

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS

Paper 3 Pure Mathematics 3

October/November 2024

1 hour 50 minutes

9709/31

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

The polynomial $4x^3 + ax^2 + 5x + b$, where a and b are constants, is denoted by p(x). It is given that (2x+1) is a factor of p(x). When p(x) is divided by (x-4) the remainder is equal to 3 times the remainder when p(x) is divided by (x-2).

3

Find the values of a and b .	[5]

© UCLES 2024

* 000080000004 *	

and b is an integer.		
		· • • • •
	 	•••••
	 	· • • • • •
••••••	 	•••••
	 	•••••
		••••
		•••••
•••••	 	•••••
	 	· • • • • •
•••••		•••••
	 	· • • • •
		••••
		••••
	 0	
•••••		••••
		· • • • • •
•••••	 	••••
••••••		•••••
	 	••••
		•••••

The equation of a curve is $ln(x+y) = 3x^2y$.

Find the gradient of the curve at the point $(1,0)$.	[4]
	••••
	· • • • •
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	·•••
	••••
	••••
	••••
	••••
· SatpreP	••••
	••••
	••••

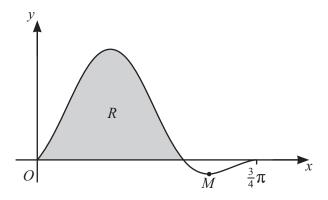
Show that $\sec^{-1}\theta - 1$	$\tan^{-}\theta \equiv 1 + 2 \tan^{-}\theta$.		[3]
	Satp	reP:	

	•	$e^4 2\alpha - \tan^4 2\alpha = 2 \tan^2 2\alpha \sec^2 \alpha$	
	F		
	19/		
•••••			
•••••			

•••••			

(a) By sketching a suitable pair of graphs, show that the equation $2 + e^{-0.2x} = \ln(1+x)$ has only one

(b) Show by calculation that this root lies between 7 and 9. [2]



(c) Use the iterative formula

$$x_{n+1} = \exp(2 + e^{-0.2x_n}) - 1$$

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

$\exp(x)$ is an alternative notation for e^x .	[3]
	•••••
	•••••
	•••••
	•••••
	••••••
	•••••
	•••••
	•••••
	•••••
	•••••

The diagram shows the curve $y = \sin 2x(1 + \sin 2x)$, for $0 \le x \le \frac{3}{4}\pi$, and its minimum point M. The shaded region bounded by the curve that lies above the x-axis and the x-axis itself is denoted by R.

(Given that the x-coordinate of M lies in the interval $\frac{1}{2}\pi < x < \frac{3}{4}\pi$, find the exact coordinates of M. [4]
٠	
٠	
•	
•	
٠	
•	
•	
٠	
•	
•	
•	

* 0000800000011 *

-	Find the exact area of the region R .

Let $f(x) = \frac{5x^2 + 8x + 5}{(1 + 2x)(2 + x^2)}$.

••••	 •••••
••••	•••••
• • • •	
•••	
••••	
••••	 •••••
••••	•••••
•••	 •••••
• • • •	 •••••
•••	•••••
••••	 •••••
••••	•••••
••••	•••••
••••	•••••
••••	•
	 •

* 00008000	

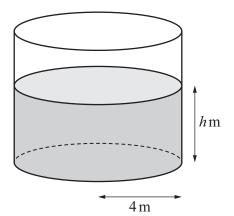
(b)

Hence find the coefficient of x^3 in the expansion of $f(x)$.	[4]
	••••••
	••••••
	••••••
	•••••
SatpreP.	
	•••••

8	(a)	Given that $z = 1 + yi$ and that y is a real number, express $\frac{1}{z}$ in the form $a + bi$, where a and b are functions of y. [2]
	(b)	Show that $\left(a - \frac{1}{2}\right)^2 + b^2 = \frac{1}{4}$, where <i>a</i> and <i>b</i> are the functions of <i>y</i> found in part (a). [3]
		PainreY

* 00008000		

(c) On a single Argand diagram, sketch the loci given by the equations Re(z) = 1 and $\left|z - \frac{1}{2}\right| = \frac{1}{2}$, where z is a complex number. [3]


(d)	The complex number z is such that $Re(z) = 1$. Use your answer to part (b) to give a geometric description of the locus of $\frac{1}{z}$.			
	description of the locus of $\frac{1}{z}$.			

The position vector of point A relative to the origin O is $\overrightarrow{OA} = 8\mathbf{i} - 5\mathbf{j} + 6\mathbf{k}$. The line *l* passes through A and is parallel to the vector $2\mathbf{i} + \mathbf{j} + 4\mathbf{k}$.

(a)	State a vector equation for <i>l</i> . [2]
(b)	The position vector of point <i>B</i> relative to the origin <i>O</i> is $\overrightarrow{OB} = -t\mathbf{i} + 4t\mathbf{j} + 3t\mathbf{k}$, where <i>t</i> is a constant. The line <i>l</i> also passes through <i>B</i> .
	Find the value of t. [3]
	· SatpreP ·

rections of l and m is θ , where $\cos \theta = \frac{1}{\sqrt{6}}$. Ind the possible values of a .	
Saipre?	

A large cylindrical tank is used to store water. The base of the tank is a circle of radius 4 metres. At time t minutes, the depth of the water in the tank is h metres. There is a tap at the bottom of the tank. When the tap is open, water flows out of the tank at a rate proportional to the square root of the volume of water in the tank.

(a)	Show that $\frac{\mathrm{d}h}{\mathrm{d}t} =$	$=-\lambda\sqrt{h}$, where λ is a positive constant.	[4]
	•••••		
		Set DIES	

Solve the differential equation to obtain an expression for t in terms of h , and hence find the time taken to empty the tank. [6]

Additional page

If you use the following page to complete the answer to a shown.	any question, the question number must be clearly
7.00	
- Garbia	
Permission to reproduce items where third-party owned material protected by cor	ovright is included has been sought and cleared where possible. Every

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS

9709/32

October/November 2024

Paper 3 Pure Mathematics 3

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

	* 0000800000002 *
1	Expand $(9-3x)^{\frac{1}{2}}$ in ascending powers of x , up to and including the term in x^2 , simplifying the coefficients.

2 (a) By sketching a suitable pair of graphs, show that the equation $\cot 2x = \sec x$ has exactly one root in the interval $0 < x < \frac{1}{2}\pi$. [2]

(b) Show that if a sequence of real values given by the iterative formula

$$x_{n+1} = \frac{1}{2} \tan^{-1} (\cos x_n)$$

converges, then it converges to the root in part (a).	[1]

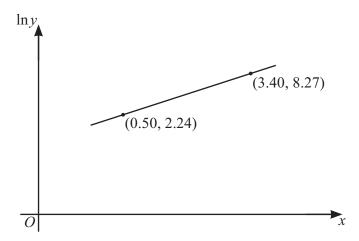
exact.

The square roots of 6-8i can be expressed in the Cartesian form x+iy, where x and y are real and

				•••••	
		•••••		•••••	
	•••••			•••••	
				•••••	
		•••••			
	••••	•••••		•••••	
•••••	••••••	atore	20		•••••
•••••		•••••		••••••	•••••
	•••••	•••••	•••••	•••••	
•••••	•••••	•••••	•••••	•••••	•••••
		••••			

© UCLES 2024

Solve the equation $5^x = 5^{x+2} - 10$. Give your answer correct to 3 decimal places.
Satpre?


9709/32/O/N/24

5 (a) The complex number u is given by

u =	$(\cos\frac{1}{7}\pi + i\sin\frac{1}{7}\pi)^4$
и —	$\frac{1}{\cos\frac{1}{7}\pi - i\sin\frac{1}{7}\pi}.$

	 •••••	• • • • • • • • • • • • • • • • • • • •	 •••••
•••••			 •••••
		PA	
•			
Describe the			state the exact val
The complex Describe the arg u^* .			l state the exact val
Describe the			state the exact val
Describe the			state the exact val
Describe the			state the exact val
Describe the			l state the exact val
Describe the			l state the exact val
Describe the			l state the exact val
Describe the			state the exact val
Describe the			l state the exact val
Describe the			state the exact val
Describe the			l state the exact val
Describe the			state the exact val
Describe the			state the exact val
Describe the			state the exact val
Describe the			state the exact val
Describe the			state the exact val
Describe the			state the exact val
Describe the			state the exact val
Describe the			state the exact val
Describe the			state the exact val

The variables x and y satisfy the equation $ay = b^x$, where a and b are constants. The graph of $\ln y$ against x is a straight line passing through the points (0.50, 2.24) and (3.40, 8.27), as shown in the diagram.

Find the values of a and b. Give each value correct to 1 significant figure.	[4]
	••••
	•••••
	••••••
Gerbres	

7 (a) Show that the equation $\tan^3 x + 2 \tan 2x - \tan x = 0$ may be expressed as

4	_	2	_	
tan ⁴ x –	2 ta	n-x-	- 3	= 0

for $\tan x \neq 0$. [3]
Sellolle A

|--|--|

6	Hence solve the equation $\tan^3 2\theta + 2\tan 4\theta - \tan 2\theta = 0$ for $0 < \theta < \pi$. Give your answers exact form.
•	

8 The parametric equations of a curve are

2.2	2 .
$x = \tan^2 2t$	$v = \cos 2t$,

10

for $0 < t < \frac{1}{4}\pi$.

(a)

Show that $\frac{dy}{dx} = -\frac{1}{2}\cos^3 2t$.	[4]
	•••••

	•••••
	•••••
	•••••
	•••••
Satore?	
	•••••
	•••••
	•••••

1	1

the form $y = mx +$	nation of the norma			O .		[4
						•••••
						•••••
						•••••
						•••••
		•••••				•••••
						•••••
						•••••
	12.0		0			
•••••		•••••	••••••		•••••••••	••••••
		•••••	••••••		••••••	•••••
•••••	••••••	•••••	•••••		••••••	•••••
		•••••				•••••
		••••••				•••••
		••••••				•••••
		•••••				•••••
	•••••			•••••	•••••	

9 With respect to the origin O, the points A, B and C have position vectors given by

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} -3 \\ -2 \\ 2 \end{pmatrix}$$

(a) The point D is such that ABCD is a trapezium with $\overrightarrow{DC} = 3\overrightarrow{AB}$.

Find the position vector of D .	[2]
	•••••
	•••••
	•••••
	•••••
	•••••
	••••••
	•••••
The diagonals of the trapezium intersect at the point P .	
Find the position vector of P .	[5]
Satore?	••••••
	•••••
	•••••

(b)

* 00	0000800000013 *	
(c)	Using a scalar product, calculate angle <i>ABC</i> .	[4]
(0)	esing a sealar product, carearate angle in e.	
		[7]

- A balloon in the shape of a sphere has volume V and radius r. Air is pumped into the balloon at a constant rate of 40π starting when time t=0 and r=0. At the same time, air begins to flow out of the balloon at a rate of $0.8\pi r$. The balloon remains a sphere at all times.
 - (a) Show that r and t satisfy the differential equation

Show that rainer buttery the differential equation	
$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{50 - r}{5r^2}.$	[2]
$\frac{1}{dt} - \frac{1}{5r^2}$.	[3]
	•••••
	•••••
	•••••
	•••••
2	
Find the quotient and remainder when $5r^2$ is divided by $50-r$.	[3]
Find the quotient and remainder when $5r^2$ is divided by $50-r$.	[3]
Find the quotient and remainder when $5r^2$ is divided by $50-r$.	[3]
	[3]
	[3]
Satores	
Satores	
Satores	
Satores	

(b)

Sature?

11	Let $f(x) =$	$2e^{2x}$
11	Let $I(x)$ –	$\frac{e^{2x}-3e^x+2}{e^{2x}-3e^x+2}$

equation $y = f(x)$.
Patprey

		17	
(b)	Use the substitution $u = e^x$ and partial framework.	ctions to find the exact value of	$\int_{\ln 3}^{\ln 5} f(x) \mathrm{d}x.$

1	$J_{\ln 3}$	
Give your answer in the form $\ln a$, where a is a rational number in its sim		[9]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
	•••••	•••••
	•••••	•••••
	••••••	•••••••
	••••••	••••••
gatblek	••••••	
	••••••	
	•••••	
	•••••	••••••
	•••••	•••••
	•••••	•••••
		•••••
		•••••

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.
- arprer

BLANK PAGE

* 0000800000020 *

20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS

9709/33

Paper 3 Pure Mathematics 3

October/November 2024

1 hour 50 minutes

You must answer on the question paper.

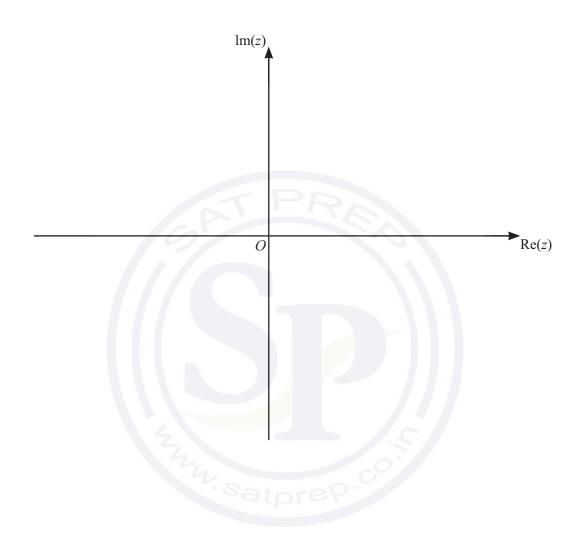
You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

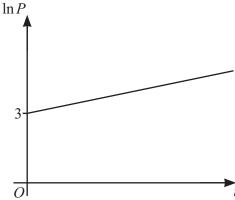
- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].


This document has 20 pages.

- 1 The complex number z satisfies |z| = 2 and $0 \le \arg z \le \frac{1}{4}\pi$.
 - (a) On the Argand diagram below, sketch the locus of the points representing z. [2]

DO NOT WRITE IN THIS MARGIN

(b) On the same diagram, sketch the locus of the points representing z^2 . [2]



- 2 Let $f(x) = 2x^3 5x^2 + 4$.
 - (a) Show that if a sequence of values given by the iterative formula

$$x_{n+1} = \sqrt{\frac{4}{5 - 2x_n}}$$

converges, then it converges to a root of the equation $f(x) = 0$.	[2]
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
The equation has a root close to 1.2.	
Use the iterative formula from part (a) and an initial value of 1.2 to determine the root correct 2 decimal places. Give the result of each iteration to 4 decimal places.	t to [3]
i Satore P	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••

(b)

The number of bacteria in a population, P, at time t hours is modelled by the equation $P = ae^{kt}$, where a and k are constants. The graph of $\ln P$ against t, shown in the diagram, has gradient $\frac{1}{20}$ and intersects the vertical axis at (0,3).

(a)	State the value of k and find the value of a correct to 2 significant figures.	[3]
		•••••
		•••••
(b)	Find the time taken for <i>P</i> to double. Give your answer correct to the nearest hour.	[2]
		•••••
		•••••
		•••••

Find the complex number z satisfying the equation

z-3i	_ 2-9i
z+3i	$-{5}$.

Give your answer in the form $x + iy$, where x and y are real.	[5]
Satore?	

Show that $\cos^2\theta - \sin^2\theta - 4\sin^2\theta \cos^2\theta \equiv \cos^22\theta + \cos^22\theta - 1$.	[3]
	· • • • • • • • • • • • • • • • • • • •
	· • • • • • • • • • • • • • • • • • • •
-0'	,
isatpre9:	· • • • • • • • • • • • • • • • • • • •
	,
	,
	,
	,
	,
	,

DO NOT WRITE IN THIS MARGIN

© UCLES 2024

(b)

|--|

Solve the equation $\cos^4 \alpha - \sin^4 \alpha = 4 \sin^2 \alpha \cos^2 \alpha$ for $0^\circ \le \alpha \le 180^\circ$.	[3]
	•••••
i SatpreP	

7

(1) (1) (1) (1)

DO NOT WRITE IN THIS MARGIN

The lines l and m have vector equations

l: $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k} + \lambda(-\mathbf{i} + 2\mathbf{k})$ and *m*: $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k} + \mu(2\mathbf{i} - \mathbf{j} + 5\mathbf{k})$.

Lines l and m intersect at the point P.

(a)	State the coordinates of P .	[1]
(b)	Find the exact value of the cosine of the acute angle between l and m .	[3]
	· SatpreP	

© UCLES 2024

The point A on line I has coordinates $(0,1,1)$. The point B on line m has coordinates $(0,2,-8)$.			
Find the exact area of triangle <i>APB</i> .	[3]		
·SatpreP·			

9

9709/33/O/N/24

7 The parametric equations of a curve are

$$x = 3\sin 2t$$
, $y = \tan t + \cot t$,

10

for $0 < t < \frac{1}{2}\pi$.

(a) Show that $\frac{dy}{dx} = \frac{-2}{3\sin^2 2t}$. [5]		2.00
	(a)	Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{3\sin^2 2t}$.
		T PA
		3940164

f	Find the equation of the normal to the curve at the point where $t = \frac{1}{4}\pi$. Give your answer in form $py + qx + r = 0$, where p , q and r are integers.
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

(a)

8	Let $f(x) =$	$\frac{7a^2}{(a-2x)(3a+x)},$	where a is	a positive constant.
---	--------------	------------------------------	--------------	----------------------

Express $f(x)$ in partial fractions. [3
Selfolder -

 000008000013	

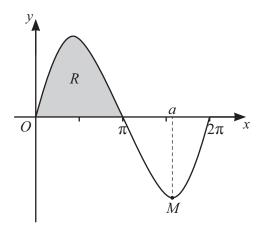
	ain the expansion o			•	
•••••	•••••			•••••	•••••
		•••••			•••••
					•••••
					•••••
		,			
		,			••••
• • • • • • • • • • • • • • • • • • • •					•••••
•••••	131				••••••
					•••••
		Sato			•••••
••••••	•••••	••••		•••••	•••••
State the s	et of values of x for	which the expa	ansion in part (b)	is valid.	
		••••			
•••••	•••••		••••••••••	•••••	•••••

* C	0000008000014 *
9 (a)	Find the quotient and remainder when $x^4 + 16$ is divided by $x^2 + 4$. [3]
	Satpre?
_	

(b)

Hence show that $\int_{2}^{2\sqrt{3}} \frac{x^4 + 16}{x^2 + 4} dx = \frac{4}{3} (\pi + 4).$	[5]
	••••
	••••
	••••
	••••
	· ···
SatpreP'	
	· ···

10	A water tank is in the shape of a cuboid with base area 40000 cm ² . At time t minutes the depth of water
	in the tank is h cm. Water is pumped into the tank at a rate of $50000 \mathrm{cm}^3$ per minute. Water is leaking
	out of the tank through a hole in the bottom at a rate of $600h \mathrm{cm}^3$ per minute.


(a)	Show that $200 \frac{dh}{dt} = 250 - 3h$.	[3]
	·satpreP	

(b) It is given that when t = 0, h = 50.

Find the time taken for the depth of water in the tank to reach 80 cm. Give your answer correct to 2 significant figures. [5]
0//

18

The diagram shows the curve $y = 2\sin x\sqrt{2 + \cos x}$, for $0 \le x \le 2\pi$, and its minimum point M, where x = a.

a)	Find the value of a correct to 2 decimal places.	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

0000	008000019 *	

(b)

Use the substitution $u = 2 + \cos x$ to find the exact area of the shaded region R .	6]
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
SatpreP.	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••

Additional page

If you use the following p shown.	age to complete the answ	wer to any question, the que	stion number must be clearly
		PAN	
	16		
Demoississ to seem the state of the seem than the seem than the seem that the seem tha		tod by conveight is included has been a	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	
BAATUE BAATU		0700/24

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

May/June 2024

1 hour 50 minutes

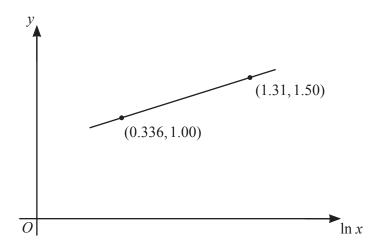
You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION


- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

coefficients.		f x , up to and including the term in	
•••••	••••••		•••••
•••••			•••••
		<mark></mark>	
•••••			
	4		
		reP:	

© UCLES 2024 9709/31/M/J/24

 		,
	re?	

The variables x and y satisfy the equation $a^y = bx$, where a and b are constants. The graph of y against $\ln x$ is a straight line passing through the points (0.336, 1.00) and (1.31, 1.50), as shown in the diagram.

Find the values of a and b. Give each value correct to the nearest integer.	[4]

© UCLES 2024 9709/31/M/J/24

	Express u in the form $r(\cos\theta + i\sin\theta)$, where $r > 0$ and $-\pi < \theta \le \pi$. Give the exact value and θ .
e	complex number v is given by $v = 5\left(\cos\frac{1}{2}\pi + i\sin\frac{1}{2}\pi\right)$
	complex number v is given by $v = 5\left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right)$. Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.

	ve is $y = \frac{e^{\sin x}}{\cos^2 x}$ for $0 \le x \le 2\pi$.		
Find $\frac{dy}{dx}$ and hence fi	nd the x-coordinates of the station	onary points of the curve.	
			•••••
•••••			•••••
			•••••
			•••••

© UCLES 2024 9709/31/M/J/24

 10)		
 3	- /.\$/	
 Setpre		

6	(a)	By sketching a suitable pair of graphs, show that the equation $\csc \frac{1}{2}x = e^x - 3$ has exactly	one
		root, denoted by α , in the interval $0 < x < \pi$.	[2]

(b)	Verify by calculation that α lies between 1 and 2. [2]
	2.831-7-80.

© UCLES 2024 9709/31/M/J/24

(c)	Show that if a sequence of values in the interval $0 < x < \pi$ given by the iterative formula	
	$x_{n+1} = \ln\left(\operatorname{cosec}\frac{1}{2}x_n + 3\right)$	
	converges, then it converges to α .	[1]
		••••
		••••
		••••
		••••
(d)	Use this iterative formula with an initial value of 1.4 to determine α correct to 2 decimal place. Give the result of each iteration to 4 decimal places.	es. [3]
		••••
		••••
	Satores.	
		••••
		••••
(e)	State the minimum number of calculated iterations needed with this initial value to determine correct to 2 decimal places.	e α [1]
		••••

BLANK PAGE

© UCLES 2024 9709/31/M/J/24

7	(a)	On a single Argand diagram sketch the loci given by the equations $ z-3+2i =2$ and	
		w-3+2i = w+3-4i where z and w are complex numbers.	[4]

(b)	Hence find the least value of $ z-w $ for points on these loci. Give your answer in an exact form [2]
	Satpre?

8 Use the substitution $u = 1 - \sin x$ to find the exact value of

$$\int_{\pi}^{\frac{3}{2}\pi} \frac{\sin 2x}{\sqrt{1-\sin x}} \, \mathrm{d}x.$$

Give your answer in the form $a+b\sqrt{2}$ where a and b are rational numbers to be determined. [7]
TERMINATE PROPERTY OF THE PROP

 10)		
 3	- /.\$/	
 Setpre		

9	The e	quations	of two	straight	lines 1.	and 1.	are
,	I IIC C	quanons	OI two	suargin	IIIICS ι_1	and ι_{γ}	arc

$$l_1 \colon \quad \mathbf{r} = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} + a\mathbf{k}) \quad \text{and} \quad l_2 \colon \quad \mathbf{r} = -\mathbf{i} - \mathbf{j} - \mathbf{k} + \mu(3\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}),$$

where a is a constant.

The lines \boldsymbol{l}_1 and \boldsymbol{l}_2 are perpendicular.

Show that $a = 4$.	[1
the lines l_1 and l_2 also intersect.	
) Find the position vector of the point of intersection.	[4

The point A has position vector $-5\mathbf{i} + \mathbf{j} - 9\mathbf{k}$.

(c) Show that A lies on l_1 . [2] The point B is the image of A after a reflection in the line l_2 . (d) Find the position vector of B. [2]

10	(a)	Given that $2x = \tan y$, show that $\frac{dy}{dx} = \frac{2}{1 + 4x^2}$.	[3]
		- PA	
	(b)	Hence find the exact value of $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x \tan^{-1}(2x) dx$.	[7]
	(b)	Hence find the exact value of $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x \tan^{-1}(2x) dx$.	[7]
	(b)	Hence find the exact value of $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x \tan^{-1}(2x) dx$.	[7]
	(b)	Hence find the exact value of $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x \tan^{-1}(2x) dx$.	[7]
	(b)	34 69	
	(b)	Setpres 3	
	(b)	Setpres 3	
	(b)		

	 •			•••••
	 •			•••••
	• • • • • • • • • • • • • • • • • • • •			•••••
	•••••		•••••	•••••
••••••	 			•••••
•••••	 	······		•••••
	 	••••••••		•••••
	 •••••		• • • • • • • • • • • • • • • • • • • •	•••••
	 			•••••
•••••	 prey			•••••
•••••	 			•••••
•••••	 			•••••
•••••	 			
	 •			

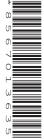
11	time to th	field there are 300 plants of a certain species, all of which can be infected by a particular disease. At after the first plant is infected there are x infected plants. The rate of change of x is proportion the product of the number of plants infected and the number of plants that are not yet infected. The ables x and t are treated as continuous, and it is given that $\frac{dx}{dt} = 0.2$ and t and t when $t = 0$.	ıal		
	(a)	Show that x and t satisfy the differential equation			
		$1495 \frac{\mathrm{d}x}{\mathrm{d}t} = x (300 - x). \tag{[}$	2]		
			•••		
			•••		
			•••		
		T PA			
			•••		
			•••		
			•••		
			•••		
			•••		
			•••		
	(b)	Using partial fractions, solve the differential equation and obtain an expression for t in terms of single logarithm involving x .	f a 9]		
			•••		
			•••		
			•••		
			•••		
			•••		
			•••		
			•••		

	 •			•••••
	 •			•••••
	• • • • • • • • • • • • • • • • • • • •			•••••
	•••••		•••••	•••••
••••••	 			•••••
•••••	 	······		•••••
	 	••••••••		•••••
	 •••••		• • • • • • • • • • • • • • • • • • • •	•••••
	 			•••••
•••••	 prey			•••••
•••••	 			•••••
	 			•••••
•••••	 			
	 •			

Additional page

If you use the following pa shown.	ige to complete the ans	wer to any question,	the question numbe	r must be clearly
	16			
			-	
	Z			
	Ser	prep		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.


To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
BAATUEBAATI	20		0700/24

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

May/June 2024

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

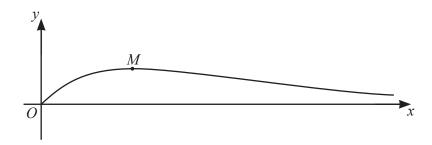
- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

1	(a)	Sketch the graph of v :	= x-2a	where a is a po	sitive constant.

г	1	٦	
L	I]	


')	Solve the inequality $2x-3a < x-2a $.	[2]
		•••••

	 	• • • • • • • • • • • • • • • • • • • •
•••••	 	
•••••	 	
•••••		,
		•••••
•••••		
•••••	 	•••••

(<i>a</i>)	Show that the graph of y against x is a straight line.	[3]
(b)	Given that $a = b^3$, state the equation of the straight line in the form $y = px + q$, where p and rational numbers in their simplest form.	<i>q</i> are [2]
(b)	Given that $a = b^3$, state the equation of the straight line in the form $y = px + q$, where p and q rational numbers in their simplest form.	[2]
(b)	Given that $a = b^3$, state the equation of the straight line in the form $y = px + q$, where p and a rational numbers in their simplest form.	[2]
(b)	Given that $a = b^3$, state the equation of the straight line in the form $y = px + q$, where p and q rational numbers in their simplest form.	[2]
(b)	Given that $a = b^3$, state the equation of the straight line in the form $y = px + q$, where p and rational numbers in their simplest form.	[2]
(b)	Given that $a = b^3$, state the equation of the straight line in the form $y = px + q$, where p and q rational numbers in their simplest form.	[2]
(b)	Given that $a = b^3$, state the equation of the straight line in the form $y = px + q$, where p and q rational numbers in their simplest form.	[2]
(b)	Given that $a = b^3$, state the equation of the straight line in the form $y = px + q$, where p and q rational numbers in their simplest form.	[2]
(b)	Given that $a=b^3$, state the equation of the straight line in the form $y=px+q$, where p and rational numbers in their simplest form.	[2]
(b)	Given that $a = b^3$, state the equation of the straight line in the form $y = px + q$, where p and a rational numbers in their simplest form.	[2]

Find the gradient of the	curve at the point where	y=1.	[
			•••••
••••••		0,	
	Sarb	rey	

5	(a)	It is given that the equation $e^{2x} = 5 + \cos 3x$ has only one root.	
		Show by calculation that this root lies in the interval $0.7 < x < 0.8$.	[2]
	(b)	Show that if a sequence of values in the interval $0.7 < x < 0.8$ given by the iterative formula	
		$x_{n+1} = \frac{1}{2} \ln \left(5 + \cos 3x_n \right)$	
		converges then it converges to the root of the equation in part (a).	[1]
	(c)	Use this iterative formula to determine the root correct to 3 decimal places. Give the result of e iteration to 5 decimal places.	ach [3]

The diagram shows the curve $y = xe^{-ax}$, where a is a positive constant, and its maximum point M.

Find the exact coordinates of M .	

	alue of $\int_0^{\frac{2}{a}} x e^{-ax} dx.$				
		•••••			•••••
•••••	•••••		•••••	••••••	•••••
					•••••
•••••					
	•••••				•••••
					•••••
		•••••			
					• • • • • • • • • • • • • • • • • • • •
		atore			
•••••					
	•••••				

(a)	Show that $\cos^4 \theta - \sin^4 \theta \equiv \cos 2\theta$.	[3]
		••••••
	SatpreP.	
		••••••

	exact value of $\int_{-\frac{1}{8}\pi}^{\frac{1}{8}\pi} (\cos^4 \theta - \sin^4 \theta + 4\sin^2 \theta \cos^4 \theta - \sin^4 \theta + 4\sin^2 \theta \cos^4 \theta + \sin^4 \theta + \sin^4 \theta \cos^4 \theta + \sin^4 \theta \cos^4 \theta + \sin^4 \theta \cos^4 \theta \cos^4 \theta + \sin^4 \theta \cos^4 \phi \cos^4 \theta \cos^4 \phi \cos^4 \theta \cos^4$	()
•••••		
••••••		
•••••		

(a)		
()	Find a vector equation for l_1 .	[3
	T PR	
The	e line l_2 has equation $\mathbf{r} = -2\mathbf{i} + \mathbf{j} + 4\mathbf{k} + \mu(3\mathbf{i} + \mathbf{j} - 2\mathbf{k})$.	
(b)	Find the coordinates of the point of intersection of l_1 and l_2 .	[4
		•••••

Find the position vo	ector of D .		[5]
		•••••	
	. Sai		
	i vai	tpreP	
		•••••	

a)	Express $z\omega$ in the form $a+bi$, where a and b are real and in exact surd form.	[1
		· • • •
		·
	:0	
)	Express z and ω in the form $re^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$. Give the exact values of r are in each case.	nd آ
	in each case.	L
	- PA	
		· • • •
		.
	On an Argand diagram, the points representing ω and $z\omega$ are A and B respectively.	
)	Un an Argand diagram, the points representing (a) and z(a) are A and B respectively	

		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
(d)	Using your answers to part (b), prove that $\tan \frac{5}{12}\pi = \frac{\sqrt{3}+1}{\sqrt{3}-1}$.	[3]
(u)	Osing your answers to part (b), prove that $tan \frac{1}{12} n - \frac{1}{\sqrt{3}-1}$.	[3]
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •

10	(a)	By writing $y = \sec^3 \theta$ as $\frac{1}{\cos^3 \theta}$, show that $\frac{dy}{d\theta} = 3\sin\theta \sec^4 \theta$. [2]
	(b)	The variables x and θ satisfy the differential equation
		$(x^2+9)\sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}x} = (x+3)\cos^4\theta.$
		It is given that $x = 3$ when $\theta = \frac{1}{3}\pi$.
		Solve the differential equation to find the value of $\cos \theta$ when $x = 0$. Give your answer correct to 3 significant figures. [8]
		Satoreo.

						••••
			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••
			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••
						••••
						••••
						••••
						••••
					•••••	••••
					• • • • • • • • • • • • • • • • • • • •	••••
			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••
•••••	•••••				• • • • • • • • • • • • • • • • • • • •	••••
•••••			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••
						••••
					• • • • • • • • • • • • • • • • • • • •	••••
						••••
•••••		DI ON				••••
•••••						••••
						••••
				•••••		••••
						••••
			• • • • • • • • • • • • • • • • • • • •			••••
						• • • •
						••••

Additional page

If you use the following page to shown.	complete the answer to	any question, the questi	on number must be clearly
	0),//		

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS

9709/33

May/June 2024

Paper 3 Pure Mathematics 3

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

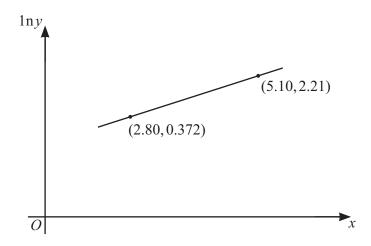
- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

DO NOT WRITE IN THIS MARGIN

3

Find the exact coordinates of the stationary point of the curve $y = e^{-x} \sin 2x$ for $0 \le x \le \frac{1}{2}\pi$. [5]



The square roots of $24-7i$ can be expressed in the Cartesian form $x+iy$, where x and y are real and exact.
By first forming a quartic equation in x or y , find the square roots of $24-7i$ in exact Cartesian form. [5]
PB
4 - /.5
Cello II e v

* 0019655419905 *

5

4

The variables x and y satisfy the equation $ky = e^{cx}$, where k and c are constants. The graph of $\ln y$ against x is a straight line passing through the points (2.80, 0.372) and (5.10, 2.21), as shown in the diagram.

Find the values of k and c . Give each value correct to 2 significant figures. [4]	4]
	••
	••
Satore?	••
	••
	••
	••

Express $\frac{6x^2 - 2x + 2}{(x-1)(2x+1)}$ in partial fractions.	[5]
3	
7.satr	rep.c

* 0019655419907 *

7

6 (a) On an Argand diagram shade the region whose points represent complex numbers z which satisfy both the inequalities $|z-4-3i| \le 2$ and $\arg(z-2-i) \ge \frac{1}{3}\pi$. [5]

(b) Calculate the greatest value of arg z for points in this region. [2]

7 Let $f(x) = 8x^3 + 54x^2 - 17x - 21$.

	a factor of $f(x)$.	
••••••		
	PA	
Find the quotient w	when $f(x)$ is divided by $x+7$.	
Find the quotient w	when $f(x)$ is divided by $x+7$.	
Find the quotient w	when $f(x)$ is divided by $x+7$.	
Find the quotient w	when $f(x)$ is divided by $x+7$.	
Find the quotient w	when $f(x)$ is divided by $x+7$.	
	when $f(x)$ is divided by $x+7$.	

8

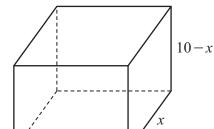
DO NOT WRITE IN THIS MARGIN

(c) Hence solve the equation

 $8\cos^3\theta + 54\cos^2\theta - 17\cos\theta - 21 = 0,$

for $0^{\circ} \le \theta \le 360^{\circ}$.	[3]
	•••••
	•••••
T PA	
	•••••
	•••••
-0/	
	,
	••••••
	,

	0019655419910 *
8 (a)	Express $3\cos 2x - \sqrt{3}\sin 2x$ in the form $R\cos(2x+\alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2}\pi$. Give the exact values of R and α .
	-0,
	'SatpreP'


(b)

© U

_	0196554200	

Hence find the exact value of	$\int_{0}^{\frac{1}{12}\pi} \frac{3}{\left(3\cos 2x - \sqrt{3}\sin 2x\right)^2} dx, \text{ simplifying your answer.} $ [5]
	Satore?

12

A container in the shape of a cuboid has a square base of side x and a height of (10-x). It is given that x varies with time, t, where t > 0. The container decreases in volume at a rate which is inversely proportional to t.

When $t = \frac{1}{10}$, $x = \frac{1}{2}$ and the rate of decrease of x is $\frac{20}{37}$.

(a) Show that x and t satisfy the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{-1}{2t(20x - 3x^2)}.$$
 [5]

DO NOT WRITE IN THIS MARGIN © UCLES 2024

 19000420013	

•••••				
•••••			•••••	 •••••
			•••••	
•••••			•••••	 •••••
•••••			•••••	 •••••
	•••••			
			•••••	
•••••				 •••••
•••••			•••••	 •••••
•••••			••••••	 •••••
•••••				 •••••
				 •
•••••				 •••••
••••••				
•••••			•••••	 •••••
•••••	•••••	,	•••••	 •••••
	••••			

10 The equations of two straight lines are

$$\mathbf{r} = \mathbf{i} + \mathbf{j} + 2a\mathbf{k} + \lambda(3\mathbf{i} + 4\mathbf{j} + a\mathbf{k})$$
 and $\mathbf{r} = -3\mathbf{i} - \mathbf{j} + 4\mathbf{k} + \mu(-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}),$

14

where a is a constant.

of a.						
			•••••		•••••	•••••
•••••	•••••		•••••	•••••	•••••	•••••
				•••••		• • • • • • • • • • • • • • • • • • • •
•••••			•••••	•••••	•••••	•••••
				•••••		•••••
•••••			•••••••	•••••	•••••	•••••
						• • • • • • • • • • • • • • • • • • • •
						• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •					•••••	•••••
		atore				• • • • • • • • • • • • • • • • • • • •
•••••	•••••					•••••
•••••	•••••		•••••	•••••	•••••	•••••
						•••••
			•••••		•••••	•••••
•••••	•••••		•••••	•••••	•••••	•••••

* 0019655420015 *

Given instead that the lines intersect, find the value of a and the position vector of the point of intersection. [5]

11 Use the substitution $2x = \tan \theta$ to find the exact value of

$\int_{0}^{\frac{1}{2}}$	$\frac{12}{}$ dx	
\int_{0}	$\overline{\left(1+4x^2\right)^2}^{\mathrm{d}x}$	•

Give your answer in the form $a + b\pi$, where a and b are rational numbers.	[9]
T PR	
	•••••
	••••••
	•••••
	•••••

* 0019655420017 *

	32		
		atore?	
© UCLES 2024	e ans	9709/33/M/J/24	_

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.
- Satoreo

* 0019655420019 *

19

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			IDIDATE MBER		

555200455

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

February/March 2024

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

	$+9x^2 - 12x + 27$ is divid	
		 •••••
 		 •••••
		 •••••
		 •••••
Saik	oreP	

	ent of x^2 in the expansion		
		69	
C4-4-41	-l		
State the set of v	alues of x for which the	expansion in part (a) is valid.	

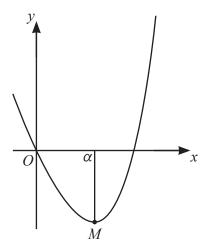
The complex number ω is such that $z^2\omega$ is real and $\left \frac{z^2}{\omega}\right =12$.
1.21
Find the two possible values of ω , giving your answers in the form $Re^{i\alpha}$, where $-\pi < \alpha \le \pi$.

4 The positive numbers p and q are such that

$\ln\left(\frac{p}{a}\right) =$	= <i>a</i>	and	$\ln(q^2p) = b$
(9/			

Express $\ln(p^7q)$ in terms of a and b .	[4]

(a)	On a sketch of an Argand diagram, shade the region whose points represent complex satisfying the inequalities $ z-4-2i \le 3$ and $ z \ge 10-z $.	numbers [
(b)	Find the greatest value of arg z for points in this region.	
(b)	Find the greatest value of $\arg z$ for points in this region.	
(b)	Find the greatest value of arg z for points in this region.	
(b)	Find the greatest value of arg z for points in this region.	
(b)		


The equation of a curve is $2y^2 + 3xy + x = x^2$.

$\frac{2x-3y-1}{4y+3x}.$	
 19	101

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
 •
 •

7

(a)

The diagram shows the curve $y = xe^{2x} - 5x$ and its minimum point M, where $x = \alpha$.

Show that α satisfies the equation $\alpha = \frac{1}{2} \ln \left(\frac{3}{1 + 2\alpha} \right)$.	[3]
isatore?	

places. Give the result of each iteration to 4 decimal places.					
places. Give the result of each iteration to 4 decimal places.					
places. Give the result of each iteration to 4 decimal places.					
places. Give the result of each iteration to 4 decimal places.				•••••	
places. Give the result of each iteration to 4 decimal places.					
places. Give the result of each iteration to 4 decimal places.					
places. Give the result of each iteration to 4 decimal places.					
places. Give the result of each iteration to 4 decimal places.					
places. Give the result of each iteration to 4 decimal places.		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
places. Give the result of each iteration to 4 decimal places.		•••••			
places. Give the result of each iteration to 4 decimal places.					
places. Give the result of each iteration to 4 decimal places.					
places. Give the result of each iteration to 4 decimal places.					
places. Give the result of each iteration to 4 decimal places.					
places. Give the result of each iteration to 4 decimal places.	Has an itarat	iva farmula haga	d on the equation	in part (a) to datarmi	na or appropriate 2 day
	places Give 1	the result of each	iteration to 4 deci	mal part (a) to determine	α correct to 2 dec
	places. Give i	ine result of each	iteration to 4 deer	mai piaces.	
				· ·····	

the exact value of	R and give α correct to 3	decimal places.	
•••••			
•••••			
•••••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
			•••••
•••••	,		
		<u> </u>	
•••••			
	Satr		
			•••••
•••••			
•••••			
			•••••
•••••			•••••

© UCLES 2024

$6\sin\frac{1}{2}\theta + 4\sqrt{2}\cos\left(\frac{1}{2}\theta + \frac{1}{4}\pi\right) = 3$	
for $-4\pi < \theta < 4\pi$.	[5]
SatpreP.	

Relative to the origin O, the position vectors of the points A, B and C are given by

9

Show that one i	is a rectangle.		
	•••••	 •••••	
		 	,
			•••••
•••••		 	
		 	•••••

Use a scalar product to find the acute angle between the diagonals of <i>OABC</i> .	[4
	••••••
4	
	••••••

10 Let $f(x) = \frac{36a^2}{(2a+x)(2a-x)(5a-2x)}$, where a is a positive constant.

Express $f(x)$ in pa			[5]
	19)		
		<mark></mark>	
		<u></u>	
	12,	0.	
•••••			
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

r are integers and q and	d s are prime numbers.	
••••••		•••••
•••••		
••••••		

11	The	variables 1	and	θ	satisfy th	ne	differential	eq	uation

the differential equation
$$(1+y)(1+\cos 2\theta)\frac{dy}{d\theta} = e^{3y}.$$

It is given that $y = 0$ when $\theta = \frac{1}{4}\pi$.
Solve the differential equation and find the exact value of $\tan \theta$ when $y = 1$.
Satpre?

***************************************	•••••		
		•••••	•••••
			• • • • • • • • • • • • • • • • • • • •
		••••••	• • • • • • • • • • • • • • • • • • • •
		•••••	• • • • • • • • • • • • • • • • • • • •
***************************************			•••••
	•••••	•••••	• • • • • • • • • • • • • • • • • • • •

Additional page

If you use the following p shown.	age to complete the ans	swer to any question, the	question number must	be clearly
				• • • • • • • • • • • • • • • • • • • •
	•••••		•••••	
		PRA		
				•••••
				•••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

October/November 2023

1 hour 50 minutes

You must answer on the question paper.

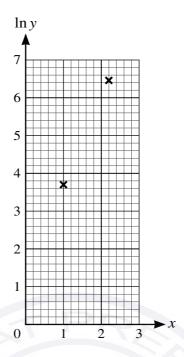
You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].


This document has 20 pages. Any blank pages are indicated.

is equal to 8.	the curve $y = \frac{x^2}{1 - 3x}$ at which	
	PAN	
	0.	

On an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z-2i| \le |z+2-i|$ and $0 \le \arg(z+1) \le \frac{1}{4}\pi$. [4]

3

The variables x and y are related by the equation $y = ab^x$, where a and b are constants. The diagram shows the result of plotting $\ln y$ against x for two pairs of values of x and y. The coordinates of these points are (1, 3.7) and (2.2, 6.46).

Use this information to find the values of a and b .	[4]
	•••••
Satpre?	
	•••••

© UCLES 2023 9709/31/O/N/23

4

a)	Express u in the Cartesian form $x + iy$, where x and y are in terms of a .	[
		•••••
b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	
b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .]
b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .]
b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	
b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	
b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	
b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	
b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	
b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	
b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	
b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	
b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	

5	(a)	Given	that
9	(a)	OIVCII	unat

$\sin\left(x + \frac{1}{6}\pi\right) - \sin\left(x - \frac{1}{6}\pi\right) = \cos\left(x + \frac{1}{3}\pi\right) - \cos\left(x - \frac{1}{3}\pi\right),$	
find the exact value of $\tan x$.	[4]
	•••••
	•••••
	•••••
Satores	
	•••••
	•••••

© UCLES 2023

	7
(b)	Hence find the exact roots of the equation
	$\sin(x + \frac{1}{6}\pi) - \sin(x - \frac{1}{6}\pi) = \cos(x + \frac{1}{3}\pi) - \cos(x - \frac{1}{3}\pi)$
	for $0 \le x \le 2\pi$.
	A PA
	<u> </u>

	6	The	parametric	equations	of a	curve	are
--	---	-----	------------	-----------	------	-------	-----

$$x = \sqrt{t} + 3, \qquad y = \ln t,$$

for t > 0.

(a)	Obtain a simplified expression for $\frac{dy}{dx}$ in terms of t .	[3]
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
(b)	Hence find the exact coordinates of the point on the curve at which the gradient of the norm	nal
(-)	is -2.	[3]
		•••
		•••
		•••
		•••
		•••
		•••
		••••

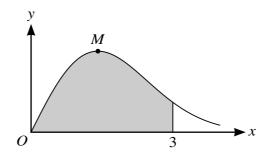
	7	The variab	les x and	θ sa	tisfy	the	differe	ntial e	equatic	n
--	---	------------	-----------	-------------	-------	-----	---------	---------	---------	---

$$\frac{x}{\tan\theta} \frac{\mathrm{d}x}{\mathrm{d}\theta} = x^2 + 3.$$

It is given that x = 1 when $\theta = 0$.

Solve the differential equation, obtaining an expression for x^2 in terms of θ .	[7]
ST PRA	
Satpre?	

8	(a)	By sketching a suitable pair of graphs, show that the	equation
---	-----	---	----------


$$\sqrt{x} = e^x - 3$$

has only one root.	[2]
	[-]

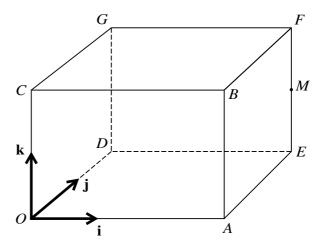
(b)	Show by calculation that this root lies between 1 and 2. [2]	[]
	satprev	•
		••
		••
		••
		. .
		. .
		••
		. .

(c)	Show that, if a sequence of values given by the iterative formula
	$x_{n+1} = \ln(3 + \sqrt{x_n})$
	converges, then it converges to the root of the equation in (a).
(d)	Use the iterative formula to calculate the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
	Get or e.g.

9

The diagram shows the curve $y = xe^{-\frac{1}{4}x^2}$, for $x \ge 0$, and its maximum point M.

(a)	Find the exact coordinates of M .	[4]
		••••••


	bunded by the curve, the x-axis and the line $x = 3$.	
•••		• • •
• • •		•••
• • •		•••
•••		• • •
•••		•••
•••		•••
• • •		•••
		•••
		• • •
		•
		•••
•••		•••
•••		•••
•••		,
•••		•••

10	Let	$f(x) = \frac{24x + 13}{(1 - 2x)(2 + x)^2}.$
	(a)	Express $f(x)$ in partial fra

		••••••	•••••	•••••	
		•••••		•••••	
				•••••	
	74		-60,		
•••••		atpre		•••••	
		•••••••		•••••	

•••••		
•••••		
•••••		
•••••		
•••••		
C		
State the set of	of values of x for which the expansion in (b) is valid.	
•••••		

11

In the diagram, OABCDEFG is a cuboid in which OA = 3 units, OC = 2 units and OD = 2 units. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OD and OC respectively. M is the midpoint of EF.

(a)	Find the position vector of M .	[1]
The	e position vector of P is $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$.	
(b)	Calculate angle <i>PAM</i> .	[4]
	-0'	•••••••
	isatpre?	•••••
		•••••
		••••••
		•••••

		· • • • • • • • • • • • • • • • • • • •
		· • • • • • • • • • • • • • • • • • • •
•••••		· • • • • • • • • • • • • • • • • • • •
		· • • • • • • • • • • • • • • • • • • •
		· • • • • • • • • •
		· • • • • • • • •
	Satpre?	
		· • • • • • • • • • • • • • • • • • • •
		. .
•••••		• • • • • • • • •
•••••		•••••
		· • • • • • • • •

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

October/November 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

1 (a) Sketch the graph of $y = 4x - 2 $							
	2.1	: 4x -	ph of v = 0	the	Sketch	(a)	1

Γ	1	1
L	•	ı

(b)	Solve the inequality $1 + 3x < 4x - 2 $.	[4]
	· SatpreP	

	2	The	parametric	equations	of a	curve	are
--	---	-----	------------	-----------	------	-------	-----

<i>x</i> =	$(\ln t)^2$,	<i>y</i> =	e^{2-t^2} ,

for $t > 0$.
Find the gradient of the curve at the point where $t = e$, simplifying your answer. [4]
PA

Find the values of <i>a</i> a	and b .		
•••••	•••••		
			•••••
•••••	•••••		•••••
			•••••
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			•••••
•••••		_0'	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			•••••
••••••			
•••••			,

4	(a)	On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities $ z - 4 - 3i \le 2$ and Re $z \le 3$.			
	(b)	Find the greatest value of arg z for points in this region.	[2]		
			· ····		
			· ····		

5	Find the exact value of	$\int_0^6 \frac{x(x+1)}{x^2+4} \mathrm{d}x.$	[6]
			•••••
			•••••
			•••••
		3	••••••
		SatoreP:	
			••••••
			•••••••••••

6	(a)	By sketching	a suitable i	nair of granhs	, show that the equation

$$\cot x = 2 - \cos x$$

has one root in the interval $0 < x \le \frac{1}{2}\pi$.

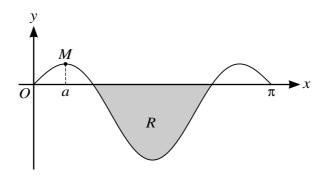
[2]

(b)	Show by calculation that this root lies between 0.6 and 0.8.	[2]
	SatpreP	•••••
		••••••

Use the iterative formula $x_{n+1} = \tan^{-1} \left(\frac{1}{2 - \cos x_n} \right)$ to determine the root correct to 2 deci					
places. Give the result of each iteration to 4 decimal places.					

	as $2\theta + \theta$, prove the i		
•••••		•••••	 ••••••
		•••••	
••••••			••••••
		•••••	
			 •••••
		•••••	 •••••
•••••		•••••	 •••••

$\cos 3\theta + \cos \theta \cos 2\theta = \cos^2 \theta$				
for $0^{\circ} \le \theta \le 180^{\circ}$.	5]			
	•••			
	•••			
	•••			
	•••			
	•••			
	•••			
	•••			
	•••			
	•••			
	•••			
	•••			
	•••			
"Satpre9"				
	•••			
	•••			
	•••			


It is given that $\frac{2+3ai}{a+2i} = \lambda(2-i)$, where a and λ are real constants.

	at $3a^2 + 4a - 4 = 0$.			
••••••		••••••		
•••••				
•••••			•••••	
•••••				
•••••				•••••
•••••				
•••••		atorev		•••••
•••••			•••••	
•••••			•••••	
•••••				
••••••				
		•••••		

8

•••••
 •••••
 •••••
• • • • • • • • • • • • • • • • • • • •
 •
•••••
 •••••
•••••
•••••
• • • • • • • • • • • • • • • • • • • •
•••••
 •••••
•••••
•••••
• • • • • • • • • • • • • • • • • • • •

9

The diagram shows the curve $y = \sin x \cos 2x$, for $0 \le x \le \pi$, and a maximum point M, where x = a. The shaded region between the curve and the x-axis is denoted by R.

Find the value of a correct to 2 decimal places.	[5]
	••••••
	••••••
'Satore?'	
	•••••
	•••••

	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	· • • • • • • • • • • • • • • • • • • •
	,
	,
	,
.00	· • • • • • • • • • • • • • • • • • • •
	· • • • • • • • • • • • • • • • • • • •
	· • • • • • • • • • • • • • • • • • • •

10 The equations of the lines l and m are given by

l:
$$\mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
 and m : $\mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ 6 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ 4 \\ c \end{pmatrix}$,

where c is a positive constant. It is given that the angle between l and m is 60° .

Find the value of c .	
	••••••
	•••••
	•••••
	••••••
	••••••
	•••••
	•••••
	•••••
	••••••
	•••••

•••••
 •••••
 •••••
•••••
•••••
 •••••
•••••
•••••
••••••
 •••••
 •••••
• • • • • • • • • • • • • • • • • • • •

11 The variables x and y satisfy the differential equation

$$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + y^2 + y = 0.$$

It is given that x = 1 when y = 1.

(a)	Solve the differential equation to obtain an expression for y in terms of x .	[8]
	PR.	
	- Satore S	

State what happens to the value of y when x tends to infinity. Give your answer in an exact form. [1]

(b)

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
·SathreO·
Salprey

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME									
CENTRE NUMBER						NDIDA IMBER			

*7354647755

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

October/November 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

figures.	
•••••	 •
•••••	• • • • • • • • •
	 •
	•••••
•••••	•••••
•••••	•••••
••••••	•••••
	 •
	•••••
•••••	•••••
•••••	•••••
••••••	•••••
	•••••

On an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z - 1 + 2i| \le |z|$ and $|z - 2| \le 1$. [5]

Find the values of a and b .			[:
13		1.5/	
	2		
	atpre		

x and y are real.	
•••••	••••••
•••••	••••••
•••••	•••••
•••••	•••••
•••••	•••••
•••••	•••••
	 •••••

i ma the exact co	ordinates of the station	onary points	of the curve	$y = \frac{1}{1 - x^2}.$		
					•••••	
•••••	•••••	•••••	•••••	•••••	•••••	•••
				•••••		•••
		•••••				••
			•••••			
•••••	•••••	•••••	•••••	•••••	•••••	•••
						•••
						••
			•••••			
•••••			••••••••••	••••••	•••••	•••
		•••••			•••••	• • •
•••••	•••••	•••••	•••••	••••••	•••••	••
					•••••	
		•••••	•••••	•••••	•••••	•••
		•••••	•••••	•••••		
••••••	•••••	••••••	•••••	••••••	•••••	••
	•••••	•••••	•••••	•••••	•••••	• • •

$4\sin^4\theta + 3\sin^2\theta - 1 = 0.$	[3]
	Lo.
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
- SaforeO	••••
PatpreY	
	••••
	••••
	••••
	••••

•••••	 •••••	•••••	•••••	•••••
•••••	 			•••••
•••••	 	•••••	•••••	•••••
••••••	 ••••••	••••••	•••••	•••••••
•••••	 			•••••
	 			•••••
				••••••
•••••	 			•••••
•••••	 atpre		••••••	•••••
	 			•••••
	 •		•••••	•••••

7	The equation	of a curve	is x^3	$+y^2$	$+3x^{2}$	+ 3y =	- 4.
---	--------------	------------	----------	--------	-----------	--------	------

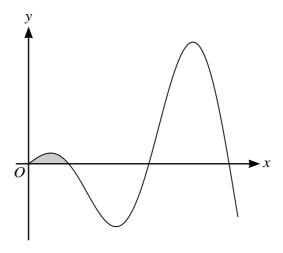
dy	$3x^{2} + 6x$	[2]
Show that $\frac{dy}{dx} =$	$-{2y+3}$.	[3]
	•••••	
•••••		-0'
•••••	•••••	
	•••••	

(b)	Hence find the coordinates of the points on the curve at which the tangent is parallel to the x -axis [5]
	1 2
	34 69
	atbiek

8	The	variables	x and	y satisfy	y the	differential	equation

$$e^{4x} \frac{\mathrm{d}y}{\mathrm{d}x} = \cos^2 3y.$$

It is given that $y = 0$ when $x = 2$.
Solve the differential equation, obtaining an expression for y in terms of x . [7]
T PR
Satpre?


"SatoreP."

9	Let $f(x) =$	$\frac{17x^2 - 7x + 16}{(2+3x^2)(2-x)}.$
	Let $I(x) =$	$(2+3x^2)(2-x)$

E	Express $f(x)$ in partial fractions.	[5
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••	atores o	
•••		
•••		
•••		
•••		

		n ascending powers of x		
				•••••
	,	,	•••••	•••••
				•••••
		•••••		
•••••			•••••	•••••
				•••••
				•••••
				•••••
				••••••
				•••••
				•••••
State the set of a	values of v for which	the expansion in (h) is	valid. Give your answer	in an e
form.	various of x for willen	the expansion in (b) is	varia. Give your answer	m un c

10

The diagram shows the curve $y = x \cos 2x$, for $x \ge 0$.

(a)	Find the equation of the tangent to the curve at the point where $x = \frac{1}{2}\pi$. [4]

<i>x</i> -axis.					
•••••	••••••	•••••	•••••		••••••
••••••		••••••	•••••		••••••
•••••	••••••••••••	••••••	•••••	•••••	••••••
		,,			
					• • • • • • • • • • • • • • • • • • • •
•••••					•••••
•••••					• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	•••••		•••••
•••••	•••••	•••••	•••••		•••••
•••••	•••••	•••••	•••••		•••••
••••••	•••••	••••••	•••••	•••••	•••••
•••••	•••••	••••••	•••••	•••••	•••••
•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •

11 The line l has equation $\mathbf{r} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k} + \lambda(-\mathbf{i} + \mathbf{j} + 2\mathbf{k})$. The points A and B have position vectors

Find a unit vector in the direction of l .	
tine m basses infough the bothlis A and D.	
line m passes through the points A and B . Find a vector equation for m .	
Find a vector equation for <i>m</i> .	
Find a vector equation for <i>m</i> .	
Find a vector equation for <i>m</i> .	
Find a vector equation for <i>m</i> .	
Find a vector equation for <i>m</i> .	
1	

		•••••		• • • • • • • • • • • • • • • • • • • •	
••••••	••••••	••••••	••••••	•••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••
•••••		•••••			•••••
		•••••			
		DA			
••••••			•••••	••••••	•••••
•••••	•••••		••••••		•••••
	•••••				•••••
***************************************		•••••		• • • • • • • • • • • • • • • • • • • •	•••••
•••••	••••••			• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••		•••••	•••••
•••••		•••••		•••••	•••••
		•••••			
				• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	•••••		•••••	•••••
•••••	•••••	•••••		•••••	•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.						
· Sornes						
Setpres						

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

May/June 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

1	Solve	the	ea	uation

- 2r	4 - 2r		_
$3e^{2x}$	$-4e^{-2x}$	=	5

Give the answer correct to 3 decimal places.	[3]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

2 (:	a) Sl	ketch the	graph	of $v =$	2x + 3	31.

)	Solve the inequality $3x + 8 > 2x + 3 $.	[3]
	Patprey	

•••••	•••••		•••••	•••••	
•••••	••••••		•••••	••••••	••••••
	•••••				
•••••					•••••
			• • • • • • • • • • • • • • • • • • • •		•••••
•••••					
•••••		Sathr	· 00 · 1		•••••
		Satpr			
•••••					
•••••			•••••	••••••	•••••
•••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••

	$\cos^2\theta + 2\sin\theta\cos\theta - 3\sin^2\theta = 0.$	[2]
		••••••
(b)	Hence solve the equation $\sin 2\theta + \cos 2\theta = 2 \sin^2 \theta$ for $0^\circ < \theta < 180^\circ$.	[4]
(D)	Hence solve the equation $\sin 2\theta + \cos 2\theta = 2 \sin \theta$ for $\theta < \theta < 180$.	[4]
		••••••
		•••••••

Show the	hat $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}$	$\frac{2xy}{ay - x^2}.$						
•••••	•••••••	•••••	•••••	•••••••	• • • • • • • • • • • • • • • • • • • •		••••••	• • • • • • • • • • • • • • • • • • • •
		•••••						•••••
•••••								
				•••••				
		.,						
•••••			•••••					• • • • • • • • • • • • • • • • • • • •
•••••			•••••				••••••	• • • • • • • • • • • • • • • • • • • •
•••••	••••••••	••••••		pre		•••••	•••••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••						•••••
••••••	•••••••••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••

•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••				• • • • • • • • • • • • • • • • • • • •	•••••
					•••••
•••••					•••••
•••••					•••••
•••••		atpre		• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
				•••••	
•••••	•••••	••••••	•••••	•••••	••••••

6 Relative to the origin O, the points A, B and C have position vectors given by

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \qquad \overrightarrow{OB} = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix}.$$

The quadrilateral *ABCD* is a parallelogram.

Find the	e position vector of	D.					
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•	••••••
••••••					•		
				••••			
•••••			•••••				
•••••			pre		••••••	•••••	••••••
••••••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••••••	••••••
			•••••				

(b)	The angle between BA and BC is θ .
	Find the exact value of $\cos \theta$. [3]
(c)	Hence find the area of $ABCD$, giving your answer in the form $p\sqrt{q}$, where p and q are integers.
	[4]
	Patorey

	7	The	variables	x and	y satisfy	the	differential	equation
--	---	-----	-----------	-------	-----------	-----	--------------	----------

erential equation
$$\cos 2x \frac{dy}{dx} = \frac{4\tan 2x}{\sin^2 3y},$$

where $0 \le x < \frac{1}{4}\pi$. It is given that y = 0 when $x = \frac{1}{6}\pi$.

Solve the differential equation to obtain the value of x when $y = \frac{1}{6}\pi$. Give your answer correct to 3 decimal places.
satorep.

\\`SatoreP`

8	Let $f(x) =$	$3 - 3x^2$		
o	Let $I(x) =$	$\frac{(2x+1)(x+2)^2}{(2x+1)(x+2)^2}$		

Express $f(x)$ in partial fractions.

and c are integ	e exact value gers.	\mathbf{J}_0		-			
			•••••	•••••			
	••••						
••••••			PA				•••••
						•••••	•••••
				•••••		•••••	•••••
•••••				•••••			
		·Sai	tpre	P.			
••••••		•••••		••••••	•••••	•••••	•••••
		•••••		••••••			•••••
							•••••
	•••••						

a)	Show that $a = \frac{1}{2} \ln(4a + 2)$.	
		• • • • •
		• • • • •
		• • • • •
		••••
		• • • • •
		••••
		• • • • •
		••••
		• • • • •
	9	
		• • • • •
		• • • • •
		• • • •
		••••
		• • • • •
		• • • • •

•••••	••••••	••••	••••••	•••••	•••••	•••••
						•••••
• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	•••••	•••••
• • • • • • • • • • • • • • • • • • • •	•••••					•••••
•••••						
•••••				•••••		•••••
•••••						
						•••••
			•••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
Use an iterative Give the result	formula based of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a corr	rect to 2 decin	nal pl
Use an iterative Give the result	formula based of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a con	rect to 2 decin	nal pl
Use an iterative Give the result	formula based of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a cori	rect to 2 decin	nal pl
Use an iterative Give the result	formula based of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a corr	rect to 2 decin	nal pl
Use an iterative Give the result	formula based of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a cor	rect to 2 decin	nal pl
Use an iterative Give the result	formula baseof each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a cori	rect to 2 decin	nal pl
Use an iterative Give the result	formula baseof each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a corr	rect to 2 decin	mal pl
Use an iterative Give the result	formula based of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a con	rect to 2 decin	nal pl
Use an iterative Give the result	formula base of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a corr	rect to 2 decin	
Use an iterative Give the result	formula base of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a corr	rect to 2 decin	mal pl
Use an iterative Give the result	formula base of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a corr	rect to 2 decin	nal pl
Use an iterative Give the result	formula base of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a corr	rect to 2 decin	
Use an iterative Give the result	formula based of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a corr	rect to 2 decin	
Use an iterative Give the result	formula base of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a corr	rect to 2 decin	
Use an iterative Give the result	formula based of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a corr	rect to 2 decin	nal pl
Use an iterative Give the result	formula based of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a corr	rect to 2 decin	nal pl
Use an iterative Give the result	formula base of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a corr	rect to 2 decin	
Use an iterative Give the result	formula based of each iteration	d on the equation to 4 decimal	on in (a) to det places.	ermine a corr	rect to 2 decin	nal pl

10	The polynomial $x^3 + 5x^2 + 31x + 75$ is denoted by $p(x)$.							
	(a)	Show that $(x + 3)$ is a factor of $p(x)$.	[2]					
	(b)	Show that $z = -1 + 2\sqrt{6}i$ is a root of $p(z) = 0$.	[3]					
		atores o						
			,					
			•••••					
			•••••					
			•••••					
			· • • • • • • • • • • • • • • • • • • •					

Hence find the complex numbers z which are roots of $p(z^2) = 0$.	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
-0//	
	• • • • • • • • • • • • • • • • • • • •

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(must be clearly shown.	(s)
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•
	•

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

May/June 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

		 • • • •
		 ••••
	······	 • • • •
		 • • • •
•••••		
•••••		• • • •
•••••		 ••••
	,	 ••••
		 ••••
		 ••••
		••••
		 ••••
		 ••••
•••••		
		• •
•••••		 ••••

•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••		••••••	•
•••••	•••••		
			• • • • • • • • • • • • • • • • • • • •
•••••			
		••••••	•
•••••			 •
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	 •

		5
3	(a)	On an Argand diagram, sketch the locus of points representing complex numbers z satisfying $ z + 3 - 2i = 2$. [2]
	(b)	Find the least value of $ z $ for points on this locus, giving your answer in an exact form. [2]
		Satpre

Solve the equation $2\cos x - \cos \frac{1}{2}x = 1$ for $0 \le x \le 2\pi$.	[5
is atpre?	

	Find a simplified expression for $f(a)$ in terms of y . [3]
	<u> </u>
)	Given that $Re(f(a)) = -20$, find arg a .

a)	Show by calculation that α lies between 0.5 and 1.	[2]
		•••••
		•••••
		•••••
		•••••
b)	Show that, if a sequence of positive values given by the iterative formula	
b)	Show that, if a sequence of positive values given by the iterative formula $x_{n+1} = \frac{1}{3} \left(x_n + 4 \tan^{-1} \left(\frac{1}{3x_n} \right) \right)$	
b)		[2]
b)	$x_{n+1} = \frac{1}{3} \left(x_n + 4 \tan^{-1} \left(\frac{1}{3x_n} \right) \right)$	[2]
b)	$x_{n+1} = \frac{1}{3} \left(x_n + 4 \tan^{-1} \left(\frac{1}{3x_n} \right) \right)$ converges, then it converges to α .	
b)	$x_{n+1} = \frac{1}{3} \left(x_n + 4 \tan^{-1} \left(\frac{1}{3x_n} \right) \right)$ converges, then it converges to α .	[2]
b)	$x_{n+1} = \frac{1}{3} \left(x_n + 4 \tan^{-1} \left(\frac{1}{3x_n} \right) \right)$ converges, then it converges to α .	
b)	$x_{n+1} = \frac{1}{3} \left(x_n + 4 \tan^{-1} \left(\frac{1}{3x_n} \right) \right)$ converges, then it converges to α .	
b)	$x_{n+1} = \frac{1}{3} \left(x_n + 4 \tan^{-1} \left(\frac{1}{3x_n} \right) \right)$ converges, then it converges to α .	
b)	$x_{n+1} = \frac{1}{3} \left(x_n + 4 \tan^{-1} \left(\frac{1}{3x_n} \right) \right)$ converges, then it converges to α .	
b)	$x_{n+1} = \frac{1}{3} \left(x_n + 4 \tan^{-1} \left(\frac{1}{3x_n} \right) \right)$ converges, then it converges to α .	
b)	$x_{n+1} = \frac{1}{3} \left(x_n + 4 \tan^{-1} \left(\frac{1}{3x_n} \right) \right)$ converges, then it converges to α .	
b)	$x_{n+1} = \frac{1}{3} \left(x_n + 4 \tan^{-1} \left(\frac{1}{3x_n} \right) \right)$ converges, then it converges to α .	
b)	$x_{n+1} = \frac{1}{3} \left(x_n + 4 \tan^{-1} \left(\frac{1}{3x_n} \right) \right)$ converges, then it converges to α .	

	imal places.				
			•••••	•••••	••••••
••••••	•••••	•••••••••••		•••••	
				•••••	
				•••••	
	15				
		atpre			
				•••••	
		•••••		•••••	
	• • • • • • • • • • • • • • • • • • • •				
		•••••	•••••		••••••

7	The equa	ation	of a cu	rve is $3x^2 + 4xy + 3y^2 =$	5
			dv	3x + 2y	

(a)

Show that $\frac{dy}{dy} = -$	- 3x + 2y .		[4]
Show that $\frac{dy}{dx} = -\frac{dy}{dx}$	2x + 3y		۲.٦
•••••	,		• • • • • • • • • • • • • • • • • • • •
••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
•••••			• • • • • • • • • • • • • • • • • • • •
•••••			
•••••			• • • • • • • • • • • • • • • • • • • •
•••••			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •
•••••		••••••	• • • • • • • • • • • • • • • • • • • •
•••••			• • • • • • • • • • • • • • • • • • • •
•••••			
••••			• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
•••••			• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • • • • • • • • • • •

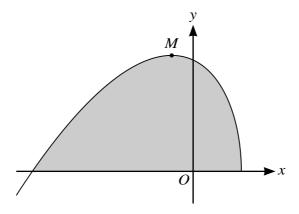
to $y + 2x = 0$.			
			• • • • • • • • • • • • • • • • • • • •
			•••••
•••••	•••••	•••••	••••••
	••••••		•••••
			•••••
			•••••

8 (a)	The	variables	x and y	y satisfy	y the	differential	equation
-------	-----	-----------	---------	-----------	-------	--------------	----------

$$\frac{dy}{dx} = \frac{4 + 9y^2}{e^{2x+1}}$$

It is given that y = 0 when x = 1.

Solve the differential equation, obtaining an expression for y in terms of x .	7]
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
Satore?	•••
	•••
	•••
	•••


PB
State what happens to the value of y as x tends to infinity. Give your answer in an exact form. [1]

(b)

9	Let $f(x) = \frac{2x^2 + 17x - 17}{(1 + 2x)(2 - x)^2}$.
9	Let $I(x) = \frac{1}{(1+2x)(2-x)^2}$.
	(a) Express $f(x)$ in partial $f(x)$

•••••	•••••	•••••		••••••	•••••	•••••	•••••
						• • • • • • • • • • • • • • • • • • • •	
•••••						• • • • • • • • • • • • • • • • • • • •	•••••
•••••						•••••••	•••••
•••••							•••••
•••••						•••••••	•
•••••			tore			• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	•••••
							•••••
•••••				•••••	•••••		•••••
							•••••

Hen	ce show that $\int_{0}^{1} f(x) dx = \frac{5}{2} - \ln 72$.	
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		
•••••		••••••
•••••		
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		•••••
•••••	3	• • • • • • • • • • • • • • • • • • • •
•••••		
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		•••••
		•••••
•••••		•••••

The diagram shows the curve $y = (x + 5)\sqrt{3 - 2x}$ and its maximum point M.

(a)	Find the exact coordinates of M .	[5]
	- The Part of the	

are cur ve all	d the x -axis. Give y	your answer in	i die ioiii avis	, where <i>a</i> is a ra	tional number
•••••	•••••			,	•••••
••••••		•••••			••••••
••••••	•••••••••	•••••	•		•••••
•••••					
•••••					
•••••					
•••••					

11 The points A and B have position vectors $\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ and $2\mathbf{i} - \mathbf{j} + \mathbf{k}$ respectively. The line l has equation

Show that t t	oes not intersect the line p	passing through A and B.	
•••••			•••••
•••••			
•••••			•••••
•••••	4		••••••
 •••••			
			,
•••••	•••••		•••••
••••••			

	Find the position vector of the foot of the perpendicular from A to l . [4]
•	
•	
•	
•	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.
· Sornes
Setpres

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

May/June 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

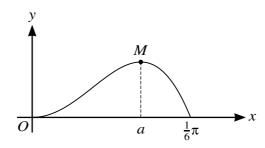
INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages.

				 •••••
		•••••	•••••	 •••••
				 •••••
	•••••	•••••	•••••	 •••••
•••••	•••••	•••••	•••••	 •••••
•••••	•••••	•••••	•••••	 •••••
•••••				 ••••••
		•••••		 •••••
•••••		•••••		 ••••••
••••••	•••••			 ••••••
••••••••••••	••••••	•••••		 •••••
•••••		••••••		••••••
		••••••		••••••
		••••••		••••••
	15		-0	
••••••		ətara	20	 ••••••
		atpre		

THE PART	
	///
3	·
·satpreP	


3 On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z-3-i| \le 3$ and $|z| \ge |z-4i|$. [4]

4	The parametric	equations	of a	curve	are
---	----------------	-----------	------	-------	-----

$$x = \frac{\cos \theta}{2 - \sin \theta}, \qquad y = \theta + 2\cos \theta.$$

Show that $\frac{dy}{dx} = (2 - \sin \theta)^2$.	[5]

The diagram shows the part of the curve $y = x^2 \cos 3x$ for $0 \le x \le \frac{1}{6}\pi$, and its maximum point M, where x = a.

(a)	Show that a satisfies the equation $a = \frac{1}{3} \tan^{-1} \left(\frac{2}{3a} \right)$.	[3]

Give the result o	f each iteration to 4	l decimal plac	es.		
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••	•••••		•••••	•••••
•••••	•••••	•••••		•••••	•••••
••••••					••••••
•••••					••••••
••••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••		• • • • • • • • • • • • • • • • • • • •		••••••	•••••
•••••				•••••	•••••
•••••					•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••

•••••	•••••		•••••	•••••	•••••
•••••	***************************************		• • • • • • • • • • • • • • • • • • • •	••••••••	•••••
					•••••
			· • • • • • • • • • • • • • • • • • • •		
					••••••
					••••••
,					•••••
				••••••	•••••
••••••		· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
•••••					
			•••••	•••••	•••••

(b) Hence solve the equation

$3\cos 2\theta + 2\cos(2\theta - 60^{\circ}) = 2$.

for $0^{\circ} < \theta < 180^{\circ}$.	[4]
	••••••
	••••••
	••••••
	•••••
	•••••
	••••••
	••••••
	••••••

7	(a)	Use the substitution $u = \cos x$ to show that	
		$\int_0^{\pi} \sin 2x e^{2\cos x} dx = \int_{-1}^1 2u e^{2u} du.$	[4]
			••••
			••••
			••••
		PA	
			••••
			••••
			•••••

Hence find the exact value of \int_0^{π}	$\sin 2x e$ dx .	
		•••••
		•••••
		· • • • • • • • • • • • • • • • • • • •
		•••••
		•••••
	Parprep	
•••••		

8	The variables x	and v	satisfy the	differential	equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 + 4}{x(y+4)}$$

for x > 0. It is given that x = 4 when $y = 2\sqrt{3}$.

Solve the differential equation to obtain the value of x when $y = 2$.	[8]
	•••••
	•••••
	•••••
	,
etore?	
	•••••
	•••••
	•••••

 • • • • •
• • • • •
• • • • •
 • • • • •
• • • • •
• • • • •

9 The lines l and m have equations

l:
$$\mathbf{r} = a\mathbf{i} + 3\mathbf{j} + b\mathbf{k} + \lambda(c\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}),$$

m: $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \mu(2\mathbf{i} - 3\mathbf{j} + \mathbf{k}).$

Relative to the origin O, the position vector of the point P is $4\mathbf{i} + 7\mathbf{j} - 2\mathbf{k}$.

	erpendicular to m and th			
•••••	••••••	•••••	••••••	
•••••			•••••	•••••
		•••••		
			-	
		••••••••		
•••••				
•••••				
		nre?		
		•••••		
••••••		••••••	••••••	••••••
•••••	•••••	•••••	•••••	•••••

© UCLES 2023 9709/33/M/J/23

Find the posit	ion vector of R.	
••••••		
•••••		
•••••••		
•••••••••		
••••••		
••••••	Perpre	
•••••		
•••••		
•••••		••••••

10	Let $f(r)$ –	$21 - 8x - 2x^2$
10	Let $I(x) =$	$\frac{21 - 8x - 2x^2}{(1+2x)(3-x)^2}.$

•••••			• • • • • • • • • • • • • • • • • • • •	•••••••	•••••
•••••					
•••••			• • • • • • • • • • • • • • • • • • • •	•••••	•••••
••••••		· • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
•••••					
•••••				••••••	•••••
•••••				••••••	•••••
•••••				•••••	•••••
•••••	•••••	atpre		••••••	•••••
•••••					
•••••			•••••	•••••	•••••
•••••	•••••	,	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •

The	complex number z is defined by $z = \frac{5a - 2i}{3 + ai}$, where a is an integer. It is given that $\arg z = -\frac{1}{4}\pi$.
	Find the value of a and hence express z in the form $x + iy$, where x and y are real. [6]

•••••	•••••					
•••••	•••••					
•••••	•••••			•••••	•••••	• • • • • •
		•••••	••••••	••••••		
				•••••		• • • • • •
•••••	•••••	•••••	•••••	•••••	•••••	•••••
••••	•••••					
•••••		•••••				•••••
		•••••			•••••	• • • • • •
Express z^3 in the rand θ	the form $re^{i\theta}$, whe	are $r > 0$ and	$-\pi < heta \leqslant \pi$. (Give the sim	nplified exact v	valu
Express z^3 in the r and θ .	he form $re^{i\theta}$, whe	are $r > 0$ and	$-\pi < \theta \leqslant \pi$. (Give the sim	nplified exact v	valu
Express z^3 in the r and θ .	the form $re^{i\theta}$, whe	are $r > 0$ and	$-\pi < \theta \leqslant \pi$. (Give the sim	nplified exact v	valu
Express z^3 in the following r and θ .	he form $re^{i\theta}$, whe	are $r > 0$ and	$-\pi < \theta \leqslant \pi$. (Give the sim	nplified exact v	walu
Express z^3 in the r and θ .	he form $re^{i\theta}$, whe	$re r > 0 \text{ and } \cdot$	$-\pi < \theta \leqslant \pi$. (Give the sim	nplified exact v	valu
Express z^3 in the following function θ .	he form $re^{i\theta}$, whe	ere r > 0 and	$-\pi < \theta \leqslant \pi$. (Give the sim	nplified exact v	valu
Express z^3 in the r and θ .	he form $re^{i\theta}$, whe	are $r > 0$ and	$-\pi < \theta \leqslant \pi$. (Give the sim	nplified exact v	walu
Express z^3 in the following function θ .	he form $re^{i\theta}$, whe	are $r > 0$ and	$-\pi < \theta \leqslant \pi$. (Give the sim	nplified exact v	valu
Express z^3 in the following function θ .	he form $re^{i\theta}$, whe	are $r > 0$ and	$-\pi < \theta \leqslant \pi$. (Give the sim	nplified exact v	
r and θ.	he form $re^{i\theta}$, whe	e tore				
r and θ.		e tore				
r and θ.						
r and θ.						
r and θ.						
r and θ.						
r and θ.						
r and θ.						
r and θ.						
r and θ.						

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

February/March 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

It is given that $x =$	ln(2y-3) - ln(y+4).			
Express y in terms	of x .			[3
••••••		•••••••••••		
•••••				••••••
			······	
	4			
•••••				

2	(a)	On an Argand diagram, shade the region whose points represent complex numbers z satisf	fying
		the inequalities $-\frac{1}{2}\pi \le \arg(z-1-2i) \le \frac{1}{2}\pi$ and Re $z \le 3$.	[3]

(b)	Calculate the least value of arg z for points in the region from (a). Give your answer in radians correct to 3 decimal places. [2]
	7.83+n-20.

3

The polynomial $2x^4 + ax^3 + bx - 1$, where a and b are constants, is denoted by p(x). When p(x) is

Find the values of a and	d <i>b</i> .				[5
			•••••		
	••••••	•••••••••••			
			•••••		
	4				
		atpre			
	••••••	•••••••••••			
	•••••	••••••	•••••	•••••	
	••••••	••••••••	•••••••	•••••••••	

5*z*

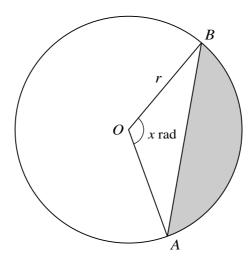
4	Solve	the eq	uation

$\frac{3z}{1+2i} - zz^* + 30 + 10i = 0,$	
giving your answers in the form $x + iy$, where x and y are real.	[5]
	••••••
	••••••
	•••••
N. Petnrey	

	5	The	parametric	equations	of	a cu	ırve	ar
--	---	-----	------------	-----------	----	------	------	----

$$x = te^{2t}, y = t^2 + t + 3.$$

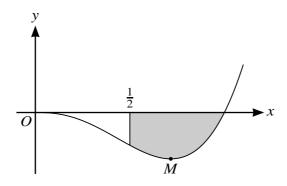
(a)	Show that $\frac{dy}{dx} = e^{-2t}$.	[3]
		· • • • • • • • • • • • • • • • • • • •
		,
		•••••
		•
		· • • • • • • •
		•••••
	- Carpres C	
		•••••
		· • • • • • • • • • • • • • • • • • • •


© UCLES 2023

			= -1, passes th		
	•••••				
			••••••		
•••••	,	•••••••	••••••	•••••	
		PA			
		•••••			
	,				
		·····			
•••••					
		tore			
••••	•••••	••••••	•••••		
	······································	••••••	•••••	•••••	
•••••		•••••	•••••	•••••	

(a)	Express $5 \sin \theta + 12 \cos \theta$ in the form $R \cos(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2}\pi$.	[3]
		••••••
	T PR	•••••
	Setores:	
	SatpreY	
		•••••
		••••••

 •••••
 •••••
•••••
•••••
•••••
••••••
••••••


7

The diagram shows a circle with centre O and radius r. The angle of the **minor** sector AOB of the circle is x radians. The area of the **major** sector of the circle is 3 times the area of the shaded region.

(a)	Show that $x = \frac{3}{4}\sin x + \frac{1}{2}\pi$.	[4]

	•••••			
•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••			•••••	
•••••				
		•••••		• • • • • • • • • • • • • • • • • • • •
	•••••			•••••
			late this root correct	to 2 de
			alate this root correct	to 2 de
		4 decimal places.	llate this root correct	
	t of each iteration to	4 decimal places.		
Use an iterative formuplaces. Give the resul	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		
	t of each iteration to	4 decimal places.		

The diagram shows the curve $y = x^3 \ln x$, for x > 0, and its minimum point M.

(a)	Find the exact coordinates of M .	[4]
	Patorek	

(b)	Find the exact area of the shaded region bounded by the curve, the <i>x</i> -axis and the line $x = \frac{1}{2}$. [5]
	T PR
	34 69
	satpre?

9 The variables x and y satisfy the differential equation
--

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{3y}\sin^2 2x.$$

It is given that y = 0 when x = 0.

Solve the differential equation and find the value of y when $x = \frac{1}{2}$.	[7]
	· • • • • • • •
	· • • • • • • •
	· • • • • • • •
	•••••
	• • • • • •
	.
'Satore?'	
	· • • • • • • •
	· • • • • • • • • • • • • • • • • • • •
	· • • • • • • • • • • • • • • • • • • •
	· • • • • • • •

10	With respect to the origin	Q. the	points A. B.	C and D have	position vectors	given b	١V
10	Willi respect to the origin	o, the	points 11, D ,	C and D have	position vectors	given	, y

$$\overrightarrow{OA} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \qquad \overrightarrow{OB} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \qquad \overrightarrow{OC} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OD} = \begin{pmatrix} 5 \\ -6 \\ 11 \end{pmatrix}.$$

Find the obtuse angle between the vectors \overrightarrow{OA} and \overrightarrow{OB} .
line l passes through the points A and B .
Find a vector equation for the line l .

		•••••			
	,				
•••••	•••••	•••••	•••••	•••••	••••••••••
					••••••
			<mark>.</mark>		
				,	
	12			9/	
	34		<u> </u>		
		gathi			
••••••		•••••	•••••	••••••	••••••
		•••••	•••••		

11	Let $f(r)$ –	$5x^2 + x + 11$
11	Let $I(x)$ –	$\frac{5x^2 + x + 11}{(4 + x^2)(1 + x)}.$

)	Express $f(x)$ in partial fractions.

	•••••							
							•••••	•••••
•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
	•••••							
•••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	••••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	• • • • • • • • • • • • • • • • • • • •
	•••••							
•••••				•••••	•••••		••••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••						• • • • • • • • • • • • • • • • • • • •
•••••	••••••				• • • • • • • • • • • • • • • • • • • •		••••••••••••	• • • • • • • • • • • • • • • • • • • •
••••••	••••••				0		•••••••	•••••••
•••••					•			•
•••••	•••••							
							•••••	
•••••						•••••	•••••	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.
· Sornes
Setpres

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME									
CENTRE NUMBER						CANDIE NUMBE			

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

October/November 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

© UCLES 2022 9709/31/O/N/22

1	(a)	Sketch the	graph of y	= 2x + 1

(b)

Solve the inequality $3x + 5 < 2x + 1 $.	[3]
34 69/	
	•••••
	•••••

2 On a sketch of an Argand diagram shade the region whose points represent complex numbers z satisfying the inequalities $|z| \le 3$, Re $z \ge -2$ and $\frac{1}{4}\pi \le \arg z \le \pi$. [4]

© UCLES 2022 9709/31/O/N/22

				$\lim \frac{\ln a}{\ln b}$, where a a	
	2				
	7.50				
••••••	•••••				•••••
••••••	••••••	•••••	••••••		••••••
•••••	•••••	•••••			•••••
•••••	•••••	•••••			
		•••••	•••••		
		•••••	•••••		
		•••••			•••••

		•••••	 ••••••
		PR	
	16)		
		······	
		atpreP	 ••••••
•••••	•••••	•••••	 •••••
•••••			 •••••

5

(a)	Find $\frac{u^2}{w}$, giving your answer in the form $re^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$. Give the exact values					
	of r and θ .					
	'SatoreP'					
(b)	State the least positive integer n such that both $\operatorname{Im} w^n = 0$ and $\operatorname{Re} w^n > 0$. [1]					

6	(a)	Prove the identity $\cos 4\theta + 4\cos 2\theta + 3 \equiv 8\cos^4 \theta$.	[4]
		- PA	
		·SatpreP	

	•••••				
•••••				•••••	• • • •
••••••			•••••		••••
	• • • • • • • • • • • • • • • • • • • •			•••••	
					• • • •
					• • • •
					• • • •
•••••					••••
					• • • •
•••••					••••
•••••	,	• • • • • • • • • • • • • • • • • • • •			• • • •
•••••	•••••				
					••••
					••••
			•••••		••••
	••••	• • • • • • • • • • • • • • • • • • • •		•••••	

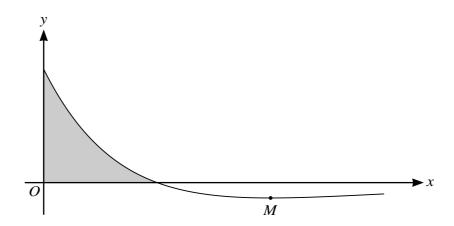
Show that $a = \cos^{-1}\left(\sqrt[3]{\frac{\cos a + 2a\sin a}{12}}\right)$.
4

© UCLES 2022

7

•	•••••	•••••	•••••		
	••••••		•••••		•••••
•••••	••••••	•••••	••••••	••••••••••	•••••
•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••••••	
•••••					
					•••••
Use an iterative	e formula based	on the equati	on in part (a) t	o determine <i>a</i> o	correct to 2 de
Use an iterative places. Give th	e formula based e result of each	on the equati	on in part (a) t	so determine a	correct to 2 de
Use an iterative places. Give th	e formula based e result of each	on the equati iteration to 4 c	on in part (a) t lecimal places.	to determine <i>a</i> o	correct to 2 de
Use an iterative places. Give th	e formula based e result of each	on the equati iteration to 4 c	on in part (a) t lecimal places.	o determine <i>a</i> o	correct to 2 de
Use an iterative places. Give th	e formula based e result of each	on the equati iteration to 4 c	on in part (a) t lecimal places.		
Use an iterative places. Give th	e formula based e result of each	on the equati iteration to 4 c	on in part (a) t lecimal places.		
Use an iterative places. Give th	e formula based e result of each	on the equati	on in part (a) t lecimal places.		
Use an iterative places. Give th	e formula based e result of each	on the equati iteration to 4 o	on in part (a) t lecimal places.		
Use an iterative places. Give th	e formula based e result of each	on the equati	on in part (a) t		
Use an iterative places. Give th	e formula based e result of each	on the equati	on in part (a) t		
Use an iterative places. Give th	e formula based e result of each	on the equati	on in part (a) t		
Use an iterative places. Give th	e formula based e result of each	on the equati	on in part (a) t lecimal places.		
Use an iterative places. Give th	e formula based e result of each	on the equati	on in part (a) t		
Use an iterative places. Give th	e formula based e result of each	on the equati	on in part (a) t lecimal places.		
Use an iterative places. Give th	e formula based e result of each	on the equati	on in part (a) tecimal places.		
Use an iterative places. Give th	e formula based e result of each	on the equati	on in part (a) t lecimal places.		
Use an iterative places. Give th	e formula based e result of each	on the equati	on in part (a) tecimal places.		
Use an iterative places. Give th	e formula based e result of each	on the equati	on in part (a) t lecimal places.		correct to 2 de

8	In a certain chemical reaction the amount, x grams, of a substance is increasing. The differential
	equation satisfied by x and t, the time in seconds since the reaction began, is

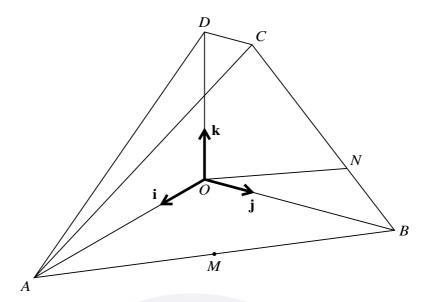

$$\frac{\mathrm{d}x}{\mathrm{d}t} = kx\mathrm{e}^{-0.1t},$$

where k is a positive constant. It is given that x = 20 at the start of the reaction.

	Solve the differential equation, obtaining a relation between x , t and k .
••••	
•••••	
•••••	
••••••	
•••••	
•••••	- Agilotek
•••••	
•••••	

• \	
b)	Given that $x = 40$ when $t = 10$, find the value of k and find the value approached by x as t becomes
b)	Given that $x = 40$ when $t = 10$, find the value of k and find the value approached by x as t becomes large. [3]
b)	
b)	large. [3]
b)	
b)	large. [3]
b)	large. [3]
b)	large. [3]
b)	[3]
b)	[3]
b)	large. [3]
b)	large. [3]
b)	large. [3]
b)	large. [3]

9


The diagram shows part of the curve $y = (3 - x)e^{-\frac{1}{3}x}$ for $x \ge 0$, and its minimum point M.

(a)	Find the exact coordinates of M .	[5]
		• • • • • • • • • • • • • • • • • • • •
		••••••
	1825	
		••••••
		•

terms of e.					
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••			•••••		•••••
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••					•••••
•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••
••••••					
•••••			•••••••		•••••
•••••	•••••	•••••	••••••		•••••
••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••					

10	Let $f(x) =$	$2x^2 + 7x + 8$
10	Let $I(x)$ –	$\frac{1+x(2+x)^2}{(1+x)(2+x)^2}$

(b)	Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and including the term in x^2 [5

In the diagram, OABCD is a solid figure in which OA = OB = 4 units and OD = 3 units. The edge OD is vertical, DC is parallel to OB and DC = 1 unit. The base, OAB, is horizontal and angle $AOB = 90^{\circ}$. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OB and OD respectively. The midpoint of AB is M and the point N on BC is such that CN = 2NB.

(a)	Express vectors \overrightarrow{MD} and \overrightarrow{ON} in terms of i , j and k .	[4]
		•••••
		•••••
	Satore	
		•••••
		•••••
		•••••
		•••••
		•••••

Calculate the a	angle in degrees between the directions of \overrightarrow{MD} and \overrightarrow{ON} .	. [3]
Show that the	length of the perpendicular from M to ON is $\sqrt{\frac{22}{5}}$.	[4
Show that the	length of the perpendicular from M to ON is $\sqrt{\frac{22}{5}}$.	[4
Show that the	length of the perpendicular from M to ON is $\sqrt{\frac{22}{5}}$.	[4
Show that the	length of the perpendicular from M to ON is $\sqrt{\frac{22}{5}}$.	[4
Show that the	length of the perpendicular from M to ON is $\sqrt{\frac{22}{5}}$.	[4
Show that the	length of the perpendicular from M to ON is $\sqrt{\frac{22}{5}}$.	[4]
Show that the	length of the perpendicular from M to ON is $\sqrt{\frac{22}{5}}$.	[4
Show that the	length of the perpendicular from M to ON is $\sqrt{\frac{22}{5}}$.	[4
Show that the	length of the perpendicular from M to ON is $\sqrt{\frac{22}{5}}$.	[4
Show that the	length of the perpendicular from M to ON is $\sqrt{\frac{22}{5}}$.	[4]
Show that the	length of the perpendicular from M to ON is $\sqrt{\frac{22}{5}}$.	[4]
Show that the	length of the perpendicular from M to ON is $\sqrt{\frac{22}{5}}$.	[4]

Additional Page

must be clearly shown.	e the answer(s) to any question(s), the question number(s)
-2.	thre0.
	tprek

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

October/November 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$n 2^{3x-1} = 5(3^{1-x}). $			ln b	C
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••	•••••		•••••	•••••
•••••		•••••	•••••		•••••
•••••	•••••				•••••
•••••			•••••		•••••
•••••	•••••	•••••			•••••
•••••					
••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
•••••	•••••	•••••		•••••	•••••

2

	Find the value of a.
b)	When a has this value, solve the inequality $p(x) < 0$.
	Setores

			to 3 significant figu	
•••••	••••	••••		
	•••••		•••••	•••••
			•••••	•••••
	c P			•••••
				•••••
				•••••
				••••
	ator			•••••
	•••••			•••••
	•••••			••••
				•••••

	Express $4\cos x - \sin x$ in the form $R\cos(x + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$ value of R and give α correct to 2 decimal places.	
		•••••••••
		•••••
		•••••
(b)	Hence solve the equation $4\cos 2x - \sin 2x = 3$ for $0^{\circ} < x < 180^{\circ}$.	
	SatpreP.	

5	(a)	Solve the equation $z^2 - 6iz - 12 = 0$, giving the answers in the form $x + iy$, where x and y are real and exact. [3]

(b) On a sketch of an Argand diagram with origin O, show points A and B representing the roots of the equation in part (a). [1]

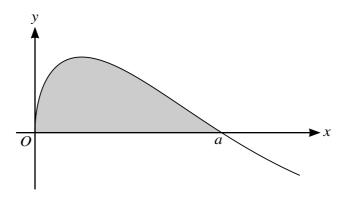
•••••			
•••••			•••••
•••••			
•••••			
Hence show the	hat the triangle OAB is equal to OAB	quilateral.	
Hence show the	hat the triangle OAB is ea	quilateral.	
Hence show the	hat the triangle <i>OAB</i> is ea	quilateral.	
Hence show the	hat the triangle <i>OAB</i> is ea	quilateral.	
	hat the triangle <i>OAB</i> is each	quilateral.	
		quilateral.	
		quilateral.	
		DIE P	

6	Relative to	the origin O ,	the points A ,	B and C have	position v	ectors given	by

n
$$O$$
, the points A , B and C have position vectors given
$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix}.$$

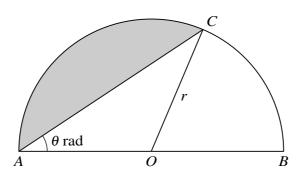
Using a scalar product, find the cosine of angle BAC .	
	•••••
	••••••
	••••••
	•••••
	•••••
	••••••
	•••••
	•••••

			 	•••••
•••••			 	• • • • • • • • • • • • • • • • • • • •
•••••	•••••		 •••••	•••••
••••••	•••••		 ••••••	••••••
	•••••	• • • • • • • • • • • • • • • • • • • •	 	
			 	• • • • • • • • • • • • • • • • • • • •
			 	•••••
•••••			 	• • • • • • • • • • • • • • • • • • • •
•••••			 ••••••	••••••
			 	• • • • • • • • • • • • • • • • • • • •
•••••			 	• • • • • • • • • • • • • • • • • • • •
•••••		Otorol	•••••	•••••
		atpre		
			 	•••••
•••••	•••••		 •••••	• • • • • • • • • • • • • • • • • • • •
••••••	•••••		 •••••	•••••


7 The variables x and θ satisfy the differential equation

$$x\sin^2\theta \frac{\mathrm{d}x}{\mathrm{d}\theta} = \tan^2\theta - 2\cot\theta,$$

for $0 < \theta < \frac{1}{2}\pi$ and x > 0. It is given that x = 2 when $\theta = \frac{1}{4}\pi$.


(-)	$d_{(-1)}$	$2 \cot \theta$
(a)	Show that $\frac{d}{d\theta}(\cot^2\theta) =$	$-\frac{1}{\sin^2\theta}$

					to θ is $-\csc^2\theta$.
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••
•••••					
•••••					•••••
• • • • • • • • • • • • • • • • • • • •					
••••••••		•••••			•••••
Solve the differ	antial aquation	and find the	volue of v who	$n = 0 - 1 \pi$	
Solve the uniter	ential equation	and mid the	value of x whe	$110-\overline{6}n$.	
	5				
	5				
	34	Sato	reP.		
	53	Satp	rep:		
		Satp	reP:		
		Satp	reP:		
		Satp	re9:		
		Satp	re9		
		Satp	re9		
		Satp			
		Satp			
		Satp			
		Sato			
		Sato			
		Sato			
		Satp			
		Sato			
		Sato			
		Sarp			
		Sarp			
		Sarp			

The diagram shows part of the curve $y = \sin \sqrt{x}$. This part of the curve intersects the *x*-axis at the point where x = a.

(a)	State the exact value of a .	[1]
(b)	Using the substitution $u = \sqrt{x}$, find the exact area of the shaded reg bounded by this part of the curve and the <i>x</i> -axis.	ion in the first quadrant
	gatpree	

The diagram shows a semicircle with diameter AB, centre O and radius r. The shaded region is the minor segment on the chord AC and its area is one third of the area of the semicircle. The angle CAB is θ radians.

(a)	Show that $\theta = \frac{1}{3}(\pi - 1.5\sin 2\theta)$.	[4]
		••••
		•••••
		•••••
		••••
		••••
		••••
		•••••

		•••••			
•••••	••••••••••	••••••	••••••••••	••••••••••	
•••••	•••••	••••••	•••••	•••••	
•••••					
•••••				•••••	••••••
Use an iterative f	ormula based	on the equat	ion in part (a)	to determine	θ correct to 3 de
Use an iterative f	ormula based oresult of each it	on the equativeration to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f places. Give the i	ormula based result of each it	on the equativeration to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f places. Give the i	ormula based oresult of each it	on the equativeration to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f places. Give the	ormula based oresult of each it	on the equativeration to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f places. Give the i	ormula based oresult of each it	on the equativersation to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f places. Give the i	ormula based result of each it	on the equativeration to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f places. Give the i	ormula based oresult of each it	on the equative reation to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f places. Give the i	ormula based result of each it	on the equativeration to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f	ormula based oresult of each it	on the equative reation to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f places. Give the i	formula based result of each it	on the equativeration to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f	ormula based result of each it	on the equative reation to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f	ormula based result of each it	on the equativeration to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f	ormula based result of each it	on the equative reation to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f	formula based result of each it	on the equativeration to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f	ormula based result of each it	on the equativeration to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f	ormula based result of each it	on the equative ration to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de
Use an iterative f	formula based result of each it	on the equativeration to 5 of	ion in part (a) decimal places	to determine	θ correct to 3 de

10	Let $f(x) =$	$4 - x + x^2$	
10	Let $I(x) =$	$(1+x)(2+x^2)$.	

Express $f(x)$ in pa	artial fractions.				[
		••••••	•••••		•••••
		•••••	•••••		•••••
					•••••
					•••••
					••••••
			<u>.</u>		
					•••••
•••••					•••••
	14				
		atprey			
•••••					
•••••	••••••	•••••	•••••	•••••	••••••
•••••		•••••	•••••		
•••••			•••••		
•••••		•••••	•••••	•••••	•••••
•••••					

	$\int_0^{\infty} f(x) dx$			ingle logarith	
•••••	 •••••	•••••	•••••	•••••	 ••••••
•••••	 •••••	•••••	•••••	•••••	 •••••
•••••	 •••••	•••••	•••••	•••••	 ••••••
	 		•••••	•••••	
•••••				•••••	
•••••	 				
••••••	 			••••••••••	 •••••
	 		·····		
	4				
	 				 •••••
	12				
•••••	 			•••••	 •••••
•••••	 •••••		•••••		 ••••••
•••••	 •••••		•••••		
•••••	 ••••••	••••••	•••••	•••••	 •••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.						
	••••					
	• • • •					
	•••					
	, 					
	• • • •					
	••••					
	• • • •					
	••••					
	••••					
	••••					
	•••					
	, 					
	• • • •					
	•••					

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

October/November 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

				•••••	
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
	•••••	•••••	•••••	•••••	
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
			•••••	• • • • • • • • • • • • • • • • • • • •	
•••••			•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
••••••		•••••	•••••		• • • • • • • • • • • • • • • • • • • •
		•••••			
•••••		••••••••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
		•••••			• • • • • • • • • • • • • • • • • • • •
		••••••			••••••
••••••		24		• • • • • • • • • • • • • • • • • • • •	••••••
••••••				••••••	••••••
			•••••		••••••
			,		
				• • • • • • • • • • • • • • • • • • • •	•••••

coefficients.			, simplifyir
	 	•••••	••••••
			•••••
	 		••••••
	 		•••••
	 	<u></u>	
			•••••••
	 		••••••
•••••	 	•••••	••••••

Find the exact value o	J ()			
•••••	••••••	•••••	••••••	•••••
	•••••	••••••	••••••	•••••
				••••••
				••••••
		······		
••••••••••				•••••
•••••				
		•••••	•••••	•••••
			•••••	

	$x = 2t - \tan t,$	$y = \ln(\sin 2t),$	
for $0 < t < \frac{1}{2}\pi$.			
Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \cot t$.			[5]
	T E	<u> </u>	
	5		
	3,	0,	
			••••••

(a)	satisfying the inequalities $ z + 2 \le 2$ and Im $z \ge 1$.	
(b)	Find the greatest value of $\arg z$ for points in the shaded region.	

© UCLES 2022 9709/33/O/N/22

x and y are real.	
•••••	
•••••	
	•••••
	•••••
	•••••

						•••••
			•••••			•••••
•••••	•••••	•••••	•••••		•••••	•••••
••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
						•••••
• • • • • • • • • • • • • • • • • • • •					•••••	•••••
			••••••			•••••
• • • • • • • • • • • • • • • • • • • •					•••••••••••	•••••
						•••••
• • • • • • • • • • • • • • • • • • • •	•••••				•••••	•••••
••••••	•••••		•••••	••••••	•••••••	••••••
			•••••		•••••	•••••
•••••		•••••	•••••		•••••	•••••
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••

•••••	••••••		••••••	•••••	· • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••••••••	••••••	••••••	•••••	
				•••••	
				•••••	
				•••••	
•••••					
	•••••			•••••	• • • • • • • • • • • • • • • • • • • •
					• • • • • • • • • • • • • • • • • • • •
•••••					
•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••			
•••••					

_	Show that $p = 3(1 - e^{-p})$.
•	
•	
•	
•	
•	
•	
•	-0'
	Sarpre
•	
•	

•••••••••••	•••••	••••••	••••••	••••••	
•••••	••••••	•••••	•••••	•••••	
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	
•••••	•••••		•••••	•••••	
••••••				••••••••••	•••••
•••••					
Use an iterative	formula based	on the equati	ion in part (a)	to determine <i>n</i>	correct to 2 de
Use an iterative places. Give the	formula based e result of each	on the equati	ion in part (a) decimal places.	to determine <i>p</i>	correct to 2 de
Use an iterative places. Give the	formula based result of each	on the equati	ion in part (a) decimal places.	to determine <i>p</i>	correct to 2 de
Use an iterative places. Give the	formula based e result of each	on the equati	ion in part (a) decimal places.	to determine <i>p</i>	correct to 2 de
Use an iterative places. Give the	formula based e result of each	on the equati	ion in part (a) decimal places.	to determine <i>p</i>	correct to 2 de
Use an iterative places. Give the	formula based result of each	on the equati	ion in part (a) decimal places.	to determine <i>p</i>	correct to 2 de
Use an iterative places. Give the	formula based e result of each	on the equati	ion in part (a) decimal places.	to determine <i>p</i>	correct to 2 de
Use an iterative places. Give the	formula based e result of each	on the equati	ion in part (a) decimal places.	to determine <i>p</i>	correct to 2 de
Use an iterative places. Give the	formula based e result of each	on the equati	ion in part (a) decimal places.	to determine p	correct to 2 de
Use an iterative places. Give the	formula based e result of each	on the equati	ion in part (a) decimal places.	to determine <i>p</i>	correct to 2 de
Use an iterative places. Give the	formula based e result of each	on the equati	ion in part (a) decimal places.	to determine p	correct to 2 de
Use an iterative places. Give the	formula based e result of each	on the equati	ion in part (a) decimal places.	to determine p	correct to 2 de
Use an iterative places. Give the	formula based	on the equati	ion in part (a) decimal places.	to determine <i>p</i>	correct to 2 de
Use an iterative places. Give the	formula based e result of each	on the equatiiteration to 4 o	ion in part (a) decimal places.	to determine p	correct to 2 de
Use an iterative places. Give the	formula based	on the equatiiteration to 4 o	ion in part (a) decimal places.	to determine p	correct to 2 de
Use an iterative places. Give the	formula based e result of each	on the equation to 4 of	ion in part (a) decimal places.	to determine p	correct to 2 de
Use an iterative places. Give the	formula based e result of each	on the equatiiteration to 4 o	ion in part (a) decimal places.	to determine p	correct to 2 de
Use an iterative places. Give the	formula based e result of each	on the equatiiteration to 4 o	ion in part (a) decimal places.	to determine p	correct to 2 de

9	With respect to	the origin O ,	the position	vectors of the	points A, E	B and C are	given by

$$\overrightarrow{OA} = \begin{pmatrix} 0 \\ 5 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 4 \\ -3 \\ -2 \end{pmatrix}.$$

The midpoint of AC is M and the point N lies on BC, between B and C, and is such that BN = 2NC.

(a)	Find the position vectors of M and N . [3]
(b)	Find a vector equation for the line through M and N . [2]

© UCLES 2022 9709/33/O/N/22

A and B .							
		•••••					•••••
		•••••	•••••		•••••	•••••	•••••
			•••••				
			•••••				•••••
	•	•••••	•		••••••	•••••	•••••
					•••••	••••••	• • • • • • • • • • • • • • • • • • • •
							•••••
							•••••
							•••••
•••••						•••••	•••••
							•••••
							•••••
							•••••
							•••••
••••••	••••••••••	•••••	•••••		•••••	••••••	• • • • • • • • • • • • • • • • • • • •
					•••••		•••••
		•••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••
							•••••
		••••					••••
			•••••	••••••	••••••		•••••

10	per	ardener is filling an ornamental pool with water, using a hose that delivers 30 litres of water minute. Initially the pool is empty. At time t minutes after filling begins the volume of water in pool is V litres. The pool has a small leak and loses water at a rate of $0.01V$ litres per minute.
	The	differential equation satisfied by V and t is of the form $\frac{dV}{dt} = a - bV$.
	(a)	Write down the values of the constants a and b . [1]
	(b)	Solve the differential equation and find the value of t when $V = 1000$. [6]
		7. Satorao

© UCLES 2022 9709/33/O/N/22

•••••	•••••					
						• • • • • •
••••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • •
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • •
•••••	••••••	•••••			• • • • • • • • • • • • • • • • • • • •	•••••
						• • • • •
Obtain an expre	ession for V in te	erms of t and t	nence state wh	at happens to	V as t become	es la
Obtain an expre	ession for V in te	erms of t and t	nence state wh	at happens to	V as t become	es la
Obtain an expre	ession for V in te	erms of t and t	nence state wh	at happens to	V as t become	es la
Obtain an expre	ession for V in te	erms of <i>t</i> and l	nence state wh	at happens to	V as t become	es la
Obtain an expre	ession for V in te	erms of <i>t</i> and l	nence state wh	at happens to	V as t become	es 1a
Obtain an expre	ession for V in te	erms of <i>t</i> and l	nence state wh	at happens to	V as t become	es 1a
Obtain an expre	ession for V in te	erms of <i>t</i> and h	nence state wh	at happens to	V as t become	es 1a
Obtain an expre	ession for V in te	erms of <i>t</i> and h	nence state wh	at happens to	V as t become	es 1a
Obtain an expre	ession for V in te	erms of t and h	nence state wh	at happens to	V as t become	es la
Obtain an expre	ession for V in te	erms of <i>t</i> and l	nence state wh	at happens to	V as t become	es la
Obtain an expre	ession for V in te	erms of <i>t</i> and l	nence state wh	at happens to	V as t become	es la
Obtain an expre	ession for V in te	erms of t and l	nence state wh	at happens to	V as t become	es la
Obtain an expre	ession for V in te	erms of t and h	nence state wh	at happens to	V as t become	es la
Obtain an expre	ession for V in te	erms of t and l	nence state wh	at happens to	V as t become	es la
Obtain an expre	ession for V in te	erms of t and l	nence state wh	at happens to	V as t become	es la
Obtain an expre	ession for V in te	erms of t and l	nence state wh	at happens to	V as t become	es la
Obtain an expre	ession for V in te	erms of t and l	nence state wh	at happens to	V as t become	es la
Obtain an expre	ession for V in te	erms of t and l	nence state wh	at happens to	V as t become	
	ession for V in te	e Tor				
		e Tor				
		e Tor				

11	Let $f(x) =$	$5 - x + 6x^2$
11	Let $I(x)$ –	$\frac{5 - x + 6x^2}{(3 - x)(1 + 3x^2)}$

a)	Express $f(x)$ in partial fractions.	[5]
	4	
	Sellole	

	act value of $\int_0^1 f(x) dx$, si			
••••••		•••••		••••••••
				••••••
•••••		•••••		•••••
•••••	······································			***************************************
•••••				••••••
				•••••
•••••		•••••	•••••	•••••
		•••••		
•••••		••••••		•••••
		•••••		
•••••		•••••		

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

May/June 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

	Solve the equation $2(3^{2x-1}) = 4^{x+1}$, giving your answer correct to 2 decimal places.					
•••••	•••••		•••••			
•••••	•••••		•••••			
			•••••			
••••••			•••••			
			••••••			
			•••••			
			•••••			
			•••••			
			••••••			
			•••••			
•••••	•••••		•••••			
			•••••			

		f x , up to and including the term in	
	••••••		••••••
•••••			•••••
	•••••		• • • • • • • • • • • • • • • • • • • •
			•••••
			••••••
			••••••
•••••			•••••
	. Sat-	- re0 :	
			•••••
•••••			

•••••		•••••	•••••	
	,			
•••••	······································			
	,			
	,			
	,			
••••••		······································		•••••
		•••••	•••••	•••••
				•••••
•••••				•••••
•••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	•••••	•••••
		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
		•••••	•••••	•••••
•••••		•••••	••••••	•••••
•••••	•••••	•••••	••••••	•••••
•••••		•••••	••••••	•••••

4 The variables x and y satisfy the differential ed
--

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{xy}{1+x^2},$$

and y = 2 when x = 0.

Solve the differential equation, obtaining a simplified expression for y in terms of x . [7]
The second secon
Sature?

1)	Find the values of a and b .	
		· • • • • • • • • • • • • • • • • • • •
	2	•••••
	8	,
	Gatpre	· • • • • • • • •
		· • • • • • • • • • • • • • • • • • • •
		••••••

••••••	
•••••	
•••••	
•••••	
•••••	
•••••	

6	Let $I =$	\int_{0}^{3}	$\frac{27}{}$ dx.
•	2001	\int_{0}	$\frac{27}{\left(9+x^2\right)^2}\mathrm{d}x.$

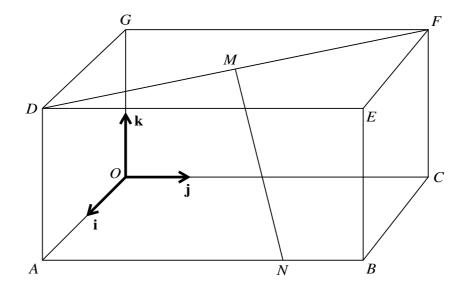
(a)	Using the substitution $x = 3 \tan \theta$, show that $I = \int_0^{\frac{1}{4}\pi} \cos^2 \theta d\theta$.	[4]
		· · · · · · ·
		•••••
		•••••
		•••••
		•••••
	Garbies	•••••
		,
		•••••

Hence find the exact value of I .	
	• • • • • • • • • • • • • • • • • • • •
	•
	••••••
	• • • • • • • • • • • • • • • • • • • •
	••••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •

The	e complex number u is defined by $u = \frac{\sqrt{2} - a\sqrt{2}i}{1 + 2i}$, where a is a positive integer.	
(a)	Express u in terms of a , in the form $x + iy$, where x and y are real and exact.	[3]
		••••••
	32 89	
	Sarprey	

It is now given that a = 3.

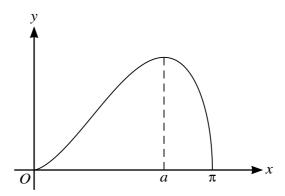
Express u in the form	m $re^{i\theta}$, where $r > 0$ an	$d-\pi < \theta \le \pi$, giving the	e exact values of r and θ .
Using your answer to	o part (b), find the two	square roots of u . Give	your answers in the form
Using your answer to where $r > 0$ and $-\pi$	$<\theta \le \pi$, giving the exa	act values of r and θ .	your answers in the form
Using your answer to where $r > 0$ and $-\pi$	o part (b), find the two $< \theta \le \pi$, giving the exa	act values of r and θ .	your answers in the form
Using your answer to where $r > 0$ and $-\pi$	$<\theta \le \pi$, giving the exa	act values of r and θ .	your answers in the form
Using your answer to where $r > 0$ and $-\pi$	$<\theta \le \pi$, giving the exa	act values of r and θ .	your answers in the form
Using your answer t where $r > 0$ and $-\pi$	$<\theta \le \pi$, giving the exa	act values of r and θ .	your answers in the form
Using your answer t where $r > 0$ and $-\pi$	$<\theta \le \pi$, giving the exa	act values of r and θ .	your answers in the form
Using your answer t where $r > 0$ and $-\pi$	$<\theta \le \pi$, giving the exa	act values of r and θ .	your answers in the form
Using your answer t where $r > 0$ and $-\pi$	$<\theta \le \pi$, giving the exa	act values of r and θ .	your answers in the form
Using your answer t where $r > 0$ and $-\pi$	$<\theta \le \pi$, giving the exa	act values of r and θ .	your answers in the form
Using your answer t where $r > 0$ and $-\pi$	$<\theta \le \pi$, giving the exa	act values of r and θ .	your answers in the form


[4]

8	The	The equation of a curve is $x^3 + y^3 + 2xy + 8 = 0$.				
	(a)	Express $\frac{dy}{dx}$ in terms of x and y.				

Salpres

The tangent to the curve at the point where x = 0 and the tangent at the point where y = 0 intersect at the acute angle α .


Find the exact value of $\tan \alpha$.	

In the diagram, OABCDEFG is a cuboid in which OA = 2 units, OC = 4 units and OG = 2 units. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OG respectively. The point M is the midpoint of DF. The point N on AB is such that AN = 3NB.

(a)	Express the vectors OM and MN in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	[3]
	12 1.5	
(b)	Find a vector equation for the line through M and N .	[2]

	e length of the perpendicula	ar from O to t	ne ime unrou	gn <i>m</i> and <i>n</i> is	$\sqrt{6}$.
•••••					
			•••••		
••••••		••••••	•	••••••	•••••
•••••		PR)		•••••	•••••
••••••••••					•••••
					•••••
•••••					
		nre?			
••••••				••••••	•••••
•••••			•••••		•••••
••••••		•••••	•••••	•••••	•••••

The curve $y = x\sqrt{\sin x}$ has one stationary point in the interval $0 < x < \pi$, where x = a (see diagram).

(a)	Show that $\tan a = -\frac{1}{2}a$.	[4]
	Garbree	
		•••••

(b)	Verify by calculation that a lies between 2 and 2.5. [2]
(a)	Show that if a company of values in the interval 0 < v < z given by the iterative formula
(c)	Show that if a sequence of values in the interval $0 < x < \pi$ given by the iterative formula $x_{n+1} = \pi - \tan^{-1}(\frac{1}{2}x_n)$ converges, then it converges to a , the root of the equation in part (a). [2]
	Satpre?
(d)	Use the iterative formula given in part (c) to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.	
·SathreO·	
Salprey	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

May/June 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

	•••••				
•••••	•••••	•••••	•••••	•••••	•••••
	•••••	•••••	•••••	•••••	•••••
•••••	•••••	•••••	•••••		•••••
•••••				•••••	•••••
				••••••	•••••
			·····		
			••••••	•••••	•••••
		•••••			•••••
					•••••
	•••••	•••••	•••••		•••••
	•••••	•••••	•••••	•••••	•••••

		•••••			
•••••	••••••	•••••	•••••	•••••	•••••
		•••••	•••••	•••••	•••••
		•••••	•••••	•••••	
					•••••
					•••••
					•••••
					•••••
					•••••
					•••••
					•••••
		•••••			•••••
					•••••
		······			•••••
					•••••
					•••••
					•••••
					•••••
					•••••
					•••••
					•••••

The polynomial $ax^3 + x^2 + bx + 3$ is denoted by $p(x)$. It is given that $p(x)$ is contact that when $p(x)$ is divided by $(x + 2)$ the remainder is 5.	11 is one by (2x - 1) and
Find the values of a and b .	[5

	te of this stationary poi	int, giving your a	iiswei collect to 3 si	giiiicant figures.
			••••••	•••••
				••••••
•••••	34,		-9	•••••
		tpre9		
•••••		,		•••••
		•••••		

5	(a)	By sketching a suitable pair of graphs, show that the equation $\ln x = 3x - x^2$ has one real roo	ot. [2]
	(b)	Verify by calculation that the root lies between 2 and 2.8.	[2]
	(0)	verify by Calculation that the root lies between 2 and 2.8.	[2]
			•••••
		atprev d	•••••
	(c)	Use the iterative formula $x_{n+1} = \sqrt{3x_n - \ln x_n}$ to determine the root correct to 2 decimal places.	ces.
			•••••
			•••••
			•••••
			•••••

6 The variables x and y satisfy the differential equ

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x\mathrm{e}^{y-x}$$

and y = 0 when x = 0.

Solve the differential equation, obtaining an expression for y in terms of x .	[
T PRA	
	••••••
	•••••
	•••••
· Satore P	
	•••••
	•••••

					•••••
	•••••				• • • • • • • • • • • • • • • • • • • •
					•••••
	•••••		•••••		•••••
•••••					• • • • • • • • • • • • • • • • • • • •
		•••••			•••••
		,			
•••••			·····		• • • • • • • • • • • • • • • • • • • •
					•••••
Find the value of integers.	f y when $x = 1$,	giving your ans	wer in the form	$a - \ln b$, where a	and b
mægers.					

		10	
7	The	e equation of a curve is $x^3 + 3x^2y - y^3 = 3$.	
	(a)	Show that $\frac{dy}{dx} = \frac{x^2 + 2xy}{y^2 - x^2}$.	[4]
		3	
		Garbrer	

			•••••		• • • • • • • • • • • • • • • • • • • •					•••••
•••••		••••••	•••••	•••••			•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
			•••••		•••••		•••••		•••••	•••••
			•••••		•••••		•••••		•••••	•••••
•••••		•••••	•••••				•••••			
•••••		••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	•••••
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••							•••••		• • • • • • • • • • • • • • • • • • • •	•••••
•••••							•••••	•••••	•••••	•••••
•••••			•••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••••		•••••	•••••
•••••			•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••			•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••		•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •
•••••			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		•••••		••••••	•••••
•••••	·····		•••••	•••••	• • • • • • • • • • • • • • • • • • • •			•••••	••••••	••••••
•••••	,	••••••	- 8	2040	- O			••••••	••••••	••••••
•••••		•	• • • • • • • • • • • • • • • • • • • •		•••••		•••••	••••••	••••••	••••••
•••••			•					•••••	•••••	•••••
	••••									
	•••••									
	•••••									

8	Let $f(x) = \frac{x^2 + 9x}{(3x - 1)(x^2 + 3)}$.	
	(a) Express $f(x)$ in partial fr	r

 	 	•••••
	 	•••••
 	 	•••••
arpi		
 •••••	 	

•••••				•••••
•••••••		••••••		•
				•••••
•••••				
•••••••••				
•••••				
		<mark></mark>		
••••••				
•••••		More		
•••••				
••••••••	••••••	••••••	•••••	•
•••••				,
•••••				

9	The	lines	l and	m	have	vector	equatio	ns
---	-----	-------	-------	---	------	--------	---------	----

 $\mathbf{r} = -\mathbf{i} + 3\mathbf{j} + 4\mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} - \mathbf{k})$ and $\mathbf{r} = 5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k} + \mu(a\mathbf{i} + b\mathbf{j} + \mathbf{k})$ respectively, where a and b are constants.

(a)	Given that l and m intersect, show that $2b - a = 4$.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
	Gatpree	•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

			•••••
• • • • • • • • • • • • • • • • • • • •			•••••
• • • • • • • • • • • • • • • • • • • •			•••••
•••••			•••••
•••••			•••••
When a and b h	ave these values, find the p	position vector of the point of	intersection of l an
When a and b h	ave these values, find the p	position vector of the point of	intersection of l an
When a and b h	ave these values, find the p	position vector of the point of	intersection of <i>l</i> an
When a and b h	ave these values, find the p	position vector of the point of	intersection of l an
When a and b h	ave these values, find the p	position vector of the point of	intersection of l an
When a and b h	ave these values, find the p	position vector of the point of	
When a and b h	ave these values, find the p	position vector of the point of	
When a and b h	ave these values, find the p	position vector of the point of	
When a and b h	ave these values, find the p	position vector of the point of	
When <i>a</i> and <i>b</i> h	ave these values, find the p	position vector of the point of	
When a and b h	ave these values, find the p	position vector of the point of	
When <i>a</i> and <i>b</i> h	ave these values, find the p	position vector of the point of	
When a and b h	ave these values, find the p	position vector of the point of	
When a and b h	ave these values, find the p	position vector of the point of	
When a and b h	ave these values, find the p	position vector of the point of	
When a and b h	ave these values, find the p	position vector of the point of	
When a and b h	ave these values, find the p	position vector of the point of	

10	The complex number $-1 + \sqrt{7}i$ is denoted by u . It is given that u is a root of the equation
	$2x^3 + 3x^2 + 14x + k = 0,$

where k is a real constant.

(a)	Find the value of k .	[3]
		•••••
		•••••
(b)	Find the other two roots of the equation.	[4]
	Satore?	
	Setpres	

(c)	On an Argand diagram, sketch the locus of points representing complex numbers z satisfying
	the equation $ z - u = 2$. [2]
(d)	Determine the greatest value of $\arg z$ for points on this locus, giving your answer in radians. [2]
	940194

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number must be clearly shown.	er(s)
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

9709/32/M/J/22

© UCLES 2022

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS

9709/33

Paper 3 Pure Mathematics 3

May/June 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

937725522*

This document has 20 pages. Any blank pages are indicated.

Find, in terms of a, the set of values of x satisfying the inequality

1

2 3x + a < 2x + 3a ,	
where a is a positive constant.	[4]
3	
4 Sathered C	
	•

•••••		•••••	•••••	
•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
		•••••		
•••••		•••		
		•••••••••••••••••••••••••••••••••••••••		
		<mark></mark>		
•••••				· · · · · · · · · · · · · · · · · · ·
•••••		•••••		
		•••••		
•••••		•••••		
	,	•••••		,

	in x .
(b)	Hence solve the equation $\log_3(4y+1) = 1 + 2\log_3(2y-1)$, giving your answer correct to 2 dec places.
	places.

)	Obtain an expression for $\frac{dy}{dx}$ and show it can be written in the form $\sec^2 x(a+b\sin 2x)e^{-4x}$, whe a and b are constants.
	SatpreP'

5	The	complex number $3 - i$ is denoted by u .
	(a)	Show, on an Argand diagram with origin O , the points A , B and C representing the complex numbers u , u^* and $u^* - u$ respectively.
		State the type of quadrilateral formed by the points O, A, B and C . [3]
	(b)	Express $\frac{u^*}{u}$ in the form $x + iy$, where x and y are real. [3]
		SatpreP.

	dering the argument of $\frac{u^*}{u}$, or otherwise, prove that $\tan^{-1}(\frac{3}{4}) = 2\tan^{-1}(\frac{1}{3})$.
•••••	
• • • • • • • • • • • • • • • • • • • •	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	

Show that $\frac{dy}{dx} =$	$\frac{\cos t}{\sin^2 t}$.		
•••••			
•••••			
			•••••
	(6)		
			•••••
•	13		••••••
	\\ 'Sato	reP:	
	••••••		•••••

 •••••
 ••••••
••••••
••••••
•••••
•••••
••••••
 •••••
•••••

7	Let $f(x) =$	$5x^2 + 8x - 3$
,	Let $I(x)$ –	$\frac{1}{(x-2)(2x^2+3)}$.

(a)	Express $f(x)$ in partial fractions. [5]]
		••
		••
		••
		••
		••
		••
		••
	gatbleb	••
		••
		•
		•
		•
		•
		••
		••
		••

	•••••		•••••
•••••	•••••		•••••••••••
			•••••
			•••••
•••••		, <mark></mark>	
•••••			•••••
•••••			
		OFEY	••••••
			•••••••••••

At time t days after the start of observations, the number of insects in a population is N. The variation

(a)	Solve the differential equation, obtaining a relation between N , k and t .	[5
		,
		,
	9 alprev	
		,
		,
		,

				•••••		
•••••	•••••	•••••	•••••			
•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••••
•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••••	•••••			•••••	•••••	
Obtain an ex	coression fo	r N in terms	of <i>t</i> , and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	expression fo	r N in terms	of t , and fin	d the greatest	value of <i>N</i> pr	edicted by this n
Obtain an ex	epression fo	r N in terms	s of t , and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	epression fo	r N in terms	of t , and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	epression fo	4	s of t, and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	epression fo	r N in terms	s of t , and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	epression fo	4	s of t, and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	epression fo	4	s of t , and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	epression fo	4	s of t, and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	epression fo	4	s of t , and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	xpression fo	4	s of t, and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	xpression fo	4	s of t, and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	xpression fo	4	s of t, and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	xpression fo	4	s of t, and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	xpression fo	4	s of t, and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	xpression fo	4	s of t, and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	xpression fo	4	s of t, and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	xpression fo	4	s of t, and fin	d the greatest	value of N pr	edicted by this n
Obtain an ex	xpression fo	4	s of t, and fin	d the greatest	value of N pr	edicted by this n

	th respect to the origin O , the point A has position vector given by $\overrightarrow{OA} = \mathbf{i} + 5\mathbf{j} + 6\mathbf{k}$. The line l has cor equation $\mathbf{r} = 4\mathbf{i} + \mathbf{k} + \lambda(-\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$.
(a)	Find in degrees the acute angle between the directions of OA and l . [3]
(b)	Find the position vector of the foot of the perpendicular from A to l . [4]

•••••		
•••••	 	
	 ,	

10	The constant a is such that	$\int_{1}^{a} x^2 \ln x \mathrm{d}x = 4.$
		l 1

	Show that $a = \left(\frac{35}{3 \ln a - 1}\right)^{\frac{1}{3}}$.
•	
•	
•	
•	
•	
•	
•	
	'SatpreP'
•	
•	
•	
•	

•••••			
•••••			•••••
•••••			•••••
•••••		•••••	•••••
•••••		•••••	•••••
•••••		•••••	•••••
•••••			••••••
•••••			•••••
			•••••
			•••••
Use an iterative	formula based on the equation	on in part (a) to determine	a correct to 2 dec
Use an iterative places. Give the	formula based on the equation result of each iteration to 4 de	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equation result of each iteration to 4 de	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equation result of each iteration to 4 de	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equation result of each iteration to 4 de	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equation result of each iteration to 4 de	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equation result of each iteration to 4 de	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equation result of each iteration to 4 de	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equation result of each iteration to 4 do	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equation result of each iteration to 4 de	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equation result of each iteration to 4 do	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equatic result of each iteration to 4 do	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equatic result of each iteration to 4 de	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equation result of each iteration to 4 do	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equatic result of each iteration to 4 do	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equatic result of each iteration to 4 do	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equation result of each iteration to 4 do	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equatic result of each iteration to 4 do	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equatic result of each iteration to 4 do	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equation result of each iteration to 4 do	on in part (a) to determine ecimal places.	a correct to 2 dec
Use an iterative places. Give the	formula based on the equation result of each iteration to 4 do	on in part (a) to determine ecimal places.	a correct to 2 dec

© UCLES 2022

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.
182400°
Setpres

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

February/March 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

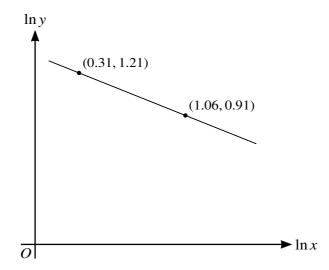
- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE



	•••••	•••••		
	•••••	•••••	,	•••••
		•••••		
•••••				•••••
•••••			<mark></mark>	
		•••••		
	•••••	•••••	,	•••••

2 On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z+2-3i| \le 2$ and $\arg z \le \frac{3}{4}\pi$. [4]

3

The variables x and y satisfy the equation $x^n y^2 = C$, where n and C are constants. The graph of $\ln y$ against $\ln x$ is a straight line passing through the points (0.31, 1.21) and (1.06, 0.91), as shown in the diagram.

Find the value of n and find the value of C correct to 2 decimal places.	[5]
	•••••
SatpreP.	

4	The parametric equations	of a curve are	
		$x = 1 - \cos \theta,$	$y = \cos \theta - \frac{1}{4}\cos 2\theta.$

Show that $\frac{dy}{dx} = -2\sin^2(\frac{1}{2}\theta)$.	[5]
Patprey	

The angles α and β lie between 0° and 180° and are such that

5

	$tan(\alpha + \beta) = 2$ and	$\tan \alpha = 3 \tan \beta.$	
Find the possible values	s of α and β .		[6
		<u></u>	
	3	- / .\$/	
			••••••

Give your answer	s in the form $x + iy$, where x and y are real.	
•••••		•••••
•••••		•••••
•••••		
•••••		••••••
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
	······································	
		•
•••••		••••••
•••••		•••••
•••••		•••••
•••••		•••••

	9
(a)	By sketching a suitable pair of graphs, show that the equation $4 - x^2 = \sec \frac{1}{2}x$ has exactly one root in the interval $0 \le x < \pi$. [2]
(b)	Verify by calculation that this root lies between 1 and 2. [2]
(c)	Use the iterative formula $x_{n+1} = \sqrt{4 - \sec \frac{1}{2}x_n}$ to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

u)	Find the quotient and remainder when $8x^3 + 4x^2 + 2x + 7$ is divided by $4x^2 + 1$.
	Satpre?

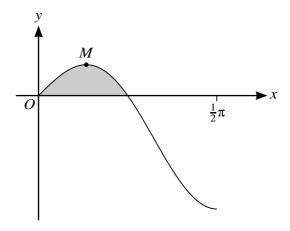
	clice find the exact value of		4 2 . 1	$ \mathrm{d}x$.	•			
	ence find the exact value of $\int_0^{\frac{1}{2}}$		$4x^2 + 1$					
•••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••
		•••••						
•••		•••••	•••••	•••••	•••••	•••••		•••••
•••		••••••	••••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••		•••••						
•••								
•••		• • • • • • • • • • • • • • • • • • • •	••••••	••••••••			• • • • • • • • • • • • • • • • • • • •	•••••
•••								•••••
•••		•••••		••••••		•••••		•••••
•••								•••••
					<u></u>			
	Ž-s							
•••								
•••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••		•••••
•••								
		•••••						
		•••••						
•••		•••••	••••••	•••••		•••••		••••••
•••	•••••	•••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••

0	The variables	randne	noticfy the	differential	aquation
"	THE VALIABLES	x anu v s	sausiv uic	uniterennar	cuuanoi

and y satisfy the differential equation
$$(x+1)(3x+1)\frac{dy}{dx} = y,$$

and it is given that y = 1 when x = 1.

Solve the differential equation and find the exact value of y when $x = 3$, giving your answer is simplified form.	n a [9]
	••••
	••••
	••••
	· • • • •
3, -, -, -, -, -, -, -, -, -, -, -, -, -,	• • • •
	••••
	••••
	••••


 • • • • •
• • • • •
• • • • •
 • • • • •
• • • • •
• • • • •

10 The points A and B have position vectors $2\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ respectively. The line l has vector

a)	Find a vector equation for the line through <i>A</i> and <i>B</i> .	[3
		•••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
b)	Find the acute angle between the directions of AB and l , giving your answer in degrees.	
b)		
b)	Find the acute angle between the directions of AB and l , giving your answer in degrees.	[3
b)		••••
b)		
b)		
b)		
b)		••••
b)		
b)		

 •••••
 •••••
 •••••
 •••••

11

The diagram shows the curve $y = \sin x \cos 2x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

(a)	Find the x -coordinate of M , giving your answer correct to 3 significant figures. [6]
	Satore?

x-axis in the first q	quadrant, giving your a	nswer in a simpl	ified exact form.	
•••••				
				,
		••••••		•••••
•••••				••••••
•••••		•••••••••••		
••••••	•••••			
•••••	•••••	••••		
		•••••		
•••••				
•••••	•••••			
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number must be clearly shown.	er(s)
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages.

			•••••	•••••	
•••••	•••••				
•••••	,	• • • • • • • • • • • • • • • • • • • •			
•••••					
•••••					
•••••					
••••••	,,				,
•••••••				• • • • • • • • • • • • • • • • • • • •	,
••••••			•••••		
•••••					•••••
					,
•••••					

2	(a)	Express $5 \sin x - 3 \cos x$ in the form $R \sin(x - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2}\pi$. Given value of R and give α correct to 2 decimal places.	e the exact [3]
			•••••
			••••••
	(b)	Hence state the greatest and least possible values of $(5 \sin x - 3 \cos x)^2$.	[2]
		(Setpres)	•••••

()	Find the coordinates of this point.	[
		••••••
(b)	Determine whether the stationary point is a maximum or a minimum.	

\int_{3}^{∞}	$\frac{1}{(x+1)\sqrt{x}}\mathrm{d}x.$	[6
	PAN	
 19		
 3		
Sat	pre?	

5	(a)	Show	that	the	equation	n
---	-----	------	------	-----	----------	---

(b)

$\cot 2\theta + \cot \theta = 2$	
can be expressed as a quadratic equation in $\tan \theta$.	[3]
	•••••
	••••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	· • • • • • • • • • • • • • • • • • • •
Hence solve the equation $\cot 2\theta + \cot \theta = 2$, for $0 < \theta < \pi$, giving your answers correct to places.	
places.	[3]
	•••••
	•••••

Find the values of	a and b .		[
•••••			
•••••			
•••••			
•••••			
	12	- 0	
		tbiek	
•••••			
•••••	•••••		•••••

()	Given that $y = \ln(\ln x)$, show that $\frac{dy}{dx} = \frac{1}{x \ln x}.$
The	variables x and t satisfy the differential equation dx
It is	$x \ln x + t \frac{dx}{dt} = 0.$ given that $x = e$ when $t = 2$.
(b)	Solve the differential equation obtaining an expression for x in terms of t , simplifying you answer.
	atore 6°

	· • •
	· • •
	· • •
	· • •
	· • •
	· • •
	· • •
	· • •
	· • •
	· • •
	· • •
	· • •
	· • •
	· • •
	· • •
	· • •
	· • •
	•••
	•••
	•••
Hence state what happens to the value of x as t tends to infinity.	1]
	· • •
	· • •
	· • •

(c)

The	constant a is such that $\int_{1}^{a} \frac{\ln x}{\sqrt{x}} dx = 6.$	
(a)	Show that $a = \exp\left(\frac{1}{\sqrt{a}} + 2\right)$.	[5]
	$[\exp(x)$ is an alternative notation for e^x .]	
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		· • • •
	SatpreP.	•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••

Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.	Verify by ca.	disculation that a lies between 9 and 11.	
Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.	•••••		
Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.			
Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.			
Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.	•••••		
Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.			
Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.			
Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.			
Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.			
Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.			
Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.	•••••		
Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.			
Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.			
Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.			
Use an iterative formula based on the equation in part (a) to determine a correct to 2 dec places. Give the result of each iteration to 4 decimal places.			
	Use an iterat places. Give	tive formula based on the equation in part (a) to determine a coefficients the result of each iteration to 4 decimal places.	orrect to 2 dec
	•••••		
	••••••		••••••
	••••••		•••••
	•••••		•••••
			••••••

(a)	
` ′	Show that l and m are perpendicular. [2]
(b)	Show that l and m intersect and state the position vector of the point of intersection. [5]
	SatoreP.
	SatoreP.
	Setore
	Setore
	Setores

(0)	Show that the length of the name of index from the entire to the line or in 1/5
(c)	Show that the length of the perpendicular from the origin to the line m is $\frac{1}{3}\sqrt{5}$. [4]
	Välinie

(a)	Find the values of a and b .	
		•••••
		•••••••
		••••••
		•••••••
		••••••
(b)	State a second complex root of this equation.	

(c)	Find	the real factors of $p(x)$. [2]
	•••••	
	•••••	
	•••••	
	•••••	
	•••••	
	•••••	
	•••••	T PRA
	•••••	
	•••••	
(d)	(i)	On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $ z-u \le \sqrt{5}$ and $\arg z \le \frac{1}{4}\pi$. [4]
	(ii)	Find the least value of Im z for points in the shaded region. Give your answer in an exact form.

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.
· Sornes
Setpres

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

integers.	e of x for which	, ,	- · · · · y · · ·			$\ln b$		
•••••	••••••		•••••••	•••••••	•	••••••	••••••••	•••
								•••
•••••••••	•••••		•	••••••	•	•	•	•••
								•••
								•••
••••••						••••••	••••••	•••
								•••
••••••						• • • • • • • • • • • • • • • • • • • •	••••••	•••
				<mark></mark>				•••
•••••								•••
•••••								•••
		(Sai	pref					
••••••				•••••		••••••		•••
								•••
••••••			• • • • • • • • • • • • • • • • • • • •	••••••				•••
								•••
				•••••				

		•••••			
•••••	•••••	• • • • • • • • • • • • • • • • • • • •			•••••
•••••	•••••	•••••			•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	
	•••••	•	•	•••••••	•••••
•••••			····		
•••••					
•••••					•••••
••••				• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••	
•••••	•••••	•	•	•	
	· · · · · · · · · · · · · · · · · · ·				
•••••	,				

3 (a)	Given the complex numbers $u = a + ib$ and $w = c + id$, where a , b , c and d are real, prove th $(u + w)^* = u^* + w^*$.
(1)	
(b)	Solve the equation $(z + 2 + i)^* + (2 + i)z = 0$, giving your answer in the form $x + iy$ where x are real.
	Saipre?

Express $\frac{4x^2 - 13x + 13}{(2x - 1)(x - 3)}$,		
	•••••		
		<mark></mark>	
•••••	•••••	•••••	

5	(a)	On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $ z-3-2i \le 1$ and $\text{Im } z \ge 2$. [4]
	(b)	Find the greatest value of $\arg z$ for points in the shaded region, giving your answer in degrees.
	(,-)	[3]

	$\frac{1}{2}(\sin 5x + \sin x) \equiv \sin 3x \cos 2x.$	[3]
••••		
. 		
••••		
•••••		
•••••		•••••••••••
•••••		
		••••••••••
•••••		
, 	3, -0'	
· • • • •	Satore	
• • • • •		•••••
•••••		
• • • • • •		•••••
•••••		

(b)

Hence show that $\int_0^{\frac{1}{4}\pi} \sin 3x \cos 2x dx = \frac{1}{5}(3 - \sqrt{2}).$	[3]

7	The	variables 3	x and	y satisfy	the	differential	equation

$$e^{2x}\frac{\mathrm{d}y}{\mathrm{d}x} = 4xy^2,$$

Solve the differential equation, obtaining an expression for y in terms of x .	[7]
	••••
	••••
PA	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••

 • • • • •
• • • • •
• • • • •
 • • • • •
• • • • •
• • • • •

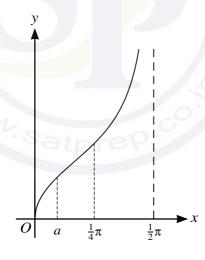
8	(a)	By first expanding $(\cos^2 \theta + \sin^2 \theta)^2$, show that	
		$\cos^4\theta + \sin^4\theta \equiv 1 - \frac{1}{2}\sin^2 2\theta.$	[3]
			•••••
			•••••
			•••••
		T ERA	•••••
			•••••
			•••••
			•••••
			•••••
			•••••
		60'	
		Satpre?	
			•••••
			•••••

	13
(b)	Hence solve the equation
	$\cos^4\theta + \sin^4\theta = \frac{5}{9},$
	for $0^{\circ} < \theta < 180^{\circ}$. [4]

9	The	equation of a curve is $ye^{2x} - y^2e^x = 2$.
	(a)	Show that $\frac{dy}{dx} = \frac{2ye^x - y^2}{2y - e^x}$. [4]
		arpres

(b)	Find the exact coordinates of the point on the curve where the tangent is parallel to the <i>y</i> -axis. [4

10 With respect to the origin O, the position vectors of the points A and B are given by $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and


\overrightarrow{OB}	$a = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$.	\-1/
(a)	Find a vector equation for the line l through A and B .	[3]
(b)	The point C lies on l and is such that $\overrightarrow{AC} = 3\overrightarrow{AB}$.	
	Find the position vector of C .	[2]

Find the possible position vectors of the point P on l such that $OP = \sqrt{14}$.	
	••••••
	••••••
	•••••
	•••••
	•••••
	•••••
	•
	•••••
	•••••••
	•••••
	••••••

11 The equation of a curve is $y = \sqrt{\tan x}$, for $0 \le x < \frac{1}{2}\pi$.

(a)	Express $\frac{dy}{dx}$ in terms of	an x, and verify that $\frac{dy}{dx} = 1$ when $x = \frac{1}{4}\pi$.	[4]
-----	-------------------------------------	---	-----

The value of $\frac{dy}{dx}$ is also 1 at another point on the curve where x = a, as shown in the diagram.

(b) Show that
$$t^3 + t^2 + 3t - 1 = 0$$
, where $t = \tan a$. [4]

(c)	Use the iterative formula
	$a_{n+1} = \tan^{-1} \left(\frac{1}{3} (1 - \tan^2 a_n - \tan^3 a_n) \right)$
	$a_{n+1} = \tan \left(\frac{1}{3} (1 - \tan a_n - \tan a_n) \right)$
	to determine a correct to 2 decimal places, giving the result of each iteration to 4 decimal places.
	[3]

© UCLES 2021

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.
· Sornes
Setpres

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

•••••			•••••	•••••
•••••	••••••	••••••	•••••	
••••••	,	,	•••••	•••••
		•••••		
				,
				•••••
			•••••	•••••
				••••••
•••••			•••••	• • • • • • • • • • • • • • • • • • • •
•••••				• • • • • • • • • • • • • • • • • • • •
•••••	,	,	••••••	•••••
	•••••			
	•••••			

2 (a)	Sketch	the graph	of $v =$	2x-1	31.

L	J

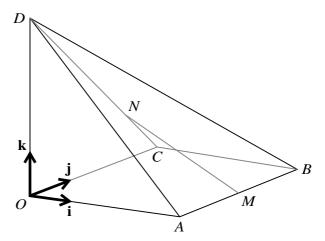
Solve the inequality $ 2x-3 < 3x + 2$.	[3]
3, 0'/	

•••••	•••••	•••••		••••••
•••••	••••••	•••••		•••••
				•••••
•••••				••••••
		•••••	·······	•••••
				•••••
	••••••	•••••		•••••
	••••••	•••••		•••••

Find the exact value of	$\mathbf{J}\frac{1}{3}\pi$	
•••••	•••••	 ••••••
•••••		 •••••
	•••••	 •••••
		••••••
		 •••••
		 •••••
		••••••
		 •••••
		 •••••
•••••		 •••••
		 •••••
		 •••••
•••••	•••••	 ••••••
••••••	••••••	 •••••
•••••		

•••••	
•••••	
••••••	
•••••••	

(a) By first expanding $\cos(x - 60^\circ)$, show that the expression


and the value of α correct to 2 decimal places. Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ tak least possible value.	$2\cos(x-60^\circ)+\cos x$
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	can be written in the form $R\cos(x - \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$. Give the exact value of R and the value of α correct to 2 decimal places.
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	T P P
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	Satore
Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ take least possible value.	
least possible value.	
	Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ takes it least possible value.

7 The equation of a curve is ln(x + y) = x - 2y.

(a)

Show that $\frac{dy}{dx} = \frac{x+y-1}{2(x+y)+1}$.	[4]
	/
4 .5	
34 69	
Ze dolle A	

•••••		•••••				•••••
•••••	••••••	•••••	••••••	•••••	•••••	•••••
	•••••	•••••	•••••	•••••	•••••	•••••
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
						•••••
•••••			• • • • • • • • • • • • • • • • • • • •		•••••	•••••
••••••					•••••••••••••••••••••••••••••••••••••••	••••••
						•••••
•••••		•••••				•••••
•••••	•••••	Satn	raO.		••••••	•••••
			reP			
•••••		•••••				•••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
						•••••

In the diagram, OABCD is a pyramid with vertex D. The horizontal base OABC is a square of side 4 units. The edge OD is vertical and OD = 4 units. The unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OD respectively.

The midpoint of AB is M and the point N on CD is such that DN = 3NC.

(a)	Find a vector equation for the line through M and N . [5]]
		•
		•
		•
		•
		•
		•
		•

••••••	••••••
•••••	•••••
•••••	 •••••
,	
	•••••
•••••	 •••••
•••••	•••••
•••••	•••••
•••••	 •••••
•••••	

9	Let $f(x) =$	$\frac{1}{(9-x)\sqrt{x}}.$
		$(\mathcal{I} - \mathcal{X}) \mathbf{V} \mathcal{X}$

		•••••
		•••••
		•••••
		•••••
		• • • • • • • • • • • • • • • • • • • •
		•••••
		•••••
		•••••
••••••		•••••
		•••••
	Setores S	
	Serpress	
	atores di	

	bstitution $u = \sqrt{x}$, show that $\int_0^4 f(x) dx = \frac{1}{3} \ln 5$.	
•••••		••••••
•••••		
•••••		•••••
•••••		
•••••		
••••		
•••••		
	Carbles	•••••
		••••••
	•••••••••••••••••••••••••••••••••••••••	•••••

10	A large plantation of area $20 \mathrm{km^2}$ is becoming infected with a plant disease. At time t years the area
	infected is $x \text{km}^2$ and the rate of increase of x is proportional to the ratio of the area infected to the
	area not yet infected.

When t = 0, x = 1 and $\frac{dx}{dt} = 1$.

(a)	Show that x and t satisfy the differential equation
-----	---

	•	
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{19x}{20 - x}.$	[2]
		•••••
(b)	Solve the differential equation and show that when $t = 1$ the value of x satisfies the equation $x = e^{0.9 + 0.05x}$.	tion [5]
	Sathre 9	
		•••••

© UCLES 2021 9709/33/O/N/21

(c)	Use an iterative formula based on the equation in part (b), with an initial value of 2, to determine
	x correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
(d)	Calculate the value of t at which the entire plantation becomes infected. [1]

a)	Express u in the form $re^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$, giving the exact values of r and θ
	T PAN
(b)	Hence show that u^6 is real and state its value.
(b)	
(b)	Hence show that u^6 is real and state its value.
(b)	Hence show that u^6 is real and state its value.
(b)	Hence show that u^6 is real and state its value.
(b)	Hence show that u^6 is real and state its value.
(b)	Hence show that u^6 is real and state its value.
(b)	Hence show that u^6 is real and state its value.
(b)	Hence show that u^6 is real and state its value.
(b)	Hence show that u^6 is real and state its value.

(c)	(i)	On a sketch of an Argand diagram, shade the region whose points represent	•
		numbers z satisfying the inequalities $0 \le \arg(z - u) \le \frac{1}{4}\pi$ and $\text{Re } z \le 2$.	[4]

3 significant figures.	[2]
Setore?	
	•••••

(ii) Find the greatest value of |z| for points in the shaded region. Give your answer correct to

© UCLES 2021 9709/33/O/N/21

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(must be clearly shown.	(s)
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•
	•

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2021 9709/33/O/N/21

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

Satpre?	Setpre?	
	Setpre?	
	Setpre?	
	Setpre?	
	Setpre?	

Your working should	d show clearly that the ed	quation has only one real root.	
C	·		
•••••	,		••••••
•••••	•••••		•••••
			• • • • • • • • • • • • • • • • • • • •
•••••	,		••••••
			•••••
•••••			•••••
			•••••
		···········	
•••••			•••••
			•••••
			• • • • • • • • • • • • • • • • • • • •
			•••••

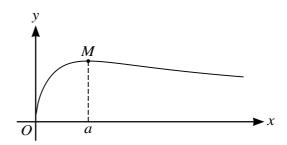
3	(a)	Given that $cos(x - 30^\circ) = 2 sin(x + 30^\circ)$, show that $tan x =$	$= \frac{2 - \sqrt{3}}{1 - 2\sqrt{3}}.$ [4]
	<i>a</i> >		
	(b)	Hence solve the equation $\cos(x - 30^{\circ}) = 2\sin(x + 30^{\circ}),$	
		for $0^{\circ} < x < 360^{\circ}$.	[2]

4

(a)	Prove that $\frac{1-\cos 2\theta}{1+\cos 2\theta} \equiv \tan^2 \theta$.	[2]
		••••
		••••
		••••
		•••••
		••••
(b)	Hence find the exact value of $\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \frac{1 - \cos 2\theta}{1 + \cos 2\theta} d\theta.$	[4]
	6"	
		••••
		••••
		••••
		••••
		••••
		••••
		••••

In an Argand diagram with origin O , the roots of this equation are represented by the distinct point A and B . (b) Given that A and B lie on the imaginary axis, find a relation between p and q . [2]	(a)	Solve the equation $z^2 - 2piz - q = 0$, where p and q are real constants.	[2]
A and B .			
A and B .			
A and B .			
A and B .			•••••
A and B .			•••••
A and B .			•••••
A and B .			
A and B .		T PA	••••••
A and B .			••••••
A and B .			
A and B .			
(b) Given that A and B lie on the imaginary axis, find a relation between p and q. [2			
	In a <i>A</i> ar	n Argand diagram with origin O , the roots of this equation are represented by the diagram B .	istinct point
	A ar	$\operatorname{ad} B$.	
	A ar	$\operatorname{ad} B$.	
	A ar	$\operatorname{ad} B$.	
	A ar	$\operatorname{ad} B$.	
	A ar	$\operatorname{ad} B$.	istinct points
	A ar	$\operatorname{ad} B$.	
	A ar	$\operatorname{ad} B$.	
	A ar	$\operatorname{ad} B$.	
	A ar	$\operatorname{ad} B$.	

•••••
 •
••••••
• • • • • • • • • • • • • • • • • • • •
 •
• • • • • • • • • • • • • • • • • • • •
•••••
 •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
 •••••
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
•••••
 •••••
 •


6 The parametric equations of a curve a
--

$$x = \ln(2+3t),$$
 $y = \frac{t}{2+3t}.$

Show that the gradient of the curve is always positive.	
	•••••
4	
Patprey	

	• • • • • • • • • • • • • • • • • • • •									
	•••••									
	•••••									
	•••••									
	•••••							•••••		
	•••••							•••••		•••
• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •							•••
	• • • • • • • • • • • • • • • • • • • •							•••••		•••
	•••••									•••
• • • • • • • • • • • • • • • • • • • •										•••
• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		• • • •
						· · · · · · · · · · · · · · · · · · ·				•••
•••••	•••••							• • • • • • • • • • • • • • • • • • • •		•••
•••••			•••••		• • • • • • • • • • • • • • • • • • • •			•••••		•••
•••••					•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••
•••••	•••••							• • • • • • • • • • • • • • • • • • • •		• • • •
•••••	•••••		•••••		•••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • •
•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••	•••••	•••••	•••
•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••	•••••	•••••	•••
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • •
• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••		• • • • • • • • • • • • • • • • • • • •		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		•••••	•••••		••••
	•••••						•••••	•••••		••••

7

The diagram shows the curve $y = \frac{\tan^{-1} x}{\sqrt{x}}$ and its maximum point M where x = a.

((a)	Show	that o	satisfies	the ec	mation
١	a)	SHOW	mai a	sausiics	uic cc	luation

$a = \tan\left(\frac{2a}{1+a^2}\right)$).	[4]
(1)		
•••••		
 	·····	
 •		
 •••••		
 •		

(b)	Verify by calculation that <i>a</i> lies between 1.3 and 1.5.
	T PAN
(a)	Use an iterative formula based on the equation in part (a) to determine a connect to 2 decimal
(c)	Use an iterative formula based on the equation in part (a) to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
	Patprey

8	With	a respect to the origin O , the points A and B have position vectors given by $\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ and
	\overrightarrow{OB}	$= \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}. \text{ The line } l \text{ has equation } \mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}.$
	(a)	Find the acute angle between the directions of AB and l . [4]
		BRA
		Satpre Co.

Find	the position	n vecto	or of the	e point <i>I</i>	P on l s	uch tha	tAP = I	BP.			
•••••			•••••	•••••	•••••	•••••	•••••	••••••		•••••	
•••••		•••••	••••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••
•••••		•••••					•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	,			•••••	•••••	•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	••••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••
•••••						•••••	•••••			•••••	•••••
•••••		•••••						••••			
•••••		•••••				•••••••					
•••••		•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	,	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
•••••		•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •

(a)	Find the exact coordinates of the stationary point.	
		••••••
		•••••
		••••••
		••••••
		••••••
	Satpre?	••••••••••
		••••••
		•••••••

J]	$y dx = 18 \ln 2 - 9.$			
		••••		
•••••	•••••		•••••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
•••••	••••••	•••••		
			••••	
••••••		•••••		
•••••				
•••••				
•••••				
•••••				
		atpre		
•••••	•••••		•••••	
	••••••			
•••••		•••••		

10	The variables x and t satisfy the differential equation $\frac{dx}{dt} = x^2(1+2x)$, and $x = 1$ when $t = 0$.
	Using partial fractions, solve the differential equation, obtaining an expression for t in terms of x . [11]
	2. Satore?

 • • • • •
• • • • •
• • • • •
 • • • • •
• • • • •
• • • • •

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number must be clearly shown.	er(s)
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

Solve the in	equality 2	2x-1 < 3	3 x+1 .								
		•••••	•••••		•••••			•••••	•••••		•••••
					•••••				•••••		
			••••••	•••••	•••••			•••••	•••••		
			•••••	••••••	•••••			•••••	•••••		•••••
•••••	•••••	•••••	•••••	•••••		•••••	••••••	•••••	•••••	••••••	•••••
					•••••			•••••			•••••
•••••	•••••	•••••	••••••		•••••			•••••	•••••		•••••
								•••••	•••••	••••••	•••••
	•••••		7		••••				•••••		•••••
					•••••				•••••		•••••
•••••					•••••					•••••••	••••••
•••••		•								••••••	•••••
									•••••	••••••	••••••
•••••									•••••	••••••	•••••
•••••	•••••	13			•••••					•••••••••••	•••••
	•••••			atp	ore	P		•••••	•••••	•••••••••••	••••••
		•••••		•••••			•	•••••			••••••
•••••		•••••	••••••	••••••	•••••	•	•	•••••	•••••		••••••
		••••									
		••••									

On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z+1-\mathrm{i}| \leqslant 1$ and $\arg(z-1) \leqslant \frac{3}{4}\pi$. [4]

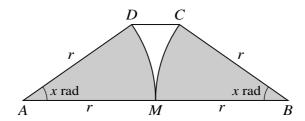
1)	of the line.	[3
		• • • • • • • • • • • • • • • • • • • •
	given that the line intersects the y-axis at the point where $y = 1.3$. Calculate the value of A , giving your answer correct to 2 decimal places.	[
	given that the line intersects the y-axis at the point where $y = 1.3$.	[
	given that the line intersects the y-axis at the point where $y = 1.3$. Calculate the value of A , giving your answer correct to 2 decimal places.	[
	given that the line intersects the y-axis at the point where $y = 1.3$. Calculate the value of A , giving your answer correct to 2 decimal places.	[
	given that the line intersects the y-axis at the point where $y = 1.3$. Calculate the value of A , giving your answer correct to 2 decimal places.	[
	given that the line intersects the y-axis at the point where $y = 1.3$. Calculate the value of A , giving your answer correct to 2 decimal places.	[
	given that the line intersects the y-axis at the point where $y = 1.3$. Calculate the value of A , giving your answer correct to 2 decimal places.	[:
	given that the line intersects the y-axis at the point where $y = 1.3$. Calculate the value of A , giving your answer correct to 2 decimal places.	[:

by parts, find the exact value of $\int_0^2 \tan^{-1}(\frac{1}{2}x) dx$.	
 Gellores	

Find the two squares.	uare roots of u , giving your	answers in the form $a + ib$,	where a and b are real
	74	bree	

	Prove that $\csc 2\theta - \cot 2\theta \equiv \tan \theta$.	
(b)	Hence show that $\int_{\frac{1}{4}\pi}^{\frac{1}{3}\pi} (\csc 2\theta - \cot 2\theta) d\theta = \frac{1}{2} \ln 2.$	
(b)	Hence show that $\int_{\frac{1}{4}\pi}^{\frac{\pi}{4}} (\csc 2\theta - \cot 2\theta) d\theta = \frac{1}{2} \ln 2.$	
(b)	Hence show that $\int_{\frac{1}{4}\pi}^{3^n} (\csc 2\theta - \cot 2\theta) d\theta = \frac{1}{2} \ln 2.$	
(b)	Hence show that $\int_{\frac{1}{4}\pi}^{3^n} (\csc 2\theta - \cot 2\theta) d\theta = \frac{1}{2} \ln 2.$	
(b)		
(b)	Hence show that $\int_{\frac{1}{4}\pi}^{3\pi} (\csc 2\theta - \cot 2\theta) d\theta = \frac{1}{2} \ln 2.$	
(b)		
(b)		
(b)		

The cur	is such that the gradient at a gene re passes through the points with c	coordinates (0, 1) and (3, e).	V
By setti of <i>x</i> .	g up and solving a differential equ	uation, find the e	equation of the curve	, expressing y in
•••••				
•••••				
•••••				
•••••				
	19/			
•••••				
•••••				
•••••				
•••••				
•••••				
•••••		torev	<u> </u>	
•••••				
•••••				•••••
• • • • • • • • • • • • • • • • • • • •				
•••••				
		•••••		


N Vernrey

Find the <i>x</i> -coordin places where appro	ates of the stationary points of the curve. Give your answers correct to 3 decipriate.	mal [8]
		•••••
•••••		•••••
		•••••
•••••		•••••
		•••••
•••••		•••••
•••••		•••••
•••••	etibles	•••••
		•••••
		•••••
		•••••
		•••••
		•••••

 • • • • •
• • • • •
• • • • •
 • • • • •
• • • • •
• • • • •

0	Let $f(x) =$	$14 - 3x + 2x^2$
,	Let $I(x)$ –	$(2+x)(3+x^2)$

	•••••		•••••
•••••	•••••		••••••••••
			•••••
•••••		, <mark></mark>	
•••••			•••••
•••••			
		OFEY	••••••
			•••••••••••

The diagram shows a trapezium ABCD in which AD = BC = r and AB = 2r. The acute angles BAD and ABC are both equal to x radians. Circular arcs of radius r with centres A and B meet at M, the midpoint of AB.

(a)	Given that the sum of the areas of the shaded sectors is 90% of the area of the trapezium, show that x satisfies the equation $x = 0.9(2 - \cos x) \sin x$. [3]
(b)	Verify by calculation that x lies between 0.5 and 0.7. [2]

(c)	Show that if a sequence of values in the interval $0 < x < \frac{1}{2}\pi$ given by the iterative formula
	$x_{n+1} = \cos^{-1}\left(2 - \frac{x_n}{0.9\sin x_n}\right)$
	converges, then it converges to the root of the equation in part (a). [2]
(d)	Use this iterative formula to determine x correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
	Satures :
	etpre?

11 With respect to the origin O, the points A and B have position vectors given by $\overrightarrow{OA} = 2\mathbf{i} - \mathbf{j}$ and

	V that $OA =$								
•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••••••	•••••		•••••
•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •		•••••		• • • • • • • • • • • • • • • • • • • •		•••••
•••••									•••••
•••••	•••••				•••••				•••••
•••••							• • • • • • • • • • • • • • • • • • • •		
•••••	•••••							· • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••					• • • • • • • • • • • • • • • • • • • •		
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	,	•••••
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••		•••••

Find the possible position vectors of <i>P</i> .	
	 ••••••
	••••••
	 •••••
	 ••••••
	••••••
	•••••
	••••
	 •••••
, satpre	
	 •••••
	 •••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.							
Patorey							

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

coefficients.			
•••••			•••••
			•••••
•••••			••••••
•••••	•••••		
•••••	•••••		•••••
•••••	•••••	•••••	•••••

 •••••
 •••••
 •••••
•••••
 •••••
•••••
•••••
 •••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
 •••••
 •••••

3	The	parametric	equations	of a	curve	are

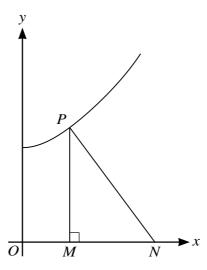
$$x = t + \ln(t+2),$$
 $y = (t-1)e^{-2t},$

where t > -2.

Find the exact y-coordinate of the stationary point of the curve.	
Find the exact y-coordinate of the stationary point of the curve.	
Find the exact y-coordinate of the stationary point of the curve.	
Find the exact y-coordinate of the stationary point of the curve.	
Find the exact y-coordinate of the stationary point of the curve.	•••••
Find the exact y-coordinate of the stationary point of the curve.	•••••
Find the exact y-coordinate of the stationary point of the curve.	
Find the exact y-coordinate of the stationary point of the curve.	
Find the exact y-coordinate of the stationary point of the curve.	•••••
Find the exact y-coordinate of the stationary point of the curve.	•••••
Find the exact y-coordinate of the stationary point of the curve.	
Find the exact y-coordinate of the stationary point of the curve.	
Find the exact y-coordinate of the stationary point of the curve.	•••••
Find the exact y-coordinate of the stationary point of the curve.	
Find the exact y-coordinate of the stationary point of the curve.	
Find the exact y-coordinate of the stationary point of the curve.	
Find the exact y-coordinate of the stationary point of the curve.	•••••
Find the exact y-coordinate of the stationary point of the curve.	
Find the exact y-coordinate of the stationary point of the curve.	
Find the exact y-coordinate of the stationary point of the curve.	
	•••••
	•••••
	•••••

1	Let $f(r)$ –	15 - 6x
4	Let $I(x)$ –	$\frac{13-6x}{(1+2x)(4-x)}$.

,	Express $f(x)$ in partial fractions.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
•	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln\left(\frac{a}{b}\right)$, where a and b are integers.
	Hence find $\int_{1}^{2} f(x) dx$, giving your answer in the form $\ln \left(\frac{a}{b}\right)$, where a and b are integers.

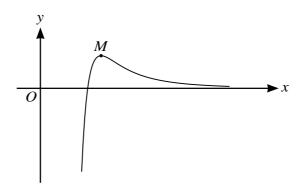

By first expanding $\tan(2\theta + \tan^4 \theta + 2\tan^2 \theta - 7 = 0$.	+ 20), snow that the 6	equation $\tan 4\theta =$	½ tan \(\theta\) may be	[4]
		<u></u>		
	Satpre	<u></u>		

(b)	Hence solve the equation $\tan 4\theta = \frac{1}{2} \tan \theta$, for $0^{\circ} < \theta < 180^{\circ}$.	[3]
		· • • • • • • • • • • • • • • • • • • •
	T ERA	
		•
	PatpreV	

6	(a)	By sketching a suitable pair of graphs, show that the equation $\cot \frac{1}{2}x = 1 + e^{-x}$ has exactly	y one
		root in the interval $0 < x \le \pi$.	[2]

(b)	Verify by calculation that this root lies between 1 and 1.5.	[2]
		•••••
		•••••

Use the iterative formula $x_{n+1} = 2 \tan^{-1} \left(\frac{1}{1 + e^{-x_n}} \right)$ to determine the root correct to 2 deceplaces. Give the result of each iteration to 4 decimal places.
// Seibles


For the curve shown in the diagram, the normal to the curve at the point P with coordinates (x, y) meets the x-axis at N. The point M is the foot of the perpendicular from P to the x-axis.

The curve is such that for all values of x in the interval $0 \le x < \frac{1}{2}\pi$, the area of triangle PMN is equal to $\tan x$.

(a)	(i) Show that	$t \frac{MN}{y} = \frac{\mathrm{d}y}{\mathrm{d}x}.$			[1]
		134	Satpre	30 ·		

(ii)	Hence show that x and y satisfy the differential equation $\frac{1}{2}y^2\frac{dy}{dx} = \tan x$.	[2]
		•••••
		••••
		••••
		••••
		•••••
		••••

expressing y in t	terms of x .					
						• • • •
•••••	•••••		•••••	••••••	•••••	• • • •
						• • • •
•••••	•••••		••••••	••••••	••••••	• • • •
						· • • •
						• • • •
						• • • •
				••••••	•••••	• • • •
			<mark>.</mark>			
				~	•••••	••••
		Samori				••••
						•••
						· • • •
			•••••	•••••	•••••	• • • •
		•••••				
	•					• •
					•••••	• • • •
			•••••	•••••	•••••	• • • •
			•••••			••••

The diagram shows the curve $y = \frac{\ln x}{x^4}$ and its maximum point M.

(a)	Find the exact coordinates of M .	[4]
	PR	
	3-0	•••••
	SatpreP.	
		•••••
		••••••
		•••••
		•••••
		•••••

(b)	By using integration by parts, show that for all $a > 1$, $\int_{1}^{a} \frac{\ln x}{x^4} dx < \frac{1}{9}$.	[6]
		•••
		•••
		•••
		•••
	Sethre?	
		•••
		•••
		•••

The quadrilateral ABCD is a trapezium in which AB and DC are parallel. With respect to the

Given that \overline{I}	$\overrightarrow{DC} = 3\overrightarrow{AB}$, find the position	vector of D .	[3
•••••			•••••
•••••			
	19		
•••••••			
••••••	· Sat	nreP	
State a vecto	or equation for the line throu	gh A and B.	[1

		••••
•••••		••••
•••••		••••
•••••		••••
•••••		••••
•••••		••••
		••••
		••••
		••••
•••••		••••
		••••
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	••••
	60//	
	·satpreP·	
		••••
		••••
•••••		••••
•••••		••••
•••••		••••
•••••		••••

) (a)	Verify that $-1 + \sqrt{2}i$ is a root of the equation $z^4 + 3z^2 + 2z + 12 = 0$.
a >	satpreP.
(b)	Find the other roots of this equation.

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

February/March 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

•••••			•••••	•••••	• • • • • •
					. .
					· • • • • •
•••••			••••••		• • • • • •
			•••••		••••
		r P			.,
					• • • • • •
•••••					••••
					•••••
		Patpro			
			•••••		•••••
•••••	•••••	, 	••••••	••••••	•••••

Find the values of	a and b .				[:
•••••	••••••	•••••	••••••	•••••	•••••
		•••••	•••••	••••••	
			•••••		
•••••					•••••
			•••••		
		••••••	•••••	••••••	
•••••					•••••
•••••					
•••••					
•••••	••••••	•••••	••••••	•••••	••••••
			•••••		
		•••••			
•••••	•••••	•••••	•••••	•••••	•••••

equation for $0^{\circ} < x$		
•••••	12/-2/-	
	oein ee	
•••••		••••••••••••
		••••••

4 The variables x and y satisfy the differential equation

$$(1 - \cos x)\frac{\mathrm{d}y}{\mathrm{d}x} = y\sin x.$$

It is given that y = 4 when $x = \pi$.

sorve the union	ential equation, obtaining	an expression for y in terms of x .	
•••••	••••••		••••••
			•••••
		·······	
•••••			
		DIEY	
••••••			•••••••

(b)	Sketch the graph of y against x for $0 < x < 2\pi$. [1]

value of R and give α	correct to 2 decimal	places.		
•••••		•••••	•••••	
•••••	,	•••••	•••••	•••••
•••••	,	•••••	•••••	•••••
•••••		•••••	•••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
•••••	·····	•••••	•••••	•••••
••••••	,		•••••	•••••
••••••				•••••
		•••••		•••••
				•••••
				•••••
•••••				
				•••••
				•••••
				•••••

•••••	•••••	•••••	, 		
			••••	•••••	
•••••					
••••••					
	••••••				
•••••				• • • • • • • • • • • • • • • • • • • •	
•••••	•••••				
			•••••	• • • • • • • • • • • • • • • • • • • •	
		•••••			
•••••	•••••				
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •

	press $f(x)$ in partial fractions.
••••	
••••	
••••	
••••	3.
••••	
••••	
••••	
••••	
•••••	

Hence snow	that $\int_{a}^{2a} f(x) dx = \ln 6.$		
•••••	•••••	•••••	••••••
•••••	•••••	••••••	•••••
•••••			
•••••			
•••••		•••••	
•••••	•••••	•••••	••••••

Show that the lin	es are skew.	
		4/
	13/	
	· Sathre P	
•••••		

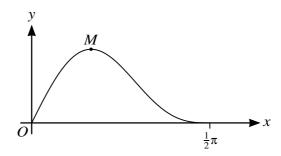
	vo lines.	
•••••	 	
•••••	 	•••••
•••••	 •••••	•••••
••••••	 	•••••
•••••	 	•••••
•••••		•••••
••••••		•••••
••••••	 	••••••

The complex numbers u and v are defined by u = -4 + 2i and v = 3 + i.

8

v in the form	x + iy, where x and	y are rear.		
•••••			•••••	
				•••••••••••
и	ia			
Hence express $\frac{u}{v}$ i	in the form $re^{i\theta}$, when	re r and $ heta$ are exa	ct.	
Hence express $\frac{u}{v}$ i	in the form $r\mathrm{e}^{\mathrm{i} heta}$, whe	re r and $ heta$ are exa	ct.	
Hence express $\frac{u}{v}$ i	in the form $re^{i\theta}$, whe	re r and $ heta$ are exa	ct.	
Hence express $\frac{u}{v}$ i	in the form $r \mathrm{e}^{\mathrm{i} heta}$, whe	re r and $ heta$ are exa	ct.	
Hence express $\frac{u}{v}$ i	in the form $re^{i\theta}$, whe	re r and θ are exa	ct.	
Hence express $\frac{u}{v}$	in the form $re^{i\theta}$, where	re r and $ heta$ are exa	ct.	
Hence express $\frac{u}{v}$ i	in the form $re^{i\theta}$, whe	re r and θ are exa	ct.	
	in the form $re^{i\theta}$, where	pre9		
	Sal	pre		
		pre		
	Set	pre		
		pre		

In an Argand diagram, with origin O, the points A, B and C represent the complex numbers u, v and 2u + v respectively.


•••••		
•••••		
••••••		
Prove that a	angle $AOB = \frac{3}{4}\pi$.	
•••••		
•••••	· SataraO·	
•••••		
•••••		

^	T (C()	$e^{2x} + 1$
9	Let $f(x) =$	$\frac{e^{-x}}{e^{2x}-1}$, for $x > 0$

(a)	The equation $x = f(x)$ has one root, denoted by a .	
	Verify by calculation that <i>a</i> lies between 1 and 1.5.	[2]
		· • • • •
		,
		· • • • •
		· • • • •
		· • • • •
		· • • • •
		· • • • •
		,
		••••
(b)	Use an iterative formula based on the equation in part (a) to determine a correct to 2 decir places. Give the result of each iteration to 4 decimal places.	nal [3]
		••••
	Satblek	
		· • • • •
		· • • • •
		· • • • •
		· • • • •
		· • • • •
		••••
		• • • • •

10

The diagram shows the curve $y = \sin 2x \cos^2 x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

(a)	Using the substitution $u = \sin x$, find the exact area of the region bounded by the curve and the x -axis. [5]
	albrev C

)	Find the exact x -coordinate of M .	[6]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••
	Satpre?	•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

© UCLES 2020 9709/31/O/N/20

Solve the inequality $2 - 5$.	x > 2 x - 3 .			[4
	F			
	Sati	oreP.		
		•••••	•••••	•••••
		•••••		•••••
		•••••	•••••	••••••

On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z| \ge 2$ and $|z - 1 + i| \le 1$. [4]

© UCLES 2020 9709/31/O/N/20

3	The	parametric	equations	of a	a curve	are
•	1110	parametric	equations	01	u cui ve	uic

$$x = 3 - \cos 2\theta, \quad y = 2\theta + \sin 2\theta,$$
 for $0 < \theta < \frac{1}{2}\pi$.

Show that $\frac{dy}{dx} = \cot \theta$. [5]

4	Solve	the	eq	uation

$\log_{10}(2x+1) = 2\log_{10}(x+1) - 1.$
Give your answers correct to 3 decimal places. [6]
elprey

5	(a)	By sketching a suitable pair of graphs, show that the equation $\csc x = 1 + e^{-\frac{1}{2}x}$ has exactly two roots in the interval $0 < x < \pi$.
	(b)	The sequence of values given by the iterative formula
		$x_{n+1} = \pi - \sin^{-1}\left(\frac{1}{e^{-\frac{1}{2}x_n} + 1}\right),$
		with initial value $x_1 = 2$, converges to one of these roots.
		Use the formula to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
		etpre C

	value of R and give α correct to 2 decimal places.
•	
•	
•	
_	
•	
•	
•	galblek
•	
•	

Hence solve the equati	-			
		•••••	•••••	
		•••••		
•••••		•••••	•••••	•••••
•••••				•••••
				•••••
		oreP.		
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••		••••••

•••••	•••••	•••••	•••••	•••••	••••
••••					
		•••••			
••••••	•••••	•••••	•••••	•••••	•••••
		•••••	•••••		•••••
•••••				••••••	••••••
					••••••
					•••••
					•••••
•••••					•••••
		atpre			
•••••		••••••	•••••••		••••••
•••••					
•••••		•••••		• • • • • • • • • • • • • • • • • • • •	
•••••		•••••	•••••	••••••	•••••
		•••••	•••••		•••••

))	Find the other roots of this equation.	[4]
	T PR	
	320	
	Satpre?	

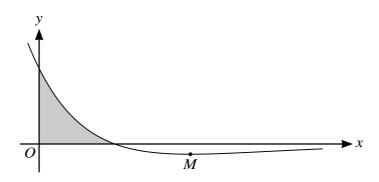
8	The coordinates	(x, y) of :	a general	point of a	curve satisfy	the differential	equation
		(/ / /	0	1	,		1

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = (1 - 2x^2)y,$$

for x > 0. It is given that y = 1 when x = 1.

Solve the differential equation, obtaining an expression for y in terms of x .	[6]
	••••••
Satpre?	

© UCLES 2020


		•••••	•••••
			•••••
		•••••	•••••
			•••••
•••••	•••••	•••••	•••••
			•••••
	•••••	·· ···· ·····	•••••
			•••••
			•••••

9	Let $f(x) = \frac{8 + 5x + 12x^2}{(1 - x)(2 + 3x)^2}$.
	(a) Express $f(x)$ in partial fraction

Express $f(x)$ in partial fractions.
2
Patorey

	•••••		•••••
•••••	•••••		••••••••••
			•••••
•••••		, <mark></mark>	
•••••			•••••
•••••			
		OFEY	••••••
			•••••••••••

10

The diagram shows the curve $y = (2 - x)e^{-\frac{1}{2}x}$, and its minimum point M.

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •

© UCLES 2020 9709/31/O/N/20

of e.	of the shaded region bour	•		
••••••	••••••	••••••		••••••
•••••		•••••		
			•••••	
				•
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••				
				••••••
•••••		•••••		
•••••				••••••
•••••		•••••		
•••••				•••••
•••••	•••••	•••••		•••••
			• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	•••••	,	•••••

11 Two lines have equations $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(a\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ and $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} + \mu(2\mathbf{i} - \mathbf{j} + \mathbf{k})$, where a is a

intersection.	two lines intersect, find	i die value of <i>u</i> a	ma me position vec	tor or the po
	16			••••••••••••
				•••••
		·····		

two possible	values of a.						
•••••			•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••
•••••			•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
•••••			•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
•••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
	,	•••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
•••••			•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
						•••••	•••••
		,	•••••		·····	•••••	
				• • • • • • • • • • • • • • • • • • • •		••••••	••••••
						•••••	•••••
						•••••	•••••
		,	•••••			•••••	•••••
•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
•••••			•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
•••••			•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
•••••			•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

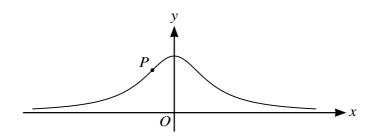
- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

BLANK PAGE

1	Solve	the e	equation

$\ln(1 + e^{-3x}) = 2.$	
aces.	


Give the answer correct to 3 decimal places.	[3]
12 - /.5/	
34 69	
Cerbies	

Expand $\sqrt[3]{1+6x}$ in ascending powers of x , up to and including the term in x^3 , simplifying the coefficients. [4]
State the set of values of x for which the expension is valid
State the set of values of x for which the expansion is valid. [1]

	By taking logarithms, show that the graph of y against x is a straight line. State the exact value of the gradient of this line. [3]
(b)	Find the exact x-coordinate of the point of intersection of this line with the line $y = 3x$. Give you answer in the form $\frac{\ln a}{\ln b}$, where a and b are integers. [2]

$\tan^2\theta + 3\sqrt{3}\tan\theta - 2 = 0.$	[3]
	•••••
	•••••
6.	
Satpre?	
	••••••
	•••••

	••••••
	•••••
	••••••
	•••••
	•••••
T PAN	,
	•••••
······································	•••••
SatpreP:	••••••
	••••••
	•••••
	••••••

The diagram shows the curve with parametric equations

$$x = \tan \theta$$
, $y = \cos^2 \theta$,

for $-\frac{1}{2}\pi < \theta < \frac{1}{2}\pi$.

a)	Show that the gradient of the curve at the point with parameter θ is $-2 \sin \theta \cos^3 \theta$. [3]
	- Carbrey

The gradient of the curve has its maximum value at the point P.

		of P.	
			•••••
••••••		·······	•••••
•••••			•••••
•••••			•••••
•••••	•••••		•••••
•••••			•••••
••••••	••••••		•••••••

6 The complex number u is defined by

$$u = \frac{7 + i}{1 - i}.$$

(a)	Express u in the form $x + iy$, where x and y are real. [3]

(b) Show on a sketch of an Argand diagram the points A, B and C representing u, 7 + i and 1 - i respectively. [2]

	$\tan^{-1}\left(\frac{4}{3}\right) = \tan^{-1}\left(\frac{1}{7}\right) + \frac{1}{4}\pi.$	[3
•••••		
	4	
	34	
•••••		
•••••		
•••••		•••••

7 The variables x and t satisfy the differential equation

$$e^{3t} \frac{\mathrm{d}x}{\mathrm{d}t} = \cos^2 2x,$$

for $t \ge 0$. It is given that x = 0 when t = 0.

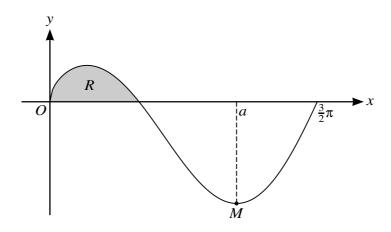
Solve the differential equation and obtain an expression for x in terms of t .	
	• • • • • • • • • • • • • • • • • • • •
	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	•••••
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
	•••••
	••••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •

4. sathrep.
State what happens to the value of x when t tends to infinity. [1]

(b)

8	With respect to the origin O ,	the position vectors of the	points A, B, C and D are	e given by
_			. , , ,	- 6 5

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix}, \quad \overrightarrow{OC} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OD} = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}.$$


(a)	Show that $AB = 2CD$.	[3]
(b)	Find the angle between the directions of \overrightarrow{AB} and \overrightarrow{CD} .	[3]
	Cerpre	
		•••••••••••••••••••••••••••••••••••••••
		••••••

•••••		•••••		•••••
•••••		•••••	•••••	•••••
••••••		••••••	••••••	•••••
				•••••
				•••••
		•••••	••••••••••••	•••••
		<mark></mark>		
				•••••
				••••••
	1/2	-01		
				•••••
		•••••		•••••
••••••		•••••	••••••	•••••
				•••••

9	Let $f(x) =$	7x + 18
,	Let $I(x)$ –	$(3x+2)(x^2+4)$

Express f	(x) in partial fractions.
•••••	
	etorev

	find the e			J ()							
•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	
	•••••	•••••			•••••	•••••		•••••	•••••		
•••••	••••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	•••••		•••••		•••••	•••••	•••••	•••••	•••••
••••••	•••••					•••••		•••••		••••••	•••••
•••••	••••••	•••••						•••••		•••••	•••••
•••••					••••••	• • • • • • • • • • • • • • • • • • • •					
•••••	•••••	•••••	2	•••••	•••••				•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	•••••		•••••	•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••		•••••	•••••	•••••		•••••			
•••••	••••••	••••••	•••••	•••••	••••••	•••••	••••••••	•••••	•••••	•••••	•••••
•••••	••••••	•••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••

The diagram shows the curve $y = \sqrt{x} \cos x$, for $0 \le x \le \frac{3}{2}\pi$, and its minimum point M, where x = a. The shaded region between the curve and the x-axis is denoted by R.

(a) Show that a satisfies the equation $\tan a = \frac{1}{2a}$. [3]

(b) The sequence of values given by the iterative formula $a_{n+1} = \pi + \tan^{-1}\left(\frac{1}{2a_n}\right)$, with initial value $x_1 = 3$, converges to a.

Use this formula to determine a correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

Sive your unswer	in terms of π .					
						•••••
	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••		• • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	• • • • • •
•••••						
						• • • • • •
•••••						• • • • • •
		•••••	•••••	•••••	•••••	• • • • • •
					••••••	• • • • • •
						• • • • • •
•••••			••••	•••••		• • • • • •
•••••	•••••	•••••	•••••	•••••	•••••	• • • • • •
				•••••		
•••••						
						•••••
•••••			•••••	•••••		• • • • • •

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.
· Sornes
Setpres

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

		•••••		
		·····		
				•••••
•••••				
•••••				
•••••			•••••	
	•••••	•••••	•••••	
•••••		•••••	•••••	•••••
			•••••	•••••
•••••		•••••	•••••	•••••

On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z| \ge 2$ and $|z - 1 + i| \le 1$. [4]

 $x = 3 - \cos 2\theta$, $y = 2\theta + \sin 2\theta$,

3	The	parametric	equations	of a	a curve	are
•	1110	parametric	equations	01	a car ve	uic

for
$$0 < \theta < \frac{1}{2}\pi$$
.

Show that $\frac{dy}{dx} = \cot \theta$.

[5]

4	Solve	the	equatic	n

$\log_{10}(2x+1) = 2\log_{10}(x+1) - 1.$		
Give your answers correct to 3 decimal places. [6]		
elprey		

5	(a)	By sketching a suitable pair of graphs, show that the equation $\csc x = 1 + e^{-\frac{1}{2}x}$ has exactly two roots in the interval $0 < x < \pi$.
	(b)	The sequence of values given by the iterative formula
	(D)	
		$x_{n+1} = \pi - \sin^{-1}\left(\frac{1}{e^{-\frac{1}{2}x_n} + 1}\right),$
		with initial value $x_1 = 2$, converges to one of these roots.
		Use the formula to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
		ed to le t

	value of R and give α correct to 2 decimal places.
•	
•	
•	
_	
•	
•	
•	galblek
•	
•	

Hence solve the equation $\sqrt{6}\cos\frac{1}{3}x + 3\sin\frac{1}{3}x = 2.5$, for $0^{\circ} < x < 360^{\circ}$.	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
······································	•••••
'SatpreP'	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •

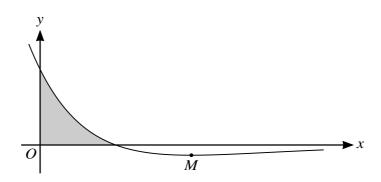
				•••••	
			•••••	•••••	
		,	•••••	••••••	
				•••••	
			,		,
		,			
•••••					•••••••
••••••					
•••••				•••••	
•••••	,	,		•••••	•••••••
			,		
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •

)	Find the other roots of this equation.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
	T PA	•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
	34	•••••
	·SatpreP·	•••••
		•••••
		••••
		••••
		•••••

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = (1 - 2x^2)y,$$

for x > 0. It is given that y = 1 when x = 1.

Solve the differential equation, obtaining an expression for y in terms of x .	[6]
	•••••••••••••••••••••••••••••••••••••••
	••••••
Satpre?	


© UCLES 2020

"SatoreP."

0	Let $f(x) =$	$8 + 5x + 12x^2$		
,		$\frac{(1-x)(2+3x)^2}{(1-x)(2+3x)^2}$		

)	Express $f(x)$ in partial fractions.	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
	etpre	•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

•••••••			
••••••	•••••		
•••••••			
•••••			
•••••			•••••
••••••			
•••••			•••••
••••••	94	orev	
•••••			•••••
••••••		••••••	••••••

The diagram shows the curve $y = (2 - x)e^{-\frac{1}{2}x}$, and its minimum point M.

Find the exact coordinates of M .	
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
	•••••

of e.			
•••••			•••••
•••••	,		••••••
•••••			•••••
•••••			•••••
•••••			• • • • • • • • • • • • • • • • • • • •
			•••••
			• • • • • • • • • • • • • • • • • • • •
•••••			•••••
•••••			•••••
•••••			•••••
•••••		••••••	• • • • • • • • • • • • • • • • • • • •
•••••			• • • • • • • • • • • • • • • • • • • •
•••••			•••••
•••••			•••••
•••••			• • • • • • • • • • • • • • • • • • • •

11 Two lines have equations $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(a\mathbf{i} + 2\mathbf{j} - \mathbf{k})$ and $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} + \mu(2\mathbf{i} - \mathbf{j} + \mathbf{k})$, where a is a

intersection.	two lines intersect, find	i die value of <i>u</i> a	ma me position vec	tor or the po
	16			•••••••••••••••••••••••••••••••••••••••
				•••••
		·····		

two	possible values of a.	$(\frac{1}{6})$, fir
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
•••••		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.
· Sornes
Setpres

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

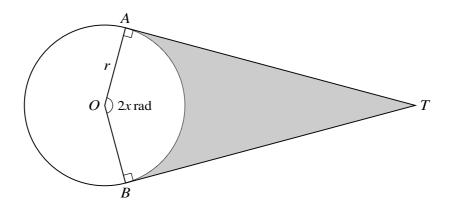
- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

		•••••	 	
•••••		•••••	 •••••	• • • • • • • • • • • • • • • • • • • •
•••••	,	•••••	 •••••	• • • • • • • • • • • • • • • • • • • •
•••••	••••••••••••	•••••	 •••••	• • • • • • • • • • • • • • • • • • • •
	•••••		 	
••••••			 •••••	••••••
•••••		•••••	 •••••	• • • • • • • • • • • • • • • • • • • •
				••••••••••
		•••••	 •••••	••••••
		•••••	 •••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	 	••••••
••••••		••••••	 •••••	•
	•••••		 	


2	(a)	Expand $(2-3x)^{-2}$ in ascending powers of x , up to and including the term in x^2 , simplifying the coefficients. [4]
	(b)	State the set of values of x for which the expansion is valid. [1]

the equation for 0° ≤		
•••••		
•••••		
•••••		······
	9	
••••••		
•••••		

(a)	Find the <i>x</i> -coordinate of this point, giving your answer correct to 2 decimal places.	
		•••••
		•••••
		•••••
		••••
(b)	Determine whether the stationary point is a maximum or a minimum.	
		•••••
		•••••
		•••••
		•••••

b)	Using your answer to part (a), find the exact value of $\int_{1}^{3} \frac{2x^3 - x^2 + 6x + 3}{x^2 + 3} dx.$	[5]
		· • • • • • • • • • • • • • • • • • • •
		••••••
		••••••
	Sature?	
		•••••
		,

(a)

The diagram shows a circle with centre O and radius r. The tangents to the circle at the points A and B meet at T, and angle AOB is 2x radians. The shaded region is bounded by the tangents AT and BT, and by the minor arc AB. The area of the shaded region is equal to the area of the circle.

Show that x satisfies the equation $\tan x = \pi + x$.	[3]
- Seriore C	

(b)	This equation has one root in the interval $0 < x < \frac{1}{2}\pi$. Verify by calculation that this root lies between 1 and 1.4.
(c)	Use the iterative formula $tor^{-1}(\tau + \tau)$
	$x_{n+1} = \tan^{-1}(\pi + x_n)$
	to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
	Sathre 9

7	Let $f(x) =$	$\cos x$
,	Let $I(x) =$	$1 + \sin x$.

(a)	Show that $f'(x) < 0$ for all x in the interval $-\frac{1}{2}\pi < x < \frac{3}{2}\pi$.	[4]
		,
	alprey	

6	c. Give your answe					
•••••	••••••	••••••	••••••	••••••	•••••	••••
•••••	••••••	••••••	••••••	••••••		••••
•••••			•••••			
		•				••••
		CP				
						••••
					•••••	••••
					•••••	••••
•••••		•••••			•••••	••••
•••••	•••••	•••••	••••••	••••••	•••••	••••
			•••••			
•••••	••••••	••••••	••••••	••••••••••	••••••	••••
•••••			•••••			••••
		,				
						••••

)	By setting up and solving a differential equation, find the equation of the curve, expressing y it terms of x .
	AT PRAIL
	Satore?

Satore
Describe what happens to y as x tends to infinity. [1]

(b)

9	With respect to the	origin O ,	the vertices	of a triangle ABC	have position	vectors
---	---------------------	--------------	--------------	-------------------	---------------	---------

$$\overrightarrow{OA} = 2\mathbf{i} + 5\mathbf{k}$$
, $\overrightarrow{OB} = 3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OC} = \mathbf{i} + \mathbf{j} + \mathbf{k}$.

(a)	Using a scalar product, show that angle ABC is a right angle.			
		•••••		
		••••••		
(b)	Show that triangle ABC is isosceles.	[2]		
		••••••		

	••••••
	•••••
	•••••
	•••••
	••••••
	•••••
	•••••
	•••••
3	
	•••••
	•••••
	•••••
	•••••
	•••••
	• • • • • • • • • • • • • • • • • • • •

10	(a)	The	complex number u is defined by $u = \frac{3i}{a+2i}$, where a is real.	
		(i)	Express u in the Cartesian form $x + iy$, where x and y are in terms of a .	[3]
			T PR	
				•••••
		(ii)	Find the exact value of a for which arg $u^* = \frac{1}{3}\pi$.	[3]

(b)	(i) On a sketch of an	Argand diagram,	shade the regio	n whose points	represent complex
	numbers z satisfyin	g the inequalities	$ z - 2i \le z - 1 $	$ \mathbf{i} $ and $ z-2-\mathbf{i} $	≤ 2. [4

)	Calculate the least value of $\arg z$ for points in this region.	[2]
	Satara	
		•••••
		•••••
		•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number must be clearly shown.	er(s)
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

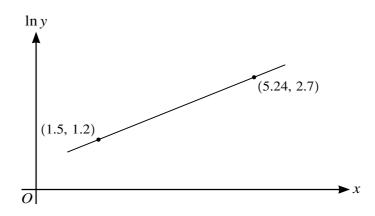
May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS


- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

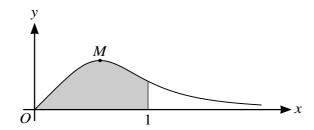
INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

						•••••
••••••	•••••	•••••••	••••••	•••••	•••••••••	•••••
•••••				• • • • • • • • • • • • • • • • • • • •		
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
				•••••	•••••	•••••
•••••					•••••••••	•••••
						•••••
					••••••••••	•••••
		8545			••••••	•••••
		26/10/	eb.			
	•••••	•••••	•••••	•••••	•••••	•••••
••••••	••••••	•••••	•••••	•••••	••••••	•••••
			•••••			•••••
••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••

The variables x and y satisfy the equation $y^2 = Ae^{kx}$, where A and k are constants. The graph of $\ln y$ against x is a straight line passing through the points (1.5, 1.2) and (5.24, 2.7) as shown in the diagram.


Find the values of A and k correct to 2 decimal places.	[5]
PatpreP	

	4	
3	Find the exact value of $\int_{1}^{4} x^{\frac{3}{2}} \ln x dx.$	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
	Satpre	•••••
		•••••
		•••••
		•••••
		•••••
		•••••

3 significant figures	5.	-
•••••		•••••
••••••		
•••••		
•••••		
•••••		
•••••••		

	value of R and the value of α correct to 3 decimal places.	
		•••••
•••••		•••••
••••••		•••••
•••••		•••••
•••••		•••••
••••••		•••••
•••••		
••••••		•••••
••••••		•••••
•••••		•••••

		•••••			•••••
•••••	••••••	•••••		•••••	•••••
••••••••••	••••••	••••••		••••••	••••••
•••••	••••••	•••••	•••••	•••••	•••••
					•••••
•••••	••••••				•••••
•••••					•••••
					•••••
•••••		34		••••••	•••••
		atpre			
					•••••
•••••	•••••	•••••	•••••	•••••	•••••

The diagram shows the curve $y = \frac{x}{1 + 3x^4}$, for $x \ge 0$, and its maximum point M.

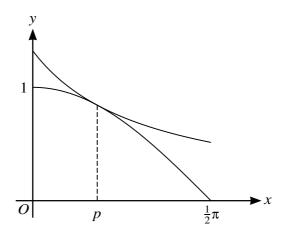
Find the x -coordinate of M , giving your answer correct to 3 decimal places.	
	•••••
	• • • • • • • • • • • • • • • • • • • •
	•••••••
Gettolek	

by the curve, the	x-axis and the line $x =$	1.	
•••••			
•••••			
	•••••		
•••••			
••••••			
		••••	••••••
•••••			
•••••			
•••••			

7	The	variables 3	x and	y satisfy	the	differential	equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y-1}{(x+1)(x+3)}.$$

It is given that y = 2 when x = 0. Solve the differential equation, obtaining an expression for y in terms of x. [9]


 • • • • •
• • • • •
• • • • •
 • • • • •
• • • • •
• • • • •

are real.				
				•••••
,		,	•••••	••••••
		•••••		•••••
•••••			•••••	•••••
				••••••
				•••••
				••••••
	,			
				••••••
				•••••
		•		
•••••			•••••	•••••

(b)	(i)	On a sketch	of an	Argand	diagram,	shade	the	region	whose	points	represent	complex
		numbers z sa	tisfyin	g the ine	qualities	z - 2 -	2i <	≤ 1 and	arg(z -	4i) ≥ -	$-\frac{1}{4}\pi$.	[4]

(ii)	Find the least value of $\text{Im } z$ for points in this region, giving your answer in an exact form. [2]
	Satore?

9

The diagram shows the curves $y = \cos x$ and $y = \frac{k}{1+x}$, where k is a constant, for $0 \le x \le \frac{1}{2}\pi$. The curves touch at the point where x = p.

(a)	Show that <i>p</i> satisfies the equation $\tan p = \frac{1}{1+p}$.	[5]
	Saipre	
		•••••
		•••••
		••••••

	s. Give th	le result of t	acii iteratio	лі ю з ає	ecimal plac	es.		ect to 3 decir
•••••						•••••	•••••	
				•••••				
•	•••••			••••••	•	••••••	••••••	•••••
•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
•••••				•••••				
••••••	•••••		2				••••••	••••••
•••••								
•••••						•••••		
•••••								
Hence	e find the	value of k	correct to 2	decimal	places.			
•••••	•••••			••••••		•••••	•••••	
				•••••				
• • • • • • • • • •	•••••	•••••		•••••	••••••••••	••••••	••••••	•••••••

10 With respect to the origin O, the points A and B have position vectors given by $\overrightarrow{OA} = 6\mathbf{i} + 2\mathbf{j}$ and

T: 1		1.14 1.17	
Find a vector	equation for the line through	gh M and N .	
••••••			
•••••	•••••		
•••••			
•••••			
•••••		nre0	
•••••			
•••••			

The line through M and N intersects the line through O and B at the point P.

Find the pos	sition vector of P .	
Calculate ar	ngle OPM , giving your answer in degrees.	
Calculate ar	ngle <i>OPM</i> , giving your answer in degrees.	
Calculate ar	ngle <i>OPM</i> , giving your answer in degrees.	
Calculate ar	ngle <i>OPM</i> , giving your answer in degrees.	
Calculate ar	ngle <i>OPM</i> , giving your answer in degrees.	
Calculate ar	ngle <i>OPM</i> , giving your answer in degrees.	
	ngle <i>OPM</i> , giving your answer in degrees.	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

May/June 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

	Solve the inequality $ 2x - 1 > 3 x + 2 $.	[4
	T PR	
		•••••
		•••••
•		•••••
		•••••
		••••••
		•••••
	Satpre?	

	lue of $\int_0^1 (2-x)e^{-2x} dx$.	
•••••		
•••••		
••••••		
•••••		
		•••••
		•••••
	994019	
•••••		
•••••		••••••
		••••••

3	(a)	Show	that	the	eq	uation
-	()					

(b)

$\ln(1+e^{-x})+2x=0$	
can be expressed as a quadratic equation in e^x .	[2]
	•••••
	•••••
Hence called the constitution $\ln(1+e^{-X})+2\pi$, 0 giving according to 2 decreases	:
Hence solve the equation $ln(1 + e^{-x}) + 2x = 0$, giving your answer correct to 3 dec	imai piaces. [4]
	•••••
	•••••

4

Find $\frac{dy}{dx}$.		[3]
••••••		
•••••		
•••••		
•••••		
The tange $(0, p)$.	gent to the curve at the point where $x = 2$ meets the y-axis at the po	int with coordinates
	gent to the curve at the point where $x = 2$ meets the y-axis at the po	int with coordinates
(0, p).	gent to the curve at the point where $x = 2$ meets the y-axis at the point	[3]
(0, p).		[3]
(0, <i>p</i>). Find <i>p</i> .		[3]
(0, <i>p</i>). Find <i>p</i>	etprev	[3]
(0, <i>p</i>). Find <i>p</i>	eipre V	[3]
(0, <i>p</i>). Find <i>p</i>	eipre V	[3]
(0, p). Find p		[3]
(0, p). Find p		[3]

_	-			•	. 1			
•	Нv	firef	PY	pressing	the	e^{α}	1119f1	Λn
_	υy	mst	-	prossing	uic	CU	uau	$\mathbf{o}_{\mathbf{n}}$

$\tan \theta \tan(\theta + 45^\circ) = 2 \cot 2\theta$	
as a quadratic equation in $\tan \theta$, solve the equation for $0^{\circ} < \theta < 90^{\circ}$.	[6]
PA PA	,
	•
Satara	

		ð	
6	(a)	By sketching a suitable pair of graphs, show that the equation $x^5 = 2 + x$ has exactly one root.	real [2]
			•••••
	(b)	Show that if a sequence of values given by the iterative formula	
		$x_{n+1} = \frac{4x_n^5 + 2}{5x_n^4 - 1}$	
		converges, then it converges to the root of the equation in part (a).	[2]
			•••••
			•••••
			•••••

(c)	Use the iterative formula with initial value $x_1 = 1.5$ to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]
	arbler

Let	$f(x) = \frac{2}{(2x-1)(2x+1)}.$	
(a)	Express $f(x)$ in partial fractions.	[2
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••
(b)	Using your answer to part (a), show that	
	$(f(x))^2 = \frac{1}{(2x-1)^2} - \frac{1}{2x-1} + \frac{1}{2x+1} + \frac{1}{(2x+1)^2}.$	
	- Adibies	

	v that $\int_{1}^{2} (f(x))^{2} dx = \frac{2}{5} + \frac{1}{2}$, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
••••••				
•••••				
••••••				
•••••				
••••••				
•••••				
••••••				
•••••				
••••••			•••••	
•••••				
•••••	•••••		•••••	
•••••				
••••••				

8	Relative to the origin	O, the points A ,	B and D have	ve position ve	ctors given by
---	------------------------	---------------------	----------------	----------------	----------------

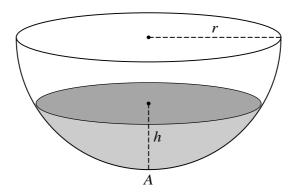
$$\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$$
, $\overrightarrow{OB} = 2\mathbf{i} + 5\mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OD} = 3\mathbf{i} + 2\mathbf{k}$.

A fourth point C is such that ABCD is a parallelogram.

	• • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
N. Wathre P.	
	• • • • • • •
	• • • • • • • •
	• • • • • • • • • • • • • • • • • • • •

•••••			••••••
	T	PRA	
	16		
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	
Find the area of	f the parallelogram cor	rect to 3 significant figures.	

9	(a)	The complex numbers u and w are such that
---	-----	---


u - w = 2i and $uw = 6$.

Find u and w , giving your answers in the form $x + iy$, where x and y are real and exact.	[5]
	••••••
	••••••
	••••••
	••••••
	••••••
	••••••
	•••••
4. satoreo.	•••••
	••••••
	••••••
	••••••
	••••••
	••••••
	•••••••

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities

$$|z-2-2i| \le 2$$
, $0 \le \arg z \le \frac{1}{4}\pi$ and $\operatorname{Re} z \le 3$. [5]

A tank containing water is in the form of a hemisphere. The axis is vertical, the lowest point is A and the radius is r, as shown in the diagram. The depth of water at time t is h. At time t = 0 the tank is full and the depth of the water is r. At this instant a tap at A is opened and water begins to flow out at a rate proportional to \sqrt{h} . The tank becomes empty at time t = 14.

The volume of water in the tank is V when the depth is h. It is given that $V = \frac{1}{3}\pi(3rh^2 - h^3)$.

(a) Show that h and t satisfy a differential equation of the form

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{B}{2rh^{\frac{1}{2}} - h^{\frac{3}{2}}},$$

where B is a positive constant.	[4]
Giore	

		•••••			
		•••••			
		•••••			
•••••	•••••			•••••	•••••
•••••				• • • • • • • • • • • • • • • • • • • •	•••••
•••••					•••••
					•••••
•••••					•••••
•••••				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••	••••••			• • • • • • • • • • • • • • • • • • • •	•••••
					•••••
					•••••
	4		-0		
		atpre	0.		
		•••••			
•••••					
			,		
		•••••			
		•••••			

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(must be clearly shown.	(s)
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•
	•

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

February/March 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

[1]

1	(a)	Sketch the graph of $y = x - 2 $.	
	(a)	Skerch the graph of $v = (x - z)$.	

(b)	Solve the inequality $ x-2 < 3x - 4$.	;]
		••
		••
		••
		••
		••
	Settores.	••
		••
		••
		••

© UCLES 2020 9709/32/F/M/20

						•••••
					•••••	
		•••••			•••••	•••••
	•••••	•••••	•••••	•••••	•••••	
		T P				
		•••••			•••••	• • • • • • • • • • • • • • • • • • • •
					••••••	•
		••••••	•••••			• • • • • • • • • • • • • • • • • • • •
		864			•••••	• • • • • • • • • • • • • • • • • • • •
			reY:			
		•••••			•••••	
•••••	•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
		•••••	•••••	••••••	••••••	••••••

3	(a)	By sketching a suitable pair of graphs, show that the equation $\sec x = 2 - \frac{1}{2}x$ has exactly one root in the interval $0 \le x < \frac{1}{2}\pi$. [2]
	(b)	Verify by calculation that this root lies between 0.8 and 1. [2]
	(c)	Use the iterative formula $x_{n+1} = \cos^{-1}\left(\frac{2}{4-x_n}\right)$ to determine the root correct to 2 decimal places.
		Give the result of each iteration to 4 decimal places. [3]

© UCLES 2020 9709/32/F/M/20

$J\frac{1}{6}\pi$	dx. Give your answer in a sign		
•••••			
•••••			•••••
			•••••
•••••			•••••
			• • • • • • • • • • • • • • • • • • • •
			•••••
	les ///s	nre?	
			•••••

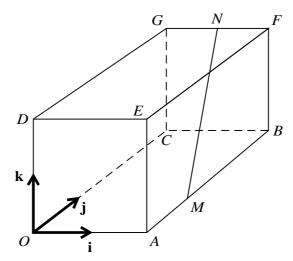
		• • • • • • • • • • • • • • • • • • • •		
			•••••	•••••
•••••				
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••		•••••		
•••••	•••••	•••••	•••••	•••••
•••••				
•••••				
•••••	•••••	••••••		
•••••				
•••••				
•••••	•••••	•••••	•••••	•••••
•••••				•••••
	•••••	•••••		

5

(b)	Hence solve the equation $\cos 3x + \sin 3x = 4$ for $0 < x < \pi$	га-
(D)	Hence solve the equation $\frac{\cos 3x}{\sin x} + \frac{\sin 3x}{\cos x} = 4$, for $0 < x < \pi$.	[3]
		• • • • •
		• • • •
		••••
		••••
		• • • •
		••••
		••••
		• • • •
		••••
		••••
		••••
		• • • •
		••••
		• • • •
		• • • •
		••••
		••••
		••••
		• • • •
		••••
		• • • •
		••••
		• • • •
		• • • •

6 The variables x and y satisfy the differential equ

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 + 4y^2}{\mathrm{e}^x}$$


It is given that y = 0 when x = 1.

Solve the differential equation, obtaining an expression for y in terms of x .	[7]
	•••••
	•••••
	•••••
	•••••
· satpreP	
	•••••

•••••				
•••••			•••••	
•••••			•••••	
•••••				
•••••			•••••	
			<mark></mark>	
•••••				
••••••				••••••
) State what han	opens to the value of	y as r tends to in	finity	Г
) State what hap	ipens to the value of	y as x tends to m	iiiity.	[
•••••				
•••••	•••••			

(a)	Show that $\frac{dy}{dx} = \frac{x^2 + y^2}{y^2 - 2xy}$.	
	12 1.5	
	8	
	e iprev	•••••

	•••••	· • • • • • • • • • • • • • • • • • • •		•••••		•••••	•••••	•••••	••••••	•••••	•••••		
							•••••		•••••	•••••	•••••		
				•••••			•••••		•	••••••	•		•••
	•••••	· • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	••••••	•••
				•••••		•••••	•••••	•••••	••••••	•••••	•••••		•••
											•••••		•••
		• • • • • • • • • • • • • • • • • • • •									•••••		
•••••					• • • • • • • • • • • • • • • • • • • •	•••••				••••••	•••••	••••••	••
•••••						•••••				•••••	•••••	••••••	• • •
							•••••			•••••	•••••		•••
						•••••	•••••			•••••	•••••	••••••	••
				•••••						•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••
											•••••		•••
					tpr								
••••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	•••••	••••••	••••••	•••••	••••••	•••
•••••				•••••		•••••	•••••		•••••	•••••	•••••		•••
				•••••		•••••	•••••			•••••	•••••		•••
		•••••									•••••		•••
••••••	•••••			•••••	••••••	•••••	•••••	•••••	••••••	••••••	•••••	••••••	•••
•••••					• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••	•••••	•••••		

In the diagram, OABCDEFG is a cuboid in which OA = 2 units, OC = 3 units and OD = 2 units. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OD respectively. The point M on AB is such that MB = 2AM. The midpoint of FG is N.

(a)	Express the vectors \overrightarrow{OM} and \overrightarrow{MN} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	[3]
(b)	Find a vector equation for the line through M and N .	[2]

© UCLES 2020 9709/32/F/M/20

•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	••••
									•••••	••••
•••••	••••••	••••••	••••••	•••••••	••••••	••••••	••••••	•••••••	••••••	••••
•••••	•••••	••••••		•••••	•••••	•••••	•••••	•••••	•••••	••••
•••••									•••••	••••
								\		
•••••			•••••			•••••••	••••••		•••••	• • • •
									•••••	
•••••	•••••								•••••	••••
									•••••	
										••••
										••••
•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••	••••
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••
										••••

9	I at f(x) =	$2 + 11x - 10x^2$
,	Let $\Gamma(X)$ –	$\frac{2+11x-10x}{(1+2x)(1-2x)(2+x)}.$

Express $f(x)$ in partial fractions. [5]
eatprev

Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x [5]					
••••••			• • • • • • • • • • • • • • • • • • • •	•••••••	••••••
•••••					
•••••			• • • • • • • • • • • • • • • • • • • •	•••••	•••••
••••••		· • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
•••••					
•••••				••••••	•••••
•••••				••••••	•••••
•••••					
•••••				•••••	•••••
•••••	•••••	atpre		••••••	•••••
•••••					
•••••			•••••	•••••	•••••
•••••	•••••	,	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •

		16								
10	(a)	The complex numbers v and w satisfy the equations								
		v + iw = 5 and $(1 + 2i)v - w = 3i$.								
		Solve the equations for v and w , giving your answers in the form $x + iy$, where x and y are real. [6]								
		Satore								

 $@ \ UCLES \ 2020 \\$ 9709/32/F/M/20

(b)	(i) On an Argand diagram, sketch the locus of points representing complex numbers z sa	tisfying
	z-2-3i =1.	[2]

Calculate the least value of $\arg z$ for points on this locus.	[2]
ettore	

© UCLES 2020 9709/32/F/M/20

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number must be clearly shown.	(s)
	••••
	• • • •
	•••
	,
	• • • •
	••••
	• • • •
	••••
	••••
	••••
	•••
	,
	• • • •
	•••

© UCLES 2020 9709/32/F/M/20

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge Assessment International Education

Cambridge International Advanced Level

			CANDIDATE NUMBER		
3					9709/31
/lathemati	cs 3 (P3)		0	ctober/Nov	ember 2019
				1 hou	r 45 minutes
wer on th	e Questio	n Paper.			
rials:	List of Fo	ormulae (MF9)			
	fathemati	Mathematics 3 (P3)	Mathematics 3 (P3) wer on the Question Paper.	NUMBER Number Number Number Number Number Number	NUMBER Number Number Number October/Nov 1 hour wer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

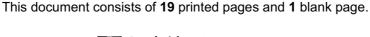
You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.


The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

•••••		•••••	•••••	
••••••	······································	••••••	•••••	
•••••	,	•••••		•••••
		•••••		
		•••••		
•••••		•••••		
•••••	,	•••••	•••••	

.	e inequality $ 2x - 3 > 4 x + 1 $.	Solve the
 		•••••
 		•••••
 		•••••
 r Pa		•••••
 		•••••
 		•••••
		•••••
 		•••••
		•••••
PatpreP:	- S	
 		•••••
 		•••••

3 The parametric equations of a curve as	3	The p	parametric	equations	of a	curve	ar
---	---	-------	------------	-----------	------	-------	----

	$x = 2t + \sin 2t,$	$y = \ln(1 - \cos 2$	<i>t</i>).	
Show that $\frac{dy}{dx} = \csc 2t$.				[5]
	Satr	reP		

- The number of insects in a population t weeks after the start of observations is denoted by N. The population is decreasing at a rate proportional to $Ne^{-0.02t}$. The variables N and t are treated as continuous, and it is given that when t = 0, N = 1000 and $\frac{dN}{dt} = -10$.
 - (i) Show that N and t satisfy the differential equation

	$\frac{\mathrm{d}N}{\mathrm{d}t} = -0.01\mathrm{e}^{-0.02t}N.$	[1]
		••••
		••••
		••••
(**)		
(11)	Solve the differential equation and find the value of t when $N = 800$.	[6]
		••••
	Satore?	••••
		••••
		••••
		••••
		••••

(iii)	State what happens to the value of N as t becomes large. [1]
	••

The curve with equation $y = e^{-2x} \ln(x - 1)$ has a stationary point when x = p.

Show that p sa	tisfies the equation x	$= 1 + \exp\left(\frac{1}{2(1+\epsilon)^2}\right)$	(x-1), where	$\exp(x)$ denotes e^x	•
		•••••	••••••		
					•••••
					•••••
					•••••
	1/2/		- /.5		
		atpre			•••••
					•••••
					•••••
					•••••
					•••••

5

•••••	•••••	•••••	
•••••	•••••	••••••	•••••
••••••	•••••		•••••
•••••			
Use an iterative for places. Give the re	rmula based on the equal sult of each iteration to	uation in part (i) to deter 4 decimal places.	rmine p correct to 2 dec
Use an iterative for places. Give the re	rmula based on the equivalent sult of each iteration to	uation in part (i) to deter 4 decimal places.	rmine p correct to 2 dec
Use an iterative for places. Give the re	rmula based on the equivalent sult of each iteration to	uation in part (i) to deter 4 decimal places.	rmine <i>p</i> correct to 2 dec
Use an iterative for places. Give the re	rmula based on the equivalent sult of each iteration to	uation in part (i) to deter 4 decimal places.	rmine <i>p</i> correct to 2 dec
Use an iterative for places. Give the re	rmula based on the equivalent sult of each iteration to	uation in part (i) to deter 4 decimal places.	rmine <i>p</i> correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equivalent sult of each iteration to	uation in part (i) to deter 4 decimal places.	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equal sult of each iteration to	uation in part (i) to deter 4 decimal places.	rmine <i>p</i> correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equivalent sult of each iteration to	uation in part (i) to deter 4 decimal places.	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equation sult of each iteration to	uation in part (i) to deter 4 decimal places.	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equal sult of each iteration to	uation in part (i) to deter 4 decimal places.	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equal sult of each iteration to	uation in part (i) to deter	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equal sult of each iteration to	uation in part (i) to deter 4 decimal places.	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equal sult of each iteration to	uation in part (i) to determ 4 decimal places.	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equation sult of each iteration to	uation in part (i) to determ 4 decimal places.	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equal sult of each iteration to	uation in part (i) to deter 4 decimal places.	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equal sult of each iteration to	uation in part (i) to determ 4 decimal places.	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equation to	uation in part (i) to determ 4 decimal places.	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equation to	uation in part (i) to deter 4 decimal places.	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equal sult of each iteration to	uation in part (i) to determine 4 decimal places.	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equation to	uation in part (i) to determ 4 decimal places.	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equal sult of each iteration to	uation in part (i) to deter 4 decimal places.	rmine p correct to 2 dec
Use an iterative fo places. Give the re	rmula based on the equal sult of each iteration to	uation in part (i) to deter 4 decimal places.	rmine p correct to 2 dec

	By differentiating $\frac{\cos x}{\sin x}$, show that	,	dx	
		•••••		
				•••••
				•••••
	$c^{rac{1}{2}\pi}$			
(ii)	Show that $\int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} x \csc^2 x dx = \frac{1}{4}(\pi - \frac{1}{4})$	- ln 4).		
(ii)	Show that $\int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} x \csc^2 x dx = \frac{1}{4}(\pi - \frac{1}{4})$	- ln 4).).s	
(ii)) Show that $\int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} x \csc^2 x dx = \frac{1}{4}(\pi - \frac{1}{4})$	- ln 4).		
(ii)	Show that $\int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} x \csc^2 x dx = \frac{1}{4}(\pi - \frac{1}{4})$			
(ii)	12 m			
(ii)	12 m			
(ii)	12 m			
(ii)	12 m			
(ii)	12 m			
(ii)	12 m			
(ii)	12 m			
(ii)	12 m			
(ii)	12 m			
(ii)	12 m			
(ii)	12 m			
(ii)	12 m			

T PA

Find the value of	f <i>a</i> .			
•••••				
••••••	••••••	•••••	•••••	•••••
•••••				
				•••••
		tpre		
				•••••
••••••		•••••	•••••••••••	•••••

When a has this value, find the equation of the plane containing l and m .	[5
	••••••
	•••••
	•••••
	••••••
	••••••
	••••••
	••••••
	•••••
	• • • • • • • • • • • • • • • • • • • •

8	Let $f(x) =$	$\frac{x^2 + x + 6}{x^2 + x + 6}$
O	Let $I(x)$ –	$\frac{1}{x^2(x+2)}$

Express $f(x)$ in partial fractions.	[5
SatbleA	

Hence, showing ful	l working, show	that the exac	t value of \int_1^1	$(x) dx$ is $\frac{9}{4}$.	[:
		•••••			
		•••••			
		•••••			
······································		•••••			
,		tpre			
,					
,					
,					
······································		•••••			
,					
,		•••••			

(i) By first expanding $\cos(2x + x)$, show that $\cos 3x = 4\cos^3 x - 3\cos x$.	
T PR	••••••
	•••••
· SatpreP	
	••••••
	••••••
(ii) Hence solve the equation $\cos 3x + 3\cos x + 1 = 0$, for $0 \le x \le \pi$.	
	••••••

(iii)	Find the exact value of $\int_{6\pi}^{\frac{1}{3}\pi} \cos^3 x dx$. [4]
	······

10	(a)	The complex number u is given by $u = -3 - (2\sqrt{10})i$. Showing all necessary working and without using a calculator, find the square roots of u . Give your answers in the form $a + ib$, where the numbers a and b are real and exact. [5]
		Satore?

(b) On a sketch of an Argand diagram shade the region whose points represent complex numbers z satisfying the inequalities $|z-3-\mathrm{i}| \le 3$, $\arg z \ge \frac{1}{4}\pi$ and $\operatorname{Im} z \ge 2$, where $\operatorname{Im} z$ denotes the imaginary part of the complex number z.


Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/32
Paper 3 Pure Mathen	natics 3 (P3)	Octo	ober/November 2019
			1 hour 45 minutes
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

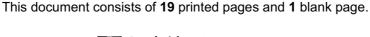
You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.


The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

3 decimal plac	ation $5 \ln(4 - 3^x) = 6$. Show all necessary working and give the arees.	
		••••••
		•••••
		•••••
•••••		•••••
••••		•••••
•••••		••••••
		••••••
		••••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
••••		• • • • • • • • • • • • • • • • • • • •

hence find the x -d	1 - x coordinate of this	stationary poi	nt, giving the an	e interval $-1 < x$ swer correct to 3	decimal plac
					•
•••••					
				<u></u>	
		Sath	rep		
	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	

divided by $x^2 + x - 1$	$+3x^3 + ax + b$, where a the remainder is $2x + 3$	3. Find the values of <i>a</i> and <i>b</i> .	
•••••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		• • • • • • • • • • • • • • • • • • • •
••••••			••••••
•••••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		• • • • • • • • • • • • • • • • • • • •
***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•••••
••••••			•••••
•••••			•••••
•••••	,		•••••
			•••••
•••••			•••••
			•••••
			•••••
			•••••
•••••			•••••
•••••		0167	•••••
•••••			•••••
•••••			•••••
•••••			•••••
			•••••
•••••			•••••
•••••			•••••
•••••			• • • • • • • • • • • • • • • • • • • •
			•••••

	value of R and give	α correct to 3 decim	ai piaces.		
		•••••	•••••	•••••	•••••
	•••••	•••••	•••••	•••••	•••••
	•••••	•••••	•••••	•••••	•••••
			•••••	•••••	•••••
	•••••	•••••	•••••	•••••	•••••
	•••••	••••••	•••••	•••••	•••••
	•••••		•••••	•••••	•••••
	•••••				
			••••	•••••	•••••
	•••••		•••••		•••••
	••••••				
	•••••				••••••
	••••••	••••••		•••••	
					••••••
					••••••
		N GET	orey		

 ••••••
•••••••••
 ••••••
••••••
••••••
 ••••••
•••••••
 •••••

point on the curve at w	vinen the tangent is	s paramer to	the x-axis and	a find the y-co	ordinate of this
	•••••	••••••	•••••	••••••	•••••
				•••••	
			•••••		•••••
			•••••		•••••
				•••••	•••••
					••••
					••••••
					•••••
					•••••
•••••				••••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••
					•••••
		••••••	•••••	•••••	•••••
	•••••	••••••	•••••	••••••	•••••

N Vernrey

6 The variables x and θ satisfy the differential equation
--

sin	$\frac{1}{2}\theta \frac{\mathrm{d}x}{\mathrm{d}\theta}$	=	(x	+2)	$\cos \frac{1}{2}\theta$
- 1	when	A	_	$\frac{1}{\pi}$	Solve

for $0 < \theta < \pi$. It is given that $x = 1$ when $\theta = \frac{1}{3}\pi$. Solve the differential equation and obtain an expression for x in terms of $\cos \theta$.

 • • • • •
• • • • •
• • • • •
 • • • • •
• • • • •
• • • • •

7 (a) Find the complex number z satisfying the equation	
---	--

	iz	_		_
z +	7*	-2	=	0,

where z^* denotes the complex conjugate of z . Give your answer in the form $x + iy$, where x and y are real. [5]
······

© UCLES 2019

(b)	(i) On a single Argand diagram sketch the loci given by the equations $ z - 2i $	= 2 and Im $z = 3$,
	where $\operatorname{Im} z$ denotes the imaginary part of z .	[2]

(ii)	In the first quadrant the two loci intersect at the point P . Find the exact argument of the complex number represented by P . [2]
	atpree

8	Let $f(x) =$	$2x^2 + x + 8$
o	Let $I(x)$ –	$(2x-1)(x^2+2)$

(i)	Express $f(x)$ in partial fractions.	[5]
	Getprev	

integer.					
					•••••
			• • • • • • • • • • • • • • • • • • • •		•••••
•••••					
					•••••
			• • • • • • • • • • • • • • • • • • • •		
					•••••
	,				
•••••	- 8	atpr			
•••••					
•••••		•••••	•••••	••••••	•••••
		•••••			

- 9 It is given that $\int_0^a x \cos \frac{1}{3}x \, dx = 3$, where the constant a is such that $0 < a < \frac{3}{2}\pi$.
 - (i) Show that a satisfies the equation

$a = \frac{4 - 3\cos\frac{1}{3}a}{\sin\frac{1}{3}a}.$	
$a=\frac{3}{1}$.	[5]
$\sin \frac{1}{3}a$	
	•••••
	••••••
	,
	•••••
	••••••

, • • • • • • • • • • • • • • • • • • •		•••••
•••••		•••••
••••••		•••••
•••••		•••••
•••••		••••••
•		
• • • • • • • • • • • • • • • • • • • •		•••••
	Satore	
	Satores	
	Satores	
	Setores	
	Setore?	

i) Find the position	vector of the point of intersection of	f l and p .
i) Calculate the acut	be angle between l and p .	
i) Calculate the acut	be angle between l and p .	
i) Calculate the acut	te angle between l and p .	
i) Calculate the acut	te angle between l and p .	
i) Calculate the acut	te angle between l and p .	
i) Calculate the acut	The angle between l and p .	
i) Calculate the acut	te angle between l and p .	
i) Calculate the acut	e angle between l and p .	
i) Calculate the acut	e angle between l and p .	
i) Calculate the acut	e angle between l and p .	
i) Calculate the acut	e angle between l and p .	
i) Calculate the acut	e angle between l and p .	
i) Calculate the acut	e angle between l and p .	

•••••		
•••••		 •••••
•••••		 •••••
•••••		 •••••
•••••		 •••••
•••••	•••••	 ••••••

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/33
Paper 3 Pure Mather	matics 3 (P3)	Oc	tober/November 2019
			1 hour 45 minutes
Candidates answer o	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 19 printed pages and 1 blank page.

© UCLES 2019

BLANK PAGE

	•••••		•••••		•••••
		•••••	•••••	•••••	•••••
		•••••	••••••	••••••	•••••
		•••••	•••••	•••••	•••••
•••••				••••••	•••••
				••••••	•••••
					•••••
					•••••
				••••••	••••••
		•••••	•••••	•••••	•••••
		•••••	•••••	•••••	•••••

•••••	•••••	•••••	•••••	
•••••				
••••••	100	O		,
		preP		
••••••	•••••	••••••	•••••	· · · · · · · · · · · · · · · · · · ·

3 decimal places.					wer corr
				•••••	
		•••••	••••••		 ••••••
		•••••	•••••		
					 ••••••
					••••••
					 •••••
	12			o :	
		Sator	eP.		
					 •••••
		•••••			
				•••••	 •••••
				•••••	

•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••		•••••		•••••	•••••
••••••		•••••		•••••	•••••
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
				•••••	•••••
				•••••	•••••
		•••••		•••••	•••••
				•••••	•••••
	,				•••••
				••••••	••••••
					•••••
	•••••		•••••		

Hence solve the equation $\tan 3x = 3 \cot x$ for $0^{\circ} < x < 90^{\circ}$.	[3
SatpreP.	

5	(i) By sketching a suitable pair of graphs, show that the equation $ln(x + 2) = 4e^{-x}$ has	exactly one
	real root.	[2]

4
0.//

[2]

(ii) Show by calculation that this root lies between x = 1 and x = 1.5.

Give the result	e formula $x_{n+1} = \ln x$ of each iteration to	$\ln(x_n + 2)$ o 4 decimal p	places.	2 310 1301 0011	er to 2 decimal p
•••••	••••••		•••••	••••••	
			•••••	••••••	
		(P)	RA		
•••••					•••••
					•••••
•••••					•••••
•••••			••••••••	••••••	

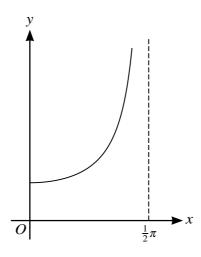
6	Throughout this	question	the use	of a	calculator	is not	permitted.

The complex number with modulus 1 and argument $\frac{1}{3}\pi$ is denoted by w.

(i)	Express w in the form $x + iy$, where x and y are real and exact.	[1]
		•••••
	T PRA	
		•••••
		•••••
Γhe	complex number $1 \pm 2i$ is denoted by u . The complex number v is such that $ v = 2 u $	and

(ii) Sketch an Argand diagram showing the points representing u and v. [2]

© UCLES 2019 9709/33/O/N/19

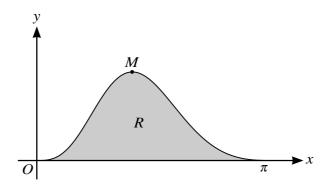

 $\arg v = \arg u + \frac{1}{3}\pi.$

	re real and exact.		
			••••••
		·····	
••••••	••••••		•••••
•••••	•••••		•••••
•••••			

The plane m has equation x + 4y - 8z = 2. The plane n is parallel to m and passes through the point

i) Find the equation	on of n , giving your answ	er in the form $ax + by + cz = d.$	
•••••	••••••		••••••
•••••			•••••
•••••			
•••••			••••••
•••••			••••••
i) Calculate the pe	erpendicular distance betv	ween <i>m</i> and <i>n</i> .	
i) Calculate the pe			
i) Calculate the pe		ween <i>m</i> and <i>n</i> .	
i) Calculate the pe			
	Sat		
	Sat	oree	
	Sat	oree	
		oree	

the origin. Find a	1					
	•••••					•••••
•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••
••••••	••••••	•••••	•••••••••	•••••	••••••	••••••
•••••					•••••	•••••
•••••				•••••		•••••
•••••	•••••	gato.				•••••
•••••	•••••	•••••	•••••	•••••		•••••
•••••••••••	•••••	•••••	•••••••	•••••	••••••	•••••
	•••••	•••••	••••••	•••••	•••••	


The diagram shows the graph of $y = \sec x$ for $0 \le x < \frac{1}{2}\pi$.

(i)	Use the trapezium rule with 2 intervals to estimate the value of $\int_0^{1.2}$ correct to 2 decimal places.	$\sec x dx, \text{ giving your answer}$ [3]
	To the second se	
(ii)	Explain, with reference to the diagram, whether the trapezium rule underestimate of the true value of the integral in part (i).	e gives an overestimate or an [1]

<i>P</i> is the point on the part of the curve $y = \sec x$ for $0 \le x < \frac{1}{2}\pi$ at which the gradient is 2. By differentiating $\frac{1}{\cos x}$, find the <i>x</i> -coordinate of <i>P</i> , giving your answer correct to 3 decimal plane
12//.5/
Sarbies

The variables x and t satisfy the differential equation $5\frac{dx}{dt} = (20 - x)(40 - x)$. It is given that $x = 10$ when $t = 0$.
(i) Using partial fractions, solve the differential equation, obtaining an expression for <i>x</i> in terms of <i>t</i> . [9]
atblek

	
(11)	State what happens to the value of x when t becomes large. [1]

The diagram shows the graph of $y = e^{\cos x} \sin^3 x$ for $0 \le x \le \pi$, and its maximum point M. The shaded region R is bounded by the curve and the x-axis.

places. [5]

•••••		•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
				• • • • • • • • • • • • • • • • • • • •		
		•••••		•••••		
		•••••				
						• • • • • • • • • • • • • • • • • • • •
•••••	••••••	••••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
•••••	•••••			•••••		
•••••		•••••			•••••	
•••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
				• • • • • • • • • • • • • • • • • • • •	•••••	
				• • • • • • • • • • • • • • • • • • • •	•••••	
		•••••				
	 					

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge Assessment International Education

Cambridge International Advanced Level

S						9	9709/31
/lathema	tics 3 (P	3)				May/Ju	ne 2019
					1	hour 45	minutes
wer on t	he Questi	on Paper.					
rials:	List of F	ormulae (M	F9)				
		Mathematics 3 (P3	Mathematics 3 (P3) wer on the Question Paper.	Mathematics 3 (P3) wer on the Question Paper.	Mathematics 3 (P3) wer on the Question Paper.	NUMBER Number Number Number Number Number	NUMBER S Mathematics 3 (P3) May/Ju 1 hour 45 a wer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

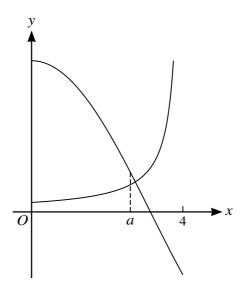
The total number of marks for this paper is 75.

This document consists of 18 printed pages and 2 blank pages.

Ose the trapezium rule with 3 intervals to estimate the value of	
$\int_0^3 \left 2^x - 4 \right \mathrm{d}x.$	[3]
	/ // //
4	
9	

correct to 2 decim	nal places.	
•••••		••••••
•••••		•••••••
•••••		•••••

	•••••	•••••		•••••
	•••••	•••••		•••••
	••••••	••••••		••••••
				•••••
				••••••
	•••••			
		atpro	20	••••••
	•••••	•••••		•••••
•••••		••••••		•••••


- 10000011010	g the equation $\cot \theta - \cot(\theta + 45^{\circ}) = 3$ as a quadratic $\theta < 180^{\circ}$.	
•••••		
•••••		
•••••		
•••••		•••••
••••••	3, 0	••••••
••••••		•••••••••••
•••••		
••••••		•••••••••••
	•••••••••••	

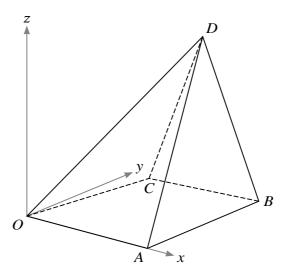
	Differentiate $\frac{1}{\sin^2 \theta}$ with respect to θ .
(ii)	The variables x and θ satisfy the differential equation
(ii)	The variables x and θ satisfy the differential equation dx
(ii)	The variables x and θ satisfy the differential equation $x \tan \theta \frac{dx}{d\theta} + \csc^2 \theta = 0,$
(ii)	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$
(ii)	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$
(ii)	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$
(ii)	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$
(ii)	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$
(ii)	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$
(ii)	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$
(ii)	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$
(ii)	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$
(ii)	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$
(ii)	$x \tan \theta \frac{\mathrm{d}x}{\mathrm{d}\theta} + \csc^2 \theta = 0,$

Sature?

 	 •	 	 	 	
 	 •	 	 	 	
 	 	 •••••	 	 	

[4]	$\int_0^{\frac{1}{3}\pi} \sin^3 x \mathrm{d}x.$	the exact value of \int	working, find	ing all necessary	Hence, showin
			•••••		
			•••••		
			•••••		
			•••••		
			•••••		
				,	
			•••••		
			•••••		
			•••••		
			•••••		
			•••••		

The diagram shows the curves $y = 4\cos\frac{1}{2}x$ and $y = \frac{1}{4-x}$, for $0 \le x < 4$. When x = a, the tangents to the curves are perpendicular.


(i)	Show that $a = 4 - \sqrt{(2\sin\frac{1}{2}a)}$. [4]
	Satore?

•	
•	
•	
•	
•	
•	
•	
•	
•	
Į p	Use an iterative formula based on the equation in part (i) to determine a correct to 3 decolaces. Give the result of each iteration to 5 decimal places.
Į p	Use an iterative formula based on the equation in part (i) to determine a correct to 3 decolaces. Give the result of each iteration to 5 decimal places.
t p	Use an iterative formula based on the equation in part (i) to determine <i>a</i> correct to 3 decolaces. Give the result of each iteration to 5 decimal places.
Г р	Use an iterative formula based on the equation in part (i) to determine <i>a</i> correct to 3 decolaces. Give the result of each iteration to 5 decimal places.
	Use an iterative formula based on the equation in part (i) to determine <i>a</i> correct to 3 decolaces. Give the result of each iteration to 5 decimal places.
	Use an iterative formula based on the equation in part (i) to determine a correct to 3 decolaces. Give the result of each iteration to 5 decimal places.
	Use an iterative formula based on the equation in part (i) to determine a correct to 3 decolaces. Give the result of each iteration to 5 decimal places.
	Use an iterative formula based on the equation in part (i) to determine a correct to 3 decidates. Give the result of each iteration to 5 decimal places.
	Use an iterative formula based on the equation in part (i) to determine a correct to 3 decorates. Give the result of each iteration to 5 decimal places.
	Use an iterative formula based on the equation in part (i) to determine a correct to 3 decidaces. Give the result of each iteration to 5 decimal places.
	Use an iterative formula based on the equation in part (i) to determine <i>a</i> correct to 3 decolaces. Give the result of each iteration to 5 decimal places.
	Use an iterative formula based on the equation in part (i) to determine a correct to 3 decilaces. Give the result of each iteration to 5 decimal places.
	Use an iterative formula based on the equation in part (i) to determine a correct to 3 decolaces. Give the result of each iteration to 5 decimal places.
	Use an iterative formula based on the equation in part (i) to determine a correct to 3 decordaces. Give the result of each iteration to 5 decimal places.
	Use an iterative formula based on the equation in part (i) to determine a correct to 3 decordances. Give the result of each iteration to 5 decimal places.
	Use an iterative formula based on the equation in part (i) to determine a correct to 3 decolaces. Give the result of each iteration to 5 decimal places.
	Use an iterative formula based on the equation in part (i) to determine a correct to 3 decolaces. Give the result of each iteration to 5 decimal places.
	Use an iterative formula based on the equation in part (i) to determine a correct to 3 decolaces. Give the result of each iteration to 5 decimal places.

8	Let $f(x) =$	16 - 17x
o	Let $I(x)$ –	$(2+x)(3-x)^2$

(i)	Express $f(x)$ in partial fractions.	[5]

•••••								•••••
•••••		•••••	•••••	•••••				
•••••	•••••	•••••	•••••	••••••	•••••		•••••	
•••••				•••••				
• • • • • • • • • • • • • • • • • • • •	•••••			••••••••••			•••••	
•••••	••••••			••••••	•••••	•••••	•••••••	
•••••								
•••••		••••••	••••••••••	••••••	••••		••••••	•••••
								•••••
•••••	•••••	•••••		•••••			•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••		•••••		•••••	•••••		•••••	
•••••		•••••	••••••	••••••			••••••	
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••		• • • • • • • • • • • • • • • • • • • •	••••••	

The diagram shows a set of rectangular axes Ox, Oy and Oz, and four points A, B, C and D with position vectors $\overrightarrow{OA} = 3\mathbf{i}$, $\overrightarrow{OB} = 3\mathbf{i} + 4\mathbf{j}$, $\overrightarrow{OC} = \mathbf{i} + 3\mathbf{j}$ and $\overrightarrow{OD} = 2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$.

Find the equation of the plane BCD , giving your answer in the form $ax + by + cz = d$. [6]	J
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•
	•

		•••••		
•••••	•••••		•••••	
•••••	•••••		•••••	
•••••	•••••	•••••	•••••	•••••
•••••		•••••	•••••	••••••
•••••		•••••	•••••	••••••
•••••		•••••	•••••	••••••
•••••				•••••
•••••			•••••	••••••
•••••		•••••	•••••	•••••
•••••			••••••	••••••
••••••			•••••	•••••
•••••		•••••••		••••••
•••••			••••••	
••••••				
•••••		04mra01		
••••••			••••••	•••••••
••••••		••••••	••••••	
••••••		••••••	••••••	•••••••
••••••		••••••	••••••	•••••••
••••••	••••••	••••••	••••••	
••••••	••••••	••••••	••••••	••••••••

10 Throughout this question the use of a calculator is not permitted.

The complex number $(\sqrt{3})$ + i is denoted by u.

(i)	Express u in the form $re^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$, giving the exact values of r and θ . Hence or otherwise state the exact values of the modulus and argument of u^4 .
	2 .5
	34 69
	Gerbiek

(ii)	Verify that u is a root of the equation $z^3 - 8z + 8\sqrt{3} = 0$ and state the other complex root of this equation. [3]
(iii)	On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $ z - u \le 2$ and $\text{Im } z \ge 2$, where $\text{Im } z$ denotes the imaginary part of z .

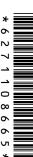
[5]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE



Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2019

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/32
Paper 3 Pure Mathe	ematics 3 (P3)		May/June 2019
			1 hour 45 minutes
Candidates answer	on the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

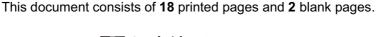
You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.


The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

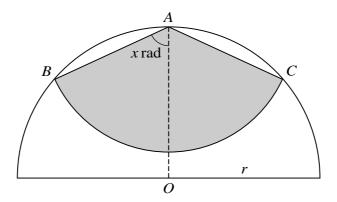
	ient of x^3 in the exp					
		•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••••••
	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••
			<u></u>			
			<mark></mark>			
					••••••	• • • • • • • • • • • • • • • • • • • •
		•••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••
	· · · · · · · · · · · · · · · · · · ·					

 	•••••		
••••••	•••••	•••••	•••••
 	•••••	•••••	•••••
 	•••••	•••••	•••••
 	•••••	•••••	•••••

		•••••
		•••••
•••••		•••••
		•••••
•••••		•••••
	T PAN	
		•••••
		•••••
		•••••
	'satpreP'	
		•••••
		•••••

is equal to $\frac{1}{4}$.	the curve $y = \frac{x}{1 + \ln x}$ at which	-
15 - 4 .		
•••••	 	
	PRA	
	 <mark></mark>	
	itpre?	

5 T	hroughout	this	question	the	use o	of a	calculat	or is	not	permitted
-----	-----------	------	----------	-----	-------	------	----------	-------	-----	-----------


It is given that the complex number $-1 + (\sqrt{3})i$ is a root of the equation

$$kx^3 + 5x^2 + 10x + 4 = 0,$$

where k is a real constant.

(i)	Write down another root of the equation.	[1]
		•••••
(ii)	Find the value of k and the third root of the equation.	[6]
		•••••
		•••••
	SatpreP.	•••••
		•••••
		••••••

Sature?

In the diagram, A is the mid-point of the semicircle with centre O and radius r. A circular arc with centre A meets the semicircle at B and C. The angle OAB is equal to x radians. The area of the shaded region bounded by AB, AC and the arc with centre A is equal to half the area of the semicircle.

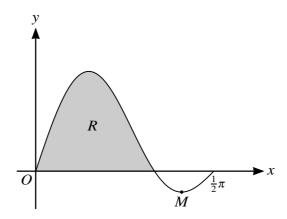
(i)	Use triangle OAB to show that $AB = 2r \cos x$.					
(ii)	Hence show that $x = \cos^{-1} \sqrt{\left(\frac{\pi}{16x}\right)}$.	[2]				
	3					
	Satore					

(iii)	Verify by calculation that x lies between 1 and 1.5. [2]					
(iv)	Use an iterative formula based on the equation in part (ii) to determine x correct to 3 decimal					
(11)	release Cive the result of each iteration to 5 decimal places.					
	places. Give the result of each iteration to 5 decimal places. [3]					

(:)	Solve the differential equation, obtaining u in terms of w	
(1)	Solve the differential equation, obtaining y in terms of x .	
		•••••
		••••••
		••••••
		•••••••
		•
	Parprey	
		••••••
		•••••
		•••••

(ii)	Explain why x can only take values that are less than 1. [1]
()	

8	Let $f(x) =$	10x + 9
O	Let $I(x) =$	$\frac{(2x+1)(2x+3)^2}{(2x+1)(2x+3)^2}$


i) F	Express $f(x)$ in partial fractions. [5]
•	
•	
•	
•	
•	3-0'
•	
•	
•	

			•••••			
•••••		•••••	•••••	•••••	•••••	
•••••		••••••	••••••	••••••	•••••	•••••
•••••						
		•••••	•••••	•••••	•••••	•••••
•••••			•••••	•••••	••••••	•••••
						•••••
		•••••				•••••
						•••••
					•••••	•••••
		•••••		•••••		•••••
•••••	•••••	•••••	•••••	•••••		•••••
•••••		•••••	•••••	•••••		

The points A and B have position vectors $\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $3\mathbf{i} + \mathbf{j} + \mathbf{k}$ respectively. The line l has equation

Snow that t d	loes not intersect th	ne nne passing	through A and	1 <i>B</i> .	
•••••••••••			•••••••••••		••••••
			•••••		
•••••			•••••		•••••
•••••					••••••
					•••••
•••••		gatpr			•••••
•••••					
••••••			•••••		•••••
•••••			•••••		
•••••			•••••		•••••
					•••••

	•••••	•••••	••••••		•••••	•••••
		•••••				
•••••	•••••	•••••	•••••		•••••	
						• • • • •
		•••••			•••••	
•••••					•••••	
•••••••••••					•••••	• • • • •
				,,,		
						• • • • •
						••••
		atore		•••••	•••••	
						· • • • •
					•••••	
•••••	•••••	••••••		••••••	•••••	• • • • •
		•••••				• • • • •
						• • • • •
					•••••	• • • • •
						· • • • •

The diagram shows the curve $y = \sin 3x \cos x$ for $0 \le x \le \frac{1}{2}\pi$ and its minimum point M. The shaded region R is bounded by the curve and the x-axis.

(i)	By expar	rdina c	$\sin(3x)$	⊥ v) .	and c	in(3r =	v) c	how	that
\ I /	то у східаі	iuiii 2 8	SIIII . J.A. '	$T \mathcal{A} I i$	anu s	1111.Ja =	- 1 0	HU)W	unai

	$\sin 3x \cos x = \frac{1}{2}(\sin 4x + \sin 2x).$	[3]
5		
	'n,o'	
	satpre?	

(ii)	Using the result of part (i) and showing all necessary working, find the exact area of the region <i>E</i> [4]

(000)	dy .
(iii)	Using the result of part (i), express $\frac{1}{dx}$ in terms of $\cos 2x$ and hence find the x-coordinate of M,
	Using the result of part (i), express $\frac{dy}{dx}$ in terms of $\cos 2x$ and hence find the <i>x</i> -coordinate of <i>M</i> , giving your answer correct to 2 decimal places. [5]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.
•••••••••••••••••••••••••••••••••••••••

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME										
CENTRE NUMBER						CANDI NUMBI				
MATHEMATICS									97	09/33
Paper 3 Pure M	athematic	s 3 (P 3	3)					May	/June	2019
							1	hour	45 mi	nutes
Candidates ansv	ver on the	Questi	on Pa	per.						
Additional Materials: List of Formulae (MF9)										

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

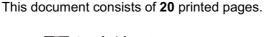
You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.


The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

•••••	
•••••	 • • • • •
•••••	
•••••	• • • • •
•••••	
•••••	• • • • • •
••••••••••	
••••••••••	•••••
•••••	
	 • • • • •
	 . .
	· • • • •
	· • • • •
	· • • • •

2

Show that $\int_0^{\frac{1}{4}\pi} x^2 \cos 2x dx = \frac{1}{32} (\pi^2 - 8).$	[5]
SETOTES	

3	Let $f(\theta)$ –	$1 - \cos 2\theta + \sin 2\theta$
3	Let 1(0) =	$\frac{1 - \cos 2\theta + \sin 2\theta}{1 + \cos 2\theta + \sin 2\theta}$

(ii)	Hence show that $\int_{\frac{1}{6}\pi}^{\frac{1}{4}\pi} f(\theta) d\theta = \frac{1}{2} \ln \frac{3}{2}.$	[4]
		•••••
	V Sathere O	
		••••••

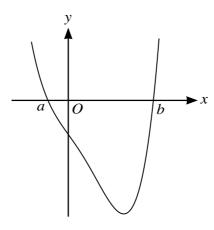
	TDI .: C :	$1 + e^{-x}$
4	The equation of a curve is $y =$	$\frac{1}{1-e^{-x}}$, for $x > 0$.

Show that $\frac{dy}{dx}$ is always negative.	
N. Petrore Y. //	

$e^{2a} - 4e^a + 1 = 0$	0. Hence find the	exact value o	f <i>a</i> .		
			•••••	•••••	
			. <mark> </mark>		
					•••••
					•••••
	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••
	•••••	•••••	•••••		•••••
			•••••		
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••

8
The variables x and y satisfy the differential equation
$(x+1)y\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 + 5.$
It is given that $y = 2$ when $x = 0$. Solve the differential equation obtaining an expression for y^2 it terms of x .
arpres

.....


.....

.....

© UCLES 2019	9709/33/M/J/19

N Vernrey

6

The diagram shows the curve $y = x^4 - 2x^3 - 7x - 6$. The curve intersects the x-axis at the points (a, 0) and (b, 0), where a < b. It is given that b is an integer.

(1)	Find the value of b .	[1]
	AT PRAIL	
		••••••
		••••••
		••••••
(ii)	Hence show that a satisfies the equation $a = -\frac{1}{3}(2 + a^2 + a^3)$.	5.43
(11)	Thence show that a satisfies the equation $a = -\frac{1}{3}(2 + a + a)$.	[4]
(II)	Thence show that u satisfies the equation $u = -\frac{1}{3}(2+u^2+u^2)$.	[4]
(11)	Thence show that u satisfies the equation $u = -\frac{1}{3}(2 + u + u)$.	
(11)	Thence show that u satisfies the equation $u = -\frac{1}{3}(2 + u + u)$.	
(11)	Thence show that u satisfies the equation $u = -\frac{1}{3}(2 + u + u)$.	
	Thence show that a satisfies the equation $a = -\frac{1}{3}(2 + a + a^{-1})$.	[4]
	Thence show that u satisfies the equation $u = -\frac{1}{3}(2+u^2+u^2)$.	[4]
	Thence show that u satisfies the equation $u = -\frac{1}{3}(2+u^2+u^2)$.	[4]
(11)	Thence show that u satisfies the equation $u = -\frac{1}{3}(2+u^2+u^2)$.	[4]
(11)	Thence show that u satisfies the equation $u = -\frac{1}{3}(2+u^{2}+u^{2})$.	[4]

(iii)	Use an iterative formula based on the equation in part (ii) to determine a correct to 3 decimal
	places. Give the result of each iteration to 5 decimal places. [3]
	······································

Find $\frac{dy}{dx}$.		
•••••	••••••	
By considering	the formula for $cos(A + B)$, show that.	at the stationary points on the
By considering $\cos(2x + \frac{1}{3}\pi) =$	the formula for $cos(A + B)$, show that, 0.	at the stationary points on the
By considering $\cos(2x + \frac{1}{3}\pi) =$	the formula for $cos(A + B)$, show that, 0.	at the stationary points on the
By considering $\cos(2x + \frac{1}{3}\pi) =$	the formula for $\cos(A + B)$, show that, 0.	at the stationary points on the
By considering $\cos(2x + \frac{1}{3}\pi) =$	the formula for $\cos(A + B)$, show that, 0.	at the stationary points on the
By considering $\cos(2x + \frac{1}{3}\pi) =$	the formula for $\cos(A + B)$, show that, 0.	at the stationary points on the
By considering $\cos(2x + \frac{1}{3}\pi) =$	the formula for $\cos(A + B)$, show that, 0.	at the stationary points on the
By considering $\cos(2x + \frac{1}{3}\pi) =$	the formula for $\cos(A+B)$, show that, 0.	at the stationary points on the
By considering $\cos(2x + \frac{1}{3}\pi) =$	the formula for $\cos(A + B)$, show that, 0.	at the stationary points on the
By considering $\cos(2x + \frac{1}{3}\pi) =$	the formula for $\cos(A + B)$, show that, 0.	at the stationary points on the
By considering $\cos(2x + \frac{1}{3}\pi) =$	the formula for $\cos(A + B)$, show that, 0.	at the stationary points on the
By considering $\cos(2x + \frac{1}{3}\pi) =$	the formula for $\cos(A + B)$, show that, 0.	at the stationary points on the

•••••	•••••	••••••		
•••••	•••••	•••••	••••••	••••••
	•••••			
•••••	•••••	•••••		•••••
	•••••			
•••••				
	••••••			
			<u> </u>	
•••••				
•••••		atpreP		••••••
•••••		•••••		
	•••••	•••••	•••••	•••••
•••••				
• • • • • • • • • • • • • • • • • • • •				

8	Throughout t	his question	the use o	f a calcula	tor is not	permitted
---	--------------	--------------	-----------	-------------	------------	-----------

The complex number u is defined by

$$u = \frac{4i}{1 - (\sqrt{3})i}.$$

(i)	Express u in the form $x + iy$, where x and y are real and exact.	[3]
		•••••
		· • • • • •
		•••••
		· • • • • • • • • • • • • • • • • • • •
		· • • • • •
		•••••
	Satbles	•••••
		•••••
		· • • • • • • • • • • • • • • • • • • •
		· • • • • •
		· • • • • • • • • • • • • • • • • • • •

(ii)	Find the exact modulus and argument of u . [2]
(iii)	On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $ z < 2$ and $ z - u < z $. [4]

9	Let $f(r) =$	-2x(5-x)
,	Let $I(x) =$	$\frac{2x(3-x)}{(3+x)(1-x)^2}$.

	artial fractions.	
		 ••••
		 ••••
•••••		 ••••
•••••	•••••	 ••••
•••••		••••
		••••
••••••		••••
		 ••••
		••••
		 ••••
	•••••	 ••••
	••••••	 ••••
		••••
		 ••••

(ii)	Hence obtain the expansion of $f(x)$ in ascending powers of x up to and including the term in x^3 . [5]

	18
he	line l has equation $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \mu(2\mathbf{i} - \mathbf{j} - 2\mathbf{k})$.
(i)	The point P has position vector $4\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$. Find the length of the perpendicular from P to l . [5]

Find the values of	7 W mile 0.	
•••••		
•••••		
•••••	Gerbiek	

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME											
CENTRE NUMBER							CANDIE NUMBE				
MATHEMATICS										97	09/32
Paper 3 Pure M	athematic	s 3 (P 3	3)					Febr	uary/	Marcl	າ 2019
								1	hour	45 m	inutes
Candidates ansv	ver on the	Questi	on Pa	per.							
Additional Materi	als:	ist of F	ormu	lae (MF	9)						

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

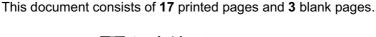
You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.


The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

BLANK PAGE

© UCLES 2019 9709/32/F/M/19

		n ɔ
		••••
		••••
		•••
		•••
		•••
		•••
(ii)	Hence solve the equation $\log_{10}(x-4) = 2 - \log_{10}x$ giving your answer correct to 3 six	on.
(ii)	Hence solve the equation $\log_{10}(x-4) = 2 - \log_{10} x$, giving your answer correct to 3 signifigures.	gn
(ii)	Hence solve the equation $\log_{10}(x-4) = 2 - \log_{10} x$, giving your answer correct to 3 signifigures.	gn
(ii)	figures.	gn
(ii)	Hence solve the equation $\log_{10}(x-4) = 2 - \log_{10} x$, giving your answer correct to 3 signifigures.	gn
(ii)	figures.	gn
(ii)	figures.	gn
(ii)	figures.	
(ii)	figures.	gni

2 The sequence of values given by the iterative formula

$$x_{n+1} = \frac{2x_n^6 + 12x_n}{3x_n^5 + 8},$$

with initial value $x_1 = 2$, converges to α .

(i)	Use the formula to calculate α correct to 4 decimal places. Give the result of each iteration 6 decimal places.	to [3]
		•••
		•••
		•••
		•••
		•••
		•••
(ii)	3	[2]
	Satpre?	•••
		•••
		•••
		•••
		•••
		•••

© UCLES 2019 9709/32/F/M/19

burus. 10u	need not simplify your answer.
••••••	
•••••	
•••••	
•••••	
•••••	
•••••	
** 1	1
Hence solve	e the equation $\sin(\theta + 45^{\circ}) + 2\cos(\theta + 60^{\circ}) = 3\cos\theta$ for $0^{\circ} < \theta < 360^{\circ}$.

Sarb	
) (C)

	dy	1	
	$\frac{dy}{dx} =$	$\frac{1}{\cos x \sqrt{(\cos 2x)}}.$	
	άx	$\cos x \sqrt{(\cos 2x)}$	
			•••••
	•••••	•••••	
•••••	•••••	•••••	•••••
•••••		•••••	•••••
•••••			
	•••••		
		tore	
		in the second se	

6 The variables x and y satisfy the differential equ

dy	_	L_{γ}^{3}	3	x
dr	_	Ky	e	•

where k is a constant. It is given that $y = 1$ when $x = 0$, and that $y = \sqrt{e}$ when $x = 1$. Solve differential equation, obtaining an expression for y in terms of x .	(7)
	••••
-0'/	

N Seinre V

7	(a)	Showing all working and without using a calculator, solve the equation	
		$(1+i)z^2 - (4+3i)z + 5 + i = 0.$	
		Give your answers in the form $x + iy$, where x and y are real.	[6]
			• • • • •
			••••
			••••
			••••
			••••
			••••
			••••
		N°SethreO°	••••
			••••
			••••
			••••
			••••
			••••

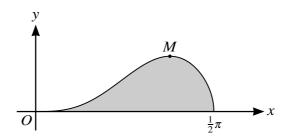
© UCLES 2019 9709/32/F/M/19

(b) The complex number u is given by

$$u = -1 - i$$
.

On a sketch of an Argand diagram show the point representing u. Shade the region whose points represent complex numbers satisfying the inequalities |z| < |z - 2i| and $\frac{1}{4}\pi < \arg(z - u) < \frac{1}{2}\pi$.

8	Let $f(x) =$	$12 + 12x - 4x^2$
o	Let $I(x)$ –	$\frac{12+12x-4x}{(2+x)(3-2x)}$


Express $f(x)$ in partial fractions.	[5
	••••••
etbles	

•••••								•••••
•••••		•••••	•••••	•••••				
•••••	•••••	•••••	•••••	••••••	•••••		•••••	
•••••				•••••				
• • • • • • • • • • • • • • • • • • • •	•••••			••••••••••			•••••	
•••••	••••••			••••••	•••••	•••••	•••••••	
•••••								
•••••		••••••	•••••••••••	••••••	••••		••••••	•••••
								•••••
•••••	•••••	•••••		•••••			•••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••		•••••		•••••			•••••	
•••••		•••••	••••••	••••••			••••••	
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	

Find the acute angle be	etween the planes.		
•••••	•••••	•••••	
••••••			
		<u></u>	
•••••		0	
	\ i \ atpr		
	•••••	••••	
•••••	•••••	•••••	•••••••••••

© UCLES 2019 9709/32/F/M/19

••••••		••••••
••••••	 	••••
•••••		
•••••	 	
••••••		•••••
•••••		•••••
•••••		•••••
•••••	 	•••••
•••••	 ••••••	•••••

The diagram shows the curve $y = \sin^3 x \sqrt{(\cos x)}$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

(i)	Using the substitution $u = \cos x$, find by integration the exact area of the shaded region bounded by the curve and the <i>x</i> -axis. [6]
	-07
	'satpreP'

© UCLES 2019 9709/32/F/M/19

places.	working, find the <i>x</i> -c		., <u>6-,</u>	 to 3 deen
				 •••••
				 •••••
				 •••••
				 •••••
		prev		 •••••
				 •••••
				 •••••
				 •••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
- Store - Stor

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		
MATHEMATICS						9709/31
Paper 3 Pure M	athematics	3 (P3)		0	ctober/Nov	ember 2018
					1 hour	45 minutes
Candidates answ	ver on the C	Question Pap	er.			
Additional Mater	ials: Li	st of Formula	e (MF9)			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

••••••		•••••	••••••
•••••		•••••	
••••••		••••••	
•••••			
•••••	•••••	•••••	
•••••	•••••	•••••	••••••

2 decimal places.				
••••••			••••••	•••••
	•••••	•••••		
				•••••
•••••			•••••	•••••
				•••••
•••••				••••••••••
				•••••
				•••••
•••••	••••••	•••••	•••••	•••••

3	(i)	By sketching a suitable pair of graphs, show that the equation $x^3 = 3 - x$ has exactly one	real
		root.	[2]

(ii) Show that if a sequence of real values given by the iterative formula

$$x_{n+1} = \frac{2x_n^3 + 3}{3x_n^2 + 1}$$

converges, then it converges to the root of the equation in part (i).	[2]
	••••••
Satore?	
	••••••
	•••••
	••••••

• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	, , , , , , , , , , , , , , , , , , , ,		•••••	••••••
• • • • • • • • • • • • • • • • • • • •			•••••	•••••
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the resi
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the resi
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	

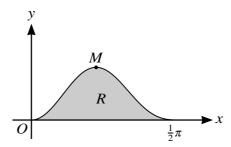
	4	The	parametric	equations	of a	curve	are
--	---	-----	------------	-----------	------	-------	-----

$$x = 2\sin\theta + \sin 2\theta$$
, $y = 2\cos\theta + \cos 2\theta$,

where $0 < \theta < \pi$.

(i)	Obtain an expression for $\frac{dy}{dx}$ in terms of θ .	[3]
		•••••
		•••••
		· • • • • • • • • • • • • • • • • • • •
		· • • • • • •
		· • • • • • • • • • • • • • • • • • • •
		•••••
		•••••
		· • • • • • • • • • • • • • • • • • • •
	· Sathre P	•••••
		•••••
		· • • • • • • • • • • • • • • • • • • •
		,
		· • • • • • •
		· • • • • • • •

y-axis.			
•••••	•••••		•••••
•••••	•••••	•••••	•••••
	•••••		
•••••			
•••••	•••••	•••••	•••••
•••••			
••••••			•••••
•••••			
•••••		•	
•••••			
•••••	•••••	•••••	•••••
•••••			•••••


The coordinates (x, y) of a general point on a curve satisfy the differential equation

5

y in terms of x .	d the equation of the cu		[′
•			
•••••	 	••••••	
	 		••••••
			••••••
			••••••
•••••			••••••
•••••	 		•••••

where $R > 0$ and						
	•••••					
•••••				•••••		••••
•••••	•••••			•••••	•••••	••••
	•••••	•••••				
						••••
•••••						••••
				••••••	• • • • • • • • • • • • • • • • • • • •	••••
						• • • • •
						• • • •
		,				••••
		Pator				••••
•••••			•••••••••••	••••••	••••••	• • • • •
•••••						
•••••						
						• • • •
				•••••		• • • •
				•••••		••••
		•••••		•••••	••••••	••••
	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • •

Hence solve the equation $(\sqrt{2}) \csc x + \cot x = \sqrt{3}$, for $0^{\circ} < x < 180^{\circ}$.	
	•••••
	•••••
	•••••
	••••••
	•••••
	••••••
·Sathra0	•••••
'SatpreP'	

The diagram shows the curve $y = 5 \sin^2 x \cos^3 x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M. The shaded region R is bounded by the curve and the x-axis.

Find the x -coordinate of M , giving your answer correct to 3 decimal places.	[5]
	••••••
	•••••
	•••••
	•••••
Patprey	••••••
	•••••
	••••••

					•••••
••••••••••••	•••••••	••••••••	••••••	•••••	••••••
	••••••	••••••	•••••		•••••
					••••••
	••••••	•••••			•••••
•••••••••••				•••••	••••••
					•••••
					••••••
		······			•••••
					••••••
		atpreP			
••••••	••••••	•••••	•••••	•••••	••••••
		••••••			••••••

(44)	Showing all necessary working, express the complex number $\frac{2+3i}{1-2i}$ in the form $re^{i\theta}$, where $r > 1$						
	and $-\pi < \theta \le \pi$. Give the values of r and θ correct to 3 significant figures.						
	6						

(b)	On an Argand diagram sketch the locus of points representing complex numbers z satisfying the equation $ z - 3 + 2i = 1$. Find the least value of $ z $ for points on this locus, giving your answer in an exact form. [4]
	Satpre

9	Let $f(r)$ –	$6x^2 + 8x + 9$
,	Let $I(x) =$	$\frac{6x^2 + 8x + 9}{(2 - x)(3 + 2x)^2}.$

Express $f(x)$ in partial fractions.	[5

i)	Hence, showing all necessary working, show that $\int_{-1}^{0} f(x) dx = 1 + \frac{1}{2} \ln(\frac{3}{4}).$ [5]
	Galprey

	Show that l is parallel to m .
···	
(11)	Calculate the acute angle between the planes m and n .
(11)	Calculate the acute angle between the planes m and n .
(11)	Calculate the acute angle between the planes m and n .
(11)	Calculate the acute angle between the planes m and n .
(11)	Calculate the acute angle between the planes <i>m</i> and <i>n</i> .
(11)	
(11)	
(11)	
(11)	
(11)	
(11)	
(11)	
(11)	
(11)	
(II)	
(11)	
(11)	

ine position vecto	ors of the two possible	positions of	1.		
	••••••	••••••	••••••	•	
	•••••		•••••		
					• • • • • • • • • • • • • • • • • • • •
			•••••	•••••	
					•••••••
		toreP	•••••		
	•••••	••••••			••••••
		•••••			

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		
MATHEMATICS						9709/32
Paper 3 Pure Ma	athematics	3 (P3)		0	ctober/Nov	ember 2018
					1 hou	r 45 minutes
Candidates answ	er on the	Question Pa	aper.			
Additional Materi	als: L	ist of Formu	ılae (MF9)			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

•••••	 	•••••
•••••	 	•••••
•••••	 	•••••
•••••	 	•••••
•••••	 	•••••
•••••	 	•••••
	 	•••••
	 	•••••
	 	•••••
	 	•••••
	 	•••••

•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••
•••••	•••••	•••••	•••••	•••••	••••
•••••	•••••	•••••	•••••		••••
•••••••		••••••	••••••	••••••	••••
			•		••••
		<mark>.</mark>			
					••••
					••••
•••••					••••
•••••					••••
•••••		•••••		•••••	••••
	••••••	•••••	•••••		••••
•••••	•••••	•••••	•••••		••••
••••••	•••••	••••••	••••••	••••••	••••

(i)	Find $\int \frac{\ln x}{x^3} dx$.		[3]
		3	
(ii)	Hence show that	$\int_{1}^{2} \frac{\ln x}{x^3} \mathrm{d}x = \frac{1}{16} (3 - \ln 4)$	[2]

Showing all necessary working, solve the equation

4

$\frac{\mathrm{e}^x + \mathrm{e}^{-x}}{\mathrm{e}^x + 1} = 4,$	
giving your answer correct to 3 decimal places.	[5
T PA	
	······································
32,	••••
SatpreP.	

when x = a.

The equation of a curve is $y = x \ln(8 - x)$. The gradient of the curve is equal to 1 at only one point,

	ntisfies the equation $x = 8 - \frac{8}{\ln(8 - x)}$.	
••••••		
•••••	Satore?	
•••••		

Use an iterative for	mula based on the equation in part (i) to det	ermine a correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ult of each iteration to 4 decimal places.	ermine a correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ault of each iteration to 4 decimal places.	ermine a correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ult of each iteration to 4 decimal places.	ermine <i>a</i> correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ult of each iteration to 4 decimal places.	ermine <i>a</i> correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ult of each iteration to 4 decimal places.	ermine <i>a</i> correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ult of each iteration to 4 decimal places.	ermine <i>a</i> correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ult of each iteration to 4 decimal places.	ermine <i>a</i> correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ult of each iteration to 4 decimal places.	ermine <i>a</i> correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ult of each iteration to 4 decimal places.	ermine <i>a</i> correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ult of each iteration to 4 decimal places.	ermine a correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ult of each iteration to 4 decimal places.	ermine a correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to detuil of each iteration to 4 decimal places.	ermine <i>a</i> correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ult of each iteration to 4 decimal places.	ermine a correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ult of each iteration to 4 decimal places.	ermine a correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ult of each iteration to 4 decimal places.	ermine a correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to detuil of each iteration to 4 decimal places.	ermine a correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to det ult of each iteration to 4 decimal places.	ermine a correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to detunate of each iteration to 4 decimal places.	ermine a correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to detunate of each iteration to 4 decimal places.	ermine a correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to detuil of each iteration to 4 decimal places.	ermine a correct to 2 dec
Use an iterative for places. Give the res	mula based on the equation in part (i) to detuil of each iteration to 4 decimal places.	ermine a correct to 2 dec

a differential equation	on, find the equation	with coordin	expressing y in	terms of x .	
		•••••			
		••••••	•••••••••••		
					· • • • • • • • • • • • • • • • • • • •
		······································			
		•••••			
••••••			••••••		· • • • • • • • • • • • • • • • • • • •

N Vernrey

7	A curve has equation $y = \frac{3\cos x}{2 + \sin x}$, for $-\frac{1}{2}\pi \le x \le \frac{1}{2}\pi$.
	(i) Find the exact coordinates of the stationary poin

Find the exact coordinates of the stationary point of the curve.	[6]
	•••••
2s	
PaipreY	
	•••••

(ii)	The constant a is such that $\int_0^a \frac{3\cos x}{2 + \sin x} dx = 1$. Find the value of a, giving your answer correct to 3 significant figures.
	to 3 significant figures. [4]
	T ERA
	'SatpreP'

8	Let $f(r)$ –	$7x^2 - 15x + 8$
O	Let $I(x) =$	$\frac{7x^2 - 15x + 8}{(1 - 2x)(2 - x)^2}.$

(i)	Express $f(x)$ in partial fractions.	[5]
	Getprev	

	expansion of $f(x)$			•		1
•••••	•••••	,	•••••	•••••	•••••	•••••
•••••	•••••	•	•••••	•••••	••••••	••••••
•••••	•••••	•	•••••	••••••	••••••	•••••
•••••		,			••••••	••••••
					••••••	•••••
					••••••	•••••
••••••					••••••	•••••
•••••		etpre			••••••	•••••
•••••	•••••		•••••	••••••	••••••	
•••••	•••••		•••••	••••••	••••••	•••••
•••••	•••••		•••••		••••••	•••••
				•••••		
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••

9	(a)	(i)	Without using a calculator, express the complex number $\frac{2+6i}{1-2i}$ in the form $x+iy$, where x and y are real.	<i>x</i>
				•
				•
				•
				•
			PB	•
				•
				•
		(ii)	Hence, without using a calculator, express $\frac{2+6i}{1-2i}$ in the form $r(\cos\theta+i\sin\theta)$, where $r>0$	n
		(11)	Tience, without using a calculator, express	•
			and $-\pi < \theta \le \pi$, giving the exact values of r and θ . [3]	
			and $-\pi < \theta \le \pi$, giving the exact values of r and θ . [3]	
			and $-\pi < \theta \le \pi$, giving the exact values of r and θ .	
			and $-\pi < \theta \le \pi$, giving the exact values of r and θ . [3]	
			and $-\pi < \theta \leqslant \pi$, giving the exact values of r and θ .	
			and $-\pi < \theta \leqslant \pi$, giving the exact values of r and θ .	
			and $-\pi < \theta \leqslant \pi$, giving the exact values of r and θ .	
			and $-\pi < \theta \leqslant \pi$, giving the exact values of r and θ .	
			and $-\pi < \theta \leqslant \pi$, giving the exact values of r and θ .	
			and $-\pi < \theta \leqslant \pi$, giving the exact values of r and θ .	

(b)	On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying both the inequalities $ z - 3i \le 1$ and Re $z \le 0$, where Re z denotes the real part of z . Find the greatest value of arg z for points in this region, giving your answer in radians correct to 2 decimal places. [5]
	Su S

10	The line <i>l</i> has equation $\mathbf{r} = 5\mathbf{i} - 3\mathbf{j} - \mathbf{k} + \lambda(\mathbf{i} - 2\mathbf{j} + \mathbf{k})$. The plane <i>p</i> has equation
	$(\mathbf{r} - \mathbf{i} - 2\mathbf{j}) \cdot (3\mathbf{i} + \mathbf{j} + \mathbf{k}) = 0.$

The line l intersects the plane p at the point A.

•••••	 •••••	•••••	•••••	•••••
	 	•••••	•••••	•••••
•••••	 			•••••
	 atore			•••••
	 •••••		•••••	•••••
	 •••••	••••••	•••••	

		and p .			
				• • • • • • • • • • • • • • • • • • • •	
		•••••			
		•••••			
			<mark></mark>		
•••••					
•••••		• • • • • • • • • • • • • • • • • • • •			
•••••		•••••		• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	••••••	•••••	•••••	

[Question 10(iii) is printed on the next page.]

	•••••	•••••				· • • •
				•••••		• • •
•••••	••••••	••••••		••••••	,	•••
						· • • •
•••••	•••••	•••••		•••••		· • • •
•••••	•••••	•••••	••••••	•••••		•••
		r Pi	5			
						· • • •
						•••
						••••
						· • • •
•••••						· • • •
•••••		atpre	>0	••••••	,	•••
						· • • •
•••••		•••••		•••••	•••••	• • •
•••••	••••••	••••••		••••••	,	•••
			• • • • • • • • • • • • • • • • • • • •			
						· • • •
		•••••				• • • •
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • •

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
Serbies

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2018

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		
MATHEMATICS						9709/33
Paper 3 Pure Ma	athematic	s 3 (P3)		O	ctober/Nov	ember 2018
					1 hour	45 minutes
Candidates answ	er on the	Question	Paper.			
Additional Materi	als: L	ist of For	mulae (MF	F9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

				•••••
•••••	•••••	•••••	•••••	•••••
•••••		•••••	•••••	•••••
•••••				•••••
••••••		••••••	•••••	•••••
•••••				•••••
•••••			•••••	•••••
•••••	•••••	•••••	•••••	•••••
••••••	•••••	••••••	••••••	•••••

Showing all necessary working, solve the equation $\frac{2e^x + e^{-x}}{e^x - e^{-x}} = 4$, giving your answer correct 2 decimal places.
Satores

3	(i)) By sketching a suitable pair of graphs, show that the equation $x^3 = 3 - x$ has exactly of	one real
		root.	[2]

(ii) Show that if a sequence of real values given by the iterative formula

$$x_{n+1} = \frac{2x_n^3 + 3}{3x_n^2 + 1}$$

converges, then it converges to the root of the equation in part (i).	[2]

• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	, , , , , , , , , , , , , , , , , , , ,		•••••	••••••
• • • • • • • • • • • • • • • • • • • •			•••••	•••••
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal plac	ces. Give the resi
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the resi
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	ces. Give the rest
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	
Use this iterative each iteration to	e formula to determine 5 decimal places.	e the root correct	to 3 decimal place	

	4	The	parametric	equations	of a	curve	are
--	---	-----	------------	-----------	------	-------	-----

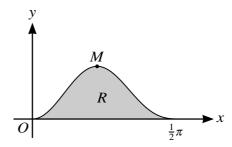
$$x = 2\sin\theta + \sin 2\theta$$
, $y = 2\cos\theta + \cos 2\theta$,

where $0 < \theta < \pi$.

(i)	Obtain an expression for $\frac{dy}{dx}$ in terms of θ .	[3]
		•••••
		•••••
		•••••
	T PR	
		•••••
		•••••
		•••••
		•••••
		••••••
		•••••

y-axis.			
•••••	•••••		•••••
•••••	•••••	•••••	•••••
	•••••		
•••••			
•••••	•••••	•••••	•••••
•••••			
••••••			•••••
•••••			
•••••		•	
•••••			
•••••	•••••	•••••	•••••
•••••			

The coordinates (x, y) of a general point on a curve satisfy the differential equation


5

y i	the curve passes through the point $(1, 1)$. Find the equation of the curve, obtaining an expression for n terms of x .
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	
••••	alprev
••••	
••••	
••••	
••••	
••••	
••••	

where K >	0 and $0^{\circ} < \alpha < 90^{\circ}$.	
		 •••••
•••••		
•••••		 •••••
••••••		
• • • • • • • • • • • • • • • • • • • •		•••••
		•••••
•		•••••••
		 •••••
•••••		•••••

(ii)	Hence solve the equation $(\sqrt{2})$ cosec $x + \cot x = \sqrt{3}$, for $0^{\circ} < x < 180^{\circ}$.	[4]
	T PR	
	SatpreP.	

7

The diagram shows the curve $y = 5 \sin^2 x \cos^3 x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M. The shaded region R is bounded by the curve and the x-axis.

Find the x -coordinate of M , giving your answer correct to 3 decimal places.	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
- Vainrey	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •

					•••••
••••••••••••	•••••••	••••••••	••••••	•••••	••••••
	•••••	••••••	•••••		•••••
					••••••
	••••••	•••••			•••••
•••••••••••				•••••	••••••
					•••••
					••••••
		······			•••••
					••••••
		atpreP			
••••••	••••••	•••••	•••••	•••••	••••••
		••••••			••••••

Showing all necessary working, express the complex number $\frac{2+3i}{1-2i}$ in the form $re^{i\theta}$, when					
and $-\pi < \theta \le \pi$. Give the values of r and θ correct to 3 significant figures.					
	•••••				
	•••••				
	•••••				
	• • • • • • • • • • • • • • • • • • • •				
	•••••				
	•••••				
	•••••				
	•••••				
	•••••				
0'//					
// Leibles					

(b)	On an Argand diagram sketch the locus of points representing complex numbers z satisfying the equation $ z - 3 + 2i = 1$. Find the least value of $ z $ for points on this locus, giving your answer in an exact form. [4]
	Satpre

9	Let $f(x) = \frac{6x^2 + 8x + 9}{(2 - x)(3 + 2x)^2}$.
	(i) Express $f(x)$ in partial f

Express $f(x)$ in partial fractions.	[5
4	S /.e/
	-0
Gellore	

i)	Hence, showing all necessary working, show that $\int_{-1}^{0} f(x) dx = 1 + \frac{1}{2} \ln(\frac{3}{4}).$ [5]
	Galprey

	Show that l is parallel to m .
···	
(11)	Calculate the acute angle between the planes m and n .
(11)	Calculate the acute angle between the planes m and n .
(11)	Calculate the acute angle between the planes m and n .
(11)	Calculate the acute angle between the planes m and n .
(11)	Calculate the acute angle between the planes <i>m</i> and <i>n</i> .
(11)	
(11)	
(11)	
(11)	
(11)	
(11)	
(11)	
(11)	
(11)	
(II)	
(11)	
(11)	

ine position vecto	ors of the two possible	positions of	1.		
	••••••	••••••	••••••	•	
	•••••		•••••		
					• • • • • • • • • • • • • • • • • • • •
			•••••	•••••	
					••••••
		toreP	•••••		
	•••••	••••••			••••••
		•••••			

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME					
CENTRE NUMBER		CANDIDATE NUMBER			
MATHEMATICS			9709/31		
Paper 3 Pure Mathematics 3 (P3)			May/June 2018		
			1 hour 45 minutes		
Candidates answer	on the Question Paper.				
Additional Materials:	List of Formulae (MF9)				

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

to 2 decimal places.	
••••••	
•••••	
•••••	
••••••	

	Given that $\sin(x - 60^\circ) = 3\cos(x - 45^\circ)$, find the exact value of $\tan x$.	
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
	Satpre?	
(;;)	Hence solve the equation $\sin(x - 60^\circ) = 3\cos(x - 45^\circ)$, for $0^\circ < x < 360^\circ$.	
(11)	Thence solve the equation $\sin(x - 60^\circ) = 3\cos(x - 45^\circ)$, for $0^\circ < x < 500^\circ$.	
		•••••
		•••••

$\tan 2^{\lambda}$	
A curve has equation $y = \frac{e^{3x}}{\tan \frac{1}{2}x}$. Find the <i>x</i> -coordinates of the stationary points of interval $0 < x < \pi$. Give your answers correct to 3 decimal places.	
·	
	•••••
	•••••
	•••••
"Sathreo"	
	•••••
	•••••

© UCLES 2018 9709/31/M/J/18

values of a and b .			[
	 ••••••	•••••	••••••
	 		••••••
	 	•••••	
	 		•••••
	 		•••••
•••••	 	••••••	••••••
	 		•••••
	 	•••••	•••••
	 	••••••	•••••••••••

5	Let $I =$	$\int_{1}^{\frac{3}{4}} \sqrt{\left(\frac{1}{4}\right)^{\frac{3}{4}}}$	$\left(\frac{x}{1-x}\right) dx$	x.
		J <u>1</u> V\	1-x	

(i)	Using the substitution $x = \cos^2 \theta$, show that $I = \int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} 2\cos^2 \theta d\theta$.	[4]
		•••••
		· • • • • •
		· • • • •
		· • • • • •
		· • • • • •
		· • • • • •
	3	
	7. Sathreo-S	

Hence find the exact val					
••••••		• • • • • • • • • • • • • • • • • • • •	•	••••••	
•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	
•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••				•••••	
		•••••			
			······································		
				••••	
			• • • • • • • • • • • • • • • • • • • •		
	•••••				
	•••••				
• • • • • • • • • • • • • • • • • • • •					

6	In a certain chemical reaction the amount, x grams, of a substance is decreasing.	The differential
	equation relating x and t, the time in seconds since the reaction started, is	

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -kx\sqrt{t},$$

where k is a positive constant. It is given that x = 100 at the start of the reaction.

(i)	Solve the differential equation, obtaining a relation between x , t and k .	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
	94019	•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

•••••	,,		••••••
			•••••
	,		
•••••			•••••
•••••			••••••
•••••			•••••
••••••		····	•••••
			•••••
			•••••
•••••			•••••
•••••	,		••••••
			•••••
•••••	,		•••••

	and y are real and exact.
- Cotoro	0.

(iii)	The points representing the roots are A and B , and O is the origin. Find angle AOB .	[3]
		•••••
		•••••
		•••••
(iv)	Prove that triangle <i>AOB</i> is equilateral.	[1]

8	The	positive constant a is such that $\int_0^a x e^{-\frac{1}{2}x} dx = 2.$	
	(i)	Show that a satisfies the equation $a = 2 \ln(a + 2)$.	[5]
			••••
			••••
			••••
			••••
			•••••
			•••••
			•••••
			••••
			••••
			••••
			•••••
			••••
			••••
			••••

(ii)	Verify by calculation that <i>a</i> lies between 3 and 3.5.	!]
		••
		••
		••
 \		••
(iii)		 re
(iii)	Use an iteration based on the equation in part (i) to determine <i>a</i> correct to 2 decimal places. Give	 re
(iii)	Use an iteration based on the equation in part (i) to determine <i>a</i> correct to 2 decimal places. Give	 re
(iii)	Use an iteration based on the equation in part (i) to determine <i>a</i> correct to 2 decimal places. Give	 re
(iii)	Use an iteration based on the equation in part (i) to determine <i>a</i> correct to 2 decimal places. Give	 re
(iii)	Use an iteration based on the equation in part (i) to determine <i>a</i> correct to 2 decimal places. Give	 re
iii)	Use an iteration based on the equation in part (i) to determine <i>a</i> correct to 2 decimal places. Give	 re

0	Let $f(x) =$	$12x^2 + 4x - 1$
7	Let $I(x)$ –	(x-1)(3x+2)

press $f(x)$ in partial fractions.	[5]
Patorer	

•••••								•••••
•••••		•••••	•••••	•••••				
•••••	•••••	•••••	•••••	••••••	•••••		•••••	
•••••				•••••				
• • • • • • • • • • • • • • • • • • • •	•••••			••••••••••			•••••	
•••••	••••••			••••••	•••••	•••••	•••••••	
•••••								
•••••		••••••	••••••••••	••••••	••••		••••••	•••••
								•••••
•••••	•••••	•••••		•••••			•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••		•••••		•••••	•••••		•••••	
•••••		•••••	••••••	••••••			••••••	
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••		• • • • • • • • • • • • • • • • • • • •	••••••	

figures.	of the perpendicular f	from P to l , g	giving your ans	wer correct to 3
••••				
•••••	••••••	•••••	•••••	•••••
				•••••
		•••••		
•••••	•••••	•••••		•••••
•••••	•••••		•••••	•••••
•••••				
				•••••

Find the eq	uation of the	ne piane c	ontaining	g i and P_i	, giving	your ansv	ver in the	iorm ax -	+by+cz=c
•••••		•••••		•••••	•••••				
•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	
•••••	•••••			•••••				•••••	
•								•	•
									•••••
									•••••
•••••	,		•••••	······				•••••	••••••
				pre					
•••••				•••••					

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2018

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME										
CENTRE NUMBER						CAND NUMB				
MATHEMATICS									97	09/32
Paper 3 Pure Ma	themat	tics 3 (P	3)					Мау	/June	2018
							1	hour	45 m i	nutes
Candidates answe	er on th	ne Ques	tion Pa	aper.						
Additional Materia	als:	List of	Formu	lae (MF9))					

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

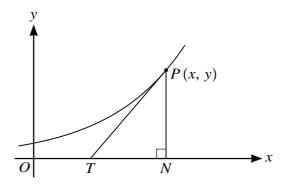
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.


The total number of marks for this paper is 75.

3 significant figure	CS.	
••••••		••••••
		•••••
		•••••
•••••		•••••
•••••		•••••
•••••		•••••
•••••		•••••
•••••		•••••
• • • • • • • • • • • • • • • • • • • •		•••••

••••••		••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••
				•••••		•••••
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
					••••••	•••••
			• • • • • • • • • • • • • • • • • • • •			•••••
••••••		,		•••••	•••••	••••••
						•••••
••••••			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••••
						•••••
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••
	•••••	•••••	•••••	•••••	•••••	•••••

3

In the diagram, the tangent to a curve at the point P with coordinates (x, y) meets the x-axis at T. The point N is the foot of the perpendicular from P to the x-axis. The curve is such that, for all values of x, the gradient of the curve is positive and TN = 2.

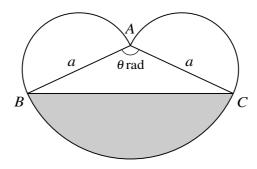
(i)	Show that the differential equation satisfied by x and y is $\frac{dy}{dx} = \frac{1}{2}y$.	[1]
		••••

The point with coordinates (4, 3) lies on the curve.

[5]
••••
••••
••••
••••

Sature?

Show that $\frac{2 \sin x}{1 - x}$	$\cos 2x$	$1 + \cos x$				
	•••••					
	•••••					
	•••••		•••••			••••
•••••	•••••		•••••			••••
•••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••
						••••
						••••
•••••			••••••			••••
	•••••	•••••		• • • • • • • • • • • • • • • • • • • •		••••
						••••
•••••						••••
•••••						••••
••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••
•••••						
	•••••					
	•••••					
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••			••••
•••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••	••••


(ii)	Hence, showing all necessary working, find $\int_{\frac{1}{3}\pi}^{\frac{1}{2}\pi} \frac{2\sin x - \sin 2x}{1 - \cos 2x} dx$, giving your answer in the
	form $\ln k$. [4]
	6
	Satprey

5 The equation of a curve is $x^2(x+3y) - y^3 = 3$.

(i)	Show that $\frac{dy}{dx} = \frac{x^2 + 2xy}{y^2 - x^2}$.	[4]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		•••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		•••••

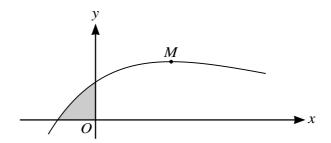
normal is 1.				
•				
•				
••••••	 ••••••	•••••••••		•••••
• • • • • • • • • • • • • • • • • • • •	 •	•••••	••••••	•••••
•••••				•••••
• • • • • • • • • • • • • • • • • • • •	 	•••••		•••••
	 			•••••
	 •••••	••••••	••••••	•••••
	 	•••••		•••••
	 <mark></mark>	•••••		•••••
	 			•••••
	 			•••••
				•••••
	 			•••••
	 			•••••

6

The diagram shows a triangle ABC in which AB = AC = a and angle $BAC = \theta$ radians. Semicircles are drawn outside the triangle with AB and AC as diameters. A circular arc with centre A joins B and C. The area of the shaded segment is equal to the sum of the areas of the semicircles.

(i)	Show that $\theta = \frac{1}{2}\pi + \sin \theta$.	[3]
	T PRA	
		•••••
	2 - 2 / 5	
	69/	
	Gatbleb	

		•••••
•••••		•••••
•••••		
•••••		•••••
••••••		•••••
	A PA	
•••••		
	16	
Use an iterative for	rmula based on the equation in part (i)	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec.
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec.
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec.
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec.
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec.
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec
Use an iterative for places. Give the re	ormula based on the equation in part (i) esult of each iteration to 4 decimal places	to determine θ correct to 2 dec


7 T	hroughout t	this questio	ı the use	of a	calculator	is not	permitted.
-----	-------------	--------------	-----------	------	------------	--------	------------

The complex numbers $-3\sqrt{3} + i$ and $\sqrt{3} + 2i$ are denoted by u and v respectively.

	m x + iy, where x					V
,						•••••
•••••	•••••	•••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •
	•••••					
			•••••		•••••	
•••••					••••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••			•••••	
•••••		•••••			••••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••		•••••	••••••	• • • • • • • • • • • • • • • • • • • •
••••••	•••••	••••••	••••••	•••••••	••••••	• • • • • • • • • • • • • • • • • • • •
					•••••	
••••••		•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
	••••••					

(ii) On a sketch of an Argand diagram with origin O, show the points A and B representing the

complex numbers u and v respectively. Prove that angle $AOB = \frac{2}{3}\pi$.	[3
	•••••
	•••••

The diagram shows the curve $y = (x + 1)e^{-\frac{1}{3}x}$ and its maximum point M.

Find the x -coordinate of M .	[4
	······
<u> </u>	

terms of e.					
			•••••		•••••
•••••		•••••	•••••		•••••
•••••					
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••
•••••					
•••••					••••••
					••••••
	141				
		tore			•••••
••••••	•••••••••		••••••	•••••	••••••
			•••••		•••••
		• • • • • • • • • • • • • • • • • • • •			•••••
•••••					
		•••••			
		• • • • • • • • • • • • • • • • • • • •			
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••

9	Let $f(r)$ =	$x - 4x^2$
,	Let $I(x) =$	$\frac{x-4x}{(3-x)(2+x^2)}$

Express $I(x)$ is	In the form $\frac{A}{3-x} + \frac{Bx+C}{2+x^2}$.	
• • • • • • • • • • • • • • • • • • • •		
•••••		
•••••		
•••••		
•••••		
•••••		
• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •		
•••••		••••••

(ii)	Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and including the term in x^3 . [5]

10 Two lines l and m have equations $\mathbf{r} = 2\mathbf{i} - \mathbf{j} + \mathbf{k} + s(2\mathbf{i} + 3\mathbf{j} - \mathbf{k})$ and $\mathbf{r} = \mathbf{i} + 3\mathbf{j} + 4\mathbf{k} + t(\mathbf{i} + 2\mathbf{j} + \mathbf{k})$

respectively.		
(i)	Show that the lines are skew.	[4]
	12 /.5/	
A pl	lane p is parallel to the lines l and m .	
(ii)	Find a vector that is normal to p .	[3]

(iii)	Given that p is equidistant from the lines l and m , find the equation of p . Give your answer in
()	the form $ax + by + cz = d$. [3]
	[3]

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME							
CENTRE NUMBER				CANDIDATE NUMBER			
MATHEMATICS							9709/33
Paper 3 Pure Ma	athematic	s 3 (P3)				May/	June 2018
					1	hour 4	l5 minutes
Candidates answ	er on the	Question	n Paper.				
Additional Materi	als: l	ist of Fo	rmulae (M	F9)			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

BLANK PAGE

coefficients.	$\overline{(x)}$ in ascending pow				
•••••					
••••••	•••••		••••••	•••••	
				••••••	
		T P			
					• • • • • • • • • • • • • • • • • • • •
				•••••	
					•••••
•••••	••••••			•••••	

places.				
	 •••••		•••••	•••••
	•••••			
•••••	 			•••••
	 		•••••••	•••••
	 ,			
	 	<mark></mark>		
	 			•••••
				•••••
	 			•••••
	 	••••••	••••••	•••••
	 ,			
•••••	 			•••••
	 •••••		•••••••	•••••

3	Showing all necessary working, find the value of $\int_0^{\frac{1}{6}\pi}$	r age 3 rdr giving your engager in terms of π
,	Showing an necessary working, find the value of \int_0^{∞}	$x \cos 3x dx$, giving your answer in terms of x .
		[5]

cu	rve with equation $y = \frac{\ln x}{3+x}$ has a stationary point at $x = p$.
Sł	now that p satisfies the equation $\ln x = 1 + \frac{3}{x}$.
	x
•••	
•••	
•••	
	T PAL
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	

4

(ii) By sketching suitable graphs, show that the equation in part (i) has only one root.	[2]

(III)	It is given that the equation in part (i) can be written in the form $x = \frac{1}{\ln x}$. Use an iterative
	formula based on this rearrangement to determine the value of p correct to 2 decimal places.
	Give the result of each iteration to 4 decimal places. [3]
	3 /.5/
	'Sathre 9'

$\cos^6 x + \sin^6 x = 1 - \frac{3}{4}\sin^2 2x.$	
	•••••
	••••••
 30'	••••••
	••••••
 	••••••
	•••••
 	•••••

ŀ	Hence solve the equation
	$\cos^6 x + \sin^6 x = \frac{2}{3},$
f	For $0^{\circ} < x < 180^{\circ}$.
•	
•	
•	
•	
•	
•	
•	
• •	
•	
•	
•	
• •	
•	
•	
•	

	$\frac{1}{-y^2}$ in partial 1				
			•••••		
•••••			•••••		•••••
••••••			•••••		•••••
••••••					•••••
	oles x and y satisfy when $x = 1$. Sol	$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	btaining an expr	ression for v in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	btaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	btaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	btaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term
		$x\frac{\mathrm{d}y}{\mathrm{d}x}$	$=4-y^2,$	otaining an expr	ression for y in term

T PA

7 Throughout this question the use of a calculate	tor is no	t permitted.
---	-----------	--------------

values of R and t	an w.		
			•••••
			•••••
			•••••
			•••••
			•••••
			•••••
		<mark></mark>	
		$\mathbf{e}^{\frac{1}{4}\pi}$	
Hence showing	all necessary working,	show that $\frac{\sqrt{4}^n}{4}$	_ d0 - 5
Tience, snowing	an necessary working,	show that $\int_0^4 \frac{15}{(\cos \theta + 2\sin \theta)}$	$)^{2}$ $do = 3$.

The e	equation of a curve is $2x^3 - y^3 - 3xy^2 = 2a^3$, where a is a non-zero constant.	
(i) S	Show that $\frac{dy}{dx} = \frac{2x^2 - y^2}{y^2 + 2xy}.$	[4]
•		
•		••••••
	Setlotes	
•		
		•••••

8

ii)	Find the coordinates of the two points on the curve at which the tangent is parallel to the y-axis. [5]

9	(a)	Find the complex number z satisfying the equation
		$3z - iz^* = 1 + 5i,$
		where z^* denotes the complex conjugate of z . [4]

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z

correct to 2 dec	amai piaces.				
	•••••••••••				
•••••		•••••••••••••••••••••••••••••••••••••••	•••••	••••••	•••••
•••••	•••••	•••••	••••••		•••••
•••••	•••••				•••••
•••••	•••••			•••••	•••••
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	••••••
•••••	•••••	•••••	•••••	•••••	•••••
•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••		· · · · · · · · · · · · · · · · · · ·	•••••	•••••	•••••
•••••		· · · · · · · · · · · · · · · · · · ·	•••••	•••••	
•••••			•••••	•••••	

Show that l does	s not intersect the line pa	ssing through A and B .	
•••••			
			,
		····	
		0169	
•••••			

The point P, with parameter t, lies on l and is such that angle PAB is equal to 120° .

•••••	 	
	 	•••••
	 	•••••
	 <u></u>	

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME									
CENTRE NUMBER					CANDIDATE NUMBER				
MATHEMATICS								97	09/32
Paper 3 Pure Ma	athematio	cs 3 (P	3)			Feb	ruary/	Marci	h 2018
						1	hour	45 m	inutes
Candidates answ	ver on the	e Quest	ion Pa	per.					
Additional Materia	als:	List of F	ormul	lae (MF9					

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

<u>~</u>	
Use the trapezium rule with three intervals to estimate the value of	
$\sigma^{\pm}\pi$	
$\int_0^{\frac{1}{4}\pi} \sqrt{(1-\tan x)} \mathrm{d}x,$	
giving your answer correct to 3 decimal places.	[3]
giving your unswer correct to 5 decimal places.	[3]
	•••••
	•••••
	•••••
	•••••

8
(Satore?)
CLES 2018 9709/32/F/M/18
71071321111110

© UC

coefficients.					
	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
••••	•••••	· • • • • • • • • • • • • • • • • • • •	•••••	••••••	
••••			•••••		
			•••••		
••••					
••••					
••••		,	•••••		• • • • • • • • • • • • • • • • • • • •
			•••••		• • • • • • • • • • • • • • • • • • • •
			•••••		
			<mark></mark>		
•••••				•	• • • • • • • • • • • • • • • • • • • •
••••			•••••		• • • • • • • • • • • • • • • • • • • •
•••••			•••••		• • • • • • • • • • • • • • • • • • • •
			•••••		
•••••					
	•••••		•••••		• • • • • • • • • • • • • • • • • • • •
•••••			•••••		

$\frac{1}{2}(\cos 4x + \cos 2x) \equiv \cos 3x \cos x.$				os x.	[:
		•••••	•••••	•••••	
•••••		•••••			•••••
	••••••		•••••	•••••	
••••••			•••••	•••••	
	4				••••••
•••••					
		Patp			
••••••	••••••	•••••	••••••	•••••	
••••••	•••••	•••••	•••••	•••••	
••••••			•••••		
		•••••			

(ii)	Hence show that	$\int_{-\frac{1}{6}\pi}^{\frac{1}{6}\pi} \cos 3x \cos x \mathrm{d}x = \frac{3}{8}\sqrt{3}.$	[3]
		3	
		2. SatoreP.C	

= 2.58 when x =	= 1.20, and $y = 9.49$ when $x = 2.51$.	
i) Explain why	the graph of $\ln y$ against $\ln x$ is a straight line.	[
i) Find the valu	ues of n and A , giving your answers correct to 2 decimal place	es.
a) Time the vare	Satore?	03.
••••••		
•••••		
		•••••

Sature?

5	The	parametric	equations	of a	curve	are

$$x = 2t + \sin 2t$$
, $y = 1 - 2\cos 2t$,

for $-\frac{1}{2}\pi < t < \frac{1}{2}\pi$.

Show that $\frac{dy}{dx} =$					
		•••••			
•••••••••		PA		••••••	
				••••	•••••
	4				
		otore			
				•••••	
		••••••	••••••••	•••••	

Give your answer	r correct to 3 significant figures.	
		•••••
		••••••
		••••••
		••••••
•••••		•••••

6 The variables x and θ satisfy the differential equation
--

$$x\cos^2\theta \frac{\mathrm{d}x}{\mathrm{d}\theta} = 2\tan\theta + 1,$$

for $0 \le \theta < \frac{1}{2}\pi$ and x > 0. It is given that x = 1 when $\theta = \frac{1}{4}\pi$.

Show that $\frac{d}{d\theta}$ (ta	$\ln \theta = \frac{1}{\cos^2 \theta}.$				
•••••	•••••	••••••	••••••	••••••	•••••••
•••••	•••••	•••••			
•••••				•••••	•••••
•••••					
			•••••		
Solve the difference correct to 3 sign	ential equation a	and calculate t	the value of x w	when $\theta = \frac{1}{3}\pi$, giving	ng your ans
Solve the difference correct to 3 sign	ential equation a	and calculate t	the value of x w	when $\theta = \frac{1}{3}\pi$, giving	ng your ans
Solve the difference correct to 3 sign	ential equation a	and calculate t	the value of x w	when $\theta = \frac{1}{3}\pi$, giving	ng your ans
Solve the difference correct to 3 sign	ential equation a	and calculate t	the value of x w	when $\theta = \frac{1}{3}\pi$, giving	ng your ans
Solve the difference correct to 3 sign	ential equation a	and calculate t	the value of x w	when $\theta = \frac{1}{3}\pi$, giving	ng your ans
Solve the difference correct to 3 sign	ential equation : ificant figures.	and calculate t	the value of x w	when $\theta = \frac{1}{3}\pi$, giving	ng your ans
Solve the difference correct to 3 sign	ential equation a	and calculate t	the value of x w	when $\theta = \frac{1}{3}\pi$, giving	ng your ans
Solve the difference correct to 3 sign	ential equation a	and calculate t	the value of x w	when $\theta = \frac{1}{3}\pi$, giving	ng your ans
correct to 3 sign	ificant figures.				
correct to 3 sign	ificant figures.			when $\theta = \frac{1}{3}\pi$, giving	
correct to 3 sign	ificant figures.				
correct to 3 sign	ificant figures.				
correct to 3 sign	ificant figures.				
correct to 3 sign	ificant figures.				
correct to 3 sign	ificant figures.				

T PA

	12	
7	(i) By sketching suitable graphs, show that the equation $e^{2x} = 6 + e^{-x}$ has exactly one real root.	[2]
	(ii) Verify by calculation that this root lies between 0.5 and 1.	[2]

(iii)	Show that if a sequence of values given by the iterative formula		
	$x_{n+1} = \frac{1}{3} \ln(1 + 6e^{x_n})$		
	converges, then it converges to the root of the equation in part (i). [2]		
(iv)	Use this iterative formula to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3		

8	Let $f(x) =$	$5x^2 + x + 27$		
o		$(2x+1)(x^2+9)$		

Express $f(x)$ in partial fractions.	
2	
34 00	
alprev	

Hence find $\int_0^4 f(x) dx$, giving your answer in the form $\ln c$, where c is an integer.	
	•••••
	•••••
	•••••
	••••••
	•••••
	•••••

The	com	plex number $1 + 2i$ is denoted by u .	
(i)	It is	given that u is a root of the equation $2x^3 - x^2 + 4x + k = 0$, where k is a constant.	
	(a)	Showing all working and without using a calculator, find the value of k .	[3
			.
			•••
			•••
			•••
			•••
			•••
			•••
			•••
	(b)	Showing all working and without using a calculator, find the other two roots of this equation	on [4]
			, • • •
			•••
			•••
			•••
			•••
			•••
			•••

(•• <u>)</u>	
(11)	On an Argand diagram sketch the locus of points representing complex numbers z satisfying the
	equation $ z - u = 1$. Determine the least value of arg z for points on this locus. Give your answer
	in radians correct to 2 decimal places. [4]

, i ma me position	n vector of the point of inter	rsection of l and p .	
•••••			•••••
•••••			•••••
•••••			•••••
•••••			•••••
			••••••
) Find the acute a	ngle between $\it l$ and $\it p$.		
) Find the acute a	ngle between \emph{l} and \emph{p} .		
) Find the acute a	ngle between l and p .		
) Find the acute a	ngle between l and p .		
) Find the acute a	ngle between l and p .		
Find the acute a	ngle between l and p .		
) Find the acute a	ngle between l and p .		
) Find the acute a	ngle between l and p .		
Find the acute a	ngle between l and p .		
Find the acute a	ngle between l and p .		
Find the acute a	ngle between <i>l</i> and <i>p</i> .		
Find the acute a	ngle between <i>l</i> and <i>p</i> .		
Find the acute a	ngle between l and p .		
Find the acute a	ngle between <i>l</i> and <i>p</i> .		
Find the acute a	ngle between l and p .		
Find the acute a	ngle between l and p .		
Find the acute a	ngle between <i>l</i> and <i>p</i> .		

$4\mathbf{j} - \mathbf{k}$. Find the	equation of q , giving yo	our answer in the form $ax + by + cz =$	a.
	•••••		
• • • • • • • • • • • • • • • • • • • •	•••••		•••••
	•••••		•••••
•••••	•••••		•••••
•••••	•••••		•••••
•••••	•••••		•••••
• • • • • • • • • • • • • • • • • • • •			
•••••••	••••••		•••••
•••••••			•••••
••••••	•••••		•••••
			•••••
			••••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
Satpre9.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		
MATHEMATICS						9709/31
Paper 3 Pure M	athematics	3 (P3)		0	ctober/Nov	ember 2017
					1 hour	45 minutes
Candidates answ	ver on the	Question Pa	aper.			
Additional Mater	ials: L	ist of Formu	lae (MF9)			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

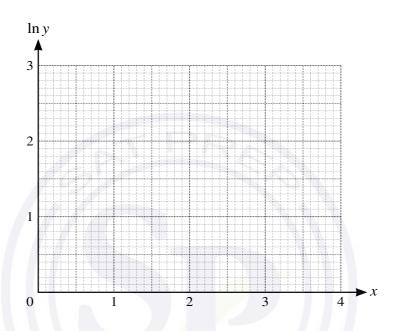
The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.



•••••			•••••	•••••
•••••			•••••	
••••••	•••••			•••••
		····		
		••••		••••••
•••••				•••••

Two variable quantities x and y are believed to satisfy an equation of the form $y = C(a^x)$, where C and a are constants. An experiment produced four pairs of values of x and y. The table below gives the corresponding values of x and y.

x	0.9	1.6	2.4	3.2
ln y	1.7	1.9	2.3	2.6

By plotting $\ln y$ against x for these four pairs of values and drawing a suitable straight line, estimate the values of C and a. Give your answers correct to 2 significant figures. [5]

Satpre Co.
etpre?

Show by calculation	on that α lies between 2	and 3.	
	F	26	••••••
•••••			
•••••	Sate	reP.	

Two iterative formulae, A and B, derived from this equation are as follows:

$$x_{n+1} = (3x_n + 7)^{\frac{1}{3}},\tag{A}$$

$$x_{n+1} = (3x_n + 7)^{\frac{1}{3}},$$
 (A)
 $x_{n+1} = \frac{x_n^3 - 7}{3}.$ (B)

Each formula is used with initial value $x_1 = 2.5$.

formula to oplaces.	one of these formula calculate α correct t	to 2 decimal pl	laces. Give the re	esult of each ite	e, and use the oration to 4 dec
					•••••
•••••					
		,			
	2		0,		
		,			
		,			
••••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••

•••••	•••••	· • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••
•••••	•••••		••••••	•••••	•••••
•••••	••••••	, 	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••					•••••
••••••					•••••
					•••••
•••••			••••••		•••••
••••••					•••••
					•••••
•••••				•••••	•••••
				•••••	
•••••	•••••		•••••	•••••	•••••

(ii) Hence sketch the graph of $y = \tan(45^\circ + x) + \tan(45^\circ - x)$ for $0^\circ \le x \le 90^\circ$. [3]

5 The equation of a curve is $2x^4 + xy^3 + y^4 = 10$.

(i)	Show that $\frac{dy}{dx} = -\frac{dy}{dx}$	$-\frac{8x^3 + y^3}{3xy^2 + 4y^3}.$			[4]
					 •••••
					 ••••••
					 •••••
					 •••••
					 •••••
		12			 •••••
		34		60	 •••••
			ellorey		

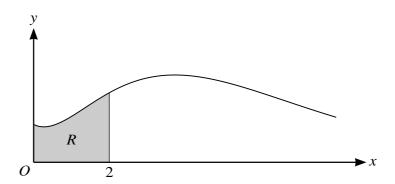
© UCLES 2017

and find the co	ordinates of these points	•	
•••••			•••••
• • • • • • • • • • • • • • • • • • • •	•••••		•••••
•••••	•••••		•••••
•••••			•••••
•••••			•••••
•••••	•••••		•••••
• • • • • • • • • • • • • • • • • • • •	•••••		•••••
•••••			
•••••			
•••••			
	•••••		
		······	
		······	
			•••••
•••••			•••••
•••••			
•••••			•••••
•••••			•••••
•••••		•••••	•••••
•••••	•••••		•••••
•••••			•••••
•••••			

6	The variables x and y satisfy the differential equation
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4\cos^2 y \tan x,$
	for $0 \le x < \frac{1}{2}\pi$, and $x = 0$ when $y = \frac{1}{4}\pi$. Solve this differential equation and find the value of x when $y = \frac{1}{3}\pi$.
	Samme?

 • • • • •
• • • • •
• • • • •
 • • • • •
• • • • •
• • • • •

7	(a)	The complex number u is given by $u = 8 - 15i$. Showing all necessary working, find the two square roots of u . Give answers in the form $a + ib$, where the numbers a and b are real and exact. [5]
		P P P P P P P P P P P P P P P P P P P


(b) On an Argand diagram, shade the region whose points represent complex numbers satisfying both the inequalities $|z-2-\mathrm{i}| \leqslant 2$ and $0 \leqslant \arg(z-\mathrm{i}) \leqslant \frac{1}{4}\pi$. [4]

8	Let $f(r)$ –	$4x^2 + 9x - 8$		
O	Let $I(x)$ –	$\frac{4x + 9x - 8}{(x+2)(2x-1)}$		

	$+\frac{c}{2x-1}$.	e form $A + \frac{B}{x+2}$	Express $f(x)$ in the
			••••••
	••••••	••••••	•••••
.,,,,			
.0'//			
0.	24	2.	
	=4401		
	••••••	•••••	••••••
	•••••		

ŀ	Hence show that $\int_{1}^{4} f(x) dx = 6 + \frac{1}{2} \ln\left(\frac{16}{7}\right).$	
••		•••••
••		
••		
••		••••••
••		•••••
••		•••••
••		•••••
••		•••••
		•••••
••		
••		•••••
••		•••••

The diagram shows the curve $y = (1 + x^2)e^{-\frac{1}{2}x}$ for $x \ge 0$. The shaded region R is enclosed by the curve, the x-axis and the lines x = 0 and x = 2.

Find the exact values of the <i>x</i> -coordinates of the stationary points of the curve.	[4]
	••••••
	••••••
Patore?	••••••
	••••••
	•••••

Snow that the 6	exact value of the area	of R is $18 - {e}$.	
••••••		•••••	
•••••			
••••••••••			
		inore	
•••••	•••••	•••••	
	•••••		

· \		
(1)	Show that the lines do not intersect.	
		•••••
		••••••
		•••••
ii)	Calculate the acute angle between the directions of the lines.	
11)	Calculate the dedic angle between the directions of the lines.	
	7910167	
		•••••••
		•••••

to both l and m . Give your answer in the form $ax + by + cz = d$.	
	•••••
	•••••
	•••••
······································	
	•••••
	•••••
	•••••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		
MATHEMATICS						9709/32
Paper 3 Pure Ma	athematics	3 (P3)		0	ctober/Nov	ember 2017
					1 hou	r 45 minutes
Candidates answ	er on the	Question Pa	aper.			
Additional Materi	als: L	ist of Formu	ulae (MF9)			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

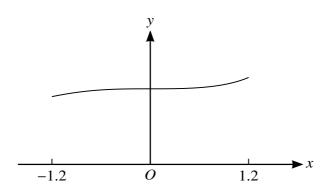
Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.


You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

The diagram shows a sketch of the curve $y = \frac{3}{\sqrt{(9-x^3)}}$ for values of x from -1.2 to 1.2.

(i) Use the trapezium rule, with two intervals, to estimate the value of

$$\int_{-1.2}^{1.2} \frac{3}{\sqrt{(9-x^3)}} \, \mathrm{d}x,$$

	giving your answer correct to 2 decimal places. [3]
(ii)	Explain, with reference to the diagram, why the trapezium rule may be expected to give a good approximation to the true value of the integral in this case. [1]

correct to 3 signific	cant figures.	
•••••		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
•••••		
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
••••••		• • • • • • • • • • • • • • • • • • • •
		· · · · · · · · · · · · · · · · · · ·

for $0^{\circ} < \theta < 90^{\circ}$.	quation $\tan(\theta + 60^\circ) + \tan(\theta + 60^\circ)$		
•••••			
•••••			
•••••	•••••		•••••
•••••••••••			
		<mark></mark>	
		····	
•••••			
•••••	•••••		
•••••			•••••
•••••	•••••		•••••
••••••			•••••
••••••			•••••

•••••	•••••	••••••
***************************************	•••••	
	•••••	
•••••	•••••	••••••
••••••	••••••	••••••
•••••		••••••
	Z. Setore	
	Sainre	
	Se tore	
	Seinre	

Find the exact	coordinates of this point.		
•••••			
•••••			•••••
•••••			
•••••			•••••
•••••			
		······	
			<i>,</i>
•••••	•••••		•••••

		 •••••
•••••		
•••••	•••••	 •••••
•••••	•••••	
•••••	•••••	 •••••
•••••	•••••	 •••••
••••••	••••••	 ••••••••••
•••••		
•••••		
•••••		 •••••
•••••		 •••••
•••••		 •••••

		$(x+1)\frac{\mathrm{d}y}{\mathrm{d}x} =$	=y(x+2),		
and it is given the terms of x .	that $y = 2$ when $x =$: 1. Solve the d	ifferential eq	uation and obta	in an expression for
	121				
•••••	32			0	
		Gatp	rev		

•••••	•••••••	 •••
•••••		 • • •
•••••	•••••	 • • • •
•••••	•••••••	•••
•••••		 • • •
•••••		 •••
		•••
		 • • •
		•••
		•••
		•••
	3	
		•••
	Satore	
	Setions	
	Satisfie	
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••

cı uy	$3x^2y - 3y^3$	
Show that $\frac{dy}{dx} =$	$\frac{1}{9xy^2-x^3}.$	
•••••		
•••••		
•••••		
•••••••••••		
•••••	9	
•••••		
••••		
•••••		
•••••		

<i>x</i> -axis and find the coordinates of these points.				
	•••••	•••••	 •••••	•••••
•••••		•••••	 	•••••
••••••			 •••••	••••••
•••••		•••••	 	•••••
			 	•••••
		.,	 	
				••••••
		tore	 •••••	•••••
•••••		•••••	 	•••••
	••••••		 •••••	••••••
			 	••••••

7 Throughout this question the use of a calculato	or is no	t permitted.
---	----------	--------------

The complex number $1 - (\sqrt{3})i$ is denoted by u. (i) Find the modulus and argument of u. [2] (ii) Show that $u^3 + 8 = 0$. [2]

(iii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying both the inequalities $|z - u| \le 2$ and $\text{Re } z \ge 2$, where Re z denotes the real part of z.

[4]

8	Let $f(x) =$	$8x^2 + 9x + 8$
o	Let $I(x)$ –	$\frac{1}{(1-x)(2x+3)^2}$

Express $f(x)$ in μ	partial fractions.	[
•••••		
•••••		
•••••		
•••••		
	3	
	Sellore	
••••••		
•••••		
•••••		

•••••								•••••
•••••		•••••	•••••	•••••				
•••••	•••••	•••••	•••••	••••••	•••••		•••••	
•••••								
• • • • • • • • • • • • • • • • • • • •	•••••			••••••••••			•••••	
•••••	••••••			••••••	•••••	•••••	•••••••	
•••••								
•••••		••••••	••••••••••	••••••	••••		••••••	•••••
								•••••
•••••	•••••	•••••		•••••			•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••		•••••		•••••	•••••		•••••	
•••••		•••••	••••••	••••••			••••••	
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	

9 It is	given that $\int_{1}^{a} x^{\frac{1}{2}} \ln x dx = 2$, where $a > 1$.	
	Show that $a^{\frac{3}{2}} = \frac{7 + 2a^{\frac{3}{2}}}{3 \ln a}$.	[5]
	PR.	
	·SatpreP	•••••

(ii)	Show by calculation that <i>a</i> lies between 2 and 4.	[2]
		•••••
		•••••
	T PR	
		•••••
		•••••
(;;;)	Use the iterative formula	
(111)		
	$a_{n+1} = \left(\frac{7 + 2a_n^{\frac{3}{2}}}{3\ln a_n}\right)^{\frac{2}{3}}$	
	to determine a correct to 3 decimal places. Give the result of each iteration to 5 decimal places.	
		[3]
	2 Store	
		•••••
		•••••

(1)	Calculate the acute angle between the planes p and q .
(ii)	The point A on the line of intersection of p and q has y -coordinate equal to q . Find the equal to q and q has q -coordinate equal to q .
	of the plane which contains the point A and is perpendicular to both the planes p and q
	your answer in the form $ax + by + cz = d$.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/33
Paper 3 Pure Mathem	natics 3 (P3)	Octo	ber/November 2017
			1 hour 45 minutes
Candidates answer on	the Question Paper.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

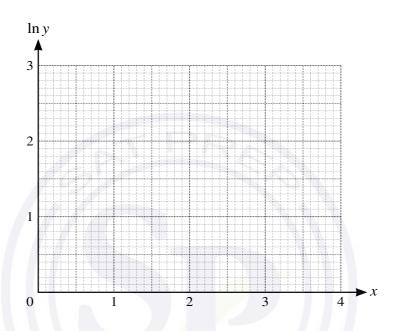
The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.



•••••			•••••	•••••
•••••			•••••	
••••••	•••••			•••••
		····		
		••••		••••••
•••••				•••••

Two variable quantities x and y are believed to satisfy an equation of the form $y = C(a^x)$, where C and a are constants. An experiment produced four pairs of values of x and y. The table below gives the corresponding values of x and y.

x	0.9	1.6	2.4	3.2
ln y	1.7	1.9	2.3	2.6

By plotting $\ln y$ against x for these four pairs of values and drawing a suitable straight line, estimate the values of C and a. Give your answers correct to 2 significant figures. [5]

Satprev 6°

3	The	equation $x^3 = 3x + 7$ has one real root, denoted by α .	
	(i)	Show by calculation that α lies between 2 and 3.	[2]
			••••
			••••
			••••
			••••
			••••
		T PR	
			••••
			••••
			••••
			••••
		SatpreP:	••••
			••••
			••••
			••••

Two iterative formulae, A and B, derived from this equation are as follows:

$$x_{n+1} = (3x_n + 7)^{\frac{1}{3}},\tag{A}$$

$$x_{n+1} = (3x_n + 7)^{\frac{1}{3}},$$
 (A)
 $x_{n+1} = \frac{x_n^3 - 7}{3}.$ (B)

Each formula is used with initial value $x_1 = 2.5$.

formula to oplaces.	one of these formula calculate α correct t	to 2 decimal pl	laces. Give the re	esult of each ite	e, and use the oration to 4 dec
					•••••
•••••					
		,			
	2		0,		
		,			
		,			
••••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••

		•••••			
•••••	•••••	•••••	•••••	••••••	•••••
••••••		•••••	•••••	•••••	•••••
•••••	•••••	••••••	•••••	••••••	•••••
		•••••			
				•••••	
•••••			•••••		
					••••••
•••••					
		atpre			
		•••••			
•••••		•••••	•••••	•••••	
				•••••	
		•••••			
		•••••	•••••		
•••••	•••••		•••••	•••••	•••••
		•••••			

(ii) Hence sketch the graph of $y = \tan(45^\circ + x) + \tan(45^\circ - x)$ for $0^\circ \le x \le 90^\circ$. [3]

5 The equation of a curve is $2x^4 + xy^3 + y^4 = 10$.

(i)	Show that $\frac{dy}{dx} = -$	$8x^3 + y^3$	[4]
(1)	Show that $\frac{dx}{dx} = -\frac{1}{2}$	$-\frac{3}{3}xy^2 + 4y^3$	[4]
			•••••••
			•••••
			••••••
			•••••
		4	••••••
		4	
		earpret	
			••••••
			••••••
			•••••

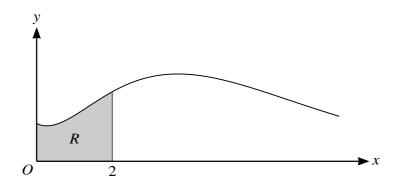
•••••	•••••		••••••	•••••	
•••••	•••••				
•••••		•••••		•••••	
					,
••••••					••••••••••
				•••••	
				•••••	
	••••••	••••••	••••••	•••••	•••••••••
•••••					

6	The variables x and y satisfy the differential equation
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4\cos^2 y \tan x,$
	for $0 \le x < \frac{1}{2}\pi$, and $x = 0$ when $y = \frac{1}{4}\pi$. Solve this differential equation and find the value of x when $y = \frac{1}{3}\pi$.
	SatpreP.

"SatoreP."

(a)	The complex number u is given by $u = 8 - 15i$. Showing all necessary working, find the two square roots of u . Give answers in the form $a + ib$, where the numbers a and b are real and exact [5]
	is atpre?

(b) On an Argand diagram, shade the region whose points represent complex numbers satisfying both the inequalities $|z-2-\mathrm{i}| \leqslant 2$ and $0 \leqslant \arg(z-\mathrm{i}) \leqslant \frac{1}{4}\pi$. [4]



8	Let $f(x) =$	$4x^2 + 9x - 8$
O	Let $I(x)$ –	$\frac{4x + 9x - 8}{(x+2)(2x-1)}$

Lapiess I(x) III	the form $A + \frac{B}{x+2} + \frac{C}{2x-1}$	Ī·	[4
			•••••
•••••			
			•••••
	F	PR	
•••••			••••••
	Neto	rev	
•••••			
			•••••

	$t \int_{1}^{4} f(x) dx = 6 + \frac{1}{2} \ln(\frac{16}{7}).$	
••••••		
••••••		
•••••		
	131 - /:5/	
•••••	Salbles	
•••••		
•••••		
•••••		

9

The diagram shows the curve $y = (1 + x^2)e^{-\frac{1}{2}x}$ for $x \ge 0$. The shaded region R is enclosed by the curve, the x-axis and the lines x = 0 and x = 2.

Find the exact values of the <i>x</i> -coordinates of the stationary points of the curve.	[4]
	••••••
	••••••
Patore?	••••••
	••••••
	•••••

	the exact value of t		e	
•••••		••••••		 ••••••
• • • • • • • • • • • • • • • • • • • •		•••••		 •
•••••	•••••	•••••	•••••	 •••••
				 •••••
•••••				 •••••
				 •••••
•••••				 •••••
•••••		Sator		 •••••
		•••••		 •
		•••••		 •
		•••••		 •••••

· · ·		
(1)	Show that the lines do not intersect.	
		•••••
		•••••
		•••••
ii)	Calculate the acute angle between the directions of the lines.	
11)	Calculate the acute angle between the directions of the lines.	
	7670167	
		•••••
		•••••

to both l and m . Give your answer in the form $ax + by + cz = d$.	
	•••••
	••••••••
	•••••
	••••••
	•••••
	•••••
	•••••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME									
CENTRE NUMBER					CANDIDATE NUMBER				
MATHEMATICS								97	09/31
Paper 3 Pure Ma	athema	tics 3 (P	3)				Мау	/June	2017
						1	hour	45 m i	nutes
Candidates answ	er on tl	he Quest	ion Pa	aper.					
Additional Materi	als:	List of I	ormu	lae (MF9)					

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

			•••••
	•••••		•••••
•••••	•••••		•••••
			•••••
			•••••
		<mark></mark>	
		····	
			•••••
•••••	***************************************	• • • • • • • • • • • • • • • • • • • •	

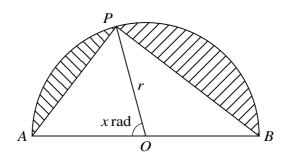
, simplifyi
•••••
• • • • • • • • • • • • • • • • • • • •

	4	
3	It is given that $x = \ln(1 - y) - \ln y$, where $0 < y < 1$.	
	(i) Show that $y = \frac{e^{-x}}{1 + e^{-x}}$.	[2]
	- Caroles C	

© UCLES 2017 9709/31/M/J/17

•••••		 •••••
		 •••••
		 •••••
•••••		 •••••
•••••		•••••
		 •••••
•••••••	•••••	•••••
		 •••••
		•••••
		 •••••
•••••		 •••••
		 •••••
•••••	•••••	 •••••

	4	The	parametric	equations	of a	curve	are
--	---	-----	------------	-----------	------	-------	-----


$$x = \ln \cos \theta$$
, $y = 3\theta - \tan \theta$,

where $0 \le \theta < \frac{1}{2}\pi$.

)	Express $\frac{dy}{dx}$ in terms of $\tan \theta$. [5]
	-0'
	Satore?

© UCLES 2017 9709/31/M/J/17

to 1.					
			•		
• • • • • • • • • • • • • • • • • • • •		•••••			
•••••				•••••	
•••••					
•••••					
•••••	•••••••••••				•••••
•••••			• • • • • • • • • • • • • • • • • • • •	••••••	••••••
•••••		•••••			•••••
•••••					
•••••			• • • • • • • • • • • • • • • • • • • •		
•••••			• • • • • • • • • • • • • • • • • • • •		

The diagram shows a semicircle with centre O, radius r and diameter AB. The point P on its circumference is such that the area of the minor segment on AP is equal to half the area of the minor segment on BP. The angle AOP is x radians.

Show that <i>x</i> satisfies the equation $x = \frac{1}{3}(\pi + \sin x)$.	[3]

© UCLES 2017 9709/31/M/J/17

(ii)	Verify by calculation that <i>x</i> lies between 1 and 1.5.	[2
		· · · · · · · ·
		· • • • • • •
		•••••
		•••••
(iii)	Use an iterative formula based on the equation in part (i) to determine <i>x</i> correct to 3 deciplaces. Give the result of each iteration to 5 decimal places.	eima [3
		••••
		• • • • • •
		•••••
		, .
	Satores.	•••••
	Satorey	•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••
		••••

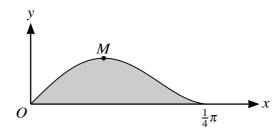
) 5	Show that the plane m bisects AB at right angles.	
•		•••••
•		••••••
•		• • • • • • • • • • • • • • • • • • • •
•		
•		•••••
•		••••••
		•••••
•		•••••
•		•••••
•		••••••
•		
•		
•		•••••

Find the equation of p, giving your answer in the form $ax + by + cz = d$.	
	•••••
	•••••
	••••••
T PAN	
	••••••
	•••••
	•••••
	••••••
	•••••
	••••••
	•••••
	••••••

7	Throughout this	auestian the	use of a calc	ulator is not	normitted
/	- I Hroughout this	auesnon me	use of a carc	maior is noi	. Derminea.

The complex numbers u and w are defined by u = -1 + 7i and w = 3 + 4i.

	Showing all your working, find in the form $x + iy$, where x and y are real, the $u - 2w$ and $\frac{u}{w}$.	[4]
		•••••
	In Argand diagram with origin O , the points A , B and C represent the complex $2w$ respectively.	numbers u , w and
(ii)	Prove that angle $AOB = \frac{1}{4}\pi$.	[2]


		•••
		•••
		•••
		•••
		• • •
		•••
		•••
		•••
(iii)	State fully the geometrical relation between the line segments OB and CA .	2]
		• • •
		•••
		•••
		• • •
		•
		•••

$R > 0$ and $0^{\circ} < \alpha < 9$	o . Give the extr	et varae or	r and the v	arde or a cor	rect to 2 deem
		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
		•••••	•••••		
					••••••
	12		-0		
	· Se	itore	. O.		
					•••••
			••••••		
		,			

(ii) Hence solve the equation	ion
-------------------------------	-----

$2\sin(x-30^\circ)-\cos x=1,$
for $0^{\circ} < x < 180^{\circ}$.

•	(i)	Express $\frac{1}{x(2x+3)}$ in partial fractions.
	(ii)	The variables x and y satisfy the differential equation
		$x(2x+3)\frac{\mathrm{d}y}{\mathrm{d}x}=y,$
		and it is given that $y = 1$ when $x = 1$. Solve the differential equation and calculate the value of when $x = 9$, giving your answer correct to 3 significant figures.

The diagram shows the curve $y = \sin x \cos^2 2x$ for $0 \le x \le \frac{1}{4}\pi$ and its maximum point M.

(i)	Using the substitution $u = \cos x$, find by integration the exact area of the shaded region bounded by the curve and the <i>x</i> -axis. [6]
	T PA
	isatore?

 •••••
 ••••••
••••••
•••••
 •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
•••••
•••••
 •••••
• • • • • • • • • • • • • • • • • • • •

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Level

NAME				
CENTRE NUMBER			CANDIDATE NUMBER	
MATHEMATICS				9709/32
Paper 3 Pure Ma	thematics 3 (P3)			May/June 2017
				1 hour 45 minutes
Candidates answe	er on the Question I	Paper.		
Additional Materia	lls: List of Form	nulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

Setpres

					•••••
			•••••		•••••
			•••••		•••••
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••		• • • • • • • • • • • • • • • • • • • •		•••••
•••••	•••••		• • • • • • • • • • • • • • • • • • • •		•••••
•••••					•••••
•••••					•••••
•••••			•••••		•••••
•••••					•••••
•••••	•••••		• • • • • • • • • • • • • • • • • • • •		•••••
•••••	•••••			••••••	•••••
•••••	••••••			•••••••••••••••••••••••••••••••••••••••	•••••
•••••					••••••
	4			~ /	
	1/2/		-0		
		Sator	20.		
		Satpro			
			•••••		
			••••		

and c are con	stants to be dete	ermined.				
•••••	•••••	•••••	•••••	•••••	•••••	••••••
	• • • • • • • • • • • • • • • • • • • •					
•••••	•••••		•••••			•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••
•••••	•••••					
						•••••
•••••			•••••		•••••	•••••
						• • • • • • • • • • • • • • • • • • • •
•••••						••••••
•••••					•••••	•••••
				•		
			•••••			• • • • • • • • • • • • • • • • • • • •
•••••			•••••	•••••		••••••
			••••••	•		
	•••••					
•••••						

•••••		 •••••
•••••	•••••	 •••••
•••••	•••••	 •••••
		 •••••
		 •••••
• • • • • • • • • • • • • • • • • • • •		
		 •••••
•••••	•••••	 •••••
•••••	•••••••••••	•••••

4 The parametric equations of a curve	4
---------------------------------------	---

$$x = t^2 + 1$$
, $y = 4t + \ln(2t - 1)$.

(i)	Express $\frac{dy}{dx}$ in terms of t .	[3]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
	E ELDIE P	••••
		••••
		••••
		••••
		••••
		••••

form $ax + by$	v + c = 0.				
•••••	•••••	•••••	••••••	•••••	
••••					
•••••					
				•••••	
				•••••	•••••
•••••					•••••
				•••••	

In a certain chemical process a substance A reacts with and reduces a substance B. The and B at time t after the start of the process are x and y respectively. It is given that $\frac{dy}{dt}$	
$x = \frac{10}{(1+t)^2}$. At the beginning of the process $y = 100$.	
(i) Form a differential equation in y and t , and solve this differential equation.	[6]
	•••••
Satore P.	

••••••	••••••	••••••••••••	•••••
	•••••		
••••••	•••••	•••••	•••••
	•••••		
•••••		••••••	••••••
	•••••		•••••
		•••••	• • • • • • • • • • • • • • • • • • • •
		•••••••••••••••••••••••••••••••••••••••	
Find the exact value approached by	the mass of B as t become	es large. State wha	t happens to
Find the exact value approached by mass of A as t becomes large.	the mass of B as t become	es large. State wha	at happens to
Find the exact value approached by mass of A as t becomes large.	the mass of B as t become	es large. State wha	nt happens to
Find the exact value approached by mass of A as t becomes large.	the mass of B as t become	es large. State wha	t happens to
Find the exact value approached by mass of A as t becomes large.	the mass of B as t become	es large. State wha	it happens to
Find the exact value approached by mass of A as t becomes large.	the mass of B as t becom	es large. State wha	t happens to
Find the exact value approached by mass of <i>A</i> as <i>t</i> becomes large.	the mass of B as t becom	es large. State wha	it happens to
Find the exact value approached by mass of A as t becomes large.	the mass of B as t becom	es large. State wha	it happens to
Find the exact value approached by mass of <i>A</i> as <i>t</i> becomes large.	the mass of B as t become		it happens t
Find the exact value approached by mass of <i>A</i> as <i>t</i> becomes large.	atpret 6		t happens to
Find the exact value approached by mass of <i>A</i> as <i>t</i> becomes large.	atpret 6		t happens t
Find the exact value approached by mass of <i>A</i> as <i>t</i> becomes large.	atpret 6		t happens t
Find the exact value approached by mass of <i>A</i> as <i>t</i> becomes large.	atpret 6		t happens to
Find the exact value approached by mass of <i>A</i> as <i>t</i> becomes large.	atpret 6		
Find the exact value approached by mass of A as t becomes large.	atpret 6		
Find the exact value approached by mass of <i>A</i> as <i>t</i> becomes large.	atpret 6		
Find the exact value approached by mass of A as t becomes large.	atpret 6		
Find the exact value approached by mass of A as t becomes large.	atpret 6		
Find the exact value approached by mass of A as t becomes large.	atpret 6		
Find the exact value approached by mass of A as t becomes large.	atpret 6		
Find the exact value approached by mass of A as t becomes large.	atpret 6		
Find the exact value approached by mass of A as t becomes large.	atpret 6		
Find the exact value approached by mass of A as t becomes large.	atpret 6		
Find the exact value approached by mass of A as t becomes large.	atpret 6		t happens to
Find the exact value approached by mass of A as t becomes large.	atpret 6		
Find the exact value approached by mass of A as t becomes large.	atpret 6		
Find the exact value approached by mass of A as t becomes large.	atpret 6		
Find the exact value approached by mass of A as t becomes large.	atpret 6		

6 Throughout this question the use of a calculator is not pe	թեւ ուուսես	not berr	ioi periiiii	\mathbf{muec}
--	-------------	----------	--------------	-----------------

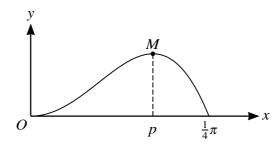
The complex number 2 - i is denoted by u.

real. Find the va	<i>a</i> is a root of the equation $x^3 + ax^2 - 3x + b = 0$, walues of <i>a</i> and <i>b</i> .	
•••••		
	3 - 6	
	3	
•••••		
•••••		

(ii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying both the inequalities |z - u| < 1 and |z| < |z + i|. [4]

	$y = \frac{1}{\cos \theta}$ then $\frac{dy}{d\theta} = \sec \theta \tan \theta$.	[2]
••••••		
ii) Prove the iden	ntity $\frac{1+\sin\theta}{1-\sin\theta} \equiv 2\sec^2\theta + 2\sec\theta\tan\theta - 1.$	[3
	etpre	

		•••••		•••••	• • • • • • • • • • • • • • • • • • • •
					••••••
					•••••
(iii)	Hence find the exact value of	$\int_0^{\frac{1}{4}\pi} \frac{1+\sin\theta}{1-\sin\theta} \mathrm{d}\theta$			[4]
			. <u></u>		
		Satore	>P		
					•••••
					••••••


8	Let $f(x) = \frac{5x^2 - 7x + 4}{(3x+2)(x^2+5)}$.
	(i) Express $f(x)$ in partial fraction

Express $f(x)$ in pa	irtial fractions.			[
	•••••		••••••••••	••••••
•••••	•••••		••••••••••	•••••
		•••••	 	
		•••••	 	

•••••								•••••
•••••		•••••	•••••	•••••				
•••••	•••••	•••••	•••••	••••••	•••••		•••••	
•••••								
• • • • • • • • • • • • • • • • • • • •	•••••			••••••••••			•••••	
•••••	••••••			••••••	•••••	•••••	•••••••	
•••••								
•••••		••••••	••••••••••	••••••	••••		••••••	•••••
								•••••
•••••	•••••	•••••		•••••			•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
•••••		•••••		•••••			•••••	
•••••		•••••	••••••	••••••			••••••	
•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••		• • • • • • • • • • • • • • • • • • • •	••••••	

Relative to the origin O , the point A has position vector given by $\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$. The equation $\mathbf{r} = 9\mathbf{i} - \mathbf{j} + 8\mathbf{k} + \mu(3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$.	he line <i>l</i> has
(i) Find the position vector of the foot of the perpendicular from A to l . Hence find vector of the reflection of A in l .	the position [5]
(Satore)	

(11)) Find the equation of the plane through the origin which contains l . Give your answer if $ax + by + cz = d$.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(iii)) Find the exact value of the perpendicular distance of A from this plane.	[3]
	Satore?	
		•••••
		•••••

The diagram shows the curve $y = x^2 \cos 2x$ for $0 \le x \le \frac{1}{4}\pi$. The curve has a maximum point at M where x = p.

(i)	Show that p satisfies the equation $p = \frac{1}{2} \tan^{-1} \left(\frac{1}{p} \right)$.	[3]	

(ii)	Use the iterative formula $p_{n+1} = \frac{1}{2} \tan^{-1} \left(\frac{1}{p_n} \right)$ to determine the value of p correct to 2 decimal
	places. Give the result of each iteration to 4 decimal places. [3]

x-axis.				
•••••	•••••	•••••	•••••	,
••••••	••••••	••••••		
•••••	••••••	•••••		
•••••	•••••	•••••		

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME							
CENTRE NUMBER				CANDIDATE NUMBER			
MATHEMATICS							9709/33
Paper 3 Pure M	athematic	s 3 (P3)				May/、	June 2017
					1	hour 4	5 minutes
Candidates answ	ver on the	Question	n Paper.				
Additional Mater	ials: l	ist of Fo	rmulae (Mi	F9)			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

Frove the identity $\frac{-}{cc}$	$\frac{\cot x - \tan x}{\cot x + \tan x} \equiv \cos 2x.$	[3
•••••		

coefficients.				
•••••		•••••	•••••••••••	••••••••••
•••••		•••••		
		•••••	,	
		•••••		
	• • • • • • • • • • • • • • • • • • • •	•••••		
				,
••••••			,	,
•••••				
		••••		
••••••			,	,
•••••				
•••••				
		•••••		
		•••••		
	••••••	•••••	••••••	
		•••••		

figures.					
	•••••	••••••	•••••	••••••	•••••
		•••••	•••••		•••••
					•••••
		•••••	•••••	•••••	••••••
					•••••
					•••••
			····		•••••
	4				•••••
					•••••
	1/2				
			•••••		•••••
•••••	•••••	••••••	•••••	••••••	•••••

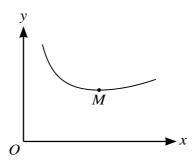
	the of $\int_0^{\frac{1}{2}\pi} \theta \sin \frac{1}{2} \theta d\theta$.	
•••••		
		,
	elibre	

5	A curve has equation $y =$	$\frac{2}{5}$ ln($1 + 3\cos^2$	x) for $0 \le$	$\leq x \leq \frac{1}{2}\pi$
9	11 cui ve mas equation y –	2 1111	1 1 3 003 .	λ 101 0 $<$	$: \mathcal{A} \subseteq \mathcal{A}^{n}$.

(i)	Express $\frac{dy}{dx}$ in terms of $\tan x$.	[4]
	Satbles	

© UCLES 2017

correct to 3 s	significant figures.				
•••••	•••••	•••••	•••••	•••••	· • • • • • • • • • • • • • • • • • • •
•••••		•••••			
•••••	•••••	•••••			
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	
					• • • • • • • • • • • • • • • • • • • •
		•••••			
			······································		
•••••		••••••	•••••	•••••	
••••••					
				•••••	
•••••					· • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••			
••••••	•••••	••••••	•••••	•••••	,


The equation $\cot x = 1 - x$ has one root in the interval $0 < x < \pi$, denoted by α .

6

••	
••	
••	
••	
••	
•••	
	2 0'
	how that, if a sequence of values in the interval $0 < x < \pi$ given by the iterative for $x_{n+1} = \pi + \tan^{-1}\left(\frac{1}{1-x_n}\right)$ converges, then it converges to α .
	how that, if a sequence of values in the interval $0 < x < \pi$ given by the iterative for $x_n = \pi + \tan^{-1}\left(\frac{1}{1-x_n}\right)$ converges, then it converges to α .

	
(iii)	Use this iterative formula to determine α correct to 3 decimal places. Give the result of each
	iteration to 5 decimal places. [3]
	A sellotek

7

The diagram shows a sketch of the curve $y = \frac{e^{\frac{1}{2}x}}{x}$ for x > 0, and its minimum point M.

- DA	
	••••••
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••
earbles	
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	•••••

(ii) Use the trapezium rule with two intervals to estimate the value of

giving	your answer corre	ect to 2 decimal	places.		
			•••••	• • • • • • • • • • • • • • • • • • • •	
					•
		•••••			
•••••					
•••••					
•••••					
••••••	1 5			\mathcal{S}	
•••••					

8

<i>B</i> at ti to 50 to	ertain chemical reaction, a compound A is formed from a compound B . The masses of A a me t after the start of the reaction are x and y respectively and the sum of the masses is equal throughout the reaction. At any time the rate of increase of the mass of A is proportional to to B at that time.
(i) E	Explain why $\frac{dx}{dt} = k(50 - x)$, where k is a constant.
It is gi	even that $x = 0$ when $t = 0$, and $x = 25$ when $t = 10$.
(ii) S	solve the differential equation in part (i) and express x in terms of t .
	3,50

T PA

9	Let $f(x) = \frac{3x^2 - 4}{x^2(3x + 2)}$.	

Express $f(x)$ in p	artial fractions.	[:
	12	
	gatores	

	$t \int_{1}^{2} f(x) dx = \ln(\frac{25}{8}) - 1.$	
•••••		
•••••		
		•••••

T ha	The points A and B have position vectors given by $\overrightarrow{OA} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and $\overrightarrow{OB} = 3\mathbf{i} + \mathbf{j} + \mathbf{k}$. The line as equation $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + m\mathbf{k} + \mu(\mathbf{i} - 2\mathbf{j} - 4\mathbf{k})$, where m is a constant.	l
((i) Given that the line l intersects the line passing through A and B , find the value of m . [5]	;]
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••
	69	
		••
		••
		••
		••

	in the form $ax + by +$				
•••••			•••••		••••
•			•••••		••••
					• • • • •
••••••	•••••••••••	•••••	•••••	•••••	••••
					• • • • •
	,				••••
					••••
					••••
		•••••		••••••	••••
					• • • •
•••••			•••••		••••
					••••
					••••
•••••••••••••••••••••••••••••••••••••••			•••••		••••

11 Throughout this question the use of a calculator is not permitted.

(a)	The complex num	bers z and w satisfy	the equa	tions		
		z + (1 + i)w = i	and	$(1-\mathrm{i})z+\mathrm{i}w=1.$		
	Solve the equation	as for z and w , giving	g your an	swers in the form <i>x</i>	+ iy, where x and y a	re real. [6]
			••••••	•••••		•••••
			•••••			•••••
			P	2		••••••
		16)	••••••			•••••
						•••••
			Pic			
			••••••			
			•••••			•••••
			•••••			
			••••••			•••••

	C = 2AB and are in the form $x - 2AB$					oci 2 repres	Jinea 6 y 6 , g
		-	-				
		,					
			•••••				
•••••	•••••		•••••		•••••	•••••	
•••••						•••••	
•••••						••••••	
• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •	••••••	••••••	
•••••			,			•••••	
•••••						••••	
•••••		•••••	,			•••••	,
•							
		,					

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations

Cambridge International Advanced Level

NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/32
Paper 3 Pure Mathe	matics 3 (P3)		February/March 2017
			1 hour 45 minutes
Candidates answer of	on the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

			•••••
•••••			•••••
	,		•••••
		······	
		······	
			•••••
•••••		tore0	••••••
		tpreP	
	•••••		

	••••••			
	•••••		•••••	
•••••	••••••	· · · · · · · · · · · · · · · · · · ·		•••••
	••••••			
•••••				
•••••				
	1 4 1			
		,		
			•••••	

3	(i) By sketching suitable graphs, show that the equation $e^{-\frac{1}{2}x} = 4 - x^2$ has one positive	e root and one
	negative root.	[2]

69
SatpreP.

[2]

(ii) Verify by calculation that the negative root lies between -1 and -1.5.

Give the result of	f each iteration to 4	l decimal pla	o determine thaces.		
•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	•••••		•••••
				•	••••••
•••••	••••••	•••••	· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
•••••					•••••
•••••	••••••			• • • • • • • • • • • • • • • • • • • •	•••••
••••••	•••••	•••••	•••••••		•••••
		······			•••••
•••••	•••••			• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••
	•••••	•••••	•••••		•••••
			• • • • • • • • • • • • • • • • • • • •		
•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••

exact value of R and	giving the value of α	correct to 2 decimal places.	
•••••	•••••		• • • • • • • • • • • • • • • • • • • •
•••••	•••••		
•••••	•••••		
••••••	•••••••••••		
•••••	••••••••••		
•••••	•••••		,
•••••			,
			,
			·····
•••••	•••••		,
•••••			

(ii) Hence solve the equation	ion
-------------------------------	-----

$8\cos 2x - 15\sin 2x = 4,$
for $0^{\circ} < x < 180^{\circ}$.
34 69

of the x-coordinat	e of this point.				
		••••			
		••••••	••••••	•••••	••••••••••
					•••••••
				11	
					•••••
					••••••••••
		atpre			
		•••••			•••••
		•••••			
•••••			•••••	•••••	
		••••			

Show that the line l lies in the plane p .	
	•••••
Patprek	
	•••••

31 – J + 2K. Find	l the equation of the	iis piane, givii	ng your answei	r in the form ax	z + by + cz = a	. [:
						••••
						••••
						••••
						••••
						••••
						••••
					••••••	••••
						••••
						••••
						••••
						••••
						••••
	14		69			
		allpre				
				••••••••••	••••••	•••••
						•••••
						•••••
						•••••
						••••
				•		

7

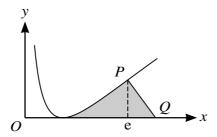
A water tank has vertical sides and a horizontal rectangular base, as shown in the diagram. The area of the base is 2 m^2 . At time t = 0 the tank is empty and water begins to flow into it at a rate of 1 m^3 per hour. At the same time water begins to flow out from the base at a rate of $0.2\sqrt{h} \text{ m}^3$ per hour, where h m is the depth of water in the tank at time t hours.

(i) Form a differential equation satisfied by h and t, and show that the time T hours taken for the depth of water to reach 4 m is given by

$$T = \int_0^4 \frac{10}{5 - \sqrt{h}} \, \mathrm{d}h.$$
 [3]

•••••					
•••••		•••••	•••••	•••••	•••••
•••••		••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••••••••
•••••				••••••	•••••
•••••			• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••				•••••	•••••
•••••		•••••	•••••	•••••	•••••
•••••		•••••	•••••	•••••	
•••••		•••••	•••••	•••••	•••••
•••••	•••••••••••	•••••	•••••	•••••	••••••

8	Throughout this	auestion	the use	of a	calculator	is not	permitted.
---	-----------------	----------	---------	------	------------	--------	------------


Showing all your working, verify that u is a root of the equation $p(z) = 0$.	[3
T PA	
Find the other three roots of the equation $p(z) = 0$.	[
- Serbies	

T PA

9	Let $f(x)$ –	x(6-x)
7	Let $I(x) =$	$\frac{x(6-x)}{(2+x)(4+x^2)}$.

(i)	Express $f(x)$ in partial fractions.	[5]
		•••••
		•••••
		,
		· ····
		•••••
		•••••
	12 1.5	•••••
	34 8	· • • • • •
	earbles	•••••

•••••					
•••••	•••••				• • • • • • • • • • • • • • • • • • • •
	•••••				
	•••••				
				••••••	
••••••				•••••	•••••
			····		
•••••				•••••	
•••••					•••••
•••••	•••••			•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••		•••••	•••••	•••••
•••••	•••••			••••••	•••••
••••••	•••••	· • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
•••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •

The diagram shows the curve $y = (\ln x)^2$. The *x*-coordinate of the point *P* is equal to e, and the normal to the curve at *P* meets the *x*-axis at *Q*.

(i)	Find the x -coordinate of Q .	[4]
	5	
	Satore	
(ii)	Show that $\int \ln x dx = x \ln x - x + c$, where <i>c</i> is a constant.	[1]

octween the cu	rve, the x-axis and the	normal PQ .		
•••••	•••••			•••••
•••••	•••••	,		•••••
	• • • • • • • • • • • • • • • • • • • •			
•••••	•••••		•••••	•••••
•••••				
•••••				
•••••	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
••••••			•••••	•••••
•••••		tore		••••••
•••••				•••••
•••••				
	•••••			
•••••				•••••
•••••		,		

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Cambridge International Examinations Cambridge International Advanced Level

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3 (P3)

October/November 2016

1 hour 45 minutes

Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

An answer booklet is provided inside this question paper. You should follow the instructions on the front cover of the answer booklet. If you need additional answer paper ask the invigilator for a continuation booklet.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 3 printed pages, 1 blank page and 1 insert.

International Examinations

- 1 Solve the equation $\frac{3^x + 2}{3^x 2} = 8$, giving your answer correct to 3 decimal places. [3]
- Expand $(2-x)(1+2x)^{-\frac{3}{2}}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients.
- 3 Express the equation $\sec \theta = 3 \cos \theta + \tan \theta$ as a quadratic equation in $\sin \theta$. Hence solve this equation for $-90^{\circ} < \theta < 90^{\circ}$. [5]
- The equation of a curve is $xy(x 6y) = 9a^3$, where a is a non-zero constant. Show that there is only one point on the curve at which the tangent is parallel to the x-axis, and find the coordinates of this point. [7]
- 5 (i) Prove the identity $\tan 2\theta \tan \theta = \tan \theta \sec 2\theta$. [4]

(ii) Hence show that
$$\int_0^{\frac{1}{6}\pi} \tan \theta \sec 2\theta \, d\theta = \frac{1}{2} \ln \frac{3}{2}.$$
 [4]

6 (i) By sketching a suitable pair of graphs, show that the equation

$$\csc \frac{1}{2}x = \frac{1}{3}x + 1$$

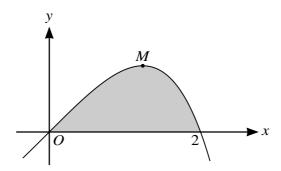
has one root in the interval $0 < x \le \pi$.

(ii) Show by calculation that this root lies between 1.4 and 1.6. [2]

[2]

[2]

(iii) Show that, if a sequence of values in the interval $0 < x \le \pi$ given by the iterative formula


$$x_{n+1} = 2\sin^{-1}\left(\frac{3}{x_n + 3}\right)$$

converges, then it converges to the root of the equation in part (i).

(iv) Use this iterative formula to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]

© UCLES 2016 9709/31/O/N/16

7

The diagram shows part of the curve $y = (2x - x^2)e^{\frac{1}{2}x}$ and its maximum point M.

- (i) Find the exact x-coordinate of M. [4]
- (ii) Find the exact value of the area of the shaded region bounded by the curve and the positive *x*-axis. [5]
- 8 Two planes have equations 3x + y z = 2 and x y + 2z = 3.
 - (i) Show that the planes are perpendicular. [3]
 - (ii) Find a vector equation for the line of intersection of the two planes. [6]
- 9 Throughout this question the use of a calculator is not permitted.
 - (a) Solve the equation $(1+2i)w^2 + 4w (1-2i) = 0$, giving your answers in the form x + iy, where x and y are real. [5]
 - (b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities $|z 1 i| \le 2$ and $-\frac{1}{4}\pi \le \arg z \le \frac{1}{4}\pi$. [5]
- A large field of area 4 km^2 is becoming infected with a soil disease. At time t years the area infected is $x \text{ km}^2$ and the rate of growth of the infected area is given by the differential equation $\frac{dx}{dt} = kx(4-x)$, where k is a positive constant. It is given that when t = 0, x = 0.4 and that when t = 2, x = 2.
 - (i) Solve the differential equation and show that $k = \frac{1}{4} \ln 3$. [9]
 - (ii) Find the value of t when 90% of the area of the field is infected. [2]

© UCLES 2016 9709/31/O/N/16

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9709/31/O/N/16

Cambridge International Advanced Level

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3 (P3)

October/November 2016

1 hour 45 minutes

Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

An answer booklet is provided inside this question paper. You should follow the instructions on the front cover of the answer booklet. If you need additional answer paper ask the invigilator for a continuation booklet.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of 3 printed pages, 1 blank page and 1 insert.

- 1 Solve the equation $\frac{3^x + 2}{3^x 2} = 8$, giving your answer correct to 3 decimal places. [3]
- Expand $(2-x)(1+2x)^{-\frac{3}{2}}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients.
- 3 Express the equation $\sec \theta = 3 \cos \theta + \tan \theta$ as a quadratic equation in $\sin \theta$. Hence solve this equation for $-90^{\circ} < \theta < 90^{\circ}$. [5]
- The equation of a curve is $xy(x 6y) = 9a^3$, where a is a non-zero constant. Show that there is only one point on the curve at which the tangent is parallel to the x-axis, and find the coordinates of this point. [7]
- 5 (i) Prove the identity $\tan 2\theta \tan \theta = \tan \theta \sec 2\theta$. [4]

(ii) Hence show that
$$\int_0^{\frac{1}{6}\pi} \tan \theta \sec 2\theta \, d\theta = \frac{1}{2} \ln \frac{3}{2}.$$
 [4]

6 (i) By sketching a suitable pair of graphs, show that the equation

$$\csc \frac{1}{2}x = \frac{1}{3}x + 1$$

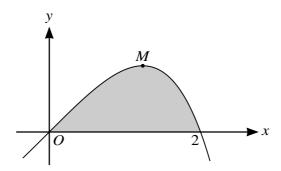
has one root in the interval $0 < x \le \pi$.

(ii) Show by calculation that this root lies between 1.4 and 1.6. [2]

[2]

[2]

(iii) Show that, if a sequence of values in the interval $0 < x \le \pi$ given by the iterative formula


$$x_{n+1} = 2\sin^{-1}\left(\frac{3}{x_n + 3}\right)$$

converges, then it converges to the root of the equation in part (i).

(iv) Use this iterative formula to calculate the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]

© UCLES 2016 9709/32/O/N/16

7

The diagram shows part of the curve $y = (2x - x^2)e^{\frac{1}{2}x}$ and its maximum point M.

- (i) Find the exact x-coordinate of M. [4]
- (ii) Find the exact value of the area of the shaded region bounded by the curve and the positive *x*-axis. [5]
- 8 Two planes have equations 3x + y z = 2 and x y + 2z = 3.
 - (i) Show that the planes are perpendicular. [3]
 - (ii) Find a vector equation for the line of intersection of the two planes. [6]
- 9 Throughout this question the use of a calculator is not permitted.
 - (a) Solve the equation $(1+2i)w^2 + 4w (1-2i) = 0$, giving your answers in the form x + iy, where x and y are real. [5]
 - (b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities $|z 1 i| \le 2$ and $-\frac{1}{4}\pi \le \arg z \le \frac{1}{4}\pi$. [5]
- A large field of area 4 km^2 is becoming infected with a soil disease. At time t years the area infected is $x \text{ km}^2$ and the rate of growth of the infected area is given by the differential equation $\frac{dx}{dt} = kx(4-x)$, where k is a positive constant. It is given that when t = 0, x = 0.4 and that when t = 2, t = 2.
 - (i) Solve the differential equation and show that $k = \frac{1}{4} \ln 3$. [9]
 - (ii) Find the value of t when 90% of the area of the field is infected. [2]

© UCLES 2016 9709/32/O/N/16

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9709/32/O/N/16

Cambridge International Advanced Level

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3 (P3)

October/November 2016

1 hour 45 minutes

Additional Materials: List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

An answer booklet is provided inside this question paper. You should follow the instructions on the front cover of the answer booklet. If you need additional answer paper ask the invigilator for a continuation booklet.

Answer all the questions.

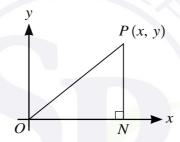
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.


The total number of marks for this paper is 75.

This document consists of 4 printed pages and 1 insert.

- 1 It is given that $z = \ln(y+2) \ln(y+1)$. Express y in terms of z. [3]
- 2 The equation of a curve is $y = \frac{\sin x}{1 + \cos x}$, for $-\pi < x < \pi$. Show that the gradient of the curve is positive for all x in the given interval. [4]
- 3 Express the equation $\cot 2\theta = 1 + \tan \theta$ as a quadratic equation in $\tan \theta$. Hence solve this equation for $0^{\circ} < \theta < 180^{\circ}$.
- 4 The polynomial $4x^4 + ax^2 + 11x + b$, where a and b are constants, is denoted by p(x). It is given that p(x) is divisible by $x^2 x + 2$.
 - (i) Find the values of a and b. [5]
 - (ii) When a and b have these values, find the real roots of the equation p(x) = 0. [2]

5

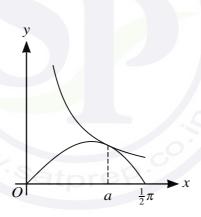
The diagram shows a variable point P with coordinates (x, y) and the point N which is the foot of the perpendicular from P to the x-axis. P moves on a curve such that, for all $x \ge 0$, the gradient of the curve is equal in value to the area of the triangle OPN, where O is the origin.

The point with coordinates (0, 2) lies on the curve.

- (ii) Solve the differential equation to obtain the equation of the curve, expressing y in terms of x. [5]
- (iii) Sketch the curve. [1]
- 6 Let $I = \int_{1}^{4} \frac{(\sqrt{x}) 1}{2(x + \sqrt{x})} dx$.
 - (i) Using the substitution $u = \sqrt{x}$, show that $I = \int_{1}^{2} \frac{u-1}{u+1} du$. [3]
 - (ii) Hence show that $I = 1 + \ln \frac{4}{9}$. [6]

© UCLES 2016 9709/33/O/N/16

7 Throughout this question the use of a calculator is not permitted.


The complex number z is defined by $z = (\sqrt{2}) - (\sqrt{6})i$. The complex conjugate of z is denoted by z^* .

- (i) Find the modulus and argument of z. [2]
- (ii) Express each of the following in the form x + iy, where x and y are real and exact:
 - (a) $z + 2z^*$;

(b)
$$\frac{z^*}{iz}$$
.

- (iii) On a sketch of an Argand diagram with origin O, show the points A and B representing the complex numbers z^* and iz respectively. Prove that angle AOB is equal to $\frac{1}{6}\pi$. [3]
- 8 Let $f(x) = \frac{3x^2 + x + 6}{(x+2)(x^2+4)}$.
 - (i) Express f(x) in partial fractions. [5]
 - (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^2 .

9

The diagram shows the curves $y = x \cos x$ and $y = \frac{k}{x}$, where k is a constant, for $0 < x \le \frac{1}{2}\pi$. The curves touch at the point where x = a.

- (i) Show that a satisfies the equation $\tan a = \frac{2}{a}$. [5]
- (ii) Use the iterative formula $a_{n+1} = \tan^{-1} \left(\frac{2}{a_n} \right)$ to determine a correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]
- (iii) Hence find the value of k correct to 2 decimal places. [2]

[Question 10 is printed on the next page.]

- 10 The line *l* has vector equation $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda(2\mathbf{i} \mathbf{j} + \mathbf{k})$.
 - (i) Find the position vectors of the two points on the line whose distance from the origin is $\sqrt{(10)}$.
 - (ii) The plane p has equation ax + y + z = 5, where a is a constant. The acute angle between the line l and the plane p is equal to $\sin^{-1}(\frac{2}{3})$. Find the possible values of a. [5]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9709/33/O/N/16

Cambridge International Advanced Level

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3 (P3)

May/June 2016
1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.

- 1 (i) Solve the equation 2|x-1| = 3|x|. [3]
 - (ii) Hence solve the equation $2|5^x 1| = 3|5^x|$, giving your answer correct to 3 significant figures. [2]

2 Find the exact value of
$$\int_0^{\frac{1}{2}} x e^{-2x} dx$$
. [5]

- 3 By expressing the equation $\csc \theta = 3 \sin \theta + \cot \theta$ in terms of $\cos \theta$ only, solve the equation for $0^{\circ} < \theta < 180^{\circ}$.
- 4 The variables x and y satisfy the differential equation

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = y(1 - 2x^2),$$

and it is given that y = 2 when x = 1. Solve the differential equation and obtain an expression for y in terms of x in a form not involving logarithms.

- 5 The curve with equation $y = \sin x \cos 2x$ has one stationary point in the interval $0 < x < \frac{1}{2}\pi$. Find the *x*-coordinate of this point, giving your answer correct to 3 significant figures. [6]
- **6** (i) By sketching a suitable pair of graphs, show that the equation

$$5e^{-x} = \sqrt{x}$$

has one root. [2]

(ii) Show that, if a sequence of values given by the iterative formula

$$x_{n+1} = \frac{1}{2} \ln \left(\frac{25}{x_n} \right)$$

converges, then it converges to the root of the equation in part (i). [2]

- (iii) Use this iterative formula, with initial value $x_1 = 1$, to calculate the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
- 7 The equation of a curve is $x^3 3x^2y + y^3 = 3$.

(i) Show that
$$\frac{dy}{dx} = \frac{x^2 - 2xy}{x^2 - y^2}$$
. [4]

(ii) Find the coordinates of the points on the curve where the tangent is parallel to the x-axis. [5]

© UCLES 2016 9709/31/M/J/16

- 8 Let $f(x) = \frac{4x^2 + 12}{(x+1)(x-3)^2}$.
 - (i) Express f(x) in partial fractions. [5]
 - (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^2 .
- 9 With respect to the origin O, the points A, B, C, D have position vectors given by

$$\overrightarrow{OA} = \mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$$
, $\overrightarrow{OB} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$, $\overrightarrow{OC} = 2\mathbf{i} + 4\mathbf{j} + \mathbf{k}$, $\overrightarrow{OD} = -3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$.

- (i) Find the equation of the plane containing A, B and C, giving your answer in the form ax + by + cz = d. [6]
- (ii) The line through D parallel to OA meets the plane with equation x + 2y z = 7 at the point P. Find the position vector of P and show that the length of DP is $2\sqrt{14}$.
- 10 (a) Showing all your working and without the use of a calculator, find the square roots of the complex number $7 (6\sqrt{2})i$. Give your answers in the form x + iy, where x and y are real and exact. [5]
 - (b) (i) On an Argand diagram, sketch the loci of points representing complex numbers w and z such that |w 1 2i| = 1 and $\arg(z 1) = \frac{3}{4}\pi$. [4]
 - (ii) Calculate the least value of |w z| for points on these loci. [2]

© UCLES 2016 9709/31/M/J/16

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9709/31/M/J/16

Cambridge International Advanced Level

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3 (P3)

May/June 2016

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

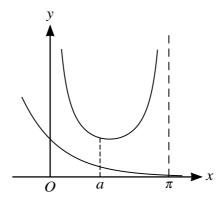
Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.

- 1 Use logarithms to solve the equation $4^{3x-1} = 3(5^x)$, giving your answer correct to 3 decimal places. [4]
- 2 Expand $\frac{1}{\sqrt{(1-2x)}}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients. [4]
- 3 Find the exact value of $\int_0^{\frac{1}{2}\pi} x^2 \sin 2x \, dx.$ [5]
- 4 The curve with equation $y = \frac{(\ln x)^2}{x}$ has two stationary points. Find the exact values of the coordinates of these points. [6]
- 5 (i) Prove the identity $\cos 4\theta 4\cos 2\theta = 8\sin^4 \theta 3$. [4]
 - (ii) Hence solve the equation

$$\cos 4\theta = 4\cos 2\theta + 3,$$

for
$$0^{\circ} \le \theta \le 360^{\circ}$$
. [4]

6 The variables x and θ satisfy the differential equation


$$(3 + \cos 2\theta) \frac{\mathrm{d}x}{\mathrm{d}\theta} = x \sin 2\theta,$$

and it is given that x = 3 when $\theta = \frac{1}{4}\pi$.

- (i) Solve the differential equation and obtain an expression for x in terms of θ . [7]
- (ii) State the least value taken by x. [1]
- 7 Let $f(x) = \frac{4x^2 + 7x + 4}{(2x+1)(x+2)}$.
 - (i) Express f(x) in partial fractions. [5]
 - (ii) Show that $\int_0^4 f(x) dx = 8 \ln 3$. [5]

© UCLES 2016 9709/32/M/J/16

8

The diagram shows the curve $y = \csc x$ for $0 < x < \pi$ and part of the curve $y = e^{-x}$. When x = a, the tangents to the curves are parallel.

(i) By differentiating
$$\frac{1}{\sin x}$$
, show that if $y = \csc x$ then $\frac{dy}{dx} = -\csc x \cot x$. [3]

(ii) By equating the gradients of the curves at x = a, show that

$$a = \tan^{-1}\left(\frac{e^a}{\sin a}\right).$$
 [2]

- (iii) Verify by calculation that *a* lies between 1 and 1.5. [2]
- (iv) Use an iterative formula based on the equation in part (ii) to determine a correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]
- The points A, B and C have position vectors, relative to the origin O, given by $\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\overrightarrow{OB} = 4\mathbf{j} + \mathbf{k}$ and $\overrightarrow{OC} = 2\mathbf{i} + 5\mathbf{j} \mathbf{k}$. A fourth point D is such that the quadrilateral ABCD is a parallelogram.
 - (i) Find the position vector of D and verify that the parallelogram is a rhombus. [5]
 - (ii) The plane p is parallel to OA and the line BC lies in p. Find the equation of p, giving your answer in the form ax + by + cz = d. [5]
- 10 (a) Showing all necessary working, solve the equation $iz^2 + 2z 3i = 0$, giving your answers in the form x + iy, where x and y are real and exact. [5]
 - (b) (i) On a sketch of an Argand diagram, show the locus representing complex numbers satisfying the equation |z| = |z 4 3i|. [2]
 - (ii) Find the complex number represented by the point on the locus where |z| is least. Find the modulus and argument of this complex number, giving the argument correct to 2 decimal places.[3]

© UCLES 2016 9709/32/M/J/16

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9709/32/M/J/16

Cambridge International Advanced Level

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3 (P3)

May/June 2016

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.

1 Solve the inequality 2|x-2| > |3x+1|.

[4]

- 2 The variables x and y satisfy the relation $3^y = 4^{2-x}$.
 - (i) By taking logarithms, show that the graph of y against x is a straight line. State the exact value of the gradient of this line. [3]
 - (ii) Calculate the exact x-coordinate of the point of intersection of this line with the line with equation y = 2x, simplifying your answer. [2]
- 3 (i) Express $(\sqrt{5})\cos x + 2\sin x$ in the form $R\cos(x \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the value of α correct to 2 decimal places. [3]
 - (ii) Hence solve the equation

$$(\sqrt{5})\cos\frac{1}{2}x + 2\sin\frac{1}{2}x = 1.2,$$
 for $0^{\circ} < x < 360^{\circ}$. [3]

4 The parametric equations of a curve are

$$x = t + \cos t$$
, $y = \ln(1 + \sin t)$

where $-\frac{1}{2}\pi < t < \frac{1}{2}\pi$.

(i) Show that
$$\frac{dy}{dx} = \sec t$$
. [5]

- (ii) Hence find the *x*-coordinates of the points on the curve at which the gradient is equal to 3. Give your answers correct to 3 significant figures. [3]
- 5 The variables x and y satisfy the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{-2y} \tan^2 x,$$

for $0 \le x < \frac{1}{2}\pi$, and it is given that y = 0 when x = 0. Solve the differential equation and calculate the value of y when $x = \frac{1}{4}\pi$.

- 6 The curve with equation $y = x^2 \cos \frac{1}{2}x$ has a stationary point at x = p in the interval $0 < x < \pi$.
 - (i) Show that p satisfies the equation $\tan \frac{1}{2}p = \frac{4}{p}$. [3]
 - (ii) Verify by calculation that p lies between 2 and 2.5. [2]
 - (iii) Use the iterative formula $p_{n+1} = 2 \tan^{-1} \left(\frac{4}{p_n} \right)$ to determine the value of p correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

© UCLES 2016 9709/33/M/J/16

7 Let
$$I = \int_0^1 \frac{x^5}{(1+x^2)^3} dx$$
.

(i) Using the substitution
$$u = 1 + x^2$$
, show that $I = \int_1^2 \frac{(u-1)^2}{2u^3} du$. [3]

- (ii) Hence find the exact value of I. [5]
- 8 The points A and B have position vectors, relative to the origin O, given by $\overrightarrow{OA} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\overrightarrow{OB} = 2\mathbf{i} + 3\mathbf{k}$. The line l has vector equation $\mathbf{r} = 2\mathbf{i} 2\mathbf{j} \mathbf{k} + \mu(-\mathbf{i} + 2\mathbf{j} + \mathbf{k})$.
 - (i) Show that the line passing through A and B does not intersect l. [4]
 - (ii) Show that the length of the perpendicular from A to l is $\frac{1}{\sqrt{2}}$. [5]
- 9 Throughout this question the use of a calculator is not permitted.

The complex numbers -1 + 3i and 2 - i are denoted by u and v respectively. In an Argand diagram with origin O, the points A, B and C represent the numbers u, v and u + v respectively.

- (i) Sketch this diagram and state fully the geometrical relationship between OB and AC. [4]
- (ii) Find, in the form x + iy, where x and y are real, the complex number $\frac{u}{v}$. [3]
- (iii) Prove that angle $AOB = \frac{3}{4}\pi$. [2]
- 10 Let $f(x) = \frac{10x 2x^2}{(x+3)(x-1)^2}$.
 - (i) Express f(x) in partial fractions. [5]
 - (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^2 .

© UCLES 2016 9709/33/M/J/16

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9709/33/M/J/16

Cambridge International Advanced Level

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3 (P3)

February/March 2016

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.

- 1 Solve the equation $ln(x^2 + 4) = 2 ln x + ln 4$, giving your answer in an exact form. [3]
- 2 Express the equation $\tan(\theta + 45^\circ) 2\tan(\theta 45^\circ) = 4$ as a quadratic equation in $\tan \theta$. Hence solve this equation for $0^\circ \le \theta \le 180^\circ$. [6]
- 3 The equation $x^5 3x^3 + x^2 4 = 0$ has one positive root.
 - (i) Verify by calculation that this root lies between 1 and 2. [2]
 - (ii) Show that the equation can be rearranged in the form

$$x = \sqrt[3]{\left(3x + \frac{4}{x^2} - 1\right)}.$$
 [1]

- (iii) Use an iterative formula based on this rearrangement to determine the positive root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
- 4 The polynomial $4x^3 + ax + 2$, where a is a constant, is denoted by p(x). It is given that (2x + 1) is a factor of p(x).
 - (i) Find the value of a. [2]
 - (ii) When a has this value,

(a) factorise
$$p(x)$$
, [2]

- (b) solve the inequality p(x) > 0, justifying your answer. [3]
- 5 Let $I = \int_0^1 \frac{9}{(3+x^2)^2} dx$.
 - (i) Using the substitution $x = (\sqrt{3}) \tan \theta$, show that $I = \sqrt{3} \int_0^{\frac{1}{6}\pi} \cos^2 \theta \, d\theta$. [3]
 - (ii) Hence find the exact value of I. [4]
- **6** A curve has equation

$$\sin y \ln x = x - 2 \sin y,$$

for $-\frac{1}{2}\pi \leqslant y \leqslant \frac{1}{2}\pi$.

(i) Find
$$\frac{dy}{dx}$$
 in terms of x and y. [5]

(ii) Hence find the exact *x*-coordinate of the point on the curve at which the tangent is parallel to the *x*-axis. [3]

© UCLES 2016 9709/32/F/M/16

7 The variables x and y satisfy the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x\mathrm{e}^{x+y},$$

and it is given that y = 0 when x = 0.

- (i) Solve the differential equation and obtain an expression for y in terms of x. [7]
- (ii) Explain briefly why x can only take values less than 1. [1]
- 8 The line *l* has equation $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$. The plane *p* has equation $\mathbf{r} \cdot \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} = 6$.
 - (i) Show that l is parallel to p. [3]
 - (ii) A line m lies in the plane p and is perpendicular to l. The line m passes through the point with coordinates (5, 3, 1). Find a vector equation for m.
- 9 Let $f(x) = \frac{3x^3 + 6x 8}{x(x^2 + 2)}$.
 - (i) Express f(x) in the form $A + \frac{B}{x} + \frac{Cx + D}{x^2 + 2}$. [5]
 - (ii) Show that $\int_{1}^{2} f(x) dx = 3 \ln 4$. [5]
- 10 (a) Find the complex number z satisfying the equation $z^* + 1 = 2iz$, where z^* denotes the complex conjugate of z. Give your answer in the form x + iy, where x and y are real. [5]
 - (b) (i) On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities $|z + 1 3i| \le 1$ and $\text{Im } z \ge 3$, where Im z denotes the imaginary part of z.
 - (ii) Determine the difference between the greatest and least values of arg z for points lying in this region. [2]

© UCLES 2016 9709/32/F/M/16

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2016 9709/32/F/M/16

Cambridge International Advanced Level

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3 (P3)

October/November 2015

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.

1	Solve the inequality $ 2x-5 > 3 2x+1 $.	[4]

- Using the substitution $u = 3^x$, solve the equation $3^x + 3^{2x} = 3^{3x}$ giving your answer correct to 3 significant figures. [5]
- 3 The angles θ and ϕ lie between 0° and 180° , and are such that

$$tan(\theta - \phi) = 3$$
 and $tan \theta + tan \phi = 1$.

Find the possible values of θ and ϕ .

[6]

- 4 The equation $x^3 x^2 6 = 0$ has one real root, denoted by α .
 - (i) Find by calculation the pair of consecutive integers between which α lies. [2]
 - (ii) Show that, if a sequence of values given by the iterative formula

$$x_{n+1} = \sqrt{\left(x_n + \frac{6}{x_n}\right)}$$

converges, then it converges to α .

[2]

- (iii) Use this iterative formula to determine α correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]
- 5 The equation of a curve is $y = e^{-2x} \tan x$, for $0 \le x < \frac{1}{2}\pi$.
 - (i) Obtain an expression for $\frac{dy}{dx}$ and show that it can be written in the form $e^{-2x}(a+b\tan x)^2$, where a and b are constants. [5]
 - (ii) Explain why the gradient of the curve is never negative. [1]
 - (iii) Find the value of x for which the gradient is least. [1]
- 6 The polynomial $8x^3 + ax^2 + bx 1$, where a and b are constants, is denoted by p(x). It is given that (x + 1) is a factor of p(x) and that when p(x) is divided by (2x + 1) the remainder is 1.
 - (i) Find the values of a and b. [5]
 - (ii) When a and b have these values, factorise p(x) completely. [3]

© UCLES 2015 9709/31/O/N/15

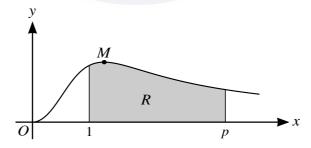
7 The points A, B and C have position vectors, relative to the origin O, given by

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}.$$

The plane m is perpendicular to AB and contains the point C.

- (i) Find a vector equation for the line passing through A and B. [2]
- (ii) Obtain the equation of the plane m, giving your answer in the form ax + by + cz = d. [2]
- (iii) The line through A and B intersects the plane m at the point N. Find the position vector of N and show that $CN = \sqrt{13}$.
- 8 The variables x and θ satisfy the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}\theta} = (x+2)\sin^2 2\theta,$$


and it is given that x = 0 when $\theta = 0$. Solve the differential equation and calculate the value of x when $\theta = \frac{1}{4}\pi$, giving your answer correct to 3 significant figures. [9]

- **9** The complex number 3 i is denoted by u. Its complex conjugate is denoted by u^* .
 - (i) On an Argand diagram with origin O, show the points A, B and C representing the complex numbers u, u^* and $u^* u$ respectively. What type of quadrilateral is OABC? [4]
 - (ii) Showing your working and without using a calculator, express $\frac{u^*}{u}$ in the form x + iy, where x and y are real. [3]
 - (iii) By considering the argument of $\frac{u^*}{u}$, prove that

$$\tan^{-1}\left(\frac{3}{4}\right) = 2\tan^{-1}\left(\frac{1}{3}\right).$$
 [3]

[4]

10

The diagram shows the curve $y = \frac{x^2}{1+x^3}$ for $x \ge 0$, and its maximum point M. The shaded region R is enclosed by the curve, the x-axis and the lines x = 1 and x = p.

- (i) Find the exact value of the x-coordinate of M.
- (ii) Calculate the value of p for which the area of R is equal to 1. Give your answer correct to 3 significant figures. [6]

© UCLES 2015 9709/31/O/N/15

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2015 9709/31/O/N/15

Cambridge International Advanced Level

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3 (P3)

October/November 2015

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.

1	Solve the inequality $ 2x - 5 > 3 2x + 1 $.	[4	1
-	Solve the inequality $ 2x - 5 > 5 2x + 1 $.		

- Using the substitution $u = 3^x$, solve the equation $3^x + 3^{2x} = 3^{3x}$ giving your answer correct to 3 significant figures. [5]
- 3 The angles θ and ϕ lie between 0° and 180° , and are such that

$$tan(\theta - \phi) = 3$$
 and $tan \theta + tan \phi = 1$.

Find the possible values of θ and ϕ .

[6]

- 4 The equation $x^3 x^2 6 = 0$ has one real root, denoted by α .
 - (i) Find by calculation the pair of consecutive integers between which α lies. [2]
 - (ii) Show that, if a sequence of values given by the iterative formula

$$x_{n+1} = \sqrt{\left(x_n + \frac{6}{x_n}\right)}$$

converges, then it converges to α .

[2]

- (iii) Use this iterative formula to determine α correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]
- 5 The equation of a curve is $y = e^{-2x} \tan x$, for $0 \le x < \frac{1}{2}\pi$.
 - (i) Obtain an expression for $\frac{dy}{dx}$ and show that it can be written in the form $e^{-2x}(a+b\tan x)^2$, where a and b are constants. [5]
 - (ii) Explain why the gradient of the curve is never negative. [1]
 - (iii) Find the value of x for which the gradient is least. [1]
- 6 The polynomial $8x^3 + ax^2 + bx 1$, where a and b are constants, is denoted by p(x). It is given that (x + 1) is a factor of p(x) and that when p(x) is divided by (2x + 1) the remainder is 1.
 - (i) Find the values of a and b. [5]
 - (ii) When a and b have these values, factorise p(x) completely. [3]

© UCLES 2015 9709/32/O/N/15

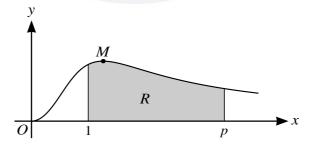
7 The points A, B and C have position vectors, relative to the origin O, given by

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}.$$

The plane m is perpendicular to AB and contains the point C.

- (i) Find a vector equation for the line passing through A and B. [2]
- (ii) Obtain the equation of the plane m, giving your answer in the form ax + by + cz = d. [2]
- (iii) The line through A and B intersects the plane m at the point N. Find the position vector of N and show that $CN = \sqrt{13}$.
- 8 The variables x and θ satisfy the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}\theta} = (x+2)\sin^2 2\theta,$$


and it is given that x = 0 when $\theta = 0$. Solve the differential equation and calculate the value of x when $\theta = \frac{1}{4}\pi$, giving your answer correct to 3 significant figures. [9]

- **9** The complex number 3 i is denoted by u. Its complex conjugate is denoted by u^* .
 - (i) On an Argand diagram with origin O, show the points A, B and C representing the complex numbers u, u^* and $u^* u$ respectively. What type of quadrilateral is OABC? [4]
 - (ii) Showing your working and without using a calculator, express $\frac{u^*}{u}$ in the form x + iy, where x and y are real. [3]
 - (iii) By considering the argument of $\frac{u^*}{u}$, prove that

$$\tan^{-1}\left(\frac{3}{4}\right) = 2\tan^{-1}\left(\frac{1}{3}\right).$$
 [3]

[4]

10

The diagram shows the curve $y = \frac{x^2}{1+x^3}$ for $x \ge 0$, and its maximum point M. The shaded region R is enclosed by the curve, the x-axis and the lines x = 1 and x = p.

- (i) Find the exact value of the x-coordinate of M.
- (ii) Calculate the value of p for which the area of R is equal to 1. Give your answer correct to 3 significant figures. [6]

© UCLES 2015 9709/32/O/N/15

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2015 9709/32/O/N/15

Cambridge International Advanced Level

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3 (P3)

October/November 2015

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.


The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

- 1 Sketch the graph of $y = e^{ax} 1$ where a is a positive constant. [2]
- Given that $\sqrt[3]{(1+9x)} \approx 1 + 3x + ax^2 + bx^3$ for small values of x, find the values of the coefficients a and b.
- 3 A curve has equation

$$y = \frac{2 - \tan x}{1 + \tan x}.$$

Find the equation of the tangent to the curve at the point for which $x = \frac{1}{4}\pi$, giving the answer in the form y = mx + c where c is correct to 3 significant figures. [6]

4 A curve has parametric equations

$$x = t^2 + 3t + 1,$$
 $y = t^4 + 1.$

The point P on the curve has parameter p. It is given that the gradient of the curve at P is 4.

- (i) Show that $p = \sqrt[3]{(2p+3)}$. [3]
- (ii) Verify by calculation that the value of p lies between 1.8 and 2.0. [2]
- (iii) Use an iterative formula based on the equation in part (i) to find the value of p correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
- 5 Use the substitution $u = 4 3\cos x$ to find the exact value of $\int_0^{\frac{1}{2}\pi} \frac{9\sin 2x}{\sqrt{(4 3\cos x)}} dx.$ [8]
- **6** The angles A and B are such that

$$\sin(A + 45^\circ) = (2\sqrt{2})\cos A$$
 and $4\sec^2 B + 5 = 12\tan B$.

Without using a calculator, find the exact value of tan(A - B).

7 (i) Show that (x + 1) is a factor of $4x^3 - x^2 - 11x - 6$. [2]

(ii) Find
$$\int \frac{4x^2 + 9x - 1}{4x^3 - x^2 - 11x - 6} \, dx.$$
 [8]

[8]

8 A plane has equation 4x - y + 5z = 39. A straight line is parallel to the vector $\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$ and passes through the point A(0, 2, -8). The line meets the plane at the point B.

- (i) Find the coordinates of B. [3]
- (ii) Find the acute angle between the line and the plane. [4]
- (iii) The point C lies on the line and is such that the distance between C and B is twice the distance between A and B. Find the coordinates of each of the possible positions of the point C. [3]

© UCLES 2015 9709/33/O/N/15

- 9 (a) It is given that (1+3i)w = 2+4i. Showing all necessary working, prove that the exact value of $|w^2|$ is 2 and find $arg(w^2)$ correct to 3 significant figures. [6]
 - (b) On a single Argand diagram sketch the loci |z| = 5 and |z 5| = |z|. Hence determine the complex numbers represented by points common to both loci, giving each answer in the form $re^{i\theta}$. [4]
- 10 Naturalists are managing a wildlife reserve to increase the number of plants of a rare species. The number of plants at time *t* years is denoted by *N*, where *N* is treated as a continuous variable.
 - (i) It is given that the rate of increase of N with respect to t is proportional to (N-150). Write down a differential equation relating N, t and a constant of proportionality. [1]
 - (ii) Initially, when t = 0, the number of plants was 650. It was noted that, at a time when there were 900 plants, the number of plants was increasing at a rate of 60 per year. Express N in terms of t. [7]
 - (iii) The naturalists had a target of increasing the number of plants from 650 to 2000 within 15 years. Will this target be met? [2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2015 9709/33/O/N/15

Cambridge International Advanced Level

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3 (P3)

May/June 2015

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

- 1 Use logarithms to solve the equation $2^{5x} = 3^{2x+1}$, giving the answer correct to 3 significant figures. [4]
- 2 Use the trapezium rule with three intervals to find an approximation to

$$\int_0^3 |3^x - 10| \, \mathrm{d}x. \tag{4}$$

[6]

[9]

3 Show that, for small values of x^2 ,

$$(1-2x^2)^{-2} - (1+6x^2)^{\frac{2}{3}} \approx kx^4,$$

where the value of the constant k is to be determined.

4 The equation of a curve is

$$y = 3\cos 2x + 7\sin x + 2.$$

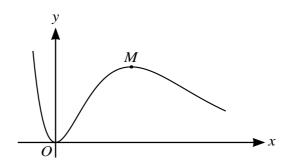
Find the *x*-coordinates of the stationary points in the interval $0 \le x \le \pi$. Give each answer correct to 3 significant figures.

5 (a) Find
$$\int (4 + \tan^2 2x) dx$$
. [3]

(b) Find the exact value of
$$\int_{\frac{1}{4}\pi}^{\frac{1}{2}\pi} \frac{\sin(x + \frac{1}{6}\pi)}{\sin x} dx.$$
 [5]

- 6 The straight line l_1 passes through the points (0, 1, 5) and (2, -2, 1). The straight line l_2 has equation $\mathbf{r} = 7\mathbf{i} + \mathbf{j} + \mathbf{k} + \mu(\mathbf{i} + 2\mathbf{j} + 5\mathbf{k})$.
 - (i) Show that the lines l_1 and l_2 are skew. [6]
 - (ii) Find the acute angle between the direction of the line l_2 and the direction of the x-axis. [3]
- 7 Given that y = 1 when x = 0, solve the differential equation

$$\frac{dy}{dx} = 4x(3y^2 + 10y + 3),$$

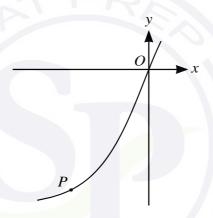

obtaining an expression for y in terms of x.

8 The complex number w is defined by $w = \frac{22 + 4i}{(2 - i)^2}$.

- (i) Without using a calculator, show that w = 2 + 4i. [3]
- (ii) It is given that p is a real number such that $\frac{1}{4}\pi \le \arg(w+p) \le \frac{3}{4}\pi$. Find the set of possible values of p.
- (iii) The complex conjugate of w is denoted by w^* . The complex numbers w and w^* are represented in an Argand diagram by the points S and T respectively. Find, in the form |z a| = k, the equation of the circle passing through S, T and the origin. [3]

© UCLES 2015 9709/31/M/J/15

9



The diagram shows the curve $y = x^2 e^{2-x}$ and its maximum point M.

(i) Show that the x-coordinate of M is 2. [3]

(ii) Find the exact value of
$$\int_0^2 x^2 e^{2-x} dx$$
. [6]

10

The diagram shows part of the curve with parametric equations

$$x = 2\ln(t+2),$$
 $y = t^3 + 2t + 3.$

(i) Find the gradient of the curve at the origin.

[5]

(ii) At the point P on the curve, the value of the parameter is p. It is given that the gradient of the curve at P is $\frac{1}{2}$.

(a) Show that
$$p = \frac{1}{3p^2 + 2} - 2$$
. [1]

(b) By first using an iterative formula based on the equation in part (a), determine the coordinates of the point *P*. Give the result of each iteration to 5 decimal places and each coordinate of *P* correct to 2 decimal places. [4]

© UCLES 2015 9709/31/M/J/15

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2015 9709/31/M/J/15

Cambridge International Advanced Level

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3 (P3)

May/June 2015

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

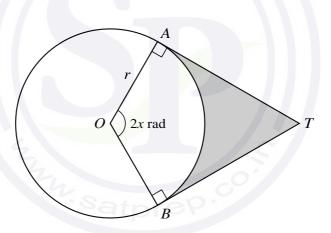
The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

1 Use the trapezium rule with three intervals to estimate the value of

$$\int_0^{\frac{1}{2}\pi} \ln(1+\sin x) \,\mathrm{d}x,$$

giving your answer correct to 2 decimal places.


[3]

- Using the substitution $u = 4^x$, solve the equation $4^x + 4^2 = 4^{x+2}$, giving your answer correct to 3 significant figures. [4]
- A curve has equation $y = \cos x \cos 2x$. Find the x-coordinate of the stationary point on the curve in the interval $0 < x < \frac{1}{2}\pi$, giving your answer correct to 3 significant figures. [6]
- 4 (i) Express $3 \sin \theta + 2 \cos \theta$ in the form $R \sin(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, stating the exact value of R and giving the value of R correct to 2 decimal places. [3]
 - (ii) Hence solve the equation

$$3\sin\theta + 2\cos\theta = 1$$
.

for
$$0^{\circ} < \theta < 180^{\circ}$$
.

5

The diagram shows a circle with centre O and radius r. The tangents to the circle at the points A and B meet at T, and the angle AOB is 2x radians. The shaded region is bounded by the tangents AT and BT, and by the minor arc AB. The perimeter of the shaded region is equal to the circumference of the circle.

(i) Show that x satisfies the equation

$$\tan x = \pi - x. \tag{3}$$

- (ii) This equation has one root in the interval $0 < x < \frac{1}{2}\pi$. Verify by calculation that this root lies between 1 and 1.3.
- (iii) Use the iterative formula

$$x_{n+1} = \tan^{-1}(\pi - x_n)$$

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

© UCLES 2015 9709/32/M/J/15

6 Let
$$I = \int_0^1 \frac{\sqrt{x}}{2 - \sqrt{x}} dx$$
.

(i) Using the substitution
$$u = 2 - \sqrt{x}$$
, show that $I = \int_{1}^{2} \frac{2(2-u)^2}{u} du$. [4]

(ii) Hence show that
$$I = 8 \ln 2 - 5$$
. [4]

- 7 The complex number u is given by $u = -1 + (4\sqrt{3})i$.
 - (i) Without using a calculator and showing all your working, find the two square roots of u. Give your answers in the form a + ib, where the real numbers a and b are exact. [5]
 - (ii) On an Argand diagram, sketch the locus of points representing complex numbers z satisfying the relation |z u| = 1. Determine the greatest value of arg z for points on this locus. [4]

8 Let
$$f(x) = \frac{5x^2 + x + 6}{(3 - 2x)(x^2 + 4)}$$
.

(i) Express
$$f(x)$$
 in partial fractions. [5]

- (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^2 . [5]
- 9 The number of organisms in a population at time *t* is denoted by *x*. Treating *x* as a continuous variable, the differential equation satisfied by *x* and *t* is

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{x\mathrm{e}^{-t}}{k + \mathrm{e}^{-t}}\,,$$

where k is a positive constant.

(i) Given that x = 10 when t = 0, solve the differential equation, obtaining a relation between x, k and t.

(ii) Given also that
$$x = 20$$
 when $t = 1$, show that $k = 1 - \frac{2}{e}$. [2]

- (iii) Show that the number of organisms never reaches 48, however large t becomes. [2]
- 10 The points A and B have position vectors given by $\overrightarrow{OA} = 2\mathbf{i} \mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OB} = \mathbf{i} + \mathbf{j} + 5\mathbf{k}$. The line l has equation $\mathbf{r} = \mathbf{i} + \mathbf{j} + 2\mathbf{k} + \mu(3\mathbf{i} + \mathbf{j} \mathbf{k})$.
 - (i) Show that l does not intersect the line passing through A and B. [5]
 - (ii) Find the equation of the plane containing the line l and the point A. Give your answer in the form ax + by + cz = d. [6]

© UCLES 2015 9709/32/M/J/15

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2015 9709/32/M/J/15

Cambridge International Advanced Level

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3 (P3)

May/June 2015

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

Solve the equation ln(x + 4) = 2 ln x + ln 4, giving your answer correct to 3 significant figures. [4]

2 Solve the inequality
$$|x-2| > 2x-3$$
. [4]

3 Solve the equation
$$\cot 2x + \cot x = 3$$
 for $0^{\circ} < x < 180^{\circ}$. [6]

- 4 The curve with equation $y = \frac{e^{2x}}{4 + e^{3x}}$ has one stationary point. Find the exact values of the coordinates of this point. [6]
- 5 The parametric equations of a curve are

$$x = a\cos^4 t, \quad y = a\sin^4 t,$$

where a is a positive constant.

(i) Express
$$\frac{dy}{dx}$$
 in terms of t . [3]

(ii) Show that the equation of the tangent to the curve at the point with parameter t is

$$x\sin^2 t + y\cos^2 t = a\sin^2 t\cos^2 t.$$
 [3]

(iii) Hence show that if the tangent meets the x-axis at P and the y-axis at Q, then

$$OP + OO = a$$
.

where *O* is the origin.

[2]

[2]

6 It is given that $\int_0^a x \cos x \, dx = 0.5$, where $0 < a < \frac{1}{2}\pi$.

(i) Show that a satisfies the equation
$$\sin a = \frac{1.5 - \cos a}{a}$$
. [4]

- (ii) Verify by calculation that a is greater than 1.
- (iii) Use the iterative formula

$$a_{n+1} = \sin^{-1} \left(\frac{1.5 - \cos a_n}{a_n} \right)$$

to determine the value of a correct to 4 decimal places, giving the result of each iteration to 6 decimal places. [3]

© UCLES 2015 9709/33/M/J/15

7 The number of micro-organisms in a population at time t is denoted by M. At any time the variation in M is assumed to satisfy the differential equation

$$\frac{\mathrm{d}M}{\mathrm{d}t} = k(\sqrt{M})\cos(0.02t),$$

where k is a constant and M is taken to be a continuous variable. It is given that when t = 0, M = 100.

- (i) Solve the differential equation, obtaining a relation between M, k and t. [5]
- (ii) Given also that M = 196 when t = 50, find the value of k. [2]
- (iii) Obtain an expression for M in terms of t and find the least possible number of micro-organisms. [2]
- 8 The complex number 1 i is denoted by u.
 - (i) Showing your working and without using a calculator, express

$$\frac{i}{u}$$

in the form x + iy, where x and y are real.

- [2]
- (ii) On an Argand diagram, sketch the loci representing complex numbers z satisfying the equations |z u| = |z| and |z i| = 2. [4]
- (iii) Find the argument of each of the complex numbers represented by the points of intersection of the two loci in part (ii). [3]
- 9 Two planes have equations x + 3y 2z = 4 and 2x + y + 3z = 5. The planes intersect in the straight line l.
 - (i) Calculate the acute angle between the two planes. [4]
 - (ii) Find a vector equation for the line l. [6]
- **10** Let $f(x) = \frac{11x + 7}{(2x 1)(x + 2)^2}$.
 - (i) Express f(x) in partial fractions. [5]
 - (ii) Show that $\int_{1}^{2} f(x) dx = \frac{1}{4} + \ln(\frac{9}{4})$. [5]

© UCLES 2015 9709/33/M/J/15

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2015 9709/33/M/J/15

Cambridge International Advanced Level

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3 (P3)

October/November 2014

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

- 1 Use logarithms to solve the equation $e^x = 3^{x-2}$, giving your answer correct to 3 decimal places. [3]
- 2 (i) Use the trapezium rule with 3 intervals to estimate the value of

$$\int_{\frac{1}{6}\pi}^{\frac{2}{3}\pi} \csc x \, \mathrm{d}x,$$

giving your answer correct to 2 decimal places.

- [3]
- (ii) Using a sketch of the graph of $y = \csc x$, explain whether the trapezium rule gives an overestimate or an underestimate of the true value of the integral in part (i). [2]
- 3 The polynomial $ax^3 + bx^2 + x + 3$, where a and b are constants, is denoted by p(x). It is given that (3x + 1) is a factor of p(x), and that when p(x) is divided by (x 2) the remainder is 21. Find the values of a and b.
- 4 The parametric equations of a curve are

$$x = \frac{1}{\cos^3 t}, \quad y = \tan^3 t,$$

where $0 \le t < \frac{1}{2}\pi$.

(i) Show that
$$\frac{dy}{dx} = \sin t$$
. [4]

- (ii) Hence show that the equation of the tangent to the curve at the point with parameter t is $y = x \sin t \tan t$. [3]
- 5 Throughout this question the use of a calculator is not permitted.

The complex numbers w and z satisfy the relation

$$w = \frac{z+1}{iz+2}$$

- (i) Given that z = 1 + i, find w, giving your answer in the form x + iy, where x and y are real. [4]
- (ii) Given instead that w = z and the real part of z is negative, find z, giving your answer in the form x + iy, where x and y are real. [4]

© UCLES 2014 9709/31/O/N/14

6 It is given that $\int_{1}^{a} \ln(2x) dx = 1$, where a > 1.

(i) Show that
$$a = \frac{1}{2} \exp\left(1 + \frac{\ln 2}{a}\right)$$
, where $\exp(x)$ denotes e^x . [6]

(ii) Use the iterative formula

$$a_{n+1} = \frac{1}{2} \exp\left(1 + \frac{\ln 2}{a_n}\right)$$

to determine the value of a correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

In a certain country the government charges tax on each litre of petrol sold to motorists. The revenue per year is *R* million dollars when the rate of tax is *x* dollars per litre. The variation of *R* with *x* is modelled by the differential equation

$$\frac{\mathrm{d}R}{\mathrm{d}x} = R\left(\frac{1}{x} - 0.57\right),\,$$

where R and x are taken to be continuous variables. When x = 0.5, R = 16.8.

- (i) Solve the differential equation and obtain an expression for R in terms of x. [6]
- (ii) This model predicts that R cannot exceed a certain amount. Find this maximum value of R. [3]
- **8** (i) By first expanding $\sin(2\theta + \theta)$, show that

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta. \tag{4}$$

[4]

- (ii) Show that, after making the substitution $x = \frac{2\sin\theta}{\sqrt{3}}$, the equation $x^3 x + \frac{1}{6}\sqrt{3} = 0$ can be written in the form $\sin 3\theta = \frac{3}{4}$.
- (iii) Hence solve the equation

$$x^3 - x + \frac{1}{6}\sqrt{3} = 0,$$

giving your answers correct to 3 significant figures.

9 Let $f(x) = \frac{x^2 - 8x + 9}{(1 - x)(2 - x)^2}$.

- (i) Express f(x) in partial fractions. [5]
- (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^2 . [5]
- 10 The line l has equation $\mathbf{r} = 4\mathbf{i} 9\mathbf{j} + 9\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} 2\mathbf{k})$. The point A has position vector $3\mathbf{i} + 8\mathbf{j} + 5\mathbf{k}$.
 - (i) Show that the length of the perpendicular from A to l is 15. [5]
 - (ii) The line l lies in the plane with equation ax + by 3z + 1 = 0, where a and b are constants. Find the values of a and b.

© UCLES 2014 9709/31/O/N/14

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2014 9709/31/O/N/14

Cambridge International Advanced Level

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3 (P3)

October/November 2014

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

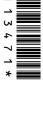
You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.


The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

- 1 Use logarithms to solve the equation $e^x = 3^{x-2}$, giving your answer correct to 3 decimal places. [3]
- 2 (i) Use the trapezium rule with 3 intervals to estimate the value of

$$\int_{\frac{1}{6}\pi}^{\frac{2}{3}\pi} \csc x \, \mathrm{d}x,$$

giving your answer correct to 2 decimal places.

- [3]
- (ii) Using a sketch of the graph of $y = \csc x$, explain whether the trapezium rule gives an overestimate or an underestimate of the true value of the integral in part (i). [2]
- 3 The polynomial $ax^3 + bx^2 + x + 3$, where a and b are constants, is denoted by p(x). It is given that (3x + 1) is a factor of p(x), and that when p(x) is divided by (x 2) the remainder is 21. Find the values of a and b.
- 4 The parametric equations of a curve are

$$x = \frac{1}{\cos^3 t}, \quad y = \tan^3 t,$$

where $0 \le t < \frac{1}{2}\pi$.

(i) Show that
$$\frac{dy}{dx} = \sin t$$
. [4]

- (ii) Hence show that the equation of the tangent to the curve at the point with parameter t is $y = x \sin t \tan t$. [3]
- 5 Throughout this question the use of a calculator is not permitted.

The complex numbers w and z satisfy the relation

$$w = \frac{z+1}{iz+2}$$

- (i) Given that z = 1 + i, find w, giving your answer in the form x + iy, where x and y are real. [4]
- (ii) Given instead that w = z and the real part of z is negative, find z, giving your answer in the form x + iy, where x and y are real. [4]

© UCLES 2014 9709/32/O/N/14

6 It is given that $\int_{1}^{a} \ln(2x) dx = 1$, where a > 1.

(i) Show that
$$a = \frac{1}{2} \exp\left(1 + \frac{\ln 2}{a}\right)$$
, where $\exp(x)$ denotes e^x . [6]

(ii) Use the iterative formula

$$a_{n+1} = \frac{1}{2} \exp\left(1 + \frac{\ln 2}{a_n}\right)$$

to determine the value of a correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

In a certain country the government charges tax on each litre of petrol sold to motorists. The revenue per year is *R* million dollars when the rate of tax is *x* dollars per litre. The variation of *R* with *x* is modelled by the differential equation

$$\frac{\mathrm{d}R}{\mathrm{d}x} = R\left(\frac{1}{x} - 0.57\right),\,$$

where R and x are taken to be continuous variables. When x = 0.5, R = 16.8.

- (i) Solve the differential equation and obtain an expression for R in terms of x. [6]
- (ii) This model predicts that R cannot exceed a certain amount. Find this maximum value of R. [3]
- **8** (i) By first expanding $\sin(2\theta + \theta)$, show that

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta. \tag{4}$$

[4]

- (ii) Show that, after making the substitution $x = \frac{2\sin\theta}{\sqrt{3}}$, the equation $x^3 x + \frac{1}{6}\sqrt{3} = 0$ can be written in the form $\sin 3\theta = \frac{3}{4}$.
- (iii) Hence solve the equation

$$x^3 - x + \frac{1}{6}\sqrt{3} = 0,$$

giving your answers correct to 3 significant figures.

9 Let $f(x) = \frac{x^2 - 8x + 9}{(1 - x)(2 - x)^2}$.

- (i) Express f(x) in partial fractions. [5]
- (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^2 . [5]
- 10 The line l has equation $\mathbf{r} = 4\mathbf{i} 9\mathbf{j} + 9\mathbf{k} + \lambda(-2\mathbf{i} + \mathbf{j} 2\mathbf{k})$. The point A has position vector $3\mathbf{i} + 8\mathbf{j} + 5\mathbf{k}$.
 - (i) Show that the length of the perpendicular from A to l is 15. [5]
 - (ii) The line l lies in the plane with equation ax + by 3z + 1 = 0, where a and b are constants. Find the values of a and b.

© UCLES 2014 9709/32/O/N/14

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2014 9709/32/O/N/14

Cambridge International Advanced Level

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3 (P3)

October/November 2014

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.


The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

1 Solve the inequality |3x-1| < |2x+5|.

[4]

2 A curve is defined for $0 < \theta < \frac{1}{2}\pi$ by the parametric equations

$$x = \tan \theta$$
, $y = 2\cos^2 \theta \sin \theta$.

Show that
$$\frac{dy}{dx} = 6\cos^5\theta - 4\cos^3\theta$$
. [5]

- 3 The polynomial $4x^3 + ax^2 + bx 2$, where a and b are constants, is denoted by p(x). It is given that (x+1) and (x+2) are factors of p(x).
 - (i) Find the values of a and b. [4]
 - (ii) When a and b have these values, find the remainder when p(x) is divided by $(x^2 + 1)$. [3]
- 4 (i) Show that $\cos(\theta 60^\circ) + \cos(\theta + 60^\circ) \equiv \cos \theta$. [3]

(ii) Given that
$$\frac{\cos(2x - 60^\circ) + \cos(2x + 60^\circ)}{\cos(x - 60^\circ) + \cos(x + 60^\circ)} = 3$$
, find the exact value of $\cos x$. [4]

- 5 The complex numbers w and z are defined by w = 5 + 3i and z = 4 + i.
 - (i) Express $\frac{\mathrm{i}w}{z}$ in the form $x + \mathrm{i}y$, showing all your working and giving the exact values of x and y.
 - (ii) Find wz and hence, by considering arguments, show that

$$\tan^{-1}\left(\frac{3}{5}\right) + \tan^{-1}\left(\frac{1}{4}\right) = \frac{1}{4}\pi.$$
 [4]

- 6 It is given that $I = \int_0^{0.3} (1 + 3x^2)^{-2} dx$.
 - (i) Use the trapezium rule with 3 intervals to find an approximation to *I*, giving the answer correct to 3 decimal places. [3]
 - (ii) For small values of x, $(1+3x^2)^{-2} \approx 1 + ax^2 + bx^4$. Find the values of the constants a and b. Hence, by evaluating $\int_0^{0.3} (1 + ax^2 + bx^4) dx$, find a second approximation to I, giving the answer correct to 3 decimal places. [5]

© UCLES 2014 9709/33/O/N/14

7 The equations of two straight lines are

$$\mathbf{r} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k} + \lambda(\mathbf{i} + 3\mathbf{k})$$
 and $\mathbf{r} = a\mathbf{i} + 2\mathbf{j} - 2\mathbf{k} + \mu(\mathbf{i} + 2\mathbf{j} + 3a\mathbf{k})$,

where a is a constant.

- (i) Show that the lines intersect for all values of a. [4]
- (ii) Given that the point of intersection is at a distance of 9 units from the origin, find the possible values of a. [4]
- **8** The variables x and y are related by the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5}xy^{\frac{1}{2}}\sin\left(\frac{1}{3}x\right).$$

- (i) Find the general solution, giving y in terms of x.
- (ii) Given that y = 100 when x = 0, find the value of y when x = 25. [3]
- 9 (i) Sketch the curve $y = \ln(x+1)$ and hence, by sketching a second curve, show that the equation

$$x^3 + \ln(x+1) = 40$$

has exactly one real root. State the equation of the second curve.

- (ii) Verify by calculation that the root lies between 3 and 4. [2]
- (iii) Use the iterative formula

$$x_{n+1} = \sqrt[3]{(40 - \ln(x_n + 1))},$$

with a suitable starting value, to find the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places. [3]

(iv) Deduce the root of the equation

$$(e^y - 1)^3 + y = 40,$$

giving the answer correct to 2 decimal places.

10 By first using the substitution $u = e^x$, show that

$$\int_0^{\ln 4} \frac{e^{2x}}{e^{2x} + 3e^x + 2} dx = \ln\left(\frac{8}{5}\right).$$
 [10]

[6]

[3]

[2]

© UCLES 2014 9709/33/O/N/14

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2014 9709/33/O/N/14

Cambridge International Advanced Level

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3 (P3)

May/June 2014

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

1 (i) Simplify $\sin 2\alpha \sec \alpha$. [2]

(ii) Given that
$$3\cos 2\beta + 7\cos \beta = 0$$
, find the exact value of $\cos \beta$. [3]

2 Use the substitution $u = 1 + 3 \tan x$ to find the exact value of

$$\int_0^{\frac{1}{4}\pi} \frac{\sqrt{1+3\tan x}}{\cos^2 x} \, dx.$$
 [5]

3 The parametric equations of a curve are

$$x = \ln(2t+3), \quad y = \frac{3t+2}{2t+3}.$$

Find the gradient of the curve at the point where it crosses the *y*-axis.

4 The variables x and y are related by the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6y\mathrm{e}^{3x}}{2 + \mathrm{e}^{3x}}.$$

Given that y = 36 when x = 0, find an expression for y in terms of x.

[6]

[6]

5 The complex number z is defined by $z = \frac{9\sqrt{3+9i}}{\sqrt{3-i}}$. Find, showing all your working,

(i) an expression for z in the form
$$re^{i\theta}$$
, where $r > 0$ and $-\pi < \theta \le \pi$, [5]

- (ii) the two square roots of z, giving your answers in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$. [3]
- 6 It is given that $2 \ln(4x 5) + \ln(x + 1) = 3 \ln 3$.

(i) Show that
$$16x^3 - 24x^2 - 15x - 2 = 0$$
. [3]

(ii) By first using the factor theorem, factorise
$$16x^3 - 24x^2 - 15x - 2$$
 completely. [4]

- (iii) Hence solve the equation $2\ln(4x-5) + \ln(x+1) = 3\ln 3$.
- 7 The straight line *l* has equation $\mathbf{r} = 4\mathbf{i} \mathbf{j} + 2\mathbf{k} + \lambda(2\mathbf{i} 3\mathbf{j} + 6\mathbf{k})$. The plane *p* passes through the point (4, -1, 2) and is perpendicular to *l*.
 - (i) Find the equation of p, giving your answer in the form ax + by + cz = d. [2]
 - (ii) Find the perpendicular distance from the origin to p. [3]
 - (iii) A second plane q is parallel to p and the perpendicular distance between p and q is 14 units. Find the possible equations of q. [3]

© UCLES 2014 9709/31/M/J/14

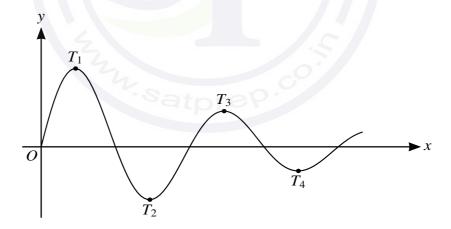
8 (i) By sketching each of the graphs $y = \csc x$ and $y = x(\pi - x)$ for $0 < x < \pi$, show that the equation $\csc x = x(\pi - x)$

has exactly two real roots in the interval $0 < x < \pi$. [3]

- (ii) Show that the equation $\csc x = x(\pi x)$ can be written in the form $x = \frac{1 + x^2 \sin x}{\pi \sin x}$. [2]
- (iii) The two real roots of the equation $\csc x = x(\pi x)$ in the interval $0 < x < \pi$ are denoted by α and β , where $\alpha < \beta$.
 - (a) Use the iterative formula

$$x_{n+1} = \frac{1 + x_n^2 \sin x_n}{\pi \sin x_n}$$

to find α correct to 2 decimal places. Give the result of each iteration to 4 decimal places.


[3]

(b) Deduce the value of β correct to 2 decimal places.

[1]

- 9 (i) Express $\frac{4+12x+x^2}{(3-x)(1+2x)^2}$ in partial fractions. [5]
 - (ii) Hence obtain the expansion of $\frac{4+12x+x^2}{(3-x)(1+2x)^2}$ in ascending powers of x, up to and including the term in x^2 . [5]

10

The diagram shows the curve $y = 10e^{-\frac{1}{2}x} \sin 4x$ for $x \ge 0$. The stationary points are labelled T_1, T_2, T_3, \dots as shown.

- (i) Find the x-coordinates of T_1 and T_2 , giving each x-coordinate correct to 3 decimal places. [6]
- (ii) It is given that the x-coordinate of T_n is greater than 25. Find the least possible value of n. [4]

© UCLES 2014 9709/31/M/J/14

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2014 9709/31/M/J/14

Cambridge International Advanced Level

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3 (P3)

May/June 2014

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

1 Find the set of values of x satisfying the inequality

$$|x + 2a| > 3|x - a|,$$

where a is a positive constant.

[4]

2 Solve the equation

$$2\ln(5 - e^{-2x}) = 1,$$

giving your answer correct to 3 significant figures.

[4]

3 Solve the equation

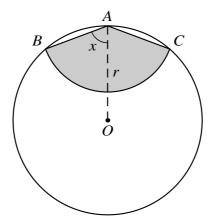
$$\cos(x + 30^\circ) = 2\cos x,$$

giving all solutions in the interval $-180^{\circ} < x < 180^{\circ}$.

[5]

4 The parametric equations of a curve are

$$x = t - \tan t$$
, $y = \ln(\cos t)$,


for $-\frac{1}{2}\pi < t < \frac{1}{2}\pi$.

(i) Show that
$$\frac{dy}{dx} = \cot t$$
. [5]

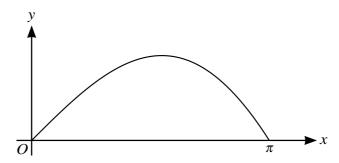
- (ii) Hence find the *x*-coordinate of the point on the curve at which the gradient is equal to 2. Give your answer correct to 3 significant figures. [2]
- 5 (i) The polynomial f(x) is of the form $(x-2)^2g(x)$, where g(x) is another polynomial. Show that (x-2) is a factor of f'(x). [2]
 - (ii) The polynomial $x^5 + ax^4 + 3x^3 + bx^2 + a$, where a and b are constants, has a factor $(x 2)^2$. Using the factor theorem and the result of part (i), or otherwise, find the values of a and b. [5]

© UCLES 2014 9709/32/M/J/14

6

In the diagram, A is a point on the circumference of a circle with centre O and radius r. A circular arc with centre A meets the circumference at B and C. The angle OAB is equal to x radians. The shaded region is bounded by AB, AC and the circular arc with centre A joining B and C. The perimeter of the shaded region is equal to half the circumference of the circle.

(i) Show that
$$x = \cos^{-1}\left(\frac{\pi}{4+4x}\right)$$
. [3]


- (ii) Verify by calculation that x lies between 1 and 1.5. [2]
- (iii) Use the iterative formula

$$x_{n+1} = \cos^{-1}\left(\frac{\pi}{4 + 4x_n}\right)$$

to determine the value of x correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

- 7 (a) It is given that $-1 + (\sqrt{5})i$ is a root of the equation $z^3 + 2z + a = 0$, where a is real. Showing your working, find the value of a, and write down the other complex root of this equation. [4]
 - **(b)** The complex number w has modulus 1 and argument 2θ radians. Show that $\frac{w-1}{w+1} = i \tan \theta$. [4]

8

The diagram shows the curve $y = x \cos \frac{1}{2}x$ for $0 \le x \le \pi$.

(i) Find
$$\frac{dy}{dx}$$
 and show that $4\frac{d^2y}{dx^2} + y + 4\sin\frac{1}{2}x = 0$. [5]

(ii) Find the exact value of the area of the region enclosed by this part of the curve and the x-axis.

[5]

- The population of a country at time t years is N millions. At any time, N is assumed to increase at a rate proportional to the product of N and (1 0.01N). When t = 0, N = 20 and $\frac{dN}{dt} = 0.32$.
 - (i) Treating N and t as continuous variables, show that they satisfy the differential equation

$$\frac{\mathrm{d}N}{\mathrm{d}t} = 0.02N(1 - 0.01N).$$
 [1]

[4]

- (ii) Solve the differential equation, obtaining an expression for t in terms of N. [8]
- (iii) Find the time at which the population will be double its value at t = 0. [1]
- 10 Referred to the origin O, the points A, B and C have position vectors given by

$$\overrightarrow{OA} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$$
, $\overrightarrow{OB} = 2\mathbf{i} + 4\mathbf{j} + \mathbf{k}$ and $\overrightarrow{OC} = 3\mathbf{i} + 5\mathbf{j} - 3\mathbf{k}$.

- (i) Find the exact value of the cosine of angle BAC.
- (ii) Hence find the exact value of the area of triangle *ABC*. [3]
- (iii) Find the equation of the plane which is parallel to the y-axis and contains the line through B and C. Give your answer in the form ax + by + cz = d. [5]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2014 9709/32/M/J/14

Cambridge International Examinations

Cambridge International Advanced Level

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3 (P3)

May/June 2014

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

- 1 Solve the equation $\log_{10}(x+9) = 2 + \log_{10} x$.
- **2** Expand $(1 + 3x)^{-\frac{1}{3}}$ in ascending powers of x, up to and including the term in x^3 , simplifying the coefficients.
- 3 (i) Show that the equation

$$\tan(x - 60^\circ) + \cot x = \sqrt{3}$$

can be written in the form

$$2\tan^2 x + (\sqrt{3})\tan x - 1 = 0.$$
 [3]

[3]

[2]

(ii) Hence solve the equation

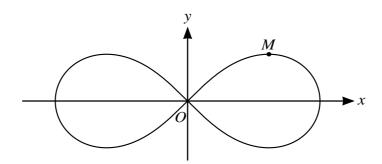
$$\tan(x - 60^\circ) + \cot x = \sqrt{3},$$

for
$$0^{\circ} < x < 180^{\circ}$$
.

- 4 The equation $x = \frac{10}{e^{2x} 1}$ has one positive real root, denoted by α .
 - (i) Show that α lies between x = 1 and x = 2. [2]
 - (ii) Show that if a sequence of positive values given by the iterative formula

$$x_{n+1} = \frac{1}{2} \ln \left(1 + \frac{10}{x_n} \right)$$

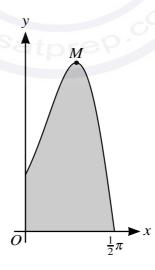
converges, then it converges to α .


- (iii) Use this iterative formula to determine α correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
- 5 The variables x and θ satisfy the differential equation

$$2\cos^2\theta \frac{\mathrm{d}x}{\mathrm{d}\theta} = \sqrt{(2x+1)},$$

and x = 0 when $\theta = \frac{1}{4}\pi$. Solve the differential equation and obtain an expression for x in terms of θ .

© UCLES 2014 9709/33/M/J/14


6

The diagram shows the curve $(x^2 + y^2)^2 = 2(x^2 - y^2)$ and one of its maximum points M. Find the coordinates of M.

- 7 (a) The complex number $\frac{3-5i}{1+4i}$ is denoted by u. Showing your working, express u in the form x+iy, where x and y are real. [3]
 - (b) (i) On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities $|z-2-i| \le 1$ and $|z-i| \le |z-2|$. [4]
 - (ii) Calculate the maximum value of arg z for points lying in the shaded region. [2]
- 8 Let $f(x) = \frac{6+6x}{(2-x)(2+x^2)}$.
 - (i) Express f(x) in the form $\frac{A}{2-x} + \frac{Bx+C}{2+x^2}$. [4]
 - (ii) Show that $\int_{-1}^{1} f(x) dx = 3 \ln 3$. [5]

9

The diagram shows the curve $y = e^{2 \sin x} \cos x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

- (i) Using the substitution $u = \sin x$, find the exact value of the area of the shaded region bounded by the curve and the axes. [5]
- (ii) Find the x-coordinate of M, giving your answer correct to 3 decimal places. [6]

- 10 The line *l* has equation $\mathbf{r} = \mathbf{i} + 2\mathbf{j} \mathbf{k} + \lambda(3\mathbf{i} 2\mathbf{j} + 2\mathbf{k})$ and the plane *p* has equation 2x + 3y 5z = 18.
 - (i) Find the position vector of the point of intersection of l and p. [3]
 - (ii) Find the acute angle between l and p. [4]
 - (iii) A second plane q is perpendicular to the plane p and contains the line l. Find the equation of q, giving your answer in the form ax + by + cz = d. [5]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2014 9709/33/M/J/14

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3 (P3)

October/November 2013

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

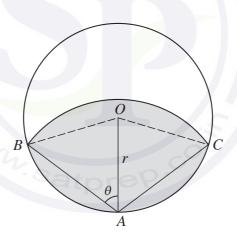
The total number of marks for this paper is 75.

1 The equation of a curve is $y = \frac{1+x}{1+2x}$ for $x > -\frac{1}{2}$. Show that the gradient of the curve is always negative. [3]

2 Solve the equation
$$2|3^x - 1| = 3^x$$
, giving your answers correct to 3 significant figures. [4]

3 Find the exact value of
$$\int_{1}^{4} \frac{\ln x}{\sqrt{x}} dx$$
. [5]

4 The parametric equations of a curve are


$$x = e^{-t} \cos t$$
, $y = e^{-t} \sin t$.

Show that
$$\frac{dy}{dx} = \tan\left(t - \frac{1}{4}\pi\right)$$
. [6]

5 (i) Prove that
$$\cot \theta + \tan \theta = 2 \csc 2\theta$$
. [3]

(ii) Hence show that
$$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \csc 2\theta \, d\theta = \frac{1}{2} \ln 3.$$
 [4]

6

In the diagram, A is a point on the circumference of a circle with centre O and radius r. A circular arc with centre A meets the circumference at B and C. The angle OAB is θ radians. The shaded region is bounded by the circumference of the circle and the arc with centre A joining B and C. The area of the shaded region is equal to half the area of the circle.

(i) Show that
$$\cos 2\theta = \frac{2\sin 2\theta - \pi}{4\theta}$$
. [5]

(ii) Use the iterative formula

$$\theta_{n+1} = \frac{1}{2}\cos^{-1}\left(\frac{2\sin 2\theta_n - \pi}{4\theta_n}\right),\,$$

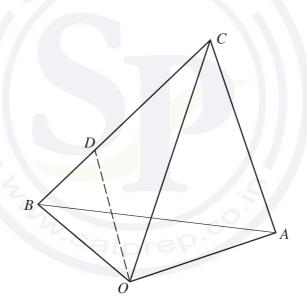
with initial value $\theta_1 = 1$, to determine θ correct to 2 decimal places, showing the result of each iteration to 4 decimal places. [3]

© UCLES 2013 9709/31/O/N/13

7 Let
$$f(x) = \frac{2x^2 - 7x - 1}{(x - 2)(x^2 + 3)}$$
.

- (i) Express f(x) in partial fractions. [5]
- (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^2 .

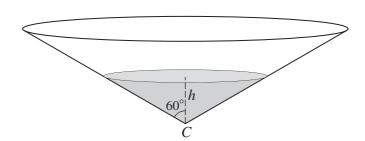
8 Throughout this question the use of a calculator is not permitted.


(a) The complex numbers u and v satisfy the equations

$$u + 2v = 2i$$
 and $iu + v = 3$.

Solve the equations for u and v, giving both answers in the form x + iy, where x and y are real. [5]

(b) On an Argand diagram, sketch the locus representing complex numbers z satisfying |z + i| = 1 and the locus representing complex numbers w satisfying $\arg(w - 2) = \frac{3}{4}\pi$. Find the least value of |z - w| for points on these loci. [5]



The diagram shows three points A, B and C whose position vectors with respect to the origin O are given by $\overrightarrow{OA} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$, $\overrightarrow{OB} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$ and $\overrightarrow{OC} = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}$. The point D lies on BC, between B and C, and is such that CD = 2DB.

- (i) Find the equation of the plane ABC, giving your answer in the form ax + by + cz = d. [6]
- (ii) Find the position vector of D. [1]
- (iii) Show that the length of the perpendicular from A to OD is $\frac{1}{3}\sqrt{(65)}$. [4]

[Question 10 is printed on the next page.]

A tank containing water is in the form of a cone with vertex C. The axis is vertical and the semi-vertical angle is 60° , as shown in the diagram. At time t = 0, the tank is full and the depth of water is H. At this instant, a tap at C is opened and water begins to flow out. The volume of water in the tank decreases at a rate proportional to \sqrt{h} , where h is the depth of water at time t. The tank becomes empty when t = 60.

(i) Show that h and t satisfy a differential equation of the form

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -Ah^{-\frac{3}{2}},$$

where A is a positive constant.

(ii) Solve the differential equation given in part (i) and obtain an expression for *t* in terms of *h* and *H*.

[4]

(iii) Find the time at which the depth reaches $\frac{1}{2}H$. [1]

[The volume V of a cone of vertical height h and base radius r is given by $V = \frac{1}{3}\pi r^2 h$.]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2013 9709/31/O/N/13

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3 (P3)

October/November 2013

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

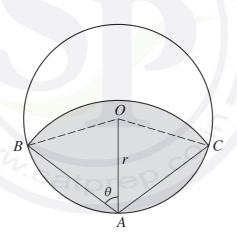
The total number of marks for this paper is 75.

1 The equation of a curve is $y = \frac{1+x}{1+2x}$ for $x > -\frac{1}{2}$. Show that the gradient of the curve is always negative. [3]

2 Solve the equation
$$2|3^x - 1| = 3^x$$
, giving your answers correct to 3 significant figures. [4]

3 Find the exact value of
$$\int_{1}^{4} \frac{\ln x}{\sqrt{x}} dx$$
. [5]

4 The parametric equations of a curve are


$$x = e^{-t} \cos t$$
, $y = e^{-t} \sin t$.

Show that
$$\frac{dy}{dx} = \tan\left(t - \frac{1}{4}\pi\right)$$
. [6]

5 (i) Prove that
$$\cot \theta + \tan \theta = 2 \csc 2\theta$$
. [3]

(ii) Hence show that
$$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} \csc 2\theta \, d\theta = \frac{1}{2} \ln 3.$$
 [4]

6

In the diagram, A is a point on the circumference of a circle with centre O and radius r. A circular arc with centre A meets the circumference at B and C. The angle OAB is θ radians. The shaded region is bounded by the circumference of the circle and the arc with centre A joining B and C. The area of the shaded region is equal to half the area of the circle.

(i) Show that
$$\cos 2\theta = \frac{2\sin 2\theta - \pi}{4\theta}$$
. [5]

(ii) Use the iterative formula

$$\theta_{n+1} = \frac{1}{2}\cos^{-1}\left(\frac{2\sin 2\theta_n - \pi}{4\theta_n}\right),\,$$

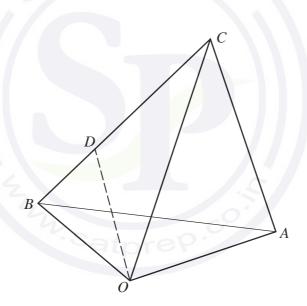
with initial value $\theta_1 = 1$, to determine θ correct to 2 decimal places, showing the result of each iteration to 4 decimal places. [3]

© UCLES 2013 9709/32/O/N/13

7 Let
$$f(x) = \frac{2x^2 - 7x - 1}{(x - 2)(x^2 + 3)}$$
.

- (i) Express f(x) in partial fractions. [5]
- (ii) Hence obtain the expansion of f(x) in ascending powers of x, up to and including the term in x^2 .

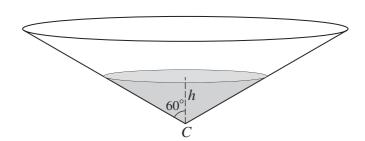
8 Throughout this question the use of a calculator is not permitted.


(a) The complex numbers u and v satisfy the equations

$$u + 2v = 2i$$
 and $iu + v = 3$.

Solve the equations for u and v, giving both answers in the form x + iy, where x and y are real. [5]

(b) On an Argand diagram, sketch the locus representing complex numbers z satisfying |z + i| = 1 and the locus representing complex numbers w satisfying $\arg(w - 2) = \frac{3}{4}\pi$. Find the least value of |z - w| for points on these loci. [5]



The diagram shows three points A, B and C whose position vectors with respect to the origin O are given by $\overrightarrow{OA} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$, $\overrightarrow{OB} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$ and $\overrightarrow{OC} = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}$. The point D lies on BC, between B and C, and is such that CD = 2DB.

- (i) Find the equation of the plane ABC, giving your answer in the form ax + by + cz = d. [6]
- (ii) Find the position vector of *D*. [1]
- (iii) Show that the length of the perpendicular from A to OD is $\frac{1}{3}\sqrt{(65)}$. [4]

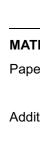
[Question 10 is printed on the next page.]

A tank containing water is in the form of a cone with vertex C. The axis is vertical and the semivertical angle is 60° , as shown in the diagram. At time t = 0, the tank is full and the depth of water is H. At this instant, a tap at C is opened and water begins to flow out. The volume of water in the tank decreases at a rate proportional to \sqrt{h} , where h is the depth of water at time t. The tank becomes empty when t = 60.

(i) Show that h and t satisfy a differential equation of the form

$$\frac{\mathrm{d}h}{\mathrm{d}t} = -Ah^{-\frac{3}{2}},$$

where A is a positive constant.


[4]

- (ii) Solve the differential equation given in part (i) and obtain an expression for t in terms of h and H.
- (iii) Find the time at which the depth reaches $\frac{1}{2}H$. [1]

[The volume V of a cone of vertical height h and base radius r is given by $V = \frac{1}{3}\pi r^2 h$.]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3 (P3)

October/November 2013

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

1 Given that $2\ln(x+4) - \ln x = \ln(x+a)$, express x in terms of a. [4]

2 Use the substitution
$$u = 3x + 1$$
 to find $\int \frac{3x}{3x + 1} dx$. [4]

3 The polynomial f(x) is defined by

$$f(x) = x^3 + ax^2 - ax + 14$$

where a is a constant. It is given that (x + 2) is a factor of f(x).

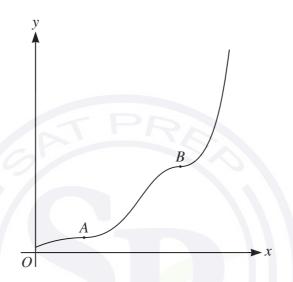
- (i) Find the value of a. [2]
- (ii) Show that, when a has this value, the equation f(x) = 0 has only one real root. [3]
- 4 A curve has equation $3e^{2x}y + e^{x}y^{3} = 14$. Find the gradient of the curve at the point (0, 2). [5]
- 5 It is given that $\int_0^p 4xe^{-\frac{1}{2}x} dx = 9$, where p is a positive constant.

(i) Show that
$$p = 2 \ln \left(\frac{8p + 16}{7} \right)$$
. [5]

- (ii) Use an iterative process based on the equation in part (i) to find the value of *p* correct to 3 significant figures. Use a starting value of 3.5 and give the result of each iteration to 5 significant figures.
- 6 Two planes have equations 3x y + 2z = 9 and x + y 4z = -1.
 - (i) Find the acute angle between the planes. [3]
 - (ii) Find a vector equation of the line of intersection of the planes. [6]
- 7 (i) Given that $\sec \theta + 2 \csc \theta = 3 \csc 2\theta$, show that $2 \sin \theta + 4 \cos \theta = 3$. [3]
 - (ii) Express $2 \sin \theta + 4 \cos \theta$ in the form $R \sin(\theta + \alpha)$ where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the value of α correct to 2 decimal places. [3]
 - (iii) Hence solve the equation $\sec \theta + 2 \csc \theta = 3 \csc 2\theta$ for $0^{\circ} < \theta < 360^{\circ}$. [4]
- 8 (i) Express $\frac{7x^2+8}{(1+x)^2(2-3x)}$ in partial fractions. [5]
 - (ii) Hence expand $\frac{7x^2 + 8}{(1+x)^2(2-3x)}$ in ascending powers of x up to and including the term in x^2 , simplifying the coefficients. [5]

© UCLES 2013 9709/33/O/N/13

9 (a) Without using a calculator, use the formula for the solution of a quadratic equation to solve


$$(2-i)z^2 + 2z + 2 + i = 0.$$

Give your answers in the form a + bi.

[5]

(b) The complex number w is defined by $w = 2e^{\frac{1}{4}\pi i}$. In an Argand diagram, the points A, B and C represent the complex numbers w, w^3 and w^* respectively (where w^* denotes the complex conjugate of w). Draw the Argand diagram showing the points A, B and C, and calculate the area of triangle ABC.

10

A particular solution of the differential equation

$$3y^2 \frac{dy}{dx} = 4(y^3 + 1)\cos^2 x$$

is such that y = 2 when x = 0. The diagram shows a sketch of the graph of this solution for $0 \le x \le 2\pi$; the graph has stationary points at A and B. Find the y-coordinates of A and B, giving each coordinate correct to 1 decimal place. [10]

© UCLES 2013 9709/33/O/N/13

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3 (P3)

May/June 2013

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

- 1 Find the quotient and remainder when $2x^2$ is divided by x + 2. [3]
- 2 Expand $\frac{1+3x}{\sqrt{(1+2x)}}$ in ascending powers of x up to and including the term in x^2 , simplifying the coefficients. [4]

3 Express
$$\frac{7x^2 - 3x + 2}{x(x^2 + 1)}$$
 in partial fractions. [5]

- 4 (i) Solve the equation |4x-1| = |x-3|. [3]
 - (ii) Hence solve the equation $|4^{y+1} 1| = |4^y 3|$ correct to 3 significant figures. [3]
- 5 For each of the following curves, find the gradient at the point where the curve crosses the y-axis:

(i)
$$y = \frac{1+x^2}{1+e^{2x}}$$
; [3]

(ii)
$$2x^3 + 5xy + y^3 = 8$$
. [4]

6 The points P and Q have position vectors, relative to the origin O, given by

$$\overrightarrow{OP} = 7\mathbf{i} + 7\mathbf{j} - 5\mathbf{k}$$
 and $\overrightarrow{OQ} = -5\mathbf{i} + \mathbf{j} + \mathbf{k}$.

The mid-point of PQ is the point A. The plane Π is perpendicular to the line PQ and passes through A.

- (i) Find the equation of Π , giving your answer in the form ax + by + cz = d. [4]
- (ii) The straight line through P parallel to the x-axis meets Π at the point B. Find the distance AB, correct to 3 significant figures. [5]
- 7 (a) Without using a calculator, solve the equation

$$3w + 2iw^* = 17 + 8i$$

where w^* denotes the complex conjugate of w. Give your answer in the form a + bi. [4]

(b) In an Argand diagram, the loci

$$arg(z-2i) = \frac{1}{6}\pi$$
 and $|z-3| = |z-3i|$

intersect at the point P. Express the complex number represented by P in the form $re^{i\theta}$, giving the exact value of θ and the value of r correct to 3 significant figures. [5]

8 (a) Show that
$$\int_{2}^{4} 4x \ln x \, dx = 56 \ln 2 - 12$$
. [5]

(b) Use the substitution
$$u = \sin 4x$$
 to find the exact value of $\int_0^{\frac{1}{24}\pi} \cos^3 4x \, dx$. [5]

© UCLES 2013 9709/31/M/J/13

- 9 (i) Express $4\cos\theta + 3\sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. Give the value of α correct to 4 decimal places. [3]
 - (ii) Hence

(a) solve the equation
$$4\cos\theta + 3\sin\theta = 2$$
 for $0 < \theta < 2\pi$, [4]

(b) find
$$\int \frac{50}{(4\cos\theta + 3\sin\theta)^2} d\theta.$$
 [3]

- Liquid is flowing into a small tank which has a leak. Initially the tank is empty and, t minutes later, the volume of liquid in the tank is $V \, \text{cm}^3$. The liquid is flowing into the tank at a constant rate of $80 \, \text{cm}^3$ per minute. Because of the leak, liquid is being lost from the tank at a rate which, at any instant, is equal to $kV \, \text{cm}^3$ per minute where k is a positive constant.
 - (i) Write down a differential equation describing this situation and solve it to show that

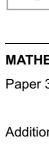
$$V = \frac{1}{k}(80 - 80e^{-kt}).$$
[7]

(ii) It is observed that V = 500 when t = 15, so that k satisfies the equation

$$k = \frac{4 - 4e^{-15k}}{25}.$$

Use an iterative formula, based on this equation, to find the value of k correct to 2 significant figures. Use an initial value of k = 0.1 and show the result of each iteration to 4 significant figures. [3]

(iii) Determine how much liquid there is in the tank 20 minutes after the liquid started flowing, and state what happens to the volume of liquid in the tank after a long time. [2]


© UCLES 2013 9709/31/M/J/13

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3 (P3)

May/June 2013

1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

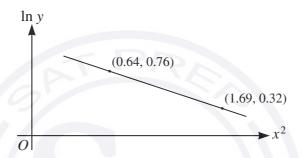
At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

1 Solve the equation $|x-2| = \left|\frac{1}{3}x\right|$.

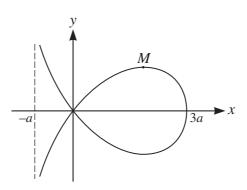
[3]


2 The sequence of values given by the iterative formula

$$x_{n+1} = \frac{x_n(x_n^3 + 100)}{2(x_n^3 + 25)},$$

with initial value $x_1 = 3.5$, converges to α .

- (i) Use this formula to calculate α correct to 4 decimal places, showing the result of each iteration to 6 decimal places.
- (ii) State an equation satisfied by α and hence find the exact value of α . [2]


3

The variables x and y satisfy the equation $y = Ae^{-kx^2}$, where A and k are constants. The graph of $\ln y$ against x^2 is a straight line passing through the points (0.64, 0.76) and (1.69, 0.32), as shown in the diagram. Find the values of A and k correct to 2 decimal places. [5]

- 4 The polynomial $ax^3 20x^2 + x + 3$, where a is a constant, is denoted by p(x). It is given that (3x + 1) is a factor of p(x).
 - (i) Find the value of a. [3]
 - (ii) When a has this value, factorise p(x) completely. [3]

5

The diagram shows the curve with equation

$$x^3 + xy^2 + ay^2 - 3ax^2 = 0,$$

where a is a positive constant. The maximum point on the curve is M. Find the x-coordinate of M in terms of a.

© UCLES 2013 9709/32/M/J/13

- 6 (i) By differentiating $\frac{1}{\cos x}$, show that the derivative of $\sec x$ is $\sec x \tan x$. Hence show that if $y = \ln(\sec x + \tan x)$ then $\frac{dy}{dx} = \sec x$. [4]
 - (ii) Using the substitution $x = (\sqrt{3}) \tan \theta$, find the exact value of

$$\int_1^3 \frac{1}{\sqrt{(3+x^2)}} \, \mathrm{d}x,$$

expressing your answer as a single logarithm.

- 7 (i) By first expanding $\cos(x + 45^\circ)$, express $\cos(x + 45^\circ) (\sqrt{2}) \sin x$ in the form $R \cos(x + \alpha)$, where R > 0 and $0^\circ < \alpha < 90^\circ$. Give the value of R correct to 4 significant figures and the value of α correct to 2 decimal places. [5]
 - (ii) Hence solve the equation

$$\cos(x+45^\circ) - (\sqrt{2})\sin x = 2$$

for
$$0^{\circ} < x < 360^{\circ}$$
.

[4]

- 8 (i) Express $\frac{1}{x^2(2x+1)}$ in the form $\frac{A}{x^2} + \frac{B}{x} + \frac{C}{2x+1}$. [4]
 - (ii) The variables x and y satisfy the differential equation

$$y = x^2 (2x+1) \frac{\mathrm{d}y}{\mathrm{d}x},$$

and y = 1 when x = 1. Solve the differential equation and find the exact value of y when x = 2. Give your value of y in a form not involving logarithms. [7]

- 9 (a) The complex number w is such that Re w > 0 and $w + 3w^* = iw^2$, where w^* denotes the complex conjugate of w. Find w, giving your answer in the form x + iy, where x and y are real. [5]
 - (b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z which satisfy both the inequalities $|z 2i| \le 2$ and $0 \le \arg(z + 2) \le \frac{1}{4}\pi$. Calculate the greatest value of |z| for points in this region, giving your answer correct to 2 decimal places. [6]
- 10 The points A and B have position vectors $2\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$ and $5\mathbf{i} 2\mathbf{j} + \mathbf{k}$ respectively. The plane p has equation x + y = 5.
 - (i) Find the position vector of the point of intersection of the line through A and B and the plane p.
 - (ii) A second plane q has an equation of the form x + by + cz = d, where b, c and d are constants. The plane q contains the line AB, and the acute angle between the planes p and q is 60° . Find the equation of q.

© UCLES 2013 9709/32/M/J/13

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3 (P3)

May/June 2013
1 hour 45 minutes

Additional Materials: Answer Booklet/Paper

Graph Paper

List of Formulae (MF9)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

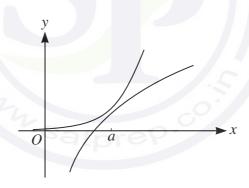
The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.


1 Solve the inequality |4x + 3| > |x|.

- [4]
- It is given that $\ln(y+1) \ln y = 1 + 3 \ln x$. Express y in terms of x, in a form not involving logarithms.
- 3 Solve the equation $\tan 2x = 5 \cot x$, for $0^{\circ} < x < 180^{\circ}$. [5]
- **4** (i) Express $(\sqrt{3})\cos x + \sin x$ in the form $R\cos(x \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$, giving the exact values of R and α .
 - (ii) Hence show that

$$\int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} \frac{1}{\left((\sqrt{3})\cos x + \sin x\right)^2} \, \mathrm{d}x = \frac{1}{4}\sqrt{3}.$$
 [4]

- 5 The polynomial $8x^3 + ax^2 + bx + 3$, where a and b are constants, is denoted by p(x). It is given that (2x + 1) is a factor of p(x) and that when p(x) is divided by (2x 1) the remainder is 1.
 - (i) Find the values of a and b. [5]
 - (ii) When a and b have these values, find the remainder when p(x) is divided by $2x^2 1$. [3]

6

The diagram shows the curves $y = e^{2x-3}$ and $y = 2 \ln x$. When x = a the tangents to the curves are parallel.

- (i) Show that a satisfies the equation $a = \frac{1}{2}(3 \ln a)$. [3]
- (ii) Verify by calculation that this equation has a root between 1 and 2. [2]
- (iii) Use the iterative formula $a_{n+1} = \frac{1}{2}(3 \ln a_n)$ to calculate *a* correct to 2 decimal places, showing the result of each iteration to 4 decimal places. [3]

© UCLES 2013 9709/33/M/J/13

7 The complex number z is defined by z = a + ib, where a and b are real. The complex conjugate of z is denoted by z^* .

(i) Show that
$$|z|^2 = zz^*$$
 and that $(z - ki)^* = z^* + ki$, where k is real. [2]

In an Argand diagram a set of points representing complex numbers z is defined by the equation |z - 10i| = 2|z - 4i|.

(ii) Show, by squaring both sides, that

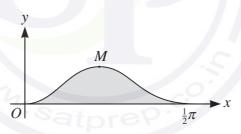
$$zz^* - 2iz^* + 2iz - 12 = 0.$$

Hence show that |z - 2i| = 4.

[5]

[1]

8 The variables x and t satisfy the differential equation


(iii) Describe the set of points geometrically.

$$t\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{k - x^3}{2x^2},$$

for t > 0, where k is a constant. When t = 1, x = 1 and when t = 4, x = 2.

- (i) Solve the differential equation, finding the value of k and obtaining an expression for x in terms of t.
- (ii) State what happens to the value of x as t becomes large. [1]

9

The diagram shows the curve $y = \sin^2 2x \cos x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

- (i) Find the *x*-coordinate of *M*. [6]
- (ii) Using the substitution $u = \sin x$, find by integration the area of the shaded region bounded by the curve and the *x*-axis. [4]
- 10 The line *l* has equation $\mathbf{r} = \mathbf{i} + \mathbf{j} + \mathbf{k} + \lambda(a\mathbf{i} + 2\mathbf{j} + \mathbf{k})$, where *a* is a constant. The plane *p* has equation x + 2y + 2z = 6. Find the value or values of *a* in each of the following cases.
 - (i) The line l is parallel to the plane p. [2]
 - (ii) The line l intersects the line passing through the points with position vectors $3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\mathbf{i} + \mathbf{j} \mathbf{k}$.
 - (iii) The acute angle between the line l and the plane p is $tan^{-1} 2$. [5]

© UCLES 2013 9709/33/M/J/13

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.