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Please start each question on a new page. Full marks are not necessarily awarded for a correct answer 
with no working. Answers must be supported by working and/or explanations. In particular, solutions 
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incorrect, some marks may be given for a correct method, provided this is shown by written working.  
You are therefore advised to show all working.

1.	 [Maximum mark:  7]

Peter, the Principal of a college, believes that there is an association between the score in a 
Mathematics test,  X , and the time taken to run 500 m,  Y  seconds, of his students. 
The following paired data are collected.

Mathematics test score  X 70 75 76 66 60 61
Time taken to run 500 m  Y 100 105 95 109 89 101

It can be assumed that  (X , Y )  follow a bivariate normal distribution with product moment 
correlation coefficient  ρ .

(a)	 (i)	 State suitable hypotheses  H0  and  H1  to test Peter’s claim, using a two-tailed test.

(ii)	 Carry out a suitable test at the 5 % significance level. With reference to the 
p-value, state your conclusion in the context of Peter’s claim.� [5]

(b)	 Peter uses the regression line of  y  on  x  as  y = 0.248x + 83.0  and calculates that a 
student with a Mathematics test score of 73 will have a running time of 101 seconds. 
Comment on the validity of his calculation.� [2]

2.	 [Maximum mark:  15]

(a)	 Three independent random variables  X1 , X2 , X3  are taken from a distribution with 
mean  µ  and variance  σ 2 . Three estimators are proposed for  µ .
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(i)	 Show that one of these estimators for  µ  is biased and show that the other two 
are unbiased.

(ii)	 For the two unbiased estimators, determine, with a reason, which one is more 
efficient.� [9]

(b)	 Consider the random variable  Y , which follows a negative binomial distribution   
Y ~ NB (4 , p) . A random sample is taken from this distribution and the mean is denoted 
by  Y  .

(i)	 Find  E (Y ) .

(ii)	 Hence suggest an unbiased estimator for 
1
p

 in terms of Y .� [2]

(This question continues on the following page)
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(Question 2 continued)

(c)	 A discrete random variable  W  has a probability distribution given by the following table.

w 1 2
P (W = w) 0.5 0.5

(i)	 Calculate  E (W ) .

(ii)	 Calculate E
1

W
�
�
�

�
�
� .

(iii)	 Hence explain why your estimator for 
1
p

 in (b)(ii) does not directly suggest an 

unbiased estimator for  p .� [4]

3.	 [Maximum mark:  14]

(a)	 State the central limit theorem as applied to a random sample of size  n , taken from a 
distribution with mean  µ  and variance  σ 2 .� [2]

A random variable  X  has a distribution with mean  µ  and variance 4. A random sample of 
size 100 is to be taken from the distribution of  X .

(b)	 Jack takes a random sample of size 100 and calculates that x = 60 2. . Find an 
approximate 90 % confidence interval for  µ .� [2]

(c)	 Josie takes a different random sample of size 100 to test the null hypothesis that  
µ = 60  against the alternative hypothesis that  µ > 60  at the 5 % level.

(i)	 Find the critical region for Josie’s test, giving your answer correct to two decimal 
places.

(ii)	 Write down the probability that Josie makes a Type I error.

(iii)	 Given that the probability that Josie makes a Type II error is 0.25, find the value 
of  µ , giving your answer correct to three significant figures.� [10]

Turn over

N19/5/MATHL/HP3/ENG/TZ0/SP– 3 –



4.	 [Maximum mark:  14]

Consider the random variable  X , which follows a negative binomial distribution   
X ~ NB (r , p) . The probability generating function for  X  is given by

 G t p t
qtX

r r

r( )
( )

�
�1

, where  q = 1 - p .

(a)	 Use this probability generating function to find and simplify  E (X ) .� [5]

Consider another independent random variable  Y , where  Y ~ NB (s , p) . 
Let  W = X + Y .

(b)	 (i)	 Find the probability generating function for  W .

(ii)	 Hence identify the distribution that  W  follows and state its parameters.

(iii)	 Given that  r = 2  and  s = 3 , calculate  P (X = 3 | W = 7) .� [9]

�
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Please start each question on a new page. Full marks are not necessarily awarded for a correct answer 
with no working. Answers must be supported by working and/or explanations. In particular, solutions 
found from a graphic display calculator should be supported by suitable working. For example, if 
graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is 
incorrect, some marks may be given for a correct method, provided this is shown by written working.  
You are therefore advised to show all working.

1.	 [Maximum mark:  16]

The continuous random variable  X  has a probability density function given by

f x
kx
kx

x
x( ) =









≤ <
≤ ≤2

0

0 1

1 2

  

  

  otherwise

.

(a)	 Show that k =
6

17
.� [4]

(b)	 Find the cumulative distribution function of  X .� [6]

(c)	 Find the median,  m , of  X .� [3]

(d)	 Find  P (| X - m | < 0.75) .� [3]

2.	 [Maximum mark:  12]

Employees answer the telephone in a customer relations department. The time taken for an 
employee to deal with a customer is a random variable which can be modelled by a normal 
distribution with mean 150 seconds and standard deviation 45 seconds.

(a)	 Find the probability that the time taken for a randomly chosen customer to be dealt with 
by an employee is greater than 180 seconds.� [2]

(b)	 Find the probability that the time taken by an employee to deal with a queue of three 
customers is less than nine minutes.� [4]

At the start of the day, one employee, Amanda, has a queue of four customers. A second 
employee, Brian, has a queue of three customers. You may assume they work independently.

(c)	 Find the probability that Amanda’s queue will be dealt with before Brian’s queue.� [6]
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3.	 [Maximum mark:  10]

In a large population of hens, the weight of a hen is normally distributed with mean  µ kg  
and standard deviation  σ kg. A random sample of 100 hens is taken from the population.  
The mean weight for the sample is denoted by X .

(a)	 State the distribution of X  giving its mean and variance.� [1]

The sample values are summarized by x∑ =199 8.  and x∑ =
2

407 8.  where  x kg is the 
weight of a hen.

(b)	 Find an unbiased estimate for  µ .� [1]

(c)	 Find an unbiased estimate for  σ 2 .� [2]

(d)	 Find a 90 % confidence interval for  µ .� [3]

(e)	 It is found that  σ = 0.27 . It is decided to test, at the 1 % level of significance, the null 
hypothesis  µ = 1.95  against the alternative hypothesis  µ > 1.95 .

(i)	 Find the  p-value for the test.

(ii)	 Write down the conclusion reached.� [3]

4.	 [Maximum mark:  12]

It is given that  X , Y , Z  are random variables and  c  is a constant.

(a)	 Show that  Cov (X + c , Y ) = Cov (X , Y ) .� [3]

(b)	 Show that  Cov (X + Y , Z ) = Cov (X , Z ) + Cov (Y , Z ) .� [3]

It is given that  S  and  T  are two independent normal variables with mean 0 and variance 1.

(c)	 Using the results from (a) and (b), find the value of  Cov (1 + S , S + ST 2 ) .� [6]

�
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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working.  For example, if 
graphs are used to find a solution, you should sketch these as part of your answer.  Where an answer 
is incorrect, some marks may be given for a correct method, provided this is shown by written working.  
You are therefore advised to show all working.

1.	 [Maximum mark:  9]

Two independent random variables X and Y follow Poisson distributions.   
Given that  E(X ) = 3  and  E(Y ) = 4 , calculate

(a)	 E(2X + 7Y ) ;� [2]

(b)	 Var(4X - 3Y ) ;� [3]

(c)	 E(X 2 - Y 2) .� [4]

2.	 [Maximum mark:  9]

The times  t , in minutes, taken by a random sample of 75 workers of a company to travel to 
work can be summarized as follows

t∑ = 2165 , t 2 76475∑ = .

Let T be the random variable that represents the time taken to travel to work by a worker of 
this company.

(a)	 Find unbiased estimates of

(i)	 the mean of  T ;

(ii)	 the variance of  T .� [3]

(b)	 Assuming that  T  is normally distributed, find

(i)	 the 90% confidence interval for the mean time taken to travel to work by the 
workers of this company;

(ii)	 the 95% confidence interval for the mean time taken to travel to work by the 
workers of this company.� [3]

Before seeing these results the managing director believed that the mean time was 26 minutes.

(c)	 Explain whether your answers to part (b) support her belief.� [3]
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3.	 [Maximum mark:  21]

(a)	 Mr Sailor owns a fish farm and he claims that the weights of the fish in one of his lakes 
have a mean of 550 grams and standard deviation of 8 grams. 
 
Assume that the weights of the fish are normally distributed and that Mr Sailor’s claim  
is true.

(i)	 Find the probability that a fish from this lake will have a weight of more than  
560 grams.

(ii)	 The maximum weight a hand net can hold is 6 kg.  Find the probability that a 
catch of 11 fish can be carried in the hand net.� [6]

(b)	 Kathy is suspicious of Mr Sailor’s claim about the mean and standard deviation of the 
weights of the fish.  She collects a random sample of fish from this lake whose weights 
are shown in the following table.

Fish A B C D E F G H
Weight (g) 545 554 548 551 558 541 543 549

 
Using these data, test at the 5% significance level the null hypothesis  H0 : µ = 550  
against the alternative hypothesis  H1 : µ < 550 , where  µ  grams is the population mean 
weight.

(i)	 State the distribution of your test statistic, including the parameter.

(ii)	 Find the  p-value for the test.

(iii)	 State the conclusion of the test, justifying your answer.� [6]

(c)	 Kathy decides to use the same fish sample to test at the 5% significance level whether 
or not there is a positive association between the weights and the lengths of the fish in 
the lake.  The following table shows the lengths of the fish in the sample.  The lengths 
of the fish can be assumed to be normally distributed.

Fish A B C D E F G H
Length (mm) 351 365 355 353 357 349 348 354

(i)	 State suitable hypotheses for the test.

(ii)	 Find the product-moment correlation coefficient  r .

(iii)	 State the  p-value and interpret it in this context.� [6]

(d)	 Use an appropriate regression line to estimate the weight of a fish with  
length 360 mm.� [3]

Turn over
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4.	 [Maximum mark:  11]

Let  X ~ Geo( p) .

(a)	 Show that the probability generating function of  X  is given by

GX (t)=
−
pt
qt1

 where  q = 1 - p .� [3]

(b)	 Hence prove that E( )X
p

=
1 .� [4]

(c)	 Find the probability generating function of the random variable  Y = 2X + 3 .� [4]

�
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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
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graphs are used to find a solution, you should sketch these as part of your answer.  Where an answer 
is incorrect, some marks may be given for a correct method, provided this is shown by written working.  
You are therefore advised to show all working.

1.	 [Maximum mark:  11]

	 The weights,  X  kg, of the males of a species of bird may be assumed to be normally 
distributed with mean 4.8 kg and standard deviation 0.2 kg.

	 (a)	 Find the probability that a randomly chosen male bird weighs between 4.75 kg and 
4.85 kg. [1]

	 The weights,  Y  kg, of female birds of the same species may be assumed to be normally 
distributed with mean 2.7 kg and standard deviation 0.15 kg.

	 (b)	 Find the probability that the weight of a randomly chosen male bird is more than twice 
the weight of a randomly chosen female bird. [6]

	 (c)	 Two randomly chosen male birds and three randomly chosen female birds are placed 
on a weighing machine that has a weight limit of 18 kg.  Find the probability that the 
total weight of these five birds is greater than the weight limit. [4]

2.	 [Maximum mark:  8]

	 Consider an unbiased tetrahedral (four-sided) die with faces labelled 1, 2, 3 and 4 
respectively.
The random variable  X  represents the number of throws required to obtain a 1.

	 (a)	 State the distribution of  X . [1]

	 (b)	 Show that the probability generating function,  G(t) , for  X  is given by G t t
t

( ) =
−4 3

. [4]

	 (c)	 Find  G'(t) . [2]

	 (d)	 Determine the mean number of throws required to obtain a 1. [1]
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3.	 [Maximum mark:  12]

	 A smartphone’s battery life is defined as the number of hours a fully charged battery can be 
used before the smartphone stops working.  A company claims that the battery life of a model 
of smartphone is, on average, 9.5 hours.  To test this claim, an experiment is conducted on a 
random sample of 20 smartphones of this model.  For each smartphone, the battery life,  
b  hours, is measured and the sample mean, b , calculated.  It can be assumed the battery 
lives are normally distributed with standard deviation 0.4 hours.

	 (a)	 State suitable hypotheses for a two-tailed test. [1]

	 (b)	 Find the critical region for testing b  at the 5 % significance level. [4]

	 It is then found that this model of smartphone has an average battery life of 9.8 hours.

	 (c)	 Find the probability of making a Type II error. [3]

	 Another model of smartphone whose battery life may be assumed to be normally distributed 
with mean  µ  hours and standard deviation 1.2 hours is tested.  A researcher measures the 
battery life of six of these smartphones and calculates a confidence interval of  [10.2 , 11.4]  
for  µ .

	 (d)	 Calculate the confidence level of this interval. [4]

4.	 [Maximum mark:  11]

	 The random variables  X , Y  follow a bivariate normal distribution with product moment 
correlation coefficient  ρ .

	 (a)	 State suitable hypotheses to investigate whether or not a negative linear association 
exists between  X  and  Y . [1]

	 A random sample of 11 observations on  X , Y  was obtained and the value of the sample 
product moment correlation coefficient,  r , was calculated to be  -0.708 .

	 (b)	 (i)	 Determine the  p-value.

		  (ii)	 State your conclusion at the 1 % significance level. [4]

	 The covariance of the random variables  U , V  is defined by 
Cov(U , V) = E((U - E(U ))(V - E(V ))) .

	 (c)	 (i)	 Show that  Cov(U , V) = E(UV ) - E(U )E(V ) .

		  (ii)	 Hence show that if   U , V  are independent random variables then the population 
product moment correlation coefficient,  ρ , is zero. [6]

Turn over
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5.	 [Maximum mark:  8]

	 The random variable  X  has a binomial distribution with parameters  n  and  p .

	 (a)	 Show that P X
n

=  is an unbiased estimator of  p . [2]

	 Let  U = nP(1 - P) .

	 (b)	 (i)	 Show that  E(U ) = (n - 1)p(1 - p) .

		  (ii)	 Hence write down an unbiased estimator of  Var(X ) . [6]
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is incorrect, some marks may be given for a correct method, provided this is shown by written working.  
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1.	 [Maximum mark:  7]

	 A continuous random variable  T  has a probability density function defined by

f t
t t

t( ) =
−( )

≤ ≤








4

4
0 2

0

2

,

, otherwise

.

	 (a)	 Find the cumulative distribution function  F(t) , for  0 ≤ t ≤ 2 . [3]

	 (b)	 (i)	 Sketch the graph of  F(t)  for  0 ≤ t ≤ 2 , clearly indicating the coordinates of the 
endpoints.

		  (ii)	 Given that  P(T < a) = 0.75 , find the value of  a . [4]

2.	 [Maximum mark:  8]

	 Anne is a farmer who grows and sells pumpkins.  Interested in the weights of pumpkins 
produced, she records the weights of eight pumpkins and obtains the following results in 
kilograms.

7.7   7.5   8.4   8.8   7.3   9.0   7.8   7.6

Assume that these weights form a random sample from a  N(µ , σ 2)  distribution.

	 (a)	 Determine unbiased estimates for  µ  and  σ 2 . [3]

	 (b)	 Anne claims that the mean pumpkin weight is 7.5 kilograms.  In order to test this claim, 
she sets up the null hypothesis  H0 : µ = 7.5 .

		  (i)	 Use a two-tailed test to determine the p-value for the above results.

		  (ii)	 Interpret your  p-value at the  5 %  level of significance, justifying your conclusion. [5]
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3.	 [Maximum mark:  12]

	 A random variable  X  is distributed with mean  µ  and variance  σ 2 .  Two independent random 
samples of sizes  n1  and  n2  are taken from the distribution of  X .  The sample means  
are  

—
X    1  and  

—
X    2  respectively.

	 (a)	 Show that  U = a
—
X    1 + (1 - a)

—
X    2 , a ∈  ,  is an unbiased estimator of  µ . [3]

	 (b)	 (i)	 Show that Var( ) ( )U a
n

a
n

= + −2

2

1

2

2

2

1
σ σ

.

		  (ii)	 Find, in terms of  n1  and  n2 , an expression for  a  which gives the most efficient 
estimator of this form.

		  (iii)	 Hence find an expression for the most efficient estimator and interpret the result. [9]

4.	 [Maximum mark:  8]

	 The random variables  U , V  follow a bivariate normal distribution with product moment 
correlation coefficient  ρ .

	 (a)	 State suitable hypotheses to investigate whether or not  U , V  are independent. [2]

	 A random sample of 12 observations on  U , V  is obtained to determine whether there is 
a correlation between  U  and  V .  The sample product moment correlation coefficient is 
denoted by  r .  A test to determine whether or not  U , V  are independent is carried out at 
the  1 %  level of significance.

	 (b)	 Find the least value of  |r|  for which the test concludes that  ρ ≠ 0 . [6]

Turn over
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5.	 [Maximum mark:  15]

	 The random variable  X  follows a Poisson distribution with mean  λ .  The probability 
generating function of  X  is given by  GX (t) = eλ(t - 1) .

	 (a)	 (i)	 Find expressions for  G'X(t)  and  G"X(t) .

		  (ii)	 Hence show that  Var(X ) = λ . [5]

	 The random variable  Y , independent of  X , follows a Poisson distribution with mean  µ .

	 (b)	 By considering the probability generating function,  GX + Y (t) , of  X + Y , show that  X + Y  
follows a Poisson distribution with mean  λ + µ . [3]

	 (c)	 (i)	 Show that P(X x X Y n
n
x

x n x

= + = =







 +








 −

+










−

| )
λ

λ µ
λ

λ µ
1 , where  n , x  are 

non-negative integers and  n ≥ x .

		  (ii)	 Identify the probability distribution given in part (c)(i) and state its parameters. [7]
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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working.  For example, if 
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is incorrect, some marks may be given for a correct method, provided this is shown by written working.  
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1.	 [Maximum mark:  10]

	 A farmer sells bags of potatoes which he states have a mean weight of  7 kg .  An inspector, 
however, claims that the mean weight is less than  7 kg .  In order to test this claim,  
the inspector takes a random sample of 12 of these bags and determines the weight,  x kg ,  
of each bag.  He finds that

x x= =∑ ∑83 64 583 052. ; . .

You may assume that the weights of the bags of potatoes can be modelled by the normal 
distribution  N(µ , σ 2) .

	 (a)	 State suitable hypotheses to test the inspector’s claim. [1]

	 (b)	 Find unbiased estimates of  µ  and  σ 2. [3]

	 (c)	 (i)	 Carry out an appropriate test and state the  p-value obtained.

		  (ii)	 Using a 10 % significance level and justifying your answer, state your conclusion 
in context. [6]
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2.	 [Maximum mark:  14]

	 The continuous random variable  X  has cumulative distribution function  F  given by

  
        

e    0
        

F x
x

x x
x

x( )
,

,
,

=

<

≤ ≤
>









−

0 0
1

1 1

1 .

	 (a)	 Determine 

		  (i)	 P(0.25 ≤ X ≤ 0.75) ;

		  (ii)	 the median of  X . [4]

	 (b)	 (i)	 Show that the probability density function  f  of  X  is given, for  0 ≤ x ≤ 1 , by

f (x) = (x + 1)ex - 1.

		  (ii)	 Hence determine the mean and the variance of  X . [6]

	 (c)	 (i)	 State the central limit theorem.

		  (ii)	 A random sample of 100 observations is obtained from the distribution of  X .   
If  X



   denotes the sample mean, use the central limit theorem to find an 
approximate value of  P(X   > 0.65) .  Give your answer correct to two decimal 
places. [4]
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3.	 [Maximum mark:  9]

	 The discrete random variable  X  has the following probability distribution.

P         0 <
0  

( ) , , , ,X x pq x p q p
x

= = = … + = <2 0 2 4 6 1 1





for where
otherwise

.

	 (a)	 Show that the probability generating function for  X  is given by G t p
qt

( ) =
−1 2 . [2]

	 (b)	 Hence determine  E(X )  in terms of  p  and  q . [4]

	 (c)	 The random variable  Y  is given by  Y = 2X + 1 .  Find the probability generating function 
for  Y . [3]

4.	 [Maximum mark:  10]

	 The random variables  X1  and  X2  are a random sample from  N(µ , 2σ 2) .  The random 
variables  Y1 , Y2  and  Y3  are a random sample from  N(2µ , σ 2) .

	 The estimator  U  is used to estimate  µ  where  U = a(X1 + X2) + b(Y1 + Y2 + Y3)  and  a , b  are 
constants.

	 (a)	 Given that  U  is unbiased, show that  2a + 6b = 1 . [3]

	 (b)	 Show that  Var(U ) = (39b2 - 12b + 1)σ 2 . [3]

	 (c)	 Hence find

		  (i)	 the value of  a  and the value of  b  which give the best unbiased estimator of this 
form, giving your answers as fractions.

		  (ii)	 the variance of this best unbiased estimator. [4]
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5.	 [Maximum mark:  7]

	 A teacher decides to use the marks obtained by a random sample of 12 students in 
Geography and History examinations to investigate whether or not there is a positive 
association between marks obtained by students in these two subjects.  You may assume 
that the distribution of marks in the two subjects is bivariate normal.

	 (a)	 State suitable hypotheses for this investigation. [1]

	 He gives the marks to Anne, one of his students, and asks her to use a calculator to carry out 
an appropriate test at the 5 % significance level.  Anne reports that the  p-value is  0.177 .

	 (b)	 State, in context, what conclusion should be drawn from this  p-value. [1]

	 (c)	 The teacher then asks Anne for the values of the  t-statistic and the product moment 
correlation coefficient  r  produced by the calculator but she has deleted these.  Starting 
with the  p-value, calculate these values of  t  and  r . [5]
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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working.  For example, if 
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is incorrect, some marks may be given for a correct method, provided this is shown by written working.  
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1.	 [Maximum mark:  17]

	 In this question you may assume that these data are a random sample from a bivariate 
normal distribution, with population product moment correlation coefficient  ρ .
Richard wishes to do some research on two types of exams which are taken by a large 
number of students.  He takes a random sample of the results of  10  students, which are 
shown in the following table.

Student A B C D E F G H I J
Exam 1 51 70 10 22 99 33 45 8 65 82
Exam 2 52 64 8 25 90 43 50 50 70 50

	 (a)	 For these data find the product moment correlation coefficient,  r . [2]

	 Using these data, it is decided to test, at the  1 %  level, the null hypothesis  H0 : ρ = 0  against 
the alternative hypothesis  H1 : ρ > 0 .

	 (b)	 (i)	 State the distribution of the test statistic (including any parameters).

		  (ii)	 Find the  p-value for the test.

		  (iii)	 State the conclusion, in the context of the question, with the word “correlation” in 
your answer.  Justify your answer. [6]

	 Richard decides to take the exams himself.  He scored  11  on Exam 1 but his result on  
Exam 2 was lost.

	 (c)	 Using a suitable regression line, find an estimate for his score on Exam 2, giving your 
answer to the nearest integer. [3]

	 Caroline believes that the population mean mark on Exam 2 is 6 marks higher than the 
population mean mark on Exam 1.  Using the original data from the 10 students, it is decided 
to test, at the  5%  level, this hypothesis against the alternative hypothesis that the mean of 
the differences,  d = exam 2 mark - exam 1 mark, is less than 6 marks.

	 (d)	 (i)	 State the distribution of your test statistic (including any parameters).

		  (ii)	 Find the  p-value.

		  (iii)	 State the conclusion, justifying the answer. [6]
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2.	 [Maximum mark:  17]

	 John rings a church bell 120 times.  The time interval,  Ti  , between two successive rings is a 

random variable with mean of 2 seconds and variance of 1
9

 seconds2.

Each time interval,  Ti , is independent of the other time intervals.  Let 
119

1
i

i
X T

=

= ∑  be the total  

time between the first ring and the last ring.

	 (a)	 Find

		  (i)	 E (X) ;

		  (ii)	 Var (X) . [3]

	 (b)	 Explain why a normal distribution can be used to give an approximate model for  X . [2]

	 (c)	 Use this model to find the values of  A  and  B  such that  P(A < X < B) = 0.9 , where  A  
and  B  are symmetrical about the mean of  X . [7]

The church vicar subsequently becomes suspicious that John has stopped coming to ring the 
bell and that he is letting his friend Ray do it.  When Ray rings the bell the time interval,  Ti , 

has a mean of 2 seconds and variance of 
1
25

 seconds2.

The church vicar makes the following hypotheses:

H0: Ray is ringing the bell;	 H1: John is ringing the bell.

He records four values of  X .  He decides on the following decision rule:

If  236 ≤ X ≤ 240  for all four values of  X  he accepts  H0 , otherwise he accepts  H1 .

	 (d)	 Calculate the probability that he makes a Type  II  error. [5]
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3.	 [Maximum mark:  15]

	 Alun answers mathematics questions and checks his answer after doing each one.

The probability that he answers any question correctly is always 6
7

, independently of all 

other questions.  He will stop for coffee immediately following a second incorrect answer.  
Let  X  be the number of questions Alun answers before he stops for coffee.

	 (a)	 (i)	 State the distribution of  X , including its parameters.

		  (ii)	 Calculate  E(X) .

		  (iii)	 Calculate  P(X = 5) . [6]

	 Nic answers mathematics questions and checks his answer after doing each one.

The probability that he answers any question correctly is initially 6
7

.  After his first incorrect 

answer, Nic loses confidence in his own ability and from this point onwards, the probability 

that he answers any question correctly is now only 4
7

.

Both before and after his first incorrect answer, the result of each question is independent of 
the result of any other question.  Nic will also stop for coffee immediately following a second 
incorrect answer.  Let  Y  be the number of questions Nic answers before he stops for coffee.

	 (b)	 (i)	 Calculate  E(Y) .

		  (ii)	 Calculate  P(Y = 5) . [9]

4.	 [Maximum mark:  11]

	 Two independent discrete random variables  X  and  Y  have probability generating 
functions  G(t)  and  H(t)  respectively.  Let  Z = X + Y  have probability generating 
function  J(t) .

	 (a)	 Write down an expression for  J(t)  in terms of  G(t)  and  H(t) . [1]

	 (b)	 By differentiating  J(t) , prove that

		  (i)	 E(Z ) = E(X ) + E(Y ) ;

		  (ii)	 Var(Z ) = Var(X ) + Var(Y ) . [10]
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1.	 [Maximum mark:  12]

	 Adam does the crossword in the local newspaper every day.  The time taken by Adam,   
X  minutes, to complete the crossword is modelled by the normal distribution  N(22, 52) .

	 (a)	 Given that, on a randomly chosen day, the probability that he completes the crossword 
in less than  a  minutes is equal to  0.8 , find the value of  a . [3]

	 (b)	 Find the probability that the total time taken for him to complete five randomly chosen 
crosswords exceeds  120  minutes. [3]

	 Beatrice also does the crossword in the local newspaper every day.  The time taken by Beatrice,  
Y  minutes, to complete the crossword is modelled by the normal distribution  N(40, 62) .

	 (c)	 Find the probability that, on a randomly chosen day, the time taken by Beatrice to 
complete the crossword is more than twice the time taken by Adam to complete the 
crossword.  Assume that these two times are independent. [6]

2.	 [Maximum mark:  10]

	 The random variables  X , Y  follow a bivariate normal distribution with product moment 
correlation coefficient  ρ .

	 (a)	 State suitable hypotheses to investigate whether or not  X , Y  are independent. [2]

	 A random sample of  10  observations on  X , Y  was obtained and the value of  r , the sample 
product moment correlation coefficient, was calculated to be  0.486 .

	 (b)	 (i)	 Determine the  p-value.

		  (ii)	 State your conclusion at the  5 %  significance level. [7]

	 (c)	 Explain why the equation of the regression line of  y  on  x  should not be used to predict 
the value of  y  corresponding to  x = x0 , where  x0  lies within the range of values of  x  in 
the sample. [1]
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3.	 [Maximum mark:  15]

	 The continuous random variable  X  takes values in the interval  [0 , θ]  and

E(X ) = 2   and  Var(X ) = 24
2

.

To estimate the unknown parameter  θ , a random sample of size  n  is obtained from the 
distribution of  X .  The sample mean is denoted by X  and  U = kX  is an unbiased estimator 
for  θ .

	 (a)	 Find the value of  k . [3]

	 (b)	 (i)	 Calculate an unbiased estimate for  θ , using the random sample, 
8.3 , 4.2 , 6.5 , 10.3 , 2.7 , 1.2 , 3.3 , 4.3 .

		  (ii)	 Explain briefly why this is not a good estimate for  θ . [4]

	 (c)	 (i)	 Show that ( )Var U n6
2

= .

		  (ii)	 Show that  U 2  is not an unbiased estimator for  θ 2 .

		  (iii)	 Find an unbiased estimator for  θ 2  in terms of  U  and  n . [8]

4.	 [Maximum mark:  11]

	 The owner of a factory is asked to produce bricks of weight  2.2 kg .  The quality control 
manager wishes to test whether or not, on a particular day, the mean weight of bricks being 
produced is  2.2 kg .

	 (a)	 State hypotheses to enable the quality control manager to test the mean weight using a 
two-tailed test. [2]

	 He therefore collects a random sample of  20  of these bricks and determines the weight,  
x kg , of each brick.  He produces the following summary statistics.

. , .x x42 0 89 22= =/ /

	 (b)	 (i)	 Calculate unbiased estimates of the mean and the variance of the weights of the 
bricks being produced.

		  (ii)	 Assuming that the weights of the bricks are normally distributed, determine the 
p-value of the above results and state the conclusion in context using a  5 %  
significance level. [7]

	 (c)	 The owner is more familiar with using confidence intervals.  Determine a  95 %  
confidence interval for the mean weight of bricks produced on that particular day. [2]

θθ

θ
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5.	 [Maximum mark:  12]

	 The continuous random variable  X  has probability density function

f x
x
x

x

( ) =
≥
<





-e 0
0 0

.

The discrete random variable  Y  is defined as the integer part of  X , that is the largest integer 
less than or equal to  X .

	 (a)	 Show that the probability distribution of  Y  is given by  P(Y = y) = e- y(1 - e- 1) , y ∈  . [4]

	 (b)	 (i)	 Show that  G(t ) , the probability generating function of  Y , is given by   

G(t) = e
e

t1
1

1

1

-
-

-

-

.

		  (ii)	 Hence determine the value of  E(Y )  correct to three significant figures. [8]
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1.	 [Maximum mark:  7]

It is known that the standard deviation of the heights of men in a certain country is 15.0 cm.

	 (a)	 One hundred men from that country, selected at random, had their heights measured.  
The mean of this sample was 185 cm.  Calculate a 95 % confidence interval for the 
mean height of the population. [3]

	 (b)	 A second random sample of size  n  is taken from the same population.  Find the 
minimum value of  n  needed for the width of a 95 % confidence interval to be less  
than 3 cm. [4]

2.	 [Maximum mark:  11]

The strength of beams compared against the moisture content of the beam is indicated in the 
following table.  You should assume that strength and moisture content are each normally 
distributed.

Strength 21.1 22.7 23.1 21.5 22.4 22.6 21.1 21.7 21.0 21.4

Moisture 
content 11.1 8.9 8.8 8.9 8.8 9.9 10.7 10.5 10.5 10.7

	 (a)	 Determine the product moment correlation coefficient for these data. [2]

	 (b)	 Perform a two-tailed test, at the 5 % level of significance, of the hypothesis that strength 
is independent of moisture content. [5]

	 (c)	 If the moisture content of a beam is found to be 9.5, use the appropriate regression line 
to estimate the strength of the beam. [4]
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3.	 [Maximum mark:  9]

Two students are selected at random from a large school with equal numbers of boys  
and girls.  The boys’ heights are normally distributed with mean 178 cm and standard 
deviation 5.2 cm, and the girls’ heights are normally distributed with mean 169 cm and 
standard deviation 5.4 cm.

Calculate the probability that the taller of the two students selected is a boy.

4.	 [Maximum mark:  22]

A discrete random variable  U  follows a geometric distribution with  p = 1
4

.

	 (a)	 Find  F (u) , the cumulative distribution function of  U , for  u = 1 , 2 , 3 … [3]

	 (b)	 Hence, or otherwise, find the value of  P (U > 20) . [2]

	 (c)	 Prove that the probability generating function of  U  is given by 

Gu (t) = t
t4 3−

.

	 (d)	 Given that  Ui  Geo  1
4







 , i = 1 , 2 , 3 , and that  V = U1 + U2 + U3 , find

[4]

		  (i)	 E (V ) ;

		  (ii)	 Var (V ) ;

		  (iii)	 Gv (t) , the probability generating function of  V . [6]

A third random variable  W , has probability generating function  Gw (t) = 1
4 3 3−( )t

.

	 (e)	 By differentiating  Gw (t) , find  E (W ) . [4]

	 (f)	 Prove that  V = W + 3 .  [3]
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5.	 [Maximum mark:  11]

A biased cubical die has its faces labelled 1 , 2 , 3 , 4 , 5 and 6.  The probability of rolling a  
6 is  p , with equal probabilities for the other scores.

The die is rolled once, and the score  X1  is noted.

	 (a)	 (i)	 Find  E (X1) .

		  (ii)	 Hence obtain an unbiased estimator for  p . [4]

The die is rolled a second time, and the score  X2  is noted.

	 (b)	 (i)	 Show that k X k X1 23 1
3

3−( ) + −





 −( )  is also an unbiased estimator for  p  for 

all values of  k ∈  .

		  (ii)	 Find the value for  k , which maximizes the efficiency of this estimator. [7]
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1.	 [Maximum mark:  13]

	 Engine oil is sold in cans of two capacities, large and small.  The amount, in millilitres,  
in each can, is normally distributed according to Large  ∼ N (5000 , 40)  and 
Small  ∼ N (1000 , 25) .

	 (a)	 A large can is selected at random.  Find the probability that the can contains at least 
4995 millilitres of oil. [2]

	 (b)	 A large can and a small can are selected at random.  Find the probability that the large 
can contains at least 30 millilitres more than five times the amount contained in the 
small can. [6]

	 (c)	 A large can and five small cans are selected at random.  Find the probability that the 
large can contains at least 30 millilitres less than the total amount contained in the 
small cans. [5]

2.	 [Maximum mark:  12]

	 Eleven students who had under-performed in a philosophy practice examination were given 
extra tuition before their final examination.  The differences between their final examination 
marks and their practice examination marks were

10 , −1 , 6 , 7 , −5 , −5 , 2 , −3 , 8 , 9 , −2 .

Assume that these differences form a random sample from a normal distribution with mean  µ  
and variance  σ 2 .

	 (a)	 Determine unbiased estimates of  µ  and  σ 2 . [4]

	 (b)	 (i)	 State suitable hypotheses to test the claim that extra tuition improves examination 
marks.

		  (ii)	 Calculate the  p-value of the sample.

		  (iii)	 Determine whether or not the above claim is supported at the 5 % significance 
level. [8]
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3.	 [Maximum mark:  9]

A manufacturer of stopwatches employs a large number of people to time the winner of  
a 100 metre sprint.  It is believed that if the true time of the winner is  µ  seconds,  
the times recorded are normally distributed with mean  µ  seconds and standard deviation  
0.03 seconds.

The times, in seconds, recorded by six randomly chosen people are

9.765 , 9.811 , 9.783 , 9.797 , 9.804 , 9.798 .

	 (a)	 Calculate a 99 % confidence interval for  µ .  Give your answer correct to three decimal 
places. [4]

	 (b)	 Interpret the result found in (a). [2]

	 (c)	 Find the confidence level of the interval that corresponds to halving the width of the 
99 % confidence interval.  Give your answer as a percentage to the nearest whole 
number. [3]

4.	 [Maximum mark:  15]

	 A random variable  X  has a population mean  µ .

	 (a)	 Explain briefly the meaning of

		  (i)	 an estimator of  µ ;

		  (ii)	 an unbiased estimator of  µ . [3]

	 (b)	 A random sample  X1 , X2 , X3  of three independent observations is taken from the 
distribution of  X .

An unbiased estimator of  µ , µ ≠ 0 , is given by  U = α X1 + β X2 + (α - β) X3 ,  
where  α , β ∈  .

		  (i)	 Find the value of  α .

		  (ii)	 Show that Var ( =U ) σ β β2 22 1
2

− +





  where  σ 2 = Var(X ) .

		  (iii)	 Find the value of  β  which gives the most efficient estimator of  µ  of this form.

		  (iv)	 Write down an expression for this estimator and determine its variance.

		  (v)	 Write down a more efficient estimator of  µ  than the one found in (iv), justifying 
your answer. [12]
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5.	 [Maximum mark:  11]

	 (a)	 Determine the probability generating function for  X ∼ B (1 , p) . [4]

	 (b)	 Explain why the probability generating function for  B (n , p)  is a polynomial of degree  n . [2]

	 (c)	 Two independent random variables  X1  and  X2  are such that X p1 11 B ,( )  and 
X p2 21 B ,( ) .  Prove that if  X1 + X2  has a binomial distribution then  p1 = p2 . [5]
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1.	 [Maximum mark:  9]

	 A random variable  X  has probability density function

f x

x

x

x

x

( ) =

<

≤ <

≤ <

≥















0 0
1
2
0 1

1
4
1 3

0 3

.

	 (a)	 Sketch the graph of y f x= ( ) . [1]

	 (b)	 Find the cumulative distribution function for  X . [5]

	 (c)	 Find the interquartile range for  X . [3]

2.	 [Maximum mark:  9]

	 Eric plays a game at a fairground in which he throws darts at a target.  Each time he throws  
a dart, the probability of hitting the target is 0.2.  He is allowed to throw as many darts as  
he likes, but it costs him $1 a throw.  If he hits the target a total of three times he wins $10. 

	 (a)	 Find the probability he has his third success of hitting the target on his sixth throw. [3]

	 (b)	 (i)	 Find the expected number of throws required for Eric to hit the target three times.

	 	 (ii)	 Write down his expected profit or loss if he plays until he wins the $10. [3]

	 (c)	 If he has just $8, find the probability he will lose all his money before he hits the target 
three times. [3]
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3.	 [Maximum mark:  11]

	 (a)	 If  X  and  Y  are two random variables such that E( )X X= µ  and E( )Y Y= µ  then 
Cov( , )X Y = E ( )( )X YX Y− −( )µ µ .

Prove that if  X  and  Y  are independent then Cov( , )X Y = 0 . [3]

	 (b)	 In a particular company, it is claimed that the distance travelled by employees to work is 
independent of their salary.  To test this, 20 randomly selected employees are asked about 
the distance they travel to work and the size of their salaries.  It is found that the product 
moment correlation coefficient,  r , for the sample is −0 35. .

You may assume that both salary and distance travelled to work follow normal distributions.

Perform a one-tailed test at the 5 % significance level to test whether or not the distance 
travelled to work and the salaries of the employees are independent. [8]
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4.	 [Maximum mark:  21]

If  X  is a random variable that follows a Poisson distribution with mean λ > 0  then the  
probability generating function of  X  is G t e t( ) = −λ( )1 .

	 (a)	 (i)	 Prove that E( )X = λ .

		  (ii)	 Prove that Var ( )X = λ . [6]

Y  is a random variable, independent of  X , that also follows a Poisson distribution with  
mean λ .

	 (b)	 If S X Y= −2  find

		  (i)	 E( )S ;

		  (ii)	 Var ( )S . [3]

Let T X Y
= +

2 2
.

	 (c)	 (i)	 Show that  T  is an unbiased estimator for λ .

		  (ii)	 Show that  T  is a more efficient unbiased estimator of λ  than  S . [3]

	 (d)	 Could either  S  or  T  model a Poisson distribution?  Justify your answer. [1]

	 (e)	 By consideration of the probability generating function, G tX Y+ ( ) , of X Y+ , prove that   
X Y+  follows a Poisson distribution with mean 2λ . [3]

	 (f)	 Find

		  (i)	 GX Y+ ( )1 ;

		  (ii)	 GX Y+ −( )1 . [2]

	 (g)	 Hence find the probability that X Y+  is an even number. [3]
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5.	 [Maximum mark:  10]

	 Two species of plant, A and B, are identical in appearance though it is known that the mean 
length of leaves from a plant of species A is 5.2 cm, whereas the mean length of leaves from 
a plant of species B is 4.6 cm.  Both lengths can be modelled by normal distributions with 
standard deviation 1.2 cm.

	 In order to test whether a particular plant is from species A or species B, 16 leaves are  
collected at random from the plant.  The length,  x , of each leaf is measured and the mean  
length evaluated.  A one-tailed test of the sample mean, X , is then performed at the 5 % level, 
with the hypotheses: H0 5 2: .µ =  and H1 5 2: .µ < . 

	 (a)	 Find the critical region for this test. [3]

	 (b)	 Find the probability of a Type II error if the leaves are in fact from a plant of species B. [2]

	 It is now known that in the area in which the plant was found 90 % of all the plants are of  
species A and 10 % are of species B.

	 (c)	 Find the probability that X  will fall within the critical region of the test. [2]

	 (d)	 If, having done the test, the sample mean is found to lie within the critical region, find the 
probability that the leaves came from a plant of species A. [3]
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1.	 [Maximum mark:  14]

	 The random variable  X  has probability distribution Po(8) .

	 (a)	 (i)	 Find P( 6)X = .

		  (ii)	 Find P( 6 |5 8)X X= ≤ ≤ . [5]

	 (b)	 X  denotes the sample mean of 1n >  independent observations from  X .

		  (i)	 Write down ( )E X  and ( )Var X .

		  (ii)	 Hence, give a reason why X  is not a Poisson distribution. [3]

	 (c)	 A random sample of 40 observations is taken from the distribution for  X .

		  (i)	 Find ( )P 7.1 8.5X< < .

		  (ii)	 Given that ( )P | 8 | 0.95X k− ≤ = , find the value of  k . [6]
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2.	 [Maximum mark:  16]

	 The following table gives the average yield of olives per tree, in kg, and the rainfall, in cm,  
for nine separate regions of Greece.  You may assume that these data are a random sample from 
a bivariate normal distribution, with correlation coefficient ρ .

Rainfall (x) 11 10 15 13 7 18 22 20 28

Yield (y) 56 53 67 61 54 78 86 88 78

	 A scientist wishes to use these data to determine whether there is a positive correlation  
between rainfall and yield.

	 (a)	 State suitable hypotheses. [2]

	 (b)	 Determine the product moment correlation coefficient for these data. [2]

	 (c)	 Determine the associated  p-value and comment on this value in the context of the question. [2]

	 (d)	 Find the equation of the regression line of  y  on  x . [2]

	 (e)	 Hence, estimate the yield per tree in a tenth region where the rainfall was 19 cm. [2]

	 (f)	 Determine the angle between the regression line of  y  on  x  and that of  x  on  y .  Give your 
answer to the nearest degree. [6]
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3.	 [Maximum mark:  14]

	 (a)	 Consider the random variable  X  for which E( )X a bλ= + , where  a  and  b  are constants 
and λ  is a parameter.

		  Show that X b
a
−  is an unbiased estimator for λ . [3]

	 (b)	 The continuous random variable  Y  has probability density function

2 (3 ), for 3
( ) 9

0, otherwise

y y
f y

λ λ λ + − − ≤ ≤= 


		  where λ  is a parameter.

		  (i)	 Verify that  f ( y)  is a probability density function for all values of λ .

		  (ii)	 Determine E( )Y .

		  (iii)	 Write down an unbiased estimator for λ . [11]
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4.	 [Maximum mark:  16]

	 Consider the random variable Geo ( )X p∼ .

	 (a)	 State P( 4)X < . [2]

	 (b)	 Show that the probability generating function for  X  is given by ( )
1X

ptG t
qt

=
−

, 

		  where 1q p= − . [3]

	 Let the random variable 2Y X= .

	 (c)	 (i)	 Show that the probability generating function for  Y  is given by ( )2( )Y XG t G t= .

		  (ii)	 By considering (1)YG′ , show that E( ) 2E( )Y X= . [6]

	 Let the random variable 2 1W X= + .

	 (d)	 (i)	 Find the probability generating function for  W  in terms of the probability generating 
function of  Y .

		  (ii)	 Hence, show that E( ) 2E( ) 1W X= + . [5]
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1.	 [Maximum mark:  8]

A traffic radar records the speed,  v  kilometres per hour (km h–1), of cars on a section of a road.  
The following table shows a summary of the results for a random sample of 1000 cars whose 
speeds were recorded on a given day.

Speed Number of cars
50 60v≤ < 5

60 70v≤ < 13

70 80v≤ < 52

80 90v≤ < 68

90 100v≤ < 98

100 110v≤ < 105

110 120v≤ < 289

120 130v≤ < 142

130 140v≤ < 197

140 150v≤ < 31

 

	 (a)	 Using the data in the table,

(i)	 show that an estimate of the mean speed of the sample is 113.21 km h–1;

	 	 (ii)	 find an estimate of the variance of the speed of the cars on this section of the road. [4]

	 (b)	 Find the 95 % confidence interval,  I , for the mean speed. [2]

	 (c)	 Let  J  be the 90 % confidence interval for the mean speed.

Without calculating  J , explain why J I⊂ . [2]
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2.	 [Maximum mark:  14]

A farmer is selling apples and oranges.  The weights  X  and  Y , in grams, of the apples and 
oranges respectively are normally distributed with 2~ (180, 14 )X N  and 2~ (150, 12 )Y N .

 

	 (a)	 Find the probability that the weight of a randomly chosen apple is more than 1.5 times the 
weight of a randomly chosen orange. [7]

	 (b)	 Katharina buys 4 apples and 6 oranges.  Find the probability that the total weight is 
greater than 1.5 kilograms. [7]

3.	 [Maximum mark:  14]

Jenny tosses seven coins simultaneously and counts the number of tails obtained.  She repeats 
the experiment 750 times.  The following frequency table shows her results.

Number of tails Frequency
0 6
1 19
2 141
3 218
4 203
5 117
6 38
7 8

 

	 (a)	 It is claimed that all of these seven coins are fair and it is decided to test this claim using 
a suitable 2χ  test.

	 	 (i)	 State the null and alternative hypotheses.

	 	 (ii)	 State a decision rule at the 5 % level of significance.

	 	 (iii)	 Find the value of the test statistic.

	 	 (iv)	 Write down your conclusion. [10]

	 (b)	 Explain what can be done with this data to decrease the probability of making a 
type I error. [2]

	 (c)	 (i)	 State the meaning of a type II error.

	 	 (ii)	 Write down how to proceed if it is required to decrease the probability of making 
both a type I and type II error. [2]
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4.	 [Maximum mark:  10]

Francisco and his friends want to test whether performance in running 400 metres improves  
if they follow a particular training schedule.  The competitors are tested before and after the 
training schedule.

The times taken to run 400 metres, in seconds, before and after training are shown in the  
following table.

Competitor A B C D E
Time before training 75 74 60 69 69
Time after training 73 69 55 72 65

Apply an appropriate test at the 1 % significance level to decide whether the training schedule 
improves competitors’ times, stating clearly the null and alternative hypotheses.  (It may be  
assumed that the distributions of the times before and after training are normal.)

 

5.	 [Maximum mark:  14]

Let  X  and  Y  be independent random variables with (3)oX P∼  and (2)oY P∼ .

Let 2 3S X Y= + .

 

	 (a)	 Find the mean and variance of  S . [2]

	 (b)	 Hence state with a reason whether or not  S  follows a Poisson distribution. [2]

	 Let T X Y= + .

	 (c)	 Find P( 3)T = . [4]

	 (d)	 Show that 
0

P( ) P( )P( )
t

r
T t X r Y t r

=

= = = = −∑ . [2]

	 (e)	 Hence show that  T  follows a Poisson distribution with mean 5. [4]
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1.	 [Maximum mark:  10]

	 The random variable  X  is normally distributed with unknown mean µ  and unknown 
variance σ 2 .  A random sample of 20 observations on  X  gave the following results.

x x= =∑∑ 280 3977 572, .

	 (a)	 Find unbiased estimates of µ  and σ 2. [3 marks]

	 (b)	 Determine a 95 % confidence interval for µ . [3 marks]

	 (c)	 Given the hypotheses

H H0 115 15: ; :µ µ= ≠ ,

 		  find the   p -value of the above results and state your conclusion at the 1 % 
significance level. [4 marks]
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2.	 [Maximum mark:  12]

	 A hockey team played 60 matches last season.  The manager believes that the number 
of goals scored by the team in a match could be modelled by a Poisson distribution and 
he produces the following table based on the season’s results.

Number of goals 0 1 2 3 4 5
Frequency 8 9 17 14 7 5

	 (a)	 State suitable hypotheses to test the manager’s belief. [1 mark]

	 (b)	 The manager decides to carry out an appropriate χ 2  goodness of fit test.

	 	 (i)	 Construct a table of appropriate expected frequencies correct to four 
decimal places.

	 	 (ii)	 Determine the value of χ 2
calc  and the corresponding  p -value.

	 	 (iii)	 State whether or not your analysis supports the manager’s belief. [11 marks]

3.	 [Maximum mark:  9]

	 The number of machine breakdowns occurring in a day in a certain factory may be 
assumed to follow a Poisson distribution with mean µ.  The value of µ  is known, from 
past experience, to be 1.2.  In an attempt to reduce the value of µ, all the machines are 
fitted with new control units.  To investigate whether or not this reduces the value of 
µ , the total number of breakdowns,  x , occurring during a 30-day period following the 
installation of these new units is recorded.

	 (a)	 State suitable hypotheses for this investigation. [1 mark]

	 (b)	 It is decided to define the critical region by x ≤ 25.

	 	 (i)	 Calculate the significance level.

	 	 (ii)	 Assuming that the value of µ  was actually reduced to 0.75, determine the 
probability of a Type II error. [8 marks]
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4.	 [Maximum mark:  14]

	 The continuous random variable  X  has probability density function  f  given by

	
f x

x x x( ) ,=
+ ≤ ≤







3 2
10

2

for 1 2

 0, otherwise .

	 (a)	 (i)	 Determine an expression for F x( ) , valid for 1 2≤ ≤x , where  F  denotes 
the cumulative distribution function of  X .

	 	 (ii)	 Hence, or otherwise, determine the median of  X . [6 marks]

	 (b)	 (i)	 State the central limit theorem. 

	 	 (ii)	 A random sample of 150 observations is taken from the distribution of  X  
and X  denotes the sample mean.  Use the central limit theorem to find, 
approximately, the probability that X  is greater than 1.6. [8 marks]

5.	 [Maximum mark:  15]

	 When Ben shoots an arrow, he hits the target with probability 0.4.  Successive shots 
are independent.  

	 (a)	 Find the probability that

	 	 (i)	 he hits the target exactly 4 times in his first 8 shots;

	 	 (ii)	 he hits the target for the 4th time with his 8th shot. [6 marks]

	 (b)	 Ben hits the target for the 10th time with his  X th shot.

	 	 (i)	 Determine the expected value of the random variable  X .

	 	 (ii)	 Write down an expression for P( )X x=  and show that 

P
P

( )
( )

( )
( )

X x
X x

x
x

=
= −

= −
−1

3 1
5 10

.

	 	 (iii)	 Hence, or otherwise, find the most likely value of  X . [9 marks]
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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 
to show all working.

1.	 [Maximum mark:  16]

	 Anna has a box with 10 biscuits in it.  4 biscuits are chocolate and 6 are plain.   
Anna takes a biscuit from her box at random and eats it.  She repeats this process until 
she has eaten 5 biscuits in total.

Let  A  be the number of chocolate biscuits that Anna eats.

	 (a)	 State the distribution of  A . [1 mark]

	 (b)	 Find P( )A = 3 . [2 marks]

	 (c)	 Find P( )A = 5 . [1 mark]

	 Bill also has a box with 10 biscuits in it.  4 biscuits are chocolate and 6 are plain.   
Bill takes a biscuit from his box at random, looks at it and replaces it in the box.   
He repeats this process until he has looked at 5 biscuits in total.  Let  B  be the number 
of chocolate biscuits that Bill takes and looks at.

	 (d)	 State the distribution of  B . [1 mark]

	 (e)	 Find P( )B = 3 . [2 marks]

	 (f)	 Find P( )B = 5 . [2 marks]

	 Let D B A= − .

	 (g)	 Calculate E( )D . [2 marks]

	 (h)	 Calculate Var ( )D , justifying the validity of your method. [5 marks]
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2.	 [Maximum mark:  11]

	 The  n  independent random variables X X Xn1 2, , ,…  all have the distribution N( , )µ σ 2 .

	 (a)	 Find the mean and the variance of

		  (i)	 X X1 2+ ;

		  (ii)	 3 1X ;

		  (iii)	 X X X1 2 3+ − ;

		  (iv)	 X X X X
n

n= + +…+( )1 2 . [8 marks]

	 (b)	 Find E( )X1
2  in terms of µ  and σ . [3 marks]
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3.	 [Maximum mark:  19]

	 (a)	 The random variable  X  represents the height of a wave on a particular surf beach.  
It is known that  X  is normally distributed with unknown mean µ  (metres) and 

known variance σ 2 21
4

= ( )metres .  Sally wishes to test the claim made in a surf 

guide that µ = 3  against the alternative that µ < 3 .  She measures the heights 
of 36 waves and calculates their sample mean x .  She uses this value to test the 
claim at the 5 % level.

		  (i)	 Find a simple inequality, of the form x A< , where  A  is a number to 
be determined to 4 significant figures, so that Sally will reject the null 
hypothesis, that µ = 3 , if and only if this inequality is satisfied.

		  (ii)	 Define a Type I error.

		  (iii)	 Define a Type II error.

		  (iv)	 Write down the probability that Sally makes a Type I error.

		  (v)	 The true value of µ  is 2.75.  Calculate the probability that Sally makes a 
Type II error. [11 marks]

	 (b)	 The random variable  Y  represents the height of a wave on another surf beach.  
It is known that  Y  is normally distributed with unknown mean µ  (metres) and 
unknown variance σ 2 2( )metres .  David wishes to test the claim made in a surf 
guide that µ = 3  against the alternative that µ < 3 .  He is also going to perform 
this test at the 5 % level.  He measures the heights of 36 waves and finds that the 
sample mean, y = 2 860.  and the unbiased estimate of the population variance, 
sn− =1
2 0 25. .

		  (i)	 State the name of the test that David should perform.

		  (ii)	 State the conclusion of David’s test, justifying your answer by giving 
the  p-value.

		  (iii)	 Using David’s results, calculate the 90 % confidence interval for µ , giving 
your answers to 4 significant figures. [8 marks]
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4.	 [Maximum mark:  14]

	 Jenny and her Dad frequently play a board game.  Before she can start Jenny has to 
throw a “six” on an ordinary six-sided dice.  Let the random variable  X  denote the 
number of times Jenny has to throw the dice in total until she obtains her first “six”.

	 (a)	 If the dice is fair, write down the distribution of  X , including the value of any 
parameter(s). [1 mark]

	 (b)	 Write down E( )X  for the distribution in part (a). [1 mark]

	 Jenny has played the game with her Dad 216 times and the table below gives the 
recorded values of  X .

Value of  X 1 2 3 4 5 6 7 8 9 10 ≥11
Frequency 40 34 26 24 16 14 12 10 6 4 30

	 (c)	 Use this data to test, at the 10 % significance level, the claim that the probability 
that the dice lands with a “six” uppermost is 1

6
.  Justify your conclusion. [8 marks]

	 Before Jenny’s Dad can start, he has to throw two “sixes” using a fair, ordinary  
six-sided dice.  Let the random variable  Y  denote the total number of times Jenny’s 
Dad has to throw the dice until he obtains his second “six”.

	 (d)	 Write down the distribution of  Y , including the value of any parameter(s). [1 mark]

	 (e)	 Find the value of  y  such that P( )Y y= = 1
36

. [1 mark]

	 (f)	 Find P( )Y ≤ 6 . [2 marks]
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Please start each question on a new page.  Full marks are not necessarily awarded for a correct answer 
with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 
to show all working.

1.	 [Maximum mark:  14]

A baker produces loaves of bread that he claims weigh on average 800 g each.  
Many customers believe the average weight of his loaves is less than this.  A food 
inspector visits the bakery and weighs a random sample of 10 loaves, with the following 
results, in grams:

783, 802, 804, 785, 810, 805, 789, 781, 800, 791.

Assume that these results are taken from a normal distribution.

	 (a)	 Determine unbiased estimates for the mean and variance of the distribution. [3 marks]

In spite of these results the baker insists that his claim is correct.

	 (b)	 Stating appropriate hypotheses, test the baker’s claim at the 10 % level of 
significance. [7 marks]

The inspector informs the baker that he must improve his quality control and reject 
any loaf that weighs less than 790 g.  The baker changes his production methods 
and asserts that he has reduced the number of low weight loaves.  On a subsequent 
visit to the bakery the inspector tests a random sample of loaves for sale.  Of the 40  
loaves tested, 5 should have been rejected.

	 (c)	 Calculate a 95 % confidence interval for the proportion of loaves for sale that 
should be rejected. [4 marks]

2.	 [Maximum mark:  6]

	 The random variable  X  has a geometric distribution with parameter  p .

	 (a)	 Show that P( ) ( )X n p n≤ = − −1 1 , n∈ +� . [3 marks]

	 (b)	 Deduce an expression for P( )m X n< ≤ , m n, ∈ +�  and m n< . [1 mark]

	 (c)	 Given that p = 0 2. , find the least value of  n  for which P( ) .1 0 5< ≤ >X n , 
n∈ +� . [2 marks]
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3.	 [Maximum mark:  13]

	 Each week the management of a football club recorded the number of injuries suffered 
by their playing staff in that week.  The results for a 52-week period were as follows:

Number of injuries per week 0 1 2 3 4 5 6
Number of weeks 6 14 15 9 5 2 1

	 (a)	 Calculate the mean and variance of the number of injuries per week. [2 marks]

	 (b)	 Explain why these values provide supporting evidence for using a Poisson 
distribution model. [1 mark]

	 (c)	 Stating your hypotheses, test whether a Poisson distribution is a suitable model for 
the number of injuries per week at the 5 % level of significance using a χ 2  test. [10 marks]

4.	 [Maximum mark:  19]

	 The continuous random variable  X  has probability density function  f  given by

f x

x x

x x( )

, . ,

, ,

,

=

≤ ≤

− ≤ ≤










2 0 0 5
4
3
2
3

2

0

0.5

otherwise.

	 (a)	 Sketch the function  f  and show that the lower quartile is 0.5. [3 marks]

	 (b)	 (i)	 Determine E( )X .

		  (ii)	 Determine E( )X 2 . [4 marks]

Two independent observations are made from  X  and the values are added.  
The resulting random variable is denoted  Y .

	 (c)	 (i)	 Determine E( )Y X− 2 .

		  (ii)	 Determine Var ( )Y X− 2 . [5 marks]

	 (d)	 (i)	 Find the cumulative distribution function for  X . 

		  (ii)	 Hence, or otherwise, find the median of the distribution. [7 marks]
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5.	 [Maximum mark:  8]

	 The random variable X m∼ Po( ).  Given that P P( ) ( )X k X k= − = = +1 1 , where  k  is 
a positive integer,

	 (a)	 show that m k k2 1= +( ); [2 marks]

	 (b)	 hence show that the mode of  X  is  k . [6 marks]
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with no working.  Answers must be supported by working and/or explanations.  In particular, solutions 
found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to 
find a solution, you should sketch these as part of your answer.  Where an answer is incorrect, some marks 
may be given for a correct method, provided this is shown by written working.  You are therefore advised 
to show all working.

1.	 [Maximum mark:  15]

The weight of tea in Supermug tea bags has a normal distribution with mean 4.2 g 
and standard deviation 0.15 g.  The weight of tea in Megamug tea bags has a normal 
distribution with mean 5.6 g and standard deviation 0.17 g.

	 (a)	 Find the probability that a randomly chosen Supermug tea bag contains more 
than 3.9 g of tea. [2 marks]

	 (b)	 Find the probability that, of two randomly chosen Megamug tea bags, 
one contains more than 5.4 g of tea and one contains less than 5.4 g of tea. [4 marks]

	 (c)	 Find the probability that five randomly chosen Supermug tea bags contain a total 
of less than 20.5 g of tea. [4 marks]

	 (d)	 Find the probability that the total weight of tea in seven randomly chosen 
Supermug tea bags is more than the total weight in five randomly chosen 
Megamug tea bags. [5 marks]

2.	 [Maximum mark:  7]

	 Neil wants the opinion of teachers on a proposal to change the Mathematics HL  
curriculum.  A questionnaire is sent to a large number of teachers asking for their  
opinions on the proposal.  Of the 200 replies he receives, 160 are in favour of  
the proposal.  Assume that these teachers are a random sample from the population.

	 (a)	 Test, at the 5 % level, the hypothesis that the proportion of the population in 
favour of the proposal is 0.75 against the alternative that it is more than 0.75. [4 marks]

	 (b)	 Find a 95 % confidence interval for the proportion of the population in favour of 
the proposal. [3 marks]



N11/5/MATHL/HP3/ENG/TZ0/SP

8811-7210

– 3 –

Turn over 

3.	 [Maximum mark:  11]

	 The random variable  X  represents the lifetime in hours of a battery.  The lifetime may 
be assumed to be a continuous random variable  X  with a probability density function 
given by f x x( ) = −λ λe , where x ≥ 0 .

	 (a)	 Name this distribution and state its mean. [1 mark]

	 (b)	 Find the cumulative distribution function, F x( ) , of  X . [3 marks]

	 (c)	 Find the probability that the lifetime of a particular battery is more than twice 
the mean. [2 marks]

	 (d)	 Find the median of  X  in terms of λ . [3 marks]

	 (e)	 Find the probability that the lifetime of a particular battery lies between the 
median and the mean. [2 marks]

4.	 [Maximum mark:  16]

	 The random variable  X  is believed to be modelled by B( , . )5 0 5 .  A random sample of 
size 100 is taken and the observed frequencies are given in the table below.

Value of  X 0 1 2 3 4 5
Observed frequency 2 15 s 69− s 12 2

	 A χ 2 goodness of fit test is carried out on these data.

	 (a)	 State the null and alternative hypotheses. [1 mark]

	 (b)	 Evaluate the χ 2 statistic in the form as bs c2 + + . [8 marks]

	 (c)	 Find the range of values of  s  that would result in the null hypothesis being 
accepted at the 10 % level. [7 marks]
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5.	 [Maximum mark:  11]

	 The continuous random variable  U  has a uniform distribution on [ , ]0 1 .  The random 
variable  X  is defined as follows:

X U= 2  when U ≤ 3
4

X U= 4  when U > 3
4

.

	 (a)	 (i)	 Explain why  X  cannot take values in the interval 3
2

3< ≤X .

		  (ii)	 Find P 0 3
2

≤ ≤





X .

		  (iii)	 Find P( )3 4< ≤X . [6 marks]

	 (b)	 Find the lower quartile of  X . [3 marks]

	 (c)	 Find E( )X . [2 marks]




