Markscheme

November 2019

Calculus

Higher level

Paper 3

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http://www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/ contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\mathbf{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread
If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) attempt to substitute $x=3$ in both parts of f

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} f(x)\left(=\frac{3-3}{3-5}\right)=0 \\
& \lim _{x \rightarrow 3^{+}} f(x)(=\ln (3-2))=0
\end{aligned}
$$

(since $\lim _{x \rightarrow 3^{-}} f(x)=0=\lim _{x \rightarrow 3^{+}} f(x)$), f is continuous at $x=3$
(b) METHOD 1

$$
\begin{aligned}
& \text { for } x<3, f^{\prime}(x)=\frac{-2}{(x-5)^{2}} \\
& \Rightarrow \lim _{x \rightarrow 3^{-}} f^{\prime}(x)=-\frac{1}{2} \text { (or equivalent) }
\end{aligned}
$$

Note: Award $\boldsymbol{A O}$ for $f^{\prime}(3)=-\frac{1}{2}$.

$$
\text { for } x>3, f^{\prime}(x)=\frac{1}{x-2}
$$

Note: Condone $x \geq 3$.

$$
\Rightarrow \lim _{x \rightarrow 3^{+}} f^{\prime}(x)=1 \text { (or equivalent) }
$$

Note: Award $\mathbf{A O}$ for $f^{\prime}(3)=1$.
(since $-\frac{1}{2} \neq 1$), f is not differentiable at $x=3$

METHOD 2

$\lim _{h \rightarrow 0^{-}} \frac{f(3+h)-f(3)}{h}$
$=\lim _{h \rightarrow 0^{-}} \frac{\frac{h}{h-2}-0}{h}=\lim _{h \rightarrow 0^{-}} \frac{1}{h-2}$
$=-\frac{1}{2}$
$\lim _{h \rightarrow 0^{+}} \frac{f(3+h)-f(3)}{h}$
$=\lim _{h \rightarrow 0^{+}} \frac{\ln (1+h)}{h}=\lim _{h \rightarrow 0^{+}} \frac{1}{1+h}$ (by L'Hôpital)
$=1$
(since $-\frac{1}{2} \neq 1$), f is not differentiable at $x=3$
2. (a) METHOD 1
attempt to use limit comparison test and choosing an appropriate b_{n}
let $a_{n}=\frac{3 n}{2 n^{2}+5}$ and $b_{n}=\frac{1}{n}$
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{3 n}{2 n^{2}+5}}{\frac{1}{n}}$
$=\lim _{n \rightarrow \infty} \frac{3}{2+\frac{5}{n^{2}}}$
$=\frac{3}{2}(>0)$
since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, $\sum_{n=1}^{\infty} \frac{3 n}{2 n^{2}+5}$ also diverges (by the limit comparison test)
NOTE: Do not award R1 if candidates omit sigma.

METHOD 2

attempt to find $\int_{1}^{\infty} \frac{3 x}{2 x^{2}+5} d x$
$=\lim _{R \rightarrow \infty} \int_{1}^{R} \frac{3 x}{2 x^{2}+5} \mathrm{~d} x$
$=\lim _{R \rightarrow \infty}\left[\frac{3}{4} \ln \left(2 x^{2}+5\right)\right]_{1}^{R}$
NOTE: Condone use of ∞ as the upper limit.
$=\lim _{R \rightarrow \infty} \frac{3}{4} \ln \left(2 R^{2}+5\right)-\frac{3}{4} \ln 7$
$=\infty \quad$ (accept limit DNE)
since $\int_{1}^{\infty} \frac{3 x}{2 x^{2}+5} \mathrm{~d} x$ diverges, $\sum_{n=1}^{\infty} \frac{3 n}{2 n^{2}+5}$ also diverges (by the integral test.)

Question 2 continued

METHOD 3

attempt to use comparison test and choosing an appropriate b_{n}

EITHER

for $n>2$ A1
$\frac{3 n}{2 n^{2}+5}>\frac{1}{n}$
OR

$$
\begin{equation*}
\text { for } n \geq 1 \tag{A1}
\end{equation*}
$$

$$
\frac{3 n}{2 n^{2}+5}>\frac{1}{3 n}
$$

THEN

since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, $\sum_{n=1}^{\infty} \frac{3 n}{2 n^{2}+5}$ also diverges (by the comparison test.) $\boldsymbol{R 1}$
Note: In both cases accept valid alternative inequalities.
Do not award R1 if candidates omit sigma.
(b) attempt to use ratio test
$\frac{a_{n+1}}{a_{n}}=\frac{(2 n+2)!}{3^{n+1}((n+1)!)^{2}} \times \frac{3^{n}(n!)^{2}}{(2 n)!}$
attempt to simplify factorials
$\frac{a_{n+1}}{a_{n}}=\frac{(2 n+2)(2 n+1)}{3(n+1)^{2}} \quad\left(=\frac{4 n^{2}+6 n+2}{3 n^{2}+6 n+3}\right)$
$\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\left(2+\frac{2}{n}\right)\left(2+\frac{1}{n}\right)}{3\left(1+\frac{1}{n}\right)^{2}}$
$=\frac{4}{3}$
since $\frac{4}{3}>1, \sum_{n=1}^{\infty} \frac{(2 n)!}{3^{n}(n!)^{2}}$ diverges (by the ratio test)
3. (a) $f(x)=\arcsin (2 x)$

$$
f^{\prime}(x)=\frac{2}{\sqrt{1-4 x^{2}}}
$$

Note: Award M1AO for $f^{\prime}(x)=\frac{1}{\sqrt{1-4 x^{2}}}$.

$$
f^{\prime \prime}(x)=\frac{8 x}{\left(1-4 x^{2}\right)^{\frac{3}{2}}}
$$

EITHER

$$
f^{\prime \prime \prime}(x)=\frac{8\left(1-4 x^{2}\right)^{\frac{3}{2}}-8 x\left(\frac{3}{2}(-8 x)\left(1-4 x^{2}\right)^{\frac{1}{2}}\right)}{\left(1-4 x^{2}\right)^{3}}\left(=\frac{8\left(1-4 x^{2}\right)^{\frac{3}{2}}+96 x^{2}\left(1-4 x^{2}\right)^{\frac{1}{2}}}{\left(1-4 x^{2}\right)^{3}}\right)_{\boldsymbol{A} 1}
$$

OR

$f^{\prime \prime \prime}(x)=8\left(1-4 x^{2}\right)^{-\frac{3}{2}}+8 x\left(-\frac{3}{2}\left(1-4 x^{2}\right)^{-\frac{5}{2}}\right)(-8 x)\left(=8\left(1-4 x^{2}\right)^{-\frac{3}{2}}+96 x^{2}\left(1-4 x^{2}\right)^{-\frac{5}{2}}\right)_{\boldsymbol{A} 1}$

THEN

substitute $x=0$ into f or any of its derivatives
$f(0)=0, f^{\prime}(0)=2$ and $f^{\prime \prime}(0)=0$
$f^{\prime \prime \prime}(0)=8$
the Maclaurin series is

$$
f(x)=2 x+\frac{8 x^{3}}{6}+\ldots\left(=2 x+\frac{4 x^{3}}{3}+\ldots\right)
$$

(M1)A1

Question 3 continued
(b) METHOD 1

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\arcsin (2 x)-2 x}{(2 x)^{3}}=\lim _{x \rightarrow 0} \frac{2 x+\frac{4 x^{3}}{3}+\ldots-2 x}{8 x^{3}} \\
& =\lim _{x \rightarrow 0} \frac{\frac{4}{3}+\ldots \text { terms with } x}{8} \\
& =\frac{1}{6}
\end{aligned}
$$

Note: Condone the omission of $+\ldots$ in their working.

METHOD 2

$\lim _{x \rightarrow 0} \frac{\arcsin (2 x)-2 x}{(2 x)^{3}}=\frac{0}{0}$ indeterminate form, using L'Hôpital's rule
$=\lim _{x \rightarrow 0} \frac{\frac{2}{\sqrt{1-4 x^{2}}}-2}{24 x^{2}}$
$=\frac{0}{0}$ indeterminate form, using L'Hôpital's rule again

$$
=\lim _{x \rightarrow 0} \frac{\frac{8 x}{\left(1-4 x^{2}\right)^{\frac{3}{2}}}}{48 x}\left(=\lim _{x \rightarrow 0} \frac{1}{6\left(1-4 x^{2}\right)^{\frac{3}{2}}}\right)
$$

Note: Award M1 only if their previous expression is in indeterminate form.

$$
=\frac{1}{6}
$$

Note: Award FT for use of their derivatives from part (a).
4. (a)

x	y	$\frac{\mathrm{~d} y}{\mathrm{~d} x}$
1	2	6
1.1	2.6	7.22
1.2	3.32	8.89652
1.3	4.21	11.26
1.4	5.34	

$$
y(1.4) \approx 5.34
$$

Note: Award A1 for each correct y value.
For the intermediate y values, accept answers that are accurate to 2 significant figures.
The final y value must be accurate to 3 significant figures or better.
(b) attempt to solve $\frac{4 x^{2}+y^{2}-x y}{x^{2}}=4$
$\Rightarrow y^{2}-x y=0$
$y(y-x)=0$
$y=0$ or $y=x$

(c) (i) $\quad m^{2}-2 m+4=(m-1)^{2}+3 \quad(a=1, b=3)$

A1
continued...

Question 4 continued
(ii) recognition of homogeneous equation, let $y=v x$
the equation can be written as
$v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=4+v^{2}-v$
$x \frac{\mathrm{~d} v}{\mathrm{~d} x}=v^{2}-2 v+4$
$\int \frac{1}{v^{2}-2 v+4} \mathrm{~d} v=\int \frac{1}{x} \mathrm{~d} x$
Note: Award $\boldsymbol{M 1}$ for attempt to separate the variables.

$$
\begin{aligned}
& \int \frac{1}{(v-1)^{2}+3} \mathrm{~d} v=\int \frac{1}{x} \mathrm{~d} x \text { from part (c)(i) } \\
& \frac{1}{\sqrt{3}} \arctan \left(\frac{v-1}{\sqrt{3}}\right)=\ln x(+c) \\
& x=1, y=2 \Rightarrow v=2 \\
& \frac{1}{\sqrt{3}} \arctan \left(\frac{1}{\sqrt{3}}\right)=\ln 1+c
\end{aligned}
$$

Note: Award M1 for using initial conditions to find c.

$$
\begin{aligned}
& \Rightarrow c=\frac{\pi}{6 \sqrt{3}} \quad(=0.302) \\
& \arctan \left(\frac{v-1}{\sqrt{3}}\right)=\sqrt{3} \ln x+\frac{\pi}{6}
\end{aligned}
$$

$$
\text { substituting } v=\frac{y}{x}
$$

Note: This M1 may be awarded earlier.

$$
y=x\left(\sqrt{3} \tan \left(\sqrt{3} \ln x+\frac{\pi}{6}\right)+1\right)
$$

Question 4 continued
(iii)

curve drawn over correct domain
(iv) the sketch shows that f is concave up

Note: Accept f^{\prime} is increasing.
this means the tangent drawn using Euler's method will give an underestimate of the real value, so $f(1.4)>$ estimate in part (a)

Note: The R1 is dependent on the $\mathbf{A 1}$.

Markscheme

May 2019

Calculus

Higher level

Paper 3

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http:// www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.

$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\text {TM }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M} 1$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread
If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) $\frac{\mathrm{d} x}{\mathrm{~d} t}=0.056 x-0.035 x$

A1
$\frac{\mathrm{d} x}{\mathrm{~d} t}=0.021 x$
AG
[1 mark]
(b) METHOD 1
$\frac{\mathrm{d} x}{\mathrm{~d} t}=0.021 x$
attempt to separate variables
$\int \frac{1}{x} \mathrm{~d} x=\int 0.021 \mathrm{~d} t \quad$ A1
$\ln x=0.021 t(+c)$

EITHER

$x=A \mathrm{e}^{0.021 t}$
$\Rightarrow 2 A=A \mathrm{e}^{0.021 t}$
Note: This $\boldsymbol{A 1}$ is independent of the following marks.

OR

$$
\begin{aligned}
& t=0, x=x_{0} \Rightarrow c=\ln x_{0} \\
& \Rightarrow \ln 2 x_{0}=0.021 t+\ln x_{0}
\end{aligned}
$$

Note: This $\mathbf{A 1}$ is independent of the following marks.

THEN

$$
\Rightarrow \ln 2=0.021 t
$$

$$
\Rightarrow t=33 \text { years }
$$

Note: If a candidate writes $t=33.007$, so $t=34$ then award the final $\boldsymbol{A 1}$.
continued...

Question 1 continued

METHOD 2

$\frac{\mathrm{d} x}{\mathrm{~d} t}=0.021 x$
attempt to separate variables
$\int_{A}^{2 A} \frac{1}{x} \mathrm{~d} x=\int_{0}^{t} 0.021 \mathrm{~d} u$
Note: Award A1 for correct integrals and A1 for correct limits seen anywhere. Do not penalize use of t in place of u.
$[\ln x]_{A}^{2 A}=[0.021 u]_{0}^{t}$
$\Rightarrow \ln 2=0.021 t$
$\Rightarrow t=33$
2. (a) $S=1-x^{2}+x^{4}-x^{6}+\ldots$
recognition of GP $u_{1}=1, r=-x^{2}$
M1
$S_{\infty}=\frac{1}{1+x^{2}}$
AG

Note: Accept a correct algebraic method such as

$$
\left(1+x^{2}\right)\left(1-x^{2}+x^{4}-x^{6}+\ldots\right)=1+x^{2}-x^{2}-x^{4}+x^{4}+\ldots=1 .
$$

Note: Accept finding the Maclaurin series for $\frac{1}{\left(1+x^{2}\right)}$ only if the first four derivatives and their values at $x=0$ are shown.

Note: Accept a correct argument based on using the Maclaurin series for $\arctan x$.
(b) $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\ldots$
attempt to substitute $2 x$

$$
f(x)=\frac{1}{1+4 x^{2}}=1-4 x^{2}+16 x^{4}-64 x^{6}+\ldots
$$

Note: Accept use of a GP with $r=-4 x^{2}$.

Question 2 continued
(c) EITHER
$\int \frac{1}{1+4 x^{2}} \mathrm{~d} x=\frac{1}{2} \arctan 2 x(+c)$

> M1A1

OR
$\frac{\mathrm{d}}{\mathrm{d} x}(\arctan 2 x)=\frac{2}{1+4 x^{2}}$
THEN

$$
\begin{aligned}
& \frac{1}{2} \arctan 2 x(+c)=\int\left(1-4 x^{2}+16 x^{4}-64 x^{6}+\ldots\right) \mathrm{d} x \\
& =x-\frac{4 x^{3}}{3}+\frac{16 x^{5}}{5}-\frac{64 x^{7}}{7}+\ldots
\end{aligned}
$$

when $x=0 \arctan 2 x=0 \Rightarrow c=0$
$(\arctan 2 x)=2 x-\frac{8 x^{3}}{3}+\frac{32 x^{5}}{5}-\frac{128 x^{7}}{7}$
Note: No accuracy marks should be lost due to absence of c.
3. (a) attempt to use the comparison test with any convergent series

$$
\begin{equation*}
\frac{8^{n}}{n 3^{2 n+1}}<\frac{8^{n}}{3^{2 n}} \tag{A1}
\end{equation*}
$$

Note: Award $\boldsymbol{A O}$ for comparing series, eg, $\sum_{n=1}^{\infty} \frac{8^{n}}{n 3^{2 n+1}}<\sum_{n=1}^{\infty} \frac{8^{n}}{2^{2 n}}$. However, subsequent marks may still be awarded.

$$
<\left(\frac{8}{9}\right)^{n}
$$

Note: Award A1 for recognition of a geometric series with $r=\frac{8}{9}$.

$$
\sum_{n=1}^{\infty}\left(\frac{8}{9}\right)^{n} \text { converges (as it is a geometric series with common ratio }|r|<1 \text {) }
$$

Note: Award $\boldsymbol{R O}$ for a statement such as " $\left(\frac{8}{9}\right)^{n}$ converges".
series converges by comparison test
AG
Note: Award a maximum of MOAOAOR1, if the limit comparison test is used instead of the comparison test.
(b) attempt to use the ratio test
$\frac{a_{n+1}}{a_{n}}=\frac{(n+1) 8^{n+1}}{3^{2 n+3}} \times \frac{3^{2 n+1}}{n 8^{n}}$
$=\frac{8(n+1)}{9 n}\left(=\frac{8}{9}\left(1+\frac{1}{n}\right)\right)$
$\rightarrow \frac{8}{9}($ as $n \rightarrow \infty)$
since $\frac{8}{9}<1$ series converges (by the ratio test)
Note: Award R1 for comparing their limit to 1 and stating a consistent conclusion.
Award $R 0$ if their limit equals 1 .
4. $\lim _{x \rightarrow 0}\left(\frac{\tan 3 x-3 \tan x}{\sin 3 x-3 \sin x}\right)$
$\lim _{x \rightarrow 0}\left(\frac{3 \sec ^{2} 3 x-3 \sec ^{2} x}{3 \cos 3 x-3 \cos x}\right) \quad\left(=\lim _{x \rightarrow 0}\left(\frac{\sec ^{2} 3 x-\sec ^{2} x}{\cos 3 x-\cos x}\right)\right)$
M1A1A1

Note: Award $\boldsymbol{M 1}$ for attempt at differentiation using l'Hopital's rule, $\boldsymbol{A 1}$ for numerator, A1 for denominator.

METHOD 1

using l'Hopital's rule again
$=\lim _{x \rightarrow 0}\left(\frac{18 \sec ^{2} 3 x \tan 3 x-6 \sec ^{2} x \tan x}{-9 \sin 3 x+3 \sin x}\right)\left(=\lim _{x \rightarrow 0}\left(\frac{6 \sec ^{2} 3 x \tan 3 x-2 \sec ^{2} x \tan x}{-3 \sin 3 x+\sin x}\right)\right)$

EITHER

$=\lim _{x \rightarrow 0}\left(\frac{108 \sec ^{2} 3 x \tan ^{2} 3 x+54 \sec ^{4} 3 x-12 \sec ^{2} x \tan ^{2} x-6 \sec ^{4} x}{-27 \cos 3 x+3 \cos x}\right)$
Note: Not all terms in numerator need to be written in final fraction. Award A1 for $54 \sec ^{4} 3 x+\ldots-6 \sec ^{4} x-\ldots$. However, if the terms are written, they must be correct to award A1.
attempt to substitute $x=0$
$=\frac{48}{-24}$
OR
$\left.\frac{\mathrm{d}}{\mathrm{d} x}\left(18 \sec ^{2} 3 x \tan 3 x-6 \sec ^{2} x \tan x\right)\right|_{x=0}=48$
(M1)A1
$\left.\frac{\mathrm{d}}{\mathrm{d} x}(-9 \sin 3 x+3 \sin x)\right|_{x=0}=-24$
THEN
$\left(\lim _{x \rightarrow 0}\left(\frac{\tan 3 x-3 \tan x}{\sin 3 x-3 \sin x}\right)\right)=-2$

Question 4 continued

METHOD 2

$\left.\begin{array}{lr}=\lim _{x \rightarrow 0}\left(\frac{3}{\frac{\cos ^{2} 3 x}{}-\frac{3}{\cos ^{2} x}} 3 \cos 3 x-3 \cos x\right.\end{array}\right) \quad$ M1
5. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}-x^{2}}{2 x y}$

$$
\text { let } y=v x \quad \text { M1 }
$$

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x} \tag{A1}
\end{equation*}
$$

$v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{v^{2} x^{2}-x^{2}}{2 v x^{2}}$
$v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{v^{2}-1}{2 v} \quad\left(=\frac{v}{2}-\frac{1}{2 v}\right)$
Note: Or equivalent attempt at simplification.

$$
\begin{aligned}
& x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{-v^{2}-1}{2 v} \quad\left(=-\frac{v}{2}-\frac{1}{2 v}\right) \\
& \frac{2 v}{1+v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\frac{1}{x} \\
& \int \frac{2 v}{1+v^{2}} \mathrm{~d} v=\int-\frac{1}{x} \mathrm{~d} x \\
& \ln \left(1+v^{2}\right)=-\ln x+\ln c
\end{aligned}
$$

Note: Award A1 for LHS and A1 for RHS and a constant.

$$
\ln \left(1+\left(\frac{y}{x}\right)^{2}\right)=-\ln x+\ln c
$$

Note: Award M1 for substituting $v=\frac{y}{x}$. May be seen at a later stage.

$$
1+\left(\frac{y}{x}\right)^{2}=\frac{c}{x}
$$

Note: Award A1 for any correct equivalent equation without logarithms.

$$
x^{2}+y^{2}=c x
$$

Question 5 continued
(b) METHOD 1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}-x^{2}}{2 x y}$
(for horizontal tangents) $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
$\left(\Rightarrow y^{2}=x^{2}\right) \Rightarrow y= \pm x$

EITHER

using $x^{2}+y^{2}=c x \Rightarrow 2 x^{2}=c x \quad$ M1
$2 x^{2}-c x=0 \Rightarrow x=\frac{c}{2} \quad$ A1
Note: Award M1A1 for $2 y^{2}= \pm c y$.

OR

using implicit differentiation of $x^{2}+y^{2}=c x$
$2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=c$
Note: Accept differentiation of $y=\sqrt{c x-x^{2}}$.
$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow x=\frac{c}{2}$

THEN

tangents at $y=\frac{c}{2}, y=-\frac{c}{2}$
hence there are two tangents

METHOD 2

$$
\begin{aligned}
& x^{2}+y^{2}=c x \\
& \left(x-\frac{c}{2}\right)^{2}+y^{2}=\frac{c^{2}}{4}
\end{aligned}
$$

this is a circle radius $\frac{c}{2}$ centre $\left(\frac{c}{2}, 0\right)$
hence there are two tangents
tangents at $y=\frac{c}{2}, y=-\frac{c}{2}$

Markscheme

November 2018

Calculus

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2018". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp A0 by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\text {TM }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

3 N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread
If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) compare with $\sum_{n=1}^{\infty} \frac{1}{n}$

Note: Accept comparison with $\sum_{n=1}^{\infty} \frac{1}{3 n}$ or similar.
$\lim _{n \rightarrow \infty}\left(\frac{2 n+1}{3 n^{2}} \div \frac{1}{n}\right)$
$=\lim _{n \rightarrow \infty} \frac{2 n^{2}+n}{3 n^{2}}$
$=\frac{2}{3}$
$\frac{2}{3}$ (is finite and) not equal to 0 (so both series do the same)
$\sum_{n=1}^{\infty} \frac{1}{n}$ diverges
so $\sum_{n=1}^{\infty} \frac{2 n+1}{3 n^{2}}$ diverges A1

Note: Award R0M1A0R1A0 if candidates apply compare with a convergent series; award the last $\boldsymbol{R 1}$ only if the reason is consistent with the limit value.
(b) $\quad u_{n}=\frac{n^{2}}{n!}(x-1)^{n} \Rightarrow u_{n+1}=\frac{(n+1)^{2}}{(n+1)!}(x-1)^{n+1}$

$$
\left|\frac{u_{n+1}}{u_{n}}\right|=\frac{(n+1)^{2}}{(n+1)!} \frac{n!}{n^{2}}|x-1|=\frac{n+1}{n^{2}}|x-1|
$$

Note: Award A1 for any correct expression without the factorials that allows calculation of the limit below.

$$
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=0, \forall x \in \mathbb{R}
$$

as $\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|<1, \forall x \in \mathbb{R}$,
2. (a) $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{-3 x^{2}}+3 \cos 2 x-4}{3 x^{2}}=\left(\frac{0}{0}\right)$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{-6 x \mathrm{e}^{-3 x^{2}}-6 \sin 2 x}{6 x}=\left(\frac{0}{0}\right) \\
& =\lim _{x \rightarrow 0} \frac{-6 \mathrm{e}^{-3 x^{2}}+36 x^{2} \mathrm{e}^{-3 x^{2}}-12 \cos 2 x}{6} \\
& =-3
\end{aligned}
$$

M1A1A1

A1
A1
[5 marks]
(b) $\lim _{x \rightarrow 0}\left(\frac{\int_{0}^{x}\left(\mathrm{e}^{-3 t^{2}}+3 \cos 2 t-4\right) \mathrm{d} t}{\int_{0}^{x} 3 t^{2} \mathrm{~d} t}\right)$ is of the form $\frac{0}{0}$
applying l'Hôpital's rule
$=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{-3 x^{2}}+3 \cos 2 x-4}{3 x^{2}}$
$=-3$
A1
[3 marks]
Total [8 marks]
3. (a) METHOD 1
attempt at differentiation
M1

$$
2(x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}+(x+2)^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=(x+1) \frac{\mathrm{d} y}{\mathrm{~d} x}+y
$$

Note: Award A1 for LHS, A1 for RHS.

$$
\begin{aligned}
& 2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2(x+2) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2(x+2) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+(x+2)^{2} \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=(x+1) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{\mathrm{d} y}{\mathrm{~d} x} \\
& 4(x+2) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+(x+2)^{2} \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=(x+1) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \\
& (x+2)^{2} \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=((x+1)-4(x+2)) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \\
& \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=-\frac{3 x+7}{(x+2)^{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}
\end{aligned}
$$

Question 3 continued

METHOD 2

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y(x+1)}{(x+2)^{2}} \\
& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{(x+2)^{2}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}(x+1)+y\right)-y(x+1) \times 2(x+2)}{(x+2)^{4}} \\
& =\frac{y\left((x+1)^{2}+(x+2)^{2}-2(x+1)(x+2)\right)}{(x+2)^{4}} \\
& =\frac{y((x+2)-(x+1))^{2}}{(x+2)^{4}} \\
& \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{y^{2}}{(x+2)^{4}}\left(\mathrm{or} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1}{(x+2)^{2}(x+1)} \frac{\mathrm{d} y}{\mathrm{~d} x}\right) \\
& \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=\frac{(x+2)^{4} \frac{\mathrm{~d} y}{\mathrm{~d} x}-y \times 4(x+2)^{3}}{(x+2)^{8}} \\
& =\frac{(x+2)^{4} \frac{(x+1) y}{(x+2)^{2}}-4 y(x+2)^{3}}{(x+2)^{8}} \\
& =\frac{1}{y} \\
& =\frac{x+1}{(x+2)^{4}} \times\left(\frac{x}{(x+2)^{2}}-\frac{4}{x+2}\right) \\
& =\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\left(\frac{x+1}{(x+2)^{2}}-\frac{4(x+2)}{(x+2)^{2}}\right) \\
& \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=-\frac{3 x+7}{(x+2)^{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}
\end{aligned}
$$

(b) (i) $\quad y(1)=2 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{4}{9}(=0.4444 \ldots)$

$$
\begin{align*}
& (x+2)^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{\mathrm{d} y}{\mathrm{~d} x}(x+3)+y \tag{M1}\\
& \left.\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right|_{(1,2)}=\frac{2}{81}(=0.02469 \ldots) \tag{A1}\\
& y(x)=y(1)+y^{\prime}(1)(x-1)+y^{\prime \prime}(1) \frac{(x-1)^{2}}{2} \tag{M1}\\
& =2+\frac{4}{9}(x-1)+\frac{1}{81}(x-1)^{2} \\
& \left(=2+0.444(x-1)+0.0123(x-1)^{2}\right)
\end{align*}
$$

Note: Allow coefficients rounded to two correct significant figures.

Question 3 continued
(ii) $\left.\quad \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}\right|_{(1,2)}=-\frac{20}{729}(=-0.02743 \ldots)$

$$
\begin{aligned}
& y(x)=y(1)+y^{\prime}(1)(x-1)+y^{\prime \prime}(1) \frac{(x-1)^{2}}{2}+y^{\prime \prime \prime}(1) \frac{(x-1)^{3}}{6} \\
& =2+\frac{4}{9}(x-1)+\frac{1}{81}(x-1)^{2}-\frac{10}{2187}(x-1)^{3} \\
& \left(=2+0.444(x-1)+0.0123(x-1)^{2}-0.00457(x-1)^{3}\right)
\end{aligned}
$$

(c) difference is $\frac{10}{2187}(0.05)^{3}\left(=5.72 \times 10^{-7}\right)$

(M1)A1

Note: Accept any answer that rounds to 5.7×10^{-7}. Accept $\pm 5.72 \times 10^{-7}$.
Note: Allow FT only if the answer is obtained from the degree 3 term of the polynomial in b(ii)
$x_{n+1}=x_{n}+0.25 ; y_{n+1}=y_{n}+0.25 \times\left(1+\frac{y_{n}}{x_{n}}\right)$

x	y	$\frac{\mathrm{~d} y}{\mathrm{~d} x}$
1.00	1.00000	2.00000
1.25	1.50000	2.20000
1.50	2.05000	2.36667
1.75	2.64167	2.50952
2.00	3.26905	

Note: Award $\boldsymbol{A 1}$ for correct x values, A1 for first three correct y values.
$y=3.3$

A1
[4 marks]
continued...

Question 4 continued
(b) METHOD 1
$I(x)=\mathrm{e}^{\int-\frac{1}{x} \mathrm{~d} x}$
$=\mathrm{e}^{-\ln x}$
$=\frac{1}{x}$
$\frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}-\frac{y}{x^{2}}=\frac{1}{x}$
$\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{y}{x}\right)=\frac{1}{x}$
$\frac{y}{x}=\ln |x|+C$
$y(1)=1 \Rightarrow C=1$
$y=x \ln |x|+x$

METHOD 2

$v=\frac{y}{x}$
$\frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}-\frac{1}{x^{2}} y$
$v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=1+v$
$\int 1 \mathrm{~d} v=\int \frac{1}{x} \mathrm{~d} x$
$v=\ln |x|+C$
$\frac{y}{x}=\ln |x|+C$
$y(1)=1 \Rightarrow C=1$
$y=x \ln |x|+x$
Note: Modulus sign need only be seen in the final answer.
(c) $y(2)=2 \ln 2+2=3.38629 \ldots$
percentage error $=\frac{3.38629 \ldots-3.3}{3.38629 \ldots} \times 100 \%$
(M1)(A1)
A1
continued...

Question 4 continued
(d) (i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=k \Rightarrow 1+\frac{y}{x}=k$

$$
\begin{equation*}
y=(k-1) x \tag{A1}
\end{equation*}
$$

(ii) gradient of isocline equals gradient of normal
$k-1=-\frac{1}{k}$ or $k(k-1)=-1$
$k^{2}-k+1=0$
A1
$\Delta=1-4<0$ R1
\therefore no solution
Note: Accept alternative reasons for no solutions.

Markscheme

May 2018

Calculus

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp AO by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\text {TM }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

$3 \quad N$ marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks
Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \mathbf{M} mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award A1 for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) METHOD 1

$$
\begin{align*}
& \ln (n+2)<n+2 \tag{A1}\\
& \Rightarrow \frac{1}{\ln (n+2)}>\frac{1}{n+2}(\text { for } n \geq 0)
\end{align*}
$$

Note: Award $\mathbf{A O}$ for statements such as $\sum_{n=0}^{\infty} \frac{1}{\ln (n+2)}>\sum_{n=0}^{\infty} \frac{1}{n+2}$.
However condone such a statement if the above $\boldsymbol{A 1}$ has already been awarded.
$\sum_{n=0}^{\infty} \frac{1}{n+2}$ (is a harmonic series which) diverges
Note: The R1 is independent of the A1s.
Award R0 for statements such as " $\frac{1}{n+2}$ diverges".
so $\sum_{n=0}^{\infty} \frac{1}{\ln (n+2)}$ diverges by the comparison test

METHOD 2

$\frac{1}{\ln n}>\frac{1}{n}($ for $n \geq 2)$
A1

Note: Award $\mathbf{A O}$ for statements such as $\sum_{n=2}^{\infty} \frac{1}{\ln n}>\sum_{n=2}^{\infty} \frac{1}{n}$.
However condone such a statement if the above $\boldsymbol{A 1}$ has already been awarded.
a correct statement linking n and $n+2$ eg,
$\sum_{n=0}^{\infty} \frac{1}{\ln (n+2)}=\sum_{n=2}^{\infty} \frac{1}{\ln n}$ or $\sum_{n=0}^{\infty} \frac{1}{n+2}=\sum_{n=2}^{\infty} \frac{1}{n}$
Note: Award AO for $\sum_{n=0}^{\infty} \frac{1}{n}$.
$\sum_{n=2}^{\infty} \frac{1}{n}$ (is a harmonic series which) diverges
(which implies that $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ diverges by the comparison test)
Note: The R1 is independent of the A1s.
Award $\boldsymbol{R O}$ for statements such as $\sum_{n=0}^{\infty} \frac{1}{n}$ diverges and " $\frac{1}{n}$ diverges".
Award A1A0R1 for arguments based on $\sum_{n=1}^{\infty} \frac{1}{n}$.
so $\sum_{n=0}^{\infty} \frac{1}{\ln (n+2)}$ diverges by the comparison test

Question 1 continued

(b) applying the ratio test $\lim _{n \rightarrow \infty}\left|\frac{(3 x)^{n+1}}{\ln (n+3)} \times \frac{\ln (n+2)}{(3 x)^{n}}\right|$
$=|3 x|$ (as $\left.\lim _{n \rightarrow \infty}\left|\frac{\ln (n+2)}{\ln (n+3)}\right|=1\right)$
Note: Condone the absence of limits and modulus signs.
Note: Award M1AO for $3 x^{n}$. Subsequent marks can be awarded.
series converges for $-\frac{1}{3}<x<\frac{1}{3}$
considering $x=-\frac{1}{3}$ and $x=\frac{1}{3}$
Note: Award M1 to candidates who consider one endpoint.
when $x=\frac{1}{3}$, series is $\sum_{n=0}^{\infty} \frac{1}{\ln (n+2)}$ which is divergent (from (a))
Note: Award this $\mathbf{A 1}$ if $\sum_{n=0}^{\infty} \frac{1}{\ln (n+2)}$ is not stated but reference to part (a) is.
when $x=-\frac{1}{3}$, series is $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\ln (n+2)}$
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\ln (n+2)}$ converges (conditionally) by the alternating series test
(strictly alternating, $\left|u_{n}\right|>\left|u_{n+1}\right|$ for $n \geq 0$ and $\lim _{n \rightarrow \infty}\left(u_{n}\right)=0$)
so the interval of convergence of S is $-\frac{1}{3} \leq x<\frac{1}{3}$
Note: The final $\boldsymbol{A 1}$ is dependent on previous $\boldsymbol{A 1 s}-i e$, considering correct series when $x=-\frac{1}{3}$ and $x=\frac{1}{3}$ and on the final $\boldsymbol{R 1}$. Award as above to candidates who firstly consider $x=-\frac{1}{3}$ and then state conditional convergence implies divergence at $x=\frac{1}{3}$.
2. considering continuity at $x=2$
$\lim _{x \rightarrow 2^{-}} f(x)=1$ and $\lim _{x \rightarrow 2^{+}} f(x)=4 a+2 b$
$4 a+2 b=1$
considering differentiability at $x=2$
$f^{\prime}(x)=\left\{\begin{array}{cc}-1 & x<2 \\ 2 a x+b & x \geq 2\end{array}\right.$
$\lim _{x \rightarrow 2^{-}} f^{\prime}(x)=-1$ and $\lim _{x \rightarrow 2^{+}} f^{\prime}(x)=4 a+b$
Note: The above $\boldsymbol{M 1}$ is for attempting to find the left and right limit of their derived piecewise function at $x=2$.
$4 a+b=-1$
$a=-\frac{3}{4}$ and $b=2$
3. (a) $\int_{4}^{\infty} \frac{1}{x^{3}} \mathrm{~d} x=\lim _{R \rightarrow \infty} \int_{4}^{R} \frac{1}{x^{3}} \mathrm{~d} x$

Note: The above A1 for using a limit can be awarded at any stage.
Condone the use of $\lim _{x \rightarrow \infty}$.
Do not award this mark to candidates who use ∞ as the upper limit throughout.

$$
\begin{aligned}
& =\lim _{R \rightarrow \infty}\left[-\frac{1}{2} x^{-2}\right]_{4}^{R}\left(=\left[-\frac{1}{2} x^{-2}\right]_{4}^{\infty}\right) \\
& =\lim _{R \rightarrow \infty}\left(-\frac{1}{2}\left(R^{-2}-4^{-2}\right)\right) \\
& =\frac{1}{32}
\end{aligned}
$$

Question 3 continued
(b)

A1 for the curve
A1 for rectangles starting at $x=4$
A1 for at least three upper rectangles
A1 for at least three lower rectangles
Note: Award A0A1 for two upper rectangles and two lower rectangles.
sum of areas of the lower rectangles < the area under the curve $<$ the sum of the areas of the upper rectangles so

$$
\sum_{n=5}^{\infty} \frac{1}{n^{3}}<\int_{4}^{\infty} \frac{1}{x^{3}} \mathrm{~d} x<\sum_{n=4}^{\infty} \frac{1}{n^{3}}
$$

(c) a lower bound is $\frac{1}{32}$

Note: Allow FT from part (a).
(d) METHOD 1
$\sum_{n=5}^{\infty} \frac{1}{n^{3}}<\frac{1}{32}$
$\frac{1}{64}+\sum_{n=5}^{\infty} \frac{1}{n^{3}}<\frac{1}{32}+\frac{1}{64}$
$\sum_{n=4}^{\infty} \frac{1}{n^{3}}<\frac{3}{64}$, an upper bound
Note: Allow FT from part (a).

Question 3 continued

METHOD 2

changing the lower limit in the inequality in part (b) gives
$\sum_{n=4}^{\infty} \frac{1}{n^{3}}<\int_{3}^{\infty} \frac{1}{x^{3}} \mathrm{~d} x\left(<\sum_{n=3}^{\infty} \frac{1}{n^{3}}\right)$
$\sum_{n=4}^{\infty} \frac{1}{n^{3}}<\lim _{R \rightarrow \infty}\left[-\frac{1}{2} x^{-2}\right]_{3}^{R}$
$\sum_{n=4}^{\infty} \frac{1}{n^{3}}<\frac{1}{18}$, an upper bound
Note: Condone candidates who do not use a limit.

Total [11 marks]

4. (a) $\quad f^{\prime}(x)=\frac{2 \arcsin (x)}{\sqrt{1-x^{2}}}$

M1A1

Note: Award M1 for an attempt at chain rule differentiation.
Award MOAO for $f^{\prime}(x)=2 \arcsin (x)$.

$$
f^{\prime}(0)=0
$$

AG

(b) differentiating gives $\left(1-x^{2}\right) f^{(3)}(x)-2 x f^{\prime \prime}(x)-f^{\prime}(x)-x f^{\prime \prime}(x)(=0) \quad$ M1A1 differentiating again gives $\left(1-x^{2}\right) f^{(4)}(x)-2 x f^{(3)}(x)-3 f^{\prime \prime}(x)-3 x f^{(3)}(x)-f^{\prime \prime}(x)(=0)$

M1A1
Note: Award $\mathbf{M 1}$ for an attempt at product rule differentiation of at least one product in each of the above two lines.
Do not penalise candidates who use poor notation.
$\left(1-x^{2}\right) f^{(4)}(x)-5 x f^{(3)}(x)-4 f^{\prime \prime}(x)=0$ AG

Question 4 continued

(c) attempting to find one of $f^{\prime \prime}(0), f^{(3)}(0)$ or $f^{(4)}(0)$ by substituting $x=0$ into relevant differential equation(s)

Note: Condone $f^{\prime \prime}(0)$ found by calculating $\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{2 \arcsin (x)}{\sqrt{1-x^{2}}}\right)$ at $x=0$.

$$
\begin{align*}
& \left(f(0)=0, f^{\prime}(0)=0\right) \\
& f^{\prime \prime}(0)=2 \text { and } f^{(4)}(0)-4 f^{\prime \prime}(0)=0 \Rightarrow f^{(4)}(0)=8 \\
& f^{(3)}(0)=0 \text { and so } \frac{2}{2!} x^{2}+\frac{8}{4!} x^{4} \tag{A1}
\end{align*}
$$

A1

Note: Only award the above A1, for correct first differentiation in part (b) leading to $f^{(3)}(0)=0$ stated or $f^{(3)}(0)=0$ seen from use of the general Maclaurin series. Special Case: Award (M1)A0A1 if $f^{(4)}(0)=8$ is stated without justification or found by working backwards from the general Maclaurin series.
so the Maclaurin series for $f(x)$ up to and including the term in x^{4} is $x^{2}+\frac{1}{3} x^{4}$
(d) substituting $x=\frac{1}{2}$ into $x^{2}+\frac{1}{3} x^{4}$
the series approximation gives a value of $\frac{13}{48}$
so $\pi^{2} \simeq \frac{13}{48} \times 36$
$\simeq 9.75\left(\simeq \frac{39}{4}\right)$
Note: Accept 9.76.
5. (a) METHOD 1

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{y}{x}=x^{p-1}+\frac{1}{x} \tag{M1}
\end{equation*}
$$

integrating factor $=\mathrm{e}^{\int-\frac{1}{x} d x}$
$=\mathrm{e}^{-\ln x}$
$=\frac{1}{x}$
$\frac{1}{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}-\frac{y}{x^{2}}=x^{p-2}+\frac{1}{x^{2}}$
(M1)
$\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{y}{x}\right)=x^{p-2}+\frac{1}{x^{2}}$
$\frac{y}{x}=\frac{1}{p-1} x^{p-1}-\frac{1}{x}+C$
Note: Condone the absence of C.

$$
\begin{equation*}
y=\frac{1}{p-1} x^{p}+C x-1 \tag{M1}
\end{equation*}
$$

substituting $x=1, y=-1 \Rightarrow C=-\frac{1}{p-1}$
Note: Award M1 for attempting to find their value of C.

$$
y=\frac{1}{p-1}\left(x^{p}-x\right)-1
$$

A1
continued...

Question 5 continued

METHOD 2

put $y=v x$ so that $\frac{\mathrm{d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}$
substituting,

$$
\begin{equation*}
x\left(v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}\right)-v x=x^{p}+1 \tag{A1}
\end{equation*}
$$

$$
x \frac{\mathrm{~d} v}{\mathrm{~d} x}=x^{p-1}+\frac{1}{x}
$$

$$
\frac{\mathrm{d} v}{\mathrm{~d} x}=x^{p-2}+\frac{1}{x^{2}}
$$

$$
v=\frac{1}{p-1} x^{p-1}-\frac{1}{x}+C
$$

Note: Condone the absence of C.

$$
y=\frac{1}{p-1} x^{p}+C x-1
$$

$$
\text { substituting } x=1, y=-1 \Rightarrow C=-\frac{1}{p-1}
$$

Note: Award $\mathbf{M 1}$ for attempting to find their value of C.

$$
y=\frac{1}{p-1}\left(x^{p}-x\right)-1
$$

(b) (i) METHOD 1

$$
\begin{aligned}
& \text { find } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { and solve } \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \text { for } x \\
& \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{p-1}\left(p x^{p-1}-1\right) \\
& \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow p x^{p-1}-1=0 \\
& p x^{p-1}=1
\end{aligned}
$$

Note: Award a maximum of M1AO if a candidate's answer to part (a) is incorrect.

$$
x^{p-1}=\frac{1}{p}
$$

Question 5 continued

METHOD 2

substitute $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and their y into the differential equation and solve for x
$\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow-\left(\frac{x^{p}-x}{p-1}\right)+1=x^{p}+1$
$x^{p}-x=x^{p}-p x^{p}$ A1
$p x^{p-1}=1$
Note: Award a maximum of M1AO if a candidate's answer to part (a) is incorrect.

$$
x^{p-1}=\frac{1}{p}
$$

(ii) there are two solutions for x when p is odd (and $p>1$)
if $p-1$ is even there are two solutions (to $x^{p-1}=\frac{1}{p}$)
and if $p-1$ is odd there is only one solution (to $x^{p-1}=\frac{1}{p}$)
Note: Only award the R1 if both cases are considered.

Markscheme

November 2017

Calculus

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2017". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\text {TM }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

3 N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent A marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. considering continuity $\lim _{x \rightarrow 1^{-}}\left(x^{2}-2\right)=-1$
$a+b=-1$
considering differentiability $2 x=a$ when $x=1$
$\Rightarrow a=2$
$b=-3$
2. (a) METHOD 1
integrating factor $=\mathrm{e}^{\int \frac{x}{x^{2}+1} d x}$
$\int \frac{x}{x^{2}+1} \mathrm{~d} x=\frac{1}{2} \ln \left(x^{2}+1\right)$
Note: Award $\boldsymbol{M} \mathbf{1}$ for use of $u=x^{2}+1$ for example or $\int \frac{f^{\prime}(x)}{f(x)} \mathrm{d} x=\ln f(x)$.
integrating factor $=\mathrm{e}^{\frac{1}{2} \ln \left(x^{2}+1\right)}$
$=\mathrm{e}^{\ln \left(\sqrt{x^{2}+1}\right)}$
Note: Award A1 for $\mathrm{e}^{\ln \sqrt{u}}$ where $u=x^{2}+1$.
$=\sqrt{x^{2}+1}$

METHOD 2

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(y \sqrt{x^{2}+1}\right)=\frac{\mathrm{d} y}{\mathrm{~d} x} \sqrt{x^{2}+1}+\frac{x}{\sqrt{x^{2}+1}} y \\
& \sqrt{x^{2}+1}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{x}{x^{2}+1} y\right)
\end{aligned}
$$

Note: Award $\boldsymbol{M 1}$ for attempting to express in the form $\sqrt{\boldsymbol{x}^{2}+1} \times$ (LHS of de).
so $\sqrt{x^{2}+1}$ is an integrating factor for this differential equation

Question 2 continued
(b) $\quad \sqrt{x^{2}+1} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{x}{\sqrt{x^{2}+1}} y=x \sqrt{x^{2}+1}$ (or equivalent)

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(y \sqrt{x^{2}+1}\right)=x \sqrt{x^{2}+1} \\
& y \sqrt{x^{2}+1}=\int x \sqrt{x^{2}+1} \mathrm{~d} x\left(y=\frac{1}{\sqrt{x^{2}+1}} \int x \sqrt{x^{2}+1} \mathrm{~d} x\right) \\
& =\frac{1}{3}\left(x^{2}+1\right)^{\frac{3}{2}}+C
\end{aligned}
$$

Note: Award $\boldsymbol{M 1}$ for using an appropriate substitution.
Note: Condone the absence of C.

$$
\text { substituting } x=0, y=1 \Rightarrow C=\frac{2}{3}
$$

Note: Award M1 for attempting to find their value of C.

$$
\begin{equation*}
y=\frac{1}{3}\left(x^{2}+1\right)+\frac{2}{3 \sqrt{x^{2}+1}}\left(y=\frac{\left(x^{2}+1\right)^{\frac{3}{2}}+2}{3 \sqrt{x^{2}+1}}\right) \tag{A1}
\end{equation*}
$$

Total [10 marks]

3. (a) $\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}+2}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+2}=\left(\lim _{n \rightarrow \infty}\left(1-\frac{2}{n^{2}+2}\right)\right)$
$=1$
since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges (a p-series with $p=2$)
A1
by limit comparison test, $\sum_{n=1}^{\infty} \frac{1}{n^{2}+2}$ also converges
Notes: The R1 is independent of the $\mathbf{A 1}$.

Question 3 continued

(b) applying the ratio test $\lim _{n \rightarrow \infty}\left|\frac{(x-3)^{n+1}}{(n+1)^{2}+2} \times \frac{n^{2}+2}{(x-3)^{n}}\right|$
$=|x-3|\left(\right.$ as $\left.\lim _{n \rightarrow \infty} \frac{\left(n^{2}+2\right)}{(n+1)^{2}+2}=1\right)$
converges if $|x-3|<1$ (converges for $2<x<4$)
considering endpoints $x=2$ and $x=4$ M1
when $x=4$, series is $\sum_{n=1}^{\infty} \frac{1}{n^{2}+2}$, convergent from (a)
when $x=2$, series is $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+2}$

EITHER

$\sum_{n=1}^{\infty} \frac{1}{n^{2}+2}$ is convergent therefore $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+2}$ is (absolutely) convergent

OR

$\frac{1}{n^{2}+2}$ is a decreasing sequence and $\lim _{n \rightarrow \infty} \frac{1}{n^{2}+2}=0$ so series converges
by the alternating series test

THEN

interval of convergence is $2 \leq x \leq 4$
Note: The final A1 is dependent on previous A1s - ie, considering correct series when $x=2$ and $x=4$ and on the final $\boldsymbol{R 1}$.
4. (a) $\frac{g(5 \pi)-g(0)}{5 \pi-0}=-0.6809 \ldots(=\cos \sqrt{5 \pi})$ (gradient of chord)
(A1)

$$
g^{\prime}(x)=\cos (\sqrt{x})-\frac{\sqrt{x} \sin (\sqrt{x})}{2} \text { (or equivalent) } \quad \text { (M1)(A1) }
$$

Note: Award M1 to candidates who attempt to use the product and chain rules.
attempting to solve $\cos (\sqrt{c})-\frac{\sqrt{c} \sin (\sqrt{c})}{2}=-0.6809 \ldots$ for c
Notes: Award $\boldsymbol{M 1}$ to candidates who attempt to solve their $g^{\prime}(c)=$ gradient of chord.
Do not award $\boldsymbol{M 1}$ to candidates who just attempt to rearrange their equation.

$$
c=2.26,11.1
$$

A1A1
Note: Condone candidates working in terms of x.

Question 4 continued

(b)

correct graph: 2 turning points close to the endpoints, endpoints indicated and correct endpoint behaviour

Notes: Endpoint coordinates are not required. Candidates do not need to indicate axes scales.
correct chord
tangents drawn at their values of c which are approximately parallel to the chord

Notes: Award A1A0A1A0 to candidates who draw a correct graph, do not draw a chord but draw 2 tangents at their values of c. Condone the absence of their c-values stated on their sketch. However do not award marks for tangents if no c-values were found in (a).
5. (a) $f^{\prime}(x)=\frac{p \cos (p \arcsin x)}{\sqrt{1-x^{2}}}$
(M1)A1

Note: Award M1 for attempting to use the chain rule.

$$
f^{\prime}(0)=p
$$

AG
[2 marks]
(b) EITHER

$$
f^{(n+2)}(0)+\left(p^{2}-n^{2}\right) f^{(n)}(0)=0 \text { (or equivalent) }
$$

OR

for eg, $\left(1-x^{2}\right) f^{(n+2)}(x)=(2 n+1) x f^{(n+1)}(x)-\left(p^{2}-n^{2}\right) f^{(n)}(x)$
Note: Award A1 for eg, $\left(1-x^{2}\right) f^{(n+2)}(x)-(2 n+1) x f^{(n+1)}(x)=-\left(p^{2}-n^{2}\right) f^{(n)}(x)$.

THEN

$$
f^{(n+2)}(0)=\left(n^{2}-p^{2}\right) f^{(n)}(0)
$$

(c) considering f and its derivatives at $x=0$
$f(0)=0$ and $f^{\prime}(0)=p$ from (a)

$$
f^{\prime \prime}(0)=0, f^{(4)}(0)=0
$$

$$
f^{(3)}(0)=\left(1-p^{2}\right) f^{(1)}(0)=\left(1-p^{2}\right) p
$$

$$
f^{(5)}(0)=\left(9-p^{2}\right) f^{(3)}(0)=\left(9-p^{2}\right)\left(1-p^{2}\right) p
$$

Note: Only award the last $\boldsymbol{A} \mathbf{1}$ if either $f^{(3)}(0)=\left(1-p^{2}\right) f^{(1)}(0)$ and $f^{(5)}(0)=\left(9-p^{2}\right) f^{(3)}(0)$ have been stated or the general Maclaurin series has been stated and used.

$$
p x+\frac{p\left(1-p^{2}\right)}{3!} x^{3}+\frac{p\left(9-p^{2}\right)\left(1-p^{2}\right)}{5!} x^{5}
$$

Question 5 continued
(d) METHOD 1
$\lim _{x \rightarrow 0} \frac{\sin (p \arcsin x)}{x}=\lim _{x \rightarrow 0} \frac{p x+\frac{p\left(1-p^{2}\right)}{3!} x^{3}+\ldots}{x}$
$=p$
METHOD 2
by l'Hôpital's rule $\lim _{x \rightarrow 0} \frac{\sin (p \arcsin x)}{x}=\lim _{x \rightarrow 0} \frac{p \cos (p \arcsin x)}{\sqrt{1-x^{2}}}$
$=p$
(e) the coefficients of all even powers of x are zero

A1
the coefficient of x^{p} for (p odd) is non-zero (or equivalent eg,
the coefficients of all odd powers of x up to p are non-zero)
$f^{(p+2)}(0)=\left(p^{2}-p^{2}\right) f^{(p)}(0)=0$ and so the coefficient of x^{p+2} is zero
the coefficients of all odd powers of x greater than $p+2$ are zero (or equivalent)
so the Maclaurin series for $f(x)$ is a polynomial of degree p

Markscheme

May 2017

Calculus

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

R Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\top \mathrm{M}}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2017". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp AO by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\top M}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of N and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A} \mathbf{1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. attempt to use l'Hôpital's rule,
limit $=\lim _{x \rightarrow 0} \frac{2 \sin x \cos x}{\ln (1+x)+\frac{x}{1+x}}$ or $\frac{\sin 2 x}{\ln (1+x)+\frac{x}{1+x}}$
A1A1

Note: Award A1 for numerator A1 for denominator.
this gives $0 / 0$ so use the rule again
$=\lim _{x \rightarrow 0} \frac{2 \cos ^{2} x-2 \sin ^{2} x}{\frac{1}{1+x}+\frac{1+x-x}{(1+x)^{2}}}$ or $\frac{2 \cos 2 x}{\frac{2+x}{(1+x)^{2}}}$
A1A1

Note: Award A1 for numerator A1 for denominator.

$$
=1
$$

Note: This $\boldsymbol{A 1}$ is dependent on all previous marks being awarded, except when the first application of L'Hopital's does not lead to $0 / 0$, when it should be awarded for the correct limit of their derived function.
2. (a) (i) $\left(\sec ^{2} x=\right) a_{1}+3 a_{3} x^{2}+5 a_{5} x^{4}+\ldots$
(ii) $\sec ^{2} x=1+\left(a_{1} x+a_{3} x^{3}+a_{5} x^{5}+\ldots\right)^{2}$
$=1+a_{1}^{2} x^{2}+2 a_{1} a_{3} x^{4}+\ldots$
Note: Condone the presence of terms with powers greater than four.
(b) equating constant terms: $a_{1}=1$

A1
equating x^{2} terms: $3 a_{3}=a_{1}^{2}=1 \Rightarrow a_{3}=\frac{1}{3}$
A1
equating x^{4} terms: $5 a_{5}=2 a_{1} a_{3}=\frac{2}{3} \Rightarrow a_{5}=\frac{2}{15}$
3. consider $I=\int_{2}^{N} \frac{\mathrm{~d} x}{x \sqrt{\ln x}}$

Note: Do not award $\boldsymbol{A 1}$ if n is used as the variable or if lower limit equal to 1 , but some subsequent \boldsymbol{A} marks can still be awarded. Allow ∞ as upper limit.

$$
\text { let } y=\ln x
$$

$\mathrm{d} y=\frac{\mathrm{d} x}{x}$,

Note: Condone absence of limits, or wrong limits.

$$
=[2 \sqrt{y}]_{\ln 2}^{\ln N}
$$

Note: $\quad \boldsymbol{A 1}$ is for the correct integral, irrespective of the limits used. Accept correct use of integration by parts.

$$
=2 \sqrt{\ln N}-2 \sqrt{\ln 2}
$$

Note: $\quad \boldsymbol{M 1}$ is for substituting their limits into their integral and subtracting.
$\rightarrow \infty$ as $N \rightarrow \infty$
Notes: Allow "= ∞ ", "limit does not exist", "diverges" or equivalent. Do not award if wrong limits substituted into the integral but allow N or ∞ as an upper limit in place of $\ln N$.
(by the integral test) the series is divergent (because the integral is divergent)
Notes: Do not award this mark if ∞ used as upper limit throughout.
4. (a) $y=v x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}$

M1
the differential equation becomes
$v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=f(v)$
A1
$\int \frac{\mathrm{d} v}{f(v)-v}=\int \frac{\mathrm{d} x}{x}$
integrating, $\int \frac{\mathrm{d} v}{f(v)-v}=\ln x+$ Constant
(b) EITHER

$$
\begin{align*}
& f(v)=1+3 v+v^{2} \tag{A1}\\
& \left(\int \frac{\mathrm{~d} v}{f(v)-v}=\right) \int \frac{\mathrm{d} v}{1+3 v+v^{2}-v}=\ln x+C \\
& \int \frac{\mathrm{~d} v}{(1+v)^{2}}=(\ln x+C)
\end{align*}
$$

Note: A1 is for correct factorization.

$$
-\frac{1}{1+v}(=\ln x+C)
$$

OR

$$
\begin{align*}
& v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=1+3 v+v^{2} \\
& \int \frac{\mathrm{~d} v}{1+2 v+v^{2}}=\int \frac{1}{x} \mathrm{~d} x \\
& \int \frac{\mathrm{~d} v}{(1+v)^{2}}\left(=\int \frac{1}{x} \mathrm{~d} x\right) \tag{A1}
\end{align*}
$$

Note: A1 is for correct factorization.

$$
-\frac{1}{1+v}=\ln x(+C)
$$

A1A1
continued...

Question 4 continued

THEN

$$
\begin{align*}
& \text { substitute } y=1 \text { or } v=1 \text { when } x=1 \tag{M1}\\
& \text { therefore } C=-\frac{1}{2}
\end{align*}
$$

Note: This A1 can be awarded anywhere in their solution.
substituting for v,

$$
-\frac{1}{\left(1+\frac{y}{x}\right)}=\ln x-\frac{1}{2}
$$

Note: Award for correct substitution of $\frac{y}{x}$ into their expression.

$$
\begin{equation*}
1+\frac{y}{x}=\frac{1}{\frac{1}{2}-\ln x} \tag{A1}
\end{equation*}
$$

Note: Award for any rearrangement of a correct expression that has y in the numerator.

$$
\begin{aligned}
& y=x\left(\frac{1}{\left(\frac{1}{2}-\ln x\right)}-1\right) \text { (or equivalent) } \\
& \left(=x\left(\frac{1+2 \ln x}{1-2 \ln x}\right)\right)
\end{aligned}
$$

5. (a)

Note: Curve, both rectangles and correct x-values required.
area of rectangles $\frac{1}{r}$ and $\frac{1}{1+r}$
Note: Correct values on the y-axis are sufficient evidence for this mark if not otherwise indicated.
in the above diagram, the area below the curve between $x=r$ and $x=r+1$ is between the areas of the larger and smaller rectangle
or $\frac{1}{r+1}<\int_{r}^{r+1} \frac{\mathrm{~d} x}{x}<\frac{1}{r}$
integrating, $\int_{r}^{r+1} \frac{d x}{x}=[\ln x]_{r}^{r+1}(=\ln (r+1)-\ln (r))$
$\frac{1}{r+1}<\ln \left(\frac{r+1}{r}\right)<\frac{1}{r}$
(b) (i) summing the right-hand part of the above inequality from $r=1$ to $r=n$,

$$
\begin{aligned}
& \sum_{r=1}^{n} \frac{1}{r}>\sum_{r=1}^{n} \ln \left(\frac{r+1}{r}\right) \\
& =\ln \left(\frac{2}{1}\right)+\ln \left(\frac{3}{2}\right)+\ldots+\ln \left(\frac{n}{n-1}\right)+\ln \left(\frac{n+1}{n}\right)
\end{aligned}
$$

EITHER

$$
=\ln \left(\frac{2}{1} \times \frac{3}{2} \times \ldots \times \frac{n}{n-1} \times \frac{n+1}{n}\right)
$$

OR

$$
\begin{array}{ll}
\ln 2-\ln 1+\ln 3-\ln 2+\ldots+\ln (n+1)-\ln (n) & \boldsymbol{A 1} \\
=\ln (n+1) & \boldsymbol{A G}
\end{array}
$$

continued...

Question 5 continued

$$
\text { (ii) } \sum_{r=1}^{n} \frac{1}{r}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}<1+\ln \left(\frac{2}{1}\right)+\ln \left(\frac{3}{2}\right)+\ldots+\ln \left(\frac{n}{n-1}\right) .
$$

Note: $\quad \boldsymbol{M 1}$ is for using the correct inequality from (a), A1 for both sides beginning with $1, \boldsymbol{A 1}$ for completely correct expression.

Note: The 1 might be added after the sums have been calculated.

$$
=1+\ln n
$$

$$
A G
$$

(c) (i) from (b)(i) $U_{n}>\ln (1+n)-\ln n>0$

A1

(ii) $\quad U_{n+1}-U_{n}=\sum_{r=1}^{n+1} \frac{1}{r}-\ln (n+1)-\sum_{r=1}^{n} \frac{1}{r}+\ln n$

$$
=\frac{1}{n+1}-\ln \left(\frac{n+1}{n}\right)
$$

<0 (using the result proved in (a))
$U_{n+1}<U_{n}$
(d) it follows from the two results that $\left\{U_{n}\right\}$ cannot be divergent either in the sense of tending to $-\infty$ or oscillating therefore it must be convergent

R1
[1 mark]

Note: Accept the use of the result that a bounded (monotonically) decreasing sequence is convergent (allow "positive, decreasing sequence").

Markscheme

November 2016

Calculus

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to RM $^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2016". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\text {TM }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

3
 N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value ($e g \sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A} 1$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) METHOD 1
attempting to find an integrating factor
$\int \frac{2 x}{1+x^{2}} \mathrm{~d} x=\ln \left(1+x^{2}\right)$
(M1)A1
IF is $e^{\ln \left(1+x^{2}\right)}$
(M1)A1
$=1+x^{2}$

METHOD 2

multiply by the integrating factor
$\left(1+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=x^{2}\left(1+x^{2}\right)$
M1A1
left hand side is equal to the derivative of $\left(1+x^{2}\right) y$
(b) $\left(1+x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=\left(1+x^{2}\right) x^{2}$
$\frac{\mathrm{d}}{\mathrm{d} x}\left[\left(1+x^{2}\right) y\right]=x^{2}+x^{4}$
$\left(1+x^{2}\right) y=\left(\int x^{2}+x^{4} \mathrm{~d} x=\right) \frac{x^{3}}{3}+\frac{x^{5}}{5}(+c)$
$y=\frac{1}{1+x^{2}}\left(\frac{x^{3}}{3}+\frac{x^{5}}{5}+c\right)$
$x=0, y=2 \Rightarrow c=2$
M1A1
$y=\frac{1}{1+x^{2}}\left(\frac{x^{3}}{3}+\frac{x^{5}}{5}+2\right)$
2. (a) $f(x)=(x+1) \ln (1+x)-x$
$f^{\prime}(x)=\ln (1+x)+\frac{x+1}{1+x}-1(=\ln (1+x))$
$f(0)=0$
A1
$f^{\prime \prime}(x)=(1+x)^{-1}$
$f^{\prime \prime}(0)=1$
$f^{\prime \prime \prime}(0)=-1$
A1A1
$f^{\prime \prime \prime}(x)=-(1+x)^{-2}$
$f^{(4)}(0)=2$
A1
$f^{(4)}(x)=2(1+x)^{-3}$
$f^{(5)}(x)=-3 \times 2(1+x)^{-4}$
$f^{(5)}(0)=-3 \times 2$

M1A1A1

$f(x)=\frac{x^{2}}{2!}-\frac{1 x^{3}}{3!}+\frac{2 x^{4}}{4!}-\frac{6 x^{5}}{5!} \cdots$
$f(x)=\frac{x^{2}}{1 \times 2}-\frac{x^{3}}{2 \times 3}+\frac{x^{4}}{3 \times 4}-\frac{x^{5}}{4 \times 5} \ldots$
$f(x)=\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{12}-\frac{x^{5}}{20} \ldots$

Note: Allow follow through from the first error in a derivative (provided future derivatives also include the chain rule), no follow through after a second error in a derivative.
(b) $\quad f^{(n)}(0)=(-1)^{n}(n-2)$! So coefficient of $x^{n}=(-1)^{n} \frac{(n-2) \text { ! }}{n!}$

A1 coefficient of x^{n} is $(-1)^{n} \frac{1}{n(n-1)}$
(c) applying the ratio test to the series of absolute terms

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\frac{|x|^{n+1}}{(n+1) n}}{\frac{|x|^{n}}{n(n-1)}} \\
& =\lim _{n \rightarrow \infty}|x| \frac{(n-1)}{(n+1)}
\end{aligned}
$$

$=|x|$
so for convergence $|x|<1$, giving radius of convergence as 1
3. (a) $\lim _{x \rightarrow \infty}\left(\frac{\arcsin \left(\frac{1}{\sqrt{(x+1)}}\right)}{\frac{1}{\sqrt{x}}}\right)$ is of the form $\frac{0}{0}$

$$
\text { and so will equal the limit of } \frac{\frac{\frac{-1}{2}(x+1)^{-\frac{3}{2}}}{\sqrt{1-\left(\frac{1}{x+1}\right)}}}{\frac{-1}{2} x^{-\frac{3}{2}}}
$$

M1M1A1A1

Note: $\boldsymbol{M 1}$ for attempting differentiation of the top and bottom, M1A1 for derivative of top (only award M1 if chain rule is used), A1 for derivative of bottom.

$$
=\lim _{x \rightarrow \infty} \frac{\left(\frac{x}{(x+1)}\right)^{\frac{3}{2}}}{\sqrt{\frac{x}{x+1}}}=\lim _{x \rightarrow \infty}\left(\frac{x}{x+1}\right)
$$

Note: Accept any intermediate tidying up of correct derivative for the method mark.

$$
=1
$$

(b) (i) $a_{1}=\sqrt{2}, a_{2}=\sqrt{3}$

$$
a_{n}=\sqrt{n+1}
$$

(ii) $\quad \sin \theta_{n}=\frac{1}{a_{n}}=\frac{1}{\sqrt{n+1}}$

Note: Allow $\theta_{n}=\arcsin \left(\frac{1}{a_{n}}\right)$ if $a_{n}=\sqrt{n+1}$ in $\mathrm{b}(\mathrm{i})$.

$$
\text { so } \theta_{n}=\arcsin \frac{1}{\sqrt{(n+1)}}
$$

Question 3 continued
(c) for $\sum_{n=1}^{\infty} \arcsin \frac{1}{\sqrt{(n+1)}}$ apply the limit comparison test (since both series of positive terms)
with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
from (a) $\lim _{n \rightarrow \infty} \frac{\arcsin \frac{1}{\sqrt{(n+1)}}}{\frac{1}{\sqrt{n}}}=1$, so the two series either both converge or
both diverge
M1R1
$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges (as is a p-series with $p=\frac{1}{2}$)
hence $\sum_{n=1}^{\infty} \theta_{n}$ diverges
4. (a) there exists c in the open interval $] a, b[$ such that

A1

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Note: Open interval is required for the A1.

(b) (i) $\quad g(0)=f(h)-f(0)-h f^{\prime}(0)-\frac{h^{2}}{h^{2}}\left(f(h)-f(0)-h f^{\prime}(0)\right)$
$=0$
A1
(ii) $\quad g(h)=f(h)-f(h)-0-0$
$=0$
(iii) ($g(x)$ is a differentiable function since it is a combination of other differentiable functions f, f^{\prime} and polynomials.)
there exists c in the open interval $] 0, h[$ such that
$\frac{g(h)-g(0)}{h}=g^{\prime}(c)$
$\frac{g(h)-g(0)}{h}=0$
hence $g^{\prime}(c)=0$
(iv) $\quad g^{\prime}(x)=-f^{\prime}(x)+f^{\prime}(x)-(h-x) f^{\prime \prime}(x)+\frac{2(h-x)}{h^{2}}\left(f(h)-f(0)-h f^{\prime}(0)\right)$

Note: A1 for the second and third terms and $\boldsymbol{A 1}$ for the other terms (all terms must be seen).
$=-(h-x) f^{\prime \prime}(x)+\frac{2(h-x)}{h^{2}}\left(f(h)-f(0)-h f^{\prime}(0)\right)$
(v) putting $x=c$ and equating to zero
$-(h-c) f^{\prime \prime}(c)+\frac{2(h-c)}{h^{2}}\left(f(h)-f(0)-h f^{\prime}(0)\right)=g^{\prime}(c)=0$
(vi) $-f^{\prime \prime}(c)+\frac{2}{h^{2}}\left(f(h)-f(0)-h f^{\prime}(0)\right)=0$
since $h-c \neq 0$
$\frac{h^{2}}{2} f^{\prime \prime}(c)=f(h)-f(0)-h f^{\prime}(0)$
$f(h)=f(0)+h f^{\prime}(0)+\frac{h^{2}}{2} f^{\prime \prime}(c)$

Question 4 continued
(c) letting $f(x)=\cos (x)$

M1
$f^{\prime}(x)=-\sin (x) \quad f^{\prime \prime}(x)=-\cos (x)$
$\cos (h)=1+0-\frac{h^{2}}{2} \cos (c)$
$1-\cos (h)=\frac{h^{2}}{2} \cos (c)$
(A1)
since $\cos (c) \leq 1$ R1
$1-\cos (h) \leq \frac{h^{2}}{2}$ AG
[5 marks]

Note: Allow $f(x)=a \pm b \cos x$.

Markscheme

May 2016

Calculus

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.

N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2016". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).
Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A} 1$ for $(2 \cos (5 x-3))$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) attempt to use product rule
(M1)
$f^{\prime}(x)=\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x$
A1
$f^{\prime \prime}(x)=2 \mathrm{e}^{x} \cos x$ A1
$f^{\prime \prime}(x)=2 \mathrm{e}^{x} \cos x-2 \mathrm{e}^{x} \sin x$ A1
$f(0)=0, f^{\prime}(0)=1$
$f^{\prime \prime}(0)=2, f^{\prime \prime \prime}(0)=2$
(M1)
(M1)A1
[7 marks]
(b) METHOD 1
$\frac{\mathrm{e}^{x} \sin x-x-x^{2}}{x^{3}}=\frac{x+x^{2}+\frac{x^{3}}{3}+\ldots-x-x^{2}}{x^{3}}$

M1A1

$\rightarrow \frac{1}{3}$ as $x \rightarrow 0$
A1

METHOD 2

$\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x} \sin x-x-x^{2}}{x^{3}}=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x-1-2 x}{3 x^{2}}$
A1
$=\lim _{x \rightarrow 0} \frac{2 \mathrm{e}^{x} \cos x-2}{6 x}$
$=\lim _{x \rightarrow 0} \frac{2 \mathrm{e}^{x} \cos x-2 \mathrm{e}^{x} \sin x}{6}=\frac{1}{3}$

A1

A1
[3 marks]
continued...

Question 1 continued

(c) (i) attempt to find $4^{\text {th }}$ derivative from the $3^{\text {rd }}$ derivative obtained in (a)

M1
A1
$f^{\prime \prime \prime \prime}(x)=-4 \mathrm{e}^{x} \sin x$
Lagrange error term $=\frac{f^{(n+1)}(c) x^{n+1}}{(n+1)!}($ where c lies between 0 and $x)$
$=-\frac{4 \mathrm{e}^{c} \sin c \times 0.5^{4}}{4!}$
the maximum absolute value of this expression occurs when $c=0.5$
Note: This $\boldsymbol{A} 1$ is independent of previous \boldsymbol{M} marks.
therefore
upper bound $=\frac{4 \mathrm{e}^{0.5} \sin 0.5 \times 0.5^{4}}{4!}$
$=0.00823$
(ii) the approximation is greater than the actual value because the Lagrange error term is negative

Total [17 marks]

Note: Do not accept $\ln (2+\sin t)$.
(b) attempt to use chain rule
$\frac{\mathrm{d}}{\mathrm{d} x}\left(f\left(x^{2}\right)\right)=2 x f^{\prime}\left(x^{2}\right)$
$=2 x \ln \left(2+\sin \left(x^{2}\right)\right)$
[1 mark]

Question 2 continued
(c) $\int_{x}^{x^{2}} \ln (2+\sin t) \mathrm{d} t=\int_{0}^{x^{2}} \ln (2+\sin t) \mathrm{d} t-\int_{0}^{x} \ln (2+\sin t) \mathrm{d} t$
(M1)(A1)
$\frac{\mathrm{d}}{\mathrm{d} x}\left(\int_{x}^{x^{2}} \ln (2+\sin t) \mathrm{d} t\right)=2 x \ln \left(2+\sin \left(x^{2}\right)\right)-\ln (2+\sin x)$
A1
[3 marks]
Total [7 marks]
3. (a) $f^{\prime}(x)=\frac{1}{x}$
using the MVT $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ (where c lies between a and b)
$f^{\prime}(c)=\frac{\ln b-\ln a}{b-a}$
$\ln \frac{b}{a}=\ln b-\ln a$
$f^{\prime}(c)=\frac{\ln \frac{b}{a}}{b-a}$
since $f^{\prime}(x)$ is a decreasing function or $a<c<b \Rightarrow \frac{1}{b}<\frac{1}{c}<\frac{1}{a}$ R1 $f^{\prime}(b)<f^{\prime}(c)<f^{\prime}(a)$
$\frac{1}{b}<\frac{\ln \frac{b}{a}}{b-a}<\frac{1}{a}$
$\frac{b-a}{b}<\ln \frac{b}{a}<\frac{b-a}{a}$
(b) putting $b=1.2, a=1$, or equivalent

$$
\begin{aligned}
& \frac{1}{6}<\ln 1.2<\frac{1}{5} \\
& (m=6, n=5)
\end{aligned}
$$

4. (a) METHOD 1
$z=y^{2} \Rightarrow y=z^{1 / 2}$
$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 z^{1 / 2}} \frac{\mathrm{~d} z}{\mathrm{~d} x}$
M1A1

M1A1

AG

METHOD 2

$z=y^{2}$
$\frac{\mathrm{d} z}{\mathrm{~d} x}=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$
M1A1
$\frac{\mathrm{d} z}{\mathrm{~d} x}=2 x-2 x y^{2}$
M1A1
$\frac{\mathrm{d} z}{\mathrm{~d} x}+2 x z=2 x$
AG
[4 marks]
(b) METHOD 1
integrating factor $=\mathrm{e}^{\int 2 x d x}=\mathrm{e}^{x^{2}}$
(M1)A1
$\mathrm{e}^{x^{2}} \frac{\mathrm{~d} z}{\mathrm{~d} x}+2 x \mathrm{e}^{x^{2}} z=2 x \mathrm{e}^{x^{2}}$
$z \mathrm{e}^{x^{2}}=\int 2 x \mathrm{e}^{x^{2}} \mathrm{~d} x$
(M1)
$=\mathrm{e}^{x^{2}}+C$
A1
substitute $y=2$ therefore $z=4$ when $x=0$
$4=1+C$
$C=3$
the solution is $z=1+3 \mathrm{e}^{-x^{2}}$
Note: This line may be seen before determining the value of C.
so that $y=\sqrt{1+3 \mathrm{e}^{-x^{2}}}$A1
continued...

Question 4 continued

METHOD 2

$$
\frac{\mathrm{d} z}{\mathrm{~d} x}=2 x(1-z)
$$

$\int \frac{1}{1-z} \mathrm{~d} z=\int 2 x \mathrm{~d} x$
$-\ln (1-z)=x^{2}+C$
$1-z=e^{-x^{2}-c}$ (or $1-z=B e^{-x^{2}}$)
solving for z
$z=1+A e^{-x^{2}}$
$z=4$ when $x=0$
so $A=3$
the solution is $z=1+3 e^{-x^{2}}$
so $y=\sqrt{1+3 e^{-x^{2}}}$

A1

[9 marks]
Total [13 marks]
5. (a) as t moves through the intervals $[0, \pi],[\pi, 2 \pi],[2 \pi, 3 \pi],[3 \pi, 4 \pi]$, etc, the sign of $\sin t$, (and therefore the sign of the integral) alternates,,,,+-+- etc, so that the series is alternating

R1
Note: Award R1 only if it includes a clear reason that justifies that the sign of the integrand alternates between - and + and this pattern is valid for all the terms.
The change of signs can be justified by a labelled graph of $y=\sin (x)$ or $y=\frac{\sin x}{x}$ that shows the intervals $[0, \pi],[\pi, 2 \pi],[2 \pi, 3 \pi]$,

Question 5 continued
(b) (i) $\quad u_{n+1}=\int_{(n+1) \pi}^{(n+2) \pi} \frac{\sin t}{t} \mathrm{~d} t$
(M1)
put $T=t-\pi$ and $\mathrm{d} T=\mathrm{d} t$
the limits change to $n \pi,(n+1) \pi$
$\left|u_{n+1}\right|=\int_{n \pi}^{(n+1) \pi} \frac{|\sin (T+\pi)|}{T+\pi} \mathrm{d} T$ (or equivalent)
$|\sin (T+\pi)|=|\sin (T)|$ or $\sin (T+\pi)=-\sin (T)$
(M1)
$=\int_{n \pi}^{(n+1) \pi} \frac{|\sin T|}{T+\pi} \mathrm{d} T$
$<\int_{n \pi}^{(n+1) \pi} \frac{|\sin T|}{T} \mathrm{~d} T=\left|u_{n}\right|$
(ii) $\quad\left|u_{n}\right|=\int_{n \pi}^{(n+1) \pi} \frac{\sin t}{t} \mathrm{~d} t$
$<\int_{n \pi}^{(n+1) \pi} \frac{1}{t} \mathrm{~d} t$
$=[\ln t]_{n \pi}^{(n+1) \pi}$
$=\ln \left(\frac{n+1}{n}\right)$
$\rightarrow \ln 1=0$ as $n \rightarrow \infty$
from part (i) $\left|u_{n}\right|$ is a decreasing sequence and since $\lim _{n \rightarrow \infty}\left|u_{n}\right|=0$,
the series is convergent

Question 5 continued

(c) attempt to calculate the partial sums $\sum_{i=0}^{n-1} u_{i}=\int_{0}^{n \pi} \frac{\sin t}{t} \mathrm{~d} t$
the first partial sums are

n	$\sum_{i=0}^{n-1} u_{i}$
1	$1.85($ or $1.8519 \ldots$)
2	$1.42($ (r $1.4181 \ldots$)
3	1.67 (or $1.6747 \ldots$)
4	$1.49($ or $1.4921 \ldots$)
5	1.63 (or $1.6339 \ldots$)

two consecutive partial sums for $n \geq 4$
(eg $S_{4}=1.49$ and $S_{5}=1.63$ or $S_{100}=1.567 \ldots$ and $S_{101}=1.573 \ldots$)
Note: These answers must be given to a minimum of 3 significant figures.
the sum to infinity lies between any two consecutive partial sums, eg between 1.49 and 1.63
so that $S<1.65$
Note: Award A1A1R1 to candidates who calculate at least two partial sums for only odd values of n and state that the upper bound is less than these values.

Markscheme

November 2015

Calculus

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\mathrm{TM}}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2015". It is essential that you read this document before you start marking.
In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\text {TM }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR).
A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

- As this is an international examination, accept all alternative forms of notation
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) consider upper or lower limits

M1
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 1=1(=f(0)), \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(1-x)=1(=f(0))$
A1
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)$ so f is continuous $\quad \boldsymbol{A G}$
(b) $\lim _{h \rightarrow 0^{-}} \frac{1-1}{h}=0$

M1A1

A1
$\lim _{h \rightarrow 0^{+}} \frac{1-h-1}{h}=\lim _{h \rightarrow 0^{+}}(-1)=-1$
Note: Award M1 for an attempt to find limits in either case.

$$
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h} \neq \lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h} \text { so } f \text { is not differentiable }
$$

Note: Award M1A1A0 for correct differentiation of left and right sides, ONLY if limits then used to show that both functions have different limits
2. (a) $f^{\prime}(x)=\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x$

M1A1
$f^{\prime \prime}(x)=\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x-\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x=2 \mathrm{e}^{x} \cos x$
A1
$=2\left(\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x-\mathrm{e}^{x} \sin x\right)$
$=2\left(f^{\prime}(x)-f(x)\right)$
(b) $\quad f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=2(1-0)=2$

(M1)A1

Note: Award $\boldsymbol{M} 1$ for attempt to find $f(0), f^{\prime}(0)$ and $f^{\prime \prime}(0)$
$f^{\prime \prime \prime}(x)=2\left(f^{\prime \prime}(x)-f^{\prime}(x)\right)$
$f^{\prime \prime \prime}(0)=2(2-1)=2, f^{I V}(0)=2(2-2)=0, f^{V}(0)=2(0-2)=-4$
so $f(x)=x+\frac{2}{2!} x^{2}+\frac{2}{3!} x^{3}-\frac{4}{5!} x^{5}+\ldots$
$=x+x^{2}+\frac{1}{3} x^{3}-\frac{1}{30} x^{5}+\ldots$
3. (a) if $n=7$ then $7!>3^{7}$
so true for $n=7$
assume true for $n=k$
so $\mathrm{k}!>3^{k}$
consider $n=k+1$
$(k+1)!=(k+1) k!$
$>(k+1) 3^{k}$
$>3.3^{k}$ (as $k>6$)
$=3^{k+1}$
hence if true for $n=k$ then also true for $n=k+1$. As true for $n=7$, so true for all $n \geq 7$.

Note: Do not award the $\boldsymbol{R} \mathbf{1}$ if the two \boldsymbol{M} marks have not been awarded.
(b) consider the series $\sum_{r=7}^{\infty} a_{r}$ where $a_{r}=\frac{2^{r}}{r!}$

R1

Note: Award the $\boldsymbol{R 1}$ for starting at $r=7$.
compare to the series $\sum_{r=7}^{\infty} b_{r}$ where $b_{r}=\frac{2^{r}}{3^{r}}$
M1
$\sum_{r=1}^{\infty} b_{r}$ is an infinite Geometric Series with $r=\frac{2}{3}$ and hence converges
Note: Award the $\mathbf{A 1}$ even if series starts at $r=1$.
as $\mathrm{r}!>3^{r}$ so $(0<) a_{r}<b_{r}$ for all $r \geq 7$
M1R1
as $\sum_{r=7}^{\infty} b_{r}$ converges and $a_{r}<b_{r}$ so $\sum_{r=7}^{\infty} a_{r}$ must converge
Note: Award the $\boldsymbol{A 1}$ even if series starts at $r=1$.
as $\sum_{r=1}^{6} a_{r}$ is finite, so $\sum_{r=1}^{\infty} a_{r}$ must converge
Note: If the limit comparison test is used award marks to a maximum of R1M1A1MOAOR1.
4. (a)

$\boldsymbol{A 1}$ for upper rectangles, $\boldsymbol{A 1}$ for lower rectangles, $\boldsymbol{A 1}$ for curve in between with $0 \leq x \leq 1$
hence $\frac{1}{5} \sum_{r=1}^{5} f\left(\frac{r}{5}\right)<\int_{0}^{1} f(x) \mathrm{d} x<\frac{1}{5} \sum_{r=0}^{4} f\left(\frac{r}{5}\right)$
(b) attempting to integrate from 0 to 1
$\int_{0}^{1} f(x) \mathrm{d} x=[\arctan x]_{0}^{1}$
$=\frac{\pi}{4}$
attempt to evaluate either summation
$\frac{1}{5} \sum_{r=1}^{5} f\left(\frac{r}{5}\right)<\frac{\pi}{4}<\frac{1}{5} \sum_{r=0}^{4} f\left(\frac{r}{5}\right)$
hence $\frac{4}{5} \sum_{r=1}^{5} f\left(\frac{r}{5}\right)<\pi<\frac{4}{5} \sum_{r=0}^{4} f\left(\frac{r}{5}\right)$
so $2.93<\pi<3.33$
A1A1
Note: Accept any answers that round to 2.9 and 3.3.

Question 4 continued
(c) EITHER
recognise $\sum_{r=0}^{n-1}(-1)^{r} x^{2 r}$ as a geometric series with $r=-x^{2}$
sum of n terms is $\frac{1-\left(-x^{2}\right)^{n}}{1--x^{2}}=\frac{1+(-1)^{n-1} x^{2 n}}{1+x^{2}}$
OR
$\sum_{r=0}^{n-1}(-1)^{r}\left(1+x^{2}\right) x^{2 r}=\left(1+x^{2}\right) x^{0}-\left(1+x^{2}\right) x^{2}+\left(1+x^{2}\right) x^{4}+\ldots$
$+(-1)^{n-1}\left(1+x^{2}\right) x^{2 n-2}$
cancelling out middle terms
$=1+(-1)^{n-1} x^{2 n}$
(d) $\sum_{r=0}^{n-1}(-1)^{r} x^{2 r}=\frac{1}{1+x^{2}}+(-1)^{n-1} \frac{x^{2 n}}{1+x^{2}}$ integrating from 0 to 1
$\left[\sum_{r=0}^{n-1}(-1)^{r} \frac{x^{2 r+1}}{2 r+1}\right]_{0}^{1}=\int_{0}^{1} f(x) \mathrm{d} x+(-1)^{n-1} \int_{0}^{1} \frac{x^{2 n}}{1+x^{2}} \mathrm{~d} x$
$\int_{0}^{1} f(x) \mathrm{d} x=\frac{\pi}{4}$
so $\pi=4\left(\sum_{r=0}^{n-1} \frac{(-1)^{r}}{2 r+1}-(-1)^{n-1} \int_{0}^{1} \frac{x^{2 n}}{1+x^{2}} \mathrm{~d} x\right)$

AG
[4 marks]
5. (a) gradient of f at $(1,0)$ is $1-0^{2}=1$ and the gradient of g at $(1,0)$
is $0-1^{2}=-1$

A1
so gradient of normal is 1 A1
$=$ Gradient of the tangent of f at $(1,0)$ AG
[2 marks]
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}-y=-x^{2}$
integrating factor is $\mathrm{e}^{\int-1 d x}=\mathrm{e}^{-x}$ M1
$y \mathrm{e}^{-x}=\int-x^{2} \mathrm{e}^{-x} \mathrm{~d} x$ A1
$=x^{2} \mathrm{e}^{-x}-\int 2 x \mathrm{e}^{-x} \mathrm{~d} x$ M1
$=x^{2} \mathrm{e}^{-x}+2 x \mathrm{e}^{-x}-\int 2 \mathrm{e}^{-x} \mathrm{~d} x$
$=x^{2} \mathrm{e}^{-x}+2 x \mathrm{e}^{-x}+2 \mathrm{e}^{-x}+c$ A1
$\Rightarrow g(x)=x^{2}+2 x+2+c \mathrm{e}^{x}$
$g(1)=0 \Rightarrow c=-\frac{5}{\mathrm{e}}$ M1
$\Rightarrow g(x)=x^{2}+2 x+2-5 \mathrm{e}^{x-1}$
A1
[6 marks]
(c) use of $y_{n+1}=y_{n}+h f^{\prime}\left(x_{n}, y_{n}\right)$
(M1)
$x_{0}=1, y_{0}=0$
$x_{1}=1.2, y_{1}=0.2$
$x_{2}=1.4, y_{2}=0.432$
$x_{3}=1.6, y_{3}=0.67467$.
$x_{4}=1.8, y_{4}=0.90363$..
$x_{5}=2, y_{5}=1.1003255 \ldots$
answer $=1.10033$

Note: Award $\mathbf{A O}$ or $\mathbf{N 1}$ if 1.10 given as answer.
(d) at the point $(1,0)$, the gradient of f is positive so the graph of f passes into the first quadrant for $x>1$
in the first quadrant below the curve $x-y^{2}=0$ the gradient of f is positive $\boldsymbol{R} \mathbf{1}$ the curve $x-y^{2}=0$ has positive gradient in the first quadrant if f were to reach $x-y^{2}=0$ it would have gradient of zero, and therefore would not cross

Question 5 continued
(e) (i) and (ii)

Note: Award A1 for 3 correct isoclines.
Award A1 for f not reaching $x-y^{2}=0$.
Award A1 for turning point of f on $x-y^{2}=0$.
Award $\boldsymbol{A 1}$ for negative gradient to the left of the turning point.
Note: Award A1 for correct shape and position if curve drawn without any isoclines.

Markscheme

May 2015

Calculus

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.

N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2015". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

3
 N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR).
A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $M R$, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10
 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, Tl-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. $f(0)=0$

A1
$f^{\prime}(x)=-\mathrm{e}^{-x} \cos x-\mathrm{e}^{-x} \sin x+1$
$f^{\prime}(0)=0$ (M1)
$f^{\prime \prime}(x)=2 \mathrm{e}^{-x} \sin x$
$f^{\prime \prime}(0)=0$
$f^{(3)}(x)=-2 \mathrm{e}^{-x} \sin x+2 \mathrm{e}^{-x} \cos x$
$f^{(3)}(0)=2$
the first non-zero term is $\frac{2 x^{3}}{3!}\left(=\frac{x^{3}}{3}\right)$
Note: Award no marks for using known series.
[7 marks]
2. (a) METHOD 1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{x^{2}} \int f(x) \mathrm{d} x+\frac{1}{x} f(x)$
$x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=f(x), x>0$

Note: M1 for use of product rule, M1 for use of the fundamental theorem of calculus, A1 for all correct.

METHOD 2

$x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=f(x)$
$\frac{\mathrm{d}(x y)}{\mathrm{d} x}=f(x)$
(M1)
$x y=\int f(x) \mathrm{d} x$
$y=\frac{1}{x} \int f(x) \mathrm{d} x$

Question 2 continued
(b) $y=\frac{1}{x}\left(2 x^{\frac{1}{2}}+c\right)$

Note: A1 for correct expression apart from the constant, A1 for including the constant in the correct position.

$$
\begin{array}{ll}
\text { attempt to use the boundary condition } & \text { M1 } \\
c=4 & \text { A1 } \\
y=\frac{1}{x}\left(2 x^{\frac{1}{2}}+4\right) & \boldsymbol{A 1}
\end{array}
$$

Note: Condone use of integrating factor.

Total [8 marks]

3. (a) METHOD 1
$(0<) \frac{1}{n^{2} \ln (n)}<\frac{1}{n^{2}},($ for $n \geq 3)$
A1
$\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ converges
by the comparison test ($\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ converges implies) $\sum_{n=2}^{\infty} \frac{1}{n^{2}(\ln n)}$ converges

Note: Mention of using the comparison test may have come earlier. Only award R1 if previous 2 A1s have been awarded.

METHOD 2
$\lim _{n \rightarrow \infty}\left(\frac{\frac{1}{n^{2} \ln n}}{\frac{1}{n^{2}}}\right)=\lim _{n \rightarrow \infty} \frac{1}{\ln n}=0$
$\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ converges
by the limit comparison test (if the limit is 0 and the series represented by the denominator converges, then so does the series represented by the

Question 3 continued

numerator, hence) $\sum_{n=2}^{\infty} \frac{1}{n^{2}(\ln n)}$ converges
Note: Mention of using the limit comparison test may come earlier.
Do not award the $\boldsymbol{R} \mathbf{1}$ if incorrect justifications are given, for example the series "converge or diverge together".
Only award R1 if previous 2 A1s have been awarded.
(b) (i) EITHER
$\ln (n)+\ln \left(1+\frac{1}{n}\right)=\ln \left(n\left(1+\frac{1}{n}\right)\right)$
A1

OR
$\ln (n)+\ln \left(1+\frac{1}{n}\right)=\ln (n)+\ln \left(\frac{n+1}{n}\right)$
$=\ln (n)+\ln (n+1)-\ln (n)$
THEN

$$
=\ln (n+1)
$$

(ii) attempt to use the ratio test $\frac{n}{(n+1)} \frac{\ln (n)}{\ln (n+1)}$
$\frac{n}{n+1} \rightarrow 1$ as $n \rightarrow \infty$
$\frac{\ln (n)}{\ln (n+1)}=\frac{\ln (n)}{\ln (n)+\ln \left(1+\frac{1}{n}\right)}$
$\rightarrow 1 \quad($ as $n \rightarrow \infty)$
$\frac{n}{(n+1)} \frac{\ln (n)}{\ln (n+1)} \rightarrow 1 \quad($ as $n \rightarrow \infty)$ hence ratio test is inconclusive
Note: A link with the limit equalling 1 and the result being inconclusive needs to be given for $\boldsymbol{R 1}$.
(c) (i) consider $f(x)=\frac{1}{x \ln x}$ (for $\left.x>1\right)$
$f(x)$ is continuous and positive
and is (monotonically) decreasing
Note: If a candidate uses n rather than x, award as follows
$\frac{1}{n \ln n}$ is positive and decreasing A1A1
$\frac{1}{n \ln n}$ is continuous for $n \in \mathbb{R}, n>1 \boldsymbol{A 1}$ (only award this mark if the domain has been explicitly changed).

A1
A1
A1
continued...

Question 3 continued
(ii) consider $\int_{2}^{R} \frac{1}{x \ln x} \mathrm{~d} x$
$=[\ln (\ln x)]_{2}^{R}$
(M1)A1
$\rightarrow \infty$ as $R \rightarrow \infty$
R1
hence series diverges

Note: Condone the use of ∞ in place of R.

Note: If the lower limit is not equal to 2 , but the expression is integrated correctly award MOM1A1R0AO.
4. (a) $\lim _{x \rightarrow \infty} \frac{x^{2}}{\mathrm{e}^{x}}=\lim _{x \rightarrow \infty} \frac{2 x}{\mathrm{e}^{x}}$
$\lim _{x \rightarrow \infty} \frac{2}{\mathrm{e}^{x}}=0$
Note: Award $\boldsymbol{M} \mathbf{1}$ for an attempt at differentiating for a second time.
(b) attempt to integrate by parts
$\int x^{2} \mathrm{e}^{-x} \mathrm{~d} x=-x^{2} \mathrm{e}^{-x}+\int 2 x \mathrm{e}^{-x} \mathrm{~d} x$
$=-x^{2} \mathrm{e}^{-x}-2 x \mathrm{e}^{-x}+\int 2 \mathrm{e}^{-x} \mathrm{~d} x$
$=-x^{2} \mathrm{e}^{-x}-2 x \mathrm{e}^{-x}-2 \mathrm{e}^{-x}(+c)$
$\int_{0}^{R} x^{2} \mathrm{e}^{-x} \mathrm{~d} x=-R^{2} \mathrm{e}^{-R}-2 R \mathrm{e}^{-R}-2 \mathrm{e}^{-R}+2$
$\lim _{R \rightarrow \infty}\left(\int_{0}^{R} x^{2} \mathrm{e}^{-x} \mathrm{~d} x\right)=2$
Note: Award M1 for consideration of the limit and A1 for correct limiting value.
hence the improper integral converges
AG
Note: Do not award the final four marks to candidates who do not consider R.
5. (a) (i) $f^{\prime}(x)=3 x^{2}+6 x$

```
gradient of chord \(=1\)
\(3 c^{2}+6 c=1\)
\(c=\frac{-3 \pm 2 \sqrt{3}}{3}(=-2.15,0.155)\)
Note: Accept any answers that round to the correct 2sf answers \((-2.2,0.15)\)
(ii)

award \(\boldsymbol{A 1}\) for correct shape and clear indication of correct domain, \(\boldsymbol{A 1}\) for chord (from \(x=-3\) to \(x=1\) ) and \(\boldsymbol{A} 1\) for two tangents drawn at their values of \(c\)

A1A1A1
(b) (i) METHOD 1
(if a theorem is true for the interval \([a, b]\), it is also true for any interval [ \(x_{1}, x_{2}\) ] which belongs to \([a, b]\) )
suppose \(x_{1}, x_{2} \in[a, b]\)
by the MVT, there exists \(c\) such that \(f^{\prime}(c)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=0\)
hence \(f\left(x_{1}\right)=f\left(x_{2}\right)\)
as \(x_{1}, x_{2}\) are arbitrarily chosen, \(f(x)\) is constant on \([a, b]\)
Note: If the above is expressed in terms of \(a\) and \(b\) award MOM1AORO.

\section*{METHOD 2}
(if a theorem is true for the interval \([a, b]\), it is also true for any interval [ \(x_{1}, x_{2}\) ] which belongs to \([a, b]\) )
suppose \(x \in[a, b]\)

Question 5 continued
by the MVT, there exists \(c\) such that \(f^{\prime}(c)=\frac{f(x)-f(a)}{x-a}=0 \quad\) M1A1
hence \(f(x)=f(a)=\) constant \(\quad\) R1
(ii) attempt to differentiate \((x)=2 \arccos x+\arccos \left(1-2 x^{2}\right) \quad\) M1
\[
\begin{aligned}
& -2 \frac{1}{\sqrt{1-x^{2}}}-\frac{-4 x}{\sqrt{1-\left(1-2 x^{2}\right)^{2}}} \\
& =-2 \frac{1}{\sqrt{1-x^{2}}}+\frac{4 x}{\sqrt{4 x^{2}-4 x^{4}}}=0
\end{aligned}
\]

Note: Only award \(\boldsymbol{A 1}\) for 0 if a correct attempt to simplify the denominator is also seen.
\[
f(x)=f(0)=2 \times \frac{\pi}{2}+0=\pi
\]

Note: This \(\boldsymbol{A 1}\) is not dependent on previous marks.
Note: Allow any value of \(x \in[0,1]\).

\title{
MARKSCHEME
}

\section*{November 2014}

\section*{MATHEMATICS CALCULUS}

\author{
Higher Level
}

Paper 3

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\(\boldsymbol{A} \quad\) Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R}\) Marks awarded for clear Reasoning.
\(\boldsymbol{N} \quad\) Marks awarded for correct answers if no working shown.
\(\boldsymbol{A} \boldsymbol{G}\) Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{1 General}

Mark according to \(\mathrm{RM}^{\text {TM }}\) Assessor instructions and the document "Mathematics HL: Guidance for emarking November 2014". It is essential that you read this document before you start marking. In particular, please note the following:
- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A 0}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by \(\mathrm{RM}^{\mathrm{TM}}\) Assessor.

\section*{2 Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M} \boldsymbol{0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A} \operatorname{mark}(\mathrm{s})\) depend on the preceding \(\boldsymbol{M} \operatorname{mark}(\mathrm{s})\), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, eg M1A1, this usually means \(\boldsymbol{M 1}\) for an attempt to use an appropriate method ( \(e g\) substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

\section*{\(N\) marks}

Award \(\boldsymbol{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer \(\boldsymbol{F T}\) marks.
- If the error leads to an inappropriate value (eg \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{Mis-read}

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \(\boldsymbol{M}\) mark, but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value ( \(e g \sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
\]

Award \(\boldsymbol{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
1. (a) \(\int_{1}^{\infty} x^{-0.5} \mathrm{~d} x\)

M1
\(=\lim _{H \rightarrow \infty}\left[2 x^{0.5}\right]_{1}^{H}\)
Note: Accept \(\left[2 x^{0.5}\right]_{1}^{\infty}\).
this is not finite so series is divergent
R1
Note: Accept equivalent eg \(\rightarrow \infty\), or "limit does not exist". If lower limit is not equal to 1 award M0A0, but the \(\boldsymbol{R} \mathbf{1}\) can still be awarded if the final reasoning is correct.
(b) (i) applying the ratio test
\(\lim _{n \rightarrow \infty}\left|\frac{(x+1)^{n+1}}{2^{n+1}(n+1)^{0.5}} \times \frac{2^{n} n^{0.5}}{(x+1)^{n}}\right|\)
\(\lim _{n \rightarrow \infty}\left|\frac{(x+1) n^{0.5}}{2(n+1)^{0.5}}\right|=\left|\frac{(x+1)}{2}\right|\)
Note: Do not penalize the absence of limits and modulus signs.
\[
\text { converges if }\left|\frac{x+1}{2}\right|<1 \Rightarrow-1<\frac{(x+1)}{2}<1
\]
\(\Rightarrow-3<x<1\)
Note: Accept \(-2<x+1<2\).
(ii) considering end points M1
when \(x=-3\), series is \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{0.5}}\)
\(\frac{1}{n^{0.5}}\) is a decreasing sequence with limit zero,
so series converges by alternating series test
when \(x=1\), series is \(\sum_{n=1}^{\infty} \frac{1}{n^{0.5}}\) which diverges by part (a) or
\(p\)-series
Note: This \(\boldsymbol{A 1}\) is for both the reasoning and the statement it diverges.
interval of convergence is \(-3 \leq x<1\)
2. (a) integrating factor \(e^{\int-\frac{1}{t} d t}=e^{-\ln t}\left(=\frac{1}{t}\right)\)

M1A1
\(\frac{x}{t}=\int-\frac{2}{t^{2}} \mathrm{~d} t=\frac{2}{t}+c\)
A1A1
Note: Award \(\boldsymbol{A 1}\) for \(\frac{x}{t}\) and \(\boldsymbol{A 1}\) for \(\frac{2}{t}+c\).
\(x=2+c t\)
\(\boldsymbol{A} G\)
[4 marks]
(b) given continuity at \(x=5\)
\(5 c+2=16-\frac{35}{5} \Rightarrow c=\frac{7}{5}\)
M1A1
[2 marks]
(c) (i) 2

A1
(ii) any value \(\geq 16\)

A1
Note: Accept values less than 16 if fully justified by reference to the maximum age for a dog.

\section*{Question 2 continued}
(d) \(\lim _{h \rightarrow 0-}\left(\frac{\frac{7}{5}(5+h)+2-\frac{7}{5}(5)-2}{h}\right)=\frac{7}{5}\)
both limits equal so differentiable at \(t=5\)
Note: The limits \(t \rightarrow 5\) could also be used.
For each value of \(\frac{7}{5}\) obtained by standard differentiation award \(\boldsymbol{A 1}\).
To gain the other 4 marks a rigorous explanation must be given on how you can get from the left and right hand derivatives to the derivative.

Note: If the candidate works with \(t\) and then substitutes \(t=5\) at the end award as follows
First \(\boldsymbol{M 1}\) for using formula with \(t\) in the linear case, \(A \boldsymbol{1}\) for \(\frac{7}{5}\)
Award next 2 method marks even if \(t=5\) not substituted, \(A 1\) for \(\frac{7}{5}\)
3. (a) and (b)

(a) \(\boldsymbol{A 1}\) for 4 parallel straight lines with a positive gradient

A1
\(\boldsymbol{A 1}\) for correct \(y\) intercepts
(b) \(\boldsymbol{A 1}\) for passing through \((0,1)\) with positive gradient less than 2

A1 for stationary point on \(y=2 x\)
A1 for negative gradient on both of the other 2 isoclines

\section*{A1A1A1}
(c) the isocline is perpendicular to C

R1
[1mark]
(d) \(y_{n+1}=y_{n}+0.1\left(y_{n}-2 x_{n}\right)\left(=1.1 y_{n}-0.2 x_{n}\right)\)
(M1)(A1)
Note: Also award M1A1 if no formula seen but \(y_{2}\) is correct.
\[
y_{0}=1, y_{1}=1.1, y_{2}=1.19, y_{3}=1.269, y_{4}=1.3359
\]
(M1)
\[
A 1
\]

Note: \(\boldsymbol{M 1}\) is for repeated use of their formula, with steps of 0.1.
Note: Accept 1.39 or 1.4 only.
4. (a) \(r=-x^{2}, \quad S=\frac{1}{1+x^{2}}\)
(b) \(\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\ldots\)

\section*{EITHER}
\[
\begin{aligned}
& \int \frac{1}{1+x^{2}} \mathrm{~d} x=\int 1-x^{2}+x^{4}-x^{6}+\ldots \mathrm{d} x \\
& \arctan x=c+x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots
\end{aligned}
\]

Note: Do not penalize the absence of \(c\) at this stage.
when \(x=0\) we have \(\arctan 0=c\) hence \(c=0\)

\section*{OR}
\[
\int_{0}^{x} \frac{1}{1+t^{2}} \mathrm{~d} t=\int_{0}^{x} 1-t^{2}+t^{4}-t^{6}+\ldots \mathrm{d} t
\]

Note: Allow \(x\) as the variable as well as the limit.
M1 for knowing to integrate, A1 for each of the limits.
\([\arctan t]_{0}^{x}=\left[t-\frac{t^{3}}{3}+\frac{t^{5}}{5}-\frac{t^{7}}{7}+\ldots\right]_{0}^{x}\)
hence \(\arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots\)
(c) applying the MVT to the function \(f\) on the interval \([x, y]\)
\(\frac{f(y)-f(x)}{y-x}=f^{\prime}(c)(\) for some \(c \in] x, y[\) )
\(\frac{f(y)-f(x)}{y-x}>0\left(\right.\) as \(\left.f^{\prime}(c)>0\right)\)
R1
\(f(y)-f(x)>0\) as \(y>x \quad \boldsymbol{R 1}\)
\(\Rightarrow f(y)>f(x)\)

Note: If they use \(x\) rather than c they should be awarded M1A0R0, but could get the next \(\boldsymbol{R 1}\).

\section*{Question 4 continued}
(d) (i) \(g(x)=x-\arctan x \Rightarrow g^{\prime}(x)=1-\frac{1}{1+x^{2}}\)
(ii) ( \(g\) is a continuous function defined on \([0, b]\) and differentiable on ] \(0, b\) [ with \(g^{\prime}(x)>0\) on \(] 0, b[\) for all \(b \in \mathbb{R})\)
(If \(x \in[0, b]\) then) from part (c) \(g(x)>g(0)\)
M1
\(x-\arctan x>0 \Rightarrow \arctan x<x\)
(as \(b\) can take any positive value it is true for all \(x>0\) )
M1
AG
[4 marks]
(e) let \(h(x)=\arctan x-\left(x-\frac{x^{3}}{3}\right)\)
( \(h\) is a continuous function defined on \([0, b]\) and differentiable on \(] 0, b[\) with \(h^{\prime}(x)>0\) on \(] 0, b[)\)
\(h^{\prime}(x)=\frac{1}{1+x^{2}}-\left(1-x^{2}\right)\)
\(=\frac{1-\left(1-x^{2}\right)\left(1+x^{2}\right)}{1+x^{2}}=\frac{x^{4}}{1+x^{2}}\)
M1A1
R1
\(\Rightarrow \arctan x>x-\frac{x^{3}}{3}\)

\section*{Question 4 continued}
(f) use of \(x-\frac{x^{3}}{3}<\arctan x<x \quad\) M1
choice of \(x=\frac{1}{\sqrt{3}} \quad\) A1
\(\frac{1}{\sqrt{3}}-\frac{1}{9 \sqrt{3}}<\frac{\pi}{6}<\frac{1}{\sqrt{3}} \quad\) M1
\(\frac{8}{9 \sqrt{3}}<\frac{\pi}{6}<\frac{1}{\sqrt{3}} \quad\) A1
Note: Award final \(\boldsymbol{A 1}\) for a correct inequality with a single fraction on each side that leads to the final answer.
\[
\frac{16}{3 \sqrt{3}}<\pi<\frac{6}{\sqrt{3}}
\]

International Baccalaureate Baccalauréat International Bachillerato Internacional

\title{
MARKSCHEME
}

\section*{May 2014}

\section*{MATHEMATICS CALCULUS}

\section*{Higher Level}

\section*{Paper 3}

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\(\boldsymbol{A} \quad\) Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
\(\boldsymbol{N} \quad\) Marks awarded for correct answers if no working shown.
\(\boldsymbol{A} \boldsymbol{G}\) Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{1 General}

Mark according to Scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2014". It is essential that you read this document before you start marking. In particular, please note the following:
- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A 0}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by Scoris.

\section*{2 Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M 0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A} \operatorname{mark}(\mathrm{s})\) depend on the preceding \(\boldsymbol{M} \operatorname{mark}(\mathrm{s})\), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, eg M1A1, this usually means \(\boldsymbol{M 1}\) for an attempt to use an appropriate method ( \(e g\) substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

\section*{\(N\) marks}

Award \(\boldsymbol{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer \(\boldsymbol{F T}\) marks.
- If the error leads to an inappropriate value (eg \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{Mis-read}

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \(\boldsymbol{M}\) mark, but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (eg \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
\]

Award \(A 1\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{Calculators}

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
1. (a) any correct step before the given answer
\(e g, f^{\prime}(x)=\frac{\left(\mathrm{e}^{x}\right)^{\prime}+\left(\mathrm{e}^{-x}\right)^{\prime}}{2}=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}=g(x)\)
any correct step before the given answer
eg, \(g^{\prime}(x)=\frac{\left(\mathrm{e}^{x}\right)^{\prime}-\left(\mathrm{e}^{-x}\right)^{\prime}}{2}=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}=f(x)\)
(b) METHOD 1
statement and attempted use of the general Maclaurin expansion formula (M1) \(f(0)=1 ; g(0)=0\) (or equivalent in terms of derivative values)
\(f(x)=1+\frac{x^{2}}{2}+\frac{x^{4}}{24}\) or \(f(x)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}\)

\section*{METHOD 2}
\[
\begin{aligned}
& \mathrm{e}^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \\
& \mathrm{e}^{-x}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots
\end{aligned}
\]
adding and dividing by 2
\(f(x)=1+\frac{x^{2}}{2}+\frac{x^{4}}{24}\) or \(f(x)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}\)
Notes: Accept \(1, \frac{x^{2}}{2}\) and \(\frac{x^{4}}{24}\) or \(1, \frac{x^{2}}{2!}\) and \(\frac{x^{4}}{4!}\).
Award \(A 1\) if two correct terms are seen.

\section*{Question 1 continued}
(c) METHOD 1
attempted use of the Maclaurin expansion from (b)
M1
\(\lim _{x \rightarrow 0} \frac{1-f(x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{1-\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{24}+\ldots\right)}{x^{2}}\)
\(\lim _{x \rightarrow 0}\left(-\frac{1}{2}-\frac{x^{2}}{24}-\ldots\right)\)
\(=-\frac{1}{2}\)

\section*{METHOD 2}
attempted use of L'Hôpital and result from (a)
M1
\(\lim _{x \rightarrow 0} \frac{1-f(x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{-g(x)}{2 x}\)
\(\lim _{x \rightarrow 0} \frac{-f(x)}{2}\)
\(=-\frac{1}{2}\)
(d) METHOD 1
use of the substitution \(u=f(x)\) and \((\mathrm{d} u=g(x) \mathrm{d} x)\)
attempt to integrate \(\int_{1}^{\infty} \frac{\mathrm{d} u}{u^{2}}\)
(M1)
obtain \(\left[-\frac{1}{u}\right]_{1}^{\infty}\) or \(\left[-\frac{1}{f(x)}\right]_{0}^{\infty}\)
recognition of an improper integral by use of a limit or statement saying the integral converges
obtain 1 A1

Question 1 continued

\section*{METHOD 2}
\(\int_{0}^{\infty} \frac{\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}}{\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)^{2}} \mathrm{~d} x=\int_{0}^{\infty} \frac{2\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}} \mathrm{~d} x\)
use of the substitution \(u=\mathrm{e}^{x}+\mathrm{e}^{-x}\) and ( \(\left.\mathrm{d} u=\mathrm{e}^{x}-\mathrm{e}^{-x} \mathrm{~d} x\right)\) (M1)
attempt to integrate \(\int_{2}^{\infty} \frac{2 \mathrm{~d} u}{u^{2}}\)
obtain \(\left[-\frac{2}{u}\right]_{2}^{\infty}\) A1
recognition of an improper integral by use of a limit or statement saying the integral converges
2. (a) (i) attempt at chain rule
\(f^{\prime}(x)=\frac{2 \ln x}{x}\)
(ii) attempt at chain rule
\[
g^{\prime}(x)=\frac{2}{x \ln x}
\]
(iii) \(g^{\prime}(x)\) is positive on \(] 1, \infty[\)
so \(g(x)\) is increasing on \(] 1, \infty[\)
(b) (i) rearrange in standard form:
\(\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2}{x \ln x} y=\frac{2 x-1}{(\ln x)^{2}}, x>1\)
integrating factor:
\(\mathrm{e}^{\int \frac{2}{x \ln x} \mathrm{~d} x}\)
\(=\mathrm{e}^{\left.\ln (\ln x)^{2}\right)}\)
\(=(\ln x)^{2}\)
multiply by integrating factor
\((\ln x)^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{2 \ln x}{x} y=2 x-1\)
\(\frac{\mathrm{d}}{\mathrm{d} x}\left(y(\ln x)^{2}\right)=2 x-1\left(\right.\) or \(\left.y(\ln x)^{2}=\int 2 x-1 \mathrm{~d} x\right)\)
attempt to integrate:
\((\ln x)^{2} y=x^{2}-x+\mathrm{c}\)
\(y=\frac{x^{2}-x+\mathrm{c}}{(\ln x)^{2}}\)
(ii) attempt to use the point \(\left(\mathrm{e}, \mathrm{e}^{2}\right)\) to determine c :
\(e g,(\ln )^{2} \mathrm{e}^{2}=\mathrm{e}^{2}-\mathrm{e}+\mathrm{c}\) or \(\mathrm{e}^{2}=\frac{\mathrm{e}^{2}-\mathrm{e}+\mathrm{c}}{(\ln \mathrm{e})^{2}}\) or \(\mathrm{e}^{2}=\mathrm{e}^{2}-\mathrm{e}+\mathrm{c}\)
\(\mathrm{c}=\mathrm{e}\)
\(y=\frac{x^{2}-x+\mathrm{e}}{(\ln x)^{2}}\)

\section*{Question 2 continued}

graph with correct shape
A1
minimum at \(x=3.1\) (accept answers to a minimum of 2 s.f)
A1
asymptote shown at \(x=1\)
Note: \(y\)-coordinate of minimum not required for \(\boldsymbol{A 1}\);
Equation of asymptote not required for \(\boldsymbol{A 1}\) if VA appears on the sketch. Award \(\boldsymbol{A} \mathbf{0}\) for asymptotes if more than one asymptote are shown
3. (a) \(b(n)=3 n+1\)
\(c(n)=3 n+2\)
Note: \(b(n)\) and \(c(n)\) may be reversed.
(b) consider the ratio of the \((n+1)^{\text {th }}\) and \(n^{\text {th }}\) terms:
\(\frac{3 n+1}{3 n+4} \times \frac{3 n+2}{3 n+5} \times \frac{x^{n+1}}{x^{n}}\)
\(\lim _{n \rightarrow \infty} \frac{3 n+1}{3 n+4} \times \frac{3 n+2}{3 n+5} \times \frac{x^{n+1}}{x^{n}}=x\) A1
radius of convergence: \(R=1\)
(c) any attempt to study the series for \(x=-1\) or \(x=1\)
converges for \(x=1\) by comparing with \(p\)-series \(\sum \frac{1}{n^{2}}\)
attempt to use the alternating series test for \(x=-1\)
Note: At least one of the conditions below needs to be attempted for M1.
\(\mid\) terms \(\left\lvert\, \approx \frac{1}{9 n^{2}} \rightarrow 0\right.\) and terms decrease monotonically in absolute value \(\boldsymbol{A 1}\) series converges for \(x=-1\)
interval of convergence: \([-1,1]\)
Note: Award the R1s only if an attempt to corresponding correct test is made; award the final \(\boldsymbol{A 1}\) only if at least one of the \(\boldsymbol{R 1 s}\) is awarded;
Accept study of absolute convergence at end points.
4. (a) \(\lim _{x \rightarrow 1^{-}} \mathrm{e}^{-x^{2}}\left(-x^{3}+2 x^{2}+x\right)=\lim _{x \rightarrow 1^{+}}(a x+b) \quad(=a+b)\) M1 \(2 \mathrm{e}^{-1}=a+b\) A1
differentiability: attempt to differentiate both expressions M1
\(f^{\prime}(x)=-2 x \mathrm{e}^{-x^{2}}\left(-x^{3}+2 x^{2}+x\right)+\mathrm{e}^{-x^{2}}\left(-3 x^{2}+4 x+1\right)(x<1)\) A1
(or \(f^{\prime}(x)=\mathrm{e}^{-x^{2}}\left(2 x^{4}-4 x^{3}-5 x^{2}+4 x+1\right)\) )
\(f^{\prime}(x)=a \quad(x>1)\) A1
substitute \(x=1\) in both expressions and equate
\[
-2 \mathrm{e}^{-1}=a
\]
substitute value of \(a\) and find \(b=4 \mathrm{e}^{-1} \quad\) M1A1
(b) (i) \(\quad f^{\prime}(x)=\mathrm{e}^{-x^{2}}\left(2 x^{4}-4 x^{3}-5 x^{2}+4 x+1\right)(\) for \(x \leq 1) \quad\) M1 \(f(1)=f(-1)\) M1
Rolle's theorem statement (A1) by Rolle's Theorem, \(f^{\prime}(x)\) has a zero in \(]-1,1[\quad \boldsymbol{R 1}\) hence quartic equation has a root in \(]-1,1[\quad \boldsymbol{A G}\)
(ii) let \(g(x)=2 x^{4}-4 x^{3}-5 x^{2}+4 x+1\).
\[
g(-1)=g(1)<0 \text { and } g(0)>0
\]M1
as \(g\) is a polynomial function it is continuous in \([-1,0]\) and \([0,1]\). \(\boldsymbol{R 1}\) (or \(g\) is a polynomial function continuous in any interval of real numbers)
then the graph of \(g\) must cross the \(x\)-axis at least once in \(]-1,0[\quad \boldsymbol{R 1}\) and at least once in \(] 0,1[\).

\section*{MARKSCHEME}

\section*{November 2013}

\section*{MATHEMATICS SERIES AND DIFFERENTIAL EQUATIONS}

\author{
Higher Level
}

\section*{Paper 3}

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

\section*{Instructions to Examiners}

\section*{Abbreviations}
\(\boldsymbol{M}\) Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\(\boldsymbol{A} \quad\) Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
\(\boldsymbol{N} \quad\) Marks awarded for correct answers if no working shown.
\(\boldsymbol{A} \boldsymbol{G}\) Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{1 General}

Mark according to Scoris instructions and the document "Mathematics HL: Guidance for emarking November 2013". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A 0}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by Scoris.

\section*{Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M 0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A} \operatorname{mark}(\mathrm{s})\) depend on the preceding \(\boldsymbol{M} \operatorname{mark}(\mathrm{s})\), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, for example, M1A1, this usually means \(\boldsymbol{M 1}\) for an attempt to use an appropriate method (for example, substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

\section*{\(N\) marks}

Award \(\mathbf{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{5 Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer \(\boldsymbol{F T}\) marks.
- If the error leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{Mis-read}

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a mis-read. Then deduct the first of the marks to be awarded, even if this is an \(\boldsymbol{M}\) mark,
but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (for example, \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
\]

Award \(A 1\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for \(\boldsymbol{F T}\).

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
1. (a) EITHER
\(\sum_{n=1}^{\infty} \frac{2}{n^{2}+3 n}<\sum_{n=1}^{\infty} \frac{2}{n^{2}}\)
which is convergent
the given series is therefore convergent using the comparison test
OR
\(\lim _{n \rightarrow \infty} \frac{\frac{2}{n^{2}+3 n}}{\frac{1}{n^{2}}}=2\)
M1A1
the given series is therefore convergent using the limit comparison test
(b) (i) let \(\frac{2}{n^{2}+3 n}=\frac{A}{n}+\frac{B}{n+3}=\frac{A(n+3)+B n}{n(n+3)}\)
solve for \(A\) and \(B\)
\[
\begin{aligned}
& A=\frac{2}{3} \\
& B=-\frac{2}{3} \\
& \frac{2}{n^{2}+3 n}=\frac{2}{3 n}-\frac{2}{3(n+3)}
\end{aligned}
\]
(ii) using partial fractions
\(\sum_{n=1}^{\infty} \frac{2}{n^{2}+3 n}=\frac{2}{3}\left(\frac{\mathbf{1}}{\mathbf{1}}-\frac{1}{4}+\frac{\mathbf{1}}{\mathbf{2}}-\frac{1}{5}+\frac{\mathbf{1}}{\mathbf{3}}-\frac{1}{6}+\frac{1}{4} \ldots\right)\)
M1A1
recognizing the cancellation (in the telescoping series) (eg crossing out)

R1
\[
\sum_{n=1}^{\infty} \frac{2}{n^{2}+3 n}=\frac{2}{3}\left(1+\frac{1}{2}+\frac{1}{3}\right)=\frac{11}{9}\left(1 \frac{2}{9}\right)
\]
2. (a) \(a_{n}=\frac{\mathrm{e}^{n}+2^{n}}{2 \mathrm{e}^{n}}=\frac{1}{2}+\frac{1}{2}\left(\frac{2}{\mathrm{e}}\right)^{n}>\frac{1}{2}+\frac{1}{2}\left(\frac{2}{\mathrm{e}}\right)^{n+1}=a_{n+1}\)

M1A1
the sequence is decreasing (as terms are positive)
A1
Note: Accept reference to the sum of a constant and a decreasing geometric sequence.
Note: Accept use of derivative of \(f(x)=\frac{\mathrm{e}^{x}+2^{x}}{2 \mathrm{e}^{x}}\) (and condone use of n ) and graphical methods (graph of the sequence or graph of corresponding function \(f\) or graph of its derivative \(f^{\prime}\) ).

Accept a list of consecutive terms of the sequence clearly decreasing (eg 0.8678..., 0.77067..., ...).
(b) \(\quad L=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{2}+\frac{1}{2}\left(\frac{2}{\mathrm{e}}\right)^{n}=\frac{1}{2}+\frac{1}{2} \times 0=\frac{1}{2}\)
(c) \(\left|a_{n}-\frac{1}{2}\right|=\left|\frac{1}{2}+\frac{1}{2}\left(\frac{2}{\mathrm{e}}\right)^{n}-\frac{1}{2}\right|=\left|\frac{1}{2}\left(\frac{2}{\mathrm{e}}\right)^{n}\right|<\frac{1}{1000}\)

M1

\section*{EITHER}
\[
\begin{aligned}
& \Rightarrow\left(\frac{\mathrm{e}}{2}\right)^{n}>500 \\
& \Rightarrow n>20.25 \ldots
\end{aligned}
\]

OR
\[
\Rightarrow\left(\frac{2}{\mathrm{e}}\right)^{n}<500
\]
\[
\Rightarrow n>20.25 \ldots
\]

Note: \(\boldsymbol{A 1}\) for correct inequality; \(\boldsymbol{A 1}\) for correct value.

\section*{THEN}
therefore \(N=21\)
3. (a) let \(f(x, y)=\frac{y}{x+\sqrt{x y}}\)
\[
\begin{aligned}
y(1.2) & =y(1)+0.2 f(1,2) \quad(=2+0.1656 \ldots) \\
& =2.1656 \ldots \\
y(1.4) & =2.1656 \ldots+0.2 f(1.2,2.1256 \ldots)(=2.1656 \ldots+0.1540 \ldots)
\end{aligned}
\]
(M2)(A1)
A1
(M1)
Note: \(\boldsymbol{M 1}\) is for attempt to apply formula using point \((1.2, y(1.2))\).
\[
\begin{aligned}
& =2.3197 \ldots \\
y(1.6) & =2.3197 \ldots+0.2 f(1.4,2.3197 \ldots) \quad(=2.3297 \ldots+0.1448 \ldots) \\
& =2.46 \quad(3 \mathrm{sf})
\end{aligned}
\]
(b) \(y=v x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}\)
\[
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x+\sqrt{x y}} \Rightarrow v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{v x}{x+\sqrt{v x^{2}}} \\
& \Rightarrow v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{v x}{x+x \sqrt{v}}(\text { as } x>0) \\
& \Rightarrow x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{v}{1+\sqrt{v}}-v
\end{aligned}
\]
(c) (i) \(x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{v}{1+\sqrt{v}}-v\)
\[
\begin{aligned}
& x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{-v \sqrt{v}}{1+\sqrt{v}} \Rightarrow \frac{1+\sqrt{v}}{-v \sqrt{v}} \mathrm{~d} v=\frac{1}{x} \mathrm{~d} x \\
& \int \frac{1+\sqrt{v}}{-v \sqrt{v}} \mathrm{~d} v=\int \frac{1}{x} \mathrm{~d} x \\
& \frac{2}{\sqrt{v}}-\ln v=\ln x+C
\end{aligned}
\]

Note: Do not penalize absence of \(+C\) at this stage; ignore use of absolute values on \(v\) and \(x\) (which are positive anyway).
continued ...

Question 3 continued
\[
\begin{array}{ll}
2 \sqrt{\frac{x}{y}}-\ln \frac{y}{x}=\ln x+C \text { as } y=v x \Rightarrow v=\frac{y}{x} \\
y=2 \text { when } x=1 \Rightarrow \sqrt{2}-\ln 2=0+C \\
2 \sqrt{\frac{x}{y}}-\ln \frac{y}{x}=\ln x+\sqrt{2}-\ln 2 \\
2 \sqrt{\frac{x}{y}}-\ln \frac{y}{x}-\ln x-\sqrt{2}+\ln 2=0 \quad \text { M1 } \\
\text { (ii) } 2 \sqrt{\frac{1.6}{y}}-\ln \frac{y}{1.6}-\ln 1.6-\sqrt{2}+\ln 2=0 & \text { M1 } \\
y=2.45 & \text { A1 } \\
\text { (M1) } \\
\text { A1 }
\end{array}
\]

\section*{Total [19 marks]}
4. (a) METHOD 1
\[
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin 4 x^{2}-\sin 9 x^{2}}{4 x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{\sin 4 x^{2}}{4 x^{2}}-\frac{9}{4} \lim _{x \rightarrow 0} \frac{\sin 9 x^{2}}{9 x^{2}} \\
& =1-\frac{9}{4} \times 1=-\frac{5}{4}
\end{aligned}
\]

M1

A1A1
A1

\section*{METHOD 2}
\[
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin 4 x^{2}-\sin 9 x^{2}}{4 x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{8 x \cos 4 x^{2}-18 x \cos 9 x^{2}}{8 x} \\
& =\frac{8-18}{8}=-\frac{10}{8}=-\frac{5}{4}
\end{aligned}
\]

\section*{Question 4 continued}
(b) \(\operatorname{since} \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{(2 n+1)}}{(2 n+1)!}\left(\right.\) or \(\left.\sin x=\frac{x}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots\right)\)
\[
\begin{align*}
& \sin x^{2}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2(2 n+1)}}{(2 n+1)!}\left(\text { or } \sin x=\frac{x^{2}}{1!}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\ldots\right)  \tag{MI}\\
& g(x)=\sin x^{2}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{(2 n+1)!}
\end{align*}
\]
(c) let \(I=\int_{0}^{1} \sin x^{2} d x\)
\[
\begin{aligned}
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!} \int_{0}^{1} x^{4 n+2} \mathrm{~d} x\left(\int_{0}^{1} \frac{x^{2}}{1!} \mathrm{d} x-\int_{0}^{1} \frac{x^{6}}{3!} \mathrm{d} x+\int_{0}^{1} \frac{x^{10}}{5!} \mathrm{d} x-\ldots\right) \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!} \frac{\left[x^{4 n+3}\right]_{0}^{1}}{(4 n+3)}\left(\left[\frac{x^{3}}{3 \times 1!}\right]_{0}^{1}-\left[\frac{x^{7}}{7 \times 3!}\right]_{0}^{1}+\left[\frac{x^{11}}{11 \times 5!}\right]_{0}^{1}-\ldots\right) \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)!(4 n+3)}\left(\frac{1}{3 \times 1!}-\frac{1}{7 \times 3!}+\frac{1}{11 \times 5!}-\ldots\right) \\
& =\sum_{n=0}^{\infty}(-1)^{n} a_{n} \text { where } a_{n}=\frac{1}{(4 n+3)(2 n+1)!}>0 \text { for all } n \in \mathbb{N}
\end{aligned}
\]
as \(\left\{a_{n}\right\}\) is decreasing the sum of the alternating series \(\sum_{n=0}^{\infty}(-1)^{n} a_{n}\)
lies between \(\sum_{n=0}^{N}(-1)^{n} a_{n}\) and \(\sum_{n=0}^{N}(-1)^{n} a_{n} \pm a_{N+1}\)
hence for four decimal place accuracy, we need \(\left|a_{N+1}\right|<0.00005\)
\begin{tabular}{|l|l|}
\hline\(N\) & \(\left|a_{N+1}\right|\) \\
\hline 1 & \(\frac{1}{11(5!)}=0.0000757576\) \\
\hline 2 & \(\frac{1}{15(7!)}=0.0000132275\) \\
\hline
\end{tabular}

\footnotetext{
since \(a_{2+1}<0.00005\)
so \(N=2\) (or 3 terms)
}
5. (a)


A1 for shape, \(\boldsymbol{A 1}\) for passing through origin A1A1
Note: Asymptotes not required.
(b) \(\quad p(x)=\underbrace{f(0)}_{a}+\underbrace{f^{\prime}(0)}_{b} x+\underbrace{\frac{f^{\prime \prime}(0)}{2!}}_{c} x^{2}+\underbrace{\frac{f^{(3)}(0)}{3!}}_{d} x^{3}+\ldots\)
(i) because the \(y\)-intercept of \(f\) is positive

R1
(ii) \(b=0\)
\(c \geq 0\)
Note: \(\boldsymbol{A 1}\) for \(>\) and \(\boldsymbol{A 1}\) for \(=\).
\[
d=0
\]
(c) as the graph has vertical asymptotes \(x= \pm k, k>0\),
the radius of convergence has an upper bound of \(k\)
A1
Note: Accept \(r<k\).
[2 marks]

\section*{MARKSCHEME}

\section*{May 2013}

\section*{MATHEMATICS SERIES AND DIFFERENTIAL EQUATIONS}

\section*{Higher Level}

\section*{Paper 3}

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
\(\boldsymbol{N} \quad\) Marks awarded for correct answers if no working shown.
\(\boldsymbol{A} \boldsymbol{G}\) Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{1 General}

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2013". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A 0}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

\section*{2 \\ Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M 0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M} \operatorname{mark}(\mathrm{s})\), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

\section*{\(N\) marks}

Award N marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{4 \\ Implied marks}

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer \(\boldsymbol{F T}\) marks.
- If the error leads to an inappropriate value ( \(e g \sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a mis-read. Then deduct the first of the marks to be awarded, even if this is an \(\mathbf{M}\) mark, but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (eg \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{\(7 \quad\) Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{8 \\ Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
\]

Award \(A 1\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for \(\boldsymbol{F T}\).

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
1. (a) let \(f(x)=\sqrt{x}, f(1)=1\)
(A1)
\[
\begin{align*}
& f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}, f^{\prime}(1)=\frac{1}{2}  \tag{A1}\\
& f^{\prime \prime}(x)=-\frac{1}{4} x^{-\frac{3}{2}}, f^{\prime \prime}(1)=-\frac{1}{4}  \tag{A1}\\
& f^{\prime \prime \prime}(x)=\frac{3}{8} x^{-\frac{5}{2}}, f^{\prime \prime \prime}(1)=\frac{3}{8}  \tag{A1}\\
& a_{1}=\frac{1}{2} \cdot \frac{1}{1!}, a_{2}=-\frac{1}{4} \cdot \frac{1}{2!}, a_{3}=\frac{3}{8} \cdot \frac{1}{3!} \\
& a_{0}=1, a_{1}=\frac{1}{2}, a_{2}=-\frac{1}{8}, a_{3}=\frac{1}{16}
\end{align*}
\]
(M1)
A1
Note: Accept \(y=1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\frac{1}{16}(x-1)^{3}+\ldots\)
(b) METHOD 1
\[
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1} & =\lim _{x \rightarrow 1} \frac{\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\ldots}{x-1} \\
& =\lim _{x \rightarrow 1}\left(\frac{1}{2}-\frac{1}{8}(x-1)+\ldots\right) \\
& =\frac{1}{2}
\end{aligned}
\]

M1

\section*{METHOD 2}
using l'Hôpital's rule,
M1
\[
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1} & =\lim _{x \rightarrow 1} \frac{\frac{1}{2} x^{-\frac{1}{2}}}{1} \\
& =\frac{1}{2}
\end{aligned}
\]

\section*{METHOD 3}
\(\frac{\sqrt{x}-1}{x+1}=\frac{1}{\sqrt{x}+1}\)
M1A1
\(\lim _{x \rightarrow 1} \frac{1}{\sqrt{x}+1}=\frac{1}{2}\)
2. (a) use of \(y \rightarrow y+\frac{h \mathrm{~d} y}{\mathrm{~d} x}\)
(M1)
\begin{tabular}{|c|c|c|c|}
\hline\(x\) & \(y\) & \(\frac{\mathrm{~d} y}{\mathrm{~d} x}\) & \(\frac{h \mathrm{~d} y}{\mathrm{~d} x}\) \\
\hline 0 & 2 & 1 & 0.1 \\
\hline 0.1 & 2.1 & 0.7793304775 & 0.07793304775 \\
\hline 0.2 & 2.17793304775 & 0.5190416116 & 0.05190416116 \\
\hline 0.3 & 2.229837209 & & \\
\hline
\end{tabular}

Note: \(\quad\) Award \(\boldsymbol{A 1}\) for \(y(0.1)\) and \(\boldsymbol{A 1}\) for \(y(0.2)\)
\(y(0.3)=2.23 \quad\) A2
[5 marks]
(b) (i) \(\mathrm{IF}=\mathrm{e}^{\left(\int \tan x d x\right)}\)

IF \(\left.=e^{\left(\int \frac{\sin x}{\cos x} \mathrm{x} x\right.}\right)\)
(M1)
(M1)
Note: Only one of the two (M1) above may be implied.
\(=\mathrm{e}^{(-\ln \cos x)}\left(\right.\) or \(\left.\mathrm{e}^{(\ln \sec x)}\right) \quad \boldsymbol{A 1}\)
(ii) multiplying by the IF
\(\sec x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y \sec x \tan x=\cos x\)
\(\frac{\mathrm{d}}{\mathrm{d} x}(y \sec x)=\cos x\)
(A1)
\(y \sec x=\sin x+c\)
A1A1
putting \(x=0, y=2 \Rightarrow c=2\) M1
\(y=\cos x(\sin x+2)\)

AI
[10 marks]
Total [15 marks]
3. (a) \(\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{2} x^{n+1}}{2^{n+1}}}{\frac{n^{2} x^{n}}{2^{n}}}\)
\(=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}} \times \frac{x}{2}\)
\(=\frac{x}{2}\left(\right.\) since \(\lim \rightarrow \frac{x}{2}\) as \(\left.n \rightarrow \infty\right)\)
the radius of convergence \(R\) is found by equating this limit to 1 , giving \(R=2\)
(b) when \(x=2\), the series is \(\sum n^{2}\) which is divergent because the terms do not converge to 0
when \(x=-2\), the series is \(\sum(-1)^{n} n^{2}\) which is divergent because the terms do not converge to 0R1
the interval of convergence is \(]-2,2[\)
A1
[3 marks]
(c) putting \(x=-0.1\),
for any correct partial sum
\(-0.05\)
\(-0.04\)
\(-0.041125\)
\(-0.041025\)
\(-0.0410328\)
A1)
the sum is -0.0410 correct to 3 significant figures
[4 marks]
4. (a) let \(\frac{1}{r(r+2)}=\frac{A}{r}+\frac{B}{r+2}=\frac{A(r+2)+B r}{r(r+2)}\)

> (MI)
\[
\begin{aligned}
& A=\frac{1}{2}, B=-\frac{1}{2} \\
& \left(\frac{1}{r(r+2)}=\frac{1}{2 r}-\frac{1}{2(r+2)}\right)
\end{aligned}
\]
A1A1
(b) (i) attempt to sum using partial fractions

\section*{(M1)}
\[
\begin{array}{llll}
S_{n}=\frac{1}{2} & & & \\
& & -\frac{1}{6} & \\
& +\frac{1}{4} & &  \tag{A1}\\
& & -\frac{1}{8} & \\
& & & -\frac{1}{6}
\end{array}
\]
\[
+\frac{1}{2(n-1)} \quad-\frac{1}{2(n+1)}
\]
\[
\begin{equation*}
+\frac{1}{2 n} \quad-\frac{1}{2(n+2)} \tag{A1}
\end{equation*}
\]
\[
=\frac{3}{4}-\frac{1}{2(n+1)}-\frac{1}{2(n+2)}
\]
(M1)A1
\[
=\frac{3(n+1)(n+2)-2(n+2)-2(n+1)}{4(n+1)(n+2)}
\]

Note: Award \(\boldsymbol{A 1}\) for alternative intermediate steps.
\[
\begin{aligned}
& S_{n}=\frac{3 n^{2}+5 n}{4(n+1)(n+2)} \\
& (a=3, b=5)
\end{aligned}
\]
(ii) \(\lim _{n \rightarrow \infty} S_{n}=\frac{3}{4}\)

A1
[8 marks]
Total [11 marks]
5. (a) (i) the area under the curve between \(a-1\) and \(a+1\)
\(=\int_{a-1}^{a+1} \frac{\mathrm{~d} x}{x}\)
M1
\(=[\ln x]_{a-1}^{a+1}\)
A1
\(=\ln \left(\frac{a+1}{a-1}\right)\) A1
lower sum \(=\frac{1}{a}+\frac{1}{a+1}\) M1A1
\[
=\frac{2 a+1}{a(a+1)}
\]
upper sum \(=\frac{1}{a-1}+\frac{1}{a}\) A1
\[
=\frac{2 a-1}{a(a-1)}
\]
it follows that
\(\frac{2 a+1}{a(a+1)}<\ln \left(\frac{a+1}{a-1}\right)<\frac{2 a-1}{a(a-1)}\)
because the area of the region under the curve lies between the areas of the regions defined by the lower and upper sums
(ii) putting
\(\left(\frac{a+1}{a-1}=1.2\right) \Rightarrow a=11\)
A1
therefore, \(\mathrm{UB}=\frac{21}{110}(=0.191), \mathrm{LB}=\frac{23}{132}(=0.174)\)

\section*{Question 5 continued}
(b) (i) the area under the curve between \(a-1\) and \(a\)
\(=\int_{a-1}^{a} \frac{\mathrm{~d} x}{x}\)
\(=[\ln x]_{a-1}^{a}=\ln \left(\frac{a}{a-1}\right)\)
attempt to find area of trapezium M1
area of trapezoidal "upper sum" \(=\frac{1}{2}\left(\frac{1}{a-1}+\frac{1}{a}\right)\) or equivalent A1
\(=\frac{2 a-1}{2 a(a-1)}\)
it follows that \(\ln \left(\frac{a}{a-1}\right)<\frac{2 a-1}{2 a(a-1)}\)
\[
A G
\]
(ii) putting
\(\left(\frac{a}{a-1}=1.2\right) \Rightarrow a=6\)
A1
therefore, \(\mathrm{UB}=\frac{11}{60}(=0.183)\)

\section*{MARKSCHEME}

\section*{November 2012}

\section*{MATHEMATICS SERIES AND DIFFERENTIAL EQUATIONS}

\section*{Higher Level}

\section*{Paper 3}

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
\(\boldsymbol{N} \quad\) Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{1 General}

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2012". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp A0 by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

\section*{Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M} \mathbf{0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A}\) mark(s) depend on the preceding \(\boldsymbol{M}\) mark(s), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, e.g. M1A1, this usually means \(\boldsymbol{M 1}\) for an attempt to use an appropriate method (e.g. substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

\section*{\(N\) marks}

Award \(N\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{5 Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer \(\boldsymbol{F T}\) marks.
- If the error leads to an inappropriate value \((e . g \cdot \sin \theta=1.5)\), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{Mis-read}

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a mis-read. Then deduct the first of the marks to be awarded, even if this is an mark, but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (e.g. \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{\(7 \quad\) Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{8 \\ Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
\]

Award \(\mathbf{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
1. (a) \(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{x} \Rightarrow \int \frac{1}{y} \mathrm{~d} y=\int \frac{1}{x} \mathrm{~d} x\)
\(\Rightarrow \ln y=\ln x+c\)
M1
\(\Rightarrow \ln y=\ln x+\ln k=\ln k x\)
\(\Rightarrow y=k x\)
A1
[3 marks]
(b) \(\quad y=v x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}\)
so \(v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=v\)
M1
\(\Rightarrow x \frac{\mathrm{~d} v}{\mathrm{~d} x}=0 \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} x}=0(\) as \(x \neq 0)\)
\(\Rightarrow v=k\)
\(\Rightarrow \frac{y}{x}=k \quad(\Rightarrow y=k x)\)
A1
[4 marks]
(c) \(\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{-1}{x}\right) y=0\)

IF \(=\mathrm{e}^{\int \frac{-1}{x} \mathrm{dx}}=\mathrm{e}^{-\ln x}=\frac{1}{x}\)
\(x^{-1} \frac{\mathrm{~d} y}{\mathrm{~d} x}-x^{-2} y=0\)
\(\Rightarrow \frac{\mathrm{d}\left[x^{-1} y\right]}{\mathrm{d} x}=0\)
\(\Rightarrow x^{-1} y=k(\Rightarrow y=k x)\)
(d) \(20=2 k \Rightarrow k=10\) so \(y(5)=10 \times 5=50\)
(M1)

M1A1
(M1)
A1
[5 marks]
A1
[1 mark]
Total [13 marks]
2. (a) using \(x_{0}=1, y_{0}=1\)
\[
x_{n}=1+0.1 n, y_{n+1}=y_{n}+0.1 \sqrt{x_{n}+y_{n}}
\]

Note: If they have not written down formulae but have \(x_{1}=1.1\) and \(y_{1}=1.14142 \ldots\) award M1M1A1.
gives by GDC \(x_{10}=2, y_{10}=2.770114792 \ldots\)
(M1)(A1)
so \(a \simeq 2.7701\) (4dp)
Note: Do not penalize over-accuracy.
(b)


Note: Award A1 for scales, A1 for 2 points correctly plotted, A1 for other 2 points correctly plotted (second and third \(\boldsymbol{A 1}\) dependent on the first being correct).
(c) suitable line of best fit placed on graph
(d) letting \(h \rightarrow 0\) we approach the \(y\) intercept on the graph so \(c \simeq 2.814\) ( 3 dp )

A1
[1 mark]
(R1)
A1
Note: Accept 2.815.
3. (a) \(\lim _{H \rightarrow \infty} \int_{a}^{H} \frac{1}{x^{2}} \mathrm{~d} x=\lim _{H \rightarrow \infty}\left[\frac{-1}{x}\right]_{a}^{H}\)
\(=\lim _{H \rightarrow \infty}\left(\frac{-1}{H}+\frac{1}{a}\right)\)
\(=\frac{1}{a}\)
A1

A1

A1
[3 marks]
(b) as \(\left\{\frac{1}{n^{2}}\right\}\) is a positive decreasing sequence we consider the function \(\frac{1}{x^{2}}\) we look at \(\int_{1}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x\) M1
\(\int_{1}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x=1\)
A1
since this is finite (allow "limit exists" or equivalent statement) R1 \(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\) converges AG
[3 marks]
(c) (i)

attempt to shade rectangles M1
correct start and finish points for rectangles A1
since the area shaded is less that the area of the required staircase we have R1
\[
\sum_{n=1}^{k} \frac{1}{n^{2}}+\int_{k+1}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x<L
\]

\section*{Question 3 continued}
(ii)

attempt to shade rectangles
M1
correct start and finish points for rectangles
A1
since the area shaded is greater that the area of the
required staircase we have
R1
\(L<\sum_{n=1}^{k} \frac{1}{n^{2}}+\int_{k}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x\)
Note: Alternative shading and rearranging of the inequality is acceptable.
(d) \(\int_{k+1}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x=\frac{1}{k+1}, \int_{k}^{\infty} \frac{1}{x^{2}} \mathrm{~d} x=\frac{1}{k}\)
\(\sum_{n=1}^{k} \frac{1}{n^{2}}+\frac{1}{k+1}<L<\sum_{n=1}^{k} \frac{1}{n^{2}}+\frac{1}{k}\)
A1A1

AG
[2 marks]
(e) \(\frac{205}{144}+\frac{1}{5}<\frac{\pi^{2}}{6}<\frac{205}{144}+\frac{1}{4}\left(1.6236 \ldots<\frac{\pi^{2}}{6}<1.6736 \ldots\right)\)
\(\sqrt{6\left(\frac{205}{144}+\frac{1}{5}\right)}<\pi<\sqrt{6\left(\frac{205}{144}+\frac{1}{4}\right)}\)
\(3.12<\pi<3.17\)

A1
(M1)
A1

\section*{[3 marks]}
4. (a) apply the limit comparison test with \(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\)
\(\lim _{n \rightarrow \infty} \frac{\frac{1}{n(n+1)}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n(n+1)}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=1\)
(since the limit is finite and \(\neq 0\) ) both series do the same
we know that \(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\) converges and hence \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}\) also converges
(b) \(\frac{1}{n(n+1)} \equiv \frac{A}{n}+\frac{B}{n+1} \Rightarrow 1 \equiv A(n+1)+B n\)
putting \(n=0 \Rightarrow A=1\) and putting \(n=-1 \Rightarrow B=-1\)
giving \(\frac{1}{n(n+1)} \equiv \frac{1}{n}+\frac{-1}{n+1}\)
\(\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5} \ldots\)
\(=1\)
A1
[4 marks]
(c) \(\quad(1+x) \ln (1+x)=(1+x)\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4} \cdots\right)\)

A1
\(=\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4} \ldots\right)+\left(x^{2}-\frac{x^{3}}{2}+\frac{x^{4}}{3}-\frac{x^{5}}{4} \ldots\right)\)

\section*{EITHER}
\(=x+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n+1}}{n+1}+\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n+1}}{n}\)
A1
\(=x+\sum_{n=1}^{\infty}(-1)^{n+1} x^{n+1}\left(\frac{-1}{n+1}+\frac{1}{n}\right)\)
OR
\(x+\left(1-\frac{1}{2}\right) x^{2}-\left(\frac{1}{2}-\frac{1}{3}\right) x^{3}+\left(\frac{1}{3}-\frac{1}{4}\right) x^{4}-\ldots\)
\(=x+\sum_{n=1}^{\infty}(-1)^{n+1} x^{n+1}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=x+\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n+1}}{n(n+1)}\)

A1

M1

AG
[3 marks] continued ...

\section*{Question 4 continued}
\[
\text { (d) } \quad \lim _{x \rightarrow-1}(1+x) \ln (1+x)=-1+\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=-1+1=0
\]

M1A1
[2 marks]
(e) \(\lim _{x \rightarrow 0} x \ln x=0\) (replacing \(1+x\) with \(x\) ) A1 [1 mark]
(f) \(x^{x}=\mathrm{e}^{x \ln x}\)
therefore \(\lim _{x \rightarrow 0} x^{x}=\lim _{x \rightarrow 0} \mathrm{e}^{x \ln x}=\mathrm{e}^{0}=1\) M1
M1A1
[3 marks]
Total [18 marks]

\section*{MARKSCHEME}

\section*{May 2012}

\section*{MATHEMATICS SERIES AND DIFFERENTIAL EQUATIONS}

\section*{Higher Level}

\section*{Paper 3}

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
\(\boldsymbol{N} \quad\) Marks awarded for correct answers if no working shown.
\(\boldsymbol{A} \boldsymbol{G}\) Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{1 General}

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2012". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp \(\boldsymbol{A 0}\) by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

\section*{2 Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M 0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A} \operatorname{mark}(\mathrm{s})\) depend on the preceding \(\boldsymbol{M} \operatorname{mark}(\mathrm{s})\), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, e.g. M1A1, this usually means \(\boldsymbol{M 1}\) for an attempt to use an appropriate method (e.g. substitution into a formula) and \(\boldsymbol{A 1}\) for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

\section*{\(N\) marks}

Award \(\boldsymbol{N}\) marks for correct answers where there is no working.
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{4 \\ Implied marks}

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer \(\boldsymbol{F T}\) marks.
- If the error leads to an inappropriate value \((e . g \cdot \sin \theta=1.5)\), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

\section*{Mis-read}

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an Mark, but award all others so that the candidate only loses one mark.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value (e.g. \(\sin \theta=1.5\) ), do not award the mark(s) for the final answer(s).

\section*{\(7 \quad\) Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

\section*{8 \\ Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
\]

Award \(A 1\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for \(\boldsymbol{F T}\).

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 3, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
1. apply l'Hôpital's Rule to a \(0 / 0\) type limit
\(\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-1-x \cos x}{\sin ^{2} x}=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-\cos x+x \sin x}{2 \sin x \cos x}\)
M1A1
noting this is also a \(0 / 0\) type limit, apply l'Hôpital's Rule again
obtain \(\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}+\sin x+x \cos x+\sin x}{2 \cos 2 x}\)
substitution of \(x=0\)
\(=0.5\)
2. (a) attempt the first step of
\(y_{n+1}=y_{n}+(0.1) f\left(x_{n}, y_{n}\right)\) with \(y_{0}=1, x_{0}=0\)
(M1)
\(y_{1}=1.1\)
\(y_{2}=1.1+(0.1) \frac{1.1^{2}}{1.1}=1.21\)
(M1)A1
\(y_{3}=1.332(0)\)
\(y_{4}=1.4685\)
\(y_{5}=1.62\)
(b) (i) recognition of both quotient rule and implicit differentiation
\[
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{(1+x) 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-y^{2} \times 1}{(1+x)^{2}}
\]

Note: Award \(\boldsymbol{A 1}\) for first term in numerator, \(\boldsymbol{A} \mathbf{1}\) for everything else correct.
\[
\begin{aligned}
& =\frac{(1+x) 2 y \frac{y^{2}}{1+x}-y^{2} \times 1}{(1+x)^{2}} \\
& =\frac{2 y^{3}-y^{2}}{(1+x)^{2}}
\end{aligned}
\]

M1A1

Note: Award \(\boldsymbol{A} \mathbf{1}\) for correct evaluation of \(y(0), \frac{d y}{d x}(0), \frac{d^{2} y}{d x^{2}}(0), \boldsymbol{A} \mathbf{1}\) for correct series.

\section*{Question 2 continued}
(c) (i) separating the variables \(\int \frac{1}{y^{2}} \mathrm{~d} y=\int \frac{1}{1+x} \mathrm{~d} x\)

M1
obtain \(-\frac{1}{y}=\ln (1+x)+(c)\)
A1
impose initial condition \(-1=\ln 1+c \quad\) M1
obtain \(y=\frac{1}{1-\ln (1+x)}\) A1
(ii) \(\quad y \rightarrow \infty\) if \(\ln (1+x) \rightarrow 1\), so \(a=\mathrm{e}-1\)
(M1)A1
Note: To award A1 must see either \(x \rightarrow e-1\) or \(a=e-1\). Do not accept \(x=e-1\).
[6 marks]

\section*{Total [21 marks]}
3. recognise equation as first order linear and attempt to find the IF M1 \(\mathrm{IF}=\mathrm{e}^{\int \frac{2}{t} \mathrm{~d} t}=t^{2}\) A1
solution \(y t^{2}=\int t \cos t \mathrm{~d} t\)
using integration by parts with the correct choice of \(u\) and \(v\)
\(\int t \cos t \mathrm{~d} t=t \sin t+\cos t(+C)\)
obtain \(y=\frac{\sin t}{t}+\frac{\cos t+C}{t^{2}}\)
4. (a) \(u_{n}=\frac{3+\frac{2}{n}}{2-\frac{1}{n}}\) or \(\frac{3}{2}+\frac{A}{2 n-1}\)
using \(\lim _{n \rightarrow \infty} \frac{1}{n}=0\)
(M1)
obtain \(\lim _{n \rightarrow \infty} u_{n}=\frac{3}{2}=L\)
(b) \(\quad u_{n}-L=\frac{7}{2(2 n-1)}\)
\(\left|u_{n}-L\right|<\varepsilon \Rightarrow n>\frac{1}{2}\left(1+\frac{7}{2 \varepsilon}\right)\)
(M1)
(i) \(\varepsilon=0.1 \Rightarrow N=18\)
(ii) \(\varepsilon=0.00001 \Rightarrow N=175000\)

A1
[4 marks]
(c) \(\quad u_{n} \rightarrow L\) and \(\frac{1}{n} \rightarrow 0\)

M1
\(\Rightarrow \frac{u_{n}}{n} \rightarrow(L \times 0)=0\), hence converges
A1
\(2 u_{n}-2 \rightarrow 2 L-2=1 \Rightarrow \frac{1}{2 u_{n}-2} \rightarrow 1\), hence converges
Note: To award \(\boldsymbol{A 1}\) the value of the limit and a statement of convergence must be clearly seen for each sequence.
\((-1)^{n} u_{n}\) does not converge
The sequence alternates (or equivalent wording) between values close to \(\pm L\)
(d) \(\quad u_{n}-L>\frac{7}{4 n}\) (re: harmonic sequence)
\(\Rightarrow \sum_{n=1}^{\infty}\left(u_{n}-L\right)\) diverges by the comparison theorem
Note: Accept alternative methods.
5. (a) consider the limit as \(R \rightarrow \infty\) of the (proper) integral
\(\int_{2}^{R} \frac{\mathrm{~d} x}{x(\ln x)^{k}}\)
substitute \(u=\ln x, \mathrm{~d} u=\frac{1}{x} \mathrm{~d} x\)
(M1)
obtain \(\int_{\ln 2}^{\ln R} \frac{1}{u^{k}} \mathrm{~d} u=\left[-\frac{1}{k-1} \frac{1}{u^{k-1}}\right]_{\ln 2}^{\ln R}\)
A1

Note: Ignore incorrect limits or omission of limits at this stage.
or \([\ln u]_{\ln 2}^{\ln R}\) if \(k=1\)
A1
Note: Ignore incorrect limits or omission of limits at this stage.
because \(\ln R(\) and \(\ln \ln R) \rightarrow \infty\) as \(R \rightarrow \infty\) converges in the limit if \(k>1\)
(M1)
[6 marks]
(b) C: terms \(\rightarrow 0\) as \(r \rightarrow \infty\)

A1
\(\left|u_{r+1}\right|<\left|u_{r}\right|\) for all \(r\)
A1
convergence by alternating series test R1
\(\mathrm{AC}:(x \ln x)^{-1}\) is positive and decreasing on \([2, \infty) \quad \boldsymbol{A 1}\)
not absolutely convergent by integral test using part (a) for \(k=1\)

R1
[5 marks]
Total [11 marks]

\section*{MARKSCHEME}

\section*{November 2011}

\section*{MATHEMATICS SERIES AND DIFFERENTIAL EQUATIONS}

\section*{Higher Level}

\section*{Paper 3}

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

\section*{Instructions to Examiners}

\section*{Abbreviations}

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \(\boldsymbol{M}\) marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\(\boldsymbol{R} \quad\) Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
\(\boldsymbol{A} \boldsymbol{G}\) Answer given in the question and so no marks are awarded.

\section*{Using the markscheme}

\section*{1 General}

Write the marks in red on candidates' scripts, in the right hand margin.
- Show the breakdown of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each question (at the end of the question) and circle it.

\section*{2 Method and Answer/Accuracy marks}
- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award \(\boldsymbol{M 0}\) followed by \(\boldsymbol{A 1}\), as \(\boldsymbol{A} \operatorname{mark}(\mathrm{s})\) depend on the preceding \(\boldsymbol{M} \operatorname{mark}(\mathrm{s})\), if any.
- Where \(\boldsymbol{M}\) and \(\boldsymbol{A}\) marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and \(\boldsymbol{A l}\) for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

\section*{\(3 \quad N\) marks}

\section*{Award \(\boldsymbol{N}\) marks for correct answers where there is no working.}
- Do not award a mixture of \(\boldsymbol{N}\) and other marks.
- There may be fewer \(\boldsymbol{N}\) marks available than the total of \(\boldsymbol{M}, \boldsymbol{A}\) and \(\boldsymbol{R}\) marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

\section*{Implied marks}

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.
- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

\section*{5 Follow through marks}

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.
- If the question becomes much simpler because of an error then use discretion to award fewer \(\boldsymbol{F T}\) marks.
- If the error leads to an inappropriate value (e.g. \(\sin \theta=1.5\) ), do not award the \(\operatorname{mark}(\mathrm{s})\) for the final answer(s).
- Within a question part, once an error is made, no further dependent \(\boldsymbol{A}\) marks can be awarded, but \(\boldsymbol{M}\) marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then write \(-1(\mathbf{M R})\) next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.
- If the question becomes much simpler because of the \(\boldsymbol{M R}\), then use discretion to award fewer marks.
- If the \(\boldsymbol{M R}\) leads to an inappropriate value \((e . g \cdot \sin \theta=1.5)\), do not award the mark(s) for the final answer(s).

\section*{\(7 \quad\) Discretionary marks (d)}

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief note written next to the mark explaining this decision.

\section*{8 Alternative methods}

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.
- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

\section*{9 Alternative forms}

Unless the question specifies otherwise, accept equivalent forms.
- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).
Example: for differentiating \(f(x)=2 \sin (5 x-3)\), the markscheme gives:
\[
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
\]

Award \(\boldsymbol{A 1}\) for \((2 \cos (5 x-3)) 5\), even if \(10 \cos (5 x-3)\) is not seen.

\section*{10 Accuracy of Answers}

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for \(\boldsymbol{F T}\).

\section*{11 Crossed out work}

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

\section*{12 Calculators}

A GDC is required for paper 3, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

\section*{Calculator notation}

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

\section*{13 More than one solution}

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.
1. using l'Hôpital's Rule
(M1)
\[
\begin{aligned}
\lim _{x \rightarrow \frac{1}{2}}\left(\frac{\left(\frac{1}{4}-x^{2}\right)}{\cot \pi x}\right) & =\lim _{x \rightarrow \frac{1}{2}}\left[\frac{-2 x}{-\pi \operatorname{cosec}^{2} \pi x}\right] \\
& =\frac{-1}{-\pi \operatorname{cosec}^{2} \frac{\pi}{2}}=\frac{1}{\pi}
\end{aligned}
\]
2. (a) for \(n \geq 1, n\) ! \(=n(n-1)(n-2) \ldots 3 \times 2 \times 1 \geq 2 \times 2 \times 2 \ldots 2 \times 2 \times 1=2^{n-1}\)

M1A1
\(A G\)
[2 marks]
(b) \(n!\geq 2^{n-1} \Rightarrow \frac{1}{n!} \leq \frac{1}{2^{n-1}}\) for \(n \geq 1\)

A1
\(\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}\) is a positive converging geometric series R1
hence \(\sum_{n=1}^{\infty} \frac{1}{n!}\) converges by the comparison test R1
[3 marks]
Total [5 marks]
3. (a) using the ratio test (and absolute convergence implies convergence)
(M1)
\[
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1} x^{n+1}}{(n+1) 2^{n+1}}}{\frac{(-1)^{n} x^{n}}{(n) 2^{n}}}\right|
\]

Note: Award \(\boldsymbol{A 1}\) for numerator, \(\boldsymbol{A 1}\) for denominator.
\[
\begin{align*}
& =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} \times x^{n+1} \times n \times 2^{n}}{(-1)^{n} \times(n+1) \times 2^{n+1} \times x^{n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{n}{2(n+1)}|x|  \tag{A1}\\
& =\frac{|x|}{2}
\end{align*}
\]
for convergence we require \(\frac{|x|}{2}<1\)
\(\Rightarrow|x|<2\)
hence radius of convergence is 2

\section*{A1}
[7 marks]
(M1)
when \(x=2\) we have \(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}\) which is convergent (by the alternating series test) AI when \(x=-2\) we have \(\sum_{n=1}^{\infty} \frac{1}{n}\) which is divergent hence interval of convergence is ]-2, 2]
4. (a) \(\int \frac{1}{4 x^{2}+1} \mathrm{~d} x=\frac{1}{2} \arctan 2 x+k\)
(M1)(A1)
Note: Do not penalize the absence of " \(+k\) ".
\[
\int_{1}^{\infty} \frac{1}{4 x^{2}+1} \mathrm{~d} x=\frac{1}{2} \lim _{a \rightarrow \infty}[\arctan 2 x]_{1}^{a}
\]

Note: Accept \(\frac{1}{2}[\arctan 2 x]_{1}^{\infty}\).
\[
=\frac{1}{2}\left(\frac{\pi}{2}-\arctan 2\right)(=0.232)
\]

A1
AG
[4 marks]
(b) (i)


The shaded rectangles lie within the area below the graph so that \(\sum_{n=2}^{\infty} \frac{1}{4 n^{2}+1}<\int_{1}^{\infty} \frac{1}{4 x^{2}+1} \mathrm{~d} x\). Adding the first term in the series,
\[
\frac{1}{4 \times 1^{2}+1} \text {, gives } \sum_{n=1}^{\infty} \frac{1}{4 n^{2}+1}<\frac{1}{4 \times 1^{2}+1}+\int_{1}^{\infty} \frac{1}{4 x^{2}+1} \mathrm{~d} x .
\]
(ii) upper bound \(=\frac{1}{5}+\frac{1}{2}\left(\frac{\pi}{2}-\arctan 2\right)(=0.432)\)
5. (a) METHOD 1
\[
\begin{align*}
& y=\ln \left(\frac{1+\mathrm{e}^{-x}}{2}\right) \\
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 \mathrm{e}^{-x}}{2\left(1+\mathrm{e}^{-x}\right)}=\frac{-\mathrm{e}^{-x}}{1+\mathrm{e}^{-x}} \\
& \text { now } \frac{1+\mathrm{e}^{-x}}{2}=\mathrm{e}^{y} \\
& \Rightarrow 1+\mathrm{e}^{-x}=2 \mathrm{e}^{y} \\
& \Rightarrow \mathrm{e}^{-x}=2 \mathrm{e}^{y}-1  \tag{A1}\\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{-2 \mathrm{e}^{y}+1}{2 \mathrm{e}^{y}} \tag{A1}
\end{align*}
\]

Note: Only one of the two above A1 marks may be implied.
\[
\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{e}^{-y}}{2}-1
\]

Note: Candidates may find \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) as a function of x and then work backwards from the given answer. Award full marks if done correctly

\section*{METHOD 2}
\[
\begin{aligned}
& y=\ln \left(\frac{1+\mathrm{e}^{-x}}{2}\right) \\
& \Rightarrow e^{y}=\frac{1+e^{-x}}{2} \\
& \Rightarrow e^{-x}=2 e^{y}-1 \\
& \Rightarrow x=-\ln \left(2 e^{y}-1\right) \\
& \Rightarrow \frac{d x}{d y}=-\frac{1}{2 e^{y}-1} \times 2 e^{y} \\
& \Rightarrow \frac{d y}{d x}=\frac{2 e^{y}-1}{-2 e^{y}} \\
& \Rightarrow \frac{d y}{d x}=\frac{\mathrm{e}^{-y}}{2}-1
\end{aligned}
\]
(b)

METHOD 1
when \(x=0, y=\ln 1=0\)
A1
when \(x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2}-1=-\frac{1}{2}\)
\(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{\mathrm{e}^{-y}}{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}\)
when \(x=0, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}\)
\(\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=\frac{\mathrm{e}^{-y}}{2}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}-\frac{\mathrm{e}^{-y}}{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\)

M1A1A1

A1
(M1)A1
\(A G\)

\section*{METHOD 2}
when \(x=0, y=\ln 1=0\)
A1
when \(x=0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2}-1=-\frac{1}{2}\)
when \(x=0, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}\)
when \(x=0, \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}=-\frac{1}{2} \times\left(\frac{1}{2}-\frac{1}{2}\right)=0\)
\(y=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}\)
\(\Rightarrow y=0-\frac{1}{2} x+\frac{1}{8} x^{2}+0 x^{3}+\ldots\)
(M1)A1
\(A G\)
[11 marks]
Total [16 marks]
6. \((x+y) \frac{\mathrm{d} y}{\mathrm{~d} x}+(x-y)=0\)
\[
\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y-x}{x+y}
\]
let \(y=v x\)
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}\)
\(v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{v x-x}{x+v x}\)
\(x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{v-1}{v+1}-v=\frac{v-1-v^{2}-v}{v+1}=\frac{-1-v^{2}}{1+v}\)
\(\int \frac{v+1}{1+v^{2}} \mathrm{~d} v=-\int \frac{1}{x} \mathrm{~d} x\)
\(\int \frac{v}{1+v^{2}} \mathrm{~d} v+\int \frac{1}{1+v^{2}} \mathrm{~d} v=-\int \frac{1}{x} \mathrm{~d} x\)
\(\Rightarrow \frac{1}{2} \ln \left|1+v^{2}\right|+\arctan v=-\ln |x|+k\)
Notes: Award \(\boldsymbol{A} \mathbf{1}\) for \(\frac{1}{2} \ln \left|1+v^{2}\right|, \boldsymbol{A} 1\) for the other two terms.
Do not penalize missing \(k\) or missing modulus signs at this stage.
\(\Rightarrow \frac{1}{2} \ln \left|1+\frac{y^{2}}{x^{2}}\right|+\arctan \frac{y}{x}=-\ln |x|+k\)
\(\Rightarrow \frac{1}{2} \ln 4+\arctan \sqrt{3}=-\ln 1+k\)
\(\Rightarrow k=\ln 2+\frac{\pi}{3}\)
\(\Rightarrow \frac{1}{2} \ln \left|1+\frac{y^{2}}{x^{2}}\right|+\arctan \frac{y}{x}=-\ln |x|+\ln 2+\frac{\pi}{3}\)
attempt to combine logarithms
\(\Rightarrow \frac{1}{2} \ln \left|\frac{y^{2}+x^{2}}{x^{2}}\right|+\frac{1}{2} \ln \left|x^{2}\right|=\ln 2+\frac{\pi}{3}-\arctan \frac{y}{x}\)
\(\Rightarrow \frac{1}{2} \ln \left|y^{2}+x^{2}\right|=\ln 2+\frac{\pi}{3}-\arctan \frac{y}{x}\)
\(\Rightarrow \sqrt{y^{2}+x^{2}}=\mathrm{e}^{\ln 2+\frac{\pi}{3}-\arctan \frac{y}{x}}\)
\(\Rightarrow \sqrt{y^{2}+x^{2}}=\mathrm{e}^{\ln 2} \times \mathrm{e}^{\frac{\pi}{3}-\arctan \frac{y}{x}}\)
\(\Rightarrow r=2 \mathrm{e}^{\frac{\pi}{3}-\theta}\)```

