Markscheme

November 2019

Statistics and probability

Higher level

Paper 3

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http://www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/ contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.

$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by RM ${ }^{\text {TM }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread
If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) (i) $H_{0}: \rho=0 \quad H_{1}: \rho \neq 0$

A1
Note: It must be ρ.
(ii) $\quad p=0.649$

Note: Accept anything that rounds to 0.65 .
$0.649>0.05 \quad$ R1
hence, we accept H_{0} and conclude that Peter's claim is wrong A1
Note: The \boldsymbol{A} mark depends on the \boldsymbol{R} mark and the answer must be given in context.
Follow through the p-value in part (b).
(b) a statement along along the lines of '(we have accepted that) the two variables are independent' or 'the two variables are weakly correlated' a statement along the lines of 'the use of the regression line is invalid' or 'it would give an inaccurate result'

Note: Award the second $\mathbf{R 1}$ only if the first $\boldsymbol{R 1}$ is awarded.
Note: FT the conclusion in(a)(ii). If a candidate concludes that the claim is correct, mark as follows: (as we have accepted H_{1}) the 2 variables are dependent and 73 lies in the range of x values R1, hence the use of the regression line is valid $\boldsymbol{R 1}$.
2. (a) (i) attempt to find expected values eg $\mathrm{E}\left(T_{1}\right)$
$\mathrm{E}\left(T_{1}\right)=\frac{1}{3} \mathrm{E}\left(X_{1}+X_{2}+X_{3}\right)=\frac{1}{3}\left(\mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{2}\right)+\mathrm{E}\left(X_{3}\right)\right)$
$=\mu$
$=\mu$
$\mathrm{E}\left(T_{2}\right)=\frac{1}{3} \mathrm{E}\left(X_{1}+2 X_{2}+3 X_{3}\right)=\frac{1}{3}\left(\mathrm{E}\left(X_{1}\right)+2 \mathrm{E}\left(X_{2}\right)+3 \mathrm{E}\left(X_{3}\right)\right)$
$=2 \mu$
$\mathrm{E}\left(T_{3}\right)=\frac{1}{3} \mathrm{E}\left(X_{1}+2 X_{2}\right)=\frac{1}{3}\left(\mathrm{E}\left(X_{1}\right)+2 \mathrm{E}\left(X_{2}\right)\right)$
$=\mu$
Note: Order does not matter.
$(2 \mu \neq \mu)$ hence T_{2} is biased, T_{1} and T_{3} are unbiased
(ii) use of variance of linear combinations
$\operatorname{Var}\left(T_{1}\right)=\frac{1}{9}\left(\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\operatorname{Var}\left(X_{3}\right)\right)$
$=\frac{3}{9} \sigma^{2}\left(=\frac{\sigma^{2}}{3}\right)$
$\operatorname{Var}\left(T_{3}\right)=\frac{1}{9}\left(\operatorname{Var}\left(X_{1}\right)+4 \operatorname{Var}\left(X_{2}\right)\right)$
$=\frac{5}{9} \sigma^{2}$
$\frac{3}{9} \sigma^{2}<\frac{5}{9} \sigma^{2}$ so T_{1} is the more efficient estimator
Note: Award $\mathbf{A 1}$ only if the R1 is awarded.
Note: Follow through their variances and award $\boldsymbol{R 1}$ for a comparison and A1 if the M1 was awarded.
(b) (i) $\mathrm{E}(\bar{Y})=\mathrm{E}(Y)=\frac{4}{p}$

A1
(ii) $\frac{\bar{Y}}{4}$

A1
[2 marks]
(c) (i) $\mathrm{E}(W)\left(=1 \times \frac{1}{2}+2 \times \frac{1}{2}\right)=\frac{3}{2}$
(ii) $\mathrm{E}\left(\frac{1}{W}\right)\left(=1 \times \frac{1}{2}+\frac{1}{2} \times \frac{1}{2}\right)=\frac{3}{4}$
(M1)A1
(iii) the above example shows that in general $\mathrm{E}\left(\frac{1}{T}\right) \neq \frac{1}{\mathrm{E}(T)}$ (so that

$$
\left.E\left(\frac{4}{\bar{Y}}\right) \text { may not equal } \frac{1}{E(\bar{Y} / 4)}=p\right)
$$

R1

Note: Do not award $R 1$ if the statement is given only in terms of W.
3. (a) for n (sufficiently) large the sample mean \bar{X} approximately
$\sim \mathrm{N}\left(\mu, \frac{\sigma^{2}}{n}\right)$
Note: Award the first $\boldsymbol{A 1}$ for n large and reference to the sample mean (\bar{X}), the second $\boldsymbol{A 1}$ is for normal and the two parameters.

Note: Award the second $\boldsymbol{A 1}$ only if the first $\boldsymbol{A 1}$ is awarded.
Note: Allow ' n tends to infinity' or ' $n \geq 30$ ' in place of 'large'.
(b) $[59.9,60.5]$

Note: Accept answers which round to the correct 3sf answers.
(c) (i) under $H_{0}, \bar{X} \sim \mathrm{~N}\left(60, \frac{4}{100}\right)$
required to find k such that $P(\bar{X}>k)=0.05$
use of any valid method, eg GDC $\operatorname{lnv}($ Normal $)$ or $k=60+z \frac{\sigma}{\sqrt{n}}$ hence critical region is $\bar{x}>60.33$
(ii) 0.05
(iii) $\mathrm{P}($ Type II error $)=\mathrm{P}\left(H_{0}\right.$ is accepted $/ H_{0}$ is false $)$

Note: Accept Type II error means H_{0} is accepted given H_{0} is false.

$$
\begin{align*}
& \Rightarrow \mathrm{P}(\bar{X}<60.33)=0.25 \text { when } \bar{X} \sim \mathrm{~N}\left(\mu, \frac{4}{100}\right) \tag{M1}\\
& \Rightarrow \mathrm{P}\left(\frac{\bar{X}-\mu}{\frac{2}{10}}<\frac{60.33-\mu}{\frac{2}{10}}\right)=0.25 \tag{M1}\\
& \Rightarrow \mathrm{P}\left(Z<\frac{60.33-\mu}{\frac{2}{10}}\right)=0.25 \text { where } Z \sim \mathrm{~N}\left(0,1^{2}\right)
\end{align*}
$$

$$
\begin{equation*}
\frac{60.33-\mu}{\underline{2}}=-0.6744 \ldots \tag{A1}
\end{equation*}
$$

$$
\overline{10}
$$

$\mu=60.33+\frac{2}{10} \times 0.6744 \ldots$
$\mu=60.5$
4. (a) $\quad G_{x}^{\prime}(t)=\frac{p^{r} r t^{r-1}(1-q t)^{r}-p^{r} t^{r} r(1-q t)^{r-1}(-q)}{(1-q t)^{2 r}}$
use of $\mathrm{E}(X)=G_{x}^{\prime}(1)$

M1A1

$G_{x}^{\prime}(1)=\frac{r p^{r}(1-q)^{r}-r p^{r}(1-q)^{r-1}(-q)}{(1-q)^{2 r}}$
Note: Accept correct substitution of $t=1$ in any correct form of $G_{x}^{\prime}(t)$.
$=\frac{r p^{2 r}+r p^{2 r-1}-r p^{2 r}}{p^{2 r}}$
Note: Accept any equivalent simplified expression which leads immediately to the final result $\frac{r}{p}$, for example $r\left(1+\frac{q}{p}\right)$.

$$
=\frac{r}{p}
$$

(b) (i) $\quad G_{w}(t)=G_{x}(t) G_{y}(t)$
$=\frac{p^{r} t^{r}}{(1-q t)^{r}} \times \frac{p^{s} t^{s}}{(1-q t)^{s}}=\frac{p^{r+s} t^{r+s}}{(1-q t)^{r+s}}$
(ii) $\quad W \sim \mathrm{NB}(r+s, p)$
(iii) $\mathrm{P}(X=3 \mid W=7)=\frac{\mathrm{P}(X=3 \cap W=7)}{\mathrm{P}(W=7)}$

$$
\begin{equation*}
=\frac{P(X=3) \times P(Y=4)}{P(W=7)} \tag{A1}
\end{equation*}
$$

$$
=\frac{\binom{2}{1} p^{2} q\binom{3}{2} p^{3} q}{\binom{6}{4} p^{5} q^{2}}
$$

$$
=\frac{2}{5}
$$

Markscheme

May 2019

Statistics and probability

Higher level

Paper 3

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http:// www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.

N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the $\mathbf{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) $\int_{0}^{1} k x \mathrm{~d} x+\int_{1}^{2} k x^{2} \mathrm{~d} x$
$=k\left[\frac{x^{2}}{2}\right]_{0}^{1}+k\left[\frac{x^{3}}{3}\right]_{1}^{2}$
$=k\left[\frac{1}{2}+\left(\frac{8}{3}-\frac{1}{3}\right)\right]$
put expression equal to 1
$k=\frac{6}{17}$
(b) $\quad \int_{0}^{x} \frac{6}{17} t \mathrm{~d} t=\frac{3 x^{2}}{17}$
$F(x)=\frac{3 x^{2}}{17}, 0 \leq x<1$
$\int_{1}^{x} \frac{6}{17} t^{2} \mathrm{~d} t=\frac{2 x^{3}}{17}-\frac{2}{17}$
$F(x)=\frac{2 x^{3}}{17}-\frac{2}{17}+F(1), 1 \leq x \leq 2$

$$
=\frac{2 x^{3}}{17}+\frac{1}{17}
$$

$F(x)=0, x<0$ and $F(x)=1, x>2$
Note: Condone the use of x as the variable of integration.
Note: Accept the use of k in lines 1 and 3.
Note: Allow either weak or strong inequalities.
(c) recognition that the median lies between 1 and 2
$F(m)=0.5 \Rightarrow 0.5=\frac{2}{17} m^{3}+\frac{1}{17}$
$\Rightarrow m=1.55$
Note: FT their $F(x)$ from (b) if possible.

Question 1 continued
(d) $\mathrm{P}(-0.75 \leq X-1.55 \leq 0.75)$

$$
\begin{aligned}
& =\mathrm{P}(0.8 \leq X \leq 2.3) \\
& =F(2.3)-F(0.8) \\
& 1-\frac{3}{17}(0.8036 \ldots)^{2} \\
& =0.886
\end{aligned}
$$

Note: Accept all answers that round to 0.89.
Note: FT their m from (c).
2.

Note: In question 2, accept answers that round correctly to 2 significant figures.
(a) $\quad X \sim \mathrm{~N}\left(150,45^{2}\right)$

$$
\mathrm{P}(X>180)=0.252
$$

(b) required to find $\mathrm{P}\left(X_{1}+X_{2}+X_{3}<540\right)$
let $S=X_{1}+X_{2}+X_{3}$
$\mathrm{E}(S)=450$
$\operatorname{Var}(S)=3 \operatorname{Var}(X)$
$=3 \times 45^{2}(\Rightarrow \sigma=45 \sqrt{3})(=6075)$
$\mathrm{P}(S<540)=0.876$
Note: $\ln (\mathrm{b})$ and (c) condone incorrect notation, eg, $3 X$ for $X_{1}+X_{2}+X_{3}$.
(c) let $Y=\left(X_{1}+X_{2}+X_{3}+X_{4}\right)-\left(X_{5}+X_{6}+X_{7}\right)$
$\mathrm{E}(Y)=\mathrm{E}(X)=150$
$\operatorname{Var}(Y)=4 \operatorname{Var}(X)+3 \operatorname{Var}(X)(=7 \operatorname{Var}(X))$
$=14175$
required to find $\mathrm{P}(Y<0)$
$=0.104$
3. (a) $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma^{2}}{100}\right)$

Note: Accept n in place of 100 .
(b) $\hat{\mu}=\frac{\sum x}{n}=\frac{199.8}{100}=1.998$

Note: Accept 2.00, 2.0 and 2.
(c) $s_{n-1}{ }^{2}=\frac{n}{n-1}\left(\frac{\sum x^{2}}{n}-\bar{x}^{2}\right)=\frac{100}{99}\left(\frac{407.8}{100}-1.998^{2}\right)$
$=0.086864$
unbiased estimate for σ^{2} is 0.0869
Note: Accept any answer which rounds to 0.087 .
[2 marks]
(d) 90% confidence interval is $1.998 \pm 1.660 \sqrt{\frac{0.0869}{100}}$
(M1) $=(1.95,2.05)$

Note: $\boldsymbol{F T}$ their σ from (c).
Note: Condone the use of the z-value 1.645 since n is large.
Note: Accept any values that round to 1.95 and 2.05.
(e) (i) p-value is 0.0377

Note: Award A1 for the 2-tail value 0.0754 .
Note: Award A2 for 0.0377 and $\boldsymbol{A 1}$ for any other value that rounds to 0.038 .
Note: FT their estimated mean from (b), note that 2 gives $p=0.032(0)$.
(ii) accept the null hypothesis

A1
Note: $\boldsymbol{F T}$ their p-value.
4. (a) METHOD 1
$\operatorname{Cov}(X+c, Y)=\mathrm{E}([X+c] Y)-\mathrm{E}(X+c) \mathrm{E}(Y) \quad$ M1
$=\mathrm{E}(X Y+c Y)-\mathrm{E}(X) \mathrm{E}(Y)-c \mathrm{E}(Y)$
$=\mathrm{E}(X Y)+\mathrm{E}(c Y)-\mathrm{E}(X) \mathrm{E}(Y)-c \mathrm{E}(Y)$
$=\mathrm{E}(X Y)+c \mathrm{E}(Y)-\mathrm{E}(X) \mathrm{E}(Y)-c \mathrm{E}(Y)$
$=\operatorname{Cov}(X, Y)$

METHOD 2

$\operatorname{Cov}(X+c, Y)=\mathrm{E}[(X+c-\mathrm{E}(X+c))(Y-\mathrm{E}(Y))] \quad$ M1
$=\mathrm{E}[(X+c-\mathrm{E}(X)-\mathrm{E}(c))(Y-\mathrm{E}(Y))] \quad$ A1
$=\mathrm{E}[(X+c-\mathrm{E}(X)-c)(Y-\mathrm{E}(Y))] \quad \boldsymbol{A 1}$
$=\operatorname{Cov}(X, Y)$
(b) METHOD 1
$\operatorname{Cov}(X+Y, Z)=\mathrm{E}([X+Y] Z)-\mathrm{E}(X+Y) \mathrm{E}(Z) \quad$ M1
$=\mathrm{E}(X Z+Y Z)-(\mathrm{E}(X)+\mathrm{E}(Y)) \mathrm{E}(Z)$
A1
$=\mathrm{E}(X Z)+\mathrm{E}(Y Z)-\mathrm{E}(X) \mathrm{E}(Z)-\mathrm{E}(Y) \mathrm{E}(Z)$
$=\operatorname{Cov}(X, Z)+\operatorname{Cov}(Y, Z)$

METHOD 2

$\operatorname{Cov}(X+Y, Z)=\mathrm{E}[(X+Y-\mathrm{E}(X+Y))(Z-\mathrm{E}(Z))]$
$=\mathrm{E}[(X+Y-\mathrm{E}(X)-\mathrm{E}(Y))(Z-\mathrm{E}(Z))]$
$=\mathrm{E}[(X-\mathrm{E}(X)+Y-\mathrm{E}(Y))(Z-\mathrm{E}(Z))]$
$=\mathrm{E}[(X-\mathrm{E}(X))(Z-\mathrm{E}(Z))]+\mathrm{E}[(Y-\mathrm{E}(Y))(Z-\mathrm{E}(Z))] \quad \boldsymbol{A 1}$
$=\operatorname{Cov}(X, Z)+\operatorname{Cov}(Y, Z)$

AG
[3 marks]
continued...

Question 4 continued
(c) $\operatorname{Cov}\left(1+S, S+S T^{2}\right)$

$$
\begin{array}{ll}
=\operatorname{Cov}\left(S, S+S T^{2}\right)(\text { from a) } & \text { M1 } \\
=\operatorname{Cov}(S, S)+\operatorname{Cov}\left(S, S T^{2}\right)(\text { from b) } & \text { M1 }
\end{array}
$$

METHOD 1

$$
\begin{aligned}
& =\operatorname{Var}(S)+\mathrm{E}\left(S^{2} T^{2}\right)-\mathrm{E}(S) \mathrm{E}\left(S T^{2}\right) \\
& =\operatorname{Var}(S)+\mathrm{E}\left(S^{2}\right) \mathrm{E}\left(T^{2}\right)-\mathrm{E}(S) \mathrm{E}\left(S T^{2}\right) \\
& =\operatorname{Var}(S)+\operatorname{Var}(S) \operatorname{Var}(T)-\mathrm{E}(S) \mathrm{E}\left(S T^{2}\right) \\
& =1+1-0 \\
& =2
\end{aligned}
$$

METHOD 2

$$
=\operatorname{Var}(S)+\mathrm{E}\left[(S-\mathrm{E}(S))\left(S T^{2}-\mathrm{E}\left(S T^{2}\right)\right)\right] \quad \boldsymbol{A 1}
$$

$=\operatorname{Var}(S)+\mathrm{E}\left(S \times S T^{2}\right)$ A1
$=\operatorname{Var}(S)+\operatorname{Var}(S) \operatorname{Var}(T)$ (A1)
$=1+1+0$
$=2$

Markscheme

November 2018

Statistics and probability

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to RM $^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2018". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\top \mathrm{M}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$.65685... (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Misread
If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) $\mathrm{E}(2 X+7 Y)=2 \mathrm{E}(X)+7 \mathrm{E}(Y)=6+28=34$
(M1)A1
[2 marks]
(b) $\quad \operatorname{Var}(X)=\mathrm{E}(X)=3$ and $\operatorname{Var}(Y)=\mathrm{E}(Y)=4$
(R1)
$\operatorname{Var}(4 X-3 Y)=16 \operatorname{Var}(X)+9 \operatorname{Var}(Y)=48+36$
(M1)

$$
=84
$$

(c) use of $\mathrm{E}\left(U^{2}\right)=\operatorname{Var}(U)+(\mathrm{E}(U))^{2}$
(M1)
A1
(M1)
A1
[4 marks]
Total [9 marks]
(ii) $s_{n-1}{ }^{2}=\frac{75}{74}\left(\frac{\sum_{i=1}^{75} t_{i}^{2}}{75}-\bar{t}^{2}\right)=188.9009 \ldots=189$
(M1)A1

Note: Accept all answers that round to 28.9 and 189.
Note: Award MO if division by 75.
[3 marks]
(b) attempting to find a confidence interval.
(M1)
(i) 90% interval: $(26.2,31.5) \quad \boldsymbol{A 1}$
(ii) 95% interval: $(25.7,32.0) \quad \boldsymbol{A 1}$

Note: Accept any values which round to within 0.1 of the correct value.
Note: Award M1A1A0 if only confidence limits are given in the form 28.9 ± 2.6.
[3 marks]
(c) 26 lies within the 95% interval but not within the 90% interval

Note: Award $\mathbf{R 1}$ for considering whether or not one or two of the intervals contain 26.
the belief is supported at the 5% level (accept 95\%) A1
the belief is not supported at the 10\% level (accept 90\%) A1
Note: FT their intervals but award R1A1A0 if both intervals give the same conclusion.
3.

Note: Accept all answers that round to the correct 2sf answer in (a), (b) and (c) but not in (d).
$\begin{array}{rlr}\text { (a) } & \text { (i) } & X \sim N\left(550,8^{2}\right) \\ & \mathrm{P}(X>560)=0.10564 \ldots=0.106 & \text { (M1) } \\ & \\ \text { (ii) } & X_{i} \sim N\left(550,8^{2}\right), i=1, \ldots, 11 \\ & \text { let } Y=\sum_{i=1}^{11} X_{i} & \\ & \mathrm{E}(\mathrm{Y})=11 \times 550(6050) \\ & \operatorname{Var}(\mathrm{Y})=11 \times 8^{2}(704) \\ & \mathrm{P}(Y \leq 6000)=0.02975 \ldots=0.0298 & \text { (M1)A1 } \\ & & \boldsymbol{A 1}\end{array}$
(b) (i) t distribution with 7 degrees of freedom

A1A1
(ii) $\quad p=0.25779 \ldots=0.258$ A2
(iii) $p>0.05 \quad \boldsymbol{R 1}$
therefore we conclude that there is no evidence to reject H_{0}
A1
Note: $\boldsymbol{F T}$ their p-value.
Note: Only award A1 if R1 awarded.
(c) (i) $H_{0}: \rho=0, H_{1}: \rho>0$

A1
Note: Do not accept r in place of ρ.
(ii) $r=0.782$
(iii) $0.01095 \ldots=0.0110$ A1
since $0.0110<0.05 \quad$ R1
there is positive association between weight and length A1
Note: FT their p -value.
Note: Only award A1 if R1 awarded.
Note: Conclusion must be in context.

Question 3 continued
(d) regression line of y (weight) on x (length) is
$y=0.8267 \ldots x+255.96 \ldots$
$x=360$ gives $y=554$
Note: Award M1AOAO for the wrong regression line, that is $y=0.7393 \ldots x-51.62 \ldots$.

Total [21 marks]

4. (a) $G_{X}(t)=\sum_{x=1}^{\infty} p q^{x-1} t^{x}$ or equivalent

Note: Condone omission of limits on summation.
$=\sum_{x=1}^{\infty} p t(q t)^{x-1}$
recognition of a geometric series
$=\frac{p t}{1-q t}$
(b) $\quad G_{X}^{\prime}(t)=\frac{p(1-q t)+p q t}{(1-q t)^{2}}$

M1A1
$=\frac{p}{(1-q t)^{2}}$
$\mathrm{E}(X)=G_{X}^{\prime}(1)=\frac{p}{(1-q)^{2}}=\frac{p}{p^{2}}$
$=\frac{1}{p}$
M1A1

AG
[4 marks]
(c) METHOD 1
$G_{Y}(t)=p t^{5}+p q t^{7}+p q^{2} t^{9}+\ldots$
M1A1
recognition of geometric series
(M1)
$=\frac{p t^{5}}{1-q t^{2}}$

Question 4 continued

METHOD 2

$$
\begin{aligned}
& G_{Y}(t)=E\left(t^{Y}\right)=E\left(t^{2 X+3}\right) \\
& =t^{3} E\left(\left(t^{2}\right)^{X}\right) \\
& =t^{3} G_{X}\left(t^{2}\right) \\
& =\frac{p t^{5}}{1-q t^{2}}
\end{aligned}
$$

Markscheme

May 2018

Statistics and probability

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.

N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to RM $^{\text {TM }}$ Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp AO by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award M0 followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$.65685... (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

3 N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \mathbf{M} mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

Note: In question 1, accept answers that round correctly to 2 significant figures.

1. (a) $\mathrm{P}(4.75<X<4.85)=0.197$
(b) consider the random variable $X-2 Y$
$\mathrm{E}(X-2 Y)=-0.6$
$\operatorname{Var}(X-2 Y)=\operatorname{Var}(X)+4 \operatorname{Var}(Y)$
$=0.13$
$X-2 Y \sim \mathrm{~N}(-0.6,0.13)$
$\mathrm{P}(X-2 Y>0)$
(M1)
$=0.0480$
(c) let $W=X_{1}+X_{2}+Y_{1}+Y_{2}+Y_{3}$ be the total weight
$\mathrm{E}(W)=17.7$
$\operatorname{Var}(W)=2 \operatorname{Var}(X)+3 \operatorname{Var}(Y)=0.1475$
$W \sim \mathrm{~N}(17.7,0.1475)$
$\mathrm{P}(W>18)=0.217$
2. (a) X is geometric (or negative binomial)
(b) $\quad G(t)=\frac{1}{4} t+\frac{1}{4}\left(\frac{3}{4}\right) t^{2}+\frac{1}{4}\left(\frac{3}{4}\right)^{2} t^{3}+\ldots$

M1A1

recognition of GP $\left(u_{1}=\frac{1}{4} t, r=\frac{3}{4} t\right)$
$=\frac{\frac{1}{4} t}{1-\frac{3}{4} t}$
A1
leading to $G(t)=\frac{t}{4-3 t}$
AG
[4 marks]
(c) attempt to use product or quotient rule

M1
$G^{\prime}(t)=\frac{4}{(4-3 t)^{2}}$

A1
[2 marks]

Question 2 continued
(d) 4

A1
Note: Award A1FT to a candidate that correctly calculates the value of $G^{\prime}(1)$ from their $G^{\prime}(t)$.

Note: In question 3, accept answers that round correctly to 2 significant figures.
3. (a) $\mathrm{H}_{0}: \mu=9.5 ; \mathrm{H}_{1}: \mu \neq 9.5$
(b) the critical values are $9.5 \pm 1.95996 \ldots \times \frac{0.4}{\sqrt{20}}$
(M1)(A1)
i.e. 9.3247..., 9.6753..
the critical region is $\bar{b}<9.32, \bar{b}>9.68$
A1A1
Note: Award A1 for correct inequalities, A1 for correct values.
Note: Award M0 if t-distribution used, note that $t(19)_{97.5}=2.093 \ldots$
(c) $\bar{B} \sim \mathrm{~N}\left(9.8,\left(\frac{0.4}{\sqrt{20}}\right)^{2}\right)$
$\mathrm{P}(9.3247 \ldots<\bar{B}<9.6753 \ldots)$
(M1)
$=0.0816$
Note: FT the critical values from (b). Note that critical values of 9.32 and 9.68 give 0.0899 .
[3 marks]
(d) METHOD 1
$X \sim \mathrm{~N}\left(10.8, \frac{1.2^{2}}{6}\right)$
(M1)(A1)
$\mathrm{P}(10.2<X<11.4)=0.7793 \ldots$
confidence level is 77.9%
Note: Accept 78\%.
METHOD 2

$$
\begin{aligned}
& 11.4-10.2=2 z \times \frac{1.2}{\sqrt{6}} \\
& z=1.224 \ldots \\
& \mathrm{P}(-1.224 \ldots<Z<1.224 \ldots)=0.7793 \ldots \\
& \text { confidence level is } 77.9 \%
\end{aligned}
$$

Note: Accept 78\%.
4. (a) $\mathrm{H}_{0}: \rho=0 ; \mathrm{H}_{1}: \rho<0$

A1
[1 mark]
(b) (i) $t=-0.708 \sqrt{\frac{11-2}{1-(-0.708)^{2}}}(=-3.0075 \ldots)$
degrees of freedom $=9$
$\mathrm{P}(T<-3.0075 \ldots)=0.00739$
Note: Accept any answer that rounds to 0.0074 .
(ii) reject H_{0} or equivalent statement

Note: Apply follow through on the candidate's p-value.
[4 marks]
(c) (i) $\quad \operatorname{Cov}(U, V)=\mathrm{E}((U-\mathrm{E}(U))(V-\mathrm{E}(V)))$
$=\mathrm{E}(U V-\mathrm{E}(U) V-\mathrm{E}(V) U+\mathrm{E}(U) \mathrm{E}(V)) \quad \boldsymbol{M 1}$
$=\mathrm{E}(U V)-\mathrm{E}(\mathrm{E}(U) V)-\mathrm{E}(\mathrm{E}(V) U)+\mathrm{E}(\mathrm{E}(U) \mathrm{E}(V))$
(A1)
$=\mathrm{E}(U V)-\mathrm{E}(U) \mathrm{E}(V)-\mathrm{E}(V) \mathrm{E}(U)+\mathrm{E}(U) \mathrm{E}(V)$
A1
$\operatorname{Cov}(U, V)=\mathrm{E}(U V)-\mathrm{E}(U) \mathrm{E}(V)$
AG
(ii) $\mathrm{E}(U V)=\mathrm{E}(U) \mathrm{E}(V)$ (independent random variables)

R1
$\Rightarrow \operatorname{Cov}(U, V)=\mathrm{E}(U) \mathrm{E}(V)-\mathrm{E}(U) \mathrm{E}(V)=0$
A1
hence, $\rho=\frac{\operatorname{Cov}(U, V)}{\sqrt{\operatorname{Var}(U) \operatorname{Var}(V)}}=0$
A1AG

Note: Accept the statement that $\operatorname{Cov}(U, V)$ is the numerator of the formula for ρ.
Note: Only award the first $\boldsymbol{A} \mathbf{1}$ if the $R \mathbf{1}$ is awarded.
5.
(a) $\quad \mathrm{E}(P)=\mathrm{E}\left(\frac{X}{n}\right)=\frac{1}{n} \mathrm{E}(X)$

M1
$=\frac{1}{n}(n p)=p$
so P is an unbiased estimator of p
A1

Question 5 continued
(b) (i) $\quad \mathrm{E}(n P(1-P))=\mathrm{E}\left(n\left(\frac{X}{n}\right)\left(1-\frac{X}{n}\right)\right)$
$=\mathrm{E}(X)-\frac{1}{n} \mathrm{E}\left(X^{2}\right)$
M1A1
use of $\mathrm{E}\left(X^{2}\right)=\operatorname{Var}(X)+(\mathrm{E}(X))^{2}$
M1
Note: Allow candidates to work with P rather than X for the above 3 marks.

$$
\begin{aligned}
& =n p-\frac{1}{n}\left(n p(1-p)+(n p)^{2}\right) \\
& =n p-p(1-p)-n p^{2} \\
& =n p(1-p)-p(1-p)
\end{aligned}
$$

Note: Award A1 for the factor of $(1-p)$.

$$
=(n-1) p(1-p)
$$

(ii) an unbiased estimator is $\frac{n^{2} P(1-P)}{n-1}\left(=\frac{n U}{n-1}\right)$

A1
[6 marks]

Markscheme

November 2017

Statistics and probability

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2017". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\text {TM }}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) $F(t)=\int_{0}^{t}\left(x-\frac{x^{3}}{4}\right) \mathrm{d} x\left(=\int_{0}^{t} \frac{x\left(4-x^{2}\right)}{4} \mathrm{~d} x\right)$

$$
\begin{align*}
& =\left[\frac{x^{2}}{2}-\frac{x^{4}}{16}\right]_{0}^{t}\left(=\left[\frac{x^{2}\left(8-x^{2}\right)}{16}\right]_{0}^{t}\right)\left(=\left[\frac{-\left(4-x^{2}\right)^{2}}{16}\right]_{0}^{t}\right) \tag{A1}\\
& =\frac{t^{2}}{2}-\frac{t^{4}}{16}\left(=\frac{t^{2}\left(8-t^{2}\right)}{16}\right)\left(=1-\frac{\left(4-t^{2}\right)^{2}}{16}\right) \tag{A1}
\end{align*}
$$

Note: Condone integration involving t only.
Note: Award M1AOAO for integration without limits eg, $\int \frac{t\left(4-t^{2}\right)}{4} \mathrm{~d} t=\frac{t^{2}}{2}-\frac{t^{4}}{16}$ or equivalent.
Note: But allow integration $+C$ then showing $C=0$ or even integration without C if $F(0)=0$ or $F(2)=1$ is confirmed.
[3 marks]
(b) (i)

correct shape including correct concavity
A1 clearly indicating starts at origin and ends at $(2,1)$
Note: Condone the absence of $(0,0)$.

Note: Accept 2 on the x-axis and 1 on the y-axis correctly placed.

(ii) attempt to solve $\frac{a^{2}}{2}-\frac{a^{4}}{16}=0.75$ (or equivalent) for a

$$
a=1.41(=\sqrt{2})
$$

Note: Accept any answer that rounds to 1.4.
2. (a) UE of μ is $8.01(=8.0125)$

UE of σ^{2} is 0.404
Note: Accept answers that round correctly to 2 sf.
Note: Condone incorrect notation, ie, μ instead of UE of μ and σ^{2} instead of UE of σ^{2}.

Note: M0 for squaring $0.594 \ldots$ giving 0.354, M1A0 for failing to square $0.635 \ldots$
(b) (i) attempting to use the t-test
p-value is 0.0566
Note: Accept any answer that rounds correctly to 2 sf.
(ii) $0.0566>0.05$
we accept the null hypothesis (mean pumpkin weight is 7.5 kg)
Note: Apply follow through on the candidate's p-value.
Note: Do not award $\mathbf{A 1}$ if $\mathbf{R 1}$ is not awarded.
3. (a) $\mathrm{E}(U)=\mathrm{E}\left(a \overline{X_{1}}+(1-a) \overline{X_{2}}\right)=a \mathrm{E}\left(\overline{X_{1}}\right)+(1-a) \mathrm{E}\left(\overline{X_{2}}\right)$
$\mathrm{E}\left(\overline{X_{1}}\right)=\mu$ and $\mathrm{E}\left(\overline{X_{2}}\right)=\mu$
$E(U)=a \mu+(1-a) \mu$ (or equivalent)
A1
$=\mu$
hence U is an unbiased estimator of μ
(b) (i) $\quad \operatorname{Var}(U)=\operatorname{Var}\left(a \overline{X_{1}}+(1-a) \overline{X_{2}}\right)$

$$
\begin{equation*}
=a^{2} \operatorname{Var}\left(\overline{X_{1}}\right)+(1-a)^{2} \operatorname{Var}\left(\overline{X_{2}}\right) \tag{M1}
\end{equation*}
$$

stating that $\operatorname{Var}\left(\overline{X_{1}}\right)=\frac{\sigma^{2}}{n_{1}}$ and $\operatorname{Var}\left(\overline{X_{2}}\right)=\frac{\sigma^{2}}{n_{2}}$
$\Rightarrow \operatorname{Var} U=a^{2} \frac{\sigma^{2}}{n_{1}}+(1-a)^{2} \frac{\sigma^{2}}{n_{2}}$
Note: Line 3 or equivalent must be seen somewhere.
continued...

Question 3 continued
(ii) let $\operatorname{Var}(U)=V$

EITHER

$\frac{\mathrm{d} V}{\mathrm{~d} a}=2 a \frac{\sigma^{2}}{n_{1}}-2(1-a) \frac{\sigma^{2}}{n_{2}}$
attempting to solve $\frac{\mathrm{d} V}{\mathrm{~d} a}=0$ for a
Note: Award M1 for obtaining a in terms of n_{1}, n_{2} and σ.
OR
forming a quadratic in a
$V=\left(\frac{\sigma^{2}}{n_{1}}+\frac{\sigma^{2}}{n_{2}}\right) a^{2}-2 \frac{\sigma^{2}}{n_{2}} a+\frac{\sigma^{2}}{n_{2}}$
attempting to find the axis of symmetry of V

THEN

$$
\begin{align*}
& a=\frac{\frac{2 \sigma^{2}}{n_{2}}}{2 \sigma^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \tag{A1}\\
& a=\frac{n_{1}}{n_{1}+n_{2}}
\end{align*}
$$

(iii) substituting a into U
$U=\frac{n_{1} \overline{X_{1}}+n_{2} \overline{X_{2}}}{n_{1}+n_{2}}$
Note: Do not FT an incorrect a for $\boldsymbol{A 1}$, the $\boldsymbol{M 1}$ may however be awarded.
this is an expression for the mean of the combined samples
OR this is a weighted mean of the two sample means
4. (a) $\mathrm{H}_{0}: \rho=0 ; \mathrm{H}_{1}: \rho \neq 0$

A1A1
[2 marks]
(b) $\quad v=10$
(A1)
(M1)(A1)
$t_{0.005}=3.16927 \ldots$
(R1)
attempting to solve $|r| \sqrt{\frac{10}{1-r^{2}}}>3.16927 \ldots$ for $|r|$
Note: Allow $=$ instead of $>$.
(least value of $|r|$ is) 0.708 (3 sf)
Note: Award A1M1A0R1M1A0 to candidates who use a one-tailed test. Award AOM1A0R1M1A0 to candidates who use an incorrect number of degrees of freedom or both a one-tailed test and incorrect degrees of freedom.

Note: Possible errors are
10 DF 1-tail, $\mathrm{t}=2.763 \ldots$. least value $=0.658$
11 DF 2-tail, $\mathrm{t}=3.105 \ldots$, least value $=0.684$
11 DF 1-tail, $t=2.718 \ldots$, least value $=0.634$.
5. (a) (i) $G_{X}^{\prime}(t)=\lambda \mathrm{e}^{\lambda(t-1)}$

A1
$G_{X}^{\prime \prime}(t)=\lambda^{2} \mathrm{e}^{\lambda(t-1)}$
A1
(ii) $\operatorname{Var}(X)=G_{X}^{\prime \prime}(1)+G_{X}^{\prime}(1)-\left(G_{X}^{\prime}(1)\right)^{2}$
(M1)
$G_{X}^{\prime}(1)=\lambda$ and $G_{X}^{\prime \prime}(1)=\lambda^{2}$
$\operatorname{Var}(X)=\lambda^{2}+\lambda-\lambda^{2}$
A1
$=\lambda$
AG
[5 marks]
(b) $\quad G_{X+Y}(t)=\mathrm{e}^{\lambda(t-1)} \times \mathrm{e}^{\mu(t-1)}$

Note: The M1 is for knowing to multiply pgfs.
$=\mathrm{e}^{(\lambda+\mu)(t-1)}$
A1
which is the pgf for a Poisson distribution with mean $\lambda+\mu$
R1AG
Note: Line 3 identifying the Poisson pgf must be seen.

Question 5 continued
(c) (i) $\mathrm{P}(X=x \mid X+Y=n)=\frac{\mathrm{P}(X=x \cap Y=n-x)}{\mathrm{P}(X+Y=n)}$
(M1)
$=\left(\frac{\mathrm{e}^{-\lambda} \lambda^{x}}{x!}\right)\left(\frac{\mathrm{e}^{-\mu} \mu^{n-x}}{(n-x)!}\right)\left(\frac{n!}{\mathrm{e}^{-(\lambda+\mu)}(\lambda+\mu)^{n}}\right)$ (or equivalent) M1A1
$=\binom{n}{x} \frac{\lambda^{x} \mu^{n-x}}{(\lambda+\mu)^{n}}$
$=\binom{n}{x}\left(\frac{\lambda}{\lambda+\mu}\right)^{x}\left(\frac{\mu}{\lambda+\mu}\right)^{n-x}$
leading to $\mathrm{P}(X=x \mid X+Y=n)=\binom{n}{x}\left(\frac{\lambda}{\lambda+\mu}\right)^{x}\left(1-\frac{\lambda}{\lambda+\mu}\right)^{n-x}$
(ii) $\quad \mathrm{B}\left(n, \frac{\lambda}{\lambda+\mu}\right)$

Markscheme

May 2017

Statistics and probability

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

R Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\top \mathrm{M}}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2017". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

3 N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) $H_{0}: \mu=7, H_{1}: \mu<7$

A1
[1 mark]
(b) $\bar{x}=\frac{83.64}{12}=6.97$
$s_{n-1}^{2}=\frac{583.05}{11}-\frac{83.64^{2}}{132}=0.0072$
(M1)A1
[3 marks]
(c) (i) $t=\frac{6.97-7}{\sqrt{\frac{0.0072}{12}}}=-1.22(474 \ldots)$
degrees of freedom $=11$
p-value $=0.123$
Note: Accept any answer that rounds correctly to 0.12 .
(ii) because $p>0.1$
the inspector's claim is not supported (at the 10% level) (or equivalent in context)

Note: Only award the A1 if the R1 has been awarded
[6 marks]
Total [10 marks]
2. (a) (i) $P(0.25 \leq X \leq 0.75)=F(0.75)-F(0.25)$
(M1)
$=0.466$
A1
Note: Accept any answer that rounds correctly to 0.466.
(ii) the median m satisfies $F(m)=0.5$
(M1)
$m=0.685$
Note: Accept any answer that rounds correctly to 0.685 .
A1

(M1)

A1
AG
continued...

Question 2 continued
(ii) $\quad \mu=\int_{0}^{1} x(x+1) \mathrm{e}^{x-1} \mathrm{~d} x$

$$
=0.632 \quad\left(1-\frac{1}{\mathrm{e}}\right)
$$

Note: Accept any answer that rounds correctly to 0.632 .

$$
\begin{align*}
& \sigma^{2}=\int_{0}^{1} x^{2}(x+1) \mathrm{e}^{x-1} \mathrm{~d} x-0.632 \ldots{ }^{2} \tag{M1}\\
& =0.0719 \quad\left(\frac{6}{\mathrm{e}}-2-\frac{1}{\mathrm{e}^{2}}\right)
\end{align*}
$$

(c) (i) the central limit theorem states that the mean of a large sample from any distribution (with a finite variance) is approximately normally distributed
(ii) \bar{X} is approximately $N(0.632 \ldots, 0.000719 \ldots)$
3. (a) $G(t)=\sum P(X=x) t^{x}$
$=p+p q t^{2}+p q^{2} t^{4}+\ldots$
(summing GP) $u_{1}=p, r=q t^{2}$
$=\frac{p}{1-q t^{2}}$
(b) $\quad G^{\prime}(t)=-\frac{p}{\left(1-q t^{2}\right)^{2}} \times-2 q t$

M1A1
(M1)
A1
[4 marks]
continued...

Question 3 continued
(c) METHOD 1

PGF of $Y=\sum P(Y=y) t^{y}$
(M1)
$=p t+p q t^{5}+p q^{2} t^{9}+\ldots$
$=\frac{p t}{1-q t^{4}}$

METHOD 2

PGF of $Y=\mathrm{E}\left(t^{Y}\right)$
$=\mathrm{E}\left(t^{2 X+1}\right)$
$=\mathrm{E}\left(\left(t^{2}\right)^{x}\right) \times \mathrm{E}(t)$
$=\frac{p t}{1-q t^{4}}$

Total [9 marks]

4. (a) $\mathrm{E}(U)=a\left(\mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{2}\right)\right)+b\left(\mathrm{E}\left(Y_{1}\right)+\mathrm{E}\left(Y_{2}\right)+\mathrm{E}\left(Y_{3}\right)\right)$
$=2 a \mu+6 b \mu$
(for an unbiased estimator,) $\mathrm{E}(U)=\mu$ R1
giving $2 a+6 b=1$
Note: Condone omission of E on LHS.
(b) $\quad \operatorname{Var}(U)=a^{2}\left(\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)\right)+b^{2}\left(\operatorname{Var}\left(Y_{1}\right)+\operatorname{Var}\left(Y_{2}\right)+\operatorname{Var}\left(Y_{3}\right)\right)$
$=4 a^{2} \sigma^{2}+3 b^{2} \sigma^{2}$
$=4\left(\frac{1-6 b}{2}\right)^{2} \sigma^{2}+3 b^{2} \sigma^{2}$
$=\left(39 b^{2}-12 b+1\right) \sigma^{2}$

AG
[3 marks]
(c) (i) the best unbiased estimator (of this form) will be found by minimising $\operatorname{Var}(U)$
For example, $\frac{\mathrm{d}}{\mathrm{db}}(\operatorname{Var}(U))=(78 b-12) \sigma^{2}$
for a minimum, $b=\frac{12}{78}\left(=\frac{2}{13}\right)$ so that $a=\frac{3}{78}\left(=\frac{1}{26}\right)$

Question 4 continued
(ii) $\operatorname{Var} U=\left(39\left(\frac{2}{13}\right)^{2}-12\left(\frac{2}{13}\right)+1\right) \sigma^{2}$

$$
=\frac{\sigma^{2}}{13} \quad\left(0.0769 \sigma^{2}\right)
$$

A1
[4 marks]
Total [10 marks]
5. (a) $H_{0}: \rho=0 ; H_{1}: \rho>0$

Note: Do not accept r in place of ρ.
(b) insufficient evidence to conclude that there is a (positive) association between marks in these two subjects (or equivalent statement in context)
(c) degrees of freedom $=10$
required value of $t=$ inverse $t(0.823)$
$=0.972$
attempt to solve $t=r \sqrt{\frac{n-2}{1-r^{2}}}$
$r=0.294$

Note: Accept any r value that rounds to 0.29 .
Note: Follow through their t value to determine r.

Markscheme

November 2016

Statistics and probability

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to RM $^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2016". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) $r=0.804$

Note: Accept any number that rounds to 0.80 .
(b) (i) t distribution with 8 degrees of freedom

A1A1
(ii) p-value $=0.00254$

Notes: Accept any number that rounds to 0.0025 .
Award A1 for 2-tail test giving an answer that rounds to 0.0051 .
(iii) p-value <0.01, so conclude that there is positive correlation

Notes: Only award the A1 if the R1 is awarded.
Do not accept just "reject H_{0} " or "accept H_{1} ".
The words "positive correlation" must be seen.
(c) regression line of y (Exam 2 mark) on x (Exam 1 mark) is
$y=0.59407 \ldots x+21.387 \ldots$
$x=11$ gives $y=28$ (to nearest integer)
(d) (i) applying the t test to the differences t distribution with 9 degrees of freedom
(ii) p-value $=0.239$

Notes: Accept any number that rounds to 0.24 .
Award $\boldsymbol{A 1}$ if subtraction done the wrong way round giving p-value $=0.109$.
(iii) p-value >0.05, so accept H_{0} or $u_{d}=6$

R1A1
[6 marks]
Total [17 marks]
2. (a) (i) mean $=119 \times 2=238$

A1

(M1)A1
(ii) \quad variance $=119 \times \frac{1}{9}=\frac{119}{9}(=13.2)$

Note: If 120 is used instead of 119 award $\mathbf{A O}$ (M1)AO for part (a) and apply follow through for parts (b)-(d). (b) is unaffected and in (c) the interval becomes (234, 246). In (d) the first 2 A1 marks are for $0.3633 \ldots$ and $0.0174 \ldots$ so the final answer will round to 0.017 .
(b) justified by the Central Limit Theorem R1
since n is large A1

Note: Accept $n>30$.

Question 2 continued
(c) $\quad X \sim N\left(238, \frac{119}{9}\right)$

$$
\begin{align*}
& Z=\frac{X-238}{\frac{\sqrt{119}}{3}} \sim N(0,1) \\
& P(Z<q)=0.95 \Rightarrow q=1.644 \ldots \tag{A1}\\
& \text { so } P(-1.644 \ldots<Z<1.644 \ldots)=0.9 \tag{R1}
\end{align*}
$$

(M1)(A1)
$P\left(-1.644 \ldots<\frac{X-238}{\frac{\sqrt{119}}{3}}<1.644 \ldots\right)=0.9$
A1A1
Notes: Accept the use of inverse normal applied to the distribution of X.
Alternative is to use the GDC to find a pretend Z confidence interval for a mean and then convert by multiplying by 119.
Either A or B correct implies the five implied marks.
Accept any numbers that round to these 3sf numbers.
(d) under $\mathrm{H}_{1}, X \sim N\left(238, \frac{119}{9}\right)$
$\mathrm{P}(236 \leq X \leq 240)=0.41769 \ldots$
probability that all 4 values of X lie in this interval is $(0.41769 \ldots)^{4}=0.030439 \ldots$
so probability of a Type II error is 0.0304 (3sf)
Note: Accept any answer that rounds to 0.030 .

Total [17 marks]
3. (a) (i) $\quad \mathrm{NB}\left(2, \frac{1}{7}\right)$

A1A1A1

Note: The final A1 mark can be awarded for knowing that $p=\frac{1}{7}$ independent of the other two marks.
(ii) $\mathrm{E}(X)=\frac{r}{p}=14$
(iii) $\binom{4}{1}\left(\frac{6}{7}\right)^{3}\left(\frac{1}{7}\right)^{2}=0.0514$
(M1)A1

Note: Accept any number that rounds to this 3sf number.

Question 3 continued

(b) (i) $\quad Y=Y_{1}+Y_{2}$ (number up to1st + number up to 2nd)

$$
\begin{equation*}
Y_{1} \sim G e O\left(\frac{1}{7}\right), Y_{2} \sim G e o\left(\frac{3}{7}\right) \tag{A1}
\end{equation*}
$$

Notes: The above (A1) is independent of the (M1).
Could have NB $(1, p)$, instead of $G e o(p)$.
$\mathrm{E}(Y)=\frac{1}{\left(\frac{1}{7}\right)}+\frac{1}{\left(\frac{3}{7}\right)}=7+\frac{7}{3}=9 \frac{1}{3}(9.33)$
M1A1
(ii) $\quad Y=Y_{1}+Y_{2}=5$ happens when
$Y_{1}=1, Y_{2}=4$ or $Y_{1}=2, Y_{2}=3$ or $Y_{1}=3, Y_{2}=2$ or $Y_{1}=4, Y_{2}=1$
so probability is $\frac{1}{7} \frac{4}{7} \frac{4}{7} \frac{4}{7} \frac{3}{7}+\frac{6}{7} \frac{1}{7} \frac{4}{7} \frac{4}{7} \frac{3}{7}+\frac{6}{7} \frac{6}{7} \frac{1}{7} \frac{4}{7} \frac{3}{7}+\frac{6}{7} \frac{6}{7} \frac{6}{7} \frac{1}{7} \frac{3}{7} \quad$ (M1)(A1)
$=0.0928\left(\frac{1560}{16807}\right)$
Note: Accept any answer that rounds to 0.093 .
[9 marks]

Total [15 marks]

4. (a) $J(t)=G(t) H(t)$

A1
[1 mark]
(b) (i) $J^{\prime}(t)=G^{\prime}(t) H(t)+G(t) H^{\prime}(t)$

M1A1

$J^{\prime}(1)=G^{\prime}(1) H(1)+\mathrm{G}(1) \mathrm{H}^{\prime}(1)$
M1
$J^{\prime}(1)=G^{\prime}(1)+\mathrm{H}^{\prime}(1)$
A1
so $E(Z)=E(X)+E(Y)$
AG
(ii) $\quad J^{\prime \prime}(t)=G^{\prime \prime}(t) H(t)+G^{\prime}(t) H^{\prime}(t)+G^{\prime}(t) H^{\prime}(t)+G(t) H^{\prime \prime}(t)$

M1A1
$J^{\prime \prime}(1)=G^{\prime \prime}(1) H(1)+2 G^{\prime}(1) H^{\prime}(1)+G(1) H^{\prime \prime}(1)$
$=G^{\prime \prime}(1)+2 G^{\prime}(1) H^{\prime}(1)+H^{\prime \prime}(1)$
A1
$\operatorname{Var}(Z)=J^{\prime \prime}(1)+J^{\prime}(1)-\left(J^{\prime}(1)\right)^{2} \quad$ M1
$=G^{\prime \prime}(1)+2 G^{\prime}(1) H^{\prime}(1)+H^{\prime \prime}(1)+G^{\prime}(1)+H^{\prime}(1)-\left(G^{\prime}(1)+H^{\prime}(1)\right)^{2} \quad$ A1
$=G^{\prime \prime}(1)+G^{\prime}(1)-\left(G^{\prime}(1)\right)^{2}+H^{\prime \prime}(1)+H^{\prime}(1)-\left(H^{\prime}(1)\right)^{2} \quad$ A1
so $\operatorname{Var}(Z)=\operatorname{Var}(X)+\operatorname{Var}(Y)$
AG

Note: If addition is wrongly used instead of multiplication in (a) it is inappropriate to give FT apart from the second \boldsymbol{M} marks in each part, as the working is too simple.

Markscheme

May 2016

Statistics and probability

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.

N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2016". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, for example, M1A1, this usually means M1 for an attempt to use an appropriate method (for example, substitution into a formula) and A1 for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, Tl-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) $z=0.841 \ldots$

$$
\begin{aligned}
a & =\mu+z \sigma \\
& =26.2
\end{aligned}
$$

(b) let T denote the total time taken to complete 5 crosswords. T is $\mathrm{N}(110,125)$
(A1)(A1)
Note: A1 for the mean and A1 for the variance.
$\mathrm{P}(T>120)=0.186$
A1
[3 marks]
(c) consider the random variable $U=Y-2 X$
$\mathrm{E}(U)=-4$
A1
$\operatorname{Var}(U)=\operatorname{Var}(Y)+4 \operatorname{Var}(X)$
$=136$ A1
$\mathrm{P}(Y>2 X)=\mathrm{P}(U>0)$
$=0.366$
2. (a) $H_{0}: \rho=0 ; H_{1}: \rho \neq 0$

A1A1
[2 marks]
(b) (i) $t=0.486 \times \sqrt{\frac{10-2}{1-0.486^{2}}}$

$$
\begin{align*}
& =1.572 \ldots \tag{A1}\\
& \text { degrees of freedom }=8 \tag{A1}
\end{align*}
$$

$$
\mathrm{P}(T>1.5728 \ldots)
$$

$=0.0772$

$$
p \text {-value }=0.154
$$

Note: Do not follow through for the final $\mathbf{A 1}$ if their H_{1} is one-sided.
(ii) accept H_{0} or equivalent statement involving H_{0} or H_{1}
(at the 5% significance level)
R1
Note: Follow through the candidate's p-value.

Question 2 continued
(c) EITHER
because the above analysis suggests that X, Y are independent

OR

the value of r suggests that X and Y are weakly correlated
3. (a) $\mathrm{E}(U)=k \mathrm{E}(\bar{X})=k \mathrm{E}(X)$
$=\frac{k \theta}{2}$
unbiased when $k=2$
(b) (i) for the data, $\Sigma x=40.8$
$\Rightarrow \bar{x}=5.1$
so that unbiased estimate for $\theta=10.2$
(ii) this is impossible because of the sample value 10.3
(c) (i) $\quad \operatorname{Var}(U)=4 \times \operatorname{Var}(\bar{X})$
$=4 \times \frac{\theta^{2}}{24 n}$
$=\frac{\theta^{2}}{6 n}$
(ii) $\quad \mathrm{E}\left(U^{2}\right)=\operatorname{Var}(U)+(\mathrm{E}(U))^{2}$
$=\frac{\theta^{2}}{6 n}+\theta^{2}$
(iii) $\mathrm{E}\left(U^{2}\right)=\frac{\theta^{2}}{6 n}(1+6 n)$
$\mathrm{E}\left(\left(\frac{6 n}{1+6 n}\right) U^{2}\right)=\theta^{2}$
therefore $\left(\left(\frac{6 n}{1+6 n}\right) U^{2}\right)$ is an unbiased estimator for θ^{2}
4. (a) $H_{0}: \mu=2.2 ; H_{1}: \mu \neq 2.2$
(b) (i) UE of mean $=\frac{42.0}{20}=2.1$

UE of variance $=\frac{89.2}{19}-\frac{20 \times 2.1^{2}}{19}=0.0526\left(\frac{1}{19}\right)$
(M1)A1

Note: Award (M0) for division by 20 where there is no subsequent use of $\frac{20}{19}$.
(ii) $t=-1.95$

DF $=19$
p-value $=0.0662$
Note: Allow follow through from (b)(i). In particular, 0.05 for the variance gives $t=-2$ and p-value 0.0600 .
accept H_{0}, or equivalent statement involving H_{0} or H_{1}, indicating that the mean weight is 2.2 kg

Note: Follow through the candidate's p-value.
(c) $[1.99,2.21]$

A1A1
Note: Allow follow through from (b)(i). In particular, 0.05 for the variance gives [2.00,2.20].

Total [11 marks]
5. (a) $\mathrm{P}(Y=y)=\int_{y}^{y+1} \mathrm{e}^{-x} \mathrm{~d} x$

M1A1

$=\left[-\mathrm{e}^{-x}\right]_{y}^{y+1}$
A1
$=-\mathrm{e}^{-(y+1)}+\mathrm{e}^{-y} \quad \boldsymbol{A 1}$
$=\mathrm{e}^{-y}\left(1-\mathrm{e}^{-1}\right) \quad$ AG

Question 5 continued
(b) (i) attempt to use $G(t)=\sum P(Y=y) t^{y}$
$=\sum_{y=0}^{\infty} \mathrm{e}^{-y}\left(1-\mathrm{e}^{-1}\right) t^{y}$
Note: Accept a listing of terms without the use of Σ.
this is an infinite geometric series with first term $1-\mathrm{e}^{-1}$ and common ratio $\mathrm{e}^{-1} t$
$G(t)=\frac{1-\mathrm{e}^{-1}}{1-\mathrm{e}^{-1} t}$ AG
(ii) $\mathrm{E}(Y)=G^{\prime}(1)$
$G^{\prime}(t)=\frac{1-\mathrm{e}^{-1}}{\left(1-\mathrm{e}^{-1} t\right)^{2}} \times \mathrm{e}^{-1}$
$\mathrm{E}(Y)=\frac{\mathrm{e}^{-1}}{\left(1-\mathrm{e}^{-1}\right)}$
$=0.582$
Note: Allow the use of GDC to determine $G^{\prime}(1)$.

Markscheme

November 2015

Statistics and probability

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.

N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to RM $^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking November 2015". It is essential that you read this document before you start marking.
In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR).
A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $M R$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

- As this is an international examination, accept all alternative forms of notation
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.
Accuracy of Answers
Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) valid attempt to use $\bar{x} \pm z \frac{\sigma}{\sqrt{n}}$

Note: Accept answers that round to the correct 3 sf .
(b) $1.96 \times \frac{15.0}{\sqrt{n}}<1.5$

M1A1
$n>\left(\frac{15.0}{1.5} \times 1.96\right)^{2}$
(M1)

Note: Award M1 for attempting to solve the inequality.
Note: Allow the use of $=$.
minimum value $n=385$
A1
[4 marks]

Total [7 marks]

2. (a) $r=-0.762$
(M1)A1
Note: Accept answers that round to -0.76 .
(b) $\quad H_{0}$: Moisture content and strength are independent or $\rho=0$
H_{1} : Moisture content and strength are not independent or $\rho \neq 0$
A1

EITHER

test statistic is $-3.33 \quad$ A1
critical value is $(\pm) 2.306 \quad$ A1
since $-3.33<-2.306$ or $3.33>2.306$, R1
reject H_{0} (or equivalent) A1
OR
p-value is $0.0104 \quad$ A2
as $0.0104<0.05$, $\quad \mathbf{R 1}$
reject H_{0} (or equivalent) A1
Note: The R1 and $\boldsymbol{A 1}$ can be awarded as follow through from their test statistic or p-value.

Question 2 continued
(c) $x=$ strength
$y=$ moisture content
$x=-0.629 y+28.1 \quad$ (M1)(A1)
if $y=9.5$ so $x=22.1$
(M1)A1
Note: Only accept answers that round to 22.1.

Note: Award M1A1MOAO for the other regression line $y=30.1-0.924 x$.
3. let X denote boys' height and Y denote girls' height
if $B B, \mathrm{P}($ taller is boy $)=1$
if $G G, \mathrm{P}($ taller is boy $)=0$
if $B G$ or $G B$:
consider $X-Y$
$E(X-Y)=178-169=9$
$\operatorname{Var}(X-Y)=5.2^{2}+5.4^{2}(=56.2)$
(M1)A1
$\mathrm{P}(X-Y>0)=0.885$
A1
answer is $\frac{1}{4} \times 1+\frac{1}{2} \times 0.885=0.693$
(M1)A1
4. (a) METHOD 1

$$
\begin{align*}
& \mathrm{P}(U=u)=\frac{1}{4}\left(\frac{3}{4}\right)^{u-1} \tag{M1}\\
& F(u)=\mathrm{P}(U \leq u)=\sum_{r=1}^{u} \frac{1}{4}\left(\frac{3}{4}\right)^{r-1} \quad \text { (or equivalent) } \\
& =\frac{\frac{1}{4}\left(1-\left(\frac{3}{4}\right)^{u}\right)}{1-\frac{3}{4}} \tag{M1}\\
& =1-\left(\frac{3}{4}\right)^{u}
\end{align*}
$$

METHOD 2

$\mathrm{P}(U \leq u)=1-\mathrm{P}(U>u)$
$\mathrm{P}(U>u)=$ probability of u consecutive failures
$\mathrm{P}(U \leq u)=1-\left(\frac{3}{4}\right)^{u}$
(b) $\mathrm{P}(U>20)=1-\mathrm{P}(U \leq 20)$

$$
=\left(\frac{3}{4}\right)^{20}(=0.00317)
$$

A1
[2 marks]
(c) $\quad G_{U}(t)=\sum_{r=1}^{\infty} \frac{1}{4}\left(\frac{3}{4}\right)^{r-1} t^{r}$ (or equivalent)

Question 4 continued
(d) (i) $\quad E(U)=\frac{1}{\frac{1}{4}}=4$

$$
\begin{equation*}
E\left(U_{1}+U_{2}+U_{3}\right)=4+4+4=12 \tag{A1}
\end{equation*}
$$

(ii) $\operatorname{Var}(U)=\frac{\frac{3}{4}}{\left(\frac{1}{4}\right)^{2}}=12$

$$
\operatorname{Var}\left(U_{1}+U_{2}+U_{3}\right)=12+12+12=36
$$

(iii) $\quad G_{V}(t)=\left(G_{U}(t)\right)^{3}$

$$
=\left(\frac{t}{4-3 t}\right)^{3}
$$

(e) $\quad G_{W}{ }^{\prime}(t)=-3(4-3 t)^{-4}(-3)\left(=\frac{9}{(4-3 t)^{4}}\right)$
$E(W)=G_{W}{ }^{\prime}(1)=9$
(M1)A1
Note: Allow the use of the calculator to perform the differentiation.

(f) EITHER

probability generating function of the constant 3 is t^{3}
A1
OR
$G_{W+3}(t)=E\left(t^{W+3}\right)=E\left(t^{W}\right) E\left(t^{3}\right)$
A1

THEN
$W+3$ has generating function $G_{W+3}=\frac{1}{(4-3 t)^{3}} \times t^{3}=G_{V}(t)$ M1
as the generating functions are the same $V=W+3$
R1AG
[3 marks]
5. (a) let X denote the score on the die
(i) $\quad \mathrm{P}(X=x)=\left\{\begin{array}{cc}\frac{1-p}{5} & , \quad x=1,2,3,4,5 \\ p, & x=6\end{array}\right.$
$E\left(X_{1}\right)=(1+2+3+4+5) \frac{1-p}{5}+6 p$
$=3+3 p$
(ii) so an unbiased estimator for p would be $\frac{X_{1}-3}{3}$
(b) (i) $E\left(k\left(X_{1}-3\right)+\left(\frac{1}{3}-k\right)\left(X_{2}-3\right)\right)$
$=k E\left(X_{1}-3\right)+\left(\frac{1}{3}-k\right) E\left(X_{2}-3\right)$
$=k(3 p)+\left(\frac{1}{3}-k\right)(3 p)$
any correct expression involving just k and p
= p
hence $k\left(X_{1}-3\right)+\left(\frac{1}{3}-k\right)\left(X_{2}-3\right)$ is an unbiased estimator of p
(ii) $\operatorname{Var}\left(k\left(X_{1}-3\right)+\left(\frac{1}{3}-k\right)\left(X_{2}-3\right)\right)$
$=k^{2} \operatorname{Var}\left(X_{1}-3\right)+\left(\frac{1}{3}-k\right)^{2} \operatorname{Var}\left(X_{2}-3\right)$
$=\left(k^{2}+\left(\frac{1}{3}-k\right)^{2}\right) \sigma^{2}\left(\right.$ where σ^{2} denotes $\left.\operatorname{Var}(X)\right)$
valid attempt to minimise the variance
$k=\frac{1}{6}$
Note: Accept an argument which states that the most efficient estimator is the one having equal coefficients of X_{1} and X_{2}.

Markscheme

May 2015

Statistics and probability

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.

N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to $\mathrm{RM}^{\text {TM }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2015". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg $\boldsymbol{M 1 A 1}$, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

3
 N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR).
A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $M R$, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10
 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, Tl-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) $\mathrm{P}(L \geq 4995)=0.785$

Note: Accept any answer that rounds correctly to 0.79 .
Award M1AO for 0.78 .

Note: Award M1AO for any answer that rounds to 0.55 obtained by taking SD $=40$.
(b) we are given that $L \sim \mathrm{~N}(5000,40)$ and $S \sim \mathrm{~N}(1000,25)$ consider $X=L-5 S$ (ignore ± 30)
$\mathrm{E}(X)=0$ (± 30 consistent with line above) A1
$\operatorname{Var}(X)=\operatorname{Var}(L)+25 \operatorname{Var}(S)=40+625=665$
require $\mathrm{P}(X \geq 30)$ (or $\mathrm{P}(X \geq 0)$ if -30 above)
obtain 0.122
Note: Accept any answer that rounds correctly to 2 significant figures.
(c) consider $Y=L-\left(S_{1}+S_{2}+S_{3}+S_{4}+S_{5}\right)$ (ignore $\left.\pm 30\right)$
(M1)
$\mathrm{E}(Y)=0(\pm 30$ consistent with line above)
A1
$\operatorname{Var}(Y)=40+5 \times 25=165$
A1
require $\mathrm{P}(Y \leq-30)($ or $\mathrm{P}(Y \leq 0)$ if +30 above)
obtain 0.00976
Note: Accept any answer that rounds correctly to 2 significant figures.
Note: Condone the notation $Y=L-5 S$ if the variance is correct.
2. (a) unbiased estimate of μ is 2.36(36...) (26/11)
(M1)A1
unbiased estimate of σ^{2} is $33.65(45 \ldots)=\left(5.801^{2}\right)(1851 / 55)$
(M1)A1
Note: Accept any answer that rounds correctly to 3 significant figures.

Note: Award M1AO for any unbiased estimate of σ^{2} that rounds to 5.80 .
(b) (i) $\mathrm{H}_{0}: \mu=0 ; \mathrm{H}_{1}: \mu>0$

A1A1
Note: Award $\mathbf{A 1 A O}$ if an inappropriate symbol is used for the mean, eg, $r, \overline{\mathrm{~d}}$.

Question 2 continued

(ii) attempt to use t-test
$t=1.35$
$\mathrm{DF}=10$
p-value $=0.103$

Note: Accept any answer that rounds correctly to 3 significant figures.
(iii) $0.103>0.05$
there is insufficient evidence at the 5% level to support the claim (that extra tuition improves examination marks)

OR
the claim (that extra tuition improves examination marks) is not supported at the 5% level (or equivalent statement)

Note: Follow through the candidate's p-value.
Note: Do not award R1 for Accept H_{0} or Reject H_{1}.

Total [12 marks]

(A1)
(M1)(A1)
A1
Note: Accept 9.762 and 9.824 .
$\begin{array}{ll}\text { (b) if this process is carried out a large number of times } & \text { A1 } \\ \text { (approximately) } 99 \% \text { of the intervals will contain } \mu & \text { A1 }\end{array}$
Note: Award A1A1 for a consideration of any specific large value of times $(n \geq 100)$.

Question 3 continued

(c) METHOD 1

If the interval is halved, 2.576 becomes 1.288 M1
normal tail probability corresponding to $1.288=0.0988 \ldots$ A1
confidence level $=80 \%$ A1
METHOD 2
half width $=0.5 \times 0.063$ or 0.062 or $0.064=0.0315$ or 0.031 or 0.032
$\frac{2 z \times 0.03}{\sqrt{6}}=0.0315$ or 0.031 or 0.032
giving $z=1.285 \ldots$ or $1.265 \ldots$ or $1.306 \ldots$
confidence level $=80 \%$ or 79% or 81%
Note: Follow through values from (a).

Total [9 marks]

4. (a) (i) an estimator T is a formula (or statistic) that can be applied to the values in any sample, taken from X

A1 to estimate the value of μ

A1
(ii) an estimator is unbiased if $\mathrm{E}(T)=\mu$
(b) (i) using linearity and the definition of an unbiased estimator
$\mu=\alpha \mu+\beta \mu+(\alpha-\beta) \mu$
A1
obtain $\alpha=\frac{1}{2}$
(ii) attempt to compute $\operatorname{Var}(U)$ using correct formula
$\operatorname{Var}(U)=\frac{1}{4} \sigma^{2}+\beta^{2} \sigma^{2}+\left(\frac{1}{2}-\beta\right)^{2} \sigma^{2}$
A1
$\operatorname{Var}(U)=\sigma^{2}\left(2 \beta^{2}-\beta+\frac{1}{2}\right)$
(iii) attempt to minimise quadratic in β (or equivalent)

$$
\beta=\frac{1}{4}
$$

(iv) $\quad(U)=\frac{1}{2} X_{1}+\frac{1}{4} X_{2}+\frac{1}{4} X_{3}$

Question 4 continued

$$
\begin{array}{ll}
\text { (v) } & \frac{1}{3} X_{1}+\frac{1}{3} X_{2}+\frac{1}{3} X_{3} \\
\operatorname{Var}\left(\frac{1}{3} X_{1}+\frac{1}{3} X_{2}+\frac{1}{3} X_{3}\right)=\frac{3}{9} \sigma^{2} \\
<\operatorname{Var}(U) & \boldsymbol{A 1}
\end{array}
$$

Note: Accept $\sum_{i=1}^{3} \lambda_{i} X_{i}$ if $\sum_{i=1}^{3} \lambda_{i}=1$ and $\sum_{i=1}^{3} \lambda_{i}{ }^{2}<\frac{3}{8}$ and follow through to the variance if this is the case.
5. (a) $\mathrm{P}(X=0)=1-p(=q) ; \mathrm{P}(X=1)=p$

$$
\begin{aligned}
G_{x}(t) & =\sum_{r} \mathrm{P}(X=r) t^{r} \quad(\text { or writing out term by term }) \\
& =q+p t
\end{aligned}
$$

(b) METHOD 1

PGF for $B(n, p)$ is $(q+p t)^{n}$
R1
which is a polynomial of degree n
R1

METHOD 2

in n independent trials, it is not possible to obtain more than
n successes (or equivalent, eg, $\mathrm{P}(X>n)=0$)
R1
so $a_{r}=0$ for $r>n$

R1
continued...

Question 5 continued
(c) let $Y=X_{1}+X_{2}$

$$
\begin{array}{ll}
G_{Y}(t)=\left(q_{1}+p_{1} t\right)\left(q_{2}+p_{2} t\right) & \boldsymbol{A} \mathbf{1} \\
G_{Y}(t) \text { has degree two, so if } Y \text { is binomial then } & \\
Y \sim \mathrm{~B}(2, p) \text { for some } p & \boldsymbol{R} \mathbf{1} \\
(q+p t)^{2}=\left(q_{1}+p_{1} t\right)\left(q_{2}+p_{2} t\right) & \boldsymbol{A 1}
\end{array}
$$

Note: The LHS could be seen as $q^{2}+2 p q t+p^{2} t^{2}$.

METHOD 1

by considering the roots of both sides, $\frac{q_{1}}{p_{1}}=\frac{q_{2}}{p_{2}}$
M1
$\frac{1-p_{1}}{p_{1}}=\frac{1-p_{2}}{p_{2}}$
so $p_{1}=p_{2}$

METHOD 2

equating coefficients,
$p_{1} p_{2}=p^{2}, q_{1} q_{2}=q^{2}$ or $\left(1-p_{1}\right)\left(1-p_{2}\right)=(1-p)^{2}$ M1
expanding,
$p_{1}+p_{2}=2 p$ so p_{1}, p_{2} are the roots of $x^{2}-2 p x+p^{2}=0$A1
so $p_{1}=p_{2}$

MARKSCHEME

November 2014

MATHEMATICS STATISTICS AND PROBABILITY

Higher Level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

\boldsymbol{M} Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM" Assessor instructions and the document "Mathematics HL: Guidance for emarking November 2014". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method ($e g$ substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award \boldsymbol{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \boldsymbol{M} mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value ($e g \sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1 (a)

Note: Ignore open / closed endpoints and vertical lines.

Note: Award $\boldsymbol{A 1}$ for a correct graph with scales on both axes and a clear indication of the relevant values.
(b)

$$
F(x)=\left\{\begin{array}{cc}
0 & x<0 \\
\frac{x}{2} & 0 \leq x<1 \\
\frac{x}{4}+\frac{1}{4} & 1 \leq x<3 \\
1 & x \geq 3
\end{array}\right.
$$

considering the areas in their sketch or using integration
$F(x)=0, x<0, F(x)=1, x \geq 3$
$F(x)=\frac{x}{2}, 0 \leq x<1$
$F(x)=\frac{x}{4}+\frac{1}{4}, 1 \leq x<3$
Note: Accept $<$ for \leq in all places and also $>$ for \geq first $\boldsymbol{A 1}$.
(c) $\mathrm{Q}_{3}=2, \mathrm{Q}_{1}=0.5$

IQR is $2-0.5=1.5$
2. (a) METHOD 1
let X be the number of throws until Eric hits the target three times
$X \sim \mathrm{NB}(3,0.2)$
$\mathrm{P}(X=6)=\binom{5}{2} 0.8^{3} \times 0.2^{3}$
$=0.04096\left(=\frac{128}{3125}\right)$ (exact)

METHOD 2

let X be the number of hits in five throws
X is $\mathrm{B}(5,0.2)$
(M1)
$\mathrm{P}(X=2)=\binom{5}{2} 0.2^{2} \times 0.8^{3} \quad(0.2048)$
$\mathrm{P}(3$ rd hit on 6th throw $)=\binom{5}{2} 0.2^{2} \times 0.8^{3} \times 0.2=0.04096\left(=\frac{128}{3125}\right)($ exact $)$
(b) (i) expected number of throws $=\frac{3}{0.2}=15$
(ii) profit $=(10-15)=-\$ 5$ or loss $=\$ 5$
(c) METHOD 1
let Y be the number of times the target is hit in 8 throws
$Y \sim \mathrm{~B}(8,0.2)$
(M1)
$\mathrm{P}(Y \leq 2)$
(M1)
$=0.797$

METHOD 2

let the $3^{\text {rd }}$ hit occur on the Y th throw
Y is $\mathrm{NB}(3,0.2)$
(M1)
$\mathrm{P}(\mathrm{Y}>8)=1-\mathrm{P}(\mathrm{Y} \leq 8)$
$=0.797$
3. (a) METHOD 1
$\operatorname{Cov}(X, Y)=\mathrm{E}\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)$
$=\mathrm{E}\left(X Y-X \mu_{Y}-Y \mu_{X}+\mu_{X} \mu_{Y}\right)$
$=\mathrm{E}(X Y)-\mu_{Y} \mathrm{E}(X)-\mu_{X} \mathrm{E}(Y)+\mu_{X} \mu_{Y}$
$=\mathrm{E}(X Y)-\mu_{X} \mu_{Y}$
as X and Y are independent $\mathrm{E}(X Y)=\mu_{X} \mu_{Y}$
$\operatorname{Cov}(X, Y)=0$

METHOD 2

$\operatorname{Cov}(X, Y)=\mathrm{E}\left(\left(X-\mu_{x}\right)\left(Y-\mu_{y}\right)\right)$
$=\mathrm{E}\left(X-\mu_{x}\right) \mathrm{E}\left(Y-\mu_{y}\right)$
since X, Y are independent R1
$=\left(\mu_{x}-\mu_{x}\right)\left(\mu_{y}-\mu_{y}\right)$
A1
$=0$
$A G$
[3 marks]
(b) $\quad H_{0}: \rho=0 \quad H_{1}: \rho<0$

Note: The hypotheses must be expressed in terms of ρ.
test statistic $t_{\text {test }}=-0.35 \sqrt{\frac{20-2}{1-(-0.35)^{2}}}$
(M1)(A1)
$=-1.585 \ldots$
degrees of freedom $=18$

EITHER

p-value $=0.0652$
this is greater than 0.05

OR

$t_{5 \%}(18)=-1.73$
this is less than -1.59

THEN

hence accept H_{0} or reject H_{1} or equivalent or contextual equivalent
Note: Allow follow through for the final $\boldsymbol{R 1}$ mark.
4. (a)
(i) $\quad G^{\prime}(t)=\lambda e^{\lambda(t-1)}$
$\mathrm{E}(X)=G^{\prime}(1)$
$=\lambda$
(ii) $\quad G^{\prime \prime}(t)=\lambda^{2} e^{\lambda(t-1)}$
$\Rightarrow G^{\prime \prime}(1)=\lambda^{2}$
$\operatorname{Var}(X)=G^{\prime \prime}(1)+G^{\prime}(1)-\left(G^{\prime}(1)\right)^{2}$ (M1)
$=\lambda^{2}+\lambda-\lambda^{2}$ A1
$=\lambda$
(b) (i) $\mathrm{E}(S)=2 \lambda-\lambda=\lambda$

A1
(ii) $\operatorname{Var}(S)=4 \lambda+\lambda=5 \lambda$
(A1) $A 1$

Note: First $\boldsymbol{A 1}$ can be awarded for either 4λ or $+\lambda$.
(c) (i) $\mathrm{E}(T)=\frac{\lambda}{2}+\frac{\lambda}{2}=\lambda$ (so T is an unbiased estimator)
(ii) $\operatorname{Var}(T)=\frac{1}{4} \lambda+\frac{1}{4} \lambda=\frac{1}{2} \lambda$

A1
this is less than $\operatorname{Var}(S)$, therefore T is the more efficient estimator
Note: Follow through their variances from (b)(ii) and (c)(ii).
(d) no, mean does not equal the variance
(e) $\quad G_{X+Y}(t)=e^{\lambda(t-1)} \times e^{\lambda(t-1)}=e^{2 \lambda(t-1)}$
which is the probability generating function for a Poisson with a mean of 2λ
(f) (i) $\quad G_{X+Y}(1)=1$ A1
(ii) $\quad G_{X+Y}(-1)=e^{-4 \lambda}$

R1AG

[3 marks]

M1A1

R1AG

[3 marks]
R1
[1 mark]

A1
[2 marks]
continued ...

Question 4 continued

(g) $\quad G_{X+Y}(1)=p(0)+p(1)+p(2)+p(3) \ldots$
$G_{X+Y}(-1)=p(0)-p(1)+p(2)-p(3) \ldots$
so $2 \mathrm{P}($ even $)=G_{X+Y}(1)+G_{X+Y}(-1)$
$\mathrm{P}($ even $)=\frac{1}{2}\left(1+e^{-4 \lambda}\right)$
(M1)(A1)
5. (a) $\bar{X} \sim N\left(5.2, \frac{1.2^{2}}{16}\right)$
(M1)
critical value is $5.2-1.64485 \ldots \times \frac{1.2}{4}=4.70654 \ldots$
critical region is]- -4.71]
Note: Allow follow through for the final $\boldsymbol{A 1}$ from their critical value.

Note: Follow through previous values in (b), (c) and (d).
(b) type II error probability $=\mathrm{P}\left(\bar{X}>4.70654 \ldots \mid \bar{X}\right.$ is $N\left(4.6, \frac{1.2^{2}}{16}\right)$ $=0.361$
(c) $0.9 \times 0.05+0.1 \times(1-0.361 \ldots)=0.108875997 \ldots=0.109$

M1A1
Note: Award $\boldsymbol{M} \mathbf{1}$ for a weighted average of probabilities with weights $0.1,0.9$.

Question 5 continued
(d) attempt to use conditional probability formula M1
$\frac{0.9 \times 0.05}{0.108875997 \ldots}$
$=0.41334 \ldots=0.413$$\quad$ (A1)
[3 marks]
Total [10 marks]

MARKSCHEME

May 2014

MATHEMATICS STATISTICS AND PROBABLITY

Higher Level

Paper 3

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

\boldsymbol{M} Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\boldsymbol{R} Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1

General

Mark according to Scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2014". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by Scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award \boldsymbol{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an \boldsymbol{M} mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value ($e g \sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for $\boldsymbol{F T}$.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) (i) $\mathrm{P}(X=6)=0.122$
(ii) $\mathrm{P}(X=6 \mid 5 \leq X \leq 8)=\frac{\mathrm{P}(X=6)}{\mathrm{P}(5 \leq X \leq 8)}=\frac{0.122 \ldots}{0.592 \ldots-0.0996 \ldots}$ $=0.248$
(b) (i) $\quad \begin{aligned} & \mathrm{E}(\bar{X})=8 \\ & \\ & \\ & \\ & \\ & \end{aligned}$
(b) (i) $\quad \begin{array}{ll}\mathrm{E}(\bar{X})=8 \\ & \operatorname{Var}(\bar{X})=\frac{8}{n}\end{array}$
(ii) $\mathrm{E}(\bar{X}) \neq \operatorname{Var}(\bar{X})($ for $n>1)$

Note: Only award the $\boldsymbol{R} \mathbf{1}$ if the two expressions in (b)(i) are different.
(c) (i) EITHER

$$
\bar{X} \sim \mathrm{~N}(8,0.2)
$$

(M1)A1
Note: M1 for normality, $A 1$ for parameters.
$\mathrm{P}(7.1<\bar{X}<8.5)=0.846$

OR

The expression is equivalent to
$P\left(283 \leq \sum X \leq 339\right)$ where $\sum X$ is $\operatorname{Po}(320)$
$=0.840$
(M1)(A1)
A1
[5 marks]

A1
A1

R1

M1A1
A1

A1

Note: Accept 284, 340 instead of 283, 339
Accept any answer that rounds correctly to 0.84 or 0.85 .
continued...

Question 1 continued

(ii) EITHER
$k=1.96 \frac{\sigma}{\sqrt{n}}$ or $1.96 \operatorname{std}(\bar{X})$
(M1)(A1)
$k=0.877$ or $1.96 \sqrt{0.2}$
A1

OR

The expression is equivalent to
$P\left(320-40 k \leq \sum X \leq 320+40 k\right)=0.95$ (M1)
$k=0.875$ A2

Note: Accept any answer that rounds to 0.87 or 0.88 .
Award M1A0 if modulus sign ignored and answer obtained rounds to 0.74 or 0.75
2. (a) $\mathrm{H}_{0}: \rho=0$ A1
$\mathrm{H}_{1}: \rho>0$
A1
[2 marks]
(b) 0.853

Note: Accept any answer that rounds to 0.85 .
(c) p-value $=0.00173$ (1-tailed) A1

Note: Accept any answer that rounds to 0.0017 .
Accept any answer that rounds to 0.0035 obtained from 2-tailed test.
strong evidence to reject the hypothesis that there is no correlation between rainfall and yield or to accept the hypothesis that there is correlation between rainfall and yield

Note: Follow through the p-value for the conclusion.
(d) $y=1.78 x+40.5$

Note: Accept numerical coefficients that round to 1.8 and 41.
(e) $y=1.77 \ldots(19)+40.5 \ldots$

Note: Accept any answer that rounds to 74 or 75.
(f) the gradient of the regression line y on x is 1.78 or equivalent
the regression line of x on y is $x=0.409 y-12.2$
the gradient of the regression line x on y is $\frac{1}{0.409}(=2.44)$
(M1) A1
calculate $\arctan (2.44)-\arctan (1.78)$
(M1) angle between regression lines is 7 degrees A1

Note: Accept any answer which rounds to ± 7 degrees.
3. (a) $\mathrm{E}\left(\frac{X-b}{a}\right)=\frac{a \lambda+b-b}{a}$ M1A1
$=\lambda$
A1
(Therefore $\frac{X-b}{a}$ is an unbiased estimator for λ)
(b) (i) $f(y) \geq 0$

R1
Note: Only award $\boldsymbol{R} \mathbf{1}$ if this statement is made explicitly.
recognition or showing that integral of f is 1 (seen anywhere)

EITHER

$\int_{\lambda-3}^{\lambda} \frac{2}{9}(3+y-\lambda) \mathrm{d} y$
M1
$=\frac{2}{9}\left[(3-\lambda) y+\frac{1}{2} y^{2}\right]_{\lambda-3}^{\lambda}$
A1
$=\frac{2}{9}\left(\lambda(3-\lambda)+\frac{1}{2} \lambda^{2}-(3-\lambda)(\lambda-3)-\frac{1}{2}(\lambda-3)^{2}\right)$ or equivalent A1
$=1$

OR

the graph of the probability density is a triangle with base length
3 and height $\frac{2}{3}$
its area is therefore $\frac{1}{2} \times 3 \times \frac{2}{3}$
$=1$
(ii) $\mathrm{E}(Y)=\int_{\lambda-3}^{\lambda} \frac{2}{9} y(3+y-\lambda) \mathrm{d} y$
$=\frac{2}{9}\left[(3-\lambda) \frac{1}{2} y^{2}+\frac{1}{3} y^{3}\right]_{\lambda-3}^{\lambda}$
$=\frac{2}{9}\left((3-\lambda) \frac{1}{2}\left(\lambda^{2}-(\lambda-3)^{2}\right)+\frac{1}{3}\left(\lambda^{3}-(\lambda-3)^{3}\right)\right)$
M1
$=\lambda-1$
Note: Award 3 marks for noting that the mean is $\frac{2}{3}$ rds the way along the base and then $\boldsymbol{A 1 A 1}$ for $\lambda-1$

Note: Award $\boldsymbol{A 1}$ for λ and $\boldsymbol{A} \mathbf{1}$ for -1 .

Question 3 continued

(iii) unbiased estimator: $Y+1$

Note: Accept $\bar{Y}+1$.
Follow through their $\mathrm{E}(Y)$ if linear.
4. (a) use of $\mathrm{P}(X=n)=p q^{n-1}(q=1-p)$ (M1)

$$
\mathrm{P}(X<4)=p+p q+p q^{2}\left(=1-q^{3}\right)\left(=1-(1-p)^{3}\right)\left(=3 p-3 p^{2}+p^{3}\right) \quad \text { A1 }
$$

(b) $\quad G_{X}(t)=\mathrm{P}(X=1) t+\mathrm{P}(X=2) t^{2}+\ldots$
$=p t+p q t^{2}+p q^{2} t^{3}+\ldots$
summing an infinite geometric series M1

$$
=\frac{p t}{1-q t}
$$

(c) (i) EITHER

$$
\begin{array}{lr}
G_{Y}(t)=\mathrm{P}(Y=1) t+\mathrm{P}(Y=2) t^{2}+\ldots & \boldsymbol{A 1} \\
=0 \times t+\mathrm{P}(X=1) t^{2}+0 \times t^{3}+\mathrm{P}(X=2) t^{4}+\ldots & \boldsymbol{M 1 A 1} \\
=G_{X}\left(t^{2}\right) & \boldsymbol{A} \boldsymbol{G}
\end{array}
$$

OR

$$
\begin{align*}
G_{Y}(t) & =E\left(t^{Y}\right)=E\left(t^{2 X}\right) & \text { M1A1 } \\
& =E\left(\left(t^{2}\right)^{X}\right) & \boldsymbol{A 1} \\
& =G_{X}\left(t^{2}\right) & \boldsymbol{A G}
\end{align*}
$$

Question 4 continued

(ii) $\mathrm{E}(Y)=G_{Y}^{\prime}(1) \quad \boldsymbol{A 1}$

EITHER

$=2 t G_{X}^{\prime}\left(t^{2}\right)$ evaluated at $t=1$
M1A1
$=2 \mathrm{E}(X)$
OR
$=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{p t^{2}}{\left(1-q t^{2}\right)}\right)=\frac{2 p t\left(1-q t^{2}\right)+2 p q t^{3}}{\left(1-q t^{2}\right)^{2}}$ evaluated at $t=1$
$=2 \times \frac{p(1-q t)+p q t}{(1-q t)^{2}}$ evaluated at $t=1\left(\right.$ or $\left.\frac{2}{p}\right)$
$=2 \mathrm{E}(X)$
(d) (i) $\quad G_{W}(t)=t G_{Y}(t)$ (or equivalent)
(ii) attempt to evaluate $G_{W}^{\prime}(t)$ M1

EITHER

obtain $1 \times G_{Y}(t)+t \times G_{Y}{ }^{\prime}(t)$
A1
substitute $t=1$ to obtain $1 \times 1+1 \times G_{Y}{ }^{\prime}(1)$
A1

OR

$=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{p t^{3}}{\left(1-q t^{2}\right)}\right)=\frac{3 p t^{2}\left(1-q t^{2}\right)+2 p q t^{4}}{\left(1-q t^{2}\right)^{2}}$
A1
substitute $t=1$ to obtain $1+\frac{2}{p}$
A1
$=1+2 \mathrm{E}(X)$AG

MARKSCHEME

November 2013

MATHEMATICS STATISTICS AND PROBABILITY

Higher Level

Paper 3

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\boldsymbol{R} Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to Scoris instructions and the document "Mathematics HL: Guidance for e-marking November 2013". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by Scoris.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, for example, M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (for example, substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award \boldsymbol{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (for example, $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) (i) $\bar{v}=\frac{1}{1000}(55 \times 5+65 \times 13+\ldots+145 \times 31)$

Note: $\boldsymbol{A 1}$ for mid-points, $\boldsymbol{M 1}$ for use of the formula.

$$
=\frac{113210}{1000}=113.21
$$

(ii) $s^{2}=\frac{(55-113.21)^{2} \times 5+(65-113.21)^{2} \times 13+\ldots+(145-113.21)^{2} \times 31}{999}$ (M1)

$$
=\frac{362295.9}{999}=362.6585 \ldots=363 \quad \text { A1 }
$$

Note: Award A1 if answer rounds to 362 or 363.
Note: Condone division by 1000 .
(b) $\bar{v} \pm \frac{t_{0.025} \times s}{\sqrt{n}}$
hence the confidence interval $I=[112.028,114.392]$
Note: Accept answers which round to 112 and 114.
Note: Condone the use of $z_{0.025}$ for $t_{0.025}$ and σ for s.
(c) less confidence implies narrower interval $\boldsymbol{R} \mathbf{2}$

Note: Accept equivalent statements or arguments having a meaningful diagram and/or relevant percentiles.
hence the confidence interval I at the 95% level contains the confidence interval J at the 90% level $\boldsymbol{A G}$
2. (a) let $W=X-1.5 Y$
(M1)
A1
(M1)A1
(M1)
(M1)A1
Note: The penultimate (M1) is for recognising normality.
(b) let $T=X_{1}+X_{2}+X_{3}+X_{4}+Y_{1}+Y_{2}+Y_{3}+Y_{4}+Y_{5}+Y_{6}$ (grams) denote the total weight
$\mathrm{E}(T)=4 \times 180+6 \times 150(=1620)$
Note: Condone correct expected value from $T=4 X+6 Y$.
$\begin{array}{lr}\operatorname{Var}(T)=4 \times 14^{2}+6 \times 12^{2}\left(=1648 \text { or } 40.6^{2}\right) & \text { (M1) } A 1 \\ \text { then } T \sim N(1620,1648) & \text { (M1) } \\ \mathrm{P}(T>1500)=0.998 & \text { (M1) } A 1\end{array}$
Note: Accept answers which round to 0.998 .
Note: The penultimate (M1) is for recognising normality.
3. (a) (i) H_{0} : all coins are fair (or the data are represented by $\mathrm{B}(7,0.5)$) $\boldsymbol{A 1}$
H_{1} : not all coins are fair (or the data are not represented by $\mathrm{B}(7,0.5)$) A1
(ii) $\quad \chi_{\text {cal }}^{2}>\chi_{\text {critical }}^{2}(14.067)$ or p -value $<0.05 \Rightarrow$ reject null hypothesis \quad A1
(iii) let T be the number of tails obtained, T is binomially distributed (M1) $T \sim \mathrm{~B}(7,0.5)$

T	0	1	2	3	4	5	6	7
f_{0}	6	19	141	218	203	117	38	8
f_{e}	5.859...	41.01...	123.0...	205.0...	205.0...	123.0...	41.01...	5.859...

Note: Allow tabular values which are correct to 3 significant figures.
Note: Award A1 for 6 or 7 correct values.
$\chi_{\text {calc }}^{2}=16.576 \ldots$
A1
Note: Accept answer which round to 16.6.
(iv) $v=7$
(A1)
since $16.576 \ldots>14.067$ or $p=0.02(034 \ldots)<0.05, \mathrm{H}_{0}$ is rejected R1
Note: Follow through their $\chi_{\text {calc }}^{2}$ or p-value for the $\boldsymbol{R} \mathbf{1}$.
(b) reduce the significance level (or equivalent statement)

R2
[2 marks]
(c) (i) accepting H_{0} (or failing to reject H_{0}) when it is false (or equivalent) $\boldsymbol{A 1}$
(ii) increase the number of trials A1
[2 marks]
Total [14 marks]
4. H_{0} : the training schedule does not help improve times (or $\mu=0$)
H_{1} : the training schedule does help improve times (or $\mu>0$)
Note: Subsequent marks can be awarded even if the hypotheses are not stated. (Assuming difference of times is normally distributed.)
let $d=$ time before training - time after training

Competitor	A	B	C	D	E
Time before training (in seconds)	75	74	60	69	69
Time after training (in seconds)	73	69	55	72	65
Difference \boldsymbol{d}	2	5	5	-3	4

EITHER

$n=5, \sum d=13, \sum d^{2}=79 \Rightarrow s_{n-1}^{2}=\frac{1}{4}\left(79-\frac{169}{5}\right)=11.3$
(small sample) so use a one-sided t-test
Note: The "one-sided" t-test may have been seen above when stating H_{1}.
$t=\frac{2.6}{\sqrt{\frac{11.3}{5}}}=1.7 \ldots$
$v=4$,
at the 1% level the critical value is 3.7
since $3.7>1.7 \ldots$
H_{0} is accepted (insufficient evidence to reject H_{0})
Note: Follow through their t-value.

OR

(small sample) so use a one-sided t-test
$p=0.079 \ldots$
since $0.079 \ldots>0.01$
H_{0} is accepted (insufficient evidence to reject H_{0})
R1
Note: Follow through their p-value.
Note: Accept $d=$ time after training - time before training throughout.
5. (a) $\mathrm{E}(S)=2 \mathrm{E}(X)+3 \mathrm{E}(Y)=6+6=12$
$\operatorname{Var}(S)=4 \operatorname{Var}(X)+9 \operatorname{Var}(Y)=12+18=30$
A1
[2 marks]
(b) S does not have a Poisson distribution A1 because $\operatorname{Var}(S) \neq \mathrm{E}(S)$ R1

Note: Follow through their $\mathrm{E}(S)$ and $\operatorname{Var}(S)$ if different.
(c) EITHER

$$
\begin{align*}
\mathrm{P}(T=3)= & \mathrm{P}((X, Y)=(3,0))+\mathrm{P}((X, Y)=(2,1))+ \\
& +\mathrm{P}((X, Y)=(1,2))+\mathrm{P}((X, Y)=(0,3)) \tag{M1}\\
& =\mathrm{P}(X=3) \mathrm{P}(Y=0)+\mathrm{P}(X=2) \mathrm{P}(Y=1)+ \\
& +\mathrm{P}(X=1) \mathrm{P}(Y=2)+\mathrm{P}(X=0) \mathrm{P}(Y=3) \\
& =\frac{125 e^{-5}}{6}(=0.140)
\end{align*}
$$

Note: Accept answers which round to 0.14 .

OR

$$
T \text { is } \mathrm{P}_{\mathrm{o}}(2+3)=\mathrm{P}_{\mathrm{o}}(5)
$$

$$
(M 1)(A 1)
$$

$$
\mathrm{P}(T=3)=\frac{125 \mathrm{e}^{-5}}{6}(=0.140)
$$

Note: Accept answers which round to 0.14 .
(d) $\quad \mathrm{P}(T=t)=\mathrm{P}((X, Y)=(0, t))+\mathrm{P}((X, Y)=(1, t-1))+\ldots \mathrm{P}((X, Y)=(t, 0))(M 1)$

$$
\begin{array}{ll}
=\mathrm{P}(X=0) \mathrm{P}(Y=t)+\mathrm{P}(X=1) \mathrm{P}(Y=t-1)+\ldots+\mathrm{P}(X=t) \mathrm{P}(Y=0) & \boldsymbol{A 1} \\
=\sum_{r=0}^{t} \mathrm{P}(X=r) \mathrm{P}(Y=t-r) & \boldsymbol{A} \boldsymbol{G}
\end{array}
$$

(e) $\mathrm{P}(T=t) \quad=\sum_{r=0}^{t} \mathrm{P}(X=r) \mathrm{P}(Y=t-r)$

$$
\begin{array}{ll}
& =\sum_{r=0}^{t} \frac{e^{-3} 3^{r}}{r!} \times \frac{e^{-2} 2^{t-r}}{(t-r)!} \\
& =\frac{e^{-5}}{t!} \sum_{r=0}^{t} \frac{t!}{r!(t-r)!} \times 3^{r} 2^{t-r} \\
& =\frac{e^{-5}}{t!}(3+2)^{t} \\
& \left(=\frac{e^{-5} 5^{t}}{t!}\right)
\end{array} \quad \boldsymbol{M 1}
$$

[4 marks]

MARKSCHEME

May 2013

MATHEMATICS STATISTICS AND PROBABILITY

Higher Level

Paper 3

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\boldsymbol{R} Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2013". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

2
 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of N and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value ($e g \sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a mis-read. Then deduct the first of the marks to be awarded, even if this is an Mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value $(e g \sin \theta=1.5)$, do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8
 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $A 1$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for $\boldsymbol{F T}$.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) $\bar{x}=14$

A1

$$
\begin{aligned}
s_{n-1}^{2} & =\frac{3977.57}{19}-\frac{280^{2}}{380} \\
& =3.03
\end{aligned}
$$

Note: \quad Accept any notation for these estimates including μ and σ^{2}.
Note: Award M0A0 for division by 20.
(b) the 95% confidence limits are

$$
\bar{x} \pm t \sqrt{\frac{s_{n-1}^{2}}{n}}
$$

Note: \quad Award $M 0$ for use of z.
$i e, 14 \pm 2.093 \sqrt{\frac{3.03}{20}}$
Note : $\boldsymbol{F T}$ their mean and variance from (a).
giving [13.2, 14.8]
Note : Accept any answers which round to 13.2 and 14.8.
(c) Use of t-statistic $\left(=\frac{14-15}{\sqrt{\frac{3.03}{20}}}\right)$

Note : $\boldsymbol{F T}$ their mean and variance from (a).
Note : Award M0 for use of z.
Note: Accept $\frac{15-14}{\sqrt{\frac{3.03}{20}}}$.

$$
\begin{equation*}
=-2.569 \ldots \tag{A1}
\end{equation*}
$$

Note: Accept 2.569...
p-value $=0.009392 \ldots \times 2=0.0188$
Note: Accept any answer that rounds to 0.019 .
Note: Award (M1)(A1)A0 for any answer that rounds to 0.0094 .
insufficient evidence to reject H_{0} (or equivalent, eg accept H_{0} or reject H_{1}) \quad RI
Note: $\quad \boldsymbol{F T}$ on their p-value.
2. (a) H_{0} : number of goals can be modelled by a Poisson distribution H_{1} : number of goals cannot be modelled by a Poisson distribution

Note: Do not award $\boldsymbol{A 1}$ if a value for the mean of the distribution is given.
(b) (i) sample mean $=\frac{\sum f x}{\sum f}$

$$
=2.3
$$

\exp freq for r goals $=60 \times \frac{\mathrm{e}^{-2.3} \times 2.3^{r}}{r!}(r \leq 4)$

Number of goals	0	1	2	3	4	≥ 5
Expected Frequency	6.0155	13.8357	15.9111	12.1985	7.0141	5.0250
$\boldsymbol{A 3}$						

Note: At this stage, accept tabular values correct to 3 significant figures.
Note: Award A2 for 1 error, A1 for 2 errors and $\boldsymbol{A 0}$ for 3 or more errors.
(ii) $\quad \chi_{\text {calc }}^{2}=\sum \frac{f_{o}^{2}}{f_{e}}-N$ or $\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}=2.69$
(M1)A1

Note: \quad Do not $\boldsymbol{F T}$ from incorrect tabular values.
Note: Accept any answer that rounds to 2.7.
$\mathrm{DF}=4$
(A1)
Note: $\quad \boldsymbol{F T}$ the DF from the table, ie award the (A1) if the value given is 2 less than the number of cells.

$$
p \text {-value }=0.612
$$

Note: Accept any answer that rounds to 0.61.
Note: \quad Do not $\boldsymbol{F T}$ from incorrect tabular values.
(iii) the manager's belief is supported (at all reasonable significance levels) (or equivalent, eg accept H_{0} or reject H_{1})

Note: Follow through their p-value or χ^{2} crit.
3. (a) $\mathrm{H}_{0}: \mu=1.2 ; \mathrm{H}_{1}: \mu<1.2$

Note: Accept " H_{0} : (30-day) mean $=36 ; \mathrm{H}_{1}:(30$-day $)$ mean <36 ".
(b) (i) let X denote the number of breakdowns in 30 days
then under $\mathrm{H}_{0}, E(X)=36$
sig level $=\mathrm{P}(X \leq 25 \mid$ mean $=36) \quad$ (M1)(A1)

$$
=0.0345(3.45 \%)
$$

Note: Accept any answer that rounds to 0.035 (3.5\%)
Note: Do not accept the use of a normal approximation.
(ii) under $\mathrm{H}_{1}, E(X)=22.5$
(A1)
$\mathrm{P}($ Type II error $)=\mathrm{P}(X \geq 26 \mid$ mean $=22.5)$ $=0.257$
(M1)(A1)

Note: Accept any answer that rounds to 0.26 .
Note: Do not accept the use of a normal approximation.
[8 marks]
Total [9 marks]
4. (a) (i) $F(x)=\int_{1}^{x} \frac{3 u^{2}+2 u}{10} \mathrm{~d} u$

$$
=\left[\frac{u^{3}+u^{2}}{10}\right]_{1}^{x}
$$

Note: Do not penalise missing or wrong limits at this stage. Accept the use of x in the integrand.

$$
=\frac{x^{3}+x^{2}-2}{10}
$$

(ii) the median m satisfies the equation $F(m)=\frac{1}{2}$ so

$$
\begin{equation*}
m^{3}+m^{2}-7=0 \tag{A1}
\end{equation*}
$$

Note: \quad Do not $\boldsymbol{F} \boldsymbol{T}$ from an incorrect $F(x)$.

$$
m=1.63
$$

Question 4 continued

(b) (i) the mean of a large sample from any distribution is approximately normal
Note: This is the minimum acceptable explanation.
(ii) we require the mean μ and variance σ^{2} of X
$\mu=\int_{1}^{2}\left(\frac{3 x^{3}+2 x^{2}}{10}\right) \mathrm{d} x$
$=\frac{191}{120}(1.591666 \ldots)$ A1
$\sigma^{2}=\int_{1}^{2}\left(\frac{3 x^{4}+2 x^{3}}{10}\right) \mathrm{d} x-\mu^{2}$ (M1)
$=0.07659722 \ldots$
the central limit theorem states that
$\bar{X} \approx N\left(\mu, \frac{\sigma^{2}}{n}\right)$, i.e. $N(1.591666 \ldots, 0.0005106481 \ldots)$
M1A1 A1
$\mathrm{P}(\bar{X}>1.6)=0.356$
Note: Accept any answer that rounds to 0.36 .
[8 marks]
5. (a) (i) the number of hits, $X \sim \mathrm{~B}(8,0.4)$

$$
\begin{aligned}
\mathrm{P}(X=4) & =\binom{8}{4} \times 0.4^{4} \times 0.6^{4} \\
& =0.232
\end{aligned}
$$

Note: Accept any answer that rounds to 0.23 .
(ii) let the $4^{\text {th }}$ hit occur on the $Y^{\text {th }}$ shot so that $Y \sim \mathrm{NB}(4,0.4)$

$$
\begin{aligned}
\mathrm{P}(Y=8) & =\binom{7}{3} \times 0.4^{4} \times 0.6^{4} \\
& =0.116
\end{aligned}
$$

(M1)

Note: Accept any answer that rounds to 0.12 .
(b) (i) $\quad X \sim \mathrm{NB}(10,0.4)$
$\mathrm{E}(X)=\frac{10}{0.4}=25$
(ii) let P_{x} denote $\mathrm{P}(X=x)$

$$
\begin{aligned}
\mathrm{P}_{x} & =\binom{x-1}{9} \times 0.4^{10} \times 0.6^{x-10} \\
\frac{\mathrm{P}_{x}}{\mathrm{P}_{x-1}} & =\frac{\binom{x-1}{9} \times 0.4^{10} \times 0.6^{x-10}}{\binom{x-2}{9} \times 0.4^{10} \times 0.6^{x-11}} \\
& =\frac{(x-1)!}{9!(x-10)!} \times \frac{9!(x-11)!\times 0.6}{(x-2)!}
\end{aligned}
$$

Note: \quad Award $\boldsymbol{A 1}$ for correct evaluation of combinatorial terms.

$$
=\frac{3(x-1)}{5(x-10)}
$$

(iii) $\mathrm{P}_{x}>\mathrm{P}_{x-1}$ as long as
$3 x-3>5 x-50$
i.e. $x<23.5$
the most likely value is 23
Note: Allow solutions based on creating a table of values of P_{x}.

MARKSCHEME

November 2012

MATHEMATICS STATISTICS AND PROBABILITY

Higher Level

Paper 3

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking Nov 2012". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp A0 by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a mis-read. Then deduct the first of the marks to be awarded, even if this is an mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3))
$$

Award $\mathbf{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution
Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) A has the hypergeometric distribution $(\operatorname{Hyp}(5,4,10))$
(b) $\quad P(A=3)=\frac{\binom{4}{3} \times\binom{ 6}{2}}{\binom{10}{5}}=\frac{4 \times 15}{252}=\frac{5}{21} \quad(=0.238)$

A1
[1 mark]
(M1)A1
[2 marks]
A1
[1 mark]
(d) B has the binomial distribution $\left(B\left(5, \frac{4}{10}\right)\right)$
(e) $\quad \mathrm{P}(B=3)=\left(\binom{5}{3}\left(\frac{4}{10}\right)^{3}\left(\frac{6}{10}\right)^{2}=\right) \frac{144}{625}(=0.2304)$
(M1)A1
[2 marks]
(M1)A1
(f) $\quad \mathrm{P}(B=5)=\left(\left(\frac{4}{10}\right)^{5}=\right) \frac{32}{3125}(=0.01024)$

Note: Accept 0.0102.
[2 marks]
(M1)
A1
[2 marks]
M1
R1
(A1)(A1)
A1
[5 marks]
Total [16 marks]
2. (a) (i) $2 \mu, 2 \sigma^{2}$

A1A1

A1A1

A1A1

A1A1

(iv) $\mu, \frac{\sigma^{2}}{n}$

Note: If candidate clearly and correctly gives the standard deviations rather than the variances, give $\mathbf{A 1}$ for 2 or 3 standard deviations and A1A1 for 4 standard deviations.
(b) $\quad \operatorname{Var}\left(X_{1}\right)=\mathrm{E}\left(X_{1}^{2}\right)-\left(\mathrm{E}\left(X_{1}\right)\right)^{2}$
$\sigma^{2}=\mathrm{E}\left(X_{1}^{2}\right)-\mu^{2}$
$\mathrm{E}\left(X_{1}^{2}\right)=\sigma^{2}+\mu^{2}$
3. (a)
(i) $\mathrm{H}_{0}: \mu=3, \mathrm{H}_{1}: \mu<3$

1 tailed z test as σ^{2} is known
under $\mathrm{H}_{0}, X \sim \mathrm{~N}\left(3, \frac{1}{4}\right)$ so $\bar{X} \sim \mathrm{~N}\left(3, \frac{\frac{1}{4}}{36}\right)=\mathrm{N}\left(3, \frac{1}{144}\right)$
$z=\frac{\bar{x}-3}{\frac{1}{12}}$ is $\mathrm{N}(0,1)$
$\mathrm{P}(\mathrm{z}<-1.64485 \ldots)=0.05$
(M1)
(A1)
(A1)
M1

A1
Note: Candidates can get directly to the answer from $\mathrm{N}\left(3, \frac{1}{144}\right)$ they do not have to go via z is $N(0,1)$. However they must give some explanation of what they have done; they cannot just write the answer down.
(ii) a Type I error is accepting H_{1} when H_{0} is true
(iii) a Type II error is accepting H_{0} when H_{1} is true

Question 3 continued

(iv) 0.05

A1
Note: Accept anything that rounds to 0.050 if they do the conditional calculation.
(v) $\bar{X} \sim \mathrm{~N}\left(2.75, \frac{1}{144}\right)$
(M1)
$\mathrm{P}(\bar{x}>2.8629 \ldots)=0.0877$ (3sf)
(M1)A1
Note: \quad Accept any answer between 0.0875 and 0.0877 inclusive.
Note: Accept anything that rounded is between 0.087 and 0.089 if there is evidence that the candidate has used tables.
(b) (i) t-test

A1
(ii) $\mathrm{H}_{0}: \mu=3, \mathrm{H}_{1}: \mu<3$

1 tailed t test as σ^{2} is unknown
$t=\frac{\bar{y}-3}{\frac{1}{12}}$ has the t-distribution with $v=35$
(M1)
the p-value is $0.0509 \ldots$
A2
this is >0.05
R1
so we accept that the mean wave height is 3
R1
Note: Allow "Accept H_{0} " provided H_{0} has been stated.
Note: \quad Accept $\boldsymbol{F T}$ on the p-value for the $\boldsymbol{R 1}$ s.
(iii) $2.719<\mu<3.001$ (4 sf)

Note: $\quad 2.860 \pm 1.6896 \ldots \times \frac{\frac{1}{2}}{6}$ would gain $M 1$.
Note: Award A1A0 if answer are only given to 3sf.
4. (a) $X \sim \operatorname{Geo}\left(\frac{1}{6}\right)$ or $\operatorname{NB}\left(1, \frac{1}{6}\right)$

A1
[1 mark]
(b) $\quad \mathrm{E}(X)=6$

A1
[1 mark]
(c) H_{0} : the probability that the dice lands with a "six" uppermost is $\frac{1}{6}$
H_{1} : the probability is not $\frac{1}{6}$
under H_{0}, the expected values are given by the following table

Value of X	1	2	3	4	5	6	7
Frequency	36	30	25	20.833...	17.361...	14.468...	12.056...
$\begin{array}{\|l\|} \hline \mathbf{8} \\ \hline 10.047 \ldots \\ \hline \end{array}$		9	10	≥ 11			
		8.372...	6.977...	34.885...			

Note: Award $\mathbf{A} \mathbf{2}$ for one error, $\mathbf{A 1}$ for two errors and $\boldsymbol{A 0}$ for more than two errors.

Note: Accept answers that agree with the above to 1dp.
$v=11-1=10$
(applying a χ^{2} goodness of fit test)

EITHER

$p=0.935 \ldots$
A3
Note: Accept answers within a tolerance of ± 0.004.
$0.935 \ldots>0.10$ so we accept H_{0}

OR

$$
\chi_{\text {calc }}^{2}=4.248 \ldots
$$

Note: Accept answers within a tolerance of ± 0.02.
$\chi_{\text {crit }}^{2}=15.987 \ldots$
A1
$4.248<15.987$ so we accept H_{0}
Note: Incorrect combination of cells (grouping 10 or more) leading to $p=0.926 \ldots$ or $\chi_{\text {calc }}^{2}=3.77 \ldots$ and $\chi_{\text {crit }}^{2}=14.686 \ldots$ or incorrect combination of cells (grouping 9 and 10) leading to $p=0.900 \ldots$ or $\chi_{\text {calc }}^{2}=4.17 \ldots$ and $\chi_{\text {crit }}^{2}=14.686 \ldots$ both with $v=9$ would gain A1 (rather than the full A3) A1 and then either A3R1 or A2A1R1 respectively. Use the same tolerances as in the main markscheme.

Note: Allow follow through on their p-value or $\chi_{\text {calc }}^{2}$ value.

Question 4 continued

(d) $\quad Y$ is $\operatorname{NB}\left(2, \frac{1}{6}\right)$

A1
[1 mark]
(e) $\mathrm{P}(Y=y)=\frac{1}{36}$ gives $y=2$
(as all other probabilities would have a factor of 5 in the numerator)
(f) $\quad P(Y \leq 6)=\left(\frac{1}{6}\right)^{2}+2\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)^{2}+3\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right)^{2}+4\left(\frac{5}{6}\right)^{3}\left(\frac{1}{6}\right)^{2}+5\left(\frac{5}{6}\right)^{4}\left(\frac{1}{6}\right)^{2}$ $=0.263$
(M1) A1
[2 marks]
Total [14 marks]

MARKSCHEME

May 2012

MATHEMATICS STATISTICS AND PROBABILITY

Higher Level

Paper 3

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$N \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2012". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of N and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value $(e . g \cdot \sin \theta=1.5)$, do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an Mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8
 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $A 1$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for $\boldsymbol{F T}$.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) unbiased estimate of the mean: 795 (grams)
unbiased estimate of the variance: 108 (grams ${ }^{2}$)
A1
(M1)A1
[3 marks]
(b) null hypothesis $\mathrm{H}_{0}: \mu=800$

A1
alternative hypothesis $\mathrm{H}_{1}: \mu<800$ A1
using 1 -tailed t-test

EITHER

$p=0.0812 \ldots$

OR
with 9 degrees of freedom
$t_{\text {calc }}=\frac{\sqrt{10}(795-800)}{\sqrt{108}}=-1.521$
$t_{\text {crit }}=-1.383$
Note: Accept 2sf intermediate results.

THEN

so the baker's claim is rejected
R1

Note: Accept "reject H_{0} " provided H_{0} has been correctly stated.
Note: $\boldsymbol{F T}$ for the final $\boldsymbol{R 1}$.
[7 marks]
(c) proportion rejected from sample $p_{\mathrm{s}}=\frac{5}{40}=0.125$
using formula for confidence interval at 95% level:
$p_{\mathrm{s}} \pm 1.96 \sqrt{\frac{p_{\mathrm{s}}\left(1-p_{\mathrm{s}}\right)}{n}}$
$=0.125 \pm 0.102=[0.0225,0.227]$
[4 marks]
Total [14 marks]
2.
(a) $\mathrm{P}(X \leq n)=\sum_{\mathrm{i}=1}^{n} \mathrm{P}(X=\mathrm{i})=\sum_{\mathrm{i}=1}^{n} p q^{\mathrm{i}-1}$
M1A1
$=p \frac{1-q^{n}}{1-q}$
A1
$=1-(1-p)^{n}$
$\boldsymbol{A} \boldsymbol{G}$

[3 marks] [1 mark]
[2 marks]
Total [6 marks]
3. (a)
mean $=2.06$
A1
variance $=1.94$
(b) a Poisson distribution has the property that its mean and variance are the same
(c) $\quad \mathrm{H}_{0}$: the data can be modelled by a Poisson distribution H_{1} : the data cannot be modelled by a Poisson distribution

Note: If a parameter is stated, award $\boldsymbol{A 0}$.

METHOD 1

use the estimated mean to find expected values

number of injuries	0	1	2	3	4	5	6 or more
observed number of weeks	6	14	15	9	(5) 8	(2)	(1)
expected number of weeks	6.64	13.67	14.06	9.65	(4.96) 7.98	(2.04)	(0.98)

full table
Note: Award $\boldsymbol{A 2}$ if 5 or 6 correct expected values, A1 if 4 correct values, A0 otherwise.

Note: Allow $\boldsymbol{F T}$ on an $n=6$ value in the final column.
the last three columns should be combined
$\chi_{\text {calc }}^{2}=0.176$
degrees of freedom $=7-1-1-2=3$

EITHER

$\chi_{5 \%}^{2}(3)=7.81>0.176$

OR
p-value $=0.981>0.05$ A1

THEN

conclude that the data can be modelled by a Poisson distribution

Question 3 continued

METHOD 2

use mean $=2$ to find expected values

number of injuries	0	1	2	3	4	5	6 or more
observed number of weeks	6	14	15	9	(5) 8	(2)	(1)
expected number of weeks	7.037	14.07	14.07	9.38	(4.69) 7.43	(1.88)	(0.86)

full table
A3
Note: Award A2 if 5 or 6 correct expected values, A1 if 4 correct values, A0 otherwise.

Note: Allow $\boldsymbol{F T}$ on an $n=6$ value in the final column.
the last three columns should be combined
$\chi_{\text {calc }}^{2}=0.272$
degrees of freedom $=7-1-1-2=3$

EITHER

$\chi_{5 \%}^{2}(3)=7.81>0 . .272$

OR
p-value $=0.965>0.05$

THEN

conclude that the data can be modelled by a Poisson distribution

R1

[10 marks]
4. (a) piecewise linear graph

correct shape
A1
with vertices $(0,0),(0.5,1)$ and $(2,0)$
A1
LQ: $x=0.5$, because the area of the triangle is 0.25

R1
[3 marks]
(b) (i) $\mathrm{E}(X)=\int_{0}^{0.5} x \times 2 x \mathrm{~d} x+\int_{0.5}^{2} x \times\left(\frac{4}{3}-\frac{2}{3} x\right) \mathrm{d} x=\frac{5}{6}(=0.833 \ldots)$
(ii) $\mathrm{E}\left(X^{2}\right)=\int_{0}^{0.5} x^{2} \times 2 x \mathrm{~d} x+\int_{0.5}^{2} x^{2} \times\left(\frac{4}{3}-\frac{2}{3} x\right) \mathrm{d} x=\frac{7}{8}(=0.875)$
(c) (i) $\mathrm{E}(Y-2 X)=2 \mathrm{E}(X)-2 \mathrm{E}(X)=0$
(ii) $\quad \operatorname{Var}(X)=\left(\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}\right)=\frac{13}{72}$
$Y \square X_{1}+X_{2} \Rightarrow \operatorname{Var}(Y)=2 \operatorname{Var}(X)$
$\operatorname{Var}(Y-2 X)=2 \operatorname{Var}(X)+4 \operatorname{Var}(X)=\frac{13}{12}$

(M1)A1

[4 marks]

A1
(M1)
(M1)A1

A1

M1A1

Question 4 continued

(d) (i) attempt to use $c f(x)=\int f(u) \mathrm{d} u$

M1
obtain $c f(x)=\left\{\begin{array}{cl}x^{2}, & 0 \leq x \leq 0.5, \\ \frac{4 x}{3}-\frac{1}{3} x^{2}-\frac{1}{3}, & 0.5 \leq x \leq 2,\end{array}\right.$
(ii) attempt to solve $c f(x)=0.5$
$\frac{4 x}{3}-\frac{1}{3} x^{2}-\frac{1}{3}=0.5$
obtain 0.775
Note: Accept attempts in the form of an integral with upper limit the unknown median.

Note: Accept exact answer $2-\sqrt{1.5}$.

M1 (A1)

A1
x
5. (a) $\quad \frac{m^{k-1} e^{-m}}{(k-1)!}=\frac{m^{k+1} e^{-m}}{(k+1)!}$

$$
\Rightarrow 1=\frac{m^{2}}{(k+1) k}
$$

Note: Award $\boldsymbol{A 1}$ for any correct intermediate step.
$\Rightarrow m^{2}=(k+1) k$
[2 marks]
(b) $\frac{\mathrm{P}(X=k)}{\mathrm{P}(X=k-1)}=\frac{e^{-m} \times \frac{m^{k}}{k!}}{e^{-m} \times \frac{m^{k-1}}{(k-1)!}}$
$=\frac{m}{k}$
A1
$=\frac{\sqrt{k(k+1)}}{k}$
MI
$=\sqrt{\frac{k+1}{k}}>1$
R1
so $\mathrm{P}(X=k)>\mathrm{P}(X=k-1)$
R1
similarly $\mathrm{P}(X=k)>\mathrm{P}(X=k+1)$ R1 hence k is the mode AG

MARKSCHEME

November 2011

MATHEMATICS STATISTICS AND PROBABILITY

Higher Level

Paper 3

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

\boldsymbol{M} Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the breakdown of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each question (at the end of the question) and circle it.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

$3 \quad N$ marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of N and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets e.g. (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then write $-1(\mathbf{M R})$ next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).
Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

The method of dealing with accuracy errors on a whole paper basis by means of the Accuracy Penalty (AP) no longer applies.

Instructions to examiners about such numerical issues will be provided on a question by question basis within the framework of mathematical correctness, numerical understanding and contextual appropriateness.

The rubric on the front page of each question paper is given for the guidance of candidates. The markscheme (MS) may contain instructions to examiners in the form of "Accept answers which round to n significant figures $(s f)$ ". Where candidates state answers, required by the question, to fewer than n sf, award A0. Some intermediate numerical answers may be required by the MS but not by the question. In these cases only award the mark(s) if the candidate states the answer exactly or to at least $2 s f$.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) let S be the weight of tea in a random Supermug tea bag
$S \sim \mathrm{~N}\left(4.2,0.15^{2}\right)$
$\mathrm{P}(S>3.9)=0.977$
(M1)A1
[2 marks]
(b) let M be the weight of tea in a random Megamug tea bag
$M \sim \mathrm{~N}\left(5.6,0.17^{2}\right)$
$\mathrm{P}(M>5.4)=0.880 \ldots$
$\mathrm{P}(M<5.4)=1-0.880 \ldots=0.119 \ldots$
required probability $=2 \times 0.880 \ldots \times 0.119 \ldots=0.211$
(c) $\mathrm{P}\left(S_{1}+S_{2}+S_{3}+S_{4}+S_{5}<20.5\right)$
let $S_{1}+S_{2}+S_{3}+S_{4}+S_{5}=A$
$\mathrm{E}(A)=5 \mathrm{E}(S)$

$$
=21
$$

$\operatorname{Var}(A)=5 \operatorname{Var}(S)$
$=0.1125$
$A \sim \mathrm{~N}(21,0.1125)$
$\mathrm{P}(A<20.5)=0.0680$
(d) $\mathrm{P}\left(S_{1}+S_{2}+S_{3}+S_{4}+S_{5}+S_{6}+S_{7}-\left(M_{1}+M_{2}+M_{3}+M_{4}+M_{5}\right)>0\right)$
let $S_{1}+S_{2}+S_{3}+S_{4}+S_{5}+S_{6}+S_{7}-\left(M_{1}+M_{2}+M_{3}+M_{4}+M_{5}\right)=B$
$\mathrm{E}(B)=7 \mathrm{E}(S)-5 \mathrm{E}(M)$
$=1.4$
Note: Above $\boldsymbol{A 1}$ is independent of first $\mathbf{M 1}$.

$$
\operatorname{Var}(B)=7 \operatorname{Var}(S)+5 \operatorname{Var}(M)
$$

$$
=0.302
$$

$\mathrm{P}(B>0)=0.995$

A1

A1
(M1)
(M1)
[5 marks]

Total [15 marks]
2. (a) $\mathrm{H}_{0}: p=0.75, \mathrm{H}_{1}: p>0.75$

A1
one-tailed test
$\bar{X} \sim \mathrm{~N}\left(0.75, \frac{0.75 \times 0.25}{200}\right)$
$\bar{X} \sim \mathrm{~N}\left(0.75,9.375 \times 10^{-4}\right)$

EITHER

p-value $=0.0512$ A1
accept null hypothesis because p-value >0.05
OR
$z=\frac{0.8-0.75}{\sqrt{9.375 \times 10^{-4}}}=1.63$ A1
accept null hypothesis because $z<1.64$

Note: Accept alternative solutions using binomial distribution, giving p-value of 0.0578 .

Note: Allow follow through on final reasoning mark.
[4 marks]
(M1)
AlAI
[3 marks]
Total [7 marks]
3. (a) exponential distribution with mean $\frac{1}{\lambda}$

A1
[1 mark]
(b) $\int \lambda \mathrm{e}^{-\lambda t} d t=-e^{-\lambda t}(+\mathrm{c})$

$$
\begin{aligned}
\Rightarrow F(x) & =\left[-\mathrm{e}^{-\lambda t}\right]_{0}^{x} \\
& =1-\mathrm{e}^{-\lambda x}(x \geq 0)
\end{aligned}
$$

(c) $1-F\left(\frac{2}{\lambda}\right)$
$=\mathrm{e}^{-2} \quad(=0.135)$
(d) $\quad F(m)=\frac{1}{2}$
$\Rightarrow \mathrm{e}^{-\lambda m}=\frac{1}{2}$
$\Rightarrow-\lambda m=\ln \frac{1}{2}$
$\Rightarrow m=\frac{1}{\lambda} \ln 2$
(e) $F\left(\frac{1}{\lambda}\right)-F\left(\frac{\ln 2}{\lambda}\right)$
$=\frac{1}{2}-\mathrm{e}^{-1} \quad(=0.132)$
[2 marks]
4. (a) $\mathrm{H}_{0}: X \sim \mathrm{~B}\left(5, \frac{1}{2}\right), \mathrm{H}_{1}: X$ does not follow $\mathrm{B}\left(5, \frac{1}{2}\right)$

A1
[1 mark]
(b) $\mathrm{P}(X=0)=0.03125$
$\mathrm{P}(X=1)=0.15625$
$\mathrm{P}(X=2)=0.3125$
$\mathrm{P}(X=3)=0.3125$
$\mathrm{P}(X=4)=0.15625$
$\mathrm{P}(X=5)=0.03125$
Note: Award $\boldsymbol{A 2}$ for one error or premature rounding, $\boldsymbol{A 1}$ for two errors, and $\boldsymbol{A 0}$ otherwise.

\boldsymbol{X}	\mathbf{O}	\mathbf{E}
0	2	3.125
1	15	15.625
2	s	31.25
3	$69-s$	31.25
4	12	15.625
5	2	3.125

Note: Award method mark for any attempt to multiply the probability by 100.
combine classes:

\boldsymbol{X}	\mathbf{O}	\mathbf{E}
0 or 1	17	18.75
2	s	31.25
3	$69-s$	31.25
4 or 5	14	18.75

$$
\begin{aligned}
\chi_{\text {calc }}^{2} & =0.16 \dot{3}+31.25-2 s+0.032 s^{2}+45.602-2.416 s+0.032 s^{2}+1.20 \dot{3} \\
& =\frac{8}{125} s^{2}-\frac{552}{125} s+\frac{29332}{375}=0.064 s^{2}-4.42 s+78.2
\end{aligned}
$$

Note: Award M1A0 if candidates do not combine classes, obtaining $\chi_{\text {calc }}^{2}=0.064 s^{2}-4.42 s+78.5$.

Question 4 continued

(c) $\quad v=n-1=4-1=3$
critical value $=6.25$
solving: $0.064 s^{2}-4.42 s+78.2<6.25$
Note: \quad Accept use of $=$ in above line.
$\Rightarrow 26.3<s<42.8$
$\Rightarrow 27 \leq s \leq 42$
Note: Award $\boldsymbol{A 1}$ for each correct endpoint and $\boldsymbol{A 1}$ for correct inequalities. Only penalize one mark if end points are not integers but otherwise correct.

Note: If candidates do not combine classes in part (b) award full $\boldsymbol{F T}$ marks for the solution below:

$$
v=n-1=6-1=5
$$

critical value $=9.24$
solving: $0.064 s^{2}-4.42 s+78.5<9.24$
Note: \quad Accept use of $=$ in above line.
$\Rightarrow 24.0<s<45.0$
$\Rightarrow 25 \leq s \leq 45$ (accept 24 and 44)
Note: Award $\boldsymbol{A 1}$ for each correct endpoint and $\boldsymbol{A 1}$ for correct inequalities. Only penalize one mark if endpoints are not integers but otherwise correct.
5. (a) (i) $X=2 U \Rightarrow X \leq \frac{3}{2}$
$X=4 U \Rightarrow X>3$
X is only defined when $X \leq \frac{3}{2}, X>3$
M1A1
hence X cannot take values such that $\frac{3}{2}<X \leq 3$
(ii) EITHER
pdf is given by $f(u)=1$

> (M1)

$$
\begin{align*}
\mathrm{P}\left(0<X \leq \frac{3}{2}\right) & =\int_{0}^{\frac{3}{4}} 1 \mathrm{~d} u \tag{A1}\\
& =[u]_{0}^{\frac{3}{4}}=\frac{3}{4}
\end{align*}
$$

OR

pdf is given by $f(x)=\frac{1}{2}$

$$
\begin{equation*}
\mathrm{P}\left(0<X \leq \frac{3}{2}\right)=\int_{0}^{\frac{3}{2}} \frac{1}{2} \mathrm{~d} x \tag{A1}
\end{equation*}
$$

$$
=\left[\frac{x}{2}\right]_{0}^{\frac{3}{2}}=\frac{3}{4}
$$

(iii) $\mathrm{P}(3<X \leq 4)=1-\frac{3}{4}=\frac{1}{4}$
[6 marks]
(b) EITHER

$$
\begin{aligned}
& \int_{0}^{\frac{Q_{1}}{2}} 1 \mathrm{~d} u=\frac{1}{4} \\
& \Rightarrow[u]_{0}^{\frac{q_{1}^{2}}{2}}=\frac{1}{4} \\
& \Rightarrow \frac{Q_{1}}{2}=\frac{1}{4} \\
& \Rightarrow Q_{1}=\frac{1}{2}
\end{aligned}
$$

OR
$\int_{0}^{Q_{1}} \frac{1}{2} \mathrm{~d} x=\frac{1}{4}$
$\Rightarrow\left[\frac{x}{2}\right]_{0}^{Q_{1}}=\frac{1}{4}$
$\Rightarrow \frac{Q_{1}}{2}=\frac{1}{4}$
$\Rightarrow Q_{1}=\frac{1}{2}$

Question 5 continued

(c) EITHER

$$
\begin{array}{rlr}
\mathrm{E}(X) & =\int_{0}^{\frac{3}{4}} 2 u \mathrm{~d} u+\int_{\frac{3}{4}}^{1} 4 u \mathrm{~d} u \\
& =\left[u^{2}\right]_{0}^{\frac{3}{4}}+\left[2 u^{2}\right]_{\frac{3}{4}}^{1} \\
& =\frac{9}{16}+2-\frac{9}{8}=\frac{23}{16}(=1.44) & \boldsymbol{A l}
\end{array}
$$

OR

$$
\begin{array}{rlr}
\mathrm{E}(X) & =\int_{0}^{\frac{3}{2}} \frac{x}{2} \mathrm{~d} x+\int_{3}^{4} \frac{x}{4} \mathrm{~d} x & \text { M1 } \\
& =\left[\frac{x^{2}}{4}\right]_{0}^{\frac{3}{2}}+\left[\frac{x^{2}}{8}\right]_{3}^{4} & \text { A1 } \\
& =\frac{9}{16}+\frac{16}{8}-\frac{9}{8}=\frac{23}{16}(=1.44) & \text { [2 marks] }
\end{array}
$$

