

Markscheme

November 2019

Statistics and probability

Higher level Satprep 3

Paper 3

10 pages

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http://www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales— no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a valid **Method**; working must be seen.
- (M) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- **A** Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding **M** marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM[™] Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is **completely correct**, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp *A0* by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.
- All the marks will be added and recorded by RM[™] Assessor.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *eg M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*eg* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.

 Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final *A1*. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct *FT* working shown, award *FT* marks as appropriate but do not award the final *A1* in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8\sqrt{2}$	5.65685 (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4}\sin 4x$	$\sin x$	Do not award the final A1
3.	$\log a - \log b$	$\log(a-b)$	Do not award the final A1

3 N marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of N and other marks.
- There may be fewer **N** marks available than the total of **M**, **A** and **R** marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets** eg (**M1**), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value ($eg \sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Misread

If a candidate incorrectly copies information from the question, this is a misread (**MR**). A candidate should be penalized only once for a particular misread. Use the **MR** stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an **M** mark, but award all others so that the candidate only loses **[1 mark]**.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (eg $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \ (=10\cos(5x-3))$$
 A1

Award **A1** for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says: *Students must always use correct mathematical notation, not calculator notation.* Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1.	(a)	(i)	$H_0: \rho = 0 H_1: \rho \neq 0$	A1
		Note	e: It must be ρ .	
		(ii)	<i>p</i> = 0.649	A2
		Note	e: Accept anything that rounds to 0.65.	
			0.649 > 0.05	R1
			hence, we accept $H_{\scriptscriptstyle 0}$ and conclude that Peter's claim is wrong	A1
		Note	: The A mark depends on the R mark and the answer must be give Follow through the <i>p</i> -value in part (b).	n in context.
				[5 marks]
	(b)	a sta varia	atement along along the lines of '(we have accepted that) the two ables are independent' or 'the two variables are weakly correlated'	R1
		a sta or 'it	would give an inaccurate result'	R1
	No		yord the encound D1 only if the first D1 is sworded	
	NO	le: Aw	and the second RT only if the first RT is awarded.	
	No cor dep rea	te: FT rect, n pender ressio	the conclusion in(a)(ii). If a candidate concludes that the claim is nark as follows: (as we have accepted H_1) the 2 variables are nt and 73 lies in the range of x values <i>R1</i> , hence the use of the on line is valid <i>R1</i> .	
				[2 marks] Total [7 marks]
2.	(a)	(i)	attempt to find expected values $eg E(T_1)$	(M1)
			$E(T_1) = \frac{1}{2}E(X_1 + X_2 + X_3) = \frac{1}{2}(E(X_1) + E(X_2) + E(X_3))$	
			=µ satpre?	A1
			$E(T_{2}) = \frac{1}{2}E(X_{1} + 2X_{2} + 3X_{3}) = \frac{1}{2}(E(X_{1}) + 2E(X_{2}) + 3E(X_{3}))$	
			$=2\mu$	A1
			$E(T_3) = \frac{1}{2}E(X_1 + 2X_2) = \frac{1}{2}(E(X_1) + 2E(X_2))$	
			$=\mu$	A1
		Note	e: Order does not matter.	

-7-

 $(2\mu \neq \mu)$ hence T_2 is biased, T_1 and T_3 are unbiased

(ii) use of variance of linear combinations (M1)

$$Var(T_{i}) = \frac{1}{9} (Var(X_{1}) + Var(X_{2}) + Var(X_{1}))$$

$$= \frac{3}{9} \sigma^{2} \left(= \frac{\sigma^{2}}{3} \right)$$
A1

$$Var(T_{i}) = \frac{1}{9} (Var(X_{1}) + 4Var(X_{2}))$$

$$= \frac{5}{9} \sigma^{2}$$
A1

$$\frac{3}{9} \sigma^{2} < \frac{5}{9} \sigma^{2}$$
A1

$$\frac{3}{9} \sigma^{2} < \frac{5}{9} \sigma^{2}$$
A1
Note: Award A1 only if the R1 is awarded.
Note: Follow through their variances and award R1 for a comparison and
A1 if the M1 was awarded.
(b) (i) $E(\overline{Y}) = E(Y) = \frac{4}{p}$
A1
(ii) $\frac{\overline{Y}}{4}$
A1
(iii) $E(W) \left(= 1 \times \frac{1}{2} + 2 \times \frac{1}{2} \right) = \frac{3}{2}$
A1
(ii) $E(\frac{1}{W}) \left(= 1 \times \frac{1}{2} + 2 \times \frac{1}{2} \right) = \frac{3}{4}$
(M1)A1
(iii) the above example shows that in general $E\left(\frac{1}{T}\right) \neq \frac{1}{E(T)}$ (so that
 $E\left(\frac{4}{\overline{Y}}\right)$ may not equal $\frac{1}{E(\overline{Y}/4)} = p$).
Note: Do not award R1 if the statement is given only in terms of W.
(4 marks]

- 8 -

Total [15 marks]

3. (a) for *n* (sufficiently) large the sample mean
$$\overline{X}$$
 approximately
 $-N\left(\mu, \frac{\sigma^2}{n}\right)$
(A1)
Note: Award the first A1 for *n* large and reference to the sample mean (\overline{X}) ,
the second A1 is for normal and the two parameters.
Note: Award the second A1 only if the first A1 is awarded.
Note: Allow 'n tends to infinity' or 'n $\ge 30'$ in place of 'large'.
(b) [59.9,60.5]
(c) (i) under H_a , $\overline{X} - N\left(60, \frac{4}{100}\right)$
(A1)
required to find k such that $P(\overline{X} > k) = 0.05$
(M1)
use of any valid method, eg GDC lmv(Normal) or $k = 60 + z \frac{\sigma}{\sqrt{n}}$
(M1)
hence critical region is $\overline{x} > 60.33$
(ii) 0.05
(f)
Note: Accept Type II error) = $P(H_a$ is accepted $I H_a$ is false)
(R1)
Note: Accept Type II error) = $P(H_a$ is accepted $I H_a$ is false)
(R1)
 $D = P\left(\frac{\overline{X} - \mu}{\frac{2}{10}} < \frac{60.33 - \mu}{2}\right) = 0.25$
(M1)
 $\Rightarrow P\left(\frac{\overline{X} - \mu}{\frac{2}{10}} < \frac{60.33 - \mu}{2}\right) = 0.25$
(M1)
 $\mu = 60.33 + \frac{2}{10} < 0.6744...$
(A1)
 $\mu = 60.3 + \frac{2}{10} < 0.6744...$
(A1)
 $\mu = 60.3 + \frac{2}{10} < 0.6744...$
(A1)
 $\mu = 60.5$
(A1)

- 9 -

[5 marks]

4. (a)
$$G'_x(t) = \frac{p^r r t^{r-1} (1-qt)^r - p^r t^r r (1-qt)^{r-1} (-q)}{(1-qt)^{2r}}$$
 M1A1

use of
$$E(X) = G'_x(1)$$
 M1

$$G'_{x}(1) = \frac{rp'(1-q)' - rp'(1-q)'^{-1}(-q)}{(1-q)^{2r}}$$
A1

Note: Accept correct substitution of t = 1 in any correct form of $G'_{x}(t)$.

$$\frac{rp^{2r} + rp^{2r-1} - rp^{2r}}{p^{2r}}$$
 A1

Note: Accept any equivalent simplified expression which leads immediately to the final result
$$\frac{r}{p}$$
, for example $r\left(1+\frac{q}{p}\right)$.

$$=\frac{r}{p}$$

=

 $G_{w}(t) = G_{x}(t)G_{y}(t)$ (b) (i) (M1) $=\frac{p^{r}t^{r}}{(1-qt)^{r}}\times\frac{p^{s}t^{s}}{(1-qt)^{s}}=\frac{p^{r+s}t^{r+s}}{(1-qt)^{r+s}}$ A1 (ii) $W \sim \text{NB}(r+s, p)$ A1A1 (iii) $P(X=3|W=7) = \frac{P(X=3 \cap W=7)}{P(W=7)}$ (M1) $=\frac{P(X=3) \times P(Y=4)}{P(W=7)}$ (A1) $=\frac{\binom{2}{1}p^2q\binom{3}{2}p^3q}{\binom{6}{4}p^5q^2}$ M1A1 $=\frac{2}{5}$ A1 [9 marks] Total [14 marks]

Markscheme

May 2019

Statistics and probability

Satpref **Higher level**

Paper 3

11 pages

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http:// www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-forthird-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales— no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a valid **Method**; working must be seen.
- (*M*) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- **A** Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding **M** marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM[™] Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is **completely correct**, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp *A0* by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.
- All the marks will be added and recorded by RM[™] Assessor.

2 Method and Answer/Accuracy marks atore?

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *eg M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*eg* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.

- 3 -

 Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final *A1*. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct *FT* working shown, award *FT* marks as appropriate but do not award the final *A1* in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8\sqrt{2}$	5.65685 (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4}\sin 4x$	$\sin x$	Do not award the final A1
3.	$\log a - \log b$	$\log(a-b)$	Do not award the final A1

3 N marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of N and other marks.
- There may be fewer **N** marks available than the total of **M**, **A** and **R** marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets** eg (**M1**), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value ($eg \sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Misread

If a candidate incorrectly copies information from the question, this is a misread (**MR**). A candidate should be penalized only once for a particular misread. Use the **MR** stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an **M** mark, but award all others so that the candidate only loses **[1 mark]**.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (*eg* sin $\theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \ (=10\cos(5x-3))$$
 A1

Award **A1** for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says: *Students must always use correct mathematical notation, not calculator notation.* Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

222. satprep.co. 1.

(a)

$$\int_{0}^{1} kx dx + \int_{1}^{2} kx^{2} dx \qquad M1$$

= $k \left[\frac{x^{2}}{2} \right]_{0}^{1} + k \left[\frac{x^{3}}{3} \right]_{1}^{2} \qquad (A1)$

$$= k \left[\frac{1}{2} + \left(\frac{\delta}{3} - \frac{1}{3} \right) \right]$$
put expression equal to 1 M1

$$k = \frac{6}{17}$$
 AG

[4 marks]

(b)
$$\int_{0}^{x} \frac{6}{17} t dt = \frac{3x^{2}}{17}$$
 (A1)
 $F(x) = \frac{3x^{2}}{17}, 0 \le x < 1$ PPR A1

$$\int_{1}^{x} \frac{6}{17} t^{2} dt = \frac{2x^{3}}{17} - \frac{2}{17}$$

$$F(x) = \frac{2x^{3}}{17} - \frac{2}{17} + F(1), 1 \le x \le 2$$

$$= \frac{2x^{3}}{17} + \frac{1}{17}$$
A1

Note: Condone the use of *x* as the variable of integration.

Note: Accept the use of *k* in lines 1 and 3.

F(x) = 0, x < 0 and F(x) = 1, x > 2

Note: Allow either weak or strong inequalities.

[6 marks]

A1

(M1)

recognition that the median lies between 1 and 2 $F(m) = 0.5 \Rightarrow 0.5 = \frac{2}{17}m^3 + \frac{1}{12}$ (c)

$$T(m) = 0.5 \Rightarrow 0.5 = \frac{2}{17}m^3 + \frac{1}{17}$$
(M1)
 $\Rightarrow m = 1.55$
A1

 \Rightarrow m = 1.55

Note: *FT* their F(x) from (b) if possible.

[3 marks]

continued...

-7-

Question 1 continued

(d)
$$P(-0.75 \le X - 1.55 \le 0.75)$$

 $= P(0.8 \le X \le 2.3)$ (M1)
 $= F(2.3) - F(0.8)$ (M1)
 $1 - \frac{3}{17}(0.8036...)^2$
 $= 0.886$ A1
Note: Accept all answers that round to 0.89.
Note: FT their *m* from (c).

[3 marks]

Total [16 marks]

0	
2	

	AT PRA	TOLAT	[10 marks]
Ν	ote: In question 2, accept answers that round correctly to 2 signification	ant figures	5.
(a)	$X \sim N(150, 45^2)$		
	P(X > 180) = 0.252	(M1)A1	
			[2 marks]
(b)	required to find $P(X_1 + X_2 + X_3 < 540)$		
	let $S = X_1 + X_2 + X_3$		
	E(S) = 450	(A1)	
	Var(S) = 3Var(X)	(M1)	
	$= 3 \times 45^2 \left(\Longrightarrow \sigma = 45\sqrt{3} \right) (= 6075)$	(A1)	
_	P(S < 540) = 0.876	A1	
N	ote: In (b) and (c) condone incorrect notation, <i>eg</i> , $3X$ for $X_1 + X_2 + X_3$.		[4 marks]
(c)	let $Y = (X_1 + X_2 + X_3 + X_4) - (X_5 + X_6 + X_7)$	(M1)	
	$\mathbf{E}(Y) = \mathbf{E}(X) = 150$	(A1)	
	$\operatorname{Var}(Y) = 4\operatorname{Var}(X) + 3\operatorname{Var}(X) (= 7\operatorname{Var}(X))$	(M1)	
	=14175	(A1)	
	required to find $P(Y < 0)$	(M1)	
	= 0.104	A1	[6 marks]
		Total	[12 marks]

(a)
$$\overline{X} - N\left(\mu, \frac{\sigma^2}{100}\right)$$
 A1
Note: Accept *n* in place of 100. [1 mark]
(b) $\hat{\mu} = \sum_{n} \frac{199.8}{100} = 1.998$ A1
Note: Accept 2.00, 2.0 and 2. [1 mark]
(c) $s_{n-1}^2 = \frac{n}{n-1} \left(\sum_{n} x^2 - \overline{x}^2 \right) = \frac{100}{99} \left(\frac{407.8}{100} - 1.998^2 \right)$ (M1)
= 0.086864
unbiased estimate for σ^2 is 0.0869 A1
Note: Accept any answer which rounds to 0.087. [2 marks]
(d) 90% confidence interval is $1.998 \pm 1.660 \sqrt{\frac{0.0869}{100}}$ (M1)
= (1.95, 2.05) A1A1
Note: FT their σ from (c).
Note: Accept any values that round to 1.95 and 2.05. [3 marks]
(e) (i) *p*-value is 0.0377 A2
Note: Award A1 for the 2-tail value 0.0754.
Note: FT their estimated mean from (b), note that 2 gives *p* = 0.032(0).
(i) accept the null hypothesis A1
Note: FT their *p*-value. [3 marks]

Total [10 marks]

-9-

3.

(a) METHOD 1 4.

$\operatorname{Cov}(X+c,Y) = \operatorname{E}([X+c]Y) - \operatorname{E}(X+c)\operatorname{E}(Y)$	М1
= E(XY + cY) - E(X)E(Y) - cE(Y)	A1
= E(XY) + E(cY) - E(X)E(Y) - cE(Y)	
= E(XY) + cE(Y) - E(X)E(Y) - cE(Y)	A1
$=\operatorname{Cov}(X,Y)$	AG
METHOD 2	

$\operatorname{Cov}(X + c, Y) = \operatorname{E}[(X + c - \operatorname{E}(X + c))(Y - \operatorname{E}(Y))]$	M1
= E[(X + c - E(X) - E(c))(Y - E(Y))]	A1
= E[(X + c - E(X) - c)(Y - E(Y))]	A1
$= \operatorname{Cov}(X, Y)$	AG

[3 marks]

METHOD 1 (b)

000((1,1))	//0
FRA	[3 marks]
METHOD 1	
$\operatorname{Cov}(X+Y,Z) = \operatorname{E}([X+Y]Z) - \operatorname{E}(X+Y)\operatorname{E}(Z)$	M1
= E(XZ + YZ) - (E(X) + E(Y))E(Z)	A1
= E(XZ) + E(YZ) - E(X)E(Z) - E(Y)E(Z)	A1
$= \operatorname{Cov}(X, Z) + \operatorname{Cov}(Y, Z)$	AG
METHOD 2	
Cov(X + Y,Z) = E[(X + Y - E(X + Y))(Z - E(Z))]	M1
= E[(X + Y - E(X) - E(Y))(Z - E(Z))]	
= E[(X - E(X) + Y - E(Y))(Z - E(Z))]	A1
= E[(X - E(X))(Z - E(Z))] + E[(Y - E(Y))(Z - E(Z))]	A1
$= \operatorname{Cov}(X,Z) + \operatorname{Cov}(Y,Z)$	AG

[3 marks]

continued...

Question 4 continued

(c)	$\operatorname{Cov}(1+S,S+ST^2)$		
	$= \operatorname{Cov}(S, S + ST^2)$ (from a)	M1	
	$= \operatorname{Cov}(S,S) + \operatorname{Cov}(S,ST^{2})$ (from b)	M1	

METHOD 1

$= \operatorname{Var}(S) + \operatorname{E}(S^{2}T^{2}) - \operatorname{E}(S)\operatorname{E}(ST^{2})$	A1
$-\operatorname{Var}(S) + \operatorname{E}(S^2) \operatorname{E}(T^2) - \operatorname{E}(S) \operatorname{E}(ST^2)$	۸1

$$= \operatorname{Var}(S) + \operatorname{E}(S^{2})\operatorname{E}(T^{2}) - \operatorname{E}(S)\operatorname{E}(ST^{2})$$
A1

$$= \operatorname{Var}(S) + \operatorname{Var}(S)\operatorname{Var}(T) - \operatorname{E}(S)\operatorname{E}(ST^{2})$$

$$= 1 + 1 - 0$$
(A1)

METHOD 2

$= Var(S) + E[(S - E(S))(ST^2 - E(ST^2))]$	A1
= Var(S) + E(S × ST ²)	A1
$= \operatorname{Var}(S) + \operatorname{Var}(S)\operatorname{Var}(T)$	(A1)
= 1 + 1 + 0	
= 2	A1
	[6 marks]
4	Total [12 marks]
4 CO	

Markscheme

November 2018

Statistics and probability

Higher level Satprep 3

Paper 3

10 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Satprep.co

PR

-2-

Instructions to Examiners

- 3 -

Abbreviations

- *M* Marks awarded for attempting to use a valid **Method**; working must be seen.
- (M) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- **A** Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding **M** marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM[™] Assessor instructions and the document "**Mathematics HL: Guidance for e-marking November 2018**". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is **completely correct**, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp *A0* by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.
- All the marks will be added and recorded by RM[™] Assessor.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *eg M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*eg* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.

 Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final *A1*. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct *FT* working shown, award *FT* marks as appropriate but do not award the final *A1* in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8\sqrt{2}$	5.65685 (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4}\sin 4x$	$\sin x$	Do not award the final A1
3.	$\log a - \log b$	$\log(a-b)$	Do not award the final A1

3 N marks

Award N marks for correct answers where there is no working.

- Do **not** award a mixture of **N** and other marks.
- There may be fewer **N** marks available than the total of **M**, **A** and **R** marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets** eg (**M1**), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value ($eg \sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Misread

If a candidate incorrectly copies information from the question, this is a misread (**MR**). A candidate should be penalized only once for a particular misread. Use the **MR** stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an **M** mark, but award all others so that the candidate only loses **[1 mark]**.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (*eg* sin $\theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x - 3)$, the markscheme gives:

$$f'(x) = (2\cos(5x - 3))5 \quad (= 10\cos(5x - 3))$$

Award **A1** for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says: *Students must always use correct mathematical notation, not calculator notation.* Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

222. satprep.co.

(M1)A1

1. (a)
$$E(2X + 7Y) = 2E(X) + 7E(Y) = 6 + 28 = 34$$

(b)
$$Var(X) = E(X) = 3$$
 and $Var(Y) = E(Y) = 4$ (R1)
 $Var(4X - 3Y) = 16Var(X) + 9Var(Y) = 48 + 36$ (M1)
 $= 84$ A1

[3 marks]

[2 marks]

(c) use of
$$E(U^2) = Var(U) + (E(U))^2$$
 (M1)
 $E(X^2) = 3 + 3^2; E(Y^2) = 4 + 4^2$ A1

$$E(X^{2} - Y^{2}) = E(X^{2}) - E(Y^{2})$$
(M1)
= -8 A1

[4 marks]

	AT PRE	Tota	l [9 mark
	75		
(a)	(i) $\overline{t} = \frac{\sum_{i=1}^{i} t_i}{75} = 28.866 = 28.9$	A1	
	(ii) $s_{n-1}^{2} = \frac{75}{74} \left(\frac{\sum_{i=1}^{75} t_{i}^{2}}{\frac{1}{75} - \overline{t}^{2}} \right) = 188.9009 = 189$	(M1)A1	
	Note: Accept all answers that round to 28.9 and 189.		
	Note: Award <i>M0</i> if division by 75.		
	22		[3 mark
(b)	attempting to find a confidence interval.	(M1)	
	(i) 90% interval: (26.2, 31.5)	A1	
	(ii) 95% interval: (25.7, 32.0)	A1	
No	te: Accept any values which round to within 0.1 of the correct value.		
No	te: Award <i>M1A1A0</i> if only confidence limits are given in the form 28.9 ± 2.6		
			[3 mark
(c)	26 lies within the 95% interval but not within the 90% interval	R1	
No	te: Award R1 for considering whether or not one or two of the intervals con	tain 26.	
	the belief is supported at the 5% level (accept 95%)	A1	_
	the belief is not supported at the 10% level (accept 90%)	A1	
No	te: <i>FT</i> their intervals but award <i>R1A1A0</i> if both intervals give the same con	clusion.	
			[3 mark

Total [9 marks]

3.

Note: Accept all answers that round to the correct 2sf answer in (a), (b) and (c) but not in (d).

(a)	(i)	$X \sim N(550, 8^2)$	(M1)	
		P(X > 560) = 0.10564 = 0.106	A1	
	(ii)	$X_i \sim N(550, 8^2), i = 1,, 11$		
		let $Y = \sum_{i=1}^{11} X_i$		
		$E(Y) = 11 \times 550 (6050)$	A1	
		$Var(Y) = 11 \times 8^2 (704)$	(M1)A1	
		$P(Y \le 6000) = 0.02975 = 0.0298$	A1	
				[6 marks]
(b)	(i)	t distribution with 7 degrees of freedom	A1A1	
	(ii)	p = 0.25779 = 0.258	A2	
	(iii)	<i>p</i> > 0.05	R1	
		therefore we conclude that there is no evidence to reject $H_{_0}$	A1	
	No	te: FT their n-value		
		te: Only eword A1 if B1 eworded		
	NO	te: Only award AT II RT awarded.		[6 marks]
(c)	(i)	$H_0: \rho = 0, H_1: \rho > 0$	A1	
	No	te: Do not accept r in place of ρ .		
	(ii)	r = 0.782	A2	
	(iii)	0.01095 = 0.0110	A1	
	()	since $0.0110 < 0.05$	R1	
		there is positive association between weight and length	A1	
	No	te: <i>FT</i> their p-value.		
	No	te: Only award A1 if R1 awarded.		
	No	te: Conclusion must be in context.		
				[6 marks]

continued...

Question 3 continued

(d)	regression line of $y(weight)$ on $x(length)$ is	(M1)
	y = 0.8267x + 255.96	(A1)
	x = 360 gives $y = 554$	A1
Note: Award <i>M1A0A0</i> for the wrong regression line, that is $y = 0.7393x - 51.62$		

[3 marks]

Total [21	marks]
-----------	--------

4.	(a)	$G_X(t) = \sum_{x=1}^{\infty} pq^{x-1}t^x$ or equivalent	M1A1	
	No	te: Condone omission of limits on summation.		
		$=\sum_{x=1} pt(qt)^{x-1}$		
		recognition of a geometric series	M1	
		$=\frac{pt}{1-at}$	AG	
				[3 marks]
	(b)	$G'_{X}(t) = \frac{p(1-qt) + pqt}{(1-qt)^{2}}$ $= \frac{p}{(1-qt)^{2}}$	M1A1	
		$E(X) = G'_X(1) = \frac{p}{(1-q)^2} = \frac{p}{p^2}$	M1A1	
		$=\frac{1}{n}$	AG	
		satpre?		[4 marks]
	(c)	METHOD 1		
		$G_{Y}(t) = pt^{5} + pqt^{7} + pq^{2}t^{9} + \dots$	M1A1	
		recognition of geometric series	(M1)	

$$=\frac{pt^{5}}{1-qt^{2}}$$

continued...

Question 4 continued

METHOD 2 $G_{Y}(t) = E(t^{Y}) = E(t^{2X+3})$ $= t^{3}E((t^{2})^{X})$ $= t^{3}G_{X}(t^{2})$ (M1) $= \frac{pt^{5}}{1-qt^{2}}$ A1

[4 marks]

Total [11 marks]

Markscheme

May 2018

Statistics and probability

Higher level satpret

Paper 3

10 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

PR

-2-

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a valid **Method**; working must be seen.
- (*M*) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- **A** Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding **M** marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM[™] Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is **completely correct**, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp *A0* by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.
- All the marks will be added and recorded by RM[™] Assessor.

2 Method and Answer/Accuracy marks atore?

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *MO* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *eg M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*eg* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.

- 3 -

 Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final *A1*. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct *FT* working shown, award *FT* marks as appropriate but do not award the final *A1* in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8\sqrt{2}$	5.65685 (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4}\sin 4x$	$\sin x$	Do not award the final A1
3.	$\log a - \log b$	$\log(a-b)$	Do not award the final A1

3 N marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of N and other marks.
- There may be fewer **N** marks available than the total of **M**, **A** and **R** marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets** eg (M1), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (eg $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Misread

If a candidate incorrectly copies information from the question, this is a misread (**MR**). A candidate should be penalized only once for a particular misread. Use the **MR** stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an **M** mark, but award all others so that the candidate only loses **[1 mark]**.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (eg sin $\theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x - 3)$, the markscheme gives:

$$f'(x) = (2\cos(5x - 3))5 \quad (= 10\cos(5x - 3))$$

Award **A1** for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.
10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says: *Students must always use correct mathematical notation, not calculator notation.* Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

Satprep. co.

No	ote: In	question 1, accept answers that round correctly to 2 significant figures.]	
1.	(a)	P(4.75 < X < 4.85) = 0.197	A1	[1 mark]
	(b)	consider the random variable $X - 2Y$ E(X - 2Y) = -0.6 Var(X - 2Y) = Var(X) + 4Var(Y) = 0.13 $X - 2Y \sim N(-0.6, 0.13)$ P(X - 2Y > 0) = 0.0480	(M1) (A1) (M1) (A1) (M1) A1	[6 marks]
	(c)	let $W = X_1 + X_2 + Y_1 + Y_2 + Y_3$ be the total weight E(W) = 17.7 Var(W) = 2Var(X) + 3Var(Y) = 0.1475 $W \sim N(17.7, 0.1475)$ P(W > 18) = 0.217	(A1) (M1)(A1) A1 Total	[4 marks] [11 marks]
2.	(a)	X is geometric (or negative binomial)	A1	[1 mark]
	(b)	$G(t) = \frac{1}{4}t + \frac{1}{4}\left(\frac{3}{4}\right)t^{2} + \frac{1}{4}\left(\frac{3}{4}\right)^{2}t^{3} + \dots$	M1A1	
		recognition of GP $\left(u_1 = \frac{1}{4}t, r = \frac{3}{4}t\right)$	(M1)	
		$=\frac{\frac{-t}{4}}{1-\frac{3}{4}t}$	A1	
		leading to $G(t) = \frac{t}{4-3t}$	AG	[4 marks]
	(c)	attempt to use product or quotient rule	M1	[+ markej
	(9)	$G'(t) = \frac{4}{2}$	A1	
		$(4-3t)^2$		[2 marks]

continued...

Question 2 continued

	A1	4	(d)
r G'(t).	alue of $G'(1)$ from their	te: Award A1FT to a candidate that correctly calculates the value	Not
[1 ma			
l [8 maı	Total		
	t figures.	question 3, accept answers that round correctly to 2 significant figure	: In c
	A1	$H_0: \mu = 9.5; H_1: \mu \neq 9.5$	(a)
[1 ma			
	(M1)(A1)	the critical values are $9.5 \pm 1.95996 \times \frac{0.4}{\sqrt{20}}$	(b)
		i.e. 9.3247, 9.6753	
	A1A1	the critical region is $\overline{b} < 9.32, \overline{b} > 9.68$	
		te: Award A1 for correct inequalities, A1 for correct values.	Not
		te: Award M0 if <i>t</i> -distribution used, note that $t(19)_{975} = 2.093$	Not
[4 mai			
	(A1)	$\overline{B} \sim N\left(9.8, \left(\frac{0.4}{\sqrt{20}}\right)^2\right)$	(c)
	(M1)	$P(9.3247 < \overline{B} < 9.6753)$	
	A1	= 0.0816	
99.	.32 and 9.68 give 0.089	te: FT the critical values from (b). Note that critical values of 9.32 a	Not
[3 mai		2. Satarao.	
		METHOD 1	(d)
	(M1)(A1)	$X \sim N\left(10.8, \frac{1.2^2}{6}\right)$	
	(A1)	P(10.2 < X < 11.4) = 0.7793	
	A1	confidence level is 77.9%	
		te: Accept 78%.	Not
		METHOD 2	
	(M1)	$11.4 - 10.2 = 2z \times \frac{1.2}{\sqrt{6}}$	
	(A1)	z = 1.224	
	(A1)	P(-1.224 < Z < 1.224) = 0.7793	
	A1		Nat
[4 mai			INOT
[12 maı	Total [

(a) $H_0: \rho = 0; H_1: \rho < 0$ A1 [1 mark] (i) $t = -0.708 \sqrt{\frac{11-2}{1-(-0.708)^2}} \ (= -3.0075...)$ (b) (M1) degrees of freedom =9(A1) P(T < -3.0075...) = 0.00739A1 Note: Accept any answer that rounds to 0.0074. **R1** (ii) reject H_0 or equivalent statement **Note:** Apply follow through on the candidate's *p*-value. [4 marks] $\operatorname{Cov}(U, V) = \operatorname{E}((U - \operatorname{E}(U))(V - \operatorname{E}(V)))$ (i) (c) = E(UV - E(U)V - E(V)U + E(U)E(V))М1 $= \mathbf{E}(UV) - \mathbf{E}(\mathbf{E}(U)V) - \mathbf{E}(\mathbf{E}(V)U) + \mathbf{E}(\mathbf{E}(U)\mathbf{E}(V))$ (A1) = E(UV) - E(U)E(V) - E(V)E(U) + E(U)E(V)A1 Cov(U, V) = E(UV) - E(U)E(V)AG (ii) E(UV) = E(U)E(V) (independent random variables) **R1** \Rightarrow Cov(U, V) = E(U)E(V) - E(U)E(V) = 0A1 hence, $\rho = \frac{\operatorname{Cov}(U, V)}{\sqrt{\operatorname{Var}(U)\operatorname{Var}(V)}} = 0$ A1AG **Note:** Accept the statement that Cov(U,V) is the numerator of the formula for ρ . Note: Only award the first A1 if the R1 is awarded. [6 marks] Total [11 marks] (a) $\operatorname{E}(P) = \operatorname{E}\left(\frac{X}{n}\right) = \frac{1}{n}\operatorname{E}(X)$ M1 $=\frac{1}{n}(np)=p$ A1 so P is an unbiased estimator of pAG

[2 marks]

continued...

-9-

4.

5.

Question 5 continued

(b) (i)
$$E(nP(1-P)) = E\left(n\left(\frac{X}{n}\right)\left(1-\frac{X}{n}\right)\right)$$

 $= E(X) - \frac{1}{n}E(X^{2})$ M1A1
use of $E(X^{2}) = Var(X) + (E(X))^{2}$ M1

Note: Allow candidates to work with *P* rather than *X* for the above 3 marks.
$$= np - \frac{1}{n} (np(1-p) + (np)^2)$$
A1

$$= np - p(1-p) - np^{2}$$

= $np(1-p) - p(1-p)$ A1

Note: Award A1 for the factor of
$$(1-p)$$
.
= $(n-1)p(1-p)$ AG

(ii) an unbiased estimator is
$$\frac{n^2 P(1-P)}{n-1} \left(=\frac{nU}{n-1}\right)$$
 A1

ZZZZ Satprep.0

[6 marks]

Total [8 marks]

Markscheme

November 2017

Statistics and probability

Higher level Satprep 3

Paper 3

11 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

PR

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a valid **Method**; working must be seen.
- (M) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- **A** Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding **M** marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM[™] Assessor instructions and the document "**Mathematics HL: Guidance for e-marking November 2017**". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is **completely correct**, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp *A0* by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.
- All the marks will be added and recorded by RM[™] Assessor.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *MO* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *eg M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*eg* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.

 Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final *A1*. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct *FT* working shown, award *FT* marks as appropriate but do not award the final *A1* in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	8√2	5.65685 (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4}\sin 4x$	$\sin x$	Do not award the final A1
3.	$\log a - \log b$	$\log(a-b)$	Do not award the final A1

3 N marks

Award N marks for correct answers where there is no working.

- Do **not** award a mixture of **N** and other marks.
- There may be fewer **N** marks available than the total of **M**, **A** and **R** marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets** eg (M1), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (eg $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Misread

If a candidate incorrectly copies information from the question, this is a misread (**MR**). A candidate should be penalized only once for a particular misread. Use the **MR** stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an **M** mark, but award all others so that the candidate only loses **[1 mark]**.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value ($eg \sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \ (=10\cos(5x-3))$$
 A1

Award **A1** for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says: *Students must always use correct mathematical notation, not calculator notation.* Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

Satprep. co.

N17/5/MATHL/HP3/ENG/TZ0/SP/M

1. (a)
$$F(t) = \int_{0}^{t} \left(x - \frac{x^{3}}{4} \right) dx \left(= \int_{0}^{t} \frac{x(4 - x^{2})}{4} dx \right)$$
 M1

$$= \left[\frac{x^2}{2} - \frac{x^4}{16}\right]_0^t \left(= \left[\frac{x^2(8-x^2)}{16}\right]_0^t\right) \left(= \left[\frac{-(4-x^2)^2}{16}\right]_0^t\right)$$
 A1

$$=\frac{t^2}{2} - \frac{t^4}{16} \left(= \frac{t^2 \left(8 - t^2\right)}{16} \right) \left(= 1 - \frac{\left(4 - t^2\right)^2}{16} \right)$$
 A1

Note: Condone integration involving *t* only.

Note: Award *M1A0A0* for integration without limits eg, $\int \frac{t(4-t^2)}{4} dt = \frac{t^2}{2} - \frac{t^4}{16}$ or equivalent.

Note: But allow integration + C then showing C = 0 or even integration without C if F(0) = 0 or F(2) = 1 is confirmed.

(b) (i)

$$F(t) = \int_{(0,0)} F(t) + \int_{(0$$

[4 marks]

[3 marks]

Total [7 marks]

(a)	UE	of μ is 8.01 (= 8.0125) of σ^2 is 0.404	A1 (M1)A1	
No	te: Ac	cept answers that round correctly to 2 sf.	()	
No	te: Co UE	pndone incorrect notation, <i>ie</i> , μ instead of UE of μ and σ^2 instea E of σ^2 .	d of	
No	te: <i>M</i> (0 for squaring 0.594 giving 0.354, M1A0 for failing to square 0.63	5	<i></i>
				[3 marks]
(b)	(i)	attempting to use the <i>t</i> -test	(M1)	
		p-value is 0.0566	A2	
	No	te: Accept any answer that rounds correctly to 2 sf.		
	(ii)	0.0566 > 0.05	R1	
		we accept the null hypothesis (mean pumpkin weight is $7.5\mathrm{kg})$	A1	
	No	te: Apply follow through on the candidate's <i>p</i> -value.		
	No	te: Do not award A1 if R1 is not awarded.		
	No	te: Do not award <i>A1</i> if <i>R1</i> is not awarded.		[5 marks]
	No	te: Do not award <i>A1</i> if <i>R1</i> is not awarded.	Tota	[5 marks] [8 marks]
	No	te: Do not award A1 if R1 is not awarded.	Tota	[5 marks] [8 marks]
(a)	No E(U	$\mathbf{te: Do not award A1 if R1 is not awarded.}$ $\mathbf{T} = \mathbf{E}\left(a\overline{X_1} + (1-a)\overline{X_2}\right) = a\mathbf{E}\left(\overline{X_1}\right) + (1-a)\mathbf{E}\left(\overline{X_2}\right)$	Tota (M1)	[5 marks] [8 marks]
(a)	E(U)	$\mathbf{te: Do not award A1 if R1 is not awarded.}$ $\mathbf{te: Do not award A1 if R1 is not awarded.}$ $\mathbf{te: Do not award A1 if R1 is not awarded.}$ $\mathbf{te: Do not award A1 if R1 is not awarded.}$ $\mathbf{te: Do not award A1 if R1 is not awarded.}$	Tota (M1)	[5 marks] [8 marks]
(a)	$E(U)$ $E(\frac{1}{2})$ $E(U)$	$\mathbf{te: Do not award A1 if R1 is not awarded.}$ $\mathbf{te: Do not award A1 if R1 is not awarded.}$ $\mathbf{te: Do not award A1 if R1 is not awarded.}$ $\mathbf{te: Do not award A1 if R1 is not awarded.}$ $\mathbf{te: Do not award A1 if R1 is not awarded.}$ $\mathbf{te: Do not award A1 if R1 is not awarded.}$ $\mathbf{te: Do not award A1 if R1 is not awarded.}$ $\mathbf{te: Do not award A1 if R1 is not awarded.}$ $\mathbf{te: Do not award A1 if R1 is not awarded.}$ $\mathbf{te: Do not award A1 if R1 is not awarded.}$	Tota (M1) A1	[5 marks] [8 marks]
(a)	$E(U)$ $E(\overline{2})$ $E(U)$ $= \mu$	te: Do not award A1 if R1 is not awarded. $T = E\left(a\overline{X_1} + (1-a)\overline{X_2}\right) = aE\left(\overline{X_1}\right) + (1-a)E\left(\overline{X_2}\right)$ $\overline{X_1} = \mu \text{ and } E\left(\overline{X_2}\right) = \mu$ $T = a\mu + (1-a)\mu \text{ (or equivalent)}$	Tota (M1) A1 A1	[5 marks] [8 marks]
(a)	$E(U)$ $E(\overline{J})$ $E(U)$ $= \mu$ hence	te: Do not award A1 if R1 is not awarded. $T = E\left(a\overline{X_1} + (1-a)\overline{X_2}\right) = aE\left(\overline{X_1}\right) + (1-a)E\left(\overline{X_2}\right)$ $\overline{X_1} = \mu \text{ and } E\left(\overline{X_2}\right) = \mu$ $T = a\mu + (1-a)\mu \text{ (or equivalent)}$ Cheve U is an unbiased estimator of μ	Tota (M1) A1 AG	[5 marks] [8 marks]
(a)	$E(U)$ $E(\overline{Z})$ $E(U)$ $= \mu$ hence	te: Do not award A1 if R1 is not awarded. $T = E(a\overline{X_1} + (1 - a)\overline{X_2}) = aE(\overline{X_1}) + (1 - a)E(\overline{X_2})$ $\overline{X_1} = \mu \text{ and } E(\overline{X_2}) = \mu$ $T = a\mu + (1 - a)\mu \text{ (or equivalent)}$ The U is an unbiased estimator of μ	Tota (M1) A1 AG	[5 marks] [8 marks] [3 marks]
(a) (b)	$E(U)$ $E(\overline{Z})$ $E(U)$ $= \mu$ hence (i)	$f(t) = E\left(a\overline{X_1} + (1-a)\overline{X_2}\right) = aE\left(\overline{X_1}\right) + (1-a)E\left(\overline{X_2}\right)$ $\overline{X_1} = \mu \text{ and } E\left(\overline{X_2}\right) = \mu$ $f(t) = a\mu + (1-a)\mu \text{ (or equivalent)}$ $f(t) = Var\left(a\overline{X_1} + (1-a)\overline{X_2}\right)$	Tota (M1) A1 AG	[5 marks] [8 marks] [3 marks]
(a) (b)	$E(U) = \mu$ (i)	$\begin{aligned} \mathbf{te: Do not award A1 if R1 is not awarded.} \\ T &= E\left(a\overline{X_1} + (1-a)\overline{X_2}\right) = aE\left(\overline{X_1}\right) + (1-a)E\left(\overline{X_2}\right) \\ \overline{X_1} &= \mu \text{ and } E\left(\overline{X_2}\right) = \mu \\ T &= a\mu + (1-a)\mu \text{ (or equivalent)} \end{aligned}$ $\begin{aligned} \operatorname{Var}(U) &= \operatorname{Var}\left(a\overline{X_1} + (1-a)\overline{X_2}\right) \\ &= a^2\operatorname{Var}\left(\overline{X_1}\right) + (1-a)^2\operatorname{Var}\left(\overline{X_2}\right) \end{aligned}$	Tota (M1) A1 AG M1	[5 marks] [8 marks] 3 marks]
(a) (b)	$E(U) = \mu$ (i)	te: Do not award A1 if R1 is not awarded. $T = E\left(a\overline{X_1} + (1-a)\overline{X_2}\right) = aE\left(\overline{X_1}\right) + (1-a)E\left(\overline{X_2}\right)$ $\overline{X_1} = \mu \text{ and } E\left(\overline{X_2}\right) = \mu$ $T = a\mu + (1-a)\mu \text{ (or equivalent)}$ The U is an unbiased estimator of μ $Var(U) = Var\left(a\overline{X_1} + (1-a)\overline{X_2}\right)$ $= a^2 Var\left(\overline{X_1}\right) + (1-a)^2 Var\left(\overline{X_2}\right)$ stating that $Var\left(\overline{X_1}\right) = \frac{\sigma^2}{n_1}$ and $Var\left(\overline{X_2}\right) = \frac{\sigma^2}{n_2}$	Total (M1) A1 A1 AG M1 A1	[5 marks] [8 marks] [3 marks]

- 8 -

Note: Line 3 or equivalent must be seen somewhere.

continued...

Question 3 continued

(ii) let
$$Var(U) = V$$

EITHER

$$\frac{dV}{da} = 2a\frac{\sigma^2}{n_1} - 2(1-a)\frac{\sigma^2}{n_2}$$
 M1

attempting to solve
$$\frac{\mathrm{d}V}{\mathrm{d}a} = 0$$
 for a

Note: Award *M1* for obtaining *a* in terms of n_1 , n_2 and σ .

OR

forming a quadratic in a

$$V = \left(\frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}\right)a^2 - 2\frac{\sigma^2}{n_2}a + \frac{\sigma^2}{n_2}$$
 M1

attempting to find the axis of symmetry of V R1

THEN

(iii)

$$a = \frac{2\sigma^2}{n_2}$$

$$a = \frac{n_1}{2\sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

$$a = \frac{n_1}{n_1 + n_2}$$

$$M1$$
substituting *a* into *U*

$$U = \frac{n_1 \overline{X_1} + n_2 \overline{X_2}}{n_1 + n_2}$$

$$A1$$

Note: Do not *FT* an incorrect *a* for *A1*, the *M1* may however be awarded.

this is an expression for the mean of the combined samples **OR** this is a weighted mean of the two sample means

R1 [9 marks]

Total [12 marks]

A1A1

[2 marks]

– 10 –

±0

(b)
$$v = 10$$
 (A1)
 $t_{0.005} = 3.16927...$ (M1)(A1)

we reject
$$H_0: \rho = 0$$
 if $|t| > 3.16927...$ (R1)

attempting to solve
$$|r| \sqrt{\frac{10}{1 - r^2}} > 3.16927...$$
 for $|r|$ *M1*

Note: Allow = instead of >.

(least value of $\left| r \right|$ is) 0.708 (3 sf)

A1

Note:	Award A1M1A0R1M1A0 to candidates who use a one-tailed test. Award
	AOM1AOR1M1AO to candidates who use an incorrect number of degrees of
	freedom or both a one-tailed test and incorrect degrees of freedom.

Note:	Possible errors are	
	10 DF 1-tail, t = 2.763, least value = 0.658	
	11 DF 2-tail, $t = 3.105$, least value = 0.684	
	11 DF 1-tail, $t = 2.718$, least value = 0.634.	

Total [8	marks]

[6 marks]

5. (a) (i)
$$G'_{X}(t) = \lambda e^{\lambda(t-1)}$$

 $G''_{X}(t) = \lambda^{2} e^{\lambda(t-1)}$
(ii) $Var(X) = G''_{X}(1) + G'_{Y}(1) - (G'_{Y}(1))^{2}$
(M1)

[5 marks]

М1

(b)
$$G_{X+Y}(t) = e^{\lambda(t-1)} \times e^{\mu(t-1)}$$

Note: The *M1* is for knowing to multiply pgfs.

$$= e^{(\lambda + \mu)(t-1)}$$
which is the pgf for a Poisson distribution with mean $\lambda + \mu$
R1AG Note: Line 3 identifying the Poisson pgf must be seen.

[3 marks]

continued...

Question 5 continued

(c) (i)
$$P(X = x | X + Y = n) = \frac{P(X = x \cap Y = n - x)}{P(X + Y = n)}$$
 (M1)

$$= \left(\frac{e^{-\lambda}\lambda^{x}}{x!}\right) \left(\frac{e^{-\mu}\mu^{n-x}}{(n-x)!}\right) \left(\frac{n!}{e^{-(\lambda+\mu)}(\lambda+\mu)^{n}}\right) \text{ (or equivalent)} \qquad \qquad \textbf{M1A1}$$

$$= \binom{n}{x} \frac{\lambda^{x} \mu^{n-x}}{(\lambda + \mu)^{n}}$$
 A1

$$= \binom{n}{x} \left(\frac{\lambda}{\lambda+\mu}\right)^{x} \left(\frac{\mu}{\lambda+\mu}\right)^{n-x}$$
 A1

leading to
$$P(X = x | X + Y = n) = {n \choose x} \left(\frac{\lambda}{\lambda + \mu}\right)^x \left(1 - \frac{\lambda}{\lambda + \mu}\right)^{n-x}$$
 AG

(ii)
$$B\left(n, \frac{\lambda}{\lambda + \mu}\right)$$
 A1A1

ZZh.satprep.co.

Note: Award A1 for stating binomial and A1 for stating correct parameters.

[7 marks]

Total [15 marks]

Markscheme

May 2017

Statistics and probability

Satpret **Higher level**

Paper 3

10 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre.

PR

-2-

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a valid **Method**; working must be seen.
- (M) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- **A** Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding **M** marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM[™] Assessor instructions and the document "**Mathematics HL: Guidance for e-marking May 2017**". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is **completely correct**, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp *A0* by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.
- All the marks will be added and recorded by RM[™] Assessor.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *MO* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *eg M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*eg* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.

 Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final *A1*. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct *FT* working shown, award *FT* marks as appropriate but do not award the final *A1* in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8\sqrt{2}$	5.65685 (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4}\sin 4x$	$\sin x$	Do not award the final A1
3.	$\log a - \log b$	$\log(a-b)$	Do not award the final A1

3 N marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of N and other marks.
- There may be fewer **N** marks available than the total of **M**, **A** and **R** marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets** eg (M1), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (eg $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Misread

If a candidate incorrectly copies information from the question, this is a misread (**MR**). A candidate should be penalized only once for a particular misread. Use the **MR** stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an **M** mark, but award all others so that the candidate only loses **[1 mark]**.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value ($eg \sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5$$
 (=10cos(5x-3)) A1

Award **A1** for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says: Students must always use correct mathematical notation, not calculator notation. Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

Satprep. co.

1.	(a)	H_0 :	$\mu = 7, H_1: \mu < 7$	A1	[1 mark]
					[, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(b)	$\overline{x} =$	$\frac{83.64}{12} = 6.97$	A1	
		s_{n-1}^{2}	$=\frac{583.05}{11}-\frac{83.64^2}{132}=0.0072$	(M1)A1	
			11 152		[3 marks]
	(c)	(i)	$t = \frac{6.97 - 7}{\sqrt{\frac{0.0072}{12}}} = -1.22(474)$	(M1)(A1)	
			$\gamma = 12$	(1)	
			p-value = 0.123	(A1) A1	
		No	te: Accept any answer that rounds correctly to 0.12.		
		(ii)	because $p > 0.1$	R1	
			the inspector's claim is not supported (at the $10\ \%$ level) (or equivalent in context)	A1	
		No	te: Only award the A1 if the R1 has been awarded		
				l	6 marksj
				Total	[10 marks]
2.	(a)	(i)	$P(0.25 \le X \le 0.75) = F(0.75) - F(0.25)$	(M1)	
	()	()	= 0.466	A1	
		No	te: Accept any answer that rounds correctly to 0.466.		
		(ii)	the median <i>m</i> satisfies $F(m) = 0.5$	(M1)	
			m = 0.685	A1	
		No	te: Accept any answer that rounds correctly to 0.685.		
					[4 marks]
	(b)	(i)	f(x) = F'(x)	(M1)	
			$=e^{x-1}+xe^{x-1}$	A1	
			$= (x+1)e^{x-1}$	AG	

-7-

continued...

Question 2 continued

(a) $G(t) = \sum P(X = x)t^x$

3.

(ii)
$$\mu = \int_{0}^{1} x(x+1)e^{x-1}dx$$
 (M1)

$$= 0.632 \quad \left(1 - \frac{1}{e}\right)$$

Note: Accept any answer that rounds correctly to 0.632.

$$\sigma^{2} = \int_{0}^{1} x^{2} (x+1) e^{x-1} dx - 0.632...^{2}$$
 (M1)

$$= 0.0719 \quad \left(\frac{6}{e} - 2 - \frac{1}{e^2}\right)$$
 A1

Note: Accept any answer that rounds correctly to 0.072.

[6 marks]

[4 marks]

Total [14 marks]

(M1)

(c) (i) the central limit theorem states that the mean of a large sample from any distribution (with a finite variance) is approximately normally distributed *X* is approximately *N*(0.632...,0.000719...) (M1)(A1)

 $P(\bar{X} > 0.65) = 0.25$ (2 dps required) A1

$$= p + pqt^{2} + pq^{2}t^{4} + ...$$
(summing *GP*) $u_{1} = p, r = qt^{2}$

$$= \frac{p}{1 - qt^{2}}$$
A1 AG

[2 marks]

(b)
$$G'(t) = -\frac{p}{(1-qt^2)^2} \times -2qt$$
 M1A1
 $E(X) = G'(1)$ (M1)
 $= \frac{2pq}{(1-q)^2} \left(=\frac{2q}{p}\right)$ A1

[4 marks]

continued...

- 8 -

Question 3 continued

(c) METHOD 1

PGF of
$$Y = \sum P(Y = y)t^{y}$$
 (M1)
= $pt + pqt^{5} + pq^{2}t^{9} + ...$ A1

$$=\frac{pt}{1-qt^4}$$

METHOD 2

PGF of
$$Y = E(t^Y)$$
 (M1)
- $E(t^{2X+1})$

$$= E(t^{2})^{X} \times E(t)$$

$$= \frac{pt}{1 - qt^{4}}$$
A1

Total [9 marks]

4.	(a)	$\mathbf{E}(U) = a\left(\mathbf{E}(X_1) + \mathbf{E}(X_2)\right) + b\left(\mathbf{E}(Y_1) + \mathbf{E}(Y_2) + \mathbf{E}(Y_3)\right)$	(M1)
		$=2a\mu+6b\mu$	A1
		(for an unbiased estimator,) $E(U) = \mu$	R1
		giving $2a + 6b = 1$	AG
		Note: Condone omission of E on LHS.	
		4	[3 marks]

(b)
$$\operatorname{Var}(U) = a^{2} \left(\operatorname{Var}(X_{1}) + \operatorname{Var}(X_{2}) \right) + b^{2} \left(\operatorname{Var}(Y_{1}) + \operatorname{Var}(Y_{2}) + \operatorname{Var}(Y_{3}) \right)$$
 (M1)
 $= 4a^{2}\sigma^{2} + 3b^{2}\sigma^{2}$ A1
 $= 4 \left(\frac{1-6b}{2} \right)^{2} \sigma^{2} + 3b^{2}\sigma^{2}$ A1
 $= (39b^{2} - 12b + 1)\sigma^{2}$ AG

[3 marks]

(c) (i) the best unbiased estimator (of this form) will be found by minimising
$$Var(U)$$
 (R1)

For example,
$$\frac{d}{db}(Var(U)) = (78b - 12)\sigma^2$$
 (A1)

for a minimum,
$$b = \frac{12}{78} \left(= \frac{2}{13} \right)$$
 so that $a = \frac{3}{78} \left(= \frac{1}{26} \right)$ A1

continued...

Question 4 continued

(ii)
$$\operatorname{Var} U = \left(39\left(\frac{2}{13}\right)^2 - 12\left(\frac{2}{13}\right) + 1\right)\sigma^2$$

= $\frac{\sigma^2}{13}$ (0.0769 σ^2) A1
[4 marks]

Total [10 marks]

5.	(a)	$H_0: \rho = 0; H_1: \rho > 0$	A1	
		Note: Do not accept <i>r</i> in place of ρ .		
				[1 mark]
	(b)	insufficient evidence to conclude that there is a (positive) association b	between	
		marks in these two subjects (or equivalent statement in context)	A1	[1 mark]
	(c)	degrees of freedom $= 10$	(A1)	
		required value of $t = $ inverse $t(0.823)$	(M1)	
		= 0.972	A1	
		attempt to solve $t = r \sqrt{\frac{n-2}{1-r^2}}$	(M1)	
		<i>r</i> = 0.294	A1	
		Note: Accept any <i>r</i> value that rounds to 0.29.		
		Note: Follow through their <i>t</i> value to determine <i>r</i> .		
		·satprep·	l	[5 marks]
			Total [[7 marks]

Markscheme

November 2016

Statistics and probability

Higher level satprep 2

Paper 3

9 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

PR

Instructions to Examiners

-3-

Abbreviations

- *M* Marks awarded for attempting to use a valid **Method**; working must be seen.
- (M) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- **A** Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding **M** marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- **N** Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM[™] Assessor instructions and the document "**Mathematics HL: Guidance for e-marking November 2016**". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is **completely correct**, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp A0 by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.
- All the marks will be added and recorded by RM[™] Assessor.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *eg M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*eg* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.

 Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final *A1*. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct *FT* working shown, award *FT* marks as appropriate but do not award the final *A1* in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8\sqrt{2}$	5.65685 (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4}\sin 4x$	sin x	Do not award the final A1
3.	$\log a - \log b$	$\log(a-b)$	Do not award the final A1

3 N marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of N and other marks.
- There may be fewer **N** marks available than the total of **M**, **A** and **R** marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets eg (M1)**, and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (eg $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Misread

If a candidate incorrectly copies information from the question, this is a misread (**MR**). A candidate should be penalized only once for a particular misread. Use the **MR** stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an **M** mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value ($eg \sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \quad (=10\cos(5x-3))$$
 A1

Award **A1** for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says: *Students must always use correct mathematical notation, not calculator notation.* Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

Zzy.satprep.co.

(a)	r = 0.804	A2	
No	te: Accept any number that rounds to 0.80.		
		Γ	2 mai
(b)	(i) t distribution with 8 degrees of freedom	A1A1	
	(ii) p -value = 0.00254	A2	
	Notes: Accept any number that rounds to 0.0025. Award <i>A1</i> for 2-tail test giving an answer that rounds to 0.0051		
	(iii) p -value < 0.01, so conclude that there is positive correlation	R1A1	
	Notes: Only award the A1 if the R1 is awarded. Do not accept just "reject H_0 " or "accept H_1 ". The words "positive correlation" must be seen.		
	TPR	Γ	6 mai
(C)	regression line of y (Exam 2 mark) on x (Exam 1 mark) is $y = 0.59407x + 21.387$	(M1) (A1)	
	x = 11 gives $y = 28$ (to nearest integer)	A1	3 ma
(d)	(i) applying the <i>t</i> test to the differences <i>t</i> distribution with 9 degrees of freedom	A1A1	
	(ii) <i>p</i> -value= 0.239	A2	
	Notes: Accept any number that rounds to 0.24.		
	Award A1 if subtraction done the wrong way round giving <i>p</i> -va	lue = 0.109.	
	(iii) p -value > 0.05, so accept H ₀ or $u_d = 6$	R1A1	
	2.524	Γ	6 ma
		Total [1	7 ma
(a)	(i) mean = $119 \times 2 = 238$	A1	
	(ii) variance $= 119 \times \frac{1}{9} = \frac{119}{9}$ (=13.2)	(M1)A1	
	Note: If 120 is used instead of 119 award <i>A0(M1)A0</i> for part (a) and apply follow through for parts (b)-(d). (b) is unaffected and in (c) the interval becomes (234, 246). In (d) the first 2 <i>A1</i> marks are for 0.3633 and 0.0174 so the final answer will round to 0.017.		
		[·	3 ma
(b)	justified by the Central Limit Theorem since <i>n</i> is large	R1 A1	
No	te: Accept $n > 30$.		

-7-

[2 marks] continued...

Question 2 continued

(c)
$$X \sim N\left(238, \frac{119}{9}\right)$$

 $Z = \frac{X - 238}{\frac{\sqrt{119}}{3}} \sim N(0, 1)$ (M1)(A1)

$$P(Z < q) = 0.95 \Rightarrow q = 1.644...$$
 (A1)

so
$$P(-1.644... < Z < 1.644...) = 0.9$$
 (R1)

$$P(-1.644... < \frac{X - 238}{\sqrt{119}} < 1.644...) = 0.9$$
(M1)

interval is
$$232 < X < 244$$
 (3sf) ($A = 232, B = 244$) **A1A1**

Notes:	Accept the use of inverse normal applied to the distribution of X.	
	Alternative is to use the GDC to find a pretend Z confidence interval for a	
	mean and then convert by multiplying by 119.	
	Either A or B correct implies the five implied marks.	
	Accept any numbers that round to these 3sf numbers.	
		7 marks]

(d) under $H_1, X \sim N\left(238, \frac{119}{9}\right)$	(M1)
$P(236 \le X \le 240) = 0.41769$	(A1)
probability that all 4 values of X lie in this interval is	
$(0.41769)^4 = 0.030439$	(M1)(A1)
so probability of a Type $\mathrm{I\!I}$ error is 0.0304 (3sf)	A1
Note: Accept any answer that rounds to 0.030.	
4 6	[5 marks]

Total [17 marks]

A1A1A1

A1

Note: The final **A1** mark can be awarded for knowing that $p = \frac{1}{7}$ independent of the other two marks.

(ii)
$$E(X) = \frac{r}{p} = 14$$
 A1
(iii) $\binom{4}{1} \left(\frac{6}{7}\right)^3 \left(\frac{1}{7}\right)^2 = 0.0514$ (M1)A1

Note: Accept any number that rounds to this 3sf number.

 $\left(\frac{1}{7}\right)$

[6 marks]

continued...

Question 3 continued

(b) (i)
$$Y = Y_1 + Y_2$$
 (number up to 1st + number up to 2nd) (M1)
 $Y_1 \sim Geo\left(\frac{1}{7}\right), Y_2 \sim Geo\left(\frac{3}{7}\right)$ (A1)

Notes: The above (A1) is independent of the (M1).
Could have NB (1, p), instead of
$$Geo(p)$$
.

$$E(Y) = \frac{1}{\left(\frac{1}{7}\right)} + \frac{1}{\left(\frac{3}{7}\right)} = 7 + \frac{7}{3} = 9\frac{1}{3}(9.33)$$
M1A1

$$Y_1 = 1, Y_2 = 4 \text{ or } Y_1 = 2, Y_2 = 3 \text{ or } Y_1 = 3, Y_2 = 2 \text{ or } Y_1 = 4, Y_2 = 1$$
 (A1)

so probability is
$$\frac{1}{7}\frac{4}{7}\frac{4}{7}\frac{4}{7}\frac{3}{7}$$
 + $\frac{6}{7}\frac{1}{7}\frac{4}{7}\frac{4}{7}\frac{3}{7}$ + $\frac{6}{7}\frac{6}{7}\frac{1}{7}\frac{4}{7}\frac{3}{7}$ + $\frac{6}{7}\frac{6}{7}\frac{6}{7}\frac{1}{7}\frac{4}{7}\frac{3}{7}$ (M1)(A1)

$$= 0.0928 \left(\frac{1560}{16807}\right)$$
 A1

Note: Accept any answer that rounds to 0.093.

[9 marks]

Total [15 marks]

A1

4. (a) J(t) = G(t)H(t)

				[1 mark]
(b)	(i)	J'(t) = G'(t) H(t) + G(t) H'(t) J'(1) = G'(1) H(1) + G(1) H'(1) J'(1) = G'(1) + H'(1) so $E(Z) = E(X) + E(Y)$	M1A1 M1 A1 AG	
	(ii)	J''(t) = G''(t)H(t) + G'(t)H'(t) + G'(t)H'(t) + G(t)H''(t) J''(1) = G''(1)H(1) + 2G'(1)H'(1) + G(1)H''(1)	M1A1	
		= G''(1) + 2G'(1)H'(1) + H''(1)	A1	
		$Var(Z) = J''(1) + J'(1) - (J'(1))^2$	М1	
		$= G''(1) + 2G'(1)H'(1) + H''(1) + G'(1) + H'(1) - (G'(1) + H'(1))^{2}$	A1	
		$= G''(1) + G'(1) - (G'(1))^{2} + H''(1) + H'(1) - (H'(1))^{2}$	A1	
		so $\operatorname{Var}(Z) = \operatorname{Var}(X) + \operatorname{Var}(Y)$	AG	

Note: If addition is wrongly used instead of multiplication in (a) it is inappropriate to give *FT* apart from the second *M* marks in each part, as the working is too simple.

[10 marks]

Total [11 marks]

Markscheme

May 2016

Statistics and probability

Higher level satpret

Paper 3

10 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

PR

-2-

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a valid **Method**; working must be seen.
- (*M*) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- **A** Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding **M** marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM[™] Assessor instructions and the document "**Mathematics HL: Guidance for e-marking May 2016**". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is **completely correct**, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp A0 by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.

All the marks will be added and recorded by RM[™] Assessor.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, for example, *M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (for example, substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.

 Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final *A1*. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct *FT* working shown, award *FT* marks as appropriate but do not award the final *A1* in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8\sqrt{2}$	5.65685 (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4}\sin 4x$	sin x	Do not award the final A1
3.	$\log a - \log b$	$\log(a-b)$	Do not award the final A1

3 N marks

Award N marks for correct answers where there is no working.

- Do not award a mixture of **N** and other marks.
- There may be fewer **N** marks available than the total of **M**, **A** and **R** marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets**, for example, **(M1)**, and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (for example, $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Misread

If a candidate incorrectly copies information from the question, this is a misread (**MR**). A candidate should be penalized only once for a particular misread. Use the **MR** stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an **M** mark, but award all others so that the candidate only loses one mark.

- 5 -

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (for example, $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \quad (=10\cos(5x-3))$$

Award **A1** for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:

Students must always use correct mathematical notation, not calculator notation.

Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1.	(a)	$z = 0.841$ $a = \mu + z\sigma$ $= 26.2$	(A1) (M1) A1	
				[3 marks]
	(b)	let <i>T</i> denote the total time taken to complete 5 crosswords. <i>T</i> is $N(110, 125)$	(A1)(A1)	
	No	te: A1 for the mean and A1 for the variance. $P(T = 120) = 0.106$		
		P(T > 120) = 0.186	A1	[3 marks]
	(c)	consider the random variable $U = V = 2X$	(M1)	
	(0)	E(U) = -4	() A1	
		$\operatorname{Var}(U) = \operatorname{Var}(Y) + 4\operatorname{Var}(X)$	(M1)	
		= 136	A1	
		P(Y > 2X) = P(U > 0)	(M1)	
		= 0.366	A1	IG markal
				[o marks]
			Total	[12 marks]
2.	(a)	$H_0: \rho = 0; H_1: \rho \neq 0$	A1A1	
		$\sqrt{10-2}$		[2 marks]
	(b)	(i) $t = 0.486 \times \sqrt{\frac{10 - 2}{1 - 0.486^2}}$	(M1)	
		= 1.572	(A1)	
		degrees of freedom = 8 P(T > 1.5728)	(A1) (M4)	
		P(1 > 1.5/28) = 0.0772	(ΝΠ) (Δ1)	
		p-value = 0.154	A1	
		Note: Do not follow through for the final $A1$ if their H_1 is one-sided.		
		(ii) accept H_0 or equivalent statement involving H_0 or H_1		
		(at the 5% significance level)	R1	
		Note: Follow through the candidate's <i>p</i> -value.		[7 marks]

-7-

continued...

Question 2 continued

	(C)	EITI	HER		
		beca	ause the above analysis suggests that X, Y are independent	R1	
		OR			
		the	value of r suggests that X and Y are weakly correlated	R1	[1 mark]
				Total	[10 marks]
3.	(a)	E(U	$k = k E(\bar{X}) = k E(X)$	(M1)	
		$=\frac{k}{2}$	$\frac{\theta}{2}$	(A1)	
		unb	iased when $k = 2$	A1	
					[3 marks]
	(b)	(i)	for the data, $\Sigma x = 40.8$	(A1)	
			$\Rightarrow \overline{x} = 5.1$	(A1)	
			so that unbiased estimate for $\theta = 10.2$	AI	
		(ii)	this is impossible because of the sample value 10.3	R1	[4 marks]
	(c)	(i)	$\operatorname{Var}(U) = 4 \times \operatorname{Var}(\overline{X})$	(M1)	
			$=4\times\frac{\theta^2}{24n}$	A1	
			$=\frac{\theta^2}{6n}$	AG	
		(ii)	$E(U^{2}) = Var(U) + (E(U))^{2}$	М1	
			$=rac{ heta^2}{6n}+ heta^2$	A1	
			$\mathrm{E}(U^2) \neq \theta^2$	R1	
			so not unbiased	AG	
		(iii)	$\mathcal{E}(U^2) = \frac{\theta^2}{6n}(1+6n)$	(A1)	
			$\mathrm{E}\left(\left(\frac{6n}{1+6n}\right)U^2\right) = \theta^2$	(A1)	
			therefore $\left(\left(\frac{6n}{1+6n}\right)U^2\right)$ is an unbiased estimator for θ^2	A1	
					[8 marks]

Total [15 marks]

A1A1

4. (a)
$$H_0: \mu = 2.2; H_1: \mu \neq 2.2$$

[2 marks]

(b) (i) UE of mean
$$=\frac{42.0}{20} = 2.1$$
 A1

UE of variance
$$=\frac{89.2}{19} - \frac{20 \times 2.1^2}{19} = 0.0526 \left(\frac{1}{19}\right)$$
 (M1)A1

20 Note: Award (MO) for division by 20 where there is no subsequent use of 19

(ii)	t = -1.95	(A1)
	DF = 19	(A1)
	<i>p</i> -value = 0.0662	A1

Note: Allow follow through from (b)(i). In particular, 0.05 for the variance gives t = -2 and *p*-value 0.0600.

accept H_0 , or equivalent statement involving H_0 or H_1 , indicating that the mean weight **R1** is 2.2kg

Note: Follow through the candidate's *p*-value.

(C) [1.99, 2.21]

Note: Allow follow through from (b)(i). In particular, 0.05 for the variance gives [2.00, 2.20].

[2 marks]

Total [11 marks]

A1A1

	4	[z mar	KSJ
	Satorep. o.	Total [11 mar	ˈks]
5 . (a)	$P(Y = y) = \int_{y}^{y+1} e^{-x} dx$	M1A1	
	$=\left[-\mathrm{e}^{-x}\right]_{v}^{v+1}$	A1	
	$= -e^{-(y+1)} + e^{-y}$	A1	
	$= e^{-y}(1 - e^{-1})$	AG	
		[4 mar	ˈks]

continued...

[7 marks]

М1

Question 5 continued

(b) (i) attempt to use
$$G(t) = \sum P(Y = y)t^{y}$$
 (M1)

$$=\sum_{y=0}^{\infty} e^{-y} (1 - e^{-1}) t^{y}$$
 A1

Note: Accept a listing of terms without the use of Σ . this is an infinite geometric series with first term $1 - e^{-1}$ and common ratio $e^{-1}t$ $G(t) = \frac{1 - e^{-1}}{1 - e^{-1}}$

$$G(t) = \frac{1}{1 - e^{-t}t} \qquad \qquad \mathbf{AG}$$

(ii)
$$E(Y) = G'(1)$$
 M1
 $G'(t) = \frac{1 - e^{-1}}{(1 - e^{-1}t)^2} \times e^{-1}$ (M1)(A1)

3. satprep.co

$$E(Y) = \frac{e^{-1}}{(1 - e^{-1})}$$
= 0.582 (A1)

Note: Allow the use of GDC to determine G'(1).

4

[8 marks]

Total [12 marks]

Markscheme

November 2015

Statistics and probability

Higher level satprep 2

Paper 3

11 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

PR

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a valid **Method**; working must be seen.
- (M) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- **A** Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding **M** marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM[™] Assessor instructions and the document "**Mathematics HL: Guidance** for e-marking November 2015". It is essential that you read this document before you start marking.

In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is **completely correct**, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp A0 by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.
- All the marks will be added and recorded by RM[™] Assessor.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *MO* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *eg M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*eg* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final *A1*. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct *FT* working shown, award *FT* marks as appropriate but do not award the final *A1* in that part.

	Correct answer seen	Further working seen	Action
1.	a /a	5.65685	Award the final A1
	8√2	(incorrect decimal value)	(ignore the further working)
2.	$\frac{1}{4}\sin 4x$	sin x	Do not award the final A1
3.	$\log a - \log b$	$\log(a-b)$	Do not award the final A1

-4-

Examples

3 N marks

Award **N** marks for **correct** answers where there is **no** working.

- Do not award a mixture of N and other marks.
- There may be fewer **N** marks available than the total of **M**, **A** and **R** marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets eg (M1)**, and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (eg $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (**MR**). A candidate should be penalized only once for a particular mis-read. Use the **MR** stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an **M** mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value ($eg \sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by **METHOD 1**, **METHOD 2**, *etc*.
- Alternative solutions for part-questions are indicated by **EITHER** ... OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \ (=10\cos(5x-3))$$

A1

Award **A1** for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:

Students must always use correct mathematical notation, not calculator notation. Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

(a)	valid attempt to use $\overline{x} \pm z \frac{o}{\sqrt{n}}$	(M1)	
	[182, 188]	A1A1	
Not	Accort answers that round to the correct 2 of		
NOL			[3 m
			10
(b)	$1.96 \times \frac{15.0}{\sqrt{n}} < 1.5$	M1A1	
	$(15.0)^{2}$		
	$n > \left(\frac{10.05}{1.5} \times 1.96\right)$	(M1)	
Note	Award M1 for attempting to solve the inequality.		
Note	a: Allow the use of –		
Note	minimum value $n = 385$	Δ1	
			[4 m
		Total	l [7 m
(a)	r = -0.762	(M1)A1	
Note	e: Accept answers that round to -0.76.		
			[2 m
(h)	H : Moisture content and strength are independent or $a=0$		[2 m
(b)	H_0 : Moisture content and strength are independent or $\rho = 0$ H : Moisture content and strength are not independent or $\rho \neq 0$	Δ1	[2 m
(b)	H_0 : Moisture content and strength are independent or $\rho = 0$ H_1 : Moisture content and strength are not independent or $\rho \neq 0$	A1	[2 m
(b)	H_0 : Moisture content and strength are independent or $\rho = 0$ H_1 : Moisture content and strength are not independent or $\rho \neq 0$ EITHER	A1	[2 m
(b)	H_0 : Moisture content and strength are independent or $\rho = 0$ H_1 : Moisture content and strength are not independent or $\rho \neq 0$ EITHER test statistic is -3.33 critical value is (±) 2.306	A1 A1	[2 m
(b)	H_0 : Moisture content and strength are independent or $\rho = 0$ H_1 : Moisture content and strength are not independent or $\rho \neq 0$ EITHER test statistic is -3.33 critical value is (±) 2.306 since -3.33 < -2.306 or 3.33 > 2.306.	A1 A1 A1 R1	[2 m
(b)	H_0 : Moisture content and strength are independent or $\rho = 0$ H_1 : Moisture content and strength are not independent or $\rho \neq 0$ EITHER test statistic is -3.33 critical value is (±) 2.306 since -3.33 < -2.306 or 3.33 > 2.306, reject H_0 (or equivalent)	A1 A1 A1 R1 A1	[2 m
(b)	<i>H</i> ₀ : Moisture content and strength are independent or $\rho = 0$ <i>H</i> ₁ : Moisture content and strength are not independent or $\rho \neq 0$ EITHER test statistic is -3.33 critical value is (±) 2.306 since -3.33 < -2.306 or 3.33 > 2.306, reject <i>H</i> ₀ (or equivalent) OR	A1 A1 A1 R1 A1	[2 m
(b)	H_0 : Moisture content and strength are independent or $\rho = 0$ H_1 : Moisture content and strength are not independent or $\rho \neq 0$ EITHER test statistic is -3.33 critical value is (±) 2.306 since -3.33 < -2.306 or 3.33 > 2.306, reject H_0 (or equivalent) OR p-value is 0.0104	A1 A1 R1 A1 A1	[2 m
(b)	H_0 : Moisture content and strength are independent or $\rho = 0$ H_1 : Moisture content and strength are not independent or $\rho \neq 0$ EITHER test statistic is -3.33 critical value is (±) 2.306 since -3.33 < -2.306 or $3.33 > 2.306$, reject H_0 (or equivalent) OR p-value is 0.0104 as 0.0104 < 0.05,	A1 A1 A1 A1 A1 A2 R1	[2 m

-7-

continued...

Que	stion 2 continued	
	(c) $x = \text{strength}$ y = moisture content x = -0.629y + 28.1 if $y = 9.5$ so $x = 22.1$ Note: Only accept answers that round to 22.1.	(M1)(A1) (M1)A1
	Note: Award <i>M1A1M0A0</i> for the other regression line $y = 30.1 - 0.924x$.	
		[4 marks]
		Total [11 marks]
3.	let X denote boys' height and Y denote girls' height if BB, P(taller is boy) = 1 if GG, P(taller is boy) = 0	(A1) (A1)
	if BG or GB: consider $X - Y$ E(X - Y) = 178 - 169 = 9	(M1) A1
	$Var(X - Y) = 5.2^{2} + 5.4^{2} (= 56.2)$ P(X - Y >0) = 0.885	(M1)A1 A1
	answer is $\frac{1}{4} \times 1 + \frac{1}{2} \times 0.885 = 0.693$	(M1)A1
	Satprep.	[9 marks]

4.

(a)	METHOD 1		
	$P(U = u) = \frac{1}{4} \left(\frac{3}{4}\right)^{u-1}$	(M1)	
	$F(u) = P(U \le u) = \sum_{r=1}^{u} \frac{1}{4} \left(\frac{3}{4}\right)^{r-1}$ (or equivalent)		
	$=\frac{\frac{1}{4}\left(1-\left(\frac{3}{4}\right)^{u}\right)}{1-\frac{3}{4}}$	(M1)	
	$=1-\left(\frac{3}{4}\right)^{u}$	A1	
	METHOD 2		
	$P(U \le u) = 1 - P(U > u)$	(M1)	
	P(U > u) = probability of <i>u</i> consecutive failures	(M1)	
	$P(U \le u) = 1 - \left(\frac{3}{4}\right)^u$	A1	
			[3 marks]
(b)	$P(U > 20) = 1 - P(U \le 20)$	(M1)	
	$= \left(\frac{3}{4}\right)^{20} (= 0.00317)$	A1	
	4		[2 marks]
(c)	$G_U(t) = \sum_{r=1}^{\infty} \frac{1}{4} \left(\frac{3}{4}\right)^{r-1} t^r \text{(or equivalent)}$	M1A1	
	$=\sum_{r=1}^{\infty}\frac{1}{3}\left(\frac{3}{4}t\right)^{r}$	(M1)	
	$=\frac{\frac{1}{3}\left(\frac{3}{4}t\right)}{1-\frac{3}{4}t}\left(=\frac{\frac{1}{4}t}{1-\frac{3}{4}t}\right)$	A1	
	$=\frac{t}{4-3t}$	AG	[4 marks]

continued...

Question 4 continued

(d) (i)
$$E(U) = \frac{1}{\frac{1}{4}} = 4$$
 (A1)

$$E(U_1 + U_2 + U_3) = 4 + 4 + 4 = 12$$
 A1

(ii)
$$\operatorname{Var}(U) = \frac{\frac{3}{4}}{\left(\frac{1}{4}\right)^2} = 12$$
 A1

$$\operatorname{Var}(U_1 + U_2 + U_3) = 12 + 12 + 12 = 36$$
 A1

(iii)
$$G_V(t) = (G_U(t))^3$$
 (M1)
= $\left(\frac{t}{4-3t}\right)^3$ A1

(e)
$$G_{W}'(t) = -3(4-3t)^{-4}(-3)\left(=\frac{9}{(4-3t)^{4}}\right)$$
 (M1)(A1)
 $E(W) = G_{W}'(1) = 9$ (M1)A1

Note: Allow the use of the calculator to perform the differentiation.

[4 marks]

(f) **EITHER**

probability generating function of the constant 3 is t^3	A1
--	----

OR

$$G_{W+3}(t) = E(t^{W+3}) = E(t^{W})E(t^{3})$$
 A1

THEN

$$W + 3$$
 has generating function $G_{W+3} = \frac{1}{(4-3t)^3} \times t^3 = G_V(t)$ M1as the generating functions are the same $V = W + 3$ R1AG

[3 marks]

Total [22 marks]

5. (a) let *X* denote the score on the die

(i)
$$P(X = x) = \begin{cases} \frac{1-p}{5} & x = 1, 2, 3, 4, 5 \\ p & x = 6 \end{cases}$$
 (M1)

$$E(X_1) = (1+2+3+4+5)\frac{1-p}{5} + 6p$$
M1

$$=3+3p$$

(ii) so an unbiased estimator for *p* would be
$$\frac{X_1 - 3}{3}$$
 A1

(b) (i)
$$E\left(k(X_1-3)+(\frac{1}{3}-k)(X_2-3)\right)$$
 M1

$$= kE(X_1 - 3) + \left(\frac{1}{3} - k\right)E(X_2 - 3)$$

$$= k(3p) + \left(\frac{1}{2} - k\right)(3p)$$
A1

$$= p$$

hence
$$k(X_1 - 3) + (\frac{1}{3} - k)(X_2 - 3)$$
 is an unbiased estimator of p

[3 marks]

AG

[4 marks]

(ii)
$$\operatorname{Var}\left(k\left(X_{1}-3\right)+\left(\frac{1}{3}-k\right)\left(X_{2}-3\right)\right)$$
 M1

$$=k^{2}\operatorname{Var}\left(X_{1}-3\right)+\left(\frac{1}{3}-k\right)^{2}\operatorname{Var}\left(X_{2}-3\right)$$
 A1

$$=\left(k^{2}+\left(\frac{1}{3}-k\right)^{2}\right)\sigma^{2} \text{ (where } \sigma^{2} \text{ denotes } \operatorname{Var}(X)\text{)}$$
valid attempt to minimise the variance M1

$$k=\frac{1}{6}$$
 A1

Note: Accept an argument which states that the most efficient estimator is the one having equal coefficients of X_1 and X_2 .

[4 marks]

Total [11 marks]

– 11 –

Markscheme

May 2015

Statistics and probability

Satpret **Higher level**

Paper 3

11 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Satprep.co

PR

-2-

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a valid **Method**; working must be seen.
- (M) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- **A** Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding **M** marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM[™] Assessor instructions and the document "**Mathematics HL: Guidance for e-marking May 2015**". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is **completely correct**, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp A0 by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.
- All the marks will be added and recorded by RM[™] Assessor.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *eg M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*eg* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final *A1*. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct *FT* working shown, award *FT* marks as appropriate but do not award the final *A1* in that part.

	Correct answer seen	Further working seen	Action
1.	$8\sqrt{2}$	5.65685	Award the final A1
			(Ignore the further working)
2.	$\frac{1}{4}\sin 4x$	sin x	Do not award the final A1
3.	$\log a - \log b$	$\log(a-b)$	Do not award the final A1

3 N marks

Award **N** marks for **correct** answers where there is **no** working.

- Do not award a mixture of N and other marks.
- There may be fewer **N** marks available than the total of **M**, **A** and **R** marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets eg (M1)**, and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (eg $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (**MR**). A candidate should be penalized only once for a particular mis-read. Use the **MR** stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an **M** mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (*eg* sin $\theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \ (=10\cos(5x-3))$$

A1

Award **A1** for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:

Students must always use correct mathematical notation, not calculator notation. Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

(u) I	$(L \ge 4995) = 0.785$	(M1)A1	
Note:	Accept any answer that rounds correctly to 0.79 . Award <i>M1A0</i> for 0.78 .		
Note:	Award M1A0 for any answer that rounds to 0.55 obtained by taking	g SD = 40.	
			[2 ma
(b) w	e are given that $L \sim N(5000, 40)$ and $S \sim N(1000, 25)$		
CC	ponsider $X = L - 5S$ (ignore ± 30)	(M1)	
E	$(X) = 0 (\pm 30 \text{ consistent with line above})$	A1	
V	$\operatorname{ar}(X) = \operatorname{Var}(L) + 25 \operatorname{Var}(S) = 40 + 625 = 665$	(M1)A1	
re	quire $P(X \ge 30)$ (or $P(X \ge 0)$ if -30 above)	(M1)	
ol	otain 0.122	A1	
Note:	Accept any answer that rounds correctly to 2 significant figures.		
			[6 ma
(c) co	punsider $Y = L - (S_1 + S_2 + S_3 + S_4 + S_5)$ (janore ±30)	(M1)	
E	(Y) = 0 (+30 consistent with line above)	A1	
V	$ar(Y) = 40 + 5 \times 25 = 165$	A1	
re	quire $P(Y \le -30)$ (or $P(Y \le 0)$ if $+30$ above)	(M1)	
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	(IIII) A1	
0		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Note:	Accept any answer that rounds correctly to 2 significant figures.		
Note:	Condone the notation $Y = L - 5S$ if the variance is correct.		
	2 5		[5 ma
	2, 0'	Total	[13 ma
	Satprep.		
(a) ur	biased estimate of μ is 2.36(36) (26/11)	(M1)A1	
ur	biased estimate of σ^2 is 33.65(45) = (5.801 ²) (1851/55)	(M1)A1	
Note:	Accept any answer that rounds correctly to 3 significant figures.		
		٦	
Note:	Award M1A0 for any unbiased estimate of σ^2 that rounds to 5.80.		
			[4 ma
(h) (i)	$H_0: \mu = 0; H_1: \mu > 0$	A1A1	
(D) (D)			

-7-

continued...

Question 2 continued

3.

(ii)	i) a	attempt to use <i>t</i> -test $t = 1.35$	(M1) (A1)	
]	DF = 10	(A1)	
	Ì	<i>p</i> -value = 0.103	A1	
Note:	Acc	cept any answer that rounds correctly to 3 significant figures.		
(iii	ii) 1	0.103 > 0.05 there is insufficient evidence at the 5% level to support the claim (that extra tuition improves examination marks)	A1	
	(OR		
	1	the claim (that extra tuition improves examination marks) is not supported at the 5% level (or equivalent statement)	R1	
N	ote:	Follow through the candidate's <i>p</i> -value.		
N	ote:	Do not award <i>R1</i> for Accept H ₀ or Reject H ₁ .		
			[8	3 marks]
			Total [12	2 marks]
(a) th	ie (ui	nbiased) estimate of μ is 9.793	(A1)	
th	ie 99	0% CI is $9.793 \pm 2.576 \frac{0.03}{\sqrt{6}}$	(M1)(A1)	
=	[9.7	61, 9.825]	A1	
Note:	Aco	cept 9.762 and 9.824.		
		satpre?	[4	4 marks]
(b) if t (a	this appro	process is carried out a large number of times eximately) 99% of the intervals will contain μ	A1 A1	
Note:	Aw	ard A1A1 for a consideration of any specific large value of times	$(n \ge 100)$.	

[2 marks]

continued...

Question 3 continued

4.

(C)	MET	THOD 1		
	If the interval is halved, 2.576 becomes 1.288			
	normal tail probability corresponding to $1.288 = 0.0988$			
	conf	idence level = 80%	A1	
	MET	THOD 2		
	half	width = 0.5×0.063 or 0.062 or $0.064 = 0.0315$ or 0.031 or 0.032	М1	
	$\frac{2z \times 0.03}{\sqrt{6}} = 0.0315$ or 0.031 or 0.032			
	givir	z = 1.285 or 1.265 or 1.306	A1	
	conf	idence level = 80% or 79% or 81%	A1	
Not	te: F	ollow through values from (a).		
		FRA	ľ:	3 marks]
		6	- 	-
			Total [ı marksj
(a)	(i)	an estimator T is a formula (or statistic) that can be applied to the		
(u)	(1)	values in any sample, taken from X	A1	
		to estimate the value of μ	A1	
	(ii)	an estimator is unbiased if $E(T) = \mu$	A1	
			[\$	3 marks]
(b)	(i)	using linearity and the definition of an unbiased estimator	М1	
(-)	()	$\mu = \alpha \mu + \beta \mu + (\alpha - \beta) \mu$	A1	
		obtain $\alpha = \frac{1}{2}$	A1	
		2 Satore?		
	(ii)	attempt to compute $Var(U)$ using correct formula	М1	
		$\operatorname{Var}(U) = \frac{1}{\sigma^2} + \beta^2 \sigma^2 + \left(\frac{1}{\sigma^2} - \beta\right)^2 \sigma^2$	A1	
		$\begin{pmatrix} 4 \\ (2 \end{pmatrix}$		
		$\operatorname{Var}(U) = \sigma^2 \left(2\beta^2 - \beta + \frac{1}{2} \right)$	AG	
	(iii)	attempt to minimise quadratic in β (or equivalent)	(M1)	
		$\beta = \frac{1}{4}$	A1	
	(iv)	$(U) = \frac{1}{2}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3$	A1	
		2 4 4		
		$\operatorname{var}(U) = -\frac{1}{8}\sigma^2$	A1	
			con	ntinued

-9-

Question 4 continued

(v)
$$\frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$$
 A1

$$\operatorname{Var}\left(\frac{1}{3}X_{1} + \frac{1}{3}X_{2} + \frac{1}{3}X_{3}\right) = \frac{3}{9}\sigma^{2}$$
A1
 $\operatorname{Var}(U)$
R1

Note: Accept
$$\sum_{i=1}^{3} \lambda_i X_i$$
 if $\sum_{i=1}^{3} \lambda_i = 1$ and $\sum_{i=1}^{3} \lambda_i^2 < \frac{3}{8}$ and follow through to the variance if this is the case.

Total [15 marks]

		TPR		
5.	(a)	P(X = 0) = 1 - p(=q); P(X = 1) = p	(M1)(A1)	
		$G_x(t) = \sum P(X = r)t^r$ (or writing out term by term)	M1	
		= q + pt	A1	[4 marks]
	(b)	METHOD 1		
		PGF for $B(n, p)$ is $(q + pt)^n$	R1	
		which is a polynomial of degree <i>n</i>	R1	
		METHOD 2		
		in <i>n</i> independent trials, it is not possible to obtain more than		
		<i>n</i> successes (or equivalent, <i>eg</i> , $P(X > n) = 0$)	R1	
		so $a_r = 0$ for $r > n$	R1	
		satprep		[2 marks]

continued...

Question 5 continued

(C)	let $Y = X_1 + X_2$	
	$G_{Y}(t) = (q_{1} + p_{1}t)(q_{2} + p_{2}t)$	A1
	$G_{Y}(t)$ has degree two, so if Y is binomial then	
	$Y \sim B(2, p)$ for some p	R1
	$(q+pt)^2 = (q_1 + p_1 t)(q_2 + p_2 t)$	A1

Note: The LHS could be seen as $q^2 + 2pqt + p^2t^2$.

METHOD 1

by considering the roots of both sides,	$\underline{q_1} = \underline{q_2}$	М1
,	$p_1 p_2$	

$$\frac{1 - p_1}{p_1} = \frac{1 - p_2}{p_2}$$
so $p_1 = p_2$
METHOD 2
A1

equating coefficients,	
$p_1p_2 = p^2$, $q_1q_2 = q^2$ or $(1 - p_1)(1 - p_2) = (1 - p)^2$	M1
expanding,	
$p_1 + p_2 = 2p \text{ so } p_1, p_2 \text{ are the roots of } x^2 - 2px + p^2 = 0$	A1
so $p_1 = p_2$	AG
	[5 marks]
ZZZ co.	Total [11 marks]
Gloier	

N14/5/MATHL/HP3/ENG/TZ0/SP/M

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

MARKSCHEME

November 2014

MATHEMATICS STATISTICS AND PROBABILITY

Higher Level

Paper 3

11 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

> 322. Satprep.co.

-2-

Instructions to Examiners

-3-

Abbreviations

- *M* Marks awarded for attempting to use a correct **Method**; working must be seen.
- (M) Marks awarded for Method; may be implied by correct subsequent working.
- *A* Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding *M* marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RMTM Assessor instructions and the document "Mathematics HL: Guidance for emarking November 2014". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is **completely correct**, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp *A0* by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.
- All the marks will be added and recorded by RMTM Assessor.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *eg M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*eg* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 N marks

Award N marks for correct answers where there is no working.

- Do **not** award a mixture of *N* and other marks.
- There may be fewer N marks available than the total of M, A and R marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets eg (M1)**, and can only be awarded if **correct** work is seen or if implied in subsequent working.

-4-

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (eg $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** A marks can be awarded, but M marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value ($eg \sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by **EITHER** ... **OR**.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of **notation**.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.

- 5 -

• In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

 $f'(x) = (2\cos(5x-3))5 \quad (=10\cos(5x-3)) \quad A1$

Award A1 for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:

Students must always use correct mathematical notation, not calculator notation.

Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

Note: Ignore open / closed endpoints and vertical lines.

Note: Award *A1* for a correct graph with scales on both axes and a clear indication of the relevant values.

(b) $F(x) = \begin{cases}
0 & x < 0 \\
\frac{x}{2} & 0 \le x < 1 \\
\frac{x}{4} + \frac{1}{4} & 1 \le x < 3 \\
1 & x \ge 3
\end{cases}$ considering the areas in their sketch or using integration $F(x) = 0, x < 0, F(x) = 1, x \ge 3$ $F(x) = \frac{x}{2}, 0 \le x < 1$ $F(x) = \frac{x}{4} + \frac{1}{4}, 1 \le x < 3$ $I = \frac{1}{4}$ $F(x) = \frac{x}{4} + \frac{1}{4}, 1 \le x < 3$ $I = \frac{1}{4}$ $I = \frac{1}{4}$ I

(c)
$$Q_3 = 2, Q_1 = 0.5$$

IQR is 2-0.5=1.5
A1A1
A1
[3 marks]

Total [9 marks]

(M1)

A1

2. (a) **METHOD 1**

let *X* be the number of throws until Eric hits the target three times $X \sim NB(3, 0.2)$

$$P(X=6) = {\binom{5}{2}} 0.8^3 \times 0.2^3$$
 (A1)

$$= 0.04096 \left(= \frac{128}{3125} \right) (exact)$$
 A1

METHOD 2

let X be the number of hits in five throws X is B(5, 0.2) (M1) $P(X = 2) = {5 \choose 2} 0.2^2 \times 0.8^3 \quad (0.2048) \quad (A1)$

P(3rd hit on 6th throw) =
$$\binom{5}{2}$$
 0.2² × 0.8³ × 0.2 = 0.04096 $\left(=\frac{128}{3125}\right)$ (exact)

[3 marks]

(b)	(i) expected number of throws $=\frac{3}{0.2}=15$	(M1)A1	
	(ii) profit = $(10-15) = -\$5$ or loss = $\$5$	<i>A1</i>	[3 marks]
(c)	METHOD 1		
	let <i>Y</i> be the number of times the target is hit in 8 throws		
	$Y \sim B(8, 0.2)$	(M1)	
	$P(Y \leq 2)$	(M1)	
	= 0.797	A1	
	METHOD 2		
	let the 3 rd hit occur on the <i>Y</i> th throw		
	<i>Y</i> is NB(3, 0.2)	(M1)	
	$P(Y > 8) = 1 - P(Y \le 8)$	(M1)	
	= 0.797	A1	

[3 marks]

Total [9 marks]

3. (a) **METHOD 1**

$\operatorname{Cov}(X, Y) = \operatorname{E}\left((X - \mu_X)(Y - \mu_Y)\right)$	
$= E(XY - X\mu_Y - Y\mu_X + \mu_X\mu_Y)$	(<i>M1</i>)
$= \mathrm{E}(XY) - \mu_{Y}\mathrm{E}(X) - \mu_{X}\mathrm{E}(Y) + \mu_{X}\mu_{Y}$	
$= \mathrm{E}(XY) - \mu_X \mu_Y$	A1
as X and Y are independent $E(XY) = \mu_X \mu_Y$	R1
$\operatorname{Cov}(X, Y) = 0$	AG

- 8 -

METHOD 2

$\operatorname{Cov}(X,Y) = \operatorname{E}\left((X - \mu_x)(Y - \mu_y)\right)$	
$= \mathrm{E}(X - \mu_x)\mathrm{E}(Y - \mu_y)$	<i>(M1)</i>
since <i>X</i> , <i>Y</i> are independent	<i>R1</i>
$= (\mu_x - \mu_x)(\mu_y - \mu_y)$	<i>A1</i>
= 0	AG
	[3 marks]

Note: The hypotheses must be expressed in terms of ρ .	
est statistic $t_{test} = -0.35 \sqrt{\frac{20-2}{1-(-0.35)^2}}$	(M1)(A1)
= -1.585	(A1)
legrees of freedom = 18	(A1)
CITHER 3	
-value =0.0652	Al
his is greater than 0.05	M1

$t_{5\%}(18) = -1.73$	<i>A1</i>
this is less than -1.59	<i>M1</i>

THEN

hence accept H_0 or reject H_1 or equivalent or contextual equivalent **R1** Note: Allow follow through for the final **R1** mark.

[8 marks]

Total [11 marks]

4.	(a)	(i)	$G'(t) = \lambda e^{\lambda(t-1)}$ E(X) = G'(1) = λ	A1 M1 AG	
		(ii)	$G''(t) = \lambda^2 e^{\lambda(t-1)}$ $\Rightarrow G''(1) = \lambda^2$	M1 (A1)	
			$\operatorname{Var}(X) = G''(1) + G'(1) - (G'(1))^{2}$ $= \lambda^{2} + \lambda - \lambda^{2}$ $= \lambda$	(M1) A1 AG	[6 marks]
	(b)	(i)	$\mathrm{E}\left(S\right)=2\lambda-\lambda=\lambda$	A1	
		(ii)	$\operatorname{Var}(S) = 4\lambda + \lambda = 5\lambda$	(A1)A1	
	(c)	Not	te: First A1 can be awarded for either 4λ or $+ \lambda$. $E(T) = \frac{\lambda}{2} + \frac{\lambda}{2} = \lambda$ (so T is an unbiased estimator)	AI	[3 marks]
		(ii)	$Var(T) = \frac{1}{4}\lambda + \frac{1}{4}\lambda = \frac{1}{2}\lambda$ this is less than Var(S), therefore T is the more efficient estimator	A1 R1AG	
		No	te: Follow through their variances from (b)(11) and (c)(11).		[3 marks]
	(d)	no, r	nean does not equal the variance	R1	[1 mark]
	(e)	G_{X+1}	$e^{\lambda(t-1)} \times e^{\lambda(t-1)} = e^{2\lambda(t-1)}$	M1A1	
		of 2	λ	R1AG	[3 marks]
	(f)	(i)	$G_{X+Y}(1) = 1$	A1	
		(ii)	$G_{X+Y}(-1) = e^{-4\lambda}$	<i>A1</i>	[2 marks]

continued ...

Question 4 continued

(g)
$$G_{X+Y}(1) = p(0) + p(1) + p(2) + p(3)...$$

 $G_{X+Y}(-1) = p(0) - p(1) + p(2) - p(3)...$
so $2P(\text{even}) = G_{X+Y}(1) + G_{X+Y}(-1)$ (M1)(A1)
 $P(\text{even}) = \frac{1}{2}(1 + e^{-4\lambda})$ A1
[3 marks]

5. (a)
$$\overline{X} \sim N\left(5.2, \frac{1.2^2}{16}\right)$$
 (M1)
critical value is $5.2 - 1.64485... \times \frac{1.2}{4} = 4.70654...$ (A1)
critical region is $]-\infty, 4.71]$ A1
Note: Allow follow through for the final AI from their critical value.
Note: Follow through previous values in (b), (c) and (d).
(b) type II error probability = $P(\overline{X} > 4.70654... | \overline{X} \text{ is } N\left(4.6, \frac{1.2^2}{16}\right)$ (M1)
 $= 0.361$ [2 marks]
(c) $0.9 \times 0.05 + 0.1 \times (1 - 0.361...) = 0.108875997... = 0.109$ M1A1
Note: Award MI for a weighted average of probabilities with weights 0.1, 0.9.

[2 marks]

continued ...

Question 5 continued

(d)	attempt to use conditional probability formula	<i>M1</i>
	$\frac{0.9 \times 0.05}{0.108875997}$	(A1)
	= 0.41334 = 0.413	A1
		[3 marks]

- 11 -

Total [10 marks]

M14/5/MATHL/HP3/ENG/TZ0/SP/M

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

MARKSCHEME

May 2014

MATHEMATICS STATISTICS AND PROBABLITY

Higher Level

Paper 3

11 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

-2-

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

322. satprep.co

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a correct **Method**; working must be seen.
- (M) Marks awarded for Method; may be implied by correct subsequent working.
- *A* Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding *M* marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to Scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2014". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is **completely correct**, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp A0 by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.
- All the marks will be added and recorded by Scoris.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *eg M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*eg* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 N marks

Award N marks for correct answers where there is no working.

- Do **not** award a mixture of *N* and other marks.
- There may be fewer N marks available than the total of M, A and R marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets eg (M1)**, and can only be awarded if **correct** work is seen or if implied in subsequent working.

-4-

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (eg $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** A marks can be awarded, but M marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value ($eg \sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by **EITHER** ... **OR**.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of **notation**.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.

- 5 -

• In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

 $f'(x) = (2\cos(5x-3))5 \quad (=10\cos(5x-3))$ A1

Award A1 for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:

Students must always use correct mathematical notation, not calculator notation. Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) (i)
$$P(X = 6) = 0.122$$
 (MI)AI
(ii) $P(X = 6 | 5 \le X \le 8) = \frac{P(X = 6)}{P(5 \le X \le 8)} = \frac{0.122...}{0.592...-0.0996...}$ (MI)(AI)
 $= 0.248$ AI
 $[5 marks]$
(b) (i) $E(\overline{X}) = 8$ AI
 $Var(\overline{X}) = \frac{8}{n}$ AI
(ii) $E(\overline{X}) \neq Var(\overline{X})$ (for $n > 1$) RI
Note: Only award the RI if the two expressions in (b)(i) are
different. [3 marks]
(c) (i) EITHER
 $\overline{X} - N(8, 0.2)$ (MI)AI
Note: MI for normality, AI for parameters.
 $P(7.1 < \overline{X} < 8.5) = 0.846$ AI
OR
The expression is equivalent to
 $P(283 \le \sum X \le 339)$ where $\sum X$ is $P(320)$ MIAI
 $= 0.840$ AI
Note: Accept 284, 340 instead of 283, 339
Accept any answer that rounds correctly to 0.84 or 0.85.

continued...

Question 1 continued

(ii) **EITHER** $k = 1.96 \frac{\sigma}{\sqrt{n}} \text{ or } 1.96 \text{ std}(\bar{X})$ (M1)(A1) $k = 0.877 \text{ or } 1.96 \sqrt{0.2}$ A1

-7-

OR

The expression is equivalent to	
$P(320 - 40k \le \sum X \le 320 + 40k) = 0.95$	(M1)
k = 0.875	A2

Note:	Accept any answer that rounds to 0.87 or 0.88.		
	Award M1A0 if modulus sign ignored and answer		
	obtained rounds to 0.74 or 0.75		

[6 marks]

Total [14 marks]

-8- M14/5/MATHL/HP3/ENG/TZ0/SP/M

(a) $H_0: \rho = 0$	A1
$H_1: \rho > 0$	A1 [2 ma
(b) 0.853	A2
Note: Accept any answer that rounds to 0.85.	[2 mi
(c) p -value = 0.00173 (1-tailed)	A1
Note: Accept any answer that rounds to 0.0017. Accept any answer that rounds to 0.0035 obtained from	om 2-tailed test.
strong evidence to reject the hypothesis that there is no rainfall and yield or to accept the hypothesis that there is between rainfall and yield	correlation between s correlation <i>R1</i>
Note: Follow through the <i>p</i> -value for the conclusion.	[2 m
Note: Follow through the <i>p</i> -value for the conclusion. (d) $y = 1.78x + 40.5$	[2 mi A1A1
Note: Follow through the <i>p</i> -value for the conclusion. (d) $y = 1.78x + 40.5$ Note: Accept numerical coefficients that round to 1.8 and 4	[2 m AIAI 1. [2 m
Note: Follow through the <i>p</i> -value for the conclusion.(d) $y = 1.78x + 40.5$ Note: Accept numerical coefficients that round to 1.8 and 4(e) $y = 1.77(19) + 40.5$ 74.3	[2 m A1A1 1. [2 m M1 A1
Note: Follow through the <i>p</i> -value for the conclusion.(d) $y = 1.78x + 40.5$ Note: Accept numerical coefficients that round to 1.8 and 4(e) $y = 1.77(19) + 40.5$ 74.3Note: Accept any answer that rounds to 74 or 75.	[2 m AIAI 1. [2 m M1 A1 [2 m [2 m
Note: Follow through the <i>p</i> -value for the conclusion.(d) $y = 1.78x + 40.5$ Note: Accept numerical coefficients that round to 1.8 and 4(e) $y = 1.77(19) + 40.5$ 74.3Note: Accept any answer that rounds to 74 or 75.(f) the gradient of the regression line <i>y</i> on <i>x</i> is 1.78 or equivalent the regression line of <i>x</i> on <i>y</i> is $x = 0.409y - 12.2$	[2 m A1A1 1. [2 m M1 A1 [2 m ralent A1 (A1)
Note: Follow through the <i>p</i> -value for the conclusion. (d) $y = 1.78x + 40.5$ Note: Accept numerical coefficients that round to 1.8 and 4 (e) $y = 1.77(19) + 40.5$ 74.3 Note: Accept any answer that rounds to 74 or 75. (f) the gradient of the regression line <i>y</i> on <i>x</i> is 1.78 or equivative the regression line of <i>x</i> on <i>y</i> is $x = 0.409y - 12.2$ the gradient of the regression line <i>x</i> on <i>y</i> is $\frac{1}{0.409}(=2.44)$	[2 mi] $A1A1$ $[2 mi]$ $[2 mi]$ $M1$ $A1$ $[2 mi]$ $A1$ $[2 mi]$ $A1$ $[4]$ $(M1)A1$
Note: Follow through the <i>p</i> -value for the conclusion. (d) $y = 1.78x + 40.5$ Note: Accept numerical coefficients that round to 1.8 and 4 (e) $y = 1.77(19) + 40.5$ 74.3 Note: Accept any answer that rounds to 74 or 75. (f) the gradient of the regression line <i>y</i> on <i>x</i> is 1.78 or equiv the regression line of <i>x</i> on <i>y</i> is $x = 0.409y - 12.2$ the gradient of the regression line <i>x</i> on <i>y</i> is $\frac{1}{0.409}$ (= 2.44 calculate arctan (2.44) – arctan (1.78) angle between regression lines is 7 degrees	[2 maAIA11. [2 maMIA1[2 maValent A1(A1)4) (M1)A1(M1)A1

Total [16 marks]

M14/5/MATHL/HP3/ENG/TZ0/SP/M

(a)
$$E\left(\frac{X-b}{a}\right) = \frac{a\lambda + b - b}{a}$$
 M1A1
= λ A1

(Therefore
$$\frac{X-b}{a}$$
 is an unbiased estimator for λ) AG

[3 marks]

(b) (i)
$$f(y) \ge 0$$
 R1

recognition or showing that integral of f is 1 (seen anywhere) **R1**

EITHER

$$\int_{\lambda-3}^{\lambda} \frac{2}{9} (3+y-\lambda) dy$$

$$MI$$

$$= \frac{2}{9} \left[(3-\lambda)y + \frac{1}{2}y^{2} \right]_{\lambda-3}^{\lambda}$$

$$AI$$

$$= \frac{2}{9} \left(\lambda (3-\lambda) + \frac{1}{2}\lambda^{2} - (3-\lambda)(\lambda-3) - \frac{1}{2}(\lambda-3)^{2} \right) \text{ or equivalent}$$

$$AI$$

OR

= 1

the graph of the probability density is a triangle with base length 3 and height $\frac{2}{3}$ *M1A1* its area is therefore $\frac{1}{2} \times 3 \times \frac{2}{3}$ *A1* = 1

(ii)
$$E(Y) = \int_{\lambda-3}^{\lambda} \frac{2}{9} y(3+y-\lambda) dy$$
 M1

$$=\frac{2}{9}\left[(3-\lambda)\frac{1}{2}y^{2}+\frac{1}{3}y^{3}\right]_{\lambda-3}^{\lambda}$$
 A1

$$=\frac{2}{9}\left((3-\lambda)\frac{1}{2}\left(\lambda^{2}-(\lambda-3)^{2}\right)+\frac{1}{3}\left(\lambda^{3}-(\lambda-3)^{3}\right)\right)$$

$$MI$$

$$=\lambda-1$$

$$AIAI$$

Note: Award 3 marks for noting that the mean is $\frac{2}{3}$ rds the way along the base and then *A1A1* for $\lambda - 1$

Note: Award *A1* for λ and *A1* for -1.

continued...

A1

Question 3 continued

(iii) unbiased estimator: Y + 1

Note: Accept $\overline{Y} + 1$. Follow through their E(Y) if linear.

[11 marks]

Total [14 marks]

4. (a) use of $P(X = n) = pq^{n-1} (q = 1 - p)$ (M1) $P(X < 4) = p + pq + pq^2 (= 1 - q^3) (= 1 - (1 - p)^3) (= 3p - 3p^2 + p^3)$ A1 [2]

– 10 –

[2 marks]

(b)	G_X	$f(t) = P(X = 1)t + P(X = 2)t^{2} +$	(M1)	
	= pt	$t^2 + pqt^2 + pq^2t^3 + \dots$	<i>A1</i>	
	sum	ming an infinite geometric series	<i>M1</i>	
	=	$\frac{pt}{-qt}$	AG	
				[3 marks]
(c)	(i)	EITHER		
		$G_{Y}(t) = P(Y=1)t + P(Y=2)t^{2} + \dots$	<i>A1</i>	
		$= 0 \times t + P(X = 1)t^{2} + 0 \times t^{3} + P(X = 2)t^{4} + \dots$	M1A1	
		$=G_{X}\left(t^{2}\right)$	AG	
		OR Satprep.		
		$G_{Y}(t) = E(t^{Y}) = E(t^{2X})$	M1A1	

$f_Y(t) = E(t^T) = E(t^{2T})$	MIAI
$= E\left((t^2)^X\right)$	A1
$=G_{\chi}(t^2)$	AG

continued...

Question 4 continued

(ii)	$\mathbf{E}(Y) = G'_Y(1)$	A1
	EITHER	
	$=2tG'_{X}(t^{2})$ evaluated at $t=1$	M1A1
	$= 2\mathrm{E}(X)$	AG

OR

$$= \frac{d}{dx} \left(\frac{pt^2}{(1-qt^2)} \right) = \frac{2pt(1-qt^2) + 2pqt^3}{(1-qt^2)^2} \text{ evaluated at } t = 1$$
 A1

$$= 2 \times \frac{p(1-qt) + pqt}{(1-qt)^2} \text{ evaluated at } t = 1 \text{ (or } \frac{2}{p}\text{)}$$

$$= 2 E(X)$$

$$AI$$

[6 marks]

(d) (i)
$$G_{W}(t) = t G_{Y}(t)$$
 (or equivalent)
(ii) attempt to evaluate $G'_{W}(t)$
EITHER
obtain $1 \times G_{Y}(t) + t \times G_{Y}'(t)$
substitute $t = 1$ to obtain $1 \times 1 + 1 \times G_{Y}'(1)$
OR
 $= \frac{d}{dx} \left(\frac{pt^{3}}{(1-qt^{2})} \right) = \frac{3pt^{2}(1-qt^{2}) + 2pqt^{4}}{(1-qt^{2})^{2}}$
substitute $t = 1$ to obtain $1 + \frac{2}{p}$
 $= 1 + 2E(X)$
A1

N13/5/MATHL/HP3/ENG/TZ0/SP/M

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

MARKSCHEME

November 2013

MATHEMATICS STATISTICS AND PROBABILITY

Higher Level

Paper 3

12 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

-2-

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Satprep.co

Instructions to Examiners

- 3 -

Abbreviations

- *M* Marks awarded for attempting to use a correct **Method**; working must be seen.
- (M) Marks awarded for Method; may be implied by correct subsequent working.
- *A* Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding *M* marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to Scoris instructions and the document "Mathematics HL: Guidance for e-marking November 2013". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is **completely correct**, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp A0 by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.

All the marks will be added and recorded by Scoris.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, for example, *M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (for example, substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc, do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 N marks

Award N marks for correct answers where there is no working.

- Do **not** award a mixture of *N* and other marks.
- There may be fewer N marks available than the total of M, A and R marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets**, for example, (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (for example, $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** A marks can be awarded, but M marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (for example, $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

A1

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by **EITHER** ... OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \quad (=10\cos(5x-3))$$

Award A1 for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:

Students must always use correct mathematical notation, not calculator notation. Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) (i)
$$\bar{v} = \frac{1}{1000} (55 \times 5 + 65 \times 13 + ... + 145 \times 31)$$
 AIMI
Note: AI for mid-points, MI for use of the formula.

$$= \frac{113210}{1000} = 113.21$$
AG
(ii) $s^2 = \frac{(55 - 113.21)^2 \times 5 + (65 - 113.21)^2 \times 13 + ... + (145 - 113.21)^2 \times 31}{999}$
(MI)
 $= \frac{362295.9}{999} = 362.6585... = 363$
AI
Note: Award AI if answer rounds to 362 or 363.
Note: Condone division by 1000.
[4 marks]
(b) $\bar{v} \pm \frac{t_{0.000} \times 8}{\sqrt{n}}$
(MI)
hence the confidence interval $I = [112.028, 114.392]$
AI
Note: Accept answers which round to 112 and 114.
Note: Condone the use of $z_{0.025}$ for $t_{0.025}$ and σ for s.
[2 marks]
(c) less confidence implies narrower interval
Mote: Accept equivalent statements or arguments having a meaningful
diagram and/or relevant percentiles.
hence the confidence interval I at the 95% level contains the confidence
interval J at the 90% level AG
[2 marks]

Total [8 marks]

-7-

(a)	let $W = X - 1.5Y$ $F(W) = 180 - 1.5 \times 150 (= -45)$	(M1) 41	
	$Var(W) = 14^2 + 2.25 \times 12^2 (= 520 \text{ or } 22.8^2)$	(M1)A1	
	$W \sim N(-45, 520)$	(M1)	
	P(W > 0) = 0.0242	(M1)A1	N
No	te: The penultimate (M1) is for recognising normality.		
<u></u>			[7 marks]
(b)	let $T = X_1 + X_2 + X_3 + X_4 + Y_1 + Y_2 + Y_3 + Y_4 + Y_5 + Y_6$ (grams) d	enote	
	the total weight	<i>(M1)</i>	
	$E(T) = 4 \times 180 + 6 \times 150 (= 1620)$	A1	
No	te: Condone correct expected value from $T = 4X + 6Y$.		
	$Var(T) = 4 \times 14^2 + 6 \times 12^2 (= 1648 \text{ or } 40.6^2)$	(M1)A1	
	then $T \sim N(1620, 1648)$	(M1)	
	P(T > 1500) = 0.998	(M1)A1	N4
No	te: Accept answers which round to 0.998.		
No	te: The penultimate (M1) is for recognising normality.		
			17 manka
			[/ murks]
		Total	[14 marks]
	3		
	2		

- 8 -

A1

H₀: all coins are fair (or the data are represented by B(7, 0.5)) (i) *A1* (a) H₁: not all coins are fair (or the data are not represented by B(7, 0.5)) A1

(ii)
$$\chi^2_{cal} > \chi^2_{critical}$$
 (14.067) or p-value $< 0.05 \Rightarrow$ reject null hypothesis A1

-9-

(iii) let T be the number of tails obtained, T is binomially distributed (M1) $T \sim B(7, 0.5)$ (A1)

Т	0	1	2	3	4	5	6	7
f_0	6	19	141	218	203	117	38	8
fe	5.859	41.01	123.0	205.0	205.0	123.0	41.01	5.859
A2							A2	

Note: Allow tabular values which are correct to 3 significant figures. Note: Award A1 for 6 or 7 correct values.

 $\chi^2_{calc} = 16.576...$

Note: Accept answer which round to 16.6.

(iv)	$\nu = 7$	(A1)
. ,	since $16.576 > 14.067$ or $p = 0.02(034) < 0.05$, H ₀ is rejected	R 1

Note: Follow through their χ^2_{calc} or *p*-value for the *R1*.

		Zz co'		[10 marks]
(b)	redu	ce the significance level (or equivalent statement)	R2	[2 marks]
(c)	(i)	accepting H_0 (or failing to reject H_0) when it is false (or equivalent)	A1	
	(ii)	increase the number of trials	<i>A1</i>	[2 marks]
			Tote	al [14 marks]

3.

4. H₀: the training schedule does not help improve times (or $\mu = 0$) *A1* H₁: the training schedule does help improve times (or $\mu > 0$) *A1*

- 10 -

Note: Subsequent marks can be awarded even if the hypotheses are not stated. (Assuming difference of times is normally distributed.)

let $d = \text{time before training} - \text{time after training}$						
Competitor	А	В	С	D	E	l
Time before training (in seconds)	75	74	60	69	69	
Time after training (in seconds)	73	69	55	72	65	
Difference d	2	5	5	-3	4	

. . .

A1

EITHER

$$n = 5, \sum d = 13, \sum d^2 = 79 \Rightarrow s_{n-1}^2 = \frac{1}{4} \left(79 - \frac{169}{5} \right) = 11.3$$
 (M1)

(small sample) so use a one-sided <i>t</i> -test	
Note: The "one-sided" <i>t</i> -test may have been seen above when stating H_1 .	
$t = \frac{2.6}{\sqrt{\frac{11.3}{5}}} = 1.7\dots$	A1
v = 4, at the 1% level the critical value is 3.7	A1 41
since $3.7 > 1.7$	211
H_0 is accepted (insufficient evidence to reject H_0)	R1

Note: Follow through their *t*-value.

OR

(small sample) so use a one-sided <i>t</i> -test $p = 0.079$	(M1) A4
since $0.079 > 0.01$ H ₀ is accepted (insufficient evidence to reject H ₀)	R1
Note: Follow through their <i>p</i> -value.	

Note: Accept d = time after training - time before training throughout.

5.	(a)	E(S) = 2E(X) + 3E(Y) = 6 + 6 = 12	A1	
		Var(S) = 4Var(X) + 9Var(Y) = 12 + 18 = 30	<i>A1</i>	
			[2 marks	s]
	(b)	S does not have a Poisson distribution	A1	
		because $Var(S) \neq E(S)$	R1	
	No	te: Follow through their E(<i>S</i>) and Var(<i>S</i>) if different.		

[2 marks]

EITHER (c)

$$P(T = 3) = P((X, Y) = (3, 0)) + P((X, Y) = (2, 1)) + P((X, Y) = (1, 2)) + P((X, Y) = (0, 3))$$
(M1)
= P(X = 3)P(Y = 0) + P(X = 2)P(Y = 1) + P(X = 1)P(Y = 2) + P(X = 0)P(Y = 3) (M1)
= $\frac{125e^{-5}}{6} (= 0.140)$ A2

Note: Accept answers which round to 0.14.

OR

T is
$$P_o(2+3) = P_o(5)$$
 (M1)(A1)
 $P(T=3) = \frac{125e^{-5}}{6} (= 0.140)$ A2
: Accept answers which round to 0.14.

Note: Accept answers which round to 0.14.

[4 marks]

(d)
$$P(T = t) = P((X, Y) = (0, t)) + P((X, Y) = (1, t-1)) + ... P((X, Y) = (t, 0)) (M1)$$

 $= P(X = 0)P(Y = t) + P(X = 1)P(Y = t-1) + ... + P(X = t)P(Y = 0)$ A1
 $= \sum_{r=0}^{t} P(X = r)P(Y = t-r)$ AG

[2 marks]

(e)
$$P(T = t) = \sum_{r=0}^{t} P(X = r) P(Y = t - r)$$

= $\sum_{r=0}^{t} \frac{e^{-3} 3^{r}}{r!} \times \frac{e^{-2} 2^{t-r}}{(t-r)!}$ M1A1

$$=\frac{e^{-5}}{t!}\sum_{r=0}^{t}\frac{t!}{r!(t-r)!}\times 3^{r}2^{t-r}$$
 M1

$$=\frac{e^{-5}}{t!}(3+2)^{t}$$
(= $\frac{e^{-5}5^{t}}{1}$)
(3+2)

$$\left|\frac{5}{t!}\right|$$

hence *T* follows a Poisson distribution with mean 5

AG

[4 marks]

Total [14 marks]

M13/5/MATHL/HP3/ENG/TZ0/SP/M

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

MARKSCHEME

May 2013

MATHEMATICS STATISTICS AND PROBABILITY

Higher Level

Paper 3

11 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a correct **Method**; working must be seen.
- (M) Marks awarded for Method; may be implied by correct subsequent working.
- *A* Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding *M* marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2013". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is **completely correct**, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp A0 by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *eg M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*eg* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 N marks

Award N marks for correct answers where there is no working.

- Do **not** award a mixture of *N* and other marks.
- There may be fewer N marks available than the total of M, A and R marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets eg** (M1), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value ($eg \sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a mis-read. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value ($eg \sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by **EITHER**...**OR**.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \quad (=10\cos(5x-3))$$

A1

Award A1 for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:

Students must always use correct mathematical notation, not calculator notation. Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

M13/5/MATHL/HP3/ENG/TZ0/SP/M

1. (a) $\overline{x} = 14$ A1 $s_{n-1}^2 = \frac{3977.57}{19} - \frac{280^2}{380}$ (M1) = 3.03A1 [3 marks] Accept any notation for these estimates including μ and σ^2 . Note: Note: Award *M0A0* for division by 20. (b) the 95% confidence limits are $\overline{x} \pm t \sqrt{\frac{{S_{n-1}}^2}{n}}$ (M1) Award *M0* for use of *z*. Note: *ie*, $14 \pm 2.093 \sqrt{\frac{3.03}{20}}$ (A1) Note: FT their mean and variance from (a). giving [13.2, 14.8] A1 Note: Accept any answers which round to 13.2 and 14.8. [3 marks] Use of t-statistic $=\frac{14-15}{\sqrt{3.03}}$ (c) (M1) 20 Note: FT their mean and variance from (a). prep.co Award *M0* for use of *z*. Note : Accept $\frac{15-14}{5}$ Note: 3.03 20 =-2.569... (A1) Note: Accept 2.569... p-value = 0.009392...×2=0.0188 A1 Note: Accept any answer that rounds to 0.019. Note: Award (M1)(A1)A0 for any answer that rounds to 0.0094. insufficient evidence to reject H_0 (or equivalent, eg accept H_0 or reject H_1) **R1** Note: *FT* on their *p*-value. [4 marks]

-7-

Total [10 marks]
-8- M13/5/MATHL/HP3/ENG/TZ0/SP/M

1	bo not award A1 if a value for the mean of the distribution is given.	
(b) (i)	sample mean $=\frac{\sum fx}{\sum f}$	(M1)
	= 2.3 exp freq for r goals = $60 \times \frac{e^{-2.3} \times 2.3^r}{r!} (r \le 4)$	A1 (M1)
Nu Ex	Imber of goals01234pected Frequency6.015513.835715.911112.19857.0141	≥5 5.0250 A3
No	te: At this stage, accept tabular values correct to 3 significant figure te: Award 42 for 1 error 41 for 2 errors and 40 for 3 or more error	s.
(ii)	$\chi^{2}_{calc} = \sum \frac{f_{o}^{2}}{f_{e}} - N \text{ or } \sum \frac{\left(f_{o} - f_{e}\right)^{2}}{f_{e}} = 2.69$	(M1)A1
No	te: Do not FT from incorrect tabular values.	
	DF = 4	(A1)
		1
No	te: <i>FT</i> the DF from the table, <i>ie</i> award the (<i>A1</i>) if the value given is 2 less than the number of cells.	
No	te: FT the DF from the table, <i>ie</i> award the (A1) if the value given is 2 less than the number of cells. <i>p</i> -value = 0.612	
No	 te: FT the DF from the table, <i>ie</i> award the (A1) if the value given is 2 less than the number of cells. <i>p</i>-value = 0.612 te: Accept any answer that rounds to 0.61. 	
No No	 te: FT the DF from the table, <i>ie</i> award the (A1) if the value given is 2 less than the number of cells. <i>p</i>-value = 0.612 te: Accept any answer that rounds to 0.61. te: Do not FT from incorrect tabular values. 	A1
No No (iii)	 te: <i>FT</i> the DF from the table, <i>ie</i> award the (<i>A1</i>) if the value given is 2 less than the number of cells. <i>p</i>-value = 0.612 te: Accept any answer that rounds to 0.61. te: Do not <i>FT</i> from incorrect tabular values. the manager's belief is supported (at all reasonable significance level (or equivalent, <i>eg</i> accept H₀ or reject H₁) 	A1 els) R1

[11 marks]

Total [12 marks]

(a) $H_0: \mu = 1.2; H_1: \mu < 1.2$	AI
Note: Accept " H_0 : (30-day) mean = 36; H_1 :	: (30-day) mean < 36".
	[1 mark]
(b) (i) let X denote the number of breakdow then under H_0 , $E(X) = 36$ sig level = $P(X \le 25 \text{mean} = 36)$ = 0.0345 (3.45%)	vns in 30 days (A1) (M1)(A1) A1
Note: Accept any answer that rounds to	0.035 (3.5%).
Note: Do not accept the use of a norma	l approximation.
(ii) under H_1 , $E(X) = 22.5$ P (Type II error) = P($X \ge 26$ mean	(A1) = 22.5) (M1)(A1)
Note: Accept any answer that rounds to	0.26.
Note: Do not accept the use of a norma	l approximation. [8 marks]
	Total [9 marks]
(a) (i) $F(x) = \int_{1}^{x} \frac{3u^{2} + 2u}{10} du$	(M1)
$=\left \frac{u^{3}+u^{2}}{10}\right $	AI
Note:Do not penalise missing or wrong Accept the use of x in the integral	g limits at this stage. ind.
$=\frac{x^3+x^2-2}{10}$ Sate	orep. Al
(ii) the median m satisfies the equation	$F(m) = \frac{1}{2} $ so (M1)
$m^3 + m^2 - 7 = 0$	(A1)
Note: Do not FT from an incorrect $F(x)$	<i>c</i>).
<i>m</i> =1.63	A1
Note: Accept any answer that rounds to) 1.6.

[6 marks]

continued ...

Question 4 continued

normal	A1
Note : This is the minimum acceptable explanation.	
(ii) we require the mean μ and variance σ^2 of X	
$\mu = \int_{1}^{2} \left(\frac{3x^{3} + 2x^{2}}{10} \right) dx$	(M1)
$=\frac{191}{120} (1.591666)$	A1
$\sigma^2 = \int_1^2 \left(\frac{3x^4 + 2x^3}{10}\right) dx - \mu^2$	(M1)
=0.07659722	A1
the central limit theorem states that	
$\overline{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right), i.e. \ N(1.591666, 0.0005106481)$	M1A1
$P(\bar{X} > 1.6) = 0.356$	A1
Note: Accept any answer that rounds to 0.36.	

[8 marks]

Total [14 marks]

5.

(a)

(i) the number of hits,
$$X \sim B(8, 0.4)$$
 (A1)

$$P(X=4) = \binom{6}{4} \times 0.4^4 \times 0.6^4$$
 (M1)

Note: Accept any answer that rounds to 0.23.

(ii) let the 4th hit occur on the Yth shot so that $Y \sim NB(4, 0.4)$ (A1) $P(Y=8) = \binom{7}{2} \times 0.4^4 \times 0.6^4$ (M1)

Note: Accept any answer that rounds to 0.12.

[6 marks]

(b) (i)
$$X \sim \text{NB}(10, 0.4)$$
 (M1)
 $E(X) = \frac{10}{0.4} = 25$ A1

(ii) let
$$P_x$$
 denote $P(X = x)$
 $P_x = \begin{pmatrix} x-1 \\ 9 \end{pmatrix} \times 0.4^{10} \times 0.6^{x-10}$ A1
 $\frac{P_x}{P_{x-1}} = \frac{\begin{pmatrix} x-1 \\ 9 \end{pmatrix} \times 0.4^{10} \times 0.6^{x-10}}{\begin{pmatrix} x-2 \\ 9 \end{pmatrix} \times 0.4^{10} \times 0.6^{x-11}}$ M1A1
 $= \frac{(x-1)!}{9!(x-10)!} \times \frac{9!(x-11)! \times 0.6}{(x-2)!}$ A1
Note: Award A1 for correct evaluation of combinatorial terms.

$$=\frac{3(x-1)}{5(x-10)}$$

(iii) $P_x > P_{x-1}$ as long as 3x-3 > 5x-50 (M1) *i.e.* x < 23.5 (A1) the most likely value is 23 A1 Note: Allow solutions based on creating a table of values of P_x .

[9 marks]

N12/5/MATHL/HP3/ENG/TZ0/SP/M

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

MARKSCHEME

November 2012

MATHEMATICS STATISTICS AND PROBABILITY

Higher Level

Paper 3

11 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a correct **Method**; working must be seen.
- (*M*) Marks awarded for **Method**; may be implied by **correct** subsequent working.
- *A* Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding *M* marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking Nov 2012". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is **completely correct**, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp *A0* by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *e.g. M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*e.g.* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 N marks

Award N marks for correct answers where there is no working.

- Do **not** award a mixture of *N* and other marks.
- There may be fewer N marks available than the total of M, A and R marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets e.g.** (M1), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (*e.g.* $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a mis-read. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (*e.g.* $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

A1

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by **EITHER** ... **OR**.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \quad (=10\cos(5x-3))$$

Award A1 for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:

Students must always use correct mathematical notation, not calculator notation. Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

(a) A has the hypergeometric distribution (Hyp(5, 4, 10))
[1 mark]
(b)
$$P(A = 3) = \frac{\binom{4}{3} \times \binom{6}{2}}{\binom{10}{5}} = \frac{4 \times 15}{252} = \frac{5}{21}$$
 (= 0.238)
(MI)A1
[2 marks]
(c) $P(A = 5) = 0$ (since there are only 4 chocolate biscuits)
(d) B has the binomial distribution $\left(B\left(5, \frac{4}{10}\right)\right)$
(e) $P(B = 3) = \left(\binom{5}{3}\left(\frac{4}{10}\right)^3\left(\frac{6}{10}\right)^2 = \right)\frac{144}{625}$ (= 0.2304)
(MI)A1
[1 mark]
(c) $P(B = 3) = \left(\binom{5}{3}\left(\frac{4}{10}\right)^3\left(\frac{6}{10}\right)^2 = \right)\frac{144}{625}$ (= 0.2304)
(MI)A1
[2 marks]
(f) $P(B = 5) = \left(\frac{4}{10}\right)^5 = \frac{32}{3125}$ (= 0.01024)
[2 marks]
(g) $E(D) = E(B) - E(A)$
 $= s\left(\frac{4}{10}\right) - s\left(\frac{4}{10}\right) = 0$
(h) $Var(D) = Var(B - A) = 1^2Var(B) + (-1)^2Var(A) = Var(B) + Var(A)$
since B and A are independent
 $= s\left(\frac{4}{10}\right)\left(\frac{6}{10}\left(\frac{10 - 5}{10 - 1}\right) + s\left(\frac{4}{10}\right)\left(\frac{6}{10}\right)$
(A1)
(A1)
(A1)
[2 marks]
(b) $Var(D) = Var(B - A) = 1^2Var(B) + (-1)^2Var(A) = Var(B) + Var(A)$
(A1)
 $= \frac{28}{15} (= 1.87)$
(A1)
[5 marks]
Total [16 marks]

1.

2. (a) (i) $2\mu, 2\sigma^2$	AIAI
-------------------------------------	------

(ii)
$$3\mu$$
, $9\sigma^2$ A1A1

(iii)
$$\mu$$
, $3\sigma^2$ AIAI

(iv)
$$\mu, \frac{\sigma^2}{n}$$
 AIAI

Note: If candidate clearly and correctly gives the standard deviations rather than the variances, give AI for 2 or 3 standard deviations and AIAI for 4 standard deviations.

[8 marks]

[3 marks]

(b) $\operatorname{Var}(X_1) = \operatorname{E}(X_1^2) - (\operatorname{E}(X_1))^2$ (M1) $\sigma^2 = \operatorname{E}(X_1^2) - \mu^2$ (A1) $\operatorname{E}(X_1^2) = \sigma^2 + \mu^2$ A1 Total

```
Total [11 marks]
```

3.	(a)	(i)	$H_0: \mu = 3, H_1: \mu < 3$	
			1 tailed z test as σ^2 is known	
			under H ₀ , $X \sim N\left(3, \frac{1}{4}\right)$ so $\overline{X} \sim N\left(3, \frac{1}{4}{36}\right) = N\left(3, \frac{1}{144}\right)$	(M1)
			$z = \frac{\overline{x} - 3}{\frac{1}{12}}$ is N(0, 1)	(A1)
			P(z < -1.64485) = 0.05	(A1)
			so inequality is given by $\frac{\overline{x}-3}{1} < -1.64485$ giving $\overline{x} < 2.8629$	M1
			12	
			$\bar{x} < 2.863$ (4sf)	A1
		Not	e: Candidates can get directly to the answer from $N\left(3, \frac{1}{144}\right)$ they	
			do not have to go via z is $N(0, 1)$. However they must give	
			some explanation of what they have done; they cannot just write the answer down.	
		(ii)	a Type I error is accepting H_1 when H_0 is true	A1
		(iii)	a Type II error is accepting H_0 when H_1 is true	A1

continued ...

Question 3 continued

(b)

(iv) 0.05	A1	
Note: Accept anything that rounds to 0.050 if they do the conditio calculation.	nal	
(v) $\overline{X} \sim N\left(2.75, \frac{1}{144}\right)$	(M1)	
$P(\bar{x} > 2.8629) = 0.0877$ (3sf)	(M1)A1	
Note: Accept any answer between 0.0875 and 0.0877 inclusive.		
Note: Accept anything that rounded is between 0.087and 0.089 if there evidence that the candidate has used tables.	is	
		[11 marks]
(i) <i>t</i> -test	Al	
(ii) $H_0: \mu = 3, H_1: \mu < 3$		
1 tailed t test as σ^2 is unknown		
$t = \frac{y-3}{\frac{1}{12}}$ has the <i>t</i> -distribution with $v = 35$	(M1)	
the <i>p</i> -value is 0.0509	A2	
this is > 0.05	R1	
so we accept that the mean wave height is 3	R1	
Note: Allow "Accept H_0 " provided H_0 has been stated.		
Note: Accept <i>FT</i> on the <i>p</i> -value for the <i>R1</i> s.		
(iii) $2.719 < \mu < 3.001$ (4 sf)	A1A1	
Note: $2.860 \pm 1.6896 \times \frac{2}{6}$ would gain <i>M1</i> .		
Note: Award <i>A1A0</i> if answer are only given to 3sf.		[8 marks]

Total [19 marks]

4. (a)
$$X \sim \text{Geo}\left(\frac{1}{6}\right)$$
 or $\text{NB}\left(1, \frac{1}{6}\right)$ A1

[1 mark]

[1 mark]

A1

(b) E(X) = 6

(c) H_0 : the probability that the dice lands with a "six" uppermost is $\frac{1}{6}$

 H_1 : the probability is not $\frac{1}{6}$

under H_0 , the expected values are given by the following table

Value of X	1	2	3	4	5	6	7				
Frequency	36	30	25	20.833	17.361	14.468	12.056				
	8	9	10	≥11							
	10.047	8.372	6.977	34.885							
							A3				
Not	Note: Award A2 for one error, A1 for two errors and A0 for more than two errors										
Not	Note: Accept answers that agree with the above to 1dp.										
	v = 11 - 1 = 10)					A1				
	(applying a	χ^2 goodnes	s of fit test								
	EVELLED										
	EIINEN										
	p = 0.935										
Not	Note: Accept answers within a tolerance of ± 0.004 .										
	0.935 > 0.10 so we accept H ₀										
	0 D										
	OR Sataroo.										
	$\chi^2_{calc} = 4.248$										
Not	Note: Accept answers within a tolerance of ± 0.02 .										
	$\chi^2_{crit} = 15.987$										
	4.248 < 15.98	37 so we ac	cept H ₀				R1				
Not	e: Incorrect p = 0.926 combinati $\chi^2_{calc} = 4.1$ AI (rathe respective	combination or χ or χ on of cells 7 and r than the ly. Use the	on of cell $\sum_{calc}^{2} = 3.77$ (grouping $\chi^{2}_{crit} = 14$ full <i>A3</i>) e same toler	s (grouping and χ^2_{crit} g 9 and 10) lo 686both w A1 and then rances as in the	10 or more =14.686 eading to p with $v=9$ either A3R1 e main marks	e) leading to or incorrec = 0.900 or would gain or $A2A1RT$ scheme.) t r 1				
Not	e: Allow foll	low through	n on their p	-value or χ^2_{calc}	value.						

[8 marks]

Question 4 continued

(d)
$$Y$$
 is NB $\left(2, \frac{1}{6}\right)$ A1

[1 mark]

(e)
$$P(Y = y) = \frac{1}{36}$$
 gives $y = 2$ *AI*
(as all other probabilities would have a factor of 5 in the numerator)

[1 mark]

(f)
$$P(Y \le 6) = \left(\frac{1}{6}\right)^2 + 2\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)^2 + 3\left(\frac{5}{6}\right)^2\left(\frac{1}{6}\right)^2 + 4\left(\frac{5}{6}\right)^3\left(\frac{1}{6}\right)^2 + 5\left(\frac{5}{6}\right)^4\left(\frac{1}{6}\right)^2$$
 (M1)
= 0.263 A1

[2 marks]

Total [14 marks]

M12/5/MATHL/HP3/ENG/TZ0/SP/M

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

MARKSCHEME

May 2012

MATHEMATICS STATISTICS AND PROBABILITY

Higher Level

Paper 3

12 pages

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a correct **Method**; working must be seen.
- (M) Marks awarded for Method; may be implied by correct subsequent working.
- *A* Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding *M* marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics HL: Guidance for e-marking May 2012". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is **completely correct**, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp *A0* by the final answer.
- If a part gains anything else, it **must** be recorded using **all** the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *e.g. M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*e.g.* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 N marks

Award N marks for correct answers where there is no working.

- Do **not** award a mixture of *N* and other marks.
- There may be fewer N marks available than the total of M, A and R marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets e.g.** (M1), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (*e.g.* $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (*e.g.* $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by **EITHER**...**OR**.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \quad (=10\cos(5x-3))$$

A1

Award A1 for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for **FT**.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:

Students must always use correct mathematical notation, not calculator notation. Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

-6- M12/5/MATHL/HP3/ENG/TZ0/SP/M

(;	a) u u	Inbiased estimate of the mean: 795 (grams) Inbiased estimate of the variance: 108(grams ²)	A1 (M1)A1	
				[3 marks]
(1	b) n	ull hypothesis $H_0: \mu = 800$	A1	
	a	lternative hypothesis $H_1: \mu < 800$	A1	
	u	using 1-tailed t-test	(M1)	
	F	EITHER		
	Ì	p = 0.0812	A3	
	(DR		
	v	vith 9 degrees of freedom	(A1)	
	t	$f_{calc} = \frac{\sqrt{10}(795 - 800)}{\sqrt{108}} = -1.521$	A1	
	t	t _{crit} = -1.383	A1	
	Note:	Accept 2sf intermediate results.		
	ſ	THEN		
	S	o the baker's claim is rejected	R1	
	Note:	Accept "reject H_0 " provided H_0 has been correctly stated.		
	Note:	FT for the final R1.		
				[7 marks]
(0	c) p	proportion rejected from sample $p_s = \frac{5}{40} = 0.125$	(A1)	
	u	sing formula for confidence interval at 95 % level:	(M1)	
		$p_s(1-p_s)$ at prev		
	i	$p_{s} \pm 1.96 \sqrt{\frac{1.3 + 1.3}{n}}$		

[4 marks]

Total [14 marks]

2. (a)
$$P(X \le n) = \sum_{i=1}^{n} P(X = i) = \sum_{i=1}^{n} pq^{i-1}$$
 MIA1
= $p \frac{1-q^{n}}{1-q}$ A1

$$=1-(1-p)^n \qquad AG$$

[3 marks]

A1

M1

A1

(b)
$$(1-p)^m - (1-p)^n$$
 A1 [1 mark]

attempt to solve $0.8 - (0.8)^n > 0.5$ (c) obtain n = 6

[2 marks]

Total [6 marks]

3. (a) mean =
$$2.06$$
 A1
variance = 1.94 A1

[2 marks]

(b)	a Poisson distribution has the property that its mean and variance are the same	R1	
			[1 mark]

 H_0 : the data can be modelled by a Poisson distribution (c) H₁: the data cannot be modelled by a Poisson distribution *A1*

Note:	If a parameter is stated, award A0.
-------	-------------------------------------

METHOD 1

use the estimated mean to find expected values

number of	0	1	2	3	4	5	6 or
injuries					ン		more
observed number of weeks	6	14	15	9	(5) 8	(2)	(1)
expected number of weeks	6.64	13.67	14.06	9.65	(4.96) 7.98	(2.04)	(0.98)

full table

A3

Note: Award A2 if 5 or 6 correct expected values, A1 if 4 correct values, A0 otherwise.

Note: Allow <i>FT</i> on an $n = 6$ value in the final column.	
---	--

the last three columns should be combined	<i>M1</i>
$\chi^2_{\rm calc} = 0.176$	(M1)A1
degrees of freedom $=7-1-1-2=3$	A1

EITHER

 $\chi^2_{5\%}(3) = 7.81 > 0.176$ *A1*

OR

p-value = 0.981 > 0.05 *A1*

THEN

conclude that the data can be modelled by a Poisson distribution

continued ...

R1

Question 3 continued

METHOD 2

use mean = 2 to find expected values

number of	0	1	2	3	4	5	6 or
injuries							more
observed	6	14	15	9	(5)	(2)	(1)
number of					8		
weeks							
expected	7.037	14.07	14.07	9.38	(4.69)	(1.88)	(0.86)
number of					7.43		
weeks							

-9-

full table

•

A3

Note:	Award A2	if 5	or 6	correct	expected	values,	<i>A1</i>	if 4	correct	values,
	A0 otherwi	se.								

Note:	Allow <i>FT</i> on an	n=6	value in the	final column.	
-------	------------------------------	-----	--------------	---------------	--

the last three columns should be combined	<i>M1</i>
$\chi^2_{\rm calc} = 0.272$	(M1)A1
degrees of freedom $=7-1-1-2=3$	A1
EITHER	
$\chi^2_{5\%}(3) = 7.81 > 0272$	A1
OR	
p-value = 0.965 > 0.05	A1
THEN	
conclude that the data can be modelled by a Poisson distribution	R 1
	[10 marks]

Total [13 marks]

4. piecewise linear graph (a)

correct shape	A1
with vertices $(0, 0)$, $(0.5, 1)$ and $(2, 0)$	A1
LQ: $x = 0.5$, because the area of the triangle is 0.25	R1

[3 marks]

(b) (i)
$$E(X) = \int_{0}^{0.5} x \times 2x \, dx + \int_{0.5}^{2} x \times \left(\frac{4}{3} - \frac{2}{3}x\right) dx = \frac{5}{6} (=0.833...)$$
 (M1)A1

(ii)
$$E(X^2) = \int_0^{0.5} x^2 \times 2x \, dx + \int_{0.5}^2 x^2 \times \left(\frac{4}{3} - \frac{2}{3}x\right) dx = \frac{7}{8} \quad (=0.875)$$
 (M1)A1

[4 marks]

[4 marks]
(c) (i)
$$E(Y-2X) = 2E(X) - 2E(X) = 0$$

(ii) $Var(X) = (E(X^2) - E(X)^2) = \frac{13}{72}$
 $Y \square X_1 + X_2 \Rightarrow Var(Y) = 2Var(X)$
 $Var(Y-2X) = 2Var(X) + 4Var(X) = \frac{13}{12}$
[5 marks]

continued ...

Question 4 continued

(d) (i) attempt to use
$$cf(x) = \int f(u) du$$
 M1

obtain
$$cf(x) = \begin{cases} x^2, & 0 \le x \le 0.5, \\ 4x, & 1 \le 1 \end{cases}$$
 A1

tain
$$cf(x) = \begin{cases} \frac{4x}{3} - \frac{1}{3}x^2 - \frac{1}{3}, & 0.5 \le x \le 2, \end{cases}$$
 A2

(ii) attempt to solve
$$cf(x) = 0.5$$
 M1

$$\frac{4x}{3} - \frac{1}{3}x^2 - \frac{1}{3} = 0.5$$
 (A1)
obtain 0.775 A1

N unknown median.

Accept exact answer $2 - \sqrt{1.5}$. Note:

[7 marks]

Total [19 marks]

(a)
$$\frac{m^{k^{-1}}e^{-n}}{(k-1)!} = \frac{m^{k+1}e^{-n}}{(k+1)!}$$

$$\Rightarrow 1 = \frac{m^{2}}{(k+1)k}$$
M1
$$\boxed{\text{Note: Award AI for any correct intermediate step.}}$$

$$\Rightarrow m^{2} = (k+1)k$$
(b)
$$\frac{P(X = k)}{P(X = k-1)} = \frac{e^{-m} \times \frac{m^{k}}{k!}}{e^{-m} \times \frac{m^{k-1}}{(k-1)!}}$$
M1
$$= \frac{m}{k}$$

$$= \sqrt{\frac{k(k+1)}{k}}$$
M1
$$= \sqrt{\frac{k(k+1)}{k}}$$
M2
$$= \sqrt{\frac{k(k+1)}{k}}$$
M3
$$= \sqrt{\frac{k(k+1)}{k}}$$
M4
$$= \sqrt{\frac{k(k+1)}{k}}$$
M5
$$= \sqrt{\frac{k(k+1)}{k}}$$
M6
$$= \sqrt{\frac{k(k+1)}{k}}$$
M7
$$= \sqrt{\frac{k(k+1)}{k}}$$
M8
$$= \sqrt{\frac{$$

5.

N11/5/MATHL/HP3/ENG/TZ0/SP/M

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

MARKSCHEME

November 2011

MATHEMATICS STATISTICS AND PROBABILITY

Higher Level

Paper 3

12 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

- *M* Marks awarded for attempting to use a correct **Method**; working must be seen.
- (M) Marks awarded for Method; may be implied by correct subsequent working.
- *A* Marks awarded for an **Answer** or for **Accuracy**; often dependent on preceding *M* marks.
- (A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
- *R* Marks awarded for clear **Reasoning**.
- *N* Marks awarded for **correct** answers if **no** working shown.
- AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Write the marks in red on candidates' scripts, in the right hand margin.

- Show the breakdown of individual marks awarded using the abbreviations M1, A1, etc.
- Write down the total for each question (at the end of the question) and circle it.

2 Method and Answer/Accuracy marks

- Do **not** automatically award full marks for a correct answer; all working **must** be checked, and marks awarded according to the markscheme.
- It is not possible to award *M0* followed by *A1*, as *A* mark(s) depend on the preceding *M* mark(s), if any.
- Where *M* and *A* marks are noted on the same line, *e.g. M1A1*, this usually means *M1* for an **attempt** to use an appropriate method (*e.g.* substitution into a formula) and *A1* for using the **correct** values.
- Where the markscheme specifies (*M2*), *N3*, *etc.*, do **not** split the marks.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 N marks

Award N marks for correct answers where there is no working.

- Do **not** award a mixture of *N* and other marks.
- There may be fewer N marks available than the total of M, A and R marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in **brackets e.g.** (M1), and can only be awarded if **correct** work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (**FT**) marks are awarded where an incorrect answer from one **part** of a question is used correctly in **subsequent** part(s). To award **FT** marks, **there must be working present** and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer *FT* marks.
- If the error leads to an inappropriate value (*e.g.* $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further **dependent** *A* marks can be awarded, but *M* marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (**MR**). Apply a **MR** penalty of 1 mark to that question. Award the marks as usual and then write $-1(\mathbf{MR})$ next to the total. Subtract 1 mark from the total for the question. A candidate should be penalized only once for a particular mis-read.

- If the question becomes much simpler because of the *MR*, then use discretion to award fewer marks.
- If the *MR* leads to an inappropriate value (*e.g.* $\sin \theta = 1.5$), do not award the mark(s) for the final answer(s).

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. The mark should be labelled (d) and a brief **note** written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by **EITHER** ... **OR**.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, *accept* equivalent forms.

- As this is an international examination, accept all alternative forms of **notation**.
- In the markscheme, equivalent **numerical** and **algebraic** forms will generally be written in brackets immediately following the answer.
- In the markscheme, **simplified** answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x) = 2\sin(5x-3)$, the markscheme gives:

$$f'(x) = (2\cos(5x-3))5 \quad (=10\cos(5x-3)) \quad A1$$

Award A1 for $(2\cos(5x-3))5$, even if $10\cos(5x-3)$ is not seen.

10 Accuracy of Answers

The method of dealing with accuracy errors on a whole paper basis by means of the Accuracy Penalty (*AP*) no longer applies.

Instructions to examiners about such numerical issues will be provided on a question by question basis within the framework of mathematical correctness, numerical understanding and contextual appropriateness.

The rubric on the front page of each question paper is given for the guidance of candidates. The markscheme (MS) may contain instructions to examiners in the form of "Accept answers which round to n significant figures (sf)". Where candidates state answers, required by the question, to fewer than n sf, award A0. Some intermediate numerical answers may be required by the MS but not by the question. In these cases only award the mark(s) if the candidate states the answer exactly or to at least 2sf.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 2, but calculators with symbolic manipulation features (e.g. TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:

Students must always use correct mathematical notation, not calculator notation.

Do **not** accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1.	(a)	let <i>S</i> be the weight of tea in a random <i>Supermug</i> tea bag $S \sim N(4.2, 0.15^2)$		
		P(S > 3.9) = 0.977	(M1)A1	
				[2 marks]
	(b)	let <i>M</i> be the weight of tea in a random <i>Megamug</i> tea bag		
		$M \sim N(5.6, 0.17^2)$		
		P(M > 5.4) = 0.880	(A1)	
		P(M < 5.4) = 1 - 0.880 = 0.119	(AI)	
		required probability = $2 \times 0.880 \times 0.119 = 0.211$	MIAI	
				[4 marks]
	(c)	$P(S_1 + S_2 + S_3 + S_4 + S_5 < 20.5)$		
		let $S_1 + S_2 + S_3 + S_4 + S_5 = A$	(M1)	
		E(A) = 5E(S)		
		= 21	A1	
		Var(A) = 5Var(S)	. 1	
		= 0.1125 $A \sim N(21, 0.1125)$	AI	
		P(A < 20.5) = 0.0680	A1	
				[4 marks]
	(d)	P(S + S + S + S + S + S + S - (M + M + M + M + M) > 0)		
	(u)	$(S_1 + S_2 + S_3 + S_4 + S_5 + S_6 + S_7 + (M_1 + M_2 + M_3 + M_4 + M_5) > 0)$		
		let $S_1 + S_2 + S_3 + S_4 + S_5 + S_6 + S_7 - (M_1 + M_2 + M_3 + M_4 + M_5) = B$	(M1)	
		$\mathbf{E}(B) = 7\mathbf{E}(S) - 5\mathbf{E}(M)$	4.7	
		=1.4	AI	
	No	te: Above A1 is independent of first M1.		
		$\operatorname{Var}(B) = 7\operatorname{Var}(S) + 5\operatorname{Var}(M)$	(M1)	
		= 0.302	Al	
		P(D > 0) = 0.995	AI	
				[5 marks]

Total [15 marks]

-7-

[4 marks]

N11/5/MATHL/HP3/ENG/TZ0/SP/M

(a) exponential distribution with mean $\frac{1}{\lambda}$ *A1* [1 mark] (b) $\int \lambda e^{-\lambda t} dt = -e^{-\lambda t} (+c)$ A1 $\Rightarrow F(x) = \left[-\mathrm{e}^{-\lambda t}\right]_0^x$ (M1) $= 1 - \mathrm{e}^{-\lambda x} \ (x \ge 0)$ A1 [3 marks] (c) $1-F\left(\frac{2}{\lambda}\right)$ M1 $=e^{-2}$ (=0.135) **A1** [2 marks] (d) $F(m) = \frac{1}{2}$ (M1) $\Rightarrow e^{-\lambda m} = \frac{1}{2}$ *A1* $\Rightarrow -\lambda m = \ln \frac{1}{2}$ $\Rightarrow m = \frac{1}{\lambda} \ln 2$ A1 [3 marks] (e) $F\left(\frac{1}{\lambda}\right) - F\left(\frac{\ln 2}{\lambda}\right)$ *M1* $=\frac{1}{2}-e^{-1}$ (= 0.132) A1 [2 marks] Total [11 marks]

– 8 –

3.

N11/5/MATHL/HP3/ENG/TZ0/SP/M

4. (a)
$$H_0: X \sim B\left(5, \frac{1}{2}\right), H_1: X \text{ does not follow } B\left(5, \frac{1}{2}\right)$$
 A1

[1 mark]

(b) P(X = 0) = 0.03125P(X = 1) = 0.15625P(X = 2) = 0.3125P(X = 3) = 0.3125P(X = 4) = 0.15625P(X = 5) = 0.03125

(A3)

(M1) (A1)

Note: Award A2 for one error or premature rounding, A1 for two errors, and A0 otherwise.

0 2 3.125	
1 15 15.625	
2 s 31.25	
3 69- <i>s</i> 31.25	
4 12 15.625	
5 2 3.125	

Note: Award method mark for any attempt to multiply the probability by 100.

com	bine classes:				M1
	X	0	E		
	0 or 1	17	18.75		
	2	S	31.25		
	3	69 – <i>s</i>	31.25		
	4 or 5	\leq 14	18.75	S.S.	
χ^2_{calc}	$= 0.16\dot{3} + 31$	25 - 2s + 0.0	$32s^2 + 45.60$	$2 - 2.416s + 0.032s^2 + 1.20\dot{3}$	M1
	$=\frac{8}{125}s^2-\frac{53}{12}$	$\frac{52}{25}s + \frac{29332}{375}$	$=0.064s^2-4$	1.42s + 78.2	A1
Note: A	ward <i>M1A0</i> $\chi^2_{calc} = 0.064s^2$	if candidates $\frac{1}{2} - 4.42s + 78$	do not comb 3.5.	ine classes, obtaining	

[8 marks]

continued ...
Question 4 continued

(c)	v = n - 1 =	4 - 1 = 3	(A1)	
	critical val	ue = 6.25	Al	
	solving: 0	$0.064s^2 - 4.42s + 78.2 < 6.25$	M1A1	
Note	: Accept	use of $=$ in above line.		
	⇒26.3< <i>s</i>	s < 42.8		
	$\Rightarrow 27 \le s \le$	≤ 42	AIAIAI	
Note	: Award Only pe correct.	<i>A1</i> for each correct endpoint and <i>A1</i> for correct inequalities. enalize one mark if end points are not integers but otherwise		
Note	: If candi solution	If candidates do not combine classes in part (b) award full <i>FT</i> marks for the solution below:		
	v = n - 1 = 6 - 1 = 5 critical value = 9.24 solving: $0.064s^2 - 4.42s + 78.5 < 9.24$			
	Note:	Accept use of = in above line.		
	\Rightarrow 24.0 < s < 45.0			
	$\Rightarrow 25 \le s \le 45 $ (accept 24 and 44)			
	Note:	Award AI for each correct endpoint and AI for correct ineq Only penalize one mark if endpoints are not integers but other	ualities. nerwise	

correct.

[7 marks]

Total [16 marks]

5. (a) (i)

$$X = 2U \implies X \le \frac{3}{2}$$

$$X = 4U \implies X > 3$$

X is only defined when $X \le \frac{3}{2}, X > 3$
MIA1

hence X cannot take values such that
$$\frac{3}{2} < X \le 3$$
 AG

(ii) EITHER

pdf is given by
$$f(u) = 1$$
 (M1)

$$P\left(0 < X \le \frac{3}{2}\right) = \int_{0}^{\frac{3}{4}} 1 du$$
 (A1)

$$= [u]_0^{\frac{3}{4}} = \frac{3}{4}$$
 A1

OR

pdf is given by $f(x) = \frac{1}{2}$ (M1) $P\left(0 < X \le \frac{3}{2}\right) = \int_{0}^{\frac{3}{2}} \frac{1}{2} dx$ $= \left[\frac{x}{2}\right]_{0}^{\frac{3}{2}} = \frac{3}{4}$ (A1) A1 (iii) $P(3 < X \le 4) = 1 - \frac{3}{4} = \frac{1}{4}$ A1

[6 marks]

EITHER (b)

$\int_0^{\frac{Q_1}{2}} 1 \mathrm{d}u = \frac{1}{4}$	222 0	(M1)(A1)
$\Rightarrow [u]_0^{\frac{Q_1}{2}} = \frac{1}{4}$	·satprep·	
$\Rightarrow \frac{Q_1}{2} = \frac{1}{4}$		
$\Rightarrow Q_1 = \frac{1}{2}$		A1

OR

$$\int_{0}^{Q_{1}} \frac{1}{2} dx = \frac{1}{4}$$

$$\Rightarrow \left[\frac{x}{2}\right]_{0}^{Q_{1}} = \frac{1}{4}$$

$$\Rightarrow \frac{Q_{1}}{2} = \frac{1}{4}$$

$$\Rightarrow Q_{1} = \frac{1}{2}$$
A1

[3 marks] continued ...

A1

Question 5 continued

(c) **EITHER**

$$E(X) = \int_{0}^{\frac{3}{4}} 2u \, du + \int_{\frac{3}{4}}^{1} 4u \, du \qquad MI$$
$$= \left[u^{2}\right]_{0}^{\frac{3}{4}} + \left[2u^{2}\right]_{\frac{3}{4}}^{1}$$
$$= \frac{9}{16} + 2 - \frac{9}{8} = \frac{23}{16} (=1.44) \qquad AI$$

OR

$$E(X) = \int_{0}^{\frac{3}{2}} \frac{x}{2} dx + \int_{3}^{4} \frac{x}{4} dx$$

$$= \left[\frac{x^{2}}{4}\right]_{0}^{\frac{3}{2}} + \left[\frac{x^{2}}{8}\right]_{3}^{4}$$

$$= \frac{9}{16} + \frac{16}{8} - \frac{9}{8} = \frac{23}{16} (=1.44)$$
[2 marks]
Total [11 marks]