)$	M1	Correct method using $\mathrm{B}(20,0.7)$
	$=0.107$	A1	
		3	

Cambridge
International
A Level

Cambridge Assessment International Education

Cambridge International Advanced Level

MATHEMATICS
9709/72
Paper 7
October/November 2019
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

PUBLISHED

Question	Answer	Marks	Guidance
1(i)	Binomial	B1	
	$n=500 \text { and } p=\frac{1}{150} \text { or } 0.00667$	B1	Or $\mathrm{B}\left(500, \frac{1}{150}\right)$ for B1B1
		2	
1(ii)	Poisson	B1	
	n large and mean $=\frac{10}{3}$ or 3.3 or better, which is <5	B1	Accept $n>50$
		2	
1(iii)	$1-e^{-\frac{10}{3}} \times\left(1+\frac{10}{3}+\frac{\left(\frac{10}{3}\right)^{2}}{2}\right)$	M1	$1-\mathrm{P}(X=0,1,2)$
	$=1-0.353$	A1	Correct expression with $\lambda=3.3$ or better
	$=0.647(3 \mathrm{sf})$	A1	SC Use of Binomial scores B1 for 0.648 . Use of Normal scores B1 for $0.67(0)$ to 0.677
		3	

Question	Answer	Marks	Guidance
2(i)(a)	Assume standard deviation for the region is 7.1	B1	Or standard deviation is same as for whole population OE
	$\frac{63.2-65.2}{\frac{7.1}{\sqrt{n}}}=-2.182$	M1	Attempt to find correct equation (accept +2.182)
	$n=\{-2.182 \times 7.1 \div(-2)\}^{2}$	A1	Any correct expression for n or \sqrt{n}. SOI
	$n=60$	A1	CWO. Must be an integer
		4	
2(i)(b)	H_{0} : population mean $($ or $\mu)=65.2$ H_{1} : population mean $($ or $\mu)<65.2$	B1	Not just 'mean'
	$2.182>1.751$	M1	Or valid area comparison.
	There is evidence that animals are shorter in this region	A1	CWO. No contradictions
		3	
2(ii)	Population unknown or population not given as normal	B1	Allow population not normal. Accept distribution of X unknown.
		1	

Question	Answer	Marks	Guidance
3(i)	$\operatorname{est}(\mu)=\frac{25110}{50} \quad(=502.2)$	B1	
	est $\left(\sigma^{2}\right)=\frac{50}{49}\left(\frac{12610300}{50}-\frac{25110}{50}\right)^{2}\left(=\frac{50}{49} \times \frac{58}{50}=1.1836\right)$	M1	OE
	$1.18(3 \mathrm{sf}) \text { or } \frac{58}{49}$	A1	Accept SD $=1.0879$
	$z=2.054$ or 2.055	B1	
	$502.2 \pm z \times \frac{\sqrt{1.1836^{\prime}}}{\sqrt{50}}$	M1	Must be of correct form.
	501.9 to 502.5 (1dp)	A1	CWO. Must be in interval. SC accept use of biased variance (1.16) for M1 A1
		6	
3(ii)	More confident or z would be greater, Hence wider.	B1	OE Reason needed
		1	

Question	Answer	Marks	Guidance
4(i)	$\begin{aligned} & \frac{1}{2} \times a \times \frac{a}{2}=1 \text { or } \frac{1}{2} \int_{0}^{a} x \mathrm{~d} x=1 \\ & \frac{a^{2}}{4}=1 \mathrm{OE} \end{aligned}$	M1	Attempt at triangle area or integral $\mathrm{f}(x)$ and $=1$,
	$a=2$	A1	
		2	
4(ii)	$\frac{1}{2} \int_{0}^{2} x^{2} \mathrm{~d} x$	M1	Attempt integral $x \mathrm{f}(x)$
	$=\left[\frac{x^{3}}{6}\right]_{0}^{2}$	M1	Correct integral and limits 0 to their ' a '
	$\left(=\frac{8}{6}\right)=\frac{4}{3}$	A1	$\begin{aligned} & \text { AG } \\ & \text { CWO } \end{aligned}$
		3	

Question	Answer	Marks	Guidance
4(iii)	$P\left(X<\frac{4}{3}\right)=\frac{1}{2} \int_{0}^{\frac{4}{3}} x \mathrm{~d} x$	M1	Attempt integral $\mathrm{f}(x)$ between correct limits
	$=\frac{4}{9}$	A1	or $\frac{5}{9}$
	$P(E(X)<X<m)=\frac{1}{2}-\frac{4}{4}^{\prime}$	M1	or $\frac{5}{9}-\frac{1}{2}$
	$\frac{1}{18}$	A1	
	Alternative method for question 4(iii)		
	Attempt to find m	M1	
	$m=\sqrt{2}$	A1	
	Integrate $\mathrm{f}(x)$ between $\frac{4}{3}$ and ' $\sqrt{2}$ '	M1	
	$\frac{1}{18}$	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	mean $=3250$ var. $=61$	B1	$\text { Or mean }=325 \text { var. }=\frac{6.1}{10}$
	$\frac{3240-3250}{\sqrt{61}}(=-1.280)$	M1	Standardise with their values (no mixed methods)
	$\phi\left('-1.280{ }^{\prime}\right)=1-\phi(' 1.280)$	M1	Area consistent with their figures
	0.100	A1	Allow 0.1
		4	
5(ii)	$\mathrm{E}(\mathrm{D})=325-2 \times 167=-9$	B1	Accept ± 9
	$\operatorname{Var}(\mathrm{D})=6.1+2^{2} \times 5.6(=28.5)$	B1	
	$\frac{0-(-9)}{\sqrt{28.5}}(=1.686)$	M1	Standardising with their values. Must have a combination attempt on denominator and
	$1-\phi\left(1.686{ }^{\prime}\right)$	M1	Area consistent with their figures
	0.0459	A1	
		5	

Question	Answer	Marks	Guidance
6(i)	H_{0} : Pop mean (or λ or μ) is 1.1 H_{1} : Pop mean (or λ or μ) is more than 1.1	B1	
	$\mathrm{P}(X \geqslant 4)=1-\mathrm{e}^{-1.1}\left(1+1.1+\frac{1.1^{2}}{2}+\frac{1.1^{3}}{3!}\right)$	M1	Correct expression for either $\mathrm{P}(X \geqslant 4)$ or $\mathrm{P}(X \geqslant 5)$
	0.0257	A1	Correct value of either $\mathrm{P}(X \geqslant 4)$ or $\mathrm{P}(X \geqslant 5)$
	$\mathrm{P}(X \geqslant 5)=0.0257-\mathrm{e}^{-1.1} \times \frac{1.1^{4}}{4!}=0.00544$	B1	B1 for the other value (Note use of $\mathrm{P}(X<4)=0.9743$ and $\mathrm{P}(X<5)=0.99456$ can score only if comparison with 0.99 seen)
	$0.00544<0.01<0.0257$	M1	OE stated (valid comparison)
	There is evidence mean has increased	B1	SC P $(X \geqslant 6)=0.000968$ M1A1 Conclusion
		6	
6(ii)	Concluding mean has increased when it has not	B1	In context
	'0.00544'	B1FT	FT their $\mathrm{P}(X \geqslant 5)$, dep <0.01
		2	
6(iii)	$\mathrm{e}^{-7.0}\left(1+7+\frac{7^{2}}{2}+\frac{7^{3}}{3!}+\frac{7^{4}}{4!}\right)$	M1	Correct expression for $\mathrm{P}(X \leqslant 4 \mid \lambda=7.0)$
	0.173 (3 sf)	A1	
		2	

Cambridge Assessment International Education

Cambridge International Advanced Level

MATHEMATICS

9709/73
Paper 7
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {M }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

[^0]
PUBLISHED

Mark Scheme Notes

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.
DM or DB When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly, when there are several B marks allocated. The notation DM or DB is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

FT Implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only.

Abbreviations

AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only
ISW Ignore Subsequent Working
SOI Seen Or Implied
SC Special Case (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

WWW Without Wrong Working
AWRT Answer Which Rounds To

Question	Answer	Marks	Guidance
1 (i)	$9.6,12.4$	B1 B1	
		$\mathbf{2}$	
	$6.6,49.6$	B1 B1	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
2(i)	$\begin{aligned} & (\lambda(=2 \times 2.4)=4.8) \\ & \mathrm{e}^{-4.8}\left(1+4+\frac{4.8^{2}}{2}+\frac{4.8^{3}}{3!}\right) \end{aligned}$	M1	Any λ
	0.294 (3 sf)	A1	
		2	
2(ii)	$\begin{aligned} & (\lambda(=60 \times 2.4)=144) \\ & \mathrm{N}\left({ }^{\prime} 1444^{\prime},{ }^{\prime} 1444^{\prime}\right) \end{aligned}$	M1	N and $\sigma^{2}=\mu \mathrm{SOI}$
	$\frac{139.5--^{\prime} 144^{\prime}}{\sqrt{1144^{\prime}}}(=-0.375)$	M1	Allow with no continuity correction
	$\phi\left({ }^{\prime} 0.375\right.$ ')	M1	Correct area consistent with their working
	0.646 (3 sf)	A1	
		4	

Question	Answer	Marks	Guidance
3(i)	Assume population is normally distributed	B1	
	$\bar{x}=25.9$	B1	$\text { Allow } \frac{259}{10}$
	$z=2.17$	B1	
	$' 25.9^{\prime} \pm z \times \frac{3}{\sqrt{10}}$	M1	Must have correct form and z.
	23.8 to 28.0 (3 sf)	A1	CWO
		5	
3(ii)	$0.03^{2} \quad(=0.0009)$	B1	
		1	

Question	Answer	Marks	Guidance
4	Assume trains are independent OR probability of being on time is constant	B1	Must be in context
	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(\text { on time })=0.92 \\ & \mathrm{H}_{1}: \mathrm{P}(\text { on time })<0.92 \end{aligned}$	B1	Both. Allow ' p ' or π
	1- $\left({ }^{20} \mathrm{C}_{17} \times 0.92^{17} \times 0.08^{3}+{ }^{20} \mathrm{C}_{18} \times 0.92^{18} \times 0.08^{2}+20 \times 0.92^{19} \times 0.08+0.92^{20}\right)$	M1	Allow one end error Must have 1 -...
	$=0.0706(3 \mathrm{sf})$	A1	
	Compare with 0.05	M1	Valid comparison needed
	No evidence that percentage less than 92%	A1FT	OE No contradictions. Method using normal approximation: If the first B1B1 is earned then: $\mathrm{CV}-1.566\left(\text { from } \frac{16.5-20 \times 0.92}{\sqrt{20 \times 0.92 \times 0.08}}, \text { with continuity correction }\right)$ or $\mathrm{CV}=1.978$ (without continuity correction) comp $z=1.645$ No evidence that \% decreased (1.566) or evidence that \% decreased (1.978) is awarded SC2 after B marks
		6	

Question	Answer	Marks	Guidance
5(i)	$\mathrm{Po}(3)$	B1	SOI
	$\mathrm{e}^{-3}\left(\frac{3^{3}}{3!}+\frac{3^{4}}{4!}+\frac{3^{5}}{5!}\right)$	M1	Allow one or two extra terms (2 or 6 or both)
	0.493 (3 sf)	A1	
		3	
5(ii)	A correct equation from $\mathrm{P}(0)=\mathrm{P}(2)$ $\left(\right.$ leading to $\left.1=\frac{\lambda^{2}}{2}\right)$	M1	
	$\lambda=\sqrt{2}$ or $1.41(3 \mathrm{sf})$	A1	CWO
		2	

Question	Answer	Marks	Guidance
$5($ iii)(a)	Correct inequality $\left(\right.$ leading to $\left.\frac{5.2^{n}}{n!}<\frac{5.2^{n+1}}{(n+1)!}\right)$	$\mathbf{B 1}$	
		$\mathbf{1}$	
	$n+1<5.2$ or $1<\frac{5.2}{n+1}$	M1	Simplify to a stage without exponentials, powers or factorials.
	Largest n is 4	$\mathbf{A 1}$	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
$6(\mathrm{i})$	$k \int_{0}^{3}\left(3 x-x^{2}\right) \mathrm{d} x=1$	M1	Attempt to integrate $\mathrm{f}(x)$ and $=1$
	$k\left[\frac{3}{2} x^{2}-\frac{x^{3}}{3}\right] 3$ $k\left(\frac{27}{2}-\frac{27}{3}\right)=1$ $k=\frac{2}{9}$	A1	Correct integral and limits
		A1	AG No errors seen
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6(ii)	$\frac{2}{9} \int_{1}^{2}\left(3 x-x^{2}\right) \mathrm{d} x=\frac{2}{9}\left[\frac{3}{2} x^{2}-\frac{x^{3}}{3}\right]_{1}^{2}=\frac{2}{9} \times\left(6-\frac{8}{3}-\frac{3}{2}+\frac{1}{3}\right)$	M1	Attempt to integrate $\mathrm{f}(x) \mathrm{d} x$ with limits 1 and 2 OE
	$\frac{13}{27} \text { or } 0.481(3 \mathrm{sf})$	A1	
		2	
6(iii)	$y=3 x-x^{2}$ symmetrical about $x=\frac{3}{2}$	M1	Attempt $\frac{2}{9} \int_{0}^{3}\left(3 x^{2}-x^{3}\right) \mathrm{d} x$
	$\mathrm{E}(X)=\frac{3}{2}$	A1	
	$\frac{2}{9} \int_{0}^{3}\left(3 x^{3}-x^{4}\right) d x$	M1	Attempt to integrate $x^{2} \mathrm{f}(x)$
	$\begin{aligned} & =\frac{2}{9}\left[\frac{3 x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{3}\left(=\frac{2}{9} \times \frac{243}{20}=\frac{27}{10}\right) \\ & \frac{\prime 27^{\prime}}{10}-\left(\frac{3^{\prime}}{2}\right)^{2} \end{aligned}$	M1	Subtract their $(\mathrm{E}(X))^{2}$ from their integral $x^{2} \mathrm{f}(x)$ with correct limits substituted
	$\frac{9}{20}$ or 0.45	A1	
		5	

Question	Answer	Marks	Guidance
7(i)	$\mathrm{H}_{0}:$ Pop mean $=546$ $\mathrm{H}_{1}:$ Pop mean >546	B1	Both. Allow just μ, but not just 'mean'
	$\frac{581-546}{\frac{120}{\sqrt{40}}}$	M1	Standardising. Need $\frac{120}{\sqrt{40}}$
	=1.845 allow 1.844	A1	Allow 1.84 or 1.85 AWRT
	$1.845<1.96$	M1	OE. Or area comparison $0.0325>0.025$ or large probabilities
	No evidence that mean weekly income has increased	A1FT	No contradictions. If $H_{1}: \neq$, and 2.241 used, max B0M1A1M1A0
		5	
7(ii)	$\frac{a-546}{\frac{120}{\sqrt{40}}}=1.96$	M1	Standardise to find a. Need $\frac{120}{\sqrt{40}}$ and 546 and a value of z
	$a=583.19$	A1	Allow 583 to 3sf
	$\frac{583.19 '-595}{\frac{120}{\sqrt{40}}}(=-0.622)$	M1	Standardise. Need $\frac{120}{\sqrt{40}}$ and 595
	$\phi\left({ }^{\prime}-0.622^{\prime}\right)=1-\phi\left({ }^{\prime} 0.622{ }^{\prime}\right)$	M1	Consistent area
	0.267	A1	
		5	

Cambridge
International
A Level

Cambridge Assessment International Education

Cambridge International Advanced Level

MATHEMATICS
9709/71
Paper 7
May/June 2019
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions)

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2 .

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR-1 A penalty of MR - 1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	Mean $=115$	B1	
	$\mathrm{SD}=40$	B1	
		2	
1(ii)	Mean $=15 \times ' 115$ ' $=1725$	B1ft	
	$15 \times{ }^{\text {' } 40}{ }^{2} 2$	M1	or SD $=\sqrt{ } 15 \times$ '40'. ft their (i)
	$\begin{aligned} & \mathrm{SD}=\sqrt{ } 24000 \\ & \mathrm{SD}=155(\text { cents })(3 \mathrm{sf}) \end{aligned}$	A1	Accept $\sqrt{ } 24000$ SC: Allow correct answers in dollars
		3	

Question	Answer	Marks	Guidance
2(i)	Assume sd still 4.8 or is unchanged	B1	or Assume the 150 times can be treated as a random sample / are independent
	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }=26.5 \\ & \mathrm{H}_{1}: \text { Pop mean }>26.5 \end{aligned}$	B1	Allow ' μ ' but not just 'mean'
	$\frac{27.5-26.5}{\frac{4.8}{\sqrt{150}}}$	M1	Standardise, with $\sqrt{ }$ Accept CV method
	$=2.552$	A1	
	Comp with z-value '2.552’>2.326	M1	$\begin{aligned} & \text { or comp } 1-\Phi\left({ }^{\prime} 2.552 ’\right) \text { with } 0.01 \\ & 1-0.9946=0.0054<0.01 \end{aligned}$
	There is evidence time has increased	A1ft	oe No contradictions (2 tail test scores max. B1 B0 M1 A1 M1 (for comparison with 2.576) A0 no ft)
		6	

Question	Answer	Marks	Guidance
$2($ ii)	No because pop is normal so distr of \bar{X} is normal	$\mathbf{B 1}$	Condone just 'No because pop is normal'
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
3(i)	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(6)=\frac{1}{6} \\ & \mathrm{H}_{1}: \mathrm{P}(6)<\frac{1}{6} \end{aligned}$	B1	
	$\left(\frac{5}{6}\right)^{30}+30\left(\frac{1}{6}\right) \times\left(\frac{5}{6}\right)^{29}+{ }^{30} \mathrm{C}_{2}\left(\frac{1}{6}\right)^{2} \times\left(\frac{5}{6}\right)^{28}$	M1	Allow one term incorrect, omitted or extra
	$=0.103$	A1	
	${ }^{\prime} 0.103 '>0.05$	M1	
	No evidence (at 5\% level) that die biased	A1ft	oe No contradictions
		5	
3(ii)	$\left(\frac{5}{6}\right)^{30}+30\left(\frac{1}{6}\right) \times\left(\frac{5}{6}\right)^{29}$	M1	
	$\mathrm{P}($ Type I$)=0.0295$	A1	
		2	

Question	Answer	Marks	Guidance
4(a)(i)	$0.5 \times 1 / \mathrm{a}=\left(\frac{0.5}{a}\right)$	M1	Or attempt to integrate $\mathrm{f}(x)(=1 / \mathrm{a})$ between 0 and 0.5
	$=\frac{1}{2 a} \mathrm{oe}$	A1	Accept 0.5/a for A1
		2	
4(a)(ii)	$\frac{a}{2}$	B1	
		1	
4(a)(iii)	$\int_{0}^{a} \frac{x^{2}}{a} \mathrm{~d} x-\left({ }^{(} \frac{a}{2}\right)^{2}$	M1	Integ their $x^{2 \mathrm{f}}(x)$ from 0 to a and sub their mean ${ }^{2}$
	$\begin{aligned} & \operatorname{Var}(X)=\frac{a^{2}}{3}-\frac{a^{2}}{4} \\ & \left(\operatorname{Var}(X)=\frac{a^{2}}{12} \quad \mathbf{A G}\right) \end{aligned}$	A1	Must see this line oe
		2	
4(b)	$\int_{2}^{b} \frac{3}{2(t-1)^{2}} \mathrm{dt}$	M1	Attempt integ $\mathrm{g}(t)$ ignore limits
	$\left[-\frac{3}{2(t-1)}\right]_{2}^{b}$	A1	Correct integral
	$\begin{aligned} & -\frac{3}{2}\left(\frac{1}{(b-1)}-1\right)=\frac{3}{4} \\ & \left(1-\frac{1}{(b-1)}=\frac{1}{2}\right) \end{aligned}$	M1	Attempt subst correct limits in their integ and $=\frac{3}{4}$
	$b=3$	A1	
		4	

Question	Answer	Marks	Guidance
5(a)(i)	$\mathrm{e}^{-2.3}\left(\frac{2.2^{2}}{2}+\frac{2.3^{3}}{3!}+\frac{2.3^{4}}{4!}\right.$	M1	Allow one end error
	$=0.585$	A1	
		2	
5(a)(ii)	$(\lambda)=4.6$	B1	
	$1-\mathrm{e}^{-4.6}\left(1+4.6+\frac{4.6^{2}}{2}\right)$	M1	any λ, Allow one end error
	$=0.837(3 \mathrm{sf})$	A1	
		3	
5(a)(iii)	$S \sim \mathrm{~N}(115,115)$	B1	May be implied
	$\frac{110.5-115}{\sqrt{115}} \quad(=-0.420)$	M1	Allow with wrong or no cc OR no V
	$1-\Phi\left({ }^{\prime} 0.420{ }^{\prime}\right) \quad(=1-0.663)$	M1	
	$=0.337$	A1	Accept alternative method using $\mathrm{N}(2.3,2.3)$ no mixed methods.
		4	
5(b)	$\mathrm{e}^{-\lambda} \times \frac{\lambda^{3}}{3!}=\mathrm{e}^{-\lambda} \times \frac{\lambda^{5}}{5!}$	M1	
	$\lambda^{3}=\frac{\lambda^{5}}{4 \times 5}$ or $\lambda^{2}=20$ oe	A1	any correct simplification without $\mathrm{e}^{-\lambda}$ or !
	$\lambda=\sqrt{ } 20$ or $2 \sqrt{ } 5$ or $4.47(3 \mathrm{sf})$	A1	
		3	

Question	Answer	Marks	Guidance
6(i)	Biased towards people who like tennis Excludes people who don't like tennis	B1	or other sensible
		1	
6(ii)	Obtain a list of all people in the town	B1	
	Use random numbers	B1	or, e.g. pick numbers from a hat or other sensible
		2	
6(iii)	$\operatorname{Var}(p)=\frac{\frac{47}{350}\left(1-\frac{47}{350}\right)}{350}(=0.000332152)$	M1	
	$z=1.645$	B1	
	$\frac{47}{350} \pm z \sqrt{\frac{\frac{47}{350}\left(1-\frac{47}{350}\right)}{350}}$	M1	Must be a z value
	0.104 to $0.164(3 \mathrm{sf})$	A1	Must be an interval
		4	
6(iv)	$1.25 \times 1.645 \quad(=2.056)$	M1	or $1.25 \times$ their width $\div 2 \div$ their $\sqrt{\frac{\frac{47}{350}\left(1-\frac{47}{350}\right)}{350}}$ (Complete method)
	$\Phi\left({ }^{\prime} 2.056\right.$ ' $) \quad(=0.980)$	M1	Attempt Φ (their z)
	$x=96 \quad(2 \mathrm{sf})$	A1	Allow 0.96 (2 sf) CWO
		3	

Cambridge
International
A Level

Cambridge Assessment International Education

Cambridge International Advanced Level

MATHEMATICS
9709/72
Paper 7
May/June 2019
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2 .

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR-1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	0.0842 (3 sf)	B1	
		1	
1(ii)	$\mathrm{e}^{-5} \times \frac{5^{n}}{n!}=\mathrm{e}^{-5} \times \frac{5^{n+1}}{(n+1)!}$	B1	or $\frac{5^{n}}{n!}=\frac{5^{n+1}}{(n+1)!}$ or better ISW
		1	
1(iii)	$\begin{aligned} & 1=\frac{5}{n+1} \\ & n=4 \end{aligned}$	B1	
		1	

Question	Answer	Marks	Guidance
2(i)	Normal with mean 372	B1	
	$\mathrm{sd}=\frac{54}{\sqrt{36}}$	M1	$\text { or variance }=\frac{54^{2}}{36} \mathrm{M} 1$
	(=9)	A1	($=81$) A 1
		3	
2(ii)	Pop normal	B1	Allow X is normal
		1	

Question	Answer	Marks	Guidance
3(i)	$\operatorname{Est}(\mu)=1.85$	B1	
	$\operatorname{Est}\left(\sigma^{2}\right)=\frac{50}{49}\left(\frac{175.25}{50}-1.85^{\prime 2}\right)$	M1	Allow $\sqrt{\frac{50}{49}\left(\frac{175.25}{150}-1.85^{\prime 2}\right)}$ or 0.0290 for M1
	$=0.0842(3 \mathrm{sf}) \text { or } \frac{33}{392}$	A1	Cao If $\frac{50}{49}$ omitted (giving var $=0.0825$ or $\mathrm{sd}=0.287$) M0A0
		3	
3(ii)	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean time }=1.9(\mathrm{~h}) \\ & \mathrm{H}_{1}: \text { Pop mean time }<1.9(\mathrm{~h}) \end{aligned}$	B1	Allow ' μ ' but not just 'mean'
	$\pm \frac{1.85-1.9}{\sqrt{\frac{0.0842^{\prime}}{50}}}$	M1	$\pm \frac{1.85-1.9}{\frac{{ }^{0.290}}{\sqrt{50}}} \text { Accept totals method }(92.5-95) / \sqrt{4.21}$
	$=-1.22$	A1	$=-1.22$
	$\operatorname{comp} z=-1.645$	M1	Or other valid comparison 0.888 or $0.889<0.95$ OR 0.111 or $0.112>0.05$
	No evidence that mean time $<1.9 \mathrm{~h}$	A1	FT their z. Correct conclusion. No contradictions If $\frac{50}{49}$ not used in (1): var $=0.8225, \mathrm{sd}=0.907, \mathrm{cr}=1.17$ can score all marks in (ii) Note- 2 tail test can score B0 M1 A1 M1 (comparison with 1.96) A0 (no ft) max3/5
		5	

Question	Answer	Marks	Guidance
4	Use of $1.5 X_{1}-X_{2}$ or similar	B1	
	$\mathrm{E}\left(1.5 X_{1}-X_{2}\right)=1.5(110)-110(=55)$	B1	or $\mathrm{E}\left(X_{1}-1.5 X_{2}\right)=110-1.5(110)(=-55)$
	$\operatorname{Var}\left(1.5 X_{1}-X_{2}\right)=1.5^{2} \times 1050+1050$ (or 3412.5)	M1	Correct expression or result
	$\frac{0-55}{\sqrt{3412.5}}$ or $\frac{0-(-55)}{\sqrt{3412.5}}(= \pm 0.942)$	M1	Their '55'. Allow incorrect var ($\mathrm{dep}>0$ and $\neq 1050$)
	$1-\Phi\left({ }^{\prime} 0.942\right.$ ')	M1	Area consistent with their working
	$=0.173$	A1	
	Ans 0.346 (3 sf)	B1	FT double their prob (must be <1)
		7	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	$\mathrm{H}_{0}: p=0.1$ $\mathrm{H}_{1}: p<0.1$	$\mathbf{B 1}$	
	$5(\mathrm{ii})$	$\mathrm{B}(40,0.1)$ stated or implied by use of	$\mathbf{1}$
		$\mathbf{B 1}$	e.g. by ${ }^{40} \mathrm{C}_{x}$ or $0.9^{p} \times 0.1^{q}(p+q=40)$
		$\mathbf{M 1}$	Correct working (if seen). If working not seen, M1 may be implied by 0.0805
		$\mathbf{A 1}$	

Question	Answer	Marks	Guidance
5(iii)	$z=1.645$	B1	seen
	$\frac{6}{80} \pm z \sqrt{\frac{\frac{6}{80} \times \frac{(80-6)}{80}}{80}}$	M1	Formula of correct form. Must be a ' z '
	$=0.0266$ to $0.123(3 \mathrm{sfs})$	A1	Allow 0.03 to 0.12 or better Must be an interval
		3	
5(iv)	10% (or manufacturer's claim) is within CI Hence no reason to question claim	B1	FT Allow ' 10% is within CI, accept claim' oe Must include both parts. No contradictions. FT their CI Note if CI is centred on 0.1 allow ft 0.075 is within CI, accept claim
		1	

Question	Answer	Marks	Guidance
6 (i)	$a \int_{1}^{b} \frac{1}{x^{2}} d x=1$	M1	Attempt int $\mathrm{f}(x)$ and $=1$, ignore limits
	$a\left[-\frac{1}{x}\right]_{1}^{b}=1$	A1	correct integ and limits $=1$
	$\begin{aligned} & a\left[1-\frac{1}{b}\right]=1 \text { or } a \times \frac{b-1}{b}=1 \\ & b=\frac{a}{a-1} \mathbf{A G} \end{aligned}$	A1	No errors seen
		3	

Question	Answer	Marks	Guidance
6(ii)	$\begin{gathered} a \int_{1}^{\frac{3}{2}} \frac{1}{x^{2}} d x=\frac{1}{2} \\ a\left[-\frac{1}{x}\right] \begin{array}{l} \frac{3}{2} \\ 1 \end{array}=\frac{1}{2} \end{gathered}$	M1	Attempt int $\mathrm{f}(x)$ with limits 1 to $\frac{3}{2}$ and $=\frac{1}{2}$
	$a\left[1-\frac{2}{3}\right]=\frac{1}{2}$	A1	oe correct equn in a
	$a=\frac{3}{2}, b=3$	A1	Both
		3	
6(iii)	$\frac{3}{2} \int_{1}^{3} \frac{1}{x} d x$	M1	Attempt int $x \mathrm{f}(x)$, ignore limits - condone missing a
	$=\frac{3}{2}[\ln x]_{1}^{3}$	A1	FT Correct integ and their limits 1 to b - condone missing a
	$=\frac{3}{2} \ln 3$ or $1.65(3 \mathrm{sf})$	A1	FT their a and $b($ valid b i.e. $>1)$
		3	

Question	Answer	Marks	Guidance
$7(\mathrm{i})$	Max no. of passengers plane can take oe	B1	oe e.g. No of passengers who bought tickets
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
7(ii)	$\lambda=3.2$	B1	
	$e^{-3.2}\left(\frac{3.2^{3}}{3!}+\frac{3.2^{4}}{4!}+\frac{3.2^{5}}{5!}\right)$	M1	Any λ. Allow one end error
	$=0.5146=0.515(3 \mathrm{sfs})$	A1	SR Use of Bin(640,0.005) scores B1 (only) for 0.516
		3	
7(iii)	$n>50$	B1	Accept n is large
	$n p=1.6$, which is <5 or $\mathrm{p}=0.005$ which is <0.1	B1	Allow $n p=3.2$
		2	
7(iv)	H_{0} : Pop mean (for 5 days) $=8$ H_{1} : Pop mean (for 5 days) <8	B1	or Pop mean $($ for 1 day $)=1.6$ Pop mean (for 1 day) <1.6 Allow λ or μ but not just 'mean'
	$e^{-8}\left(1+8+\frac{8^{2}}{2!}\right)$	M1	Any $\lambda(\neq 1.6)$ No end errors. Accept use of $\operatorname{Bin}(1600,0.005) \mathrm{P}(0,1,2)=0.0136$
	$=0.0138$	A1	
	Comp 0.025	M1	Valid comparison
	Evidence that mean no. failing to arrive has decreased	A1	FT their ' 0.0138 ' or ' 0.0136 '. No contradictions
		5	

Cambridge
International
A Level

Cambridge Assessment International Education

Cambridge International Advanced Level

MATHEMATICS
9709/73
Paper 7
May/June 2019
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2 .

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR-1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	
1	$0.6 \pm z \sqrt{\frac{0.4 \times 0.6}{100}}$	M1	Recognisable value of z
	$z=2.326$	B1	2.326 to 2.329
	0.486 to $0.714(3 \mathrm{sf})$	A1	Must be an interval
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	$\frac{50}{49}\left(\frac{4361}{50}-\bar{x}^{2}\right)=9.62$	M1	or $\left(\frac{4361}{49}-\frac{(\Sigma x)^{2}}{50 \times 49}\right)=9.62 \mathrm{BOD}$ regarding symbols used
	$\bar{x}^{2}=\frac{4361}{50}-9.62 \times \frac{49}{50}=77.7924$	A1	$(\Sigma x)^{2}=4361 \times 50-9.62 \times 50 \times 49=194481$ or $\Sigma x=441(\Sigma x)$ or (\bar{x}) must be correctly identified
	$\bar{x}=8.82$ (3 sf)	A1	SC use of 'biased' leading to 8.81 B1
		3	

Question	Answer	Marks	Guidance
3 (i)	D more likely to be chosen	B1	oe, e.g. $\mathrm{P}(D)>\mathrm{P}(A)$ e.g. $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{C})=1 / 6 \mathrm{P}(\mathrm{D})=1 / 2$ no contradictions
		$\mathbf{1}$	
3 (ii)	Reject scores of 5 or 6	B1	or other correct: choose D when the score is 4
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
3 (iii)	AB AC AD BC BD CD	B1	
	Allocate as follows: $1: \mathrm{AB} ; 2: \mathrm{AC} ; 3: \mathrm{AD} ; 4: \mathrm{BC} ; 5: \mathrm{BD} \mathrm{6:} \mathrm{CD}$	B1	or similar
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
4	Total $\sim \mathrm{N}(1208, \ldots .$.	B1	
	$\operatorname{Var}($ total $)(=10 \times 1.2+20 \times 0.7(+0))=26$	B1	May be implied by next line
	$\pm \frac{1200-\text { "1208" }}{\sqrt{" 26^{\prime \prime}}} \quad(=-1.569)$	M1	FT their mean and var of total mass, e.g. allow 1200 and 11.24 (from $10 \times 1.2^{2}+20 \times 0.7^{2}$)
	$1-\Phi$ ("1.569")	M1	Correct area consistent with their working
	$=0.0583(3 \mathrm{sf})$	A1	
		5	

Question	Answer	Marks	Guidance
5	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }=20 \\ & \mathrm{H}_{1}: \text { Pop mean } \neq 20 \end{aligned}$	B1	Accept μ
	$\frac{\Sigma x}{6} \quad\left(=\frac{126.9}{6}=21.15\right)$	M1	Attempted or 126.9 and 11.64 attempted
	$\frac{21.15 '-20}{\sqrt{\frac{1.94}{6}}}$	M1	Must have $\sqrt{6}$ or $\frac{120-126.9}{\sqrt{11.64}}$ no mixed method
	$=2.022$	A1	
	$2\left(1-\phi\left({ }^{\prime} 2.022\right.\right.$ ')) $2\left(1-{ }^{\prime} 0.9784\right)$ ' $=0.0432$)	M1	$\text { FT } 2 \times\left(1-^{\prime} .9784^{\prime}\right)$
	$\alpha=4.32$ (3 sf)	A1	FT Allow 4.3 or 4 , if correct working seen, or clearly implied, as far as 0.0216 FT their z, no error seen One-tail test scores maximum 3/6
		6	

Question	Answer	Marks	Guidance
6(i)	$\begin{aligned} & \frac{3}{a^{3}} \int_{0}^{a} x^{2} d x \\ & \left(=\frac{3}{a^{3}}\left[\frac{x^{3}}{3}\right] \begin{array}{l} a \\ 0 \end{array}\right) \end{aligned}$	M1	Attempt to integrate $f(x)$ with limits 0 and a (condone missing $\frac{3}{a^{3}}$)
	$=\frac{3 a^{3}}{3 a^{3}}$	A1	$\frac{3 a^{3}}{3 a^{3}}-0$ or better seen
	$=1$ Hence f is pdf for all a	A1	Answer = 1 and comment
		3	
6 (ii)	$\begin{aligned} & \frac{3}{a^{3}} \int_{0}^{2} x^{2} d x=0.5 \\ & \frac{3}{a^{3}}\left[\frac{x^{3}}{3}\right]_{0}^{2}=0.5 \end{aligned}$	M1	Attempt to integrate $f(x)=0.5$, limits 0 and 2 oe, condone missing $\frac{3}{a^{3}}$
	$\frac{3}{a^{3}} \times \frac{8}{3}=0.5 \mathrm{oe}$	A1	$\frac{2^{3}}{3}-0$ or better, condone missing $\frac{3}{a^{3}}$
	$\begin{aligned} & a^{3}=16 \text { or } a=\sqrt[3]{16} \\ & (=2.52 \mathbf{A G}) \end{aligned}$	A1	Convincingly obtained Note: Attempt to verify 2.52 , M1 as stated except not equated to 0.5 .A1 as stated, A1 for evaluation to 0.499 ..apprx 0.5
		3	

Question		Answer	Marks	Guidance
6(iii)	$\begin{aligned} & \frac{3}{16} \int_{0}^{2.52} x^{3} d x \\ & =\frac{3}{16}\left[\frac{x^{4}}{4}\right]_{0}^{2.52} \end{aligned}$	$\begin{aligned} & \text { or } \frac{3}{16} \int_{0}^{a} x^{3} d x \\ & \text { or } \frac{3}{16}\left[\frac{x^{4}}{4}\right]_{0}^{a} \end{aligned}$	M1	Attempt integ $x \mathrm{f}(x)$, correct limits, condone missing $\frac{3}{a^{3}}$
	$=\frac{3}{16} \times \frac{40.317}{4}$		A1	$\frac{2.52^{4}}{4}-0$ or better, condone missing $\frac{3}{a^{3}}$
	$=1.89$ (3 sf)		A1	
			3	

Question	Answer	Marks	
$7(\mathrm{i})$	Use of $\operatorname{Po}(2.8)$	M1	May be implied
	$\left.1-\mathrm{e}^{-2.8}\left(1+2.8+\frac{2.8^{2}}{2}\right)\right)$	M1	Any λ allowing one end error
	$=0.531$ or $0.53(0)(3 \mathrm{sf})$	A1	SC Binomial 0.534 B 1
		$\mathbf{3}$	
	Use of $\operatorname{Po}(5.8)$	M1	May be implied
	$\mathrm{e}^{-5.8} \times \frac{5.8^{6}}{6!}$	M1	Any λ
	$=0.16(0)(3 \mathrm{sf})$	$\mathbf{A 1}$	

Question	Answer	Marks	Guidance
7(iii)	Use of $\mathrm{N}(58,58)$	M1	May be implied or $\mathrm{N}(58,55.38)$
	$\frac{50.5-{ }^{\prime} 58^{\prime}}{\sqrt{\prime 58^{\prime}}}(=-0.985)$	M1	Standardised with their values, allow wrong or incorrect cc
	$\Phi(' 0.985 ')$	M1	Correct area consistent with their working or $\Phi(" 1.008)$
	$=0.838(3 \mathrm{sf})$	A1	or 0.843
		4	

Question	Answer	Marks	Guidance
8(i)	$\begin{aligned} & \mathrm{H}_{0}: p=\frac{1}{4} \\ & \mathrm{H}_{1}: p>\frac{1}{4} \end{aligned}$	B1	
	$\begin{aligned} & { }^{10} \mathrm{C}_{6\left(\frac{1}{4}\right)}{ }^{6}\left(\frac{3}{4}\right)^{4}+{ }^{10} \mathrm{C}_{7}\left(\frac{1}{4}\right)^{7}\left(\frac{3}{4}\right)^{3}+{ }^{10} \mathrm{C}_{8}\left(\frac{1}{4}\right)^{8}\left(\frac{3}{4}\right)^{2}+ \\ & 10\left(\frac{1}{4}\right)^{9}\left(\frac{3}{4}\right)+\left(\frac{1}{4}\right)^{10} \end{aligned}$	M1	Correct terms, allow one term incorrect or omitted or extra or summing all correct terms from 0 to 5 allow one term incorrect or omitted or extra
	$=0.0197$	A1	or 0.9803
	comp '0.0197' with 0.01	M1	Valid comparison with 0.01 or valid comparison with 0.99
	No evidence to conclude $p>\frac{1}{4}$	A1	FT No contradictions Use of two-tail test can score BOM1A1M1(comparison with 0.005) A0
		5	
8(ii)	${ }^{10} \mathrm{C}_{7}\left(\frac{1}{4}\right)^{7}\left(\frac{3}{4}\right)^{3}+{ }^{10} \mathrm{C}_{8}\left(\frac{1}{4}\right)^{8}\left(\frac{3}{4}\right)^{2}+10\left(\frac{1}{4}\right)^{9}\left(\frac{3}{4}\right)+\left(\frac{1}{4}\right)^{10}$	M1	Their $\mathrm{P}(\mathrm{X} \geqslant 6)-{ }^{10} C_{6}(0.25)^{6}(0.75)^{4}$
	$\mathrm{P}($ Type I$)=0.00351(3 \mathrm{sf})$	A1	Accept 0.00348 to 0.00351
		2	
8(iii)	C. R is $X \geqslant 7$ $\mathrm{P}($ Type II $)=1-\mathrm{P}\left(X \geqslant 7 \left\lvert\, p=\frac{3}{5}\right.\right)=$	M1	May be implied
	$1-\left({ }^{10} \mathrm{C}_{7}\left(\frac{3}{5}\right)^{7}\left(\frac{2}{5}\right)^{3}+{ }^{10} \mathrm{C}_{8}\left(\frac{3}{5}\right)^{8}\left(\frac{2}{5}\right)^{2}+10\left(\frac{3}{5}\right)^{9}\left(\frac{2}{5}\right)+\left(\frac{3}{5}\right)^{10}\right)$	M1	Accept $1-\mathrm{P}\left(X \geqslant 8 \left\lvert\, p=\frac{3}{5}\right.\right)$ or $1-\mathrm{P}\left(X \geqslant 6 \left\lvert\, p=\frac{3}{5}\right.\right)$
	$=0.618$	A1	
		3	

Cambridge Assessment International Education
 Cambridge International Advanced Level

MATHEMATICS

9709/72
Paper 7 Probability and Statistics
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR-1 A penalty of MR - 1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
$1(\mathrm{i})$	$z=2.326$	B1	
	$62.3 \pm z \frac{13.2}{\sqrt{200}}$	M1	Any z. Expression of correct form. Must be a ' z '
	60.1 to $64.5(3 \mathrm{sfs})$	A1	Must be an interval
		$\mathbf{3}$	
	Yes, because pop not (given to be) normal, or pop distribution unknown	B1	No contradictions
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
2	$\mathrm{E}(X-3 Y)=0.2$	B1	oe
	$\operatorname{Var}(X-3 Y)=12.1+9 \times 8.6(=89.5)$	B1	
	$\frac{0-0.2}{\sqrt{189.5 "}} \quad(=-0.021)$	M1	For area consistent with their working
	$\Phi\left({ }^{\prime} 0.021\right.$ ' $)$	M1	
	$=0.508(3 \mathrm{sfs})$	A1	
		5	

Question	Answer	Marks	Guidance
3	$\begin{aligned} & \mathrm{H}_{0}: \lambda=32 \\ & \mathrm{H}_{1}: \lambda<32 \end{aligned}$	B1	Accept 'population mean' (μ)
	$X \sim \mathrm{~N}(32,32)$	B1	seen or implied
	$\frac{21.5-32}{\sqrt{32}}$	M1	Standardise with their values. Allow with no or wrong cc
	$\begin{aligned} & =-1.856 \\ & \operatorname{cv~of~} z=-2.054 \text { (or }-2.055 \text { or }-2.053 \text {) } \end{aligned}$	A1	
	$' 1.856$ ' 2.054	M1	Valid comparison or comp Φ (" 1.856 ") with 0.98 i.e. $0.9682<0.98$ oe
	No evidence that fewer accidents at B than at A	A1f	No contradictions Note Use of CV method $\mathrm{x}=20.38 \mathrm{M} 1 \mathrm{~A} 1$ comparison $21.5>20.38 \mathrm{M} 1$ conc A1
		6	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	$\bar{x}=\frac{420}{50}=8.4$	B1	
	$s^{2}=\frac{50}{49}\left(\frac{27530}{50}-\left(\frac{420}{50}\right)^{2}\right)$	M1	Or $1 / 49\left(27530-(420)^{2} / 50\right)$
	$=489.8(36 \ldots)$.	A1	Must see $\geqslant 4$ sf
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4(ii)	$\Phi^{-1}(0.9377)=1.536$	B1	
	$\frac{5-8.84^{\prime}}{\sqrt{\frac{400}{n}}}=-1.536$	M1	Attempting to standardise - must have correct form
	$n=\left(\frac{1.536}{3.4}\right)^{2} \times 490 \quad(=100.0048)$	M1	Attempting numerical expression for n or $\sqrt{ } \mathrm{n}$ (must have used a ' z ' value) may be implied by answer
	$n=100$	A1	No errors seen. Must be whole number
		4	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	$1-\mathrm{e}^{-1.8}(1+1.8)$	M1	Accept any λ. Accept $1-\mathrm{P}(0,1,2)$
	$=0.537(3 \mathrm{sf})$	A1	
	$5(\mathrm{ii})$	$\lambda=2.2$	$\mathbf{2}$

Question	Answer	Marks	Guidance
5(iii)	$1-e^{-1.8 t} \geqslant 0.99 \quad$ or $1-e^{-\lambda} \geqslant 0.99$	M1	Condone $=$ signs/incorrect inequality signs
	$\begin{array}{ll} e^{-1.8 t} \leqslant 0.01 & \text { or } e^{-\lambda} \leqslant 0.01 \\ -1.8 t \leqslant \ln 0.01 & \end{array}$	M1	Valid attempt take logs (must have single term on each side)
	$t \geqslant 2.56$ She must watch for at least 2.56 (hours)	A1	or 2 hours, 34 mins or better. No errors seen
		3	

Question	Answer	Marks	Guidance
6(i)	Test is for "difference" oe	B1	Test is not for 'increase' or 'decrease' oe No contradictions
		$\mathbf{1}$	
$6($ ii)	0.05	B1	
	Conclude mean time is different when it is not	B1	oe, in context
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
6(iii)	Assume $\sigma=6.4$	B1	
	$\begin{aligned} & \mathrm{H}_{0}: \text { pop mean }=91.4 \\ & \mathrm{H}_{1}: \text { pop mean } \neq 91.4 \end{aligned}$	B1	Allow μ, but not 'mean'
	$\bar{x}=\frac{568.5}{6}(=94.75)$	B1	
	$\frac{' 94.75 '-91.4}{\frac{6.4}{\sqrt{6}}}$	M1	Must have $\sqrt{ } 6$
	$\begin{aligned} & =1.282 \\ & \operatorname{cv} \text { of } z=1.96 \end{aligned}$	A1	
	${ }^{\prime} 1.282$ ' <1.96	M1	Valid comparison or comp ϕ ("1.282") with $0.9750 .9(001)<0.975$ or 0.0999 (or 0.1) >0.025 consistent use of one tail test can score M1 for comparison with 1.645 oe but not A1ft oe. No contradictions. ft their z .
	No evidence mean time different	A1 ft	CV method $\mathrm{x}=96.52 \mathrm{M} 1 \mathrm{~A} 194.75<96.52 \mathrm{M} 1$ Conc A1
		7	

Question	Answer	Marks	Guidance
7(i)	$\begin{aligned} & \sqrt{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \cos x \mathrm{~d} x \\ & =\sqrt{2}[\sin x]_{\frac{\pi}{6}}^{\frac{\pi}{4}} \end{aligned}$	M1	Attempt integ $\mathrm{f}(x)$ with correct limits
	$=\frac{2-\sqrt{2}}{2}$ oe or $0.293(3 \mathrm{sf})$	A1	SC Final answer of 0.707 scores B1sc
		2	
7(ii)	$\sqrt{2} \int_{0}^{m} \cos x \mathrm{~d} x=0.5$	M1	Attempt to integ $f(x) \&=0.5$. Ignore limits. Condone missing $\sqrt{ } 2$
	$\begin{aligned} & \sqrt{2}[\sin x]_{0}^{m}=0.5 \\ & \sqrt{2} \sin m=0.5 \end{aligned}$	A1	Correct integral and limits 0 to unknown $\&=0.5$ Condone missing $\sqrt{ } 2$
	$\sin m=\frac{1}{2 \sqrt{2}}$ oe	M1	For rearranging their expression to the form $\sin m=\ldots(\sin m=$ $0.35355 \ldots$ or 0.354) seen or implied
	$m=0.361(3 \mathrm{sfs})$	A1	No errors seen (Note 20.705 can score M1 A1 M1 A0)
		4	

Question	Answer	Marks	Guidance
7(iii)	$\sqrt{2} \int_{0}^{\frac{\pi}{4}} x \cos x \mathrm{~d} x$	M1	Attempt to integ $x \mathrm{f}(x)$. Ignore limits. Condone missing $\sqrt{ } 2$
	$=\sqrt{2}\left\{[x(\sin x)]_{0}^{\frac{\pi}{4}}-\int_{0}^{\frac{\pi}{4}} \sin x \mathrm{~d} x\right\}$	M1	Attempt to integ by parts leading to expression of form $\pm x \sin x \pm \cos x$ with correct limits
	$=\sqrt{2}\left\{\frac{\pi}{4 \sqrt{2}}-0-[-\cos x]_{0}^{\frac{\pi}{4}}\right\}$	A1	For $\sqrt{2}(x \sin x-(-\cos x))$ with correct limits
	$\begin{aligned} & =\sqrt{2}\left\{\frac{\pi}{4 \sqrt{2}}+\cos \frac{\pi}{4}-1\right\} \\ & =\frac{\pi}{4}+1-\sqrt{2} \text { oe or } 0.371(3 \mathrm{sf}) \end{aligned}$	A1	
		4	

Cambridge Assessment International Education

Cambridge International Advanced Level

MATHEMATICS
 9709/71

Paper 7
MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).
GENERIC MARKING PRINCIPLE 3:
Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1 (i)	$176 \pm z \times \frac{7.2}{\sqrt{200}}$	M1	need correct form must be z
	$z=2.24$	$\mathbf{B 1}$	allow 2.241 and 2.242
	175 to 177	$\mathbf{A 1}$	cwo
		$\mathbf{3}$	
	Sample random	$\mathbf{B 1}$	oe. both words essential
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
2 (i)	$\mathrm{H}_{0}: p=\frac{1}{3} \quad \mathrm{H}_{1}: p<\frac{1}{3}$	$\mathbf{B 1}$	
		$\mathbf{1}$	
	$0.0084<0.01$	$\mathbf{B 1}$	Allow $\mathrm{P}(\mathrm{N} \leqslant 36)<0.01$ or 1%
	There is evidence that p has decreased	B1 dep	Allow ' p has decreased' or $p<\frac{1}{3}$
		$\mathbf{2}$	
2 2(iii)	150	$\mathbf{B 1}$	
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
3	$\frac{12.2-12}{2.5 / \sqrt{n}}$	M1	Standardisation. Allow cc. need correct form incl sqrt
	$(=1.96$	B1	Correct z
	$\sqrt{n}=1.96 \times 2.5 \div 0.2$	M1	Rearrange equation in n or sqrt n with numerical z to the stage $\mathrm{n}=$ or sqrt $\mathrm{n}=$ allow arithmetical slips only
	$n=600$	A1	accept 601 SR whole number ans from 595 to 605 can score full marks if fully justified
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
4(i)	$\lambda=10 \times 0.25+10 \times 0.36 \quad(=6.1)$	B1	
	$1-\mathrm{e}^{-6.1}\left(1+6.1+\frac{6.11^{2}}{2}+\frac{6.1}{3!}\right)$	M1	$1-\mathrm{P}(X \leqslant 3)$, any λ Allow one end error
	$=0.857$	A1	Allow 0.858
		3	
4(ii)	$\lambda=61$	B1 ft	Ft from (i)
	N ('61', '61')	M1	N with $\mu=\lambda$, any λ. May be implied
	$\frac{59.5-61}{\sqrt{61^{\prime}}} \quad(=-0.192)$	M1	Standardise with their mean and variance Allow no or wrong cc. not 61/100
	$\Phi\left({ }^{{ff97fa3cf-54b1-4bef-b37f-e9d0bd4b3c73}} 0.192{ }^{\text { }}\right.$)	M1	Correct area consistent with their working
	$=0.424$	A1	
		5	

Question	Answer	Marks	Guidance
5(i)	$T_{1}+T_{2} \sim \mathrm{~N}\left(5,0.4^{2}+0.5^{2}\right)$	B1	or $\mathrm{N}(5,0.41)$
	$\frac{6-5}{\sqrt{10.411}} \quad(=1.562)$	M1	Allow cc
	$\Phi\left({ }^{\prime} 1.562\right.$ ')	M1	Correct area consistent with their working
	$=0.941$	A1	
		4	
5(ii)	$\begin{array}{r} \operatorname{Var}\left(T_{2}-1.2 T_{1}\right)=0.5^{2}+1.2^{2} \times 0.4^{2} \\ (=0.4804) \end{array}$	B1	Or similar using 1.2 $\mathrm{T}_{1}-\mathrm{T}_{2}$
	$T_{2}-1.2 T_{1}-\mathrm{N}(0.16,0.4804)$	B1 ft	Only ft attempt at combination. no ft for neg var.
	$\frac{0-{ }^{\prime} 0.16^{\prime}}{\sqrt{ } 0.4804{ }^{\prime}} \quad(=-0.231)$	M1	Standardise with their mean and variance. Allow cc
	$\mathrm{P}\left(T_{2}-1.2 T_{1}\right)>0$		
	$=\Phi\left({ }^{\prime} 0.231\right.$ '	M1	Correct area consistent with their working
	$=0.591$ (3 sfs)	A1	
		5	

Question	Answer	Marks	Guidance
6(i)	$k \int_{2}^{6} x^{-1} \mathrm{~d} x=1$	M1	Attempt integrate $\mathrm{f}(x) \&=1$. Ignore limits
	$\begin{aligned} & k[\ln x]_{2}^{6}=1 \\ & k(\ln 6-\ln 2)=1 \text { or } k \ln 3=1 \\ & k=\frac{1}{\ln 3} \quad \mathbf{A G} \end{aligned}$	A1	correct sub of correct limits in correct integral leading to correct ans. No errors seen.
		2	
6(ii)	$\frac{1}{\ln 3} \int_{2}^{6} 1 \mathrm{~d} x$	M1	Attempt integ $x \mathrm{f}(x)$. Ignore limits
	$=\frac{1}{\ln 3}[x]_{2}^{6} \quad\left(=\frac{1}{\ln 3}(6-2)\right)$	A1	Correct integral and limits
	$=\frac{4}{\ln 3}=3.64 \quad \mathbf{A G}$	A1	No errors seen
		3	
6(iii)	$\mathrm{P}(X<\mathrm{E}(X))=\frac{1}{\ln 3} \int_{2}^{3.64} x^{-1} \mathrm{~d} x$	M1	Attempt integ $\mathrm{f}(x)$ from 2 to $\frac{4}{\ln 3}$ or 3.64 oe
	$\begin{aligned} & =\frac{1}{\ln 3}[\ln x]_{2}^{3.64} \\ & =\frac{1}{\ln 3}(\ln 3.64-\ln 2) \quad(=0.545) \end{aligned}$	A1	Correct sub correct limits into correct integral
	$\mathrm{P}(m<\mathrm{X}<\mathrm{E}(X))=$ "0.545"-0.5	M1	Subt 0.5 from their $\mathrm{P}(X<\mathrm{E}(X))$ art 0.045 . ft their $\mathrm{P}(X<\mathrm{E}(X)(>0.5)$
	$=0.045$ (2 sfs)	A1	equivalent method M1 method for median-need 0.5 and limits 2 to m or m to 6 A1 sqrt 12 or 3.464 M1 calc area from " 3.464 " to 3.64 A1 0.045 or better, not 0.046
		4	

Question	Answer	Marks	Guidance
7(i)	$\mathrm{H}_{0}: \mu=51 \quad \mathrm{H}_{1}: \mu<51$	B1	Or popn mean ...
	$\bar{x}=\frac{7480}{150}=49.8667=49.9$	B1	
	$\begin{aligned} & s^{2}=\frac{150}{149}\left(\frac{380000}{150}-\left(\frac{748}{15}\right)^{2}\right) \\ & =46.9620=47.0 \text { or } s=6.85 \end{aligned}$	M1	Correct subst in s^{2} or $\sqrt{s^{2}}$ formula Biased var scores M0
		M1	Allow 49.8667 to 49.9 in numerator Need sqrt 150
	$=(-) 2.025=(-) 1.965$	A1	Accept 2.02 or 2.03 Accept -2.0264-1.9651 provided correct working
	$\operatorname{comp} z=1.96$	M1	or comp $1-\phi(2.025)$ with 0.025
	There is evidence that $\mu<51$	A1 ft	no contradictions biased var B1B1M0M1A0M1A1ft (max 5/7) accept cv method $\mathrm{x}_{\text {crit }}=49.9028 \quad$ M1A1 $49867<49.9 \ldots$ M1A1
		7	
7(ii)	$\frac{\frac{z}{6}-51}{\frac{8.85}{\sqrt{150}}}=-1.96$	M1	Need 51 and sqrt 150 and correct form
	$\bar{x}=51-1.097=49.9$ Rejection region is $\bar{x}<49.9$	A1	This may have been found in part (i)
	$\frac{49.9-49}{\frac{6.850}{\sqrt{150}}} \quad(=1.608 \text { to } 1.614)$	M1	Need 49 and sqrt 150 and correct form
	$\mathrm{P}(\bar{x}>49.9 \mid \mu=49)=1-\Phi\left({ }^{\prime} 1.608^{\prime}\right)$	M1	
	$\mathrm{P}($ Type II error $)=0.0539$	A1	Allow 0.0533 to 0.0539
		5	

Cambridge Assessment International Education

Cambridge International Advanced Level

MATHEMATICS
9709/72
Paper 7
October/November 2018
MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The $P A-1$ penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$\mathrm{e}^{-2.3}\left(\frac{2.3^{2}}{2}+\frac{2.3^{3}}{3!}+\frac{2.3^{4}}{4!}\right)$	M2	M1 for one term wrong or one end error or $1-\mathrm{P}(2,3,4)$
	$=0.585(3 \mathrm{sf})$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2(i)	$z=1.96$	B1	seen
	$330.1 \pm z \times \frac{4.8}{\sqrt{180}}$	M1	Must be of correct form. Any z
	$=329.4$ to $330.8(1 \mathrm{dp})$	A1	Must be to 1 dp . Must be an interval.
		3	
2(ii)	Yes, because vol of all cans not stated to be normal	B1	Or Yes, population not stated to be normal
		1	

Question	Answer	Marks	Guidance
3	$\mathrm{E}(T)=2 \times 250+5 \times 160(=1300)$	B1	
	$\operatorname{Var}(T)=2 \times 10+5 \times 9(=65)$	B1	
	$\frac{1310-1300{ }^{\prime}}{\sqrt{655^{\prime}}} \quad(=1.240)$	M1	Standardise using their values (must come from a combination attempt). Ignore cc
	$1-\phi\left({ }^{\prime} 1.240\right.$ ' $)$	M1	Correct area consistent with their working
	$=0.1075$	A1	Allow 0.107 to 0.108 (no errors seen)
		5	

Question	Answer	Marks	Guidance
4(i)	$\int_{0}^{a} \frac{k}{(x+1)^{2}} \mathrm{~d} x=1$	M1	Any attempt integ $\mathrm{f}(x)$ and $=1$. Ignore limits
	$\begin{aligned} & -\left[\frac{k}{(x+1)}\right]_{0}^{a}=1 \\ & -k\left(\frac{1}{a+1}-1\right)=1 \end{aligned}$	M1	Attempt subst correct limits into correct integral
	$k \times \frac{a}{a+1}=1$ and $k=\frac{a+1}{a} \quad \mathbf{A G}$	A1	No errors seen
		3	

Question	Answer	Marks	Guidance
4(ii)	Max time allowed by model (for runners to finish)	B1	Allow: All runners finish in time a or less or Longest time (taken by any runner) oe
		1	
4(iii)	$\frac{a+1}{a} \int_{0}^{0.5} \frac{1}{(x+1)^{2}} \mathrm{~d} x=\frac{3}{4}$	M1	Attempt integ $\mathrm{f}(x)$ and $=\frac{3}{4}$; ignore limits oe. Condone missing / incorrect k
	$\begin{aligned} & -\frac{a+1}{a}\left[\frac{1}{(x+1)}\right]_{0}^{0.5}=\frac{3}{4} \\ & -\frac{a+1}{a}\left(\frac{2}{3}-1\right)=\frac{3}{4} \end{aligned}$	M1	Attempt subst correct limits into correct integral. Condone missing / incorrect k
	$a=0.8$ oe	A1	
		3	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	$\hat{\mu}=\frac{126}{70}$ or $\frac{9}{5}$ or 1.8 oe	B1	
	$\Sigma x^{2} f=286$	B1	Seen or implied
	Est $\left(\sigma^{2}\right)=\frac{70}{69}\left(\frac{\Sigma x^{2} f}{70}-'^{\prime} 1.8^{\prime 2}\right)$	M1	oe attempted
	$=0.858$ or $296 / 345$	A1	Note: Final answer for var 0.846 (biased) and no working implies B1 for 286
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
5(ii)	$\begin{aligned} & \mathrm{H}_{0}: \mu=1.9 \\ & \mathrm{H}_{1}: \mu<1.9 \end{aligned}$	B1	Or 'pop mean'; not just 'mean'
	$\frac{1.8-1.9}{\sqrt{\frac{0.858}{70}}}$	M1	Standardise with their values from (i). Must have sqr 70. No SD / Var mix
	$=-0.903$	A1	Accept \pm
	$0.903<1.645$	M1	comp 1.645 allow comp 1.96 if $\mathrm{H}_{1}: \mu \neq 1.9$ or comp $1-\phi\left({ }^{(} 0.903 '\right)=0.182$ or 0.183 with 0.05 (or 0.025 if $\mathrm{H}_{1}: \mu \neq 1.9$)
	No evidence that mean no courts in S is less than in N	A1ft	No contradictions. ft their 0.903 , but not comp 1.96 i.e. no ft for a 2 tail test Accept cv method: cv $=1.718$ M1A1 $1.718<1.8 \mathrm{M} 1$ conclusion A1 (cv centred on 1.8 gives 1.982 M 1 A 1 and M1 for $1.982>1.9 \mathrm{~A} 1$ conclusion)
		5	
5(iii)	Type II because H_{0} was not rejected	B1ft	ft their conclusion, i.e. if H_{0} rejected, 'Type I because H_{0} rejected' B1 Answer must be consistent with their conclusion. No conclusion in (ii) will score B0
		1	

Question	Answer	Marks	Guidance
6 (i)	$\begin{aligned} & \mathrm{H}_{\mathrm{o}}: p=0.15 \\ & \mathrm{H}_{1}: p<0.15 \\ & (\mathrm{~N}(60 \times 0.15,60 \times 0.15 \times 0.85)) \\ & =\mathrm{N}(9,7.65) \end{aligned}$	B1	Accept $\mathrm{H}_{0}: \mu=9$ $\mathrm{H}_{1}: \mu<9$ Use of Normal approximation: $\begin{aligned} & \left(\mathrm{N}\left(0.15, \frac{0.15 \times 0.85}{60}\right)\right) \\ & =\mathrm{N}(0.15,0.002125) \end{aligned}$
	$\frac{6.5-99}{\sqrt{7.65 '}}$	M1	
	$=-0.904$	A1	Accept \pm
	${ }^{\prime} 0.904{ }^{\prime}<1.282$	M1	Valid comparison of z values or $\phi\left({ }^{(}-0.904^{\prime}\right)=0.183>0.1$ ft their 0.904
	No evidence train late less often	A1ft	Use of $\operatorname{Bin}(60,0.15)$ to give $\operatorname{Pr}(<=6)=0.1848$ M1A1 Valid comparison with 0.1 M1 Conclusion A1ft
		5	
6(ii)	$0.1+z \times \sqrt{\frac{0.1 \times 0.9}{60}}=0.150$	M1	For $\sqrt{ }(0.1 \times 0.9 / 60)$ seen
		M1	for $0.1+z \times \ldots=0.150$ or $2 \mathrm{z} \ldots=0.1$
	$z=1.291$	A1	
	$\phi\left({ }^{\prime} 1.291\right.$ ') ($=0.90$ (16))	M1	for correct method to find α
	$\alpha=80$	A1ft	ft their z. Must be a +ve non-zero integer < 100
		5	

Question	Answer	Marks	Guidance
7(i)	$\mathrm{e}^{-5.6} \times \frac{5.6{ }^{3}}{3!}$	M1	Allow any λ
	$=0.108(3 \mathrm{sf})$	A1	
		2	
7 (ii)	$\begin{aligned} & \mathrm{P}(X=2 \& Y=1)=\mathrm{e}^{-2.1} \times \frac{2.1^{2}}{2} \times \mathrm{e}^{-3.5} \times 3.5 \\ & (0.2700 \times 0.10569=0.028538) \end{aligned}$	M1	
	$\begin{aligned} & \frac{\mathrm{P}(X=2 \& Y=1)}{\mathrm{P}(X+Y=3)} \text { attempted } \\ &=\frac{0.028538^{\prime}}{10.108234} \end{aligned}$	M1	For attempt at fraction with their (i) as denominator or $\frac{2.1^{2}}{2} \times 3.5 \div \frac{5.6^{3}}{3}$ M2
	$=0.264(3 \mathrm{sf})$	A1	
		3	

Question	Answer	Marks	Guidance
7(iii)	$\operatorname{Var}(X)=2.1$	B1	soi
	$\bar{X} \sim \mathrm{~N}\left(2.1, \frac{2.1}{100}\right)$ or $\mathrm{N}(210,210)$	B1	soi B1 for $\mathrm{N}(2.1, \ldots)$
		B1	B1 for $\frac{2.1}{100}$ oe Standardise with their values. Allow with or without cc or with incorrect cc
	$\frac{2.2-2.1}{\frac{\sqrt{210}}{\sqrt{100}}} \text { oe }(220-210) / \sqrt{ } 210(=0.690)$	M1	or $\frac{2.2+0.5100-2.1}{\frac{\sqrt{21.1}}{\sqrt{100}}}$ or $\left.(220.5-210) / \sqrt{ } 210\right)(=0.725)$ no mixed methods
	$1-\phi\left({ }^{(} 0.690\right.$ ')	M1	Correct area consistent with their working or $1-\phi\left({ }^{(} 0.725\right.$ ')
	$=0.245(3 \mathrm{sf})$	A1	$=0.234(3 \mathrm{sf})$
		6	

Cambridge Assessment International Education

Cambridge International Advanced Level

MATHEMATICS
 9709/73

Paper 7
October/November 2018
MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0 .

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1 (i)	$176 \pm z \times \frac{7.2}{\sqrt{200}}$	M1	need correct form must be z
	$z=2.24$	$\mathbf{B 1}$	allow 2.241 and 2.242
	175 to 177	$\mathbf{A 1}$	cwo
		$\mathbf{3}$	
	Sample random	$\mathbf{B 1}$	oe. both words essential
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
2 (i)	$\mathrm{H}_{0}: p=\frac{1}{3} \quad \mathrm{H}_{1}: p<\frac{1}{3}$	$\mathbf{B 1}$	
		$\mathbf{1}$	
	$0.0084<0.01$	$\mathbf{B 1}$	Allow $\mathrm{P}(\mathrm{N} \leqslant 36)<0.01$ or 1%
	There is evidence that p has decreased	B1 dep	Allow ' p has decreased' or $p<\frac{1}{3}$
		$\mathbf{2}$	
2 2(iii)	150	$\mathbf{B 1}$	
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
3	$\frac{12.2-12}{2.5 / \sqrt{n}}$	M1	Standardisation. Allow cc. need correct form incl sqrt
	$(=1.96$	B1	Correct z
	$\sqrt{n}=1.96 \times 2.5 \div 0.2$	M1	Rearrange equation in n or sqrt n with numerical z to the stage $\mathrm{n}=$ or sqrt $\mathrm{n}=$ allow arithmetical slips only
	$n=600$	A1	accept 601 SR whole number ans from 595 to 605 can score full marks if fully justified
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
4(i)	$\lambda=10 \times 0.25+10 \times 0.36 \quad(=6.1)$	B1	
	$1-\mathrm{e}^{-6.1}\left(1+6.1+\frac{6.11^{2}}{2}+\frac{6.1}{3!}\right)$	M1	$1-\mathrm{P}(X \leqslant 3)$, any λ Allow one end error
	$=0.857$	A1	Allow 0.858
		3	
4(ii)	$\lambda=61$	B1 ft	Ft from (i)
	N ('61', '61')	M1	N with $\mu=\lambda$, any λ. May be implied
	$\frac{59.5-61}{\sqrt{61^{\prime}}} \quad(=-0.192)$	M1	Standardise with their mean and variance Allow no or wrong cc. not 61/100
	$\Phi\left({ }^{{fc9afbc74-b2d9-4e58-8e21-b526d8fb2f3f}} 0.192{ }^{\text { }}\right.$)	M1	Correct area consistent with their working
	$=0.424$	A1	
		5	

Question	Answer	Marks	Guidance
5(i)	$T_{1}+T_{2} \sim \mathrm{~N}\left(5,0.4^{2}+0.5^{2}\right)$	B1	or $\mathrm{N}(5,0.41)$
	$\frac{6-5}{\sqrt{10.411}} \quad(=1.562)$	M1	Allow cc
	$\Phi\left({ }^{\prime} 1.562\right.$ ')	M1	Correct area consistent with their working
	$=0.941$	A1	
		4	
5(ii)	$\begin{array}{r} \operatorname{Var}\left(T_{2}-1.2 T_{1}\right)=0.5^{2}+1.2^{2} \times 0.4^{2} \\ (=0.4804) \end{array}$	B1	Or similar using 1.2 $\mathrm{T}_{1}-\mathrm{T}_{2}$
	$T_{2}-1.2 T_{1}-\mathrm{N}(0.16,0.4804)$	B1 ft	Only ft attempt at combination. no ft for neg var.
	$\frac{0-{ }^{\prime} 0.16^{\prime}}{\sqrt{ } 0.4804{ }^{\prime}} \quad(=-0.231)$	M1	Standardise with their mean and variance. Allow cc
	$\mathrm{P}\left(T_{2}-1.2 T_{1}\right)>0$		
	$=\Phi\left({ }^{\prime} 0.231\right.$ '	M1	Correct area consistent with their working
	$=0.591$ (3 sfs)	A1	
		5	

Question	Answer	Marks	Guidance
6(i)	$k \int_{2}^{6} x^{-1} \mathrm{~d} x=1$	M1	Attempt integrate $\mathrm{f}(x) \&=1$. Ignore limits
	$\begin{aligned} & k[\ln x]_{2}^{6}=1 \\ & k(\ln 6-\ln 2)=1 \text { or } k \ln 3=1 \\ & k=\frac{1}{\ln 3} \quad \mathbf{A G} \end{aligned}$	A1	correct sub of correct limits in correct integral leading to correct ans. No errors seen.
		2	
6(ii)	$\frac{1}{\ln 3} \int_{2}^{6} 1 \mathrm{~d} x$	M1	Attempt integ $x \mathrm{f}(x)$. Ignore limits
	$=\frac{1}{\ln 3}[x]_{2}^{6} \quad\left(=\frac{1}{\ln 3}(6-2)\right)$	A1	Correct integral and limits
	$=\frac{4}{\ln 3}=3.64 \quad \mathbf{A G}$	A1	No errors seen
		3	
6(iii)	$\mathrm{P}(X<\mathrm{E}(X))=\frac{1}{\ln 3} \int_{2}^{3.64} x^{-1} \mathrm{~d} x$	M1	Attempt integ $\mathrm{f}(x)$ from 2 to $\frac{4}{\ln 3}$ or 3.64 oe
	$\begin{aligned} & =\frac{1}{\ln 3}[\ln x]_{2}^{3.64} \\ & =\frac{1}{\ln 3}(\ln 3.64-\ln 2) \quad(=0.545) \end{aligned}$	A1	Correct sub correct limits into correct integral
	$\mathrm{P}(m<\mathrm{X}<\mathrm{E}(X))=$ "0.545"-0.5	M1	Subt 0.5 from their $\mathrm{P}(X<\mathrm{E}(X))$ art 0.045 . ft their $\mathrm{P}(X<\mathrm{E}(X)(>0.5)$
	$=0.045$ (2 sfs)	A1	equivalent method M1 method for median-need 0.5 and limits 2 to m or m to 6 A1 sqrt 12 or 3.464 M1 calc area from " 3.464 " to 3.64 A1 0.045 or better, not 0.046
		4	

Question	Answer	Marks	Guidance
7(i)	$\mathrm{H}_{0}: \mu=51 \quad \mathrm{H}_{1}: \mu<51$	B1	Or popn mean ...
	$\bar{x}=\frac{7480}{150}=49.8667=49.9$	B1	
	$\begin{aligned} & s^{2}=\frac{150}{149}\left(\frac{380000}{150}-\left(\frac{748}{15}\right)^{2}\right) \\ & =46.9620=47.0 \text { or } s=6.85 \end{aligned}$	M1	Correct subst in s^{2} or $\sqrt{s^{2}}$ formula Biased var scores M0
		M1	Allow 49.8667 to 49.9 in numerator Need sqrt 150
	$=(-) 2.025=(-) 1.965$	A1	Accept 2.02 or 2.03 Accept -2.0264-1.9651 provided correct working
	$\operatorname{comp} z=1.96$	M1	or comp $1-\phi(2.025)$ with 0.025
	There is evidence that $\mu<51$	A1 ft	no contradictions biased var B1B1M0M1A0M1A1ft (max 5/7) accept cv method $\mathrm{x}_{\text {crit }}=49.9028 \quad$ M1A1 $49867<49.9 \ldots$ M1A1
		7	
7(ii)	$\frac{\frac{z}{6}-51}{\frac{8.85}{\sqrt{150}}}=-1.96$	M1	Need 51 and sqrt 150 and correct form
	$\bar{x}=51-1.097=49.9$ Rejection region is $\bar{x}<49.9$	A1	This may have been found in part (i)
	$\frac{49.9-49}{\frac{6.850}{\sqrt{150}}} \quad(=1.608 \text { to } 1.614)$	M1	Need 49 and sqrt 150 and correct form
	$\mathrm{P}(\bar{x}>49.9 \mid \mu=49)=1-\Phi\left({ }^{\prime} 1.608^{\prime}\right)$	M1	
	$\mathrm{P}($ Type II error $)=0.0539$	A1	Allow 0.0533 to 0.0539
		5	

Cambridge
International
AS \& A Level

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS
9709/71
Paper 7
May/June 2018
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$\operatorname{est}(\mu)(=153.2 \div 75)=2.04(3 \mathrm{sf})$	B1	
	$\operatorname{est}\left(\sigma^{2}\right)=\frac{75}{74}\left(\frac{340.24}{75}-22.04267^{\prime 2}\right) \mathrm{oe}$	M1	
	$=0.369(3 \mathrm{sf})$	$\mathbf{A 1}$	Accept 0.368
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$2(\mathrm{i})$	$\frac{20}{100} \pm z \times \sqrt{\frac{0.2 \times(1-0.2)}{100}}$	M1	Any z
	$z=1.881$ or 1.882	B1	
	$=0.125$ to 0.275	A1	
		$\mathbf{3}$	
	$\frac{1}{6}$ is within this range No evidence of bias concerning 2	B1ft	Both statements needed
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
3	$\mathrm{~N}(153,153)$	B1	Seen or implied
	$\frac{139.5-153}{\sqrt{" 153^{\prime}}} \quad(=-1.091)$	M1	Allow with wrong or no cc
	$\phi("-1.091 ")=1-\phi(" 1.091 ")$	M1	For area consistent with their working
	$=0.138(3$ sf $)$	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	mean $=155.1$	B1	
	$\mathrm{var}=1.5^{2} \times 10.2 \quad(=22.95)$ $\mathrm{sd}=\sqrt{ } 22.95 "$	$\mathbf{M 1}$	or $1.5 \times \sqrt{ } 10.2$
	$=4.79$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4(ii)	$\begin{aligned} & \text { mean }=103.4+" 155.1 "(=258.5) \\ & \text { var }=10.2+" 22.95 "(=33.15) \end{aligned}$	B1ft	Both. ft their 155.1 and 22.95. Accept sd.
	$\frac{250-" 258.5 "}{\sqrt{" 33.15 "}} \quad(=-1.476)$	M1	Standardising - no sd/var mix. Their mean/sd must be from an attempt at combination
	$1-\phi(-1.476)=\phi(1.476)$	M1	For area consistent with their working
	$=0.930$ (3 sf)	A1	Allow 0.93
		4	

Question	Answer	Marks	Guidance
5(i)	$\frac{14-14.2}{\frac{3.1}{\sqrt{50}}} \quad(=-0.456)$	M1	For stand'n; must have $\sqrt{ } 50$
	$1-\Phi\left({ }^{\prime} 0.456\right.$ ")	M1	for area consistent with their working
	$=0.324$ (3 sfs)	A1	
		3	
5(ii)	No because n large	B1	Accept $\mathrm{n}>30$
		1	
5(iii)	$\begin{aligned} & \mathrm{H}_{0}: \mu=14.2 \\ & \mathrm{H}_{1}: \mu<14.2 \end{aligned}$	B1	or 'pop mean', but not just 'mean'
	$\frac{13.5-14.2}{\frac{3.1}{\sqrt{100}}}$	M1	For stand'n; must have $\sqrt{ } 100$
	$=-2.258$	A1	
	comp -2.054 (or -2.055)	M1	Valid comparison of z values or areas ($0.0119<0.02$)
	There is evidence (at 2% level) that mean mass in this area < 14.2	A1ft	Ft their z. Correct conclusion no contradictions
		5	

Question	Answer	Marks	Guidance
6(i)	$\int_{5}^{10} \frac{k}{x^{2}} \mathrm{~d} x=1$	M1	Attempt integration $\mathrm{f}(x)$ and ' $=1$ '; ignore limits
	$\begin{aligned} & {\left[-\frac{k}{x}\right]_{5}^{10}=1 \mathrm{oe}} \\ & \left(\frac{k}{5}-\frac{k}{10}=1\right) \end{aligned}$	A1	Correct integration and limits and ' $=1$ '
	$k=10 \mathbf{A G}$	A1	No errors seen
		3	
6(ii)	$\begin{aligned} & 10 \int_{5}^{10} \frac{1}{x} \mathrm{~d} x \\ & 10[\ln x]_{5}^{10} \end{aligned}$	M1	Attempt integ $x \mathrm{f}(x)$; ignore limits. or $10(\ln 10-\ln 5)$
	$=10 \ln 2 \mathrm{AG}$	A1	No errors seen
		2	
6(iii)	$\begin{aligned} & 10 \int_{9}^{10} \frac{1}{x^{2}} \mathrm{~d} x \\ & \left(10\left[-\frac{1}{x}\right]_{9}^{10}\right) \end{aligned}$	M1	Attempt integ $\mathrm{f}(\mathrm{x})$ with correct limits
	$10\left[-\frac{1}{10}+\frac{1}{9}\right]$	A1	Substitute correct limits in correct integration
	$=\frac{1}{9}$ or 0.111 (3 sf)	A1	
		3	
6(iv)	$\begin{aligned} & \int_{5}^{a} \frac{k}{x^{2}} \mathrm{~d} x=0.6 \\ & 10\left[-\frac{1}{x}\right]_{5}^{a}=0.6 \end{aligned}$	M1	Attempt integration of $\mathrm{f}(x)$ with correct limits and $=0.6$
	$10\left[\frac{1}{5}-\frac{1}{a}\right]=0.6$	A1	Substitute correct limits in correct integration
	$a=\frac{50}{7}$ or 7.14 (3 sf)	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	$\mathrm{Po}(1.0)$	B1	Seen or implied
	$\mathrm{e}^{-1}\left(1+1+\frac{1^{2}}{2}\right)$	M1	Allow any λ. Allow one end error.
	$=0.920$ (3 sfs)	A1	
		3	
7(ii)	$\mathrm{P}(X>3)=1-\mathrm{e}^{-1.5}\left(1+1.5+\frac{1.5^{2}}{2}+\frac{1.5^{3}}{3!}\right)$	M1	Allow any λ. Allow one end error
	$=0.0656$	A1	
		2	
7(iii)(a)	Incorrectly concluding that more absences than usual when there are not oe	B1	In context
		1	
7(iii)(b)	$\begin{aligned} & \mathrm{H}_{0}: \lambda=1.5(\text { or } 0.3) \\ & \mathrm{H}_{1}: \lambda>1.5(\text { or } 0.3) \end{aligned}$	B1	Or μ Both
	$\begin{aligned} & \mathrm{P}(X>4)=" 0.0656 "-\mathrm{e}^{-1.5} \times \frac{1.5^{4}}{4!} \\ & =0.0186(3 \mathrm{sf}) \end{aligned}$	M1	or $1-\mathrm{e}^{-1.5}\left(1+1.5+\frac{1.5}{2}+\frac{1.5^{3}}{3!}+\frac{1.5{ }^{4}}{4!}\right)$
	$\mathrm{P}($ Type I$)=0.0186$ or 0.0185	A1ft	Ft their $\mathrm{P}(X>4)$ if less than 0.05
		3	
7(iii)(c)	$\mathrm{P}(X>3)=" 0.0656 "$	B1ft	Ft their (ii)
	$0.0656>0.05$	M1	
	No evidence of more than usual male absences	A1ft	Ft their $\mathrm{P}(\mathrm{X}>3)$. Correct conclusion. No contradictions.
		3	

Cambridge Assessment International Education

Cambridge International Advanced Level

MATHEMATICS
 9709/72

Paper 7
May/June 2018
MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR-1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$\lambda=4.4$	B1	
	$\mathrm{P}(X<4)=\mathrm{e}^{-4.4}\left(1+4.4+\frac{4.4^{2}}{2}+\frac{4.4^{3}}{3!}\right)$	$\mathbf{M 1}$	Allow any λ allow one end error
	$=0.359$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	A: $\mathrm{N}(6,4.8)$	B1 B1	B1 for $\mathrm{N}(6, .$.$) for either A or B. B1 for 4.8$ (or 2.19²) (or SD=2.19)
	B: $\mathrm{N}(6,2.4)$	B1	B1 For 2.4 (or 1.55

Question	Answer	Marks	Guidance
3 (i)	$52 \pm z \times \frac{6.5}{\sqrt{15}}$	M1	Expression of the correct form. Any z
	$z=1.96$	B1	Seen or used
	48.7 to $55.3(3 \mathrm{sf})$	A1	Must be an interval
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
3 (ii)	Narrower because more information or because $\frac{\sigma}{\sqrt{n}}$ smaller	$\mathbf{B 1}$	oe Accept 'sample size is larger' 'more employees' 'width inversely proportional to sq root of n' 'if n increases width decreases' '95\% CI is 49.7 to 54.3' or similar. No contradictions
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
4(i)	$\operatorname{Est}(\mu)=495.9$	B1	Accept 496
	$\operatorname{Est}\left(\sigma^{2}\right)=\frac{10}{9}\left(\frac{2459283}{10}-4495.9{ }^{2}\right)$	M1	Attempt Σx^{2} and subst in correct formula (1/9("2459283" - "4959" $/ 10$)). May be implied by correct answer
	$=12.8(3 \mathrm{sf})$ or $383 / 30$	A1	(Note: Biased var " 11.49 " scores M0 A0)
		3	
4(ii)	$\begin{aligned} & \mathrm{H}_{0}: \mu=505 \\ & \mathrm{H}_{1}: \mu<505 \\ & \frac{75660}{}=505 \\ & \frac{150}{3.6 \div \sqrt{150}} \end{aligned}$	B1	Allow 'Pop mean' but not just 'mean'
	$=-2.04$	M1	Correct stand'n; must have $\sqrt{ } 150$. No sd/var mixes. Condone sample SD (3.58/3.39) Accept standardisation of totals ((75660-75750)/44.091) Accept CV method
		A1	Accept +2.04 (Note: if valid area comparison done $0.0207 / 0.0206$ or 0.979 needed for A1)
	comp $z=-2.054$	M1	Valid comparison of z's or area (0.0207/6>0.02; $0.979(3)<0.98)$
	No evidence (at 2\%) that machine pkts mean mass < 505	A1ft	oe No contradictions. SC Two tail test can score B0 M1 A1 M1 for comparison with 2.326 A0 (max 3/5)
		5	

Question	Answer	Marks	Guidance
4 (iii)	Large sample, so sample mean approx normally distr'd	B1	Allow just 'Sample is large' or ' n is large' $n>30$
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
5(i)	$\frac{1}{2} \times a \times b=1$	M1	Attempt Δ area $=1$ or $\int(b-b x / \mathrm{a}) \mathrm{d} x=1$ with correct limits
	$b=\frac{2}{a}$	A1	
		2	
5(ii)	$\operatorname{grad}=-\frac{2}{a^{2}} \text { or }-\frac{b}{a}$	B1	allow without '-' sign (could be implied or seen in (i))
	$y-\left(\frac{2}{a}\right)=\operatorname{grad} \times x$ or $y=\operatorname{grad} \times(x-a)$	M1	correct use of $y=m x+c$ or $y-y_{1}=m\left(x-x_{1}\right)$ with $(0, \mathrm{~b})$ or $(\mathrm{a}, 0)$ including attempt at substitution of their b
	$\begin{aligned} & y-\left(\frac{2}{a}\right)=-\frac{2}{a^{2}} x \text { or } y=-\frac{2}{a^{2}}(x-a) \\ & \text { and } y=\frac{2}{a}-\frac{2}{a^{2}} x \quad \text { AG } \end{aligned}$	A1	No errors seen
		3	

Question	Answer	Marks	
$5(\mathrm{iii})$	$\int_{0}^{a}\left(\frac{2}{a} x-\frac{2}{a^{2}} x^{2}\right) \mathrm{d} x$	M1	Attempt int $x \mathrm{ff}(x)$ ignore limits
	$=\left[\frac{1}{a} x^{2}-\frac{2}{3 a^{2}} x^{3}\right]_{0}^{a}$	$\mathbf{A 1}$	Correct integration ignore limits
	$a-\frac{2}{3} a=0.5$	$\mathbf{M 1}$	Sub correct limits into their integral and $=0.5$
	$a=1.5$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
6 (i)	Accidents occur independently or randomly	$\mathbf{B 1}$	In context. Allow 'singly'.
		$\mathbf{1}$	
	$\mathrm{e}^{-2.5} \times \frac{2.54}{4!}$	$\mathbf{M 1}$	Poisson P(4), allow any λ
	$=0.134(3 \mathrm{sfs})$	$\mathbf{A 1}$	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
6(iii)	$\lambda=\frac{25}{12}$ or 2.08(333)	B1	
	$1-\mathrm{e}^{-\frac{25}{12}}\left(1+\frac{25}{12}+\frac{\frac{25}{2}^{12}}{2!}+\frac{25^{3}}{3!}\right)$	M1	1 - Poisson $\mathrm{P}(0,1,2,3)$, allow any λ allow one end error
	$=0.158(3 \mathrm{sfs})$	A1	As final answer
		3	
6(iv)	$\mathrm{N}\left(\frac{1825}{84}, \frac{1825}{84}\right)$ or $\mathrm{N}(21.7(26), 21.7(26))$	B1	Stated or implied
	$\frac{29.5-\frac{1825}{84}}{\sqrt{\frac{1825}{84}}}$	M1	Allow with wrong or no cc with their mean/sd
	Φ ("1.668")	M1	Correct area consistent with their working
	$=0.952(3 \mathrm{sfs})$	A1	
		4	

Question	Answer	Marks	Guidance
7(i)	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(10)=0.1 \\ & \mathrm{H}_{1}: \mathrm{P}(10)>0.1 \end{aligned}$	B1	Both. Allow ' p ' for P(10)
	$\begin{aligned} & \mathrm{B}(9,0.1) \\ & \mathrm{P}(X \geqslant 3)= \\ & 1-\left(0.9^{9}+9 \times 0.9^{8} \times 0.1+{ }^{9} \mathrm{C}_{2} \times 0.9^{7} \times\right. \\ & \left.0.1^{2}\right) \end{aligned}$	M1	Allow one extra term in bracket
	$=0.05297 \ldots$ or 0.053(0)	A1	
	comp 0.01	M1	Valid comparison. (comparison with 0.99 can recover previous M1 A1 for 0.9470)
	No evidence (at 1% level) to reject H_{0} Claim not justified	A1ft	No contradictions
		5	
7(ii)	H_{0} not rejected oe	B1	
		1	
7(iii)	$\begin{aligned} & \mathrm{P}(X \geqslant 4) \\ & =" 0.05297 "-{ }^{9} \mathrm{C}_{3} \times 0.9^{6} \times 0.1^{3} \end{aligned}$	M1	or $1-\left(0.9^{9}+9 \times 0.9^{8} \times 0.1+{ }^{9} \mathrm{C}_{2} \times 0.9^{7} \times 0.1^{2}+{ }^{9} \mathrm{C}_{3} \times 0.9^{6} \times 0.1^{3}\right)$
	$=0.00833$	A1	Note: 0.05297 and 0.00833 both needed in (i) or (iii) to justify CV
	Hence crit value is 4	B1	Allow without working. Or in (i) May be implied by attempt at $\mathrm{P}(X<4)$ below
	$\begin{aligned} & \mathrm{B}(9,0.5) \\ & \mathrm{P}(X<4) \end{aligned}$	M1	stated or implied
	$\begin{aligned} & =0.5^{9}+9 \times 0.5^{8} \times 0.5+{ }^{9} \mathrm{C}_{2} \times 0.5^{7} \times \\ & 0.5^{2}+{ }^{9} \mathrm{C}_{3} \times 0.5^{6} \times 0.5^{3} \end{aligned}$	M1	Attempt $\mathrm{P}(X<4)$ with $p=0.5$
	$\mathrm{P}($ Type II) $=0.254(3 \mathrm{sf})$	A1	
		6	

Cambridge Assessment International Education

Cambridge International Advanced Level

MATHEMATICS

9709/73
Paper 7
May/June 2018
MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2 .

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR-1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(i)	$\mathrm{Po}(2.25)$	B1	Stated or implied
	$\mathrm{e}^{-2.25}\left(1+2.25+\frac{2.25^{2}}{2}\right)$	M1	Allow any λ, one end error
	$=0.609(3 \mathrm{sf})$	A1	SC B1 Use of $\mathrm{B}(75,0.03)$ leading to 0.608
		3	
1(ii)	$\mu=2.25$, which is less than $5 ; \mathrm{n}$ large	B1	Allow $\mathrm{np}<5$ and n large or $\mathrm{p}<0.1$ and $\mathrm{n}>50$, no contradictions
		1	

Question	Answer		Marks	Guidance
2(i)	213, 165, 73, 196	Allow 073	B1	For 3-digit no, <265, consisting of three consecutive integers from given digits, backwards or forward. (73 or 073 counts as a 3-digit no.)
			B1	For another three such. Other answers may be valid. If other method used, method must be clear
			2	

Question	Answer	Marks	Guidance
2(ii)	$\frac{510}{25}=\frac{102}{5} \text { or } 20.4$	B1	
	$\frac{25}{24}\left[\frac{13225}{25}-\left(\frac{102}{5}\right)^{2}\right]$	M1	$\frac{1}{24}\left(13225-\frac{510^{2}}{25}\right)$
	$118(3 \mathrm{sf}) \text { or } \frac{2821}{24}$	A1	
		3	
2(iii)	(Average) weekly earnings of all students in Amy's year	B1	Not 'All students in Amy's year'
		1	

Question	Answer	Marks	Guidance
3	$\frac{\frac{8}{64} \times\left(1-\frac{8}{64}\right)}{64} \quad\left(=\frac{7}{4096} \text { or } 0.00171\right)$	M1	$\text { OE, e.g. } \frac{\frac{1}{8} \times \frac{7}{8}}{64}$
	$2 \times z \sqrt{\frac{7}{4096} "}=0.130$	M1	Correct equation using their variance
	$z=1.572$	A1	
	$\begin{aligned} & \phi(" 1.572 ") \quad(=0.942) \\ & (0.942-(1-0.942)=0.884) \end{aligned}$	M1	$2 \phi($ their $z)-1$
	$\alpha=88$	A1	CAO
		5	

Question	Answer	Marks	Guidance
4(i)	No of males leaving (to do eng) each yr has const mean Males leave (to do eng) indep of other males leaving (to do eng) or Males leave (to do eng) at random	B1	One of these or any equiv statement in context.
		1	
4(ii)	$\lambda=3.9$	B1	
	$1-\mathrm{e}^{-3.9}\left(1+3.9+\frac{3.9^{2}}{2!}+\frac{3.9^{3}}{3!}\right)$	M1	Any λ. Allow one end error or extra term.
	0.546753 or 0.547 (3 sf)	A1	
		3	
4(iii)	$\begin{aligned} & \mathrm{P}(F=0 \text { and } M>3)= \\ & \mathrm{e}^{-0.8} \times\left[1-e^{-3.1}\left(1+3.1+\frac{3.1^{2}}{2!}+\frac{3.1^{3}}{3!}\right)\right] \\ & (=0.16857) \end{aligned}$	M1	Attempt $\mathrm{P}(F=0) \times \mathrm{P}(M>3)$ allow one end error for $\mathrm{P}(M>3)$ provided $\lambda=3.1$
	$\begin{aligned} & \frac{\mathrm{P}(\mathrm{~F}=0 \text { and } \mathrm{M}>3)}{\mathrm{P}(\mathrm{M}+\mathrm{F}>3)} \\ & \frac{" 0.16857 "}{" 0.54675 "} \end{aligned}$	M1	Attempted, allow any probability/their (ii) provided the answer is <1
	$=0.308(3 \mathrm{sf})$	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	Assume (pop) sd same (0.3) H_{0} : Pop mean $=2.4$	B1	
	$\mathrm{H}_{1}:$ Pop mean $\neq 2.4$	B1	Allow ' μ ' but not just 'mean'
	$\pm \frac{2.3-2.4}{\frac{0.3}{\sqrt{30}}}$	M1	Must have $\sqrt{30}$, Critical region approach $(2.293,2.507)$ or $(2.193$, 2.407)
	$= \pm 1.826$	A1	
	comp $z= \pm 1.96$	M1	Valid comparison (e.g. compare 0.034 with 0.025)
	No evidence that mean time changed	A1f	In context, allow accept H_{0} if correctly defined, no contradictions. One-tail test can score B1, B0, M1, A1, M1, A0 Max 4/6
		6	
5(ii)(a)	0.05	B1	
		1	
5(ii)(b)	Concluding mean time has not changed when it has.	B1	OE, must have e.g. conclude/accept SR Allow mean has decreased if a one tailed test in Part (i)
		1	

Question	Answer	Marks	Guidance
6(i)	$\begin{array}{ll} \mathrm{E}(T)=4.5+2.3 & (=6.8) \\ \operatorname{Var}(T)=1.1^{2}+0.7^{2} & (=1.7) \end{array}$	M1	Both methods seen or implied
	$\frac{8.5-" 6.8 "}{\sqrt{11.7 "}}$ $(=1.304)$	M1	Correct stand'n using their μ and σ^{2} must be a combination of the two variables
	$\phi(" 1.304 ")$	M1	Area consistent with their working
	$=0.904(3 \mathrm{sf})$	A1	
		4	
6(ii)	$\mathrm{E}(D)=4.5-2 \times 2.3 \quad$ or -0.1	M1	
	$\operatorname{Var}(D)=1.1^{2}+2^{2} \times 0.7^{2} \quad$ or 3.17	M1	Both can seen or implied
	$\frac{0-\left('-0.1^{\prime}\right)}{\sqrt{ } 3.17^{\prime}} \quad(=0.056)$	M1	Correct stand'n using their μ and σ^{2} must be a Combination of the two variables
	$1-\phi(" 0.056 ")$	M1	Area consistent with their working
	$=0.478(3 \mathrm{sf})$	A1	
		5	

Question	Answer	Marks	Guidance
7(i)	$k \int_{1}^{2}\left(\frac{1}{x^{2}}+\frac{1}{x^{3}}\right) \mathrm{d} x=1$	M1	Attempt integ $\mathrm{f}(x) \&{ }^{\prime}=1$ '; ignore limits
	$k\left[-\frac{1}{x}-\frac{1}{2 x^{2}}\right]_{1}^{2}=1$	A1	Correct integral \& limits \& ' $=1$ '
	$\begin{aligned} & k\left[-\frac{1}{2}-\frac{1}{8}+1+\frac{1}{2}\right]=1 \\ & k=\frac{8}{7} \quad \mathbf{A G} \end{aligned}$	A1	Sufficient working must be shown, no errors seen
		3	
7(ii)	$\frac{8}{7} \int_{1}^{2}\left(\frac{1}{x}+\frac{1}{x^{2}}\right) \mathrm{d} x$	M1	Attempt integ $x \mathrm{f}(x)$, ignore limits
	$=\frac{8}{7}\left[\ln x-\frac{1}{x}\right]_{1}^{2}$	A1	Correct integral \& limits, condone missing k
	$=\frac{8}{7}\left(\ln 2+\frac{1}{2}\right) \quad \text { or } 1.36(3 \mathrm{sf})$	A1	
		3	

Question	Answer	Marks	Guidance
7(iii)	$\begin{aligned} & \frac{8}{7} \int_{1}^{1.5}\left(\frac{1}{x^{2}}+\frac{1}{x^{3}}\right) \mathrm{d} x \\ & =\frac{8}{7}\left[-\frac{1}{x}-\frac{1}{2 x^{2}}\right] \\ & \hline 1.5 \end{aligned}$	M1	Attempt integration $\mathrm{f}(x)$ between 1 and 1.5 or between 1.5 and 2
	$=\frac{44}{63} \quad \text { or } 0.698 \ldots \ldots$	A1	Or $\frac{19}{63}$ or 0.302
	$\cdot \frac{44}{63} '\left(1-\frac{44}{63}\right)^{2}$	M1	FT their $\frac{44}{63}$
	$\times 3$	M1	Independent provided answer is <1
	$=0.191$	A1	
		5	

Cambridge Assessment International Education
 Cambridge International Advanced Level

MATHEMATICS

9709/72
Paper 7 Probability and Statistics
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance		
1	$\frac{5-4.9}{\frac{2.21}{\sqrt{75}}}$	$(=0.392)$	M1		Correct stand'n. Must have $\sqrt{ } 75$
:---					

Question	Answer	Marks	Guidance
2	$\lambda=98.4$	B1	
	$\mathrm{N}(98.4,98.4)$ seen or implied	B1	
	$\frac{90.5-998.4 "}{\sqrt{" 988.4 "}} \quad(=-0.796)$	M1	allow with wrong or no cc. No sd/var mix.
	$\phi(" 0.796$ ")	M1	Correct area consistent with working
	$=0.787$ (3 sf)	A1	
		5	

Question	Answer	Marks	Guidance
3(i)	$\mathrm{E}\left(H_{A}\right)=6$	B1	
	$\operatorname{Var}\left(H_{A}\right)=5 \times 0.03^{2}$	M1	
	$=0.0045$ or $9 / 2000$	A1	
		3	
3(ii)	$\mathrm{E}\left(H_{A}-2 H_{B}\right)=0$	B1	From 6-6
	$\operatorname{Var}\left(H_{A}-2 H_{B}\right)={ }^{\prime} 0.0045{ }^{\prime}+4 \times 5 \times 0.02^{2}$	M2	Allow M1 for ' 0.0045 ' $-4 \times 5 \times 0.02^{2}$ or ${ }^{\prime} 0.0045^{\prime}+2 \times 5 \times 0.02^{2}$ or ${ }^{\prime} 0.0045^{\prime}$ $+4 \times 0.02^{2}$ or ${ }^{\prime} 0.0045^{\prime}+4 \times 5^{2} \times 0.02^{2}$
	$=0.0125$ (3 sf) or $1 / 80$	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	(Po)(2.4)	B1	seen or implied
	$\mathrm{e}^{-2.4}\left(1+2.4+\frac{2.4^{2}}{2}+\frac{2.4^{3}}{3!}\right)$	M1	allow $+\mathrm{P}(4) /$ one end error. Allow wrong λ
	$=0.779$ (3 sfs)	A1	Final answer (Note: accept combination method)
		3	
4(ii)	$\begin{aligned} & \left.\mathrm{H}_{0}: \lambda(\text { or mean })=3.6 \text { (or } 0.9\right) \\ & \mathrm{H}_{1}: \lambda \text { (or mean) }<3.6 \text { (or } 0.9 \text {) } \end{aligned}$	B1	Accept μ for both
	$\mathrm{e}^{-3.6}(1+3.6)$	M1	Allow any λ
	$=0.126$	A1	
	$0.126>0.1$	M1	Valid comparison. (Comparison with 0.9 could recover previous M1A1)
	No evidence that fewer than usual sold	A1FT	Correct conclusion. No contradictions
		5	

Question	Answer	Marks	Guidance
5(i)	$\mathrm{H}_{0}: \mathrm{P}($ Orange $)=0.17 \mathrm{H}_{1}: \mathrm{P}($ Orange $)<0.17$	B1	or $\mathrm{H}_{0}: p=0.17 \mathrm{H}_{1}: p<0.17$
5(ii)	Wrongly concluding that \% age is less than 17%	B1	OE in context allow "fewer than 3 orange in packet even though average 17% is correct"
		1	
5(iii)	$B(30,0.17)$ stated or implied	M1	eg by $0.17^{p} \times 0.83^{q}(p+q=30)$ or ${ }^{30} \mathrm{C}_{r}(r<30)$
	$\begin{aligned} & (1-0.17)^{30}+30(1-0.17)^{29} \times 0.17+{ }^{30} \mathrm{C}_{2}(1- \\ & 0.17)^{28} \times 0.17^{2} \end{aligned}$	M1	$\begin{aligned} & \text { correct, but allow }+{ }^{30} \mathrm{C}_{3}(1-0.17)^{27} \times \\ & 0.17^{3} \end{aligned}$
	$=0.0949$ (3 sf)	A1	(SR: use of $\mathrm{N}(5.1,4.233)$ M1 standardising (with or without cc) M1 max 2/3)
		3	

Question	Answer	Marks	Guidance
$5($ iv $)$	$\mathrm{P}(\geqslant 3$ orange $\mid p=0.05)$	M1	stated or attempted; can be implied
	$=1-\left[(0.95)^{30}+30(0.95)^{29} \times 0.05+{ }^{30} \mathrm{C}_{2}(0.95)^{28}\right.$ $\left.\times 0.05^{2}\right]$	$\mathbf{M 1}$	allow $+{ }^{30} \mathrm{C}_{3}(0.95)^{27} \times 0.05^{3}$ in bracket, or ans 0.0608
	$=0.188(3$ sfs $)$	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6(i)	$1-6 \int_{0.3}^{0.7}\left(x-x^{2}\right) \mathrm{d} x$	M1	or $2 \times 6 \int_{0}^{0.3}\left(x-x^{2}\right) \mathrm{d} x$ or similar correct expression before integration
	$1-\left[6\left(\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)\right]_{0.3}^{0.7}$	A1	or similar correct expression after integration
	$1-6\left[\frac{0.7^{2}}{2}-\frac{0.7^{3}}{3}-\frac{0.3^{2}}{2}+\frac{0.3^{3}}{3}\right]$	M1	Attempt subst correct limits in this or other correct expression
	$=0.432($ or 54/125)	A1	(SR1 Omission of ' $1-$ ' scores B2 for 0.568 or $71 / 125$) (SR2 Omission of ' 2 x ' scores B2 for 0.216 or $27 / 125$)
		4	
6(ii)	Correct shape between $x=0$ and 1	B1	No curve outside this range.
	$\mathrm{E}(\mathrm{X})=0.5$	B1	
		2	
6(iii)	$\begin{aligned} & 6 \int_{0}^{1}\left(x^{3}-x^{4}\right) \mathrm{d} x \\ & =\left[6\left(\frac{x^{4}}{4}-\frac{x^{5}}{5}\right)\right] \begin{array}{l} 1 \\ 0 \end{array} \end{aligned}$	M1	attempt int $x^{2} \mathrm{f}(x)$, ignore limits
	$6\left[\frac{1^{4}}{4}-\frac{1^{5}}{5}\right] \quad(=0.3)$	M1	attempt subst correct limits in correct integ
	$\begin{aligned} & \operatorname{Var}(X)={ }^{\prime} 0.3^{\prime}-{ }^{\prime} 0.5^{\prime 2} \\ & =0.05 \end{aligned}$	A1FT	FT their mean, dep their $\operatorname{Var}(X)>0$
		3	

Question	Answer	Marks	Guidance
7(i)	$\bar{x}=11.83$	B1	
	$11.83 \pm z \frac{0.1}{\sqrt{10}}$	M1	any z
	$z=2.576$	B1	accept 2.574 to 2.579
	[11.75 to 11.91]	A1	or equiv. Accept 11.7 to 11.9
		4	
7(ii)	No because pop normal (so \bar{X} normally distr)	B1	
		1	
7(iii)	11.7 not within CI	B1FT	
		1	
7(iv)	No because $95 \% \mathrm{CI}$ is narrower than 99% CI	B1	OE
		1	
7(v)	$\Sigma x^{2} \quad(=1399.67)$	M1	attempted
	$\operatorname{Est}\left(\sigma^{2}\right)=\frac{10}{9}\left(\frac{11399.67 "}{10}-\left(\frac{" 118.3}{10}\right)^{2}\right) \mathrm{OE}$	M1	correct sub of their Σs into correct formula
	$=0.0201(3 \mathrm{sf})$ or 181/9000	A1	
		3	

Cambridge Assessment International Education
Cambridge International Advanced Level

MATHEMATICS
 9709/71

Paper 7
MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	40.5-31 $\sqrt{31}$	M1	standn correct but allow with no or incorrect cc
	$1-\phi(" 1.706$ ")	M1	indep correct area consistent with working
	$=0.0441(3$ sf) or 0.0440	A1	not 0.044
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	Poisson	$\mathbf{B 1}$	seen or implied
	$\lambda=4.03$	$\mathbf{B 1}$	seen or implied
	$\mathrm{e}^{-4.03}\left(1+4.03+\frac{4.03^{2}}{2!}\right)$	$\mathbf{M 1}$	any λ; e.g. allow $\lambda=4$ no extra or missing terms
	$=0.234(3 \mathrm{sf})$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
3	$\begin{aligned} & \frac{153}{200}+z \times \sqrt{\frac{\frac{153}{200} \times \frac{200-153}{200}}{200}}=0.835 \\ & \left(\operatorname{Var}\left(P_{s}\right)=0.000898875\right) \\ & \text { (s.d. } 0.02998) \end{aligned}$	M1	
	$z=2.335$	A1	allow 2.33 or 2.34
	$2 \Phi(z)-1$	M1	or equivalent method indep
	$\alpha=98$	A1	allow 98.0 but not e.g. 98.04
		4	

Question	Answer	Marks	Guidance
4(i)	$300.1 \pm z \times \frac{0.9}{\sqrt{75}}$	M1	allow any value of z
	$z=2.576$	B1	allow 2.574 to 2.579
	299.83 to 300.37 (2 dps)	A1	answer must be seen to 2 dps need an interval
		3	
4(ii)	CI includes 300 so claim supported or justified or probably true	B1 FT	or equivalent FT from CI in (i)
		1	

Question	Answer	Marks	Guidance
5(i)	$\frac{1}{4} \int_{0}^{2}\left(x^{2}+x\right) \mathrm{d} x \quad\left(=\frac{1}{4}\left[\frac{x^{3}}{3}+\frac{x^{2}}{2}\right]_{0}^{2}\right)$	M1	Attempt integ $x \mathrm{f}(x)$, ignore limits
	$=\frac{1}{4}\left(\frac{8}{3}+2\right) \quad(-0)$	A1	Subst correct limits in correct integration
	$=\frac{7}{6} \mathrm{OE}$ or 1.17 (3 sf)	A1	
		3	
5(ii)	$\frac{1}{4} \int_{0}^{m}(x+1) \mathrm{d} x=0.5 \quad\left(=\frac{1}{4}\left[\frac{x^{2}}{2}+x\right]_{0}^{m}=0.5\right)$	M1	attempt integ $\mathrm{f}(x)$, limits 0 to unknown (or unknown to 2) and = 0.5
	$\begin{aligned} & \left.\frac{1}{4} \frac{\left(m^{2}\right.}{2}+m\right)=0.5 \\ & m^{2}+2 m-4=0 \\ & m=\frac{-2 \pm \sqrt{4+16}}{2} \text { OE } \end{aligned}$	A1	a correct equation in m (any form) or $\sqrt{5}-1$
	$m=1.24$	A1	must reject the negative value if there
		3	

Question	Answer	Marks	Guidance
6(i)	Mean $=3.2 \times 90=288$	B1	
	Variance $=0.4^{2} \times 90^{2}$	M1	
	$=1296$	A1	
		3	
6(ii)	Mean $={ }^{\prime} 288{ }^{\prime}+4.3 \times 95=696.5$	B1 FT	
	Variance $={ }^{\prime} 1296{ }^{\prime}+0.6^{2} \times 95^{2}=4545$	B1 FT	FT their (i)
	$\frac{670-696.5}{\sqrt{4545}} \quad(=-0.393)$	M1	FT Var provided both given Vars used standardising (ignore cc) no sd / Var mix
	$1-\phi\left({ }^{\prime}-0.393{ }^{\prime}\right)=\phi\left({ }^{\prime} 0.393\right)$	M1	correct area consistent with their working (i.e. their mean)
	$=0.653(3 \mathrm{sf})$	A1	
		5	

Question	Answer	Marks	Guidance
7(i)	H_{0} : mean no. sales $=3.5$	B1	or ".. = 0.7 (per day)"
	H_{1} : mean no. sales >3.5	M1	allow ' λ ' or ' μ ' but not just 'mean'
	$\begin{aligned} & \mathrm{P}(X \geqslant 5)=1-\mathrm{e}^{-3.5}(1+3.5+ \\ & \left.\frac{3.5^{2}}{2!}+\frac{3.55^{3}}{3!}+\frac{3.5^{4}}{4!}\right) \end{aligned}$	M1	
	$=0.275$	A1	allow 0.274
	Comp with 0.10	M1	valid comparison using Poisson
	No evidence (at 10%) to believe that sales per day have increased	A1 FT	correct conclusion FT no contradictions
		6	

Question	Answer	Marks	Guidance
7 (ii)	$\lambda=3.9$	B1	
	$\mathrm{e}^{-3.9} \times \frac{3.2^{2}}{2!}$	M1	any $\lambda(\neq 0.7$ or 0.6$)$, single term
	$=0.154(3 \mathrm{sf})$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
8(i)	$\bar{x}=27 / 150(=0.18)$	B1	
	$\begin{aligned} & s=\sqrt{\frac{150}{149}} \times \sqrt{\frac{5.01}{150}-0.18^{2}} \text { or variance } \\ & (=0.031729) \\ & (\text { var }=3 / 2980=0.0010067) \end{aligned}$	M1	or var $=1 / 149\left(5.01-27.0^{2} / 150\right)$
	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }=0.185 \\ & \mathrm{H}_{1}: \text { Pop mean }<0.185 \end{aligned}$	B1	allow just ' μ '
	$\frac{0.18-0.185}{\frac{'_{0}^{0.031729)^{\prime}}}{\sqrt{150}}}$	M1	standardising, need $\sqrt{150}$
	$=(-) 1.930(3 \mathrm{sfs})$ or 1.93	A1	
	Comp with $z=(-) 2.326$	M1	$\begin{aligned} & \text { consistent signs } \\ & \text { or using probs } 0.0268>0.01 \text { or } 0.9732 \\ & <0.99 \\ & \text { or using } \mathrm{x}_{\text {crit }} 0.18>0.17897 \end{aligned}$
	There is no evidence (at 1% level) that concentration with drug is less than without drug	A1 FT	conclusion FT no contradictions
		7	

Question	Answer		Marks	Guidance
8(ii)	$\frac{c v-0.185}{\frac{0.031729}{\sqrt{150}}}(=-2.326)$		M1	must use 0.185 and $\sqrt{150}$
	$=0.17897$ or 0.179		A1	acceptance region (for H_{0}) is >0.179
	$\frac{" 0.17897 "-0.175}{\frac{.0 .031729}{\sqrt{150}}}$	(=1.534)	M1	must use 0.175 and $\sqrt{150}$
	1 - ϕ ("1.534")		M1	indep mark
	$=0.0625(3 \mathrm{sf})$		A1	Accept 0.0610 to 0.0628
			5	

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The $P A-1$ penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1(a)(i)	$\mathrm{Po}(2.54)$	M1	seen or implied $\operatorname{Po}(2540 \times 0.001)$
	$1-\mathrm{e}^{-2.54}(1+2.54)$	M1	any λ Allow 1 end error
	$=0.721(3 \mathrm{sf})$	A1	
		3	
1(a)(ii)	n large and p small (or $n p(=2.54)<5$)	B1	$n>50, p<0.1$
		1	
1(b)	$\mu=5.6$	B1	
	$\sigma=2.37$ (3 sf)	B1	Accept $\sqrt{ } 5.6$
		2	

Question	Answer	Marks	Guidance
$2(\mathrm{i})$	$4820 \pm z \times \frac{1420}{\sqrt{125}}$	M1	Must be a z value
	$z=2.326$	$\mathbf{B 1}$	Accept $2.326-2.329$
	$4524 / 4525$ to $5115 / 5116$ or 4520 to $5120(3 \mathrm{sf})$	A1	Must be an interval
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$2(\mathrm{ii})$	$\bar{x}=4840$	$\mathbf{B 1}$	or width $=280$ or half width $=140$
	$4840+1.96 \times \frac{1420}{\sqrt{n}}=4980$ OE	M1	or $140=1.96 \times \frac{1420}{\sqrt{n}} \quad$ OE
	$n=395$	$\mathbf{A 1}$	CAO must be an integer
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
3(i)	$\bar{m}=\frac{98.2}{100}=0.982$	B1	Accept either
	$\begin{aligned} & s=\sqrt{\frac{100}{99}} \times \sqrt{\frac{104.52}{100}-0.982^{2}} \quad(=0.28582) \\ & \text { or var }=0.08169 \end{aligned}$	M1	
	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean mass }=1.01 \\ & \mathrm{H}_{1}: \text { Pop mean mass }<1.01 \end{aligned}$	B1	not just 'mean', but allow just ' μ '
	$\pm \frac{0.982-1.01}{\frac{0.28582}{\sqrt{100}}}$	M1	$\begin{equation*} \pm \frac{0.982-1.01}{\frac{0.2843 .87}{\sqrt{100}}} \tag{M1} \end{equation*}$
	$=-0.980$ (3 sf) accept \pm	A1	$=-0.985(3 \mathrm{sfs})$ accept $\pm \quad$ A1
	Comp with $z=-1.645$ (or areas $0.1635>0.05$)	M1	Valid comparison of z 's or area's
	No evidence that (mean) mass is less than 1.01	A1 FT	Correct conclusion FT their z
		7	

Question	Answer	Marks	Guidance
3 (ii)	Distr of X normal (so distr of \bar{X} normal) Must state or imply No	B1	X/parent population
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
4(i)	$k \int_{0}^{a} \frac{1}{\sqrt{x}} \mathrm{~d} x=1$	M1	Attempt int $\mathrm{f}(x)$ and $=1$ ignore limits
	$\begin{array}{ll} \left(2 k\left[x^{0.5}\right]_{0}^{a}=1\right) & \\ 2 k a^{0.5}=1 & \text { or } a=\frac{1}{4 k^{2}} \end{array}$	A1	OE; a correct eqn in $k \& a$ after sub limits
	$k \int_{0}^{a} \frac{x}{\sqrt{x}} \mathrm{~d} x=3$	M1	Attempt int $x \mathrm{f}(x)$ and $=3$
	e.g. $\frac{2}{3} k a^{1.5}=3 \quad$ or $a^{3}=\frac{81}{4 k^{2}}$	A1	OE; a correct eqn in k and a after sub limits
	e.g. $a^{2}=81 \quad$ or e.g. $k^{2}=\frac{81}{4 \times 9^{3}}$	M1	Attempt eliminate one letter
	$a=9$	A1	Convincingly obtained
	$\begin{aligned} & \text { e.g. } k=\frac{9}{54} \\ & k=\frac{1}{6} \end{aligned}$	A1	
		7	

Question	Answer	Marks	Guidance
4 (ii)	$\int_{0}^{m} \frac{1}{\sqrt{x}} \mathrm{~d} x=0.5$ OE	M1	Attempt int $\mathrm{f}(x)$, unknown limit and $=0.5$
		A1	a correct equn in m after sub limits
	$m=2.25$	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
5(i)	$\mathrm{E}(X-Y)=56-43 \quad(=13)$	B1	
	$\operatorname{Var}(X-Y)=6^{2}+5^{2} \quad(=61)$	M1	
	$\frac{0-13}{\sqrt{611}} \quad(=-1.664)$	M1	Ignore any attempted cc/no SD/var mixes. var must be attempt at a combination
	$1-\phi\left({ }^{\prime}-1.664^{\prime}\right)=\phi\left({ }^{\prime} 1.664^{\prime}\right)$	M1	For area consistent with their working
	$=0.952(3 \mathrm{sf})$	A1	Similar scheme for use of $Y-X$
		5	

Question	Answer	Marks	Guidance
5(ii)	$\mathrm{E}(M)=56+1.5(43) \quad(=120.5)$	B1	
	$\operatorname{Var}(M)=6^{2}+1.5^{2} \times 5^{2} \quad(=92.25)$	M1	
	$\frac{135-120.5}{\sqrt{92.25}}$ $(=1.510)$	M1	Ignore any attempted cc/no SD/var mixes. var must be attempt at a combination
	$1-\phi(' 1.510 ')$	M1	For area consistent with their working
	$=0.0655 \text { or } 0.0656 \text { or } 6.55 \% \text { or } 6.56 \%(3 \mathrm{sf})$ As final answer	A1	Allow 6.6% or 6.5% or 7\% if correct working seen
		5	

Question	Answer	Marks	Guidance
6(i)	H_{0} : Pop mean no. defectives $=5.15$ H_{1} : Pop mean no. defectives <5.15	B1	$\text { or ' }=1.03 \text { (per day) }{ }^{\prime}$ not just 'mean', but allow just ' λ ' or ' μ '
	$\mathrm{P}(X \leqslant 2)$	M1	Attempted. Any one term error/end error/incorrect $\lambda /$ expression 1-...
	$=\mathrm{e}^{-5.15}\left(1+5.15+\frac{5.15^{2}}{2}\right)$	M1	Correct expression attempted
	$=0.113$	A1	
	Comp with 0.1	M1	Valid comparison
	No evidence to believe mean no. of defectives has decreased	A1 FT	Correct conclusion (FT their value) No contradictions
		6	

Question	Answer	Marks	Guidance
6(ii)	$\begin{aligned} & \text { BOTH } \mathrm{P}(X \leqslant 1)=\mathrm{e}^{-5.15}(1+5.15)(=0.0357) \text { AND } \mathrm{P}(X \leqslant 2)== \\ & \mathrm{e}^{-5.15}\left(1+5.15+\frac{5.15^{2}}{2}\right)=(0.113) \end{aligned}$	B1*	(Could be seen in (i))
	Comp either with 0.1	DB1	One comparison with 0.01 (could be seen in (i))
	$\mathrm{P}($ Type I error) $=0.0357(3 \mathrm{sf})$	B1	
		3	
6(iii)	Actually mean $=1.03$ but conclude that mean <1.03	B1	Mean no. of defectives not reduced, but conclude that it is reduced.
		1	

Cambridge Assessment International Education

Cambridge International Advanced Level

MATHEMATICS

9709/73
Paper 7
MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\oplus}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0 .
$B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.
- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through' marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	40.5-31 $\sqrt{31}$	M1	standn correct but allow with no or incorrect cc
	$1-\phi(" 1.706$ ")	M1	indep correct area consistent with working
	$=0.0441(3$ sf) or 0.0440	A1	not 0.044
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	Poisson	$\mathbf{B 1}$	seen or implied
	$\lambda=4.03$	$\mathbf{B 1}$	seen or implied
	$\mathrm{e}^{-4.03}\left(1+4.03+\frac{4.03^{2}}{2!}\right)$	$\mathbf{M 1}$	any λ; e.g. allow $\lambda=4$ no extra or missing terms
	$=0.234(3 \mathrm{sf})$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
3	$\begin{array}{l}\frac{153}{200}+z \times \sqrt{\frac{153}{200} \times \frac{200-153}{200}} \\ \left(\operatorname{Var}\left(P_{s}\right)=0.000898875\right) \\ (\text { s.d. } 0.02998)\end{array}$	0.835	M1

Question	Answer	Marks	Guidance
4(i)	$300.1 \pm z \times \frac{0.9}{\sqrt{75}}$	M1	allow any value of z
	$z=2.576$	B1	allow 2.574 to 2.579
	299.83 to 300.37 (2 dps)	A1	answer must be seen to 2 dps need an interval
		3	
4(ii)	CI includes 300 so claim supported or justified or probably true	B1 FT	or equivalent FT from CI in (i)
		1	

Question	Answer	Marks	Guidance
5(i)	$\frac{1}{4} \int_{0}^{2}\left(x^{2}+x\right) \mathrm{d} x \quad\left(=\frac{1}{4}\left[\frac{x^{3}}{3}+\frac{x^{2}}{2}\right]_{0}^{2}\right)$	M1	Attempt integ $x \mathrm{f}(x)$, ignore limits
	$=\frac{1}{4}\left(\frac{8}{3}+2\right) \quad(-0)$	A1	Subst correct limits in correct integration
	$=\frac{7}{6} \mathrm{OE}$ or 1.17 (3 sf)	A1	
		3	
5(ii)	$\frac{1}{4} \int_{0}^{m}(x+1) \mathrm{d} x=0.5 \quad\left(=\frac{1}{4}\left[\frac{x^{2}}{2}+x\right]_{0}^{m}=0.5\right)$	M1	attempt integ $\mathrm{f}(x)$, limits 0 to unknown (or unknown to 2) and $=0.5$
	$\begin{aligned} & \left.\frac{1}{4} \frac{\left(m^{2}\right.}{2}+m\right)=0.5 \\ & m^{2}+2 m-4=0 \\ & m=\frac{-2 \pm \sqrt{4+16}}{2} \mathrm{OE} \end{aligned}$	A1	a correct equation in m (any form) or $\sqrt{5}-1$
	$m=1.24$	A1	must reject the negative value if there
		3	

Question	Answer	Marks	Guidance
6(i)	Mean $=3.2 \times 90=288$	B1	
	Variance $=0.4^{2} \times 90^{2}$	M1	
	$=1296$	A1	
		3	
6(ii)	Mean $={ }^{\prime} 288{ }^{\prime}+4.3 \times 95=696.5$	B1 FT	
	Variance $={ }^{\prime} 1296{ }^{\prime}+0.6^{2} \times 95^{2}=4545$	B1 FT	FT their (i)
	$\frac{670-696.5}{\sqrt{4545}} \quad(=-0.393)$	M1	FT Var provided both given Vars used standardising (ignore cc) no sd / Var mix
	$1-\phi\left({ }^{\prime}-0.393{ }^{\prime}\right)=\phi\left({ }^{\prime} 0.393\right)$	M1	correct area consistent with their working (i.e. their mean)
	$=0.653(3 \mathrm{sf})$	A1	
		5	

Question	Answer	Marks	Guidance
7(i)	H_{0} : mean no. sales $=3.5$	B1	or ".. = 0.7 (per day)"
	H_{1} : mean no. sales >3.5	M1	allow ' λ ' or ' μ ' but not just 'mean'
	$\begin{aligned} & \mathrm{P}(X \geqslant 5)=1-\mathrm{e}^{-3.5}(1+3.5+ \\ & \left.\frac{3.5^{2}}{2!}+\frac{3.55^{3}}{3!}+\frac{3.5^{4}}{4!}\right) \end{aligned}$	M1	
	$=0.275$	A1	allow 0.274
	Comp with 0.10	M1	valid comparison using Poisson
	No evidence (at 10%) to believe that sales per day have increased	A1 FT	correct conclusion FT no contradictions
		6	

Question	Answer	Marks	Guidance
$7(\mathrm{ii})$	$\lambda=3.9$	$\mathbf{B 1}$	
	$\mathrm{e}^{-3.9} \times \frac{3.9^{2}}{2!}$	$\mathbf{M 1}$	any $\lambda(\neq 0.7$ or 0.6$)$, single term
	$=0.154(3 \mathrm{sf})$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
8(i)	$\bar{x}=27 / 150(=0.18)$	B1	
	$\begin{aligned} & s=\sqrt{\frac{150}{149}} \times \sqrt{\frac{5.01}{150}-0.18^{2}} \text { or variance } \\ & (=0.031729) \\ & (\operatorname{var}=3 / 2980=0.0010067) \end{aligned}$	M1	or var $=1 / 149\left(5.01-27.0^{2} / 150\right)$
	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }=0.185 \\ & \mathrm{H}_{1}: \text { Pop mean }<0.185 \end{aligned}$	B1	allow just ' μ '
	$\frac{0.18-0.185}{\frac{\mathbf{C}^{0.031729)^{\prime}}}{\sqrt{150}}}$	M1	standardising, need $\sqrt{150}$
	$=(-) 1.930(3 \mathrm{sfs})$ or 1.93	A1	
	Comp with $z=(-) 2.326$	M1	```consistent signs or using probs 0.0268>0.01 or 0.9732 <0.99 or using x (crit 0.18>0.17897```
	There is no evidence (at 1% level) that concentration with drug is less than without drug	A1 FT	conclusion FT no contradictions
		7	

Question	Answer		Marks	Guidance
8(ii)	$\frac{c v-0.185}{\frac{0.031729}{\sqrt{150}}}(=-2.326)$		M1	must use 0.185 and $\sqrt{150}$
	$=0.17897$ or 0.179		A1	acceptance region (for H_{0}) is >0.179
	$\frac{" 0.17897 "-0.175}{\frac{.0 .031729}{\sqrt{150}}}$	(=1.534)	M1	must use 0.175 and $\sqrt{150}$
	1 - ϕ ("1.534")		M1	indep mark
	$=0.0625(3 \mathrm{sf})$		A1	Accept 0.0610 to 0.0628
			5	

Cambridge International Examinations

Cambridge International Advanced Level

MATHEMATICS
 9709/71

Paper 7
May/June 2017
MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2 .

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR - 1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA - 1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer		Marks	Guidance
1(i)	Poisson with $\lambda=0.2$		B1	
	$1-\mathrm{e}^{-0.2}\left(1+0.2+\frac{0.2}{2}\right)$		M1	1 - Poisson $\mathrm{P}(0,1,2,3)$ attempted, any λ, allow one end error
	$=0.00115(3 \mathrm{sf})$		A1	SR: using Bin, ans 0.00115: B1
		Total:	3	
1(ii)	n large ($\mathrm{n}>50$)		B1	
	$n p=0.2<5$ or p small		B1	
		Total:	2	
2	Assume sd still $=3.8$		B1	or sd unchanged
	$\mathrm{H}_{0}: \mu=64.0 \quad \mathrm{H}_{1}: \mu<64.0$		B1	
	$\frac{63.3-64.0}{\frac{3.0}{\sqrt[3]{100}}}$		M1	Standardising with their values (no sd / var mixes) Must have $\sqrt{ } 100$
	$=-1.842$		A1	
	comp "1.842" with z-value "1.842" < 1.96		M1	comp +ve with + ve or -ve with - ve or comp Φ ("1.842") with 0.975 $0.9672<0.975 \mathrm{OE}$
	No evidence that heights are shorter		A1FT	OE FT their $z_{\text {calc }}$
		Total:	6	

Question	Answer	Marks	Guidance
3(a)	$7.1 \pm z \times \sqrt{\frac{2.6}{75}}$	M1	Expression of correct form must be z (note MR var $=2.6^{2}$ can score M1) seen
	$z=1.751$	B1	
	6.77 to 7.43 (3 sfs)	A1	Must be an interval
	Total:	3	
3(b)	$0.04{ }^{3}$	M1	Allow 0.08^{3} for M1
	$=0.000064$	A1	
	Total:	2	
3(c)	e.g. Particular day or time of day	B1	Allow "Not random"
	Total:	1	
4(i)	Greater area where $x<7.5$ than $x>7.5$	B1	Allow Graph higher for $x<7.5$ than for $x>7.5$ or Graph decreasing or equiv expl'n
	Total:	1	
4(ii)	$\int_{5}^{10} \frac{k}{x^{2}} \mathrm{~d} x=1$	M1	Attempt Integ $\mathrm{f}(x)=1$ ignore limits
	$\begin{aligned} & k\left[-\frac{1}{x}\right]_{5}^{10}=1 \\ & k \times \frac{1}{10}=1 \end{aligned}$	A1	Correct integration and limits
	$k=10 \quad \mathrm{AG}$	A1	No errors seen
	Total:	3	

Question	Answer		Marks	Guidance
4(iii)	$10 \int_{5}^{10} \frac{1}{x} \mathrm{~d} x$		M1	Attempt Integ $x \mathrm{f}(x)$ ignore limits
	$\begin{aligned} & =10[\ln x]_{5}^{10} \\ & =10(\ln 10-\ln 5) \end{aligned}$		M1	Correct integration and limits
	$=10 \ln 2$ or $6.93(3 \mathrm{sf})$		A1	OE
		Total:	3	
4(iv)	$10 \int_{5}^{10} 1 \mathrm{~d} x-" 6.93 "^{2}$		M1	Attempt (Integ $\mathrm{x}^{2} \mathrm{f}(\mathrm{x})$) - (E(x) $)^{2}$. No limits M0
	$=1.95$ (accept 1.96)		A1	Use of 6.93 gives 1.97 A0
		Total:	2	
5(i)	$W \sim \mathrm{~N}(6210,171.88)$		B2	seen or implied. B1 each parameter
	$\frac{6200-" 6210 "}{\sqrt{" 171.88 "}} \quad(=-0.763)$		M1	Standardising with their values. No sd/var mix
	$1-\Phi\left({ }^{\prime} 0.763 \times\right)$		M1	For area consistent with their mean
	$=0.223$ (3 sfs)		A1	
		Total:	5	

Question	Answer	Marks	Guidance
5(ii)	$\mathrm{E}(\mathrm{C}-2 \mathrm{~B})=-50$	M1	" $6210 "-2(3130)($ or $\mathrm{E}(2 \mathrm{~B}-\mathrm{C})=50$
	$\begin{aligned} \operatorname{Var}(\mathrm{C}-2 \mathrm{~B})=" 171.88 "+2^{2} \times & 12.1^{2} \\ & (=757.52) \end{aligned}$	M1	
	$\frac{0-(-50)}{\sqrt{ } 757.52 "} \quad(=1.817)$	M1	Standardising with their values
	$\Phi\left({ }^{(1.817 ")}\right.$	M1	For area consistent with their mean
	$=0.965$ (3 sfs)	A1	
	Total:	5	
6(i)	mean $=6.6$	B1	B1 for 6.6 (could be scored in iii)
	$\mathrm{P}(X \leqslant 1)=\mathrm{e}^{-6.6}(1+6.6)=0.0103$	M1	Allow incorrect λ in both probs
	$\mathrm{P}(X \leqslant 2)=\mathrm{e}^{-6.6}\left(1+6.6+\frac{6.6^{2}}{2}\right)=0.0400$	M1A1	A1 for both values
	CR is $X \leqslant 1$	DA1	Dep on at least one \mathbf{M}
	$\mathrm{P}($ Type I error $)=\mathrm{P}(X \leqslant 1)=0.0103$	B1FT	FT their $\mathrm{P}(X \leqslant 1)$
	Total:	6	
6(ii)	Wrongly concluding that (mean) no of (sports) injuries has decreased	B1	Must be in context
	Total:	1	

Question	Answer	Marks	Guidance
6(iii)	$\mathrm{H}_{0}: \lambda=6.6 \mathrm{H}_{1}: \lambda<6.6$	B1	Can be scored in (i). Allow μ or $\lambda / 1.1$ or 6.6 or $\mathrm{P}(X \leqslant 2)=0.0400>0.02$
	2 not in CR	M1	
	No evidence mean no. of injuries has decreased	A1FT	
	Total:	3	
6(iv)	$\mathrm{N}(39.6,39.6)$	B1	May be implied
	$\frac{29.5-39.6}{\sqrt{39.6}} \quad(=-1.605)$	M1	Allow with wrong or no cc
	$\Phi("-1.605 ")=1-\Phi\left({ }^{\prime} 1.605\right.$ ")	M1	For area consistent with their mean
	$=0.0543(3 \mathrm{sfs})$	A1	
	Total:	4	

Cambridge International Examinations

Cambridge International Advanced Level

MATHEMATICS

9709/72
Paper 7
May/June 2017
MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer		Marks	Guidance
3(i)	Est $(\mu)=923 / 400$ or 2.3075 or $2.31(3 \mathrm{sf})$		B1	
	$\operatorname{Est}\left(\sigma^{2}\right)=\frac{400}{399}\left(\frac{3170}{400}-22.3075 "^{2}\right) \mathrm{OE}$		M1	
	$=2.60696 \quad$ or $2.61(3 \mathrm{sf})$		A1	(Note: Biased Var=2.600 scores M0)
		Total:	3	
3(ii)	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }(\text { or } \mu)=" 2.31 " \text { or "2310" } \\ & \mathrm{H}_{1}: \text { Pop mean }(\text { or } \mu)>" 2.31 " \text { or " } 2310 " \end{aligned}$		B1 FT	
	$\pm \frac{2.6-2.2 .310 "}{\sqrt{2.60696} \div 50}=1.27$		M1 A1	Standardising using their values, Accept 1.28
	Comp 1.645 (OE)		M1	Valid comparison z values or areas
	No evidence that incomes in the region greater		A1 FT	OE FT their z. No contradictions (No FT for 2 tail test - max score B0 M1 A1 M1 for comp 1.96 A0) Note: Accept alternative CV method
	Total:		5	

Question	Answer	Marks	Guidance
4(i)	$0.75^{20}+20 \times 0.75^{19} \times 0.25+{ }^{20} \mathrm{C}_{2} \times 0.75^{18} \times 0.25^{2}$	M1	No end errors
	$=0.0913$	A1	As final answer
	Total:	2	
4(ii)	H_{0} : Pop proportion=0.25 H_{1} : Pop proportion <0.25	B1	Allow p or π, not "proportion" (Accept anywhere in the question)
	$0.75^{25}+25 \times 0.75^{24} \times 0.25$	M1	Must be $\mathrm{B}(25,0,25)$ No end errors
	$=0.00702$	A1	
	comp 0.01	M1	Valid comparison
	There is evidence that the claim is not justified	A1 FT	OE. No contradictions
	Total:	5	

Question	Answer		Marks	Guidance
5(i)	$\begin{aligned} & 0.5 \times 1 \times h=0.25 \\ & h=0.5 \\ & \operatorname{grad}=0.5 \end{aligned}$		M1	$\mathrm{P}(X<2)=4 \times \mathrm{P}(X<1) \quad$ M1
	$\mathrm{f}(\mathrm{x})=0.5 x$		A1	$\begin{align*} & \mathrm{P}(X<2)=1 \tag{A1}\\ & a=2 \end{align*}$
	$0.5 \times a \times 0.5 a=1$		M1	$\begin{aligned} & 0.5 \times 2 \times h^{\prime}=1 \\ & h^{\prime}=1 \end{aligned}$
	$a=2$		A1	$\operatorname{grad}=0.5$
	$\mathrm{P}(X<2)=1$		A1	$\mathrm{f}(x)=0.5 x \quad$ A1
		Total:	5	
5(ii)	$\int_{0}^{m} 0.5 x d x=0.5$		M1	Attempt $\int \mathrm{f}(x) \mathrm{d} x=0.5 \quad$ Ignore limits
	$=\left[\frac{x^{2}}{4}\right]_{0}^{m}=0.5$		A1FT	Correct integration $(\mathrm{ft} \mathrm{f}(x)) \&$ limits $=0.5$
	$m=\sqrt{2}$ or $1.41(3 \mathrm{sf})$		A1	or by similarity $m=\frac{1}{\sqrt{2}} \times 2 \quad$ M2 $=\sqrt{2}$ A1
		Total:	3	

Question	Answer	Marks	Guidance
6 (i)	$e^{-2.4} \times \frac{2.4{ }^{2}}{2!}$	M1	Allow incorrect λ
	$=0.261(3 \mathrm{sfs})$	A1	
	Total:	2	
6(ii)	$\mathrm{N}(60,60)$	B1	seen or implied
	$\frac{54.5-60}{\sqrt{60}} \quad(=-0.710)$	M1	allow with wrong or missing ce
	$1-\phi("-0.710$ " $)=\phi($ "0.710" $)$	M1	For area consistent with their working
	$=0.761(3 \mathrm{sf})$	A1	
	Total:	4	
6(iii)	$\lambda=3.6+12 \div 7(=186 / 35) \quad(=5.314)$	M1	
	$e^{-5.314}\left(1+5.314+\frac{5.314^{2}}{2}+\frac{5.314^{3}}{3!}\right)$	M1	Allow incorrect λ. Allow one end error.
	$=0.224(3 \mathrm{sfs})$	A1	
	Total:	3	

Question	Answer		Marks	Guidance
7(a)	$\begin{aligned} & \mathrm{E}\left(X_{1}+X_{2}\right)=2 \times 4.2=8.4 \\ & \operatorname{Var}\left(X_{1}+X_{2}\right)=2 \times 1.1^{2}=2.42 \end{aligned}$		B1	Both. Seen or implied (or sd $=1.56$)
	$\frac{10-8.4}{\sqrt{2.42}} \quad(=1.029)$		M1	Standardising with their mean and var (no sd / var mix)
	1- ("1.029")		M1	For area consistent with their working
	$=0.152(3 \mathrm{sf})$		A1	
		Total:	4	
7(b)	$\mathrm{E}(X)=20.5$		B1	
	$\operatorname{Var}(X)=105+0.5^{2} \times 15 \quad(=108.75)$		M1	correct expression oe
	$\frac{0-200.5 "}{\sqrt{ } 108.75 "} \quad(=-1.966)$		M1	correct standardisation using their $\mathrm{E} \& \mathrm{~V}$ (no sd/var mix) ignore any attempted cc
	$\begin{aligned} & \phi("-1.966 ")=1-\phi(" 1.966 ") \\ & (=(1-0.9754)) \end{aligned}$		M1	For area consistent with their working
	$=0.0246 \quad$ or $2.46 \% \quad(3 \mathrm{sf})$		A1	Accept 0.0247
		Total:	5	

Cambridge International Examinations

Cambridge International Advanced Level

MATHEMATICS

9709/73
Paper 7
May/June 2017
MARK SCHEME
Maximum Mark: 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR-1 A penalty of MR - 1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
4(i)	$\bar{x}=6.7 / 200(=67 / 2000=0.0335)$	B1	
	$\mathrm{s}^{2}=\frac{200}{199} \times\left(\frac{0.2312}{200}-\mathrm{l} 0.0335^{\prime \prime}\right)$	M1	$\mathrm{s}^{2}=\frac{0.2312}{200}-0.0335^{2} \quad \mathbf{M 0}$
	$=0.0000339(2)=27 / 796000$	A1	$=0.00003375$ A0
	Total:	3	
4(ii)	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean level }=0.034 \\ & \mathrm{H}_{1}: \text { Pop mean level } \neq 0.034 \end{aligned}$	B1	not just "mean", but allow just " μ "
	$\frac{\text { "030335"-0.034 }}{\frac{\sqrt{" 0.00003392 "}}{\sqrt{200}}}$	M1	must have $\sqrt{200}$ $\frac{0.0335-0.034}{\frac{\sqrt{00.00033755^{\prime}}}{\sqrt{200}}}$ M1
	$=-1.21(4)(3 \mathrm{sfs})(-1.22 \leftrightarrow-1.21)$	A1	$=-1.217$ (3 sfs) A1
	Comp with $z=-1.645$ (or $0.1124>0.05$)	M1	$0.112>0.05$ valid comparison z or areas
	No evidence that (mean) pollutant level has changed, accept H_{0} (if correctly defined)	A1FT	correct conclusion no contradictions SR: One tail test: B0, M1A1 as normal, M1 (comparison with 1.282 consistent signs) A0
	Total:	5	

Question	Answer	Marks	Guidance
5(i)(a)	$X \sim \mathrm{~N}(42,42)$	B1	stated or implied
	$\frac{39.5-422^{"}}{\sqrt{" 42 "}}(=-0.386)$	M1	allow with wrong or no cc
	$1-\phi$ ("-0.386") $=$ (${ }^{\text {("0.386") }}$	M1	correct area consistent with their working
	$=0.65(0)(3 \mathrm{sf})$	A1	
	Total:	4	
5(i)(b)	$42>$ (e.g. 15) or mean is large	B1	$\lambda>15$ or higher, $\lambda=$ large ignore subsequent work if not undermining what already written
	Total:	1	
5(ii)(a)	$Y \sim \operatorname{Po}(1.2)$	B1	stated or implied
	$1-\mathrm{e}^{-1.2}\left(1+1.2+\frac{1.2^{2}}{2}\right)$	M1	allow any λ allow one end error
	$=0.121(3 \mathrm{sf})$	A1	Using binomial: 0.119 SR B1
	Total:	3	
5(ii)(b)	$60 \times 0.02=1.2<5$ or mean is small	B1FT	or large n small p FT Poisson only
	Total:	1	

Question	Answer		Marks	Guidance
6(i)	$k \int_{0}^{1}\left(x-x^{2}\right) \mathrm{d} x=1$		M1	Attempt integ $\mathrm{f}(x)$ and " $=1$ ", ignore limits
	$=k\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=1$		A1	correct integration, limits 0 and 1
	$=k\left[\frac{1}{2}-\frac{1}{3}\right]=1$ or $\frac{k}{6}=1$		A1	correctly obtained, no errors seen
		Total:	3	
6(ii)	$\mathrm{E}(X)=0.5$		B1	
	$6 \int_{0}^{1}\left(x^{3}-x^{4}\right) \mathrm{d} x$		M1	Attempt integ $x^{2} \mathrm{f}(x)$, limits 0 to 1
	$\begin{aligned} & \left(=6\left[\frac{1}{4}-\frac{1}{5}\right]=0.3\right) \\ & " 0.3 "-" 0.5 "^{2} \end{aligned}$		M1	their int $x^{2} \mathrm{f}(x)$ - their $(\mathrm{E}(X))^{2}$ dep + ve result
	$=0.05(=1 / 20)$		A1	
		Total:	4	
6(iii)	$6 \int_{0.4}^{1}\left(x-x^{2}\right) \mathrm{d} x$		M1	ignore limits, eg M1 for $6 \int_{0.4}^{2}\left(x-x^{2}\right) \mathrm{d} x$
	$=6\left\{\frac{1}{2}-\frac{1}{3}-\left(\frac{0.4}{2}-\frac{0.4}{3}\right)\right\}$		A1FT	subst correct limits into correct integration
	$=0.648(=81 / 125)$		A1	condone incorrect " k " for A1
		Total:	3	

Question	Answer	Marks	Guidance
7(i)	H_{0} : Pop mean no. accidents $=5.64$ H_{1} : Pop mean no. accidents <5.64	B1	$\text { or " }=0.47(\text { per month }) "$ not just "mean", but allow just " λ " or " μ "
	Use of $\lambda=5.64$	B1	used in a Poisson calculation
	$=\mathrm{e}^{-5.64}\left(1+5.64+\frac{5.64^{2}}{2}\right)$	M1	Allow incorrect λ in otherwise correct
	$=0.08(0)$	A1	
	Comp with 0.05	M1	Valid comparison (Poisson only), no contradictions.
	No evidence to believe mean no. of accidents has decreased; accept H_{0} (if correctly defined)	A1FT	Normal distribution: M0M0
	Total:	6	
7(ii)	Mean <0.47 but conclude that this is not so	B1	(Mean) no. of accidents reduced, but conclude not reduced. Must be in context.
	Total:	1	
7(iii)	(Need greatest x such that $\mathrm{P}(X \leqslant x)<0.05$) $\begin{aligned} & \mathrm{P}(X \leqslant 1)=\mathrm{e}^{-5.64}(1+5.64)=0.024 \\ & \mathrm{P}(X \leqslant 2)=0.08 \end{aligned}$	B1	Both, could be seen in (i)
	Hence rejection region is $X \leqslant 1$	B1	Can be implied
	$\begin{aligned} & \text { With } \lambda=12 \times 0.05=0.6 \\ & 1-\mathrm{P}(X \leqslant 1)=1-\mathrm{e}^{-0.6}(1+0.6) \end{aligned}$	M1	$\lambda=0.6$ and $1-\mathrm{P}(X \leqslant 1)$
	$=0.122(3 \mathrm{sf})$	A1	Normal scores 0
	Total:	4	

Cambridge International Examinations

Cambridge International Advanced Level

MATHEMATICS

9709/72
Paper 7 Probability and Statistics
March 2017

MARK SCHEME

Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $₹$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through §" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$\operatorname{Var}(P s)=\frac{0.3(1-0.3)}{120}(=0.00175)$	M1	Attempt correct values in correct formula
	$0.3 \pm z \sqrt{40.00175 "}$	M1	must be a z-value, not a prob
	$z=1.645$	B1	
	$\mathrm{CI}=0.231$ to $0.369(3 \mathrm{sf})$	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2(i)	$\left(\mathrm{H}_{1}\right): \mu \neq 6.4$	B1	
	Total:	1	
2(ii)	comp 2.43 with a z-value $z=2.576 \text { AND }$	M1	oe valid comparison
	No evidence that μ is not 6.4 or do not reject $\mu=6.4$	A1	Allow "Accept $\mu=6.4$ " Must mention μ, not just " H_{0} " or " H_{1} "
	Total:	2	
2(iii)	Testing for an increase in μ, or for a decrease in μ, rather than a change	B1	Any equiv statement
	Total:	1	

Question		Answer	Marks	Guidance
3(i)	$\frac{53-52}{6.1+\sqrt{75}}$	$(=1.420)$	M1	
	$\frac{51-52}{6.1+\sqrt{75}}$	$(=-1.420)$	M1	or -"1.420" seen
	Φ ("1.4	Ф("-1.420")	M1	
	$=0.844$		A1	
		Total:	4	
3(ii)	Need to assume \bar{X} (approx.) normally distributed		B1	or X not stated to be normally distributed
		Total:	1	

Question	Answer	Marks	Guidance
4(i)	($\lambda=4.5$	B1	
	$\mathrm{e}^{-4.5}\left(1+4.5+\frac{4.5{ }^{2}}{2!}\right)$	M1	Allow any λ. Allow one end error
	$=0.174$	A1	
	Total:	3	
4(ii)	Accept reduction in mean no. of missed appts although untrue	B1	or Mean is 0.9 (or 4.5) but <3 missed appts. In context
	Total:	1	
4(iii)	$\mathrm{P}(X \geqslant 3)$	M1	Attempted
	$=1-\mathrm{e}^{-1}\left(1+1+\frac{1^{2}}{2!}\right)$	M1	Allow any λ except 4.5 or 0.9 , Allow one end error
	$=0.0803(3 \mathrm{sfs})$	A1	
	Total:	3	

Question	Answer	Marks	Guidance
5(a)(i)	$k=1$	B1	
	Total:	1	
5(a)(ii)	f_{2} : area $>1(\operatorname{area} \neq 1)$	B1	oe
	f_{3} : includes negative values of f_{3}	B1	oe
	Total:	2	
5(b)(i)	$6 \int_{-a}^{a}\left(a^{2}-x^{2}\right) \mathrm{d} x=1$	M1	Integ $\mathrm{f}(x)=1$, ignore limits
	$6\left[a^{2} x-\frac{x^{3}}{3}\right]{ }_{-a}^{a}=1$	A1	Correct integral and limits
	$\begin{aligned} & 6\left(2 a^{3}-\frac{2 a^{3}}{3}\right)=1 \\ & \frac{24 a^{3}}{3}=1 \text { or } 8 a^{3}=1 \\ & a=1 / 2 \end{aligned}$	A1	Correctly obtained. No errors seen. (SR Verification scores M1A1 only max 2/3)
	Total:	3	

Question	Answer	Marks	Guidance
5(b)(ii)	0	B1	
	Total:	1	
5(b)(iii)	$\begin{aligned} & 6 \int_{-0.5}^{0.5}\left(\frac{x^{2}}{4}-x^{4}\right) \mathrm{d} x \\ & \left(=6\left[\frac{x^{3}}{12}-\frac{x^{5}}{5}\right]_{-0.5}^{0.5}=0.05\right) \\ & \operatorname{Var}=0.05-0^{2} \end{aligned}$	M1	attempt int $x^{2} \mathrm{f}(x) \&$ correct limits
	$=0.05 \mathrm{oe}$	A1	cao; allow omission of -0^{2}
	Total:	2	

Question	Answer	Marks	Guidance
6(i)	Assume cartons are random sample(s)	B1	or masses of cartons are independent of each other oe
	$\begin{aligned} & \mathrm{E}(T)=816.4 \\ & \operatorname{Var}(T)=1570.08 \end{aligned}$	B1	Both
	$z=\frac{900-816.44^{\prime \prime}}{\sqrt{" 15750.08^{\prime \prime}}} \quad(=2.110)$	M1	
	$1-\Phi($ "2.110")	M1	
	$=0.0174=1.74 \%(3 \mathrm{sfs})$	A1	$\%$ only (accept 1.7% if 0.0174 seen)
	Total:	5	
6(ii)	$\mathrm{P}(F-S>0)$ stated or implied	M1	$\mathrm{P}(S-F<0)$
	$\begin{array}{ll} 62.0-78.8 & (=-16.8) \\ \& 10.0^{2}+12.6^{2} & (=258.76) \end{array}$	B1	$\begin{array}{ll} 78.8-62.0 & (=16.8) \\ \& 12.6^{2}+10.0^{2} & (=258.76) \end{array}$
	$z=\frac{0-\left("-16.8^{\prime \prime}\right)}{\sqrt{\prime 2558.76^{\prime \prime}}}(=1.044)$	M1	$z=\frac{0-116.8^{\prime \prime}}{\sqrt{" 258.76^{\prime}}}(=-1.044)$
	$1-\Phi(" 1.044$ ")	M1	$\Phi("-1.044 ")=1-\Phi\left({ }^{(1.044 ")}\right.$
	$\begin{aligned} & (=1-0.8517) \\ & =0.148(3 \mathrm{sfs}) \end{aligned}$	A1	
	Total:	5	

Question	Answer	Marks	Guidance
7(i)	Planes arrive at constant mean rate	B1	
	Planes arrive at random	B1	or Planes arrive independently Must be in context
	Total:	2	
7(ii)(a)	($\lambda=$) $5.2 \div 4$	M1	
	$\mathrm{e}^{-1.3}\left(\frac{1.3{ }^{2}}{2}+\frac{1.3^{3}}{3!}\right)$	M1	Allow any λ, allow one end error
	$=0.330$ (3 sfs)	A1	Accept 0.33
	Total:	3	
7(ii)(b)	$1-\mathrm{e}^{-3.467} \times\left(1+3.467+\frac{3.467^{2}}{2!}+\frac{3.466^{3}}{3!}\right)$	M1	Allow any λ except 5.2 or 1.3 , allow one end error
	$=0.456$ (3 sfs)	A1	
	Total:	2	
7(iii)	$\mathrm{N}(52,52)$ stated or implied	B1	
	$\frac{60.5-52}{\sqrt{52}}(=1.179)$	M1	ft their mean and var. Allow wrong or no cc or no $\sqrt{ }$
	Ф("1.179")	M1	
	$=0.881(3 \mathrm{sf})$	A1	
	Total:	4	

Cambridge International Examinations

MATHEMATICS

9709/71
Paper 7
October/November 2016
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	71

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	71

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \downarrow " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	71

1	$\begin{aligned} & \left(\frac{508}{8}\right)=63.5 \\ & \left(\Sigma x^{2}=32360.12\right) \\ & \frac{8}{7}\left(\frac{32360.12^{\prime}}{8}-163.5^{\prime 2}\right) \\ & =14.6(3 \text { sf }) \text { or } 2553 / 175 \end{aligned}$	B1 M1 A1	[3]	oe From correct working
2 (i)	$\mathrm{H}_{0}: \mathrm{P}(6)=1 / 6 \quad \mathrm{H}_{1}: \mathrm{P}(6)<1 / 6$	B1	[1]	Allow $\mathrm{H}_{0}: p=1 / 6 \quad \mathrm{H}_{1}: p<1 / 6$
(ii)	$\begin{aligned} & \left(\frac{5}{6}\right)^{15} \\ & =0.065>0.05 \end{aligned}$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \end{array}$	[2]	Correct result and comparison needed for A1 SR if 2 tail test followed allow A1 for $0.065>0.025$
(iii)	$\left(\frac{5}{6}\right)^{16}=0.054 \text { and }\left(\frac{5}{6}\right)^{17}=0.045$ Smallest n is 17 OR $\left(\frac{5}{6}\right)^{n}<0.05$ and attempt to solve $n \ln \left(\frac{5}{6}\right)<\ln 0.05$ smallest n is 17	M1 A1 M1 A1	[2]	both No errors seen
3 (i)	$\begin{aligned} & (\lambda)=3.6 \div 3=1.2 \\ & 1-\mathrm{e}^{-1.2}\left(1+1.2+\frac{1.2^{2}}{2}+\frac{1.2^{3}}{3!}\right) \\ & =0.0338(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1	[3]	1.2 seen Allow any λ As final answer
(ii)	$\begin{array}{ll} \mathrm{N}(60 \times 3.6,60 \times 3.6) & \\ \frac{240.5-216^{\prime}}{\sqrt{\sqrt{216}}} \\ 1-\Phi(1.667 ’) & (=1.667) \\ =0.0478(3 \mathrm{sf}) & \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]	Stated or implied Allow with no or wrong cc (no sd/var mixes) Area consistent with their working SR use of Poisson 0.0497 scores $4 / 4$
$4 \quad$ (i)	6080 (litres) 106 (litres)	$\begin{array}{\|l\|} \hline \\ \mathbf{B 1} \\ \text { B1 } \end{array}$	[2]	
(ii)	$\begin{array}{ll} \mathrm{E}(21 Y-2 X)=635 & \\ \operatorname{Var}(21 Y-2 X)= & \\ 21^{2} \times 12^{2}+2^{2} \times 53^{2} & \\ & (=74740) \\ \frac{0-635}{\sqrt{77470^{\prime}}} & (=-2.323) \\ 1-\Phi\left({ }^{(}-2.323^{\prime}\right)=\Phi\left({ }^{\prime} 2.323^{\prime}\right) \\ =0.99(0)(3 \mathrm{sf}) & \end{array}$	B1 B1 M1 M1 A1	[5]	correct expression or result or $\mathrm{sd}=273$ seen no sd/var mixes Area consistent with their working No errors seen
5 (a)	$\begin{aligned} & 63 \pm z \times \frac{9}{\sqrt{100}} \\ & z=1.645 \\ & 61.5 \text { to } 64.5(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \text { B1 } \\ \text { A1 } \end{array}$	B1 [3]	Expression of correct form, any z Seen Must be an interval

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	71

(b) (i)	$\begin{array}{ll} z=\frac{1.96}{2} & (=0.98) \\ \Phi(" 0.98 ") & (=0.8365) \\ " 0.8365 "-(1-" 0.8355 ") \\ & (=0.673) \\ \alpha=67.3(3 \text { sf }) & \end{array}$	M1 M1 A1	[3]	Allow $\frac{\text { any } z}{2}$ Allow 67 from correct working
(ii)	$\begin{aligned} & 4=\left(2 x^{\prime} z^{\prime} x^{\prime} \sigma^{\prime}\right) / \sqrt{n} \\ & n=200 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	Attempt to solve equ of correct form SR B1 for $n=100$
6 (i)	$m_{X}, m_{Y}, m_{Z}, m_{W} \quad$ or X, Y, Z, W	B2	[2]	B1 if two adjacent means interchanged, i.e. $m_{Y}, m_{X}, m_{Z}, m_{W} \text { or } m_{X}, m_{Z}, m_{Y}, m_{W}$ or $m_{X}, m_{Y}, m_{W}, m_{Z}$ B1 for correct order reversed.
(ii) (a)	$\begin{aligned} & \int_{0}^{3} \frac{4}{81} x^{4} \mathrm{~d} x \\ & =\left[\frac{4}{81} \frac{x^{5}}{5}\right]_{0}^{3} \\ & =\frac{4}{81} \times \frac{3^{5}}{5} \text { or } \frac{4}{81} \times \frac{243}{5} \text { or } \frac{972}{405} \text { oe } \\ & =\frac{12}{5} \text { or } 2.4 \end{aligned}$	M1 A1 A1	[3]	Attempt int $x \mathrm{f}(x)$. Ignore limits Correct integration and limits (condone missing 4/81) Must see correct expression as well as $\frac{12}{5}$ or 2.4 No errors seen
(b)	$\left.\begin{array}{l} \int_{2.4}^{3} \frac{4}{81} x^{3} \mathrm{~d} x \end{array} \quad \text { or } 1-\int_{0}^{2.4} \frac{4}{81} x^{3} \mathrm{~d} x\right] .$	M1 A1 A1	[3]	Attempt int $\mathrm{f}(x)$ ignore limits Correct integration and limits (condone missing 4/81) As final answer
(c)	1	B1	[1]	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	71

7 (i)	H_{0} : Pop mean time $($ or $\mu)=20.5$ H_{1} : Pop mean time (or μ) <20.5 $\frac{20.3-20.5}{1.2 \sqrt{100}}$ $=-1.667$ or $0.0478 / 0.952$ if areas compared $' 1.667 \prime>1.751$ $(\text { or } ‘-1.667 ’>-1.751)$ No evidence that (pop) mean time has decreased	B1 M1 A1 M1 A1ft	[5]	Not just "mean" Allow without $\sqrt{ }$ sign (accept $\pm 1.667 / 1.67$) Correct comparison of their $z_{\text {calc }}$ with $1.751 / 1.75$ oe valid comparison of areas ($0.0478>0.04$) No contradictions (ft their z)	
(ii)	$\begin{aligned} & \frac{c v-20.5}{1.2 \sqrt{100}}=-1.751 \\ & \mathrm{cv}=20.29 \text { or } 20.3 \\ & \frac{\mathrm{\prime} 20.29^{\prime}-2.1}{1.2 \cdot \sqrt{100}} \quad(=1.583 \text { or } 1.582) \\ & 1-\Phi\left({ }^{\prime} 1.583^{\prime}\right) \\ & =0.0567-0.0569(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { DM1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[5]	Allow $\frac{20.3-20.1}{1.2 \div \sqrt{100}}(=1.667)$ $\begin{aligned} & 1-\Phi\left({ }^{(} 1.667^{`}\right) \\ & =0.0478(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1
(iii)	Concluding (mean) time not decreased when in fact it has.	B1	[1]	Must be in context oe	

Cambridge International Examinations

MATHEMATICS

9709/72
Paper 7
October/November 2016
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	72

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	$\mathbf{7 2}$

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR-1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through §" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

1	$\begin{aligned} & \left(\frac{508}{8}\right)=63.5 \\ & \left(\Sigma x^{2}=32360.12\right) \\ & \frac{8}{7}\left(\frac{13230.12^{\prime}}{8}-63.5^{\prime 2}\right) \\ & =14.6(3 \text { sf }) \text { or } 2553 / 175 \end{aligned}$	B1 M1 A1	[3]	oe From correct working
2 (i)	$\mathrm{H}_{0}: \mathrm{P}(6)=1 / 6 \quad \mathrm{H}_{1}: \mathrm{P}(6)<1 / 6$	B1	[1]	Allow $\mathrm{H}_{0}: p=1 / 6 \quad \mathrm{H}_{1}: p<1 / 6$
(ii)	$\begin{aligned} & \left(\frac{5}{6}\right)^{15} \\ & =0.065>0.05 \end{aligned}$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \end{array}$	[2]	Correct result and comparison needed for A1 SR if 2 tail test followed allow A1 for $0.065>0.025$
(iii)	$\left(\frac{5}{6}\right)^{16}=0.054 \text { and }\left(\frac{5}{6}\right)^{17}=0.045$ Smallest n is 17 OR $\left(\frac{5}{6}\right)^{n}<0.05$ and attempt to solve $n \ln \left(\frac{5}{6}\right)<\ln 0.05$ smallest n is 17	M1 A1 M1 A1	[2]	both No errors seen
3 (i)	$\begin{aligned} & (\lambda)=3.6 \div 3=1.2 \\ & 1-\mathrm{e}^{-1.2}\left(1+1.2+\frac{1.2^{2}}{2}+\frac{1.2^{3}}{3!}\right) \\ & =0.0338(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1	[3]	1.2 seen Allow any λ As final answer
(ii)	$\begin{array}{ll} \mathrm{N}(60 \times 3.6,60 \times 3.6) & \\ \frac{240.5-216^{\prime}}{\sqrt{ }{ }^{2126}} \\ 1-\Phi(1.667 ’) & (=1.667) \\ =0.0478(3 \mathrm{sf}) & \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]	Stated or implied Allow with no or wrong cc (no sd/var mixes) Area consistent with their working SR use of Poisson 0.0497 scores 4/4
$4 \quad$ (i)	6080 (litres) 106 (litres)	$\begin{array}{\|l\|} \hline \end{array} \mathbf{B 1} \text { \| }$	[2]	
(ii)	$\begin{array}{ll} \mathrm{E}(21 Y-2 X)=635 & \\ \operatorname{Var}(21 Y-2 X)= & \\ 21^{2} \times 12^{2}+2^{2} \times 53^{2} & \\ & (=74740) \\ \frac{0-635}{\sqrt{ } 74740^{\prime}} & (=-2.323) \\ 1-\Phi\left({ }^{(}-2.323 \prime\right)=\Phi\left({ }^{\prime} 2.323^{\prime}\right) \\ =0.99(0)(3 \mathrm{sf}) & \end{array}$	B1 B1 M1 M1 A1	[5]	correct expression or result or $\mathrm{sd}=273$ seen no $\mathrm{sd} /$ var mixes Area consistent with their working No errors seen
5 (a)	$\begin{aligned} & 63 \pm z \times \frac{9}{\sqrt{100}} \\ & z=1.645 \\ & 61.5 \text { to } 64.5(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	B1 [3]	Expression of correct form, any z Seen Must be an interval

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	$\mathbf{7 2}$

(b) (i)	$\begin{array}{ll} z=\frac{1.96}{2} & (=0.98) \\ \Phi(" 0.98 ") & (=0.8365) \\ " 0.8365 "-(1-" 0.8355 ") \\ & (=0.673) \\ \alpha=67.3(3 \text { sf }) & \end{array}$	M1 M1 A1	[3]	Allow $\frac{\text { any } z}{2}$ Allow 67 from correct working
(ii)	$\begin{aligned} & 4=\left(2 x^{\prime} z^{\prime} x^{\prime} \sigma^{\prime}\right) / \sqrt{n} \\ & n=200 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	Attempt to solve equ of correct form SR B1 for $n=100$
6 (i)	$m_{X}, m_{Y}, m_{Z}, m_{W} \quad$ or X, Y, Z, W	B2	[2]	B1 if two adjacent means interchanged, i.e. $m_{Y}, m_{X}, m_{Z}, m_{W} \text { or } m_{X}, m_{Z}, m_{Y}, m_{W}$ or $m_{X}, m_{Y}, m_{W}, m_{Z}$ B1 for correct order reversed.
(ii) (a)	$\begin{aligned} & \int_{0}^{3} \frac{4}{81} x^{4} \mathrm{~d} x \\ & =\left[\frac{4}{81} \frac{x^{5}}{5}\right]_{0}^{3} \\ & =\frac{4}{81} \times \frac{3^{5}}{5} \text { or } \frac{4}{81} \times \frac{243}{5} \text { or } \frac{972}{405} \text { oe } \\ & =\frac{12}{5} \text { or } 2.4 \end{aligned}$	M1 A1 A1	[3]	Attempt int $x \mathrm{f}(x)$. Ignore limits Correct integration and limits (condone missing 4/81) Must see correct expression as well as $\frac{12}{5}$ or 2.4 No errors seen
(b)	$\left.\begin{array}{l} \int_{2.4}^{3} \frac{4}{81} x^{3} \mathrm{~d} x \end{array} \quad \text { or } 1-\int_{0}^{2.4} \frac{4}{81} x^{3} \mathrm{~d} x\right] .$	M1 A1 A1	[3]	Attempt int $\mathrm{f}(x)$ ignore limits Correct integration and limits (condone missing 4/81) As final answer
(c)	1	B1	[1]	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	$\mathbf{7 2}$

7 (i)	H_{0} : Pop mean time $($ or $\mu)=20.5$ H_{1} : Pop mean time (or μ) <20.5 $\frac{20.3-20.5}{1.2 \sqrt{100}}$ $=-1.667$ or $0.0478 / 0.952$ if areas compared $' 1.667 \prime>1.751$ $(\text { or } ‘-1.667 ’>-1.751)$ No evidence that (pop) mean time has decreased	B1 M1 A1 M1 A1ft	[5]	Not just "mean" Allow without $\sqrt{ }$ sign (accept $\pm 1.667 / 1.67$) Correct comparison of their $z_{\text {calc }}$ with $1.751 / 1.75$ oe valid comparison of areas ($0.0478>0.04$) No contradictions (ft their z)	
(ii)	$\begin{aligned} & \frac{c v-20.5}{1.2 \sqrt{100}}=-1.751 \\ & \mathrm{cv}=20.29 \text { or } 20.3 \\ & \frac{\mathrm{\prime} 20.29^{\prime}-2.1}{1.2 \cdot \sqrt{100}} \quad(=1.583 \text { or } 1.582) \\ & 1-\Phi\left({ }^{\prime} 1.583^{\prime}\right) \\ & =0.0567-0.0569(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { DM1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[5]	Allow $\frac{20.3-20.1}{1.2 \div \sqrt{100}}(=1.667)$ $\begin{aligned} & 1-\Phi\left({ }^{(} 1.667^{`}\right) \\ & =0.0478(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1
(iii)	Concluding (mean) time not decreased when in fact it has.	B1	[1]	Must be in context oe	

Cambridge International Examinations

MATHEMATICS

9709/73
Paper 7
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	73

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	73

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \downarrow " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	73

$\mathbf{1}$		$\mathrm{e}^{-3.5}\left(1+3.5+\frac{3.5^{2}}{2!}\right)$ $=0.321(3 \mathrm{sf})$		M2

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	73

$5 \quad$ (i)	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(\text { free gift })=0.3 \text { or } p=0.3 \\ & \mathrm{H}_{1}: \mathrm{P}(\text { free gift })<0.3 \text { or } p<0.3 \end{aligned}$	B1	[1]	
(ii)	$\begin{aligned} & \mathrm{P}(X \leqslant 2)= \\ & 0.7^{20}+20 \times 0.7^{19} \times 0.3+{ }^{20} \mathrm{C}_{2} \times 0.7^{18} \times \\ & 0.3^{2} \\ & =0.03548 \text { or } 0.0355 \\ & \mathrm{P}(X \leqslant 3)= \\ & { }^{2} 0.03548,+{ }^{20} \mathrm{C}_{3} \times 0.7^{17} \times 0.3^{3}(= \\ & 0.107) \end{aligned}$ One comparison with 0.05 seen $\mathrm{P}(\text { Type } \mathrm{I} \text { error })=0.0355 \text { (3 sf) }$	M1* A1 M1* M1* DA1 $\sqrt{\wedge}$	[5]	$\mathrm{P}(X \leqslant 2)$ attempted $\mathrm{P}(X \leqslant 3)$ attempted or implied by fully correct methods for $\mathrm{P}(X \leqslant 2)$ and $\mathrm{P}(X \leqslant 3)$ dep on all 3 Ms
(iii)	$\begin{aligned} & \mathrm{P}(X \leqslant 3)=‘ 0.107 \\ & { }^{0} 0.107 \prime>0.05 \end{aligned}$ or $\mathrm{cv}=2$ and compare $3>2$ No evidence to reject claim oe	M1 A1 \downarrow	[2]	Compare their $\mathrm{P}(X \leqslant 3)$ with 0.05 No evidence that 30% is not correct oe ft their 0.107
6 (i)	$\begin{aligned} & \operatorname{est}(\mu)=3.4 \\ & \operatorname{est}\left(\sigma^{2}\right)=\frac{100}{99}\left(\frac{1356}{100}-3.4^{12}\right) \\ & =2.02(0202) \\ & z=1.96 \\ & 3.4 \pm z \times \sqrt{\frac{2.020202}{12}} \\ & =3.12 \text { to } 3.68(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[6]	$1 / 99\left(1356-340^{2} / 100\right)$ or 200/99 correct working only allow from unbiased or biased variance
(ii)	Mean should be 3 CI does not include 3 Machine probably not working properly	B1* DB1^	[2]	stated or implied \checkmark their CI or evidence that....
7 (i)	$\begin{aligned} & 1-\mathrm{e}^{-1}(1+1) \quad(=0.26424) \\ & 1-\mathrm{e}^{-1.5}\left(1+1.5+\frac{1.5^{2}}{2!}\right)(=0.19115) \\ & { }^{0.26424^{\prime} \times{ }^{‘} 0.19115} \text {, } \\ & \\ & =0.0505(3 \mathrm{sf}) \end{aligned}$	B1 B1 M1 A1	[4]	B1 for either λ correct. B1 for either correct expression with correct λ product of their values for $\leqslant 2$ and $\leqslant 3$ from Poisson, need correct form " 1 - .. ", but allow incorrect λ values and end errors accept 0.0504

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	73

(ii)	$\begin{aligned} & \lambda=30 \\ & \mathrm{~N}(30,30) \\ & \frac{35.5-30}{\sqrt{30}} \quad(=1.004) \\ & \Phi\left({ }^{(} 1.004\right) \\ & =0.842(3 \mathrm{sf}) \end{aligned}$	B1 B1 $\sqrt{\wedge}$ M1 M1 A1	[5]	seen or implied, need $\mathrm{N}(\lambda, \lambda)$ allow with wrong or no cc or no $\sqrt{ }$ consistent with their working
8 (i)	$\sigma_{X}, \sigma_{Z}, \sigma_{Y}, \sigma_{W}$ or X, Z, Y, W	B2	[2]	B1 if two adjacent sds interchanged, ie $\sigma_{Z}, \sigma_{X}, \sigma_{Y}, \sigma_{W}$ or $\sigma_{X}, \sigma_{Y}, \sigma_{Z}, \sigma_{W}$ or $\sigma_{X}, \sigma_{Z}, \sigma_{W}, \sigma_{Y}$ B1 for correct order reversed
(ii) (a)	Mean $=0$ stated or found or " -0 " seen $\begin{aligned} & \frac{1}{18} \int_{-3}^{3} x^{4} \mathrm{~d} x-0 \\ & =\frac{1}{18}\left[\frac{x^{5}}{5}\right]_{-3}^{3} \\ & =\frac{1}{18}\left[\frac{3^{5}}{5}+\frac{3^{5}}{5}\right] \text { oe } \\ & =5.4 \end{aligned}$ $\begin{array}{ll} \mathrm{sd}=\sqrt{ } 5.4 \text { or } \sqrt{\frac{1}{18}\left[\frac{3^{5}}{5}+\frac{3^{5}}{5}\right]} \text { or } 2.324 \\ \mathrm{sd}=2.32(3 \mathrm{sf}) \tag{AG} \end{array}$	B1 M1 A1	[3]	Attempt integral ${ }^{2} \mathrm{f}(x)$. Ignore limits Allow without "- 0 " Must see $\sqrt{\text { correct expression or 5.4 }}$ or 2.324 or better
(b)	$\begin{aligned} & \frac{1}{18} \int_{2.324^{\prime}}^{3} x^{2} \mathrm{~d} x \\ & \frac{1}{18}\left[\frac{x^{3}}{3}\right]^{\prime} \cdot \frac{3}{3} 324^{\prime}=\frac{1}{18}\left[\frac{3^{3}}{3}-\frac{2.324^{3}}{3}\right] \\ & =0.268(3 \mathrm{sf}) \end{aligned}$	M1 A1 A1	[3]	Attempt to integrate $\mathrm{f}(x)$, ignore limits Sub correct limits into correct integral Allow 0.269
(c)	0	B1	[1]	

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

9709/71
Paper 7
May/June 2016
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	71

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0 .

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	71

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR - 1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through $\sqrt{ }$ ' marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	71

Note: '(3 sfs)' means 'answer which rounds to... to 3 sfs '. If correct ans seen to $>3 \mathrm{sfs}$, ISW for later rounding. Penalise <3 sfs only once in paper.

1	$\begin{aligned} & \mathrm{B}\left(200, \frac{1}{6}\right) \rightarrow \mathrm{N}\left(\frac{100}{3}, \frac{250}{9}\right) \\ & \frac{25.5-\frac{100}{3}}{\sqrt{\frac{20}{9} 9}} \\ & =-1.486 \end{aligned}$ comp ' 1.486 ' with 1.282 Evidence to reject H_{0} There is some evidence that $p<\frac{1}{6}$ or, e.g. It is likely that $p<\frac{1}{6}$ oe	B1 M1 A1 M1 A1 ft [5]	seen or implied allow with wrong or no cc (Accept alternative correct methods) or comp ('1.486') with 0.1 No contradictions
2 (i) (ii) (iii)	Each employee has an equal chance of being chosen Est $(\mu)=4$ Est $\left(\sigma^{2}\right)=\frac{10}{9}\left(\frac{199.22}{10}-4^{\prime 2}\right)$ $=4.36(3 \mathrm{sf})$ Distances travelled by all employees at the firm	B1 $[1]$ B1 M1 A1 $[3]$ B1 $[1]$	oe sub in correct formula attempted working may not be seen oe
3 (i) (ii)		B1 [1] M1 M1 A1 A1 ft [4]	oe correct rearrangement of correct equn, ft '0.61' ft their z (dep on both Ms)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	71

4 (i) (ii)	$\begin{aligned} & \mathrm{H}_{0}: \mu=12.5 \\ & \mathrm{H}_{1}: \mu \neq 12.5 \\ & \frac{1.3-512.5}{4.2 \div \sqrt{50}} \\ & =1.68(4) \\ & \\ & \\ & \\ & 1.684 \prime<1.96 \end{aligned}$ No evidence that mean time has changed 0.05	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ & \\ \text { A1 ft } & {[5]} \\ \text { B1 } & {[1]} \end{array}$	allow $4.2 \div 50$ comp 1.96 allow comp 1.645 if $\mathrm{H} 1: \mu>$ 12.5 or comp 1 - ('1.684') with 0.025 No contradictions ft their 1.684, but not comp 1.645
5 (i) (ii)	$\begin{aligned} & \mathrm{T} \sim \mathrm{~N}\left(6 \times 2.4,6 \times 0.3^{2}\right) \\ & (=\mathrm{N}(14.4,0.54) \\ & \frac{16-14.4^{\prime}}{\sqrt{10.54^{\prime}}}(=2.177) \\ & 1-\quad\left({ }^{\prime} 2.177^{\prime}\right) \\ & =0.0147(3 \mathrm{sf}) \\ & D=X_{1}-1.1 X_{2} \\ & \mathrm{E}(D)=-0.24 \\ & \operatorname{Var}(D)=0.3^{2}+1.1^{2} \times 0.3^{2}(=0.1989) \\ & \frac{0-(-0.24)}{\sqrt{V_{0} 0.1989^{\prime}}}(=0.538) \\ & \left({ }^{\prime} 0.538^{\prime}\right) \\ & =0.705(3 \mathrm{sf}) \end{aligned}$	M1 M1 M1 A1 [4] B1 M1 M1 M1 A1 [5]	seen or implied ft their E and Var; allow without $\sqrt{ }$ (Accept alternative method $\left.\mathrm{N}\left(2.4,\left(0.3^{2}\right) / 6\right)\right)$ correct area consistent with their working ft their E and Var; allow without $\sqrt{ }$ correct area consistent with their working
(i) (ii) (iii)	$\begin{aligned} & 2 \mathrm{~m} \\ & k \int_{0}^{2} x^{2}(2-x) \mathrm{d} x=1 \\ & k\left[\frac{2 x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{2} \\ & k \times\left[\frac{16}{3}-4\right]=1 \text { or } k \times \frac{4}{3}=1 \text { oe } \\ & k=\frac{3}{4} \mathbf{A G} \\ & \frac{3}{4} \int_{0}^{2} x^{3}(2-x) \mathrm{d} x \\ & =\frac{3}{4} \times\left[\frac{2 x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{2} \end{aligned}$ 1.2 m oe	B1 [1] M1 A1 A1 M1 A1 A1 $[3]$	allow without units attempt integ $\mathrm{f}(x)$ and ' $=1$ '. Ignore limits correct integration and limits No errors seen attempt integ $x \mathrm{f}(x)$, condone missing k correct integration and limits, condone missing k allow without units

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	71

(iv)	$\begin{aligned} & \frac{3}{4} \int_{0}^{1} x^{2}(2-x) \mathrm{d} x \\ & \left(=\frac{3}{4} \times\left(\frac{2}{3}-\frac{1}{4}\right)\right) \\ & =\frac{5}{16} \text { or } 0.3125 \mathrm{oe} \\ & 400 \times \frac{5}{16}=125 \end{aligned}$	M1 A1 A1 ft [3]	attempt integ $\mathrm{f}(x), 0$ to 1 , condone missing k ft their $\frac{5}{16}$
(a) (i) (ii) (b)	$\begin{aligned} & 0.01 \times 80 \text { and } 0.015 \times 60 \\ & \left(1-\mathrm{e}^{-0.8}\right) \times\left(1-\mathrm{e}^{-0.9}\right) \\ & =0.327(3 \mathrm{sf}) \\ & \lambda=0.02 \times 40+0.015 \times 60 \\ & \\ & \mathrm{e}^{-1.7} \times\left(1+1.7+\frac{1.7^{2}}{2}\right) \\ & =0.757(3 \mathrm{sf}) \\ & \mathrm{e}^{-\lambda} \times \lambda=p \text { and } \mathrm{e}^{-\lambda} \times \frac{\lambda^{2}}{2}=1.5 p \\ & \lambda=3 \\ & p=\mathrm{e}^{-3} \times 3 \\ & =0.149(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 [3] M1 M1 A1 [3] M1 A1 M1 A1 [4]	$\left(1-\mathrm{e}^{-\lambda}\right) \times\left(1-\mathrm{e}^{-\mu}\right) \text { any } \lambda, \mu(\lambda \neq \mu)$ allow one end error or their $0.8+0.9$ or $\mathrm{e}^{-\lambda} \times \frac{\lambda^{2}}{2}=1.5 \times \mathrm{e}^{-\lambda} \times \lambda$ seen or implied their λ

Cambridge International Examinations

MATHEMATICS

9709/72
Paper 7
May/June 2016
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	72

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.

Note: $\quad \mathrm{B} 2$ or A 2 means that the candidate can earn 2 or 0 .
B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	72

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR - 1 A penalty of MR - 1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through \downarrow^{\prime} ' marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA - 1 This is deducted from A or B marks in the case of premature approximation. The PA - 1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	72

1	$\begin{aligned} & \frac{6.2}{\sqrt{50}} \text { or } \frac{62^{2}}{50} \\ & \frac{51-53}{6.2+\sqrt{50}}(=-2.281) \\ & \mathrm{P}\left(z>^{\prime}-2.281^{\prime}\right)=\phi\left({ }^{\prime} 2.281^{\prime}\right) \\ & =0.989(3 \mathrm{sf}) \end{aligned}$	B1 M1 M1 A1 [4]	seen or implied allow without $\div \sqrt{ } 50$ for finding correct area consistent with working as final answer
2 (i) (ii)	Conclude less than 90% satisfied when this is not true oe $\begin{aligned} & 1-\left(0.9^{15}+15 \times 0.9^{14} \times 0.1\right. \\ & \left.+{ }^{15} \mathrm{C}_{2} \times 0.9^{13} \times 0.1^{2}+{ }^{15} \mathrm{C}_{3} \times 0.9^{12} \times 0.1^{3}\right) \\ & =0.0556(3 \mathrm{sf}) \text { or } 0.0555 \end{aligned}$	B11 M1 M1 A1 [3]	In context Attempt ($1-\mathrm{P}(X=15,14,13,12)$ allow 1 end error Attempt fully correct expression
3 (i) (ii) (a) (b)	Pop too big or takes too long oe or testing destroys articles oe $\begin{aligned} & z=1.96 \\ & 65.7 \pm z \times \frac{\sqrt{15}}{10} \\ & =64.9 \text { to } 66.5(3 \mathrm{sf}) \end{aligned}$ CI does not include 64.7 Probably has affected (or increased) mean bounce ht.	B1 [1] B1 M1 A1 [3] B1^ [1]	or too expensive oe or pop inaccessible oe seen Expression of correct form (must be ' z ' must be 65.7) Must be an interval allow 64.7 not within CI both needed. ft their $\mathrm{CI} \mathrm{ft} 65.7 / 64.7$ mix
4	$\begin{aligned} & \mathrm{H}_{0}: \lambda(\text { or } \mu)=42 \\ & \mathrm{H}_{1}: \lambda(\text { or } \mu) \neq 42 \\ & \operatorname{Po}(42) \sim \mathrm{N}(42,42) \text { stated or implied } \\ & \frac{53.5-42}{\sqrt{42}} \\ & =1.77(4)(\text { or } 0.038 \text { for area comparison }) \end{aligned}$ comp 1.96 No evidence that mean has changed	B1 B1 ${ }^{\wedge}$ M1 A1 M1 A1 「 [6]	Or pop weekly mean $=2.1$ etc. allow 'population mean' not just 'mean' ft their ' 42 ' (Accept alt method $\mathrm{N}(2.1,2.1 / 20)$ allow with wrong or no cc. Accept alt method using $\mathrm{N}(2.1,2.1 / 20)$ with or without cc Valid comp zor 1 - ('1.774') with 0.025 seen allow comp 1.645 if $\mathrm{H}_{1}: \lambda($ or $\mu)>42$ No contradictions. No ft for $\mathrm{H}_{1}: \lambda$ (or μ) >42 Note - accept other valid methods(e.g. cv method)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	72

5 (i) (ii)	$\begin{aligned} & T \sim \mathrm{~N}(520,70) \\ & \frac{530-520}{\sqrt{70}}(=1.195) \\ & \\ & \left({ }^{\prime} 1.195^{\prime}\right) \\ & =0.884(3 \mathrm{sf}) \\ & \\ & \mathrm{E}(T)=-10 \\ & \operatorname{Var}(T)=50+4.1^{2} \times 20(=386.2) \\ & \frac{0-(-10)}{\sqrt{38862^{\prime}}(}(=0.509) \\ & 1-\quad\left(0.509^{\prime}\right) \\ & =0.305(3 \mathrm{sf}) \end{aligned}$		for $\mathrm{N}(520, .$.$) or \mathrm{N}(500, .$.$) if$ standardising with 510 for $\mathrm{Var}=70$ seen or implied ft their E and Var; allow without $\sqrt{ }$ finding correct area consistent with working CWO or +10 for $\mathrm{T}<0$ Seen or implied ft their E and Var; allow without $\sqrt{ }$ finding correct area consistent with working CWO
(i) (ii) (a) (b) (iii)	$\begin{aligned} & \lambda=6.8 \\ & \mathrm{e}^{-6.8} \times \frac{6.5^{5}}{5!} \\ & =0.135(3 \mathrm{sf}) \\ & \mathrm{e}^{-3.4}\left(1+3.4+\frac{3.4^{2}}{2}+\frac{3.4^{3}}{3!}+\frac{3.4^{4}}{4!}\right) \\ & =0.744(3 \mathrm{sf}) \\ & { }^{3} 0.7444^{\prime}+\mathrm{e}^{-3.4} \times \frac{3.4^{5}}{5!} \\ & =0.87(0)(3 \mathrm{sf}) \text { or } 0.871 \\ & \mathrm{P}(X \leqslant 6)={ }^{\prime} 0.870{ }^{\prime}+\mathrm{e}^{-3.4} \times \frac{3.4^{6}}{6!} \\ & =0.94 \end{aligned}$ Need 6 hair driers	$\left\lvert\, \begin{array}{ll} \mathbf{B 1} & \\ \mathbf{M 1} & \\ \mathbf{A 1} & {[3]} \\ \mathbf{M 1} & \\ \mathbf{A 1} & {[2]} \\ \mathbf{M 1} & \\ \mathbf{A 1} & {[2]} \\ \mathbf{M 1} & \\ \mathbf{A 1} & \\ \mathbf{A 1} & {[3]} \end{array}\right.$	any λ any λ, allow one end-error or complete method, any λ, allow one end-error or complete method, any λ fully correct un-simplified expression or better dep M1A1 with numerical justification (0.94 or better)
$7 \quad$ (a) (b) (i)	$\begin{aligned} & 0.3 \text { or } 1-0.6 \text { or } 0.4 \text { or } 0.2 \text { seen } \\ & 0.8 \\ & k \int_{0}^{1.5}\left(2.25-x^{2}\right) \mathrm{d} x=1 \\ & k\left[2.25 x-\frac{x^{3}}{3}\right]_{0}^{1.5}=1 \\ & k \times[3.375-1.125]=1 \text { or } k \times \frac{9}{4}=1 \mathrm{oe} \\ & k=\frac{4}{9} \mathbf{A G} \end{aligned}$	A1 A1	attempt integ $\mathrm{f}(x)$ and ${ }^{\prime}=1$ '. Ignore limits correct integration and limits No errors seen

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	$\mathbf{9 7 0 9}$	72

(ii) (iii) (iv)	$\begin{aligned} & \frac{4}{9} \int_{0}^{1.5}\left(2.25 x-x^{3}\right) \mathrm{d} x \\ & =\frac{4}{9}\left[2.25 \frac{x^{2}}{2}-\frac{x^{4}}{4}\right]_{0}^{1.5} \\ & =0.5625 \text { or } 0.563 \end{aligned}$ Mean no. of hours $=56.25$ or 56.356 hrs 15 mins $\operatorname{Max} x$ is 1.5 , less than 2.9 or $150<290$ any a such that $2.9 \leqslant a \leqslant 5$		attempt integ $x \mathrm{f}(x)$, ignore limits, condone missing k correct integration and limits, condone missing k ft their 0.5625 Needs numerical justification
	Total for paper	50	

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS

9709/73
Paper 7
May/June 2016
MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	73

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ${ }^{\wedge}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to $3 \mathrm{~s} . \mathrm{f}$. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	73

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR - 1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ${ }^{\text {" " }}$ marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	73

Qu	Answer	Marks	Notes
1	$\begin{aligned} & 192.4 \pm z \sqrt{\frac{3.6}{150}} \\ & z=2.326 \text { to } 2.329 \\ & 191 \text { to } 194 \text { (3 sf) } \end{aligned}$	M1 B1 A1 [3]	Allow $\frac{43.6}{\sqrt{150}}$ Allow one side for M1 Condone $\sqrt{ }(43.6 / 149)$ oe CWO
2	H_{0} : Pop mean yield $=8.2$ H_{1} : Pop mean yield >8.2 $(\pm) \frac{8.7-8.2}{1.2 / \sqrt{16}}$ $=(\pm) 1.667$ Comp $z=1.645$ Or Area comparison $0.0475-0.0478)$ Reject H_{0} Evidence that mean yield has increased	A1 M1 $\mathbf{A 1} \downarrow[5]$	or $\mu=8.2$ (not just "mean") $\mu>8.2$ Allow without $\sqrt{ }$ sign (Allow cc) Or comp 1 - $\Phi\left({ }^{\prime} 1.667\right.$ ') with 0.05 Valid Comparison z-values (same sign) or areas No Contradictions No follow through for 2 tail test
3 (i) (ii)	Use of Poisson Mean $=2.4$ $\begin{aligned} & 1-\mathrm{e}^{-2.4}\left(1+2.4+\frac{2.4^{2}}{2}\right) \\ & =0.43(0)(3 \mathrm{sf}) \\ & 240>50 \text { or } \mathrm{n}>50 \\ & 240 \times 0.01=2.4<5 \text { or } \mathrm{np}<5 \text { or } \mathrm{p}<0.1 \end{aligned}$	B1 B1 M1 A1 [4] B1 B1 [2]	Allow any λ (Allow one end error) Final answer SR Use of binomial: B1 for ans 0.431 (3 sf) SR n large, p small: B1
(i) (ii) (iii)	H_{0} : Pop mean $=2.5($ or 7.5$)$ H_{0} : Pop mean <2.5 (or 7.5) $\begin{aligned} & \lambda=7.5 \\ & \mathrm{P}(X \leqslant 2)=\mathrm{e}^{-7.5}\left(1+7.5+\frac{7.5^{2}}{2}\right)=0.0203 \\ & \mathrm{P}(X \leqslant 3)=0.0203+\mathrm{e}^{-7.5} \times \frac{7.5^{3}}{3!}=0.0591 \end{aligned}$ CR is $X \leqslant 2$ Reject H_{0} Evidence that no of sightings fewer $\mathrm{P}(\text { Type } \mathrm{I})=0.0203(3 \mathrm{sf})$ H_{0} was rejected oe		or $\lambda=2.5$ (Not just "mean") Allow μ or $\lambda<2.5$ Either $\mathrm{P}(\mathrm{X} \leqslant 2)$ or $\mathrm{P}(\mathrm{X} \leqslant 3)$, allow any λ Both Correct Clear statement Follow through their CR/their $P(X \leqslant 2)$ ft their $\mathrm{P}(X \leqslant 2)$ or Type II is $\mathrm{P}\left(\right.$ not reject H_{0})oe
5 (i)	$\begin{aligned} & k \int_{5}^{10}\left(10 t-t^{2}\right) \mathrm{d} t=1 \\ & k\left[5 t^{2}-\frac{t^{3}}{3}\right]_{5}^{10}=1 \\ & k\left(500-\frac{1000}{3}-\left(125-\frac{125}{3}\right)\right)=1 \\ & k \times \frac{250}{3}=1 \\ & \left(k=\frac{3}{250} \mathbf{A G}\right) \end{aligned}$	M1 A1 A1 [3]	Attempt to integrate, ignore limits Correct integral and limits No errors seen; No inexact decimals seen

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	73

\begin{tabular}{|c|c|c|c|}
\hline Qu \& Answer \& Marks \& Notes

\hline (ii)
(iii)

(iv) \& \begin{tabular}{l}
$$
\begin{aligned}
& \frac{3}{250} \int_{5}^{10}\left(10 t^{2}-t^{3}\right) \mathrm{d} t \\
& =\frac{3}{250}\left[\frac{10 t^{3}}{3}-\frac{t^{4}}{4}\right]_{5}^{10} \\
& =\frac{3}{250}\left(\frac{10000}{3}-\frac{10000}{4}-\left(\frac{1250}{3}-\frac{625}{4}\right)\right. \\
& =6.875 \text { or } 55 / 8
\end{aligned}
$$
$$
\begin{aligned}
& \mathrm{P}\left(T<\mathrm{E}(T)=\frac{3}{250}\left[5 t^{2}-\frac{\frac{\beta}{}^{3}}{3}\right]^{6.875 "}\right. \\
& =0.5361 \\
& " 0.5361 "-0.5 \\
& \mathrm{P}(T \text { between } \mathrm{E}(T) \& \text { median }=0.0361
\end{aligned}
$$

10 (minutes)

 \&

A1 [3]

M1*

DM1*

A1 [3]

B1 [1]

 \&

Attempt to integrate, ignore limits

Correct integral and limit. Condone missing k

Allow 6.88

ft their $\mathrm{E}(T)$

allow 0.036

Alternative Method

Integrate $\mathrm{f}(\mathrm{t})$ limits 5 and m equated to $0.5 \mathrm{M} 1^{*}$

Integrate $f(t)$ limits their 6.736 (provided between 5 and 10) and their 6.875DM1

Allow without "minutes"
\end{tabular}

\hline $\begin{array}{ll}6 & \text { (i) } \\ & \\ & \text { (ii) } \\ & \\ \text { (iii) } \\ \\ \text { (iv) }\end{array}$ \& | $\begin{aligned} & \lambda=3.9 \\ & \mathrm{e}^{-3.9} \times \frac{3.9^{4}}{4!} \\ & =0.195 \end{aligned}$ $\bar{X} \sim \mathrm{~N}\left(1.6, \frac{1.6}{75}\right)$ $\begin{aligned} & \frac{1.7-1.6}{\sqrt{150}}(=0.685) \\ & 1-\Phi(" 0.685 ") \\ & =0.247(3 \mathrm{sf}) \end{aligned}$ |
| :--- |
| X not normally distr. So CLT needed | \& | B1 M1 |
| :--- |
| A1 [3] |
| B1 |
| B1 [2] |
| M1 |
| M1 |
| A1 [3] |
| B1 |
| [1] | \& | M1 allow any λ |
| :--- |
| SR Combination method B1 for $\lambda=1.6$ AND $\lambda=2.3$ used in combination method (at least 3 combinations) |
| M1 All correctly combined and added |
| B1 for $\mathrm{N}(1.6, \ldots$.$) stated$ |
| B1 for Var $=\frac{1.6}{75}$ stated |
| SR, not stated but all implied in (iii): B1 |
| For standardising (using their values or correct values .Ignore cc |
| Correct area consistent with their working Accept use of $1 / 2 \mathrm{n}$ correction leading to 0.233 . NB Use of Poisson sum $\operatorname{Po}(120)$ and $\mathrm{N}(120,120)$ with $\mu=127.5$ leads to 0.247 , or 0.233 with cc |
| Not "it" |

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9709	73

CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the March 2016 series

9709 MATHEMATICS

9709/72
Paper 7 (Probability and Statistics), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE ${ }^{\circledR}$ and Cambridge International A and AS Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	72

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0.
$B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	72

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\text { " }}$ marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	72

1	$\begin{array}{ll} \mathrm{E}(X)=\frac{10}{3} \text { oe } & \operatorname{Var}(X)=\frac{25}{9} \text { oe } \\ \mathrm{E}(Y)=10 & \operatorname{Var}(Y)=5 \end{array}$ $\begin{aligned} & \mathrm{E}(X+Y)=\frac{40}{3} \text { oe } \quad \text { or } 13.3(3 \mathrm{sf}) \\ & \operatorname{Var}(X+Y)=" \frac{25}{9} "+" 5 " \\ & \mathrm{sd}=\frac{\sqrt{70}}{3} \text { oe } \quad \text { or } 2.79(3 \mathrm{sf}) \end{aligned}$	B1 B1 B1 M1 A1 [5]	For $\mathrm{E}(X)$ and $\operatorname{Var}(X)$ For $\mathrm{E}(Y)$ and $\operatorname{Var}(Y)$ OR For $\mathrm{E}(X)$ and $\mathrm{E}(Y)$ For $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$ For adding 2 (appropriate) variances or sd $=$ or $\sqrt{2} \times \frac{5}{3}$
2	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(\text { hit target })=0.65 \\ & \mathrm{H}_{1}: \mathrm{P}(\text { hit target })>0.65 \\ & { }^{20} \mathrm{C}_{2} \times 0.35^{2} \times 0.65^{18}+19 \times 0.35 \times 0.65^{19} \\ & +0.65^{20} \\ & =0.0121(3 \mathrm{sf}) \end{aligned}$ Comp 0.01 There is no evidence (at the 1% level) that she has improved	B1 M1 A1 M1 A1 $\sqrt{\wedge}$	Allow $p=0.65$ Allow $p>0.65$ Allow one end error. Allow p/q mix. Allow (1-) for \mathbf{M} mark A mark recovered following valid comparison For valid comparison She has probably not improved. No contradictions. (SR Use of Normal M0, but M1A1 for valid comparison could be awarded)
3 (i)	H_{0} : pop mean journey time $=35.2 \mathrm{mins}$ H_{1} : pop mean journey time <35.2 mins $\begin{aligned} & \frac{34.7-35.2}{5.6 / \sqrt{25}} \\ & \Phi(<"-0.446 ")=1-\Phi(" 0.446 ") \\ & =0.328(3 \mathrm{sf}) \end{aligned}$	B1 M1 M1 A1 [4]	Allow " μ ". Not "mean journey time" For standardising ($\sqrt{ } 25$ needed) For correct area consistent with their working As final answer
(ii)	H_{0} is rejected but Type II error can only be made if H_{0} is not rejected	B1 [1]	Allow just " H_{0} is rejected." oe
4		B1 B1 M1 M1 A1 [5]	B1 for $\pm 0.1 \mathbf{B 1}$ for $0.2^{2}+4 \times 0.1^{2}$ For standardising. Allow without $\sqrt{ }$ sign For correct area consistent with their working
5 (i)	$\begin{aligned} & \operatorname{Est}(\mu)=\frac{14910}{150} \quad(=99.4) \\ & \operatorname{Est}\left(\sigma^{2}\right)=\frac{150}{149}\left(\frac{1525000}{150}-" 99.44^{42}\right) \\ & =288.228 \\ & z=2.576 \\ & " 99.4 " \pm z \times \sqrt{288.228 \div 150} \\ & \mathrm{CI}=95.8 \text { to } 103(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1 B1 M1 A1 [6]	Allow M1 if $\frac{150}{149}$ omitted Accept 2.574-2.579 Any z (NB Use of biased Var can score $5 / 6$ max)
(ii)	100 lies within this CI Hence yes	B1 ${ }^{\text {c }}$ [1]	Both needed, ft their CI

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - March 2016	9709	72

(iii)	To avoid bias or Necessary to enable statistical inference	B1 [1]	Or any equivalent
6 (i)	$\begin{aligned} & \lambda=3.3 \times \frac{25}{30}=2.75 \\ & \mathrm{e}^{-2.75}\left(1+2.75+\frac{2.75^{2}}{2}\right) \\ & =0.481(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow any λ Allow one end error As final answer. Accept 0.482
(ii) (a)	$\begin{aligned} & \lambda\left(=3.3 \times \frac{365}{30}\right)=40.15 \\ & (X \sim \operatorname{Po}(40.15) \Rightarrow X \sim \mathrm{~N}(40.15,40.15)) \\ & \frac{50.540 .40 .15{ }^{\prime \prime}}{\sqrt{440.15 "}} \quad(=1.633) \\ & 1-\Phi\left(" 1.6333^{\prime \prime}\right) \\ & =0.0513(3 \mathrm{sf}) \end{aligned}$	B1 M1 M1 A1 [4]	Accept 40.1 or 40.2 Allow with incorrect or no cc OR no $\sqrt{ }$ sign For correct area consistent with their working Accept 0.0512
(b)	$\lambda>15$	B1 [1]	or similar
(iii)	$\begin{align*} & \lambda=\frac{73}{30} \text { oe or } 1.1+1.33=2.43(3 \mathrm{sf}) \\ & 1-\mathrm{e}^{-2.43}\left(1+2.43+\frac{2.43^{2}}{2}+\frac{2.43^{3}}{3!}\right) \\ & =0.228(3 \mathrm{sf}) \tag{3} \end{align*}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow any λ. Allow one end error
$7 \quad$ (a) (i)	$\begin{aligned} & \mathrm{E}(X)=1.5 \\ & \frac{2}{9} \int_{0}^{3}\left(3 x^{3}-x^{4}\right) \mathrm{d} x \\ & =\frac{2}{9}\left[\frac{3 x^{4}}{4}-\frac{x^{5}}{5}\right]_{0}^{3} \\ & =\frac{2}{9}\left[\frac{243}{4}-\frac{243}{5}\right] \quad(=2.7) \\ & \operatorname{Var}(X)\left(=2.7-1.5^{2}\right)=0.45 \mathrm{oe} \end{aligned}$	B1 M1 M1 A1 ${ }^{\wedge}$ [4]	Attempt integ $x^{2} \mathrm{f}(x)$ ignore limits Sub correct limits into correct integral Ft their $\mathrm{E}(X)$, but no ft for -ve Var.
(ii)	0.5	B1 [1]	
(iii)	$\begin{aligned} & \left(1-\frac{13}{27}\right) \div 2 \\ & =\frac{7}{27} \text { or } 0.259 \end{aligned}$	M1 A1 [2]	or $\frac{2}{9} \int_{2}^{3}\left(3 x-x^{2}\right) d x$ oe As final answer
(b)	$\begin{array}{ll} \frac{1}{2} \times 2 \times 2 a=\frac{1}{2} & \text { or } \int_{0}^{2} a x \mathrm{~d} x=\frac{1}{2} \\ a=\frac{1}{4} & \\ \frac{1}{2} \times b \times \frac{1}{4} b=1 & \text { or } \\ \int_{0}^{b} \frac{1}{4} x \mathrm{~d} x=1 \\ b=2 \sqrt{2} & \text { or } b=2 \times \sqrt{2} \end{array}$	M1 A1 M1 A1 $\sqrt{\wedge}$ [4]	Attempt correct equation in ' a ' or $\frac{1}{2} \times b \times a b=1$ or $\int_{0}^{b} a x \mathrm{~d} x=1$ attempt correct equation in (a and) b Allow $b=\sqrt{8}$ or $2.83(3 \mathrm{sf})$ Ft incorrect a, both Ms needed
		Total for paper 50	

MARK SCHEME for the October／November 2015 series

9709 MATHEMATICS

9709／71
Paper 7，maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	71

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0.
$B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	71

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\text { " }}$ marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	71

1	$\begin{aligned} & \lambda=(1.2+2.3) \div 2 \\ & =1.75 \\ & \mathrm{e}^{-1.75}\left(\frac{1.75^{2}}{2}+\frac{1.75^{3}}{3!}\right) \\ & =0.421(3 \mathrm{sf}) \end{aligned}$	M1 A1 M1 A1 [4]	Attempt combined mean, allow $1.2+2.3$ Correct mean Allow incorrect mean. Allow end errors (1 and/or 4)
		Total: 4	
2 (i)	$\frac{6}{\sqrt{120}} \quad$ oe seen $\begin{aligned} & \frac{30-29}{\left(\frac{6}{\sqrt{120}}\right)} \quad(=1.826) \\ & \mathrm{P}\left(z>^{‘} 1.826^{\prime}\right)=1-\Phi\left({ }^{‘} 1.826^{\prime}\right) \\ & =0.034(2 \mathrm{sf}) \end{aligned}$	B1 M1 M1 A1 [4]	Or $6^{2} / 120$ oe seen \pm Allow without $\sqrt{ } 120$. No sd/var mix Correct tail consistent with their working 0.0339
(ii)	No n is large $(\geqslant 30)$ Sample mean is (appr) normally distrib or The CLT applies oe	B1 B1 [2]	$1^{\text {st }} \mathrm{B} 1$ for either comment $2^{\text {nd }}$ B1 for'No' with $2^{\text {nd }}$ comment (No mark for 'No' alone)
		Total: 6	
3 (i)	$\begin{aligned} & \frac{3420}{60}(=57) \\ & \frac{60}{59}\left(\frac{195200}{60}-{ }^{\prime} 57^{\prime 2}\right) \quad(=4.40678) \\ & =4.41(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1 [3]	Oe As final answer
(ii)	$\begin{aligned} & ' 57 ' \pm z \sqrt{\frac{4.40678^{\prime}}{60}} \\ & z=2.326 \\ & {[56.4 \text { to } 57.6](3 \mathrm{sf})} \end{aligned}$	M1 B1 A1 [3]	$2.326-2.329$ (accept 2.33 if no better seen) NB: use of biased variance in (ii) can score in full
		Total: 6	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	71

$4 \quad$ (i)	$\begin{aligned} & k \int_{1}^{2}(3-x) d x=1 \\ & k\left[3 x-\frac{x^{2}}{2}\right]_{1}^{2}=1 \\ & (k(6-2-(3-0.5))=1) \\ & k \times 1.5=1 \text { or } k \times \frac{3}{2}=1 \text { or } k=\frac{1}{1.5} \text { oe } \\ & k=\frac{2}{3} \mathbf{A G} \end{aligned}$	M1 A1 A1 [3]	Attempt $\int \mathrm{f}(x)=1$, ignore limits or $\frac{k}{2}\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)=1$ Correct integration \& limits or $\frac{k}{2}(2+1)=1$ No errors seen
(ii)	$\begin{aligned} & \frac{2}{3} \int_{1}^{m}(3-x) d x=0.5 \text { oe } \int \text { from } \mathrm{m} \text { to } 2 \\ & \left(\frac{2}{3}\left[3 x-\frac{x^{2}}{2}\right]_{1}^{m}=0.5\right) \\ & \frac{2}{3}\left[3 m-\frac{m^{2}}{2}-2.5\right]=0.5 \\ & m^{2}-6 m+6.5=0 \text { oe } \\ & \left(m=\frac{6 \pm \sqrt{36-4 \times 6.5}}{2}=1.42 \text { or } 4.58\right) \\ & m=1.42(3 \mathrm{sf}) \end{aligned}$	M1* $\operatorname{dep} \text { M1* }$ A1 A1	Attempt $\operatorname{Int} \mathrm{f}(x)=0.5$, ignore limits oe Or use of area of trapezium Sub of correct limits into their integral. Or trapezium using 1 and m / m and 2 Any correct 3-term $\mathrm{QE}=0$ or $(\mathrm{m}-3)^{2}$ $=2.5$ or $\frac{6-\sqrt{10}}{2}$ oe; single correct ans
		Total: 7	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	71

5 (i)	$\operatorname{Po}(1.6)$ stated or implied $\begin{aligned} & \mathrm{P}(X>3)=1-\mathrm{e}^{-1.6}\left(1+1.6+\frac{1.6^{2}}{2}+\frac{1.6^{3}}{3!}\right) \\ & =0.0788(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 [3]	Allow M1 for $1-\mathrm{P}(X \leqslant 3)$, incorrect λ and allow one end error SR Use of Bin scores B1 only for 0.0788
(ii)	$\begin{aligned} & \lambda=\frac{n}{2500} \\ & \mathrm{e}^{-\frac{\mathrm{n}}{2500}}<0.05 \quad \text { Allow }= \\ & \quad \text { Allow incorrect } \lambda \\ & -\frac{n}{2500}<\ln 0.05 \text { Attempt } \ln \mathrm{bs} \\ & n>7489.3(1 \mathrm{dp}) \\ & \text { Smallest } n=7490 \end{aligned}$	B1 M1 M1 A1 [4]	
		Total: 7	
6 (i)	$\begin{array}{ll} \mathrm{E}(T)=9 \times 78+7 \times 66 & (=1164) \\ \operatorname{Var}(T)=9 \times 7^{2}+7 \times 5^{2} & (=616) \\ \frac{1200-1164^{\prime}}{\sqrt{ } 616^{\prime}} & (=1.450) \\ \mathrm{P}(z<1.450)=\Phi(1.450) & \\ =0.927(3 \mathrm{sf}) & \end{array}$	B1 B1 M1 M1 A1 [5]	Or $9 \times 78+7 \times 66-1200$ \pm Allow without $\sqrt{ }$ Correct tail consistent with their mean
(ii)	$\begin{array}{ll} \mathrm{E}(D)=66-78 & (=-12) \\ \operatorname{Var}(D)=7^{2}+5^{2} & (=74) \\ \frac{0-\left('-12^{\prime}\right)}{\sqrt{74}} & (=1.395) \\ \mathrm{P}(D>0)=1-\Phi\left({ }^{\prime} 1.395^{\prime}\right) & \\ 0.0815(3 \mathrm{sf}) & \end{array}$	B1 M1 M1 A1 [4]	Both needed \pm Allow without $\sqrt{ }$ Correct tail consistent with their mean Similar scheme for $\mathrm{P}(\mathrm{M}-\mathrm{W})<0$
		Total: 9	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	71

$7 \quad$ (i)	Prob could be different later in day or on a different day oe	B1 [1]	or any explanation why not random or "Not random" or "Not representative"
(ii)	Looking for decrease (or improvement) $\mathrm{H}_{0}: \mathrm{P}($ not arrive $)=0.2$ $\mathrm{H}_{1}: \mathrm{P}($ not arrive $)<0.2$	B1 B1	oe Allow " $p=0.2$ "
(iii)	Concluding that prob has decreased (or publicity has worked) when it hasn't oe	B1 [1]	In context
(iv)	$\mathrm{P}(X=0)$ and $\mathrm{P}(X=1)$ attempted $\begin{gathered} \mathrm{P}(X \leqslant 2)=0.8^{30}+30 \times 0.8^{29} \times 0.2+ \\ { }^{30} \mathrm{C}_{2} \times 0.8^{28} \times 0.2^{2} \\ (=0.0442) \\ \\ \mathrm{P}(X \leqslant 3)=0.8^{30}+30 \times 0.8^{29} \times 0.2+ \\ { }^{30} \mathrm{C}_{2} \times 0.8^{28} \times 0.2^{2}+{ }^{30} \mathrm{C}_{3} \times 0.8^{27} \times 0.2^{3} \\ =0.123 \end{gathered}$ cr is $X \leqslant 2$ $\mathrm{P}($ Type I$)=0.0442(3 \mathrm{sf})$	M1 M1 B1 A1 A1	B(30, 0.2) Not nec'y added May be implied by calc $\mathrm{P}(X \leqslant 2)$ or $\mathrm{P}(X \leqslant 3)$ Attempt $\mathrm{P}(X \leqslant 2)$ Or ${ }^{\prime} 0.0442{ }^{\prime}+{ }^{30} \mathrm{C}_{3} \times 0.8^{27} \times 0.2^{3}=0.123$
(v)	3 is outside cr No evidence that p has decreased (or that publicity has worked)	M1 A1 [2]	Comparison of 3 with their cr or $\mathrm{P}(X \leqslant 3)=0.123$ which is >0.05 Correct conclusion. No contradictions
		Total: 11	
		Total for paper: 50	

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/72
Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	72

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0.
$B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	72

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\text { " }}$ marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

1	$\begin{aligned} & \lambda=(1.2+2.3) \div 2 \\ & =1.75 \\ & \mathrm{e}^{-1.75}\left(\frac{1.75^{2}}{2}+\frac{1.75^{3}}{3!}\right) \\ & =0.421(3 \mathrm{sf}) \end{aligned}$	M1 A1 M1 A1 [4]	Attempt combined mean, allow $1.2+2.3$ Correct mean Allow incorrect mean. Allow end errors (1 and/or 4)
		Total: 4	
2 (i)	$\frac{6}{\sqrt{120}} \quad$ oe seen $\begin{aligned} & \frac{30-29}{\left(\frac{6}{\sqrt{120}}\right)} \quad(=1.826) \\ & \mathrm{P}\left(z>^{‘} 1.826^{\prime}\right)=1-\Phi\left({ }^{‘} 1.826^{\prime}\right) \\ & =0.034(2 \mathrm{sf}) \end{aligned}$	B1 M1 M1 A1 [4]	Or $6^{2} / 120$ oe seen \pm Allow without $\sqrt{ } 120$. No sd/var mix Correct tail consistent with their working 0.0339
(ii)	No n is large $(\geqslant 30)$ Sample mean is (appr) normally distrib or The CLT applies oe	B1 B1 [2]	$1^{\text {st }} \mathrm{B} 1$ for either comment $2^{\text {nd }}$ B1 for'No' with $2^{\text {nd }}$ comment (No mark for 'No' alone)
		Total: 6	
3 (i)	$\begin{aligned} & \frac{3420}{60}(=57) \\ & \frac{60}{59}\left(\frac{195200}{60}-{ }^{\prime} 57^{\prime 2}\right) \quad(=4.40678) \\ & =4.41(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1 [3]	Oe As final answer
(ii)	$\begin{aligned} & ' 57 ' \pm z \sqrt{\frac{4.40678^{\prime}}{60}} \\ & z=2.326 \\ & {[56.4 \text { to } 57.6](3 \mathrm{sf})} \end{aligned}$	M1 B1 A1 [3]	$2.326-2.329$ (accept 2.33 if no better seen) NB: use of biased variance in (ii) can score in full
		Total: 6	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	72

$4 \quad$ (i)	$\begin{aligned} & k \int_{1}^{2}(3-x) d x=1 \\ & k\left[3 x-\frac{x^{2}}{2}\right]_{1}^{2}=1 \\ & (k(6-2-(3-0.5))=1) \\ & k \times 1.5=1 \text { or } k \times \frac{3}{2}=1 \text { or } k=\frac{1}{1.5} \text { oe } \\ & k=\frac{2}{3} \mathbf{A G} \end{aligned}$	M1 A1 A1 [3]	Attempt $\int \mathrm{f}(x)=1$, ignore limits or $\frac{k}{2}\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)=1$ Correct integration \& limits or $\frac{k}{2}(2+1)=1$ No errors seen
(ii)	$\begin{aligned} & \frac{2}{3} \int_{1}^{m}(3-x) d x=0.5 \text { oe } \int \text { from } \mathrm{m} \text { to } 2 \\ & \left(\frac{2}{3}\left[3 x-\frac{x^{2}}{2}\right]_{1}^{m}=0.5\right) \\ & \frac{2}{3}\left[3 m-\frac{m^{2}}{2}-2.5\right]=0.5 \\ & m^{2}-6 m+6.5=0 \text { oe } \\ & \left(m=\frac{6 \pm \sqrt{36-4 \times 6.5}}{2}=1.42 \text { or } 4.58\right) \\ & m=1.42(3 \mathrm{sf}) \end{aligned}$	M1* $\operatorname{dep} \text { M1* }$ A1 A1	Attempt $\operatorname{Int} \mathrm{f}(x)=0.5$, ignore limits oe Or use of area of trapezium Sub of correct limits into their integral. Or trapezium using 1 and m / m and 2 Any correct 3-term $\mathrm{QE}=0$ or $(\mathrm{m}-3)^{2}$ $=2.5$ or $\frac{6-\sqrt{10}}{2}$ oe; single correct ans
		Total: 7	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

5 (i)	$\operatorname{Po}(1.6)$ stated or implied $\begin{aligned} & \mathrm{P}(X>3)=1-\mathrm{e}^{-1.6}\left(1+1.6+\frac{1.6^{2}}{2}+\frac{1.6^{3}}{3!}\right) \\ & =0.0788(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 [3]	Allow M1 for $1-\mathrm{P}(X \leqslant 3)$, incorrect λ and allow one end error SR Use of Bin scores B1 only for 0.0788
(ii)	$\begin{aligned} & \lambda=\frac{n}{2500} \\ & \mathrm{e}^{-\frac{\mathrm{n}}{2500}}<0.05 \quad \text { Allow }= \\ & \quad \text { Allow incorrect } \lambda \\ & -\frac{n}{2500}<\ln 0.05 \text { Attempt } \ln \mathrm{bs} \\ & n>7489.3(1 \mathrm{dp}) \\ & \text { Smallest } n=7490 \end{aligned}$	B1 M1 M1 A1 [4]	
		Total: 7	
6 (i)	$\begin{array}{ll} \mathrm{E}(T)=9 \times 78+7 \times 66 & (=1164) \\ \operatorname{Var}(T)=9 \times 7^{2}+7 \times 5^{2} & (=616) \\ \frac{1200-1164^{\prime}}{\sqrt{ } 616^{\prime}} & (=1.450) \\ \mathrm{P}(z<1.450)=\Phi(1.450) & \\ =0.927(3 \mathrm{sf}) & \end{array}$	B1 B1 M1 M1 A1 [5]	Or $9 \times 78+7 \times 66-1200$ \pm Allow without $\sqrt{ }$ Correct tail consistent with their mean
(ii)	$\begin{array}{ll} \mathrm{E}(D)=66-78 & (=-12) \\ \operatorname{Var}(D)=7^{2}+5^{2} & (=74) \\ \frac{0-\left('-12^{\prime}\right)}{\sqrt{74}} & (=1.395) \\ \mathrm{P}(D>0)=1-\Phi\left({ }^{\prime} 1.395^{\prime}\right) & \\ 0.0815(3 \mathrm{sf}) & \end{array}$	B1 M1 M1 A1 [4]	Both needed \pm Allow without $\sqrt{ }$ Correct tail consistent with their mean Similar scheme for $\mathrm{P}(\mathrm{M}-\mathrm{W})<0$
		Total: 9	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	72

$7 \quad$ (i)	Prob could be different later in day or on a different day oe	B1 [1]	or any explanation why not random or "Not random" or "Not representative"
(ii)	Looking for decrease (or improvement) $\mathrm{H}_{0}: \mathrm{P}($ not arrive $)=0.2$ $\mathrm{H}_{1}: \mathrm{P}($ not arrive $)<0.2$	B1 B1	oe Allow " $p=0.2$ "
(iii)	Concluding that prob has decreased (or publicity has worked) when it hasn't oe	B1 [1]	In context
(iv)	$\mathrm{P}(X=0)$ and $\mathrm{P}(X=1)$ attempted $\begin{gathered} \mathrm{P}(X \leqslant 2)=0.8^{30}+30 \times 0.8^{29} \times 0.2+ \\ { }^{30} \mathrm{C}_{2} \times 0.8^{28} \times 0.2^{2} \\ (=0.0442) \\ \\ \mathrm{P}(X \leqslant 3)=0.8^{30}+30 \times 0.8^{29} \times 0.2+ \\ { }^{30} \mathrm{C}_{2} \times 0.8^{28} \times 0.2^{2}+{ }^{30} \mathrm{C}_{3} \times 0.8^{27} \times 0.2^{3} \\ =0.123 \end{gathered}$ cr is $X \leqslant 2$ $\mathrm{P}($ Type I$)=0.0442(3 \mathrm{sf})$	M1 M1 B1 A1 A1	B(30, 0.2) Not nec'y added May be implied by calc $\mathrm{P}(X \leqslant 2)$ or $\mathrm{P}(X \leqslant 3)$ Attempt $\mathrm{P}(X \leqslant 2)$ Or ${ }^{\prime} 0.0442{ }^{\prime}+{ }^{30} \mathrm{C}_{3} \times 0.8^{27} \times 0.2^{3}=0.123$
(v)	3 is outside cr No evidence that p has decreased (or that publicity has worked)	M1 A1 [2]	Comparison of 3 with their cr or $\mathrm{P}(X \leqslant 3)=0.123$ which is >0.05 Correct conclusion. No contradictions
		Total: 11	
		Total for paper: 50	

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/73
Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	73

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ${ }^{\wedge}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
$B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.
- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	73

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally acceptable)

AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA 1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	73

\begin{tabular}{|c|c|c|c|c|}
\hline 1 (i) \& \[
\begin{aligned}
\& \mathrm{N}(352, \ldots) \\
\& \text { Variance }=2.9
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& [2] \& no recovery in (ii) for each B mark accept sd \(=\sqrt{ } 2.9=1.70(29)\) stated \\
\hline (ii) \& \[
\begin{aligned}
\& \frac{354-352}{\sqrt{2.9}} \\
\& 1-\Phi\left({ }^{\prime} 1.174^{\prime}\right) \\
\& =0.120(3 \mathrm{sf})
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \& [3] \& \begin{tabular}{l}
with their mean and var \\
Or \(\frac{354.05-352}{\sqrt{2.9}}\) \\
or correct restart
\[
(=1.204)
\] \\
(accept sd/var mix)1
\[
\begin{aligned}
\&-\Phi\left({ }^{(} 1.204^{`}\right) \\
\&= 0.114(3 \mathrm{sf})
\end{aligned}
\] \\
Incorrect cc can score M1M1A0
\end{tabular} \\
\hline Total \& \& \& [5] \& \\
\hline 2 \& \[
\left(\Phi^{-1}(0.99)=\right) 2.326 \text { seen }
\] \(\mathrm{N}(\lambda, \lambda)\) seen or implied
\[
\frac{55.5-\lambda}{\sqrt{\lambda}}=+" 2.326 "
\]
\[
\begin{aligned}
\& \lambda+" 2.326 " \sqrt{\lambda}-55.5=0 \\
\& \sqrt{\lambda}=\frac{-" 2.326 " \pm \sqrt{" 2.326 " 2}+4 \times 55.5}{2} \\
\& (=6.377 . . \text { or }-8.703 . .)) \\
\& \lambda=40.7(3 \mathrm{sf})
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
M1 \\
A1
\end{tabular} \& [5] \& \begin{tabular}{l}
must be \(\Phi^{-1}, \operatorname{not} \Phi\) \\
allow with wrong or no cc \& \(\Phi(0.99)\) (= 0.8389) \\
must \(=\) " z " or attempt at z \\
(0.99 / 0.01 M 0) \\
for correct method of solving their quad in \(\sqrt{ } \lambda\) and squaring to find \(\lambda\) \\
cao, one ans only Without \(\mathrm{cc}, \lambda=40.2\) : lose final A1
\end{tabular} \\
\hline Total \& \& \& [5] \& \\
\hline 3 (i) \& 0.4 or \(2 / 5\) or \(26 / 65\) \& B1 \& [1] \& no recovery in (ii) for the B mark \\
\hline (ii) \& \[
\begin{aligned}
\& " 0.4 "+z \times \sqrt{\frac{0.4 \times 0.6}{65}}=0.516 \mathrm{oe} \\
\& z=\left(0.116 \times \sqrt{\frac{65}{0.4 \times 0.6}}\right)=1.909 \\
\& \left(\Phi\left({ }^{\prime} 1.909^{\prime}\right)=0.97(18)\right) \\
\& 2\left({ }^{\prime} 0.97^{\prime}-1\right) \\
\& \alpha=94
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& [4] \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { or " } 0.4 \text { " }-z \times \sqrt{\frac{0.4 \times 0.6}{65}}=0.284 \text { or } \\
\& z \times \sqrt{\frac{0.4 \times 0.6}{65}}=0.116 \mathrm{oe}
\end{aligned}
\] \\
for fully correct method to find \(\alpha\) from their z \\
allow 94.36 or 94.4 or 94.374
\end{tabular} \\
\hline Total \& \& \& [5] \& \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Page 5 \& Mark Scheme \& Syllabus \& Paper \\
\hline \& Cambridge International A Level - October/November 2015 \& 9709 \& 73 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 4 (i) \& \[
\begin{aligned}
\& k \int_{-2}^{2}\left(4-x^{2}\right) \mathrm{d} x=1 \\
\& k\left[4 x-\frac{x^{3}}{3}\right]_{-2}^{2}=1 \\
\& \left(k\left(8-\frac{8}{3}-\left(-8-\left(-\frac{8}{3}\right)=1\right)\right)\right) \\
\& k \times \frac{32}{3}=1 \text { oe Not e.g. } k \times 10.7=k \\
\& k=\frac{3}{32} \mathbf{A G}
\end{aligned}
\] \& M1 A1 A1 \& [3] \& attempt Integral \(\mathrm{f}(x)=1\), ignore limits correct integration \& limits exact answer correctly found \\
\hline (ii) \& Inverted parabola, vertex on \(y\) axis
\[
\mathrm{E}(X)=0
\] \& B1
B1 \& [2] \& parabola must finish on x axis at \(\pm 2\), labelled (ignore markings on y axis) \\
\hline (iii) \& \[
\begin{aligned}
\& \frac{3}{32} \int_{-2}^{1}\left(4-x^{2}\right) \mathrm{d} x \\
\& \frac{3}{32}\left[4 x-\frac{x^{3}}{3}\right]_{-2}^{1} \\
\& \frac{3}{32}\left(4-\frac{1}{3}-\left(-8-\left(-\frac{8}{3}\right)\right)\right. \\
\& =\frac{27}{32} \text { or } 0.844(3 \mathrm{sf})
\end{aligned}
\] \& M1 A1 A1 \& [3] \& or \(1-\frac{3}{32} \int_{1}^{2}\left(4-x^{2}\right) \mathrm{d} x \quad\) ignore limits or \(1-\frac{3}{32}\left[4 x-\frac{x^{3}}{3}\right]_{1}^{2}\) correct integration and correct limits \(=1-\frac{3}{32}\left(8-\frac{8}{3}-\left(4-\frac{1}{3}\right)\right.\) \\
\hline Total \& \& \& [8] \& \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Page 6 \& Mark Scheme \& Syllabus \& Paper \\
\hline \& Cambridge International A Level - October/November 2015 \& 9709 \& 73 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 5 (a) \& \[
\begin{array}{ll}
\begin{array}{ll}
\lambda=4.5 \& (=0.011109) \\
\mathrm{e}^{-4.5} \& (=0.010860) \\
\left(\frac{99}{100}\right)^{450} \& \\
\left(\frac{0^{\prime} 0.011109^{\prime}--^{\prime} 0.010860^{\prime}}{0.010860} \times 100\right) \\
=2.29 \%(3 \mathrm{sf}) \&
\end{array}
\end{array}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
A1
\end{tabular} \& [4] \& alone allow any \(\lambda\) \\
\hline (b) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{H}_{0}: \mathrm{P}(6)=\frac{1}{6} \text { or } p=\frac{1}{6} \\
\& \mathrm{H}_{1}: \mathrm{P}(6)<\frac{1}{6} \text { or } p<\frac{1}{6} \\
\& \left(\frac{5}{6}\right)^{25}+25\left(\frac{5}{6}\right)^{24} \times \frac{1}{6}+{ }^{25} \mathrm{C}_{2}\left(\frac{5}{6}\right)^{23} \times\left(\frac{1}{6}\right)^{2} \\
\& =0.189(3 \mathrm{sf}) \\
\& \text { comp } 0.1
\end{aligned}
\] \\
No reason to believe die biased
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& [5] \& \begin{tabular}{l}
Both needed \\
allow one error (extra term/missing term / incorrect term) \\
CR method: attempt at least \(\mathrm{P}(0)\) and \(\mathrm{P}(0\) and 1) \((0.010 \ldots\) and \(0.06 \ldots<0.1)\) \\
CR is 0,1 and must see 0.189 for A1 \\
valid comp ' 0.189 ' with 0.1 oe valid comparison of 2 with CR \\
correct conclusion, \(\downarrow\) their 0.189 no contradictions
\end{tabular} \\
\hline Total \& \& \& [9] \& \\
\hline 6 (i) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Ho: } \mu=2.60 \\
\& \mathrm{H}_{1}: \mu>2.60 \\
\& \pm \frac{2.64-2.6}{0.2 \div \sqrt{75}} \\
\& = \pm 1.732
\end{aligned}
\]
\[
' 1.732^{\prime}>1.645
\] \\
Reject Ho. There is evidence that \(\mu\) has increased
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
B1 \(\downarrow\)
\end{tabular} \& [4] \& \begin{tabular}{l}
allow pop mean, not just 'mean'
\[
\text { accept } \pm 1.73(3 \mathrm{sf})
\] \\
valid comparison with 1.645 \\
(or \(0.0416<0.05\)) \\
and correct conclusion \(\downarrow\) their 1.732 \\
no contradictions \\
(or CV method \(\mathrm{x}_{\text {crit }}=2.638 \mathrm{M} 1 \mathrm{~A} 1\) \\
comp \(2.64>2.638\) and concln B1 \(\downarrow\)) \\
SR two tail test, using 1.96 (or using 0.025) can score B0M1A1B1ft max 3/4
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Page 7 \& Mark Scheme \& Syllabus \& Paper \\
\hline \& Cambridge International A Level - October/November 2015 \& 9709 \& 73 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline (ii) \& \[
\begin{aligned}
\& \frac{x-2.6}{0.2 \div \sqrt{75}}=1.645 \quad(x=2.638) \\
\& \pm \frac{{ }^{2} .638^{\prime}-2.68}{0.2 \div \sqrt{75}} \\
\& = \pm 1.819 \\
\& \Phi\left({ }^{`}-1.819^{\prime}\right)=1-\Phi\left({ }^{\prime} 1.819^{\prime}\right) \\
\& =0.0345 \text { or } 0.0344
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& [5] \& \begin{tabular}{l}
for standardising with their " 2.638 " using 2.68 \\
accept 1.82 (3 sf) \\
indep M mark, calculate correct area/prob consistent with their working
\end{tabular} \\
\hline Total \& \& \& [9] \& \\
\hline \(7 \quad\) (i) \& \[
\begin{aligned}
\& \text { est } \mu=2.087 \\
\& \text { est } \sigma^{2}=\frac{100}{99}\left(\frac{435.57}{100}-2.087^{2}\right) \\
\& =0.000132(3232) \text { or } 131 / 990000
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& [3] \& \begin{tabular}{l}
allow 2.09 \\
\(1 / 99\left(435.57-208.7^{2} / 100\right)\) \\
without \(\frac{100}{99}: 0.000131\) M0A0
\end{tabular} \\
\hline (ii) \& \[
\begin{aligned}
\& \mathrm{E}(Y-X)=2.12-2.087(=0.033) \\
\& \operatorname{Var}(Y-X)=0.000144+{ }^{`} 0.00013232, \\
\& =0.000276(32) \\
\& \frac{0.01-^{\prime} 0.033^{\prime}}{\sqrt{ } 0.00027632^{\prime}} \quad(=-1.384) \\
\& \Phi\left({ }^{`}-1.384^{`}\right)=1-\Phi\left({ }^{`} 1.384^{`}\right) \\
\& =0.0832
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 \\
M1 \\
A1
\end{tabular} \& [6] \& ```
or \(2.12-2.087-0.01\) for \(\mathrm{Y}-\mathrm{X}-0.01<\)
0 allow 2.09 for 2.087
or \(\sqrt{ }\left(0.012^{2}+{ }^{`} 0.00013232\right.\) ' \() \quad\) M1
\(=0.016623\)
their \(\mathrm{E}(Y-X)\) \& \(\operatorname{Var}(Y-X)\)
var must be a combination of the two
vars
correct area/prob consistent with their
working
SR use of biased var (0.000131) in (i)
and (ii)
scores in (ii) B1M1 A1 for 0.000275
and M1M1 A1 for 0.0827
(\(6 / 6\) available)
``` \\
\hline Total \& \& \& [9] \& \\
\hline \& \& \& \& \\
\hline \& Total for paper \& \& [50] \& \\
\hline
\end{tabular}

## MARK SCHEME for the May/June 2015 series

## 9709 MATHEMATICS

9709/71
Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 71 |

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
$B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.
- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded ( $1 \mathrm{~d} . \mathrm{p}$. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 71 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR - 1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 71 |

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geqq 3 \mathrm{sfs}$, ISW for later rounding. Penalise $<3$ sfs only once in paper.

| 1 | $\begin{align*} & \frac{1}{2} a^{2}=1 \\ & a=\sqrt{2} \\ & \int_{0}^{\sqrt{2}} x^{2} \mathrm{~d} x \\ & =\left[\frac{x^{3}}{3}\right]_{0}^{\sqrt{2}} \\ & =\frac{(\sqrt{2})^{3}}{3}=\text { or } \frac{2^{1.5}}{3} \text { or } \frac{2.83}{3} \text { or } 0.9428  \tag{5}\\ & (=0.943 \mathbf{A G}) \end{align*}$ | M1 <br> A1 <br> M1 <br> Alf <br> A1 | $\text { or } \int_{0}^{a} x \mathrm{~d} x=1$ <br> Allow 1.41 or better <br> ignore limits <br> correct integral and limits, but ft their $a$ <br> must see this numerical expression, or equiv <br> SR Equating $\int x \mathrm{f}(x)$ to 0.943 scores M1 <br> Solving to find $a=1.41$ scores A1 |
| :---: | :---: | :---: | :---: |
|  |  | [Total 5] |  |
| 2 (i) <br> (ii) | $\mathrm{H}_{0}: p=0.2$ or $\mu=10$ $\mathrm{H}_{1}: p>0.2 \text { or } \mu>10$ <br> $\mathrm{N}(10,8)$ seen or implied $\begin{aligned} & \frac{125-10}{\sqrt{8}} \text { or } \frac{\frac{125}{50}-02}{\sqrt{\frac{0.2 \times 0.8}{50}}} \\ & =0.884 \end{aligned}$ <br> comp 1.282 <br> Claim not justified or No evidence to support claim | B1 [1] <br> B1 <br> M1 <br> A1 <br> M1f <br> Alf <br> [5] | $\text { or } \mathrm{N}\left(0.2, \frac{0.2 \times 0.8}{50}\right)$ <br> For standardising allow with no or wrong cc <br> Allow area comparison with 0.188 or comp 1.645 if $\mathrm{H}_{1} p \neq 0.2$ <br> Allow accept $\mathrm{H}_{0}$ provided correctly defined. Follow through their test statistic ; dep 1-tail test <br> No Contradictions <br> SR; Use of $B(50,0.2)$ scores B1 provided at least two probabilities calculated. M1 For finding $\mathrm{P}(X \geqslant 13)$ allow one end error. A1 for 0.186 |
|  |  | [Total: 6] |  |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 71 |


| 3 (i) <br> (ii) | $\begin{aligned} & 34 \\ & 2.2^{2}+1.3^{2}+2.6^{2}(=13.29) \\ & \frac{33-34^{\prime}}{\sqrt{\frac{13.299^{7}}{70}}} \\ & \frac{35-' 34^{\prime}}{\sqrt{\frac{13.39^{\prime}}{70}}} \quad(=-2.295) \\ & \Phi\left({ }^{\prime} 2.295^{\prime}\right)-\Phi\left({ }^{( }-2.295^{\prime}\right) \\ & =\Phi\left({ }^{\prime} 2.295^{\prime}\right)-\left(1-\Phi\left({ }^{\prime} 2.295^{\prime}\right)\right) \mathrm{oe} \\ & =0.978(3 \mathrm{sf}) \end{aligned}$ | M1 <br> M1 <br> A1 | Accept 13.3 or $3.65^{2}$ Allow at early stage <br> correct standardisation method for either <br> For attempt to use tables to find the probability between two $z$ values, may be implied by next line <br> For a correct method to find the area between their two $z$ values |
| :---: | :---: | :---: | :---: |
|  |  | [Total: 6] |  |
| (i) <br> (ii) <br> (iii) | $\mathrm{H}_{0}$ : pop mean $($ or $\mu)=12.4$ <br> $\mathrm{H}_{1}$ : pop mean $($ or $\mu)>12.4$ $\frac{12.9-12.4}{2.1+\sqrt{50}}$ <br> 1.684 <br> comp cv $z=1.96$ <br> No evidence that pop mean time has increased <br> Not reject (or accept) that mean time is unchanged (or is 12.4) oe <br> although mean time has increased (or is more than 12.4) oe <br> True (or new) mean | B1 <br> M1 <br> A1 <br> B1f [4] <br> B1 <br> B1 [2] <br> B1 [1] | not just "mean" <br> Allow with 50 instead of $\sqrt{ } 50$ <br> or $\mathrm{P}(z>1.684)=0.0461>0.025$ <br> Allow accept $\mathrm{H}_{0}$ if correctly defined. <br> Ft their test statistic. No contradictions |
|  |  | [Total: 7] |  |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 71 |


| 5 (i) <br> (ii) <br> (iii) | $\begin{aligned} & 4200 / 80(=52.5) \\ & =\frac{80}{79}\left(\frac{229000}{80}-' 52.5^{\prime 2}\right)(=107.595) \\ & =108(3 \mathrm{sf}) \\ & \\ & ' 52.5^{\prime} \pm z \sqrt{\frac{107.595}{80}} \\ & z=2.326 \\ & 49.8 \text { to } 55.2 \\ & 49 \end{aligned}$ | B1  <br> M1  <br> A1 $[3]$ <br>   <br> M1  <br>   <br> B1  <br> Alf $[3]$ <br> B1 $[1]$ | Correct form - must be $z$-value - allow one side only <br> Seen <br> ft their 52.5 and 107.595. Must be an interval |
| :---: | :---: | :---: | :---: |
|  |  | [Total: 7] |  |
| (i) <br> (ii) <br> (iii) | $\begin{aligned} & \mathrm{e}^{-\frac{10}{3}} \times \frac{\left(\frac{10}{3}\right)^{2}}{2} \\ & =0.198(3 \mathrm{sf}) \\ & 1-\mathrm{e}^{-2}\left(1+2+\frac{2^{2}}{2}\right) \\ & =0.323(3 \mathrm{sf}) \\ & \mathrm{N}\left(\frac{200}{3}, \frac{200}{3}\right) \\ & \frac{49.5-\frac{200}{3}}{\sqrt{\frac{200}{3}}} \\ & \Phi\left('^{\prime}-2.102^{\prime}\right)=1-\Phi\left('^{\prime} 2.102^{\prime}\right) \\ & =0.0178(3 \mathrm{sf}) \end{aligned}$ | M1  <br> A1 $[2]$ <br> M1  <br> M1  <br> A1 $[3]$ <br> M1  <br> M1  <br> M1  <br> A1 $[4]$ | $\mathrm{P}(2)$, allow any $\lambda$ <br> M1 allow any $\lambda$ and/or 1end error Correct expression, correct $\lambda$ <br> seen or implied <br> For standardising allow either wrong or no cc No sd/var mix <br> For finding area consistent with their working |
|  |  | [Total: 9] |  |


| Page 7 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 71 |


| $7 \quad$ (i) <br> (ii) <br> (iii) | $\begin{aligned} & 7 \mathrm{E}(X)+5 \mathrm{E}(Y)-2 \\ & (=7 \times 8+5 \times 3)-2 \\ & =69 \\ & \operatorname{Var}(X)=1.6, \operatorname{Var}(Y)=3 \\ & 16 \operatorname{Var}(X)+9 \operatorname{Var}(Y) \\ & (=16 \times 1.6+9 \times 3) \\ & =52.6 \\ & X=10, Y=2 \text { and } X=9, Y=0 \\ & 0.8^{10} \times \mathrm{e}^{-3} \times \frac{3^{2}}{2} \text { or } 10 \times 0.8^{9} \times 0.2 \times \mathrm{e}^{-3} \\ & 0.8^{10} \times \mathrm{e}^{-3} \times \frac{3^{2}}{2}+10 \times 0.8^{9} \times 0.2 \times \mathrm{e}^{-3} \\ & =0.0374 / 5 \end{aligned}$ | M1  <br> A1 [2] <br> B1  <br> M1  <br> M1  <br> A1 [4] <br> B1  <br> M1  <br> M1  <br> A1 $[4]$ | allow incorrect means <br> both <br> M1 for mult by 16 and 9 ; allow with ' +3 ' <br> M1 for add without ' +3 '; allow incorrect multipliers <br> both pairs seen or implied <br> or 0.0241 or 0.0134 (3sf) one correct product <br> all correct |
| :---: | :---: | :---: | :---: |
|  |  | [Total: 10] |  |

## MARK SCHEME for the May/June 2015 series

## 9709 MATHEMATICS

## 9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | $\mathbf{9 7 0 9}$ | 72 |

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ${ }^{\wedge}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
$B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.
- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded ( $1 \mathrm{~d} . \mathrm{p}$. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 72 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR -1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\text { " }}$ marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 72 |


| 1 | $\begin{aligned} & \mathrm{Var}=16 \times 9+25 \times 36 \\ & \mathrm{sd}=32.3 \text { or } 6 \sqrt{ } 29 \text { or } \sqrt{ } 1044 \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | M1 for $16\left(\right.$ or $\left.4^{2}\right) \& 25\left(\right.$ or $\left.5^{2}\right)$ used M1 for add any multiples of 9 and 36 only |
| :---: | :---: | :---: | :---: |
|  | Total | 3 |  |
| 2 (i) | $\begin{aligned} & \mathrm{H}_{0}: \lambda=0.5 \\ & \mathrm{H}_{1}: \lambda>0.5 \end{aligned}$ | B1 1 | or Pop mean $=0.5$, not just Mean $=0.5$ <br> or Pop mean $\left(\right.$ per $\left.\mathrm{m}^{2}\right)=0.1$ <br> Accept $\mu$ instead of $\lambda$ |
| (ii) | $\begin{aligned} & 1-\mathrm{e}^{-0.5}(1+0.5) \\ & =0.0902(3 \mathrm{sf}) \\ & \text { comp } 0.1 \\ & \text { Claim justified or there is evidence to } \\ & \text { support claim } \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | $1-\mathrm{P}(X=0,1)$ attempted, any $\lambda$. Allow 1 end error <br> Allow 0.09 <br> Valid comparison NB $0.9098>0.9$ recovers M1A1 M1 <br> oe Accept 'Reject $H_{0}$ ' if correctly defined <br> No contradictions. |
|  | Total | 5 |  |
| 3 | $\begin{aligned} & \lambda=5 \times 0.15 \\ & \mathrm{E}(\text { amount })=200 \times 0.75=150 \end{aligned}$ <br> $\operatorname{Var}($ weekly no of hole-in-ones $)=0.75$ $\operatorname{Var}(\text { amount })=200^{2} \times 0.75$ $=30,000$ | M1 <br> A1 <br> B1 ${ }^{\wedge}$ <br> M1 <br> A1 <br> 5 | Allow $200^{2} \times$ their variance (with nothing added/subtracted at any stage) <br> (SR probability table can score M1A0 srB1 if var rounds to $30,000(2 \mathrm{sf})$ ) |
|  | Total | 5 |  |
| $4 \quad$ (i) | Conclude flight times affected when in fact they have not been. | $\begin{array}{ll} \text { B1 } \\ \text { B1 } & 2 \end{array}$ | Or accept pop mean changed from 6.2 <br> although pop mean has not changed from 6.2 |
| (ii) | $\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }(\text { or } \mu)=6.2 \\ & \mathrm{H}_{0}: \text { Pop mean }(\text { or } \mu) \neq 6.2 \\ & \frac{5.98-6.2}{\frac{0.8}{\sqrt{40}}} \\ & =-1.739( \pm) \text { Accept }( \pm) 1.74 \\ & \operatorname{comp} z=1.96 \end{aligned}$ <br> No evidence that flight times affected | B1 <br> M1 <br> A1 <br> B1 ${ }^{\wedge}$ <br> 4 | Allow with 40 instead of $\sqrt{ } 40$ Allow SD/Var mix (CV method 5.952 or 6.2279 M1 A1) <br> For valid comparison <br> or $\mathrm{P}(z<-1.739)=0.041>0.025$ or $5.98>5.952$ or $6.2<6.228$ <br> and correct conclusion |
| (iii) | $\mathrm{H}_{0}$ was not rejected oe Type II | B1* <br> B1*dep <br> 2 | If in (ii) $\mathrm{H}_{0}$ was rejected, then: $\mathrm{H}_{0}$ rejected B1; Type I B1dep |
|  | Total | 8 |  |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 72 |


| $5 \quad$ (i) | $\begin{aligned} & 14800 / 50 \text { or } 296 \\ & \frac{50}{49}\left(\frac{4390000}{50}-' 296^{12}\right) \quad(=187.755) \\ & =188(3 \text { sf }) \end{aligned}$ | $\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$ | Oe |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & 2 \times z \times \sqrt{\frac{187.755^{\prime}}{50}}=5.45 \quad \text { oe } \\ & z=1.406 \text { or } 1.405 \\ & \Phi\left({ }^{\prime} 1.406^{\prime}\right) \\ & \alpha=84(2 \mathrm{sf}) \end{aligned} \quad \begin{array}{lr}  \\ \alpha .92 \text { or } 0.9199) \\ \text { allow } 83.98 \end{array}$ | $\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \\ \hline \end{array}$ | If '2 $\begin{aligned} & \times \text { omitted: } z \times \sqrt{\frac{187.755^{\prime}}{50}}=5.45 \quad \text { M1 } \\ & z=2.812 \text { or } 2.810 \quad \text { A0 } \\ & \Phi\left(2.812^{\prime}\right) \quad(=0.9975) \\ & \alpha=99.5 \text { or } 99 \text { or } 100 \quad \text { M1 A0 } \end{aligned}$ <br> For complete method to find $\alpha$ <br> SR use of biased $\operatorname{var}(184)$ scores M1A1(1.4205) $\mathrm{A}=84.5 \mathrm{M} 1 \mathrm{~A} 1$ |
| (iii) | $\begin{aligned} & 0.96^{4} \\ & =0.849(3 \mathrm{sf}) \end{aligned}$ | $\begin{array}{\|ll} \mathrm{M} 1 & \\ \text { A1 } & 2 \end{array}$ |  |
|  | Total | 9 |  |
| 6 (i) | $\begin{aligned} & k \int_{0}^{15}\left(225-t^{2}\right) \mathrm{d} t=1 \\ & k\left[225 t-\frac{t^{3}}{3}\right] \begin{array}{c} 15 \\ 0 \end{array}{ }_{0} \\ & k \times[3375-1125\}=1 \text { or } k \times 2250=1 \\ & \left(k=\frac{1}{2250} \mathbf{A G}\right) \end{aligned}$ | $\left\|\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}\right\|$ | Attempt integ $\mathrm{f}(x)$ and $=1$. Ignore limits <br> Correct integration and limits <br> No errors seen |
| (ii) | $\begin{aligned} & \frac{1}{2250} \int_{10}^{15}\left(225-t^{2}\right) \mathrm{d} t \\ & \left(=\frac{1}{2250}\left[225 t-\frac{t^{3}}{3}\right] \begin{array}{l} 15 \\ 10 \end{array}\right) \\ & =\frac{1}{2250}\left[2250-\left(2250-\frac{1000}{3}\right)\right] \\ & =\frac{4}{27} \text { or } 0.148(3 \mathrm{sf}) \end{aligned}$ | $\begin{array}{\|ll\|} \hline \text { M1 } & \\ \text { A1 } & \\ & \\ \text { A1 } & 3 \\ \hline \end{array}$ | Attempt integ, ignore limits <br> Or $1-\int_{0}{ }^{10}$ <br> Correct integration and limits. <br> Condone missing $k$ |
| (iii) | $\begin{aligned} & \frac{1}{2250} \int_{0}^{15}\left(225 t-t^{3}\right) \mathrm{d} t \\ & =\frac{1}{2250}\left[\frac{225 t^{2}}{2}-\frac{t^{4}}{4}\right] 15 \\ & =\frac{1}{2250}\left[\frac{50625}{2}-\frac{50625}{4}\right] \\ & =\frac{45}{8} \text { or } 5.625 \text { or } 5.63(3 \mathrm{sf}) \end{aligned}$ | $\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { A1*dep } \\ & \text { M1 } \\ & \text { A1 } \quad 4 \end{aligned}$ | Attempt integ $x \mathrm{f}(x)$, ignore limits <br> Correct integration and limits. Condone missing $k$ <br> Sub correct limits into their integral <br> Accept 5 mins 37 or 38 secs |
|  | Total | 10 |  |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 72 |


| $7 \quad$ (i) | Poisson <br> (Actually binomial with) $n>50$ <br> and $n p($ or $\lambda)(=2.1)$ which is $<5$ | $\begin{array}{ll} \text { B1 } \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$ | Allow without "binomial" <br> Accept n large <br> Accept p small (p<0.1) |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \lambda=2.1 \\ & \mathrm{e}^{-2.1}\left(1+2.1+\frac{2.1^{2}}{2}+\frac{2.1^{3}}{3!}\right) \\ & =0.839(3 \mathrm{sf}) \end{aligned}$ | $\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$ | Attempt $\mathrm{P}(0,1,2,3)$ any $\lambda$ allow 1 end error $\mathrm{SR}_{1} \mathrm{Ft}$ Normal $\mathrm{N}(2.1,2.1) \mathrm{B} 1$ standardising M1 0.833 A 1 <br> $\mathrm{SR}_{2} \mathrm{Ft}$ Binomial $\mathrm{B}(10500,0.0002) \mathrm{B} 1$ calculating binomial prob $\mathrm{P}(0,1,2,3) \mathrm{M} 1=0.8386 \mathrm{~A} 1$ |
| (iii) | $\begin{aligned} & \mathrm{P}(X \geqslant 1)=1-\mathrm{e}^{-2.1} \quad(=0.87754) \\ & \mathrm{P}(X=1,2,3)=\mathrm{e}^{-2.1}\left(2.1+\frac{2.1^{2}}{2}+\frac{2.1^{3}}{3!}\right) \\ & (=0.71619) \\ & \begin{array}{l} \mathrm{P}(X=1,2,3) \\ \mathrm{P}(X>1) \end{array} \\ & \left(=\frac{0.71619}{0.87754}\right) \\ & =0.816(3 \mathrm{sf}) \end{aligned}$ | M1 M1 M1 A1 | Any $\lambda$ <br> Or ' 0.839 ' $-\mathrm{e}^{-2.1}$ <br> Any $\lambda$ <br> Allow any attempted $\frac{\mathrm{P}(X=1,2,3)}{\mathrm{P}(X>1)}$ Any $\lambda$ <br> $\mathrm{SR}_{1}$ Ft Normal $\mathrm{P}(>0.5)=0.86523 \mathrm{M} 1 \mathrm{P}(1,2,3)=0.698$ <br> M1 $0.698 / 0.86523=0.807 \mathrm{M} 1 \mathrm{~A} 1$ <br> $\mathrm{SR}_{2}$ FT Binomial M1 M1 M1 A1 |
|  | Total | 10 |  |
|  | Total for paper | 50 |  |

## MARK SCHEME for the May/June 2015 series

## 9709 MATHEMATICS

## 9709/73

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 73 |

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ${ }^{\wedge}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to $3 \mathrm{~s} . \mathrm{f}$. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 73 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR -1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ${ }^{\text {" " }}$ marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 73 |


| 1 (i) | Eg: Only students who use canteen The five will probably be friends | $\begin{array}{ll} \text { B1 } \\ \text { B1 } \end{array}$ | or any reason that some are excluded B1 each sensible reason must be in context |
| :---: | :---: | :---: | :---: |
| (ii) | 2-digits <br> ignore > 82 (anything too big) Ignore repeats | $\begin{array}{ll} \text { B1 } & \\ \text { B1 } \\ \text { B1 } & {[3]} \end{array}$ |  |
|  |  | [Total 5] |  |
| 2 (i) | $\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(\text { correct })=\frac{1}{8} \\ & \mathrm{H}_{1}: \mathrm{P}(\text { correct })>\frac{1}{8} \end{aligned}$ | B1 [1] | $\begin{array}{r\|} \text { Or } H_{0} \mathrm{p}=1 / 8 \\ \mathrm{H}_{1} \mathrm{p} \end{array}>1 / 8$ |
| (ii) | $\begin{aligned} & 1-\left(\left(\frac{1}{8}\right)^{10}+10\left(\frac{1}{8}\right)^{9}\left(\frac{7}{8}\right)+{ }^{10} \mathrm{C}_{2}\left(\frac{1}{8}\right)^{8}\left(\frac{7}{8}\right)^{2}\right) \\ & =0.120(3 \mathrm{sf}) \text { or } 0.119 \end{aligned}$ | M1 <br> A1 <br> A1 [3] | M1 for attempt at correct expression accept 1 error only, e.g. 1 term extra, omitted or wrong, or omit " $1-$ " or incorrect $\mathrm{p} / \mathrm{q}$ Correct expression <br> Note Use of Poisson in (ii) could score M1 only for expression $1-\mathrm{P}(0,1,2) \lambda=1.25$ |
| (iii) | 12\% | B1f [1] | $\mathrm{ft} \mathrm{their} \mathrm{(ii)} \mathrm{Must} \mathrm{be} \mathrm{a} \mathrm{probability}$ |
|  |  | Total 5 |  |
| 3 (i) | $\begin{aligned} & \operatorname{Var}\left(p_{s}\right)=\frac{0.22 \times(1-0.22)}{100} \\ & \left.0.22 \pm z{\sqrt{'^{\frac{429}{250000}}} \cdot}_{250000} \text { or } 0.001716\right) \\ & z=2.17 \text { or } 2.168 / 9 \text { or } 2.171 \\ & 0.13(0) \text { to } 0.31(0)(2 \mathrm{sf}) \end{aligned}$ | M1 <br> M1 <br> B1 <br> A1 <br> [4] | pq/100 <br> Expression of correct form with their variance Any $z$ (must be a $z$ value) accept one side only Seen <br> Must be an interval |
| (ii) | $\begin{aligned} & { }^{\prime} 2 \times(1-0.97) \times 0.97 \\ & =0.0582 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |  |
|  |  | Total 6 |  |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 73 |


| 4 (i) | $\begin{aligned} & \left(\frac{1508}{50}\right)=30.16(30.2) \\ & \frac{50}{49}\left(\frac{51825}{50}-\left({ }^{\left(30.16^{12}\right)}\right)\right. \\ & =129(3 \mathrm{sf}) \text { Or } 130 \end{aligned}$ | B1 <br> M1 <br> A1 <br> [3] | Allow any form (129.46367) |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \left(1.5 \times ‘ 30.16^{\prime}+10\right) \\ & =55.24 \\ & \left(1.5^{2} \times ‘ 129 \ldots,{ }^{\prime}\right) \\ & =291(3 \mathrm{sf}) \end{aligned}$ | B1ft <br> M1 <br> A1ft <br> [3] | ft their 30.16 <br> $1.5^{2} \times$ their (129) with nothing added at any stage <br> Allow 290 |
|  |  | Total 6 |  |
| 5 (i) | Cables broken or not all cables can be accessed oe or Too many cables oe or too time consuming oe | B1 [1] | e.g. previous days' stocks may have gone |
| (ii) | $\mathrm{H}_{0}$ : Pop mean brk str $($ or $\mu)=5$ <br> $\mathrm{H}_{1}$ : Pop mean brk str $($ or $\mu)<5$ $\begin{aligned} & ( \pm) \frac{4.95-5}{\frac{0.15}{\sqrt{60}}} \\ & (= \pm 2.582) \end{aligned}$ $\text { comp } \pm 2.326$ <br> There is evidence that mean breaking strength is less than it should be Or reject $\mathrm{H}_{0}\left(\mathrm{H}_{0}\right.$ correctly defined $)$ | B1 <br> M1 <br> A1 <br> B1 ft | Not just "mean" <br> Allow 60 instead of $\sqrt{ } 60$ <br> Ft their -2.582 <br> (No ft 2 tailed test) <br> Correct comparison shown, no errors seen. Accept area comparison 0.0049 with 0.01 <br> [CR method $(x-5) /(0.15 / \sqrt{60})$ <br> $=-2.326 \mathrm{M} 1 \mathrm{~A} 1$ <br> leading to $x=4.955$ compared to 4.95 and correct conclusion B1ft <br> OR $((x-4.95) / 0.15 / \sqrt{ } 60)$ leading to 4.995 M 1 <br> A1 compared to 5and correct conclusion B1ft] |
| (iii) | Population not necessarily normal so yes | $\begin{aligned} & \text { B1 } \\ & \text { B1dep [2] } \end{aligned}$ | SR B1 For "it" is not necc normal (no mention of population) AND Yes |
|  |  | Total 7 |  |


| 6 (i) | $\begin{aligned} & \mathrm{e}^{-3.5} \times \frac{3.5^{3}}{3!} \\ & =0.216(3 \mathrm{sf}) \end{aligned}$ | M1 <br> A1 <br> [2] | $\mathrm{P}(X=3)$ any $\lambda$ |
| :---: | :---: | :---: | :---: |
| (ii) | $N(42,42)$ stated or implied $\begin{align*} & \frac{29.5-42}{\sqrt{42}} \\ & \mathrm{P}\left(z>^{\top}-1.929^{\prime}\right)=\Phi\left({ }^{( } 1.929^{\prime}\right) \\ & =0.973(3 \mathrm{sf}) \tag{4} \end{align*}$ | B1 M1 <br> M1 A1 | Allow with wrong or no $\mathrm{cc} \underline{\mathrm{OR}}$ without $\sqrt{ }$ <br> For correct area consistent with their working |
| (iii) | $\begin{aligned} & (\lambda)=2.4 \\ & 1-\mathrm{e}^{-2.4}\left(1+2.4+\frac{2.4^{2}}{2}+\frac{2.4^{3}}{3!}\right) \\ & =0.221(3 \mathrm{sf}) \end{aligned}$ | B1  <br> M1  <br> M1  <br> A1 4 | for $1-\mathrm{P}(X \leqslant 3)$, any $\lambda$ allow one end error Correct expression any $\lambda$ <br> NB For combination method B1 attempting 10 combinations with $\lambda=1, \lambda=1.4$ M1 6 expressions M1 10 expressions 0.221 Al |
|  |  | Total 10 |  |
| $7 \quad$ (i) | $\begin{aligned} & \frac{3}{4} \int_{0}^{c}\left(c x-x^{2}\right) d x=1 \\ & \left.\frac{3}{4}\left[\frac{c x^{2}}{2}-\frac{x^{3}}{3}\right]\right]_{0}^{c}=1 \\ & \frac{3}{4}\left(\frac{c^{3}}{2}-\frac{c^{3}}{3}\right)=1 \text { or } \frac{3}{4} \times \frac{c^{3}}{6}=1 \text { or } \frac{c^{3}}{8}=1 \\ & (c=2 \text { AG }) \end{aligned}$ | M1 <br> A1 <br> A1 <br> [3] | Attempt integ $\mathrm{f}(x)$ and $=1$. Ignore limits <br> Correct integration and limits (condone $\mathrm{c}=2$ <br> No errors seen |
| (ii) | Inverted parabola <br> Through $(0,0)$ and $(2,0)$ and zero elsewhere <br> Median $=1$ | $\begin{align*} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \tag{3} \end{align*}$ | Must not extend beyond [0,2] |
| (iii) |  | M1 <br> A1 <br> B1 <br> A1 <br> [4] | Attempt integ $\mathrm{f}(x)$ ignore limits <br> Correct integration ignore limits <br> Use of correct limits [0,1.5] or 1-[1.5,2] |


| Page 7 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - May/June 2015 | 9709 | 73 |


| (iv) | $\left(\begin{array}{ll}\left(\frac{27}{32}-\frac{1}{2} \text { or } 0.844-0.5\right) & \\ & =\frac{11}{32} \text { or } 0.344(3 \text { sf) }\end{array}\right.$ B1f $\quad[1]$ | ft their (iii) For use of symmetry Note If do <br> not use "hence" and start again B1 for cwo |  |
| :--- | :--- | :--- | :--- |
|  |  | Total 11 |  |

Total for paper 50

## MARK SCHEME for the October/November 2014 series

## 9709 MATHEMATICS

9709/71
Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | 9709 | 71 |

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\downarrow$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | 9709 | 71 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR -1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through §" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | 9709 | 71 |


| 1 | $\begin{array}{\|l:l} \mathrm{N}\left(-35,60^{2}+4 \times 28^{2}\right) & \mathrm{N}\left(35,60^{2}+4 \times 28^{2}\right) \\ \frac{0-(-35)}{\sqrt{ } 6736^{\prime}}(=0.426) & \frac{0-35}{\sqrt{{ }^{6} 736^{\prime}}}(=-0.426) \\ \hdashline \begin{array}{l} 1-\Phi\left({ }^{\prime} 0.426^{\prime \prime}\right) \\ =0.335(3 \mathrm{sf}) \end{array} \\ \end{array}$ | B1 <br> B1 <br> M1 <br> M1 <br> A1 <br> 5 | for $\pm(175-2 \times 105)$ or $\pm 35$ <br> for $60^{2}+4 \times 28^{2}$ or 6736 <br> For standardising with their mean and variance. Allow without $\sqrt{ }$ For use of tables and finding area consistent with working |
| :---: | :---: | :---: | :---: |
|  |  | Total: 5 |  |
| 2 (i) | (Bin) with $n>50$ and mean (or $n p$ ) $<5$ <br> Po(1.5) $1-\mathrm{e}^{-1.5}$ $=0.777(3 \mathrm{sf})$ | B1 <br> B1 <br> M1 <br> A1 $4$ | Accept n 'large', p 'small' <br> Poisson with correct mean stated or implied <br> Poisson $1-\mathrm{P}(X=0)$; allow incorrect $\lambda$; allow 1 end error <br> SR If zero scored use of Bin leading to 0.778 / 0.779 scores B1 |
| (ii) | $\begin{aligned} & 3.5 \\ & e^{-3.5}\left(\frac{3.5^{4}}{4!}+\frac{3.5^{5}}{5!}+\frac{3.5^{6}}{6!}\right) \\ & =0.398(3 \mathrm{sf}) \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$ <br> A1 $3$ | Correct mean stated or implied Poisson $\mathrm{P}(X=4,5,6)$; allow incorrect $\lambda$; allow 1 end error |
|  |  | Total: 7 |  |
| 3 (a) | $\begin{aligned} & \int_{0}^{0.5}\left(1.5 t-0.75 t^{2}\right) \mathrm{d} t \quad \text { o.e. } \\ & =\left[0.75 t^{2}-0.25 t^{3}\right]_{0}^{0.5} \\ & =\frac{5}{32} \text { or } 0.156(3 \mathrm{sf}) \end{aligned}$ | M1 <br> A1 <br> A1 <br> 3 | Attempt int $\mathrm{f}(t)$ <br> Correct integration and limits |
| (b) (i) | $\frac{1}{2} \pi a^{2}=1 \quad$ or $\pi a^{2}=2 \quad$ oe $a=\sqrt{\frac{2}{\pi}}$ or $0.798(3 \mathrm{sf})$ | M1 <br> A1 $2$ | Attempt to find the area and equate to 1 |
| (ii) | 0 | B1 1 |  |
| (iii) | Symmetry stated, seen or implied $0.8$ | $\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$ | Could be a diagram As final answer |
|  |  | Total: 8 |  |
| 4 (i) | $\begin{aligned} & \operatorname{Var}\left(P_{s}\right)=\frac{\frac{33}{150} \times \frac{150-33}{150}}{150} \quad(=0.001144) \\ & z=2.576 \\ & \frac{33}{150} \pm z \sqrt{ }^{\prime} 0.001144, \\ & =0.133 \text { to } 0.307(3 \mathrm{sf}) \end{aligned}$ | M1 <br> B1 <br> M1 <br> A1 <br> 4 | Seen. Accept 2.574 to 2.579 <br> Expression of correct form. Any $z$ <br> Must be an interval |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | 9709 | 71 |


| (ii) | $\begin{aligned} & \frac{19035}{150}(=126.9=127(3 \mathrm{sf})) \\ & \frac{150}{149}\left(\frac{4054716}{150}-\left(\frac{19035}{150}\right)^{2}\right) \text { o.e. } \\ & =11001.17 \text { or } 11000(3 \mathrm{sf}) \end{aligned}$ | B1 M1 <br> A1 $3$ | For use of a correct formula |
| :---: | :---: | :---: | :---: |
| (iii) | 4-digit nos. each digit 0-9 <br> Ignore nos > 9526 <br> Ignore repeats | $\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$ | Some valid way of generating 4 digit random nos <br> from valid method from valid method <br> SR If zero score, full explanation of method for drawing numbers out of a hat can score B1. <br> NB Systematic sampling follows the scheme with first B1 for some way of generating a random starting point. |
|  |  | Total: 10 |  |
| 5 (i) | $\begin{aligned} & \frac{4.8}{\sqrt{40}} \\ & \frac{50.3-49.5}{\frac{4.8}{\sqrt{40}}} \\ & 1-\Phi\left({ }^{( } 1.054^{\prime}\right) \\ & =0.146(3 \mathrm{sf}) \end{aligned} \quad(=1.054)$ | B1 <br> M1 <br> M1 <br> A1 <br> 4 | or $\frac{4.8^{2}}{40}$. Accept $4.8 \sqrt{ } 40$ or $4.8^{2} \times 40$ for totals method <br> For standardising with their SD Accept $\pm$ <br> Accept totals method. No mixed methods <br> For use of tables and finding area consistent with their working |
| (ii) (a) | Looking for decrease | B1 |  |
| (b) | $\mathrm{H}_{0}$ : Pop mean time spent $($ or $\mu)=49.5$ <br> $\mathrm{H}_{1}$ : Pop mean time spent ( or $\mu$ ) $<49.5$ $\begin{aligned} & \frac{\frac{1920}{40}-49.5}{\frac{4.8}{\sqrt{40}}} \\ & \text { '1.976' > } 1.555 \quad \text { (or ' }-1.976^{\prime}<-1.555 \text { ) } \end{aligned}$ <br> There is evidence that mean time has decreased. | B1 <br> M1 <br> M1 <br> A1 <br> 4 | Not just "mean time spent" <br> For standardising. Allow $\div \frac{4.8}{40}$ <br> Accept totals method; CV method. <br> No mixed methods <br> For valid comparison (area comparison $0.024<0.06)$ <br> CWO. No contradictions in conclusions |
| (c) | Population normally distr so No | B1 | Both needed |
|  |  | Total: 10 |  |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | 9709 | 71 |


| 6 (i) | $\begin{aligned} & \lambda=4.65 \\ & e^{-4.65} \times \frac{4.65^{4}}{4!} \\ & =0.186(3 \mathrm{sf}) \end{aligned}$ | B1 <br> M1 <br> A1 $3$ | Poisson $\mathrm{P}(X=4)$ with any $\lambda$ |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \lambda=3.875 \\ & =e^{-3.875}\left(1+3.875+\frac{3.875^{2}}{2!}\right)=0.257(3 \mathrm{sf}) \end{aligned}$ | $\begin{array}{ll} \text { B1 } \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$ | $\mathrm{P}(X=0,1,2)$ <br> Attempted, any $\lambda$ <br> As final answer |
| (iii) | $\begin{aligned} & \lambda=1.5 \\ & 1-e^{-1.5}\left(1+1.5+\frac{1.5^{2}}{2!}\right) \\ & =0.191(3 \mathrm{sf}) \end{aligned}$ | B1 M1 <br> A1 $3$ | $1-\mathrm{P}(X=0,1,2)$ Attempted, any $\lambda$ As final answer |
| (iv) | He will reject $\mathrm{H}_{0}$. | B1 1 |  |
|  |  | Total: 10 |  |

## MARK SCHEME for the October/November 2014 series

## 9709 MATHEMATICS

## 9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | 9709 | 72 |

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\downarrow$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | 9709 | 72 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR -1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through §" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | $\mathbf{9 7 0 9}$ | $\mathbf{7 2}$ |


| 1 | $\begin{array}{\|l:l} \mathrm{N}\left(-35,60^{2}+4 \times 28^{2}\right) & \mathrm{N}\left(35,60^{2}+4 \times 28^{2}\right) \\ \frac{0-(-35)}{\sqrt{ } 6736^{\prime}}(=0.426) & \frac{0-35}{\sqrt{{ }^{6} 736^{\prime}}}(=-0.426) \\ \hdashline \begin{array}{l} 1-\Phi\left({ }^{\prime} 0.426^{\prime \prime}\right) \\ =0.335(3 \mathrm{sf}) \end{array} \\ \end{array}$ | B1 <br> B1 <br> M1 <br> M1 <br> A1 <br> 5 | for $\pm(175-2 \times 105)$ or $\pm 35$ <br> for $60^{2}+4 \times 28^{2}$ or 6736 <br> For standardising with their mean and variance. Allow without $\sqrt{ }$ For use of tables and finding area consistent with working |
| :---: | :---: | :---: | :---: |
|  |  | Total: 5 |  |
| 2 (i) | (Bin) with $n>50$ and mean (or $n p$ ) $<5$ <br> Po(1.5) $1-\mathrm{e}^{-1.5}$ $=0.777(3 \mathrm{sf})$ | B1 <br> B1 <br> M1 <br> A1 $4$ | Accept n 'large', p 'small' <br> Poisson with correct mean stated or implied <br> Poisson $1-\mathrm{P}(X=0)$; allow incorrect $\lambda$; allow 1 end error <br> SR If zero scored use of Bin leading to 0.778 / 0.779 scores B1 |
| (ii) | $\begin{aligned} & 3.5 \\ & e^{-3.5}\left(\frac{3.5^{4}}{4!}+\frac{3.5^{5}}{5!}+\frac{3.5^{6}}{6!}\right) \\ & =0.398(3 \mathrm{sf}) \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$ <br> A1 $3$ | Correct mean stated or implied Poisson $\mathrm{P}(X=4,5,6)$; allow incorrect $\lambda$; allow 1 end error |
|  |  | Total: 7 |  |
| 3 (a) | $\begin{aligned} & \int_{0}^{0.5}\left(1.5 t-0.75 t^{2}\right) \mathrm{d} t \quad \text { o.e. } \\ & =\left[0.75 t^{2}-0.25 t^{3}\right]_{0}^{0.5} \\ & =\frac{5}{32} \text { or } 0.156(3 \mathrm{sf}) \end{aligned}$ | M1 <br> A1 <br> A1 <br> 3 | Attempt int $\mathrm{f}(t)$ <br> Correct integration and limits |
| (b) (i) | $\frac{1}{2} \pi a^{2}=1 \quad$ or $\pi a^{2}=2 \quad$ oe $a=\sqrt{\frac{2}{\pi}}$ or $0.798(3 \mathrm{sf})$ | M1 <br> A1 $2$ | Attempt to find the area and equate to 1 |
| (ii) | 0 | B1 1 |  |
| (iii) | Symmetry stated, seen or implied $0.8$ | $\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$ | Could be a diagram As final answer |
|  |  | Total: 8 |  |
| 4 (i) | $\begin{aligned} & \operatorname{Var}\left(P_{s}\right)=\frac{\frac{33}{150} \times \frac{150-33}{150}}{150} \quad(=0.001144) \\ & z=2.576 \\ & \frac{33}{150} \pm z \sqrt{ }^{\prime} 0.001144, \\ & =0.133 \text { to } 0.307(3 \mathrm{sf}) \end{aligned}$ | M1 <br> B1 <br> M1 <br> A1 <br> 4 | Seen. Accept 2.574 to 2.579 <br> Expression of correct form. Any $z$ <br> Must be an interval |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | 9709 | 72 |


| (ii) | $\begin{aligned} & \frac{19035}{150}(=126.9=127(3 \mathrm{sf})) \\ & \frac{150}{149}\left(\frac{4054716}{150}-\left(\frac{19035}{150}\right)^{2}\right) \text { o.e. } \\ & =11001.17 \text { or } 11000(3 \mathrm{sf}) \end{aligned}$ | B1 M1 <br> A1 $3$ | For use of a correct formula |
| :---: | :---: | :---: | :---: |
| (iii) | 4-digit nos. each digit 0-9 <br> Ignore nos > 9526 <br> Ignore repeats | $\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$ | Some valid way of generating 4 digit random nos <br> from valid method from valid method <br> SR If zero score, full explanation of method for drawing numbers out of a hat can score B1. <br> NB Systematic sampling follows the scheme with first B1 for some way of generating a random starting point. |
|  |  | Total: 10 |  |
| 5 (i) | $\begin{aligned} & \frac{4.8}{\sqrt{40}} \\ & \frac{50.3-49.5}{\frac{4.8}{\sqrt{40}}} \\ & 1-\Phi\left({ }^{( } 1.054^{\prime}\right) \\ & =0.146(3 \mathrm{sf}) \end{aligned} \quad(=1.054)$ | B1 <br> M1 <br> M1 <br> A1 <br> 4 | or $\frac{4.8^{2}}{40}$. Accept $4.8 \sqrt{ } 40$ or $4.8^{2} \times 40$ for totals method <br> For standardising with their SD Accept $\pm$ <br> Accept totals method. No mixed methods <br> For use of tables and finding area consistent with their working |
| (ii) (a) | Looking for decrease | B1 |  |
| (b) | $\mathrm{H}_{0}$ : Pop mean time spent $($ or $\mu)=49.5$ <br> $\mathrm{H}_{1}$ : Pop mean time spent ( or $\mu$ ) $<49.5$ $\begin{aligned} & \frac{\frac{1920}{40}-49.5}{\frac{4.8}{\sqrt{40}}} \\ & \text { '1.976' > } 1.555 \quad \text { (or ' }-1.976^{\prime}<-1.555 \text { ) } \end{aligned}$ <br> There is evidence that mean time has decreased. | B1 <br> M1 <br> M1 <br> A1 <br> 4 | Not just "mean time spent" <br> For standardising. Allow $\div \frac{4.8}{40}$ <br> Accept totals method; CV method. <br> No mixed methods <br> For valid comparison (area comparison $0.024<0.06)$ <br> CWO. No contradictions in conclusions |
| (c) | Population normally distr so No | B1 | Both needed |
|  |  | Total: 10 |  |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | 9709 | 72 |


| 6 (i) | $\begin{aligned} & \lambda=4.65 \\ & e^{-4.65} \times \frac{4.65^{4}}{4!} \\ & =0.186(3 \mathrm{sf}) \end{aligned}$ | B1 <br> M1 <br> A1 $3$ | Poisson $\mathrm{P}(X=4)$ with any $\lambda$ |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \lambda=3.875 \\ & =e^{-3.875}\left(1+3.875+\frac{3.875^{2}}{2!}\right)=0.257(3 \mathrm{sf}) \end{aligned}$ | $\begin{array}{ll} \text { B1 } \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$ | $\mathrm{P}(X=0,1,2)$ <br> Attempted, any $\lambda$ <br> As final answer |
| (iii) | $\begin{aligned} & \lambda=1.5 \\ & 1-e^{-1.5}\left(1+1.5+\frac{1.5^{2}}{2!}\right) \\ & =0.191(3 \mathrm{sf}) \end{aligned}$ | B1 M1 <br> A1 $3$ | $1-\mathrm{P}(X=0,1,2)$ Attempted, any $\lambda$ As final answer |
| (iv) | He will reject $\mathrm{H}_{0}$. | B1 1 |  |
|  |  | Total: 10 |  |

## MARK SCHEME for the October/November 2014 series

## 9709 MATHEMATICS

## 9709/73

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | 9709 | 73 |

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol ${ }^{\wedge}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded ( 1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | 9709 | 73 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR - 1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ${ }^{\text {" }}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | 9709 | 73 |

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
1 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
"Different" being investigated \\
\(\mathrm{H}_{0}\) : Pop mean (or \(\mu\) ) in region same as elsewhere \\
\(\mathrm{H}_{1}\) : Pop mean (or \(\mu\) ) in region diff from elsewhere
\[
\begin{aligned}
\& 1.91<2.054(\text { or } 2.055) \text { or } \\
\& -1.91>-2.054
\end{aligned}
\] \\
No evidence that mean is different
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1
\end{tabular} \& [1]

[3] \& | Oe ("changed", "not equal to") |
| :--- |
| Must be "pop mean", not just "mean" |
| Can be awarded in (i) |
| oe |
| or $\mathrm{P}(z>1.91)=0.0281>0.02$ or $0.0562>0.04$ or $0.972<0.98$ Accept 2.05 if nothing better seen. |
| inequality sign incorrect M1A0 |
| no contradictions |
| "accept $\mathrm{H}_{0}$ " provided $\mathrm{H}_{0}$ reasonably well defined | <br>

\hline Total \& \& \& [4] \& <br>

\hline \multirow[t]{3}{*}{$\begin{array}{rr}2 & \text { (i) } \\ & \text { (ii) }\end{array}$} \& \[
$$
\begin{aligned}
& \frac{1}{2} c^{2}=1 \\
& c=\sqrt{2} \text { or } 1.41(3 \mathrm{sf})
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1 }
\end{gathered}
$$
\] \& [2] \& Area of triangle $=1$ or integral of $k x$ with limits 0 and $c$ and equated to 1 <br>

\hline \& \[
$$
\begin{aligned}
& \mathrm{f}(x)=x \text { or } y=x \\
& \int_{a}^{1} x \mathrm{~d} x=0.1
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 | \& \& Seen or implied, e.g. by next line. Can be awarded anywhere in the question. Implied by $(a+1)$ in area of trapezium. Ignore limits. Must be integral of $k x$ and equated to 0.1 . Or trapezium area. <br>

\hline \& $$
\begin{aligned}
& {\left[\frac{x^{2}}{2}\right]_{a}^{1}=0.1} \\
& 1-a^{2}=0.2 \\
& a=0.894(3 \mathrm{sf})
\end{aligned}
$$ \& \[

\mathbf{A} 1 \downarrow^{\wedge}
\]

A1 \& [4] \& | Correct limits, ft incorrect $k x$. |
| :--- |
| $\sqrt{\left(\frac{4}{5}\right)}$ oe | <br>

\hline \multirow[t]{2}{*}{(iii)} \& $$
\begin{aligned}
& \int_{0}^{\sqrt{2}} x^{2} \mathrm{~d} x \\
& {\left[\frac{x^{3}}{3}\right] \begin{array}{c}
\sqrt{2} \\
0
\end{array}}
\end{aligned}
$$ \& M1 \& \& Ignore limits; ft their $\mathrm{f}(x)$ but not $\int x \mathrm{~d} x$ <br>

\hline \& $$
=\frac{2}{3} \sqrt{2} \text { or } 0.943 \text { or } \sqrt{\left(\frac{8}{3}\right)}
$$ \& A1^ \& [2] \& ft their $c$, dep $0<$ ans $<$ their $c$. Not ft their $\mathrm{f}(x)$ <br>

\hline Total \& \& \& [8] \& <br>
\hline
\end{tabular}

| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | 9709 | 73 |

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
3 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \operatorname{Est}(\mu)=\frac{7220}{80} \text { or } 90.25 \\
\& \operatorname{Est}\left(\sigma^{2}\right)=\frac{80}{79}\left(\frac{656060}{80}-\left(\frac{7220}{80}\right)^{2}\right) \\
\& =56.3924 \text { or } \frac{4455}{79} \\
\& z=2.17 \\
\& \frac{7220}{80} \pm z \times \sqrt{\frac{56.3924^{\prime}}{80}} \\
\& =88.4 \text { to } 92.1(3 \mathrm{sf})
\end{aligned}
\] \\
Pop normal \\
No
\end{tabular} \& \[
\begin{array}{|c}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\hline \text { B1 } \\
\text { B1dep }
\end{array}
\] \& [6] \& \begin{tabular}{l}
Accept 90.3
\[
\frac{1}{79}\left(656060-\frac{7220^{2}}{80}\right)
\] \\
Accept 56.4 \\
Expression of correct form \\
Must be an interval (N.B. biased var gives 88.4 to 92.1 scores possible B1M0A0B1M1A1) \\
\(X\) normal or full definition of pop normal SR B1 for "no" and relevant reference to normal
\end{tabular} \\
\hline Total \& \& \& [8] \& \\
\hline \begin{tabular}{l}
4 (i) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& 4 \times 125+6 \times 130(=1280) \\
\& 4 \times 30^{2}+6 \times 32^{2}(=9744)
\end{aligned}
\]
\[
\begin{aligned}
\& ( \pm) \frac{1500-1280}{\sqrt{9744}}(=2.229) \\
\& \Phi\left(" 2.2299^{\prime \prime}\right) \\
\& =0.987(3 \mathrm{sf}) \\
\& 125-0.9(130)(=8)(\text { or }-8) \\
\& 30^{2}+0.9^{2}\left(32^{2}\right)(=1729.44)
\end{aligned}
\]
\[
\begin{aligned}
\& ( \pm) \frac{0--^{\prime}}{\sqrt{{ }^{1729.44^{\prime}}}}(=-0.192) \\
\& \Phi\left('^{\prime} .192^{\prime}\right) \\
\& =0.576(3 \mathrm{sf})
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
M1 \\
A1 \\
B1 \\
B1 \\
M1 \\
M1 \\
A1
\end{tabular} \& [5]

$[5]$ \& | Give at early stage. Could be implied by 220 . (If B0B0 then 1.28 and 0.009744 can score B1B1). |
| :--- |
| Standardising. Accept sd/var mix. Must be from combination attempt. |
| Use of tables and correct area consistent with their working cwo |
| Give at early stage. (If B0B0 scored then accept 0.008 and 0.0017944 for B1B1) |
| Accept sd/var mix. Must come from a linear combination. |
| Use of tables and correct area consistent with their working (unclear M0) | <br>

\hline Total \& \& \& [10] \& <br>
\hline
\end{tabular}

| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International A Level - October/November 2014 | 9709 | 73 |


| 5 (i) | $\mathrm{H}_{0}$ : population proportion $=0.1$ oe $\mathrm{H}_{1}$ : population proportion $>0.1$ oe $\begin{aligned} & P(X \geqslant 4)=1-P(X \leqslant 3)= \\ & 1-\binom{0.9^{18}+18 \times 0.9^{17} \times 0.1+}{{ }^{18} C_{2} \times 0.9^{16} \times 0.1^{2}+{ }^{18} C_{3} \times 0.9^{15} \times 0.1^{3}} \\ & =0.0982(3 \mathrm{sf}) \end{aligned}$ <br> Comp 0.08 <br> No evidence that more reach 1 m <br> Not rejected $\mathrm{H}_{0}$ Type II $\begin{aligned} & P(X \geqslant 5)(=0.0282) \\ & 0.0282<0.08 \end{aligned}$ <br> $\mathrm{P}($ Type I error $)=0.0282(3 \mathrm{sf})$ | $\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \uparrow \\ \text { B1 } \downarrow \\ \text { B1dep } \\ \uparrow \\ \text { M1 } \\ \text { B1 } \downarrow \\ \text { A1 } \end{gathered}$ | [5] [2] [3] | Allow " $p=0.1$ " and " $p>0.1$ " <br> Allow 1 - (one term omitted or extra or wrong) <br> (note CR method 0.0982 and $\mathrm{CR} \geqslant 5$ for A1) <br> Valid comparison ( $0.9018<0.92$ also recovered previous A1). Or 4 is not in CR <br> Dep M1M1 no contraditions <br> "Accept $\mathrm{H}_{0}$ " provided $\mathrm{H}_{0}$ defined <br> Ft their (i) <br> If (i) "reject $\mathrm{H}_{0}$ " then ft gives Type I error <br> Attempt $P(X \geqslant 5)$ e.g. ' $0.0982^{\prime}$ ${ }^{18} C_{4} \times 0.9^{14} \times 0.1^{4}$ oe. Valid comp of their $\geqslant 5$ (if CR method used, could be awarded in (i)) |
| :---: | :---: | :---: | :---: | :---: |
| Total |  |  | [10] |  |
| 6 (i) <br> (ii) <br> (iii) |  | $\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1M1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$ | [2] | Poisson $\mathrm{P}(X=4)$, any $\lambda$ <br> Seen <br> Any $\lambda$, allow one end error, need " $1-\ldots$ " <br> Seen or implied <br> M1M0 if no cc or incorrect cc OR no $\sqrt{ }$ in both <br> Use of tables and correct area consistent with their working. <br> cwo |
| Total |  |  | [10] |  |

## MARK SCHEME for the May/June 2014 series

## 9709 MATHEMATICS

9709/71
Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
Syllabus $\quad$ Paper

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\downarrow$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2014 | 9709 | 71 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR - 1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2014 | 9709 | 71 |

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding. Penalise $<3$ sfs only once in paper.

| 1 | $\mathrm{N}(483.2,537.92) \text { or } \mathrm{N}\left(483.2,23.2^{2}\right)$ $\begin{align*} & \frac{436-483.2}{\sqrt{537.92}} \text { or } \frac{436-483.2}{23.2}(=- \\ & 2.035)  \tag{4}\\ & \Phi\left({ }^{("-2.035 ")}=1-\Phi(" 2.035 ")\right. \\ & =0.021 \text { or } 2.1 \% \end{align*}$ | B1 <br> M1 <br> M1 <br> A1 | or $\frac{8.2}{\sqrt{8}}$ or $\frac{8.2^{2}}{8}$ seen or implied <br> or $\frac{\frac{436}{8}-60.4}{8.2 / \sqrt{8}}$ standardising (no mixed methods) <br> Correct area consistent with their working |
| :---: | :---: | :---: | :---: |
|  |  | [Total: 4] |  |
| 2 | $\begin{aligned} & \frac{70}{69} \times 2.70 \quad=2.73913 \\ & 3.61 \pm z \sqrt{\frac{" 2.73913 "}{70}} \end{aligned}$ $\begin{aligned} & z=1.96 \\ & 3.22 \text { to } 4.00(3 \mathrm{sf}) \end{aligned}$ | M1A1 <br> M1 <br> B1 <br> A1 <br> [5] | $\begin{aligned} & \text { or } 3.61 \pm z \sqrt{\frac{2.70}{69}} \text { M2A1(implied) } \\ & \text { without } \frac{70}{69}: \\ & 3.61 \pm z \sqrt{\frac{2.70}{70}} \quad \text { M0A0M1 } \\ & z=1.96 \\ & 3.23 \text { to } 3.99(4.00)(3 \mathrm{sf}) \quad \text { A1 } \end{aligned}$ <br> Answer must be an interval |
|  |  | [Total: 5] |  |
| 3 | $\begin{aligned} & \mathrm{H}_{0}: \mu=250 \\ & \mathrm{H}_{1}: \mu>250 \\ & \frac{250.06-250}{0.2 \div \sqrt{40}} \\ & =1.90 \\ & \text { comp with } z=1.645 \\ & \text { Claim is justified } \\ & \text { or There is evidence that claim is true } \end{aligned}$ | B1 <br> M1 <br> A1 <br> M1 <br> A1 $\vee$ [5] | Both hypotheses <br> M1 for standardising, must have $\sqrt{ } 40$. <br> Accept cv method <br> For valid comparison " 1.90 " with 1.645 or area comparison or CVs <br> Correct conclusion. No contradictions <br> NB 2-tail test scores B0 M1 A1 M1 (use 1.96) A0 |
|  |  | [Total: 5] |  |
| 4 (i) | B(3500, 0.001) <br> Poisson with mean $=3.5$ <br> $n>50$ and $n p<5$ | $\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } \\ \text { B1 } \end{array}$ | or $\operatorname{Po}(3.5)$ <br> Both. Or $n>50$ and $\lambda<5$ or $3.5<5$ |
| (ii) | $\begin{aligned} & \mathrm{e}^{-3.5}\left(1+3.5+\frac{3.52}{2}+\frac{3.53}{3!}\right) \\ & =0.537(3 \mathrm{dp}) \end{aligned}$ | $\begin{array}{ll} \text { M1 } \\ \text { A1 } \end{array}$ | Allow any $\lambda$ |
|  |  | [Total: 5) |  |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2014 | 9709 | 71 |


| 5 (i) | $\begin{aligned} & 0.25(1+4+9)-1.5^{2} \\ & (=1.25 \mathbf{A G}) \end{aligned}$ | B1 [1] |  |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \frac{1.4-1.5}{\sqrt{\frac{5}{4} \div 300}} \quad(=-1.549) \\ & \Phi\left({ }^{\prime \prime}-1.549 \text { ") }=1-\Phi\left({ }^{\prime \prime} 1.549 "\right)\right. \\ & =0.0607(3 \mathrm{sf}) \end{aligned}$ | M1 M1 <br> A1 <br> [3] | $\begin{aligned} & \frac{1.4-\frac{1}{600}-1.5}{\sqrt{\frac{5}{4} \div 300}} \\ & \Phi(=-1.523 ")=1-\Phi(" 1.523 ") \\ & =0.0639(3 \mathrm{sf}) \end{aligned}$ |
| (iii) | Large sample or large $n$ ( $\bar{X}$ (approx) normally distr) or Central Limit Theorem | B1 [1] |  |
|  |  | [Total: 5] |  |
| 6 (i) | $\begin{aligned} & \mathrm{H}_{0}: \text { Rate }=0.9 \\ & \mathrm{H}_{1}: \text { Rate }<0.9 \\ & 1-\mathrm{P}(17,18,19,20) \\ & 1-\left({ }^{20} \mathrm{C}_{17} \times 0.1^{3} \times 0.9^{17}+{ }^{20} \mathrm{C}_{18} \times 0.1^{2}\right. \\ & \left.\times 0.9^{18}+20 \times 0.1 \times 0.9^{19}+0.9^{20}\right) \\ & =0.133(3 \text { sf }) \end{aligned}$ | B1 M1 <br> M1 <br> A1 <br> [4] | $\begin{aligned} & \mathrm{p}=0.9 \\ & \mathrm{p}<0.9 \end{aligned}$ <br> Use of $\mathrm{B}(20,0.1)$ <br> Allow 1-P(18,19,20) or $1-\mathrm{P}(16,17,18,19,20)$ |
| (ii) | Type II $\mathrm{H}_{0}$ will not be rejected | $\begin{align*} & \text { B1 }  \tag{2}\\ & \text { B1 } \end{align*}$ | or Stephan will conclude standard not fallen No contradictions |
|  |  | [Total: 6] |  |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2014 | 9709 | 71 |


| 7 (i) | $\begin{align*} & \int_{1}^{a} \frac{k}{x} \mathrm{~d} x=1 \\ & k[\ln x]_{1}^{a}=1 \\ & k \ln a=1 \quad k=1 / \ln a \tag{3} \end{align*}$ | M1 <br> A1 <br> A1 | Int $\mathrm{f}(x)$ \& equate to 1 . Ignore limits <br> Correct integration and limits and $=1$ <br> AG |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \frac{1}{\ln a} \int_{1}^{a} \mathrm{~d} x \\ & =\frac{\text { or } k \int_{1}^{a} 1 \mathrm{~d} x}{\ln a}[x] \\ & =\frac{1}{\ln a}(a-1) \end{aligned} \text { or } k[x] \frac{a}{1} \text { a }$ | M1 <br> A1 <br> A1 <br> [3] | Int $x \mathrm{f}(x)$. Ignore limits <br> Correct integration and limits (condone missing $k$ ) |
| (iii) | $\begin{align*} & \frac{1}{\ln a} \int_{1}^{m} \frac{1}{x} \mathrm{~d} x=0.5 \\ & \frac{1}{\ln a} \ln ^{[\ln x]}{ }_{1}^{m}=0.5 \\ & \frac{1}{\ln a} \ln m=0.5 \\ & \ln m=0.5 \ln a \\ & m=\sqrt{ } a \tag{4} \end{align*}$ | M1 <br> A1 <br> A1 <br> A1 | Int $\mathrm{f}(x)$ and equate to 0.5 . Ignore limits <br> Correct integration and limits ( 1 to $m$ or $m$ to $a$ ) (condone missing $k$ ) <br> or $\ln m=\ln a^{0.5}$ |
|  |  | [Total: 10] |  |
| $8 \quad$ (i) | $V$ : cannot have neg value <br> $W$ : cannot have non-integer value | $\begin{align*} & \text { B1 }  \tag{2}\\ & \text { B1 } \end{align*}$ |  |
| (ii) | (a) $\mathrm{e}^{-\lambda}=p$ and $\lambda \mathrm{e}^{-\lambda}=2.5 p$ (Hence $\lambda=2.5$ AG) | B1 [1] | or equiv explanation |
| (ii) | $\text { (b) } \begin{aligned} & 1-\mathrm{e}^{-2.5}\left(1+2.5+\frac{2.52}{2}\right) \\ & =0.456(3 \mathrm{sf}) \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Allow one end error |
| (iii) | $\begin{aligned} & \Phi^{-1}(0.5793) \quad=-0.2 \\ & \mathrm{~N}(\mu, \mu) \text { seen or implied } \\ & \frac{40.5-\mu}{\sqrt{\mu}}="-0.2 " \\ & \mu+\text { "-0.2" } \sqrt{\mu}-40.5=0 \\ & \sqrt{\mu}=\frac{" 0.2^{"} \pm \sqrt{00.2^{\prime 2}+4 \times 40.5}}{2} \\ & \mu=41.8(3 \mathrm{sf}) \end{aligned}$ | B1  <br> M1  <br> M1  <br>   <br> M1  <br>   <br> A1  <br>   | Allow no cc or incorrect cc <br> For solving quadratic in $\sqrt{ } \mu$ (or $\mu$ ) <br> Ignore other answer for $\sqrt{ } \mu$, but not for $\mu$ |
|  |  | [Total: 10] |  |

[Total for paper 50]

## MARK SCHEME for the May/June 2014 series

## 9709 MATHEMATICS

9709/72
Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
Syllabus $\quad$ Paper

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol 凤 implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2014 | 9709 | 72 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR-1 A penalty of MR-1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{\text { " }}$ marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2014 | 9709 | $\mathbf{7 2}$ |


| 1 | $\begin{aligned} & \frac{\sum x}{8}=\frac{2006}{8}=250.75 \text { or } 251 \text { (3 s.f.) } \\ & \left(\Sigma x^{2}=503274\right) \\ & \frac{8}{7}\left(\frac{" 503274 "}{8}-" 250.75^{2}\right) \\ & \left.=38.5 \text { o.e. (accept } 6.204^{2}\right) \end{aligned}$ | $\begin{array}{\|cc} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & {[3]} \end{array}$ | Any equivalent form <br> For use of formula of correct form <br> cao (as final answer) |
| :---: | :---: | :---: | :---: |
| 2 |  | $\begin{array}{ll}\text { B1 } & \\ \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & {[5]}\end{array}$ | seen or implied <br> - award at early stage <br> For standardising (accept sd/var mixes, but variance must be a combination of at least 2 of $X, Y, Z)$ <br> For area consistent with their working |
| 3 | $\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }(\text { or } \mu \text { or } \lambda)=50(\text { or } 5) \\ & \mathrm{H}_{1}: \text { Pop mean }(\text { or } \mu \text { or } \lambda) \neq 50(\text { or } 5) \\ & \frac{60.5-50}{\sqrt{50}}( \pm) \\ & =( \pm) 1.485 \text { OR } 0.0687 \text { OR C.V } \end{aligned}$ $1.485<1.645 \text { or } 0.0687>0.05$ <br> No evidence that mean changed | $\begin{array}{\|lll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & \\ \\ \text { M1 } & \\ \text { A1 } \downarrow ~ & \\ \hline \end{array}$ | Not just "mean" <br> For standardising with $\mathrm{N}(50,50)$ or $\mathrm{N}(5,5 / \sqrt{ } 10)$ <br> Allow M1 with wrong or no continuity correction OR no $\sqrt{ }$ (accept c.v method M1, A1 for 61.63 or 48.868) <br> For valid comparison ( $z \mathrm{~s}$ or areas or cv ) (S.R For cv comparison 61.63 only award final A1 if cc used) <br> or if $\mathrm{H}_{1}: \lambda>50,1.485<1.96$ <br> No evid mean changed <br> (i.e. if one-tail test, max B0 M1 A1 M1 A0) |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2014 | 9709 | 72 |


| 4 (i) | $\begin{aligned} & \lambda=4.5 \\ & 1-\mathrm{e}^{-4.5}\left(1+4.5+\frac{4.5^{2}}{2}\right) \\ & =0.826(3 \text { s.f. }) \end{aligned}$ | $\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & {[3]} \end{array}$ | seen <br> any $\lambda$. Allow one end error |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \mathrm{e}^{-\lambda}=0.523 \\ & (-\lambda=\ln 0.523) \\ & \lambda=0.648 \text { (3 s.f.) } \end{aligned}$ | B1 B1 [2] |  |
| (iii) | $\begin{aligned} & \mathrm{e}^{-\mu} \times \frac{\mu^{3}}{3!}=24 \times \mathrm{e}^{-\mu} \times \mu \\ & \frac{\mu^{2}}{6}=24 \\ & \mu=12 \end{aligned}$ | B1 <br> M1 <br> A1 <br> [3] | For a simplified expression in $\mu^{2}$ with $\mathrm{e}^{-\mu}$ and $\mu$ cancelled and no factorials. |
| 5 (i) | $\begin{aligned} & p=\frac{184}{400} \text { or } 0.46 \\ & z=1.96 \\ & " 0.46 " \pm z \times \sqrt{\frac{" 0.46 "(1-" 0.46 ")}{400}} \\ & =0.411 \text { to } 0.509 \end{aligned}$ | B1 B1 M1 A1 $\quad[4]$ | Used <br> Seen <br> Using expression of correct form <br> Must be an interval |
| (ii) | 0.5 within CI <br> Claim not supported or not justified | B1^ [1] | Both needed. No contradictions. ft their (i) |
| (iii) | $\begin{aligned} & z \times \sqrt{\frac{" 0.46 "(1-" 0.46 ")}{400}}=0.05 \\ & z=2.006 \\ & \Phi\left({ }^{\prime} 2.006^{\prime}\right)=0.9775 \\ & \alpha={ }^{\prime} 0.9775 \prime-\left(1-‘ 0.9775^{\prime}\right) \\ & =95.5 \% \end{aligned}$ | M1 A1 M1 A1 | Allow M1 for $z \times \sqrt{\frac{" 0.46 "(1-" 0.46 ")}{400}}=0.1$ <br> or $1-2(1-‘ 0.9775$ ’) |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2014 | 9709 | 72 |


| 6 (i) | $\begin{aligned} & k \int_{0}^{4}\left(16 t-t^{3}\right) \mathrm{d} t=1 \\ & k\left[8 t^{2}-\frac{t^{4}}{4}\right]_{0}^{4}=1 \\ & k(128-64)=1 \text { o.e. } \\ & k \times 64=1 \\ & \left(k=\frac{1}{64}\right) \mathbf{A G} \end{aligned}$ | A1 | Int $\mathrm{f}(t)=1$ ignore limits <br> correct integration with correct limits <br> must be convinced (AG) |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \frac{1}{64} \int_{0}^{1}\left(16 t-t^{3}\right) \mathrm{d} t \\ & =\frac{1}{64}\left[8 t^{2}-\frac{t^{4}}{4}\right]_{0}^{1} \\ & =\frac{1}{64}\left[8-\frac{1}{4}\right] \\ & =\frac{31}{256} \text { or } 0.121094 \\ & \left(\frac{31}{256}\right)^{2}=0.0147 \text { (3 s.f.) o.e. } \end{aligned}$ | A1 <br> A1 $\mathrm{B} 1 \downarrow^{\wedge}$ <br> [4] | Int $\mathrm{f}(t)$ between 0 and 1 (accept 0 and a value $<1,1$ and 4) <br> correct integration and correct limits (ignore "k") <br> ft their " $\frac{31}{256}$ " |
| iii | $\begin{aligned} & \frac{1}{64} \int_{0}^{4}\left(16 t^{2}-t^{4}\right) \mathrm{d} t \\ & =\frac{1}{64}\left[\frac{16 t^{3}}{3}-\frac{t^{5}}{5}\right]_{0}^{4} \\ & =\frac{1}{64}\left(\frac{1024}{3}-\frac{1024}{5}\right) \\ & =\frac{32}{15} \text { or } 2.13(3 \text { s.f. }) \text { o.e. } \end{aligned}$ | $\begin{array}{lll} \text { M1 } & \\ & \\ \text { A1 } & \\ & \\ \text { A1 } & {[3]} \end{array}$ | Int $t \mathrm{f}(t)$ ignore limits <br> correct integration and correct limits (ignore " $k$ ") |


| Page 7 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2014 | 9709 | 72 |


| $7 \quad$ (i) | $2^{\text {nd }}$ <br> More representative of all appointments or Lengths may vary during the day or $1^{\text {st }}$ does not include later appts so not representative | B1 | Any implication that times or conditions vary throughout day, e.g. doctors get tired |
| :---: | :---: | :---: | :---: |
| (ii) | 0.01 o.e. <br> Concluding that times spent are too long when they are not. | B1 <br> B1 <br> [2] | Concluding that the mean time spent is more than 10 mins when it is not. Must be in context. |
| (iii) | $\mathrm{H}_{0}$ : Pop mean appt time $($ or $\mu)=10$ <br> $\mathrm{H}_{1}$ : Pop mean appt time $($ or $\mu)>10$ $\frac{\frac{147}{12}-10}{\frac{3.4}{\sqrt{12}}}( \pm)$ <br> $=( \pm) 2.292$ or $(0.0109$ if area comparison done) $" 2.292 "<2.326 \text { o.e. }$ <br> (No evidence to reject $\mathrm{H}_{0}$.) <br> No reason to believe appts are too long | B1 <br> M1 <br> A1 <br> M1 <br> A1 ${ }^{\wedge}$ [5] | Both correct. Allow <br> $\mu$, but not just "mean"  <br> Allow incorrect $\frac{147}{12}$ $10+2.326 \times \frac{3.4}{\sqrt{12}} \mathrm{M} 1$ <br> Must have $\sqrt{ } 12$ <br> (accept totals <br> method) 12.28 A 1 <br>   <br> For valid comparison <br> Comp "2.292" with $\frac{147}{12}<12.28 \mathrm{M} 1$ <br> 2.326  <br> Or 0.0109 with 0.01  <br> Or $147 / 12$ with 12.28  <br> Dep 2.326, ft their <br> "2.292"  <br> No contradictions  |
| (iv) | Normal population | B1 [1] | Must have "population" or equiv |

## MARK SCHEME for the May/June 2014 series

## 9709 MATHEMATICS

9709/73
Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
Syllabus $\quad$ Paper

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol 凤 implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2014 | 9709 | 73 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR -1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ^" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2014 | 9709 | 73 |


| 1 | $\mathrm{e}^{-4}(1+4)$ $=0.0916 \text { (3 s.f.) }$ | M1 A1 <br> [3] | M1 for $\mathrm{P}(0$ or 1$)$ using Poisson, any $\lambda$ Expression of correct form correct $\lambda$ (allow 1 end error) <br> SR Use of $\operatorname{Bin}(100000,1 / 25000)$ scores M1 for $\mathrm{P}(0,1)$ allow one end error. A1 0.0916 |
| :---: | :---: | :---: | :---: |
| 2 | $\mathrm{ht}=\frac{1}{2} \quad$ seen $\frac{1}{2} \times m \times\left(\frac{m}{4} \times \frac{1}{2}^{\prime \prime}\right)=\frac{1}{2}$ <br> N.B. B1 M1 must be consistent $m=\sqrt{ } 8 \text { or } 2 \sqrt{ } 2 \text { or } 2.83 \text { (3 s.f.) }$ | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ | or $y=\frac{1}{8} x$ $\frac{1}{2} \times m \times\left(" \frac{1}{8} " m\right)=\frac{1}{2} \quad \text { or } \frac{m^{2}}{16}=\frac{1}{2} \quad \text { o.e. }$ <br> Or Integrating linear function of form $y=k x$ with limits 0 and $m$ or $m$ and 4 and equated to 0.5 |
| 3 | $\begin{aligned} & p=0.56 \\ & ‘ 0.56 ’ \pm z \times \sqrt{\frac{0.56 \times 0.44}{100}} \\ & z=2.17, \text { or } 2.169 \text { or } 2.171 \\ & 0.452 \text { to } 0.668 \text { ( } 3 \text { s.f.) } \end{aligned}$ | B1 M1 B1 A1 [4] | Used <br> Equation of correct form condone just + ve or -ve <br> Must be $z$ <br> Seen <br> Must be an interval |
| 4 | $\bar{x}=1.65$ $\operatorname{est}\left(\sigma^{2}\right)=\frac{100}{99}\left(\frac{276.25}{100}-1.65^{2}\right)$ $=0.040404 \ldots=4 / 99$ <br> ( $\pm) \frac{1.65-1.6}{\sqrt{\frac{0.040404^{\prime \prime}}{100}}}$ <br> $=( \pm) 2.487 / 2.488$ accept 2.49 Or $0.0065 / 0.0064$ if area comparison done <br> comp with 1.96 <br> There is evidence that $\mu$ is not 1.6 | B1 <br> B1 <br> M1 <br> A1 <br> M1 | $\begin{aligned} & \text { Without } \frac{100}{99}: \quad \frac{1.65-1.6}{\sqrt{\frac{\overline{0.04}^{100}}{100}}} \text { B1 B0 M1 } \\ & =2.50 \quad \mathrm{~A} 1 \end{aligned}$ <br> CV Method M1 must use 1.96 A1 for 1.639 or 1.6106 <br> For valid comparison ( $z / z$ Signs consistent or area/area cv) <br> Accept Reject $\mathrm{H}_{0}$ No contradictions |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2014 | 9709 | 73 |


| 5 (i) | Longest lifetime | B1 [1] | Must be in context |
| :---: | :---: | :---: | :---: |
| (ii) |  |  | Int $\mathrm{f}(x)$ and equate to 1 . Ignore limits <br> Correct integral and limits <br> Must be convinced (AG) |
| (iii) | $\begin{aligned} & \frac{5}{3} \int_{1}^{2.5} \frac{1}{x} \mathrm{~d} x \text { or } k \int_{1}^{2.5} \frac{1}{x} \mathrm{~d} x \\ & =\frac{5}{3}[\ln x]^{2.5} \text { or } k[\ln x] \begin{array}{c} 2.5 \\ 1 \\ = \\ \frac{5}{3} \ln 2.5 \end{array} \text { or } 1.53(3 \text { s.f. }) \end{aligned}$ | M1 A1 A1 | Int $x \mathrm{f}(x)$. Ignore limits <br> Correct integral and limits (Accept " $k$ " or "their $k$ ") |
| 6 (i) | $\begin{aligned} & \mathrm{H}_{0}: p=0.2 \\ & \mathrm{H}_{1}: p<0.2 \\ & \mathrm{P}\left(0 \text { or } 15 \mathrm{~s} \text { in } 25 \mid \mathrm{H}_{0}\right) \\ & =0.0274 \text { (3 s.f.) } \end{aligned}$ <br> Comp with 0.025 <br> No evidence (at $2.5 \%$ level) to support claim | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1ヶ [5] } \end{aligned}$ | (Allow $\pi$ ) <br> $0.8^{25}+25 \times 0.8^{24} \times 0.2$ Use of $\mathrm{B}(25,1 / 5)$ and $\mathrm{P}(0)$ or $\mathrm{P}(1)$ or both - may be implied by "0.0274" <br> Valid comparison <br> No contradictions <br> SR Use of Normal $\mathrm{N}(5,4)$ leading to $z=1.75$ or 0.0401 B1* $\mathrm{H}_{0} \mu=5 \mathrm{H}_{1} \mu<5$ B1. Comparison $1.75<1.96$ or $0.0401>0.025$ B1* dep |
| (ii) | Normal $\mu=200, \sigma^{2}=160 \text { or } \sigma=\sqrt{ } 160$ | $\begin{array}{ll} \text { B1 } & \\ \text { B1 } & {[2]} \end{array}$ |  |
| (iii) | Concluding that the machine produces the right proportion of 5 s , although it doesn't. | B1 [1] | Not concluding that the machine produces too few 5 s although it does. Must be in context o.e. No contradictions |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - May/June 2014 | 9709 | 73 |


| $7 \quad$ (i) | Constant mean (or average) rate | B1 [1] | Constant mean per day (or week, etc.) o.e. |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \mathrm{e}^{-\frac{4}{7}} \times \frac{4^{2}}{2!} \text { or } \mathrm{e}^{-0.571} \times \frac{0.571^{2}}{2!} \\ & =0.0922 \text { or } 0.0921(3 \text { s.f. }) \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Expression for $\mathrm{P}(2)$ allow any $\lambda$ |
| (iii) | $\begin{aligned} & \lambda=\frac{40}{7} \text { or } 5.71 \ldots \\ & 1-\mathrm{e}^{-\frac{40}{7}}\left(1+\frac{40}{7}+\frac{\frac{40}{7}^{2}}{2!}+\frac{\frac{40}{7}^{3}}{3!}\right) \\ & =0.821(3 \text { s.f. }) \end{aligned}$ |  | Allow any $\lambda$ allow one end error |
| (iv) | $\frac{24}{7}$ o.e. 3 s.f. or better seen $\begin{aligned} & \mathrm{e}^{-\frac{4}{7}} \times \mathrm{e}^{-\frac{24}{7} \times \frac{\frac{24^{5}}{7}}{5!}} \\ & =0.0723 \text { (3 s.f.) } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | M1 for $\mathrm{P}(0) \times \mathrm{P}(5)$ any consistent $\lambda$ |
| 8 (i) | $X+2.5 Y \sim \mathrm{~N}(127,44.25)$ $\begin{aligned} & ( \pm) \frac{140-" 127 "}{\sqrt{" 44.25 "}} \\ & = \pm(1.954) \\ & 1-\Phi(" 1.954 \text { ") } \\ & =0.0254 / 0.0253 \text { (3 s.f.) } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \\ & \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \hline \end{aligned}$ | B1 for 127 Allow at early stage $(57+2.5 \times 28)$ <br> B1 for 44.25 or 6.65 <br> Allow at early stage $\left(13+2.5^{2} \times 5\right)$ <br> May be implied by next line <br> For standardising <br> For area consistent with their working |
| (ii) | $\begin{aligned} & X-Y \sim \mathrm{~N}(29,18) \\ & \frac{20-" 29 "}{\sqrt{" 18 "}} \\ & 1-\Phi("-2.121 ")=\Phi(" 2.121 ") \\ & =0.983(3 \text { s.f. }) \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | B1 for 29 Give at early stage ( $57-28$ ) <br> B1 for 18 Give at early stage $(13+5)$ <br> May be implied by next line <br> For Standardising <br> For area consistent with their working |

## MARK SCHEME for the October/November 2013 series

## 9709 MATHEMATICS

9709/71
Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
Syllabus $\quad$ Paper

GCE A LEVEL - October/November 2013

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\downarrow$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 71 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR-1 A penalty of MR-1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through §" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 71 |


| $1 \quad \begin{aligned} & \lambda=\frac{1}{30} \\ & \\ & 1-\mathrm{e}^{-\frac{1}{30}} \\ & \\ & =0.0328 \text { (3 s.f. }) \end{aligned}$ | $\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & \\ & \\ & \end{array}$ | o.e <br> $1-\mathrm{P}(X=0)$ by Poisson, any $\lambda$ allow 1 end error $1-\mathrm{P}(X=0)$ by Poisson, correct $\lambda$ no end errors <br> S.R. Binomial with final answer 0.0328 B2 Correct answer, no working scores B2 |
| :---: | :---: | :---: |
| $2 \begin{aligned} z & =2.576 \\ 2 & \times z \times \frac{0.17}{\sqrt{n}}=0.2 \text { oe } \\ n & =\left(\frac{2 \times 0.17 \times 2.576}{0.2}\right)^{2} \text { oe }(=19.2) \end{aligned}$ <br> Smallest $n$ is 20 | $\begin{array}{lr} \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & {[4]} \end{array}$ | Seen (accept 2.574 to 2.579 ) <br> Allow without ' $2 \times$ ' OR with incorrect $z$ <br> Attempt to arrange equ of correct form (with correct z and ' $2 \times$ ' into the form $\mathrm{n}=$ or $\sqrt{\mathrm{n}}=$ |
| $3 \text { (i) } \quad \begin{aligned} & \text { est }(\mu)=2866 \text { or } 2870(3 \text { s.f. }) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & =41260(3)\left(\sigma^{2}\right)=\frac{1}{49}\left(410900000-\frac{143300^{2}}{50}\right) \end{aligned}$ | $\begin{array}{ll} \text { B1 } & \\ \text { M1 } \end{array}$ | Accept 143300/50 o.e. <br> Correct subst in correct formula |
| (ii) $\quad \mathrm{H}_{0}$ : Pop mean $($ or $\mu)=2850$ <br> $\mathrm{H}_{1}$ : Pop mean ( or $\mu$ ) $\neq 2850$ $\frac{\frac{143300}{50}-2850}{\sqrt{\prime 4126.53^{\prime}}} \frac{\sqrt{50}}{}$ $=1.761$ $' 1.761^{\prime}<1.96$ <br> No evidence mean distance changed | B1 <br> M1 <br> A1 <br> M1 <br> A1f <br> [5] | Both. Not just 'mean' <br> Allow '4126.53' without $\sqrt{ }$, but must have all $\sqrt{50}$ <br> Or correct c.v. (2867.81) for alt method For valid comparison of z values, areas or c.v. <br> Dep 1.96; ft their 1.761 <br> If $\mathrm{H}_{1}: \mu>2850$ and c.f. 1.645, <br> $\max$ B0M1A1M1A0 <br> (c.v. for 1 tail test 2864.94) |
| 4 (i) $\begin{aligned} & \lambda=2.8 \\ & \mathrm{e}^{-2.8}\left(1+2.8+\frac{2.8^{2}}{2}\right) \\ & =0.469(3 \text { s.f. }) \text { or } 0.47(0) \end{aligned}$ | B1 <br> M1 <br> A1 [3] | seen <br> any $\lambda$ allow one end error As final answer |
| (ii) $\begin{array}{ll} \mathrm{e}^{-0.7 n} \geqslant 0.99 & \text { or } \mathrm{e}^{-\lambda} \geqslant 0.99 \\ -0.7 n \geqslant \ln 0.99 & \text { or }-\lambda \geqslant \ln 0.99 \\ n \leqslant 0.01436 & \text { or } \lambda \leqslant 0.01005 \\ { }^{0.0 .01436} \times 150 \\ \text { or } ‘ 0.01005 ’ \times 150 \div 0.7 \\ \text { Max period is } 2.15 \mathrm{mins}(3 \mathrm{sf}) \end{array}$ | $\begin{array}{lr} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & {[5]} \end{array}$ | Allow ' $=$ ' throughout <br> Attempt $\ln$ both sides <br> Can be implied. Accept 3 s.f. <br> Note $\mathrm{e}^{-(0.7 / 150) n} \geqslant 0.99$ scores $1^{\text {st }}$ and $3^{\text {rd }}$ M1 T \& I leading to ans 2.2 mins, SC: B2 |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 71 |


| $5 \text { (i) }$ | $\begin{aligned} & \int_{0}^{2} k(x-2)^{2} \mathrm{~d} x=1 \\ & \left(\left[\frac{k(x-2)^{3}}{3}\right]_{0}^{2}=1\right) \\ & k\left[0-\left(-\frac{8}{3}\right)\right]=1 \\ & k=\frac{3}{8} \mathbf{A G} \end{aligned}$ | M1 <br> A1 <br> [2] | Attempt to integrate $\mathrm{f}(x)$ with correct limits and $=1$ <br> Must see this line or better, e.g. $k \times \frac{8}{3}=1$ |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \frac{3}{8} \int_{d}^{2}(x-2)^{2} \mathrm{~d} x=0.2 \\ & \left(\frac{3}{8}\left[\frac{(x-2)^{3}}{3}\right]_{d}^{2}=0.2\right) \\ & \frac{3}{8}\left[0-\frac{(d-2)^{3}}{3}\right]=0.2 \text { oe } \\ & \left((d-2)^{3}=-1.6\right) \\ & d=0.83(0)(3 \text { s.f. }) \end{aligned}$ | M1 <br> M1 <br> A1 | $\int \mathrm{f}(x) \mathrm{d} x$ with limits d and 2 or 0 and d , and $=0.2$ or $=0.8$ <br> Condone missing ' $k$ ' <br> Reasonable attempt to integrate from a correct expression, with limits substituted to give expression in $\mathrm{d}^{3}$. <br> Condone missing ' $k$ ' |
| (iii) | $\begin{aligned} & \frac{3}{8} \int_{0}^{2} x(x-2)^{2} \mathrm{~d} x \\ & \left(=\frac{3}{8} \int_{0}^{2} x^{3}-4 x^{2}+4 x \mathrm{~d} x\right) \\ & =\frac{3}{8}\left[\frac{x^{4}}{4}-\frac{4 x^{3}}{3}+2 x^{2}\right]_{0}^{2} \\ & =\frac{1}{2} \end{aligned}$ | M1 <br> A1 <br> A1 <br> [3] | Attempt integ $x \mathrm{f}(x)$; ignore limits, condone missing k $\begin{aligned} & \left(\frac{3}{8}\left[x \times \frac{(x-2)^{3}}{3}-\int \frac{(x-2)^{3}}{3} \mathrm{~d} x\right]_{0}^{2}\right) \\ & =\frac{3}{8}\left[x \times \frac{(x-2)^{3}}{3}-\frac{(x-2)^{4}}{12}\right]_{0}^{2} \end{aligned}$ <br> Correct integration \& limits, condone missing k |
| 6 (i) | $\begin{aligned} & \mathrm{P}(\text { Type } \mathrm{I})=1-\mathrm{P}(\geq 4 \text { assuming } p=0.7) \\ & 1-\left({ }^{6} \mathrm{C}_{4} \times 0.7^{4} \times 0.3^{2}+{ }^{6} \mathrm{C}_{5} \times 0.7^{5} \times 0.3\right. \\ & \left.+0.7^{6}\right) \\ & (=1-0.744) \\ & =0.256(3 \text { s.f. }) \end{aligned}$ | M1 <br> M1 <br> A1 <br> [3] | or $\mathrm{P}(\leq 3$ assuming $p=0.7) \quad$ May be implied ${ }^{6} \mathrm{C}_{3} \times 0.7^{3} \times 0.3^{3}+{ }^{6} \mathrm{C}_{2} \times 0.7^{2} \times 0.3^{4}+{ }^{6} \mathrm{C}_{1} \times 0.7 \times 0.3^{5}$ $+0.3^{6}$ <br> Allow one end error $=0.256 \text { (3 s.f.) }$ <br> SR if zero scored allow B1 for use of $B(6,0.7)$ in any two or more terms |
| (ii) | $\begin{aligned} & \mathrm{P}(\text { Type II })=\mathrm{P}(\geqslant 4 \text { assuming } p=0.35) \\ & ={ }^{6} \mathrm{C}_{4} \times 0.35^{4} \times 0.65^{2}+ \\ & { }^{6} \mathrm{C}_{5} \times 0.35^{5} \times 0.65+0.35^{6} \\ & =0.117 \end{aligned}$ | M1 <br> M1 <br> A1 <br> [3] | May be implied <br> Allow one end error <br> SR if zero scored allow $B 1$ for use of $B(6,0.35)$ in any two or more terms |
| (iii) | Type 1 <br> They will reject Luigi's belief, although it might be true. | $\begin{array}{ll} \text { B1 } & \\ \text { B1 } \end{array}$ | In context |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 71 |


| 7 (i) | $\begin{aligned} & \mathrm{N}(10.61,0.1017) \\ & \frac{11-^{\prime} 10.61^{\prime}}{\sqrt{0.1017}}(=1.223) \\ & \Phi\left(‘^{\prime} 1.223^{\prime}\right) \\ & =0.889 \text { (3 s.f. }) \end{aligned}$ | $\begin{array}{ll}\text { B1 } & \\ & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & {[4]}\end{array}$ | o.e. Stated or implied (accept in un-simplified form) <br> Allow without $\sqrt{ }$ <br> For attempt to find correct area consistent with their working |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \mathrm{P}(K-1.2 A>0) \\ & \operatorname{Var}=0.0576+1.2^{2} \times 0.0441 \\ & (=0.121104) \\ & \mathrm{N}(-0.324,0.121104) \\ & \frac{0-(-0.324)}{\sqrt{0.121104^{\prime}}}(=0.931) \\ & 1-\Phi\left({ }^{\circ} 0.931^{\prime}\right) \\ & =0.176(3 \text { s.f. }) \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { B1 B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Or similar stated or implied <br> o.e. May be implied (accept in un-simplified form) <br> Allow without $\sqrt{ }$ <br> For attempt to find correct area consistent with their working |

## MARK SCHEME for the October/November 2013 series

## 9709 MATHEMATICS

## 9709/72

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
Syllabus $\quad$ Paper
GCE A LEVEL - October/November 2013

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\downarrow$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 72 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR-1 A penalty of MR-1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through §" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 72 |


| $1 \quad \begin{aligned} & \lambda=\frac{1}{30} \\ & \\ & 1-\mathrm{e}^{-\frac{1}{30}} \\ & \\ & =0.0328 \text { (3 s.f. }) \end{aligned}$ | $\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & \\ & \\ & \end{array}$ | o.e <br> $1-\mathrm{P}(X=0)$ by Poisson, any $\lambda$ allow 1 end error $1-\mathrm{P}(X=0)$ by Poisson, correct $\lambda$ no end errors <br> S.R. Binomial with final answer 0.0328 B2 Correct answer, no working scores B2 |
| :---: | :---: | :---: |
| $2 \begin{aligned} z & =2.576 \\ 2 & \times z \times \frac{0.17}{\sqrt{n}}=0.2 \text { oe } \\ n & =\left(\frac{2 \times 0.17 \times 2.576}{0.2}\right)^{2} \text { oe }(=19.2) \end{aligned}$ <br> Smallest $n$ is 20 | $\begin{array}{lr} \text { B1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & {[4]} \end{array}$ | Seen (accept 2.574 to 2.579 ) <br> Allow without ' $2 \times$ ' OR with incorrect $z$ <br> Attempt to arrange equ of correct form (with correct z and ' $2 \times$ ' into the form $\mathrm{n}=$ or $\sqrt{\mathrm{n}}=$ |
| $3 \text { (i) } \quad \begin{aligned} & \text { est }(\mu)=2866 \text { or } 2870(3 \text { s.f. }) \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & =41260(3)\left(\sigma^{2}\right)=\frac{1}{49}\left(410900000-\frac{143300^{2}}{50}\right) \end{aligned}$ | $\begin{array}{ll} \text { B1 } & \\ \text { M1 } \end{array}$ | Accept 143300/50 o.e. <br> Correct subst in correct formula |
| (ii) $\quad \mathrm{H}_{0}$ : Pop mean $($ or $\mu)=2850$ <br> $\mathrm{H}_{1}$ : Pop mean ( or $\mu$ ) $\neq 2850$ $\frac{\frac{143300}{50}-2850}{\sqrt{\prime 4126.53^{\prime}}} \frac{\sqrt{50}}{}$ $=1.761$ $' 1.761^{\prime}<1.96$ <br> No evidence mean distance changed | B1 <br> M1 <br> A1 <br> M1 <br> A1f <br> [5] | Both. Not just 'mean' <br> Allow '4126.53' without $\sqrt{ }$, but must have all $\sqrt{50}$ <br> Or correct c.v. (2867.81) for alt method For valid comparison of z values, areas or c.v. <br> Dep 1.96; ft their 1.761 <br> If $\mathrm{H}_{1}: \mu>2850$ and c.f. 1.645, <br> $\max$ B0M1A1M1A0 <br> (c.v. for 1 tail test 2864.94) |
| 4 (i) $\begin{aligned} & \lambda=2.8 \\ & \mathrm{e}^{-2.8}\left(1+2.8+\frac{2.8^{2}}{2}\right) \\ & =0.469(3 \text { s.f. }) \text { or } 0.47(0) \end{aligned}$ | B1 <br> M1 <br> A1 [3] | seen <br> any $\lambda$ allow one end error As final answer |
| (ii) $\begin{array}{ll} \mathrm{e}^{-0.7 n} \geqslant 0.99 & \text { or } \mathrm{e}^{-\lambda} \geqslant 0.99 \\ -0.7 n \geqslant \ln 0.99 & \text { or }-\lambda \geqslant \ln 0.99 \\ n \leqslant 0.01436 & \text { or } \lambda \leqslant 0.01005 \\ { }^{0.0 .01436} \times 150 \\ \text { or } ‘ 0.01005 ’ \times 150 \div 0.7 \\ \text { Max period is } 2.15 \mathrm{mins}(3 \mathrm{sf}) \end{array}$ | $\begin{array}{lr} \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & {[5]} \end{array}$ | Allow ' $=$ ' throughout <br> Attempt $\ln$ both sides <br> Can be implied. Accept 3 s.f. <br> Note $\mathrm{e}^{-(0.7 / 150) n} \geqslant 0.99$ scores $1^{\text {st }}$ and $3^{\text {rd }}$ M1 T \& I leading to ans 2.2 mins, SC: B2 |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 72 |


| $5 \text { (i) }$ | $\begin{aligned} & \int_{0}^{2} k(x-2)^{2} \mathrm{~d} x=1 \\ & \left(\left[\frac{k(x-2)^{3}}{3}\right]_{0}^{2}=1\right) \\ & k\left[0-\left(-\frac{8}{3}\right)\right]=1 \\ & k=\frac{3}{8} \mathbf{A G} \end{aligned}$ | M1 <br> A1 <br> [2] | Attempt to integrate $\mathrm{f}(x)$ with correct limits and $=1$ <br> Must see this line or better, e.g. $k \times \frac{8}{3}=1$ |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \frac{3}{8} \int_{d}^{2}(x-2)^{2} \mathrm{~d} x=0.2 \\ & \left(\frac{3}{8}\left[\frac{(x-2)^{3}}{3}\right]_{d}^{2}=0.2\right) \\ & \frac{3}{8}\left[0-\frac{(d-2)^{3}}{3}\right]=0.2 \text { oe } \\ & \left((d-2)^{3}=-1.6\right) \\ & d=0.83(0)(3 \text { s.f. }) \end{aligned}$ | M1 <br> M1 <br> A1 | $\int \mathrm{f}(x) \mathrm{d} x$ with limits d and 2 or 0 and d , and $=0.2$ or $=0.8$ <br> Condone missing ' $k$ ' <br> Reasonable attempt to integrate from a correct expression, with limits substituted to give expression in $\mathrm{d}^{3}$. <br> Condone missing ' $k$ ' |
| (iii) | $\begin{aligned} & \frac{3}{8} \int_{0}^{2} x(x-2)^{2} \mathrm{~d} x \\ & \left(=\frac{3}{8} \int_{0}^{2} x^{3}-4 x^{2}+4 x \mathrm{~d} x\right) \\ & =\frac{3}{8}\left[\frac{x^{4}}{4}-\frac{4 x^{3}}{3}+2 x^{2}\right]_{0}^{2} \\ & =\frac{1}{2} \end{aligned}$ | M1 <br> A1 <br> A1 <br> [3] | Attempt integ $x \mathrm{f}(x)$; ignore limits, condone missing k $\begin{aligned} & \left(\frac{3}{8}\left[x \times \frac{(x-2)^{3}}{3}-\int \frac{(x-2)^{3}}{3} \mathrm{~d} x\right]_{0}^{2}\right) \\ & =\frac{3}{8}\left[x \times \frac{(x-2)^{3}}{3}-\frac{(x-2)^{4}}{12}\right]_{0}^{2} \end{aligned}$ <br> Correct integration \& limits, condone missing k |
| 6 (i) | $\begin{aligned} & \mathrm{P}(\text { Type } \mathrm{I})=1-\mathrm{P}(\geq 4 \text { assuming } p=0.7) \\ & 1-\left({ }^{6} \mathrm{C}_{4} \times 0.7^{4} \times 0.3^{2}+{ }^{6} \mathrm{C}_{5} \times 0.7^{5} \times 0.3\right. \\ & \left.+0.7^{6}\right) \\ & (=1-0.744) \\ & =0.256(3 \text { s.f. }) \end{aligned}$ | M1 <br> M1 <br> A1 <br> [3] | or $\mathrm{P}(\leq 3$ assuming $p=0.7) \quad$ May be implied ${ }^{6} \mathrm{C}_{3} \times 0.7^{3} \times 0.3^{3}+{ }^{6} \mathrm{C}_{2} \times 0.7^{2} \times 0.3^{4}+{ }^{6} \mathrm{C}_{1} \times 0.7 \times 0.3^{5}$ $+0.3^{6}$ <br> Allow one end error $=0.256 \text { (3 s.f.) }$ <br> SR if zero scored allow B1 for use of $B(6,0.7)$ in any two or more terms |
| (ii) | $\begin{aligned} & \mathrm{P}(\text { Type II })=\mathrm{P}(\geqslant 4 \text { assuming } p=0.35) \\ & ={ }^{6} \mathrm{C}_{4} \times 0.35^{4} \times 0.65^{2}+ \\ & { }^{6} \mathrm{C}_{5} \times 0.35^{5} \times 0.65+0.35^{6} \\ & =0.117 \end{aligned}$ | M1 <br> M1 <br> A1 <br> [3] | May be implied <br> Allow one end error <br> SR if zero scored allow $B 1$ for use of $B(6,0.35)$ in any two or more terms |
| (iii) | Type 1 <br> They will reject Luigi's belief, although it might be true. | $\begin{array}{ll} \text { B1 } & \\ \text { B1 } \end{array}$ | In context |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 72 |


| 7 (i) | $\begin{aligned} & \mathrm{N}(10.61,0.1017) \\ & \frac{11-^{\prime} 10.61^{\prime}}{\sqrt{0.1017}}(=1.223) \\ & \Phi\left(‘^{\prime} 1.223^{\prime}\right) \\ & =0.889 \text { (3 s.f. }) \end{aligned}$ | $\begin{array}{ll}\text { B1 } & \\ & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & {[4]}\end{array}$ | o.e. Stated or implied (accept in un-simplified form) <br> Allow without $\sqrt{ }$ <br> For attempt to find correct area consistent with their working |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \mathrm{P}(K-1.2 A>0) \\ & \operatorname{Var}=0.0576+1.2^{2} \times 0.0441 \\ & (=0.121104) \\ & \mathrm{N}(-0.324,0.121104) \\ & \frac{0-(-0.324)}{\sqrt{0.121104^{\prime}}}(=0.931) \\ & 1-\Phi\left({ }^{\circ} 0.931^{\prime}\right) \\ & =0.176(3 \text { s.f. }) \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { B1 B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | Or similar stated or implied <br> o.e. May be implied (accept in un-simplified form) <br> Allow without $\sqrt{ }$ <br> For attempt to find correct area consistent with their working |

## MARK SCHEME for the October/November 2013 series

## 9709 MATHEMATICS

## 9709/73

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.
Syllabus $\quad$ Paper
GCE A LEVEL - October/November 2013

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol 凤 implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 73 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR-1 A penalty of MR-1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ^" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 73 |

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& \[
\begin{aligned}
\& \operatorname{Est}(\mu)=1.8775 \text { or } 1.88(3 \mathrm{sf}) \\
\& \operatorname{Est}\left(\sigma^{2}\right)=\frac{80}{79}\left(\frac{820.24}{80}-" 1.8775^{\prime \prime 2}\right) \\
\& =6.81316 \text { or } 6.81(3 \mathrm{sf}) \\
\& z=1.96 \\
\& " 1.8775 " \pm z \times \sqrt{\frac{" 6.81316 "}{80}} \\
\& =1.31 \text { to } 2.45(3 \mathrm{sf})
\end{aligned}
\] \& \[
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& 6 \& \begin{tabular}{l}
Accept 751/400 ( not 150.2/80) \\
Correct subt'n in correct formula \(1 / 79\) ( \(\left.820.24-150.2^{2} / 80\right)\) \\
Seen \\
Must be an interval. \\
NB use of biased var can still score A1.
\end{tabular} \\
\hline Total \& \& \& [6] \& \\
\hline \begin{tabular}{l}
2 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Assume sd unchanged or \(\mathrm{sd}=10.4\) \\
\(\mathrm{H}_{0}\) : Pop mean speed ( or \(\mu\) ) \(=62.3\) \\
\(\mathrm{H}_{1}\) : Pop mean speed (or \(\mu\) ) \(<62.3\)
\[
\begin{aligned}
\& \frac{59.9-62.3}{\frac{10.4}{\sqrt{75}}} \\
\& =-1.999 \text { or }-2.00(\text { allow }+ \text { or }-)
\end{aligned}
\] \\
Compare - 2.054 or -2.055 \\
No evidence that mean speed decreased \\
Pop distribution unknown Yes
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
M1 \\
A1 ft \\
B1
B1
\end{tabular} \& 2 \& \begin{tabular}{l}
Oe e.g. var unchanged \\
Both. Not just "Mean . ." \\
Accept sd/var mixes, but must have \(\sqrt{ } 75\) \\
Correct \(z\) value ( or correct critical value) \\
Valid comparison of \(z\) `s/areas/critical values \\
No contradictions. Do not ft 2 -tail test.
\end{tabular} \\
\hline Total \& \& \& [8] \& \\
\hline  \& \[
\begin{aligned}
\& \int_{0}^{10} \frac{1}{2500}\left(100 t^{3}-t^{5}\right) \mathrm{d} t \\
\& \left(=\frac{1}{2500}\left[25 t^{4}-\frac{t^{6}}{6}\right] \begin{array}{l}
10 \\
0
\end{array}=\frac{100}{3}\right) \\
\& \cdots \frac{100}{3} "-\left(\frac{16}{3}\right)^{2} \\
\& =\frac{44}{9} \text { or } 4.89(3 \mathrm{sf}) \\
\& \int_{n}^{10} \frac{1}{2500}\left(100 t-t^{3}\right) \mathrm{d} t \\
\& \frac{1}{2500}\left[50 t^{2}-\frac{t_{4}}{4}\right]=0.1 \\
\& \frac{1}{2500}\left[2500-\left(50 n^{2}-\frac{n^{4}}{4}\right)\right]=0.1 \\
\& \left(n^{4}-200 n^{2}+9000=0\right) \\
\& \left(n^{2}=68.3772, n=8.27\right) \\
\& n=8
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
M1 \\
M1 \\
M1 \\
A1
\end{tabular} \& 3

5 \& | Attempt integ $t^{2} \mathrm{f}(t)$ |
| :--- |
| For $\mathrm{E}\left(\mathrm{T}^{2}\right)-(\mathrm{E}(\mathrm{T}))^{2}$ |
| Attempt integ $\mathrm{f}(t)$, ignore limits |
| Attempt integ $\mathrm{f}(t)$, limits $n$ to 10 or 0 to $n$ Equated to 0.1 or 0.9 . Not need to be matched |
| 0.1/0.9 matched to correct limits and used |
| Correct method of solution of a QE in $\mathrm{n}^{2}$ |
| Must be single ans only | <br>

\hline Total \& \& \& [8] \& <br>
\hline
\end{tabular}

| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 73 |

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
4 (i) \\
(a) \\
(b) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{e}^{-2.1} \times \frac{2.1^{3}}{3!} \text { alone } \\
\& =0.189 \\
\& \mathrm{e}^{-1.2} \times \frac{1.2^{3}}{3!} \times \mathrm{e}^{-0.9} \\
\& +\mathrm{e}^{-1.2} \times \frac{1.2^{2}}{2!} \times \mathrm{e}^{-0.9} \times 0.9 \\
\& =0.115
\end{aligned}
\]
\[
\begin{aligned}
\& \mathrm{N}(30,30) \\
\& \frac{34.5-30}{\sqrt{30}} \quad(=0.8216) \\
\& 1-\Phi(" 0.822 ") \\
\& =0.206(3 \mathrm{sf})
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
M1 \\
A1 \\
B1 \\
M1 \\
M1 \\
A1
\end{tabular} \& 2

3 \& | Allow any $\lambda$. Allow sum of 3 or 4 rel products, e.g. $P(3,0)$ $\begin{aligned} & \mathrm{P}(\mathrm{Fem}=3) \times \mathrm{P}(\mathrm{Opp}=0) \text { or } \\ & \mathrm{P}(\mathrm{Fem}=2) \times \mathrm{P}(\mathrm{Opp}=1) \\ & \mathrm{P}(3,0)+\mathrm{P}(2,1) \end{aligned}$ |
| :--- |
| As final answer |
| seen or implied |
| standardising with their $\mathrm{N}(\lambda, \lambda)$ |
| Allow with no or incorrect cc or no $\sqrt{ }$ Area consistent with their working | <br>

\hline Total \& \& \& \& <br>

\hline | 5 (i) |
| :--- |
| (ii) |
| (iii) | \& | $\begin{aligned} & \mathrm{E}(X)=3.5 \\ & \left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right) \div 6- \\ & " 3.5^{, 2} \\ & \left(=\frac{35}{12} \mathbf{A G}\right) \end{aligned}$ |
| :--- |
| Attempt $\mathrm{P}(X<3)$ or $1-\mathrm{P}(X \geq 3)$ $\mathrm{N}\left(3.5, \frac{35}{12} / 50\right)$ $\frac{3-" 3.5^{\prime \prime}}{\sqrt{\frac{35}{12} / 50}}(=-2.070)$ $\Phi("-2.070 ")=1-\Phi(" 2.070 ")$ $=0.0192$ |
| as final answer |
| Die is biased (towards lower numbers) |
| Mean of 50 throws $\geq 3$ (Allow $>$ 3) or Equal nos of high and low scores or More high scores | \& | B1 |
| :--- |
| B1 |
| M1 |
| M1 |
| M1 |
| M1 |
| A1 |
| B1 |
| indep |
| B1 |
| indep | \& | 2 |
| :---: |
|  |
|  |
|  |
|  |
|  |
| 5 |
| 5 | \& | 21/6 |
| :--- |
| oe, must see correct expression and no incorrect working |
| seen or implied |
| seen or implied $\begin{aligned} & \text { or } \frac{2.99-{ }^{-3.5 "}}{\sqrt{\frac{35}{12} / 50}}(=-2.111) \\ & \Phi\left({ }^{‘}-2.111 ’\right)=1-\Phi\left({ }^{\prime} 2.111^{\prime}\right) \\ & =0.0174 \text { or } 0.0173 \end{aligned}$ |
| Consistent area |
| As final answer or valid total method |
| Allow with incorrect cc (e.g. 2.5) OR no $\sqrt{ }$.Must have $\div 50$ |
| Comment implying die is biased |
| Comment implying results of exp't do not indicate bias (or indicate bias towards higher numbers) |
| Both must be in context | <br>

\hline Total \& \& \& [9] \& <br>
\hline
\end{tabular}

| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE A LEVEL - October/November 2013 | 9709 | 73 |


| 6 <br> (i) <br> (ii) | $\begin{aligned} & \mathrm{N}\left(5100,5 \times 45^{2}\right) \text { or } \mathrm{N}(5100, \\ & 10125) \\ & \frac{5200-" 5100 "}{\sqrt{" 10125 "}}(=0.994) \\ & \Phi(" 0.994 ") \\ & =0.840(3 \mathrm{sf}) \end{aligned}$ <br> Use of $E-3 L$ or similar $\mathrm{E}(E-3 L)=-260$ $\operatorname{Var}(E-3 L)=52^{2}+9 \times 45^{2} \text { or }$ $20929$ $\frac{0-("-260 ")}{\sqrt{" 20929 "}}(=1.797)$ $1-\Phi(" 1.797 ")$ $=0.0361(3 \mathrm{sf}) \text { or } 0.0362$ | $\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { B1 } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$ | 6 | seen or implied <br> standardising with their new mean and new var area consistent with their working with normal $2800-3 \times 1020$ <br> with a pos var with $45^{2}$ and $52^{2}$ combined consistent area, must clearly be $\varphi$ <br> $\mathrm{P}(3 L-E<0)$ : similar scheme <br> SR: use of 3E - L, M1, 7380 B1, 26361 B1 <br> stand 0 with these values M1, M0A0 max 4/6 |
| :---: | :---: | :---: | :---: | :---: |
| Total |  |  | [10] |  |

## MARK SCHEME for the May/June 2013 series

## 9709 MATHEMATICS

9709/71
Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the $A$ or $B$ mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0 .

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | 71 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR-1 A penalty of MR-1 is deducted from $A$ or $B$ marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | 71 |

Note: "( 3 sfs )" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding. Penalise $<3$ sfs only once in paper.

| 1 (i) | One of each is more likely <br> $\mathrm{P}($ one of each $=0.5), \mathrm{P}(\mathrm{HH})=0.25$ |  | or $\mathrm{P}(\mathrm{TT})=0.25$ |
| :---: | :---: | :---: | :---: |
| (ii) | Choose Charlie only if H then T Throw again if T then H | B1 <br> B1 <br> [2] | or similar e.g. HH for $\mathrm{A}, \mathrm{HT}$ for $\mathrm{B}, \mathrm{TT}$ for C or vice versa |
| 2 | $\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }=17 \\ & \mathrm{H}_{1}: \text { Pop mean } \neq 17 \\ & \frac{18.2-17}{\frac{2.4}{\sqrt{5}}} \\ & =1.12(3 \mathrm{sf}) \\ & \prime 1.12^{\prime}<1.96 \text { oe } \end{aligned}$ <br> Claim can be accepted | B1 <br> M1 <br> A1 <br> M1 <br> A1ft | Both correct. Allow $\mu$, but not <br> just "mean"  <br> Allow incorrect 18.2. Must <br> have $\sqrt{5}$ $17 \pm 1.96 \frac{2.4}{\sqrt{5}}$$\quad$ M1 |
| 3 | $\begin{aligned} & \begin{array}{ll} \left.\operatorname{Var}(\text { total })=6\left(3.2^{2}+2.6^{2}\right)(+0)\right) & (=102) \\ \text { Total } \sim \mathrm{N}(1528,102)) \\ \frac{1550-" 1528 "}{\sqrt{" 102 "}} \\ 1-\Phi(" 2.178 ") \\ =0.0147(3 \mathrm{sf}) \end{array} \\ & \end{aligned}$ | B1 B1 <br> M1 <br> M1 <br> A1 <br> [5] | For mean (1528)oe and for variance (102) May be implied by use of $\mathrm{N}\left(1528,10.1^{2}\right)$ <br> For standardising. No SD/Var mix <br> For correct area consistent with working |
| 4 (i) | $\begin{aligned} \operatorname{est}(\mu) & =2005 / 200=(10.025) \\ \operatorname{est}\left(\sigma^{2}\right) & \left.=\frac{1}{99} 20175-\frac{2005^{2}}{200}\right) \\ & =0.376(3 \mathrm{sf}) \end{aligned}$ | B1 M1 <br> A1 <br> [3] | Correct subst in correct formula |
| (ii) | $\begin{aligned} & \frac{10-{ }^{\prime} 10.025^{\prime}}{\sqrt{\frac{0.376256^{\prime}}{50}}} \\ & 1-\Phi\left({ }^{\circ} 0.288^{\prime}\right) \\ & =0.387(3 \mathrm{sf}) \end{aligned} \quad(=-0.288)$ | M1 <br> M1 <br> A1 <br> [3] | Allow without $\sqrt{ }$, but $\div \sqrt{ } 50$ essential <br> (Use of 'biased' variance can still score fully in (ii) ) |


| Page 5 Mark Scheme | Syllabus | Paper |  |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | 71 |


| (iii) | Yes; (assumed distr of $\bar{X}$ normal) although distr of $X$ unknown | B1 <br> [2] |  |
| :---: | :---: | :---: | :---: |
| 5 (i) | $\begin{aligned} & \mathrm{B}(520,0.008) \\ & \mathrm{Po}(4.16) \\ & n=500 \text { which is large, } \\ & n p=4.16 \text { which is }<5 \text { or } \mathrm{p} \text { small }<0.1 \end{aligned}$ | B1 <br> B1B1 <br> B1 <br> [4] | Po: B1, $\lambda=4.16$ : B1 <br> Both needed |
| (ii) | $\text { (a) } \begin{aligned} & 1-\mathrm{e}^{-4.16}(1+4.16+ \\ & \left.\frac{4.16^{2}}{2}+\frac{4.16^{3}}{3!}\right) \\ & =0.597(3 \mathrm{sf}) \end{aligned}$ | M1 <br> A1 <br> [2] | $1-\mathrm{P}(0,1,2,3)$ any $\lambda$ allow one end error |
|  | (b) $\begin{aligned} & \mathrm{e}^{-4.16} \times \frac{4.16^{n}}{n!}>\mathrm{e}^{-4.16} \times \frac{4.16^{n+1}}{(n+1)!} \\ & 1>\frac{4.16}{n+1} \\ & n>3.16 \end{aligned}$ $\text { Smallest } n \text { is } 4$ | M1 <br> A1 <br> A1 <br> [3] | any $\lambda$ <br> or equiv equn without e and without factorials <br> (Calculation of $\mathrm{P}(0), \mathrm{P}(1), \ldots . \mathrm{P}(5)$ scores M1 for at least 3 attempted, A1 all correct, A1 for $\mathrm{n}=4$ ) |
| 6 (i) | $\begin{aligned} & \frac{1}{2} \int_{4}^{t} \frac{1}{\sqrt{t}} \mathrm{~d} t=0.9 \text { or } \frac{1}{2} \int_{t}^{9} \frac{1}{\sqrt{t}} \mathrm{~d} t=0.1 \\ & {[\sqrt{t}]_{4}^{t}=0.9 \text { or }[\sqrt{t}]_{t}^{9}=0.1} \\ & ((\sqrt{\mathrm{t}}-2)=0.9 \text { or }(3-\sqrt{ } \mathrm{t})=0.1) \\ & t=8.41(\text { mins })(3 \mathrm{sf}) \end{aligned}$ | M1 <br> A1 <br> A1 <br> [3] | Attempt integ $\mathrm{f}(t)$ with unknown limit and 0.9/0.1. <br> Correct integration \& limits $=0.9$ or 0.1. |
| (ii) | $\begin{aligned} & \frac{1}{2} \int_{4}^{9} \frac{t}{\sqrt{t}} \mathrm{~d} t \text { oe } \\ & \frac{1}{2}\left[\frac{t 1.5}{1.5}\right]_{4}^{9} \text { oe } \\ & =\frac{19}{3} \\ & \frac{1}{2} \int_{4}^{9} \frac{t 2}{\sqrt{t}} \mathrm{~d} t \text { oe } \\ & \left(=\frac{1}{2}\left[\frac{t 2.5}{2.5}\right]_{4}^{9}=\frac{211}{5}\right) \\ & =\frac{{ }^{2111^{\prime}}}{5}-\left(\frac{19}{3}\right)^{2} \\ & =\frac{94}{45} \text { or } 2.09(3 \mathrm{sf}) \end{aligned}$ | M1 <br> A1 <br> A1 <br> M1 <br> M1 <br> A1 <br> [6] | Attempt integ $t \mathrm{f}(t)$. Ignore limits <br> Correct integration \& limits <br> Attempt integ $t^{2} \mathrm{f}(t)$. Ignore limits <br> integ $t^{2} \mathrm{f}(t)-(\text { integ } t \mathrm{f}(t))^{2}$ attempted |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | 71 |


| $7 \quad$ (i) | Conclude die is biased when it isn't oe $\begin{aligned} & { }^{5} \mathrm{C}_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{2}+5\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)+\left(\frac{1}{6}\right)^{5}+5 \\ & =\frac{23}{648} \text { or } 0.0355(3 \mathrm{sf}) \end{aligned}$ | B1 M1 <br> A1 <br> [3] | In context or $1-\left({ }^{5} \mathrm{C}_{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right) 3+5\left(\frac{1}{6}\right)\left(\frac{5}{6}\right)^{4}+\left(\frac{5}{6}\right)^{5}\right)$ allow 1 end error |
| :---: | :---: | :---: | :---: |
| (ii) | $\begin{aligned} & \text { State or attempt } \mathrm{P}(0,1,2) \text { with } p=\frac{2}{3} \\ & { }^{5} \mathrm{C}_{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{3}+5\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{4}+\left(\frac{1}{3}\right)^{5} \\ & =\frac{17}{81} \text { or } 0.210(3 \mathrm{sf}) \end{aligned}$ | M1 <br> M1 <br> A1 <br> [3] | Or $1-\mathrm{P}(3,4,5)$ <br> Attempt at correct expression <br> Allow 0.21 |
| (iii) | $\begin{aligned} & \text { Est } \operatorname{Var}\left(P_{s}\right)=\frac{0.625 \times(1-0.625)}{80} \\ & \left(=\frac{3}{1024}\right) \\ & z=2.054(\text { or } 2.055) \\ & 0.625 \pm z \times \sqrt{\frac{3^{\prime}}{1024}} \\ & =0.514 \text { to } 0.736(3 \mathrm{sf}) \end{aligned}$ | M1 <br> B1 <br> M1 <br> A1 <br> [4] | Any $z$ |

## MARK SCHEME for the May/June 2013 series

## 9709 MATHEMATICS

9709/72
Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

| Mark Scheme | Syllabus |
| :---: | :---: |
| GCE AS/A LEVEL - May/June 2013 | 9709 |

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the $M$ mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | 72 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | $\mathbf{7 2}$ |


| 1 (i) <br> (ii) <br> (iii) | Binomial $n=400, \quad p=0.012$ <br> Poisson <br> $n$ large and mean $=4.8$, which is $<5$ $\begin{array}{r} 1-\mathrm{e}^{-4.8}\left(1+4.8+\frac{4.8^{2}}{2}\right) \\ =0.857 / 0.858 \end{array}$ | B1 <br> B1 [2] <br> B1 <br> B1 [2] <br> M1 <br> A1 [2] | Both. Not $p=1.2 \%$ <br> Or B(400, 0.012): B1B1 <br> n large, p small <br> $\mathrm{P}(X=0,1,2)$; allow any $\lambda$; allow one end error <br> (Normal/Binomial in (ii) can score M1 only) |
| :---: | :---: | :---: | :---: |
| [Total: 6] |  |  |  |
| 2 (i) <br> (ii) <br> (iii) | $\begin{aligned} & \frac{2}{3} \int_{1}^{2} x^{2} \mathrm{~d} x \\ & =\frac{2}{3}\left[\frac{x^{3}}{3}\right]_{1}^{2} \\ & =\frac{14}{9} \text { or } 1.56 \text { o.e. } \\ & \frac{2}{3} \int_{1}^{14} x d x \\ & \left(=\frac{2}{3}\left[\frac{x^{3}}{3}\right]_{1}^{2}\right) \\ & =\frac{115}{243} \text { or } 0.473(3 \text { s.f. }) \\ & \frac{115}{243}<\frac{1}{2} \quad \text { o.e. } \end{aligned}$ <br> Hence mean < median | A1 [3] <br> M1 <br> A1 [2] <br> M1 <br> A1ft[2] | Attempt integ. $x \mathrm{f}(x)$; ignore limits <br> Correct integration and limits <br> Attempt integ. $\mathrm{f}(x)$; with limits <br> Comparison of prob. or values <br> ft (i) or (ii) |
| [Total: 7] |  |  |  |


| Page 5 Mark Scheme | Syllabus | Paper |  |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | $\mathbf{7 2}$ |


| 3 (i) <br> (ii) | $\begin{aligned} & \frac{73.1-75.2}{\frac{5.7}{\sqrt{n}}}=-1.563 \\ & n=\{-1.563 \times 5.7 \div(-2.1)\}^{2} \end{aligned}$ $n=18$ <br> Assume s.d. for the region is 5.7 <br> $\mathrm{H}_{0}$ : pop mean $($ or $\mu)=75.2$ <br> $\mathrm{H}_{0}$ : pop mean ( or $\mu$ ) $<75.2$ <br> 1.563 comp 1.555 <br> Evidence that plants shorter | M1 <br> A1 <br> A1 <br> B1 [4] <br> B1 <br> M1 <br> A1 [3] | For standardising (with $\sqrt{n}$ ) <br> Any correct expression for $n$ or $\sqrt{ } n$. May be implied by ans. <br> Both (could be stated in (i)) <br> For comparison of z values / areas / x values <br> CWO. No contradictions |
| :---: | :---: | :---: | :---: |
| [Total: 7] |  |  |  |
| 4 (i) <br> (ii) <br> (iii) |  | B1 <br> M1 <br> A1 [3] <br> B1 <br> M1 <br> A1 [3] <br> M1 <br> A1 [2] | Correct subst. in correct formula <br> Any $z$ <br> (Use of 'biased' can still score here) <br> Allow M1 for 0.02 seen |
| [Total: 8] |  |  |  |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | $\mathbf{7 2}$ |


| 5 (i) <br> (ii) |  | B1 <br> B1 <br> M1 <br> M1 <br> A1 [5] <br> B1 <br> B1 <br> M1 <br> M1 <br> A1 [5] | Both. With their mean and variance $(\geq 0)$ Allow without $\sqrt{ }$ <br> Use of tables and attempt to find area consistent with their working <br> o.e. $+50 ; 510 / 8-70 ;-(510 / 8-70)$ <br> o.e. $(12 / 8)^{2}+4^{2}$ <br> For standardising with attempt "P-8C" oe with their mean and variance $(\geq 0)$. Allow without $\sqrt{ }$ <br> Use of tables and attempt to find area consistent with their working |
| :---: | :---: | :---: | :---: |
|  |  | al: 10] |  |


| Page 7 Mark Scheme | Syllabus | Paper |  |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | $\mathbf{7 2}$ |


| 6 (i) <br> (ii) <br> (iii) | $\mathrm{H}_{0}$ : Pop mean (or $\lambda$ or $\mu$ ) is 5.3 <br> $\mathrm{H}_{1}$ : Pop mean (or $\lambda$ or $\mu$ ) is less than 5.3 $\begin{aligned} & \mathrm{P}(X \leq 1)=\mathrm{e}^{-5.3}(1+5.3) \\ & \mathrm{P}(X \leq 2)=\mathrm{e}^{-5.3}\left(1+5.3+\frac{5.3^{2}}{2}\right) / \mathrm{P}(\mathrm{X}=2) \\ & \mathrm{P}(X \leq 1)=0.0314 \text { or } 0.0315 \\ & \& \mathrm{P}(X \leq 2)=0.102 / \mathrm{P}(\mathrm{X}=2)=0.7071 \end{aligned}$ <br> CR is 0 or 1 cases <br> No evidence mean has decreased <br> Concluding mean has decreased when it hasn't <br> ' 0.0314 or 0.0315 ' <br> (Po(18.4) ) <br> $\mathrm{N}(18.4,18.4)$ $\begin{aligned} & \frac{20.5-18.4}{\sqrt{18.4}} \quad(=0.490) \\ & \begin{array}{l} 1-\Phi\left({ }^{\prime} 0.490^{\prime}\right) \\ \quad= \\ \quad 0.312 \text { (3 s.f.) } \end{array} \end{aligned}$ | B1 <br> M1 <br> A1 <br> A1 <br> B1f [5] <br> B1 <br> B1ft[2] <br> B1 <br> B1ft <br> M1 <br> M1 <br> A1 [5] | Both <br> Both attempted <br> Both correct <br> Dep. M1 and $\mathrm{P}(X \leq 1)<0.05<\mathrm{P}(X \leq 2)$ <br> ft their CR <br> In context <br> ft their $\mathrm{P}(X \leq 1)$, dep. $<0.05$ <br> Stated or implied <br> B1 for $\mathrm{N}(18.4, .$.$) ; \quad B1f for var. =18.4$ <br> For standardising with or without cc.Allow without $\sqrt{ }$ <br> Use of tables and attempt to find area consistent with their working |
| :---: | :---: | :---: | :---: |
| [Total: 12] |  |  |  |

## MARK SCHEME for the May/June 2013 series

## 9709 MATHEMATICS

9709/73
Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

## Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the $M$ marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular $M$ or $B$ mark is dependent on an earlier $M$ or $B$ (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking $g$ equal to 9.8 or 9.81 instead of 10 .

| Page 3 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | 73 |

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | 73 |


| 1 (i) | 9.3 | B1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: |
| (ii) | 27.9 | B1 | 1 |  |
| (iii) | $\begin{aligned} & \mathrm{E}(S)=17.4, \mathrm{E}(T)=19.4 \\ & \mathrm{E}(S-T)=-2.0, \\ & \operatorname{Var}(S-T)=37.2 \end{aligned}$ | M1 <br> A1 <br> B1ft | 3 | For subtracting their $\mathrm{E}[\mathrm{S}]-\mathrm{E}[\mathrm{T}]$ can be non-numerical <br> ft (i) \& (ii) Adding (i) and (ii) ft nonnegative answers only |
| [Total: 5] |  |  |  |  |
| 2 | Assume shots independent OR prob of scoring constant <br> $\mathrm{H}_{0}: \mathrm{P}($ score $)=0.82$ <br> $\mathrm{H}_{1}: \mathrm{P}($ score $)>0.82$ $\begin{aligned} & 20 \times 0.82^{19} \times 0.18+0.82^{20} \\ & =0.102(3 \mathrm{sf}) \end{aligned}$ <br> No evidence that improved | B1 <br> B1 <br> M1 <br> A1 <br> B1f |  | In context <br> Both. Allow ' $p$ ' <br> For use of $\operatorname{Bin}(20,0.82)$ and either $\mathrm{P}(19)$ and/or P(20) attempted Valid comparison seen (with 0.05 if $\mathrm{H}_{1} \mathrm{p} \neq$ 0.82 ) and correct conclusion ft numerical errors in 0.102 only <br> Normal approx'n: B1 B1 ( $\mu=16.4$ acceptable here) if earned, then: $\begin{aligned} & \mathrm{CR}=1.222\left(\text { from } \frac{18.5-20 \times 0.82}{\sqrt{20 \times 0.82 \times(1-0.82)}},\right. \\ & \text { need cc) } \\ & \operatorname{comp} z=1.282 \end{aligned}$ <br> No evidence that improved SC 1 <br> Same scheme for proportions |
| [Total: 5] |  |  |  |  |
| 3 (i) | $\begin{aligned} & \bar{x}=930 / 15=(62) \\ & z=1.751 \\ & ‘ 62 ’ \pm z \times \frac{12}{\sqrt{15}} \\ & =56.6 \text { to } 67.4(3 \mathrm{sf}) \end{aligned}$ | B1 <br> B1 <br> M1 <br> A1 | 4 | Any $z$ <br> Must be an interval |
| (ii) | 92\% of such intervals will contain $\mu$ | B1 | 1 | Accept $\mathrm{P}($ This interval contains $\mu)=0.92$ |
| (iii) | Each possible sample of this size is equally likely |  | 1 | Each member of pop equally likely to be chosen |
| [Total: 6] |  |  |  |  |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | 73 |



| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | GCE AS/A LEVEL - May/June 2013 | 9709 | 73 |


| 6 <br> (i) <br> (ii) | $\begin{aligned} & \lambda(=1.4 \times 2.5)=3.5 \\ & 1-\mathrm{e}^{-3.5}\left(1+3.5+\frac{3.5^{2}}{2}+\frac{3.5^{3}}{3!}\right) \\ & =0.463(3 \mathrm{sf}) \\ & (\lambda=672 \times 1.4=940.8) \\ & \mathrm{N}(940.8,940.8) \\ & \frac{999.5-940.8}{\sqrt{940.8}}(=1.914) \\ & \Phi\left({ }^{\prime} 1.914^{\prime}\right) \\ & =0.972(3 \mathrm{sf}) \end{aligned}$ | B1  <br> M1  <br> A1 3 <br>   <br> B1  <br> M1  <br> M1  <br> A1 4 | Any $\lambda$ allow one end error <br> Seen or implied <br> Allow with wrong or no cc . no sd/var mixes |
| :---: | :---: | :---: | :---: |
| [Total: 7] |  |  |  |
| $7 \quad$ (i) <br> (ii) <br> (iii) <br> (iv) | Assume sd unchanged or 4500 <br> $\mathrm{H}_{0}:$ Pop mean $=34600$ <br> $\mathrm{H}_{1}$ : Pop mean $>34600$ $\begin{aligned} & \frac{35400-34600}{\frac{4500}{\sqrt{90}}} \\ & =1.687 / 1.686(1.69) \\ & \text { cf } 1.645<1.686 \end{aligned}$ <br> Evidence that mean wkly profit has increased <br> Distr'n of $X$ unknown. <br> Yes <br> 0.05 or $5 \%$ $\begin{aligned} & \frac{a-34600}{\frac{4500}{\sqrt{90}}}=1.645 \\ & a=35380 \\ & \frac{35380-36500}{\frac{4500}{\sqrt{90}}}(=-2.361) \\ & 1-\Phi\left({ }^{\prime} 2.361\right. \\ & =0.0091 \end{aligned}$ | B1  <br> B1  <br> M1  <br> A1  <br> M1  <br> A1 f 6 <br> B1*  <br> B1* dep 2 <br> B1 1 <br> M1  <br> A1  <br> M1  <br> M1  <br> A1 6 | Both. Allow just $\mu$, but not just "mean" <br> Allow without $\sqrt{ } 90$ <br> Valid comparison ( or $0.0458 / 0.0459<0.05$ <br> or $35380<35400$ or $34600<34620$ ) <br> If $\mathrm{H}_{1}: \neq$, and 1.96 used, max <br> B1B0M1A1M1A1f No contradictions <br> Allow not Normal <br> Attempt to find cv must see (+) 1.645 allow without $\sqrt{ } 90$. If found in (i) award when used <br> Standardising with their " CV " must use $\sqrt{ } 90$ <br> Correct tail |
|  |  | [Total: 14] |  |


[^0]:    GENERIC MARKING PRINCIPLE 6:
    Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

