Markscheme

November 2020

Mathematics

Higher level

Paper 2

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse suivante : https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

R Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to $\mathrm{RM}^{\mathrm{TM}}$ Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award MO followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, Tl-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

Section A

1. attempt to find AÔB by right-angled trigonometry or the cosine rule

EITHER

AÔB $=2 \arcsin \left(\frac{5.5}{15}\right)$
OR
AÔB $=\arccos \left(\frac{15^{2}+15^{2}-11^{2}}{2 \times 15 \times 15}\right)$
THEN
$=0.750847 \ldots\left(=43.0204 \ldots{ }^{\circ}\right)$
Note: Award (M1)A1 for correct calculation of AÔB or $\frac{1}{2}$ AÔB
shaded area $=$ area of sector- area of triangle $\left(=\frac{1}{2} r^{2}(\theta-\sin \theta)\right)$
$=\frac{1}{2} \times 15^{2} \times(0.750847 \ldots-\sin 0.750847 \ldots)$
(A1)
$=7.72\left(\mathrm{~cm}^{2}\right)$
2. let X be the random variable "number of books Jenna reads per week."
then $X \sim \operatorname{Po}(2.6)$
$\mathrm{P}(X \geq 4)=0.264$ (0.263998 \ldots)
(M1)(A1)
$0.263998 \ldots \times 52$
$=13.7$
Note: Accept 14 weeks.
3. (a) the principal axis is $\frac{5+(-1)}{2}(=2)$

$$
\text { so } p=2
$$

A1
the amplitude is $\frac{5-(-1)}{2}(=3)$

$$
\text { so } q=3
$$

EITHER

one period is $2\left(-\frac{3 \pi}{4}-\left(-\frac{9 \pi}{4}\right)\right)$
$=3 \pi$
$\Rightarrow \frac{2 \pi}{r}=3 \pi$

OR

Substituting a point eg $-1=2+\sin \left(-\frac{3 \pi}{4} r\right)$
$\sin \left(-\frac{3 \pi}{4} r\right)=-1 \Rightarrow-\frac{3 \pi}{4} r=\ldots-\frac{5 \pi}{2},-\frac{\pi}{2}, \frac{3 \pi}{2}, \ldots$
Choice of correct solution $-\frac{3 \pi}{4} r=-\frac{\pi}{2}$

THEN

$\Rightarrow r=\frac{2}{3}$
$\left(\Rightarrow y=2+3 \sin \left(\frac{2 x}{3}\right)\right)$

Note: q and r can be both given as negatives for full marks
(b) roots are $x=-1.09459 \ldots, x=-3.617797 \ldots$

$$
\begin{aligned}
& \int_{-3.617997 \ldots(}^{-1.09459 \ldots}\left(2+3 \sin \left(\frac{2 x}{3}\right)\right) \mathrm{d} x \\
& =-1.66(=-1.66179 \ldots) \\
& \text { so area }=1.66 \text { (units²) }
\end{aligned}
$$

(M1)
(A1)

A1
[4 marks] Total [8 marks]
4. use of Binomial expansion to find a term in either $\left(\frac{1}{3 x^{2}}-\frac{x}{2}\right)^{9},\left(\frac{1}{3 x^{7 / 3}}-\frac{x^{2 / 3}}{2}\right)^{9}$, $\left(\frac{1}{3}-\frac{x^{3}}{2}\right)^{9},\left(\frac{1}{3 x^{3}}-\frac{1}{2}\right)^{9}$ or $\left(2-3 x^{3}\right)^{9}$
(M1)(A1)

Note: Award M1 for a product of three terms including a binomial coefficient and powers of the two terms, and $\boldsymbol{A 1}$ for a correct expression of a term in the expansion.
finding the powers required to be 2 and 7
(M1)(A1)
constant term is ${ }^{9} C_{2} \times\left(\frac{1}{3}\right)^{2} \times\left(-\frac{1}{2}\right)^{7}$

Note: Ignore all x 's in student's expression.
therefore term independent of x is $-\frac{1}{32}(=-0.03125)$
5. (a) (i) people's holidays are independent of each other R1
the proportion is constant (at 0.15)
R1
(ii) $\quad X \sim \mathrm{~B}(16,0.15)$
$\mathrm{P}(X \geq 3)=0.439$
(M1)A1
[4 marks]
(b) probability of at least one $=1$ - probability of none
$\Rightarrow 1-0.85^{n}>0.999$ OR $0.85^{n}<0.001$
attempt to solve inequality
$n \geq 42.503$...
so least possible $n=43$
6. $n=1:$ LHS $=\frac{\mathrm{d}\left(x \mathrm{e}^{p x}\right)}{\mathrm{d} x}=x p \mathrm{e}^{p x}+\mathrm{e}^{p x}=(p x+1) \mathrm{e}^{p x}$, RHS $=p^{0}(p x+1) \mathrm{e}^{p x}$

LHS $=$ RHS so true for $n=1$:
Note: Award A1 if $n=0$ is proved.
assume proposition true for $n=k$, i.e. $\frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}}\left(x \mathrm{e}^{p x}\right)=p^{k-1}(p x+k) \mathrm{e}^{p x}$
Notes: Do not award M1 if using n instead of k.
Assumption of truth must be present.
Subsequent marks are not dependent on this M1 mark.

$$
\begin{aligned}
& \frac{\mathrm{d}^{k+1}}{\mathrm{~d} x^{k+1}}\left(x \mathrm{e}^{p x}\right)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d}^{k}}{\mathrm{~d} x^{k}}\left(x \mathrm{e}^{p x}\right)\right) \\
& =\frac{\mathrm{d}}{\mathrm{~d} x}\left(p^{k-1}(p x+k) \mathrm{e}^{p x}\right) \\
& =p^{k-1}(p x+k) p \mathrm{e}^{p x}+\mathrm{e}^{p x}\left(p^{k}\right) \\
& =p^{k}(p x+k) \mathrm{e}^{p x}+\mathrm{e}^{p x}\left(p^{k}\right)
\end{aligned}
$$

Note: Award A1 for correct derivative.
$=p^{k}(p x+k+1) \mathrm{e}^{p x}$
$=p^{((k+1)-1)}(p x+(k+1)) \mathrm{e}^{p x}$
Note: The final A1 can be awarded for either of the two lines above.
hence true for $n=1$ and $n=k$ true $\Rightarrow n=k+1$ true
therefore true for all $n \in \mathbb{Z}^{+}$
Note: Only award the final $\boldsymbol{R 1}$ if the three method marks have been awarded.
7. (a) identifying two or three possible cases
total number of possible groups is $\binom{7}{5}+\binom{7}{4}\binom{5}{1}+\binom{7}{3}\binom{5}{2}$
(A1)(A1)

Note: Award $\boldsymbol{A 1}$ for any two correct cases, $\boldsymbol{A 1}$ for the other one.
$=21+(35 \times 5)+(35 \times 10)$
$=546$
A1
[4 marks]
(b) METHOD 1
identifying at least two of the three possible cases- Gary goes, Gerwyn goes or neither goes
total number of possible groups is $\binom{10}{5}+\binom{10}{4}+\binom{10}{4}$
$=252+210+210$
$=672$

METHOD 2

identifying the overall number of groups and no. of cases where both Gary and Gerwyn go.
total number of possible groups is $\binom{12}{5}-\binom{10}{3}$
$=792-120$
$=672$
8. (a) valid attempt to use chain rule or quotient rule

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-10 \mathrm{e}^{-0.5 x}}{\left(3-2 \mathrm{e}^{-0.5 x}\right)^{2}} \text { OR } \frac{\mathrm{d} y}{\mathrm{~d} x}=-10 \mathrm{e}^{-0.5 x}\left(3-2 \mathrm{e}^{-0.5 x}\right)^{-2} \tag{A1A1}
\end{equation*}
$$

Note: Award $\boldsymbol{A 1}$ for numerator and $\boldsymbol{A 1}$ for denominator, or $\boldsymbol{A 1}$ for each part if the second alternative given.
(b) valid attempt to use chain rule $\left(\mathrm{eg} \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}\right)$

$$
\begin{align*}
\frac{\mathrm{d} x}{\mathrm{~d} t}= & -0.1 \div \frac{-10 \mathrm{e}^{-2}}{\left(3-2 \mathrm{e}^{-2}\right)^{2}}(=-0.1 \div-0.181676 \ldots) \text { or equivalent } \tag{A1}\\
& =0.550428 \ldots \\
\frac{\mathrm{~d} x}{\mathrm{~d} t}= & 0.550\left(\mathrm{~ms}^{-1}\right)
\end{align*}
$$

Section B

9. (a) $X \sim \mathrm{~N}\left(102,8^{2}\right)$
$\mathrm{P}(X<100)=0.401$
(M1)A1
[2 marks]
(b) $\mathrm{P}(X>w)=0.444$
(M1)
$\Rightarrow w=103(\mathrm{~g})$
(c) $\mathrm{P}(X>110 \mid X>105)=\frac{\mathrm{P}(X>110 \cap X>105)}{\mathrm{P}(X>105)}$
$=\frac{\mathrm{P}(X>110)}{\mathrm{P}(X>105)}$
(A1)
$=\frac{0.15865 \ldots}{0.35383 \ldots}$
$=0.448$
(d) EITHER
$\mathrm{P}(90<X<114)=0.866 \ldots$
OR
$\mathrm{P}(-1.5<Z<1.5)=0.866 \ldots$

THEN

$0.866 \ldots \times 500$
(M1)
$=433$
(e) $\quad p=\mathrm{P}(X<95)=0.19078 \ldots$
recognising $Y \sim \mathrm{~B}(80, p)$
now using $Y \sim \mathrm{~B}(80,0.19078 \ldots)$
$\mathrm{P}(Y \geq 20)=0.116$ A1
10. (a) $3(1-3 \lambda)-(2-\lambda)+(-2+4 \lambda)=-13$
$\lambda=3$
(A1)
$\boldsymbol{r}=\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right)+3\left(\begin{array}{c}-3 \\ -1 \\ 4\end{array}\right)=\left(\begin{array}{c}-8 \\ -1 \\ 10\end{array}\right)$
so $\mathrm{P}(-8,-1,10)$
Note: Do not award the final A1 if a vector given instead of coordinates
(b) METHOD 1
$r=\mu\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)$
substituting into equation of the plane
M1
$9 \mu+\mu+\mu=-13$
$\mu=-\frac{13}{11}(=-1.18 \ldots)$
distance $=\frac{13 \sqrt{3^{2}+(-1)^{2}+1^{2}}}{11}$
$=\frac{13}{\sqrt{11}}\left(=\frac{13 \sqrt{11}}{11}=3.92\right)$

METHOD 2

choice of any point on the plane, eg $(-8,-1,10)$ to use in distance formula (M1)
so distance $=\frac{\left(\begin{array}{l}-8 \\ -1 \\ 10\end{array}\right) \cdot\left(\begin{array}{c}-3 \\ 1 \\ -1\end{array}\right)}{\sqrt{(-3)^{2}+1^{2}+(-1)^{2}}}$
Note: Award A1 for numerator, A1 for denominator.

$$
\begin{align*}
& =\frac{24-1-10}{\sqrt{11}} \\
& =\frac{13}{\sqrt{11}}\left(=\frac{13 \sqrt{11}}{11}=3.92\right) \tag{A1}
\end{align*}
$$

(c) EITHER

identify two vectors
eg, $\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right)$ and $\left(\begin{array}{c}-3 \\ -1 \\ 4\end{array}\right)$
$\boldsymbol{n}=\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right) \times\left(\begin{array}{c}-3 \\ -1 \\ 4\end{array}\right)=\left(\begin{array}{l}6 \\ 2 \\ 5\end{array}\right)$

OR

identify three points in the plane
eg $\lambda=0,1$ gives $\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right)$ and $\left(\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right)$
solving system of equations

THEN

$$
\Pi_{2}:\left(\begin{array}{l}
6 \\
2 \\
5
\end{array}\right)=0
$$

Note: Accept $6 x+2 y+5 z=0$.
(d) vector normal to Π_{1} is eg $\boldsymbol{n}_{\boldsymbol{I}}=\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)$
vector normal to Π_{2} is eg $\boldsymbol{n}_{2}=\left(\begin{array}{l}6 \\ 2 \\ 5\end{array}\right)$
required angle is θ, where $\cos \theta=\frac{\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}6 \\ 2 \\ 5\end{array}\right)}{\sqrt{11} \sqrt{65}}$

$$
\cos \theta=\frac{21}{\sqrt{11} \sqrt{65}}=0.785 \ldots
$$

$$
\theta=0.667526 \ldots
$$

$$
\theta=0.668\left(=38.2^{\circ}\right)
$$

Note: Award the penultimate (A1) but not the final A1 for the obtuse angle 2.47406... or 142°.
11. (a) $\frac{\pi}{6}(=0.524)$

$$
\frac{\pi}{3}(=1.05)
$$

(b) attempt to use integration by parts
$s=\int \mathrm{e}^{-3 t} \sin 6 t \mathrm{~d} t$
EITHER

$$
\begin{aligned}
& =-\frac{\mathrm{e}^{-3 t} \sin 6 t}{3}-\int-2 \mathrm{e}^{-3 t} \cos 6 t \mathrm{~d} t \\
& =-\frac{\mathrm{e}^{-3 t} \sin 6 t}{3}-\left(\frac{2 \mathrm{e}^{-3 t} \cos 6 t}{3}-\int-4 \mathrm{e}^{-3 t} \sin 6 t \mathrm{~d} t\right) \\
& =-\frac{\mathrm{e}^{-3 t} \sin 6 t}{3}-\left(\frac{2 \mathrm{e}^{-3 t} \cos 6 t}{3}+4 s\right) \\
& 5 s=\frac{-3 \mathrm{e}^{-3 t} \sin 6 t-6 \mathrm{e}^{-3 t} \cos 6 t}{9}
\end{aligned}
$$

OR

$=-\frac{\mathrm{e}^{-3 t} \cos 6 t}{6}-\int \frac{1}{2} \mathrm{e}^{-3 t} \cos 6 t \mathrm{~d} t$
$=-\frac{\mathrm{e}^{-3 t} \cos 6 t}{6}-\left(\frac{\mathrm{e}^{-3 t} \sin 6 t}{12}+\frac{1}{4} s\right)$
$\frac{5}{4} s=\frac{-2 \mathrm{e}^{-3 t} \cos 6 t-\mathrm{e}^{-3 t} \sin 6 t}{12}$

THEN

$s=-\frac{\mathrm{e}^{-3 t}(\sin 6 t+2 \cos 6 t)}{15}(+c)$
at $t=0, s=0 \Rightarrow 0=-\frac{2}{15}+c$

$$
s=\frac{2}{15}-\frac{\mathrm{e}^{-3 t}(\sin 6 t+2 \cos 6 t)}{15}
$$

(c) EITHER
substituting $t=\frac{\pi}{6}$ into their equation for s
$\left(s=\frac{2}{15}-\frac{\mathrm{e}^{-\frac{\pi}{2}}(\sin \pi+2 \cos \pi)}{15}\right)$
OR
using GDC to find maximum value
OR
evaluating $\int_{0}^{\frac{\pi}{6}} v \mathrm{dt}$
THEN
$=0.161\left(=\frac{2}{15}\left(1+\mathrm{e}^{-\frac{\pi}{2}}\right)\right)$
(d) METHOD 1
distance required $=\int_{0}^{1.5}\left|\mathrm{e}^{-3 t} \sin 6 t\right| \mathrm{d} t$

OR

distance required $=\int_{0}^{\frac{\pi}{6}} \mathrm{e}^{-3 t} \sin 6 t \mathrm{~d} t+\left|\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \mathrm{e}^{-3 t} \sin 6 t \mathrm{~d} t\right|+\int_{\frac{\pi}{3}}^{1.5} \mathrm{e}^{-3 t} \sin 6 t \mathrm{~d} t$
($=0.16105 \ldots+0.033479 \ldots+0.006806 \ldots)$

THEN

$=0.201(\mathrm{~m})$

METHOD 2

using successive minimum and maximum values on the displacement graph (M1)
$0.16105 \ldots+(0.16105 \ldots-0.12757 \ldots)+(0.13453 \ldots-0.12757 \ldots)$
$=0.201(\mathrm{~m})$
(e) (i) valid attempt to find $\frac{\mathrm{d} v}{\mathrm{~d} t}$ using product rule and set $\frac{\mathrm{d} v}{\mathrm{~d} t}=0$

$$
\begin{aligned}
& \frac{\mathrm{d} v}{\mathrm{~d} t}=\mathrm{e}^{-3 t} 6 \cos 6 t-3 \mathrm{e}^{-3 t} \sin 6 t \\
& \frac{\mathrm{~d} v}{\mathrm{~d} t}=0 \Rightarrow \tan 6 t=2
\end{aligned}
$$

(ii) attempt to evaluate t_{1}, t_{2}, t_{3} in exact form
$6 t_{1}=\arctan 2\left(\Rightarrow t_{1}=\frac{1}{6} \arctan 2\right)$
$6 t_{2}=\pi+\arctan 2\left(\Rightarrow t_{2}=\frac{\pi}{6}+\frac{1}{6} \arctan 2\right)$
$6 t_{3}=2 \pi+\arctan 2\left(\Rightarrow t_{3}=\frac{\pi}{3}+\frac{1}{6} \arctan 2\right)$

Note: The $\boldsymbol{A 1}$ is for any two consecutive correct, or showing that $6 t_{2}=\pi+6 t_{1}$ or $6 t_{3}=\pi+6 t_{2}$.
showing that $\sin 6 t_{n+1}=-\sin 6 t_{n}$
eg $\tan 6 t=2 \Rightarrow \sin 6 t= \pm \frac{2}{\sqrt{5}}$
showing that $\frac{\mathrm{e}^{-3 t_{n+1}}}{\mathrm{e}^{-3 t_{n}}}=\mathrm{e}^{-\frac{\pi}{2}}$
eg $\mathrm{e}^{-3\left(\frac{\pi}{6}+k\right)} \div \mathrm{e}^{-3 k}=\mathrm{e}^{-\frac{\pi}{2}}$

Note: Award the A1 for any two consecutive terms.

$$
\frac{v_{3}}{v_{2}}=\frac{v_{2}}{v_{1}}=-\mathrm{e}^{-\frac{\pi}{2}}
$$

Markscheme

November 2019

Mathematics

Higher level

Paper 2

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http://www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/ contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award M0 followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$.65685... (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10
 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

Section A

1. $u_{1} r^{3}=-70, u_{1} r^{6}=8.75$
$r^{3}=\frac{8.75}{-70}=-0.125$
$\Rightarrow r=-0.5$
valid attempt to find u_{2}
for example: $u_{1}=\frac{-70}{-0.125}=560$
$u_{2}=560 \times-0.5$
$=-280$
A1
[5 marks]
2. (a) $X \sim \operatorname{Po}(1.3)$

$$
\mathrm{P}(X \geq 2)=0.373
$$

(M1)A1
[2 marks]
(b) $\quad V \sim \mathrm{~B}(5,0.373)$
(M1)A1

Note: Award (M1) for recognition of binomial or equivalent, A1 for correct parameters.

$$
\mathrm{P}(V=4)=0.0608
$$

(M1)A1
[4 marks]
Total [6 marks]
3. (a) $f(1)=0$
(A1)
$f(0)=-1$
A1
[2 marks]
(b) $\quad a=f(3)$
$\Rightarrow a=4$
(M1)
A1
[2 marks]
(c) domain is $-2 \leq x \leq 6$ range is $-6 \leq y \leq 10$A1
4. (a) each arc has length $r \theta=6 \times \frac{\pi}{3}=2 \pi(=6.283 \ldots)$
perimeter is therefore $6 \pi(=18.8)(\mathrm{cm})$
(b) area of sector, s, is $\frac{1}{2} r^{2} \theta=18 \times \frac{\pi}{3}=6 \pi(=18.84 \ldots)$
area of triangle, t, is $\frac{1}{2} \times 6 \times 3 \sqrt{3}=9 \sqrt{3}(=15.58 \ldots)$
(M1)(A1)

Note: area of segment, k, is $3.261 \ldots$ implies area of triangle

$$
\begin{aligned}
& \text { finding } 3 s-2 t \text { or } 3 k+t \text { or similar } \\
& \text { area }=3 s-2 t=18 \pi-18 \sqrt{3}(=25.4)\left(\mathrm{cm}^{2}\right)
\end{aligned}
$$

(M1)A1

Total [7 marks]

5. attempt to find coefficients in binomial expansion
coefficient of $x^{2}:\binom{n}{2} \times 2^{n-2} ;$ coefficient of $x^{3}:\binom{n}{3} \times 2^{n-3}$
Note: Condone terms given rather than coefficients.
Terms may be seen in an equation such as that below.
$\binom{n}{3} \times 2^{n-3}=4\binom{n}{2} \times 2^{n-2}$
attempt to solve equation using GDC or algebraically
$\binom{n}{3}=8\binom{n}{2}$
$\frac{n!}{3!(n-3)!}=\frac{8 n!}{2!(n-2)!}$
$\frac{1}{3}=\frac{8}{n-2}$
$n=26$

A1
[6 marks]

6. METHOD 1

one other root is $3-\mathrm{i}$
A1
let third root be α
considering sum or product of roots
sum of roots $=6+\alpha=\frac{37}{a}$
product of roots $=10 \alpha=\frac{10}{a}$
hence $a=6$

METHOD 2

one other root is $3-\mathrm{i}$
quadratic factor will be $z^{2}-6 z+10$
$P(z)=a z^{3}-37 z^{2}+66 z-10=\left(z^{2}-6 z+10\right)(a z-1)$
comparing coefficients
hence $a=6$

METHOD 3

substitute $3+\mathrm{i}$ into $P(z)$
$a(18+26 \mathrm{i})-37(8+6 \mathrm{i})+66(3+\mathrm{i})-10=0$
equating real or imaginary parts or dividing
$18 a-296+198-10=0$ or $26 a-222+66=0$ or $\frac{10-66(3+\mathrm{i})+37(8+6 \mathrm{i})}{18+26 \mathrm{i}}$
hence $a=6$
7. $\quad T \sim \mathrm{~N}\left(11.6,0.8^{2}\right)$
$\mathrm{P}(T<10.7 \mid T<11)$
$=\frac{\mathrm{P}(T<10.7 \cap T<11)}{\mathrm{P}(T<11)}$
$=\frac{\mathrm{P}(T<10.7)}{\mathrm{P}(T<11)}$

Note: Accept only 0.575 .
8. (a) METHOD 1
$10!-2 \times 9$! ($=2903040$)
(A1)(A1)A1
Note: Award $\boldsymbol{A 1}$ for 10 !, $\boldsymbol{A} 1$ for 2×9 !, $\boldsymbol{A} 1$ for final answer.

METHOD 2

$9 \times 8 \times 8$!
(A1)(A1)A1
Note: Award A1 for 9×8 or equivalent, $\boldsymbol{A 1}$ for 8 ! and $\boldsymbol{A 1}$ for answer.
[3 marks]
(b) METHOD 1
$8 \times 7 \times 8!(=2257920)$
(A1)A1
Note: Award (A1) for $8 \times 7, \boldsymbol{A 1}$ for final answer.

METHOD 2

10 ! -2×8 ! $-2 \times 2 \times 7 \times 8$!
Note: Award A1 for 10! minus EITHER subtracted terms and A1 for final correct answer.
(c) METHOD 1
$8 \times 7 \times(8!-2 \times 7!)(=1693440)$
(A1)(A1)A1
Note: Award (A1) for 8×7, (A1) for 2×7 !, A1 for final answer. (8!-2×7!) can be replaced by 6×7 ! or ${ }^{7} P_{2} \times 6$! which may be awarded the second $\boldsymbol{A 1}$.

METHOD 2

their answer to (a) -2×8 ! $-2 \times 2 \times 7 \times 8$!
(A1)(A1)A1
Note: Award A1 for subtracting each of the terms and $\boldsymbol{A 1}$ for final answer.

METHOD 3

their answer to (b) $-2 \times 7 \times 8$! or equivalent
Note: Award $\boldsymbol{A 1}$ for the subtraction and $\mathbf{A 2}$ for final answer.

Section B

9. (a) (i) $\mathrm{A}(7.47,2.28)$ and $\mathrm{B}(43.4,-2.45)$

A1A1A1A1
(ii) maximum speed is $2.45\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$

A1
[5 marks]
(b) (i) $v=0 \Rightarrow t_{1}=25.1(\mathrm{~s})$
(M1)A1
(ii) $\int_{0}^{t_{1}} v \mathrm{~d} t$
(M1)
$=41.0(\mathrm{~m})$ A1
(iii) $\quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}$ at $t=t_{1}=25.1$
(M1)

$$
a=-0.200\left(\mathrm{~m} \mathrm{~s}^{-2}\right)
$$

Note: Accept $a=-0.2$.
[6 marks]
(c) attempt to integrate between 0 and 30
(M1)

Note: An unsupported answer of 38.6 can imply integrating from 0 to 30 .

EITHER

$\int_{0}^{30}|v| \mathrm{d} t$

OR

$41.0-\int_{t_{1}}^{30} v \mathrm{~d} t$

THEN

$$
=43.3(\mathrm{~m})
$$

10. (a) $(\mathrm{P}(1<X<3)=) \int_{1}^{2} 3 a \mathrm{~d} x+a \int_{2}^{3}-x^{2}+6 x-5 \mathrm{~d} x$
(M1)(A1)(A1)

$$
\begin{aligned}
& =3 a+\frac{11}{3} a \\
& =\frac{20}{3} a(=6.67 a)
\end{aligned}
$$

A1
[4 marks]
(b)

award $\boldsymbol{A 1}$ for $(0,3 a), \boldsymbol{A} 1$ for continuity at $(2,3 a), \boldsymbol{A} 1$ for maximum at $(3,4 a), \boldsymbol{A 1}$ for $(5,0)$

Note: Award A3 if correct four points are not joined by a straight line and a quadratic curve.
(c) (i) $\mathrm{P}(0 \leq X \leq 5)=6 a+a \int_{2}^{5}-x^{2}+6 x-5 \mathrm{~d} x$
(M1)
$=15 a$
$15 a=1$
(M1)
$\Rightarrow a=\frac{1}{15}(=0.0667)$
$=2.35$
continued...

Question 10 continued
(iii) attempt to use $\int_{0}^{m} f(x) \mathrm{d} x=0.5$
(M1)
(M1)

A1

[11 marks]

Total [19 marks]

11. (a) (i) valid attempt to differentiate implicitly
$4 x=3 \sin ^{2} y \cos y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
A1A1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 x}{3 \sin ^{2} y \cos y}$
A1
(ii) at $\left(\frac{1}{4}, \frac{5 \pi}{6}\right), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 x}{3 \sin ^{2} y \cos y}=\frac{1}{3\left(\frac{1}{2}\right)^{2}\left(-\frac{\sqrt{3}}{2}\right)}$
$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{8}{3 \sqrt{3}}(=-1.54)$
A1
hence equation of tangent is

$$
y-\frac{5 \pi}{6}=-1.54\left(x-\frac{1}{4}\right) \text { OR } y=-1.54 x+3.00
$$

(M1)A1
Note: Accept $y=-1.54 x+3$.
(b) $x=\sqrt{\frac{1}{2} \sin ^{3} y}$
(M1)

A1
[3 marks]

Question 11 continued
(c) use of volume $=\int \pi x^{2} \mathrm{~d} y$

$$
\begin{aligned}
& =\int_{0}^{\pi} \frac{1}{2} \pi \sin ^{3} y \mathrm{~d} y \\
& =\frac{1}{2} \pi \int_{0}^{\pi}\left(\sin y-\sin y \cos ^{2} y\right) \mathrm{d} y
\end{aligned}
$$

Note: Condone absence of limits up to this point.

$$
\begin{aligned}
& \text { reasonable attempt to integrate } \\
& =\frac{1}{2} \pi\left[-\cos y+\frac{1}{3} \cos ^{3} y\right]_{0}^{\pi}
\end{aligned}
$$

Note: Award A1 for correct limits (not to be awarded if previous M1 has not been awarded) and $\mathbf{A 1}$ for correct integrand.

$$
\begin{aligned}
& =\frac{1}{2} \pi\left(1-\frac{1}{3}\right)-\frac{1}{2} \pi\left(-1+\frac{1}{3}\right) \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

Note: Do not accept decimal answer equivalent to $\frac{2 \pi}{3}$.

Markscheme

May 2019

Mathematics

Higher level

Paper 2

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http:// www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros - lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp A0 by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by RM ${ }^{\text {TM }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4
 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5
 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10
 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, Tl-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

Section A

1. METHOD 1

equation of tangent is $y=22.167 \ldots x-14.778 \ldots$ OR $y-7.389 \ldots=22.167 \ldots(x-1)$
(M1)(A1)
meets the x-axis when $y=0$
$x=0.667$
meets x-axis at $(0.667,0)\left(=\left(\frac{2}{3}, 0\right)\right)$
A1A1

Note: Award A1 for $x=\frac{2}{3}$ or $x=0.667$ seen and $\boldsymbol{A 1}$ for coordinates $(x, 0)$ given.

METHOD 2

Attempt to differentiate
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}$
when $x=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 \mathrm{e}^{2}$
equation of the tangent is $y-\mathrm{e}^{2}=3 \mathrm{e}^{2}(x-1)$
$y=3 \mathrm{e}^{2} x-2 \mathrm{e}^{2}$
meets x-axis at $x=\frac{2}{3}$
$\left(\frac{2}{3}, 0\right)$
A1A1

Note: Award $\boldsymbol{A 1}$ for $x=\frac{2}{3}$ or $x=0.667$ seen and $\boldsymbol{A 1}$ for coordinates $(x, 0)$ given.
2. (a) $z=2 \mathrm{e}^{\frac{\pi}{4} \mathrm{i}}\left(=2 \mathrm{e}^{0.785 \mathrm{i}}\right)$

Note: Accept all answers in the form $2 \mathrm{e}^{\left(\frac{\pi}{4}+2 \pi n\right) \mathrm{i}}$.

$$
z=2 \mathrm{e}^{\frac{5 \pi}{4} \mathrm{i}}\left(=2 \mathrm{e}^{3.93 \mathrm{i}}\right) \mathbf{O R} z=2 \mathrm{e}^{-\frac{3 \pi}{4} \mathrm{i}}\left(=2 \mathrm{e}^{-2.36 \mathrm{i}}\right)
$$

(M1)A1
Note: Accept all answers in the form $2 \mathrm{e}^{\left(-\frac{3 \pi}{4}+2 \pi n\right) \mathrm{i}}$.
Note: Award M1AO for correct answers in the incorrect form, eg $-2 \mathrm{e}^{\frac{\pi_{\mathrm{i}}}{}}$.

Question 2 continued
(b) $\quad z=1.41+1.41 \mathrm{i}, z=-1.41-1.41 \mathrm{i}$

A1A1
[2 marks]
Total [5 marks]
3. (a) (i) 6.75 A1
(ii) 2.22 A1
[2 marks]
(b) (i) 8.75

A1
(ii) 2.22

A1
[2 marks]
(c) the order is $3,4,6,7,7,8,9,10$ median is currently 7

A1
Note: This can be indicated by a diagram/list, rather than actually stated.
with 9 numbers the middle value (median) will be the $5^{\text {th }}$ value
R1
which will correspond to 7 regardless of whether the position of the median moves up or down

R1
Note: Accept answers using data 5, 6, 8, 9, 9, 10, 11, 12 (ie from part (b)).
4. (a) $f(x) \geq 3$
(b) $\quad x=\sec y+2$
(M1)
Note: Exchange of variables can take place at any point.
$\cos y=\frac{1}{x-2}$
$f^{-1}(x)=\arccos \left(\frac{1}{x-2}\right), x \geq 3$
A1A1

Note: Allow follow through from (a) for last $\boldsymbol{A 1}$ mark which is independent of earlier marks in (b).

5. METHOD 1

write as $\int 1 \times(\ln x)^{2} \mathrm{~d} x$
$=x(\ln x)^{2}-\int x \times \frac{2(\ln x)}{x} \mathrm{~d} x\left(=x(\ln x)^{2}-\int 2 \ln x\right)$
M1A1
$=x(\ln x)^{2}-2 x \ln x+\int 2 \mathrm{~d} x$
(M1)(A1)
$=x(\ln x)^{2}-2 x \ln x+2 x+c$

METHOD 2

let $u=\ln x$
$\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{x}$
$\int u^{2} e^{u} d u$
$=u^{2} \mathrm{e}^{u}-\int 2 u \mathrm{e}^{u} \mathrm{~d} u$ M1
$=u^{2} \mathrm{e}^{u}-2 u \mathrm{e}^{u}+\int 2 \mathrm{e}^{u} \mathrm{~d} u$
$=u^{2} \mathrm{e}^{u}-2 u \mathrm{e}^{u}+2 \mathrm{e}^{u}+c$
$=x(\ln x)^{2}-2 x \ln x+2 x+c$

METHOD 3

Setting up $u=\ln x$ and $\frac{\mathrm{d} v}{\mathrm{~d} x}=\ln x$
$\ln x(x \ln x-x)-\int(\ln x-1) \mathrm{d} x$
$=x(\ln x)^{2}-x \ln x-(x \ln x-x)+x+c$
$=x(\ln x)^{2}-2 x \ln x+2 x+c$

A1
Total [6 marks]
6. (a)

Note: Award $\boldsymbol{A 1}$ for z in first quadrant and $z-2 a$ its reflection in the y-axis.

Question 6 continued
(b) (i) $\pi-\theta$ (or any equivalent)
(ii) $\quad \arg \left(\frac{z}{z-2 a}\right)=\arg (z)-\arg (z-2 a)$
$=2 \theta-\pi$ (or any equivalent)
(c) METHOD 1
if $\operatorname{Re}\left(\frac{z}{z-2 a}\right)=0$ then $2 \theta-\pi=\frac{n \pi}{2}$, $(n$ odd $)$
$-\pi<2 \theta-\pi<0 \Rightarrow n=-1$
$2 \theta-\pi=-\frac{\pi}{2}$
$\theta=\frac{\pi}{4}$

METHOD 2

$$
\begin{aligned}
& \frac{a+b \mathrm{i}}{-a+b \mathrm{i}}=\frac{b^{2}-a^{2}-2 a b \mathrm{i}}{a^{2}+b^{2}} \\
& \operatorname{Re}\left(\frac{z}{z-2 a}\right)=0 \Rightarrow b^{2}-a^{2}=0
\end{aligned}
$$

$b=a$
$\theta=\frac{\pi}{4}$
Note: Accept any equivalent, eg $\theta=-\frac{7 \pi}{4}$.
7. volume $=\pi \int_{0}^{9}\left(y^{\frac{1}{2}}+1\right)^{2} \mathrm{~d} y-\pi \int_{1}^{9}(y-1) \mathrm{d} y$
(M1)(M1)(M1)(A1)(A1)

Note: Award (M1) for use of formula for rotating about y-axis, (M1) for finding at least one inverse, (M1) for subtracting volumes, (A1)(A1)for each correct expression, including limits.

$$
=268.6 \ldots-100.5 \ldots(85.5 \pi-32 \pi)
$$

$$
=168(=53.5 \pi)
$$

8. (a) $x<-0.414, x>2.41$

A1A1

$$
(x<1-\sqrt{2}, x>1+\sqrt{2})
$$

Note: Award A1 for $-0.414,2.41$ and $\boldsymbol{A 1}$ for correct inequalities.
(b) check for $n=3$,
$16>9$ so true when $n=3$
assume true for $n=k$
$2^{k+1}>k^{2}$
Note: Award MO for statements such as "let $n=k$ ".
Note: Subsequent marks after this $\boldsymbol{M 1}$ are independent of this mark and can be awarded.
prove true for $n=k+1$

$$
\begin{array}{rlr}
2^{k+2}= & 2 \times 2^{k+1} \\
& >2 k^{2} \\
& =k^{2}+k^{2} & \text { M1 } \\
& >k^{2}+2 k+1 \text { (from part (a)) } & \text { (M1) } \\
& \text { which is true for } k \geq 3 & \boldsymbol{A} 1 \\
\mathbf{R 1}
\end{array}
$$

Note: Only award the A1 or the R1 if it is clear why. Alternate methods are possible.

$$
=(k+1)^{2}
$$

hence if true for $n=k$ true for $n=k+1$, true for $n=3$ so true for all $n \geq 3$
Note: Only award the final $\boldsymbol{R 1}$ provided at least three of the previous marks are awarded.

Section B

9. (a) (i) use of formula or Venn diagram
$0.72+0.45-1$
$=0.17$
(ii) $0.72-0.17=0.55$
(b) (i) $200 \times 0.45=90$
(ii) let X be the number of customers who order cake $X \sim \mathrm{~B}(200,0.45)$
$\mathrm{P}(X>100)=\mathrm{P}(X \geq 101)(=1-\mathrm{P}(X \leq 100))$
$=0.0681$
(c) (i) $0.46 \times 0.8=0.368$
(ii) METHOD 1
$0.368+0.54 \times \mathrm{P}(S \mid F)=0.72$
M1A1A1
Note: Award $\boldsymbol{M} 1$ for an appropriate tree diagram. Award $\boldsymbol{A} 1$ for LHS, $\boldsymbol{A 1}$ for RHS.
$\mathrm{P}(S \mid F)=0.652$
A1
METHOD 2
$\mathrm{P}(S \mid F)=\frac{\mathrm{P}(S \cap F)}{\mathrm{P}(F)}$
(M1)
$=\frac{0.72-0.368}{0.54}$
A1A1
Note: Award $\mathbf{A 1}$ for numerator, $\boldsymbol{A 1}$ for denominator.
$\mathrm{P}(S \mid F)=0.652$

A1
[5 marks]
10. (a) $3,-3$

A1A1
[2 marks]
(b) stretch parallel to the y-axis (with x-axis invariant), scale factor $\frac{2}{3}$ translation of $\binom{-0.003}{0}$ (shift to the left by 0.003)
(c)

correct shape over correct domain with correct endpoints
A1
first maximum at $(0.0035,4.76)$
A1
first minimum at $(0.0085,-1.24)$
(d) $\quad p \geq 3$ between $t=0.0016762$ and 0.0053238 and $t=0.011676$ and 0.015324
(M1)(A1)
Note: Award M1A1 for either interval.

$$
=0.00730
$$

(e) $\quad p_{a v}=\frac{1}{0.007} \int_{0}^{0.007} 6 \sin (100 \pi t) \sin (100 \pi(t+0.003)) \mathrm{d} t$ $=2.87$
(M1)
A1
[2 marks]

Question 10 continued
(f) in each cycle the area under the t axis is smaller than area above the t axis $\boldsymbol{R} 1$ the curve begins with the positive part of the cycle
(g) $a=\frac{4.76-(-1.24)}{2}$
$a=3.00$
$d=\frac{4.76+(-1.24)}{2}$
$d=1.76$
(M1)
A1
$b=\frac{2 \pi}{0.01}$
$b=628(=200 \pi)$
A1
$c=0.0035-\frac{0.01}{4}$
$c=0.00100$
11. (a) recognition of the other root $=-d \mathrm{i}$
$\log _{2} a+\log _{2} b+\log _{2} c+d \mathrm{i}-d \mathrm{i}=3$
M1A1
Note: Award $\boldsymbol{M} 1$ for sum of the roots, $\boldsymbol{A 1}$ for 3 . Award $\mathbf{A O M 1 A O}$ for just $\log _{2} a+\log _{2} b+\log _{2} c=3$.
$\log _{2} a b c=3$
(M1)
$\Rightarrow a b c=2^{3}$
A1
$a b c=8$

AG

Question 11 continued
(b) METHOD 1
let the geometric series be $u_{1}, u_{1} r, u_{1} r^{2}$
$\left(u_{1} r\right)^{3}=8 \quad$ M1
$u_{1} r=2 \quad$ A1
hence one of the roots is $\log _{2} 2=1 \quad \boldsymbol{R 1}$
METHOD 2
$\frac{b}{a}=\frac{c}{b}$
$b^{2}=a c \Rightarrow b^{3}=a b c=8 \quad$ M1
$b=2 \quad$ A1
hence one of the roots is $\log _{2} 2=1 \quad \boldsymbol{R 1}$
(c) METHOD 1
product of the roots is $r_{1} \times r_{2} \times 1 \times d \mathrm{i} \times-d \mathrm{i}=-8 d^{2}$
$r_{1} \times r_{2}=-8$
sum of the roots is $r_{1}+r_{2}+1+d \mathrm{i}+-d \mathrm{i}=3$

$$
r_{1}+r_{2}=2
$$

solving simultaneously

$$
r_{1}=-2, r_{2}=4
$$

METHOD 2

product of the roots $\log _{2} a \times \log _{2} b \times \log _{2} c \times d \mathrm{i} \times-d \mathrm{i}=-8 d^{2}$
M1A1
$\log _{2} a \times \log _{2} b \times \log _{2} c=-8$

EITHER

a, b, c can be written as $\frac{2}{r}, 2,2 r$
$\left(\log _{2} \frac{2}{r}\right)\left(\log _{2} 2\right)\left(\log _{2} 2 r\right)=-8$
attempt to solve
$\left(1-\log _{2} r\right)\left(1+\log _{2} r\right)=-8$
$\log _{2} r= \pm 3$
$r=\frac{1}{8}, 8$

A1A1

Question 11 continued

OR

a, b, c can be written as $a, 2, \frac{4}{a}$
$\left(\log _{2} a\right)\left(\log _{2} 2\right)\left(\log _{2} \frac{4}{a}\right)=-8$
$\begin{array}{lr}\text { attempt to solve } \\ a=\frac{1}{4}, 16 & \text { M1 } \\ \text { A1A1 }\end{array}$

THEN

a, and c are $\frac{1}{4}, 16$
roots are $-2,4$

Markscheme

May 2019

Mathematics

Higher level

Paper 2

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http:// www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros - lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp A0 by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by RM ${ }^{\text {TM }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10
 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, Tl-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

Section A

1. attempt to apply cosine rule
$\cos \mathrm{A}=\frac{5^{2}+11^{2}-14^{2}}{2 \times 5 \times 11}=-0.4545 \ldots$
$\Rightarrow \mathrm{A}=117.03569 \ldots$.
$\Rightarrow \mathrm{A}=117.0^{\circ}$
attempt to apply sine rule or cosine rule:
$\frac{\sin 117.03569 \ldots{ }^{\circ}}{14}=\frac{\sin B}{11}$
$\Rightarrow B=44.4153$...
$\Rightarrow \mathrm{B}=44.4^{\circ}$
$\mathrm{C}=180^{\circ}-\mathrm{A}-\mathrm{B}$
$\mathrm{C}=18.5^{\circ}$
Note: Candidates may attempt to find angles in any order of their choosing.
[5 marks]
2. (a) $X \sim \mathrm{~N}\left(820,230^{2}\right)$
(M1)
Note: Award $\boldsymbol{M 1}$ for an attempt to use normal distribution. Accept labelled normal graph.

$$
\begin{equation*}
\Rightarrow \mathrm{P}(X>1000)=0.217 \tag{A1}
\end{equation*}
$$

(b) $\quad Y \sim \mathrm{~B}(24,0.217 \ldots)$
(M1)
Note: Award M1 for recognition of binomial distribution with parameters.

$$
\begin{equation*}
\mathrm{P}(Y \leq 10)-\mathrm{P}(Y \leq 4) \tag{M1}
\end{equation*}
$$

Note: Award $\boldsymbol{M} \mathbf{1}$ for an attempt to find $\mathrm{P}(5 \leq Y \leq 10)$ or $\mathrm{P}(Y \leq 10)-\mathrm{P}(Y \leq 4)$.
$=0.613$
3. (a)

A1A1A1
Note: Award A1 for each correct column of probabilities.
(b) probability (at least twice) $=$

EITHER

$$
\begin{equation*}
(0.6 \times 0.7 \times 0.8)+(0.6 \times 0.7 \times 0.2)+(0.6 \times 0.3 \times 0.6)+(0.4 \times 0.6 \times 0.7) \tag{M1}
\end{equation*}
$$

OR

$$
(0.6 \times 0.7)+(0.6 \times 0.3 \times 0.6)+(0.4 \times 0.6 \times 0.7)
$$

(M1)
Note: Award $\boldsymbol{M 1}$ for summing all required probabilities.
THEN
$=0.696$
A1
[2 marks]
(c) P (passes third paper given only one paper passed before)
$=\frac{P(\text { passes third AND only one paper passed before })}{P(\text { passes once in first two papers })}$
$=\frac{(0.6 \times 0.3 \times 0.6)+(0.4 \times 0.6 \times 0.7)}{(0.6 \times 0.3)+(0.4 \times 0.6)}$
$=0.657$
(M1)

A1

A1
[3 marks]

Total [8 marks]

4. (a)

Note: Award A1 for each correct curve, showing all local max \& mins.
Note: Award AOAO for the curves drawn in degrees.
(b) $x=1.35,4.35,6.64$

Note: Award $\boldsymbol{M 1}$ for attempt to find points of intersections between two curves.

$$
0<x<1.35
$$

Note: Accept $x<1.35$.
$4.35<x<6.64$
Note: Award A1 for correct endpoints, A1 for correct inequalities.
Note: Award M1FTA1FTA0FTA0FT for $0<x<7.31$.
Note: Accept $x<7.31$.
5. (a) METHOD 1

$$
\begin{array}{ll}
\text { LHS }=\frac{1+\sin 2 x}{\cos 2 x}=\frac{1+2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x} & \text { M1 } \\
=\frac{\left(\cos ^{2} x+\sin ^{2} x\right)+2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x} & \text { M1 } \\
=\frac{(\cos x+\sin x)^{2}}{(\cos x+\sin x)(\cos x-\sin x)} & \text { A1 } \\
=\frac{\cos x+\sin x}{\cos x-\sin x} & \\
=\frac{\cos x}{\cos x}+\frac{\sin x}{\cos x} & \\
\frac{\cos x}{\cos x}-\frac{\sin x}{\cos x} & \mathbf{A G} \\
=\frac{1+\tan x}{1-\tan x} &
\end{array}
$$

METHOD 2

LHS $=\frac{1+\sin 2 x}{\cos 2 x}=\frac{1+2 \sin x \cos x}{\cos ^{2} x-\sin ^{2} x}$
dividing numerator and denominator by $\cos ^{2} x$

$$
=\frac{\sec ^{2} x+2 \tan x}{1-\tan ^{2} x}
$$

$$
=\frac{1+\tan ^{2} x+2 \tan x}{1-\tan ^{2} x}
$$

$=\frac{(\tan x+1)^{2}}{(1-\tan x)(1+\tan x)}$
$=\frac{1+\tan x}{1-\tan x}$
(b) valid attempt to solve $\frac{1+\tan x}{1-\tan x}=\sqrt{3}$

$$
\begin{aligned}
& \tan x=\frac{\sqrt{3}-1}{\sqrt{3}+1} \\
& x=0.262\left(=\frac{\pi}{12}\right), x=3.40\left(=\frac{13 \pi}{12}\right)
\end{aligned}
$$

Note: Award M1A0 if only one correct solution is given.
6. attempt to integrate a to find v
$v=\int a \mathrm{~d} t=\int(2 t-1) \mathrm{d} t$
$=t^{2}-t+c$
$s=\int v \mathrm{~d} t=\int\left(t^{2}-t+c\right) \mathrm{d} t$
$=\frac{t^{3}}{3}-\frac{t^{2}}{2}+c t+d$
attempt at substitution of given values
at $t=6,18.25=72-18+6 c+d$
at $t=15,922.75=1125-112.5+15 c+d$
solve simultaneously:
$c=-6 ; d=0.25$
$\Rightarrow s=\frac{t^{3}}{3}-\frac{t^{2}}{2}-6 t+\frac{1}{4}$
7. $n=1 \Rightarrow S_{1}=u_{1}$, so true for $n=1$
assume true for $n=k$, ie. $S_{k}=\frac{u_{1}\left(1-r^{k}\right)}{1-r}$
Note: Award $\mathbf{M O}$ for statements such as "let $n=k$ ".
Note: Subsequent marks after the first $\boldsymbol{M 1}$ are independent of this mark and can be awarded.

$$
\begin{array}{ll}
S_{k+1}=S_{k}+u_{1} r^{k} & \text { M1 } \\
S_{k+1}=\frac{u_{1}\left(1-r^{k}\right)}{1-r}+u_{1} r^{k} & \boldsymbol{A 1} \\
S_{k+1}=\frac{u_{1}\left(1-r^{k}\right)}{1-r}+\frac{u_{1} r^{k}(1-r)}{1-r} & \boldsymbol{A 1} \\
S_{k+1}=\frac{u_{1}-u_{1} r^{k}+u_{1} r^{k}-r u_{1} r^{k}}{1-r} & \boldsymbol{A 1} \\
S_{k+1}=\frac{u_{1}\left(1-r^{k+1}\right)}{1-r} & \boldsymbol{R 1}
\end{array}
$$

Note: Award the final R1 mark provided at least four of the previous marks are gained.
8. (a) METHOD 1
$w^{3}=8 \mathrm{i}$
writing $8 \mathrm{i}=8\left(\cos \left(\frac{\pi}{2}+2 \pi k\right)+\mathrm{i} \sin \left(\frac{\pi}{2}+2 \pi k\right)\right)$
Note: Award $\boldsymbol{M 1}$ for an attempt to find cube roots of w using modulus-argument form.
cube roots $w=2\left(\cos \left(\frac{\frac{\pi}{2}+2 \pi k}{3}\right)+\mathrm{i} \sin \left(\frac{\frac{\pi}{2}+2 \pi k}{3}\right)\right)$
ie. $w=\sqrt{3}+\mathrm{i},-\sqrt{3}+\mathrm{i},-2 \mathrm{i}$
Note: Award A2 for all 3 correct, A1 for 2 correct.
Note: Accept $w=1.73+\mathrm{i}$ and $w=-1.73+\mathrm{i}$.

METHOD 2

$$
\begin{aligned}
& w^{3}+(2 \mathrm{i})^{3}=0 \\
& (w+2 \mathrm{i})\left(w^{2}-2 w \mathrm{i}-4\right)=0 \\
& w=\frac{2 \mathrm{i} \pm \sqrt{12}}{2} \\
& w=\sqrt{3}+\mathrm{i},-\sqrt{3}+\mathrm{i},-2 \mathrm{i}
\end{aligned}
$$

M1
(b) $\quad w_{1}=-2 \mathrm{i}$

$$
\begin{aligned}
& \frac{z}{z-\mathrm{i}}=-2 \mathrm{i} \\
& z=-2 \mathrm{i}(z-\mathrm{i}) \\
& z(1+2 \mathrm{i})=-2 \\
& z=\frac{-2}{1+2 \mathrm{i}} \\
& z=-\frac{2}{5}+\frac{4}{5} \mathrm{i}
\end{aligned}
$$

M1

Note: Accept $a=-\frac{2}{5}, b=\frac{4}{5}$.

Section B

9. (a) METHOD 1
attempt to find roots or factors
roots are $-3,1,(4+i),(4-i)$
Note: Award $\boldsymbol{A 1}$ for each pair of roots or factors, real and complex.

$$
\begin{aligned}
& \text { attempt to form quadratic } \\
& \begin{array}{l}
(z-1)(z+3)=z^{2}+2 z-3 \\
(z-(4+\mathrm{i}))(z-(4-\mathrm{i})) \\
=z^{2}-(4-\mathrm{i}) z-(4+\mathrm{i}) z+17 \\
=z^{2}-8 z+17 \\
z^{4}-6 z^{3}-2 z^{2}+58 z-51=\left(z^{2}-8 z+17\right)\left(z^{2}+2 z-3\right)
\end{array}
\end{aligned}
$$

METHOD 2

attempt to find roots or factors
(M1)
real roots are $-3,1$ (or real factors $(z+3),(z-1)$)
attempt to form quadratic
$(z-1)(z+3)=z^{2}+2 z-3$
$z^{4}-6 z^{3}-2 z^{2}+58 z-51=\left[z^{2}+2 z-3\right]\left[z^{2}+k z+17\right]$
equate coefficients of z^{2}
M1
$-2=2 k-3+17$
A1
solve to give $k=-8$
A1

$$
z^{4}-6 z^{3}-2 z^{2}+58 z-51=\left(z^{2}-8 z+17\right)\left(z^{2}+2 z-3\right)
$$

Question 9 continued
(b)

shape
x-axis intercepts at $(-3,0),(1,0)$ and y-axis intercept at $(0,-51)$
minimum points at $(-1.62,-118)$ and $(3.72,19.7)$
maximum point at $(2.40,26.9)$
Note: Coordinates may be seen on the graph or elsewhere.
Note: Accept $-3,1$ and -51 marked on the axes.
(c) from graph, $19.7 \leq k \leq 26.9$

A1A1
[2 marks]
Total [15 marks]
10. (a) $X \sim \operatorname{Po}(2.1)$
$\mathrm{P}(X=0)=0.122\left(=\mathrm{e}^{-2.1}\right)$
(M1)A1
[2 marks]
continued...

Question 10 continued

(b)

y	0	1	2	3	4
$\mathrm{P}(Y=y)$	$0.122 \ldots$	$0.257 \ldots$	$0.270 \ldots$	$0.189 \ldots$	$0.161 \ldots$
	$\left(=\mathrm{e}^{-2.1}\right)$	$\left(=\mathrm{e}^{-2.1} 2.1\right)$	$\left(=\frac{\mathrm{e}^{-2.1} 2.1^{2}}{2!}\right)$	$\left(=\frac{\mathrm{e}^{-2.1} 2.1^{3}}{3!}\right)$	

A1A1A1A1
Note: Award A1 for each correct probability for $Y=1,2,3,4$. Accept 0.162 for $\mathrm{P}(Y=4)$.
(c) $\mathrm{E}(Y)=\sum y \mathrm{P}(Y=y)$
$=1 \times 0.257 \ldots+2 \times 0.270 \ldots+3 \times 0.189 \ldots+4 \times 0.161 \ldots$
$=2.01$
(d) let T be the no of days per year that Steffi does not visit
$T \sim \mathrm{~B}(365,0.122 \ldots)$
require $0.45 \leq \mathrm{P}(T \leq n)<0.55$
$\mathrm{P}(T \leq 44)=0.51$
$n=44$

A1
[3 marks]

(e) METHOD 1

let V be the discrete random variable "number of times Steffi is not fed per day"
$\mathrm{E}(V)=1 \times \mathrm{P}(X=5)+2 \times \mathrm{P}(X=6)+3 \times \mathrm{P}(X=7)+\cdots$
M1
$=1 \times 0.0416 \ldots+2 \times 0.0145 \ldots+3 \times 0.00437 \ldots+\cdots$
A1
$=0.083979 \ldots \quad \boldsymbol{A 1}$
expected no of occasions per year > 0.083979 $\ldots \times 365=30.7$
A1
hence Steffi can expect not to be fed on at least 30 occasions
AG
Note: Candidates may consider summing more than three terms in their calculation for $\mathrm{E}(V)$.
[4 marks]

METHOD 2

```
E}(X)-\textrm{E}(Y)=0.0903\ldots.
M1A1
\(0.0903 \ldots \times 365\)
\(=33.0>30\)
11. (a) METHOD 1
for example
\(\overrightarrow{\mathrm{PQ}}=\left(\begin{array}{c}-1 \\ -5 \\ 8\end{array}\right), \overrightarrow{\mathrm{PR}}=\left(\begin{array}{c}1 \\ -6 \\ 3\end{array}\right)\)
A1A1
(M1)A1
\(\overrightarrow{\mathrm{PQ}} \times \overrightarrow{\mathrm{PR}}=33 \boldsymbol{i}+11 \boldsymbol{j}+11 \boldsymbol{k}\)
\(r . n=a n\)
\(33 x+11 y+11 z=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}33 \\ 11 \\ 11\end{array}\right)=22\)
(M1)

\section*{METHOD 2}
assume plane can be written as \(a x+b y+c z=1\)
substituting each set of coordinates gives the system of equations:
\(a+6 b-7 c=1\)
\(0 a+b+c=1\)
\(2 a+0 b-4 c=1\)
solving by GDC
\(\Rightarrow \frac{3}{2} x+\frac{1}{2} y+\frac{1}{2} z=1\) or equivalent
[6 marks]
(b) METHOD 1
substitution of equation of line into both equations of planes
\(3\left(\frac{5}{4}+\frac{\lambda}{2}\right)+\lambda+\left(-\frac{7}{4}-\frac{5 \lambda}{2}\right)=2\)
\(\left(\frac{5}{4}+\frac{\lambda}{2}\right)-3 \lambda-\left(-\frac{7}{4}-\frac{5 \lambda}{2}\right)=3\)
A1

\section*{Question 11 continued}

\section*{METHOD 2}
adding \(\Pi_{l}\) and \(\Pi_{2}\) gives \(4 x-2 y=5\)
M1
given \(y=\lambda \Rightarrow x=\frac{5}{4}+\frac{\lambda}{2}\)
\(z=2-y-3 x=-\frac{7}{4}-\frac{5 \lambda}{2}\)
\(\Rightarrow \boldsymbol{r}=\left(\begin{array}{c}\frac{5}{4} \\ 0 \\ -\frac{7}{4}\end{array}\right)+\lambda\left(\begin{array}{c}\frac{1}{2} \\ 1 \\ -\frac{5}{2}\end{array}\right)\)

\section*{METHOD 3}
\[
\boldsymbol{n}_{1} \times \boldsymbol{n}_{2}=\left(\begin{array}{c}
2 \\
4 \\
-10
\end{array}\right)
\]
A1
R1
common point \(\frac{5}{4}-3(0)-\left(-\frac{7}{4}\right)=3\) and \(-3\left(\frac{5}{4}\right)-0-\left(-\frac{7}{4}\right)=-2\)
(c) normal to \(\Pi_{3}\) is perpendicular to direction of \(L\)
\[
\begin{aligned}
& \Rightarrow\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
2 \\
-5
\end{array}\right)=0 \\
& \Rightarrow a+2 b-5 c=0
\end{aligned}
\]
continued...

Question 11 continued
(d) (i) substituting \(\left(\begin{array}{c}\frac{5}{4} \\ 0 \\ -\frac{7}{4}\end{array}\right)\) into \(\Pi_{3}\) :
\(\frac{5 a}{4}-\frac{7 c}{4}=1\)
A1
\(5 a-7 c=4\)
(ii) attempt to find scalar products for \(\Pi_{1}\) and \(\Pi_{3}, \Pi_{2}\) and \(\Pi_{3}\)
and equating
\(\frac{3 a+b+c}{\sqrt{11} \sqrt{a^{2}+b^{2}+c^{2}}}=\frac{a-3 b-c}{\sqrt{11} \sqrt{a^{2}+b^{2}+c^{2}}}\)
Note: Accept \(3 a+b+c=a-3 b-c\).
\(\Rightarrow a+2 b+c=0\)
attempt to solve \(a+2 b+c=0, a+2 b-5 c=0,5 a-7 c=4\)
\(\Rightarrow a=\frac{4}{5}, b=-\frac{2}{5}, c=0\)
hence equation is \(\frac{4 x}{5}-\frac{2 y}{5}=1\)
for second equation:
\(\frac{3 a+b+c}{\sqrt{11} \sqrt{a^{2}+b^{2}+c^{2}}}=-\frac{a-3 b-c}{\sqrt{11} \sqrt{a^{2}+b^{2}+c^{2}}}\)
\(\Rightarrow 2 a-b=0\)
attempt to solve \(2 a-b=0, a+2 b-5 c=0,5 a-7 c=4\)
\(\Rightarrow a=-2, b=-4, c=-2\)
hence equation is \(-2 x-4 y-2 z=1\)

\title{
Markscheme
}

\section*{November 2018}

\section*{Mathematics}

\section*{Higher level}

\section*{Paper 2}

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\(\boldsymbol{A} \quad\) Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
\(\boldsymbol{N} \quad\) Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{General}

Mark according to \(\mathrm{RM}^{\text {TM }}\) Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2018". It is essential that you read this document before you start marking. In particular, please note the following.
- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A 0}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by \(\mathrm{RM}^{\text {TM }}\) Assessor.

\section*{2 Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M} \mathbf{0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct \(\boldsymbol{F T}\) working shown, award \(\boldsymbol{F T}\) marks as appropriate but do not award the final \(\boldsymbol{A 1}\) in that part.

\section*{Examples}
\begin{tabular}{|l|l|l|l|}
\hline & Correct answer seen & Further working seen & Action \\
\hline 1. & \(8 \sqrt{2}\) & \begin{tabular}{l}
\(5.65685 \ldots\) \\
(incorrect decimal value)
\end{tabular} & \begin{tabular}{l} 
Award the final \(\boldsymbol{A 1}\) \\
(ignore the further working)
\end{tabular} \\
\hline 2. & \(\frac{1}{4} \sin 4 x\) & \(\sin x\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline 3. & \(\log a-\log b\) & \(\log (a-b)\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline
\end{tabular}

\section*{\(N\) marks}

Award \(\mathbf{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{6 \\ Misread}

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{\(7 \quad\) Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{8 Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
\]

Award \(\boldsymbol{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 \\ Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, Tl-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section \(B\) on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

\section*{Section A}
1. (a) \(u_{4}=u_{1} r^{3} \Rightarrow-2.916=4 r^{3}\)
\[
\begin{equation*}
\text { solving, } r=-0.9 \tag{A1}
\end{equation*}
\]
(M1)A1
(b) \(\quad S_{\infty}=\frac{4}{1-(-0.9)}\)
\(=\frac{40}{19}(=2.11)\)
(M1)

A1

Total [5 marks]
2. \(f^{\prime}(x)=\int\left(15 \sqrt{x}+\frac{1}{(x+1)^{2}}\right) \mathrm{d} x=10 x^{\frac{3}{2}}-\frac{1}{x+1}(+c)\)
(M1)A1A1
Note: A1 for first term, \(\boldsymbol{A 1}\) for second term. Withhold one \(\boldsymbol{A 1}\) if extra terms are seen.
\(f(x)=\int\left(10 x^{\frac{3}{2}}-\frac{1}{x+1}+c\right) \mathrm{d} x=4 x^{\frac{5}{2}}-\ln (x+1)+c x+d\)
A1

Note: Allow FT from incorrect \(f^{\prime}(x)\) if it is of the form \(f^{\prime}(x)=A x^{\frac{3}{2}}+\frac{B}{x+1}+c\).
Accept \(\ln |x+1|\).
attempt to use at least one boundary condition in their \(f(x)\)
\(x=0, y=-4\)
\(\Rightarrow d=-4\)
\(x=1, y=0\)
\(\Rightarrow 0=4-\ln 2+c-4\)
\(\Rightarrow c=\ln 2(=0.693)\)
\(f(x)=4 x^{\frac{5}{2}}-\ln (x+1)+x \ln 2-4\)
3. (a) use of inverse normal (implied by \(\pm 0.1509 \ldots\) or \(\pm 1.554 \ldots\) )
\[
\mathrm{P}(X<16)=0.56
\]
\[
\begin{equation*}
\Rightarrow \frac{16-\mu}{\sigma}=0.1509 \ldots \tag{A1}
\end{equation*}
\]
\(\mathrm{P}(X<17)=0.94\)
\(\Rightarrow \frac{17-\mu}{\sigma}=1.554 \ldots\)
attempt to solve a pair of simultaneous equations
\(\mu=15.9, \sigma=0.712\)
(b) correctly shaded diagram or intent to find \(\mathrm{P}(X \geq 15)\)
(M1)
\(=0.895\)
A1
Note: Accept answers rounding to 0.89 or 0.90 . Award M1A0 for the answer 0.9 .

\section*{4. METHOD 1}
\[
\left(x+\frac{3}{x^{2}}\right)^{5}=\ldots+\binom{5}{2} x^{2}\left(\frac{3}{x^{2}}\right)^{3}+\ldots
\]
(M1)(A1)(A1)

Note: Award \(\boldsymbol{M 1}\) for a product of a binomial coefficient, a power of \(x\), and a power of \(\frac{3}{x^{2}}\), A1 for correct binomial coefficient, A1 for correct powers.
\(=\ldots+10 \times \frac{27}{x^{4}}+\ldots\left(=\ldots+\frac{270}{x^{4}}+\ldots\right)\)
constant term is \(x^{4}\left(\frac{270}{x^{4}}\right)\)
\(=270\)

Question 4 continued

\section*{METHOD 2}

\section*{EITHER}
the general term is \(x^{4}\binom{5}{r} x^{r}\left(\frac{3}{x^{2}}\right)^{5-r}\)
(M1)(A1)

Note: Award \(\boldsymbol{M 1}\) for a product of a binomial coefficient, power(s) of \(x\), and a power of \(\frac{3}{x^{2}}\).
\[
=\binom{5}{r} \times 3^{5-r} \times \frac{x^{r+4}}{x^{10-2 r}}\left(=\binom{5}{r} \times 3^{5-r} x^{3 r-6}\right)
\]
constant term occurs when \(r=2\)
OR
the general term is \(x^{4}\binom{5}{5-r} x^{5-r}\left(\frac{3}{x^{2}}\right)^{r}\)
Note: Award \(\boldsymbol{M} \mathbf{1}\) for a product of a binomial coefficient, power(s) of \(x\), and a power of \(\frac{3}{x^{2}}\).
\(=\binom{5}{5-r} \times 3^{r} \times \frac{x^{9-r}}{x^{2 r}}\left(=\binom{5}{5-r} \times 3^{r} x^{9-3 r}\right)\)
constant term occurs when \(r=3\)
(A1)
continued...

Question 4 continued

\section*{THEN}
\(\binom{5}{2}(3)^{3}\)
5. METHOD 1
\(\frac{f(x+h)-f(x)}{h}\)
\(=\frac{\left(3(x+h)^{3}-(x+h)\right)-\left(3 x^{3}-x\right)}{h}\)
\(=\frac{3\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-x-h-3 x^{3}+x}{h}\)
\(=\frac{9 x^{2} h+9 x h^{2}+3 h^{3}-h}{h}\)
cancelling \(h\)
\(=9 x^{2}+9 x h+3 h^{2}-1\)
then \(\lim _{h \rightarrow 0}\left(9 x^{2}+9 x h+3 h^{2}-1\right)\)
\(=9 x^{2}-1\)
Note: Final \(A 1\) dependent on all previous marks.

\section*{METHOD 2}
\(\frac{f(x+h)-f(x)}{h}\)
\(=\frac{\left(3(x+h)^{3}-(x+h)\right)-\left(3 x^{3}-x\right)}{h}\)
\(=\frac{3\left((x+h)^{3}-x^{3}\right)+(x-(x+h))}{h}\)
\(=\frac{3 h\left((x+h)^{2}+x(x+h)+x^{2}\right)-h}{h}\)
cancelling \(h\)
\(=3\left((x+h)^{2}+x(x+h)+x^{2}\right)-1\)
then \(\lim _{h \rightarrow 0}\left(3\left((x+h)^{2}+x(x+h)+x^{2}\right)-1\right)\)
\(=9 x^{2}-1\)
Note: Final \(\boldsymbol{A 1}\) dependent on all previous marks.
6. (a) attempt to substitute \(x=5\) and set equal to zero, or use of long / synthetic division
\(2 \times 5^{4}-15 \times 5^{3}+a \times 5^{2}+5 b+c=0\)
\((\Rightarrow 25 a+5 b+c=625)\)
(b) 0

A1
[1 mark]
(c) EITHER
attempt to solve \(P^{\prime}(5)=0\)
\(\Rightarrow 8 \times 5^{3}-45 \times 5^{2}+4 \times 5+b=0\)
OR
\(\left(x^{2}-10 x+25\right)\left(2 x^{2}+\alpha x+\beta\right)=2 x^{4}-15 x^{3}+2 x^{2}+b x+c\)
(M1)
comparing coefficients gives \(\alpha=5, \beta=2\)

\section*{THEN}
\(b=105\)
\(\therefore c=625-25 \times 2-525\)
\(c=50\)

A1
[3 marks]
7.

use of cosine rule
\(\mathrm{CAB}=\arccos \left(\frac{49+100-25}{2 \times 7 \times 10}\right)=0.48276 \ldots\left(=27.660 \ldots{ }^{\circ}\right)\)
\(\mathrm{CBA}=\arccos \left(\frac{25+100-49}{2 \times 5 \times 10}\right)=0.70748 \ldots\left(=40.535 \ldots{ }^{\circ}\right)\)
attempt to subtract triangle area from sector area
area \(=\frac{1}{2} \times 49(2 \mathrm{CAB}-\sin 2 \mathrm{CAB})+\frac{1}{2} \times 25(2 \mathrm{CBA}-\sin 2 \mathrm{CBA})\)
\(=3.5079 \ldots+5.3385 \ldots\)
Note: Award this A1 for either of these two values.
\[
=8.85\left(\mathrm{~km}^{2}\right)
\]

Note: Accept all answers that round to 8.8 or 8.9.
8. (a)


either graph passing through (or touching) A
A1
correct shape and vertical asymptote with correct equation for either graph
correct horizontal asymptote with correct equation for either graph
A1
two completely correct sketches
A1
[4 marks]
(b) \(a\left(-\frac{1}{2}\right)+1=0 \Rightarrow a=2\)

A1
from horizontal asymptote, \(\left(\frac{a}{b}\right)^{2}=\frac{4}{9}\)
\(\frac{a}{b}= \pm \frac{2}{3} \Rightarrow b= \pm 3\)
from vertical asymptote, \(b\left(\frac{4}{3}\right)+c=0\)
\(b=3, c=-4\) or \(b=-3, c=4\)

\section*{Section B}
9. (a) METHOD 1
\[
f^{\prime}(x)=\frac{\frac{2(x-3)}{x}-(2 \ln x+1)}{(x-3)^{2}}\left(=\frac{2(x-3)-x(2 \ln x+1)}{x(x-3)^{2}}\right)
\]

\section*{(M1)A1A1A1}

Note: Award M1 for attempt at quotient rule, A1A1 for numerator and A1 for denominator.

\section*{METHOD 2}
\[
\begin{aligned}
& f(x)=(2 \ln x+1)(x-3)^{-1} \\
& f^{\prime}(x)=\left(\frac{2}{x}\right)(x-3)^{-1}-(2 \ln x+1)(x-3)^{-2}\left(=\frac{2(x-3)-x(2 \ln x+1)}{x(x-3)^{2}}\right)
\end{aligned}
\]

Note: Award \(\boldsymbol{M 1}\) for attempt at product rule, \(\boldsymbol{A} 1\) for first term, \(\boldsymbol{A} 1\) for second term.
(b) finding turning point of \(y=f^{\prime}(x)\) or finding root of \(y=f^{\prime \prime}(x)\)
\(x=0.899\)
\(y=f(0.899048 \ldots)=-0.375\)
(0.899, -0.375)

Note: Do not accept \(x=0.9\). Accept \(y\)-coordinates rounding to -0.37 or -0.375 but not -0.38 .
continued...

\section*{Question 9 continued}
(c)

(i) smooth curve over the correct domain which does not cross the \(y\)-axis and is concave down for \(x>1\)
\(x\)-intercept at 0.607
equations of asymptotes given as \(x=0\) and \(x=3\) (the latter must be drawn)
(ii) attempt to reflect graph of \(f\) in \(y=x\)
smooth curve over the correct domain which does not cross the \(x\)-axis and is concave down for \(y>1\)
\(y\)-intercept at 0.607
equations of asymptotes given as \(y=0\) and \(y=3\) (the latter must be drawn)
Note: For FT from (i) to (ii) award max M1A0A1AO.
(d) solve \(f(x)=f^{-1}(x)\) or \(f(x)=x\) to get \(x=0.372\)
\(0<x<0.372\)
10. (a) (i) \(\mathrm{P}(X<60)\)
\[
\begin{aligned}
& =\mathrm{P}(X \leq 59) \\
& =0.102
\end{aligned}
\]
(ii) \(\quad\) standard deviation \(=\sqrt{70}(=8.37)\)
(b) (i) use of midpoints (accept consistent use of 45,55 etc.)
\[
\begin{equation*}
\frac{44.5 \times 2+54.5 \times 15+64.5 \times 40+74.5 \times 53+94.5+104.5 \times 3+114.5 \times 6}{2+15+40+53+0+1+3+6} \tag{M1}
\end{equation*}
\]
\(=\frac{8530}{120}(=71.1)\) A1

Note: If 45,55 , etc. are used consistently instead of midpoints (implied by the answer 71.58...) award M1M1A0.
(ii) 13.9
(M1)A1
[5 marks]
(c) valid reason given to include the examples below
variance is 192 which is not close to the mean (accept not equal to)
standard deviation too high (using parts (a)(ii) and (b)(ii))
relative frequency of \(X \leq 59\) is 0.142 which is too high (using part (a)(i))
Poisson would give a frequency of roughly 14 for \(80 \leq X \leq 89\)
Note: Reasons which do not use values found in previous parts must be backed up with numerical evidence.
[1 mark]
(d) \(\quad \mathrm{P}(Y>10)=0.99\)
\(1-\mathrm{P}(Y \leq 10)=0.99 \Rightarrow \mathrm{P}(Y \leq 10)=0.01\)
attempt to solve a correct equation
\(\lambda=20.1\)

Question 10 continued
(e) in 1 day, no of emails is \(X \sim \operatorname{Po}(\lambda)\)
in 2 days, no of emails is \(Y \sim \operatorname{Po}(2 \lambda)\)
\(\mathrm{P}(10\) on first day \(\mid 20\) in 2 days)
\(=\frac{\mathrm{P}(X=10) \times \mathrm{P}(X=10)}{\mathrm{P}(Y=20)}\)
\(=\frac{\left(\frac{\lambda^{10} e^{-\lambda}}{10!}\right)^{2}}{\frac{(2 \lambda)^{20} e^{-2 \lambda}}{20!}}\)
\(=\frac{\lambda^{20} e^{-2 \lambda}}{2^{20} \lambda^{20} e^{-2 \lambda}} \times \frac{20!}{(10!)^{2}}\)
\(=\frac{20!}{2^{20}(10!)^{2}}\)
which is independent of \(\lambda\)
11. (a) METHOD 1
use of \(\tan\)
\(\tan \theta_{p}=\frac{1}{p}\)
\[
\theta_{p}=\arctan \left(\frac{1}{p}\right)
\]

\section*{METHOD 2}
\(\mathrm{AP}=\sqrt{p^{2}+1}\)
use of sin, cos, sine rule or cosine rule using the correct length of AP
\(\theta_{p}=\arcsin \left(\frac{1}{\sqrt{p^{2}+1}}\right)\) or \(\theta_{p}=\arccos \left(\frac{p}{\sqrt{p^{2}+1}}\right)\)

Question 11 continued
(b) \(\mathrm{QR}=1 \Rightarrow r=q+1\)

Note: This may be seen anywhere.
\[
\tan \theta_{p}=\tan \left(\theta_{q}+\theta_{r}\right)
\]
attempt to use compound angle formula for tan
\(\tan \theta_{p}=\frac{\tan \theta_{q}+\tan \theta_{r}}{1-\tan \theta_{q} \tan \theta_{r}}\)
\(\frac{1}{p}=\frac{\frac{1}{q}+\frac{1}{r}}{1-\left(\frac{1}{q}\right)\left(\frac{1}{r}\right)}\)
\(\frac{1}{p}=\frac{\frac{1}{q}+\frac{1}{q+1}}{1-\left(\frac{1}{q}\right)\left(\frac{1}{q+1}\right)}\) or \(p=\frac{1-\left(\frac{1}{q}\right)\left(\frac{1}{q+1}\right)}{\frac{1}{q}+\frac{1}{q+1}}\)
\(\frac{1}{p}=\frac{q+q+1}{q(q+1)-1}\)
Note: Award \(\boldsymbol{M} \mathbf{1}\) for multiplying top and bottom by \(q(q+1)\).
\[
p=\frac{q^{2}+q-1}{2 q+1}
\]

Question 11 continued
(c)

increasing function with positive \(q\)-intercept
A1
Note: Accept curves which extend beyond the domain shown above.
\((0.618<) q<9\)
(A1)
\(\Rightarrow\) range is \((0<) p<4.68\)
\(0<p<4.68\)

A1
[4 marks]

\title{
Markscheme
}

\section*{May 2018}

\section*{Mathematics}

\section*{Higher level}

\section*{Paper 2}

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{General}

Mark according to \(\mathrm{RM}^{\text {TM }}\) Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2018". It is essential that you read this document before you start marking. In particular, please note the following.
- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A O}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by RM \({ }^{\text {TM }}\) Assessor.

\section*{2 Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M O}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct \(\boldsymbol{F T}\) working shown, award \(\boldsymbol{F T}\) marks as appropriate but do not award the final \(\boldsymbol{A 1}\) in that part.

\section*{Examples}
\begin{tabular}{|l|l|l|l|}
\hline & Correct answer seen & Further working seen & Action \\
\hline 1. & \(8 \sqrt{2}\) & \begin{tabular}{l}
\(5.65685 \ldots\) \\
(incorrect decimal value)
\end{tabular} & \begin{tabular}{l} 
Award the final \(\boldsymbol{A 1}\) \\
(ignore the further working)
\end{tabular} \\
\hline 2. & \(\frac{1}{4} \sin 4 x\) & \(\sin x\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline 3. & \(\log a-\log b\) & \(\log (a-b)\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline
\end{tabular}

\section*{3 N marks}

Award \(\mathbf{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(N\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{4 Implied marks}

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{6 \\ Misread}

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].
- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{\(7 \quad\) Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{8 Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
\]

Award \(\boldsymbol{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 \\ Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

\section*{Section A}
1. (a) \(u_{1}+2 d=1407, u_{1}+9 d=1183\)
(M1)(A1)
A1A1
[4 marks]
(b) \(1471+(n-1)(-32)>0\)
(M1)
\(\Rightarrow n<\frac{1471}{32}+1\)
\(n<46.96 \ldots\)
so 46 positive terms

\section*{2. METHOD 1}
\[
\alpha+\beta=5, \alpha \beta=-7
\]

Note: Award M1A0 if only one equation obtained.
\[
\begin{aligned}
& (\alpha+1)+(\beta+1)=5+2=7 \\
& (\alpha+1)(\beta+1)=\alpha \beta+(\alpha+\beta)+1 \\
& =-7+5+1=-1 \\
& p=-7, q=-1
\end{aligned}
\]

\section*{METHOD 2}
\(\alpha=\frac{5+\sqrt{53}}{2}=6.1 \ldots ; \beta=\frac{5-\sqrt{53}}{2}=-1.1 \ldots\)
\(\alpha+1=\frac{7+\sqrt{53}}{2}=7.1 \ldots ; \beta+1=\frac{7-\sqrt{53}}{2}=-0.1 \ldots\)
\((x-7.14 \ldots)(x+0.14 \ldots)=x^{2}-7 x-1\)
\(p=-7, q=-1\)

Note: Exact answers only.
3. \(\tan (x+\pi)=\tan x\left(=\frac{\sin x}{\cos x}\right)\)
(M1)A1
(M1)A1

Note: The two M1's can be awarded for observation or for expanding.
\[
\tan (x+\pi) \cos \left(x-\frac{\pi}{2}\right)=\frac{\sin ^{2} x}{\cos x}
\]
4. (a) \(\mathrm{P}(L \geq 5)=0.910\)
(M1)A1
[2 marks]
(b) \(\quad X\) is the number of wolves found to be at least 5 years old
recognising binomial distribution

M1
\(X \sim \mathrm{~B}(8,0.910 \ldots)\)
\(\mathrm{P}(X>6)=1-\mathrm{P}(X \leq 6)\)
\(=0.843\)
Note: Award M1A0 for finding \(\mathrm{P}(X \geq 6)\).
(M1)
A1
[3 marks]
5. (a) \(2 x^{3}-3 x+1=A x\left(x^{2}+1\right)+B x+C\)
\[
\begin{aligned}
& A=2, C=1 \\
& A+B=-3 \Rightarrow B=-5
\end{aligned}
\]
A1

A1
[2 marks]
(b) \(\int \frac{2 x^{3}-3 x+1}{x^{2}+1} \mathrm{~d} x=\int\left(2 x-\frac{5 x}{x^{2}+1}+\frac{1}{x^{2}+1}\right) \mathrm{d} x\)

\section*{M1M1}

Note: Award \(\boldsymbol{M} \mathbf{1}\) for dividing by \(\left(x^{2}+1\right)\) to get \(2 x, \boldsymbol{M} \mathbf{1}\) for separating the \(5 x\) and 1 .
\[
=x^{2}-\frac{5}{2} \ln \left(x^{2}+1\right)+\arctan x(+c)
\]

Note: Award (M1)A1 for integrating \(\frac{5 x}{x^{2}+1}, \boldsymbol{A 1}\) for the other two terms.
6. \(X\) is number of squirrels in reserve
\[
X \sim \operatorname{Po}(179.2)
\]

A1
Note: Award \(\boldsymbol{A 1}\) if 179.2 or \(56 \times 3.2\) seen or implicit in future calculations.
recognising conditional probability
\(\mathrm{P}(X>190 \mid X \geq 168)\)
\(=\frac{\mathrm{P}(X>190)}{\mathrm{P}(X \geq 168)}\left(=\frac{0.19827 \ldots}{0.80817 \cdots}\right)\)
\(=0.245\)
(A1)(A1)
A1
7. (a) EITHER

2019: \(2500 \times 0.93+250=2575\)
(M1)A1

2020: \(2575 \times 0.93+250\)

OR
2020: \(2500 \times 0.93^{2}+250(0.93+1)\)
M1M1A1
Note: Award M1 for starting with 2500, M1 for multiplying by 0.93 and adding 250 twice. A1 for correct expression. Can be shown in recursive form.

\section*{THEN}
\[
(=2644.75)=2645
\]

\section*{AG}
[3 marks]
(b) 2020: \(2500 \times 0.93^{2}+250(0.93+1)\)

2042: \(2500 \times 0.93^{24}+250\left(0.93^{23}+0.93^{22}+\ldots+1\right)\)
(M1)(A1)
\(=2500 \times 0.93^{24}+250 \frac{\left(0.93^{24}-1\right)}{(0.93-1)}\)
(M1)(A1)
\(=3384\)
A1
Note: If recursive formula used, award \(\boldsymbol{M 1}\) for \(u_{n}=0.93 u_{n-1}+250\) and \(u_{0}\) or \(u_{1}\) seen (can be awarded if seen in part (a)). Then award M1A1 for attempt to find \(u_{24}\) or \(u_{25}\) respectively (different term if other than 2500 used) (M1A0 if incorrect term is being found) and \(\boldsymbol{A} 2\) for correct answer.

Note: Accept all answers that round to 3380 .

\section*{8. METHOD 1}
let \(p\) have no pets, \(q\) have one pet and \(r\) have two pets
\(p+q+r+2=25\)
\(0 p+1 q+2 r+6=18\)
Note: Accept a statement that there are a total of 12 pets.
attempt to use variance equation, or evidence of trial and error
\(\frac{0 p+1 q+4 r+18}{25}-\left(\frac{18}{25}\right)^{2}=\left(\frac{24}{25}\right)^{2}\)
attempt to solve a system of linear equations
\(p=14\)

Question 8 continued

\section*{METHOD 2}
\begin{tabular}{|l|c|c|c|c|}
\hline\(x\) & 0 & 1 & 2 & 3 \\
\hline \(\mathrm{P}(X=x)\) & \(p\) & \(q\) & \(r\) & \(\frac{2}{25}\) \\
\hline
\end{tabular}
\(p+q+r+\frac{2}{25}=1\)
\(q+2 r+\frac{6}{25}=\frac{18}{25}\left(\Rightarrow q+2 r=\frac{12}{25}\right)\)
\(q+4 r+\frac{18}{25}-\left(\frac{18}{25}\right)^{2}=\frac{576}{625}\left(\Rightarrow q+4 r=\frac{18}{25}\right)\)
(M1)(A1)
\(q=\frac{6}{25}, r=\frac{3}{25}\)
(M1)
\(p=\frac{14}{25}\)
A1
so 14 have no pets

\section*{Section B}
9. (a) differentiating implicitly:
\[
2 x y+x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=-4 y^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}
\]

\section*{Note: Award A1 for each side.}
if \(\frac{\mathrm{d} y}{\mathrm{~d} x}=0\) then either \(x=0\) or \(y=0\)
\(x=0 \Rightarrow\) two solutions for \(y(y= \pm \sqrt[4]{5})\)
\(y=0\) not possible (as \(0 \neq 5\) )
R1
hence exactly two points
Note: For a solution that only refers to the graph giving two solutions at \(x=0\) and no solutions for \(y=0\) award \(\boldsymbol{R} \mathbf{1}\) only.
(b) at \((2,1) 4+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}=-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}\)
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{2}\)
gradient of normal is 2
\(1=4+c\)
(c) substituting
\[
\begin{align*}
& x^{2}(2 x-3)=5-(2 x-3)^{4} \text { or }\left(\frac{y+3}{2}\right)^{2} y=5-y^{4}  \tag{A1}\\
& x=0.724
\end{align*}
\]

Question 9 continued
(d) recognition of two volumes
volume \(1=\pi \int_{1}^{4 \sqrt[4]{5}} \frac{5-y^{4}}{y} \mathrm{~d} y(=1.01 \pi=3.178 \ldots)\)
M1A1A1

Note: Award \(\boldsymbol{M} \mathbf{1}\) for attempt to use \(\pi \int x^{2} \mathrm{~d} y, \boldsymbol{A} \mathbf{1}\) for limits, \(\boldsymbol{A} \mathbf{1}\) for \(\frac{5-y^{4}}{y}\). Condone omission of \(\pi\) at this stage.
volume 2

\section*{EITHER}
\(=\frac{1}{3} \pi \times 2^{2} \times 4(=16.75 \ldots)\)
OR
\(=\pi \int_{-3}^{1}\left(\frac{y+3}{2}\right)^{2} d y\left(=\frac{16 \pi}{3}=16.75 \ldots\right)\)
\[
(M 1)(A 1)
\]

\section*{THEN}
total volume \(=19.9\)
A1
[7 marks]
Total [22 marks]
10. (a) \(a\left[\int_{0}^{0.5} 3 x \mathrm{~d} x+\int_{0.5}^{2}(2-x) \mathrm{d} x\right]=1\)

Note: Award the M1 for the total integral equalling 1, or equivalent.
\[
\begin{aligned}
& a\left(\frac{3}{2}\right)=1 \\
& a=\frac{2}{3}
\end{aligned}
\]
(M1)A1

Question 10 continued
(b) EITHER
\(\int_{0}^{0.5} 2 x \mathrm{~d} x+\frac{2}{3} \int_{0.5}^{1}(2-x) \mathrm{d} x\)
(M1)(A1)
\(=\frac{2}{3}\)
OR
\[
\begin{align*}
& \frac{2}{3} \int_{1}^{2}(2-x) \mathrm{d} x=\frac{1}{3}  \tag{M1}\\
& \text { so } \mathrm{P}(X<1)=\frac{2}{3}
\end{align*}
\]
(M1)A1
(c) \(\mathrm{P}(s<X<0.8)=\int_{s}^{0.5} 2 x \mathrm{~d} x+\frac{2}{3} \int_{0.5}^{0.8}(2-x) \mathrm{d} x\)

M1A1
\(=\left[x^{2}\right]_{s}^{0.5}+0.27\)
\(0.25-s^{2}+0.27\)
(A1)
\(\mathrm{P}(2 s<X<0.8)=\frac{2}{3} \int_{2 s}^{0.8}(2-x) \mathrm{d} x\)
\(=\frac{2}{3}\left[2 x-\frac{x^{2}}{2}\right]_{2 \mathrm{~s}}^{0.8}\)
\(\frac{2}{3}\left(1.28-\left(4 s-2 s^{2}\right)\right)\)
equating
\(0.25-s^{2}+0.27=\frac{4}{3}\left(1.28-\left(4 s-2 s^{2}\right)\right)\)
attempt to solve for \(s\)
\(s=0.274\)
11. (a) \(r_{A}=r_{B}\)
\(2-t=-0.5 t \Rightarrow t=4\)
checking \(t=4\) satisfies \(4+t=3.2+1.2 t\) and \(-1-0.15 t=-2+0.1 t\) \(\mathrm{P}(-2,8,-1.6)\)
(b) (i) \(\quad 0.9 \times\left(\begin{array}{c}-0.5 \\ 1.2 \\ 0.1\end{array}\right)=\left(\begin{array}{c}-0.45 \\ 1.08 \\ 0.09\end{array}\right)\)

Note: Accept use of cross product equalling zero.
hence in the same direction
(ii) \(\left(\begin{array}{c}-0.45 t \\ 3.2+1.08 t \\ -2+0.09 t\end{array}\right)=\left(\begin{array}{c}-2 \\ 8 \\ -1.6\end{array}\right)\)

Note: The \(\boldsymbol{M 1}\) can be awarded for any one of the resultant equations.
\[
\Rightarrow t=\frac{40}{9}=4.44 \ldots
\]
(c) (i) \(\quad \boldsymbol{r}_{A}-\boldsymbol{r}_{B}=\left(\begin{array}{c}2-t \\ 4+t \\ -1-0.15 t\end{array}\right)-\left(\begin{array}{c}-0.45 t \\ 3.2+1.08 t \\ -2+0.09 t\end{array}\right)\)
\[
=\left(\begin{array}{c}
2-0.55 t \\
0.8-0.08 t \\
1-0.24 t
\end{array}\right)
\]

Note: Accept \(r_{B}-r_{A}\).
\[
\text { distance } D=\sqrt{(2-0.55 t)^{2}+(0.8-0.08 t)^{2}+(1-0.24 t)^{2}}
\]
\(\left(=\sqrt{8.64-2.688 t+0.317 t^{2}}\right)\)
(ii) minimum when \(\frac{\mathrm{d} D}{\mathrm{~d} t}=0\)
(M1)
\(t=3.83\) A1
(iii) \(0.511(\mathrm{~km})\)

\title{
Markscheme
}

\section*{May 2018}

\section*{Mathematics}

\section*{Higher level}

\section*{Paper 2}

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{General}

Mark according to \(\mathrm{RM}^{\text {TM }}\) Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2018". It is essential that you read this document before you start marking. In particular, please note the following.
- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp A0 by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by RM \({ }^{\text {TM }}\) Assessor.

\section*{2 Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M O}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct \(\boldsymbol{F T}\) working shown, award \(\boldsymbol{F T}\) marks as appropriate but do not award the final \(\boldsymbol{A 1}\) in that part.

\section*{Examples}
\begin{tabular}{|l|l|l|l|}
\hline & Correct answer seen & Further working seen & Action \\
\hline 1. & \(8 \sqrt{2}\) & \begin{tabular}{l}
\(5.65685 \ldots\) \\
(incorrect decimal value)
\end{tabular} & \begin{tabular}{l} 
Award the final \(\boldsymbol{A 1}\) \\
(ignore the further working)
\end{tabular} \\
\hline 2. & \(\frac{1}{4} \sin 4 x\) & \(\sin x\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline 3. & \(\log a-\log b\) & \(\log (a-b)\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline
\end{tabular}

\section*{\(N\) marks}

Award \(\mathbf{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(N\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{6 \\ Misread}

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].
- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{\(7 \quad\) Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{8 Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
\]

Award \(\boldsymbol{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 \\ Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

Note: Accept answers that round to the correct 2sf unless otherwise stated in the markscheme.

\section*{Section A}
1. (a) \(z=\frac{(2+7 \mathrm{i})}{(6+2 \mathrm{i})} \times \frac{(6-2 \mathrm{i})}{(6-2 \mathrm{i})}\)
\[
=\frac{26+38 \mathrm{i}}{40}\left(=\frac{13+19 \mathrm{i}}{20}=0.65+0.95 \mathrm{i}\right)
\]

A1
(b) attempt to use \(|z|=\sqrt{a^{2}+b^{2}}\)
\[
|z|=\sqrt{\frac{53}{40}}\left(=\frac{\sqrt{530}}{20}\right) \text { or equivalent }
\]

Note: A1 is only awarded for the correct exact value.
(c) EITHER
\(\arg z=\arg (2+7 \mathrm{i})-\arg (6+2 \mathrm{i})\)
(M1)
OR
\(\arg Z=\arctan \left(\frac{19}{13}\right)\)
(M1)

THEN
\(\arg Z=0.9707\) (radians) (= 55.6197 degrees)
A1
Note: Only award the last A1 if 4 decimal places are given.

Total [6 marks]

\section*{2. METHOD 1}
substitute each of \(x=1,2\) and 3 into the quartic and equate to zero
(M1)
\(p+q+r=-7\)
\(4 p+2 q+r=-11\) or equivalent
\(9 p+3 q+r=-29\)
Note: Award A2 for all three equations correct, A1 for two correct.
attempting to solve the system of equations
(M1)
\(p=-7, q=17, r=-17\)
Note: Only award M1 when some numerical values are found when solving algebraically or using GDC.

Question 2 continued

\section*{METHOD 2}
attempt to find fourth factor
( \(x-1\) )
attempt to expand \((x-1)^{2}(x-2)(x-3)\)
\(=x^{4}-7 x^{3}+17 x^{2}-17 x+6(p=-7, q=17, r=-17)\)

\section*{Note: Award A2 for all three values correct, \(\boldsymbol{A 1}\) for two correct.}

Note: Accept long / synthetic division.
3. (a)

normal curve centred on 50
A1
vertical lines at \(x=42\) and \(x=54\), with shading in between
(b) \(\mathrm{P}(42<X<54)(=\mathrm{P}(-2<Z<1))\)
\(=0.819\)

A1
[2 marks]
continued...

Question 3 continued
(c) \(\mathrm{P}(\mu-k \sigma<X<\mu+k \sigma)=0.5 \Rightarrow \mathrm{P}(X<\mu+k \sigma)=0.75\)
\(k=0.674\)
Note: Award M1AO for \(k=-0.674\).
4. (a) (i) METHOD 1
\[
\begin{align*}
& \mathrm{PC}=\frac{\sqrt{3}}{2} \text { or } 0.8660 \\
& \mathrm{PM}=\frac{1}{2} \mathrm{PC}=\frac{\sqrt{3}}{4} \text { or } 0.4330  \tag{A1}\\
& \mathrm{AM}=\sqrt{\frac{1}{4}+\frac{3}{16}} \\
& =\frac{\sqrt{7}}{4} \text { or } 0.661(\mathrm{~m})
\end{align*}
\]
(M1)

A1
Note: Award M1 for attempting to solve triangle AMP.

\section*{METHOD 2}
using the cosine rule
\[
\begin{aligned}
& \mathrm{AM}^{2}=1^{2}+\left(\frac{\sqrt{3}}{4}\right)^{2}-2 \times \frac{\sqrt{3}}{4} \times \cos \left(30^{\circ}\right) \\
& \mathrm{AM}=\frac{\sqrt{7}}{4} \text { or } 0.661(\mathrm{~m})
\end{aligned}
\]
(ii) \(\quad \tan (\mathrm{AMP})=\frac{2}{\sqrt{3}}\) or equivalent (M1)
\(=0.857\)

A1
[5 marks]
continued...

Question 4 continued
(b) EITHER
\[
\frac{1}{2} \mathrm{AM}^{2}(2 \mathrm{AMP}-\sin (2 \mathrm{~A} \hat{M} \mathrm{P}))
\]
(M1)A1

OR
\[
\begin{aligned}
& \frac{1}{2} \mathrm{AM}^{2} \times 2 \mathrm{AMP}-\frac{\sqrt{3}}{8} \\
& =0.158\left(\mathrm{~m}^{2}\right)
\end{aligned}
\]

Note: Award \(\boldsymbol{M 1}\) for attempting to calculate area of a sector minus area of a triangle.
5. (a) \(\binom{3 n+1}{3 n-2}=\frac{(3 n+1)!}{(3 n-2)!3!}\)
\[
\begin{aligned}
& =\frac{(3 n+1) 3 n(3 n-1)}{3!} \\
& =\frac{9}{2} n^{3}-\frac{1}{2} n \text { or equivalent }
\end{aligned}
\]

A1
[3 marks]
(b) attempt to solve \(\frac{9}{2} n^{3}-\frac{1}{2} n>10^{6}\)
\[
n>60.57 \ldots
\]

\section*{Note: Allow equality.}
\[
\Rightarrow n=61
\]
6. let \(\mathrm{P}_{n}\) be the statement: \((1-a)^{n}>1-n a\) for some \(n \in \mathbb{Z}^{+}, n \geq 2\), where \(0<a<1\)
consider the case \(n=2:(1-a)^{2}=1-2 a+a^{2}\)
\(>1-2 a\) because \(a^{2}>0\). Therefore \(\mathrm{P}_{2}\) is true \(\boldsymbol{R 1}\) assume \(\mathrm{P}_{n}\) is true for some \(n=k\)
\((1-a)^{k}>1-k a\)
Note: Assumption of truth must be present. Following marks are not dependent on this M1.

\section*{EITHER}
consider \((1-a)^{k+1}=(1-a)(1-a)^{k}\)
\(>1-(k+1) a+k a^{2} \quad\) A1
\(>1-(k+1) a \Rightarrow \mathrm{P}_{k+1}\) is true \(\left(\right.\) as \(\left.k a^{2}>0\right)\)

\section*{OR}
multiply both sides by \((1-a)\) (which is positive)
\((1-a)^{k+1}>(1-k a)(1-a)\)
\((1-a)^{k+1}>1-(k+1) a+k a^{2}\)
A1
\((1-a)^{k+1}>1-(k+1) a \Rightarrow \mathrm{P}_{k+1}\) is true (as \(\left.k a^{2}>0\right)\)

\section*{THEN}
\(P_{2}\) is true and \(P_{k}\) is true \(\Rightarrow P_{k+1}\) is true so \(P_{n}\) true for all \(n \geq 2\) (or equivalent)
R1
Note: Only award the last \(\boldsymbol{R 1}\) if at least four of the previous marks are gained including the \(\mathbf{A 1}\).
[7 marks]
7. (a) attempt to solve \(v(t)=0\) for \(t\) or equivalent

> (M1)
\[
t_{1}=0.441(\mathrm{~s})
\]
(b) (i) \(a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}=-\mathrm{e}^{-t}-16 t \mathrm{e}^{-2 t}+16 t^{2} \mathrm{e}^{-2 t}\)

M1A1
Note: Award M1 for attempting to differentiate using the product rule.
(ii) \(\quad a\left(t_{1}\right)=-2.28\left(\mathrm{~ms}^{-2}\right)\)

A1
[3 marks]
Total [5 marks]
8. (a) \(n p=3.5\)
(A1)
A1
[2 marks]

Question 8 continued
(b) \(\quad(1-p)^{n}+n p(1-p)^{n-1}=0.09478 \quad\) M1A1
attempt to solve above equation with \(n p=3.5\) (M1)
\(n=12, p=\frac{7}{24}(=0.292) \quad\) A1A1
Note: Do not accept \(n\) as a decimal.
[5 marks]
Total [7 marks]

\section*{Section B}
9. (a) (i) \(X \sim \operatorname{Po}(5.3)\)
\(\mathrm{P}(X=4)=\mathrm{e}^{-5.3} \frac{5.3^{4}}{4!}\)
\(=0.164\)
(ii) METHOD 1
listing probabilities (table or graph) M1
mode \(X=5\) (with probability 0.174) A1
Note: Award MOAO for 5 (taxis) or mode \(=5\) with no justification.

\section*{METHOD 2}
mode is the integer part of mean R1
\(E(X)=5.3 \Rightarrow\) mode \(=5 \quad\) A1
Note: Do not allow ROA1.
(iii) attempt at conditional probability
\(\frac{\mathrm{P}(X=7)}{\mathrm{P}(X \geq 6)}\) or equivalent \(\left(=\frac{0.1163 \ldots}{0.4365 \ldots}\right)\)
\(=0.267\)

\section*{(b) METHOD 1}
the possible arrivals are \((2,0),(1,1),(0,2)\)
\(Y \sim \operatorname{Po}(0.65)\)
attempt to compute, using sum and product rule,

Note: Award A1 for one correct product and A1 for two other correct products.
\(=0.0461\)

A1
[6 marks]
continued...

Question 9 continued

\section*{METHOD 2}
recognising a sum of 2 independent Poisson variables eg \(Z=X+Y\)
R1
\(\lambda=5.3+\frac{1.3}{2}\) A1
(M1)A3
[6 marks]
Total [13 marks]
10. (a) (i)


A1A1
A1 for correct concavity, many to one graph, symmetrical about the midpoint of the domain and with two axes intercepts.

Note: Axes intercepts and scales not required.
A1 for correct domain
(ii) for each value of \(x\) there is a unique value of \(f(x)\)

Note: Accept "passes the vertical line test" or equivalent.
(iii) no inverse because the function fails the horizontal line test or equivalent
Note: No FT if the graph is in degrees (one-to-one).
(iv) the expression is not valid at either of \(x=\frac{\pi}{4}\) (or \(-\frac{3 \pi}{4}\) )

Question 10 continued
(b) METHOD 1
\[
\begin{aligned}
& f(x)=\frac{\tan \left(x+\frac{\pi}{4}\right)}{\tan \left(\frac{\pi}{4}-x\right)} \\
& =\frac{1-\tan x \tan \frac{\pi}{4}}{\tan \frac{\pi}{4}-\tan x} \\
& \frac{1+\tan \frac{\pi}{4} \tan x}{\left(\frac{1+t}{1-t}\right)^{2}}
\end{aligned}
\]

\section*{METHOD 2}
\[
\begin{align*}
& f(x)=\tan \left(x+\frac{\pi}{4}\right) \tan \left(\frac{\pi}{2}-\frac{\pi}{4}+x\right)  \tag{M1}\\
& =\tan ^{2}\left(x+\frac{\pi}{4}\right) \\
& g(t)=\left(\frac{\tan x+\tan \frac{\pi}{4}}{1-\tan x \tan \frac{\pi}{4}}\right)^{2} \\
& =\left(\frac{1+t}{1-t}\right)^{2}
\end{align*}
\]

\section*{Question 10 continued}
(c)

for \(t \leq 0\), correct concavity with two axes intercepts and with asymptote \(y=1 \boldsymbol{A 1}\) \(t\) intercept at \((-1,0)\)
\(y\) intercept at \((0,1)\)
(d) (i) METHOD 1
\(\alpha, \beta\) satisfy \(\frac{(1+t)^{2}}{(1-t)^{2}}=k\)
M1
\(1+t^{2}+2 t=k\left(1+t^{2}-2 t\right)\)
A1
\((k-1) t^{2}-2(k+1) t+(k-1)=0\) A1
attempt at using quadratic formula M1
\(\alpha, \beta=\frac{k+1 \pm 2 \sqrt{k}}{k-1}\) or equivalent

\section*{METHOD 2}
\(\alpha, \beta\) satisfy \(\frac{1+t}{1-t}=( \pm) \sqrt{k}\) M1
\(t+\sqrt{k} t=\sqrt{k}-1\) M1
\(t=\frac{\sqrt{k}-1}{\sqrt{k}+1}\) (or equivalent) A1
\(t-\sqrt{k} t=-(\sqrt{k}+1)\) M1
\(t=\frac{\sqrt{k}+1}{\sqrt{k}-1}\) (or equivalent)
A1
so for eg, \(\alpha=\frac{\sqrt{k}-1}{\sqrt{k}+1}, \beta=\frac{\sqrt{k}+1}{\sqrt{k}-1}\)
continued...

Question 10 continued
\[
\begin{array}{ll}
\text { (ii) } & \alpha+\beta=2 \frac{(k+1)}{(k-1)}\left(=-2 \frac{(1+k)}{(1-k)}\right)
\end{array} \quad \text { A1 }
\]
11. (a) attempt at implicit differentiation
\[
1+\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right) \sin (x y)=0
\]

A1M1A1
Note: Award A1 for first two terms. Award M1 for an attempt at chain rule A1 for last term.
\[
\begin{align*}
& (1+x \sin (x y)) \frac{\mathrm{d} y}{\mathrm{~d} x}=-1-y \sin (x y) \text { or equivalent }  \tag{A1}\\
& \frac{\mathrm{d} y}{\mathrm{~d} x}=-\left(\frac{1+y \sin (x y)}{1+x \sin (x y)}\right)
\end{align*}
\]

AG
(b) (i) EITHER
\[
\begin{aligned}
& \text { when } x y=-\frac{\pi}{2}, \cos x y=0 \\
& \Rightarrow x+y=0
\end{aligned}
\]

OR
\[
\begin{aligned}
& x-\frac{\pi}{2 x}-\cos \left(\frac{-\pi}{2}\right)=0 \text { or equivalent } \\
& x-\frac{\pi}{2 x}=0
\end{aligned}
\]

\section*{THEN}
\[
\begin{aligned}
& \text { therefore } x^{2}=\frac{\pi}{2}\left(x= \pm \sqrt{\frac{\pi}{2}}\right)(x= \pm 1.25) \\
& \mathrm{P}\left(\sqrt{\frac{\pi}{2}},-\sqrt{\frac{\pi}{2}}\right), \mathrm{Q}\left(-\sqrt{\frac{\pi}{2}}, \sqrt{\frac{\pi}{2}}\right) \text { or } P(1.25,-1.25), Q(-1.25,1.25)
\end{aligned}
\]

Question 11 continued
(ii) \(\quad m_{1}=-\left(\frac{1-\sqrt{\frac{\pi}{2}} \times-1}{1+\sqrt{\frac{\pi}{2}} \times-1}\right)\)

M1A1
\(m_{2}=-\left(\frac{1+\sqrt{\frac{\pi}{2}} \times-1}{1-\sqrt{\frac{\pi}{2}} \times-1}\right)\)
\(m_{1} m_{2}=1\)
AG
Note: Award M1A0AO if decimal approximations are used.
Note: No FT applies.
[7 marks]
(c) equate derivative to - 1 M1
\((y-x) \sin (x y)=0\) (A1)
\(y=x, \sin (x y)=0\) R1
in the first case, attempt to solve \(2 x=\cos \left(x^{2}\right)\) M1
(0.486,0.486)
in the second case, \(\sin (x y)=0 \Rightarrow x y=0\) and \(x+y=1\) \((0,1),(1,0)\)

\section*{Markscheme}

\section*{November 2017}

\section*{Mathematics}

\section*{Higher level}

\section*{Paper 2}

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{1 General}

Mark according to \(\mathrm{RM}^{\text {TM }}\) Assessor instructions and the document "Mathematics HL: Guidance
for e-marking November 2017". It is essential that you read this document before you start marking.
In particular, please note the following.
- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A O}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by RM \({ }^{\text {TM }}\) Assessor.

\section*{2 Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M 0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct \(\boldsymbol{F T}\) working shown, award \(\boldsymbol{F T}\) marks as appropriate but do not award the final \(\boldsymbol{A 1}\) in that part.

\section*{Examples}
\begin{tabular}{|l|l|l|l|}
\hline & Correct answer seen & Further working seen & Action \\
\hline 1. & \(8 \sqrt{2}\) & \begin{tabular}{l} 
5.65685... \\
(incorrect decimal value)
\end{tabular} & \begin{tabular}{l} 
Award the final \(\boldsymbol{A} \mathbf{1}\) \\
(ignore the further working)
\end{tabular} \\
\hline 2. & \(\frac{1}{4} \sin 4 x\) & \(\sin x\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline 3. & \(\log a-\log b\) & \(\log (a-b)\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline
\end{tabular}

\section*{3 N marks}

Award \(\mathbf{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(N\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{4 Implied marks}

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{5 Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(M\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{6 \\ Misread}

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{8 Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
\]

Award \(\boldsymbol{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 \\ Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section \(B\) on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

\section*{Section A}
1. let \(b\) be the cost of one banana, \(k\) the cost of one kiwifruit, and \(m\) the cost of one melon attempt to set up three linear equations
\[
2 b+3 k+4 m=658
\]
\(5 b+2 k+8 m=1232\)
\(5 b+4 k=300\)
attempt to solve three simultaneous equations
\(b=36, k=30, m=124\)
banana costs (\$)0.36, kiwifruit costs (\$)0.30, melon costs (\$)1.24
2. (a) \(\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}\)
\[
\begin{aligned}
& \Rightarrow 0.75=\frac{0.6}{P(B)} \\
& \Rightarrow P(B)\left(=\frac{0.6}{0.75}\right)=0.8
\end{aligned}
\]
(M1)

A1
[2 marks]
(b) \(\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)\)
\(\Rightarrow 0.95=\mathrm{P}(A)+0.8-0.6\)
\(\Rightarrow \mathrm{P}(A)=0.75\)
(c) METHOD 1
\(\mathrm{P}\left(A^{\prime} \mid B\right)=\frac{\mathrm{P}\left(A^{\prime} \cap B\right)}{\mathrm{P}(B)}=\frac{0.2}{0.8}=0.25\)
A1
\(\mathrm{P}\left(A^{\prime} \mid B\right)=\mathrm{P}\left(A^{\prime}\right)\)
R1
hence \(A^{\prime}\) and \(B\) are independent
AG
Note: If there is evidence that the student has calculated \(\mathrm{P}\left(A^{\prime} \cap B\right)=0.2\) by assuming independence in the first place, award AORO.

Question 2 continued

\section*{METHOD 2}

\section*{EITHER}
\[
\mathrm{P}(A)=\mathrm{P}(A \mid B) \quad \text { A1 }
\]

OR
\(\mathrm{P}(A) \times \mathrm{P}(B)=0.75 \times 0.80=0.6=\mathrm{P}(A \cap B)\)
A1
THEN
\(A\) and \(B\) are independent \(\boldsymbol{R 1}\)
hence \(A^{\prime}\) and \(B\) are independent AG

\section*{METHOD 3}
\(\mathrm{P}\left(A^{\prime}\right) \times \mathrm{P}(B)=0.25 \times 0.80=0.2 \quad\) A1
\(\mathrm{P}\left(A^{\prime}\right) \times \mathrm{P}(B)=\mathrm{P}\left(A^{\prime} \cap B\right) \quad \boldsymbol{R 1}\)
hence \(A^{\prime}\) and \(B\) are independent AG
3. METHOD 1
area \(=(\) four sector areas radius 9\()+(\) four sector areas radius 3\()\)
\(=4\left(\frac{1}{2} 9^{2} \frac{\pi}{9}\right)+4\left(\frac{1}{2} 3^{2} \frac{7 \pi}{18}\right)\)
\(=18 \pi+7 \pi\)
\(=25 \pi\left(=78.5 \mathrm{~cm}^{2}\right)\)

\section*{METHOD 2}
area \(=\)
(area of circle radius 3 ) + (four sector areas radius 9 ) - (four sector areas radius 3)(M1)
\(\pi 3^{2}+4\left(\frac{1}{2} 9^{2} \frac{\pi}{9}\right)-4\left(\frac{1}{2} 3^{2} \frac{\pi}{9}\right)\)
(A1)(A1)
Note: Award \(\boldsymbol{A 1}\) for the second term and \(\mathbf{A 1}\) for the third term.
\[
\begin{align*}
& =9 \pi+18 \pi-2 \pi \\
& =25 \pi\left(=78.5 \mathrm{~cm}^{2}\right) \tag{A1}
\end{align*}
\]

Note: Accept working in degrees.
4. let \(X\) be the random variable "amount of caffeine content in coffee"
\(\mathrm{P}(X>120)=0.2, \mathrm{P}(X>110)=0.6\)
(M1)
\((\Rightarrow \mathrm{P}(X<120)=0.8, \mathrm{P}(X<110)=0.4)\)
Note: Award M1 for at least one correct probability statement.
\[
\frac{120-\mu}{\sigma}=0.84162 \ldots, \frac{110-\mu}{\sigma}=-0.253347 \ldots
\]
(M1)(A1)(A1)

Note: Award M1 for attempt to find at least one appropriate z-value.
\(120-\mu=0.84162 \sigma, 110-\mu=-0.253347 \sigma\)
attempt to solve simultaneous equations
\(\mu=112, \sigma=9.13\)
5. attempt to use tan, or sine rule, in triangle BXN or BXS
\[
\begin{align*}
& \mathrm{NX}=80 \tan 55^{\circ}\left(=\frac{80}{\tan 35^{\circ}}=114.25\right)  \tag{A1}\\
& \mathrm{SX}=80 \tan 65^{\circ}\left(=\frac{80}{\tan 25^{\circ}}=171.56\right)
\end{align*}
\]

Attempt to use cosine rule
\(\mathrm{SN}^{2}=171.56^{2}+114.25^{2}-2 \times 171.56 \times 114.25 \cos 70^{\circ}\)
\(\mathrm{SN}=171(\mathrm{~m})\)
Note: Award final A1 only if the correct answer has been given to 3 significant figures.
6. (a) let \(X\) be the number of bananas eaten in one day
\(X \sim \operatorname{Po}(0.2)\)
\(\mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0)\)
\(=0.181\left(=1-\mathrm{e}^{-0.2}\right)\)

A1
[2 marks]
(b) EITHER
let \(Y\) be the number of bananas eaten in one week
\(Y \sim \operatorname{Po}(1.4)\)
\(\mathrm{P}(Y=0)=0.246596 \ldots\left(=\mathrm{e}^{-1.4}\right)\)
OR
let \(Z\) be the number of days in one week at least one banana is eaten
\(Z\) ~ B(7,0.181...)
\(\mathrm{P}(Z=0)=0.246596 \ldots\)

Question 6 continued

\section*{THEN}
\(52 \times 0.246596 \ldots\)
\(=12.8\left(=52 \mathrm{e}^{-1.4}\right)\)

\section*{7. METHOD 1}
let roots be \(\alpha\) and \(3 \alpha\)
sum of roots \((4 \alpha)=\frac{8}{7}\)
\(\Rightarrow \alpha=\frac{2}{7}\)

\section*{EITHER}
product of roots \(\left(3 \alpha^{2}\right)=\frac{p}{7}\)
\(p=21 \alpha^{2}=21 \times \frac{4}{49}\)
OR
\(7\left(\frac{2}{7}\right)^{2}-8\left(\frac{2}{7}\right)+p=0\)
M1
\(\frac{4}{7}-\frac{16}{7}+p=0\)

\section*{THEN}
\(\Rightarrow p=\frac{12}{7}(=1.71)\)

\section*{METHOD 2}
\(x=\frac{8 \pm \sqrt{64-28 p}}{14}\)
\(\frac{8+\sqrt{64-28 p}}{14}=3\left(\frac{8-\sqrt{64-28 p}}{14}\right)\)
(M1)

M1A1
\(8+\sqrt{64-28 p}=24-3 \sqrt{64-28 p} \Rightarrow \sqrt{64-28 p}=4\)
(M1)
\(p=\frac{12}{7}(=1.71)\)

\section*{8. EITHER}
\(x^{2}=2 \sec \theta\)
\(2 x \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=2 \sec \theta \tan \theta\)
\(\int \frac{\mathrm{d} x}{x \sqrt{x^{4}-4}}\)
\(=\int \frac{\sec \theta \tan \theta \mathrm{d} \theta}{2 \sec \theta \sqrt{4 \sec ^{2} \theta-4}}\)
M1A1

OR
\(x=\sqrt{2}(\sec \theta)^{\frac{1}{2}}\left(=\sqrt{2}(\cos \theta)^{-\frac{1}{2}}\right)\)
\(\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\frac{\sqrt{2}}{2}(\sec \theta)^{\frac{1}{2}} \tan \theta\left(=\frac{\sqrt{2}}{2}(\cos \theta)^{-\frac{3}{2}} \sin \theta\right)\)
M1A1
\(\int \frac{\mathrm{d} x}{x \sqrt{x^{4}-4}}\)
\(=\int \frac{\sqrt{2}(\sec \theta)^{\frac{1}{2}} \tan \theta \mathrm{~d} \theta}{2 \sqrt{2}(\sec \theta)^{\frac{1}{2}} \sqrt{4 \sec ^{2} \theta-4}}\left(=\int \frac{\sqrt{2}(\cos \theta)^{-\frac{3}{2}} \sin \theta \mathrm{~d} \theta}{2 \sqrt{2}(\cos \theta)^{-\frac{1}{2}} \sqrt{4 \sec ^{2} \theta-4}}\right)\)

THEN
\(=\frac{1}{2} \int \frac{\tan \theta \mathrm{~d} \theta}{2 \tan \theta}\)
\(=\frac{1}{4} \int \mathrm{~d} \theta\)
\(=\frac{\theta}{4}+c\)
\(x^{2}=2 \sec \theta \Rightarrow \cos \theta=\frac{2}{x^{2}}\)
Note: This M1 may be seen anywhere, including a sketch of an appropriate triangle.
so \(\frac{\theta}{4}+c=\frac{1}{4} \arccos \left(\frac{2}{x^{2}}\right)+c\)
9. (a) \(12!(=479001600)\)

A1
[1 mark]
(b) METHOD 1
\(8 \times 2=16\) ways of sitting Helen and Nicky, 10! ways of sitting everyone else (A1)
\(16 \times 10\) !
\(=58060800\)

\section*{METHOD 2}
\(8 \times 1 \times 10!(=29030400)\) ways if Helen sits in the front or back row
\(4 \times 2 \times 10!(=29030400)\) ways if Helen sits in the middle row
Note: Award A1 for one correct value.
\(2 \times 29030400\)
\(=58060800\)
(c) METHOD 1
\(9 \times 2 \times 10!(=65318400)\) ways if Helen and Nicky sit next to each other
attempt to subtract from total number of ways
12 ! \(-9 \times 2 \times 10\) !
\(=413683200\)

\section*{METHOD 2}
\(6 \times 10 \times 10!(=217728000)\) ways if Helen sits in column 1 or 4
\(6 \times 9 \times 10!(=195955200)\) ways if Helen sits in column 2 or 3
(A1)
\(217728000+195955200\)
\(=413683200\)

Section B
10. (a) (i) attempt to use quotient rule or product rule
\[
f^{\prime}(x)=\frac{\sin x\left(\frac{1}{2} x^{-\frac{1}{2}}\right)-\sqrt{x} \cos x}{\sin ^{2} x}\left(=\frac{1}{2 \sqrt{x} \sin x}-\frac{\sqrt{x} \cos x}{\sin ^{2} x}\right)
\]

Note: Award \(\boldsymbol{A 1}\) for \(\frac{1}{2 \sqrt{x} \sin x}\) or equivalent and \(\boldsymbol{A 1}\) for \(-\frac{\sqrt{x} \cos x}{\sin ^{2} x}\) or equivalent.
\[
\begin{array}{ll}
\text { setting } f^{\prime}(x)=0 & \text { M1 } \\
\frac{\sin x}{2 \sqrt{x}}-\sqrt{x} \cos x=0 & \\
\frac{\sin x}{2 \sqrt{x}}=\sqrt{x} \cos x \text { or equivalent } & \text { A1 } \\
\tan x=2 x & \text { AG }
\end{array}
\]
(ii) \(x=1.17\)
\(0<x \leq 1.17\)
Note: Award A1 for \(0<x\) and A1 for \(x \leq 1.17\). Accept \(x<1.17\).
(b)

concave up curve over correct domain with one minimum point above the \(x\)-axis. \(\boldsymbol{A 1}\) approaches \(x=0\) asymptotically

Note: For the final \(\boldsymbol{A 1}\) an asymptote must be seen, and \(\pi\) must be seen on the \(x\) axis or in an equation.

Question 10 continued
(c) \(f^{\prime}(x)\left(=\frac{\sin x\left(\frac{1}{2} x^{-\frac{1}{2}}\right)-\sqrt{x} \cos x}{\sin ^{2} x}\right)=1\)
attempt to solve for \(x\)
\(x=1.96\)
\(y=f(1.96 \ldots)\)
\(=1.51\)
(d) \(\quad V=\pi \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{x \mathrm{~d} x}{\sin ^{2} x}\)

Note: \(\boldsymbol{M 1}\) is for an integral of the correct squared function (with or without limits and/or \(\pi\) ).
\[
=2.68(=0.852 \pi)
\]

\section*{A1}
[3 marks]
Total [17 marks]
11. (a) (i) \(f^{\prime}(x)=4 \sin x \cos x+14 \cos 2 x+\sec ^{2} x\) (or equivalent)
(M1)A1
(ii)


\section*{A1A1A1A1}

Note: Award A1 for correct behaviour at \(x=0, \boldsymbol{A 1}\) for correct domain and correct behaviour for \(x \rightarrow \frac{\pi}{2}\), \(\boldsymbol{A 1}\) for two clear intersections with \(x\)-axis and minimum point, \(\boldsymbol{A} \mathbf{1}\) for clear maximum point.

Question 11 continued
(iii) \(x=0.0736\)
A1
\(x=1.13\)

A1
[8 marks]
(b) (i) attempt to write \(\sin x\) in terms of \(u\) only
(M1)
\(\sin x=\frac{u}{\sqrt{1+u^{2}}}\) A1
(ii) \(\quad \cos x=\frac{1}{\sqrt{1+u^{2}}}\)
attempt to use \(\sin 2 x=2 \sin x \cos x\left(=2 \frac{u}{\sqrt{1+u^{2}}} \frac{1}{\sqrt{1+u^{2}}}\right)\)
\(\sin 2 x=\frac{2 u}{1+u^{2}}\)
A1
(iii) \(2 \sin ^{2} x+7 \sin 2 x+\tan x-9=0\)
\(\frac{2 u^{2}}{1+u^{2}}+\frac{14 u}{1+u^{2}}+u-9(=0)\)
\(\frac{2 u^{2}+14 u+u\left(1+u^{2}\right)-9\left(1+u^{2}\right)}{1+u^{2}}=0\) (or equivalent)
\(u^{3}-7 u^{2}+15 u-9=0\)
AG
[7 marks]
(c) \(\quad u=1\) or \(u=3\)
\(x=\arctan (1)\)
(M1)
A1
\(x=\arctan (3)\)
Note: Only accept answers given the required form.
12. (a) \(150000 \times 1.035^{20}\)
\(=\$ 298468\)
(M1)(A1)
(b) attempt to look for a pattern by considering 1 year, 2 years etc recognising a geometric series with first term \(P\) and common ratio 1.02

\section*{EITHER}
\[
\begin{equation*}
P+1.02 P+\ldots+1.02^{19} P\left(=P\left(1+1.02+\ldots+1.02^{19}\right)\right) \tag{A1}
\end{equation*}
\]

\section*{OR}
explicitly identify \(u_{1}=P, r=1.02\) and \(n=20\) (may be seen as \(S_{20}\) ).

\section*{THEN}
\[
S_{20}=\frac{\left(1.02^{20}-1\right) P}{(1.02-1)}
\]
(c) \(24.297 \ldots P=298468\)
\[
P=12284
\]
(d) (i) METHOD 1
\[
\begin{aligned}
& Q\left(1.028^{n}\right)=5000\left(1+1.028+1.028^{2}+1.028^{3}+\ldots+1.028^{n-1}\right) \\
& Q=\frac{5000\left(1+1.028+1.028^{2}+1.028^{3}+\ldots+1.028^{n-1}\right)}{1.028^{n}} \\
& =\frac{5000}{1.028}+\frac{5000}{1.028^{2}}+\ldots+\frac{5000}{1.028^{n}}
\end{aligned}
\]

M1A1

A1 AG
continued...

\section*{METHOD 2}
the initial value of the first withdrawal is \(\frac{5000}{1.028} \quad\) A1
the initial value of the second withdrawal is \(\frac{5000}{1.028^{2}} \quad \boldsymbol{R 1}\)
the investment required for these two withdrawals is \(\frac{5000}{1.028}+\frac{5000}{1.028^{2}} \quad \boldsymbol{R 1}\)
\(Q=\frac{5000}{1.028}+\frac{5000}{1.028^{2}}+\ldots+\frac{5000}{1.028^{n}}\)
AG
(ii) sum to infinity is \(\frac{\frac{5000}{1.028}}{1-\frac{1}{1.028}}\)
\(=178571.428 \ldots\)
so minimum amount is \(\$ 178572\)
Note: Accept answers which round to \(\$ 178571\) or \(\$ 178572\).

\title{
Markscheme
}

\section*{May 2017}

\section*{Mathematics}

\section*{Higher level}

\section*{Paper 2}

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
\(\boldsymbol{N}\) Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{General}

Mark according to \(\mathrm{RM}^{\top M}\) Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2017". It is essential that you read this document before you start marking. In particular, please note the following.
- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp AO by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by \(\mathrm{RM}^{\mathrm{TM}}\) Assessor.

\section*{2 Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M} \mathbf{0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct \(\boldsymbol{F T}\) working shown, award \(\boldsymbol{F T}\) marks as appropriate but do not award the final \(\boldsymbol{A 1}\) in that part.

\section*{Examples}
\begin{tabular}{|l|l|l|l|}
\hline & Correct answer seen & Further working seen & Action \\
\hline 1. & \(8 \sqrt{2}\) & \begin{tabular}{l}
\(5.65685 \ldots\) \\
(incorrect decimal value)
\end{tabular} & \begin{tabular}{l} 
Award the final \(\boldsymbol{A 1}\) \\
(ignore the further working)
\end{tabular} \\
\hline 2. & \(\frac{1}{4} \sin 4 x\) & \(\sin x\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline 3. & \(\log a-\log b\) & \(\log (a-b)\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline
\end{tabular}

\section*{\(N\) marks}

Award \(\mathbf{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{5}

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{6 \\ Misread}

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{\(7 \quad\) Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{8 Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
\]

Award \(\boldsymbol{A} 1\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 \\ Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, Tl-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section \(B\) on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

\section*{Section A}
1. (a) use of \(\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)\)
\[
\begin{array}{ll}
0.5=k+3 k-k^{2} & \boldsymbol{A 1} \\
k^{2}-4 k+0.5=0 & \\
k=0.129 & \boldsymbol{A 1}
\end{array}
\]

Note: Do not award the final \(\boldsymbol{A 1}\) if two solutions are given.
(b) use of \(\mathrm{P}\left(A^{\prime} \cap B\right)=\mathrm{P}(B)-\mathrm{P}(A \cap B)\) or alternative
(M1)

A1

Total [6 marks]
2.
(a) \(y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}-\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0\)

\section*{M1A1A1}

Note: Award \(\boldsymbol{A 1}\) for the first two terms, \(\boldsymbol{A 1}\) for the third term and the 0 .
\[
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}}{1-x y}
\]

Note: Accept \(\frac{-y^{2}}{\ln y}\).
(b) \(m_{T}=\frac{\mathrm{e}^{2}}{1-\mathrm{e} \times \frac{2}{\mathrm{e}}}\)
\[
\begin{equation*}
m_{T}=-\mathrm{e}^{2} \tag{A1}
\end{equation*}
\]
\(y-\mathrm{e}=-\mathrm{e}^{2} x+2 \mathrm{e}\)
\(-\mathrm{e}^{2} x-y+3 \mathrm{e}=0\) or equivalent
Note: Accept \(y=-7.39 x+8.15\).

\section*{3. METHOD 1}
\({ }^{8} C_{r}\left(\frac{1}{x}\right)^{8-r}(5 x)^{r}={ }^{8} C_{r}(5)^{r} x^{2 r-8}\)
\(r=5\)
\({ }^{8} C_{5} \times 5^{5}={ }^{7} C_{4} a^{3} \times 5^{4}\)
M1A1
\(56 \times 5=35 a^{3}\)
\(a^{3}=8\)
\(a=2\)
A1

\section*{METHOD 2}
attempt to expand both binomials M1
\(175000 x^{2}\) A1
\(21875 a^{3} x^{4} \quad\) A1
\(175000=21875 a^{3} \quad\) M1
\(a^{3}=8 \quad\) (A1)
\(a=2\)
4. (a) METHOD 1
\[
\begin{align*}
& 2 \arcsin (x-1)-\frac{\pi}{4}=\frac{\pi}{4}  \tag{M1}\\
& x=1+\frac{1}{\sqrt{2}}(=1.707 \ldots)  \tag{A1}\\
& \int_{0}^{1+\frac{1}{\sqrt{2}}} \frac{\pi}{4}-\left(2 \arcsin (x-1)-\frac{\pi}{4}\right) \mathrm{d} x
\end{align*}
\]

M1A1

Note: Award M1 for an attempt to find the difference between two functions, A1 for all correct.

\section*{METHOD 2}
when \(x=0, y=\frac{-5 \pi}{4}(=-3.93)\)
\(x=1+\sin \left(\frac{4 y+\pi}{8}\right)\)
Note: Award \(\boldsymbol{M 1}\) for an attempt to find the inverse function.
\[
\int_{\frac{-5 \pi}{4}}^{\frac{\pi}{4}}\left(1+\sin \left(\frac{4 y+\pi}{8}\right)\right) \mathrm{d} y
\]

\section*{METHOD 3}
\[
\left|\int_{0}^{1.38 \ldots}\left(2 \arcsin (x-1)-\frac{\pi}{4}\right) \mathrm{d} x\right|+\int_{0}^{1.71 . \ldots} \frac{\pi}{4} \mathrm{~d} x-\int_{1.38 \ldots}^{1.71 \ldots}\left(2 \arcsin (x-1)-\frac{\pi}{4}\right) \mathrm{d} x \quad \text { M1A1A1A1 }
\]

Note: Award \(\boldsymbol{M 1}\) for considering the area below the \(x\)-axis and above the \(x\)-axis and \(\boldsymbol{A 1}\) for each correct integral.
(b) area \(=3.30\) (square units)

A2
[2 marks]
5.
(a) \(\lambda=4 \times 0.5\)
\(\lambda=2\)
\(\mathrm{P}(X \leq 2)=0.677\)
(b) \(\quad Y \sim B(10,0.677)\)
(M1)(A1)
\(\mathrm{P}(Y=7)=0.263\)
A1
Note: Award M1 for clear recognition of binomial distribution.
[3 marks]
Total [6 marks]
6. (a) \(\begin{aligned} \quad x & =\frac{\pi}{4} \\ x & =\frac{5 \pi}{4}, x=-\frac{3 \pi}{4}\end{aligned}\)
(b) reflection in the \(y\)-axis results in \(y=\tan \left(-x+\frac{\pi}{4}\right)\left(=\cot \left(x+\frac{\pi}{4}\right)\right)\) vertical stretch gives \(y=\frac{1}{2} \tan \left(-x+\frac{\pi}{4}\right)\left(=\frac{1}{2} \cot \left(x+\frac{\pi}{4}\right)\right)\) translation
\[
\begin{aligned}
& y=\frac{1}{2} \tan \left[-\left(x-\frac{\pi}{4}-\frac{\pi}{4}\right)\right]-3 \\
& =\frac{1}{2} \tan \left(-x+\frac{\pi}{2}\right)-3\left(=\frac{1}{2} \cot (x)-3\right)
\end{aligned}
\]

\section*{7. METHOD 1}
\[
\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}
-3 \\
-3 \\
0
\end{array}\right)
\]
\(\left(\begin{array}{c}-3 \\ -3 \\ 0\end{array}\right) \times\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)\)
\[
=\left(\begin{array}{c}
3 \\
-3 \\
-3
\end{array}\right)
\]
\(x-y-z=k\)
\(k=3\)
equation of plane \(\Pi\) is \(x-y-z=3\) or equivalent

\section*{METHOD 2}
let plane \(\Pi\) be \(a x+b y+c z=d\)
attempt to form one or more simultaneous equations:
\(a+2 b-c=0 \quad\) (1)
\(6 a+2 b+c=d\)
\(3 a-b+c=d\)
Note: Award second \(\boldsymbol{A 1}\) for equations (2) and (3).
attempt to solve

\section*{EITHER}
using GDC gives \(a=\frac{d}{3}, b=-\frac{d}{3}, c=-\frac{d}{3}\)
equation of plane \(\Pi\) is \(x-y-z=3\) or equivalent

\section*{OR}
row reduction
M1
equation of plane \(\Pi\) is \(x-y-z=3\) or equivalent A1
8. (a) area of segment \(=\frac{1}{2} \times 0.5^{2} \times(\theta-\sin \theta)\)

M1A1

A1
[3 marks]
(b) METHOD 1
\(\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{5}{4}(1-\cos \theta) \frac{\mathrm{d} \theta}{\mathrm{d} t}\)

\section*{M1A1}
\(\frac{\mathrm{d} \theta}{\mathrm{d} t}=0.00128\left(\mathrm{rad} s^{-1}\right)\)

\section*{METHOD 2}
\[
\begin{align*}
\frac{\mathrm{d} \theta}{\mathrm{~d} t} & =\frac{\mathrm{d} \theta}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}  \tag{M1}\\
\frac{\mathrm{~d} V}{\mathrm{~d} \theta} & =\frac{5}{4}(1-\cos \theta) \\
\frac{\mathrm{d} \theta}{\mathrm{~d} t} & =\frac{4 \times 0.0008}{5\left(1-\cos \frac{\pi}{3}\right)}  \tag{M1}\\
\frac{\mathrm{d} \theta}{\mathrm{~d} t} & =0.00128\left(\frac{4}{3125}\right)\left(\mathrm{rad} s^{-1}\right)
\end{align*}
\]A1A1
[4 marks]

\section*{Section B}
9. (a) \(T \sim N\left(196,24^{2}\right)\)
\(\mathrm{P}(T<180)=0.252\)
(M1)A1
[2 marks]
(b) \(\mathrm{P}\left(T<T_{1}\right)=0.05\)
(M1)
\(T_{1}=157\)
A1 [2 marks]
(c) \(\quad F \sim N\left(210, \sigma^{2}\right)\)
\(\mathrm{P}(F<235)=0.79\)
(M1)
\(\frac{235-210}{\sigma}=0.806421\) or equivalent
(M1)(A1)
\(\sigma=31.0\)
A1
[4 marks]
10. (a) \(p^{2}=12^{2}+r^{2}-2 \times 12 \times r \times \cos \left(30^{\circ}\right)\)
\(r^{2}-12 \sqrt{3} r+144-p^{2}=0\)
M1A1
AG
[2 marks]
(b) EITHER
\(r^{2}-12 \sqrt{3} r+80=0\)
(M1)
OR
using the sine rule
THEN
\(P Q=5.10(\mathrm{~cm})\) or \(\quad\) A1
\(P Q=15.7(\mathrm{~cm}) \quad\) A1
[3 marks]
(c) area \(=\frac{1}{2} \times 12 \times 5.1008 \ldots \times \sin \left(30^{\circ}\right)\)

M1A1
\(=15.3\left(\mathrm{~cm}^{2}\right)\)
A1
[3 marks]
continued...

Question 10 continued
(d) METHOD 1

\section*{EITHER}
\(r^{2}-12 \sqrt{3} r+144-p^{2}=0\)
discriminant \(=(12 \sqrt{3})^{2}-4 \times\left(144-p^{2}\right) \quad\) M1
\(=4\left(p^{2}-36\right) \quad\) A1
\(\left(p^{2}-36\right)>0 \quad\) M1
\(p>6 \quad\) A1

\section*{OR}
construction of a right angle triangle

\section*{THEN}
\[
p<12 \quad \text { A1 }
\]
\(144-p^{2}>0\) to ensure two positive solutions or valid geometric argument ..... R1
\(\therefore 6<\mathrm{p}<12\) ..... A1
METHOD 2diagram showing two triangles(M1)
\(12 \sin 30^{\circ}=6\) ..... M1A1
one right angled triangle when \(p=6\) ..... (A1)
\(\therefore p>6\) for two triangles ..... R1
\(p<12\) for two triangles ..... A1
\(6<p<12\) ..... A1
11. (a) \(v(15)=\frac{98}{\sqrt{1+(15-10)^{2}}}\)
\[
v(15)=19.2\left(\mathrm{~ms}^{-1}\right)
\]
(M1)
[2 marks]
(b) \(\int_{0}^{10} 9.8 t \mathrm{~d} t\)
\[
=490(\mathrm{~m})
\]
(c) \(\frac{98}{\sqrt{1+(t-10)^{2}}}=2.8\)
\[
t=44.985 \ldots(\mathrm{~s})
\]
\[
h=490+\int_{10}^{449 \ldots} \frac{98}{\sqrt{1+(t-10)^{2}}} \mathrm{~d} t
\]
\[
h=906(\mathrm{~m})
\]
(M1)
A1
(M1)(A1)
A1
[5 marks]
Total [9 marks]
12. (a) \(x^{2}-1>0\)
\(x<-1\) or \(x>1\)
(b)

shape
A1
\(x=1\) and \(x=-1\)
A1
\(x\)-intercepts
A1
[3 marks]
(c) EITHER
\(f\) is symmetrical about the \(y\)-axis
R1
OR
\(f(-x)=f(x)\)
R1
[1 mark]
(d) EITHER
\(f\) is not one-to-one function \(\quad \boldsymbol{R 1}\)

\section*{OR}
horizontal line cuts twice \(\quad \boldsymbol{R 1}\)
Note: Accept any equivalent correct statement.

Question 12 continued
(e) \(\quad x=-1+\ln \left(\sqrt{y^{2}-1}\right)\)
\(e^{2 x+2}=y^{2}-1\)
\(g^{-1}(x)=\sqrt{e^{2 x+2}+1}, x \in \mathbb{R}\)
A1A1
[4 marks]
(f) \(\quad g^{\prime}(x)=\frac{1}{\sqrt{x^{2}-1}} \times \frac{2 x}{2 \sqrt{x^{2}-1}}\)
\(g^{\prime}(x)=\frac{x}{x^{2}-1}\)
(g) (i) \(g^{\prime}(x)=\frac{x}{x^{2}-1}=0 \Rightarrow x=0\)

M1
which is not in the domain of \(g\) (hence no solutions to \(g^{\prime}(x)=0\) )
R1
(ii) \(\quad\left(g^{-1}\right)^{\prime}(x)=\frac{e^{2 x+2}}{\sqrt{e^{2 x+2}+1}}\)
as \(e^{2 x+2}>0 \Rightarrow\left(g^{-1}\right)^{\prime}(x)>0\) so no solutions to \(\left(g^{-1}\right)^{\prime}(x)=0\)
R1
Note: Accept: equation \(e^{2 x+2}=0\) has no solutions.

A1
[3 marks]
M1A1

\title{
Markscheme
}

\section*{May 2017}

\section*{Mathematics}

\section*{Higher level}

\section*{Paper 2}

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

1 General
Mark according to \(\mathrm{RM}^{\text {™ }}\) Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2017". It is essential that you read this document before you start marking. In particular, please note the following.
- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp AO by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by \(\mathrm{RM}^{\mathrm{TM}}\) Assessor.

\section*{2 Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award M0 followed by A1, as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct \(\boldsymbol{F T}\) working shown, award \(\boldsymbol{F T}\) marks as appropriate but do not award the final \(\boldsymbol{A 1}\) in that part.

\section*{Examples}
\begin{tabular}{|l|l|l|l|}
\hline & Correct answer seen & Further working seen & Action \\
\hline 1. & \(8 \sqrt{2}\) & \begin{tabular}{l}
\(5.65685 \ldots\) \\
(incorrect decimal value)
\end{tabular} & \begin{tabular}{l} 
Award the final \(\boldsymbol{A 1}\) \\
(ignore the further working)
\end{tabular} \\
\hline 2. & \(\frac{1}{4} \sin 4 x\) & \(\sin x\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline 3. & \(\log a-\log b\) & \(\log (a-b)\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline
\end{tabular}

\section*{\(N\) marks}

Award \(\mathbf{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{5}

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(M\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{6 \\ Misread}

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\operatorname{MR}\) leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{8 Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
\]

Award \(\boldsymbol{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 \\ Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, Tl-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section \(B\) on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

Note: Accept all numerical answers which round correctly to the correct 2 sf answer unless stated otherwise. Do not accept any answer given to 2 sf unless stated otherwise.

\section*{Section A}
1. (a) \(\mathrm{P}(5\) or more \()=\frac{29}{75}(=0.387)\)
(M1)A1
(b) mean score \(=\frac{2 \times 3+3 \times 15+4 \times 28+5 \times 17+6 \times 9+7 \times 3}{75}\)
\[
=\frac{323}{75}(=4.31)
\]
2. (a) METHOD 1
\[
\begin{aligned}
& 4 x^{2}+y^{2}=7 \\
& 8 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{4 x}{y}
\end{aligned}
\]

Note: Award M1A1 for finding \(\frac{\mathrm{d} y}{\mathrm{~d} x}=-2.309 \ldots\) using any alternative method.
hence gradient of normal \(=\frac{y}{4 x}\)
hence gradient of normal at \((1, \sqrt{3})\) is \(\frac{\sqrt{3}}{4}(=0.433)\)
hence equation of normal is \(y-\sqrt{3}=\frac{\sqrt{3}}{4}(x-1)\)
(M1)A1
\(\left(y=\frac{\sqrt{3}}{4} x+\frac{3 \sqrt{3}}{4}\right)(y=0.433 x+1.30)\)
continued...

\section*{Question 2 continued}

\section*{METHOD 2}
\[
\begin{align*}
& 4 x^{2}+y^{2}=7 \\
& y=\sqrt{7-4 x^{2}}  \tag{M1}\\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{4 x}{\sqrt{7-4 x^{2}}} \tag{A1}
\end{align*}
\]

Note: Award M1A1 for finding \(\frac{\mathrm{d} y}{\mathrm{~d} x}=-2.309 \ldots\) using any alternative method.
hence gradient of normal \(=\frac{\sqrt{7-4 x^{2}}}{4 x}\)
hence gradient of normal at \((1, \sqrt{3})\) is \(\frac{\sqrt{3}}{4}(=0.433)\)
hence equation of normal is \(y-\sqrt{3}=\frac{\sqrt{3}}{4}(x-1)\)
\[
\left(y=\frac{\sqrt{3}}{4} x+\frac{3 \sqrt{3}}{4}\right)(y=0.433 x+1.30)
\]
(b) Use of \(V=\pi \int_{0}^{\frac{\sqrt{7}}{2}} y^{2} \mathrm{~d} x\)
\[
V=\pi \int_{0}^{\frac{\sqrt{7}}{2}}\left(7-4 x^{2}\right) \mathrm{d} x
\]

Note: Condone absence of limits or incorrect limits for \(M\) mark. Do not condone absence of or multiples of \(\pi\).
\[
=19.4\left(=\frac{7 \sqrt{7} \pi}{3}\right)
\]
3. (a) \(\mathrm{P}(X<250)=0.0228\)
(M1)A1
[2 marks]
(b) \(\frac{250-\mu}{1.5}=-2.878 \ldots\)
(M1)(A1)
\(\Rightarrow \mu=254.32\)
A1
Notes: Only award \(\boldsymbol{A 1}\) here if the correct 2dp answer is seen.
Award MO for use of \(1.5^{2}\).
(c) \(\frac{250-253}{\sigma}=-2.878 \ldots\)
\(\Rightarrow \sigma=1.04\)

\section*{Total [7 marks]}
4. (a) \(k^{2}-k-12<0\)
\[
\begin{align*}
& (k-4)(k+3)<0  \tag{M1}\\
& -3<k<4
\end{align*}
\]
(b) \(\cos B=\frac{2^{2}+c^{2}-4^{2}}{4 c}\left(\right.\) or \(\left.16=2^{2}+c^{2}-4 c \cos B\right)\)
\(\Rightarrow \frac{c^{2}-12}{4 c}<\frac{1}{4}\)
A1
\(\Rightarrow c^{2}-c-12<0\)
from result in (a)
\(0<\mathrm{AB}<4\) or \(-3<\mathrm{AB}<4\)
but AB must be at least 2
\(\Rightarrow 2<A B<4\)
A1
Note: Allow \(\leq A B\) for either of the final two \(\boldsymbol{A}\) marks.
[4 marks]
5. (a)


\section*{M1A2}

Note: Award \(\boldsymbol{M} 1\) for 3 stage tree-diagram, \(\boldsymbol{A} 2\) for \(0.8,0.9,0.3\) probabilities correctly placed.
[3 marks]
(b) \(0.2 \times 0.7 \times 0.3+0.2 \times 0.3 \times 0.9+0.8 \times 0.1 \times 0.3+0.8 \times 0.9 \times 0.9=0.768\)
(M1)A1
[2 marks]
(c) \(\quad \mathrm{P}(1\) st July is calm \(\mid\) 3rd July is windy \()=\frac{\mathrm{P}(1 \text { st July is calm and 3rd July is windy })}{\mathrm{P}(3 \text { rd July is windy })}\)
(M1)
\[
=\frac{0.8 \times 0.1 \times 0.7+0.8 \times 0.9 \times 0.1}{1-0.768}
\]
\[
\text { OR } \frac{0.8 \times 0.1 \times 0.7+0.8 \times 0.9 \times 0.1}{0.2 \times 0.7 \times 0.7+0.2 \times 0.3 \times 0.1+0.8 \times 0.1 \times 0.7+0.8 \times 0.9 \times 0.1}
\]
\[
\text { OR } \frac{0.128}{0.232}
\]

Note: Award A1 for correct numerator, \(\boldsymbol{A 1}\) for correct denominator.
\[
=0.552
\]
6. \(\quad \log _{10} \frac{1}{2 \sqrt{2}}(p+2 q)=\frac{1}{2}\left(\log _{10} p+\log _{10} q\right)\)
\[
\begin{equation*}
\log _{10} \frac{1}{2 \sqrt{2}}(p+2 q)=\frac{1}{2} \log _{10} p q \tag{M1}
\end{equation*}
\]
\(\log _{10} \frac{1}{2 \sqrt{2}}(p+2 q)=\log _{10}(p q)^{\frac{1}{2}}\)
\(\frac{1}{2 \sqrt{2}}(p+2 q)=(p q)^{\frac{1}{2}}\)
\((p+2 q)^{2}=8 p q\)
\(p^{2}+4 p q+4 q^{2}=8 p q\)
\(p^{2}-4 p q+4 q^{2}=0\)
\((p-2 q)^{2}=0\)
M1
hence \(p=2 q\)

\section*{7. METHOD 1}
\(\boldsymbol{a} \times \boldsymbol{b}=\boldsymbol{b} \times \boldsymbol{c}\)
\((\boldsymbol{a} \times \boldsymbol{b})-(\boldsymbol{b} \times \boldsymbol{c})=0\)
\((\boldsymbol{a} \times \boldsymbol{b})+(\boldsymbol{c} \times \boldsymbol{b})=0\)
M1A1
\((\boldsymbol{a}+\boldsymbol{c}) \times \boldsymbol{b}=0\)
\((\boldsymbol{a}+\boldsymbol{c})\) is parallel to \(\boldsymbol{b} \Rightarrow \boldsymbol{a}+\boldsymbol{c}=s \boldsymbol{b}\)
Note: Condone absence of arrows, underlining, or other otherwise "correct" vector notation throughout this question.

Note: Allow "is in the same direction to", for the final \(\boldsymbol{R}\) mark.

\section*{METHOD 2}
\(\boldsymbol{a} \times \boldsymbol{b}=\boldsymbol{b} \times \boldsymbol{c} \Rightarrow\left(\begin{array}{l}a_{2} b_{3}-a_{3} b_{2} \\ a_{3} b_{1}-a_{1} b_{3} \\ a_{1} b_{2}-a_{2} b_{1}\end{array}\right)=\left(\begin{array}{l}b_{2} c_{3}-b_{3} c_{2} \\ b_{3} c_{1}-b_{1} c_{3} \\ b_{1} c_{2}-b_{2} c_{1}\end{array}\right)\)
\(a_{2} b_{3}-a_{3} b_{2}=b_{2} c_{3}-b_{3} c_{2} \Rightarrow b_{3}\left(a_{2}+c_{2}\right)=b_{2}\left(a_{3}+c_{3}\right)\)
\(a_{3} b_{1}-a_{1} b_{3}=b_{3} c_{1}-b_{1} c_{3} \Rightarrow b_{1}\left(a_{3}+c_{3}\right)=b_{3}\left(a_{1}+c_{1}\right)\)
\(a_{1} b_{2}-a_{2} b_{1}=b_{1} c_{2}-b_{2} c_{1} \Rightarrow b_{2}\left(a_{1}+c_{1}\right)=b_{1}\left(a_{2}+c_{2}\right)\)
\(\frac{\left(a_{1}+c_{1}\right)}{b_{1}}=\frac{\left(a_{2}+c_{2}\right)}{b_{2}}=\frac{\left(a_{3}+c_{3}\right)}{b_{3}}=s\)
\(\Rightarrow a_{1}+c_{1}=s b_{1}\)
\(\Rightarrow a_{2}+c_{2}=s b_{2}\)
\(\Rightarrow a_{3}+c_{3}=s b_{3}\)
\(\Rightarrow\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)+\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=s\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)\)
\(\Rightarrow \boldsymbol{a}+\boldsymbol{c}=s \boldsymbol{b}\)

\section*{8. METHOD 1}
consideration of all papers
all papers may be sat in 18! ways A1
number of ways of positioning "pairs" of science subjects \(=3!\times 17\) ! A1
but this includes two copies of each "triple" (R1)
number of ways of positioning "triplets" of science subjects \(=3!\times 16!\quad\) A1
hence number of arrangements is \(18!-3!\times 17!+3!\times 16\) ! M1A1
\(\left(=4.39 \times 10^{15}\right)\)

\section*{METHOD 2}
consideration of all the non-science papers
hence all non-science papers can be sat in 15! ways A1
there are \(16 \times 15 \times 14\) (=3360) ways of positioning the three science papers (M1)A1
hence the number of arrangements is \(16 \times 15 \times 14 \times 15!\left(=4.39 \times 10^{15}\right) \quad\) (M1)A1

\section*{METHOD 3}
consideration of all papers
all papers may be sat in 18! ways A1
number of ways of positioning exactly two science subjects \(=3!\times 15!\times 16 \times 15 \quad\) M1A1
number of ways of positioning "triplets" of science subjects \(=3!\times 16\) ! A1
hence number of arrangements is \(18!-3!\times 16!-3!\times 15!\times 16 \times 15\) M1A1
\(\left(=4.39 \times 10^{15}\right)\)

\section*{Section B}
9.
(a) \(\quad \overrightarrow{\mathrm{BC}}=(\boldsymbol{i}+3 \boldsymbol{j}+3 \boldsymbol{k})-(2 \boldsymbol{i}-\boldsymbol{j}+2 \boldsymbol{k})=-\boldsymbol{i}+4 \boldsymbol{j}+\boldsymbol{k}\)
\(\boldsymbol{r}=(2 \boldsymbol{i}-\boldsymbol{j}+2 \boldsymbol{k})+\lambda(-\boldsymbol{i}+4 \boldsymbol{j}+\boldsymbol{k})\)
(or \(\boldsymbol{r}=(\boldsymbol{i}+3 \boldsymbol{j}+3 \boldsymbol{k})+\lambda(-\boldsymbol{i}+4 \boldsymbol{j}+\boldsymbol{k})\)
(M1)A1
Note: Do not award \(\boldsymbol{A} 1\) unless \(\boldsymbol{r}=\) or equivalent correct notation seen.
(b) attempt to write in parametric form using two different parameters AND equate

M1
\(2 \mu=2-\lambda\)
\(\mu=-1+4 \lambda\)
\(-2 \mu=2+\lambda\)
A1
attempt to solve first pair of simultaneous equations for two parameters M1
solving first two equations gives \(\lambda=\frac{4}{9}, \mu=\frac{7}{9}\)
substitution of these two values in third equation
since the values do not fit, the lines do not intersect
R1
Note: Candidates may note that adding the first and third equations immediately leads to a contradiction and hence they can immediately deduce that the lines do not intersect.
(c) METHOD 1
plane is of the form \(\boldsymbol{r} \cdot(2 \boldsymbol{i}+\boldsymbol{j}-2 \boldsymbol{k})=d\)
\(d=(\boldsymbol{i}+3 \boldsymbol{j}+3 \boldsymbol{k}) \cdot(2 \boldsymbol{i}+\boldsymbol{j}-2 \boldsymbol{k})=-1\)
hence Cartesian form of plane is \(2 x+y-2 z=-1\)

\section*{METHOD 2}
plane is of the form \(2 x+y-2 z=d\)
substituting \((1,3,3)\) (to find gives \(2+3-6=-1\) )
hence Cartesian form of plane is \(2 x+y-2 z=-1\)

Question 9 continued
(d) METHOD 1
attempt scalar product of direction vector BC with normal to plane
\((-\boldsymbol{i}+4 \boldsymbol{j}+\boldsymbol{k}) \cdot(2 \boldsymbol{i}+\boldsymbol{j}-2 \boldsymbol{k})=-2+4-2\)
\(=0\)
A1
hence BC lies in \(\Pi_{1}\)

\section*{METHOD 2}
substitute eqn of line into plane M1
line \(r=\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right)\). Plane \(\pi_{1}: 2 x+y-2 z=-1\)
\(2(2-\lambda)+(-1+4 \lambda)-2(2+\lambda)\)
\(=-1\)
A1
hence BC lies in \(\Pi_{1} \quad\) AG
Note: Candidates may also just substitute \(2 i-j+2 k\) into the plane since they are told C lies on \(\pi_{1}\).

\section*{Note: Do not award A1FT.}
(e) METHOD 1
applying scalar product to \(\overrightarrow{O A}\) and \(\overrightarrow{O B} \quad\) M1
\((2 \boldsymbol{j}+\boldsymbol{k}) \cdot(2 \boldsymbol{i}+\boldsymbol{j}-2 \boldsymbol{k})=0 \quad \boldsymbol{A 1}\)
\((2 \boldsymbol{j}+\boldsymbol{k}) \cdot(2 \boldsymbol{i}-\boldsymbol{j}+2 \boldsymbol{k})=0\)

\section*{METHOD 2}
attempt to find cross product of \(\overrightarrow{\mathrm{OA}}\) and \(\overrightarrow{\mathrm{OB}} \quad \boldsymbol{M 1}\)
plane \(\Pi_{2}\) has normal \(\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}=-8 \boldsymbol{j}-4 \boldsymbol{k} \quad \boldsymbol{A 1}\)
since \(-8 \boldsymbol{j}-4 \boldsymbol{k}=-4(2 \boldsymbol{j}+\boldsymbol{k}), 2 \boldsymbol{j}+\boldsymbol{k}\) is perpendicular to the plane \(\Pi_{2} \quad \boldsymbol{R} \mathbf{1}\)
[3 marks]
(f) plane \(\Pi_{3}\) has normal \(\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OC}}=9 \boldsymbol{i}-8 \boldsymbol{j}+5 \boldsymbol{k}\)

A1
[1 mark]
continued...

Question 9 continued
(g) attempt to use dot product of normal vectors
\[
\begin{align*}
& \cos \theta=\frac{(2 \boldsymbol{j}+\boldsymbol{k}) \cdot(9 \boldsymbol{i}-8 \boldsymbol{j}+5 \boldsymbol{k})}{|2 \boldsymbol{j}+\boldsymbol{k}||9 \boldsymbol{i}-8 \boldsymbol{j}+5 \boldsymbol{k}|}  \tag{M1}\\
& =\frac{-11}{\sqrt{5} \sqrt{170}}(=-0.377 \ldots) \tag{A1}
\end{align*}
\]

Note: Accept \(\frac{11}{\sqrt{5} \sqrt{170}}\).
acute angle between planes \(=67.8^{\circ}\left(=1.18^{c}\right)\)
10. (a) \(\int_{0}^{4}\left(\frac{x^{2}}{a}+b\right) \mathrm{d} x=1 \Rightarrow\left[\frac{x^{3}}{3 a}+b x\right]_{0}^{4}=1 \Rightarrow \frac{64}{3 a}+4 b=1\)

M1A1
\[
\int_{2}^{4}\left(\frac{x^{2}}{a}+b\right) \mathrm{d} x=0.75 \Rightarrow \frac{56}{3 a}+2 b=0.75
\]

M1A1

Note: \(\int_{0}^{2}\left(\frac{x^{2}}{a}+b\right) \mathrm{d} x=0.25 \Rightarrow \frac{8}{3 a}+2 b=0.25\) could be seen/used in place of either of the above equations.
evidence of an attempt to solve simultaneously (or check given \(a, b\) values are consistent)

M1
\(a=32, b=\frac{1}{12}\)
(b) \(\mathrm{E}(X)=\int_{0}^{4} x\left(\frac{x^{2}}{32}+\frac{1}{12}\right) \mathrm{d} x\)
(M1)
\(\mathrm{E}(X)=\frac{8}{3}(=2.67)\)
A1
[2 marks]
(c) \(\mathrm{E}\left(X^{2}\right)=\int_{0}^{4} x^{2}\left(\frac{x^{2}}{32}+\frac{1}{12}\right) \mathrm{d} x\)
(M1)
\(\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}=\frac{16}{15}(=1.07)\)

Question 10 continued
(d) \(\int_{0}^{m}\left(\frac{x^{2}}{32}+\frac{1}{12}\right) \mathrm{d} x=0.5\)
(M1)
\[
\begin{align*}
& \frac{m^{3}}{96}+\frac{m}{12}=0.5\left(\Rightarrow m^{3}+8 m-48=0\right)  \tag{A1}\\
& m=2.91
\end{align*}
\]
(e) \(\quad Y \sim B(8,0.75)\)
\(E(Y)=8 \times 0.75=6\)
A1
(f) \(\quad \mathrm{P}(Y \geq 3)=0.996\)

A1
[1 mark]

\section*{Total [15 marks]}
11. (a) \(g(x)=3 x^{4}+a x^{3}+b x^{2}-7 x-4\)
\[
g(1)=0 \Rightarrow a+b=8
\]
\[
g(-1)=0 \Rightarrow-a+b=-6
\]
\[
\Rightarrow a=7, \mathrm{~b}=1
\]
(b) \(3 x^{4}+7 x^{3}+x^{2}-7 x-4=\left(x^{2}-1\right)\left(p x^{2}+q x+r\right)\)
attempt to equate coefficients
\[
\begin{align*}
& p=3, q=7, r=4  \tag{M1}\\
& 3 x^{4}+7 x^{3}+x^{2}-7 x-4=\left(x^{2}-1\right)\left(3 x^{2}+7 x+4\right)  \tag{A1}\\
& =(x-1)(x+1)^{2}(3 x+4)
\end{align*}
\]

A1
Note: Accept any equivalent valid method.

\section*{Question 11 continued}
(c)


A1 for correct shape (ie with correct number of max/min points)
A1 for correct \(x\) and \(y\) intercepts
A1 for correct maximum and minimum points
(d) \(\quad c>0\)

A1
\(-6.20<c<-0.0366\)
Note: Award A1 for correct end points and A1 for correct inequalities.
Note: If the candidate has misdrawn the graph and omitted the first minimum point, the maximum mark that may be awarded is A1FTAOAO for \(c>-6.20\) seen.

\title{
Markscheme
}

\section*{November 2016}

\section*{Mathematics}

\section*{Higher level}

\section*{Paper 2}

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\(\boldsymbol{A} \quad\) Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
\(\boldsymbol{N} \quad\) Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

1 General
Mark according to \(\mathrm{RM}^{\text {T }}\) Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2016". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A O}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by \(\mathrm{RM}^{\text {TM }}\) Assessor.

\section*{2 Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M} \mathbf{0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct \(\boldsymbol{F T}\) working shown, award \(\boldsymbol{F T}\) marks as appropriate but do not award the final \(\boldsymbol{A 1}\) in that part.

\section*{Examples}
\begin{tabular}{|l|l|l|l|}
\hline & Correct answer seen & Further working seen & Action \\
\hline 1. & \(8 \sqrt{2}\) & \begin{tabular}{l} 
5.65685... \\
(incorrect decimal value)
\end{tabular} & \begin{tabular}{l} 
Award the final \(\boldsymbol{A 1}\) \\
(ignore the further working)
\end{tabular} \\
\hline 2. & \(\frac{1}{4} \sin 4 x\) & \(\sin x\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline 3. & \(\log a-\log b\) & \(\log (a-b)\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline
\end{tabular}

\section*{3 N marks}

Award \(\mathbf{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{5 Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{Misread}

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(M R\) leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{8 Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
\]

Award \(\boldsymbol{A} \mathbf{1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 \\ Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section \(B\) on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

\section*{Section A}
1. (a) \(\mathrm{E}\left(X^{2}\right)=\sum x^{2} \cdot \mathrm{P}(X=x)=10.37(=10.43 \mathrm{sf})\)
(M1)A1
[2 marks]
(b) METHOD 1
\[
\operatorname{sd}(X)=1.44069 \ldots
\]
(M1)(A1)
\(\operatorname{Var}(X)=2.08 \quad(=2.0756)\)

\section*{METHOD 2}
\(\mathrm{E}(X)=2.88(=0.06+0.27+0.5+0.98+0.63+0.44)\)
use of \(\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}\)
Note: Award (M1) only if \((\mathrm{E}(X))^{2}\) is used correctly.
\[
\begin{aligned}
& (\operatorname{Var}(X)=10.37-8.29) \\
& \operatorname{Var}(X)=2.08(=2.0756)
\end{aligned}
\]

Note: Accept 2.11.

\section*{METHOD 3}
\[
\begin{align*}
& \mathrm{E}(X)=2.88(=0.06+0.27+0.5+0.98+0.63+0.44)  \tag{A1}\\
& \text { use of } \operatorname{Var}(X)=\mathrm{E}\left((X-\mathrm{E}(X))^{2}\right) \\
& (0.679728+\ldots+0.549152) \\
& \operatorname{Var}(X)=2.08(=2.0756)
\end{align*}
\]
2. \(\boldsymbol{n}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\) and \(\boldsymbol{n}_{2}=\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)\)
(A1)(A1)

\section*{EITHER}
\(\theta=\arccos \left(\frac{\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}}{\left|\boldsymbol{n}_{1}\right|\left|\boldsymbol{n}_{2}\right|}\right)\left(\cos \theta=\frac{\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}}{\left|\boldsymbol{n}_{1}\right|\left|\boldsymbol{n}_{2}\right|}\right)\)
(M1)
\(=\arccos \left(\frac{2+0-1}{\sqrt{3} \sqrt{5}}\right)\left(\cos \theta=\frac{2+0-1}{\sqrt{3} \sqrt{5}}\right)\)
\(=\arccos \left(\frac{1}{\sqrt{15}}\right)\left(\cos \theta=\frac{1}{\sqrt{15}}\right)\)
OR
\(\theta=\arcsin \left(\frac{\left|\boldsymbol{n}_{1} \times \boldsymbol{n}_{2}\right|}{\left|\boldsymbol{n}_{1}\right|\left|\boldsymbol{n}_{2}\right|}\right)\left(\sin \theta=\frac{\left|\boldsymbol{n}_{1} \times \boldsymbol{n}_{2}\right|}{\left|\boldsymbol{n}_{1}\right|\left|\boldsymbol{n}_{2}\right|}\right)\)
\(=\arcsin \left(\frac{\sqrt{14}}{\sqrt{3} \sqrt{5}}\right)\left(\sin \theta=\frac{\sqrt{14}}{\sqrt{3} \sqrt{5}}\right)\)
\(=\arcsin \left(\frac{\sqrt{14}}{\sqrt{15}}\right)\left(\sin \theta=\frac{\sqrt{14}}{\sqrt{15}}\right)\)

\section*{THEN}
\(=75.0^{\circ}\) (or 1.31)
3. (a) METHOD 1
\[
\begin{aligned}
& \mathrm{P}(X=x+1)=\frac{\mu^{x+1}}{(x+1)!} \mathrm{e}^{-\mu} \\
& =\frac{\mu}{x+1} \times \frac{\mu^{x}}{x!} \mathrm{e}^{-\mu} \\
& =\frac{\mu}{x+1} \times \mathrm{P}(X=x)
\end{aligned}
\]
M1A1

\section*{METHOD 2}
\(\frac{\mu}{x+1} \times \mathrm{P}(X=x)=\frac{\mu}{x+1} \times \frac{\mu^{x}}{x!} \mathrm{e}^{-\mu}\)
\(=\frac{\mu^{x+1}}{(x+1)!} \mathrm{e}^{-\mu}\)

METHOD 3
\(\frac{\mathrm{P}(X=x+1)}{\mathrm{P}(X=x)}=\frac{\frac{\mu^{x+1}}{(x+1)!} \mathrm{e}^{-\mu}}{\frac{\mu^{x}}{x!} \mathrm{e}^{-\mu}}\)
(M1)
\(=\frac{\mu^{x+1}}{\mu^{x}} \times \frac{x!}{(x+1)!}\)
\(=\frac{\mu}{x+1}\)
A1
and so \(\mathrm{P}(X=x+1)=\frac{\mu}{x+1} \times \mathrm{P}(X=x)\)
(b) \(\mathrm{P}(X=3)=\frac{\mu}{3} \cdot \mathrm{P}(X=2) \quad\left(0.112777=\frac{\mu}{3} \cdot 0.241667\right)\)

A1
attempting to solve for \(\mu\)
(M1)
\(\mu=1.40\)
4. attempting a valid method to obtain the required term in the expansion

Note: Valid methods include an attempt to expand, noting the behaviour of the powers of \(x\), use of the general binomial expansion term, use of a ratio etc.
identifying the correct term
\[
\binom{12}{8} \times 4^{4} \times\left(-\frac{3}{2}\right)^{8}\left(=495 \times 4^{4} \times\left(-\frac{3}{2}\right)^{8}\right)
\]

Note: Accept \(\binom{12}{4}\).

Note: Award M1 for the product of a binomial coefficient, a power of 4 and either a power of \(-\frac{3}{2}\) or \(\frac{3}{2}\).
\(=3247695\)
A1
5. (a)

correct shape passing through the origin and correct domain
A1
Note: Endpoint coordinates are not required. The domain can be indicated by -1 and 1 marked on the \(x\)-axis.
\[
(0.652,1.68)
\]
two correct intercepts (coordinates not required)
Note: A graph passing through the origin is sufficient for \((0,0)\).
(b) \([-9.42,1.68](\) or \([-3 \pi, 1.68])\)

Note: Award A1A0 for open or semi-open intervals with correct endpoints. Award A1A0 for closed intervals with one correct endpoint.

\section*{Question 5 continued}
(c) attempting to solve either \(|3 x \arccos (x)|>1\) (or equivalent) or \(|3 x \arccos (x)|=1\) (or equivalent) (eg. graphically)


Note: Award AO for \(x<-0.189\).

\section*{6. METHOD 1}
substituting for \(x\) and attempting to solve for \(y\) (or vice versa)
\[
y=( \pm) 0.11821 \ldots
\]

\section*{EITHER}
\(145 x+143 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{145 x}{143 y}\right)\)
OR
\(145 x \frac{\mathrm{~d} x}{\mathrm{~d} t}+143 y \frac{\mathrm{~d} y}{\mathrm{~d} t}=0\)

\section*{THEN}
attempting to find \(\frac{\mathrm{d} y}{\mathrm{~d} t}\left(\frac{\mathrm{~d} y}{\mathrm{~d} t}=-\frac{145\left(3.2 \times 10^{-3}\right)}{143(( \pm) 0.11821 \ldots)} \times\left(7.75 \times 10^{-5}\right)\right)\)
\(\frac{\mathrm{d} y}{\mathrm{~d} t}= \pm 2.13 \times 10^{-6}\)
Note: Award all marks except the final \(\boldsymbol{A 1}\) to candidates who do not consider \(\pm\).

\section*{METHOD 2}
\(y=( \pm) \sqrt{\frac{1-72.5 x^{2}}{71.5}}\)
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=( \pm) 0.0274 \ldots\)
(M1)(A1)
\(\frac{\mathrm{d} y}{\mathrm{~d} t}=( \pm) 0.0274 \ldots \times 7.75 \times 10^{-5}\)
(M1)
\(\frac{\mathrm{d} y}{\mathrm{~d} t}= \pm 2.13 \times 10^{-6}\)
A1
Note: Award all marks except the final A1 to candidates who do not consider \(\pm\).
7. (a) METHOD 1
let \(\mathrm{AC}=x\)
\(3^{2}=x^{2}+4^{2}-8 x \cos \frac{\pi}{9}\)
M1A1
attempting to solve for \(x\)
\(x=1.09,6.43\)
A1A1

\section*{METHOD 2}
let \(\mathrm{AC}=x\)
using the sine rule to find a value of \(C\) M1
\(4^{2}=x^{2}+3^{2}-6 x \cos \left(152.869 \ldots{ }^{\circ}\right) \Rightarrow x=1.09 \quad\) (M1)A1
\(4^{2}=x^{2}+3^{2}-6 x \cos \left(27.131 \ldots{ }^{\circ}\right) \Rightarrow x=6.43\)

\section*{METHOD 3}
let \(\mathrm{AC}=x\)
using the sine rule to find a value of \(B\) and a value of \(C\) M1
obtaining \(B=132.869 \ldots{ }^{\circ}, 7.131 \ldots{ }^{\circ}\) and \(C=27.131 \ldots .^{\circ}, 152.869 \ldots{ }^{\circ}\) A1
( \(B=2.319 \ldots, 0.124 \ldots\) and \(C=0.473 \ldots, 2.668 \ldots\) )
attempting to find a value of \(x\) using the cosine rule
\(x=1.09,6.43\)
(b) \(\frac{1}{2} \times 4 \times 6.428 \ldots \times \sin \frac{\pi}{9}\) and \(\frac{1}{2} \times 4 \times 1.088 \ldots \times \sin \frac{\pi}{9}\)
(4.39747... and 0.744833...)
let \(D\) be the difference between the two areas
\(D=\frac{1}{2} \times 4 \times 6.428 \ldots \times \sin \frac{\pi}{9}-\frac{1}{2} \times 4 \times 1.088 \ldots \times \sin \frac{\pi}{9}\)
( \(D=4.39747 \ldots-0.744833 \ldots\) )
\(=3.65\left(\mathrm{~cm}^{2}\right)\)
8. (a) \(\mathrm{P}(X<42.52)=0.6940\)
either \(\mathrm{P}\left(\mathrm{Z}<\frac{30.31-\mu}{\sigma}\right)=0.1180\) or \(\mathrm{P}\left(Z<\frac{42.52-\mu}{\sigma}\right)=0.6940\)
\(\frac{30.31-\mu}{\sigma}=\underbrace{\Phi^{-1}(0.1180)}_{-1.1850 \ldots}\)
(A1)
\(\frac{42.52-\mu}{\sigma}=\underbrace{\Phi^{-1}(0.6940)}_{0.5072 \ldots}\)
(A1)
attempting to solve simultaneously
\(\mu=38.9\) and \(\sigma=7.22\)
(b) \(\mathrm{P}(\mu-1.2 \sigma<X<\mu+1.2 \sigma)\) (or equivalent eg. \(2 \mathrm{P}(\mu<X<\mu+1.2 \sigma)\) )
\(=0.770\)
Note: Award (M1)A1 for \(\mathrm{P}(-1.2<Z<1.2)=0.770\).
9. (a) \(A=2(\alpha-\sin \alpha) r^{2}+\frac{1}{2}(\theta-\sin \theta) r^{2}\)

Note: Award M1A1A1 for alternative correct expressions eg. \(A=4\left(\frac{\alpha}{2}-\sin \frac{\alpha}{2}\right) r^{2}+\frac{1}{2} \theta r^{2}\).

\section*{(b) METHOD 1}
consider for example triangle ADM where M is the midpoint of BD
\(\sin \frac{\alpha}{4}=\frac{1}{4}\)
\(\frac{\alpha}{4}=\arcsin \frac{1}{4}\)
\(\alpha=4 \arcsin \frac{1}{4}\)

\section*{METHOD 2}
attempting to use the cosine rule (to obtain \(1-\cos \frac{\alpha}{2}=\frac{1}{8}\) )
\(\sin \frac{\alpha}{4}=\frac{1}{4}\) (obtained from \(\sin \frac{\alpha}{4}=\sqrt{\frac{1-\cos \frac{\alpha}{2}}{2}}\) )
\(\frac{\alpha}{4}=\arcsin \frac{1}{4}\)
\(\alpha=4 \arcsin \frac{1}{4}\)

\section*{METHOD 3}
\(\sin \left(\frac{\pi}{2}-\frac{\alpha}{4}\right)=2 \sin \frac{\alpha}{2}\) where \(\frac{\theta}{2}=\frac{\pi}{2}-\frac{\alpha}{4}\)
\(\cos \frac{\alpha}{4}=4 \sin \frac{\alpha}{4} \cos \frac{\alpha}{4}\)
Note: Award M1 either for use of the double angle formula or the conversion from sine to cosine.
\(\frac{1}{4}=\sin \frac{\alpha}{4}\)
\(\frac{\alpha}{4}=\arcsin \frac{1}{4}\)
\(\alpha=4 \arcsin \frac{1}{4}\)

\section*{Question 9 continued}
(c) (from triangle ADM), \(\theta=\pi-\frac{\alpha}{2}\left(=\pi-2 \arcsin \frac{1}{4}=2 \arccos \frac{1}{4}=2.6362 \ldots\right)\)
attempting to solve \(2(\alpha-\sin \alpha) r^{2}+\frac{1}{2}(\theta-\sin \theta) r^{2}=4\)
with \(\alpha=4 \arcsin \frac{1}{4}\) and \(\theta=\pi-\frac{\alpha}{2}\left(=2 \arccos \frac{1}{4}\right)\) for \(r\)
\(r=1.69\)

\section*{Section B}
10. (a) attempting to solve either \(2 \mathrm{e}^{x}-1=0\) or \(2 \mathrm{e}^{x}-1 \neq 0\) for \(x\)
\[
D=\mathbb{R} \backslash\{-\ln 2\} \text { (or equivalent eg } x \neq-\ln 2 \text { ) }
\]

Note: Accept \(D=\mathbb{R} \backslash\{-0.693\}\) or equivalent eg \(x \neq-0.693\).
(b) considering \(\lim _{x \rightarrow-\ln 2} f(x)\)
\(x=-\ln 2(x=-0.693) \quad\) A1
considering one of \(\lim _{x \rightarrow-\infty} f(x)\) or \(\lim _{x \rightarrow+\infty} f(x) \quad\) M1
\(\lim _{x \rightarrow-\infty} f(x)=-2 \Rightarrow y=-2\)
A1
\(\lim _{x \rightarrow+\infty} f(x)=-\frac{1}{2} \Rightarrow y=-\frac{1}{2}\)
Note: Award AOAO for \(y=-2\) and \(y=-\frac{1}{2}\) stated without any justification.
(c) \(f^{\prime}(x)=\frac{-\mathrm{e}^{x}\left(2 \mathrm{e}^{x}-1\right)-2 \mathrm{e}^{x}\left(2-\mathrm{e}^{x}\right)}{\left(2 \mathrm{e}^{x}-1\right)^{2}}\)
\[
=-\frac{3 e^{x}}{\left(2 e^{x}-1\right)^{2}}
\]
(d) \(\quad f^{\prime}(x)<0\) (for all \(\left.x \in D\right) \Rightarrow f\) is (strictly) decreasing R1

Note: Award \(\boldsymbol{R 1}\) for a statement such as \(f^{\prime}(x) \neq 0\) and so the graph of \(f\) has no turning points.
one branch is above the upper horizontal asymptote and the other branch is below the lower horizontal asymptote
\(f\) has an inverse
\(-\infty<x<-2 \cup-\frac{1}{2}<x<\infty\)
A2

Note: Award A2 if the domain of the inverse is seen in either part (d) or in part (e).

Question 10 continued
(e) \(\quad x=\frac{2-\mathrm{e}^{y}}{2 \mathrm{e}^{y}-1}\)

Note: Award \(\boldsymbol{M 1}\) for interchanging \(x\) and \(y\) (can be done at a later stage).
\[
\begin{array}{ll}
2 x \mathrm{e}^{y}-x=2-\mathrm{e}^{y} & \text { M1 } \\
\mathrm{e}^{y}(2 x+1)=x+2 & \text { A1 } \\
f^{-1}(x)=\ln \left(\frac{x+2}{2 x+1}\right)\left(f^{-1}(x)=\ln (x+2)-\ln (2 x+1)\right) & \text { A1 }
\end{array}
\]
[4 marks]
(f) use of \(V=\pi \int_{a}^{b} x^{2} d y\)
\[
=\pi \int_{0}^{1}\left(\ln \left(\frac{y+2}{2 y+1}\right)\right)^{2} d y
\]
(M1)
(A1)(A1)

Note: Award (A1) for the correct integrand and (A1) for the limits.
\[
=0.331
\]

A1
[4 marks]
11. (a) \(\mathrm{P}(X=3)=(0.1)^{3}\)

A1
\(=0.001\)
AG
\(\mathrm{P}(X=4)=\mathrm{P}(V V \bar{V} V)+\mathrm{P}(V \bar{V} V V)+\mathrm{P}(\bar{V} V V V)\) (M1)
\(=3 \times(0.1)^{3} \times 0.9\) (or equivalent)
A1
\(=0.0027\)
AG
[3 marks]
(b) METHOD 1
attempting to form equations in \(a\) and \(b\)
M1
\(\frac{9+3 a+b}{2000}=\frac{1}{1000}(3 a+b=-7)\)
\(\frac{16+4 a+b}{2000} \times \frac{9}{10}=\frac{27}{10000}(4 a+b=-10)\)
A1
attempting to solve simultaneously
(M1)
\(a=-3, b=2\)

\section*{METHOD 2}
\[
\begin{aligned}
& \mathrm{P}(X=n)=\binom{n-1}{2} \times 0.1^{3} \times 0.9^{n-3} \\
& =\frac{(n-1)(n-2)}{2000} \times 0.9^{n-3} \\
& =\frac{n^{2}-3 n+2}{2000} \times 0.9^{n-3} \\
& a=-3, b=2
\end{aligned} \quad \text { (M1)A1 }
\]

Note: Condone the absence of \(0.9^{n-3}\) in the determination of the values of \(a\) and \(b\).

Question 11 continued

\section*{(c) METHOD 1}

\section*{EITHER}
\[
\begin{equation*}
\mathrm{P}(X=n)=\frac{n^{2}-3 n+2}{2000} \times 0.9^{n-3} \tag{M1}
\end{equation*}
\]

OR
\[
\begin{equation*}
\mathrm{P}(X=n)=\binom{n-1}{2} \times 0.1^{3} \times 0.9^{n-3} \tag{M1}
\end{equation*}
\]

\section*{THEN}
\[
\begin{aligned}
& =\frac{(n-1)(n-2)}{2000} \times 0.9^{n-3} \\
& \mathrm{P}(X=n-1)=\frac{(n-2)(n-3)}{2000} \times 0.9^{n-4} \\
& \frac{\mathrm{P}(X=n)}{\mathrm{P}(X=n-1)}=\frac{(n-1)(n-2)}{(n-2)(n-3)} \times 0.9 \\
& =\frac{0.9(n-1)}{n-3}
\end{aligned}
\]
A1
A1

\section*{METHOD 2}
\[
\begin{aligned}
& \frac{\mathrm{P}(X=n)}{\mathrm{P}(X=n-1)}=\frac{\frac{n^{2}-3 n+2}{2000} \times 0.9^{n-3}}{\frac{(n-1)^{2}-3(n-1)+2}{2000} \times 0.9^{n-4}} \\
& =\frac{0.9\left(n^{2}-3 n+2\right)}{\left(n^{2}-5 n+6\right)}
\end{aligned}
\]

Note: Award A1 for a correct numerator and \(\boldsymbol{A} \mathbf{1}\) for a correct denominator.
\[
\begin{aligned}
& =\frac{0.9(n-1)(n-2)}{(n-2)(n-3)} \\
& =\frac{0.9(n-1)}{n-3}
\end{aligned}
\]

Question 11 continued
(d) (i) attempting to solve \(\frac{0.9(n-1)}{n-3}=1\) for \(n\)
\(n=21\)
\(\frac{0.9(n-1)}{n-3}<1 \Rightarrow n>21\)
\(\frac{0.9(n-1)}{n-3}>1 \Rightarrow n<21\) R1
\(X\) has two modes
Note: Award R1R1 for a clearly labelled graphical representation of the two inequalities (using \(\left.\frac{\mathrm{P}(X=n)}{\mathrm{P}(X=n-1)}\right)\).
(ii) the modes are 20 and 21

A1
[5 marks]
(e) METHOD 1
\(Y \sim B(x, 0.1)\)
attempting to solve \(\mathrm{P}(Y \geq 3)>0.5\) (or equivalent eg \(1-\mathrm{P}(Y \leq 2)>0.5\) ) for \(x\) (M1)
Note: Award (M1) for attempting to solve an equality (obtaining \(x=26.4\) ).
\(x=27\)
METHOD 2
\(\sum_{n=0}^{x} \mathrm{P}(X=n)>0.5\)
attempting to solve for \(x\)
\(x=27\)

A1
[3 marks]
12. (a) \(A_{1}=1.004 x\)

A1
\(A_{2}=1.004(1.004 x+x)\)
\(=1.004^{2} x+1.004 x\) AG

Note: Accept an argument in words for example, first deposit has been in for two months and second deposit has been in for one month.
[2 marks]
(b) (i) \(A_{3}=1.004\left(1.004^{2} x+1.004 x+x\right)=1.004^{3} x+1.004^{2} x+1.004 x\)
(M1)A1
\(A_{4}=1.004^{4} x+1.004^{3} x+1.004^{2} x+1.004 x\)
A1
(ii) \(A_{120}=\left(1.004^{120}+1.004^{119}+\ldots+1.004\right) x\)
\[
\begin{aligned}
& =\frac{1.004^{120}-1}{1.004-1} \times 1.004 x \\
& =251\left(1.004^{120}-1\right) x
\end{aligned}
\]
(c) \(\quad A_{216}=251\left(1.004^{216}-1\right) x\left(=x \sum_{t=1}^{216} 1.004^{t}\right)\)
(d) \(251\left(1.004^{216}-1\right) x=20000 \Rightarrow x=58.22 \ldots\)
(A1)(M1)(A1)
Note: Award (A1) for \(251\left(1.004^{216}-1\right) x>20000\), (M1) for attempting to solve and (A1) for \(x>58.22 \ldots\)
\(x=59\)
Note: Accept \(x=58\). Accept \(x \geq 59\).
(e) \(\quad r=1.004^{12}(=1.049 \ldots)\)
(M1)
\[
15000 r^{n}-1000 \frac{r^{n}-1}{r-1}=0 \Rightarrow n=27.8 \ldots
\]
(A1)(M1)(A1)
Note: Award (A1) for the equation (with their value of \(r\) ), (M1) for attempting to solve for \(n\) and (A1) for \(n=27.8 \ldots\).
\(n=28\)
Note: Accept \(n=27\).

\title{
Markscheme
}

\section*{May 2016}

\section*{Mathematics}

\section*{Higher level}

\section*{Paper 2}

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\(\boldsymbol{A} \quad\) Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
\(\boldsymbol{N} \quad\) Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{General}

Mark according to \(\mathrm{RM}^{\text {TM }}\) Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2016". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A O}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by \(\mathrm{RM}^{\mathrm{TM}}\) Assessor.

\section*{Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award M0 followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct \(\boldsymbol{F T}\) working shown, award \(\boldsymbol{F T}\) marks as appropriate but do not award the final \(\boldsymbol{A 1}\) in that part.

\section*{Examples}
\begin{tabular}{|l|l|l|l|}
\hline & Correct answer seen & Further working seen & Action \\
\hline 1. & \(8 \sqrt{2}\) & \begin{tabular}{l}
\(5.65685 \ldots\) \\
(incorrect decimal value)
\end{tabular} & \begin{tabular}{l} 
Award the final \(\boldsymbol{A 1}\) \\
(ignore the further working)
\end{tabular} \\
\hline 2. & \(\frac{1}{4} \sin 4 x\) & \(\sin x\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline 3. & \(\log a-\log b\) & \(\log (a-b)\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline
\end{tabular}

\section*{3 N marks}

Award \(\mathbf{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{6 \\ Misread}

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{\(7 \quad\) Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{8 Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
\]

Award \(\boldsymbol{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 \\ Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, Tl-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

\section*{Section A}
1. (a) \(\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}}=\left(\begin{array}{c}4 \\ -4 \\ -2\end{array}\right)\)
(M1)A1

Note: M1A0 can be awarded for attempt at a correct method shown, or correct method implied by the digits \(4,4,2\) found in the correct order.
(b) \(\quad\) area \(=\frac{1}{2} \sqrt{4^{2}+4^{2}+2^{2}}=3\)

\section*{M1A1}
[2 marks]
Total [4 marks]
2. (a) \((x+2)^{2}-6\)
(b) \((g \circ f)(x)=(x+2)^{2}-6\)
\[
\Rightarrow g(x)=x^{2}-6
\]
3. (a) \(v=\frac{\mathrm{d} s}{\mathrm{~d} t}=\frac{\mathrm{e}^{-t}}{2-\mathrm{e}^{-t}}\left(=\frac{1}{2 \mathrm{e}^{t}-1}\right.\) or \(\left.-1+\frac{2}{2-\mathrm{e}^{-t}}\right)\)
(b) \(\quad a=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=\frac{-\mathrm{e}^{-t}\left(2-\mathrm{e}^{-t}\right)-\mathrm{e}^{-t} \times \mathrm{e}^{-t}}{\left(2-\mathrm{e}^{-t}\right)^{2}}\left(=\frac{-2 \mathrm{e}^{-t}}{\left(2-\mathrm{e}^{-t}\right)^{2}}\right)\)

M1A1

Note:If simplified in part (a) award (M1)A1 for \(a=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=\frac{-2 \mathrm{e}^{t}}{\left(2 \mathrm{e}^{t}-1\right)^{2}}\).
Note: Award M1A1 for \(a=-\mathrm{e}^{-t}\left(2-\mathrm{e}^{-t}\right)^{-2}\left(\mathrm{e}^{-t}\right)-\mathrm{e}^{-t}\left(2-\mathrm{e}^{-t}\right)^{-1}\).
[2 marks]
(c) \(\quad a=-2\left(\mathrm{~ms}^{-2}\right)\)

A1
[1 mark]
4. attempting to use the area of sector formula (including for a semicircle)

M1
semi-circle \(\frac{1}{2} \pi \times 5^{2}=\frac{25 \pi}{2}=39.26990817 \ldots\)
angle in smaller sector is \(\pi-\theta\)
area of sector \(=\frac{1}{2} \times 2^{2} \times(\pi-\theta)\)
attempt to total a sum of areas of regions to 44
\(2(\pi-\theta)=44-39.26990817 \ldots\)
\(\theta=0.777\left(=\frac{29 \pi}{4}-22\right)\)
Note: Award all marks except the final A1 for correct working in degrees.
Note: Attempt to solve with goat inside triangle should lead to nonsense answer and so should only receive a maximum of the two \(\boldsymbol{M}\) marks.
5. (a) \(f(-x)=\frac{3(-x)^{2}+10}{(-x)^{2}-4}\)
\(f(x)=f(-x)\)
hence this is an even function

Note: Award A1R1 for the statement, all the powers are even hence \(f(x)=f(-x)\).
Note: Just stating all the powers are even is AORO.
Note: Do not accept arguments based on the symmetry of the graph.
(b) (i)

correct shape in 3 parts which are asymptotic and symmetrical

Question 5 continued
(ii) \(\quad f(x)>3\)
A1
\(f(x) \leq-2.5\)
A1
6. let the heights of the students be \(X\)
\(\mathrm{P}(X<1.62)=0.4, \mathrm{P}(X>1.79)=0.25\)
Note: Award \(\boldsymbol{M 1}\) for either of the probabilities above.
\(\mathrm{P}\left(Z<\frac{1.62-\mu}{\sigma}\right)=0.4, \mathrm{P}\left(Z<\frac{1.79-\mu}{\sigma}\right)=0.75\)
Note: Award \(\boldsymbol{M 1}\) for either of the expressions above.
\(\frac{1.62-\mu}{\sigma}=-0.2533 \ldots, \frac{1.79-\mu}{\sigma}=0.6744 \ldots\)

\section*{M1A1}

Note: A1 for both values correct.
\(\mu=1.67(\mathrm{~m}), \sigma=0.183(\mathrm{~m})\)
Note: Accept answers that round to 1.7(m) and 0.18(m).
Note: Accept answers in centimetres.
7. (a) \(a=420.65\)

A1
\(390.94=a \times 2^{b} \quad\) M1
\(2^{b}=\frac{390.94}{420.65}=0.929 \ldots\)
A1
\[
b=-0.10567
\]
(b) \(\quad N=8 \quad T=337.67\)

A1
Note: Accept 5sf answers between 337.44 and 337.67.
[1 mark]
(c) \(\quad N=8\) Percentage error \(1.29 \%\)

A1
Note: Accept negative values of the above.

Question 7 continued
(d) likely not to be a good fit for larger values of \(N\) likely to be quite a good fit for values close to 8
8. \(a^{2}+4 a-b=2\)

\section*{M1A1}
M1A1

\section*{OR}
\(b=a^{2}+4 a-2\)
M1
\(=(a+2)^{2}-6\)

\section*{THEN}
\(b \geq-6\)
hence smallest possible value for \(b\) is -6
A1
[5 marks]
9. (a) other two roots are \(c-\mathrm{i}\) and \(2-\mathrm{i} d\)

A1
[1 mark]

\section*{(b) METHOD 1}
use of sum of roots
\(2 c+4=10\)
\(c=3\)
A1
use of product of roots M1
product is \((c+\mathrm{i})(c-\mathrm{i})(2+\mathrm{i} d)(2-\mathrm{i} d) \quad\) A1
\(\left(c^{2}+1\right)\left(4+d^{2}\right)\left[=10\left(4+d^{2}\right)\right]=50\)
A1
Note: The line above can be awarded if they have used their value of \(c\).
\[
d=1
\]

Question 9 continued

\section*{METHOD 2}
\[
\begin{aligned}
& z^{4}-10 z^{3}+a z^{2}+b z+50=\left(z^{2}-2 c z+c^{2}+1\right)\left(z^{2}-4 z+4+d^{2}\right) \\
& \text { compare constant terms or coefficients of } z^{3} \\
& 4+2 c=10 \\
& \left(c^{2}+1\right)\left(4+d^{2}\right)=50 \\
& c=3, d=1
\end{aligned}
\]

\section*{Total [7 marks]}
10. \(\mathrm{P}(3\) in the first hour \()=\frac{\lambda^{3} e^{-\lambda}}{3!}\)
number to arrive in the four hours follows \(\operatorname{Po}(4 \lambda)\)
\(\mathrm{P}(5\) arrive in total \()=\frac{(4 \lambda)^{5} e^{-4 \lambda}}{5!}\)
attempt to find \(\mathrm{P}(2\) arrive in the next three hours)
\(=\frac{(3 \lambda)^{2} e^{-3 \lambda}}{2!}\)
use of conditional probability formula
\(\mathrm{P}(3\) in the first hour given 5 in total \()=\frac{\frac{\lambda^{3} e^{-\lambda}}{3!} \times \frac{(3 \lambda)^{2} e^{-3 \lambda}}{2!}}{\frac{(4 \lambda)^{5} e^{-4 \lambda}}{5!}}\)

\section*{Section B}
11. (a) valid method eg, sketch of curve or critical values found
\(x<-2.24, x>2.24\),
\(-1<x<0.8\)
A1
Note: Award M1A1AO for correct intervals but with inclusive inequalities.
(b) (i) \((1.67,-5.14),(-1.74,-3.71)\)

A1A1
Note: Award A1A0 for any two correct terms.
(ii) \(\quad f^{\prime}(x)=4 x^{3}+0.6 x^{2}-11.6 x-1\)
\(f^{\prime \prime}(x)=12 x^{2}+1.2 x-11.6=0\)
\(-1.03,0.934\)
A1A1
Note: M1 should be awarded if graphical method to find zeros of \(f^{\prime \prime}(x)\) or turning points of \(f^{\prime}(x)\) is shown.
(ii)
\((-5.14,1.67)\)


M1A1A1
Note: Award M1 for reflection of their \(y=f(x)\) in the line \(y=x\) provided their \(f\) is one-one.
\(\boldsymbol{A 1}\) for ( 0,4 ), (4,0) (Accept axis intercept values) \(\boldsymbol{A} 1\) for the other two sets of coordinates of other end points
(iii) \(\quad x=f(1)\)

M1
\(=-1.6\)

Question 11 continued
(d) (i) \(y=2 \sin (x-1)-3\)
\(x=2 \sin (y-1)-3\)
\(\left(g^{-1}(x)=\right) \arcsin \left(\frac{x+3}{2}\right)+1\)
A1
\(-5 \leq x \leq-1\)
A1A1
Note: Award A1 for -5 and -1 , and \(\boldsymbol{A 1}\) for correct inequalities if numbers are reasonable.
(ii) \(\quad f^{-1}(g(x))<1\)
\(g(x)>-1.6\)
\(x>g^{-1}(-1.6)=1.78\)
Note: Accept \(=\) in the above.
\(1.78<x \leq \frac{\pi}{2}+1\)
A1A1

Note: A1 for \(x>1.78\) (allow \(\geq\) ) and \(\boldsymbol{A 1}\) for \(x \leq \frac{\pi}{2}+1\).
12. (a) \(a^{2}=5-1\)
(b) \(\quad 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-\left(2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y\right)=-\mathrm{e}^{x}\)

Note: Award \(\boldsymbol{M 1}\) for an attempt at implicit differentiation, \(\boldsymbol{A} 1\) for each part.
\[
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y-\mathrm{e}^{x}}{2(y-x)}
\]
(c) at \(x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3}{4}\)
finding the negative reciprocal of a number
gradient of normal is \(-\frac{4}{3}\)
\[
y=-\frac{4}{3} x+2
\]

Question 12 continued
(d) substituting linear expression
\(\left(-\frac{4}{x}+2\right)^{2}-2 x\left(-\frac{4}{3} x+2\right)+\mathrm{e}^{x}-5=0\) or equivalent
\(x=1.56\)
(M1)A1
\(y=-0.0779\)
A1
(1.56, - 0.0779)
(e) \(\frac{\mathrm{d} v}{\mathrm{~d} x}=3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}\)

\section*{M1A1}

A1
[3 marks]

\section*{Total [16 marks]}
13. (a) \(\mathrm{E}(X)=1 \times \frac{1}{6}+2 \times \frac{2}{6}+3 \times \frac{3}{6}=\frac{14}{6}\left(=\frac{7}{3}=2.33\right)\)
(M1)A1
[2 marks]
(b) (i) \(3 \times \mathrm{P}(113)+3 \times \mathrm{P}(122)\)
\[
3 \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{2}+3 \times \frac{1}{6} \times \frac{1}{3} \times \frac{1}{3}=\frac{7}{72}(=0.0972)
\]

Note: Award M1 for attempt to find at least four of the cases.
(ii) recognising 111 as a possibility (implied by \(\frac{1}{216}\) )
recognising 112 and 113 as possibilities (implied by \(\frac{2}{216}\) and \(\frac{3}{216}\) )
seeing the three arrangements of 112 and 113
\[
\begin{aligned}
& \mathrm{P}(111)+3 \times \mathrm{P}(112)+3 \times \mathrm{P}(113) \\
& =\frac{1}{216}+\frac{6}{216}+\frac{9}{216}=\frac{16}{216}\left(=\frac{2}{27}=0.0741\right)
\end{aligned}
\]

\section*{Question 13 continued}
(c) let the number of twos be \(X, X \sim B\left(10, \frac{1}{3}\right)\)
(M1)
(M1)A1
[3 marks]
(d) let \(n\) be the number of balls drawn
\(\mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0)\)
M1
\(=1-\left(\frac{2}{3}\right)^{n}>0.95\)
\(\left(\frac{2}{3}\right)^{n}<0.05\)
\(n=8\)
A1
[3 marks]
(e) \(8 p_{1}=4.8 \Rightarrow p_{1}=\frac{3}{5}\)
(M1)A1
\(8 p_{2}\left(1-p_{2}\right)=1.5\)
(M1)
\(p_{2}^{2}-p_{2}-0.1875=0\)
\(p_{2}=\frac{1}{4}\left(\right.\) or \(\left.\frac{3}{4}\right)\)
(M1)
A1
reject \(\frac{3}{4}\) as it gives a total greater than one
\(\mathrm{P}(1\) or 2\()=\frac{17}{20}\) or \(\mathrm{P}(3)=\frac{3}{20}\)
(A1)
recognising LCM as 20 so min total number is 20
the least possible number of 3 's is 3

\title{
Markscheme
}

\section*{May 2016}

\section*{Mathematics}

\section*{Higher level}

\section*{Paper 2}

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\(\boldsymbol{A} \quad\) Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
\(\boldsymbol{N} \quad\) Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{General}

Mark according to \(\mathrm{RM}^{\text {TM }}\) Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2016". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A O}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by \(\mathrm{RM}^{\mathrm{TM}}\) Assessor.

\section*{Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award M0 followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct \(\boldsymbol{F T}\) working shown, award \(\boldsymbol{F T}\) marks as appropriate but do not award the final \(\boldsymbol{A 1}\) in that part.

\section*{Examples}
\begin{tabular}{|l|l|l|l|}
\hline & Correct answer seen & Further working seen & Action \\
\hline 1. & \(8 \sqrt{2}\) & \begin{tabular}{l}
\(5.65685 \ldots\) \\
(incorrect decimal value)
\end{tabular} & \begin{tabular}{l} 
Award the final \(\boldsymbol{A 1}\) \\
(ignore the further working)
\end{tabular} \\
\hline 2. & \(\frac{1}{4} \sin 4 x\) & \(\sin x\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline 3. & \(\log a-\log b\) & \(\log (a-b)\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline
\end{tabular}

\section*{\(N\) marks}

Award \(\mathbf{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(M\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{6 \\ Misread}

If a candidate incorrectly copies information from the question, this is a misread (MR).
A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(M R\) leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{8 Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).
Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
\]

Award \(\boldsymbol{A} 1\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 \\ Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, Tl-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

\section*{Section A}
1. \(\mathrm{AC}^{2}=7.8^{2}+10.4^{2}\)
(M1)
\(\mathrm{AC}=13\)
(A1)
use of cosine rule eg, \(\cos (\mathrm{ABC})=\frac{6.5^{2}+9.1^{2}-13^{2}}{2(6.5)(9.1)}\) M1
\(\mathrm{ABC}=111.804 \ldots(=1.95134 \ldots)\)
(A1)
\(=112^{\circ}\)
2. (a) \(\mathrm{P}(0 \leq X \leq 2)=0.242\)
(M1)A1
[2 marks]
(b) METHOD 1
\(\mathrm{P}(|X|>1)=\mathrm{P}(X<-1)+\mathrm{P}(X>1)\)
(M1)
\(=0.02275 \ldots+0.84134 \ldots\)
(A1)
\(=0.864\)
A1

\section*{METHOD 2}
\(\mathrm{P}(|X|>1)=1-\mathrm{P}(-1<X<1)\)
\(=1-0.13590 \ldots\)
\(=0.864\)
(c) \(c=3.30\)
(M1)
(A1)
A1
[3 marks]
(M1)A1

\section*{3. METHOD 1}
\(\ln \frac{y}{x}=2 \Rightarrow-\ln x+\ln y=2\)
\(\ln x^{2}+\ln y^{3}=7 \Rightarrow 2 \ln x+3 \ln y=7\)
(M1)A1
attempting to solve for \(x\) and \(y\) (to obtain \(\ln x=\frac{1}{5}\) and \(\ln y=\frac{11}{5}\) )
\(x=\mathrm{e}^{\frac{1}{5}}(=1.22)\)
\(y=\mathrm{e}^{\frac{11}{5}}(=9.03)\)

\section*{METHOD 2}
\(\ln \frac{y}{x}=2 \Rightarrow y=\mathrm{e}^{2} x\)
A1
\(\ln x^{2}+\ln \mathrm{e}^{6} x^{3}=7\)
attempting to solve for \(x\)
\(x=\mathrm{e}^{\frac{1}{5}}(=1.22)\)
\(y=\mathrm{e}^{\frac{11}{5}}(=9.03)\)

\section*{METHOD 3}
\(\ln \frac{y}{x}=2 \Rightarrow y=\mathrm{e}^{2} x\)
\(\ln x^{2}+\ln y^{3}=7 \Rightarrow \ln \left(x^{2} y^{3}\right)=7\)
\(x^{2} y^{3}=\mathrm{e}^{7}\)
substituting \(y=\mathrm{e}^{2} x\) into \(x^{2} y^{3}=\mathrm{e}^{7}\) (to obtain \(\mathrm{e}^{6} x^{5}=\mathrm{e}^{7}\) )
\(x=\mathrm{e}^{\frac{1}{5}}(=1.22)\) A1
\(y=\mathrm{e}^{\frac{11}{5}}(=9.03)\)
4. \(a r+a r^{2}=96\)

A1
Note: Award A1 for any valid equation involving \(a\) and \(r\), eg, \(\frac{a\left(1-r^{3}\right)}{1-r}-a=96\).
\(\frac{a}{1-r}=500\)

\section*{EITHER}
attempting to eliminate \(a\) to obtain \(500 r\left(1-r^{2}\right)=96\) (or equivalent in unsimplified form)

\section*{OR}
attempting to obtain \(a=\frac{96}{r+r^{2}}\) and \(a=500(1-r)\)

\section*{THEN}
attempting to solve for \(r\)
\(r=0.2\left(=\frac{1}{5}\right)\) or \(r=0.885\left(=\frac{\sqrt{97}-1}{10}\right)\)
5. \(x=\sqrt{\frac{1-y}{1+y}}\)

Note: Award \(\boldsymbol{M} \mathbf{1}\) for interchanging \(x\) and \(y\) (can be done at a later stage).
\(x^{2}=\frac{1-y}{1+y}\)
\(x^{2}+x^{2} y=1-y\)
Note: Award \(\boldsymbol{M 1}\) for attempting to make \(y\) the subject.
\(y\left(1+x^{2}\right)=1-x^{2}\)
\(f^{-1}(x)=\frac{1-x^{2}}{1+x^{2}}, x \geq 0\)
Note: Award \(\boldsymbol{A} 1\) only if \(f^{-1}(x)\) is seen. Award \(\boldsymbol{A 1}\) for the domain.
the range of \(f^{-1}\) is \(-1<f^{-1}(x) \leq 1\)
A1
Note: Accept correct alternative notation eg. \(-1<y \leq 1\).
[6 marks]
6. (a) \(X \sim \operatorname{Po}(0.5)\)
(A1)
\(\mathrm{P}(X \geq 1)=0.393\left(=1-\mathrm{e}^{-0.5}\right)\)
(M1)A1
[3 marks]
(b) \(\mathrm{P}(X=0)=0.607\)..
(A1)
\(\mathrm{E}(P)=(0.607 \ldots \times 5)-(0.393 \ldots \times 3)\)
(M1) the expected profit is \(\$ 1.85\) per glass sheet
(c) \(Y \sim \operatorname{Po}(2)\)
(M1)
A1
[2 marks]
Total [8 marks]
7.
(a) \(3 x^{2}+3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=4\left(y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)\)

M1A1

A1

AG
[3 marks]
(b) \(\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow 4 y-3 x^{2}=0\)
substituting \(x=k\) and \(y=\frac{3}{4} k^{2}\) into \(x^{3}+y^{3}=4 x y\) M1
\(k^{3}+\frac{27}{64} k^{6}=3 k^{3}\) A1
attempting to solve \(k^{3}+\frac{27}{64} k^{6}=3 k^{3}\) for \(k\)
\[
\begin{equation*}
k=1.68\left(=\frac{4}{3} \sqrt[3]{2}\right) \tag{M1}
\end{equation*}
\]

Note: Condone substituting \(y=\frac{3}{4} x^{2}\) into \(x^{3}+y^{3}=4 x y\) and solving for \(x\).
8. (a) \(\frac{\mathrm{d} v}{\mathrm{~d} s}=\frac{\cos s}{\sin ^{2} s+1}\)
\[
\begin{aligned}
& a=v \frac{\mathrm{~d} v}{\mathrm{~d} s} \\
& a=\frac{\arctan (\sin s) \cos s}{\sin ^{2} s+1}
\end{aligned}
\]

Question 8 continued
(b) EITHER

(M1)
OR

(M1)

A1
[2 marks]

\section*{Total [6 marks]}
9. (a) (i) METHOD 1
\[
\begin{array}{rlrl}
|\overrightarrow{\mathrm{OC}}|^{2} & =\overrightarrow{\mathrm{OC} \cdot \mathrm{OC}} \\
& =(\boldsymbol{a}+\boldsymbol{b}) \cdot(\boldsymbol{a}+\boldsymbol{b}) & & \boldsymbol{A 1} \\
& =\boldsymbol{a} \cdot \boldsymbol{a}+\boldsymbol{a} \cdot \boldsymbol{b}+\boldsymbol{b} \cdot \boldsymbol{a}+\boldsymbol{b} \cdot \boldsymbol{b} & \boldsymbol{A 1} \\
& =|\boldsymbol{a}|^{2}+2 \boldsymbol{a} \cdot \boldsymbol{b}+|\boldsymbol{b}|^{2} & \boldsymbol{A G}
\end{array}
\]
continued...

Question 9 continued

\section*{METHOD 2}
\[
\begin{array}{ll}
|\overrightarrow{\mathrm{OC}}|^{2}=|\overrightarrow{\mathrm{OA}}|^{2}+|\overrightarrow{\mathrm{OB}}|^{2}-2|\overrightarrow{\mathrm{OA}}||\overrightarrow{\mathrm{OB}}| \cos (\mathrm{OAC}) & \boldsymbol{A} 1 \\
|\overrightarrow{\mathrm{OA}}||\overrightarrow{\mathrm{OB}}| \cos (\mathrm{OAC})=-(\boldsymbol{a} \cdot \boldsymbol{b}) & \boldsymbol{A 1} \\
|\overrightarrow{\mathrm{OC}}|^{2}=|\boldsymbol{a}|^{2}+2 \boldsymbol{a} \cdot \boldsymbol{b}+|\boldsymbol{b}|^{2} & \boldsymbol{A G}
\end{array}
\]

\section*{(ii) METHOD 1}
\[
\begin{aligned}
|\overrightarrow{\mathrm{AB}}|^{2} & =\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AB}} \\
& =(\boldsymbol{b}-\boldsymbol{a}) \cdot(\boldsymbol{b}-\boldsymbol{a}) \\
& =\boldsymbol{b} \cdot \boldsymbol{b}-\boldsymbol{b} \cdot \boldsymbol{a}-\boldsymbol{a} \cdot \boldsymbol{b} \\
& =|\boldsymbol{a}|^{2}-2 \boldsymbol{a} \cdot \boldsymbol{b}+|\boldsymbol{b}|^{2}
\end{aligned}
\]
A1
\[
=b \cdot b-b \cdot a-a \cdot b+a \cdot a
\]

\section*{METHOD 2}
\[
\begin{aligned}
& |\overrightarrow{\mathrm{AB}}|^{2}=|\overrightarrow{\mathrm{AC}}|^{2}+|\overrightarrow{\mathrm{BC}}|^{2}-2|\overrightarrow{\mathrm{AC}} \| \overrightarrow{\mathrm{BC}}| \cos (\mathrm{ACB}) \\
& |\overrightarrow{\mathrm{AC}}||\overrightarrow{\mathrm{BC}}| \cos (\mathrm{ACB})=\boldsymbol{a} \cdot \boldsymbol{b} \\
& |\overrightarrow{\mathrm{AB}}|^{2}=|\boldsymbol{a}|^{2}-2 \boldsymbol{a} \cdot \boldsymbol{b}+|\boldsymbol{b}|^{2}
\end{aligned}
\]
(b) \(\quad|\overrightarrow{\mathrm{OC}}|=|\overrightarrow{\mathrm{AB}}| \Rightarrow|\overrightarrow{\mathrm{OC}}|^{2}=|\overrightarrow{\mathrm{AB}}|^{2} \Rightarrow|\boldsymbol{a}|^{2}+2 \boldsymbol{a} \cdot \boldsymbol{b}+|\boldsymbol{b}|^{2}=|\boldsymbol{a}|^{2}-2 \boldsymbol{a} \cdot \boldsymbol{b}+|\boldsymbol{b}|^{2} \quad \boldsymbol{R 1}\) (M1)

Note: Award \(\boldsymbol{R} \mathbf{1}\) for \(|\overrightarrow{\mathrm{OC}}|=|\overrightarrow{\mathrm{AB}}| \Rightarrow|\overrightarrow{\mathrm{OC}}|^{2}=|\overrightarrow{\mathrm{AB}}|^{2}\) and (M1) for \(|\boldsymbol{a}|^{2}+2 \boldsymbol{a} \cdot \boldsymbol{b}+|\boldsymbol{b}|^{2}=|\boldsymbol{a}|^{2}-2 \boldsymbol{a} \cdot \boldsymbol{b}+|\boldsymbol{b}|^{2}\).
\(\boldsymbol{a} \cdot \boldsymbol{b}=0\)
A1
hence OACB is a rectangle ( \(\boldsymbol{a}\) and \(\boldsymbol{b}\) both non-zero)
with adjacent sides at right angles
R1
Note: Award R1(M1)A0R1 if the dot product has not been used.

\section*{Section B}
10.

(a) two enclosed regions ( \(0 \leq t \leq \frac{\pi}{2}\) and \(\frac{\pi}{2} \leq t \leq \pi\) ) bounded by the curve and
the \(t\)-axis

A1
correct non-symmetrical shape for \(0 \leq t \leq \frac{\pi}{2}\) and \(\frac{\pi}{2}<\) mode of \(T<\pi\) clearly apparent
(b) \(\quad\) mode \(=2.46\)
(c) \(\mathrm{E}(T)=\frac{1}{\pi} \int_{0}^{\pi} t^{2}|\sin 2 t| \mathrm{d} t\)
\(=2.04\)

A1
A1
[2 marks]
(M1)
A1
[2 marks]
continued...

Question 10 continued
(d) EITHER
\(\operatorname{Var}(T)=\int_{0}^{\pi}(t-2.03788 \ldots)^{2}\left(\frac{t|\sin 2 t|}{\pi}\right) \mathrm{d} t\)
(M1)(A1)

OR
\(\operatorname{Var}(T)=\int_{0}^{\pi} t^{2}\left(\frac{t|\sin 2 t|}{\pi}\right) \mathrm{d} t-(2.03788 \ldots)^{2}\)

\section*{THEN}
\(\operatorname{Var}(T)=0.516\)
A1
[3 marks]
(e) \(\frac{1}{\pi} \int_{2.03788 . . .}^{2.456590 \ldots} t|\sin 2 t| \mathrm{d} t=0.285\)

\section*{(M1)A1}
[2 marks]
(f) (i) attempting integration by parts
\[
\begin{aligned}
& \left(u=t, \mathrm{~d} u=\mathrm{d} t, \mathrm{~d} v=\sin 2 t \mathrm{~d} t \text { and } v=-\frac{1}{2} \cos 2 t\right) \\
& \frac{1}{\pi}\left[t\left(-\frac{1}{2} \cos 2 t\right)\right]_{0}^{T}-\frac{1}{\pi} \int_{0}^{T}\left(-\frac{1}{2} \cos 2 t\right) \mathrm{d} t
\end{aligned}
\]

Note: Award \(\mathbf{A 1}\) if the limits are not included.
\[
\begin{equation*}
=\frac{\sin 2 T}{4 \pi}-\frac{T \cos 2 T}{2 \pi} \tag{A1}
\end{equation*}
\]
(ii) \(\frac{\sin \pi}{4 \pi}-\frac{\frac{\pi}{2} \cos \pi}{2 \pi}=\frac{1}{4}\)
as \(\mathrm{P}\left(0 \leq T \leq \frac{\pi}{2}\right)=\frac{1}{4}\) (or equivalent), then the lower quartile of \(T\) is \(\frac{\pi}{2} \boldsymbol{R 1 A G}\)
[5 marks]
11. (a) EITHER
\[
\alpha=\arctan \frac{7}{10}-\arctan \frac{5}{10}\left(=34.992 \ldots-26.5651 \ldots .^{\circ}\right) \quad \text { (M1)(A1)(A1) }
\]

Note: Award (M1) for \(\alpha=\) APT \(-\mathrm{B} \hat{\mathrm{P}} \mathrm{C}\), (A1) for a correct A \(\mathrm{A} T\) and (A1) for a correct BPTT.

\section*{OR}
\(\alpha=\arctan 2-\arctan \frac{10}{7}\left(=63.434 \ldots .^{\circ}-55.008 \ldots .^{\circ}\right) \quad\) (M1)(A1)(A1)
Note: Award (M1) for \(\alpha=\) PBTT - PÂT, (A1) for a correct PBT and (A1) for a correct PÂT .
OR
\(\alpha=\arccos \left(\frac{125+149-4}{2 \times \sqrt{125} \times \sqrt{149}}\right)\)
(M1)(A1)(A1)

Note: Award (M1) for use of cosine rule, (A1) for a correct numerator and (A1) for a correct denominator.

\section*{THEN}
\(=8.43^{\circ}\)

A1
[4 marks]
continued...

Question 11 continued
(b) EITHER
\(\tan \alpha=\frac{\frac{7}{x}-\frac{5}{x}}{1+\left(\frac{7}{x}\right)\left(\frac{5}{x}\right)}\)
M1A1A1

Note: Award \(\boldsymbol{M} 1\) for use of \(\tan (A-B)\), A1 for a correct numerator and \(\boldsymbol{A 1}\) for a correct denominator.
\[
=\frac{\frac{2}{x}}{1+\frac{35}{x^{2}}}
\]

\section*{OR}
\[
\tan \alpha=\frac{\frac{x}{5}-\frac{x}{7}}{1+\left(\frac{x}{5}\right)\left(\frac{x}{7}\right)}
\]

M1A1A1

Note: Award \(\boldsymbol{M} 1\) for use of \(\tan (A-B)\), \(\boldsymbol{A} 1\) for a correct numerator and \(\boldsymbol{A} 1\) for a correct denominator.
\[
=\frac{\frac{2 x}{35}}{1+\frac{x^{2}}{35}}
\]

\section*{OR}
\[
\cos \alpha=\frac{x^{2}+35}{\sqrt{\left(x^{2}+25\right)\left(x^{2}+49\right)}}
\]

Note: Award \(\boldsymbol{M} \mathbf{1}\) for either use of the cosine rule or use of \(\cos (A-B)\).
\[
\begin{aligned}
& \sin \alpha=\frac{2 x}{\sqrt{\left(x^{2}+25\right)\left(x^{2}+49\right)}} \\
& \tan \alpha=\frac{\frac{2 x}{\sqrt{\left(x^{2}+25\right)\left(x^{2}+49\right)}}}{\frac{x^{2}+35}{\sqrt{\left(x^{2}+25\right)\left(x^{2}+49\right)}}}
\end{aligned}
\]

\section*{THEN}
\[
\tan \alpha=\frac{2 x}{x^{2}+35}
\]

Question 11 continued
(c) (i) \(\frac{\mathrm{d}}{\mathrm{d} x}(\tan \alpha)=\frac{2\left(x^{2}+35\right)-(2 x)(2 x)}{\left(x^{2}+35\right)^{2}}\left(=\frac{70-2 x^{2}}{\left(x^{2}+35\right)^{2}}\right)\)

M1A1A1

Note: Award \(\boldsymbol{M 1}\) for attempting product or quotient rule differentiation, A1 for a correct numerator and A1 for a correct denominator.
(ii) METHOD 1

\section*{EITHER}
\(\frac{\mathrm{d}}{\mathrm{d} x}(\tan \alpha)=0 \Rightarrow 70-2 x^{2}=0\)
\(x=\sqrt{35}(\mathrm{~m})(=5.9161 \ldots(\mathrm{~m}))\)
A1
\(\tan \alpha=\frac{1}{\sqrt{35}}(=0.16903 \ldots)\)
OR
attempting to locate the stationary point on the graph of
\(\tan \alpha=\frac{2 x}{x^{2}+35}\)
\(x=5.9161 \ldots(\mathrm{~m})(=\sqrt{35}(\mathrm{~m}))\)
\(\tan \alpha=0.16903 \ldots\left(=\frac{1}{\sqrt{35}}\right)\)

\section*{THEN}
\(\alpha=9.59^{\circ}\)
continued...

Question 11 continued

\section*{METHOD 2}

\section*{EITHER}
\(\alpha=\arctan \left(\frac{2 x}{x^{2}+35}\right) \Rightarrow \frac{\mathrm{d} \alpha}{\mathrm{d} x}=\frac{70-2 x^{2}}{\left(x^{2}+35\right)^{2}+4 x^{2}}\)
\(\frac{\mathrm{d} \alpha}{\mathrm{d} x}=0 \Rightarrow x=\sqrt{35}(\mathrm{~m})(=5.9161 \ldots(\mathrm{~m}))\)
OR
attempting to locate the stationary point on the graph of
\(\alpha=\arctan \left(\frac{2 x}{x^{2}+35}\right)\)
\(x=5.9161 \ldots(\mathrm{~m})(=\sqrt{35}(\mathrm{~m}))\)

\section*{THEN}
\[
\begin{aligned}
& \alpha=0.1674 \ldots\left(=\arctan \frac{1}{\sqrt{35}}\right) \\
& =9.59^{\circ}
\end{aligned}
\]
(iii) \(\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}(\tan \alpha)=\frac{\left(x^{2}+35\right)^{2}(-4 x)-(2)(2 x)\left(x^{2}+35\right)\left(70-2 x^{2}\right)}{\left(x^{2}+35\right)^{4}}\left(=\frac{4 x\left(x^{2}-105\right)}{\left(x^{2}+35\right)^{3}}\right)\)
substituting \(x=\sqrt{35}(=5.9161 \ldots)\) into \(\frac{\mathrm{d}^{2}}{\mathrm{dx}^{2}}(\tan \alpha)\)
\(\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}(\tan \alpha)<0(=-0.004829 \ldots)\) and so \(\alpha=9.59^{\circ}\) is the maximum value of \(\alpha\)

Question 11 continued
(d) attempting to solve \(\frac{2 x}{x^{2}+35} \geq \tan 7^{\circ}\)

Note: Award (M1) for attempting to solve \(\frac{2 x}{x^{2}+35}=\tan 7^{\circ}\).
\(x=2.55\) and \(x=13.7\)
\(2.55 \leq x \leq 13.7\) (m)
12. (a) (i) \(\frac{1}{4\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)-2\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)}\)
\(=\frac{1}{2\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)-\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}\)
\(=\frac{1}{\mathrm{e}^{x}+3 \mathrm{e}^{-x}}\)
\(=\frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}+3}\)
(M1)
(A1)

A1
(ii) \(\quad u=\mathrm{e}^{x} \Rightarrow \mathrm{~d} u=\mathrm{e}^{x} \mathrm{~d} x\)
\(\int \frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}+3} \mathrm{~d} x=\int \frac{1}{u^{2}+3} \mathrm{~d} u\)
(when \(x=0, u=1\) and when \(x=\ln 3, u=3\) )
\[
\begin{aligned}
& \int_{1}^{3} \frac{1}{u^{2}+3} \mathrm{~d} u=\left[\frac{1}{\sqrt{3}} \arctan \left(\frac{u}{\sqrt{3}}\right)\right]_{1}^{3} \\
& \left(=\left[\frac{1}{\sqrt{3}} \arctan \left(\frac{\mathrm{e}^{x}}{\sqrt{3}}\right)\right]_{0}^{\ln 3}\right) \\
& =\frac{\pi \sqrt{3}}{9}-\frac{\pi \sqrt{3}}{18} \\
& =\frac{\pi \sqrt{3}}{18}
\end{aligned}
\]

Question 12 continued
(b) (i) \(\quad(n+1) \mathrm{e}^{2 x}-2 k \mathrm{e}^{x}+(n-1)=0\)

M1A1

M1

M1A1
(ii) for two real solutions, we require \(k>\sqrt{k^{2}-n^{2}+1}\)
and we also require \(k^{2}-n^{2}+1>0\)
R1
\(k^{2}>n^{2}-1 \quad\) A1
\(\Rightarrow k>\sqrt{n^{2}-1}\left(k \in \mathbb{R}^{+}\right)\)
(c) (i) METHOD 1
\[
\begin{aligned}
& t(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{\mathrm{e}^{x}+\mathrm{e}^{-x}} \\
& t^{\prime}(x)=\frac{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}-\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}} \\
& t^{\prime}(x)=\frac{\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}-\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)^{2}}{\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}} \\
& =\frac{[f(x)]^{2}-[g(x)]^{2}}{[f(x)]^{2}}
\end{aligned}
\]

\section*{METHOD 2}
\(t^{\prime}(x)=\frac{f(x) g^{\prime}(x)-g(x) f^{\prime}(x)}{[f(x)]^{2}}\)
M1A1

A1
\(=\frac{[f(x)]^{2}-[g(x)]^{2}}{[f(x)]^{2}}\) AG
continued...

Question 12 continued
METHOD 3
\[
\begin{aligned}
& t(x)=\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{-1} \\
& t^{\prime}(x)=1-\frac{\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}} \\
& =1-\frac{[g(x)]^{2}}{[f(x)]^{2}} \\
& =\frac{[f(x)]^{2}-[g(x)]^{2}}{[f(x)]^{2}}
\end{aligned}
\]

METHOD 4
\(t^{\prime}(x)=\frac{g^{\prime}(x)}{f(x)}-\frac{g(x) f^{\prime}(x)}{[f(x)]^{2}}\)
\(g^{\prime}(x)=f(x)\) and \(f^{\prime}(x)=g(x)\) gives \(t^{\prime}(x)=1-\frac{[g(x)]^{2}}{[f(x)]^{2}}\)
\(=\frac{[f(x)]^{2}-[g(x)]^{2}}{[f(x)]^{2}}\)
(ii) METHOD 1
\([f(x)]^{2}>[g(x)]^{2}\) (or equivalent)
M1A1
\([f(x)]^{2}>0\)
R1
hence \(t^{\prime}(x)>0, x \in \mathbb{R}\) AG

Note: Award as above for use of either \(f(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\) and \(g(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\) or \(\mathrm{e}^{x}+\mathrm{e}^{-x}\) and \(\mathrm{e}^{x}-\mathrm{e}^{-x}\).
continued...

Question 12 continued

\section*{METHOD 2}
\([f(x)]^{2}-[g(x)]^{2}=1\) (or equivalent) M1A1
\([f(x)]^{2}>0 \quad\) R1
hence \(t^{\prime}(x)>0, x \in \mathbb{R} \quad\) AG
Note: Award as above for use of either \(f(x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\) and \(g(x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\) or \(\mathrm{e}^{x}+\mathrm{e}^{-x}\) and \(\mathrm{e}^{x}-\mathrm{e}^{-x}\).

\section*{METHOD 3}
\(t^{\prime}(x)=\frac{4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}\)
\(\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}>0\)
M1A1
\(\frac{4}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}}>0\)
R1
hence \(t^{\prime}(x)>0, x \in \mathbb{R}\)

\section*{Markscheme}

\section*{November 2015}

\section*{Mathematics}

\section*{Higher level}

\section*{Paper 2}

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\(\boldsymbol{A} \quad\) Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{1 \\ General}

Mark according to \(\mathrm{RM}^{\top M}\) Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2015". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A O}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by \(\mathrm{RM}^{\mathrm{TM}}\) Assessor.

\section*{Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M} \mathbf{0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A} \operatorname{mark}(\mathrm{s})\) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct \(\boldsymbol{F T}\) working shown, award \(\boldsymbol{F T}\) marks as appropriate but do not award the final \(\boldsymbol{A 1}\) in that part.

Examples
\begin{tabular}{|l|l|l|l|}
\hline & Correct answer seen & Further working seen & Action \\
\hline 1. & \(8 \sqrt{2}\) & \begin{tabular}{l}
\(5.65685 \ldots\) \\
(incorrect decimal value)
\end{tabular} & \begin{tabular}{l} 
Award the final \(\boldsymbol{A 1}\) \\
(ignore the further working)
\end{tabular} \\
\hline 2. & \(\frac{1}{4} \sin 4 x\) & \(\sin x\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline 3. & \(\log a-\log b\) & \(\log (a-b)\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline
\end{tabular}

\section*{\(N\) marks}

Award \(\mathbf{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(N\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks
Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \(\mathbf{M}\) mark,
but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
\]

Award \(\boldsymbol{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 \\ Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

\section*{Section A}
1. (a) \(0.818=0.65+0.48-\mathrm{P}(A \cap B)\)
\(\mathrm{P}(A \cap B)=0.312\)
(b) \(\mathrm{P}(A) \mathrm{P}(B)=0.312(=0.48 \times 0.65)\)

A1
since \(\mathrm{P}(A) \mathrm{P}(B)=\mathrm{P}(A \cap B)\) then \(A\) and \(B\) are independent R1

Note: Only award the R1 if numerical values are seen. Award A1R1 for a correct conditional probability approach.
2. using technology and/or by elimination (eg ref on GDC)
\[
x=1.89\left(=\frac{17}{9}\right), y=1.67\left(=\frac{5}{3}\right), z=-2.22\left(=\frac{-20}{9}\right)
\]
3. (a) \(\frac{0 \cdot 4+1 \cdot k+2 \cdot 3+3 \cdot 2+4 \cdot 3+8 \cdot 1}{13+k}=1.95\left(\frac{k+32}{k+13}=1.95\right)\)
attempting to solve for \(k\)
\(k=7\)
(b) (i) \(\frac{7+32+22}{7+13+1}=2.90\left(=\frac{61}{21}\right)\)
(M1)A1
(ii) standard deviation \(=4.66\)

Note: Award AO for 4.77.
4. (a) (i) \(A=-3\)
(ii) period \(=\frac{2 \pi}{B}\)
\(B=2\)
A1
Note: Award as above for \(A=3\) and \(B=-2\).
\[
\text { (iii) } C=2
\]

A1
[4 marks]
(b) \(\quad x=1.74,2.97\left(x=\frac{1}{2}\left(\pi+\arcsin \frac{1}{3}\right), \frac{1}{2}\left(2 \pi-\arcsin \frac{1}{3}\right)\right)\)
(M1)A1
[2 marks]
Note: Award (M1)A0 if extra correct solutions eg ( \(-1.40,-0.170\) ) are given outside the domain \(0 \leq x \leq \pi\).

\section*{Total [6 marks]}
5. (a) (i) area \(=\int_{2}^{4} \sqrt{y-2} \mathrm{~d} y\)

\section*{M1A1}

A1
[3 marks]
(b) \(\quad\) volume \(=\pi \int_{2}^{4}(y-2) \mathrm{d} y\)
\(=\pi\left[\frac{y^{2}}{2}-2 y\right]_{2}^{4}\)
\(=2 \pi\) (exact only)
6. EITHER


M1A1A1
Note: Award M1 for a two-level tree diagram, A1 for correct first level probabilities, and A1 for correct second level probabilities.

OR
\(\mathrm{P}\left(B \mid L^{\prime}\right)=\frac{\mathrm{P}\left(L^{\prime} \mid B\right) \mathrm{P}(B)}{\mathrm{P}\left(L^{\prime} \mid B\right) \mathrm{P}(B)+\mathrm{P}\left(L^{\prime} \mid C\right) \mathrm{P}(C)+\mathrm{P}\left(L^{\prime} \mid W\right) \mathrm{P}(W)}\left(=\frac{\mathrm{P}\left(B \cap L^{\prime}\right)}{\mathrm{P}\left(L^{\prime}\right)}\right)\) (M1)(A1)(A1)

\section*{THEN}
\(\mathrm{P}\left(B \mid L^{\prime}\right)=\frac{0.9 \times 0.2}{0.9 \times 0.2+0.95 \times 0.3+0.75 \times 0.5}\left(=\frac{0.18}{0.84}\right)\)
M1A1
\(=0.214\left(=\frac{3}{14}\right)\)
7. \(21=\frac{1}{2} \cdot 6 \cdot 11 \cdot \sin A\)
\(\sin A=\frac{7}{11}\)

\section*{EITHER}
\(\widehat{A}=0.6897 \ldots, 2.452 \ldots\left(\hat{A}=\arcsin \frac{7}{11}, \pi-\arcsin \frac{7}{11}=39.521 \ldots, 140.478 \ldots \circ\right)\)
OR
\(\cos A= \pm \frac{6 \sqrt{2}}{11}(= \pm 0.771 \ldots)\)

\section*{THEN}
\(\mathrm{BC}^{2}=6^{2}+11^{2}-2 \cdot 6 \cdot 11 \cos A\)
\(\mathrm{BC}=16.1\) or 7.43
Note: Award M1A1A0M1A1A0 if only one correct solution is given.
8. (a) \(A \int_{1}^{5} \sin (\ln x) d x=1\)
\[
A=0.323 \text { (3 dp only) }
\]
(b) either a graphical approach or \(f^{\prime}(x)=\frac{\cos (\ln x)}{x}=0\)
\[
x=4.81\left(=\mathrm{e}^{\frac{\pi}{2}}\right)
\]

Note: Do not award A1FT for a candidate working in degrees.
(c) \(\quad \mathrm{P}(X \leq 3 \mid X \geq 2)=\frac{\mathrm{P}(2 \leq X \leq 3)}{\mathrm{P}(X \geq 2)}\left(=\frac{\int_{2}^{3} \sin (\ln (x)) \mathrm{d} x}{\int_{2}^{5} \sin (\ln (x)) \mathrm{d} x}\right)\)
\[
=0.288
\]

Note: Do not award A1FT for a candidate working in degrees.
9. (a) \(\quad t_{1}=1.77(\mathrm{~s})(=\sqrt{\pi}(\mathrm{s}))\) and \(t_{2}=2.51(\mathrm{~s})(=\sqrt{2 \pi}(\mathrm{~s}))\)

A1A1
[2 marks]
(b) (i) attempting to find (graphically or analytically) the first \(t_{\max }\)

\section*{(M1)}
(M1)
A1
[4 marks]
(c) distance travelled \(=\left|\int_{1.772 \ldots}^{2.506 \ldots} 1-\mathrm{e}^{-\sin t^{2}} \mathrm{~d} t\right|\) (or equivalent) \(=0.711(\mathrm{~m})\)
[2 marks]
10. (a) \(\quad a=\binom{-1}{4}\)
\[
\boldsymbol{b}=\frac{1}{3}\left(\binom{4}{16}-\binom{-1}{4}\right)=\binom{\frac{5}{3}}{4}
\]

A1
(M1)A1
[3 marks]
(b) METHOD 1

Roderick must signal in a direction vector perpendicular to Ed's path.
(M1)
the equation of the signal is \(s=\binom{11}{9}+\lambda\binom{-12}{5}\) (or equivalent)
\(\binom{-1}{4}+\frac{t}{3}\binom{5}{12}=\binom{11}{9}+\lambda\binom{-12}{5}\)
M1
\(\frac{5}{3} t+12 \lambda=12\) and \(4 t-5 \lambda=5\)
M1
\(t=2.13\left(=\frac{360}{169}\right)\)
A1
[5 marks]

\section*{METHOD 2}
\(\binom{5}{12} \cdot\left(\binom{11}{9}-\binom{-1+\frac{5}{3} t}{4+4 t}\right)=0\) (or equivalent)
M1A1A1

Note: Award the M1 for an attempt at a scalar product equated to zero, A1 for the first factor and \(\boldsymbol{A 1}\) for the complete second factor.
attempting to solve for \(t\)
\[
t=2.13\left(=\frac{360}{169}\right)
\]

Question 10 continued

\section*{METHOD 3}
\[
x=\sqrt{\left(12-\frac{5 t}{3}\right)^{2}+(5-4 t)^{2}} \text { (or equivalent) }\left(x^{2}=\left(12-\frac{5 t}{3}\right)^{2}+(5-4 t)^{2}\right) \text { M1A1AA1 }
\]

Note: Award \(\boldsymbol{M} \mathbf{1}\) for use of Pythagoras' theorem, \(\boldsymbol{A} \mathbf{1}\) for \(\left(12-\frac{5 t}{3}\right)^{2}\) and \(\boldsymbol{A} \mathbf{1}\) for \((5-4 t)^{2}\).
attempting (graphically or analytically) to find \(t\) such that \(\frac{\mathrm{d} x}{\mathrm{~d} t}=0\left(\frac{\mathrm{~d}\left(x^{2}\right)}{\mathrm{d} t}=0\right)\)
\[
t=2.13\left(=\frac{360}{169}\right)
\]

\section*{METHOD 4}
\[
\cos \theta=\frac{\binom{12}{5} \cdot\binom{5}{12}}{\left.\left|\binom{12}{5}\right|\binom{5}{12} \right\rvert\,}=\frac{120}{169}
\]

Note: Award \(\boldsymbol{M} \mathbf{1}\) for attempting to calculate the scalar product.
\[
\begin{equation*}
\frac{120}{13}=\frac{t}{3}\left|\binom{5}{12}\right| \text { (or equivalent) } \tag{A1}
\end{equation*}
\]
attempting to solve for \(t\)
\[
t=2.13\left(=\frac{360}{169}\right)
\]

\section*{Section B}
11. (a) (i) let \(W\) be the weight of a worker and \(W \sim N\left(\mu, \sigma^{2}\right)\)
\[
\mathrm{P}\left(Z<\frac{62-\mu}{\sigma}\right)=0.3 \text { and } \mathrm{P}\left(Z<\frac{98-\mu}{\sigma}\right)=0.75
\]
\(\frac{62-\mu}{\sigma}=\Phi^{-1}(0.3)(=-0.524 \ldots)\) and
\(\frac{98-\mu}{\sigma}=\Phi^{-1}(0.75)(=0.674 \ldots)\)
or linear equivalents
(M1)

A1A1
(ii) attempting to solve simultaneously
\(\mu=77.7, \sigma=30.0\)
(b) \(\mathrm{P}(W>100)=0.229\)
(c) let \(X\) represent the number of workers over 100 kg in a lift of ten passengers
\(X \sim \mathrm{~B}(10,0.229 \ldots)\)
(M1)
\(\mathrm{P}(X \geq 4)=0.178\)

Question 11 continued
(d) \(\mathrm{P}(X<4 \mid X \geq 1)=\frac{\mathrm{P}(1 \leq X \leq 3)}{\mathrm{P}(X \geq 1)}\)

> M1(A1)

Note: Award the M1 for a clear indication of conditional probability.
\(=0.808\)
A1
[3 marks]
(e) \(L \sim \operatorname{Po}(50)\)
(M1)
\(\mathrm{P}(L>60)=1-\mathrm{P}(L \leq 60)\)
(M1)
A1
[3 marks]
(f) 400 workers require at least 40 elevators
\(\mathrm{P}(L \geq 40)=1-\mathrm{P}(L \leq 39)\)
\(=0.935\)

Note: For Q12(a) (i) - (iii) and (b) (ii), award A1 for correct endpoints and, if correct, award A1 for a closed interval. Further, award A1AO for one correct endpoint and a closed interval.
12. (a) (i) \(-4 \leq y \leq-2\)
(ii) \(\quad-5 \leq y \leq-1\)
(iii) \(-3 \leq 2 x-6 \leq 5\)

Note: Award M1 for \(f(2 x-6)\).
\[
\begin{aligned}
& 3 \leq 2 x \leq 11 \\
& \frac{3}{2} \leq x \leq \frac{11}{2}
\end{aligned}
\]

A1A1 continued...

Question 12 continued
(b) (i) any valid argument eg \(f\) is not one to one, \(f\) is many to one, fails horizontal line test, not injective
(ii) largest domain for the function \(g(x)\) to have an inverse is \([-1,3] \quad\) A1A1
(iii)

\[
\begin{array}{ll}
\text { y-intercept indicated (coordinates not required) } & \text { A1 } \\
\text { correct shape } & \text { A1 } \\
\text { coordinates of end points }(1,3) \text { and }(-1,-1) & \boldsymbol{A 1}
\end{array}
\]

Note: Do not award any of the above marks for a graph that is not one to one.

Question 12 continued
(c) (i) \(y=\frac{2 x-5}{x+d}\)
\[
(x+d) y=2 x-5
\]

Note: Award M1 for attempting to rearrange \(x\) and \(y\) in a linear expression.
\[
\begin{aligned}
& x(y-2)=-d y-5 \\
& x=\frac{-d y-5}{y-2}
\end{aligned}
\]

Note: \(x\) and \(y\) can be interchanged at any stage
\[
h^{-1}(x)=\frac{-d x-5}{x-2}
\]

Note: Award A1 only if \(h^{-1}(x)\) is seen.
(ii) self Inverse \(\Rightarrow h(x)=h^{-1}(x)\)
\(\frac{2 x-5}{x+d} \equiv \frac{-d x-5}{x-2}\)
\(d=-2\)
(iii) METHOD 1
\[
\begin{aligned}
& \frac{2 k(x)-5}{k(x)-2}=\frac{2 x}{x+1} \\
& k(x)=\frac{x+5}{2}
\end{aligned}
\]

\section*{METHOD 2}
\(h^{-1}\left(\frac{2 x}{x+1}\right)=\frac{2\left(\frac{2 x}{x+1}\right)-5}{\frac{2 x}{x+1}-2}\)
\(k(x)=\frac{x+5}{2}\)
13. (a) \(f^{\prime}(x)=30 \mathrm{e}^{-\frac{x^{2}}{400}} \cdot-\frac{2 x}{400}\left(=-\frac{3 x}{20} \mathrm{e}^{-\frac{x^{2}}{400}}\right)\)

\section*{M1A1}

Note: Award M1 for attempting to use the chain rule.
\[
f^{\prime \prime}(x)=-\frac{3}{20} \mathrm{e}^{-\frac{x^{2}}{400}}+\frac{3 x^{2}}{4000} \mathrm{e}^{-\frac{x^{2}}{400}}\left(=\frac{3}{20} \mathrm{e}^{-\frac{x^{2}}{400}}\left(\frac{x^{2}}{200}-1\right)\right)
\]

Note: Award M1 for attempting to use the product rule.
(b) the roof function has maximum gradient when \(f^{\prime \prime}(x)=0\)

Note: Award (M1) for attempting to find \(f^{\prime \prime}(-\sqrt{200})\).

\section*{EITHER}
\(=0\)

\section*{OR}
\[
f^{\prime \prime}(x)=0 \Rightarrow x= \pm \sqrt{200}
\]

\section*{THEN}
valid argument for maximum such as reference to an appropriate graph or change in the sign of \(f^{\prime \prime}(x)\) eg \(f^{\prime \prime}(-15)=0.010 \ldots(>0)\) and \(f^{\prime \prime}(-14)=-0.001 \ldots(<0)\)
\(\Rightarrow x=-\sqrt{200}\)

A1

A1 R1 AG
continued...

Question 13 continued
(c) \(A=2 a \cdot 30 \mathrm{e}^{-\frac{a^{2}}{400}}\left(=60 a \mathrm{e}^{-\frac{a^{2}}{400}}=-400 f^{\prime}(a)\right)\)

\section*{EITHER}
\[
\frac{\mathrm{d} A}{\mathrm{~d} a}=60 a \mathrm{e}^{-\frac{a^{2}}{400}} \cdot-\frac{a}{200}+60 \mathrm{e}^{-\frac{a^{2}}{400}}=0 \Rightarrow a=\sqrt{200} \quad\left(-400 f^{\prime \prime}(a)=0 \Rightarrow a=\sqrt{200}\right)
\]

\section*{OR}
by symmetry eg \(a=-\sqrt{200}\) found in (b) or \(A_{\max }\) coincides with \(f^{\prime \prime}(a)=0\)
\(\Rightarrow a=\sqrt{200}\)

\section*{THEN}
\(A_{\max }=60 \cdot \sqrt{200} \mathrm{e}^{-\frac{200}{400}}\)
\(=600 \sqrt{2} \mathrm{e}^{-\frac{1}{2}}\)
(iii) area under roof \(=\int_{-20}^{20} 30 \mathrm{e}^{-\frac{x^{2}}{400}} \mathrm{~d} x\) \(=896.18 \ldots\)
area of living space \(=60 \cdot(12.6 \ldots) \cdot \mathrm{e}^{-\frac{(12.6 . \ldots)^{2}}{400}}=508.56 \ldots\)
percentage of empty space \(=43.3 \%\)

\title{
Markscheme
}

\section*{May 2015}

\section*{Mathematics}

\section*{Higher level}

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{General}

Mark according to \(\mathrm{RM}^{\mathrm{TM}}\) Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2015". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A O}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by \(\mathrm{RM}^{\mathrm{TM}}\) Assessor.

\section*{2}

\section*{Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M} \mathbf{0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct \(\boldsymbol{F T}\) working shown, award \(\boldsymbol{F T}\) marks as appropriate but do not award the final \(\boldsymbol{A 1}\) in that part.

\section*{Examples}
\begin{tabular}{|l|l|l|l|}
\hline & Correct answer seen & Further working seen & Action \\
\hline 1. & \(8 \sqrt{2}\) & \begin{tabular}{l}
\(5.65685 \ldots\) \\
(incorrect decimal value)
\end{tabular} & \begin{tabular}{l} 
Award the final \(\boldsymbol{A 1}\) \\
(ignore the further working)
\end{tabular} \\
\hline 2. & \(\frac{1}{4} \sin 4 x\) & \(\sin x\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline 3. & \(\log a-\log b\) & \(\log (a-b)\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline
\end{tabular}

\section*{3 \\ N marks}

Award \(\mathbf{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{4 Implied marks}

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read
If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \(\boldsymbol{M}\) mark,
but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
\]A1

Award \(\boldsymbol{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 \\ Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

\section*{Section A}
1. \(\int_{-1}^{1} \pi\left(\mathrm{e}^{-x^{2}}\right)^{2} \mathrm{~d} x \quad\left(\int_{-1}^{1} \pi \mathrm{e}^{-2 x^{2}} \mathrm{~d} x\right.\) or \(\left.\int_{0}^{1} 2 \pi \mathrm{e}^{-2 x^{2}} \mathrm{~d} x\right)\)
(M1)(A1)(A1)
Note: Award \(\boldsymbol{M 1}\) for integral involving the function given; A1 for correct limits; \(\boldsymbol{A} 1\) for \(\pi\) and \(\left(\mathrm{e}^{-x^{2}}\right)^{2}\)
\(=3.758249 \ldots=3.76\)
A1
[4 marks]
2. (a) \(X \sim N\left(210,22^{2}\right)\)
\[
\mathrm{P}(X<180)=0.0863
\]
(M1)A1
[2 marks]
(b) \(\mathrm{P}(X<T)=0.9 \Rightarrow T=238\) (mins)
(M1)A1
[2 marks]
Total [4 marks]
3. (a) \(\quad W \sim B(1000,0.1)\left(\operatorname{accept} C_{k}^{1000}(0.1)^{k}(0.9)^{1000-k}\right)\)

A1A1
Note: First \(\boldsymbol{A} \mathbf{1}\) is for recognizing the binomial, second \(\boldsymbol{A 1}\) for both parameters if stated explicitly in this part of the question.
[2 marks]
(b) \(\mu(=1000 \times 0.1)=100\)

A1
[1 mark]
(c) \(\quad \mathrm{P}(W>89)=\mathrm{P}(W \geq 90)(=1-\mathrm{P}(W \leq 89))\)
(M1)
\(=0.867\)
A1
[2 marks]
Total [5 marks]
4.


\section*{METHOD 1}
\(\frac{6}{\sin 50}=\frac{7}{\sin C} \Rightarrow \sin C=\frac{7 \sin 50}{6}\)
\(C=63.344 \ldots\)
or \(C=116.655\)...
\(B=13.344 \ldots\).. (or \(B=66.656 \ldots\)..)
area \(=\frac{1}{2} \times 6 \times 7 \times \sin 13.344 \ldots\) (or \(\frac{1}{2} \times 6 \times 7 \times \sin 66.656 \ldots\) )
4.846... (or \(=19.281\)...)
so answer is \(4.85\left(\mathrm{~cm}^{2}\right)\)

\section*{METHOD 2}
\(6^{2}=7^{2}+b^{2}-2 \times 7 b \cos 50\)
\(b^{2}-14 b \cos 50+13=0\) or equivalent method to solve the above equation

\section*{METHOD 3}

Diagram showing triangles ACB and ADB ..... (M1)
\[
h=7 \sin (50)=5.3623 \ldots(\mathrm{~cm})
\]
(M1)
\[
\alpha=\arcsin \frac{h}{6}=63.3442 \ldots
\]
\[
\mathrm{AC}=\mathrm{AD}-\mathrm{CD}=7 \cos 50-6 \cos \alpha=1.8077 \ldots(\mathrm{~cm})
\]
\[
\text { area }=\frac{1}{2} \times 1.8077 \ldots \times 5.3623 \ldots
\]
\[
=4.85\left(\mathrm{~cm}^{2}\right)
\]
5. \(V=200 \pi r^{2}\)

Note: Allow \(V=\pi h r^{2}\) if value of \(h\) is substituted later in the question.

\section*{EITHER}
\[
\frac{\mathrm{d} V}{\mathrm{~d} t}=200 \pi 2 r \frac{\mathrm{~d} r}{\mathrm{~d} t}
\]

Note: Award \(\boldsymbol{M 1}\) for an attempt at implicit differentiation.
at \(r=2\) we have \(30=200 \pi 4 \frac{\mathrm{~d} r}{\mathrm{~d} t}\)
OR
\(\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{\frac{\mathrm{d} V}{\mathrm{~d} t}}{\frac{\mathrm{~d} V}{\mathrm{~d} r}}\)
\(\frac{\mathrm{d} V}{\mathrm{~d} r}=400 \pi r\)
\(r=2\) we have \(\frac{\mathrm{d} V}{\mathrm{~d} r}=800 \pi\)

\section*{THEN}
\(\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{30}{800 \pi}\left(=\frac{3}{80 \pi}=0.0119\right)\left(\mathrm{cm} \mathrm{s}^{-1}\right)\)
6. \(f^{\prime}(x)=3 x^{2}+\mathrm{e}^{x}\)

Note: Accept labelled diagram showing the graph \(y=f^{\prime}(x)\) above the \(x\)-axis; do not accept unlabelled graphs nor graph of \(y=f(x)\).

\section*{EITHER}
this is always \(>0\) R1
so the function is (strictly) increasing R1 and thus 1-1 A1

OR
this is always \(>0\) (accept \(\neq 0\) ) R1
so there are no turning points R1
and thus 1-1
Note: A1 is dependent on the first \(\boldsymbol{R 1}\).
7. (a) \(2 \frac{\mathrm{e}^{-m} m^{4}}{4!}=\frac{\mathrm{e}^{-m} m^{5}}{5!}\)

M1A1
\[
\frac{2}{4!}=\frac{m}{5!} \text { or other simplification }
\]

Note: accept a labelled graph showing clearly the solution to the equation. Do not accept simple verification that \(m=10\) is a solution.
\[
\Rightarrow m=10
\]
(b) \(\quad \mathrm{P}(X=6 \mid X \leq 11)=\frac{\mathrm{P}(X=6)}{\mathrm{P}(X \leq 11)}\)
\[
\begin{aligned}
& =\frac{0.063055 \ldots}{0.696776 \ldots} \\
& =0.0905
\end{aligned}
\]
(M1) (A1)
8. (a) require \(\left(\begin{array}{c}4 \\ \lambda \\ 10\end{array}\right)=s\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right)\)
\[
\Rightarrow 4=2 s \Rightarrow s=2 \Rightarrow \lambda=6
\]

Note: Accept cross product solution.
(b) require \(\boldsymbol{v} \cdot \boldsymbol{w}=2 \times 4+3 \times \lambda+5 \times 10=0 \Rightarrow 3 \lambda=-58 \Rightarrow \lambda=\frac{-58}{3}(-19.3)\)

M1A1
[2 marks]
(c) \(\boldsymbol{v} \cdot \boldsymbol{w}=2 \times 4+3 \times \lambda+5 \times 10=\sqrt{2^{2}+3^{2}+5^{2}} \times \sqrt{4^{2}+\lambda^{2}+10^{2}} \times \cos 10^{\circ}\)
\(58+3 \lambda=\sqrt{38} \times \sqrt{116+\lambda^{2}} \times \cos 10^{\circ}\)
\(\lambda=3.73\) or 8.76
A1A1
[4 marks]
Total [8 marks]
9. \(x=0 \Rightarrow y=1\)
\(y^{\prime}(0)=1.367879 \ldots\)
Note: The exact answer is \(y^{\prime}(0)=\frac{\mathrm{e}+1}{\mathrm{e}}=1+\frac{1}{\mathrm{e}}\).
so gradient of normal is \(\frac{-1}{1.367879 \ldots}(=-0.731058 \ldots)\)
(M1)(A1)
equation of normal is \(y=-0.731058 \ldots x+c\)
gives \(y=-0.731 x+1\)

Note: The exact answer is \(y=-\frac{\mathrm{e}}{\mathrm{e}+1} x+1\).
Accept \(y-1=-0.731058 \ldots(x-0)\)

Total [7 marks]
10. (a)

as roots of \(f(x)=0\) are \(-1,1,5\)
(M1)
solution is \(]-\infty,-1[\cup] 1,5[\quad(x<-1\) or \(1<x<5)\)
A1A1

Note: Award A1AO for closed intervals.

Question 10 continued
(b) METHOD 1
(graphs of \(g(x)\) and \(\frac{1}{g(x)}\) )

roots of \(g(x)=0\) are -3 and 2
(M1)(A1)
Notes: Award M1 if quadratic graph is drawn or two roots obtained.
Roots may be indicated anywhere eg asymptotes on graph or in inequalities below.
the intersections of the graphs \(g(x)\) and of \(1 / g(x)\)
are \(-3.19,-2.79,1.79,2.19\)
Note: Award A1 for at least one of the values above seen anywhere.
\[
\begin{aligned}
& \text { solution is }]-3.19,-3[\cup]-2.79,1.79[\cup] 2,2.19[ \\
& (-3.19<x<-3 \text { or }-2.79<x<1.79 \text { or } 2<x<2.19)
\end{aligned}
\]

A1A1A1
Note: Award A1A1AO for closed intervals.

Question 10 continued

\section*{METHOD 2}
(graph of \(g(x)-\frac{1}{g(x)}\) )

asymptotes at \(x=-3\) and \(x=2\)
Note: May be indicated on the graph.
roots of graph are \(-3.19,-2.79,1.79,2.19\)
Note: Award A1 for at least one of the values above seen anywhere.
\[
\begin{aligned}
& \text { solution is (when graph is negative) } \\
& ]-3.19,-3[\cup]-2.79,1.79[\cup] 2,2.19[ \\
& (-3.19<x<-3 \text { or }-2.79<x<1.79 \text { or } 2<x<2.19)
\end{aligned}
\]

Note: Award A1A1AO for closed intervals.

\section*{Section B}
11. (a)


Award \(\boldsymbol{A} 1\) for sine curve from 0 to \(\pi\), award \(\boldsymbol{A} 1\) for straight line from \(\pi\) to \(2 \pi\)
(b) \(\int_{0}^{\pi} \frac{\sin x}{4} \mathrm{~d} x=\frac{1}{2}\)
(c) METHOD 1
require \(\frac{1}{2}+\int_{\pi}^{2 \pi} a(x-\pi) \mathrm{d} x=1\)
\(\Rightarrow \frac{1}{2}+a\left[\frac{(x-\pi)^{2}}{2}\right]_{\pi}^{2 \pi}=1 \quad\left(\right.\) or \(\left.\frac{1}{2}+a\left[\frac{x^{2}}{2}-\pi x\right]_{\pi}^{2 \pi}=1\right)\)
A1
\(\Rightarrow a \frac{\pi^{2}}{2}=\frac{1}{2}\)
\(\Rightarrow a=\frac{1}{\pi^{2}}\)
Note: Must obtain the exact value. Do not accept answers obtained with calculator.

\section*{METHOD 2}
\(0.5+\) area of triangle \(=1\)
R1
area of triangle \(=\frac{1}{2} \pi \times a \pi=0.5\)
M1A1

Note: Award \(\boldsymbol{M 1}\) for correct use of area formula \(=0.5, \boldsymbol{A 1}\) for \(a \pi\).
\[
a=\frac{1}{\pi^{2}}
\]

A1
[1 mark]
continued...

Question 11 continued
(e) \(\quad \mu=\int_{0}^{\pi} x \cdot \frac{\sin x}{4} \mathrm{~d} x+\int_{\pi}^{2 \pi} x \cdot \frac{x-\pi}{\pi^{2}} \mathrm{~d} x\)
(M1)(A1)
\[
=3.40339 \ldots=3.40 \quad\left(\text { or } \frac{\pi}{4}+\frac{5 \pi}{6}=\frac{13}{12} \pi\right)
\]
(f) For \(\mu=3.40339 \ldots\)

\section*{EITHER}
\(\sigma^{2}=\int_{0}^{\pi} x^{2} \cdot \frac{\sin x}{4} \mathrm{~d} x+\int_{\pi}^{2 \pi} x^{2} \cdot \frac{x-\pi}{\pi^{2}} \mathrm{~d} x-\mu^{2}\)
(M1)(A1)
OR
\(\sigma^{2}=\int_{0}^{\pi}(x-\mu)^{2} \cdot \frac{\sin x}{4} \mathrm{~d} x+\int_{\pi}^{2 \pi}(x-\mu)^{2} \cdot \frac{x-\pi}{\pi^{2}} \mathrm{~d} x\)
(M1)(A1)

\section*{THEN}
\(=3.866277 \ldots=3.87\)
(g) \(\quad \int_{\frac{\pi}{2}}^{\pi} \frac{\sin x}{4} \mathrm{~d} x+\int_{\pi}^{\frac{3 \pi}{2}} \frac{x-\pi}{\pi^{2}} \mathrm{~d} x=0.375 \quad\) (or \(\frac{1}{4}+\frac{1}{8}=\frac{3}{8}\) )
(M1)A1
[2 marks]
(h) \(\mathrm{P}\left(\pi \leq X \leq 2 \pi \left\lvert\, \frac{\pi}{2} \leq X \leq \frac{3 \pi}{2}\right.\right)=\frac{\mathrm{P}\left(\pi \leq X \leq \frac{3 \pi}{2}\right)}{\mathrm{P}\left(\frac{\pi}{2} \leq X \leq \frac{3 \pi}{2}\right)}\)
(M1)(A1)
\(=\frac{\int_{\pi}^{\frac{3 \pi}{2}} \frac{(x-\pi)}{\pi^{2}} \mathrm{~d} x}{0.375}=\frac{0.125}{0.375}\) (or \(=\frac{\frac{1}{8}}{\frac{3}{8}}\) from diagram areas)
\(=\frac{1}{3}(0.333)\)
(M1)

A1
[4 marks]
Total [20 marks]
12. (a) (i) \((\cos \theta+i \sin \theta)^{5}\)
\[
\begin{aligned}
& =\cos ^{5} \theta+5 \mathrm{i}_{\cos ^{4} \theta \sin \theta+10 \mathrm{i}^{2} \cos ^{3} \theta \sin ^{2} \theta+}^{10 \mathrm{i}^{3} \cos ^{2} \theta \sin ^{3} \theta+5 \mathrm{i}^{4} \cos \theta \sin ^{4} \theta+\mathrm{i}^{5} \sin ^{5} \theta} \\
& \left(=\cos ^{5} \theta+5 \mathrm{i} \cos ^{4} \theta \sin \theta-10 \cos ^{3} \theta \sin ^{2} \theta-\right. \\
& \left.10 \mathrm{i} \cos ^{2} \theta \sin ^{3} \theta+5 \cos \theta \sin ^{4} \theta+\mathrm{i}^{5} \theta\right)
\end{aligned}
\]

Note: Award first A1 for correct binomial coefficients.
(ii) \((\operatorname{cis} \theta)^{5}=\operatorname{cis} 5 \theta=\cos 5 \theta+\mathrm{i} \sin 5 \theta\)
\(=\cos ^{5} \theta+5 \mathrm{i} \cos ^{4} \theta \sin \theta-10 \cos ^{3} \theta \sin ^{2} \theta-10 \mathrm{i} \cos ^{2} \theta \sin ^{3} \theta+\) \(5 \cos \theta \sin ^{4} \theta+\mathrm{i} \sin ^{5} \theta\)

Note: Previous line may be seen in (i)
equating imaginary terms M1
\[
\sin 5 \theta=5 \cos ^{4} \theta \sin \theta-10 \cos ^{2} \theta \sin ^{3} \theta+\sin ^{5} \theta
\]
(iii) equating real terms
\[
\cos 5 \theta=\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta
\]
(b) \(\quad(r \operatorname{cis} \alpha)^{5}=1 \Rightarrow r^{5} \operatorname{cis} 5 \alpha=1 \operatorname{cis} 0\)
\(r^{5}=1 \Rightarrow r=1\)
\(5 \alpha=0 \pm 360 k, k \in \mathbb{Z} \Rightarrow \alpha=72 k\)
\(\alpha=72^{\circ}\)
Note: Award M1A0 if final answer is given in radians.
(c) use of \(\sin (5 \times 72)=0\) OR the imaginary part of 1 is 0
\[
\begin{aligned}
& 0=5 \cos ^{4} \alpha \sin \alpha-10 \cos ^{2} \alpha \sin ^{3} \alpha+\sin ^{5} \alpha \\
& \sin \alpha \neq 0 \Rightarrow 0=5\left(1-\sin ^{2} \alpha\right)^{2}-10\left(1-\sin ^{2} \alpha\right) \sin ^{2} \alpha+\sin ^{4} \alpha
\end{aligned}
\]
A1

Note: Award \(\boldsymbol{M} \mathbf{1}\) for replacing \(\cos ^{2} \alpha\).
\[
0=5\left(1-2 \sin ^{2} \alpha+\sin ^{4} \alpha\right)-10 \sin ^{2} \alpha+10 \sin ^{4} \alpha+\sin ^{4} \alpha
\]

Note: Award A1 for any correct simplification.
\[
\text { so } 16 \sin ^{4} \alpha-20 \sin ^{2} \alpha+5=0
\]

Question 12 continued
(d) \(\sin ^{2} \alpha=\frac{20 \pm \sqrt{400-320}}{32}\)

M1A1

A1

Note: Award \(\boldsymbol{A 1}\) regardless of signs. Accept equivalent forms with integral denominator, simplification may be seen later.
as \(72>60, \sin 72>\frac{\sqrt{3}}{2}=0.866 \ldots\) so we have to take both positive signs (or equivalent argument)

Note: Allow verification of correct signs with calculator if clearly stated
\[
\sin 72=\frac{\sqrt{10+2 \sqrt{5}}}{4}
\]
A1
13. (a) (i) \(a(t)=\frac{\mathrm{d} v}{\mathrm{~d} t}=-10\left(\mathrm{~m} \mathrm{~s}^{-2}\right)\)

A1
(ii) \(t=10 \Rightarrow v=-100\left(\mathrm{~m} \mathrm{~s}^{-1}\right)\)
(iii) \(s=\int-10 t \mathrm{~d} t=-5 t^{2}(+c)\)
\(s=1000\) for \(t=0 \Rightarrow c=1000\)
\(s=-5 t^{2}+1000\) A1
at \(t=10, s=500(\mathrm{~m})\)
AG

Note: Accept use of definite integrals.
(b) \(\frac{\mathrm{d} t}{\mathrm{~d} v}=\frac{1}{(-10-5 v)}\)
(c) METHOD 1
\[
t=\int \frac{1}{-10-5 v} \mathrm{~d} v=-\frac{1}{5} \ln (-10-5 v)(+c)
\]

Note: Accept equivalent forms using modulus signs.
\[
\begin{aligned}
& t=10, v=-100 \\
& 10=-\frac{1}{5} \ln (490)+c \\
& c=10+\frac{1}{5} \ln (490) \\
& t=10+\frac{1}{5} \ln 490-\frac{1}{5} \ln (-10-5 v)
\end{aligned}
\]

Note: Accept equivalent forms using modulus signs.
\[
t=10+\frac{1}{5} \ln \left(\frac{98}{-2-v}\right)
\]

Note: Accept use of definite integrals.
continued...

Question 13 continued

\section*{METHOD 2}
\[
t=\int \frac{1}{-10-5 v} \mathrm{~d} v=-\frac{1}{5} \int \frac{1}{2+v} \mathrm{~d} v=-\frac{1}{5} \ln |2+v|(+c)
\]

Note: Accept equivalent forms.
\[
\begin{aligned}
& t=10, v=-100 \\
& 10=-\frac{1}{5} \ln |-98|+c
\end{aligned}
\]

Note: If \(\ln (-98)\) is seen do not award further A marks.
\[
\begin{aligned}
& c=10+\frac{1}{5} \ln 98 \\
& t=10+\frac{1}{5} \ln 98-\frac{1}{5} \ln |2+v|
\end{aligned}
\]

Note: Accept equivalent forms.
\[
t=10+\frac{1}{5} \ln \left(\frac{98}{-2-v}\right)
\]

Note: Accept use of definite integrals.
(d) \(5(t-10)=\ln \frac{98}{(-2-v)}\)
\[
\begin{aligned}
& \frac{2+v}{98}=-\mathrm{e}^{-5(t-10)} \\
& v=-2-98 \mathrm{e}^{-5(t-10)}
\end{aligned}
\]
(M1)

A1
[2 marks]
(e) \(\frac{\mathrm{d} s}{\mathrm{~d} t}=-2-98 \mathrm{e}^{-5(t-10)}\)
\(s=-2 t+\frac{98}{5} \mathrm{e}^{-5(t-10)}(+k)\)
M1A1
at \(t=10, s=500 \Rightarrow 500=-20+\frac{98}{5}+k \Rightarrow k=500.4\)
M1A1
\(s=-2 t+\frac{98}{5} \mathrm{e}^{-5(t-10)}+500.4\)
A1

Note: Accept use of definite integrals.

Question 13 continued
(f) \(\quad t=250\) for \(s=0\)
(M1)A1
[2 marks]
Total [21 marks]

\title{
Markscheme
}

\section*{May 2015}

\section*{Mathematics}

\section*{Higher level}

\section*{Paper 2}

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{General}

Mark according to \(\mathrm{RM}^{\text {TM }}\) Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2015". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A O}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by \(\mathrm{RM}^{\mathrm{TM}}\) Assessor.

\section*{2}

\section*{Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M} \mathbf{0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct \(\boldsymbol{F T}\) working shown, award \(\boldsymbol{F T}\) marks as appropriate but do not award the final \(\boldsymbol{A 1}\) in that part.

\section*{Examples}
\begin{tabular}{|l|l|l|l|}
\hline & Correct answer seen & Further working seen & Action \\
\hline 1. & \(8 \sqrt{2}\) & \begin{tabular}{l}
\(5.65685 \ldots\) \\
(incorrect decimal value)
\end{tabular} & \begin{tabular}{l} 
Award the final \(\boldsymbol{A 1}\) \\
(ignore the further working)
\end{tabular} \\
\hline 2. & \(\frac{1}{4} \sin 4 x\) & \(\sin x\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline 3. & \(\log a-\log b\) & \(\log (a-b)\) & Do not award the final \(\boldsymbol{A 1}\) \\
\hline
\end{tabular}

\section*{N marks}

Award \(\mathbf{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read
If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \(\boldsymbol{M}\) mark,
but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
\]

Award \(\boldsymbol{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 \\ Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, Tl-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

\section*{Section A}
1. (a) \(A=\frac{1}{2} \times 5 \times 12 \times \sin 100^{\circ}\)
(M1)
A1
[2 marks]
(b) \(\mathrm{AC}^{2}=5^{2}+12^{2}-2 \times 5 \times 12 \times \cos 100^{\circ}\) therefore \(\mathrm{AC}=13.8(\mathrm{~cm})\)
(M1)
A1
[2 marks]

\section*{Total [4 marks]}
2. (a) \(\binom{11}{4}=\frac{11 \times 10 \times 9 \times 8}{4 \times 3 \times 2 \times 1}=330\)
(M1)A1
[2 marks]
(b) \(\binom{5}{2} \times\binom{ 6}{2}=\frac{5 \times 4}{2 \times 1} \times \frac{6 \times 5}{2 \times 1}\)
\(=150\)
A1
[2 marks]
(c) METHOD1
number of ways all men \(=\binom{5}{4}=5\)
\(330-5=325\)
M1A1
Note: Allow FT from answer obtained in part (a).
[2 marks]
continued...

Question 2 continued.

\section*{METHOD 2}
\[
\binom{6}{1}\binom{5}{3}+\binom{6}{2}\binom{5}{2}+\binom{6}{3}\binom{5}{1}+\binom{6}{4}
\]
\[
=325
\]
3. (a)

general shape including 2 minimums, cusp
A1A1
correct domain and symmetrical about the middle ( \(x=5\) )
A1
[3 marks]
(b) \(\quad x=9.16\) or \(x=0.838\)

A1A1
4. (a) (i) \(X \sim \operatorname{Po}\) (5)
\[
\mathrm{P}(X \geq 8)=0.133
\]
(M1)A1
(ii) \(7 \times 0.133 \ldots\)
\(\approx 0.934\) days
M1
A1
Note: Accept " 1 day".
[4 marks]
(A1)
(M1)A1
[3 marks]
Total [7 marks]
5. (a) \(\boldsymbol{u} \times \boldsymbol{v}=\left(\begin{array}{c}2(0)+2 b \\ -2 a-1(0) \\ b-2 a\end{array}\right)=\left(\begin{array}{c}2 b \\ -2 a \\ b-2 a\end{array}\right)\)
\[
\left(\begin{array}{c}
2 b \\
-2 a \\
b-2 a
\end{array}\right)=\left(\begin{array}{l}
4 \\
b \\
c
\end{array}\right)
\]
\[
\Rightarrow a=-1, b=2, c=4
\]

Note: Award A1 for two correct.
[5 marks]
(b) \(\quad \boldsymbol{n}=\left(\begin{array}{l}4 \\ 2 \\ 4\end{array}\right)\)
\[
\Rightarrow 4 x+2 y+4 z=0(2 x+y+2 z=0)
\]
(A1)

A1
[2 marks]
6. (a) EITHER
\[
\begin{align*}
& y=\ln (x-a)+b=\ln (5 x+10) \\
& y=\ln (x-a)+\ln c=\ln (5 x+10) \\
& y=\ln (c(x-a))=\ln (5 x+10) \tag{M1}
\end{align*}
\]
(M1)

OR
\(y=\ln (5 x+10)=\ln (5(x+2))\)
\(y=\ln (5)+\ln (x+2)\)
THEN
\(a=-2, b=\ln 5\)
A1A1
Note: Accept graphical approaches.
Note: Accept \(a=2, b=1.61\)
(b) \(\quad V=\pi \int_{e}^{2 e}[\ln (5 x+10)]^{2} \mathrm{~d} x\)

A1
[2marks]
7. (a)
\[
\begin{aligned}
2 x+y+6 z & =0 \\
4 x+3 y+14 z & =4 \\
2 x-2 y+(\alpha-2) z & =\beta-12
\end{aligned}
\]
attempt at row reduction
\[
\text { eg } \begin{aligned}
R_{2}-2 R_{1} & \text { and } R_{3}-R_{1} \\
2 x+y+6 z & =0 \\
y+2 z & =4 \\
-3 y+(\alpha-8) z & =\beta-12
\end{aligned}
\]
eg \(\quad R_{3}+3 R_{2}\)
\[
\begin{aligned}
2 x+y+6 z & =0 \\
y+2 z & =4 \\
(\alpha-2) z & =\beta
\end{aligned}
\]
(i) no solutions if \(\alpha=2, \beta \neq 0\)
(ii) one solution if \(\alpha \neq 2\)
(iii) infinite solutions if \(\alpha=2, \beta=0\)

Note: Accept alternative methods e.g. determinant of a matrix

Note: Award A1A1A0 if all three consistent with their reduced form, A1A0A0 if two or one answer consistent with their reduced form.
(b) \(y+2 z=4 \Rightarrow y=4-2 z \quad\) A1
\(2 x=-y-6 z=2 z-4-6 z=-4 z-4 \Rightarrow x=-2 z-2 \quad\) A1
therefore Cartesian equation is \(\frac{x+2}{-2}=\frac{y-4}{-2}=\frac{z}{1}\) or equivalent
8. (a)


\section*{EITHER}
area of triangle \(=\frac{1}{2} \times 3 \times 4(=6)\)
area of sector \(=\frac{1}{2} \arcsin \left(\frac{4}{5}\right) \times 5^{2}(=11.5911 \ldots)\)

\section*{OR}
\(\int_{0}^{4} \sqrt{25-x^{2}} \mathrm{~d} x\)

\section*{THEN}
total area \(=17.5911 \ldots \mathrm{~m}^{2}\)
percentage \(=\frac{17.5911 \ldots}{40} \times 100=44 \%\)
(b) METHOD 1

area of triangle \(=\frac{1}{2} \times 4 \times \sqrt{a^{2}-16}\)
\(\theta=\arcsin \left(\frac{4}{a}\right)\)
area of sector \(=\frac{1}{2} r^{2} \theta=\frac{1}{2} a^{2} \arcsin \left(\frac{4}{a}\right)\)
therefore total area \(=2 \sqrt{a^{2}-16}+\frac{1}{2} a^{2} \arcsin \left(\frac{4}{a}\right)=20\)
rearrange to give: \(a^{2} \arcsin \left(\frac{4}{a}\right)+4 \sqrt{a^{2}-16}=40\)

Question 8 continued

\section*{METHOD 2}
\[
\begin{aligned}
& \int_{0}^{4} \sqrt{a^{2}-x^{2}} d x=20 \\
& \text { use substitution } x=a \sin \theta, \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=a \cos \theta
\end{aligned}
\]
\[
\begin{aligned}
& \int_{0}^{\arcsin \left(\frac{4}{a}\right)} a^{2} \cos ^{2} \theta \mathrm{~d} \theta=20 \\
& \frac{a^{2}}{2} \int_{0}^{\arcsin \left(\frac{4}{a}\right)}(\cos 2 \theta+1) \mathrm{d} \theta=20 \\
& a^{2}\left[\left(\frac{\sin 2 \theta}{2}+\theta\right)\right]_{0}^{\arcsin \left(\frac{4}{a}\right)}=40 \\
& a^{2}[(\sin \theta \cos \theta+\theta)]_{0}^{\arcsin \left(\frac{4}{a}\right)}=40 \\
& a^{2} \arcsin \left(\frac{4}{a}\right)+a^{2}\left(\frac{4}{a}\right) \sqrt{\left(1-\left(\frac{4}{a}\right)^{2}\right)}=40 \\
& a^{2} \arcsin \left(\frac{4}{a}\right)+4 \sqrt{a^{2}-16}=40
\end{aligned}
\]
M1
(c) solving using GDC \(\Rightarrow a=5.53 \mathrm{~cm}\)
9.

(a) attempt to set up the problem using a tree diagram and/or an equation, with the unknown \(x\)
\(\frac{4}{5} x+\frac{2}{3}(1-x)=\frac{13}{18}\)
\(\frac{4 x}{5}-\frac{2 x}{3}=\frac{13}{18}-\frac{2}{3}\)
\(\frac{2 x}{15}=\frac{1}{18}\)
\(x=\frac{5}{12}\)
(b) attempt to set up the problem using conditional probability

\section*{EITHER}
\(\frac{\frac{5}{12} \times \frac{1}{5}}{1-\frac{13}{18}}\)
OR
\(\frac{\frac{5}{12} \times \frac{1}{5}}{\frac{1}{12}+\frac{7}{36}}\)
THEN
\(=\frac{3}{10}\)
A1

\section*{Section B}
10. (a) (i) \(P(110<X<130)==0.49969 \ldots=0.500=50.0 \%\)
(M1)A1

Note: Accept 50

Note: Award M1AO for 0.50 (0.500)
(ii) \(\quad P(X>130)=(1-0.707 \ldots)=0.293 \ldots\)
expected number of turnips \(=29.3\)
Note: Accept 29.
(iii) no of turnips weighing more than 130 is \(Y \sim B(100,0.293)\)
\(P(Y \geq 30)=0.478\)
(b) (i) \(X \sim N\left(144, \sigma^{2}\right)\)
\(P(X \leq 130)=\frac{1}{15}=0.0667\)
\(P\left(Z \leq \frac{130-144}{\sigma}\right)=0.0667\)
\(\frac{14}{\sigma}=1.501\)
\(\sigma=9.33 g\)
(ii) \(\quad P(X>150 \mid X>130)=\frac{P(X>150)}{P(X>130)}\)
\(=\frac{0.26008 \ldots}{1-0.06667}=0.279\)
A1
expected number of turnips \(=55.7\)

A1
[6 marks]
11. (a) attempt at implicit differentiation
\[
2 x-5 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-5 y+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0
\]

Note: A1 for differentiation of \(x^{2}-5 x y, \boldsymbol{A 1}\) for differentiation of \(y^{2}\) and 7.
\[
\begin{aligned}
& 2 x-5 y+\frac{\mathrm{d} y}{\mathrm{~d} x}(2 y-5 x)=0 \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{5 y-2 x}{2 y-5 x}
\end{aligned}
\]
(b) \(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5 \times 1-2 \times 6}{2 \times 1-5 \times 6}=\frac{1}{4}\)
gradient of normal \(=-4\)
equation of normal \(y=-4 x+c\)
substitution of \((6,1)\)
\(y=-4 x+25\)
Note: Accept \(y-1=-4(x-6)\)
[4 marks]
(c) setting \(\frac{5 y-2 x}{2 y-5 x}=1\)
\(y=-x\)
M1
substituting into original equation
A1
\(x^{2}+5 x^{2}+x^{2}=7\)
\(7 x^{2}=7\)
\(x= \pm 1\)
points \((1,-1)\) and \((-1,1)\)
distance \(=\sqrt{8}(=2 \sqrt{2})\)

A1
(A1)
M1
(A1)
(M1)A1
[8 marks]
12. (a) METHOD 1
\(\mathrm{s}=\int\left(9 t-3 t^{2}\right) \mathrm{d} t=\frac{9}{2} t^{2}-t^{3}(+c)\)
\(t=0, s=3 \Rightarrow c=3\)
\(t=4 \Rightarrow s=11\)
A1
[3 marks]

\section*{METHOD 2}
\(s=3+\int_{0}^{4}\left(9 t-3 t^{2}\right) d t\)
(M1)(A1)
\(s=11\)
A1
[3 marks]
(b) \(s=3+\frac{9}{2} t^{2}-t^{3}\)

correct shape over correct domain
A1
maximum at \((3,16.5)\)
A1
\(t\) intercept at 4.64, \(s\) intercept at 3
A1
minimum at (5, -9.5)

A1
[5 marks]
continued...

Question 12 continued
(c) \(-9.5=a+b \cos 2 \pi\)
\[
16.5=a+b \cos 3 \pi
\]

Note: Only award \(\boldsymbol{M 1}\) if two simultaneous equations are formed over the correct domain.
\[
\begin{array}{ll}
a=\frac{7}{2} & \text { A1 } \\
b=-13 & \text { A1 }
\end{array}
\]
(d) at \(t_{1}\) :
\(3+\frac{9}{2} t^{2}-t^{3}=3\)
\(t^{2}\left(\frac{9}{2}-t\right)=0\)
\(t_{1}=\frac{9}{2}\)
A1
solving \(\frac{7}{2}-13 \cos \frac{2 \pi t}{5}=3\)
\(\mathrm{GDC} \Rightarrow t_{2}=6.22\)

Note: Accept graphical approaches.
13. (a) \(L_{1}\) and \(L_{2}\) are not parallel, since \(\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right) \neq k\left(\begin{array}{l}2 \\ 1 \\ 6\end{array}\right)\)

R1
if they meet, then \(1-\lambda=1+2 \mu\) and \(2+\lambda=2+\mu\)
M1
solving simultaneously \(\Rightarrow \lambda=\mu=0\)
A1
\(2+2 \lambda=4+6 \mu \Rightarrow 2 \neq 4\) contradiction,
R1
so lines are skew
AG

Note: Do not award the second \(\boldsymbol{R 1}\) if their values of parameters are incorrect.
[4 marks]
(b) \(\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 1 \\ 6\end{array}\right)(=11)=\sqrt{6} \sqrt{41} \cos \theta\)
\(\cos \theta=\frac{11}{\sqrt{246}}\)
\(\theta=45.5^{\circ}\) ( 0.794 radians )
(A1)
A1
[4 marks]

A1
continued...

Question 13 continued
(ii) METHOD 1
let P be the intersection of \(L_{1}\) and \(L_{3}\)
let Q be the intersection of \(L_{2}\) and \(L_{3}\)
\(\overrightarrow{\mathrm{OP}}=\left(\begin{array}{c}1-\lambda \\ 2+\lambda \\ 2+2 \lambda\end{array}\right) \overrightarrow{\mathrm{OQ}}=\left(\begin{array}{c}1+2 \mu \\ 2+\mu \\ 4+6 \mu\end{array}\right)\)
M1

M1A1

M1
(M1)

A1

Note: Award A1 for either correct \(\lambda\) or \(\mu\).

\section*{EITHER}
therefore \(\overrightarrow{\mathrm{OP}}=\left(\begin{array}{c}1-\lambda \\ 2+\lambda \\ 2+2 \lambda\end{array}\right)=\left(\begin{array}{c}\frac{93}{125} \\ \frac{282}{125} \\ \frac{314}{125}\end{array}\right)=\left(\begin{array}{c}0.744 \\ 2.256 \\ 2.512\end{array}\right)\)
therefore \(L_{3}: \boldsymbol{r}_{3}=\left(\begin{array}{l}0.744 \\ 2.256 \\ 2.512\end{array}\right)+\alpha\left(\begin{array}{c}4 \\ 10 \\ -3\end{array}\right)\)

Question 13 continued
OR
\[
\text { therefore } \overrightarrow{\mathrm{OQ}}=\left(\begin{array}{c}
1+2 \mu \\
2+\mu \\
4+6 \mu
\end{array}\right)=\left(\begin{array}{c}
\frac{69}{125} \\
\frac{222}{125} \\
\frac{332}{125}
\end{array}\right)=\left(\begin{array}{l}
0.552 \\
1.776 \\
2.656
\end{array}\right)
\]
therefore \(L_{3}: \boldsymbol{r}_{3}=\left(\begin{array}{l}0.552 \\ 1.776 \\ 2.656\end{array}\right)+\alpha\left(\begin{array}{c}4 \\ 10 \\ -3\end{array}\right)\)
A1

A1

Note: Allow position vector(s) to be expressed in decimal or fractional form.

\section*{METHOD 2}
\(L_{3}: r_{3}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)+t\left(\begin{array}{c}4 \\ 10 \\ -3\end{array}\right)\)
forming two equations as intersections with \(L_{1}\) and \(L_{2}\)
\[
\begin{aligned}
& \left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)+t_{1}\left(\begin{array}{c}
4 \\
10 \\
-3
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right) \\
& \left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)+t_{2}\left(\begin{array}{c}
4 \\
10 \\
-3
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)+\mu\left(\begin{array}{l}
2 \\
1 \\
6
\end{array}\right)
\end{aligned}
\]

Note: Only award M1A1A1 if two different parameters \(t_{1}, t_{2}\) used.
attempting to solve simultaneously
\[
\lambda=\frac{32}{125}(0.256), \mu=-\frac{28}{125}(-0.224)
\]

Note: Award A1 for either correct \(\lambda\) or \(\mu\).
continued...

Question 13 continued

\section*{EITHER}
\(\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{l}0.552 \\ 1.776 \\ 2.656\end{array}\right)\)
therefore \(L_{3}: \boldsymbol{r}_{3}=\left(\begin{array}{l}0.552 \\ 1.776 \\ 2.656\end{array}\right)+t\left(\begin{array}{c}4 \\ 10 \\ -3\end{array}\right)\)
A1A1

OR
\(\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{l}0.744 \\ 2.256 \\ 2.512\end{array}\right)\)
therefore \(L_{3}: \boldsymbol{r}_{3}=\left(\begin{array}{l}0.744 \\ 2.256 \\ 2.512\end{array}\right)+t\left(\begin{array}{c}4 \\ 10 \\ -3\end{array}\right)\)
A1A1

Note: Allow position vector(s) to be expressed in decimal or fractional form.

\title{
MARKSCHEME
}

\section*{November 2014}

\section*{MATHEMATICS}

\section*{Higher Level}

\section*{Paper 2}

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

\section*{Instructions to Examiners}

\section*{Abbreviations}
\(\boldsymbol{M}\) Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\(\boldsymbol{A} \quad\) Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
\(\boldsymbol{N} \quad\) Marks awarded for correct answers if no working shown.
\(\boldsymbol{A} \boldsymbol{G}\) Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

General
Mark according to \(\mathrm{RM}^{\mathrm{TM}}\) Assessor instructions and the document "Mathematics HL: Guidance for emarking November 2014". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A 0}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by RM \(^{\mathrm{TM}}\) Assessor.

\section*{Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M 0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A} \operatorname{mark}(\mathrm{s})\) depend on the preceding \(\boldsymbol{M} \operatorname{mark}(\mathrm{s})\), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, for example, M1A1, this usually means \(\boldsymbol{M 1}\) for an attempt to use an appropriate method (for example, substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

\section*{\(N\) marks}

Award \(N\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer \(\boldsymbol{F T}\) marks.
- If the error leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{Mis-read}

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \(\boldsymbol{M}\) mark, but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
\]

Award \(\boldsymbol{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 \\ Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

\section*{14. Candidate work}

Candidates are meant to write their answers to Section A on the question paper ( QP ), and Section \(B\) on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP , and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

\section*{SECTION A}
1. \(\boldsymbol{n}_{1}=\left(\begin{array}{c}4 \\ 2 \\ -1\end{array}\right)\) and \(\boldsymbol{n}_{2}=\left(\begin{array}{l}1 \\ 3 \\ 3\end{array}\right)\)
(A1)(A1)
use of \(\cos \theta=\frac{\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}}{\left|\boldsymbol{n}_{1}\right|\left|\boldsymbol{n}_{2}\right|}\)
\(\cos \theta=\frac{7}{\sqrt{21} \sqrt{19}}\left(=\frac{7}{\sqrt{399}}\right)\)
(A1)(A1)

Note: Award \(\boldsymbol{A 1}\) for a correct numerator and \(\boldsymbol{A 1}\) for a correct denominator.
\(\theta=69^{\circ}\)
Note: Award \(\boldsymbol{A 1}\) for \(111^{\circ}\).

Total [6 marks]
2. (a) \(\mathrm{P}(X>x)=0.99(=\mathrm{P}(X<x)=0.01)\)
\(\Rightarrow x=54.6(\mathrm{~cm})\)
(M1)
A1
[2 marks]
(b) \(\mathrm{P}(60.15 \leq X \leq 60.25)\)
\(=0.0166\)
(M1)(A1)
A1
[3 marks]
Total [5 marks]
3. use of \(\mu=\frac{\sum_{i=1}^{k} f_{i} x_{i}}{n}\) to obtain \(\frac{2+x+y+10+17}{5}=8\)
\(x+y=11\)

\section*{EITHER}
use of \(\sigma^{2}=\frac{\sum_{i=1}^{k} f_{i}\left(x_{i}-\mu\right)^{2}}{n}\) to obtain \(\frac{(-6)^{2}+(x-8)^{2}+(y-8)^{2}+2^{2}+9^{2}}{5}=27.6\) (M1)
\((x-8)^{2}+(y-8)^{2}=17\)
OR
use of \(\sigma^{2}=\frac{\sum_{i=1}^{k} f_{i} x_{i}^{2}}{n}-\mu^{2}\) to obtain \(\frac{2^{2}+x^{2}+y^{2}+10^{2}+17^{2}}{5}-8^{2}=27.6\)
\(x^{2}+y^{2}=65\)

\section*{THEN}
attempting to solve the two equations
\(x=4\) and \(y=7\) (only as \(x<y\) )
Note: Award \(\boldsymbol{A 0}\) for \(x=7\) and \(y=4\).

Note: Award (M1)A1(M0)A0(M1)A1 for \(x+y=11 \Rightarrow x=4\) and \(y=7\).

\section*{4. METHOD 1}
attempt to set up (diagram, vectors)
correct distances \(x=15 t, y=20 t\)
the distance between the two cyclists at time \(t\) is \(s=\sqrt{(15 t)^{2}+(20 t)^{2}}=25 t(\mathrm{~km}) \quad A 1\)
\(\frac{\mathrm{d} s}{\mathrm{~d} t}=25\left(\mathrm{~km} \mathrm{~h}^{-1}\right)\)
hence the rate is independent of time

\section*{METHOD 2}
attempting to differentiate \(x^{2}+y^{2}=s^{2}\) implicitly
\(2 x \frac{\mathrm{~d} x}{\mathrm{~d} t}+2 y \frac{\mathrm{~d} y}{\mathrm{~d} t}=2 s \frac{\mathrm{~d} s}{\mathrm{~d} t}\)
the distance between the two cyclists at time \(t\) is \(\sqrt{(15 t)^{2}+(20 t)^{2}}=25 t(\mathrm{~km})\)
\(2(15 t)(15)+2(20 t)(20)=2(25 t) \frac{\mathrm{d} s}{\mathrm{~d} t}\)
Note: Award M1 for substitution of correct values into their equation involving \(\frac{\mathrm{d} s}{\mathrm{~d} t}\).
\(\frac{\mathrm{d} s}{\mathrm{~d} t}=25\left(\mathrm{kmh}^{-1}\right)\)
hence the rate is independent of time

\section*{METHOD 3}
\(s=\sqrt{x^{2}+y^{2}}\)
\(\frac{\mathrm{d} s}{\mathrm{~d} t}=\frac{x \frac{\mathrm{~d} x}{\mathrm{~d} t}+y \frac{\mathrm{~d} y}{\mathrm{~d} t}}{\sqrt{x^{2}+y^{2}}}\)
(M1)(A1)

Note: Award \(\boldsymbol{M 1}\) for attempting to differentiate the expression for \(s\).
\(\frac{\mathrm{d} s}{\mathrm{~d} t}=\frac{(15 t)(15)+(20 t)(20)}{\sqrt{(15 t)^{2}+(20 t)^{2}}}\)
Note: Award M1 for substitution of correct values into their \(\frac{\mathrm{d} s}{\mathrm{~d} t}\).
\(\frac{\mathrm{d} s}{\mathrm{~d} t}=25\left(\mathrm{~km} \mathrm{~h}^{-1}\right)\)
5. (a) attempting to find a normal to \(\pi \mathrm{eg}\left(\begin{array}{c}3 \\ 2 \\ -2\end{array}\right) \times\left(\begin{array}{c}8 \\ 11 \\ 6\end{array}\right)\)
\[
\begin{aligned}
& \left(\begin{array}{c}
3 \\
2 \\
-2
\end{array}\right) \times\left(\begin{array}{c}
8 \\
11 \\
6
\end{array}\right)=17\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right) \\
& r \cdot\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
5 \\
12
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right) \\
& 2 x-2 y+z=4 \text { (or equivalent) }
\end{aligned}
\]
(b) \(l_{3}: \boldsymbol{r}=\left(\begin{array}{l}4 \\ 0 \\ 8\end{array}\right)+t\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right), t \in \mathbb{R}\)
attempting to solve \(\left(\begin{array}{c}4+2 t \\ -2 t \\ 8+t\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)=4\) for \(t\) ie \(9 t+16=4\) for \(t\)
\(t=-\frac{4}{3}\)
\(\left(\frac{4}{3}, \frac{8}{3}, \frac{20}{3}\right)\)
6. using \(p(a)=-7\) to obtain \(3 a^{3}+a^{2}+5 a+7=0\)

M1A1
(M1)(A1)

Note: Award M1 for a cubic graph with correct shape and \(A 1\) for clearly showing that the above cubic crosses the horizontal axis at \((-1,0)\) only.
\[
\begin{equation*}
a=-1 \tag{A1}
\end{equation*}
\]

\section*{EITHER}
showing that \(3 a^{2}-2 a+7=0\) has no real (two complex) solutions for \(a\)

\section*{OR}
showing that \(3 a^{3}+a^{2}+5 a+7=0\) has one real (and two complex)
solutions for \(a\)
Note: Award \(\boldsymbol{R} \mathbf{1}\) for solutions that make specific reference to an appropriate graph.
7. (a) using \(r=\frac{u_{2}}{u_{1}}=\frac{u_{3}}{u_{2}}\) to form \(\frac{a+2 d}{a+6 d}=\frac{a}{a+2 d}\)
\(2 d(2 d-a)=0\) (or equivalent)
since \(d \neq 0 \Rightarrow d=\frac{a}{2}\)
(b) substituting \(d=\frac{a}{2}\) into \(a+6 d=3\) and solving for \(a\) and \(d\)
\(a=\frac{3}{4}\) and \(d=\frac{3}{8}\)
\(r=\frac{1}{2}\)
\(\frac{n}{2}\left(2 \times \frac{3}{4}+(n-1) \frac{3}{8}\right)-\frac{3\left(1-\left(\frac{1}{2}\right)^{n}\right)}{1-\frac{1}{2}} \geq 200\)
attempting to solve for \(n\)
\(n \geq 31.68 \ldots\)
so the least value of \(n\) is \(32 \quad \boldsymbol{A 1}\)
8. (a) \(3-\frac{t}{2}=0 \Rightarrow t=6\) (s)

Note: Award \(\boldsymbol{A 0}\) if either \(t=-0.236\) or \(t=4.24\) or both are stated with \(t=6\).
(b) let \(d\) be the distance travelled before coming to rest
\(d=\int_{0}^{4} 5-(t-2)^{2} \mathrm{~d} t+\int_{4}^{6} 3-\frac{t}{2} \mathrm{~d} t\)
(M1)(A1)

Note: Award M1 for two correct integrals even if the integration limits are incorrect. The second integral can be specified as the area of a triangle.
\(d=\frac{47}{3}(=15.7)(\mathrm{m})\)
attempting to solve \(\int_{6}^{T}\left(\frac{t}{2}-3\right) \mathrm{d} t=\frac{47}{3}\) (or equivalent) for \(T\)
\(T=13.9\) (s)

A1
[5 marks]
Total [7 marks]
9. (a) each triangle has area \(\frac{1}{8} x^{2} \sin \frac{2 \pi}{n}\) (use of \(\frac{1}{2} a b \sin C\) )
there are \(n\) triangles so \(A=\frac{1}{8} n x^{2} \sin \frac{2 \pi}{n}\)
\(C=\frac{4\left(\frac{1}{8} n x^{2} \sin \frac{2 \pi}{n}\right)}{\pi x^{2}}\)
so \(C=\frac{n}{2 \pi} \sin \frac{2 \pi}{n}\)
(b) attempting to find the least value of \(n\) such that \(\frac{n}{2 \pi} \sin \frac{2 \pi}{n}>0.99\)
\(n=26\)
attempting to find the least value of \(n\) such that \(\frac{n \sin \frac{2 \pi}{n}}{\pi\left(1+\cos \frac{\pi}{n}\right)}>0.99\)
\(n=21\) (and so a regular polygon with 21 sides)
Note: Award (M0)A0(M1)A1 if \(\frac{n}{2 \pi} \sin \frac{2 \pi}{n}>0.99\) is not considered and \(\frac{n \sin \frac{2 \pi}{n}}{\pi\left(1+\cos \frac{\pi}{n}\right)}>0.99\) is correctly considered.
Award (M1)A1(M0)A0 for \(n=26\).

\section*{(c) EITHER}
for even and odd values of \(n\), the value of \(C\) seems to increase towards the limiting value of the circle \((C=1)\) ie as \(n\) increases, the polygonal regions get closer and closer to the enclosing circular region

\section*{OR}
the differences between the odd and even values of \(n\) illustrate that this measure of compactness is not a good one.

R1
[1 mark]
Total [8 marks]

\section*{SECTION B}
10. (a) use of \(A=\frac{1}{2} q r \sin \theta\) to obtain \(A=\frac{1}{2}(x+2)(5-x)^{2} \sin 30^{\circ}\)

M1
\[
\begin{aligned}
& =\frac{1}{4}(x+2)\left(25-10 x+x^{2}\right) \\
& A=\frac{1}{4}\left(x^{3}-8 x^{2}+5 x+50\right)
\end{aligned}
\]
(b) (i) \(\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{1}{4}\left(3 x^{2}-16 x+5\right)=\frac{1}{4}(3 x-1)(x-5)\)
(ii) METHOD 1

\section*{EITHER}
\(\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{1}{4}\left(3\left(\frac{1}{3}\right)^{2}-16\left(\frac{1}{3}\right)+5\right)=0\)
OR
\(\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{1}{4}\left(3\left(\frac{1}{3}\right)-1\right)\left(\left(\frac{1}{3}\right)-5\right)=0\)
M1A1
THEN
so \(\frac{\mathrm{d} A}{\mathrm{~d} x}=0\) when \(x=\frac{1}{3}\)
\(A G\)

\section*{METHOD 2}
solving \(\frac{\mathrm{d} A}{\mathrm{~d} x}=0\) for \(x\)
\(-2<x<5 \Rightarrow x=\frac{1}{3}\)
A1
so \(\frac{\mathrm{d} A}{\mathrm{~d} x}=0\) when \(x=\frac{1}{3}\)

\section*{METHOD 3}
a correct graph of \(\frac{\mathrm{d} A}{\mathrm{~d} x}\) versus \(x\)
the graph clearly showing that \(\frac{\mathrm{d} A}{\mathrm{~d} x}=0\) when \(x=\frac{1}{3}\)
A1
so \(\frac{\mathrm{d} A}{\mathrm{~d} x}=0\) when \(x=\frac{1}{3}\)

Question 10 continued
(c) (i) \(\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}=\frac{1}{2}(3 x-8)\)
for \(x=\frac{1}{3}, \frac{\mathrm{~d}^{2} A}{\mathrm{~d} x^{2}}=-3.5(<0)\)
so \(x=\frac{1}{3}\) gives the maximum area of triangle \(\mathrm{PQR} \quad \boldsymbol{A G}\)
(ii) \(\quad A_{\max }=\frac{343}{27}(=12.7)\left(\mathrm{cm}^{2}\right)\)
(iii) \(\mathrm{PQ}=\frac{7}{3}(\mathrm{~cm})\) and \(\mathrm{PR}=\left(\frac{14}{3}\right)^{2}(\mathrm{~cm})\) (A1)
\(\mathrm{QR}^{2}=\left(\frac{7}{3}\right)^{2}+\left(\frac{14}{3}\right)^{4}-2\left(\frac{7}{3}\right)\left(\frac{14}{3}\right)^{2} \cos 30^{\circ}\)
\(=391.702 \ldots\)
\(\mathrm{QR}=19.8(\mathrm{~cm})\)
[7 marks]
11. (a) (i) \(\mathrm{P}(X=0)=0.549\left(=\mathrm{e}^{-0.6}\right)\)
(ii) \(\mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2)\) (M1)
\(\mathrm{P}(X \geq 3)=0.0231\)
(b) EITHER
using \(Y \sim \operatorname{Po}(3)\)
OR
using (0.549) \({ }^{5}\)

\section*{THEN}
\[
\mathrm{P}(Y=0)=0.0498\left(=\mathrm{e}^{-3}\right) \quad \boldsymbol{A 1}
\]

\section*{Question 11 continued}
(c) \(\mathrm{P}(X=0)\) (most likely number of complaints received is zero)

\section*{EITHER}
calculating \(\mathrm{P}(X=0)=0.549\) and \(\mathrm{P}(X=1)=0.329\)
OR
sketching an appropriate (discrete) graph of \(\mathrm{P}(X=x)\) against \(x\)

\section*{OR}
finding \(\mathrm{P}(X=0)=e^{-0.6}\) and stating that \(\mathrm{P}(X=0)>0.5\)

\section*{OR}
using \(\mathrm{P}(X=x)=\mathrm{P}(X=x-1) \times \frac{\mu}{x}\) where \(\mu<1\) M1A1
[3 marks]
(d) \(\mathrm{P}(X=0)=0.8\left(\Rightarrow e^{-\lambda}=0.8\right)\)
\[
\begin{equation*}
\lambda=0.223\left(=\ln \frac{5}{4},=-\ln \frac{4}{5}\right) \tag{A1}
\end{equation*}
\]
12. (a) \(P\) (Ava wins on her first turn) \(=\frac{1}{3}\)
(b) \(\quad \mathrm{P}\) (Barry wins on his first turn) \(=\left(\frac{2}{3}\right)^{2}\)
\[
=\frac{4}{9}(=0.444)
\]
(c) \(\quad \mathrm{P}\) (Ava wins in one of her first three turns)
\[
\begin{equation*}
=\frac{1}{3}+\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \frac{1}{3}+\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \frac{1}{3} \tag{M1A1A1}
\end{equation*}
\]

Note: Award M1 for adding probabilities, award \(\boldsymbol{A 1}\) for a correct second term and award \(\boldsymbol{A 1}\) for a correct third term.
Accept a correctly labelled tree diagram, awarding marks as above.
\[
=\frac{103}{243}(=0.424)
\]
(d) \(\mathrm{P}(\) Ava eventually wins \()=\frac{1}{3}+\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \frac{1}{3}+\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)\left(\frac{1}{3}\right) \frac{1}{3}+\ldots\)
using \(S_{\infty}=\frac{a}{1-r}\) with \(a=\frac{1}{3}\) and \(r=\frac{2}{9}\)
(M1)(A1)

Note: Award (M1) for using \(S_{\infty}=\frac{a}{1-r}\) and award (A1) for \(a=\frac{1}{3}\) and \(r=\frac{2}{9}\).
\[
=\frac{3}{7}(=0.429)
\]
13. (a) attempting to use \(V=\pi \int_{a}^{b} x^{2} \mathrm{~d} y\)
attempting to express \(x^{2}\) in terms of \(y\) ie \(x^{2}=4(y+16)\)
for \(y=h, V=4 \pi \int_{0}^{h} y+16 \mathrm{~d} y\)
\[
V=4 \pi\left(\frac{h^{2}}{2}+16 h\right)
\]
(b) (i) METHOD 1
\[
\begin{align*}
& \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} h}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t} \\
& \frac{\mathrm{~d} V}{\mathrm{~d} h}=4 \pi(h+16)  \tag{A1}\\
& \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{1}{4 \pi(h+16)} \times \frac{-250 \sqrt{h}}{\pi(h+16)}
\end{align*}
\]

Note: Award \(\boldsymbol{M 1}\) for substitution into \(\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\mathrm{d} h}{\mathrm{~d} V} \times \frac{\mathrm{d} V}{\mathrm{~d} t}\).
\(\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{250 \sqrt{h}}{4 \pi^{2}(h+16)^{2}}\)

\section*{METHOD 2}
\(\frac{\mathrm{d} V}{\mathrm{~d} t}=4 \pi(h+16) \frac{\mathrm{d} h}{\mathrm{~d} t}\) (implicit differentiation)
\(\frac{-250 \sqrt{h}}{\pi(h+16)}=4 \pi(h+16) \frac{\mathrm{d} h}{\mathrm{~d} t}\) (or equivalent)
\(\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{1}{4 \pi(h+16)} \times \frac{-250 \sqrt{h}}{\pi(h+16)}\)
\(\frac{\mathrm{d} h}{\mathrm{~d} t}=-\frac{250 \sqrt{h}}{4 \pi^{2}(h+16)^{2}}\)
(ii) \(\frac{\mathrm{d} t}{\mathrm{~d} h}=-\frac{4 \pi^{2}(h+16)^{2}}{250 \sqrt{h}}\)
\(t=\int-\frac{4 \pi^{2}(h+16)^{2}}{250 \sqrt{h}} \mathrm{~d} h\)
\(t=\int-\frac{4 \pi^{2}\left(h^{2}+32 h+256\right)}{250 \sqrt{h}} \mathrm{~d} h\)
\(t=\frac{-4 \pi^{2}}{250} \int\left(h^{\frac{3}{2}}+32 h^{\frac{1}{2}}+256 h^{-\frac{1}{2}}\right) \mathrm{d} h\)

\section*{Question 13 continued}
(iii) METHOD 1
\(t=\frac{-4 \pi^{2}}{250} \int_{48}^{0}\left(h^{\frac{3}{2}}+32 h^{\frac{1}{2}}+256 h^{-\frac{1}{2}}\right) \mathrm{d} h\)
\(t=2688.756 \ldots\) (s)
45 minutes (correct to the nearest minute)

\section*{METHOD 2}
\(t=\frac{-4 \pi^{2}}{250}\left(\frac{2}{5} h^{\frac{5}{2}}+\frac{64}{3} h^{\frac{3}{2}}+512 h^{\frac{1}{2}}\right)+c\)
when \(t=0, h=48 \Rightarrow c=2688.756 \ldots\left(c=\frac{4 \pi^{2}}{250}\left(\frac{2}{5} \times 48^{\frac{5}{2}}+\frac{64}{3} \times 48^{\frac{3}{2}}+512 \times 48^{\frac{1}{2}}\right)\right)\)
when \(h=0, t=2688.756 \ldots\left(t=\frac{4 \pi^{2}}{250}\left(\frac{2}{5} \times 48^{\frac{5}{2}}+\frac{64}{3} \times 48^{\frac{3}{2}}+512 \times 48^{\frac{1}{2}}\right)\right)(\mathrm{s})\)
45 minutes (correct to the nearest minute)

\section*{(c) EITHER}
the depth stabilises when \(\frac{\mathrm{d} V}{\mathrm{~d} t}=0\) ie \(8.5-\frac{250 \sqrt{h}}{\pi(h+16)}=0\)
attempting to solve \(8.5-\frac{250 \sqrt{h}}{\pi(h+16)}=0\) for \(h\)
OR
the depth stabilises when \(\frac{\mathrm{d} h}{\mathrm{~d} t}=0\) ie \(\frac{1}{4 \pi(h+16)}\left(8.5-\frac{250 \sqrt{h}}{\pi(h+16)}\right)=0\)
attempting to solve \(\frac{1}{4 \pi(h+16)}\left(8.5-\frac{250 \sqrt{h}}{\pi(h+16)}\right)=0\) for \(h\)

\section*{THEN}
\[
h=5.06(\mathrm{~cm})
\]
14. (a) METHOD 1
squaring both equations M1
\(9 \sin ^{2} B+24 \sin B \cos C+16 \cos ^{2} C=36\)
\(9 \cos ^{2} B+24 \cos B \sin C+16 \sin ^{2} C=1\)
adding the equations and using \(\cos ^{2} \theta+\sin ^{2} \theta=1\) to obtain \(9+24 \sin (B+C)+16=37\)

M1
\(24(\sin B \cos C+\cos B \sin C)=12\)
\(24 \sin (B+C)=12\)
\(\sin (B+C)=\frac{1}{2}\)

\section*{METHOD 2}
substituting for \(\sin B\) and \(\cos B\) to obtain
\(\sin (B+C)=\left(\frac{6-4 \cos C}{3}\right) \cos C+\left(\frac{1-4 \sin C}{3}\right) \sin C\)
\(=\frac{6 \cos C+\sin C-4}{3}\) (or equivalent)
substituting for \(\sin C\) and \(\cos C\) to obtain
\(\sin (B+C)=\sin B\left(\frac{6-3 \sin B}{4}\right)+\cos B\left(\frac{1-3 \cos B}{4}\right)\)
\(=\frac{\cos B+6 \sin B-3}{4}\) (or equivalent)
Adding the two equations for \(\sin (B+C)\) :
\[
\begin{align*}
& 2 \sin (B+C)=\frac{(18 \sin B+24 \cos C)+(4 \sin C+3 \cos B)-25}{12} \\
& \sin (B+C)=\frac{36+1-25}{24} \\
& \sin (B+C)=\frac{1}{2} \tag{A1}
\end{align*}
\]

\section*{METHOD 3}
substituting for \(\sin B\) and \(\sin C\) to obtain
\(\sin (B+C)=\left(\frac{6-4 \cos C}{3}\right) \cos C+\cos B\left(\frac{1-3 \cos B}{4}\right)\)
substituting for \(\cos B\) and \(\cos C\) to obtain
\(\sin (B+C)=\sin B\left(\frac{6-3 \sin B}{4}\right)+\left(\frac{1-4 \sin C}{3}\right) \sin C\)
Adding the two equations for \(\sin (B+C)\) :
\[
\begin{equation*}
2 \sin (B+C)=\frac{6 \cos C+\sin C-4}{3}+\frac{6 \sin B+\cos B-3}{4} \text { (or equivalent) } \tag{A1A1}
\end{equation*}
\]
\(2 \sin (B+C)=\frac{(18 \sin B+24 \cos C)+(4 \sin C+3 \cos B)-25}{12}\)
\(\sin (B+C)=\frac{36+1-25}{24}\)
\(\sin (B+C)=\frac{1}{2}\)
(b) \(\sin A=\sin \left(180^{\circ}-(B+C)\right)\) so \(\sin A=\sin (B+C)\) R1
\(\sin (B+C)=\frac{1}{2} \Rightarrow \sin A=\frac{1}{2}\)
\(\Rightarrow A=30^{\circ}\) or \(A=150^{\circ}\) A1
if \(A=150^{\circ}\), then \(B<30^{\circ}\) R1
for example, \(3 \sin B+4 \cos C<\frac{3}{2}+4<6\), ie a contradiction R1 only one possible value ( \(A=30^{\circ}\) )

\title{
MARKSCHEME
}

\section*{May 2014}

\section*{MATHEMATICS}

\section*{Higher Level}

\section*{Paper 2}

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\(\boldsymbol{A} \quad\) Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
\(\boldsymbol{N} \quad\) Marks awarded for correct answers if no working shown.
\(\boldsymbol{A} \boldsymbol{G}\) Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{1 General}

Mark according to Scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2014". It is essential that you read this document before you start marking. In particular, please note the following:
- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A 0}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by Scoris.

\section*{Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M 0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A} \operatorname{mark}(\mathrm{s})\) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, eg M1A1, this usually means \(\boldsymbol{M 1}\) for an attempt to use an appropriate method ( \(e g\) substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

\section*{\(N\) marks}

Award \(\boldsymbol{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer \(\boldsymbol{F T}\) marks.
- If the error leads to an inappropriate value (eg \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{6 Mis-read}

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \(\boldsymbol{M}\) mark, but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (eg \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{8 \\ Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
\]

Award \(\boldsymbol{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
14. Candidate work

Candidates are meant to write their answers to Section A on the question paper ( QP ), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP , and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

\section*{SECTION A}

\section*{1. METHOD 1}
```

substituting
$-5+12 \mathrm{i}+a(2+3 \mathrm{i})+b=0$
equating real or imaginary parts (M1)
$12+3 a=0 \Rightarrow a=-4 \quad$ A1
$-5+2 a+b=0 \Rightarrow b=13 \quad$ A1

```

\section*{METHOD 2}
```

other root is $2-3 \mathrm{i}$
considering either the sum or product of roots or multiplying factors
$4=-a$ (sum of roots) so $a=-4$
$13=b$ (product of roots)
2. $X: \mathrm{N}\left(100, \sigma^{2}\right)$
$\mathrm{P}(X<124)=0.68$
$\frac{24}{\sigma}=0.4676 \ldots$.
$\sigma=51.315 \ldots$
variance $=2630$

Notes: Accept use of $\mathrm{P}(X<124.5)=0.68$ leading to variance $=2744$.
3. the number of ways of allocating presents to the first child is $\binom{7}{3}\left(\right.$ or $\left.\binom{7}{2}\right)$ multiplying by $\binom{4}{2}\left(\right.$ or $\binom{5}{3}$ or $\left.\binom{5}{2}\right)$
(M1)(A1)

Note: Award M1 for multiplication of combinations.

$$
\binom{7}{3}\binom{4}{2}=210
$$

4. (a) $\left[\begin{array}{c}x+2 y-z=2 \\ 2 x+y+z=1 \\ -x+4 y+a z=4\end{array}\right.$

$$
\rightarrow\left[\begin{array}{c}
x+2 y-z=2 \\
-3 y+3 z=-3 \\
6 y+(a-1) z=6
\end{array}\right.
$$

$$
\rightarrow\left[\begin{array}{c}
x+2 y-z=2 \\
-3 y+3 z=-3 \\
(a+5) z=0
\end{array}\right.
$$

(or equivalent)
if not a unique solution then $a=-5$
Note: The first $\boldsymbol{M 1}$ is for attempting to eliminate a variable, the first $\boldsymbol{A 1}$ for obtaining two expression in just two variables (plus a), and the second $\boldsymbol{A 1}$ for obtaining an expression in just a and one other variable
(b) if $a=-5$ there are an infinite number of solutions as last equation always true
5. (a) $\frac{\pi}{2}(1.57), \frac{3 \pi}{2}(4.71)$
hence the coordinates are $\left(\frac{\pi}{2}, \frac{\pi}{2}\right),\left(\frac{3 \pi}{2}, \frac{3 \pi}{2}\right)$
A1A1

A1
[3 marks]
(b) (i) $\pi \int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}\left(x^{2}-(x+2 \cos x)^{2}\right) \mathrm{d} x$

A1A1A1

Note: Award $\boldsymbol{A} \mathbf{1}$ for $x^{2}-(x+2 \cos x)^{2}, \boldsymbol{A} \mathbf{1}$ for correct limits and $\boldsymbol{A} \mathbf{1}$ for π.
(ii) $\quad 6 \pi^{2}(=59.2)$ A2

Notes: Do not award ft from (b)(i).
6. (a) METHOD 1
sketch showing where the lines cross or zeros of $y=x(x+2)^{6}-x$
$x=0$
$x=-1$ and $x=-3$
the solution is $-3<x<-1$ or $x>0$
Note: Do not award either final $\boldsymbol{A 1}$ mark if strict inequalities are not given.

METHOD 2

separating into two cases $x>0$ and $x<0$
if $x>0$ then $(x+2)^{6}>1 \Rightarrow$ always true
if $x<0$ then $(x+2)^{6}<1 \Rightarrow-3<x<-1$
so the solution is $-3<x<-1$ or $x>0$
Note: Do not award either final $\boldsymbol{A 1}$ mark if strict inequalities are not given.

METHOD 3

$$
\begin{aligned}
& f(x)=x^{7}+12 x^{6}+60 x^{5}+160 x^{4}+240 x^{3}+192 x^{2}+64 x \\
& \text { solutions to } x^{7}+12 x^{6}+60 x^{5}+160 x^{4}+240 x^{3}+192 x^{2}+63 x=0 \text { are } \\
& x=0, x=-1 \text { and } x=-3 \\
& \text { so the solution is }-3<x<-1 \text { or } x>0
\end{aligned}
$$

Note: Do not award either final $\boldsymbol{A 1}$ mark if strict inequalities are not given.

METHOD 4

$$
\begin{equation*}
f(x)=x \text { when } x(x+2)^{6}=x \tag{A1}
\end{equation*}
$$

either $x=0$ or $(x+2)^{6}=1$
if $(x+2)^{6}=1$ then $x+2= \pm 1$ so $x=-1$ or $x=-3$
the solution is $-3<x<-1$ or $x>0$
A1A1
Note: Do not award either final $\boldsymbol{A 1}$ mark if strict inequalities are not given.

Question 6 continued

(b) METHOD 1 (by substitution)

$$
\text { substituting } u=x+2
$$

$\mathrm{d} u=\mathrm{d} x$
$\int(u-2) u^{6} \mathrm{~d} u$
$=\frac{1}{8} u^{8}-\frac{2}{7} u^{7}(+c)$
$=\frac{1}{8}(x+2)^{8}-\frac{2}{7}(x+2)^{7}(+c)$

METHOD 2 (by parts)

$u=x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=1, \frac{\mathrm{~d} v}{\mathrm{~d} x}=(x+2)^{6} \Rightarrow v=\frac{1}{7}(x+2)^{7}$
$\int x(x+2)^{6} \mathrm{~d} x=\frac{1}{7} x(x+2)^{7}-\frac{1}{7} \int(x+2)^{7} \mathrm{~d} x$
$=\frac{1}{7} x(x+2)^{7}-\frac{1}{56}(x+2)^{8}(+c)$

METHOD 3 (by expansion)

$$
\begin{aligned}
& \int f(x) \mathrm{d} x=\int\left(x^{7}+12 x^{6}+60 x^{5}+160 x^{4}+240 x^{3}+192 x^{2}+64 x\right) \mathrm{d} x \\
& =\frac{1}{8} x^{8}+\frac{12}{7} x^{7}+10 x^{6}+32 x^{5}+60 x^{4}+64 x^{3}+32 x^{2}(+c) \text { are }
\end{aligned}
$$

M1A1
M1A2

Note: Award M1A1 if at least four terms are correct.
7. if $n=0$
$7^{3}+2=345$ which is divisible by 5 , hence true for $n=0$
Note: Award $\boldsymbol{A 0}$ for using $n=1$ but do not penalize further in question.
assume true for $n=k$
M1
Note: Only award the $\boldsymbol{M 1}$ if truth is assumed.
so $7^{8 k+3}+2=5 p, p \in \bullet \quad$ A1
if $n=k+1$
$7^{8(k+1)+3}+2$
M1
$=7^{8} 7^{8 k+3}+2 \quad$ M1
$=7^{8}(5 p-2)+2 \quad$ A1
$=7^{8} .5 p-2.7^{8}+2$
$=7^{8} .5 p-11529600$
$=5\left(7^{8} p-2305920\right)$
hence if true for $n=k$, then also true for $n=k+1$. Since true for $n=0$, then true for all $n \in$ •

Note: Only award the $\boldsymbol{R} \mathbf{1}$ if the first two $\boldsymbol{M 1}$ s have been awarded.
8. (a) $\left(A\binom{6}{5} 2^{5} B+3\binom{6}{4} 2^{4} B^{2}\right) x^{5}$ $=\left(192 A B+720 B^{2}\right) x^{5}$

M1A1A1
A1
[4 marks]
(b) METHOD 1
$x=\frac{1}{6}, A=\frac{3}{6}\left(=\frac{1}{2}\right), B=\frac{4}{6}\left(=\frac{2}{3}\right)$
A1A1A1
probability is $\frac{4}{81}(=0.0494)$
A1

METHOD 2

$$
\begin{aligned}
& \mathrm{P}(5 \text { eaten })=\mathrm{P}(\mathrm{M} \text { eats } 1) \mathrm{P}(\mathrm{~N} \text { eats } 4)+\mathrm{P}(\mathrm{M} \text { eats } 0) \mathrm{P}(\mathrm{~N} \text { eats } 5) \\
& =\frac{1}{2}\binom{6}{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{2}+\frac{1}{2}\binom{6}{5}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right) \\
& =\frac{4}{81}(=0.0494)
\end{aligned}
$$

[4 marks]
Total [8 marks]
9. (a) mean for week is 40.88
$\mathrm{P}(S>40)=1-\mathrm{P}(S \leq 40)=0.513$
(b) probability there were more than 10 on Monday AND more than 40 over the week probability there were more than 10 on Monday
possibilities for the numerator are:
there were more than 40 birds on the power line on Monday R1
11 on Monday and more than 29 over the course of the next 6 days R1
12 on Monday and more than 28 over the course of the next 6 days \ldots until 40 on Monday and more than 0 over the course of the next 6 days R1
hence if X is the number on the power line on Monday and Y, the number on the power line Tuesday - Sunday then the numerator is
$\mathrm{P}(X>40)+\mathrm{P}(X=11) \times \mathrm{P}(Y>29)+\mathrm{P}(X=12) \times \mathrm{P}(Y>28)+\ldots$
$+\mathrm{P}(X=40) \times \mathrm{P}(Y>0)$
$=\mathrm{P}(X>40)+\sum_{r=11}^{40} \mathrm{P}(X=r) \mathrm{P}(Y>40-r)$
hence solution is $\frac{\mathrm{P}(X>40)+\sum_{r=11}^{40} \mathrm{P}(X=r) \mathrm{P}(Y>40-r)}{\mathrm{P}(X>10)}$

SECTION B

10. (a) $x \rightarrow-\infty \Rightarrow y \rightarrow-\frac{1}{2}$ so $y=-\frac{1}{2}$ is an asymptote
(M1)A1
$\mathrm{e}^{x}-2=0 \Rightarrow x=\ln 2$ so $x=\ln 2(=0.693)$ is an asymptote
(b) (i) $f^{\prime}(x)=\frac{2\left(\mathrm{e}^{x}-2\right) \mathrm{e}^{2 x}-\left(\mathrm{e}^{2 x}+1\right) \mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}}$

M1A1
$=\frac{\mathrm{e}^{3 x}-4 \mathrm{e}^{2 x}-\mathrm{e}^{x}}{\left(\mathrm{e}^{x}-2\right)^{2}}$
(ii) $f^{\prime}(x)=0$ when $\mathrm{e}^{3 x}-4 \mathrm{e}^{2 x}-\mathrm{e}^{x}=0$
$\mathrm{e}^{x}\left(\mathrm{e}^{2 x}-4 \mathrm{e}^{x}-1\right)=0$
$\mathrm{e}^{x}=0, \mathrm{e}^{x}=-0.236, \mathrm{e}^{x}=4.24\left(\right.$ or $\left.e^{x}=2 \pm \sqrt{5}\right)$
Note: Award $\boldsymbol{A 1}$ for zero, $\boldsymbol{A 1}$ for other two solutions.
Accept any answers which show a zero, a negative and a positive.
as $\mathrm{e}^{x}>0$ exactly one solution
Note: Do not award marks for purely graphical solution.
(iii) $(1.44,8.47)$
(c) $\quad f^{\prime}(0)=-4$
so gradient of normal is $\frac{1}{4}$
$f(0)=-2$
so equation of L_{1} is $y=\frac{1}{4} x-2$

Question 10 continued

11. (a) $\int_{2}^{3}(a x+b) \mathrm{d} x(=1)$

M1A1
$\left[\frac{1}{2} a x^{2}+b x\right]_{2}^{3}(=1)$
$\frac{5}{2} a+b=1$
M1
$5 a+2 b=2$
$A G$
(b) (i) $\quad \int_{2}^{3}\left(a x^{2}+b x\right) \mathrm{d} x(=\mu)$

M1A1
A1

A1
M1
eliminating b

$$
\begin{aligned}
& \frac{19}{3} a+\frac{5}{2}\left(1-\frac{5}{2} a\right)=\mu \\
& \frac{1}{12} a+\frac{5}{2}=\mu \\
& a=12 \mu-30
\end{aligned}
$$

$$
A 1
$$

AG
Note: Elimination of b could be at different stages.
(ii) $\quad b=1-\frac{5}{2}(12 \mu-30)$
$=76-30 \mu$

Note: This solution may be seen in part (i).
[7 marks]
(c)

$$
\begin{aligned}
& \int_{2}^{2.3}(a x+b) \mathrm{d} x(=0.5) \\
& {\left[\frac{1}{2} a x^{2}+b x\right]_{2}^{2.3}(=0.5)} \\
& 0.645 a+0.3 b(=0.5) \\
& 0.645(12 \mu-30)+0.3(76-30 \mu)=0.5 \\
& \mu=2.34\left(=\frac{295}{126}\right)
\end{aligned}
$$

Question 11 continued
(ii) $\mathrm{E}\left(X^{2}\right)=\int_{2}^{3} x^{2}(a x+b) \mathrm{d} x$
$a=12 \mu-30=-\frac{40}{21}, b=76-30 \mu=\frac{121}{21}$
$\mathrm{E}\left(X^{2}\right)=\int_{2}^{3} x^{2}\left(-\frac{40}{21} x+\frac{121}{21}\right) \mathrm{d} x=5.539 \ldots\left(=\frac{349}{63}\right)$
$\operatorname{Var}(X)=5.539 \mathrm{~K}-(2.341 \mathrm{~K})^{2}=0.05813 \ldots$
$\sigma=0.241$
(M1)
12. (a) (i) $f(0)=-1$
(M1) A1
(ii) $(f \circ g)(0)=f(4)=3$

A1
(iii)

Note: Award M1 for evidence that the lower part of the graph has been reflected and $\boldsymbol{A 1}$ correct shape with y-intercept below 4 .
(b) (i)

(M1)A1
Note: Award M1 for any translation of $y=|x|$.
(ii) ± 1

Note: Do not award the $\boldsymbol{A 1}$ if coordinates given, but do not penalise in the rest of the question

Question 12 continued

(c) (i)

(M1) A1
Note: Award M1 for evidence that lower part of (b) has been reflected in the x-axis and translated.
(ii) $0, \pm 2$

$$
A 1
$$

(d) (i) $\pm 1, \pm 3$

A1
(ii) $0, \pm 2, \pm 4$

$$
A 1
$$

(iii) $0, \pm 2, \pm 4, \pm 6, \pm 8$
(e) (i) $(1,3),(2,5), \ldots$
(M1)
$N=2 n+1$
A1
(ii) Using the formula of the sum of an arithmetic series

EITHER

$$
\begin{aligned}
& 4(1+2+3+\ldots+n)=\frac{4}{2} n(n+1) \\
& =2 n(n+1)
\end{aligned}
$$

OR

$2(2+4+6+\ldots+2 n)=\frac{2}{2} n(2 n+2)$
$=2 n(n+1)$
$=2 n(n+1)$

MARKSCHEME

May 2014

MATHEMATICS

Higher Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

\boldsymbol{M} Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to Scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2014". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks
- If a part is completely wrong, $\operatorname{stamp} \boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by Scoris.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, for example, M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (for example, substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award \boldsymbol{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \boldsymbol{M} mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8
 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3))
$$

Award $A 1$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for $\boldsymbol{F T}$.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

SECTION A

1. (a) (i) $n=27$
(A1)
METHOD 1
$S_{27}=\frac{14+196}{2} \times 27$
A1

METHOD 2

$S_{27}=\frac{27}{2}(2 \times 14+26 \times 7)$
$=2835$$\quad$ (M1)

METHOD 3
$S_{27}=\sum_{n=1}^{27} 7+7 n$
(M1)
$=2835$
A1
(ii) $\sum_{n=1}^{27}(7+7 n)$ or equivalent

Note: Accept $\sum_{n=2}^{28} 7 n$
(b) $\frac{n}{2}(2000-6(n-1))<0$
(M1)
$n>334.333$
$n=335$

Note: Accept working with equalities.
2. (a) METHOD 1
$\mu=\frac{1}{2} \times(17.1+21.3)$ (M1)
$\mu=19.2(\mathrm{~kg})$
finding z value for the upper quartile $=0.674489 \mathrm{~K}$
$0.674489 \mathrm{~K}=\frac{21.3-19.2}{\sigma}$ or $-0.674489 \mathrm{~K}=\frac{17.1-19.2}{\sigma}$ M1
$\sigma=3.11(\mathrm{~kg})$

METHOD 2

finding z value for the upper quartile $=0.674489 \mathrm{~K}$
from symmetry the z value for a lower quartile is -0.674489 K
M1
forming two simultaneous equations:
$-0.674489 \mathrm{~K}=\frac{17.1-\mu}{\sigma}$
$0.674489 \mathrm{~K}=\frac{21.3-\mu}{\sigma}$
M1
solving gives:
$\mu=19.2(\mathrm{~kg})$
$\sigma=3.11(\mathrm{~kg})$
(b) using $100 \times \mathrm{P}(X>22)=100 \times 0.184241 \mathrm{~K}$
$=18$
A1
Note: Accept 18.4
3. (a) $x_{\mathrm{A}}=2.87$ A1
$x_{\mathrm{B}}=6.78 \quad$ A1
(b) $\int_{2.87772}^{6.7768 \mathrm{~K}} 1-2 \sin x-x^{2} \mathrm{e}^{-x} \mathrm{~d} x$ (M1)(A1)
$=6.76$
A1
Note: Award (M1) for definite integral and (A1) for a correct definite integral.
4. (a) METHOD 1
$2 \arcsin \left(\frac{1.5}{4}\right)$
M1
$\alpha=0.769^{c}\left(44.0^{\circ}\right)$

METHOD 2

using the cosine rule:
$\begin{array}{lc}3^{2}=4^{2}+4^{2}-2(4)(4) \cos \alpha & \text { M1 } \\ \alpha=0.769^{c}\left(44.0^{\circ}\right) & \text { A1 }\end{array}$
[2 marks]
(b) one segment

$$
\begin{aligned}
\mathrm{A}_{1} & =\frac{1}{2} \times 4^{2} \times 0.76879-\frac{1}{2} \times 4^{2} \times \sin (0.76879) \\
& =0.58819 \mathrm{~K} \\
2 \mathrm{~A}_{1} & =1.18\left(\mathrm{~cm}^{2}\right)
\end{aligned}
$$

Note: Award M1 only if both sector and triangle are considered.
5. expanding $(x-1)^{3}=x^{3}-3 x^{2}+3 x-1$
expanding $\left(\frac{1}{x}+2 x\right)^{6}$ gives
$64 x^{6}+192 x^{4}+240 x^{2}+\frac{60}{x^{2}}+\frac{12}{x^{4}}+\frac{1}{x^{6}}+160$
(M1)A1A1

Note: Award (M1) for an attempt at expanding using binomial.
Award $A 1$ for $\frac{60}{x^{2}}$.
Award $A 1$ for $\frac{12}{x^{4}}$.
$\frac{60}{x^{2}} \times-1+\frac{12}{x^{4}} \times-3 x^{2}$
Note: Award (M1) only if both terms are considered.
therefore coefficient x^{-2} is -96
Note: Accept $-96 x^{-2}$
Note: Award full marks if working with the required terms only without giving the entire expansion.
6. (a) (i) $0.6^{3} \times 0.4^{3}$

Note: Award (M1) for use of the product of probabilities.

$$
=0.0138
$$

(ii) binomial distribution $X: \mathrm{B}(6,0.6)$

Note: Award (M1) for recognizing the binomial distribution.

$$
\begin{aligned}
& \mathrm{P}(X=3)={ }^{6} C_{3}(0.6)^{3}(0.4)^{3} \\
& =0.276
\end{aligned}
$$

Note: Award (M1)A1 for ${ }^{6} C_{3} \times 0.0138=0.276$.

Question 6 continued

(b) $\quad Y: \mathrm{B}(n, 0.4)$
$\mathrm{P}(Y \geq 1)>0.995$
$1-\mathrm{P}(Y=0)>0.995$
$\mathrm{P}(Y=0)<0.005$
Note: Award (M1) for any of the last three lines. Accept equalities.

$$
\begin{equation*}
0.6^{n}<0.005 \tag{M1}
\end{equation*}
$$

Note: Award (M1) for attempting to solve $0.6^{n}<0.005$ using any method, eg, logs, graphically, use of solver. Accept an equality.
$n>10.4$
$\therefore n=11$
7. (a)

A1A1A1
Note: Award $\boldsymbol{A 1}$ for correct shape, $\boldsymbol{A 1}$ for $x=2$ clearly stated and $\boldsymbol{A 1}$ for $y=-3$ clearly stated.
x intercept $(2.33,0)$ and y intercept $(0,-3.5)$

Note: Accept -3.5 and $2.33(7 / 3)$ marked on the correct axes.

Question 7 continued

(b) $x=-3+\frac{1}{y-2}$

Note: Award M1 for interchanging x and y (can be done at a later stage).

$$
\begin{aligned}
& x+3=\frac{1}{y-2} \\
& y-2=\frac{1}{x+3}
\end{aligned}
$$

Note: Award $\boldsymbol{M 1}$ for attempting to make y the subject.

$$
\begin{equation*}
f^{-1}(x)=2+\frac{1}{x+3}\left(=\frac{2 x+7}{x+3}\right), x \neq-3 \tag{A1A1}
\end{equation*}
$$

Note: Award $\boldsymbol{A 1}$ only if $f^{-1}(x)$ is seen. Award $\boldsymbol{A} 1$ for the domain.
[4 marks]
Total [8 marks]
8. (a) $\frac{\mu^{2} \mathrm{e}^{-\mu}}{2!}+\frac{\mu^{3} \mathrm{e}^{-\mu}}{3!}=\frac{\mu^{5} \mathrm{e}^{-\mu}}{5!}$
(M1)

$$
\begin{aligned}
& \frac{\mu^{2}}{2}+\frac{\mu^{3}}{6}-\frac{\mu^{5}}{120}=0 \\
& \mu=5.55
\end{aligned}
$$

(b) $\quad \sigma=\sqrt{5.55 \ldots}=2.35598 \ldots$
$\mathrm{P}(3.19 \leq X \leq 7.9)$
$\mathrm{P}(4 \leq X \leq 7)$
$=0.607$

9. METHOD 1

volume of a cone is $V=\frac{1}{3} \pi r^{2} h$
given $h=r, V=\frac{1}{3} \pi h^{3}$
M1
$\frac{\mathrm{d} V}{\mathrm{~d} h}=\pi h^{2}$
when $h=4, \frac{\mathrm{~d} V}{\mathrm{~d} t}=\pi \times 4^{2} \times 0.5\left(\right.$ using $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} h} \times \frac{\mathrm{d} h}{\mathrm{~d} t}$)
M1A1
$\frac{\mathrm{d} V}{\mathrm{~d} t}=8 \pi(=25.1)\left(\mathrm{cm}^{3} \min ^{-1}\right)$

METHOD 2

volume of a cone is $V=\frac{1}{3} \pi r^{2} h$
given $h=r, V=\frac{1}{3} \pi h^{3}$
$\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1}{3} \pi \times 3 h^{2} \times \frac{\mathrm{d} h}{\mathrm{~d} t}$
when $h=4, \frac{\mathrm{~d} V}{\mathrm{~d} t}=\pi \times 4^{2} \times 0.5$
$\frac{\mathrm{d} V}{\mathrm{~d} t}=8 \pi(=25.1)\left(\mathrm{cm}^{3} \mathrm{~min}^{-1}\right)$

METHOD 3

$V=\frac{1}{3} \pi r^{2} h$
$\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{1}{3} \pi\left(2 r h \frac{\mathrm{~d} r}{\mathrm{~d} t}+r^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}\right)$
Note: Award M1 for attempted implicit differentiation and $\boldsymbol{A 1}$ for each correct term on the RHS.
when $h=4, r=4, \frac{\mathrm{~d} V}{\mathrm{~d} t}=\frac{1}{3} \pi\left(2 \times 4 \times 4 \times 0.5+4^{2} \times 0.5\right)$

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=8 \pi(=25.1)\left(\mathrm{cm}^{3} \min ^{-1}\right)
$$

10. (a) METHOD 1
expanding the brackets first:

$$
\begin{aligned}
& x^{4}+2 x^{2} y^{2}+y^{4}=4 x y^{2} \\
& 4 x^{3}+4 x y^{2}+4 x^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 y^{2}+8 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}
\end{aligned}
$$

Note: Award M1 for an attempt at implicit differentiation. Award $\boldsymbol{A 1}$ for each side correct.
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-x^{3}-x y^{2}+y^{2}}{y x^{2}-2 x y+y^{3}}$ or equivalent

METHOD 2

$$
\begin{equation*}
2\left(x^{2}+y^{2}\right)\left(2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=4 y^{2}+8 x y \frac{\mathrm{~d} y}{\mathrm{~d} x} \tag{M1A1A1}
\end{equation*}
$$

Note: Award M1 for an attempt at implicit differentiation.
Award A1 for each side correct.
$\left(x^{2}+y^{2}\right)\left(x+y \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=y^{2}+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
$x^{3}+x^{2} y \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2} x+y^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{2}+2 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-x^{3}-x y^{2}+y^{2}}{y x^{2}-2 x y+y^{3}}$ or equivalent
(b) METHOD 1
at $(1,1), \frac{\mathrm{d} y}{\mathrm{~d} x}$ is undefined

METHOD 2

gradient of normal $=-\frac{1}{\frac{\mathrm{~d} y}{\mathrm{~d} x}}=-\frac{\left(y x^{2}-2 x y+y^{3}\right)}{\left(-x^{3}-x y^{2}+y^{2}\right)}$
at $(1,1)$ gradient $=0$
$y=1$

SECTION B

11. (a) $a \int_{0}^{\frac{\pi}{2}} x \cos x \mathrm{~d} x=1$ integrating by parts:
$\begin{array}{lll}u=x & v^{\prime}=\cos x & \text { M1 } \\ u^{\prime}=1 & v=\sin x & \boldsymbol{A 1} \\ \int x \cos x \mathrm{~d} x & =x \sin x+\cos x & \end{array}$
$[x \sin x+\cos x]_{0}^{\frac{\pi}{2}}=\frac{\pi}{2}-1 \quad$ A1
$a=\frac{1}{\frac{\pi}{2}-1}$ A1 $A G$
(b) $\mathrm{P}\left(X<\frac{\pi}{4}\right)=\frac{2}{\pi-2} \int_{0}^{\frac{\pi}{4}} x \cos x \mathrm{~d} x=0.460$
(M1)A1

Note: Accept $\frac{2}{\pi-2}\left(=\frac{\pi \sqrt{2}}{8}+\frac{\sqrt{2}}{2}-1\right)$ or equivalent
(c) (i) mode $=0.860$
(x-value of a maximum on the graph over the given domain)
(ii) $\frac{2}{\pi-2} \int_{0}^{m} x \cos x \mathrm{~d} x=0.5$
$\int_{0}^{m} x \cos x \mathrm{~d} x=\frac{\pi-2}{4}$
$m \sin m+\cos m-1=\frac{\pi-2}{4}$
median $=0.826$
Note: Do not accept answers containing additional solutions.

Question 11 continued

$$
\text { (d) } \begin{aligned}
& \mathrm{P}\left(\left.X<\frac{\pi}{8} \right\rvert\, X<\frac{\pi}{4}\right)=\frac{\mathrm{P}\left(X<\frac{\pi}{8}\right)}{\mathrm{P}\left(X<\frac{\pi}{4}\right)} \\
& \quad=\frac{0.129912}{0.459826} \\
& \quad=0.283
\end{aligned}
$$

Total [13 marks]
12. (a) $C=\mathrm{AX} \times 5 k+\mathrm{XB} \times k$
(M1)
Note: Award (M1) for attempting to express the cost in terms of AX, XB and k.

$$
\begin{array}{ll}
=5 k \sqrt{450^{2}+x^{2}}+(1000-x) k & \boldsymbol{A 1} \\
=5 k \sqrt{202500+x^{2}}+(1000-x) k & A \boldsymbol{G}
\end{array}
$$

(b) (i) $\frac{\mathrm{d} C}{\mathrm{~d} x}=k\left[\frac{5 \times 2 x}{2 \sqrt{202500+x^{2}}}-1\right]=k\left(\frac{5 x}{\sqrt{202500+x^{2}}}-1\right)$

Note: Award $\boldsymbol{M 1}$ for an attempt to differentiate and $\boldsymbol{A} \mathbf{1}$ for the correct derivative.
continued...

Question 12 continued

(ii) attempting to solve $\frac{\mathrm{d} C}{\mathrm{~d} x}=0$

M1

$$
\begin{align*}
& \frac{5 x}{\sqrt{202500+x^{2}}}=1 \tag{A1}\\
& x=91.9(\mathrm{~m})\left(=\frac{75 \sqrt{6}}{2}(\mathrm{~m})\right)
\end{align*}
$$

METHOD 1
for example,
at $x=91 \frac{\mathrm{~d} C}{\mathrm{~d} x}=-0.00895 k<0$

Note: Award M1 for attempting to find the gradient either side of $x=91.9$ and $\boldsymbol{A 1}$ for two correct values.
thus $x=91.9$ gives a minimum
METHOD 2
$\frac{\mathrm{d}^{2} C}{\mathrm{~d} x^{2}}=\frac{1012500 k}{\left(x^{2}+202500\right)^{\frac{3}{2}}}$
at $x=91.9 \frac{\mathrm{~d}^{2} C}{\mathrm{~d} x^{2}}=0.010451 \mathrm{k}>0$
Note: Award $\boldsymbol{M 1}$ for attempting to find the second derivative and $\boldsymbol{A 1}$ for the correct value.

Note: If $\frac{\mathrm{d}^{2} C}{\mathrm{~d} x^{2}}$ is obtained and its value at $x=91.9$ is not calculated, award (M1)A1 for correct reasoning eg, both numerator and denominator are positive at $x=91.9$.
thus $x=91.9$ gives a minimum

METHOD 3

Sketching the graph of either C versus x or $\frac{\mathrm{d} C}{\mathrm{~d} x}$ versus x.
Clearly indicating that $x=91.9$ gives the minimum on their graph.

Question 12 continued
(c) $C_{\text {min }}=3205 k$

Note: Accept 3200k.
Accept $3204 k$.
(d) $\quad \arctan \left(\frac{450}{91.855865 \mathrm{~K}}\right)=78.463 \mathrm{~K}^{\circ}$

M1
$180-78.463 \mathrm{~K}=101.537 \mathrm{~K}$
$=102^{\circ}$
(e) (i) when $\theta=120^{\circ}, x=260(\mathrm{~m})\left(\frac{450}{\sqrt{3}}(\mathrm{~m})\right)$
(ii) $\frac{133.728 \mathrm{~K}}{3204.5407685 \mathrm{~K}} \times 100 \%$ $=4.17(\%)$
13. (a) let $\mathrm{P}(n)$ be the proposition $z^{n}=r^{n}(\cos n \theta+\mathrm{i} \sin n \theta), n \in \phi^{+}$
let $n=1 \Rightarrow$
LHS $=r(\cos \theta+\mathrm{i} \sin \theta)$
RHS $=r(\cos \theta+\mathrm{i} \sin \theta), \therefore \mathrm{P}(1)$ is true R1
assume true for $n=k \Rightarrow r^{k}(\cos \theta+\mathrm{i} \sin \theta)^{k}=r^{k}(\cos (k \theta)+\mathrm{i} \sin (k \theta)) \quad$ M1
Note: Only award the $\boldsymbol{M 1}$ if truth is assumed.
now show $n=k$ true implies $n=k+1$ also true

$$
\begin{array}{ll}
r^{k+1}(\cos \theta+\mathrm{i} \sin \theta)^{k+1}=r^{k+1}(\cos \theta+\mathrm{i} \sin \theta)^{k}(\cos \theta+\mathrm{i} \sin \theta) & \text { M1 } \\
=r^{k+1}(\cos (k \theta)+\mathrm{i} \sin (k \theta))(\cos \theta+\mathrm{i} \sin \theta) & \\
=r^{k+1}(\cos (k \theta) \cos \theta-\sin (k \theta) \sin \theta+\mathrm{i}(\sin (k \theta) \cos \theta+\cos (k \theta) \sin \theta)) & \text { A1 } \\
=r^{k+1}(\cos (k \theta+\theta)+\mathrm{i} \sin (k \theta+\theta)) & \text { A1 } \\
=r^{k+1}(\cos (k+1) \theta+\mathrm{i} \sin (k+1) \theta) \Rightarrow n=k+1 \text { is true } & \text { A1 }
\end{array}
$$

$\mathrm{P}(k)$ true implies $\mathrm{P}(k+1)$ true and $\mathrm{P}(1)$ is true, therefore by mathematical induction statement is true for $n \geq 1$

Note: Only award the final $\boldsymbol{R} \mathbf{1}$ if the first 4 marks have been awarded.

$$
\begin{aligned}
& u=2 \operatorname{cis}\left(\frac{\pi}{3}\right) \\
& v=\sqrt{2} \operatorname{cis}\left(-\frac{\pi}{4}\right)
\end{aligned}
$$

[7 marks]

(b) (i) $\quad u=2 \operatorname{cis}\left(\frac{\pi}{3}\right)$

Notes: Accept 3 sf answers only. Accept equivalent forms. Accept $2 e^{\frac{\pi}{3} i}$ and $\sqrt{2} e^{-\frac{\pi}{4} i}$.
(ii) $\quad u^{3}=2^{3} \operatorname{cis}(\pi)=-8$
$v^{4}=4 \operatorname{cis}(-\pi)=-4$
$u^{3} v^{4}=32$
Notes: Award (M1) for an attempt to find u^{3} and v^{4}. Accept equivalent forms.

Question 13 continued

(c)

Note: Award A1 if A or $1+\sqrt{3} i$ and B or $1-i$ are in their correct quadrants, are aligned vertically and it is clear that $|u|>|v|$.
[1 mark]
(d) Area $=\frac{1}{2} \times 2 \times \sqrt{2} \times \sin \left(\frac{5 \pi}{12}\right)$
$=1.37\left(=\frac{\sqrt{2}}{4}(\sqrt{6}+\sqrt{2})\right)$
M1A1

A1

Notes: Award M1AOAO for using $\frac{7 \pi}{12}$.
(e) $(z-1+\mathrm{i})(z-1-\mathrm{i})=z^{2}-2 z+2$

Note: Award M1 for recognition that a complex conjugate is also a root.

$$
\begin{array}{lr}
(z-1-\sqrt{3} \mathrm{i})(z-1+\sqrt{3} \mathrm{i})=z^{2}-2 z+4 & \text { A1 } \\
\left(z^{2}-2 z+2\right)\left(z^{2}-2 z+4\right)=z^{4}-4 z^{3}+10 z^{2}-12 z+8 & \text { M1A1 }
\end{array}
$$

Note: Award M1 for an attempt to expand two quadratics.
14. (a)

A1 for correct shape and correct domain
$(1.41,0.0884)\left(\sqrt{2}, \frac{\sqrt{2}}{16}\right)$
(b) EITHER
$u=t^{2}$
$\frac{\mathrm{d} u}{\mathrm{~d} t}=2 t$
OR
$t=u^{\frac{1}{2}}$
$\frac{\mathrm{~d} t}{\mathrm{~d} u}=\frac{1}{2} u^{-\frac{1}{2}}$

THEN

$\int \frac{t}{12+t^{4}} \mathrm{~d} t=\frac{1}{2} \int \frac{\mathrm{~d} u}{12+u^{2}} \quad$ M1
$=\frac{1}{2 \sqrt{12}} \arctan \left(\frac{u}{\sqrt{12}}\right)(+c) \quad \quad$ M1
$=\frac{1}{4 \sqrt{3}} \arctan \left(\frac{t^{2}}{2 \sqrt{3}}\right)(+c)$ or equivalent $\quad \boldsymbol{A I}$
continued...

Question 14 continued

(c) $\int_{0}^{6} \frac{t}{12+t^{4}} \mathrm{~d} t$
(M1)

$$
\begin{aligned}
& =\left[\frac{1}{4 \sqrt{3}} \arctan \left(\frac{t^{2}}{2 \sqrt{3}}\right)\right]_{0}^{6} \\
& =\frac{1}{4 \sqrt{3}}\left(\arctan \left(\frac{36}{2 \sqrt{3}}\right)\right)\left(=\frac{1}{4 \sqrt{3}}\left(\arctan \left(\frac{18}{\sqrt{3}}\right)\right)\right)(\mathrm{m})
\end{aligned}
$$

M1

$$
A 1
$$

Note: Accept $\frac{\sqrt{3}}{12} \arctan (6 \sqrt{3})$ or equivalent.
(d) $\frac{\mathrm{d} v}{\mathrm{~d} s}=\frac{1}{2 \sqrt{s(1-s)}}$
$a=v \frac{\mathrm{~d} v}{\mathrm{~d} s}$
$a=\arcsin (\sqrt{s}) \times \frac{1}{2 \sqrt{s(1-s)}}$
$a=\arcsin (\sqrt{0.1}) \times \frac{1}{2 \sqrt{0.1 \times 0.9}}$
$a=0.536\left(\mathrm{~ms}^{-2}\right)$

MARKSCHEME

November 2013

MATHEMATICS

Higher Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$N \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to Scoris instructions and the document "Mathematics HL: Guidance for e-marking November 2013". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by Scoris.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \boldsymbol{0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, for example, M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (for example, substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \boldsymbol{M} mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for $\boldsymbol{F T}$.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

14. Candidate work

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. This work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

SECTION A

1. $A X=B$

EITHER

$\Rightarrow \boldsymbol{X}=\boldsymbol{A}^{-1} \boldsymbol{B}$

OR

attempting row reduction:
$e g\left(\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & -1 & -6 \\ 0 & -2 & 0 & -1\end{array}\right)$
(M1)

THEN

$\Rightarrow \boldsymbol{X}=\left(\begin{array}{c}-\frac{7}{2} \\ \frac{1}{2} \\ 5\end{array}\right)$
2. (a) METHOD 1

$$
\begin{array}{lr}
34=a+3 d \text { and } 76=a+9 d & \text { (M1) } \\
d=7 \\
a=13
\end{array}
$$

METHOD 2

$$
\begin{array}{lr}
76=34+6 d & \text { (M1) } \\
d=7 & \text { A1 } \\
34=a+21 & \\
a=13 & \text { A1 }
\end{array}
$$

(b) $\frac{n}{2}(26+7(n-1))>5000$
(M1)(A1)
$n>36.463$...
Note: Award M1A1A1 for using either an equation, a graphical approach or a numerical approach.
$n=37$
A1
N3
[4 marks]
3. (a)

A correct graph shape for $0<x \leq 10$. A1
maxima ($3.78,0.882$) and $(9.70,1.89)$ A1
minimum (6.22, -0.885) A1
x-axis intercepts $(1.97,0),(5.24,0)$ and $(7.11,0)$
Note: Award $A 1$ if two x-axis intercepts are correct.
(b) $0<x \leq 1.97$
$5.24 \leq x \leq 7.11$
4. $\mathrm{P}\left(Z<\frac{780-\mu}{\sigma}\right)=0.92$ and $\mathrm{P}\left(Z<\frac{755-\mu}{\sigma}\right)=0.12$
use of inverse normal
$\Rightarrow \frac{780-\mu}{\sigma}=1.405 \ldots$ and $\frac{755-\mu}{\sigma}=-1.174 \ldots$
solving simultaneously
Note: Award M1 for attempting to solve an incorrect pair of equations $e g$, inverse normal not used.
$\mu=766.385$
$\sigma=9.6897$
$\mu=12$ hrs 46 mins ($=766 \mathrm{mins}$)
A1
$\sigma=10 \mathrm{mins}$ A1

Total [6 marks]
5. (a) $\mathrm{P}(F)=\left(\frac{1}{7} \times \frac{7}{9}\right)+\left(\frac{6}{7} \times \frac{4}{9}\right)$

Note: Award M1 for the sum of two products.

$$
=\frac{31}{63}(=0.4920 \ldots)
$$

(b) Use of $\mathrm{P}(S \mid F)=\frac{\mathrm{P}(S \cap F)}{\mathrm{P}(F)}$ to obtain $\mathrm{P}(S \mid F)=\frac{\frac{1}{7} \times \frac{7}{9}}{\frac{31}{63}}$.

Note: Award M1 only if the numerator results from the product of two probabilities.

$$
=\frac{7}{31}(=0.2258 \ldots)
$$

6. (a) $\frac{a+\mathrm{i}}{a-\mathrm{i}} \times \frac{a+\mathrm{i}}{a+\mathrm{i}}$

M1
$=\frac{a^{2}-1+2 a \mathrm{i}}{a^{2}+1}\left(=\frac{a^{2}-1}{a^{2}+1}+\frac{2 a}{a^{2}+1} \mathrm{i}\right)$
(i) z is real when $a=0$
(ii) z is purely imaginary when $a= \pm 1$ A1

Note: Award M1A0A1A0 for $\frac{a^{2}-1+2 a \mathrm{i}}{a^{2}-1}\left(=1+\frac{2 a}{a^{2}-1} \mathrm{i}\right)$ leading to $a=0$ in (i).

(b) METHOD 1

attempting to find either $|z|$ or $|z|^{2}$ by expanding and simplifying
$e g|z|^{2}=\frac{\left(a^{2}-1\right)^{2}+4 a^{2}}{\left(a^{2}+1\right)^{2}}=\frac{a^{4}+2 a^{2}+1}{\left(a^{2}+1\right)^{2}}$
$=\frac{\left(a^{2}+1\right)^{2}}{\left(a^{2}+1\right)^{2}}$
$|z|^{2}=1 \Rightarrow|z|=1$

METHOD 2

$|z|=\frac{|a+\mathrm{i}|}{|a-\mathrm{i}|}$
$|z|=\frac{\sqrt{a^{2}+1}}{\sqrt{a^{2}+1}} \Rightarrow|z|=1$
7. (a) attempting to form $(3 \cos \theta+6)(\cos \theta-2)+7(1+\sin \theta)=0$

M1
$3 \cos ^{2} \theta-12+7 \sin \theta+7=0$ A1
$3\left(1-\sin ^{2} \theta\right)+7 \sin \theta-5=0$ M1
$3 \sin ^{2} \theta-7 \sin \theta+2=0$ AG
(b) attempting to solve algebraically (including substitution) or graphically for $\sin \theta$
$\sin \theta=\frac{1}{3}$
$\theta=0.340 \quad\left(=19.5^{\circ}\right)$
8. (a) $A=\frac{1}{2} \times 10^{2} \times \theta-\frac{1}{2} \times 10^{2} \times \sin \theta$ M1A1

Note: Award M1 for use of area of segment = area of sector - area of triangle.

$$
=50 \theta-50 \sin \theta
$$

(b) METHOD 1
unshaded area $=\frac{\pi \times 10^{2}}{2}-50(\theta-\sin \theta)$
(or equivalent eg $50 \pi-50 \theta+50 \sin \theta$)
$50 \theta-50 \sin \theta=\frac{1}{2}(50 \pi-50 \theta+50 \sin \theta)$
$3 \theta-3 \sin \theta-\pi=0$
$\Rightarrow \theta=1.969$ (rad)
A1

METHOD 2

$50 \theta-50 \sin \theta=\frac{1}{3}\left(\frac{\pi \times 10^{2}}{2}\right)$
(M1)(A1)
$3 \theta-3 \sin \theta-\pi=0$
$\Rightarrow \theta=1.969$ (rad)
A1
[3 marks]
Total [5 marks]
9. (a) METHOD 1

> for P on $L_{1}, \overrightarrow{\mathrm{OP}}=\left(\begin{array}{c}-5-\lambda \\ -3+2 \lambda \\ 2+2 \lambda\end{array}\right)$
> require $\left(\begin{array}{c}-5-\lambda \\ -3+2 \lambda \\ 2+2 \lambda\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right)=0$
$5+\lambda-6+4 \lambda+4+4 \lambda=0$ (or equivalent) A1
$\lambda=-\frac{1}{3}$

$$
\therefore \overrightarrow{\mathrm{OP}}=\left(\begin{array}{c}
-\frac{14}{3} \\
-\frac{11}{3} \\
\frac{4}{3}
\end{array}\right)
$$

$$
L_{2}: \boldsymbol{r}=\mu\left(\begin{array}{c}
-14 \\
-11 \\
4
\end{array}\right)
$$

METHOD 2

Calculating either $|\overrightarrow{\mathrm{OP}}|$ or $|\overrightarrow{\mathrm{OP}}|^{2} e g$

$$
\begin{aligned}
|\overrightarrow{\mathrm{OP}}| & =\sqrt{(-5-\lambda)^{2}+(-3+2 \lambda)^{2}+(2+2 \lambda)^{2}} \\
& =\sqrt{9 \lambda^{2}+6 \lambda+38}
\end{aligned}
$$

Solving either $\frac{\mathrm{d}}{\mathrm{d} \lambda}(|\overrightarrow{\mathrm{OP}}|)=0$ or $\frac{\mathrm{d}}{\mathrm{d} \lambda}\left(|\overrightarrow{\mathrm{OP}}|^{2}\right)=0$ for λ.

$$
\lambda=-\frac{1}{3}
$$

$$
\begin{aligned}
& \overrightarrow{\mathrm{OP}}=\left(\begin{array}{c}
-\frac{14}{3} \\
-\frac{11}{3} \\
\frac{4}{3}
\end{array}\right) \\
& L_{2}: \boldsymbol{r}=\mu\left(\begin{array}{c}
-14 \\
-11 \\
4
\end{array}\right)
\end{aligned}
$$

Note: Do not award the final $\boldsymbol{A 1}$ if $\boldsymbol{r}=$ is not seen.

Question 9 continued
(b) METHOD 1

$$
\begin{align*}
& |\overrightarrow{\mathrm{OP}}|=\sqrt{\left(-\frac{14}{3}\right)^{2}+\left(-\frac{11}{3}\right)^{2}+\left(\frac{4}{3}\right)^{2}} \tag{M1}\\
& =6.08 \quad(=\sqrt{37})
\end{align*}
$$

METHOD 2

$$
\begin{align*}
\text { shortest distance } & =\frac{\left|\left(\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right) \times\left(\begin{array}{c}
-5 \\
-3 \\
2
\end{array}\right)\right|}{\left|\left(\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right)\right|} \tag{M1}\\
& =\frac{|10 \boldsymbol{i}+8 \boldsymbol{j}+13 \boldsymbol{k}|}{\sqrt{1+4+4}} \\
& =6.08(=\sqrt{37})
\end{align*}
$$

10. EITHER

$\frac{\mathrm{d} x}{\mathrm{~d} u}=2 \sec ^{2} u$
$\int \frac{2 \sec ^{2} u \mathrm{~d} u}{4 \tan ^{2} u \sqrt{4+4 \tan ^{2} u}}$
$=\int \frac{2 \sec ^{2} u \mathrm{~d} u}{4 \tan ^{2} u \times 2 \sec u} \quad\left(=\int \frac{\mathrm{d} u}{4 \sin ^{2} u \sqrt{\tan ^{2} u+1}}\right.$ or $\left.=\int \frac{2 \sec ^{2} u \mathrm{~d} u}{4 \tan ^{2} u \sqrt{4 \sec ^{2} u}}\right)$

OR

$u=\arctan \frac{x}{2}$
$\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{2}{x^{2}+4}$
$\int \frac{\sqrt{4 \tan ^{2} u+4} \mathrm{~d} u}{2 \times 4 \tan ^{2} u}$
$\int \frac{2 \sec u \mathrm{~d} u}{2 \times 4 \tan ^{2} u}$

THEN

$=\frac{1}{4} \int \frac{\sec u \mathrm{~d} u}{\tan ^{2} u}$
$=\frac{1}{4} \int \operatorname{cosec} u \cot u \mathrm{~d} u\left(=\frac{1}{4} \int \frac{\cos u}{\sin ^{2} u} \mathrm{~d} u\right)$
A1
$=-\frac{1}{4} \operatorname{cosec} u(+C)\left(=-\frac{1}{4 \sin u}(+C)\right)$
A1
use of either $\tan u=\frac{x}{2}$ or an appropriate trigonometric identity M1
either $\sin u=\frac{x}{\sqrt{x^{2}+4}}$ or $\operatorname{cosec} u=\frac{\sqrt{x^{2}+4}}{x}$ (or equivalent) A1
$=\frac{-\sqrt{x^{2}+4}}{4 x}(+C)$
Total [7 marks]

SECTION B

11. (a) (i) $X \sim \operatorname{Po}(0.6)$
$\mathrm{P}(X=0)=0.549\left(=\mathrm{e}^{-0.6}\right)$
(ii) $\mathrm{P}(X \geq 3)=1-\mathrm{P}(X \leq 2)$
(M1)(A1)
$=1-\left(\mathrm{e}^{-0.6}+\mathrm{e}^{-0.6} \times 0.6+\mathrm{e}^{-0.6} \times \frac{0.6^{2}}{2}\right)$
$=0.0231 \quad$ A1
(iii) $Y \sim \operatorname{Po}(2.4)$
(M1)
$\mathrm{P}(Y \leq 5)=0.964$
A1
(iv) $Z \sim B(12,0.451 . .$. (M1)(A1)

Note: Award $\boldsymbol{M 1}$ for recognising binomial and $\boldsymbol{A 1}$ for using correct parameters.
$\mathrm{P}(Z=4)=0.169$
A1
[9 marks]
(b) (i) $k \int_{1}^{3} \ln x \mathrm{~d} x=1$
(M1)
$(k \times 1.2958 \ldots=1)$
$k=0.771702$
A1
(ii) $\mathrm{E}(X)=\int_{1}^{3} k x \ln x \mathrm{~d} x$
attempting to evaluate their integral (M1)
$=2.27$
A1
(iii) $x=3$

A1
(iv) $\begin{aligned} & \int_{1}^{m} k \ln x \mathrm{~d} x=0.5 \\ & k[x \ln x-x]_{1}^{m}=0.5 \\ & \text { attempting to solve for } m \\ & m=2.34\end{aligned}$
12. (a) (i) METHOD 1
$v=\int 3 \cos \frac{t}{4} \mathrm{~d} t$
$=12 \sin \frac{t}{4}+c$
$t=0, v=12 \Rightarrow v=12 \sin \frac{t}{4}+12$

METHOD 2

$v-12=\int_{0}^{t} 3 \cos \frac{t}{4} \mathrm{~d} t$
$v=12 \sin \frac{t}{4}+12$
(ii)

Note: Award $\boldsymbol{A 1}$ for shape and domain $0 \leq t \leq 8 \pi$.
Award $A 1$ for $(0,12)$ and $(6 \pi, 0)((18.8,0))$.
Award $\boldsymbol{A 1}$ for $(2 \pi, 24)((6.28,24))$.
(iii) METHOD 1
$\int_{0}^{6 \pi}\left(12 \sin \frac{t}{4}+12\right) \mathrm{d} t$
$=274(\mathrm{~m})(=72 \pi+48(\mathrm{~m}))$

METHOD 2

$s=\int 12 \sin \frac{t}{4}+12 \mathrm{~d} t$
$=-48 \cos \frac{t}{4}+12 t+c$
When $t=0, s=0$ and so $c=48$.
When $t=6 \pi, s=274(\mathrm{~m})(=72 \pi+48(\mathrm{~m}))$.

Question 12 continued
(b) (i) METHOD 1
$\frac{\mathrm{d} v}{\mathrm{~d} t}=-\left(v^{2}+4\right)$
$\int \frac{\mathrm{d} v}{v^{2}+4}=-\int \mathrm{d} t$ M1
$\frac{1}{2} \arctan \left(\frac{v}{2}\right)=-t+c$

EITHER

$t=0, v=2 \Rightarrow c=\frac{\pi}{8}$
$\arctan \left(\frac{v}{2}\right)=\frac{\pi}{4}-2 t$

OR

$v=2 \tan (2 c-2 t)$
$t=0, v=2 \Rightarrow \tan 2 c=1$ and so $c=\frac{\pi}{8}$

THEN

$$
\begin{aligned}
& v=2 \tan \left(\frac{\pi}{4}-2 t\right) \\
& v=2 \tan \left(\frac{\pi-8 t}{4}\right)
\end{aligned}
$$

METHOD 2

$\frac{d v}{d t}=-4 \sec ^{2}\left(\frac{\pi-8 t}{4}\right)$
Substituting $v=2 \tan \left(\frac{\pi-8 t}{4}\right)$ into $\frac{d v}{d t}=-\left(v^{2}+4\right)$:
$\frac{d v}{d t}=-\left(4 \tan ^{2}\left(\frac{\pi-8 t}{4}\right)+4\right)$
$=-4\left(\tan ^{2}\left(\frac{\pi-8 t}{4}\right)+1\right)$
$=-4 \sec ^{2}\left(\frac{\pi-8 t}{4}\right)$
Verifying that $v=2$ when $t=0$.
A1

(ii) METHOD 1

$$
\begin{aligned}
& v \frac{\mathrm{~d} v}{\mathrm{~d} s}=-\left(v^{2}+4\right) \\
& \Rightarrow \frac{\mathrm{d} v}{\mathrm{~d} s}=-\frac{\left(v^{2}+4\right)}{v}
\end{aligned}
$$

METHOD 2
$\frac{\mathrm{d} v}{\mathrm{~d} s}=\frac{\mathrm{d} v}{\mathrm{~d} t} \times \frac{\mathrm{d} t}{\mathrm{~d} s}$
$\Rightarrow \frac{\mathrm{d} v}{\mathrm{~d} s}=-\frac{\left(v^{2}+4\right)}{v}$
(iii) METHOD 1

When $v=0, t=\frac{\pi}{8} \quad(t=0.392 \ldots)$.
$s=\int_{0}^{\frac{\pi}{8}} 2 \tan \left(\frac{\pi-8 t}{4}\right) \mathrm{d} t$
$s=0.347(\mathrm{~m})\left(s=\frac{1}{2} \ln 2(\mathrm{~m})\right)$

METHOD 2

$\int \frac{v}{4+v^{2}} \mathrm{~d} v=-\int \mathrm{d} s$

EITHER

$\frac{1}{2} \ln \left(v^{2}+4\right)=-s+c$ (or equivalent)
$v=2, s=0 \Rightarrow c=\frac{1}{2} \ln 8$
$s=-\frac{1}{2} \ln \left(v^{2}+4\right)+\frac{1}{2} \ln 8\left(s=\frac{1}{2} \ln \left(\frac{8}{v^{2}+4}\right)\right)$
$v=0 \Rightarrow s=\frac{1}{2} \ln 2(\mathrm{~m})(s=0.347(\mathrm{~m}))$

OR

$-\int_{2}^{0} \frac{v}{4+v^{2}} \mathrm{~d} v=s$ (or equivalent)
Note: Award M1 for setting up a definite integral and award $\boldsymbol{A 1}$ for stating correct limits.

$$
s=0.347(\mathrm{~m})\left(s=\frac{1}{2} \ln 2(\mathrm{~m})\right)
$$

13. (a) (i) either counterexample or sketch or
recognising that $y=k(k>1)$ intersects the graph of $y=f(x)$ twice M1 function is not 1-1 (does not obey horizontal line test) $\boldsymbol{R} \mathbf{1}$ so f^{-1} does not exist
(ii) $f^{\prime}(x)=\frac{1}{2}\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)$
$f^{\prime}(\ln 3)=\frac{4}{3}(=1.33)$
$m=-\frac{3}{4}$
$f(\ln 3)=\frac{5}{3}(=1.67)$

EITHER

$\frac{y-\frac{5}{3}}{x-\ln 3}=-\frac{3}{4}$
$4 y-\frac{20}{3}=-3 x+3 \ln 3$

OR

$\frac{5}{3}=-\frac{3}{4} \ln 3+c$
$c=\frac{5}{3}+\frac{3}{4} \ln 3$
$y=-\frac{3}{4} x+\frac{5}{3}+\frac{3}{4} \ln 3$
$12 y=-9 x+20+9 \ln 3$

THEN

$9 x+12 y-9 \ln 3-20=0$ AG
(iii) The tangent at $(a, f(a))$ has equation $y-f(a)=f^{\prime}(a)(x-a)$.
$f^{\prime}(a)=\frac{f(a)}{a}$ (or equivalent)
$\mathrm{e}^{a}-\mathrm{e}^{-a}=\frac{\mathrm{e}^{a}+\mathrm{e}^{-a}}{a}$ (or equivalent)
attempting to solve for a
$a= \pm 1.20$

Question 13 continued

(b) (i) $2 y=\mathrm{e}^{x}+\mathrm{e}^{-x}$

$$
\begin{equation*}
\mathrm{e}^{2 x}-2 y \mathrm{e}^{x}+1=0 \tag{M1A1}
\end{equation*}
$$

Note: Award M1 for either attempting to rearrange or interchanging x and y.

$$
\begin{array}{ll}
\mathrm{e}^{x}=\frac{2 y \pm \sqrt{4 y^{2}-4}}{2} & \boldsymbol{A 1} \\
\mathrm{e}^{x}=y \pm \sqrt{y^{2}-1} \\
x=\ln \left(y \pm \sqrt{y^{2}-1}\right) & \boldsymbol{A 1} \\
f^{-1}(x)=\ln \left(x+\sqrt{x^{2}-1}\right) & \boldsymbol{A 1}
\end{array}
$$

Note: Award $\boldsymbol{A I}$ for correct notation and for stating the positive "branch".
(ii) $\quad V=\pi \int_{1}^{5}\left(\ln \left(y+\sqrt{y^{2}-1}\right)\right)^{2} \mathrm{~d} y$

Note: Award M1 for attempting to use $V=\pi \int_{c}^{d} x^{2} \mathrm{~d} y$.
$=37.1\left(\right.$ units $\left.^{3}\right)$

MARKSCHEME

May 2013

MATHEMATICS

Higher Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\boldsymbol{R} Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the breakdown of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each question (at the end of the question) and circle it.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.
$3 \quad N$ marks
Award \boldsymbol{N} marks for correct answers where there is no working.
- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (e.g. $\sin \theta=1.5)$, do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then write $-1(\mathbf{M R})$ next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).
Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

The method of dealing with accuracy errors on a whole paper basis by means of the Accuracy Penalty (AP) no longer applies.

Instructions to examiners about such numerical issues will be provided on a question by question basis within the framework of mathematical correctness, numerical understanding and contextual appropriateness.

The rubric on the front page of each question paper is given for the guidance of candidates. The markscheme (MS) may contain instructions to examiners in the form of "Accept answers which round to n significant figures ($s f$)". Where candidates state answers, required by the question, to fewer than n sf, award A0. Some intermediate numerical answers may be required by the MS but not by the question. In these cases only award the mark(s) if the candidate states the answer exactly or to at least $2 s f$.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

SECTION A

1. $\frac{5 \times 6+6 k+7 \times 3+8 \times 1+9 \times 2+10 \times 1}{13+k}=6.5$ (or equivalent) (M1)(A1)(A1)

Note: Award (M1)(A1) for correct numerator, and (A1) for correct denominator.

$$
0.5 k=2.5 \Rightarrow k=5
$$

2. METHOD 1

```
determinant \(=0\)
    M1
\(k(-2-16)-(0-12)+2(0+3)=0\)
(M1)(A1)
\(-18 k+18=0\)
\(k=1\)

\section*{METHOD 2}
writes in the form
\(\left(\begin{array}{cccc}k & 1 & 2 & 4 \\ 0 & -1 & 4 & 5 \\ 3 & 4 & 2 & 1\end{array}\right) \quad\) (or attempts to solve simultaneous equations)
Having two 0 's in first column (obtaining two equations in the same two variables)
\[
\left(\begin{array}{cccc}
k & 1 & 2 & 4 \\
0 & -1 & 4 & 5 \\
0 & 0 & 18 k-18 & 21 k-27
\end{array}\right) \text { (or isolating one variable) } \quad A 1
\]

Note: The \(\boldsymbol{A 1}\) is to be awarded for the \(18 k-18\). The final column may not be seen.
\[
k=1 \quad \text { (M1)A1 }
\]
3. Let \(X\) represent the length of time a journey takes on a particular day.
(a) \(\quad P(X>15)=0.0912112819 \ldots=0.0912\)
(M1)A1
(b) Use of correct Binomial distribution
\(N \sim B(5,0.091 \ldots)\)
\(1-0.0912112819 \ldots=0.9087887181 \ldots\)
\(1-(0.9087887181 \ldots)^{5}=0.380109935 \ldots=0.380\)
(M1)A1
Note: Allow answers to be given as percentages.
4. \(\quad\) volume \(=\pi \int x^{2} \mathrm{~d} y\)
\(x=\arcsin y+1\)
volume \(=\pi \int_{0}^{1}(\arcsin y+1)^{2} \mathrm{~d} y\) (M1)(A1) A1

Note: \(\boldsymbol{A 1}\) is for the limits, provided a correct integration of \(y\).
\[
=2.608993 \ldots \pi=8.20
\]
5. \(\frac{1}{2} r^{2} \times 1=7\)

M1
\(r=3.7 \ldots(=\sqrt{14})(\) or \(37 \ldots \mathrm{~mm})\)
height \(=2 r \cos \left(\frac{\pi-1}{2}\right)\left(\right.\) or \(\left.2 r \sin \frac{1}{2}\right)\)
(M1)(A1)
3.59 or anything that rounds to 3.6 A1
so the dimensions are 3.7 by 3.6 ( cm or 37 by 36 mm ) A1
[6 marks]
\((x-2)^{2}\) is a factor
7. (a) let the distance the cable is laid along the seabed be \(y\)
\(y^{2}=x^{2}+200^{2}-2 \times x \times 200 \cos 60^{\circ}\)
(or equivalent method)
\(y^{2}=x^{2}-200 x+40000\)
cost \(=C=80 y+20 x\)
\(C=80\left(x^{2}-200 x+40000\right)^{\frac{1}{2}}+20 x\)
(b) \(\quad x=55.2786 \ldots=55\) ( m to the nearest metre)
\((x=100-\sqrt{2000})\)
8. (a) the three girls can sit together in \(3!=6\) ways
this leaves 4 'objects' to arrange so the number of ways this can be done is 4 ! (MI) so the number of arrangements is \(6 \times 4!=144\)
(b) Finding more than one position that the girls can sit

Counting exactly four positions
9. (a) \(\Delta=b^{2}-4 a c=4 k^{2}-4 \times 3 \times(k-1)=4 k^{2}-12 k+12\)

M1A1
Note: Award M1A1 if expression seen within quadratic formula.

\section*{EITHER}
\(144-4 \times 4 \times 12<0\)
M1
\(\Delta\) always positive, therefore the equation always has two distinct real roots R1 (and cannot be always negative as \(a>0\) )

OR
sketch of \(y=4 k^{2}-12 k+12\) or \(y=k^{2}-3 k+3\) not crossing the \(x\)-axis M1
\(\Delta\) always positive, therefore the equation always has two distinct real roots

\section*{OR}
write \(\Delta\) as \(4(k-1.5)^{2}+3 \quad\) M1
\(\Delta\) always positive, therefore the equation always has two distinct real roots

\section*{Question 9 continued}
(b) closest together when \(\Delta\) is least
(M1)
minimum value occurs when \(k=1.5\)
10. (a) \(X \sim \operatorname{Po}(0.25 \mathrm{~T})\)

Attempt to solve \(\mathrm{P}(X \leq 3)=0.6\)
(M1)
\(T=12.8453 \ldots=13\) (minutes)
Note: Award A1M1A0 if \(T\) found correctly but not stated to the nearest minute.
(b) let \(X_{1}\) be the number of cars that arrive during the first interval and \(X_{2}\) be the number arriving during the second.
\(X_{1}\) and \(X_{2}\) are \(\operatorname{Po}(2.5)\)
P (all get on \()=\mathrm{P}\left(X_{1} \leq 3\right) \times \mathrm{P}\left(X_{2} \leq 3\right)+\mathrm{P}\left(X_{1}=4\right) \times \mathrm{P}\left(X_{2} \leq 2\right)\)
\(+\mathrm{P}\left(X_{1}=5\right) \times \mathrm{P}\left(X_{2} \leq 1\right)+\mathrm{P}\left(X_{1}=6\right) \times \mathrm{P}\left(X_{2}=0\right)\)
(M1)
\(=0.573922 \ldots+0.072654 \ldots+0.019192 \ldots+0.002285 \ldots\)
\(=0.668\) (053...)

\section*{SECTION B}
11. (a) \(\overrightarrow{\mathrm{PQ}}=\left(\begin{array}{l}8 \\ 6 \\ 4\end{array}\right)\)
equation of line: \(\boldsymbol{r}=\left(\begin{array}{r}-3 \\ -1 \\ 2\end{array}\right)+t\left(\begin{array}{l}8 \\ 6 \\ 4\end{array}\right)\) (or equivalent)
(A1)

Note: Award M1A0 if \(r=\) is omitted.

\section*{(b) METHOD 1}
\(\begin{array}{rlrl}x: & & -4+5 s & =-3+8 t \\ y: & 2 s & =-1+6 t \\ z: & & 4 & =2+4 t\end{array}\)
M1
solving any two simultaneously M1
\(t=0.5\), \(s=1\) (or equivalent)
A1
verification that these values give \(R\) when substituted into both equations
(or that the three equations are consistent and that one gives R)

R1

\section*{METHOD 2}
\((1,2,4)\) is given by \(t=0.5\) for \(L_{1}\) and \(s=1\) for \(L_{2}\)
because \((1,2,4)\) is on both lines it is the point of intersection of the two lines
(c) \(\left(\begin{array}{l}5 \\ 2 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}4 \\ 3 \\ 2\end{array}\right)=26=\sqrt{29} \times \sqrt{29} \cos \theta\)
\(\cos \theta=\frac{26}{29}\)
\(\theta=0.459\) or \(26.3^{\circ}\)

M1A1

\section*{Question 11 continued}
(d) \(\quad \overrightarrow{\mathrm{RP}}=\left(\begin{array}{c}-3 \\ -1 \\ 2\end{array}\right)-\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)=\left(\begin{array}{l}-4 \\ -3 \\ -2\end{array}\right),|\overrightarrow{\mathrm{RP}}|=\sqrt{29}\)

Note: This could also be obtained from \(\left|0.5\left(\begin{array}{l}8 \\ 6 \\ 4\end{array}\right)\right|\)

\section*{EITHER}
\[
\mathrm{S}_{2} \text { is }(6,4,4)
\]

OR
\[
\left(\begin{array}{c}
-4+5 s \\
2 s \\
4
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)=\left(\begin{array}{c}
5 s-5 \\
2 s-2 \\
0
\end{array}\right)
\]
\((5 s-5)^{2}+(2 s-2)^{2}=29\)
\(29 s^{2}-58 s+29=29\)
\(s(s-2)=0, s=0,2\)
\((6,4,4)\) (and \((-4,0,4))\)
Note: There are several geometrical arguments possible using information obtained in previous parts, depending on what forms the previous answers had been given.
\[
\begin{aligned}
& \overrightarrow{\mathrm{RS}}_{1}=\left(\begin{array}{c}
-4 \\
0 \\
4
\end{array}\right)-\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)=\left(\begin{array}{c}
-5 \\
-2 \\
0
\end{array}\right),\left|\overrightarrow{\mathrm{RS}_{1}}\right|=\sqrt{29} \\
& \therefore \overrightarrow{\mathrm{OS}}_{2}=\overrightarrow{\mathrm{OS}}_{1}+2 \overrightarrow{\mathrm{~S}_{1} \mathrm{R}}=\left(\begin{array}{c}
-4 \\
0 \\
4
\end{array}\right)+2\left(\begin{array}{l}
5 \\
2 \\
0
\end{array}\right) \\
& \left(\text { or } \overrightarrow{\mathrm{OS}}_{2}=\overrightarrow{\mathrm{OR}}+\overrightarrow{\mathrm{S}_{1} \mathrm{R}}=\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)+\left(\begin{array}{l}
5 \\
2 \\
0
\end{array}\right)\right) \\
& =\left(\begin{array}{l}
6 \\
4 \\
4
\end{array}\right)
\end{aligned}
\]

\section*{(e) EITHER}
midpoint of \(\left[\mathrm{PS}_{1}\right]\) is \(\mathrm{M}(-3.5,-0.5,3)\)
M1A1
\(\overrightarrow{\mathrm{RM}}=\left(\begin{array}{c}-4.5 \\ -2.5 \\ -1\end{array}\right)\)

OR
\(\overrightarrow{R S}_{1}=\left(\begin{array}{c}-5 \\ -2 \\ 0\end{array}\right)\)
the direction of the line is \(\overrightarrow{\mathrm{RS}}_{1}+\overrightarrow{\mathrm{RP}}\)
\(\left(\begin{array}{l}-5 \\ -2 \\ 0\end{array}\right)+\left(\begin{array}{l}-4 \\ -3 \\ -2\end{array}\right)=\left(\begin{array}{l}-9 \\ -5 \\ -2\end{array}\right)\)

\section*{THEN}
the equation of the line is:
\(\boldsymbol{r}=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)+t\left(\begin{array}{l}9 \\ 5 \\ 2\end{array}\right)\) or equivalent
Note: Marks cannot be awarded for methods involving halving the angle, unless it is clear that the candidate considers also the equation of the plane of \(L_{1}\) and \(L_{2}\) to reduce the number of parameters involved to one (to obtain the vector equation of the required line).
12. (a)


A1A1A1
Note: Award \(\boldsymbol{A 1}\) for general shape, \(\boldsymbol{A 1}\) for correct maximum and minimum, AI for intercepts.
Note: Follow through applies to (b) and (c).
(b) \(0 \leq t<0.785\), (or \(0 \leq t<\frac{5-\sqrt{7}}{3}\) )

A1
(allow \(t<0.785\) )
and \(t>2.55\left(\right.\) or \(\left.t>\frac{5+\sqrt{7}}{3}\right)\)
(c) \(0 \leq t<0.785,\left(\right.\) or \(\left.0 \leq t<\frac{5-\sqrt{7}}{3}\right)\)
(allow \(t<0.785\) )
\(2<t<2.55\), (or \(2<t<\frac{5+\sqrt{7}}{3}\) )
\(t>3\)
AI
[3 marks]
(d) position of A: \(\quad x_{A}=\int t^{3}-5 t^{2}+6 t \mathrm{~d} t\)
\(x_{A}=\frac{1}{4} t^{4}-\frac{5}{3} t^{3}+3 t^{2} \quad(+c)\)
(M1)
A1
when \(t=0, x_{A}=0\) so \(c=0\)

R1
[3 marks]

\section*{Question 12 continued}
(e) \(\frac{\mathrm{d} v_{B}}{\mathrm{~d} t}=-2 v_{B} \Rightarrow \int \frac{1}{v_{B}} \mathrm{~d} v_{B}=\int-2 \mathrm{~d} t\)
(M1)
(M1)
\(v_{B}=A e^{-2 t}\) A1
[4 marks]
(f) \(x_{B}=10 e^{-2 t}(+c)\)
(M1)(A1)
\(x_{B}=20\) when \(t=0\) so \(x_{B}=10 e^{-2 t}+10\)
meet when \(\frac{1}{4} t^{4}-\frac{5}{3} t^{3}+3 t^{2}=10 e^{-2 t}+10\) (M1)A1 (M1) \(t=4.41(290 \ldots)\)

A1
[6 marks]
Total: [21 marks]
13. (a) \(f(2)=9\)
\(f^{-1}(x)=(x-1)^{\frac{1}{3}}\)
\(\left(f^{-1}\right)^{\prime}(x)=\frac{1}{3}(x-1)^{-\frac{2}{3}}\)
(M1)
\(\left(f^{-1}\right)^{\prime}(9)=\frac{1}{12}\)
A1
\(f^{\prime}(x)=3 x^{2}\)
(M1)
\(\frac{1}{f^{\prime}(2)}=\frac{1}{3 \times 4}=\frac{1}{12}\)
(b) \(g^{\prime}(x)=\mathrm{e}^{x^{2}}+2 x^{2} \mathrm{e}^{x^{2}}\)
\(g^{\prime}(x)>0\) as each part is positive

M1A1
R1
[3 marks]

\section*{Question 13 continued}
(c) to find the \(x\)-coordinate on \(y=g(x)\) solve
\[
\begin{aligned}
& 2=x x^{x^{x^{2}}} \\
& x=0.89605022078 \ldots \\
& \text { gradient }=\left(g^{-1}\right)^{\prime}(2)=\frac{1}{g^{\prime}(0.896 \ldots)} \\
& =\frac{1}{\mathrm{e}^{(0.99 \ldots . .)^{2}}\left(1+2 \times(0.896 \ldots)^{2}\right)}=0.172 \text { to 3sf }
\end{aligned}
\]
(using the \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) function on gdc \(g^{\prime}(0.896 \ldots)=5.7716028 \ldots\)
\(\left.\frac{1}{g^{\prime}(0.896 \ldots)}=0.173\right)\)
(d) (i) \(\quad\left(x^{3}+1\right) \mathrm{e}^{\left(x^{3}+1\right)^{2}}=2 \quad \boldsymbol{A I}\)
\(x=-0.470191 \ldots\) AI
(ii) METHOD 1
\begin{tabular}{lr}
\((g \circ f)^{\prime}(x)=3 x^{2} \mathrm{e}^{\left(x^{3}+1\right)^{2}}\left(2\left(x^{3}+1\right)^{2}+1\right)\) & (M1)(A1) \\
\((g \circ f)^{\prime}(-0.470191 \ldots)=3.85755 \ldots\) & (A1) \\
\(h^{\prime}(2)=\frac{1}{3.85755 \ldots}=0.259(232 \ldots)\) & A1
\end{tabular}

Note: The solution can be found without the student obtaining the explicit form of the composite function.

\section*{METHOD 2}
\[
\begin{array}{ll}
h(x)=\left(f^{-1} \circ g^{-1}\right)(x) & \text { AI } \\
h^{\prime}(x)=\left(f^{-1}\right)^{\prime}\left(g^{-1}(x)\right) \times\left(g^{-1}\right)^{\prime}(x) & \text { MI } \\
=\frac{1}{3}\left(g^{-1}(x)-1\right)^{-\frac{2}{3}} \times\left(g^{-1}\right)^{\prime}(x) & \text { MI } \\
h^{\prime}(2)=\frac{1}{3}\left(g^{-1}(2)-1\right)^{-\frac{2}{3}} \times\left(g^{-1}\right)^{\prime}(2) & \\
=\frac{1}{3}(0.89605 \ldots-1)^{-\frac{2}{3}} \times 0.171933 \ldots & \boldsymbol{A I} \\
=0.259(232 \ldots) &
\end{array}
\]

\title{
MARKSCHEME
}

\section*{May 2013}

\section*{MATHEMATICS}

\author{
Higher Level
}

\section*{Paper 2}

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
\(N \quad\) Marks awarded for correct answers if no working shown.
\(\boldsymbol{A} \boldsymbol{G}\) Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{1 General}

Mark according to Scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2013". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A 0}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by Scoris.

\section*{Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M} \boldsymbol{0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A} \operatorname{mark}(\mathrm{s})\) depend on the preceding \(\boldsymbol{M} \operatorname{mark}(\mathrm{s})\), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, eg M1A1, this usually means \(\boldsymbol{M 1}\) for an attempt to use an appropriate method (eg substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

\section*{\(N\) marks}

Award N marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks
Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer \(\boldsymbol{F T}\) marks.
- If the error leads to an inappropriate value ( \(e g \sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{Mis-read}

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \(\boldsymbol{M}\) mark, but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value ( \(e g \sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
\]

Award \(\boldsymbol{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 2, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

\section*{SECTION A}
1. (a) EITHER
\[
\text { AÔB }=2 \arcsin \left(\frac{3}{4}\right) \text { or equivalent }\left(e g \text { AÔB }=2 \arctan \left(\frac{3}{\sqrt{7}}\right), \mathrm{AOB}=2 \arccos \left(\frac{\sqrt{7}}{4}\right)(\text { MI })\right.
\]

OR
\[
\cos A O \hat{B}=\frac{4^{2}+4^{2}-6^{2}}{2 \times 4 \times 4}\left(=-\frac{1}{8}\right)
\]

\section*{THEN}
\[
=1.696 \text { (correct to 4sf) }
\]
(b) use of area of segment \(=\) area of sector - area of triangle
\[
=\frac{1}{2} \times 4^{2} \times 1.696-\frac{1}{2} \times 4^{2} \times \sin 1.696
\]
\[
=5.63\left(\mathrm{~cm}^{2}\right)
\]
2. (a) attempting to express the system in matrix form
\[
\left(\begin{array}{ccc}
0.1 & -1.7 & 0.9 \\
-2.4 & 0.3 & 3.2 \\
2.5 & 0.6 & -3.7
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-4.4 \\
1.2 \\
0.8
\end{array}\right)
\]

Note: Award M1AI for a correct augmented matrix.
(b) either direct GDC use, attempting elimination or using an inverse matrix.
\[
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-2.4 \\
1.6 \\
-1.6
\end{array}\right) \text { (correct to 2sf) or }\left(\begin{array}{c}
-2.40 \\
1.61 \\
-1.57
\end{array}\right) \text { (correct to 3sf) or }\left(\begin{array}{c}
-\frac{932}{389} \\
\frac{628}{389} \\
-\frac{612}{389}
\end{array}\right) \text { (exact) }
\]
3. (a) \(X \sim N(13.5,9.5)\)
\[
13.5-\sqrt{9.5}<X<13.5+\sqrt{9.5}
\]
\(10.4<X<16.6\)
Note: Accept 6.16.
(b) \(\mathrm{P}(X<10)=0.12807 \ldots\)
(M1)(A1)
estimate is 1281 (correct to the nearest whole number).

Note: Accept 1280.

Total [5 marks]
4. (a) \(\int x \sec ^{2} x \mathrm{~d} x=x \tan x-\int 1 \times \tan x \mathrm{~d} x\) \(=x \tan x+\ln |\cos x|(+c)(=x \tan x-\ln |\sec x|(+c))\)

M1A1
\[
=x \tan x+\ln |\cos x|(+c)(=x \tan x-\ln |\sec x|(+c))
\]
(b) attempting to solve an appropriate equation eg \(m \tan m+\ln (\cos m)=0.5\)
\(m=0.822\)
Note: Award \(A 1\) if \(m=0.822\) is specified with other positive solutions.
5. (a) \(u_{n}-v_{n}=1.6+(n-1) \times 1.5-3 \times 1.2^{n-1}\left(=1.5 n+0.1-3 \times 1.2^{n-1}\right)\)
(b) attempting to solve \(u_{n}>v_{n}\) numerically or graphically.

A1A1
[2 marks]
(M1)
\(n=2.621 . ., 9.695 . .\).
So \(3 \leq n \leq 9\)
(c) The greatest value of \(u_{n}-v_{n}\) is 1.642 .

Note: Do not accept 1.64.

Total [6 marks]
6. (a) attempting to solve for \(\cos x\) or for \(u\) where \(u=\cos x\) or for \(x\) graphically.

\section*{EITHER}
\[
\begin{equation*}
\cos x=\frac{2}{3}(\text { and } 2) \tag{A1}
\end{equation*}
\]

OR
\(x=48.1897 \ldots\) 。
THEN
\(x=48^{\circ}\)
Note: \(\quad\) Award (MI)(A1)A0 for \(x=48^{\circ}, 132^{\circ}\).

\section*{Note: Award (M1)(A1)A0 for 0.841 radians.}
[3 marks]
(b) attempting to solve for \(\sec x\) or for \(v\) where \(v=\sec x\).
\[
\begin{align*}
& \sec x= \pm \sqrt{2}\left(\text { and } \pm \sqrt{\frac{2}{3}}\right)  \tag{A1}\\
& \sec x= \pm \sqrt{2}
\end{align*}
\]
7. (a) \(\int_{0}^{0.5} a x^{2} \mathrm{~d} x+\int_{0.5}^{1} 0.5 a(1-x) \mathrm{d} x=1\)

M1A1
A1

AG
[3 marks]

A1
A1
[2 marks]
(M1)
direct GDC use or eg \(\mathrm{P}(0 \leq X \leq 0.5)+\mathrm{P}(0.5 \leq X \leq 0.6)\) or \(1-\mathrm{P}(0.6 \leq X \leq 1)\)
\[
\mathrm{P}(X<0.6)=0.616\left(=\frac{77}{125}\right)
\]
8. \(\quad \mathrm{P}(n): f(n)=5^{2 n}-24 n-1\) is divisible by 576 for \(n \in \mathbb{Z}^{+}\)
for \(n=1, f(1)=5^{2}-24-1=0\)
Zero is divisible by 576 , (as every non-zero number divides zero), and so \(\mathrm{P}(1)\) is true.
Note: Award \(\boldsymbol{R} \boldsymbol{0}\) for \(\mathrm{P}(1)=0\) shown and zero is divisible by 576 not specified.
Note: Ignore \(\mathrm{P}(2)=576\) if \(\mathrm{P}(1)=0\) is shown and zero is divisible by 576 is specified.
Assume \(\mathrm{P}(k)\) is true for some \(k(\Rightarrow f(k)=N \times 576)\).
Note: Do not award M1 for statements such as "let \(n=k\) ".
\begin{tabular}{llr} 
consider \(\mathrm{P}(k+1):\)\begin{tabular}{rlr}
\(f(k+1)\) & \(=5^{2(k+1)}-24(k+1)-1\) & M1 \\
& \(=25 \times 5^{2 k}-24 k-25\) & A1 \\
EITHER & & A1 \\
& \(=25 \times(24 k+1+N \times 576)-24 k-25\) & A1 \\
OR & \(=576 k+25 \times 576 N\) which is a multiple of 576 & A1 \\
& \(=25 \times 5^{2 k}-600 k-25+600 k-24 k\) & A1 \\
& \(=25\left(5^{2 k}-24 k-1\right)+576 k\) (or equivalent) which is a multiple of 576
\end{tabular} \\
THEN & & R1
\end{tabular}

Note: Award \(\boldsymbol{R 1}\) only if at least four prior marks have been awarded.
9. (a) \(\quad X \sim \operatorname{Po}(1.2)\)
\[
\begin{aligned}
& \mathrm{P}(X=3) \times \mathrm{P}(X=0) \\
& =0.0867 \ldots \times 0.3011 \ldots \\
& =0.0261
\end{aligned}
\]
(b) Three requests over two days can occur as \((3,0),(0,3),(2,1)\) or \((1,2)\). using conditional probability, for example
\(\frac{\mathrm{P}(3,0)}{\mathrm{P}(3 \text { requests, } m=2.4)}=0.125\) or \(\frac{\mathrm{P}(2,1)}{\mathrm{P}(3 \text { requests, } m=2.4)}=0.375\)
expected income is
\(2 \times 0.125 \times\) US \(\$ 120+2 \times 0.375 \times\) US \(\$ 180\)
Note: Award M1 for attempting to find the expected income including both \((3,0)\) and \((2,1)\) cases.
\[
\begin{aligned}
& =\mathrm{US} \$ 30+\mathrm{US} \$ 135 \\
& =\mathrm{US} \$ 165
\end{aligned}
\]

\section*{10. METHOD 1}
\(\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{1}{40}(60-v)\)
attempting to separate variables \(\int \frac{\mathrm{d} v}{60-v}=\int \frac{\mathrm{d} t}{40}\) M1
\(-\ln (60-v)=\frac{t}{40}+c\) A1
\(c=-\ln 60\) (or equivalent) AI
attempting to solve for \(v\) when \(t=30\) (M1)
\(v=60-60 e^{-\frac{3}{4}}\)
\(v=31.7\left(\mathrm{~ms}^{-1}\right)\)

\section*{METHOD 2}
\(\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{1}{40}(60-v)\)
\(\frac{\mathrm{d} t}{\mathrm{~d} v}=\frac{40}{60-v}\) (or equivalent) M1
\(\int_{0}^{v_{f}} \frac{40}{60-v} \mathrm{~d} v=30\) where \(v_{f}\) is the velocity of the car after 30 seconds.
attempting to solve \(\int_{0}^{v_{f}} \frac{40}{60-v} \mathrm{~d} v=30\) for \(v_{f}\)
\(v=31.7\left(\mathrm{~ms}^{-1}\right)\)

\section*{SECTION B}
11. (a) (i) \(\sum_{k=1}^{n}(2 k-1)\) (or equivalent)

Note: Award \(\boldsymbol{A} 0\) for \(\sum_{n=1}^{n}(2 n-1)\) or equivalent.
(ii) EITHER
\(2 \times \frac{n(n+1)}{2}-n\)

OR
\(\frac{n}{2}(2+(n-1) 2)\left(\right.\) using \(\left.S_{n}=\frac{n}{2}\left(2 u_{1}+(n-1) d\right)\right)\)
M1A1

OR
\(\frac{n}{2}(1+2 n-1)\) (using \(\left.S_{n}=\frac{n}{2}\left(u_{1}+u_{n}\right)\right)\)
M1A1

THEN
\(=n^{2}\)
AG
(iii) \(47^{2}-14^{2}=2013\)
(b) (i) EITHER
a pentagon and five diagonals

\section*{OR}
five diagonals (circle optional)
(ii) Each point joins to \(n-3\) other points.
a correct argument for \(n(n-3)\)
a correct argument for \(\frac{n(n-3)}{2}\) R1
(iii) attempting to solve \(\frac{1}{2} n(n-3)>1000000\) for \(n\).
\[
\begin{equation*}
n>1415.7 \tag{A1}
\end{equation*}
\]
\(n=1416\)

Question 11 continued
\(\begin{array}{rlr}\text { (c) (i) } & n p=4 \text { and } n p q=3 \\ \text { attempting to solve for } n \text { and } p \\ & n=16 \text { and } p=\frac{1}{4} \\ \text { (ii) } & X \square \mathrm{~B}(16,0.25) \\ & \mathrm{P}(X=1)=0.0534538 \ldots\left(=\binom{16}{1}(0.25)(0.75)^{15}\right) \\ & \text { (A1) } \\ & \mathrm{P}(X=3)=0.207876 \ldots\left(=\binom{16}{3}(0.25)^{3}(0.75)^{13}\right) \\ & \text { (A1) } \\ & 0.261\end{array}\)
\[
\begin{aligned}
& \text { attempting to solve for } n \text { and } p \\
& n=16 \text { and } p=\frac{1}{4}
\end{aligned}
\]
12. (a) (i) METHOD 1
\[
\begin{array}{rlrl}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =-\sin x+\cos x & & \boldsymbol{A 1} \\
y \frac{\mathrm{~d} y}{\mathrm{~d} x} & =(\cos x+\sin x)(-\sin x+\cos x) & & \boldsymbol{M 1} \\
& =\cos ^{2} x-\sin ^{2} x & \boldsymbol{A 1} \\
& =\cos 2 x & \boldsymbol{A G}
\end{array}
\]

METHOD 2
\(y^{2}=(\sin x+\cos x)^{2}\)
\(2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=2(\cos x+\sin x)(\cos x-\sin x)\) M1
\(y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\cos ^{2} x-\sin ^{2} x\) A1
\(=\cos 2 x\) \(A G\)
(ii) attempting to separate variables \(\int y \mathrm{~d} y=\int \cos 2 x \mathrm{~d} x\) M1 \(\frac{1}{2} y^{2}=\frac{1}{2} \sin 2 x+C\)

Note: Award \(\boldsymbol{A 1}\) for a correct LHS and \(\boldsymbol{A 1}\) for a correct RHS.
```

 \(y= \pm(\sin 2 x+A)^{\frac{1}{2}}\)
 A1
 (iii) $\sin 2 x+A \equiv(\cos x+\sin x)^{2}$
$(\cos x+\sin x)^{2}=\cos ^{2} x+2 \sin x \cos x+\sin ^{2} x$
use of $\sin 2 x \equiv 2 \sin x \cos x$.
$A=1$

Question 12 continued
(b) (i) substituting $x=\frac{\pi}{4}$ and $y=2$ into $y=(\sin 2 x+A)^{\frac{1}{2}}$

$$
\begin{array}{lr}
\text { so } g(x)=(\sin 2 x+3)^{\frac{1}{2}} & \text { A1 } \\
\text { range } g \text { is }[\sqrt{2}, 2] & \text { A1A1A1 }
\end{array}
$$

Note: Accept [1.41, 2]. Award $\boldsymbol{A 1}$ for each correct endpoint and A1 for the correct closed interval.
(ii) $\int_{0}^{\frac{\pi}{2}}(\sin 2 x+3)^{\frac{1}{2}} \mathrm{~d} x$
(M1)(A1)
$=2.99$
(iii) $\quad \pi \int_{0}^{\frac{\pi}{2}}(\sin 2 x+3) \mathrm{d} x-\pi(1)\left(\frac{\pi}{2}\right)$ (or equivalent)

Note: \quad Award (M1)(A1)(A1) for $\pi \int_{0}^{\frac{\pi}{2}}(\sin 2 x+2) \mathrm{d} x$

$$
\begin{aligned}
& =17.946-4.935\left(=\frac{\pi}{2}(3 \pi+2)-\pi\left(\frac{\pi}{2}\right)\right) \\
& =13.0
\end{aligned}
$$

Note: \quad Award $\boldsymbol{A l}$ for $\pi(\pi+1)$.
13. (a) EITHER
$\theta=\pi-\arctan \left(\frac{8}{x}\right)-\arctan \left(\frac{13}{20-x}\right)$ (or equivalent)
M1A1

Note: Accept $\theta=180^{\circ}-\arctan \left(\frac{8}{x}\right)-\arctan \left(\frac{13}{20-x}\right)$ (or equivalent).

OR
$\theta=\arctan \left(\frac{x}{8}\right)+\arctan \left(\frac{20-x}{13}\right)$ (or equivalent)
M1A1
[2 marks]
(b) (i) $\quad \theta=0.994\left(=\arctan \frac{20}{13}\right)$
(ii) $\quad \theta=1.19\left(=\arctan \frac{5}{2}\right)$

A1
[2 marks]
(c) correct shape.

A1
correct domain indicated.

Question 13 continued
(d) attempting to differentiate one $\arctan (f(x))$ term

EITHER

$\theta=\pi-\arctan \left(\frac{8}{x}\right)-\arctan \left(\frac{13}{20-x}\right)$
$\frac{\mathrm{d} \theta}{\mathrm{d} x}=\frac{8}{x^{2}} \times \frac{1}{1+\left(\frac{8}{x}\right)^{2}}-\frac{13}{(20-x)^{2}} \times \frac{1}{1+\left(\frac{13}{20-x}\right)^{2}}$

OR
$\theta=\arctan \left(\frac{x}{8}\right)+\arctan \left(\frac{20-x}{13}\right)$
$\frac{\mathrm{d} \theta}{\mathrm{d} x}=\frac{\frac{1}{8}}{1+\left(\frac{x}{8}\right)^{2}}+\frac{-\frac{1}{13}}{1+\left(\frac{20-x}{13}\right)^{2}}$

THEN

$$
\begin{aligned}
& =\frac{8}{x^{2}+64}-\frac{13}{569-40 x+x^{2}} \\
& =\frac{8\left(569-40 x+x^{2}\right)-13\left(x^{2}+64\right)}{\left(x^{2}+64\right)\left(x^{2}-40 x+569\right)} \\
& =\frac{5\left(744-64 x-x^{2}\right)}{\left(x^{2}+64\right)\left(x^{2}-40 x+569\right)}
\end{aligned}
$$

(e) Maximum light intensity at P occurs when $\frac{\mathrm{d} \theta}{\mathrm{d} x}=0$.
either attempting to solve $\frac{\mathrm{d} \theta}{\mathrm{d} x}=0$ for x or using the graph of either θ or $\frac{\mathrm{d} \theta}{\mathrm{d} x}$ $x=10.05$ (m)

Question 13 continued
(f) $\frac{\mathrm{d} x}{\mathrm{~d} t}=0.5$

At $x=10, \frac{\mathrm{~d} \theta}{\mathrm{~d} x}=0.000453\left(=\frac{5}{11029}\right)$.
use of $\frac{\mathrm{d} \theta}{\mathrm{d} t}=\frac{\mathrm{d} \theta}{\mathrm{d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}$ M1
$\frac{\mathrm{d} \theta}{\mathrm{d} t}=0.000227\left(=\frac{5}{22058}\right)\left(\mathrm{rad} \mathrm{s}^{-1}\right)$
Note: Award (A1) for $\frac{\mathrm{d} x}{\mathrm{~d} t}=-0.5$ and $\boldsymbol{A} \boldsymbol{1}$ for $\frac{\mathrm{d} \theta}{\mathrm{d} t}=-0.000227\left(=-\frac{5}{22058}\right)$.
Note: Implicit differentiation can be used to find $\frac{\mathrm{d} \theta}{\mathrm{d} t}$. Award as above.

MARKSCHEME

November 2012

MATHEMATICS

Higher Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1
 General

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2012". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A} \boldsymbol{1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award \boldsymbol{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an Mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $A 1$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for $\boldsymbol{F T}$.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

SECTION A

1. METHOD 1

$102+105+\ldots+498$
so number of terms $=133$
EITHER
$=\frac{133}{2}(2 \times 102+132 \times 3)$
(M1)
$=39900$

OR
$=(102+498) \times \frac{133}{2}$
(M1)
$=39900$

OR
$\sum_{n=34}^{166} 3 n$
(M1)
$=39900$

METHOD 2

$500 \div 3=166.666 \ldots$ and $100 \div 3=33.333 \ldots$
$102+105+\ldots+498=\sum_{n=1}^{166} 3 n-\sum_{n=1}^{33} 3 n$
(M1)
$\sum_{n=1}^{166} 3 n=41583$
$\sum_{n=1}^{33} 3 n=1683$
the sum is 39 900 A1
2. $\Delta=(5-k)^{2}+4(k+2)$

M1A1
$=k^{2}-6 k+33$ (A1)
$=(k-3)^{2}+24$ which is positive for all k
Note: Accept analytical, graphical or other correct methods. In all cases only award $\boldsymbol{R 1}$ if a reason is given in words or graphically. Award M1A1A0R1 if mistakes are made in the simplification but the argument given is correct.
3. $\operatorname{det} A=3 \ln x-2 \ln (5-x)$
(M1)(A1)
\boldsymbol{A} singular $\Rightarrow \operatorname{det} \boldsymbol{A}=0$
(M1)
attempt to solve $3 \ln x-2 \ln (5-x)=0$ (eg graph sketch)
(M1)
$x=2.0547 \ldots$
$x=2.05(3 \mathrm{sf})$
Note: Award the last M1 just in the cases where there is evidence that a correct method has been attempted.
4. $\frac{\sum_{i=1}^{15} x_{i}}{15}=11.5 \Rightarrow \sum_{i=1}^{15} x_{i}=172.5$
new mean $=\frac{172.5-22.1}{14}$
$=10.7428 \ldots=10.7(3 \mathrm{sf})$
$\frac{\sum_{i=1}^{15} x_{i}^{2}}{15}-11.5^{2}=9.3$
$\Rightarrow \sum_{i=1}^{15} x_{i}^{2}=2123.25$
(M1)
new variance $=\frac{2123.25-22.1^{2}}{14}-(10.7428 \ldots)^{2}$
(M1)
$=1.37(3 \mathrm{sf})$ A1
5. the pieces have lengths $a, a r, \ldots, a r^{9}$
(M1)
$8 a=a r^{9}\left(\right.$ or $\left.8=r^{9}\right)$ A1
$r=\sqrt[9]{8}=1.259922 \ldots$
$a \frac{r^{10}-1}{r-1}=1 \quad\left(\right.$ or $\left.a \frac{r^{10}-1}{r-1}=1000\right)$
$a=\frac{r-1}{r^{10}-1}=0.0286 \ldots \quad\left(\right.$ or $\left.a=\frac{r-1}{r^{10}-1}=28.6 \ldots\right)$
$a=29 \mathrm{~mm}$ (accept 0.029 m or any correct answer regardless the units)
6. $2 s \frac{\mathrm{~d} s}{\mathrm{~d} t}+\frac{\mathrm{d} s}{\mathrm{~d} t}-2=0$
$v=\frac{\mathrm{d} s}{\mathrm{~d} t}=\frac{2}{2 s+1}$

EITHER

$a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d} v}{\mathrm{~d} s} \frac{\mathrm{~d} s}{\mathrm{~d} t}$
$\frac{\mathrm{d} v}{\mathrm{~d} s}=\frac{-4}{(2 s+1)^{2}}$
$a=\frac{-4}{(2 s+1)^{2}} \frac{\mathrm{~d} s}{\mathrm{~d} t}$
OR
$2\left(\frac{\mathrm{~d} s}{\mathrm{~d} t}\right)^{2}+2 s \frac{\mathrm{~d}^{2} s}{\mathrm{~d} t^{2}}+\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}=0$
(M1)
(A1)

THEN
$a=\frac{-8}{(2 s+1)^{3}}$
7. (a) $\mathrm{P}(\mathrm{WWW})=0.75 \times 0.375 \times 0.1875=0.0527(3 \mathrm{sf})\left(\frac{3}{4} \times \frac{3}{8} \times \frac{3}{16}=\frac{27}{512}\right)$
(M1)A1
[2 marks]
(b)

(M1)(A1)
Note: Award M1 for any reasonable attempt to use a tree diagram showing that three games were played (do not award M1 for tree diagrams that only show the first two games) and $\boldsymbol{A 1}$ for the highlighted probabilities.
$P($ wins 2 games \mid wins first game $)=\frac{P(W W L, W L W)}{P(\text { wins first game })}$
$=\frac{0.75 \times 0.375 \times 0.8125+0.75 \times 0.625 \times 0.375}{0.75}$
(A1)(A1)
$=0.539(3 \mathrm{sf})\left(\right.$ or $\left.\frac{69}{128}\right)$
Note: Candidates may use the tree diagram to obtain the answer without using the conditional probability formula, $i e$,
$\mathrm{P}($ wins 2 games \mid wins first game $)=0.375 \times 0.8125+0.625 \times 0.375=0.539$.
8. $x=\sin t, \mathrm{~d} x=\cos t \mathrm{~d} t$

$$
\begin{align*}
& \int \frac{x^{3}}{\sqrt{1-x^{2}}} \mathrm{~d} x=\int \frac{\sin ^{3} t}{\sqrt{1-\sin ^{2} t} \cos t \mathrm{~d} t} \\
& =\int \sin ^{3} t \mathrm{~d} t \\
& =\int \sin ^{2} t \sin t \mathrm{~d} t \tag{A1}\\
& =\int\left(1-\cos ^{2} t\right) \sin t \mathrm{~d} t \\
& =\int \sin t \mathrm{~d} t-\int \cos ^{2} t \sin t \mathrm{~d} t \\
& =-\cos t+\frac{\cos ^{3} t}{3}+C \\
& =-\sqrt{1-x^{2}}+\frac{1}{3}\left(\sqrt{1-x^{2}}\right)^{3}+C \\
& \left(=-\sqrt{1-x^{2}}\left(1-\frac{1}{3}\left(1-x^{2}\right)\right)+C\right) \\
& \left(=-\frac{1}{3} \sqrt{1-x^{2}}\left(2+x^{2}\right)+C\right)
\end{align*}
$$

9.

intersection points
A1A1
Note: Only either the x-coordinate or the y-coordinate is needed.
EITHER
$x=y^{2}-3 \Rightarrow y= \pm \sqrt{x+3} \quad($ accept $y=\sqrt{x+3})$
$A=\int_{-3}^{-1.111 \ldots} 2 \sqrt{x+3} \mathrm{~d} x+\int_{-1.111 \ldots}^{1.2739 \ldots} \sqrt{x+3}-x^{3} \mathrm{~d} x$
$=3.4595 \ldots+3.8841 \ldots$
$=7.34$ (3 sf)
OR
$y=x^{3} \Rightarrow x=\sqrt[3]{y}$
(M1)
$A=\int_{-1.374 \ldots}^{2.067 \ldots} \sqrt[3]{y}-\left(y^{2}-3\right) \mathrm{d} y$
(M1) A1
$=7.34(3 \mathrm{sf})$
10. METHOD 1

$$
\begin{aligned}
& \left(1-\omega^{2}\right)^{*}=(1-\operatorname{cis} 2 \theta)^{*}=((1-\cos 2 \theta)-\mathrm{i} \sin 2 \theta)^{*} \\
& =(1-\cos 2 \theta)+\mathrm{i} \sin 2 \theta \\
& \left|\left(1-\omega^{2}\right)^{*}\right|=\sqrt{(1-\cos 2 \theta)^{2}+\sin ^{2} 2 \theta}\left(=\sqrt{\left(2 \sin ^{2} \theta\right)^{2}}\right. \\
& =|2 \sin \theta| \\
& \arg \left(\left(1-\omega^{2}\right)^{*}\right)=\alpha \Rightarrow \tan \alpha=\cot (\theta) \\
& \alpha=\frac{\pi}{2}-\theta
\end{aligned}
$$

M1A1
therefore:
modulus is $2|\sin \theta|$ and argument is $\frac{\pi}{2}-\theta$ or $\frac{\pi}{2}-\theta \pm \pi$
Note: Accept modulus is $2 \sin \theta$ and argument is $\frac{\pi}{2}-\theta$

METHOD 2

EITHER

$\left(1-\omega^{2}\right)^{*}=(1-\operatorname{cis} 2 \theta)^{*}=((1-\cos 2 \theta)-\mathrm{i} \sin 2 \theta)^{*}$
$=(1-\cos 2 \theta)+i \sin 2 \theta$
$=\left(1-1+2 \sin ^{2} \theta\right)+2 \mathrm{i} \sin \theta \cos \theta$

OR

$\left(1-\omega^{2}\right)^{*}=\left(1-(\cos \theta+i \sin \theta)^{2}\right)^{*}$
$=\left(1-\cos ^{2} \theta+\sin ^{2} \theta-2 \mathrm{i} \sin \theta \cos \theta\right)^{*}$
$=2 \sin ^{2} \theta+2 \mathrm{i} \sin \theta \cos \theta$

THEN

$$
\begin{aligned}
& =2 \sin \theta(\sin \theta+\mathrm{i} \cos \theta) \\
& =2 \sin \theta\left(\cos \left(\frac{\pi}{2}-\theta\right)+\mathrm{i} \sin \left(\frac{\pi}{2}-\theta\right)\right) \\
& =2 \sin \theta \operatorname{cis}\left(\frac{\pi}{2}-\theta\right)
\end{aligned}
$$

therefore:
modulus is $2|\sin \theta|$ and argument is $\frac{\pi}{2}-\theta$ or $\frac{\pi}{2}-\theta \pm \pi$
Note: Accept modulus is $2 \sin \theta$ and argument is $\frac{\pi}{2}-\theta$.

SECTION B

11. (a) $2.2 \times 6 \times 60=792$
(M1)A1
[2 marks]
(b) $\quad V \sim \operatorname{Po}(2.2 \times 60)$
$\mathrm{P}(V>100)=0.998$
(M1)
(M1)A1
[3 marks]
(M1)A1
[2 marks]
(d) $A \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$
$\mathrm{P}(A<35)=0.29$ and $\mathrm{P}(A>55)=0.23 \Rightarrow \mathrm{P}(A<55)=0.77$
$\mathrm{P}\left(Z<\frac{35-\mu}{\sigma}\right)=0.29$ and $\mathrm{P}\left(Z<\frac{55-\mu}{\sigma}\right)=0.77$
use of inverse normal
$\frac{35-\mu}{\sigma}=-0.55338 \ldots$ and $\frac{55-\mu}{\sigma}=0.738846 \ldots$
solving simultaneously
$\mu=43.564 \ldots$ and $\sigma=15.477 \ldots$
$\mu=43.6$ and $\sigma=15.5$ (3sf)
(e) $0.29 n=100 \Rightarrow n=344.82 \ldots$
$\mathrm{P}(A<50)=0.66121 .$.
(A1)
(M1)A1
[5 marks]
12. (a) $L=C A+A D$

M1
$\sin \alpha=\frac{a}{\mathrm{CA}} \Rightarrow \mathrm{CA}=\frac{a}{\sin \alpha}$ A1
$\cos \alpha=\frac{b}{\mathrm{AD}} \Rightarrow \mathrm{AD}=\frac{b}{\cos \alpha}$ A1
$L=\frac{a}{\sin \alpha}+\frac{b}{\cos \alpha}$
(b) $\quad a=5$ and $b=1 \Rightarrow L=\frac{5}{\sin \alpha}+\frac{1}{\cos \alpha}$

METHOD 1

(M1)
minimum from graph $\Rightarrow L=7.77$
minimum of L gives the max length of the painting
(M1)A1
R1
[4 marks]

METHOD 2

$\frac{\mathrm{d} L}{\mathrm{~d} \alpha}=\frac{-5 \cos \alpha}{\sin ^{2} \alpha}+\frac{\sin \alpha}{\cos ^{2} \alpha}$
(M1)
$\frac{\mathrm{d} L}{\mathrm{~d} \alpha}=0 \Rightarrow \frac{\sin ^{3} \alpha}{\cos ^{3} \alpha}=5 \Rightarrow \tan \alpha=\sqrt[3]{5} \quad(\alpha=1.0416 \ldots)$
minimum of L gives the max length of the painting (M1)
maximum length $=7.77$
(c) $\frac{\mathrm{d} L}{\mathrm{~d} \alpha}=\frac{-3 k \cos \alpha}{\sin ^{2} \alpha}+\frac{k \sin \alpha}{\cos ^{2} \alpha}$ (or equivalent)

M1A1A1
[3 marks]
continued ...

Question 12 continued

(d) $\frac{\mathrm{d} L}{\mathrm{~d} \alpha}=\frac{-3 k \cos ^{3} \alpha+k \sin ^{3} \alpha}{\sin ^{2} \alpha \cos ^{2} \alpha}$
$\frac{\mathrm{d} L}{\mathrm{~d} \alpha}=0 \Rightarrow \frac{\sin ^{3} \alpha}{\cos ^{3} \alpha}=\frac{3 k}{k} \Rightarrow \tan \alpha=\sqrt[3]{3} \quad(\alpha=0.96454 \ldots)$
$\tan \alpha=\sqrt[3]{3} \Rightarrow \frac{1}{\cos \alpha}=\sqrt{1+\sqrt[3]{9}} \quad(1.755 \ldots)$
and $\frac{1}{\sin \alpha}=\frac{\sqrt{1+\sqrt[3]{9}}}{\sqrt[3]{3}} \quad(1.216 \ldots)$
$L=3 k\left(\frac{\sqrt{1+\sqrt[3]{9}}}{\sqrt[3]{3}}\right)+k \sqrt{1+\sqrt[3]{9}} \quad(L=5.405598 \ldots k) \quad A 1$
(e) $L \leq 8 \Rightarrow k \geq 1.48$

M1A1
[2 marks]
Total [18 marks]
13. Note: Accept alternative notation for vectors $(e g\langle a, b, c\rangle$ or (a, b, c)).
(a) $\quad \boldsymbol{n}=\left(\begin{array}{c}1 \\ -2 \\ -3\end{array}\right)$ and $\boldsymbol{m}=\left(\begin{array}{c}2 \\ -1 \\ -1\end{array}\right)$
$\cos \theta=\frac{\boldsymbol{n} \cdot \boldsymbol{m}}{|\boldsymbol{n} \| \boldsymbol{m}|}$
$\cos \theta=\frac{2+2+3}{\sqrt{1+4+9} \sqrt{4+1+1}}=\frac{7}{\sqrt{14} \sqrt{6}}$ A1
$\theta=40.2^{\circ} \quad(0.702 \mathrm{rad})$
(b) METHOD 1
eliminate z from $x-2 y-3 z=2$ and $2 x-y-z=k$
$5 x-y=3 k-2 \Rightarrow x=\frac{y-(2-3 k)}{5}$
eliminate y from $x-2 y-3 z=2$ and $2 x-y-z=k$
$3 x+z=2 k-2 \Rightarrow x=\frac{z-(2 k-2)}{-3}$
$x=t, y=(2-3 k)+5 t$ and $z=(2 k-2)-3 t$
$\boldsymbol{r}=\left(\begin{array}{c}0 \\ 2-3 k \\ 2 k-2\end{array}\right)+t\left(\begin{array}{c}1 \\ 5 \\ -3\end{array}\right)$

METHOD 2

$$
\left(\begin{array}{c}
1 \\
-2 \\
-3
\end{array}\right) \times\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-5 \\
3
\end{array}\right) \Rightarrow \text { direction is }\left(\begin{array}{c}
1 \\
5 \\
-3
\end{array}\right)
$$

Let $x=0$
$0-2 y-3 z=2$ and $2 \times 0-y-z=k$
solve simultaneously
$y=2-3 k$ and $z=2 k-2$
therefore $\mathbf{r}=\left(\begin{array}{c}0 \\ 2-3 k \\ 2 k-2\end{array}\right)+t\left(\begin{array}{c}1 \\ 5 \\ -3\end{array}\right)$

Question 13 continued

METHOD 3

substitute $x=t, y=(2-3 k)+5 t$ and $z=(2 k-2)-3 t$ into π_{1} and π_{2}
M1
for $\pi_{1}: t-2(2-3 k+5 t)-3(2 k-2-3 t)=2$
for $\pi_{2}: 2 t-(2-3 k+5 t)-(2 k-2-3 t)=k$
the planes have a unique line of intersection
therefore the line is $\boldsymbol{r}=\left(\begin{array}{c}0 \\ 2-3 k \\ 2 k-2\end{array}\right)+t\left(\begin{array}{c}1 \\ 5 \\ -3\end{array}\right)$
(c) $\quad 5-t=(2-3 k+5 t)+3=2-2(2 k-2-3 t)$

Note: Award M1A1 if candidates use vector or parametric equations of L_{2}

$$
e g\left(\begin{array}{c}
0 \\
2-3 k \\
2 k-2
\end{array}\right)+t\left(\begin{array}{c}
1 \\
5 \\
-3
\end{array}\right)=\left(\begin{array}{c}
5 \\
-3 \\
1
\end{array}\right)+s\left(\begin{array}{c}
-2 \\
2 \\
-1
\end{array}\right) \text { or } \Rightarrow\left\{\begin{array}{l}
t=5-2 s \\
2-3 k+5 t=-3+2 s \\
2 k-2-3 t=1+s
\end{array}\right.
$$

solve simultaneously
$k=2, t=1 \quad(s=2)$
intersection point $(1,1,-1)$
(d) $\quad \vec{l}_{2}=\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)$
$\vec{l}_{1} \times \vec{l}_{2}=\left|\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ 1 & 5 & -3 \\ 2 & -2 & 1\end{array}\right|=\left(\begin{array}{c}-1 \\ -7 \\ -12\end{array}\right)$
$\boldsymbol{r} \cdot\left(\begin{array}{c}1 \\ 7 \\ 12\end{array}\right)=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 7 \\ 12\end{array}\right)$
$x+7 y+12 z=-4$
1

M1A1

Question 13 continued

(e) Let θ be the angle between the lines $\vec{l}_{1}=\left(\begin{array}{c}1 \\ 5 \\ -3\end{array}\right)$ and $\vec{l}_{2}=\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)$.
$\cos \theta=\frac{|2-10-3|}{\sqrt{35} \sqrt{9}} \Rightarrow \theta=0.902334 \ldots\left(51.699 \ldots{ }^{\circ}\right)$
(M1)
as the triangle XYZ has a right angle at Y , $\mathrm{XZ}=a \Rightarrow \mathrm{YZ}=a \sin \theta$ and $\mathrm{XY}=a \cos \theta$
area $=3 \Rightarrow \frac{a^{2} \sin \theta \cos \theta}{2}=3$
$a=3.5122 \ldots$
perimeter $=a+a \sin \theta+a \cos \theta=8.44537 \ldots=8.45$
Note: If candidates attempt to find coordinates of Y and Z award $\boldsymbol{M 1}$ for expression of vector YZ in terms of two parameters, M1 for attempt to use perpendicular condition to determine relation between parameters, M1 for attempt to use the area to find the parameters and $\boldsymbol{A 2}$ for final answer.

MARKSCHEME

May 2012

MATHEMATICS

Higher Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2012". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4
 Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read
If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \mathbf{M} mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8
 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

SECTION A

1. $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-12 x+k \quad$ MIAI

For use of discriminant $b^{2}-4 a c=0$ or completing the square $3(x-2)^{2}+k-12 \quad$ (M1)
$144-12 k=0$
Note: Accept trial and error, sketches of parabolas with vertex (2,0) or use of second derivative.
$k=12 \quad$ A1
[5 marks]
2. $k \int_{1}^{2} 2^{\frac{1}{x}} \mathrm{~d} x=1 \Rightarrow k=\frac{1}{\int_{1}^{2} 2^{\frac{1}{x}} \mathrm{~d} x}(=0.61556 \ldots)$
(M1)(A1)
$\mathrm{E}(X)=k \int_{1}^{2} x 2^{\frac{1}{x}} \mathrm{~d} x=2.39 \ldots . k$ or $1.47 \quad$ M1A1
Note: Condone missing $\mathrm{d} x$ in any part of the question.
[4 marks]
3. (a) $\binom{10}{6}=210$
(M1)A1
(b) $\quad 2 \times\binom{ 8}{5}=112$
(M1)A1A1
Note: Accept 210-28-70=112
[3 marks]
(c) $\frac{112}{210}\left(=\frac{8}{15}=0.533\right)$
(M1)A1
4. point on line is $x=\frac{-1-5 \lambda}{5}, y=\frac{9+5 \lambda}{5}, z=\lambda$ or similar M1A1

Note: Accept use of point on the line or elimination of one of the variables using the equations of the planes

$$
\frac{-1-5 \lambda}{5}-\frac{9+5 \lambda}{5}+2 \lambda=k
$$

Note: Award M1A1 if coordinates of point and equation of a plane is used to obtain linear equation in k or equations of the line are used in combination with equation obtained by elimination to get linear equation in k.

$$
k=-2
$$

5. (a) 50

(b) Lower quartile is 4 so at least 26 obtained a 4

Lower bound is 26

Minimum is 2 but the rest could be 4
So upper bound is 49
Note: Do not allow follow through for \boldsymbol{A} marks.
Note: If answers are incorrect award ROAO; if argument is correct but no clear lower/upper bound is stated award R1A0; award R0A1 for correct answer without explanation or incorrect explanation.
6. $h(x)=f(x-3)-2=\ln (x-3)-2$
$g(x)=-h(x)=2-\ln (x-3)$
Note: Award M1 only if it is clear the effect of the reflection in the x-axis: the expression is correct $\boldsymbol{O R}$
there is a change of signs of the previous expression $\boldsymbol{O R}$ there's a graph or an explanation making it explicit

$$
\begin{array}{lc}
=\ln \mathrm{e}^{2}-\ln (x-3) & \boldsymbol{M 1} \\
=\ln \left(\frac{\mathrm{e}^{2}}{x-3}\right) & \boldsymbol{A 1}
\end{array}
$$

7.

$$
\begin{align*}
& X \sim \mathrm{Po}(m) \\
& \mathrm{P}(X=2)=\mathrm{P}(X<2) \tag{M1}\\
& \frac{1}{2} m^{2} \mathrm{e}^{-m}=\mathrm{e}^{-m}(1+m) \\
& m=2.73 \quad(1+\sqrt{3})
\end{align*}
$$

(A1)(A1)
in four hours the expected value is $10.9 \quad(4+4 \sqrt{3})$
Note: Value of m does not need to be rounded.
8. $x=r-\frac{r}{h} y$ or $x=\frac{r}{h}(h-y)$ (or equivalent)

$$
\begin{aligned}
& \int \pi x^{2} \mathrm{~d} y \\
& =\pi \int_{0}^{h}\left(r-\frac{r}{h} y\right)^{2} \mathrm{~d} y
\end{aligned}
$$

Note: Award $\boldsymbol{M I}$ for $\int x^{2} \mathrm{~d} y$ and $\boldsymbol{A I}$ for correct expression.

$$
\text { Accept } \pi \int_{0}^{h}\left(\frac{r}{h} y-r\right)^{2} \mathrm{~d} y \text { and } \pi \int_{0}^{h}\left(\pm\left(r-\frac{r}{h} x\right)\right)^{2} \mathrm{~d} x
$$

$$
=\pi \int_{0}^{h}\left(r^{2}-\frac{2 r^{2}}{h} y+\frac{r^{2}}{h^{2}} y^{2}\right) \mathrm{d} y
$$

Note: Accept substitution method and apply markscheme to corresponding steps.

$$
=\pi\left[r^{2} y-\frac{r^{2} y^{2}}{h}+\frac{r^{2} y^{3}}{3 h^{2}}\right]_{0}^{h}
$$

Note: Award $\boldsymbol{M 1}$ for attempted integration of any quadratic trinomial.

$$
=\pi\left(r^{2} h-r^{2} h+\frac{1}{3} r^{2} h\right)
$$

Note: Award $\boldsymbol{M 1}$ for attempted substitution of limits in a trinomial.

$$
=\frac{1}{3} \pi r^{2} h
$$

Note: Throughout the question do not penalize missing $\mathrm{d} x / \mathrm{d} y$ as long as the integrations are done with respect to correct variable
9. $\left(x-\frac{2}{x}\right)^{4}=x^{4}-8 x^{2}+24-\frac{32}{x^{2}}+\frac{16}{x^{4}}$

$$
\left(x^{2}+\frac{2}{x}\right)^{3}=x^{6}+6 x^{3}+12+\frac{8}{x^{3}}
$$

(M1)(A1)
(M1)(A1)
Note: Accept unsimplified or uncalculated coefficients in the constant term

$$
\begin{aligned}
& =24 \times 12 \\
& =288
\end{aligned}
$$

(M1)(A1)
A1
[7 marks]
10. attempt to find intersections

M1
intersections are $\left(\frac{10}{m+2}, \frac{10 m}{m+2}\right)$ and $\left(\frac{10 m}{2 m-1},-\frac{10}{2 m-1}\right)$ A1A1
area of triangle $=\frac{1}{2} \times \frac{\sqrt{100+100 m^{2}}}{(m+2)} \times \frac{\sqrt{100+100 m^{2}}}{(2 m-1)}$
M1A1A1

$$
=\frac{50\left(1+m^{2}\right)}{(m+2)(2 m-1)}
$$

minimum when $m=3$
(M1)A1

SECTION B

11. (a) $(3.79,-5)$

A1
[1 mark]
(b) $\quad p=1.57$ or $\frac{\pi}{2}, q=6.00$

A1A1
[2 marks]
(c) $f^{\prime}(x)=3 \cos x-4 \sin x$
(M1)(A1)
$3 \cos x-4 \sin x=3 \Rightarrow x=4.43 \ldots$
(A1)
($y=-4$)
Coordinates are (4.43, -4)
(d) $\quad m_{\text {normal }}=-\frac{1}{m_{\text {tangent }}}$
(M1)
gradient at P is -4 so gradient of normal at P is $\frac{1}{4}$
(A1)
gradient at Q is 4 so gradient of normal at Q is $-\frac{1}{4}$
(A1)
equation of normal at P is $y-3=\frac{1}{4}(x-1.570 \ldots)$ (or $\left.y=0.25 x+2.60 \ldots\right) \quad$ (M1)
equation of normal at Q is $y-3=-\frac{1}{4}(x-5.999 \ldots)($ or $y=-0.25 x+\underbrace{4.499 . .})($ M1 $)$
Note: Award the previous two $\boldsymbol{M 1}$ even if the gradients are incorrect in $y-b=m(x-a)$ where (a, b) are coordinates of P and Q
(or in $y=m x+c$ with c determined using coordinates of Pand Q .
intersect at (3.79, 3.55)
A1A1
Note: Award $\mathbf{N 2}$ for 3.79 without other working.
12. (a) (i) $X \sim \operatorname{Po}(11)$
(M1)
(M1)AI
(M1)
[6 marks]
(b) \quad (i) $\quad Y \sim \operatorname{Po}(m)$
$\mathrm{P}(Y>3)=0.24$
(M1)
$\mathrm{P}(Y \leq 3)=0.76$
(M1)
$\mathrm{e}^{-m}\left(1+m+\frac{1}{2} m^{2}+\frac{1}{6} m^{3}\right)=0.76$
Note: At most two of the above lines can be implied.
Attempt to solve equation with GDC
$m=2.49$
(M1)
(ii) $\quad A \sim \operatorname{Po}(4.98)$
$\mathrm{P}(A>5)=1-\mathrm{P}(A \leq 5)=0.380 \ldots$
M1A1
$W \sim \mathrm{~B}(4,0.380 \ldots)$
$\mathrm{P}(W \geq 2)=1-\mathrm{P}(W \leq 1)=0.490$
(c) $\mathrm{P}(A<25)=0.8, \mathrm{P}(A<18)=0.4$
$\frac{25-\mu}{\sigma}=0.8416 \ldots$
(M1)(A1)
$\frac{18-\mu}{\sigma}=-0.2533 \ldots$ (or -0.2534 from tables)
(M1)(A1)
solving these equations
(M1)
$\mu=19.6$
A1
Note: Accept just 19.6, 19 or 20; award A0 to any other final answer.
13. (a) $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}0 \\ 6 \\ -6\end{array}\right) \Rightarrow \mathrm{AB}=\sqrt{72}$

$$
\overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}
-6 \\
0 \\
-6
\end{array}\right) \Rightarrow \mathrm{AC}=\sqrt{72}
$$

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=36=(\sqrt{72})(\sqrt{72}) \cos \theta \\
& \cos \theta=\frac{36}{(\sqrt{72})(\sqrt{72})}=\frac{1}{2} \Rightarrow \theta=60^{\circ}
\end{aligned}
$$

Note: Award M1A1 if candidates find BC and claim that triangle ABC is equilateral.
(b) METHOD 1
$\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ 0 & 6 & -6 \\ -6 & 0 & -6\end{array}\right|=-36 \boldsymbol{i}+36 \boldsymbol{j}+36 \boldsymbol{k}$
(M1)A1
equation of plane is $x-y-z=k$
(M1) A1
[4 marks]

METHOD 2

$x+b y+c z=d$ (or similar)
$5-2 b+5 c=d$
$5+4 b-c=d$
$-1-2 b-c=d$
solving simultaneously
$b=-1, c=-1, d=2$
so $x-y-z=2$
[4 marks]
(c) (i) midpoint is $(5,1,2)$, so equation of Π_{1} is $y-z=-1$

A1A1
(ii) midpoint is ($2,-2,2$), so equation of Π_{2} is $x+z=4$

A1A1
Note: In each part, award $\boldsymbol{A 1}$ for midpoint and $\boldsymbol{A 1}$ for the equation of the plane.
(d) EITHER
solving the two equations above
M1
$L: \boldsymbol{r}=\left(\begin{array}{c}4 \\ -1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right)$
A1

OR

L has the direction of the vector product of the normal vectors to the planes Π_{1} and Π_{2}
$\left|\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ 0 & 1 & -1 \\ 1 & 0 & 1\end{array}\right|=\boldsymbol{i}-\boldsymbol{j}-\boldsymbol{k}$
(or its opposite)

THEN

$$
\text { direction is }\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right) \text { as required }
$$

(e) D is of the form $(4-\lambda,-1+\lambda, \lambda)$
$(1+\lambda)^{2}+(-1-\lambda)^{2}+(5-\lambda)^{2}=72$
$3 \lambda^{2}-6 \lambda-45=0$
$\lambda=5$ or $\lambda=-3$
$\mathrm{D}(-1,4,5)$

[^0]
(f) EITHER

G is of the form $(4-\lambda,-1+\lambda, \lambda)$ and $\mathrm{DG}=\mathrm{AG}, \mathrm{BG}$ or CG
e.g. $(1+\lambda)^{2}+(-1-\lambda)^{2}+(5-\lambda)^{2}=(5-\lambda)^{2}+(5-\lambda)^{2}+(5-\lambda)^{2} \quad$ MI
$(1+\lambda)^{2}=(5-\lambda)^{2}$
$\lambda=2$
A1
$\mathrm{G}(2,1,2)$ $\boldsymbol{A G}$

OR

G is the centre of mass (barycentre) of the regular tetrahedron $A B C D$
(M1)
$\mathrm{G}\left(\frac{5+5+(-1)+(-1)}{4}, \frac{-2+4+(-2)+4}{4}, \frac{5+(-1)+(-1)+5}{4}\right)$ M1A1

THEN

Note: the following part is independent of previous work and candidates may use $\boldsymbol{A G}$ to answer it (here it is possible to award MOMOAOA1M1A1)

$$
\begin{aligned}
& \overrightarrow{\mathrm{GD}}=\left(\begin{array}{c}
-3 \\
3 \\
3
\end{array}\right) \text { and } \overrightarrow{\mathrm{GA}}=\left(\begin{array}{c}
3 \\
-3 \\
3
\end{array}\right) \\
& \cos \theta=\frac{-9}{(3 \sqrt{3})(3 \sqrt{3})}=-\frac{1}{3} \Rightarrow \theta=109^{\circ} \text { (or } 1.91 \text { radians) }
\end{aligned}
$$

MARKSCHEME

May 2012

MATHEMATICS

Higher Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2012". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4
 Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read
If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \mathbf{M} mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8
 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $A 1$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for $\boldsymbol{F T}$.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

SECTION A

1. (a) $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$212=\frac{16}{2}(2 a+15 d) \quad(=16 a+120 d)$
A1

A1
(M1) A1
[4 marks]
(b) $\quad \frac{n}{2}[4+1.5(n-1)]>600$
$\Rightarrow 3 n^{2}+5 n-2400>0$
$\Rightarrow n>27.4 \ldots,(n<-29.1 . .$.
(M1)

Note: Do not penalize improper use of inequalities.
$\Rightarrow n=28$
A1
[3 marks]
Total [7 marks]

A1
[1 mark]
(b) $\quad \mathrm{P}(X=10)=\binom{30}{10}\left(\frac{1}{3}\right)^{10}\left(\frac{2}{3}\right)^{20}=0.153$
(M1)A1
[2 marks]
(c) $\mathrm{P}(X \geq 15)=1-\mathrm{P}(X \leq 14)$
(M1)

$$
=1-0.9565 \ldots=0.0435
$$

3. (a)

Note: Accept 2 separate triangles. The diagram(s) should show that one triangle has an acute angle and the other triangle has an obtuse angle. The values 9.63, 7.5 and 45.7 and/or the letters, A, B C' and C should be correctly marked on the diagram(s).
(b) METHOD 1

$$
\begin{aligned}
& \frac{\sin 45.7}{7.5}=\frac{\sin C}{9.63} \\
& \Rightarrow \hat{C}=66.77 \ldots, 113.2 \ldots \\
& \Rightarrow \hat{B}=67.52 \ldots, 21.07 \ldots \\
& \frac{b}{\sin B}=\frac{7.5}{\sin 45.7} \Rightarrow b=9.68(\mathrm{~cm}), b=3.77(\mathrm{~cm})
\end{aligned} \quad \text { (A1)(A1) }
$$

Note: If only the acute value of \hat{C} is found, award $\operatorname{M1(A1)(A0)(A0)A1A0}$

METHOD 2

$7.5^{2}=9.63^{2}+b^{2}-2 \times 9.63 \times b \cos 45.7^{\circ}$
M1A1
$b^{2}-13.45 \ldots b+36.48 \ldots=0$
$b=\frac{13.45 \ldots \pm \sqrt{13.45 \ldots{ }^{2}-4 \times 36.48 \ldots}}{2}$
(M1)(A1)
$\mathrm{AC}=9.68(\mathrm{~cm}), \mathrm{AC}=3.77(\mathrm{~cm})$

A1A1
[6 marks]
4. (a) number of arrangements of boys is 15 ! and number of arrangements of girls is 10 !
total number of arrangements is $15!\times 10!\times 2\left(=9.49 \times 10^{18}\right)$ M1A1
Note: If 2 is omitted, award (A1)M1AO.
(b) number of ways of choosing two boys is $\binom{15}{2}$ and the number of ways of choosing three girls is $\binom{10}{3}$
number of ways of choosing two boys and three girls is $\binom{15}{2} \times\binom{ 10}{3}=12600$ M1A1
[3 marks]
Total [6 marks]
5. (a) $\mathrm{P}(X=5)=\mathrm{P}(X=3)+\mathrm{P}(X=4)$

$$
\begin{aligned}
& \frac{\mathrm{e}^{-m} m^{5}}{5!}=\frac{\mathrm{e}^{-m} m^{3}}{3!}+\frac{\mathrm{e}^{-m} m^{4}}{4!} \\
& m^{2}-5 m-20=0 \\
& \Rightarrow m=\frac{5+\sqrt{105}}{2}=(7.62)
\end{aligned}
$$

(b) $\mathrm{P}(X>2)=1-\mathrm{P}(X \leq 2)$
$=1-0.018 \ldots$
$=0.982$
6. (a)

A1A1A1A1

> | Note: Award $A 1$ for correct shape. Do not penalise if too large a domain is used, |
| :--- |
| A1 for correct x-intercepts, |
| A1 for correct coordinates of two minimum points, |
| A1 for correct coordinates of maximum point. |
| |
| |
| |
| Accept answers which correctly indicate the position of the intercepts, |
| maximum point and minimum points. |

(b) gradient at $x=1$ is -0.786
(c) gradient of normal is $\frac{-1}{-0.786}(=1.272 \ldots)$
when $x=1, y=0.3820 \ldots$
Equation of normal is $y-0.382=1.27(x-1)$
$(\Rightarrow y=1.27 x-0.890)$
7. (a) $\int_{0}^{a} \frac{1}{1+x^{4}} \mathrm{~d} x=1$ M2 $a=1.40$ A1
[3 marks]
(b) $\mathrm{E}(X)=\int_{0}^{a} \frac{x}{1+x^{4}} \mathrm{~d} x$

M1

$$
\left(=\frac{1}{2} \arctan \left(a^{2}\right)\right)
$$

$$
=0.548
$$

A1
[2 marks]
Total [5 marks]
8.
(a) height $=4 \times 0.95^{4}$

$$
=3.26 \text { (metres) }
$$

(b) $\begin{aligned} & 4 \times 0.95^{n}<1 \\ & 0.95^{n}<0.25 \\ & \Rightarrow n>\frac{\ln 0.25}{\ln 0.95} \\ & \Rightarrow n>27.0\end{aligned}$
(A1)

[2 marks]

Note: Do not penalize improper use of inequalities.
$\Rightarrow n=28$
Note: If candidates have used $n-1$ rather than n throughout penalise in part (a) and treat as follow through in parts (b) and (c).

(c) METHOD 1

recognition of geometric series with sum to infinity, first term of 4×0.95 and common ratio 0.95
recognition of the need to double this series and to add 4
total distance travelled is $2\left(\frac{4 \times 0.95}{1-0.95}\right)+4=156$ (metres) AI

Note: If candidates have used $n-1$ rather than n throughout penalise in part (a) and treat as follow through in parts (b) and (c).

METHOD 2

recognition of a geometric series with sum to infinity, first term of 4 and common ratio 0.95
recognition of the need to double this series and to subtract 4
total distance travelled is $2\left(\frac{4}{1-0.95}\right)-4=156$ (metres)
9.

$\mathrm{AC}=\mathrm{BD}=\sqrt{13^{2}-3^{2}}=12.64 \ldots$
(A1)
$\cos \alpha=\frac{3}{13} \Rightarrow \alpha=1.337 \ldots(76.65 \ldots .$.
(M1)(A1)
attempt to find either arc length $A B$ or arc length $C D$
arc length $\mathrm{AB}=5(\pi-2 \times 0.232 \ldots)(=13.37 \ldots)$

$$
\begin{gathered}
\text { length of string }=13.37 \ldots+28.85 \ldots+2(12.64 \ldots) \\
=67.5(\mathrm{~cm})
\end{gathered}
$$

(M1)
A1
[8 marks]

SECTION B

10. (a) (i) $\mathrm{P}(X>225)=0.158 \ldots$
expected number $=450 \times 0.158 \ldots=71.4$
(M1)(A1)
A1
(ii) $\mathrm{P}(X<m)=0.7$
(M1)
$\Rightarrow m=213$ (grams)
A1
[5 marks]
(b) $\frac{270-\mu}{\sigma}=1.40 \ldots$
(M1)A1
$\frac{250-\mu}{\sigma}=-1.03 \ldots$
A1

Note: These could be seen in graphical form.
solving simultaneously
(M1)
$\mu=258, \sigma=8.19$
A1A1
[6 marks]

[3 marks]

Total [14 marks]
11. (a) in augmented matrix form $\left|\begin{array}{cccc}1 & -3 & 1 & 3 \\ 1 & 5 & -2 & 1 \\ 0 & 16 & -6 & k\end{array}\right|$
attempt to find a line of zeros

$$
\begin{aligned}
& r_{2}-r_{1}\left|\begin{array}{cccc}
1 & -3 & 1 & 3 \\
0 & 8 & -3 & -2 \\
0 & 16 & -6 & k
\end{array}\right| \\
& r_{3}-2 r_{2}\left|\begin{array}{cccc}
1 & -3 & 1 & 3 \\
0 & 8 & -3 & -2 \\
0 & 0 & 0 & k+4
\end{array}\right|
\end{aligned}
$$

there is an infinite number of solutions when $k=-4$
there is no solution when

$$
k \neq-4,(k \in \mathbb{R})
$$

Note: Approaches other than using the augmented matrix are acceptable.
[5 marks]
(b) using $\left|\begin{array}{cccc}1 & -3 & 1 & 3 \\ 0 & 8 & -3 & -2 \\ 0 & 0 & 0 & k+4\end{array}\right|$ and letting $z=\lambda$
(M1)
$8 y-3 \lambda=-2$
$\Rightarrow y=\frac{3 \lambda-2}{8}$
$x-3 y+z=3$
$\Rightarrow x-\left(\frac{9 \lambda-6}{8}\right)+\lambda=3$
(A1)
$\Rightarrow 8 x-9 \lambda+6+8 \lambda=24$
$\Rightarrow x=\frac{18+\lambda}{8}$
(M1)
$\Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}\frac{18}{8} \\ -\frac{2}{8} \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}\frac{1}{8} \\ \frac{3}{8} \\ 1\end{array}\right)$
$\boldsymbol{r}=\left(\begin{array}{c}\frac{9}{4} \\ -\frac{1}{4} \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 3 \\ 8\end{array}\right)$
Note: Accept equivalent answers.

Question 11 continued

(c) recognition that $\left(\begin{array}{c}3 \\ -2 \\ 0\end{array}\right)$ is parallel to the plane
(A1)
direction normal of the plane is given by $\left|\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ 1 & 3 & 8 \\ 3 & -2 & 0\end{array}\right|$
$=16 \boldsymbol{i}+24 \boldsymbol{j}-11 \boldsymbol{k}$
(M1)

Cartesian equation of the plane is given by $16 x+24 y-11 z=d$ and a point which fits this equation is $(1,2,0)$
$\begin{aligned} \Rightarrow 16+48 & =d \\ d & =64\end{aligned}$
hence Cartesian equation of plane is $16 x+24 y-11 z=64$
Note: Accept alternative methods using dot product.
coordinates of P are $\left(0,0,-\frac{64}{11}\right)$
Note: Award AI for stating $z=-\frac{64}{11}$.

(e) recognition that the angle between the line and the direction normal is given by:
$\left(\begin{array}{l}3 \\ 4 \\ 2\end{array}\right)\left(\begin{array}{c}16 \\ 24 \\ -11\end{array}\right)=\sqrt{29} \sqrt{953} \cos \theta$ where θ is the angle between the line and
the normal vector
M1A1
$\Rightarrow 122=\sqrt{29} \sqrt{953} \cos \theta$
$\Rightarrow \theta=42.8^{\circ}$ (0.747 radians)
hence the angle between the line and the plane is $90^{\circ}-42.8^{\circ}=47.2^{\circ}$ (0.824 radians)

A1

Note: Accept use of the formula $\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \sin \theta$.
Total [24 marks]
12. (a) $\frac{\mathrm{d} v}{\mathrm{~d} t}=-v^{2}-1$
attempt to separate the variables
M1
$\int \frac{1}{1+v^{2}} \mathrm{~d} v=\int-1 \mathrm{~d} t$ A1
$\arctan v=-t+k$
Note: Do not penalize the lack of constant at this stage.
when $t=0, v=1$

$$
\begin{aligned}
& \Rightarrow k=\arctan 1=\left(\frac{\pi}{4}\right)=\left(45^{\circ}\right) \\
& \Rightarrow v=\tan \left(\frac{\pi}{4}-t\right)
\end{aligned}
$$

$$
A 1
$$

A1

Question 12 continued

(b)


```
Note: Award A1 for general shape,
A1 for asymptote,
A1 for correct \(t\) and \(v\) intercept.
```

Note: Do not penalise if a larger domain is used.
(c)
(i) $\quad T=\frac{\pi}{4}$
(ii) area under curve $=\int_{0}^{\frac{\pi}{4}} \tan \left(\frac{\pi}{4}-t\right) \mathrm{d} t$

$$
=0.347\left(=\frac{1}{2} \ln 2\right)
$$

Question 12 continued

(d) $\quad v=\tan \left(\frac{\pi}{4}-t\right)$
$s=\int \tan \left(\frac{\pi}{4}-t\right) \mathrm{d} t$
$\int \frac{\sin \left(\frac{\pi}{4}-t\right)}{\cos \left(\frac{\pi}{4}-t\right)} d t$
$=\ln \cos \left(\frac{\pi}{4}-t\right)+k$
A1
when $t=0, s=0$

$$
\begin{aligned}
& k=-\ln \cos \frac{\pi}{4} \\
& s=\ln \cos \left(\frac{\pi}{4}-t\right)-\ln \cos \frac{\pi}{4}\left(=\ln \left[\sqrt{2} \cos \left(\frac{\pi}{4}-t\right)\right]\right)
\end{aligned}
$$

$$
A 1
$$

(e) METHOD 1

$$
\begin{aligned}
& \frac{\pi}{4}-t=\arctan v \\
& t=\frac{\pi}{4}-\arctan v \\
& s=\ln \left[\sqrt{2} \cos \left(\frac{\pi}{4}-\frac{\pi}{4}+\arctan v\right)\right] \\
& s=\ln [\sqrt{2} \cos (\arctan v)]
\end{aligned}
$$

$$
\begin{aligned}
& s=\ln \left[\sqrt{2} \cos \left(\arccos \frac{1}{\sqrt{1+v^{2}}}\right)\right] \\
& =\ln \frac{\sqrt{2}}{\sqrt{1+v^{2}}} \\
& =\frac{1}{2} \ln \frac{2}{1+v^{2}}
\end{aligned}
$$

Question 12 continued

METHOD 2

$s=\ln \cos \left(\frac{\pi}{4}-t\right)-\ln \cos \frac{\pi}{4}$
$=-\ln \sec \left(\frac{\pi}{4}-t\right)-\ln \cos \frac{\pi}{4}$
M1
$=-\ln \sqrt{1+\tan ^{2}\left(\frac{\pi}{4}-t\right)}-\ln \cos \frac{\pi}{4}$
M1
$=-\ln \sqrt{1+v^{2}}-\ln \cos \frac{\pi}{4}$
A1
$=\ln \frac{1}{\sqrt{1+v^{2}}}+\ln \sqrt{2}$
A1
$=\frac{1}{2} \ln \frac{2}{1+v^{2}}$

METHOD 3

$v \frac{d v}{d s}=-v^{2}-1$
MI
$\int \frac{v}{v^{2}+1} d v=-\int 1 d s$
M1
$\frac{1}{2} \ln \left(v^{2}+1\right)=-s+k$
A1
when $s=0, t=0 \Rightarrow v=1$
$\Rightarrow k=\frac{1}{2} \ln 2$
A1
$\Rightarrow s=\frac{1}{2} \ln \frac{2}{1+v^{2}}$

International Baccalaureate Baccalauréat International Bachillerato Internacional

MARKSCHEME

November 2011

MATHEMATICS

Higher Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

\boldsymbol{M} Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$N \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the breakdown of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each question (at the end of the question) and circle it.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award \boldsymbol{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value $(e . g \cdot \sin \theta=1.5)$, do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then write $-1(\mathbf{M R})$ next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value $(e . g \cdot \sin \theta=1.5)$, do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).
Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A l}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

The method of dealing with accuracy errors on a whole paper basis by means of the Accuracy Penalty $(\boldsymbol{A P})$ no longer applies.

Instructions to examiners about such numerical issues will be provided on a question by question basis within the framework of mathematical correctness, numerical understanding and contextual appropriateness.

The rubric on the front page of each question paper is given for the guidance of candidates. The markscheme (MS) may contain instructions to examiners in the form of "Accept answers which round to n significant figures ($s f$)". Where candidates state answers, required by the question, to fewer than n sf, award A0. Some intermediate numerical answers may be required by the MS but not by the question. In these cases only award the mark(s) if the candidate states the answer exactly or to at least $2 s f$.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

SECTION A

1. (a)

A1A1A1

Note: Award A1 for shape,
A1 for x-intercept is 0.820 , accept $\sin (-3)$ or $-\sin (3)$
A1 for y-intercept is -0.141 .
(b) $\quad A=\int_{0}^{0.8202}|x+\sin (x-3)| \mathrm{d} x \approx 0.0816$ sq units
(M1)A1
[5 marks]
(M1)
(A1)
hence the system has a unique solution for all reals such that $a \neq-2 ; a \neq 1$

Note: Award $\boldsymbol{R} \mathbf{1}$ for their values of a.
3. (a) $m=\frac{300}{60}=5$
$\mathrm{P}(X=0)=0.00674$
or e^{-5}
(b) $\mathrm{E}(X)=5 \times 2=10$

AI
(c) $\quad \mathrm{P}(X>10)=1-\mathrm{P}(X \leq 10)$

$$
=0.417
$$

4. (a) $\tan \left(\arctan \frac{1}{2}-\arctan \frac{1}{3}\right)=\tan (\arctan a)$

$$
a=0.14285 \ldots=\frac{1}{7}
$$

(M1)
(A1)A1
(b) $\quad \arctan \left(\frac{1}{7}\right)=\arcsin (x) \Rightarrow x=\sin \left(\arctan \frac{1}{7}\right) \approx 0.141$
(M1)A1

Note: Accept exact value of $\left(\frac{1}{\sqrt{50}}\right)$.
5.

$$
\begin{array}{ll}
\text { (a) } & X \sim \mathrm{~B}(5,0.1) \\
& \mathrm{P}(X=2)=0.0729 \\
\text { (b) } & \mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0) \\
& 0.9<1-\left(\frac{9}{10}\right)^{n} \\
& n>\frac{\ln 0.1}{\ln 0.9} \\
n & =22 \text { days }
\end{array}
$$

(M1)

$$
A 1
$$

(M1)

$$
(M 1)
$$A1

6. METHOD 1

$\arg \left(z_{1} z_{2}\right)=\frac{5 \pi}{6} \quad\left(150^{\circ}\right)$
$\arg \left(\frac{z_{1}}{z_{2}}\right)=\frac{\pi}{2} \quad\left(90^{\circ}\right)$
$\Rightarrow \arg \left(z_{1}\right)+\arg \left(z_{2}\right)=\frac{5 \pi}{6} ; \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=\frac{\pi}{2}$
solving simultaneously
$\arg \left(z_{1}\right)=\frac{2 \pi}{3} \quad\left(120^{\circ}\right)$ and $\arg \left(z_{2}\right)=\frac{\pi}{6}\left(30^{\circ}\right)$
Note: Accept decimal approximations of the radian measures.

$$
\left|z_{1} z_{2}\right|=2 \Rightarrow\left|z_{1}\right|\left|z_{2}\right|=2 ;\left|\frac{z_{1}}{z_{2}}\right|=2 \Rightarrow \frac{\left|z_{1}\right|}{\left|z_{2}\right|}=2
$$

solving simultaneously
$\left|z_{1}\right|=2 ;\left|z_{2}\right|=1$
A1
[7 marks]
(M1)
$z_{1} \quad$ modulus $=2$, argument $=\frac{2 \pi}{3}$
$z_{2} \quad$ modulus $=1$, argument $=\frac{\pi}{6}$
7. (a) for the series to have a finite sum, $\left|\frac{2 x}{x+1}\right|<1$ (sketch from gdc or algebraic method)

R1
M1
S_{∞} exists when $-\frac{1}{3}<x<1$
Note: Award $\boldsymbol{A 1}$ for bounds and $\boldsymbol{A 1}$ for strict inequalities.
(b) $\quad S_{\infty}=\frac{\frac{2 x}{x+1}}{1-\frac{2 x}{x+1}}=\frac{2 x}{1-x}$
8. (a) $y=\frac{1}{1+\mathrm{e}^{-x}}$

$$
y\left(1+\mathrm{e}^{-x}\right)=1
$$

$1+\mathrm{e}^{-x}=\frac{1}{y} \Rightarrow \mathrm{e}^{-x}=\frac{1}{y}-1$
$\Rightarrow x=-\ln \left(\frac{1}{y}-1\right)$
$f^{-1}(x)=-\ln \left(\frac{1}{x}-1\right) \quad\left(=\ln \left(\frac{x}{1-x}\right)\right)$
domain: $0<x<1$
Note: Award $\boldsymbol{A 1}$ for endpoints and $\boldsymbol{A 1}$ for strict inequalities.
(b) 0.659
9. $V=\frac{\pi}{3} r^{2} h$
$\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\pi}{3}\left[2 r h \frac{\mathrm{~d} r}{\mathrm{~d} t}+r^{2} \frac{\mathrm{~d} h}{\mathrm{~d} t}\right]$
M1A1A1
at the given instant

$$
\begin{align*}
\frac{\mathrm{d} V}{\mathrm{~d} t} & =\frac{\pi}{3}\left[2(40)(200)\left(-\frac{1}{2}\right)+40^{2}(3)\right] \\
& =\frac{-3200 \pi}{3}=-3351.03 \ldots \approx-3350 \tag{A1}
\end{align*}
$$

M1

R1
[6 marks]

10. METHOD 1

$\frac{2-\mathrm{i}}{1+\mathrm{i}}=\frac{1-3 \mathrm{i}}{2}$
$\frac{6+8 \mathrm{i}}{u+\mathrm{i}} \times \frac{u-\mathrm{i}}{u-\mathrm{i}}=\frac{6 u+8+(8 u-6) \mathrm{i}}{u^{2}+1}$
$\Rightarrow \frac{2-\mathrm{i}}{1+\mathrm{i}}-\frac{6+8 u}{u+\mathrm{i}}=\frac{1}{2}-\frac{6 u+8}{u^{2}+1}-\left(\frac{3}{2}+\frac{8 u-6}{u^{2}+1}\right) \mathrm{i}$
$\operatorname{Im} z=\operatorname{Re} z$
$\Rightarrow \frac{1}{2}-\frac{6 u+8}{u^{2}+1}=-\frac{3}{2}-\frac{8 u-6}{u^{2}+1}$
A1
(M1) A1A1

METHOD 2

$\frac{2-\mathrm{i}}{1+\mathrm{i}}-\frac{6+8 \mathrm{i}}{u+\mathrm{i}}=\frac{(2-\mathrm{i})(u+\mathrm{i})-(1+\mathrm{i})(6+8 \mathrm{i})}{(u-1)+\mathrm{i}(u+1)}$
M1A1
$=\frac{(2-\mathrm{i})(u+\mathrm{i})-(1+\mathrm{i})(6+8 \mathrm{i})}{(u-1)+\mathrm{i}(u+1)} \cdot \frac{(u-1)-\mathrm{i}(u+1)}{(u-1)-\mathrm{i}(u+1)}$
$=\frac{u^{2}-12 u-15+\mathrm{i}\left(-3 u^{2}-16 u+9\right)}{2\left(u^{2}+1\right)}$
$\operatorname{Re} z=\operatorname{Im} z \Rightarrow u^{2}-12 u-15=-3 u^{2}-16 u+9$
$u=-3 ; u=2$M1

N2

SECTION B

11. (a) $X \sim \mathrm{~N}\left(60.33,1.95^{2}\right)$
$\mathrm{P}(X<x)=0.2 \Rightarrow x=58.69 \mathrm{~m}$
(b) $z=-0.8416 \ldots$
$-0.8416=\frac{56.52-59.39}{\sigma}$
$\sigma \approx 3.41$
(c) Jan $X \sim \mathrm{~N}\left(60.33,1.95^{2}\right)$; Sia $X \sim \mathrm{~N}\left(59.50,3.00^{2}\right)$
(i) Jan: $\mathrm{P}(X>65) \approx 0.00831$

$$
\text { (1) Jan: } \mathrm{P}(X>65) \approx 0.00831
$$

(M1)A1
A1

Sia is more likely to qualify
Note: Only award R1 if (M1) has been awarded.
(ii) Jan: $\mathrm{P}(X \geq 1)=1-\mathrm{P}(X=0)$
(M1)

$$
\begin{aligned}
& =1-(1-0.00831 \ldots)^{3} \approx 0.0247 \\
\text { Sia: } \mathrm{P}(Y \geq 1) & =1-\mathrm{P}(Y=0)=1-(1-0.0334 \ldots)^{3} \approx 0.0968
\end{aligned}
$$ R1

$$
(M 1) A 1
$$

$$
A 1
$$

Note: Accept 0.0240 and 0.0969 .
hence, $\mathrm{P}(X \geq 1$ and $Y \geq 1)=0.0247 \times 0.0968=0.00239$
(M1)A1
(M1)A1
[2 marks]
(A1)
(M1)
A1
[3 marks]
[10 marks]
12. (a) $S_{2 n}=\frac{2 n}{2}\left(2(8)+(2 n-1) \frac{1}{4}\right)$
(M1)

$$
=n\left(16+\frac{2 n-1}{4}\right)
$$

$S_{3 n}=\frac{3 n}{2}\left(2 \times 8+(3 n-1) \frac{1}{4}\right)$
$S_{2 n}=S_{3 n}-S_{2 n} \Rightarrow 2 S_{2 n}=S_{3 n}$

$$
=\frac{3 n}{2}\left(16+\frac{3 n-1}{4}\right)
$$

solve $2 S_{2 n}=S_{3 n}$
$\Rightarrow 2 n\left(16+\frac{2 n-1}{4}\right)=\frac{3 n}{2}\left(16+\frac{3 n-1}{4}\right)$
$\left(\Rightarrow 2\left(16+\frac{2 n-1}{4}\right)=\frac{3}{2}\left(16+\frac{3 n-1}{4}\right)\right)$
(gdc or algebraic solution)
$n=63$
(b) $\quad\left(a_{1}-a_{2}\right)^{2}+\left(a_{2}-a_{3}\right)^{2}+\left(a_{3}-a_{4}\right)^{2}+\ldots$

$$
\begin{aligned}
& =\left(a_{1}-a_{1} r\right)^{2}+\left(a_{1} r-a_{1} r^{2}\right)^{2}+\left(a_{1} r^{2}-a_{1} r^{3}\right)+\ldots \\
& =\left[a_{1}(1-r)\right]^{2}+\left[a_{1} r(1-r)\right]^{2}+\left[a_{1} r^{2}(1-r)\right]^{2}+\ldots+\left[a_{1} r^{n-1}(1-r)\right]^{2}
\end{aligned}
$$

Note: This $\boldsymbol{A 1}$ is for the expression for the last term.

$$
\begin{aligned}
& =a_{1}^{2}(1-r)^{2}+a_{1}^{2} r^{2}(1-r)^{2}+a_{1}^{2} r^{4}(1-r)^{2}+\ldots+a_{1}^{2} r^{2 n-2}(1-r)^{2} \\
& =a_{1}^{2}(1-r)^{2}\left(1+r^{2}+r^{4}+\ldots+r^{2 n-2}\right) \\
& =a_{1}^{2}(1-r)^{2}\left(\frac{1-r^{2 n}}{1-r^{2}}\right) \\
& =\frac{a_{1}^{2}(1-r)\left(1-r^{2 n}\right)}{1+r}
\end{aligned}
$$

A1
M1A1 AG
[7 marks]
13. (a) METHOD 1

$$
\begin{aligned}
& \text { solving simultaneously (gdc) } \\
& x=1+2 z ; y=-1-5 z \\
& L: \boldsymbol{r}=\binom{1}{-1}+\lambda\binom{2}{-5}
\end{aligned}
$$

[6 marks]

METHOD 2

direction of line $=\left|\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ 3 & 1 & -1 \\ 2 & 1 & 1\end{array}\right| \quad$ (last two rows swapped) M1

$$
\begin{equation*}
=2 i-5 j+k \tag{A1}
\end{equation*}
$$

putting $z=0$, a point on the line satisfies $2 x+y=1,3 x+y=2 \quad$ M1
i.e. $(1,-1,0)$
the equation of the line is
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -5 \\ 1\end{array}\right)$
(b) $\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right) \times\left(\begin{array}{c}2 \\ -5 \\ 1\end{array}\right)$
$=6 i-12 k$
A1
hence, $n=\boldsymbol{i}-2 \boldsymbol{k}$
$\boldsymbol{n} \cdot \boldsymbol{a}=\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)=1$
M1A1
$A G$
[4 marks]

Question 13 continued

(c) METHOD 1
$\mathrm{P}=(-2,4,1), \mathrm{Q}=(x, y, z)$
$\overrightarrow{\mathrm{PQ}}=\left(\begin{array}{c}x+2 \\ y-4 \\ z-1\end{array}\right)$
PQ is perpendicular to $3 x+y-z=2$
$\Rightarrow \overrightarrow{\mathrm{PQ}}$ is parallel to $3 \boldsymbol{i}+\boldsymbol{j}-\boldsymbol{k}$
R1
$\Rightarrow x+2=3 t ; y-4=t ; z-1=-t$ A1
$1-z=t \Rightarrow x+2=3-3 z \Rightarrow x+3 z=1$ A1
solving simultaneously $x+3 z=1 ; x-2 z=1$
$5 z=0 \Rightarrow z=0 ; x=1, y=5$
hence, $\mathrm{Q}=(1,5,0)$

METHOD 2

Line passing through PQ has equation

$$
\mathbf{r}=\begin{gathered}
-2 \\
4
\end{gathered}+t \begin{aligned}
& 3 \\
& 1
\end{aligned}
$$

Meets π_{3} when:
$-2+3 t-2(1-t)=1$
M1A1
$t=1$
Q has coordinates (1,5,0)
[6 marks]
Total [16 marks]
14. (a) $\left|\mathrm{e}^{\mathrm{i} \theta}\right|(=|\cos \theta+\mathrm{i} \sin \theta|)=\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}=1$

M1AG
[1 mark]
(b) $\quad z=\frac{1}{3} \mathrm{e}^{\mathrm{i} \theta}$

$$
|z|=\left|\frac{1}{3} \mathrm{e}^{\mathrm{i} \theta}\right|=\frac{1}{3}
$$

(c) $S_{\infty}=\frac{a}{1-r}=\frac{1}{1-\frac{1}{3} \mathrm{e}^{\mathrm{i} \theta}}$
(d) EITHER

$$
\begin{aligned}
S_{\infty} & =\frac{1}{1-\frac{1}{3} \cos \theta-\frac{1}{3} \mathrm{i} \sin \theta} \\
& =\frac{1-\frac{1}{3} \cos \theta+\frac{1}{3} \mathrm{i} \sin \theta}{\left(1-\frac{1}{3} \cos \theta-\frac{1}{3} \mathrm{i} \sin \theta\right)\left(1-\frac{1}{3} \cos \theta+\frac{1}{3} \mathrm{i} \sin \theta\right)} \\
& =\frac{1-\frac{1}{3} \cos \theta+\frac{1}{3} \mathrm{i} \sin \theta}{\left(1-\frac{1}{3} \cos \theta\right)^{2}+\frac{1}{9} \sin ^{2} \theta} \\
& =\frac{1-\frac{1}{3} \cos \theta+\frac{1}{3} \mathrm{i} \sin \theta}{1-\frac{2}{3} \cos \theta+\frac{1}{9}}
\end{aligned}
$$

A1

M1A1
continued ...

Question 14 continued

OR

$$
\begin{aligned}
S_{\infty} & =\frac{1}{1-\frac{1}{3} \mathrm{e}^{\mathrm{i} \theta}} \\
& =\frac{1-\frac{1}{3} \mathrm{e}^{-\mathrm{i} \theta}}{\left(1-\frac{1}{3} \mathrm{e}^{\mathrm{i} \theta}\right)\left(1-\frac{1}{3} \mathrm{e}^{-\mathrm{i} \theta}\right)} \\
& =\frac{1-\frac{1}{3} \mathrm{e}^{-\mathrm{i} \theta}}{1-\frac{1}{3}\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)+\frac{1}{9}} \\
& =\frac{1-\frac{1}{3} \mathrm{e}^{-\mathrm{i} \theta}}{\frac{10}{9}-\frac{2}{3} \cos \theta} \\
& =\frac{1-\frac{1}{3}(\cos \theta-\mathrm{i} \sin \theta)}{\frac{10}{9}-\frac{2}{3} \cos \theta}
\end{aligned}
$$

taking imaginary parts on both sides

$$
\begin{aligned}
\frac{1}{3} \sin \theta+\frac{1}{9} \sin 2 \theta+\ldots & =\frac{\frac{1}{3} \sin \theta}{\frac{10}{9}-\frac{2}{3} \cos \theta} \\
& =\frac{\sin \theta}{\frac{10}{9}-\frac{2}{3} \cos \theta} \\
\Rightarrow \sin \theta+\frac{1}{3} \sin 2 \theta+\ldots & =\frac{9 \sin \theta}{10-6 \cos \theta}
\end{aligned}
$$

M1A1
[8 marks]
marks

[^0]: Note: Award M0M0A0 if candidates just show that $\mathrm{D}(-1,4,5)$ satisfies $A B=A D$;
 Award M1M1A0 if candidates also show that D is of the form $(4-\lambda,-1+\lambda, \lambda)$

