Markscheme

November 2019

Mathematics

Standard level

Paper 1

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http://www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/ contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M} \mathbf{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M} \mathbf{1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers. In this case, ignore mark breakdown (\mathbf{M}, $A, R)$.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or AO for incorrect work) all subsequent marks may be awarded if appropriate.

5

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235 .

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer.

Section A

1. (a) valid approach
(M1)
eg $11-5,11=5+d$
$d=6$
A1
N2 [2 marks]
(b) valid approach
eg $\quad u_{2}-d, 5-6, u_{1}+(3-1)(6)=11$
$u_{1}=-1$
A1
N2
[2 marks]
(c) correct substitution into sum formula
eg $\frac{20}{2}(2(-1)+19(6)), \frac{20}{2}(-1+113)$
$S_{20}=1120$

Total [6 marks]

2. (a) $q=5$

A1
N1
[1 mark]
(M1)
eg $\quad(18+10+5)-30,28-25,18+10-n=25$

$$
n=3
$$

A1 [2 marks]
(c) valid approach for finding m or p (may be seen in part (b))
(M1)
eg $\quad 18-3,3+p=10$
$m=15, p=7$
A1A1
3. (a) valid attempt to substitute coordinates
eg $\quad g(-1)=8$
correct substitution
eg $\quad(-1)^{2}+b(-1)+11=8,1-b+11=8$
$b=4$
A1 N2
(b) valid attempt to solve
eg $\quad\left(x^{2}+4 x+4\right)+7, h=\frac{-4}{2}, k=g(-2)$
correct working
eg $\quad(x+2)^{2}+7, h=-2, k=7$
translation or shift (do not accept move) of vector $\binom{-2}{7}$ (accept left by 2 and up by 7)
A1A1
4. (a) valid approach
eg $\quad 11-a=9, \frac{11!}{9!(11-9)!}$
$a=2$
A1
(b) valid approach for expansion using $n=11$
(M1)
eg $\quad\binom{11}{r} x^{11-r} 3^{r}, a^{11} b^{0}+\binom{11}{1} a^{10} b^{1}+\binom{11}{2} a^{9} b^{2}+\ldots$
evidence of choosing correct term
eg $\quad\binom{11}{2} 3^{2},\binom{11}{2} x^{9} 3^{2},\binom{11}{9} 3^{2}$
correct working for binomial coefficient (seen anywhere, do not accept factorials)A1
eg
$55,\binom{11}{2}=55,55 \times 3^{2},(55 \times 9) x^{9}, \frac{11 \times 10}{2} \times 9$

495
Note: If there is clear evidence of adding instead of multiplying, award A1 for the correct working for binomial coefficient, but no other marks.
For example, $55 x^{9}+3^{2}$ would earn MOAOA1AO.
Do not award final A1 for a final answer of $495 x^{9}$, even if 495 is seen previously. If no working shown, award $\mathbf{N} \mathbf{1}$ for $495 x^{9}$.
5. (a) correct substitution into $b^{2}-4 a c$
eg $\quad(5 k)^{2}-4(2)\left(3 k^{2}+2\right),(5 k)^{2}-8\left(3 k^{2}+2\right)$
correct expansion of each term A1
eg $\quad 25 k^{2}-24 k^{2}-16,25 k^{2}-\left(24 k^{2}+16\right)$
$k^{2}-16$
AG
NO
[2 marks]
(b) valid approach

M1
eg $\quad f^{\prime}(x)>0, f^{\prime}(x) \geq 0$
recognizing discriminant <0 or ≤ 0
M1
eg $D<0, k^{2}-16 \leq 0, k^{2}<16$
two correct values for k lendpoints (even if inequalities are incorrect)
(A1)
eg $\quad k= \pm 4, k<-4$ and $k>4,|k|<4$
correct interval
A1
eg $\quad-4<k<4,-4 \leq k \leq 4$

Note: Candidates may work with an equation, then write the intervals with inequalities at the end. If inequalities are not seen until the candidate's final correct answer, MOMOA1A1 may be awarded.

If candidate is working with incorrect inequalitie(s) at the beginning, then gets the correct final answer, award M0M0A1A0 or M1M0A1A0 or M0M1A1A0 in line with the markscheme.

6. METHOD 1 - FINDING INTERVALS FOR \boldsymbol{x}

$4 \cos \left(\frac{x}{2}\right)+1>2 \sqrt{2}+1$
correct working
(A1)
eg $\quad 4 \cos \left(\frac{x}{2}\right)=2 \sqrt{2}, \cos \left(\frac{x}{2}\right)>\frac{\sqrt{2}}{2}$
recognizing $\cos ^{-1} \frac{\sqrt{2}}{2}=\frac{\pi}{4}$
one additional correct value for $\frac{x}{2}$ (ignoring domain and equation/inequalities)
eg $\quad-\frac{\pi}{4}, \frac{7 \pi}{4}, 315^{\circ}, \frac{9 \pi}{4},-45^{\circ}, \frac{15 \pi}{4}$
three correct values for x
eg $\frac{\pi}{2}, \frac{7 \pi}{2}, \frac{9 \pi}{2}$
valid approach to find intervals
eg

correct intervals (must be in radians)
A1A1
$0 \leq x<\frac{\pi}{2}, \frac{7 \pi}{2}<x<\frac{9 \pi}{2}$

Note: If working shown, award A1A0 if inclusion/exclusion of endpoints is incorrect. If no working shown award N1.
If working shown, award A1A0 if both correct intervals are given, and additional intervals are given. If no working shown award $\mathbf{N 1}$.
Award AOAO if inclusion/exclusion of endpoints are incorrect and additional intervals are given.

Question 6 continued

METHOD 2 - FINDING INTERVALS FOR $\frac{x}{2}$

$4 \cos \left(\frac{x}{2}\right)+1>2 \sqrt{2}+1$
correct working
eg $\quad 4 \cos \left(\frac{x}{2}\right)=2 \sqrt{2}, \cos \left(\frac{x}{2}\right)>\frac{\sqrt{2}}{2}$
recognizing $\cos ^{-1} \frac{\sqrt{2}}{2}=\frac{\pi}{4}$
one additional correct value for $\frac{x}{2}$ (ignoring domain and equation/inequalities)
eg $\quad-\frac{\pi}{4}, \frac{7 \pi}{4}, 315^{\circ}, \frac{9 \pi}{4},-45^{\circ}, \frac{15 \pi}{4}$
three correct values for $\frac{x}{2}$
eg $\frac{\pi}{4}, \frac{7 \pi}{4}, \frac{9 \pi}{4}$
valid approach to find intervals
eg

one correct interval for $\frac{x}{2}$
eg $\quad 0 \leq \frac{x}{2}<\frac{\pi}{4}, \frac{7 \pi}{4}<\frac{x}{2}<\frac{9 \pi}{4}$
correct intervals (must be in radians)
A1A1
$0 \leq x<\frac{\pi}{2}, \frac{7 \pi}{2}<x<\frac{9 \pi}{2}$
Note: If working shown, award A1AO if inclusion/exclusion of endpoints is incorrect. If no working shown award N1.
If working shown, award A1AO if both correct intervals are given, and additional intervals are given. If no working shown award N1.
Award AOAO if inclusion/exclusion of endpoints are incorrect and additional intervals are given.
7. (a) METHOD 1
recognizing that b is midway between the means of 14 and 22 .
eg

$b=18$
A1

METHOD 2

valid attempt to compare distributions
eg $\quad \frac{b-14}{a}=-\frac{b-22}{a}, b-14=22-b$
$b=18$
A1
(b) valid attempt to compare distributions (seen anywhere)
eg $\quad Y$ is a horizontal translation of X of 8 units to the right,
$\mathrm{P}(16<Y<28)=\mathrm{P}(8<X<20), \mathrm{P}(Y>22+6)=\mathrm{P}(X>14+6)$
valid approach using symmetry
(M1)
eg $\quad 1-2 \mathrm{P}(X>20), 1-2 \mathrm{P}(Y<16), 2 \times \mathrm{P}(14<x<20), \mathrm{P}(X<8)=\mathrm{P}(X>20)$
correct working
eg $\quad 1-2(0.112), 2 \times(0.5-0.112), 2 \times 0.388,0.888-0.112$
$\mathrm{P}(16<Y<28)=0.776$
A1
N3

Section B

8. (a) $y=12-4 x$
(b) correct substitution into volume formula
eg $\quad 3 x \times x \times y, x \times 3 x \times(12-x-3 x),(12-4 x)(x)(3 x)$

$$
V=3 x^{2}(12-4 x)\left(=36 x^{2}-12 x^{3}\right)
$$

A1

Note: Award $\boldsymbol{A} \mathbf{O}$ for unfinished answers such as $3 x^{2}(12-x-3 x)$.
(c) $\frac{\mathrm{d} V}{\mathrm{~d} x}=72 x-36 x^{2}$

A1A1

Note: Award A1 for $72 x$ and $A 1$ for $-36 x^{2}$.
(d) (i) valid approach to find maximum
eg $\quad V^{\prime}=0,72 x-36 x^{2}=0$
correct working
(A1)
eg $\quad x(72-36 x), \frac{-72 \pm \sqrt{72^{2}-4 \cdot(-36) \cdot 0}}{2(-36)}, 36 x=72,36 x(2-x)=0$
$x=2$
Note: Award A1 for $x=2$ and $x=0$.
(ii) valid approach to explain that V is maximum when $x=2$
eg attempt to find $V^{\prime \prime}$, sign chart (must be labelled V^{\prime})
correct value/s
eg $\quad V^{\prime \prime}(2)=72-72 \times 2, V^{\prime}(a)$ where $a<2$ and $V^{\prime}(b)$ where $b>2$
correct reasoning
R1
eg $\quad V^{\prime \prime}(2)<0, V^{\prime}$ is positive for $x<2$ and negative for $x>2$
Note: Do not award R1 unless $\boldsymbol{A 1}$ has been awarded.
V is maximum when $x=2$
AG
(e) correct substitution into their expression for volume
eg $3 \times 2^{2}(12-4 \times 2), 36\left(2^{2}\right)-12\left(2^{3}\right)$
$V=48\left(\mathrm{~cm}^{3}\right)$

A1
[2 marks]
9. (a) (i) correct substitution into either $\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$ or into $\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}$ (in (ii))
(A1)
eg $\quad-2 \times(-1)+4 \times k, 6 \times(-1)+8 \times k$
correct expression A1
eg $\quad 2+4 k, 4 k+2$
(ii) correct expression A1

$$
\text { eg } \quad 8 k-6,-6+8 k
$$

(b) finding magnitudes (seen anywhere)

A1A1
eg $\sqrt{(-2)^{2}+(4)^{2}+(-4)^{2}}(=6), \sqrt{(6)^{2}+(8)^{2}+0^{2}} \quad(=10)$
correct substitution of their values into formula for angle AOC
(A1)
eg $\cos \theta=\frac{2+4 k}{\sqrt{(-2)^{2}+(4)^{2}+(-4)^{2}}|\overrightarrow{\mathrm{OC}}|}$
correct substitution of their values into formula for angle BOC
eg $\cos \theta=\frac{8 k-6}{\sqrt{(6)^{2}+(8)^{2}+0^{2}}|\overrightarrow{\mathrm{OC}}|}$
recognizing that $\cos \mathrm{AO} \mathrm{C}=\cos \mathrm{BO} \mathrm{C}$ (seen anywhere)
(M1)
eg

$$
\frac{2+4 k}{|\overrightarrow{\mathrm{OC}}| \sqrt{(-2)^{2}+(4)^{2}+(-4)^{2}}}=\frac{8 k-6}{|\overrightarrow{\mathrm{OC}}| \sqrt{6^{2}+(8)^{2}+0^{2}}}, \frac{2+4 k}{6 \sqrt{1+k^{2}}}=\frac{8 k-6}{10 \sqrt{1+k^{2}}}
$$

correct working (without radicals)
eg $\quad 10(2+4 k)=6(8 k-6), 11 k^{2}-79 k+14=0$
correct working clearly leading to the required answer
eg $\quad 20+36=48 k-40 k, 56=8 k, k=7$ and $k=\frac{2}{11},(k-7)(11 k-2)=0$

$$
k=7
$$

Question 9 continued

(c) finding magnitude of $\overrightarrow{\mathrm{OC}}$ (seen anywhere)
eg $\sqrt{(-1)^{2}+7^{2}+0^{2}}, \sqrt{50}$
valid attempt to find $\cos \theta$
(M1)
eg $\cos \theta=\frac{2+28}{6 \sqrt{(-1)^{2}+7^{2}+0^{2}}}, \cos \theta=\frac{56-6}{10 \sqrt{(-1)^{2}+7^{2}+0^{2}}}$,

$$
(\sqrt{26})^{2}=6^{2}+(\sqrt{50})^{2}-2(6) \sqrt{50} \cos \theta
$$

finding $\cos \theta$
eg $\quad \cos \theta=\frac{5}{\sqrt{50}}\left(=\frac{1}{\sqrt{2}}\right)$
valid approach to find $\sin \theta$ (seen anywhere)
(M1)
eg
$\theta=\frac{\pi}{4}, \sin \theta=\cos \theta, \sin \theta=\sqrt{1-\frac{25}{50}}, \sin \theta=\sqrt{1-\cos ^{2} \theta}, \sin \theta=\frac{\sqrt{2}}{2}$
correct substitution of their values into $\frac{1}{2} a b \sin \mathrm{C}$
eg $\quad \frac{1}{2} \times 6 \times \sqrt{50} \times \sqrt{1-\frac{25}{50}}, \frac{1}{2} \times 6 \times \sqrt{50} \times \frac{5}{\sqrt{50}}$
area is 15
10. (a) $\mathrm{B}(a, 0)(\operatorname{accept} \mathrm{B}(q+1,0))$

A2
(b)

Note: There are many approaches to this part, and the steps may be done in any order. Please check working and award marks in line with the markscheme, noting that candidates may work with the equation of the line before finding a.

FINDING a

valid attempt to find an expression for a in terms of q
$g(0)=a, p^{0}+q=a$
$a=q+1$
FINDING THE EQUATION OF L_{1}

EITHER

attempt to substitute tangent gradient and coordinates into equation of straight line
eg $\quad y-0=f^{\prime}(a)(x-a), y=f^{\prime}(a)(x-(q+1))$
correct equation in terms of a and p
eg

$$
y-0=\frac{1}{\ln (p)}(x-a)
$$

OR
attempt to substitute tangent gradient and coordinates to find b
eg $\quad 0=\frac{1}{\ln (p)}(a)+b$
$b=\frac{-a}{\ln (p)}$
THEN (must be in terms of both p and q)

$$
y=\frac{1}{\ln p}(x-q-1), y=\frac{1}{\ln p} x-\frac{q+1}{\ln p}
$$

Note: Award $\mathbf{A} \mathbf{O}$ for final answers in the form $L_{1}=\frac{1}{\ln p}(x-q-1)$.

Question 10 continued
(c)

Note: There are many approaches to this part, and the steps may be done in any order. Please check working and award marks in line with the markscheme, noting that candidates may find q in terms of p before finding a value for p.

FINDING p
valid approach to find the gradient of the tangent
eg

$$
m_{1} m_{2}=-1,-\frac{1}{\frac{1}{\ln (1 / 3)}},-\ln \left(\frac{1}{3}\right),-\frac{1}{\ln p}=\frac{1}{\ln (1 / 3)}
$$

correct application of log rule (seen anywhere)
eg $\ln \left(\frac{1}{3}\right)^{-1},-(\ln (1)-\ln (3))$
correct equation (seen anywhere)
eg $\quad \ln p=\ln 3, p=3$
FINDING q
correct substitution of $(-2,-2)$ into L_{2} equation
eg $\quad-2=(\ln p)(-2)+q+1$
$q=2 \ln p-3, q=2 \ln 3-3$ (seen anywhere)
FINDING L_{1}
correct substitution of their p and q into their L_{1}
eg $y=\frac{1}{\ln 3}(x-(2 \ln 3-3)-1)$
$y=\frac{1}{\ln 3}(x-2 \ln 3+2), y=\frac{1}{\ln 3} x-\frac{2 \ln 3-2}{\ln 3}$
Note: Award $\mathbf{A O}$ for final answers in the form $L_{1}=\frac{1}{\ln 3}(x-2 \ln 3+2)$.

Markscheme

May 2019

Mathematics

Standard level

Paper 1

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http:// www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M} \mathbf{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M} \mathbf{1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers. In this case, ignore mark breakdown (\mathbf{M}, $A, R)$.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or A0 for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235 .

11 Style
The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation
where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $A 0$ for the final answer.

Section A

1. (a) valid approach
(M1)
eg $\quad 0.3-0.1, p+0.1=0.3$

$$
p=0.2 \quad \text { A1 }
$$

(b) valid approach
(M1)
eg $\quad 1-(0.3+0.4), 1-0.4-0.1-p$
$q=0.3$
A1
(c) valid approach
(M1)
eg $\quad 0.7+0.5-0.3, p+q+0.4,1-0.1, \mathrm{P}\left(A^{\prime} \cup B\right)=\mathrm{P}\left(A^{\prime}\right)+\mathrm{P}(B)-\mathrm{P}\left(A^{\prime} \cap B\right)$,

A1
[2 marks]
Total [6 marks]
2. (a) correct equation
eg $-3+6 s=15,6 s=18$
$s=3$
substitute their s value into z component
eg $10+3(2), 10+6$
$c=16$
A1
(b) $r=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+t\left(\begin{array}{l}6 \\ 0 \\ 2\end{array}\right)(=(\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k})+t(6 \boldsymbol{i}+2 \boldsymbol{k}))$

A2

Note: Accept any scalar multiple of $\left(\begin{array}{l}6 \\ 0 \\ 2\end{array}\right)$ for the direction vector.
Award $\boldsymbol{A} \mathbf{1}$ for $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+t\left(\begin{array}{l}6 \\ 0 \\ 2\end{array}\right)$, $\boldsymbol{A} \mathbf{1}$ for $L_{2}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+t\left(\begin{array}{l}6 \\ 0 \\ 2\end{array}\right)$, $\boldsymbol{A} \boldsymbol{0}$ for $r=\left(\begin{array}{l}6 \\ 0 \\ 2\end{array}\right)+t\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.
3. (a) valid approach
eg labelled sides on separate triangle, $\sin ^{2} x+\cos ^{2} x=1$
correct working
eg missing side is $4, \sqrt{1-\left(\frac{3}{5}\right)^{2}}$
$\cos \theta=\frac{4}{5}$
(b) correct substitution into $\cos 2 \theta$
eg $\quad 2\left(\frac{16}{25}\right)-1,1-2\left(\frac{3}{5}\right)^{2}, \frac{16}{25}-\frac{9}{25}$
$\cos 2 \theta=\frac{7}{25}$
A1 N2
[2 marks]
(c) correct working
eg $\frac{7}{25}=\frac{14}{\mathrm{BC}}, \mathrm{BC}=\frac{14 \times 25}{7}$
$\mathrm{BC}=50(\mathrm{~cm})$
4. (a) $x=-3$ (must be an equation)

A1
N1
[1 mark]
(b) interchanging x and y (seen anywhere)
eg $\quad x=\frac{2 y-1}{y+3}, x(y+3)=2 y-1$
evidence of correct manipulation
(A1)
eg $\quad y x+3 x=2 y-1, y(x-2)=-3 x-1,2-\frac{7}{y+3}$
$f^{-1}(x)=\frac{-3 x-1}{x-2}\left(=\frac{3 x+1}{2-x}, \frac{7}{2-x}-3\right)($ accept $y=)$
A1
N3
(c) valid approach to find horizontal asymptote
eg $\frac{-3}{1}$, vert.asymp of f becomes horiz.asymp of $f^{-1}, \frac{-3(x-2)+5}{x-2}, x \rightarrow \infty$ $y=-3$ (must be an equation)
5. recognizing to integrate
eg $\quad \int f^{\prime}, \int 2 \mathrm{e}^{-3 x} \mathrm{~d} x, \mathrm{~d} u=-3$
correct integral (do not penalize for missing $+C$)
eg $\quad-\frac{2}{3} \mathrm{e}^{-3 x}+C$
substituting $\left(\frac{1}{3}, 5\right)$ (in any order) into their integrated expression (must have $+C$) M1
eg $\quad-\frac{2}{3} \mathrm{e}^{-3(1 / 3)}+C=5$
Note: Award $\boldsymbol{M 0} \mathbf{~ i f ~ t h e y ~ s u b s t i t u t e ~ i n t o ~ o r i g i n a l ~ o r ~ d i f f e r e n t i a t e d ~ f u n c t i o n . ~}$
$f(x)=-\frac{2}{3} \mathrm{e}^{-3 x}+5+\frac{2}{3} \mathrm{e}^{-1}$ (or any equivalent form, eg $-\frac{2}{3} \mathrm{e}^{-3 x}+5-\frac{2}{-3 \mathrm{e}}$)

6. METHOD 1 (cosine rule)

diagram including $\boldsymbol{u}, \boldsymbol{v}$ and included angle of $\frac{\pi}{6}$
eg

sketch of triangle with \boldsymbol{w} (does not need to be to scale)
eg

choosing cosine rule
eg $\quad a^{2}+b^{2}-2 a b \cos C$
correct substitution
eg $\quad 4^{2}+(\sqrt{3})^{2}-2(4)(\sqrt{3}) \cos \frac{\pi}{6}$
$\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$ (seen anywhere)
correct working
eg 16+3-12
$|\boldsymbol{w}|=\sqrt{7}$

Question 6 continued

METHOD 2 (scalar product)

valid approach, in terms of u and v (seen anywhere)

$$
\begin{align*}
e g \quad & |\boldsymbol{w}|^{2}=(\boldsymbol{u}-\boldsymbol{v}) \cdot(\boldsymbol{u}-\boldsymbol{v}),|\boldsymbol{w}|^{2}=\boldsymbol{u} \cdot \boldsymbol{u}-2 \boldsymbol{u} \cdot \boldsymbol{v}+\boldsymbol{v} \cdot \boldsymbol{v},|\boldsymbol{w}|^{2}=\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}, \tag{M1}\\
& |\boldsymbol{w}|=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\left(u_{3}-v_{3}\right)^{2}} \tag{A1}
\end{align*}
$$

correct value for $\boldsymbol{u} \cdot \boldsymbol{u} \quad$ (seen anywhere)
eg $\quad|\boldsymbol{u}|^{2}=16, \boldsymbol{u} \cdot \boldsymbol{u}=16, u_{1}{ }^{2}+u_{2}{ }^{2}=16$
correct value for $\boldsymbol{v} \cdot \boldsymbol{v}$ (seen anywhere)
(A1)
eg $\quad|\boldsymbol{v}|^{2}=3, \boldsymbol{v} \cdot \boldsymbol{v}=3, v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=3$
$\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \quad$ (seen anywhere)
$u \cdot v=4 \times \sqrt{3} \times \frac{\sqrt{3}}{2}(=6)$ (seen anywhere)
correct substitution into $\boldsymbol{u} \cdot \boldsymbol{u}-2 \boldsymbol{u} \cdot \boldsymbol{v}+\boldsymbol{v} \cdot \boldsymbol{v}$ or $u_{1}{ }^{2}+u_{2}{ }^{2}+v_{1}{ }^{2}+v_{2}{ }^{2}-2\left(u_{1} v_{1}+u_{2} v_{2}\right)$ (2 or
3 dimensions)
eg $\quad 16-2(6)+3(=7)$
$|\boldsymbol{w}|=\sqrt{7}$
7. (a) recognizing relationship between v and s
(M1)
eg $\quad \int v=s, s^{\prime}=v$
$s(4)-s(2)=9$
A1
N2
[2 marks]
(b) correctly interpreting distance travelled in first 2 seconds (seen anywhere, including part (a) or the area of 15 indicated on diagram)
(A1)
eg $\quad \int_{0}^{2} v=15, s(2)=15$
valid approach to find total distance travelled
(M1)
eg sum of 3 areas, $\int_{0}^{4} v+\int_{4}^{5} v$, shaded areas in diagram between 0 and 5
Note: Award M0 if only $\int_{0}^{5}|v|$ is seen.
correct working towards finding distance travelled between 2 and 5 (seen anywhere including within total area expression or on diagram)
eg $\quad \int_{2}^{4} v-\int_{4}^{5} v, \int_{2}^{4} v=\int_{4}^{5}|v|, \int_{4}^{5} v \mathrm{~d} t=-9, s(4)-s(2)-[s(5)-s(4)]$, equal areas
correct working using $s(5)=s(2)$
eg $\quad 15+9-(-9), 15+2[s(4)-s(2)], 15+2(9), 2 \times s(4)-s(2), 48-15$
total distance travelled $=33(\mathrm{~m})$

Section B

8. (a) valid approach
eg $\quad f(x)=0,9-x^{2}=0$, one correct solution
$x=-3,3$ (accept $(3,0),(-3,0)) \quad$ A1
A1 N2
[2 marks]
(b) valid approach
eg height $=f(b)$, base $=2(\mathrm{OP})$ or $2 b, 2 b\left(9-x^{2}\right), 2 b \times f(b)$
correct working that clearly leads to given answer
eg $\quad 2 b\left(9-b^{2}\right)$
Note: Do not accept sloppy notation eg $2 b \times 9-b^{2}$.

$$
\text { area }=18 b-2 b^{3}
$$

(c) setting derivative $=0$ (seen anywhere)
eg $\quad A^{\prime}=0,\left[18 b-2 b^{3}\right]^{\prime}=0$
correct derivative (must be in terms of b only) (seen anywhere)
eg $\quad 18-6 b^{2}, 2 b(-2 b)+\left(9-b^{2}\right) \times 2$
correct working
eg $\quad 6 b^{2}=18, b= \pm \sqrt{3}$

$$
b=\sqrt{3}
$$

A1
N3
[5 marks]
(d) valid approach
(M1)
eg $f=g, 9-x^{2}=(x-3)^{2}+k$
correct working
eg $\quad 9-x^{2}=x^{2}-6 x+9+k, 9-x^{2}-x^{2}+6 x-9-k=0$
$2 x^{2}-6 x+k=0$

AG [2 marks]

Question 8 continued

(e) METHOD 1 (discriminant)

recognizing to use discriminant (seen anywhere)
(M1)
eg $\quad \Delta, b^{2}-4 a c$
discriminant $=0$ (seen anywhere)
M1
correct substitution into discriminant (do not accept only in quadratic formula)(A1) eg $\quad(-6)^{2}-4(2)(k),(6)^{2}-4(2)(k)$
correct working
eg $\quad 36-8 k=0,8 k=36$
$k=\frac{36}{8} \quad\left(=\frac{9}{2}, 4.5\right)$
A1

METHOD 2 (completing the square)

valid approach to complete the square
eg $\quad 2\left(x^{2}-3 x+\frac{9}{4}\right)=-k+\frac{18}{4}, x^{2}-3 x+\frac{9}{4}-\frac{9}{4}+\frac{k}{2}=0$
correct working
eg $\quad 2\left(x-\frac{3}{2}\right)^{2}=-k+\frac{18}{4},\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}+\frac{k}{2}=0$
recognizing condition for one solution
eg $\left(x-\frac{3}{2}\right)^{2}=0,-\frac{9}{4}+\frac{k}{2}=0$
correct working
eg $\quad-k=-\frac{18}{4}, \frac{k}{2}=\frac{9}{4}$
$k=\frac{18}{4} \quad\left(=\frac{9}{2}, 4.5\right)$

Question 8 continued

METHOD 3 (using vertex)

valid approach to find vertex (seen anywhere)
eg $\quad\left(2 x^{2}-6 x+k\right)^{\prime}=0,-\frac{b}{2 a}$
correct working
eg $\quad\left(2 x^{2}-6 x+k\right)^{\prime}=4 x-6,-\frac{(-6)}{2(2)}$
$x=\frac{6}{4}\left(=\frac{3}{2}\right)$
correct substitution
eg $\quad 2\left(\frac{3}{2}\right)^{2}-6\left(\frac{3}{2}\right)+k=0$
$k=\frac{18}{4} \quad\left(=\frac{9}{2}, 4.5\right)$
9. (a) recognizing area under curve $=1$
eg $\quad a+x+b=1,100-a-b, 1-a+b$

$$
\mathrm{P}(-1.6<z<2.4)=1-a-b(=1-(a+b))
$$

(b) $\mathrm{P}(z>-1.6)=1-a$ (seen anywhere)
recognizing conditional probability
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}(B \mid A)$
correct working
eg $\quad \frac{\mathrm{P}(z<2.4 \cap z>-1.6)}{\mathrm{P}(z>-1.6)}, \frac{\mathrm{P}(-1.6<z<2.4)}{\mathrm{P}(z>-1.6)}$
$\mathrm{P}(z<2.4 \mid z>-1.6)=\frac{1-a-b}{1-a}$
Note: Do not award the final $\boldsymbol{A 1}$ if correct answer is seen followed by incorrect simplification.
[4 marks]
(c) $\quad z=-1.6$ (may be seen in part (d))

Note: Depending on the candidate's interpretation of the question, they may give $\frac{1-m}{s}$ as the answer to part (c). Such answers should be awarded the first (M1) in part (d), even when part (d) is left blank. If the candidate goes on to show $z=-1.6$ as part of their working in part (d), the A1 in part (c) may be awarded.

Question 9 continued
(d) attempt to standardize x (do not accept $\frac{x-\mu}{\sigma}$)
eg $\quad \frac{1-m}{s}$ (may be seen in part (c)), $\frac{m-2}{s}, \frac{x-m}{\sigma}$
correct equation with each z-value
eg $\quad-1.6=\frac{1-m}{s}, 2.4=\frac{2-m}{s}, m+2.4 s=2$
valid approach (to set up equation in one variable)
eg $\quad 2.4=\frac{2-(1.6 s+1)}{s}, \frac{1-m}{-1.6}=\frac{2-m}{2.4}$
correct working
eg $\quad 1.6 s+1=2-2.4 s, 4 s=1, \quad m=\frac{7}{5}$
$s=\frac{1}{4}$

A1 N2
10. (a) correct working
eg $\quad \sin \left(\frac{\pi}{4} x\right)=1, \sqrt{x}\left(1-\sin \left(\frac{\pi}{4} x\right)\right)=0$
$\sin \left(\frac{\pi}{2}\right)=1$ (seen anywhere)
correct working (ignore additional values)
eg $\quad \frac{\pi}{4} x=\frac{\pi}{2}, \frac{\pi}{4} x=\frac{\pi}{2}+2 \pi$
$x=2,10 \quad$ A1A1
N1N1 [5 marks]
(b) correct working
eg $d=10-2, a+b=2, a+2 b=10$
valid approach
eg $\quad 2+(n-1) 8, a+2(2-a)=10, b=$ common difference

$$
a=-6, b=8 \text { (accept }-6+8 n)
$$

(c) valid approach

(M1)

eg first intersection at $x=0, n=20$
correct working
eg $\quad-6+8 \times 20,2+(20-1) \times 8, u_{20}=154$
$\mathrm{P}(154, \sqrt{154})(\operatorname{accept} x=154$ and $y=\sqrt{154})$

A1A1
[4 marks]
continued...

Question 10 continued
(d) valid attempt to find upper boundary
(M1)
eg half way between u_{20} and $u_{21}, u_{20}+\frac{d}{2}, 154+4,-2+8 n$, at least two values of new sequence $\{6,14, \ldots\}$
upper boundary at $x=158$ (seen anywhere)
correct integral expression (accept missing dx) A1A1
eg $\left.\quad \int_{0}^{158}\left(\sqrt{x} \sin \left(\frac{\pi}{4} x\right)+\sqrt{x}\right) \mathrm{d} x, \int_{0}^{158}(g+f) \mathrm{d} x\right), \int_{0}^{158} \sqrt{x} \sin \left(\frac{\pi}{4} x\right) \mathrm{d} x-\int_{0}^{158}-\sqrt{x} \mathrm{~d} x$
Note: Award A1 for two correct limits and A1 for correct integrand. The $\boldsymbol{A 1}$ for correct integrand may be awarded independently of all the other marks.

Markscheme

May 2019

Mathematics

Standard level

Paper 1

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http:// www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros -lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales- no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/contact-the-ib/media-inquiries/for-publishers/ guidance-for-third-party-publishers-and-providers/how-to-apply-for-alicense.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M} \mathbf{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M} \mathbf{1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final $\boldsymbol{A 1}$.

N marks

If no working shown, award \mathbf{N} marks for correct answers. In this case, ignore mark breakdown (\mathbf{M}, $A, R)$.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235 .

11 Style
The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation
where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $A 0$ for the final answer.

Section A

1. (a) evidence of using $\sum p=1$
correct working
eg $\frac{3}{13}+\frac{1}{13}+\frac{4}{13}+k=1,1-\frac{8}{13}$
$k=\frac{5}{13}$
A1
N2
(b) valid approach to find $\mathrm{E}(X)$
eg $1 \times \frac{1}{13}+2 \times \frac{4}{13}+3 \times k, 0 \times \frac{3}{13}+1 \times \frac{1}{13}+2 \times \frac{4}{13}+3 \times \frac{5}{13}$
correct working
eg $\frac{1}{13}+\frac{8}{13}+\frac{15}{13}$
$\mathrm{E}(X)=\frac{24}{13}$
A1
N2
[3 marks]
Total [6 marks]
2. (a) valid approach
eg $\quad \boldsymbol{b}=2 \boldsymbol{a}, \boldsymbol{a}=k \boldsymbol{b}, \cos \theta=1, \boldsymbol{a} \cdot \boldsymbol{b}=-|\boldsymbol{a}||\boldsymbol{b}|, 2 p=18$

$$
p=9
$$

(b) evidence of scalar product
(M1)
eg $\quad \boldsymbol{a} \cdot \boldsymbol{b},(0)(0)+(3)(6)+p(18)$
recognizing $\boldsymbol{a} \cdot \boldsymbol{b}=0$ (seen anywhere)
correct working
eg $18+18 p=0,18 p=-18$

$$
p=-1
$$

A1
[4 marks]
3. (a) (i) $x=2$ (must be an equation)
(ii) valid approach
eg $3+\frac{7}{x-2}, x \rightarrow \infty, \frac{3 x}{x}, \frac{3}{1}, \frac{3+\frac{1}{x}}{1-\frac{2}{x}}, \frac{3(x-2)+7}{x-2}$
$y=3$ (must be an equation)
A1
N2
[3 marks]
(b) METHOD 1
attempt to substitute 1 into $g(x)$ or $f(x)$
(M1)
eg $\quad 1^{2}+4, \frac{3+1}{1-2}$
$g(1)=5$
(A1)
$(f \circ g)(1)=\frac{16}{3}$

METHOD 2

attempt to form composite function (in any order)
eg $\frac{3\left(x^{2}+4\right)+1}{x^{2}+4-2},\left(\frac{3 x+1}{x-2}\right)^{2}+4$
correct substitution
eg $\frac{3(5)+1}{5-2}$
$(f \circ g)(1)=\frac{16}{3}$
4. (a) (i) y-intercept is 11 (accept $(0,11))$

A1
(M1)
eg $\quad f(4 \times 0)=f(0)$, recognizing stretch of $\frac{1}{4}$ in x-direction
y-intercept is 8 (accept $(0,8)$)
A1
N2
[3 marks]
(b) x-intercept is $\frac{5}{2}(=2.5)\left(\operatorname{accept}\left(\frac{5}{2}, 0\right)\right.$ or $\left.(2.5,0)\right)$

A2
(c) correct name, correct magnitude and direction

A1A1
eg name: translation, (horizontal) shift (do not accept move)
eg magnitude and direction: 1 unit to the left, $\binom{-1}{0}$, horizontal by -1
[2 marks]
Total [7 marks]
5. correct substitution into discriminant (do not accept only in quadratic formula)
(A1)
eg $\quad 1-4(1-k) k$
correct expansion of discriminant (do not accept only in quadratic formula)
A1
eg $\quad 1-4 k+4 k^{2}, 4 k^{2}-4 k=-1$
recognizing discriminant equals 0 (seen anywhere)
eg $\quad \Delta=0, b^{2}-4 a c=0$
valid attempt to solve their quadratic in k
eg factorizing equation, use of quadratic formula, completing the square, recognizing vertex on x-axis
correct working
eg $\quad(2 k-1)^{2}, \frac{-(-4) \pm \sqrt{16-4(4)(1)}}{2(4)},\left(k-\frac{1}{2}\right)^{2}=0, k=\frac{-(-4)}{2(4)}$
$k=\frac{1}{2}$
6.

Note: The first three \boldsymbol{A} marks are awarded for correct application of log properties, including with incorrect expressions, and in any order.
correct application of change of base (accept any base)
eg $\quad \frac{\log _{4}(13-4 x)}{\log _{4} 16}, \frac{\log _{16}(2-x)}{\log _{16} 4}, \frac{\log _{2}(2-x)}{\log _{2} 4}, \frac{\log (13-4 x)}{\log 16}$
correct numerical value
eg $\quad \log _{4} 16=2, \log _{16} 4=\frac{1}{2}$
correct application of $r \log _{c} a=\log _{c} a^{r}$
eg $\quad \log _{4}(2-x)^{2}$
correct equation without logs
eg $\quad(2-x)^{2}=13-4 x,(2-x)^{4}=(13-4 x)^{2}, 4-4 x+x^{2}=13-4 x$
correct working

eg $\quad x^{2}=9$

$$
x=-3
$$

A2
7. (a) correct equation
eg $\quad 2 \sin x=-1, \sin x=-\frac{1}{2}$
one correct value for $\sin ^{-1}\left(\frac{1}{2}\right)$ or $\sin ^{-1}\left(-\frac{1}{2}\right)$ (seen anywhere)
(A1)
eg $\frac{\pi}{6}, \frac{5 \pi}{6}, 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$
$x=\frac{7 \pi}{6}, \frac{11 \pi}{6} \quad\left(\operatorname{accept}\left(\frac{7 \pi}{6},-1\right),\left(\frac{11 \pi}{6},-1\right)\right)$
A1A1 N1N1

Note: Award A1A1A1A0 if more solutions given in addition to both correct answers.
(b) recognizing period of g is larger than the period of f
eg sketch of g with larger period (may be seen on diagram), A at $x=2 \pi$,

$$
\text { image of A when } x>2 \pi, \frac{7 \pi}{6} \rightarrow 2 \pi, 2 \sin (2 \pi p)=-1, \frac{7 \pi}{6} \times k=2 \pi
$$

correct working
eg $\frac{7 \pi}{6} \cdot \frac{1}{p}=2 \pi, 2 \pi p=\frac{7 \pi}{6}, \frac{12}{7}$
$p=\frac{7}{12} \quad\left(\right.$ accept $p<\frac{7}{12}$ or $\left.p \leq \frac{7}{12}\right)$

Section B

8. (a) valid approach
eg $\quad 16+8, a-8$
24 (hours) A1
A1 N2 [2 marks]
(b) valid approach
(M1)
eg $20-15, Q_{3}-Q_{1}, 15-20$
$\mathrm{IQR}=5$
A1 N2
[2 marks]
(c) correct working
eg $\quad \frac{180}{10}, \frac{180}{n}, \frac{\sum x}{10}$
mean $=18$ (hours)
(d) (i) attempt to find total hours for group B
eg $\quad \bar{x} \times n$
group B total hours $=420$ (seen anywhere)
A1
(ii) attempt to find sum for combined group (may be seen in working)
(M1)
eg $\quad 180+420,600$
correct working
(A1)
eg $\frac{180+420}{30}, \frac{600}{30}$
mean $=20$ (hours)

Question 8 continued
(e) (i) valid approach to find the new mean
(M1)
eg $\frac{1}{2} \mu, \frac{1}{2} \times 21$
mean $=\frac{21}{2}(=10.5) \quad$ (hours)
A1
(A1)
eg $\sigma^{2}=9,3^{2}=9,\left(\frac{3}{2}\right)^{2}, 3^{2}$
valid attempt to find new standard deviation or variance
(M1)
eg $\frac{1}{4} \times 3^{2}, \frac{1}{2} \times 3, \frac{3}{2}$
variance $=\frac{9}{4}(=2.25)$ (hours)
9. (a) evidence of valid approach
eg sketch of triangle with sides 3 and $5, \cos ^{2} \theta=1-\sin ^{2} \theta$ correct working
eg missing side is 4 (may be seen in sketch), $\cos \theta=\frac{4}{5}, \cos \theta=-\frac{4}{5}$
$\tan \theta=-\frac{3}{4}$
(b) correct substitution of either gradient or origin into equation of line
(do not accept $y=m x+b$)
eg $y=x \tan \theta, y-0=m(x-0), y=m x$
$y=-\frac{3}{4} x$
A1

Note: Award A1AO for $L=-\frac{3}{4} x$.
(c) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{-3 x}{4}\right)=-\frac{3}{4}$ (seen anywhere, including answer)

A1
(M1)
choosing product rule
eg $u v^{\prime}+v u^{\prime}$
correct derivatives (must be seen in a correct product rule)
A1A1
eg $\cos x, \mathrm{e}^{x}$
$f^{\prime}(x)=\mathrm{e}^{x} \cos x+\mathrm{e}^{x} \sin x-\frac{3}{4}\left(=\mathrm{e}^{x}(\cos x+\sin x)-\frac{3}{4}\right)$

A1
N5
[5 marks]
continued...

Question 9 continued

(d) valid approach to equate their gradients
eg $f^{\prime}=\tan \theta, f^{\prime}=-\frac{3}{4}, \mathrm{e}^{x} \cos x+\mathrm{e}^{x} \sin x-\frac{3}{4}=-\frac{3}{4}$,

$$
\mathrm{e}^{x}(\cos x+\sin x)-\frac{3}{4}=-\frac{3}{4}
$$

correct equation without e^{x}
eg $\sin x=-\cos x, \cos x+\sin x=0, \frac{-\sin x}{\cos x}=1$
correct working
eg $\tan \theta=-1, x=135^{\circ}$
$x=\frac{3 \pi}{4}\left(\right.$ do not accept $\left.135^{\circ}\right)$
Note: Do not award the final A1 if additional answers are given.
10. (a) evidence of choosing chain rule
eg $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}, u=x^{3}+x, u^{\prime}=3 x^{2}+1$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{2}\left(x^{3}+x\right)^{\frac{1}{2}}\left(3 x^{2}+1\right)\left(=\frac{3}{2} \sqrt{x^{3}+x}\left(3 x^{2}+1\right)\right)$
A2
N3
(b) integrating by inspection from (a) or by substitution
eg $\quad \frac{2}{3} \int \frac{3}{2}\left(3 x^{2}+1\right) \sqrt{x^{3}+x} \mathrm{~d} x, u=x^{3}+x, \frac{\mathrm{~d} u}{\mathrm{~d} x}=3 x^{2}+1, \int u^{\frac{1}{2}}, \frac{u^{\frac{3}{2}}}{1.5}$
correct integrated expression in terms of x
A2
eg $\frac{2}{3}\left(x^{3}+x\right)^{\frac{3}{2}}+C, \frac{\left(x^{3}+x\right)^{1.5}}{1.5}+C$
(c) integrating and subtracting functions (in any order)
eg $\quad \int g-f, \int f-\int g$
correct integral (including limits, accept absence of $\mathrm{d} x$)
A1
eg $\quad \int_{0}^{1}(g-f) \mathrm{d} x, \int_{0}^{1} 6-3 x^{2} \sqrt{x^{3}+x}-\sqrt{x^{3}+x} \mathrm{~d} x, \int_{0}^{1} g(x)-\int_{0}^{1} f(x)$

Question 10 continued
(d) recognizing $\sqrt{x^{3}+x}$ is a common factor (seen anywhere, may be seen in part (c))
(M1)
eg $\quad\left(-3 x^{2}-1\right) \sqrt{x^{3}+x}, \int 6-\left(3 x^{2}+1\right) \sqrt{x^{3}+x},\left(3 x^{2}-1\right) \sqrt{x^{3}+x}$
correct integration
(A1)(A1)
eg $\quad 6 x-\frac{2}{3}\left(x^{3}+x\right)^{\frac{3}{2}}$
Note: Award A1 for $6 x$ and award A1 for $-\frac{2}{3}\left(x^{3}+x\right)^{\frac{3}{2}}$.
substituting limits into their integrated function and subtracting (in any order) (M1)
eg $\quad 6-\frac{2}{3}\left(1^{3}+1\right)^{\frac{3}{2}}, \quad 0-\left[6-\frac{2}{3}\left(1^{3}+1\right)^{\frac{3}{2}}\right]$
correct working
eg $\quad 6-\frac{2}{3} \times 2 \sqrt{2}, 6-\frac{2}{3} \times \sqrt{4} \times \sqrt{2}$
area of $R=6-\frac{4 \sqrt{2}}{3}\left(=6-\frac{2}{3} \sqrt{8}, \quad 6-\frac{2}{3} \times 2^{\frac{3}{2}}, \frac{18-4 \sqrt{2}}{3}\right)$
A1
N3
[6 marks]
Total [14 marks]

Markscheme

November 2018

Mathematics

Standard level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M} \mathbf{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M} \mathbf{1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers. In this case, ignore mark breakdown (\mathbf{M}, $A, R)$.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation
where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $A 0$ for the final answer.

Section A

1. (a) correct substitution
eg $\frac{1}{2}(2)\left(6^{2}\right)$
area $=36\left(\mathrm{~cm}^{2}\right)$
A1 N2 [2 marks]
(b) valid approach to find major arc length
(M1)
eg angle $=2 \pi-2$, circumference $-\operatorname{arc} \mathrm{BC}$
correct working for major arc length
(A1)
eg $6(2 \pi-2),(2 \times 6 \times \pi)-(6 \times 2), 12 \pi-12$
valid approach to find perimeter of a sector (seen anywhere)
(M1)
eg arc +2 (radius), $12 \pi-12+2$ (6)
perimeter $=12 \pi$
A1
[4 marks]
Total [6 marks]

A1
N1
[1 mark]
(M1)

A1
N2 [2 marks]
(c) valid approach
eg $\quad g(x)=-2$
$g^{-1}(-2)=1$
(M1)

A1
N2
[2 marks]
Total [5 marks]
3. (a) correct working
eg $\quad-5+(8-1)(3)$

$$
u_{8}=16
$$

(b) correct substitution into u_{n} formula
eg $\quad-5+3(n-1), 3 n-8$
correct equation
eg $\quad-5+3(n-1)=67,3 n-8=67,3(n-1)=72$
correct working
eg $3 n=75, n-1=24$
$n=25$

Total [6 marks]

4. (a) correct approach
eg $3 \log _{2} a$
$\log _{2} a^{3}=3 b$
A1 $\begin{array}{r}\text { N2 } \\ {[2 \text { marks] }}\end{array}$
(b) correct working
eg $\quad \log _{2} 8+\log _{2} a, \log _{2} 8=3$
$\log _{2} 8 a=3+b$
A1
(c) correct working
eg $\frac{\log _{2} a}{\log _{2} 8}, \frac{1}{3} \log _{2} a, b \log _{8} 2$
$\log _{8} a=\frac{b}{3}$
5. METHOD 1 (eliminating k)
recognizing parallel vectors are multiples of each other
eg $\quad \boldsymbol{a}=k \boldsymbol{b},\binom{3}{2 p}=k\binom{p+1}{8}, \frac{p+1}{3}=\frac{8}{2 p}, 3 k=p+1$ and $2 k p=8$
correct working (must be quadratic)
eg $\quad 2 p^{2}+2 p=24, p^{2}+p-12,3=\frac{p^{2}+p}{4}$
valid attempt to solve their quadratic equation
eg factorizing, formula, completing the square
evidence of correct working
eg $\quad(p+4)(p-3), x=\frac{-2 \pm \sqrt{4-4(2)(-24)}}{4}$
$p=-4, p=3$
A1A1
N4

METHOD 2 (solving for k)
recognizing parallel vectors are multiples of each other
eg $\quad \boldsymbol{a}=k \boldsymbol{b},\binom{3}{2 p}=k\binom{p+1}{8}, 3 k=p+1$ and $2 k p=8$
correct working (must be quadratic)
(A1)
eg $\quad 3 k^{2}-k=4,3 k^{2}-k-4,4 k^{2}=3-k$
one correct value for k
eg $\quad k=-1, k=\frac{4}{3}, k=\frac{3}{4}$
substituting their value(s) of k
eg $\quad\binom{3}{2 p}=\frac{3}{4}\binom{p+1}{8}, 3\left(\frac{4}{3}\right)=p+1$ and $2\left(\frac{4}{3}\right) p=8,(-1)\binom{3}{2 p}=\binom{p+1}{8}$
$p=-4, p=3$
A1A1
N4

Question 5 continued

METHOD 3 (working with angles and cosine formula)
recognizing angle between parallel vectors is 0 and/or 180°
eg $\quad \cos \theta= \pm 1, a \cdot b=|a||b|$
correct substitution of scalar product and magnitudes into equation
(A1)
eg $\frac{3(p+1)+2 p(8)}{\sqrt{3^{2}+(2 p)^{2}} \sqrt{(p+1)^{2}+8^{2}}}= \pm 1,19 p+3=\sqrt{4 p^{2}+9} \sqrt{p^{2}+2 p+65}$
correct working (must include both \pm)
eg $\quad 3(p+1)+2 p(8)= \pm \sqrt{3^{2}+(2 p)^{2}} \sqrt{(p+1)^{2}+8^{2}}, 19 p+3= \pm \sqrt{4 p^{2}+9} \sqrt{p^{2}+2 p+65}$ correct quartic equation
eg $\quad 361 p^{2}+114 p+9=4 p^{4}+8 p^{3}+269 p^{2}+18 p+585,4 p^{4}+8 p^{3}-92 p^{2}-96 p+576=0$, $p^{4}+2 p^{3}-23 p^{2}-24 p+144=0,(p+4)^{2}(p-3)^{2}=0$ $p=-4, p=3$
6. METHOD 1 (limits in terms of x)
valid approach to find x-intercept
eg $\quad f(x)=0, \frac{6-2 x}{\sqrt{16+6 x-x^{2}}}=0,6-2 x=0$
x-intercept is 3
valid approach using substitution or inspection
eg $\quad u=16+6 x-x^{2}, \int_{0}^{3} \frac{6-2 x}{\sqrt{u}} \mathrm{~d} x, \mathrm{~d} u=6-2 x, \int \frac{1}{\sqrt{u}}, 2 u^{\frac{1}{2}}$,

$$
u=\sqrt{16+6 x-x^{2}}, \frac{\mathrm{~d} u}{\mathrm{~d} x}=(6-2 x) \frac{1}{2}\left(16+6 x-x^{2}\right)^{-\frac{1}{2}}, \int 2 \mathrm{~d} u, 2 u
$$

$\int f(x) \mathrm{d} x=2 \sqrt{16+6 x-x^{2}}$
substituting both of their limits into their integrated function and subtracting
eg $\quad 2 \sqrt{16+6(3)-3^{2}}-2 \sqrt{16+6(0)^{2}-0^{2}}, 2 \sqrt{16+18-9}-2 \sqrt{16}$
Note: Award M0 if they substitute into original or differentiated function. Do not accept only " -0 " as evidence of substituting lower limit.

correct working

(A1)
eg $\quad 2 \sqrt{25}-2 \sqrt{16}, 10-8$
area $=2$

Question 6 continued
METHOD 2 (limits in terms of u)
valid approach to find x-intercept
eg $\quad f(x)=0, \frac{6-2 x}{\sqrt{16+6 x-x^{2}}}=0,6-2 x=0$
x-intercept is 3
valid approach using substitution or inspection
eg $\quad u=16+6 x-x^{2}, \int_{0}^{3} \frac{6-2 x}{\sqrt{u}} \mathrm{~d} x, \mathrm{~d} u=6-2 x, \int \frac{1}{\sqrt{u}}$,

$$
u=\sqrt{16+6 x-x^{2}}, \frac{\mathrm{~d} u}{\mathrm{~d} x}=(6-2 x) \frac{1}{2}\left(16+6 x-x^{2}\right)^{-\frac{1}{2}}, \int 2 \mathrm{~d} u
$$

correct integration
(A2)
eg $\quad \int \frac{1}{\sqrt{u}} \mathrm{~d} u=2 u^{\frac{1}{2}}, \int 2 \mathrm{~d} u=2 u$
both correct limits for u
eg $\quad u=16$ and $u=25, \int_{16}^{25} \frac{1}{\sqrt{u}} \mathrm{~d} u,\left[2 u^{\frac{1}{2}}\right]_{16}^{25}, u=4$ and $u=5, \int_{4}^{5} 2 \mathrm{~d} u,[2 u]_{4}^{5}$
substituting both of their limits for u (do not accept 0 and 3) into their integrated function and subtracting
eg $\quad 2 \sqrt{25}-2 \sqrt{16}, 10-8$
Note: Award $\boldsymbol{M 0}$ if they substitute into original or differentiated function, or if they have not attempted to find limits for u.

$$
\text { area }=2
$$

7. METHOD 1

correct substitution into formula for $\cos (2 x)$ or $\sin (2 x)$
(A1)
eg $\quad 1-2\left(\frac{1}{3}\right)^{2}, 2\left(\frac{\sqrt{8}}{3}\right)^{2}-1,2\left(\frac{1}{3}\right)\left(\frac{\sqrt{8}}{3}\right),\left(\frac{\sqrt{8}}{3}\right)^{2}-\left(\frac{1}{3}\right)^{2}$
$\cos (2 x)=\frac{7}{9}$ or $\sin (2 x)=\frac{2 \sqrt{8}}{9} \quad\left(=\frac{\sqrt{32}}{9}=\frac{4 \sqrt{2}}{9}\right) \quad$ (may be seen in substitution)
recognizing $4 x$ is double angle of $2 x$ (seen anywhere)
eg $\quad \cos (2(2 x)), 2 \cos ^{2}(2 \theta)-1,1-2 \sin ^{2}(2 \theta), \cos ^{2}(2 \theta)-\sin ^{2}(2 \theta)$
correct substitution of their value of $\cos (2 x)$ and/or $\sin (2 x)$ into formula for $\cos (4 x)$ (A1)
eg $\quad 2\left(\frac{7}{9}\right)^{2}-1, \frac{98}{81}-1,1-2\left(\frac{2 \sqrt{8}}{9}\right)^{2}, 1-\frac{64}{81},\left(\frac{7}{9}\right)^{2}-\left(\frac{2 \sqrt{8}}{9}\right)^{2}, \frac{49}{81}-\frac{32}{81}$
$\cos (4 x)=\frac{17}{81}$
A1
N2

METHOD 2

recognizing $4 x$ is double angle of $2 x$ (seen anywhere)
eg $\quad \cos (2(2 x))$
double angle identity for $2 x$
eg $\quad 2 \cos ^{2}(2 \theta)-1,1-2 \sin ^{2}(2 x), \cos ^{2}(2 \theta)-\sin ^{2}(2 \theta)$
correct expression for $\cos (4 x)$ in terms of $\sin x$ and/or $\cos x$
eg $\quad 2\left(1-2 \sin ^{2} \theta\right)^{2}-1,1-2(2 \sin x \cos x)^{2},\left(1-2 \sin ^{2} \theta\right)^{2}-(2 \sin \theta \cos \theta)^{2}$
correct substitution for $\sin x$ and/or $\cos x$
eg $\quad 2\left(1-2\left(\frac{1}{3}\right)^{2}\right)^{2}-1,2\left(1-4\left(\frac{1}{3}\right)^{2}+4\left(\frac{1}{3}\right)^{4}\right)-1,1-2\left(2 \times \frac{1}{3} \times \frac{\sqrt{8}}{3}\right)^{2}$
correct working
eg $\quad 2\left(\frac{49}{81}\right)-1,1-2\left(\frac{32}{81}\right), \frac{49}{81}-\frac{32}{81}$
$\cos (4 x)=\frac{17}{81}$

Section B

8. (a) valid approach
eg $\quad f(x)=0, x^{2}-4 x-5=0$
valid attempt to solve quadratic equation
eg factorizing, formula, completing the square
evidence of correct working
eg $\quad(x-5)(x+1), x=\frac{4 \pm \sqrt{16-4(-5)}}{2}$
$x=-1, x=5 \quad(\operatorname{accept}(-1,0),(5,0))$
A1A1
N3 [5 marks]
(b) correct working
eg $\frac{-(-4)}{2(1)}, \frac{-1+5}{2}$
$x=2$ (must be an equation with $x=$)
(c) (i) $h=2$

A1
N1
(ii) METHOD 1
valid approach
eg $\quad f(2)$
correct substitution
eg (2) ${ }^{2}-4(2)-5$
$k=-9$
A1

METHOD 2

valid attempt to complete the square
eg $\quad x^{2}-4 x+4$
correct working
eg $\quad\left(x^{2}-4 x+4\right)-4-5,(x-2)^{2}-9$
$k=-9$

A1
[4 marks]

Question 8 continued
(d) METHOD 1 (working with vertex)
vertex of f is at $(2,-9)$
correct horizontal reflection
eg $\quad x=-2,(-2,-9)$
valid approach for translation of their x or y value
eg $\quad x-3, y+6,\binom{-2}{-9}+\binom{-3}{6}$, one correct coordinate for vertex
vertex of g is $(-5,-3) \quad$ (accept $x=-5, y=-3) \quad$ A1A1

METHOD 2 (working with function)
correct approach for horizontal reflection
eg $\quad f(-x)$
correct horizontal reflection
eg $\quad(-x)^{2}-4(-x)-5, x^{2}+4 x-5,(-x-2)^{2}-9$
valid approach for translation of their x or y value
eg $\quad(x+3)^{2}+4(x+3)-5+6, x^{2}+10 x+22,(x+5)^{2}-3$, one correct coordinate for vertex
vertex of g is $(-5,-3) \quad$ (accept $x=-5, y=-3$)
A1A1 N1N1
9. (a) (i) $\frac{2}{n}$

A1
N1
(ii) correct probability for one of the draws
eg $\quad \mathrm{P}($ not blue first $)=\frac{n-2}{n}$, blue second $=\frac{2}{n-1}$
valid approach
(M1)
eg recognizing loss on first in order to win on second, $\mathrm{P}\left(B^{\prime}\right.$ then $\left.B\right), \mathrm{P}\left(B^{\prime}\right) \times \mathrm{P}\left(B \mid B^{\prime}\right)$, tree diagram
correct expression in terms of n
A1
eg $\frac{n-2}{n} \times \frac{2}{n-1}, \frac{2 n-4}{n^{2}-n}, \frac{2(n-2)}{n(n-1)}$
(b) (i) correct working
eg $\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}$
$\frac{12}{60}\left(=\frac{1}{5}\right)$

A1 N2

(A1)

A1 N2
[4 marks]
continued...

Question 9 continued
(c) correct probabilities (seen anywhere)
(A1)(A1)
eg $\quad \mathrm{P}(1)=\frac{2}{5}, \mathrm{P}(2)=\frac{6}{20} \quad$ (may be seen on tree diagram)
valid approach to find $\mathrm{E}(M)$ or expected winnings using their probabilities
(M1)
eg $\mathrm{P}(1) \times(0)+\mathrm{P}(2) \times(20)+\mathrm{P}(3) \times(8 k)+\mathrm{P}(4) \times(12 k)$,
$\mathrm{P}(1) \times(-20)+\mathrm{P}(2) \times(0)+\mathrm{P}(3) \times(8 k-20)+\mathrm{P}(4) \times(12 k-20)$
correct working to find $\mathrm{E}(M)$ or expected winnings
eg $\quad \frac{2}{5}(0)+\frac{3}{10}(20)+\frac{1}{5}(8 k)+\frac{1}{10}(12 k)$,
$\frac{2}{5}(-20)+\frac{3}{10}(0)+\frac{1}{5}(8 k-20)+\frac{1}{10}(12 k-20)$
correct equation for fair game A1
eg $\quad \frac{3}{10}(20)+\frac{1}{5}(8 k)+\frac{1}{10}(12 k)=20, \frac{2}{5}(-20)+\frac{1}{5}(8 k-20)+\frac{1}{10}(12 k-20)=0$
correct working to combine terms in k
(A1)
eg $\quad-8+\frac{14}{5} k-4-2=0,6+\frac{14}{5} k=20, \frac{14}{5} k=14$
$k=5$
A1

Note: Do not award the final A1 if the candidate's FT probabilities do not sum to 1 .
10. (a) valid approach
eg $\quad f(0), 0^{3}-2(0)^{2}+a(0)+6, f(0)=6,(0, y)$
$(0,6)$ (accept $x=0$ and $y=6)$
A1
(b) (i) $f^{\prime}=3 x^{2}-4 x+a$

A2
(ii) valid approach
(M1)
eg $f^{\prime}(0)$
correct working
(A1)
eg $3(0)^{2}-4(0)+a$, slope $=a, f^{\prime}(0)=a$
attempt to substitute gradient and coordinates into linear equation
eg $\quad y-6=a(x-0), y-0=a(x-6), \quad 6=a(0)+c, L=a x+6$
correct equation
A1
N3
eg $y=a x+6, y-6=a x, y-6=a(x-0)$
(c) valid approach to find intersection
eg $\quad f(x)=L$
correct equation
(A1)
eg $\quad x^{3}-2 x^{2}+a x+6=a x+6$
correct working
eg $\quad x^{3}-2 x^{2}=0, x^{2}(x-2)=0$
$x=2$ at Q
valid approach to find minimum
(M1)
eg $\quad f^{\prime}(x)=0$
correct equation
eg $\quad 3 x^{2}-4 x+a=0$
substitution of their value of x at Q into their $f^{\prime}(x)=0$ equation
eg $\quad 3(2)^{2}-4(2)+a=0,12-8+a=0$
$a=-4$

A1
NO
[8 marks]
Total [16 marks]

Markscheme

May 2018

Mathematics

Standard level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation
where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer
Units will appear in brackets at the end.

Section A

1. (a) $f(14)=4$
(b) attempt to substitute
eg $\quad g(4), 3 \times 4-7$
5
(c) interchanging x and y (seen anywhere)
eg $\quad x=3 y-7$
evidence of correct manipulation
eg $\quad x+7=3 y$
$g^{-1}(x)=\frac{x+7}{3}$
A1
N3
[3 marks]
Total [6 marks]
(M1)
eg 4,11 , indicated on diagram
$\mathrm{IQR}=7$
A1
N2 [2 marks]
(b) recognizing the need to find 1.5 IQR
(M1)
eg $\quad 1.5 \times \mathrm{IQR}, 1.5 \times 7$
valid approach to find k
(M1)
eg $\quad 10.5+11,1.5 \times \mathrm{IQR}+Q_{3}$
21.5
(A1)
$k=22$
Note: If no working shown, award $\mathbf{N} \mathbf{2}$ for an answer of 21.5.
[4 marks]
2. (a) (i) $f(0)=-\frac{1}{2}$

A1
N1
(ii) $\quad f^{-1}(1)=2$

A1
N1 [2 marks]
(b) $-2 \leq y \leq 2, y \in[-2,2]($ accept $-2 \leq x \leq 2)$

A1
N1 [1 mark]
(c)

Note: Award A1 for evidence of approximately correct reflection in $y=x$ with correct curvature.
($y=x$ does not need to be explicitly seen)
Only if this mark is awarded, award marks as follows:
A1 for both correct invariant points in circles,
A1 for the three other points in circles,
A1 for correct domain.
4. (a) METHOD 1 (using symmetry to find p)
(i) valid approach
(M1)

$p=1 \quad$ A1 N2

Note: Award no marks if they work backwards by substituting $a=2$ into $-\frac{b}{2 a}$ to find p. Do not accept $p=\frac{2}{a}$.
(ii) valid approach
eg $\quad-\frac{b}{2 a}, \frac{4}{2 a}$ (might be seen in (i)), $f^{\prime}(1)=0$
correct equation
eg $\quad \frac{4}{2 a}=1,2 a(1)-4=0$
$a=2$
AG
METHOD 2 (calculating a first)
(i) \& (ii) valid approach to calculate a
eg $\quad a+4-c=a\left(3^{2}\right)-4(3)-c, f(-1)=f(3)$
correct working
eg $\quad 8 a=16$
$a=2<\quad$ AG
valid approach to find p
eg $\quad-\frac{b}{2 a}, \frac{4}{2(2)}$

$$
p=1
$$

(b) valid approach
(M1)
eg $\quad f(-1)=5, f(3)=5$
correct working
eg $2+4-c=5,18-12-c=5$
$c=1$

A1 N2
[3 marks]
5. (a) correct working
eg $\quad \int \frac{1}{2 x-1} \mathrm{~d} x, \int(2 x-1)^{-1}, \frac{1}{2 x-1}, \int\left(\frac{1}{\sqrt{u}}\right)^{2} \frac{\mathrm{~d} u}{2}$

$$
\int(f(x))^{2} \mathrm{~d} x=\frac{1}{2} \ln (2 x-1)+c
$$

Note: Award $\boldsymbol{A 1}$ for $\frac{1}{2} \ln (2 x-1)$.
(b) attempt to substitute either limits or the function into formula involving f^{2} (accept absence of $\pi / \mathrm{d} x$)
(M1)
eg $\quad \int_{1}^{9} y^{2} \mathrm{~d} x, \pi \int\left(\frac{1}{\sqrt{2 x-1}}\right)^{2} \mathrm{~d} x,\left[\frac{1}{2} \ln (2 x-1)\right]_{1}^{9}$
substituting limits into their integral and subtracting (in any order)
(M1)
eg $\quad \frac{\pi}{2}(\ln (17)-\ln (1)), \pi\left(0-\frac{1}{2} \ln (2 \times 9-1)\right)$
correct working involving calculating a log value or using log law
(A1)
eg $\quad \ln (1)=0, \ln \left(\frac{17}{1}\right)$
$\frac{\pi}{2} \ln 17 \quad$ (accept $\pi \ln \sqrt{17}$)
A1
N3

Note: Full FT may be awarded as normal, from their incorrect answer in part (a), however, do not award the final two \boldsymbol{A} marks unless they involve logarithms.
6. METHOD 1 (using $|\boldsymbol{p} \| 2 \boldsymbol{q}| \cos \theta$)
finding $\boldsymbol{p}+\boldsymbol{q}+\boldsymbol{r}$
eg $2 \boldsymbol{q}$,

$|\boldsymbol{p}+\boldsymbol{q}+\boldsymbol{r}|=2 \times 3$ (=6) (seen anywhere)
correct angle between \boldsymbol{p} and \boldsymbol{q} (seen anywhere)
$\frac{\pi}{3}$ (accept 60°)
substitution of their values
eg $3 \times 6 \times \cos \left(\frac{\pi}{3}\right)$
correct value for $\cos \left(\frac{\pi}{3}\right)$ (seen anywhere)
eg $\quad \frac{1}{2}, 3 \times 6 \times \frac{1}{2}$
$\boldsymbol{p} \cdot(\boldsymbol{p}+\boldsymbol{q}+\boldsymbol{r})=9$

N3

METHOD 2 (scalar product using distributive law)
correct expression for scalar distribution
eg $\quad \boldsymbol{p} \cdot \boldsymbol{p}+\boldsymbol{p} \cdot \boldsymbol{q}+\boldsymbol{p} \cdot \boldsymbol{r}$
three correct angles between the vector pairs (seen anywhere)
eg $\quad 0^{\circ}$ between \boldsymbol{p} and $\boldsymbol{p}, \frac{\pi}{3}$ between \boldsymbol{p} and $\boldsymbol{q}, \frac{2 \pi}{3}$ between \boldsymbol{p} and \boldsymbol{r}
Note: Award A1 for only two correct angles.
substitution of their values
eg $3 \cdot 3 \cdot \cos 0+3 \cdot 3 \cdot \cos \frac{\pi}{3}+3 \cdot 3 \cdot \cos 120$
one correct value for $\cos 0, \cos \left(\frac{\pi}{3}\right)$ or $\cos \left(\frac{2 \pi}{3}\right)$ (seen anywhere)
eg $\frac{1}{2}, 3 \times 6 \times \frac{1}{2}$

$$
\boldsymbol{p} \cdot(\boldsymbol{p}+\boldsymbol{q}+\boldsymbol{r})=9
$$

Question 6 continued

METHOD 3 (scalar product using relative position vectors)
valid attempt to find one component of \boldsymbol{p} or \boldsymbol{r}
(M1)
eg $\quad \sin 60=\frac{x}{3}, \cos 60=\frac{x}{3}$, one correct value $\frac{3}{2}, \frac{3 \sqrt{3}}{2}, \frac{-3 \sqrt{3}}{2}$
one correct vector (two or three dimensions) (seen anywhere)
eg $\quad p=\binom{\frac{3}{2}}{\frac{3 \sqrt{3}}{2}}, \quad q=\binom{3}{0}, \quad r=\left(\begin{array}{c}\frac{3}{2} \\ -\frac{3 \sqrt{3}}{2} \\ 0\end{array}\right)$
three correct vectors or $\boldsymbol{p}+\boldsymbol{q}+\boldsymbol{r}=2 \boldsymbol{q}$
$\boldsymbol{p}+\boldsymbol{q}+\boldsymbol{r}=\binom{6}{0}$ or $\left(\begin{array}{l}6 \\ 0 \\ 0\end{array}\right)$ (seen anywhere, including scalar product)
eg $\quad\left(\frac{3}{2} \times 6\right)+\left(\frac{3 \sqrt{3}}{2} \times 0\right), 9+0+0$
$\boldsymbol{p} \cdot(\boldsymbol{p}+\boldsymbol{q}+\boldsymbol{r})=9$
7. recognizing the need to find h^{\prime}
recognizing the need to find $h^{\prime}(3)$ (seen anywhere)
evidence of choosing chain rule
eg $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}, f^{\prime}(g(3)) \times g^{\prime}(3), f^{\prime}(g) \times g^{\prime}$
correct working
eg $\quad f^{\prime}(7) \times 4,-5 \times 4$
$h^{\prime}(3)=-20$
evidence of taking their negative reciprocal for normal
eg $\quad-\frac{1}{h^{\prime}(3)}, m_{1} m_{2}=-1$
gradient of normal is $\frac{1}{20}$

Section B

8. (a) evidence of integration
(M1)
eg $\quad \int f^{\prime}(x)$
correct integration (accept absence of C)
(A1)(A1)
eg $\quad x^{3}+\frac{18}{2} x^{2}+C, x^{3}+9 x^{2}$
attempt to substitute $x=-1$ into their $f=0$ (must have C)
eg $\quad(-1)^{3}+9(-1)^{2}+C=0,-1+9+C=0$

Note: Award M0 if they substitute into original or differentiated function.
correct working
eg $\quad 8+C=0, C=-8$

$$
f(x)=x^{3}+9 x^{2}-8
$$

(b) METHOD 1 (using $2^{\text {nd }}$ derivative)
recognizing that $f^{\prime \prime}=0$ (seen anywhere)
correct expression for $f^{\prime \prime}$
eg $6 x+18,6 p+18$
correct working
$6 p+18=0$
$p=-3$
A1
N3
METHOD 2 (using $1^{\text {st }}$ derivative)
recognizing the vertex of f^{\prime} is needed
eg $\quad-\frac{b}{2 a}$ (must be clear this is for f^{\prime})
correct substitution
eg $\frac{-18}{2 \times 3}$
$p=-3$

A1
[4 marks]

Question 8 continued
(c) valid attempt to use $f^{\prime \prime}(x)$ to determine concavity

correct working
eg $6 x+18<0, f^{\prime \prime}(-2)=6, f^{\prime \prime}(-4)=-6, \ldots,+\quad f^{\prime \prime}$
f concave down for $x<-3$ (do not accept $x \leq-3$)
[3 marks]
9. (a) correct approach
eg $\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OB}}, \mathrm{B}-\mathrm{A},\left(\begin{array}{c}2 \\ -4 \\ -4\end{array}\right)-\left(\begin{array}{c}-4 \\ -12 \\ 1\end{array}\right)$
$\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}6 \\ 8 \\ -5\end{array}\right)$
(b) (i) any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+\boldsymbol{t} \boldsymbol{b}$ (any parameter for t)

A2
N2
where \boldsymbol{a} is $\left(\begin{array}{c}2 \\ -4 \\ -4\end{array}\right)$ or $\left(\begin{array}{c}-4 \\ -12 \\ 1\end{array}\right)$ and \boldsymbol{b} is a scalar multiple of $\left(\begin{array}{c}6 \\ 8 \\ -5\end{array}\right)$
eg $\quad \boldsymbol{r}=\left(\begin{array}{c}-4 \\ -12 \\ 1\end{array}\right)+t\left(\begin{array}{c}6 \\ 8 \\ -5\end{array}\right),(x, y, z)=(2,-4,-4)+t(6,8,-5), \boldsymbol{r}=\left(\begin{array}{c}-4+6 t \\ -12+8 t \\ 1-5 t\end{array}\right)$
Note: Award $\boldsymbol{A} \mathbf{1}$ for the form $\boldsymbol{a}+\boldsymbol{t}, \boldsymbol{A} \mathbf{1}$ for the form $\boldsymbol{L}=\boldsymbol{a}+\boldsymbol{b}, \boldsymbol{A} \boldsymbol{0}$ for the form $\boldsymbol{r}=\boldsymbol{b}+t \boldsymbol{a}$.
(ii) METHOD 1 (solving for t)
valid approach
eg $\quad\left(\begin{array}{c}k \\ 12 \\ -k\end{array}\right)=\left(\begin{array}{c}2 \\ -4 \\ -4\end{array}\right)+t\left(\begin{array}{c}6 \\ 8 \\ -5\end{array}\right),\left(\begin{array}{c}k \\ 12 \\ -k\end{array}\right)=\left(\begin{array}{c}-4 \\ -12 \\ 1\end{array}\right)+t\left(\begin{array}{c}6 \\ 8 \\ -5\end{array}\right)$
one correct equation
eg $-4+8 t=12,-12+8 t=12$
correct value for t
eg $\quad t=2$ or 3
correct substitution
eg $2+6(2),-4+6(3),-[1+3(-5)]$
$k=14$
AG

METHOD 2 (solving simultaneously)
valid approach
(M1)
$e g \quad\left(\begin{array}{c}k \\ 12 \\ -k\end{array}\right)=\left(\begin{array}{c}2 \\ -4 \\ -4\end{array}\right)+t\left(\begin{array}{c}6 \\ 8 \\ -5\end{array}\right),\left(\begin{array}{c}k \\ 12 \\ -k\end{array}\right)=\left(\begin{array}{c}-4 \\ -12 \\ 1\end{array}\right)+t\left(\begin{array}{c}6 \\ 8 \\ -5\end{array}\right)$
two correct equations in
eg $\quad k=-4+6 t,-k=1-5 t$
EITHER (eliminating k)
correct value for t
eg $\quad t=2$ or 3
correct substitution
eg $2+6(2),-4+6(3)$
OR (eliminating t)
correct equation(s)
eg $\quad 5 k+20=30 t$ and $-6 k-6=-30 t,-k=1-5\left(\frac{k+4}{6}\right)$
correct working clearly leading to $k=14$

$$
e g \quad-k+14=0,-6 k=6-5 k-20,5 k=-20+6(1+k)
$$

THEN

$k=14$

Question 9 continued
(c) (i) correct substitution into scalar product
eg (2)(6)-(4)(8)-(4)(-5), 12-32+20

$$
\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{AB}}=0
$$

A1
No
(ii) $\mathrm{OB} \mathrm{A}=\frac{\pi}{2}, 90^{\circ}\left(\right.$ accept $\left.\frac{3 \pi}{2}, 270^{\circ}\right)$

A1 N1
(d) METHOD $1\left(\frac{1}{2} \times\right.$ height \times CD $)$
recognizing that OB is altitude of triangle with base CD (seen anywhere)
eg $\quad \frac{1}{2} \times|\overrightarrow{\mathrm{OB}}| \times|\overrightarrow{\mathrm{CD}}|, \mathrm{OB} \perp \mathrm{CD}$, sketch showing right angle at B

$\overrightarrow{\mathrm{CD}}=\left(\begin{array}{c}-6 \\ -8 \\ 5\end{array}\right)$ or $\overrightarrow{\mathrm{DC}}=\left(\begin{array}{c}6 \\ 8 \\ -5\end{array}\right)$ (seen anywhere)
(A1)
correct magnitudes (seen anywhere)
$|\overrightarrow{\mathrm{OB}}|=\sqrt{(2)^{2}+(-4)^{2}+(-4)^{2}}(=\sqrt{36})$
. $|\overrightarrow{\mathrm{CD}}|=\sqrt{(-6)^{2}+(-8)^{2}+(5)^{2}}(=\sqrt{125})$
correct substitution into $\frac{1}{2} b h$
eg $\quad \frac{1}{2} \times 6 \times \sqrt{125}$
area $=3 \sqrt{125}, 15 \sqrt{5}$

METHOD 2 (subtracting triangles)

recognizing that OB is altitude of either $\triangle \mathrm{OBD}$ or $\triangle \mathrm{OBC}$ (seen anywhere) $\boldsymbol{M 1}$ eg $\quad \frac{1}{2} \times|\overrightarrow{\mathrm{OB}}| \times|\overrightarrow{\mathrm{BD}}|$, $\mathrm{OB} \perp \mathrm{BC}$, sketch of triangle showing right angle at B

one correct vector $\overrightarrow{\mathrm{BD}}$ or $\overrightarrow{\mathrm{DB}}$ or $\overrightarrow{\mathrm{BC}}$ or $\overrightarrow{\mathrm{CB}}$ (seen anywhere)
(A1)
eg $\quad \overrightarrow{\mathrm{BD}}=\left(\begin{array}{c}6 \\ 8 \\ -5\end{array}\right), \overrightarrow{\mathrm{CB}}=\left(\begin{array}{c}-12 \\ -16 \\ 10\end{array}\right)$
$|\overrightarrow{\mathrm{OB}}|=\sqrt{(2)^{2}+(-4)^{2}+(-4)^{2}}(=\sqrt{36}) \quad$ (seen anywhere)
(A1)
one correct magnitude of a base (seen anywhere)
$|\overrightarrow{\mathrm{BD}}|=\sqrt{(6)^{2}+(8)^{2}+(5)^{2}}(=\sqrt{125}),|\overrightarrow{\mathrm{BC}}|=\sqrt{144+256+100}(=\sqrt{500})$
correct working
eg $\frac{1}{2} \times 6 \times \sqrt{500}-\frac{1}{2} \times 6 \times 5 \sqrt{5}, \frac{1}{2} \times 6 \times \sqrt{500} \times \sin 90-\frac{1}{2} \times 6 \times 5 \sqrt{5} \times \sin 90$
area $=3 \sqrt{125}, 15 \sqrt{5}$
A1
N3
continued...

Question 9 continued

METHOD 3 (using $\frac{1}{2} a b \sin C$ with $\triangle \mathrm{OCD}$) two correct side lengths (seen anywhere)

(A1)(A1)

$|\overrightarrow{\mathrm{OD}}|=\sqrt{(8)^{2}+(4)^{2}+(-9)^{2}}(=\sqrt{161}),|\overrightarrow{\mathrm{CD}}|=\sqrt{(-6)^{2}+(-8)^{2}+(5)^{2}}(=\sqrt{125})$,
$|\overrightarrow{\mathrm{OC}}|=\sqrt{(14)^{2}+(12)^{2}+(-14)^{2}}(=\sqrt{536})$
attempt to find cosine ratio (seen anywhere)
eg $\frac{536-286}{-2 \sqrt{161} \sqrt{125}}, \frac{\mathrm{OD} \cdot \mathrm{DC}}{|\mathrm{OD}||\mathrm{DC}|}$
correct working for sine ratio
eg $\frac{(125)^{2}}{161 \times 125}+\sin ^{2} D=1$
correct substitution into $\frac{1}{2} a b \sin C$
eg $\quad 0.5 \times \sqrt{161} \times \sqrt{125} \times \frac{6}{\sqrt{161}}$
area $=3 \sqrt{125}, 15 \sqrt{5}$
10. (a) (i) valid approach
eg $\frac{u_{2}}{u_{1}}, \frac{u_{1}}{u_{2}}$
$r=\frac{12 \sin ^{2} \theta}{18}\left(=\frac{2 \sin ^{2} \theta}{3}\right)$
A1
(ii) recognizing that $\sin \theta$ is bounded
eg $0 \leq \sin ^{2} \theta \leq 1,-1 \leq \sin \theta \leq 1,-1<\sin \theta<1$
$0<r \leq \frac{2}{3}$
Note: If working shown, award M1A1 for correct values with incorrect inequality sign(s). If no working shown, award N1 for correct values with incorrect inequality sign(s).
(b) correct substitution into formula for infinite sum
eg $\frac{18}{1-\frac{2 \sin ^{2} \theta}{3}}$
evidence of choosing an appropriate rule for $\cos 2 \theta$ (seen anywhere)
(M1)
eg $\cos 2 \theta=1-2 \sin ^{2} \theta$
correct substitution of identity/working (seen anywhere)
eg $\frac{18}{1-\frac{2}{3}\left(\frac{1-\cos 2 \theta}{2}\right)}, \frac{54}{3-2\left(\frac{1-\cos 2 \theta}{2}\right)}, \frac{18}{\frac{3-2 \sin ^{2} \theta}{3}}$
correct working that clearly leads to the given answer
eg $\frac{18 \times 3}{2+\left(1-2 \sin ^{2} \theta\right)}, \frac{54}{3-(1-\cos 2 \theta)}$
$\frac{54}{2+\cos (2 \theta)}$

Question 10 continued
(c) METHOD 1 (using differentiation)
recognizing $\frac{\mathrm{d} S_{\infty}}{\mathrm{d} \theta}=0$ (seen anywhere)
(M1)
finding any correct expression for $\frac{\mathrm{d} S_{\infty}}{\mathrm{d} \theta}$
eg $\frac{0-54 \times(-2 \sin 2 \theta)}{(2+\cos 2 \theta)^{2}},-54(2+\cos 2 \theta)^{-2}(-2 \sin 2 \theta)$
correct working
eg $\sin 2 \theta=0$
any correct value for $\sin ^{-1}(0)$ (seen anywhere)
eg $\quad 0, \pi, \ldots$, sketch of sine curve with x-intercept(s) marked
both correct values for 2θ (ignore additional values)
$2 \theta=\pi, 3 \pi$ (accept values in degrees)
both correct answers $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}$
Note: Award $A 0$ if either or both correct answers are given in degrees. Award $A 0$ if additional values are given.

Question 10 continued

METHOD 2 (using denominator)
recognizing when S_{∞} is greatest
(M1)
eg $2+\cos 2 \theta$ is a minimum, $1-r$ is smallest
correct working
eg minimum value of $2+\cos 2 \theta$ is 1 , minimum $r=\frac{2}{3}$
correct working
eg $\quad \cos 2 \theta=-1, \frac{2}{3} \sin ^{2} \theta=\frac{2}{3}, \sin ^{2} \theta=1$
EITHER (using $\cos 2 \theta$)
any correct value for $\cos ^{-1}(-1)$ (seen anywhere)
eg $\pi, 3 \pi, \ldots$ (accept values in degrees), sketch of cosine curve with x-intercept(s) marked
both correct values for 2θ (ignore additional values)
$2 \theta=\pi, 3 \pi$ (accept values in degrees)
OR (using $\sin \theta$)
$\sin \theta= \pm 1$
$\sin ^{-1}(1)=\frac{\pi}{2}$ (accept values in degrees) (seen anywhere)

THEN

both correct answers $\theta=\frac{\pi}{2}, \frac{3 \pi}{2}$
Note: Award A0 if either or both correct answers are given in degrees. Award $A 0$ if additional values are given.
[6 marks]
Total [15 marks]

Markscheme

May 2018

Mathematics

Standard level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation
where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \mathbf{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer
Units will appear in brackets at the end.

Section A

1. (a) any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+t \boldsymbol{b}$ (accept any parameter for t)
where \boldsymbol{a} is $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$, and \boldsymbol{b} is a scalar multiple of $\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$
eg $\quad \boldsymbol{r}=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)+t\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right), \boldsymbol{r}=2 \boldsymbol{i}+\boldsymbol{j}+3 \boldsymbol{k}+s(\boldsymbol{i}+3 \boldsymbol{j}+\boldsymbol{k})$
Note: Award $\boldsymbol{A} \mathbf{1}$ for the form $\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{A} \mathbf{1}$ for the form $L=\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{A} \boldsymbol{0}$ for the form $\boldsymbol{r}=\boldsymbol{b}+\boldsymbol{t a}$.
(b) METHOD 1
correct scalar product
eg $\quad(1 \times 2)+(3 \times p)+(1 \times 0), 2+3 p$
evidence of equating their scalar product to zero
(M1)
eg $\quad \boldsymbol{a} \cdot \boldsymbol{b}=0,2+3 p=0 \quad 3 p=-2$
$p=-\frac{2}{3}$
A1
N3

METHOD 2

valid attempt to find angle between vectors
correct substitution into numerator and/or angle
eg $\cos \theta=\frac{(1 \times 2)+(3 \times p)+(1 \times 0)}{|a||b|}, \cos \theta=0$
$p=-\frac{2}{3}$
2. (a) $2 x^{3}-\frac{3 x^{2}}{2}+c\left(\right.$ accept $\left.\frac{6 x^{3}}{3}-\frac{3 x^{2}}{2}+c\right)$

A1A1
N2

Notes: Award A1AO for both correct terms if $+c$ is omitted.
Award A1AO for one correct term eg $2 x^{3}+c$.
Award A1AO if both terms are correct, but candidate attempts further working to solve for c.
(b) substitution of limits or function
eg $\int_{1}^{2} f(x) \mathrm{d} x,\left[2 x^{3}-\frac{3 x^{2}}{2}\right]_{1}^{2}$
substituting limits into their integrated function and subtracting
(M1)
eg $\frac{6 \times 2^{3}}{3}-\frac{3 \times 2^{2}}{2}-\left(\frac{6 \times 1^{3}}{3}-\frac{3 \times 1^{2}}{2}\right)$
Note: Award $M 0$ if substituted into original function.
correct working
eg $\frac{6 \times 8}{3}-\frac{3 \times 4}{2}-\frac{6 \times 1}{3}+\frac{3 \times 1}{2},(16-6)-\left(2-\frac{3}{2}\right)$
$\frac{19}{2}$

A1
N3
[4 marks]
[Total: 6 marks]
3. (a) correct approach
eg $\quad \frac{800}{n}=20$
40
A1
N2
[2 marks]
(b) (i) 200
(ii) METHOD 1
recognizing variance $=\sigma^{2}$
(M1)
eg $3^{2}=9$
correct working to find new variance
(A1)
eg $\sigma^{2} \times 10^{2}, 9 \times 100$
900
A1
METHOD 2
new standard deviation is 30
recognizing variance $=\sigma^{2}$
(M1)

A1 N3
[4 marks]
[Total: 6 marks]
4. evidence of correctly substituting into circle formula (may be seen later)
eg $\quad \frac{1}{2} \theta r^{2}=12, r \theta=6$
attempt to eliminate one variable
eg $\quad r=\frac{6}{\theta}, \theta=\frac{l}{r}, \frac{\frac{1}{2} \theta r^{2}}{r \theta}=\frac{12}{6}$
correct elimination
eg $\quad \frac{1}{2} \times \frac{6}{r} \times r^{2}=12, \frac{1}{2} \theta \times\left(\frac{6}{\theta}\right)^{2}=12, A=\frac{1}{2} \times r^{2} \times \frac{l}{r}, \frac{r^{2}}{2 r}=2$
correct equation
(A1)
eg $\quad \frac{1}{2} \times 6 r=12, \frac{1}{2} \times \frac{36}{\theta}=12,12=\frac{1}{2} \times r^{2} \times \frac{6}{r}$
correct working
eg $\quad 3 r=12, \frac{18}{\theta}=12, \frac{r}{2}=2,24=6 r$

$$
r=4(\mathrm{~cm})
$$

5. (a)

(b) recognizing horizontal shift/translation of 1 unit
eg $\quad b=1$, moved 1 right
recognizing vertical stretch/dilation with scale factor 2
eg $\quad a=2, y \times(-2)$
$a=-2, b=-1$
A1A1 N2N2
[4 marks]
[Total: 6 marks]

6. METHOD 1

evidence of discriminant

correct substitution into discriminant

eg $\quad q^{2}-4 p(-4 p)$
correct discriminant
A1
eg $\quad q^{2}+16 p^{2}$
$16 p^{2}>0$ (accept $p^{2}>0$) A1
$q^{2} \geq 0 \quad$ (do not accept $q^{2}>0$) A1
$q^{2}+16 p^{2}>0 \quad$ A1
f has 2 roots \quad A1

METHOD 2

y-intercept $=-4 p \quad$ (seen anywhere) A1
if p is positive, then the y-intercept will be negative A1
an upward-opening parabola with a negative y-intercept R1
eg sketch that must indicate $p>0$.
if p is negative, then the y-intercept will be positive A1
a downward-opening parabola with a positive y-intercept R1 eg sketch that must indicate $p<0$.
f has 2 roots
A2
7. (a) valid approach involving addition or subtraction
eg $\quad u_{2}=\log _{c} p+d, u_{1}-u_{2}$
correct application of log law
eg $\quad \log _{c}(p q)=\log _{c} p+\log _{c} q, \log _{c}\left(\frac{p q}{p}\right)$
$d=\log _{c} q$

AG
[2 marks]
(b) METHOD 1 (finding u_{1} and d)
recognizing $\Sigma=S_{20}$ (seen anywhere)
attempt to find u_{1} or d using $\log _{c} c^{k}=k$
eg $2 \log _{c} c, 3 \log _{c} c$, correct value of u_{1} or d
$u_{1}=2, d=3$ (seen anywhere)
correct working
eg $\quad S_{20}=\frac{20}{2}(2 \times 2+19 \times 3), S_{20}=\frac{20}{2}(2+59), 10(61)$
$\sum_{n=1}^{20} u_{n}=610$
METHOD 2 (expressing S in terms of c)
recognizing $\sum=S_{20}$ (seen anywhere)
correct expression for S in terms of c
eg $10\left(2 \log _{c} c^{2}+19 \log _{c} c^{3}\right)$
$\log _{c} c^{2}=2, \log _{c} c^{3}=3 \quad$ (seen anywhere)
correct working
eg $\quad S_{20}=\frac{20}{2}(2 \times 2+19 \times 3), S_{20}=\frac{20}{2}(2+59), 10(61)$
$\sum_{n=1}^{20} u_{n}=610$

Question 7 continued
METHOD 3 (expressing S in terms of c)
recognizing $\sum=S_{20}$ (seen anywhere)
correct expression for S in terms of c
eg $\quad 10\left(2 \log _{c} c^{2}+19 \log _{c} c^{3}\right)$
correct application of log law
eg $\quad 2 \log _{c} c^{2}=\log _{c} c^{4}, 19 \log _{c} c^{3}=\log _{c} c^{57}, 10\left(\log _{c}\left(c^{2}\right)^{2}+\log _{c}\left(c^{3}\right)^{19}\right)$,
$10\left(\log _{c} c^{4}+\log _{c} c^{57}\right), 10\left(\log _{c} c^{61}\right)$
correct application of definition of \log
eg $\quad \log _{c} c^{61}=61, \log _{c} c^{4}=4, \log _{c} c^{57}=57$
correct working
eg $\quad S_{20}=\frac{20}{2}(4+57), 10(61)$
$\sum_{n=1}^{20} u_{n}=610$

A1
N2
[6 marks]

Section B

8. (a)

Note: Award A1 for each bold fraction.
(b) multiplying along correct branches
eg $\quad \frac{3}{4} \times \frac{1}{8}$
$P($ leaves before 07:00 \cap late $)=\frac{3}{32}$
A1 N2
[2 marks]
(c) multiplying along other "late" branch

> (M1)
eg $\frac{1}{4} \times \frac{5}{8}$
adding probabilities of two mutually exclusive late paths
eg $\quad\left(\frac{3}{4} \times \frac{1}{8}\right)+\left(\frac{1}{4} \times \frac{5}{8}\right), \frac{3}{32}+\frac{5}{32}$
$\mathrm{P}(L)=\frac{8}{32}\left(=\frac{1}{4}\right)$

A1 N2
[3 marks]
continued...

Question 8 continued
(d) recognizing conditional probability (seen anywhere)
(M1)
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}$ (before $7 \mid$ late)
correct substitution of their values into formula
eg $\frac{\frac{3}{32}}{\frac{1}{4}}$
$P($ left before 07:00 \mid late $)=\frac{3}{8}$
A1
(e) valid approach
eg $\quad 1-\mathrm{P}$ (not late twice), P (late once) +P (late twice)
correct working
eg $\quad 1-\left(\frac{3}{4} \times \frac{3}{4}\right), 2 \times \frac{1}{4} \times \frac{3}{4}+\frac{1}{4} \times \frac{1}{4}$
$\frac{7}{16}$
$\overline{16}$
(M1)

A1 [3 marks]
9. (a) correct equation for volume
eg $\quad \pi r^{2} h=20 \pi$

$$
h=\frac{20}{r^{2}}
$$

(b) attempt to find formula for cost of parts
eg $10 \times$ two circles, $8 \times$ curved side
correct expression for cost of two circles in terms of r (seen anywhere)
eg $2 \pi r^{2} \times 10$
correct expression for cost of curved side (seen anywhere)
eg $\quad 2 \pi r \times h \times 8$
correct expression for cost of curved side in terms of r
eg $8 \times 2 \pi r \times \frac{20}{r^{2}}, \frac{320 \pi r}{r^{2}}$
$C=20 \pi r^{2}+\frac{320 \pi}{r}$
(c) recognize $C^{\prime}=0$ at minimum
eg $\quad C^{\prime}=0, \frac{\mathrm{~d} C}{\mathrm{~d} r}=0$
correct differentiation (may be seen in equation)
$C^{\prime}=40 \pi r-\frac{320 \pi}{r^{2}}$
correct equation
A1
eg $\quad 40 \pi r-\frac{320 \pi}{r^{2}}=0,40 \pi r=\frac{320 \pi}{r^{2}}$
correct working
eg $\quad 40 r^{3}=320, r^{3}=8$

$$
r=2(\mathrm{~m})
$$

attempt to substitute their value of r into C
eg $\quad 20 \pi \times 4+320 \times \frac{\pi}{2}$
correct working
eg $80 \pi+160 \pi$
240π (cents)
Note: Do not accept $753.6,753.98$ or 754 , even if 240π is seen.
10. (a) (i) recognize that $f^{\prime}(x)$ is the gradient of the tangent at x
eg $\quad f^{\prime}(x)=m$

$$
f^{\prime}(2)=3 \quad(\text { accept } m=3)
$$

(ii) recognize that $f(2)=y$ (2)

> (M1)
eg $\quad f(2)=3 \times 2+1$

$$
f(2)=7
$$

A1 N2 [4 marks]

(b) recognize that the gradient of the graph of g is $g^{\prime}(x)$
choosing chain rule to find $g^{\prime}(x)$
(M1)
eg $\quad \frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}, u=x^{2}+1, u^{\prime}=2 x$
$g^{\prime}(x)=f^{\prime}\left(x^{2}+1\right) \times 2 x$
A2
$g^{\prime}(1)=3 \times 2$
A1
$g^{\prime}(1)=6$
AG
NO
[5 marks]
(M1)
(M1)
eg $\quad m=6$
finding $g(1)$ (seen anywhere)
(A1)
eg $\quad g(1)=f(2), g(1)=7$
attempt to substitute gradient and/or coordinates
into equation of a straight line
eg $\quad y-g(1)=6(x-1), y-1=g^{\prime}(1)(x-7), 7=6(1)+b$
correct equation for L_{2}
eg $\quad y-7=6(x-1), y=6 x+1$
A1
correct working to find Q
(A1)
eg same y-intercept, $3 x=0$

$$
y=1
$$

A1 N2

[7 marks]
[Total: 16 marks]

Markscheme

November 2017

Mathematics

Standard level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and A1 for using the correct values.
- Where there are two or more A marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or AO for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\mathbf{M R}$, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non- integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation
where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer
Units will appear in brackets at the end.

Section A

1. (a) correct probabilities

Note: Award A1 for each correct bold answer.
(b) multiplying along branches
eg $\quad \frac{5}{8} \times \frac{3}{7}, \frac{3}{8} \times \frac{5}{7}, \frac{15}{56}$
adding probabilities of correct mutually exclusive paths
eg $\frac{5}{8} \times \frac{3}{7}+\frac{3}{8} \times \frac{5}{7}, \frac{15}{56}+\frac{15}{56}$
$\frac{30}{56}\left(=\frac{15}{28}\right)$
A1
N2
[3 marks]
Total [6 marks]
2. (a) subtracting terms
(M1)
eg $\quad 5-8, u_{2}-u_{1}$
$d=-3$
A1
[2 marks]
(b) correct substitution into formula
eg $\quad u_{10}=8+(10-1)(-3), 8-27,-3(10)+11$
$u_{10}=-19$
(c) correct substitution into formula for sum
eg $\quad S_{10}=\frac{10}{2}(8-19), 5(2(8)+(10-1)(-3))$

$$
S_{10}=-55
$$

A1
N2
[2 marks]
(A1)
(A1)

A1
N2
[2 marks]
3. (a) correct range (do not accept $0 \leq x \leq 7$)
eg $[0,7], 0 \leq y \leq 7$
A1
N1
[1 mark]
(b) (i) $\quad f(2)=3$

A1
N1
(ii) $\quad f^{-1}(2)=0$

A1 N1 [2 marks]
(c)

A1A1A1
Notes: Award A1 for both end points within circles,
A1 for images of $(2,3)$ and $(0,2)$ within circles,
A1 for approximately correct reflection in $y=x$, concave up then concave down shape (do not accept line segments).
4. (a) evidence of choosing the cosine rule
eg $\quad c^{2}=a^{2}+b^{2}-2 a b \cos C$
correct substitution into RHS of cosine rule
eg $3^{2}+8^{2}-2 \times 3 \times 8 \times \cos \frac{\pi}{3}$
evidence of correct value for $\cos \frac{\pi}{3}$ (may be seen anywhere,
including in cosine rule)
A1
eg $\quad \cos \frac{\pi}{3}=\frac{1}{2}, \mathrm{AC}^{2}=9+64-\left(48 \times \frac{1}{2}\right), 9+64-24$
correct working clearly leading to answer
A1
eg $\quad \mathrm{AC}^{2}=49, b=\sqrt{49}$
$\mathrm{AC}=7(\mathrm{~cm}) \quad$ AG
Note: Award no marks if the only working seen is $\mathrm{AC}^{2}=49$ or $\mathrm{AC}=\sqrt{49}$ (or similar).
[4 marks]
(b) correct substitution for semicircle
(A1)
eg \quad semicircle $=\frac{1}{2}(2 \pi \times 3.5), \frac{1}{2} \times \pi \times 7,3.5 \pi$
valid approach (seen anywhere)
(M1)
eg perimeter $=A B+B C+$ semicircle, $3+8+\left(\frac{1}{2} \times 2 \times \pi \times \frac{7}{2}\right), 8+3+3.5 \pi$
$11+\frac{7}{2} \pi \quad(=3.5 \pi+11)(\mathrm{cm})$
A1
N2
5. (a) attempt to form composite
eg $\quad g\left(1+\mathrm{e}^{-x}\right)$
correct function
A1
$e g \quad(g \circ f)(x)=2+b+2 \mathrm{e}^{-x}, 2\left(1+\mathrm{e}^{-x}\right)+b$
(b) evidence of $\lim _{x \rightarrow \infty}\left(2+b+2 \mathrm{e}^{-x}\right)=2+b+\lim _{x \rightarrow \infty}\left(2 \mathrm{e}^{-x}\right)$
eg $\quad 2+b+2 \mathrm{e}^{-\infty}$, graph with horizontal asymptote when $x \rightarrow \infty$
Note: Award MO if candidate clearly has incorrect limit, such as $x \rightarrow 0, \mathrm{e}^{\infty}, 2 \mathrm{e}^{0}$.
evidence that $\mathrm{e}^{-x} \rightarrow 0$ (seen anywhere)
(A1)
eg $\quad \lim _{x \rightarrow \infty}\left(\mathrm{e}^{-x}\right)=0,1+\mathrm{e}^{-x} \rightarrow 1,2(1)+b=-3, \mathrm{e}^{\text {large negative number }} \rightarrow 0$, graph of $y=\mathrm{e}^{-x}$ or
$y=2 \mathrm{e}^{-x}$ with asymptote $y=0$, graph of composite function with asymptote $y=-3$ correct working
eg $2+b=-3$

$$
b=-5
$$

A1
N2
[4 marks]
6. attempt to find the area of OABC
eg $\mathrm{OA} \times \mathrm{OC}, x \times f(x), f(x) \times(-x)$
correct expression for area in one variable
$e g \quad$ area $=x\left(15-x^{2}\right), 15 x-x^{3}, x^{3}-15 x$
valid approach to find maximum area (seen anywhere)
(M1)
eg $\quad A^{\prime}(x)=0$
correct derivative
A1
eg $\quad 15-3 x^{2},\left(15-x^{2}\right)+x(-2 x)=0,-15+3 x^{2}$
correct working
eg $\quad 15=3 x^{2}, x^{2}=5, x=\sqrt{5}$
$x=-\sqrt{5} \quad(\operatorname{accept} \mathrm{~A}(-\sqrt{5}, 0))$

A2

7. METHOD 1 - using discriminant

correct equation without logs
eg $\quad 6 x-3 x^{2}=k^{2}$
valid approach
(M1)
eg $\quad-3 x^{2}+6 x-k^{2}=0,3 x^{2}-6 x+k^{2}=0$
recognizing discriminant must be zero (seen anywhere)
eg $\quad \Delta=0$
correct discriminant
eg $\quad 6^{2}-4(-3)\left(-k^{2}\right), 36-12 k^{2}=0$
correct working
eg $\quad 12 k^{2}=36, k^{2}=3$
$k=\sqrt{3}$
A2
METHOD 2 - completing the square
correct equation without logs
eg $\quad 6 x-3 x^{2}=k^{2}$
valid approach to complete the square
eg $\quad 3\left(x^{2}-2 x+1\right)=-k^{2}+3, x^{2}-2 x+1-1+\frac{k^{2}}{3}=0$
correct working
eg $\quad 3(x-1)^{2}=-k^{2}+3,(x-1)^{2}-1+\frac{k^{2}}{3}=0$
recognizing conditions for one solution
eg $\quad(x-1)^{2}=0,-1+\frac{k^{2}}{3}=0$
correct working
eg $\quad \frac{k^{2}}{3}=1, k^{2}=3$

$$
k=\sqrt{3}
$$

A2
[7 marks]

Section B

8. (a) $f^{\prime}(x)=2 x-1$

A1A1
A1
eg 2(1)-1, 2-1
$f^{\prime}(1)=1$
AG
[3 marks]
(b) correct approach to find the gradient of the normal
eg $\frac{-1}{f^{\prime}(1)}, m_{1} m_{2}=-1$, slope $=-1$
attempt to substitute correct normal gradient and coordinates into equation of a line
eg $\quad y-0=-1(x-1), 0=-1+b, b=1, L=-x+1$

$$
y=-x+1
$$

(c) equating expressions
eg $f(x)=L,-x+1=x^{2}-x$
correct working (must involve combining terms)
eg $\quad x^{2}-1=0, x^{2}=1, x=1$
$x=-1 \quad(\operatorname{accept} Q(-1,2))$
(d) valid approach
eg $\quad \int L-f, \int_{-1}^{1}\left(1-x^{2}\right) \mathrm{d} x$, splitting area into triangles and integrals correct integration
eg $\left[x-\frac{x^{3}}{3}\right]_{-1}^{1},-\frac{x^{3}}{3}-\frac{x^{2}}{2}+\frac{x^{2}}{2}+x$
substituting their limits into their integrated function and subtracting (in any order)
eg $1-\frac{1}{3}-\left(-1-\frac{-1}{3}\right)$
Note: Award MO for substituting into original or differentiated function.

$$
\text { area }=\frac{4}{3}
$$

9. (a) (i) correct approach

$$
\begin{aligned}
& \text { eg }\left(\begin{array}{c}
-1 \\
3 \\
3
\end{array}\right)-\left(\begin{array}{c}
-3 \\
4 \\
2
\end{array}\right),\left(\begin{array}{c}
3 \\
-4 \\
-2
\end{array}\right)+\left(\begin{array}{c}
-1 \\
3 \\
3
\end{array}\right) \\
& \overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

(ii) any correct equation in the form $r=a+t b$ (any parameter for t)

$$
\begin{aligned}
& \text { where } a \text { is }\left(\begin{array}{c}
-3 \\
4 \\
2
\end{array}\right) \text { or }\left(\begin{array}{c}
-1 \\
3 \\
3
\end{array}\right) \text { and } b \text { is a scalar multiple of }\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \quad \text { A2 } \\
& \text { eg } \quad r=\left(\begin{array}{c}
-3 \\
4 \\
2
\end{array}\right)+t\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right),(x, y, z)=(-1,3,3)+s(-2,1,-1), r=\left(\begin{array}{c}
-3+2 t \\
4-t \\
2+t
\end{array}\right)
\end{aligned}
$$

Note: Award $\boldsymbol{A} \mathbf{1}$ for the form $a+t b, \boldsymbol{A} \mathbf{1}$ for the form $L=a+t b$, $\boldsymbol{A} \mathbf{O}$ for the form $r=b+t a$.
(b) METHOD 1 - finding value of parameter
valid approach
eg $\quad\left(\begin{array}{c}-3 \\ 4 \\ 2\end{array}\right)+t\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{l}3 \\ 1 \\ p\end{array}\right),(-1,3,3)+s(-2,1,-1)=(3,1, p)$
one correct equation (not involving p)
eg $\quad-3+2 t=3,-1-2 s=3,4-t=1,3+s=1$
correct parameter from their equation (may be seen in substitution)
eg $t=3, s=-2$
correct substitution
eg $\quad\left(\begin{array}{c}-3 \\ 4 \\ 2\end{array}\right)+3\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{l}3 \\ 1 \\ p\end{array}\right), 3-(-2)$
$p=5\left(\operatorname{accept}\left(\begin{array}{l}3 \\ 1 \\ 5\end{array}\right)\right)$

Question 9 continued

METHOD 2 - eliminating parameter

valid approach
eg $\quad\left(\begin{array}{c}-3 \\ 4 \\ 2\end{array}\right)+t\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{l}3 \\ 1 \\ p\end{array}\right),(-1,3,3)+s(-2,1,-1)=(3,1, p)$
one correct equation (not involving p)
eg $\quad-3+2 t=3,-1-2 s=3,4-t=1,3+s=1$
correct equation (with p)
eg $\quad 2+t=p, 3-s=p$
correct working to solve for p
eg $7=2 p-3,6=1+p$
$p=5\left(\operatorname{accept}\left(\begin{array}{l}3 \\ 1 \\ 5\end{array}\right)\right)$
(c) valid approach to find $\overrightarrow{D C}$ or $\overrightarrow{C D}$
eg $\left(\begin{array}{l}3 \\ 1 \\ 5\end{array}\right)-\left(\begin{array}{c}q^{2} \\ 0 \\ q\end{array}\right),\left(\begin{array}{c}q^{2} \\ 0 \\ q\end{array}\right)-\left(\begin{array}{l}3 \\ 1 \\ 5\end{array}\right),\left(\begin{array}{c}q^{2} \\ 0 \\ q\end{array}\right)-\left(\begin{array}{l}3 \\ 1 \\ p\end{array}\right)$
correct vector for $\overrightarrow{D C}$ or $\overrightarrow{C D}$ (may be seen in scalar product)
eg $\left(\begin{array}{c}3-q^{2} \\ 1 \\ 5-q\end{array}\right),\left(\begin{array}{c}q^{2}-3 \\ -1 \\ q-5\end{array}\right),\left(\begin{array}{c}3-q^{2} \\ 1 \\ p-q\end{array}\right)$
recognizing scalar product of $\overrightarrow{D C}$ or $\overrightarrow{C D}$ with
direction vector of L is zero (seen anywhere)
eg $\left(\begin{array}{c}3-q^{2} \\ 1 \\ p-q\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)=0, \overrightarrow{\mathrm{DC}} \cdot \overrightarrow{\mathrm{AC}}=0,\left(\begin{array}{c}3-q^{2} \\ 1 \\ 5-q\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)=0$
correct scalar product in terms of only q
eg $\quad 6-2 q^{2}-1+5-q, 2 q^{2}+q-10=0,2\left(3-q^{2}\right)-1+5-q$
correct working to solve quadratic
eg $\quad(2 q+5)(q-2), \frac{-1 \pm \sqrt{1-4(2)(-10)}}{2(2)}$
$q=-\frac{5}{2}, 2$
10. (a) infinite sum of segments is 2 (seen anywhere)
eg $p+p^{2}+p^{3}+\ldots=2, \frac{u_{1}}{1-r}=2$
recognizing GP
eg ratio is $p, \frac{u_{1}}{1-r}, u_{n}=u_{1} \times r^{n-1}, \frac{u_{1}\left(r^{n}-1\right)}{r-1}$
correct substitution into S_{∞} formula (may be seen in equation)
eg $\frac{p}{1-p}$
correct equation
eg $\frac{p}{1-p}=2, p=2-2 p$
correct working leading to answer
eg $3 p=2,2-3 p=0$
$p=\frac{2}{3}(\mathrm{~cm})$
continued...

Question 10 continued
(b) recognizing infinite geometric series with squares
eg $k^{2}+k^{4}+k^{6}+\ldots, \frac{k^{2}}{1-k^{2}}$
correct substitution into $S_{\infty}=\frac{9}{16}$ (must substitute into formula)
eg $\quad \frac{k^{2}}{1-k^{2}}=\frac{9}{16}$
correct working
eg $\quad 16 k^{2}=9-9 k^{2}, 25 k^{2}=9, k^{2}=\frac{9}{25}$
$k=\frac{3}{5}$ (seen anywhere)
valid approach with segments and CD (may be seen earlier)
eg $\quad r=k, S_{\infty}=b$
correct expression for b in terms of k (may be seen earlier)
eg $\quad b=\frac{k}{1-k}, b=\sum_{n=1}^{\infty} k^{n}, b=k+k^{2}+k^{3}+\ldots$
substituting their value of k into their formula for b
eg $\frac{\frac{3}{5}}{1-\frac{3}{5}}, \frac{\left(\frac{3}{5}\right)}{\left(\frac{2}{5}\right)}$
$b=\frac{3}{2}$
A1

Markscheme

May 2017

Mathematics

Standard level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award MO followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M} \mathbf{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non- integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235 .

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation
where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer
Units will appear in brackets at the end.

Section A

1. (a) (i) valid approach
eg $\quad p+3=13,13-3$
$p=10$
A1
(ii) valid approach
(M1)
eg $p+3+5+q=20,20-10-8$
$q=2$
A1
N2 [4 marks]
(b) valid approach
(M1)
$e g \quad 20-p-q-3,1-\frac{15}{20}, n\left(E \cap H^{\prime}\right)=5$
$\frac{5}{20}\left(\frac{1}{4}\right)$
A1 N2
[2 marks]
Total [6 marks]
(M1)
eg $\quad x=5 y$

$$
f^{-1}(x)=\frac{x}{5}
$$

A1
(b) METHOD 1
attempt to substitute 7 into $g(x)$ or $f(x)$
(M1)
eg $\quad 7^{2}+1,5 \times 7$
$g(7)=50$
$f(50)=250$
A1

METHOD 2

attempt to form composite function (in any order)
eg $\quad 5\left(x^{2}+1\right),(5 x)^{2}+1$
correct substitution
eg $5 \times\left(7^{2}+1\right)$
$(f \circ g)(7)=250$

A1

 [3 marks]
3. METHOD 1

evidence of choosing the sine rule
eg $\quad \frac{a}{\sin A}=\frac{b}{\sin B}$
correct substitution
eg $\frac{x}{\sin 30}=\frac{13}{\sin 45}, \frac{13 \sin 30}{\sin 45}$
$\sin 30=\frac{1}{2}, \sin 45=\frac{1}{\sqrt{2}}$
correct working
eg $\quad \frac{1}{2} \times \frac{13}{\frac{1}{\sqrt{2}}}, \frac{1}{2} \times 13 \times \frac{2}{\sqrt{2}}, 13 \times \frac{1}{2} \times \sqrt{2}$
correct answer
A1
N3
eg $\quad \mathrm{PR}=\frac{13 \sqrt{2}}{2}, \frac{13}{\sqrt{2}}$ (cm)

METHOD 2 (using height of $\triangle \mathrm{PQR}$)

valid approach to find height of $\triangle \mathrm{PQR}$
eg $\sin 30=\frac{x}{13}, \cos 60=\frac{x}{13}$
$\sin 30=\frac{1}{2}$ or $\cos 60=\frac{1}{2}$
height $=6.5$
correct working
eg $\quad \sin 45=\frac{6.5}{\mathrm{PR}}, \sqrt{6.5^{2}+6.5^{2}}$
correct working
eg $\quad \sin 45=\frac{1}{\sqrt{2}}, \cos 45=\frac{1}{\sqrt{2}}, \sqrt{\frac{169 \times 2}{4}}$
correct answer
eg $\quad \mathrm{PR}=\frac{13 \sqrt{2}}{2}, \frac{13}{\sqrt{2}}(\mathrm{~cm})$
4. (a) (i) t

A1
 N1

(ii) 105

A1
N1
[2 marks]
(b) -0.992

A2
N2 [2 marks]
(c) valid approach
(M1)
eg $\quad \frac{\mathrm{d} d}{\mathrm{~d} t}=-2.24 ; 2 \times 2.24,2 \times-2.24, d(2)=-2 \times 2.24+105$,
finding $d\left(t_{2}\right)-d\left(t_{1}\right)$ where $t_{2}=t_{1}+2$
4.48 (degrees)

A1
N2

Notes: Award no marks for answers that directly use the table to find the decrease in temperature for 2 minutes eg $\frac{105-98.4}{2}=3.3$.
5. (a) valid approach to set up integration by substitution/inspection
eg $\quad u=x^{2}-1, \mathrm{~d} u=2 x, \int 2 x e^{x^{2}-1} \mathrm{~d} x$
correct expression
eg $\quad \frac{1}{2} \int 2 x \mathrm{e}^{x^{2}-1} \mathrm{~d} x, \frac{1}{2} \int \mathrm{e}^{u} \mathrm{~d} u$
$\frac{1}{2} \mathrm{e}^{x^{2}-1}+c$
A2
N4

Notes: Award A1 if missing " $+C$ ".
(b) substituting $x=-1$ into their answer from (a)
(M1)
eg $\quad \frac{1}{2} \mathrm{e}^{0}, \frac{1}{2} \mathrm{e}^{1-1}=3$
correct working
eg $\quad \frac{1}{2}+c=3, c=2.5$

$$
f(x)=\frac{1}{2} \mathrm{e}^{x^{2}-1}+2.5
$$

A1
6. (a) (i) -2

A1
N1
(ii) gradient of normal $=\frac{1}{2}$
attempt to substitute their normal gradient and coordinates of P (in any order)
eg $\quad y-4=\frac{1}{2}(x-3), 3=\frac{1}{2}(4)+b, b=1$
$y-3=\frac{1}{2}(x-4), y=\frac{1}{2} x+1, x-2 y+2=0$

A1 N3
[4 marks]
(b) correct answer and valid reasoning A2 N2 answer: eg graph of f is concave up, concavity is positive (between $4<x<5$) reason: eg slope of f^{\prime} is positive, f^{\prime} is increasing, $f^{\prime \prime}>0$, sign chart (must clearly be for $f^{\prime \prime}$ and show A and B)

Note: The reason given must refer to a specific function/graph. Referring to "the graph" or "it" is not sufficient.
7. (a) correct use $\log x^{n}=n \log x$

A1
eg $\quad 16 \ln x$
valid approach to find r
(M1)
eg $\quad \frac{u_{n+1}}{u_{n}}, \frac{\ln x^{8}}{\ln x^{16}}, \frac{4 \ln x}{8 \ln x}, \ln x^{4}=\ln x^{16} \times r^{2}$
$r=\frac{1}{2}$
A1 N2
[3 marks]
(b) recognizing a sum (finite or infinite)

(M1)

eg $\quad 2^{4} \ln x+2^{3} \ln x, \frac{a}{1-r}, S_{\infty}, 16 \ln x+\ldots$
valid approach (seen anywhere)
(M1)
eg recognizing GP is the same as part (a), using their r value from part (a), $r=\frac{1}{2}$
correct substitution into infinite sum (only if $|r|$ is a constant and less than 1) A1
eg $\frac{2^{4} \ln x}{1-\frac{1}{2}}, \frac{\ln x^{16}}{\frac{1}{2}}, 32 \ln x$
correct working
eg $\quad \ln x=2$
$x=\mathrm{e}^{2}$

Section B

8. (a) (i) valid approach
eg $\quad \mathrm{A}-\mathrm{B},-\left(\begin{array}{l}0 \\ 1 \\ 8\end{array}\right)+\left(\begin{array}{l}3 \\ 5 \\ 2\end{array}\right)$

$$
\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}
3 \\
4 \\
-6
\end{array}\right)
$$

(ii) any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+t \boldsymbol{b}$ (any parameter for t)

$$
\begin{aligned}
& \text { where } \boldsymbol{a} \text { is }\left(\begin{array}{l}
0 \\
1 \\
8
\end{array}\right) \text { or }\left(\begin{array}{l}
3 \\
5 \\
2
\end{array}\right) \text {, and } \boldsymbol{b} \text { is a scalar multiple of }\left(\begin{array}{c}
3 \\
4 \\
-6
\end{array}\right) \\
& \text { eg } \quad \boldsymbol{r}=\left(\begin{array}{l}
0 \\
1 \\
8
\end{array}\right)+t\left(\begin{array}{c}
3 \\
4 \\
-6
\end{array}\right), \boldsymbol{r}=\left(\begin{array}{c}
3+3 t \\
5+4 t \\
2-6 t
\end{array}\right), \boldsymbol{r}=\boldsymbol{j}+8 \boldsymbol{k}+t(3 \boldsymbol{i}+4 \boldsymbol{j}-6 \boldsymbol{k})
\end{aligned}
$$

Note: Award $\boldsymbol{A} \mathbf{1}$ for the form $\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{A} \mathbf{1}$ for the form $\boldsymbol{L}=\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{A} \mathbf{0}$ for the form $\boldsymbol{r}=\boldsymbol{b}+t \boldsymbol{a}$
(b) valid approach
eg $\quad a \cdot b=0$
choosing correct direction vectors (may be seen in scalar product)
eg $\left(\begin{array}{c}3 \\ 4 \\ -6\end{array}\right)$ and $\left(\begin{array}{l}p \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}3 \\ 4 \\ -6\end{array}\right) \cdot\left(\begin{array}{l}p \\ 0 \\ 1\end{array}\right)=0$
correct working/equation
A1
eg $\quad 3 p-6=0$

$$
p=2 \quad \text { AG }
$$

Question 8 continued
(c) valid approach
eg $\quad L_{1}=\left(\begin{array}{c}9 \\ 13 \\ z\end{array}\right), L_{1}=L_{2}$
one correct equation (must be different parameters if both lines used)
eg $3 t=9,1+2 s=9,5+4 t=13,3 t=1+2 s$
one correct value
eg $t=3, s=4, t=2$
valid approach to substitute their t or s value
eg $8+3(-6),-14+4(1)$

$$
z=-10
$$

(d) (i) $|\vec{d}|=\sqrt{2^{2}+1}(=\sqrt{5})$

$$
\frac{1}{\sqrt{5}}\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) \quad \text { accept } \left.\left(\begin{array}{c}
\sqrt{5} \\
\frac{0}{\sqrt{5}} \\
\frac{1}{\sqrt{5}}
\end{array}\right) \right\rvert\,
$$

Question 8 continued
(ii) METHOD 1 (using unit vector)
valid approach
eg $\left(\begin{array}{c}9 \\ 13 \\ -10\end{array}\right) \pm \sqrt{5} \hat{d}$
correct working
(A1)
eg $\left(\begin{array}{c}9 \\ 13 \\ -10\end{array}\right)+\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}9 \\ 13 \\ -10\end{array}\right)-\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right)$
one correct point
A1
eg (11, 13, -9), (7, 13, -11)
METHOD 2 (distance between points)
attempt to use distance between $(1+2 s, 13,-14+s)$ and $(9,13,-10)$ (M1)
eg $\quad(2 s-8)^{2}+0^{2}+(s-4)^{2}=5$
solving $5 s^{2}-40 s+75=0$ leading to $s=5$ or $s=3$
one correct point
eg (11, 13, -9), (7, 13, -11)
9. (a) METHOD 1 (using x-intercept)
determining that 3 is an x-intercept
eg

$$
x-3=0, \quad \mid \int_{3}
$$

valid approach
eg $3-2.5, \frac{p+3}{2}=2.5$
$p=2$
A1
N2

METHOD 2 (expanding $f(x)$)
correct expansion (accept absence of a)
eg $a x^{2}-a(3+p) x+3 a p, x^{2}-(3+p) x+3 p$
valid approach involving equation of axis of symmetry
eg $\frac{-b}{2 a}=2.5, \frac{a(3+p)}{2 a}=\frac{5}{2}, \frac{3+p}{2}=\frac{5}{2}$
$p=2$
A1 N2

METHOD 3 (using derivative)

correct derivative (accept absence of a)
eg $a(2 x-3-p), 2 x-3-p$
valid approach
(M1)
eg $\quad f^{\prime}(2.5)=0$
$p=2$
A1
N2 [3 marks]
(b) attempt to substitute ($0,-6$)

(M1)

eg $\quad-6=a(0-2)(0-3), 0=a(-8)(-9), a(0)^{2}-5 a(0)+6 a=-6$
correct working
eg $-6=6 a$

$$
a=-1 \quad \text { A1 }
$$

[3 marks]
continued...

Question 9 continued

(c) METHOD 1 (using discriminant)

recognizing tangent intersects curve once
recognizing one solution when discriminant $=0$
attempt to set up equation
eg $\quad g=f, k x-5=-x^{2}+5 x-6$
rearranging their equation to equal zero
eg $\quad x^{2}-5 x+k x+1=0$
correct discriminant (if seen explicitly, not just in quadratic formula)
eg $\quad(k-5)^{2}-4,25-10 k+k^{2}-4$
correct working
eg $\quad k-5= \pm 2,(k-3)(k-7)=0, \frac{10 \pm \sqrt{100-4 \times 21}}{2}$
$k=3,7 \quad$ A1A1

METHOD 2 (using derivatives)

attempt to set up equation
eg $\quad g=f, k x-5=-x^{2}+5 x-6$
recognizing derivative/slope are equal
(M1)
eg $\quad f^{\prime}=m_{T}, f^{\prime}=k$
correct derivative of f (A1)
eg $\quad-2 x+5$
attempt to set up equation in terms of either x or k
M1
eg $\quad(-2 x+5) x-5=-x^{2}+5 x-6, k\left(\frac{5-k}{2}\right)-5=-\left(\frac{5-k}{2}\right)^{2}+5\left(\frac{5-k}{2}\right)-6$
rearranging their equation to equal zero
eg $\quad x^{2}-1=0, k^{2}-10 k+21=0$
correct working
eg $\quad x= \pm 1,(k-3)(k-7)=0, \frac{10 \pm \sqrt{100-4 \times 21}}{2}$
$k=3,7$
A1A1
10. (a) evidence of summing to 1
eg $\quad \sum p=1$
correct equation
A1
eg $\cos \theta+2 \cos 2 \theta=1$
correct equation in $\cos \theta$
A1
eg $\cos \theta+2\left(2 \cos ^{2} \theta-1\right)=1,4 \cos ^{2} \theta+\cos \theta-3=0$
evidence of valid approach to solve quadratic
eg factorizing equation set equal to $0, \frac{-1 \pm \sqrt{1-4 \times 4 \times(-3)}}{8}$
correct working, clearly leading to required answer
eg $\quad(4 \cos \theta-3)(\cos \theta+1), \frac{-1 \pm 7}{8}$
correct reason for rejecting $\cos \theta \neq-1$
eg $\cos \theta$ is a probability (value must lie between 0 and 1), $\cos \theta>0$
Note: Award $\boldsymbol{R O}$ for $\cos \theta \neq-1$ without a reason.

$$
\cos \theta=\frac{3}{4}
$$

(b) valid approach
eg sketch of right triangle with sides 3 and $4, \sin ^{2} x+\cos ^{2} x=1$
correct working
eg missing side $=\sqrt{7}, \frac{\frac{\sqrt{7}}{4}}{\frac{3}{4}}$
$\tan \theta=\frac{\sqrt{7}}{3}$
A1

Question 10 continued
(c) attempt to substitute either limits or the function into formula involving f^{2}
eg $\quad \pi \int_{\theta}^{\frac{\pi}{4}} f^{2}, \int\left(\frac{1}{\cos x}\right)^{2}$
correct substitution of both limits and function
eg $\quad \pi \int_{\theta}^{\frac{\pi}{4}}\left(\frac{1}{\cos x}\right)^{2} \mathrm{~d} x$
correct integration
eg $\tan x$
substituting their limits into their integrated function and subtracting
eg $\tan \frac{\pi}{4}-\tan \theta$
Note: Award MO if they substitute into original or differentiated function.
$\tan \frac{\pi}{4}=1$
eg $1-\tan \theta$
$V=\pi-\frac{\pi \sqrt{7}}{3}$
A1

Markscheme

May 2017

Mathematics

Standard level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and A1 for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation
where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer
Units will appear in brackets at the end.

Section A

1. (a) attempt to subtract terms
eg $d=u_{2}-u_{1}, 7-3$

$$
d=4
$$

(b) correct approach
eg $u_{10}=3+9(4)$

$$
u_{10}=39
$$

A1 N2
[2 marks]
(c) correct substitution into sum
eg $\quad S_{10}=5(3+39), S_{10}=\frac{10}{2}(2 \times 3+9 \times 4)$
$S_{10}=210$
A1
2. (a) evidence of scalar product
eg $\boldsymbol{a} \cdot \boldsymbol{b}, 4(k+3)+2 k$
recognizing scalar product must be zero
eg

$$
\boldsymbol{a} \cdot \boldsymbol{b}=0,4 k+12+2 k=0
$$

correct working (must involve combining terms)
eg $6 k+12,6 k=-12$

$$
k=-2
$$

(b) attempt to substitute their value of k (seen anywhere)
eg $\quad \boldsymbol{b}=\binom{-2+3}{-2}, 2 \boldsymbol{b}=\binom{2}{-4}$
correct working
eg $\quad\binom{4}{2}+\binom{2}{-4},\binom{4+2 k+6}{2+2 k}$
$\boldsymbol{c}=\binom{6}{-2}$
A1
3. (a) $\mathrm{P}(X>107)=0.24\left(=\frac{6}{25}, 24 \%\right)$

A1
N1 [1 mark]
(b) valid approach
eg $\quad \mathrm{P}(X>100)=0.5, \mathrm{P}(X>100)-\mathrm{P}(X>107)$
correct working
(A1)
eg $0.5-0.24,0.76-0.5$
$\mathrm{P}(100<X<107)=0.26\left(=\frac{13}{50}, 26 \%\right)$
A1
N2
[3 marks]
(c) valid approach
eg $\quad 2 \times 0.26,1-2(0.24), \mathrm{P}(93<X<100)=\mathrm{P}(100<X<107)$
$\mathrm{P}(93<X<107)=0.52\left(=\frac{13}{25}, 52 \%\right)$
(M1)

A1
N2
[2 marks]
[Total 6 marks]
4. (a) (i) $p=6$
(ii) $q=5$
(b) correct approach
eg $\quad p \times q, 5 \times 6$

$$
k=30
$$

(c) correct approach
eg rows $=n+1$, columns $=n$
$A(n)=n(n+1)\left(=n^{2}+n\right)\left(\mathrm{cm}^{2}\right)$

A1 N1
A1 N1
[2 marks]

A1 [2 marks]
A1 N1
(A1)
(A1)

A1
N2
[2 marks]
[Total 6 marks]
5. valid approach
eg $\int f^{\prime} \mathrm{d} x, \int \frac{3 x^{2}}{\left(x^{3}+1\right)^{5}} \mathrm{~d} x$
correct integration by substitution/inspection
eg $\quad f(x)=-\frac{1}{4}\left(x^{3}+1\right)^{-4}+c, \frac{-1}{4\left(x^{3}+1\right)^{4}}$
correct substitution into their integrated function (must include c)
eg $1=\frac{-1}{4\left(0^{3}+1\right)^{4}}+c,-\frac{1}{4}+c=1$

Note: Award M0 if candidates substitute into f^{\prime} or $f^{\prime \prime}$.
$c=\frac{5}{4}$
$f(x)=-\frac{1}{4}\left(x^{3}+1\right)^{-4}+\frac{5}{4}\left(=\frac{-1}{4\left(x^{3}+1\right)^{4}}+\frac{5}{4}, \frac{5\left(x^{3}+1\right)^{4}-1}{4\left(x^{3}+1\right)^{4}}\right)$
A1 N4
[6 marks]
6. (a) expressing $h(1)$ as a product of $f(1)$ and $g(1)$
eg $\quad f(1) \times g(1), 2(9)$

$$
h(1)=18
$$

(b) attempt to use product rule (do not accept $h^{\prime}=f^{\prime} \times g^{\prime}$)

$$
e g \quad h^{\prime}=f g^{\prime}+g f^{\prime}, h^{\prime}(8)=f^{\prime}(8) g(8)+g^{\prime}(8) f(8)
$$

correct substitution of values into product rule
eg $\quad h^{\prime}(8)=4(5)+2(-3),-6+20$

$$
h^{\prime}(8)=14
$$

A1 [3 marks]
7. correct application of $\log a+\log b=\log a b$
(A1)
eg $\quad \log _{2}(2 \sin x \cos x), \log 2+\log (\sin x)+\log (\cos x)$
correct equation without logs
A1
eg $\quad 2 \sin x \cos x=2^{-1}, \sin x \cos x=\frac{1}{4}, \sin 2 x=\frac{1}{2}$
recognizing double-angle identity (seen anywhere)
eg $\quad \log (\sin 2 x), 2 \sin x \cos x=\sin 2 x, \sin 2 x=\frac{1}{2}$
evaluating $\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6} \quad\left(30^{\circ}\right)$
correct working A1
eg $x=\frac{\pi}{12}+2 \pi, 2 x=\frac{25 \pi}{6}, \frac{29 \pi}{6}, 750^{\circ}, 870^{\circ}, x=\frac{\pi}{12}$ and $x=\frac{5 \pi}{12}$, one correct final answer $x=\frac{25 \pi}{12}, \frac{29 \pi}{12}$ (do not accept additional values)

Section B

8. (a) (i) evidence of median position
(M1)
eg 80th employee
40 hours A1
N2
(ii) 130 employees

A1 [3 marks]
(b) (i) $£ 320$

A1
N1
(ii) splitting into 40 and 3
(M1)
eg 3 hours more, 3×10
correct working
(A1)
eg $320+3 \times 10$
£350
A1 $\begin{array}{r}\text { N3 } \\ \text { [4 marks] }\end{array}$
(M1)
(c) valid approach
eg 200 is less than 320 so 8 pounds/hour, $200 \div 8,25, \frac{200}{320}=\frac{x}{40}$

18 employees
A2
(d) valid approach
eg 160-10
60 hours worked
correct working
(A1)
eg $\quad 40(8)+20(10), 320+200$

$$
k=520
$$

A1 N3 [4 marks]
9. (a) recognizing $t=0$ at A
A is $(4,-1,3)$
A1
N2 [2 marks]
(b) (i) METHOD 1
valid approach
(M1)
eg $\left(\begin{array}{c}4 \\ -1 \\ 3\end{array}\right)+2\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right),(6,3,-1)$
correct approach to find $\overrightarrow{A B}$
$e g \quad \mathrm{AO}+\mathrm{OB}, \mathrm{B}-\mathrm{A},\left(\begin{array}{c}6 \\ 3 \\ -1\end{array}\right)-\left(\begin{array}{c}4 \\ -1 \\ 3\end{array}\right)$

$$
\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}
2 \\
4 \\
-4
\end{array}\right)
$$

METHOD 2

recognizing $\overrightarrow{\mathrm{AB}}$ is two times the direction vector
correct working
eg $\quad \overrightarrow{\mathrm{AB}}=2\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right)$

$$
\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}
2 \\
4 \\
-4
\end{array}\right)
$$

(ii) correct substitution

$$
\begin{aligned}
& \text { eg }|\overrightarrow{\mathrm{AB}}|=\sqrt{2^{2}+4^{2}+4^{2}}, \sqrt{4+16+16}, \sqrt{36} \\
& |\overrightarrow{\mathrm{AB}}|=6
\end{aligned}
$$

Question 9 continued

(c) METHOD 1 (vector approach)
valid approach involving $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$
eg

$$
\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}, \frac{\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{AC}}}{\mathrm{AB} \times \mathrm{AC}}
$$

finding scalar product and $|\overrightarrow{\mathrm{AC}}|$
(A1)(A1)
scalar product $2(3)+4(0)-4(4) \quad(=-10)$
$|\overrightarrow{\mathrm{AC}}|=\sqrt{3^{2}+0^{2}+4^{2}} \quad(=5)$
substitution of their scalar product and magnitudes into cosine formula
eg $\quad \cos B \hat{A ̂ C}=\frac{6+0-16}{6 \sqrt{3^{2}+4^{2}}}$
$\cos \mathrm{BA} C=-\frac{10}{30}\left(=-\frac{1}{3}\right)$
A1
N2

METHOD 2 (triangle approach)

valid approach involving cosine rule

> (M1)
eg $\quad \cos \mathrm{BAC}=\frac{\mathrm{AB}^{2}+\mathrm{AC}^{2}-\mathrm{BC}^{2}}{2 \times \mathrm{AB} \times \mathrm{AC}}$
finding lengths AC and BC
$\mathrm{AC}=5, \mathrm{BC}=9$
substitution of their lengths into cosine formula
eg $\quad \cos B \hat{A} C=\frac{5^{2}+6^{2}-9^{2}}{2 \times 5 \times 6}$
$\cos B \hat{A} C=-\frac{20}{60}\left(=-\frac{1}{3}\right)$

Question 9 continued

(d)

Note: Award relevant marks for working seen to find BC in part (c) (if cosine rule used in part (c)).

METHOD 1 (using cosine rule)

recognizing need to find BC
choosing cosine rule
eg $\quad c^{2}=a^{2}+b^{2}-2 a b \cos \mathrm{C}$
correct substitution into RHS
eg $\quad \mathrm{BC}^{2}=(6)^{2}+(5)^{2}-2(6)(5)\left(-\frac{1}{3}\right), 36+25+20$
distance is 9

METHOD 2 (finding magnitude of $\overrightarrow{\mathrm{BC}}$)

recognizing need to find BC
valid approach
eg attempt to find $\overrightarrow{\mathrm{OB}}$ or $\overrightarrow{\mathrm{OC}}, \overrightarrow{\mathrm{OB}}=\left(\begin{array}{c}6 \\ 3 \\ -1\end{array}\right)$ or $\overrightarrow{\mathrm{OC}}=\left(\begin{array}{c}7 \\ -1 \\ 7\end{array}\right), \overrightarrow{\mathrm{BA}}+\overrightarrow{\mathrm{AC}}$
correct working
eg $\quad \overrightarrow{\mathrm{BC}}=\left(\begin{array}{c}1 \\ -4 \\ 8\end{array}\right), \overrightarrow{\mathrm{CB}}=\left(\begin{array}{c}-1 \\ 4 \\ -8\end{array}\right), \sqrt{1^{2}+4^{2}+8^{2}}=\sqrt{81}$
distance is 9

METHOD 3 (finding coordinates and using distance formula)

 recognizing need to find BCvalid approach
eg attempt to find coordinates of B or $\mathrm{C}, \mathrm{B}(6,3,-1)$ or $\mathrm{C}(7,-1,7)$
correct substitution into distance formula
eg $\quad \mathrm{BC}=\sqrt{(6-7)^{2}+(3-(-1))^{2}+(-1-7)^{2}}, \sqrt{1^{2}+4^{2}+8^{2}}=\sqrt{81}$
distance is 9 A1
10. (a) (i) $f^{\prime}(x)=2 x$

A1
N1
(ii) attempt to substitute $x=-k$ into their derivative
gradient of L is $-2 k$

A1 [3 marks]

(b) METHOD 1

attempt to substitute coordinates of A and their gradient into equation of a line
eg $\quad k^{2}=-2 k(-k)+b$
correct equation of L in any form
eg $\quad y-k^{2}=-2 k(x+k), y=-2 k x-k^{2}$
valid approach
eg $\quad y=0$
correct substitution into L equation A1
eg $\quad-k^{2}=-2 k x-2 k^{2}, 0=-2 k x-k^{2}$
correct working
A1
eg $\quad 2 k x=-k^{2}$

$$
x=-\frac{k}{2}
$$

METHOD 2

valid approach
(M1)
eg gradient $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}},-2 k=\frac{\text { rise }}{\text { run }}$
recognizing $y=0$ at B
attempt to substitute coordinates of A and B into slope formula
eg $\frac{k^{2}-0}{-k-x}, \frac{-k^{2}}{x+k}$
correct equation
eg $\frac{k^{2}-0}{-k-x}=-2 k, \frac{-k^{2}}{x+k}=-2 k,-k^{2}=-2 k(x+k)$
correct working
eg $\quad 2 k x=-k^{2}$
$x=-\frac{k}{2}$

Question 10 continued
(c) valid approach to find area of triangle
eg $\quad \frac{1}{2}\left(k^{2}\right)\left(\frac{k}{2}\right)$
area of $\mathrm{ABC}=\frac{k^{3}}{4}$
(d) METHOD 1 ($\int f$-triangle)
valid approach to find area from $-k$ to 0
eg $\int_{-k}^{0} x^{2} \mathrm{~d} x, \int_{0}^{-k} f$
correct integration (seen anywhere, even if MO awarded)
eg $\frac{x^{3}}{3},\left[\frac{1}{3} x^{3}\right]_{-k}^{0}$
substituting their limits into their integrated function and subtracting
eg $\quad 0-\frac{(-k)^{3}}{3}$, area from $-k$ to 0 is $\frac{k^{3}}{3}$
Note: Award MO for substituting into original or differentiated function.
attempt to find area of R
eg $\quad \int_{-k}^{0} f(x) \mathrm{d} x$ - triangle
correct working for R
(A1)
eg $\quad \frac{k^{3}}{3}-\frac{k^{3}}{4}, R=\frac{k^{3}}{12}$
correct substitution into triangle $=p R$
eg $\quad \frac{k^{3}}{4}=p\left(\frac{k^{3}}{3}-\frac{k^{3}}{4}\right), \frac{k^{3}}{4}=p\left(\frac{k^{3}}{12}\right)$
$p=3$

Question 10 continued
METHOD $2\left(\int(f-L)\right)$
valid approach to find area of R
(M1)
eg $\quad \int_{-k}^{-\frac{k}{2}} x^{2}-\left(-2 k x-k^{2}\right) \mathrm{d} x+\int_{-\frac{k}{2}}^{0} x^{2} \mathrm{~d} x, \int_{-k}^{-\frac{k}{2}}(f-L)+\int_{-\frac{k}{2}}^{0} f$
correct integration (seen anywhere, even if M0 awarded)
eg $\quad \frac{x^{3}}{3}+k x^{2}+k^{2} x,\left[\frac{x^{3}}{3}+k x^{2}+k^{2} x\right]_{-k}^{-\frac{k}{2}}+\left[\frac{x^{3}}{3}\right]_{-\frac{k}{2}}^{0}$
substituting their limits into their integrated function and subtracting
(M1)
$e g \quad\left(\frac{\left(-\frac{k}{2}\right)^{3}}{3}+k\left(-\frac{k}{2}\right)^{2}+k^{2}\left(-\frac{k}{2}\right)\right)-\left(\frac{(-k)^{3}}{3}+k(-k)^{2}+k^{2}(-k)\right)+(0)-\left(\frac{\left(-\frac{k}{2}\right)^{3}}{3}\right)$
Note: Award MO for substituting into original or differentiated function.
correct working for R
(A1)
eg $\frac{k^{3}}{24}+\frac{k^{3}}{24},-\frac{k^{3}}{24}+\frac{k^{3}}{4}-\frac{k^{3}}{2}+\frac{k^{3}}{3}-k^{3}+k^{3}+\frac{k^{3}}{24}, \quad R=\frac{k^{3}}{12}$
correct substitution into triangle $=p R$
(A1)
eg $\quad \frac{k^{3}}{4}=p\left(\frac{k^{3}}{24}+\frac{k^{3}}{24}\right), \frac{k^{3}}{4}=p\left(\frac{k^{3}}{12}\right)$
$p=3$

A1
[7 marks]
[Total 17 marks]

Markscheme

November 2016

Mathematics

Standard level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award MO followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final $\boldsymbol{A 1}$.

3

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award No.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the N marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks
Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \mathbf{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\mathbf{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or AO for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation
where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first A1 is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer
Units will appear in brackets at the end.

Section A

1. (a) correct approach
eg $\quad \frac{-(-4)}{2}, f^{\prime}(x)=2 x-4=0,\left(x^{2}-4 x+4\right)+5-4$
$x=2$ (must be an equation)
A1
(b) (i) $\quad h=2$
(ii) METHOD 1
valid attempt to find k
eg $\quad f(2)$
correct substitution into their function
(A1)
eg $\quad(2)^{2}-4(2)+5$
$k=1$
A1
METHOD 2
valid attempt to complete the square
(M1)
eg $x^{2}-4 x+4$
correct working
(A1)
eg $\quad\left(x^{2}-4 x+4\right)-4+5,(x-2)^{2}+1$
$k=1$
2. (a) evidence of valid approach
eg right triangle, $\cos ^{2} \theta=1-\sin ^{2} \theta$
correct working
eg missing side is $2, \sqrt{1-\left(\frac{\sqrt{5}}{3}\right)^{2}}$
$\cos \theta=\frac{2}{3}$
A1
(b) correct substitution into formula for $\cos 2 \theta$
eg $\quad 2 \times\left(\frac{2}{3}\right)^{2}-1,1-2\left(\frac{\sqrt{5}}{3}\right)^{2},\left(\frac{2}{3}\right)^{2}-\left(\frac{\sqrt{5}}{3}\right)^{2}$
$\cos 2 \theta=-\frac{1}{9}$
A1
3. (a) $1,5,10,10,5,1$

A2
(b) evidence of binomial expansion with binomial coefficient
eg $\quad\binom{n}{r} a^{n-r} b^{r}$, selecting correct term, $(2 x)^{5}(3)^{0}+5(2 x)^{4}(3)^{1}+10(2 x)^{3}(3)^{2}+\ldots$
correct substitution into correct term
(A1)(A1)(A1)
eg $\quad 10(2)^{3}(3)^{2},\binom{5}{3}(2 x)^{3}(3)^{2}$
Note: Award A1 for each factor.
$720 x^{3}$
A1
N2
Notes: Do not award any marks if there is clear evidence of adding instead of multiplying. Do not award final $\boldsymbol{A 1}$ for a final answer of 720 , even if $720 x^{3}$ is seen previously.
4. (a) valid attempt to find direction vector
eg $\quad \overrightarrow{\mathrm{PQ}}, \overrightarrow{\mathrm{QP}}$
correct direction vector (or multiple of)
eg $\quad 6 \boldsymbol{i}+\boldsymbol{j}-3 \boldsymbol{k}$
any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+t \boldsymbol{b}$ (any parameter for t)
A2
where \boldsymbol{a} is $\boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k}$ or $7 \mathbf{i}+3 \boldsymbol{j}-4 \boldsymbol{k}$, and \boldsymbol{b} is a scalar multiple of $6 \mathbf{i}+\boldsymbol{j}-3 \boldsymbol{k}$
eg $\quad \boldsymbol{r}=7 \mathbf{i}+3 \mathbf{j}-4 \boldsymbol{k}+t(6 \mathbf{i}+\boldsymbol{j}-3 \boldsymbol{k}), \boldsymbol{r}=\left(\begin{array}{c}1+6 \mathrm{~s} \\ 2+1 \mathrm{~s} \\ -1-3 \mathrm{~s}\end{array}\right), r=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)+t\left(\begin{array}{c}-6 \\ -1 \\ 3\end{array}\right)$
Notes: Award $\boldsymbol{A 1}$ for the form $\boldsymbol{a}+\boldsymbol{t}, \boldsymbol{A} \mathbf{1}$ for the form $\boldsymbol{L}=\boldsymbol{a}+\boldsymbol{t}, \boldsymbol{A} \boldsymbol{0}$ for the form $\boldsymbol{r}=\boldsymbol{b}+t \boldsymbol{a}$.
(b) correct expression for scalar product
eg $\quad 6 \times 2+1 \times 0+(-3) \times n,-3 n+12$
setting scalar product equal to zero (seen anywhere)
eg $\boldsymbol{u} \cdot \boldsymbol{v}=0,-3 n+12=0$

$$
n=4
$$

5. (a) valid interpretation (may be seen on a Venn diagram)
eg $\quad \mathrm{P}(A \cap B)+\mathrm{P}\left(A^{\prime} \cap B\right), 0.2+0.6$

$$
\mathrm{P}(B)=0.8
$$

A1
N2 [2 marks]
(M1)
eg $\quad \frac{1}{2} \times \frac{\sin ^{4}(2 x)}{4}, \frac{1}{8} \sin ^{4}(2 x)+C$
substituting initial condition into their integrated expression (must have $+C$)
eg $\quad 1=\frac{1}{8} \sin ^{4}\left(\frac{\pi}{2}\right)+C$
Note: Award $M 0$ if they substitute into the original or differentiated function.
recognizing $\sin \left(\frac{\pi}{2}\right)=1$
eg $\quad 1=\frac{1}{8}(1)^{4}+C$
$C=\frac{7}{8}$
$f(x)=\frac{1}{8} \sin ^{4}(2 x)+\frac{7}{8}$

A1
7. valid approach
eg $\quad f=y, m-\frac{1}{x}=x-m$
correct working to eliminate denominator
eg $\quad m x-1=x(x-m), m x-1=x^{2}-m x$
correct quadratic equal to zero
eg $\quad x^{2}-2 m x+1=0$
correct reasoning
eg for two solutions, $b^{2}-4 a c>0$
correct substitution into the discriminant formula
eg $\quad(-2 m)^{2}-4$
correct working
eg $\quad 4 m^{2}>4, m^{2}=1$, sketch of positive parabola on the x-axis

correct interval

A1

Section B

8. (a) (i) valid approach to find $\overrightarrow{\mathrm{AB}}$
(M1)
eg $\quad \overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}},\left(\begin{array}{c}4-(-1) \\ 1-0 \\ 3-4\end{array}\right)$

$$
\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}
5 \\
1 \\
-1
\end{array}\right)
$$

A1
N2
(ii) valid approach to find $|\overrightarrow{\mathrm{AB}}|$
(M1)
eg $\sqrt{(5)^{2}+(1)^{2}+(-1)^{2}}$
$|\overrightarrow{\mathrm{AB}}|=\sqrt{27}$
A1
N2
(b) correct approach
eg $\quad \overrightarrow{\mathrm{OC}}=\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right)+\left(\begin{array}{c}-1 \\ 0 \\ 4\end{array}\right)$
C has coordinates $(-2,1,3)$
(c) (i) $\mathrm{A} \hat{\mathrm{DB}}=\pi-\theta, \hat{\mathrm{D}}=180-\theta$
A1
N1
(ii) any correct expression for the area involving θ A1 N1 eg \quad area $=\frac{1}{2} \times \mathrm{AD} \times \mathrm{BD} \times \sin (180-\theta), \frac{1}{2} a b \sin \theta, \frac{1}{2}|\overrightarrow{\mathrm{DA}}||\overrightarrow{\mathrm{DB}}| \sin (\pi-\theta)$

Question 8 continued
(d) METHOD 1 (using sine formula for area)
correct expression for the area of triangle ACD (seen anywhere)
eg $\frac{1}{2} \mathrm{AD} \times \mathrm{DC} \times \sin \theta$
correct equation involving areas
eg $\frac{\frac{1}{2} \mathrm{AD} \times \mathrm{BD} \times \sin (\pi-\theta)}{\frac{1}{2} \mathrm{AD} \times \mathrm{DC} \times \sin \theta}=3$
recognizing that $\sin (\pi-\theta)=\sin \theta$ (seen anywhere)
$\frac{\mathrm{BD}}{\mathrm{DC}}=3$ (seen anywhere)
correct approach using ratio
eg $\quad 3 \overrightarrow{\mathrm{DC}}+\overrightarrow{\mathrm{DC}}=\overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{BC}}=4 \overrightarrow{\mathrm{DC}}$
correct ratio $\frac{\mathrm{BD}}{\mathrm{BC}}=\frac{3}{4}$
METHOD 2 (Geometric approach)
recognising $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$ have same height
eg use of h for both triangles, $\frac{\frac{1}{2} \mathrm{BD} \times h}{\frac{1}{2} \mathrm{CD} \times h}=3$
correct approach
eg
$\mathrm{BD}=3 x$ and $\mathrm{DC}=x, \frac{\mathrm{BD}}{\mathrm{DC}}=3$
correct working
A2
eg $\mathrm{BC}=4 x, \mathrm{BD}+\mathrm{DC}=4 \mathrm{DC}, \frac{\mathrm{BD}}{\mathrm{BC}}=\frac{3 x}{4 x}, \frac{\mathrm{BD}}{\mathrm{BC}}=\frac{3 \mathrm{DC}}{4 \mathrm{DC}}$
$\frac{\mathrm{BD}}{\mathrm{BC}}=\frac{3}{4}$

Question 8 continued

(e) correct working (seen anywhere)
eg $\quad \overrightarrow{\mathrm{BD}}=\frac{3}{4} \overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OB}}+\frac{3}{4}\left(\begin{array}{c}-6 \\ 0 \\ 0\end{array}\right), \overrightarrow{\mathrm{CD}}=\frac{1}{4} \overrightarrow{\mathrm{CB}}$
valid approach (seen anywhere)
eg $\quad \overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{BD}}, \overrightarrow{\mathrm{BC}}=\left(\begin{array}{c}-6 \\ 0 \\ 0\end{array}\right)$
correct working to find x-coordinate
eg $\quad\left(\begin{array}{l}4 \\ 1 \\ 3\end{array}\right)+\frac{3}{4}\left(\begin{array}{c}-6 \\ 0 \\ 0\end{array}\right), x=4+\frac{3}{4}(-6),-2+\frac{1}{4}(6)$

D is $\left(-\frac{1}{2}, 1,3\right)$
A1 N3
[4 marks]
9. (a) evidence of dividing terms (in any order)
eg $\frac{u_{2}}{u_{1}}, \frac{2 \log _{2} x}{\log _{2} x}$

$$
r=\frac{1}{2}
$$

A1
(b) correct substitution
eg $\frac{2 \log _{2} x}{1-\frac{1}{2}}$
correct working
eg $\frac{2 \log _{2} x}{\frac{1}{2}}$
$S_{\infty}=4 \log _{2} x$
AG
NO
[2 marks]

Question 9 continued
(c) evidence of subtracting two terms (in any order)
eg $\quad u_{3}-u_{2}, \log _{2} x-\log _{2} \frac{x}{2}$
correct application of the properties of logs
eg $\quad \log _{2}\left(\frac{\frac{x}{2}}{x}\right), \log _{2}\left(\frac{x}{2} \times \frac{1}{x}\right),\left(\log _{2} x-\log _{2} 2\right)-\log _{2} x$
correct working
eg $\quad \log _{2} \frac{1}{2},-\log _{2} 2$
$d=-1$
A1
[4 marks]
(d) correct substitution into the formula for the sum of an arithmetic sequence
eg $\frac{12}{2}\left(2 \log _{2} x+(12-1)(-1)\right)$
correct working
(e) correct equation
eg $\quad 12 \log _{2} x-66=2 \log _{2} x$
correct working
eg $\quad 10 \log _{2} x=66, \log _{2} x=6.6,2^{66}=x^{10}, \log _{2}\left(\frac{x^{12}}{x^{2}}\right)=66$
$x=2^{6.6}\left(\right.$ accept $\left.p=\frac{66}{10}\right)$
10. (a) (i) $f^{\prime}(x)=-\sin x, f^{\prime \prime}(x)=-\cos x, f^{(3)}(x)=\sin x, f^{(4)}(x)=\cos x$
(ii) valid approach
eg recognizing that 19 is one less than a multiple of $4, f^{(19)}(x)=f^{(3)}(x)$

$$
f^{(19)}(x)=\sin x
$$

(b) (i) $g^{\prime}(x)=k x^{k-1}$
$g^{\prime \prime}(x)=k(k-1) x^{k-2}, g^{(3)}(x)=k(k-1)(k-2) x^{k-3}$
A1A1
N2
(ii) METHOD 1
correct working that leads to the correct answer, involving the correct expression for the 19th derivative
eg $\quad k(k-1)(k-2) \ldots(k-18) \times \frac{(k-19)!}{(k-19)!},{ }_{k} P_{19}$
$p=19\left(\right.$ accept $\left.\frac{k!}{(k-19)!} x^{k-19}\right)$
A1
N1

METHOD 2

correct working involving recognizing patterns in coefficients of first three derivatives (may be seen in part (b)(i)) leading to a general rule for 19 th coefficient
eg $\quad g^{\prime \prime}=2!\binom{k}{2}, k(k-1)(k-2)=\frac{k!}{(k-3)!}, g^{(3)}(x)={ }_{k} P_{3}\left(x^{k-3}\right)$,
$g^{(19)}(x)=19!\binom{k}{19}, 19!\times \frac{k!}{(k-19)!\times 19!},{ }_{k} P_{19}$
$p=19\left(\right.$ accept $\left.\frac{k!}{(k-19)!} x^{k-19}\right)$

Question 10 continued
(c) (i) valid approach using product rule
(M1)
$e g \quad u v^{\prime}+v u^{\prime}, f^{(19)} g^{(20)}+f^{(20)} g^{(19)}$
correct 20th derivatives (must be seen in product rule)

(A1)(A1)

eg $\quad g^{(20)}(x)=\frac{21!}{(21-20)!} x, f^{(20)}(x)=\cos x$
$h^{\prime}(x)=\sin x(21!x)+\cos x\left(\frac{21!}{2} x^{2}\right)\left(\operatorname{accept} \sin x\left(\frac{21!}{1!} x\right)+\cos x\left(\frac{21!}{2!} x^{2}\right)\right) \boldsymbol{A} \mathbf{1}$
(ii) substituting $x=\pi$ (seen anywhere)
eg $\quad f^{(19)}(\pi) g^{(20)}(\pi)+f^{(20)}(\pi) g^{(19)}(\pi), \sin \pi \frac{21!}{1!} \pi+\cos \pi \frac{21!}{2!} \pi^{2}$
evidence of one correct value for $\sin \pi$ or $\cos \pi$ (seen anywhere)
eg $\quad \sin \pi=0, \cos \pi=-1$
evidence of correct values substituted into $h^{\prime}(\pi)$
eg $\quad 21!(\pi)\left(0-\frac{\pi}{2!}\right), 21!(\pi)\left(-\frac{\pi}{2}\right), 0+(-1) \frac{21!}{2} \pi^{2}$
Note: If candidates write only the first line followed by the answer, award A1AOAO.

$$
\frac{-21!}{2} \pi^{2}
$$

Markscheme

May 2016

Mathematics

Standard level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award MO followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M} \mathbf{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A} 1$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $M R$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235 .

Style
The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation
where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, $\boldsymbol{F T}$ marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show

a truncated 6 sf value

the exact value if applicable, the correct 3 sf answer
Units will appear in brackets at the end.

Section A

1. (a) $g(2)=8$

A1 [1 mark]
(c) interchanging x and y (may be seen at any time)
eg $\quad x=8 y+3$
$f^{-1}(x)=\frac{x-3}{8} \quad\left(\right.$ accept $\left.\frac{x-3}{8}, y=\frac{x-3}{8}\right)$
A1
2.
(a) (i) $q=0.1$

A1
N1
(ii) appropriate approach
(M1)
eg $\quad \mathrm{P}(A)-q, 0.4-0.1$

$$
p=0.3
$$

A1
N2 [3 marks]
(b) valid approach
eg $\quad \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B), \mathrm{P}(A \cap B)+\mathrm{P}\left(B \cap A^{\prime}\right)$
correct values
eg $\quad 0.8=0.4+\mathrm{P}(B)-0.1,0.1+0.4$

$$
\mathrm{P}(B)=0.5
$$

A1	N 2
[3 marks]	

Total [6 marks]
3. (a) (i) 3
(ii) valid attempt to find the period
eg $\frac{2 \pi}{b}, \frac{2 \pi}{\frac{\pi}{2}}$
period $=4$
A1 N2 [3 marks]
(b)

4. (a) recognizing that it is an arithmetic sequence
eg $5,5+4,5+4+4, \ldots, d=4, u_{n}=u_{1}+(n-1) d, 4 n+1$
correct equation
A1
eg $5+4(n-1)=801$
correct working (do not accept substituting $n=200$) A1
eg $\quad 4 n-4=796, n-1=\frac{796}{4}$
$n=200$
AG
(b) recognition of sum
eg $\quad S_{200}, u_{1}+u_{2}+\ldots+u_{200}, 5+9+13+\ldots+801$
correct working for AP
(A1)
eg $\frac{200}{2}(5+801), \frac{200}{2}(2(5)+199(4))$
80600

A1
[3 marks]
5. (a) recognition that the x-coordinate of the vertex is -1.5 (seen anywhere)
eg axis of symmetry is -1.5 , sketch, $f^{\prime}(-1.5)=0$
correct working to find the zeroes A1
eg $\quad-1.5 \pm 4.5$
$x=-6$ and $x=3$
AG
(b) METHOD 1 (using factors)
attempt to write factors
eg $\quad(x-6)(x+3)$
correct factors
eg $\quad(x-3)(x+6)$
$q=3, r=-18$
A1A1
METHOD 2 (using derivative or vertex)
valid approach to find q
eg $\quad f^{\prime}(-1.5)=0,-\frac{q}{2 a}=-1.5$
$q=3$
correct substitution
eg $\quad 3^{2}+3(3)+r=0,(-6)^{2}+3(-6)+r=0$
$r=-18$
$q=3, r=-18$

METHOD 3 (solving simultaneously)

valid approach setting up system of two equations
eg $\quad 9+3 q+r=0,36-6 q+r=0$
one correct value
eg $\quad q=3, r=-18$
correct substitution A1
eg $\quad 3^{2}+3(3)+r=0,(-6)^{2}+3(-6)+r=0,3^{2}+3 q-18=0,36-6 q-18=0$
second correct value
eg $\quad q=3, r=-18$
$q=3, r=-18$
6. attempt to substitute side lengths or $\sin 2 \theta$ into $\frac{1}{2} a b \sin C$ (seen anywhere) eg $\quad \frac{1}{2} \times 2 \sqrt{5} \times x \times \sin \theta, \frac{1}{2} a b \sin 2 \theta, \frac{1}{2} \times 2 \sqrt{5} \times x \sin 2 \theta$ attempt to find $\cos \theta$ (seen anywhere)
eg sketch of right triangle with sides 2 and $3, \sqrt{1-\sin ^{2} \theta}$
Note: Do not award the M1 if $\triangle \mathrm{ADC}$ is assumed to be a right triangle.
correct working (seen anywhere)
eg $\sqrt{5}$ on sketch, $\sqrt{1-\frac{4}{9}}$
$\cos \theta=\frac{\sqrt{5}}{3}$ (seen anywhere)
correct equation
eg $\quad \frac{1}{2} \times 2 \sqrt{5} \times x \times 2 \times \frac{2}{3} \times \frac{\sqrt{5}}{3}=5, \frac{20 x}{9}=5$
$x=\frac{9}{4}$
7. \quad discriminant $=0$ (seen anywhere)
valid approach
eg $\quad f=g, 3 \tan ^{4} x+2 k=-\tan ^{4} x+8 k \tan ^{2} x+k$
rearranging their equation (to equal zero)
eg $\quad 4 \tan ^{4} x-8 k \tan ^{2} x+k=0,4 \tan ^{4} x-8 k \tan ^{2} x+k$
recognizing LHS is quadratic
eg $\quad 4\left(\tan ^{2} x\right)^{2}-8 k \tan ^{2} x+k=0,4 m^{2}-8 k m+k$
correct substitution into discriminant
eg $\quad(-8 k)^{2}-4(4)(k)$
correct working to find discriminant or solve discriminant $=0$
eg $\quad 64 k^{2}-16 k, \frac{-(-16) \pm \sqrt{16^{2}}}{2 \times 64}$
correct simplification
eg $\quad 16 k(4 k-1), \frac{32}{2 \times 64}$
$k=\frac{1}{4}$

Section B

8. (a) valid approach
eg between 10th and 11th, $\frac{8+8}{2}$
median $=38 \quad$ A1
A1 N2
[2 marks]
(b) (i) $\quad a=20$

A1
N1
(ii) valid approach
(M1)
eg $\quad Q_{3}-Q_{1}, Q_{1}+14, b-30=14$

$$
b=44
$$

(c) valid approach
eg $40 \times 20, \frac{x+745}{20}, 40-\frac{745}{20}$
correct working
eg $800-745,20 \times 2.75$
55 (more cans)
(d) (i) most cans in Sam's class $=50$

5 (\$)
A1
N2
(ii) correct value of 64 or 16 A1
valid approach
eg $\frac{64}{80}, 80 \%, 80-64, \frac{16}{80}$
20\%
(e) (i) 41.4 (exact) A1
[2 marks]
9. (a) recognizing $f^{\prime}(x)=0$
correct working
eg $6-2 x=0$

$$
x=3
$$

eg $\int f^{\prime}, \int \frac{6-2 x}{6 x-x^{2}} \mathrm{~d} x$
using substitution
eg $\quad \int \frac{1}{u} d u$ where $u=6 x-x^{2}$
correct integral
eg $\quad \ln (u)+c, \ln \left(6 x-x^{2}\right)$
substituting $(3, \ln 27)$ into their integrated expression (must have c)
eg $\quad \ln \left(6 \times 3-3^{2}\right)+c=\ln 27, \ln (18-9)+\ln k=\ln 27$
correct working
eg $\quad c=\ln 27-\ln 9$

EITHER

$c=\ln 3$
attempt to substitute their value of c into $f(x)$
eg $\quad f(x)=\ln \left(6 x-x^{2}\right)+\ln 3$
$f(x)=\ln \left(3\left(6 x-x^{2}\right)\right)$

OR

attempt to substitute their value of c into $f(x)$
eg $\quad f(x)=\ln \left(6 x-x^{2}\right)+\ln 27-\ln 9$
correct use of a log law
eg $\quad f(x)=\ln \left(6 x-x^{2}\right)+\ln \left(\frac{27}{9}\right), f(x)=\ln \left(27\left(6 x-x^{2}\right)\right)-\ln 9$
$f(x)=\ln \left(3\left(6 x-x^{2}\right)\right)$

(c) $\quad a=3$

A1

N1

correct working A1
eg $\frac{\ln 27}{\ln 3}$
correct use of log law
eg $\frac{3 \ln 3}{\ln 3}, \log _{3} 27$
$b=3$
10. (a) choosing chain rule
eg $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}, u=4 x+5, u^{\prime}=4$
correct derivative of f
eg $\quad \frac{1}{2}(4 x+5)^{-\frac{1}{2}} \times 4, f^{\prime}(x)=\frac{2}{\sqrt{4 x+5}}$
$f^{\prime}(1)=\frac{2}{3}$
(b) recognize that $g^{\prime}(x)$ is the gradient of the tangent
eg $\quad g^{\prime}(x)=m$
$g^{\prime}(1)=3$
(c) recognize that R is on the tangent
eg $\quad g(1)=3 \times 1+6$, sketch
$g(1)=9$
(d) $\quad f(1)=\sqrt{4+5}(=3)$ (seen anywhere)
$h(1)=3 \times 9(=27)$ (seen anywhere)
choosing product rule to find $h^{\prime}(x)$
eg $u v^{\prime}+u^{\prime} v$
correct substitution to find $h^{\prime}(1)$
eg $\quad f(1) \times g^{\prime}(1)+f^{\prime}(1) \times g(1)$
$h^{\prime}(1)=3 \times 3+\frac{2}{3} \times 9(=15)$

EITHER

attempt to substitute coordinates (in any order) into the equation of a straight line
eg $\quad y-27=h^{\prime}(1)(x-1), y-1=15(x-27)$
$y-27=15(x-1)$
A1

OR

attempt to substitute coordinates (in any order) to find the y-intercept
eg $27=15 \times 1+b, 1=15 \times 27+b$
$y=15 x+12$

Markscheme

May 2016

Mathematics

Standard level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

R Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award MO followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M} 1$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final $\boldsymbol{A 1}$.

3

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\mathbf{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or AO for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235 .

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation
where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer
Units will appear in brackets at the end.

Section A

1. (a) $h=3, k=-1$
(b) $\quad a=2, b=4$ (or $a=4, b=2)$
(c) attempt to substitute $x=0$ into their f
eg $\quad(0-3)^{2}-1,(0-2)(0-4)$
$y=8$
A1
N2
[2 marks]
Total [6 marks]
2. (a) correct approach
eg $\frac{60}{10}$
mean $=6$
(b) (i) new mean $=24$
(ii) valid approach
eg variance $\times(4)^{2}, 3 \times 16$, new standard deviation $=4 \sqrt{3}$
new variance $=48$

Total [5 marks]
(b) recognizing factors of 45 (may be seen in log expansion)
eg $\quad \ln (9 \times 5), 3 \times 3 \times 5, \log 3^{2} \times \log 5$
correct application of $\log (a b)=\log a+\log b$
eg $\quad \ln 9+\ln 5, \ln 3+\ln 3+\ln 5, \ln 3^{2}+\ln 5$
correct working
eg $\quad 2 \ln 3+\ln 5, x+x+y$
$\ln 45=2 x+y$

A1
[4 marks]

4. METHOD 1

valid approach
eg $\quad r=\frac{6}{x-3},(x-3) \times r=6,(x-3) r^{2}=x+2$
correct equation in terms of x only
eg $\frac{6}{x-3}=\frac{x+2}{6},(x-3)(x+2)=6^{2}, 36=x^{2}-x-6$
correct working
eg $\quad x^{2}-x-42, x^{2}-x=42$
valid attempt to solve their quadratic equation
eg factorizing, formula, completing the square
evidence of correct working
eg $\quad(x-7)(x+6), \frac{1 \pm \sqrt{169}}{2}$
$x=7, x=-6$

METHOD 2 (finding r first)

valid approach
eg $\quad r=\frac{6}{x-3}, 6 r=x+2,(x-3) r^{2}=x+2$
correct equation in terms of r only
eg $\frac{6}{r}+3=6 r-2,6+3 r=6 r^{2}-2 r, 6 r^{2}-5 r-6=0$
evidence of correct working
eg $\quad(3 r+2)(2 r-3), \frac{5 \pm \sqrt{25+144}}{12}$
$r=-\frac{2}{3}, r=\frac{3}{2}$
substituting their values of r to find x
eg $\quad(x-3)\left(\frac{2}{3}\right)=6, x=6\left(\frac{3}{2}\right)-2$
$x=7, x=-6$
5. (a) METHOD 1
correct substitution into formula for area of triangle
eg $\frac{1}{2}(6)(2 \sqrt{3}) \sin B, 6 \sqrt{3} \sin B, \frac{1}{2}(6)(2 \sqrt{3}) \sin B=3 \sqrt{3}$
correct working
eg $\quad 6 \sqrt{3} \sin B=3 \sqrt{3}, \sin B=\frac{3 \sqrt{3}}{\frac{1}{2}(6) 2 \sqrt{3}}$
$\sin B=\frac{1}{2}$
$\frac{\pi}{6}\left(30^{\circ}\right)$
$\mathrm{A} \hat{\mathrm{B}} \mathrm{C}=\frac{5 \pi}{6}\left(150^{\circ}\right)$
A1

METHOD 2

(using height of triangle ABC by drawing perpendicular segment from C to AD)
correct substitution into formula for area of triangle
eg $\quad \frac{1}{2}(2 \sqrt{3})(h)=3 \sqrt{3}, h \sqrt{3}$
correct working
eg $\quad h \sqrt{3}=3 \sqrt{3}$
height of triangle is 3
$\mathrm{CBD}=\frac{\pi}{6}\left(30^{\circ}\right)$
$\mathrm{ABC}=\frac{5 \pi}{6}\left(150^{\circ}\right)$
A1
[5 marks] (M1)
eg $\quad \mathrm{CBD}=\frac{\pi}{6}$, sector $=\frac{1}{2}(180-\mathrm{ABC})\left(6^{2}\right)$
correct substitution into formula for area of sector
eg $\quad \frac{1}{2} \times \frac{\pi}{6} \times 6^{2}, \pi\left(6^{2}\right)\left(\frac{30}{360}\right)$
area $=3 \pi\left(\mathrm{~cm}^{2}\right)$
6. (a) attempt to form composite in any order
eg $\quad f(g(x)), \cos \left(6 x \sqrt{1-x^{2}}\right)$
correct working
eg $6 \cos x \sqrt{1-\cos ^{2} x}$
correct application of Pythagorean identity (do not accept $\sin ^{2} x+\cos ^{2} x=1$)
eg $\sin ^{2} x=1-\cos ^{2} x, 6 \cos x \sin x, 6 \cos x|\sin x|$
valid approach (do not accept $2 \sin x \cos x=\sin 2 x$)
eg $3(2 \cos x \sin x)$
$h(x)=3 \sin 2 x$
A1
[5 marks]
(b) valid approach
eg amplitude $=3$, sketch with \max and $\min y$-values labelled, $-3<y<3$
correct range
eg $-3 \leq y \leq 3,[-3,3]$, from -3 to 3
Note: Do not award $\boldsymbol{A 1}$ for $-3<y<3$ or for "between -3 and 3 ".
7. correct scalar product
eg $m+n$
setting up their scalar product equal to 0 (seen anywhere)
$e g \quad \boldsymbol{u} \cdot \boldsymbol{v}=0,-3(0)+1(m)+1(n)=0, m=-n$
correct interpretation of unit vector
eg $\quad \sqrt{0^{2}+m^{2}+n^{2}}=1, m^{2}+n^{2}=1$
valid attempt to solve their equations (must be in one variable)
eg $\quad(-n)^{2}+n^{2}=1, \sqrt{1-n^{2}}+n=0, m^{2}+(-m)^{2}=1, m-\sqrt{1-m^{2}}=0$
correct working
eg $\quad 2 n^{2}=1,2 m^{2}=1, \sqrt{2}=\frac{1}{n}, m= \pm \frac{1}{\sqrt{2}}$
both correct pairs
eg $\quad m=\frac{1}{\sqrt{2}}$ and $n=-\frac{1}{\sqrt{2}}, m=-\frac{1}{\sqrt{2}}$ and $n=\frac{1}{\sqrt{2}}$,

$$
m=(0.5)^{\frac{1}{2}} \text { and } n=-(0.5)^{\frac{1}{2}} ., m=-\sqrt{\frac{1}{2}} \text { and } n=\sqrt{\frac{1}{2}}
$$

Note: Award $\boldsymbol{A} \boldsymbol{O}$ for $m= \pm \frac{1}{\sqrt{2}}, n= \pm \frac{1}{\sqrt{2}}$, or any other answer that does not clearly indicate the correct pairs.

Section B

8. (a) (i) $p=3$
(ii) valid approach
eg $(12+10+3)-21,22-18$
$q=4$
A1
A1A1 [5 marks]
(b) (i) $\frac{12}{21}\left(=\frac{4}{7}\right)$
(ii) valid approach
eg $8+6, r+s$
$\frac{14}{21}\left(=\frac{2}{3}\right)$
A1
N2
(c) (i)
Second
$\frac{\mathbf{1 2}}{\mathbf{2 1}}\left(\frac{4}{7}\right)-L$

$$
\frac{\mathbf{1 2}}{\mathbf{2 0}}\left(\frac{3}{5}\right)>L
$$

$$
\frac{8}{20}\left(\frac{2}{5}\right) L^{\prime}
$$

A1A1A1
Note: Award A1 for each correct bold answer.
(ii) $\frac{11}{20}$

A1
N1
[4 marks]
9. (a) correct substitution into the formula for volume

A1
eg $36=y \times x \times x$
valid approach to eliminate y (may be seen in formula/substitution)
eg $y=\frac{36}{x^{2}}, x y=\frac{36}{x}$
correct expression for surface area
A1
eg $\quad x y+x y+x y+x^{2}+x^{2}$, area $=3 x y+2 x^{2}$
correct expression in terms of x only A1
eg $3 x\left(\frac{36}{x^{2}}\right)+2 x^{2}, x^{2}+x^{2}+\frac{36}{x}+\frac{36}{x}+\frac{36}{x}, 2 x^{2}+3\left(\frac{36}{x}\right)$
$A(x)=\frac{108}{x}+2 x^{2}$
(b) $A^{\prime}(x)=-\frac{108}{x^{2}}+4 x, 4 x-108 x^{-2}$

A1A1
N2

Note: Award $\boldsymbol{A 1}$ for each term.
(c) recognizing that minimum is when $A^{\prime}(x)=0$
correct equation
(A1)
eg $\quad-\frac{108}{x^{2}}+4 x=0,4 x=\frac{108}{x^{2}}$
correct simplification
eg $\quad-108+4 x^{3}=0,4 x^{3}=108$
correct working
eg $\quad x^{3}=27$
height $=3(\mathrm{~m})($ accept $x=3)$
A1
N2
[5 marks]
continued...

Question 9 continued

(d) attempt to find area using their height
eg $\frac{108}{3}+2(3)^{2}, 9+9+12+12+12$
minimum surface area $=54 \mathrm{~m}^{2}$ (may be seen in part (c))
attempt to find the number of tins
eg $\frac{54}{10}, 5.4$
6 (tins)
(A1)
\$120
A1
10. (a) (i) recognizing the need to find the gradient when $x=0$ (seen anywhere)
eg $f^{\prime}(0)$
correct substitution
$f^{\prime}(0)=\frac{2 a^{2}-4(0)}{\sqrt{a^{2}-0}}$
$f^{\prime}(0)=2 a$
correct equation with gradient $2 a$ (do not accept equations of the form $L=2 a x$)
eg $y=2 a x, y-b=2 a(x-a), y=2 a x-2 a^{2}+b$
(ii) METHOD 1
attempt to substitute $x=a$ into their equation of L
eg $y=2 a \times a$
$b=2 a^{2}$
A1 N2

METHOD 2
equating gradients
eg $\quad \frac{b}{a}=2 a$
$b=2 a^{2}$

Question 10 continued
(b) METHOD 1
recognizing that area $=\int_{0}^{a} f(x) \mathrm{d} x$ (seen anywhere)
valid approach using substitution or inspection
eg $\quad \int 2 x \sqrt{u} \mathrm{~d} x, u=a^{2}-x^{2}, \mathrm{~d} u=-2 x \mathrm{~d} x, \frac{2}{3}\left(a^{2}-x^{2}\right)^{\frac{3}{2}}$
correct working
eg $\quad \int 2 x \sqrt{a^{2}-x^{2}} \mathrm{~d} x=\int-\sqrt{u} \mathrm{~d} u$
$\int-\sqrt{u} \mathrm{~d} u=-\frac{u^{\frac{3}{2}}}{\frac{3}{2}}$
$\int f(x) \mathrm{d} x=-\frac{2}{3}\left(a^{2}-x^{2}\right)^{\frac{3}{2}}+c$
substituting limits and subtracting
eg $\quad A_{R}=-\frac{2}{3}\left(a^{2}-a^{2}\right)^{\frac{3}{2}}+\frac{2}{3}\left(a^{2}-0\right)^{\frac{3}{2}}, \frac{2}{3}\left(a^{2}\right)^{\frac{3}{2}}$
$A_{R}=\frac{2}{3} a^{3}$

METHOD 2

recognizing that area $=\int_{0}^{a} f(x) \mathrm{d} x$ (seen anywhere)
valid approach using substitution or inspection
eg $\quad \int 2 x \sqrt{u} \mathrm{~d} x, u=a^{2}-x^{2}, \mathrm{~d} u=-2 x \mathrm{~d} x, \frac{2}{3}\left(a^{2}-x^{2}\right)^{\frac{3}{2}}$
correct working
eg $\quad \int 2 x \sqrt{a^{2}-x^{2}} d x=\int-\sqrt{u} d u$
$\int-\sqrt{u} d u=-\frac{u^{\frac{3}{2}}}{\frac{3}{2}}$
new limits for u (even if integration is incorrect)
eg $\quad u=0$ and $u=a^{2}, \int_{0}^{a^{2}} u^{\frac{1}{2}} \mathrm{~d} u,\left[-\frac{2}{3} u^{\frac{3}{2}}\right]_{a^{2}}^{0}$
substituting limits and subtracting
eg $\quad A_{R}=-\left(0-\frac{2}{3} a^{3}\right), \frac{2}{3}\left(a^{2}\right)^{\frac{3}{2}}$
$A_{R}=\frac{2}{3} a^{3}$
AG

Question 10 continued
(c) METHOD 1
valid approach to find area of triangle
eg $\quad \frac{1}{2}(\mathrm{OQ})(\mathrm{PQ}), \frac{1}{2} a b$
correct substitution into formula for A_{T} (seen anywhere)
eg $\quad A_{T}=\frac{1}{2} \times a \times 2 a^{2}, a^{3}$
valid attempt to find k (must be in terms of a)
eg $\quad a^{3}=k \frac{2}{3} a^{3}, k=\frac{a^{3}}{\frac{2}{3} a^{3}}$
$k=\frac{3}{2}$
A1

METHOD 2

valid approach to find area of triangle
eg $\int_{0}^{a}(2 a x) d x$
correct working
eg $\quad\left[a x^{2}\right]_{0}^{a}, a^{3}$
valid attempt to find k (must be in terms of a)
eg $\quad a^{3}=k \frac{2}{3} a^{3}, k=\frac{a^{3}}{\frac{2}{3} a^{3}}$
$k=\frac{3}{2}$

Markscheme

November 2015

Mathematics

Standard level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and A1 for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final $\boldsymbol{A 1}$.

3 N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \mathbf{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or AO for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\mathbf{M R}$, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10
 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation
where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".
The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

12
 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A O}$ for the final answer

Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show a truncated 6 sf value, the exact value if applicable, the correct 3 sf answer. Units will appear in brackets at the end.

Section A

1. (a) 60

A1 [1 mark]
(b) (i) valid approach
eg $\quad \max -\min =$ range,$c=40+47$

$$
c=87
$$

(ii) valid approach
eg $\quad Q 3-Q 1=I Q R, 74-22$
$d=52$

A1
[4 marks]
Total [5 marks]
eg $\quad \overrightarrow{C B}=\overrightarrow{C A}+\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{CB}}=\overrightarrow{\mathrm{AB}}$

$$
\overrightarrow{\mathrm{CB}}=-\boldsymbol{q}+\boldsymbol{p}
$$

A1 N2 [2 marks]
(b) correct approach
eg $\quad \overrightarrow{C D}=\overrightarrow{B A}$

$$
\overrightarrow{\mathrm{CD}}=-\boldsymbol{p}
$$

A1
N2 [2 marks]
(c) correct approach
eg $\quad \overrightarrow{\mathrm{DB}}=\overrightarrow{\mathrm{DC}}+\overrightarrow{\mathrm{CB}}, \overrightarrow{\mathrm{DA}}+\overrightarrow{\mathrm{AB}}$
correct working
eg $\quad \overrightarrow{\mathrm{DB}}=\boldsymbol{p}-(\boldsymbol{q}-\boldsymbol{p}), \boldsymbol{p}+\boldsymbol{p}-\boldsymbol{q}$
$\overrightarrow{\mathrm{DB}}=2 \boldsymbol{p}-\boldsymbol{q}$

A1
[3 marks]
[Total 7 marks]
3. evidence of antidifferentiation
eg $f=\int f^{\prime}$
correct integration (accept absence of C)
(A1)(A1)
$f(x)=\frac{6 x^{3}}{3}-5 x+C, 2 x^{3}-5 x$
attempt to substitute $(2,-3)$ into their integrated expression (must have C)
eg $2(2)^{3}-5(2)+C=-3,16-10+C=-3$
Note: Award MO if substituted into original or differentiated function.
correct working to find C
eg $16-10+C=-3,6+C=-3, C=-9$

$$
f(x)=2 x^{3}-5 x-9
$$

4. (a) amplitude is 3

A1
eg period $=\frac{2 \pi}{\pi}, \frac{360}{\pi}$
period is 2
A1
(c)

Note: Award $\boldsymbol{A 1}$ for sine curve starting at $(0,0)$ and correct period.
Only if this $\boldsymbol{A 1}$ is awarded, award the following
$\boldsymbol{A 1}$ for correct x-intercepts; $\boldsymbol{A 1}$ for correct max and min points;
$\boldsymbol{A 1}$ for correct domain.
5. (a) interchanging x and y (seen anywhere)
eg $\quad x=(y-5)^{3}$
evidence of correct manipulation
eg $\quad y-5=\sqrt[3]{x}$
$f^{-1}(x)=\sqrt[3]{x}+5 \quad\left(\right.$ accept $\left.5+x^{\frac{1}{3}}, y=5+\sqrt[3]{x}\right)$

A1 [3 marks]
(b) METHOD 1
attempt to form composite (in any order)
(M1)
eg $\quad g\left((x-5)^{3}\right),(g(x)-5)^{3}=8 x^{6}$
correct working
eg $\quad g-5=2 x^{2},\left(\left(2 x^{2}+5\right)-5\right)^{3}$
$g(x)=2 x^{2}+5$

METHOD 2

recognising inverse relationship
eg $\quad f^{-1}\left(8 x^{6}\right)=g(x), f^{-1}(f \circ g)(x)=f^{-1}\left(8 x^{6}\right)$
correct working
eg $\quad g(x)=\sqrt[3]{\left(8 x^{6}\right)}+5$
$g(x)=2 x^{2}+5$
6. evidence of valid binomial expansion with binomial coefficients
eg $\quad\binom{n}{r}(3 x)^{r}(1)^{n-r},(3 x)^{n}+n(3 x)^{n-1}+\binom{n}{2}(3 x)^{n-2}+\ldots,\binom{n}{r}(1)^{n-r}(3 x)^{r}$
attempt to identify correct term
eg $\binom{n}{n-2},(3 x)^{2}, n-r=2$
setting correct coefficient or term equal to $135 n$ (may be seen later)
eg $\quad 9\binom{n}{2}=135 n, \frac{9 n(n-1)}{2} x^{2}=135 n x^{2}$
correct working for binomial coefficient (using ${ }_{n} \mathrm{C}_{r}$ formula)
eg $\frac{n(n-1)(n-2)(n-3) \ldots}{2 \times 1 \times(n-2)(n-3)(n-4) \ldots}, \frac{n(n-1)}{2}$

EITHER

evidence of correct working (with linear equation in n)
eg $\quad \frac{9(n-1)}{2}=135, \frac{9(n-1)}{2} x^{2}=135 x^{2}$
correct simplification
eg $n-1=\frac{135 \times 2}{9}, \frac{(n-1)}{2}=15$
$n=31$
OR
evidence of correct working (with quadratic equation in n)
eg $9 n^{2}-279 n=0, n^{2}-n=30 n,\left(9 n^{2}-9 n\right) x^{2}=270 n x^{2}$
evidence of solving
eg $\quad 9 n(n-31)=0,9 n^{2}=279 n$

$$
n=31
$$

Note: There are many approaches to this question, and the steps may be done in any order. There are 3 relationships they may need to apply at some stage, for the 3rd, 4th and 5th marks. These are
equating bases eg recognising 9 is 3^{2}
\log rules: $\ln b+\ln c=\ln (b c), \ln b-\ln c=\ln \left(\frac{b}{c}\right)$,
exponent rule: $\ln b^{n}=n \ln b$.
correct substitution into u_{13} formula
eg $\quad \ln a+(13-1) \ln 3$
set up equation for u_{13} in any form (seen anywhere)
eg $\quad \ln a+12 \ln 3=8 \ln 9$
correct application of relationships (examples below)
(A1)(A1)(A1)
$a=81$

A1
[6 marks]

Examples of application of relationships

Example 1

correct application of exponent rule for logs
eg $\quad \ln a+\ln 3^{12}=\ln 9^{8}$
correct application of addition rule for logs
eg $\quad \ln \left(a 3^{12}\right)=\ln 9^{8}$
substituting for 9 or 3 in \ln expression in equation
eg $\quad \ln \left(a 3^{12}\right)=\ln 3^{16}, \ln \left(a 9^{6}\right)=\ln 9^{8}$

Example 2

recognising $9=3^{2}$
eg $\quad \ln a+12 \ln 3=8 \ln 3^{2}, \ln a+12 \ln 9^{\frac{1}{2}}=8 \ln 9$
one correct application of exponent rule for logs relating $\ln 9$ to $\ln 3$
eg $\quad \ln a+12 \ln 3=16 \ln 3, \ln a+6 \ln 9=8 \ln 9$
another correct application of exponent rule for logs
eg $\quad \ln a=\ln 3^{4}, \ln a=\ln 9^{2}$

Section B

8. (a) $\quad h=1, k=-9\left(\operatorname{accept}(x-1)^{2}-9\right)$

A1A1
N2
[2 marks]
(M1)
attempt to substitute $x=0$ into their quadratic function
eg $\quad f(0),(0-1)^{2}-9$
$c=-8$
A1
N2

METHOD 2

attempt to expand their quadratic function
eg $\quad x^{2}-2 x+1-9, x^{2}-2 x-8$
$c=-8$
A1
N2
[2 marks]
(c) evidence of correct reflection
eg $\quad-\left((x-1)^{2}-9\right)$, vertex at $(1,9), y$-intercept at $(0,8)$
valid attempt to find horizontal shift
eg $1+p=3,1 \rightarrow 3$

$$
p=2
$$

A1
N2
(M1)
eg $9+q=1,9 \rightarrow 1,-9+q=1$
$q=-8$
A1
N2
(d) valid approach
eg $\quad f(x)=g(x),(x-1)^{2}-9=-(x-3)^{2}+1$
correct expansion of both binomials
eg $x^{2}-2 x+1, x^{2}-6 x+9$
correct working
eg $x^{2}-2 x-8=-x^{2}+6 x-8$
correct equation
eg $\quad 2 x^{2}-8 x=0,2 x^{2}=8 x$
correct working
eg $2 x(x-4)=0$
$x=0, x=4 \quad$ A1A1
9. (a) (i) correct approach
eg $\quad \mathrm{OB}-\mathrm{OA},\left(\begin{array}{c}-2 \\ 5 \\ 3\end{array}\right)-\left(\begin{array}{c}0 \\ -3 \\ 1\end{array}\right)$
$\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}-2 \\ 8 \\ 2\end{array}\right)$
(ii) any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+t \boldsymbol{b}$ (accept any parameter for t)
where \boldsymbol{a} is $\left(\begin{array}{c}0 \\ -3 \\ 1\end{array}\right)$ or $\left(\begin{array}{c}-2 \\ 5 \\ 3\end{array}\right)$, and \boldsymbol{b} is a scalar multiple of $\left(\begin{array}{c}-2 \\ 8 \\ 2\end{array}\right)$
A2
N2
eg $\quad \boldsymbol{r}=\left(\begin{array}{c}0 \\ -3 \\ 1\end{array}\right)+t\left(\begin{array}{c}-2 \\ 8 \\ 2\end{array}\right), \boldsymbol{r}=\left(\begin{array}{c}-2-2 s \\ 5+8 s \\ 3+2 s\end{array}\right), \boldsymbol{r}=-2 \mathbf{i}+5 \mathbf{j}+3 \boldsymbol{k}+t(-2 \mathbf{i}+8 \mathbf{j}+2 \boldsymbol{k})$
Note: Award $\boldsymbol{A} \mathbf{1}$ for the form $\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{A} \mathbf{1}$ for the form $L=\boldsymbol{a}+\boldsymbol{b}$, $\boldsymbol{A} 0$ for the form $\boldsymbol{r}=\boldsymbol{b}+t \boldsymbol{a}$.
(b) valid approach
eg equating lines, $L_{1}=L_{2}$
one correct equation in one variable
eg $-2 t=-1,-2-2 t=-1$
valid attempt to solve
eg $2 t=1,-2 t=1$
one correct parameter
eg $\quad t=\frac{1}{2}, t=-\frac{1}{2}, s=-6$
correct substitution of either parameter
eg

$$
r=\left(\begin{array}{c}
0 \\
-3 \\
1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}
-2 \\
8 \\
2
\end{array}\right), r=\left(\begin{array}{c}
-2 \\
5 \\
3
\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}
-2 \\
8 \\
2
\end{array}\right), r=\left(\begin{array}{c}
-1 \\
7 \\
-4
\end{array}\right)-6\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)
$$

the coordinates of C are $(-1,1,2)$, or position vector of C is $\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$
Note: If candidate uses the same parameter in both vector equations and working shown, award M1A1M1AOAO.

Question 9 continued
(c) valid approach
eg attempt to find $\overrightarrow{C A}, \cos A \hat{C} D=\frac{\overrightarrow{C A} \cdot \overrightarrow{C D}}{|\overrightarrow{C A}||\overrightarrow{C D}|}, A \hat{C} D$ formed by $\overrightarrow{C A}$ and $\overrightarrow{C D}$

$$
\overrightarrow{\mathrm{CA}}=\left(\begin{array}{c}
1 \tag{A1}\\
-4 \\
-1
\end{array}\right)
$$

finding $|\overrightarrow{C A}|$ (may be seen in cosine formula)
eg $\sqrt{1^{2}+(-4)^{2}+(-1)^{2}}, \sqrt{18}$
correct substitution into cosine formula
eg $\frac{-9}{\sqrt{18} \sqrt{18}}$
finding $\cos \mathrm{A} \hat{C} D=-\frac{1}{2}$

$$
\mathrm{AC} D=\frac{2 \pi}{3}\left(120^{\circ}\right)
$$

Notes: Award A1 if additional answers are given.
10. (a) METHOD 1
$f^{\prime}(5)=0$
valid reasoning including reference to the graph of $f^{\prime} \quad \boldsymbol{R} \mathbf{1}$
eg $\quad f^{\prime}$ changes sign from negative to positive at $x=5$, labelled sign chart for f^{\prime} so f has a local minimum at $x=5$

Note: It must be clear that any description is referring to the graph of f^{\prime}, simply giving the conditions for a minimum without relating them to f^{\prime} does not gain the $\boldsymbol{R 1}$.

METHOD 2

$f^{\prime}(5)=0$
A1
valid reasoning referring to second derivative R1
eg $\quad f^{\prime \prime}(5)>0$
so f has a local minimum at $x=5$
AG
(b) attempt to find relevant interval
eg $\quad f^{\prime}$ is decreasing, gradient of f^{\prime} is negative, $f^{\prime \prime}<0$
$2<x<4$
Notes: If no other working shown, award M1AO for incorrect inequalities such as $2 \leq x \leq 4$.
(c) METHOD 1 (one integral)
correct application of Fundamental Theorem of Calculus
eg $\quad \int_{0}^{6} f^{\prime}(x) \mathrm{d} x=f(6)-f(0), f(6)=14+\int_{0}^{6} f^{\prime}(x) \mathrm{d} x$
attempt to link definite integral with areas
eg $\quad \int_{0}^{6} f^{\prime}(x) \mathrm{d} x=-12-6.75+6.75, \int_{0}^{6} f^{\prime}(x) \mathrm{d} x=$ Area $A+$ Area $B+$ Area C
correct value for $\int_{0}^{6} f^{\prime}(x) \mathrm{d} x$
eg $\quad \int_{0}^{6} f^{\prime}(x) \mathrm{d} x=-12$
correct working
eg $\quad f(6)-14=-12, f(6)=-12+f(0)$

$$
f(6)=2
$$

Question 10 continued

METHOD 2 (more than one integral)

correct application of Fundamental Theorem of Calculus
eg $\quad \int_{0}^{2} f^{\prime}(x) \mathrm{d} x=f(2)-f(0), f(2)=14+\int_{0}^{2} f^{\prime}(x)$
attempt to link definite integrals with areas
(M1)
eg $\quad \int_{0}^{2} f^{\prime}(x) \mathrm{d} x=12, \int_{2}^{5} f^{\prime}(x) \mathrm{d} x=-6.75, \int_{2}^{6} f^{\prime}(x)=0$
correct values for integrals
eg $\quad \int_{0}^{2} f^{\prime}(x) \mathrm{d} x=-12, \int_{5}^{2} f^{\prime}(x) \mathrm{d} x=6.75, f(6)-f(2)=0$
one correct intermediate value
eg $\quad f(2)=2, f(5)=-4.75$
$f(6)=2$
A1
[5 marks]
(d) correct calculation of $g(6)$ (seen anywhere)

A1
eg $\quad 2^{2}, g(6)=4$
choosing chain rule or product rule
eg $\quad g^{\prime}(f(x)) f^{\prime}(x), \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}, f(x) f^{\prime}(x)+f^{\prime}(x) f(x)$
correct derivative
eg $\quad g^{\prime}(x)=2 f(x) f^{\prime}(x), f(x) f^{\prime}(x)+f^{\prime}(x) f(x)$
correct calculation of $g^{\prime}(6)$ (seen anywhere)
eg $\quad 2(2)(16), g^{\prime}(6)=64$
attempt to substitute their values of $g^{\prime}(6)$ and $g(6)$ into equation of a line
eg $\quad 2^{2}=(2 \times 2 \times 16) 6+b$
correct equation in any form
A1
eg $y-4=64(x-6), y=64 x-380$

Markscheme

May 2015

Mathematics

Standard level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions and the document "Mathematics SL: Guidance for e-marking May 2015". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the RM assessor tool. Please check that you are entering marks for the right question. All the marks will be added and recorded by RM assessor.

If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks. Do not use the ticks with numbers for anything else.

- If a part is completely wrong, stamp AO by the final answer.
- If a part gains anything else, all the working must have annotations stamped to show what marks are awarded. This includes any zero marks.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and A1 for using the correct values.
- Where there are two or more A marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), $\mathbf{N 3}$, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal (see examples on next page).

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	5.65685 (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \mathbf{N} marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or $\boldsymbol{A O}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5
 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.
- Where there are anticipated common errors, the FT answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only FT answers accepted, neither should \boldsymbol{N} marks be awarded for these answers.

6

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235 .

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation". Accept sloppy notation in the working, where this is followed by correct working eg $-2^{2}=4$ where they should have written $(-2)^{2}=4$.

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A O}$ for the final answer.

Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value, the exact value if applicable, and the correct 3 sf answer.
Units (which are generally not required) will appear in brackets at the end.

Section A

1. (a) summing probabilities to 1
(M1)
eg $\quad \sum=1,3+4+2+x=10$
correct working
(A1)

A1
N3
[3 marks]
(b) correct substitution into formula for $\mathrm{E}(X)$
eg $\quad 0\left(\frac{3}{10}\right)+\ldots+3(p)$
correct working
eg $\quad \frac{4}{10}+\frac{4}{10}+\frac{3}{10}$
$\mathrm{E}(X)=\frac{11}{10}(1.1)$
A1
(A1)
[3 marks]
Total [6 marks]
(A1)

A1 N2
[2 marks]
(b) valid approach to find major arc
(M1)
eg circumference $-A B$, major angle $A O B \times$ radius
correct working for arc length
(A1)
eg $2 \pi(10)-12,10(2 \times 3.142-1.2), 2 \pi(10)-12+20$
perimeter is $20 \pi+8 \quad(=70.8)(\mathrm{cm})$
A1
N2
[3 marks]
Total [5 marks]
3. (a) $m=3, n=4$
(b) attempt to apply $\left(2^{a}\right)^{b}=2^{a b}$
eg $\quad 6 x+3,4(2 x-3)$
equating their powers of 2 (seen anywhere)
eg $\quad 3(2 x+1)=8 x-12$
correct working
eg $\quad 8 x-12=6 x+3,2 x=15$
$x=\frac{15}{2}(7.5)$
4. (a) valid approach
eg horizontal line on graph at $-1, f(a)=-1,(-1,5)$

$$
f^{-1}(-1)=5
$$

(b) attempt to find $f(-1)$
eg line on graph

$$
\begin{aligned}
& f(-1)=2 \\
& (f \circ f)(-1)=1
\end{aligned}
$$

Note: The shape must be an approximately correct shape (concave down and increasing). Only if the shape is approximately correct, award the following for points in circles:
A1 for the y-intercept,
A1 for any two of these points $(-5,-1),(-2,1),(1,2)$.

A1

A1A1
N2
[2 marks]
(M1)

M1

A1
5. (a) valid approach

correct working
eg $\quad 4^{2}-3^{2}, \cos ^{2} x=1-\left(\frac{3}{4}\right)^{2}$
correct calculation
eg $\quad \frac{\sqrt{7}}{4}, \cos ^{2} x=\frac{7}{16}$
$\cos x=-\frac{\sqrt{7}}{4}$
A1
(b) correct substitution (accept missing minus with cos)
eg $\quad 1-2\left(\frac{3}{4}\right)^{2}, 2\left(-\frac{\sqrt{7}}{4}\right)^{2}-1,\left(\frac{\sqrt{7}}{4}\right)^{2}-\left(\frac{3}{4}\right)^{2}$
correct working
eg $\quad 2\left(\frac{7}{16}\right)-1,1-\frac{18}{16}, \frac{7}{16}-\frac{9}{16}$
$\cos 2 x=-\frac{2}{16} \quad\left(=-\frac{1}{8}\right)$

A1
N2
[3 marks]
Total [7 marks]
6. (a) correct substitution into $b^{2}-4 a c$
eg $\quad(10-p)^{2}-4(p)\left(\frac{5}{4} p-5\right)$
correct expansion of each term
eg $\quad 100-20 p+p^{2}-5 p^{2}+20 p, 100-20 p+p^{2}-\left(5 p^{2}-20 p\right)$
$100-4 p^{2}$
AG
(b) recognizing discriminant is zero for equal roots
eg $\quad D=0,4 p^{2}=100$
correct working
(A1)
eg $\quad p^{2}=25,1$ correct value of p
both correct values $p= \pm 5 \quad$ A1
A1 N2
[3 marks]
7. attempt to set up integral (accept missing or incorrect limits and missing $\mathrm{d} x$)
eg $\quad \int_{\frac{3 \pi}{2}}^{b} \cos x \mathrm{~d} x, \int_{a}^{b} \cos x \mathrm{~d} x, \int_{\frac{3 \pi}{2}}^{b} f \mathrm{~d} x, \int \cos x$
correct integration (accept missing or incorrect limits)
eg $[\sin x]_{\frac{3 \pi}{2}}^{b}, \sin x$
substituting correct limits into their integrated function and subtracting (in any order)
eg $\sin b-\sin \left(\frac{3 \pi}{2}\right), \sin \left(\frac{3 \pi}{2}\right)-\sin b$
$\sin \left(\frac{3 \pi}{2}\right)=-1 \quad$ (seen anywhere)
setting their result from an integrated function equal to $\left(1-\frac{\sqrt{3}}{2}\right)$
eg $\quad \sin b=-\frac{\sqrt{3}}{2}$
evaluating $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$ or $\sin ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=-\frac{\pi}{3}$
eg $\quad b=\frac{\pi}{3}, \quad-60^{\circ}$
identifying correct value
eg $\quad 2 \pi-\frac{\pi}{3}, \quad 360-60$
$b=\frac{5 \pi}{3}$

Section B

8. (a) (i) correct approach

A1
eg $\mathrm{B}-\mathrm{A}, \mathrm{AO}+\mathrm{OB}$

$$
\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right)
$$

AG
NO
(ii) correct substitution

$$
e g \quad \sqrt{(1)^{2}+(-1)^{2}+(-2)^{2}}, \sqrt{1+1+4}
$$

$$
|\overrightarrow{\mathrm{AB}}|=\sqrt{6}
$$

A1
(b) any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+\boldsymbol{t} \boldsymbol{b}$ (any parameter for t)

$$
\begin{aligned}
& \text { where } \boldsymbol{a} \text { is }\left(\begin{array}{c}
-2 \\
4 \\
3
\end{array}\right) \text { or }\left(\begin{array}{c}
-1 \\
3 \\
1
\end{array}\right) \text { and } \boldsymbol{b} \text { is a scalar multiple of }\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right) \\
& \text { eg } \quad \boldsymbol{r}=\left(\begin{array}{c}
-2 \\
4 \\
3
\end{array}\right)+t\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right),(x, y, z)=(-1,3,1)+t(1,-1,-2), \boldsymbol{r}=\left(\begin{array}{c}
-1+t \\
3-t \\
1-2 t
\end{array}\right)
\end{aligned}
$$

Note: Award $\boldsymbol{A} \mathbf{1}$ for the form $\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{A} \mathbf{1}$ for the form $L=\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{A} \boldsymbol{0}$ for the form $\boldsymbol{r}=\boldsymbol{b}+t \boldsymbol{a}$.

Question 8 continued

(c) METHOD 1

valid approach
(M1)
eg $\quad\left(\begin{array}{c}-1 \\ 3 \\ 1\end{array}\right)+t\left(\begin{array}{c}1 \\ -1 \\ -2\end{array}\right)=\left(\begin{array}{c}0 \\ y \\ -1\end{array}\right),\left(\begin{array}{c}0 \\ y \\ -1\end{array}\right)=\left(\begin{array}{c}-2 \\ 4 \\ 3\end{array}\right)+s\left(\begin{array}{c}1 \\ -1 \\ -2\end{array}\right)$
one correct equation from their approach
eg $-1+t=0,1-2 t=-1,-2+s=0,3-2 s=-1$
one correct value for their parameter and equation
eg $t=1, s=2$
correct substitution
eg $3+1(-1), 4+2(-1)$
$y=2$

METHOD 2

valid approach
eg $\quad \overrightarrow{A C}=k \overrightarrow{A B}$
correct working
A1
eg $\quad \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}2 \\ y-4 \\ -4\end{array}\right),\left(\begin{array}{c}2 \\ y-4 \\ -4\end{array}\right)=k\left(\begin{array}{c}1 \\ -1 \\ -2\end{array}\right)$
$k=2$
correct substitution
eg $\quad y-4=-2$

$$
y=2
$$

(d) (i) correct substitution
(ii) 90° or $\frac{\pi}{2}$

A1

Question 8 continued
(e) METHOD 1 (area $=0.5 \times$ height \times base)
$|\overrightarrow{\mathrm{OC}}|=\sqrt{0+2^{2}+(-1)^{2}} \quad(=\sqrt{5}) \quad$ (seen anywhere)
valid approach
eg $\quad \frac{1}{2} \times|\overrightarrow{\mathrm{AB}}| \times|\overrightarrow{\mathrm{OC}}|,|\overrightarrow{\mathrm{OC}}|$ is height of triangle
correct substitution
eg $\frac{1}{2} \times \sqrt{6} \times \sqrt{0+(2)^{2}+(-1)^{2}}, \frac{1}{2} \times \sqrt{6} \times \sqrt{5}$
area is $\frac{\sqrt{30}}{2}$

METHOD 2 (difference of two areas)

one correct magnitude (seen anywhere)
eg $\quad|\overrightarrow{\mathrm{OC}}|=\sqrt{2^{2}+(-1)^{2}}(=\sqrt{5}),|\overrightarrow{\mathrm{AC}}|=\sqrt{4+4+16}(=\sqrt{24}),|\overrightarrow{\mathrm{BC}}|=\sqrt{6}$
valid approach
eg $\triangle \mathrm{OAC}-\triangle \mathrm{OBC}$
correct substitution
eg $\quad \frac{1}{2} \times \sqrt{24} \times \sqrt{5}-\frac{1}{2} \times \sqrt{5} \times \sqrt{6}$
area is $\frac{\sqrt{30}}{2}$
METHOD 3 (area $=\frac{1}{2} a b \sin \mathrm{C}$ for $\left.\triangle \mathrm{OAB}\right)$
one correct magnitude of OA or OB (seen anywhere)
eg $\quad|\overrightarrow{\mathrm{OA}}|=\sqrt{(-2)^{2}+4^{2}+3^{2}}(=\sqrt{29}), \quad|\overrightarrow{\mathrm{OB}}|=\sqrt{1+9+1}(=\sqrt{11})$
valid attempt to find $\cos \theta$ or $\sin \theta$
(M1)
eg $\quad \cos C=\frac{-1-3-2}{\sqrt{6} \times \sqrt{11}}\left(=\frac{-6}{\sqrt{66}}\right), 29=6+11-2 \sqrt{6} \sqrt{11} \cos \theta, \frac{\sin \theta}{\sqrt{5}}=\frac{\sin 90}{\sqrt{29}}$
correct substitution into $\frac{1}{2} a b \sin \mathrm{C}$
eg $\quad \frac{1}{2} \times \sqrt{6} \times \sqrt{11} \times \sqrt{1-\frac{36}{66}}, 0.5 \times \sqrt{6} \times \sqrt{29} \times \frac{\sqrt{5}}{\sqrt{29}}$
area is $\frac{\sqrt{30}}{2}$
9. (a) $f^{\prime \prime}(x)=6 x-2 k$

A1A1
(b) substituting $x=1$ into $f^{\prime \prime}$
eg $\quad f^{\prime \prime}(1), 6(1)-2 k$
recognizing $f^{\prime \prime}(x)=0 \quad$ (seen anywhere)
correct equation
A1
eg $\quad 6-2 k=0$

$$
k=3
$$

(c) correct substitution into $f^{\prime}(x)$
eg $3(-2)^{2}-6(-2)-9$

$$
f^{\prime}(-2)=15
$$

(d) recognizing gradient value (may be seen in equation)
eg $\quad a=15, y=15 x+b$
attempt to substitute $(-2,1)$ into equation of a straight line
eg $1=15(-2)+b,(y-1)=m(x+2),(y+2)=15(x-1)$
correct working
eg $\quad 31=b, y=15 x+30+1$
$y=15 x+31$
A1
(e) METHOD 1 (2 $2^{\text {nd }}$ derivative)
recognizing $f^{\prime \prime}<0$ (seen anywhere)
substituting $x=-1$ into $f^{\prime \prime}$
eg $\quad f^{\prime \prime}(-1), 6(-1)-6$
$f^{\prime \prime}(-1)=-12 \quad$ A1
therefore the graph of f has a local maximum when $x=-1$
AG
METHOD 2 ($1^{\text {st }}$ derivative)
recognizing change of sign of $f^{\prime}(x)$ (seen anywhere)
eg sign chart $\underset{-1}{+\underset{\sim}{4}}$
correct value of f^{\prime} for $-1<x<3$
A1
eg $\quad f^{\prime}(0)=-9$
correct value of f^{\prime} for x value to the left of -1
A1
eg $\quad f^{\prime}(-2)=15$
therefore the graph of f has a local maximum when $x=-1$
10. (a) recognizing Ann rolls green

A1
N2
[2 marks]
(b) (i) $p=\frac{4}{8}, q=\frac{5}{8}$ or $q=\frac{4}{8}, p=\frac{5}{8}$

A1A1
N2
(ii) recognizes Ann and Bob lose 9 times
(M1)
eg $\overparen{A_{L} B_{L}} \overparen{A_{L} B_{L}} \ldots \overparen{A_{L} B_{L}} 9$ times, $\underbrace{\left(\frac{5}{8} \times \frac{4}{8}\right) \times \ldots \times\left(\frac{5}{8} \times \frac{4}{8}\right)}_{9 \text { times }}$
$k=9$ (seen anywhere)
A1
(A1)
eg $\left(\frac{5}{8} \times \frac{4}{8}\right)^{9} \times \frac{3}{8},\left(\frac{5}{8} \times \frac{4}{8}\right) \times \ldots \times\left(\frac{5}{8} \times \frac{4}{8}\right) \times \frac{3}{8}$
$r=\frac{20}{64}\left(=\frac{5}{16}\right)$
A1
N2
[6 marks]
(c) recognize the probability is an infinite sum
eg Ann wins on her 1st roll or 2nd roll or 3rd roll..., S_{∞}
recognizing GP
$u_{1}=\frac{3}{8}$ (seen anywhere)
$r=\frac{20}{64}$ (seen anywhere)
correct substitution into infinite sum of GP
eg $\frac{\frac{3}{8}}{1-\frac{5}{16}}, \frac{3}{8}\left(\frac{1}{1-\left(\frac{5}{8} \times \frac{4}{8}\right)}\right), \frac{1}{1-\frac{5}{16}}$
correct working
eg $\frac{\frac{3}{8}}{\frac{11}{16}}, \frac{3}{8} \times \frac{16}{11}$
$P($ Ann wins $)=\frac{48}{88} \quad\left(=\frac{6}{11}\right)$

MARKSCHEME

May 2015

MATHEMATICS

Standard level

Paper 1

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners (red changed since M13, green new for M15)

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions and the document "Mathematics SL: Guidance for e-marking May 2015". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the RM assessor tool. Please check that you are entering marks for the right question. All the marks will be added and recorded by RM assessor.

If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks. Do not use the ticks with numbers for anything else.

- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, all the working must have annotations stamped to show what marks are awarded. This includes any zero marks.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as A mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more A marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal (see examples on next page).

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$.65685 (incorrect decimal value)	Award the final A1 (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final A1
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final A1

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown ($\mathbf{M}, \boldsymbol{A}, \boldsymbol{R}$). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of N and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \mathbf{N} marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or AO for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only FT answers accepted, neither should N marks be awarded for these answers.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10
 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation". Accept sloppy notation in the working, where this is followed by correct working eg $-2^{2}=4$ where they should have written $(-2)^{2}=4$.

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \mathbf{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.
14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A O}$ for the final answer.

Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value, the exact value if applicable, and the correct 3 sf answer.
Units (which are generally not required) will appear in brackets at the end.

Section A

1. (a) $\frac{3}{8}$

A1
N1 [1 mark]
(b)

$$
\text { First Marble } \quad \text { Second Marble }
$$

Note: Award A1 for each correct bold value.
(c) multiplying along the blue branches
eg $\quad \frac{5}{8} \times \frac{4}{7}$
$\frac{20}{56}\left(=\frac{5}{14}\right)$

A1 N2
[2 marks]
Total [6 marks]
2. (a) (i) valid approach
eg two cycles is $2 \pi, 2 \times\left(\pi-\frac{\pi}{2}\right)$
period is $\pi \quad$ A1
A1 N2
(ii) amplitude is 3 A1 [3 marks]
(b) (i) $a=3$

A1
N1
(ii) valid approach to find b (M1)
eg correctly substituting the coordinates of a point, $b=\frac{2 \pi}{\text { period }}$, period $=\frac{2 \pi}{|b|}$
$b=2$
A1
N2
Note: If no working shown, award N3 for $3 \sin 2 x$.
3. (a) evidence of approach (may be seen on graph)
(M1)
eg $80,(3,80)$
Note: Award $\boldsymbol{M O}$ for an incorrect approach such as $\frac{0+6}{2}$, which leads to the correct answer, even if $(3,80)$ is indicated on graph.
median $=3$
A1 N2 [2 marks]
(b) (i) $p=30$

A1 N1
(ii) attempt to set up an expression to find q
(M1)
eg cumulative frequency for 4.5 indicated on graph
correct expression to find q
eg 160-20-50-30, 140-50-p, 140-80

$$
q=60
$$

A1
N2
[4 marks]
4. (a) METHOD 1
choosing quotient rule
eg $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$
$(\ln x)^{\prime}=\frac{1}{x}$, seen in rule
correct substitution into the quotient rule
(A1)
eg $\frac{x \times \frac{1}{x}-\ln x \times 1}{x^{2}}$
$g^{\prime}(x)=\frac{1-\ln x}{x^{2}}$
A1
N4

METHOD 2

choosing product rule
eg $u v^{\prime}+v u^{\prime}$
one correct derivative, seen in rule
eg $\quad(\ln x)^{\prime}=\frac{1}{x},-x^{-2}$
correct substitution into the product rule
eg $\ln x\left(-x^{-2}\right)+x^{-1}\left(\frac{1}{x}\right), \frac{1}{x^{2}}-\frac{\ln x}{x^{2}}$
$g^{\prime}(x)=\frac{1-\ln x}{x^{2}}$

A1
[4 marks]
(b) attempt to use substitution or inspection
eg $\quad u=\ln x$ so $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{x}, \int u d u$

$$
\int g(x) \mathrm{d} x=\frac{(\ln x)^{2}}{2}+C \quad(\text { accept absence of }+C)
$$

5. (a) $f^{\prime}(x)=-2 \mathrm{e}^{-2 x}, f^{\prime \prime}(x)=4 \mathrm{e}^{-2 x}, f^{(3)}(x)=-8 \mathrm{e}^{-2 x}$

A1A1A1
N3 [3 marks]
(b) $\quad f^{(n)}(x)=(-2)^{n} \mathrm{e}^{-2 x} \quad\left(\operatorname{accept}(-1)^{n} 2^{n} \mathrm{e}^{-2 x},(-2)^{n} f(x)\right)$

A2A1
N3
[3 marks]
Total [6 marks]
(M1)
eg $\quad f^{\prime}(x), f^{\prime}(0)=3$
correct derivative $3 a x^{2}+b$
A1A1
A1
(M1)
eg $\quad(1,7), f(1)=7$, swapping x and y and substituting $(7,1)$
correct equation
eg $\quad a+b=7, a+3=7$
substituting their b
eg $a x^{3}+3 x, a+3=7$
$a=4$
Notes: If working shown, award relevant marks for $4 x^{3}+3 x$. If no working shown, award $\mathbf{N} 4$ for $4 x^{3}+3 x$.
[8 marks]
7. recognizing fair game (seen anywhere)
(M1)
eg $\quad \mathrm{E}(X)=10, \mathrm{E}(X)=0$, money spent $=$ money gained
correct substitution
eg $\quad 0(0.6)+k(0.4), 0.4(k-10)+0.6(-10)$
correct equation
(A2)
eg $\quad 0(0.6)+k(0.4)=10,0.4(k-10)+0.6(-10)=0, k(0.4)=10$
correct work towards solving equation
eg $\quad k=\frac{10}{0.4}, \frac{100}{4}$
$k=25$

N3
[7 marks]

Section B

8. Note: The values of p and q found in (a)(i) are used throughout the question. Please check FT carefully on their values.
(a) (i) recognizing intercepts occur when $f(x)=0$
eg $p=1, q=-3$

$$
p=-3, q=1 \quad \text { A1A1 }
$$

(ii) attempt to substitute $(0,12)$ into their f to find a
eg $\quad f(0)=12$
correct working
(A1)
eg $12=a(3)(-1)$

$$
a=-4
$$

A1 [6 marks]
(b) attempt to find x-value

(M1)

eg $\frac{p+q}{2},-\frac{b}{2 a}, f^{\prime}(x)=0$
correct working
eg $\frac{-3+1}{2}, \frac{8}{2(-4)},-1,-8 x-8=0$
$x=-1 \quad$ (must be equation)

Question 8 continued
(c) METHOD 1
substituting their x to find y-value
(M1)
eg $\quad f(-1),-4(-1+3)(-1-1)$
correct calculation
(A1)
eg $\quad-4(2)(-2)$
largest value is $16 \quad$ A1
N2

METHOD 2

valid attempt to complete the square
eg $\quad-4\left(x^{2}+2 x+1\right)+12+4,-4\left(x^{2}+2 x+1\right)+12-1$
correct vertex form
(A1)
eg $\quad-4(x+1)^{2}+16$
largest value is 16
A1
N2

METHOD 3

valid approach (may be seen in (b))
eg $\quad f^{\prime}(x)=0,-8 x-8=0$
substituting $x=-1$ into $f(x)$
eg $\quad-4(-1)^{2}-8(-1)+12$
largest value is 16
A1
N2
(d) METHOD 1
recognizing coordinates of vertex
eg $(-1,16)$
$h=-1, k=16 \quad\left(\right.$ accept $\left.-4(x+1)^{2}+16\right)$
A1A1

METHOD 2

valid attempt to complete the square (may be seen in (c))

(M1)

eg $\quad-4\left(x^{2}+2 x+1\right)+12+4,-4\left(x^{2}+2 x+1\right)+12-1$
$h=-1, k=16\left(\right.$ accept $\left.-4(x+1)^{2}+16\right) \quad$ A1A1
N3
[3 marks]
Total [15 marks]
9. (a) valid approach to find $\overrightarrow{P Q}$
eg $\quad \overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OP}}, \mathrm{P}-\mathrm{Q}$

$$
\overrightarrow{\mathrm{PQ}}=\left(\begin{array}{c}
-12 \\
8 \\
m-2
\end{array}\right)
$$

(b) valid approach (seen anywhere)
eg $\quad \boldsymbol{b} \cdot \boldsymbol{c}=0, \cos \frac{\pi}{2}=\frac{\boldsymbol{b} \cdot \boldsymbol{c}}{|\boldsymbol{b} \| \boldsymbol{c}|}$
correct substitution
eg $\quad(-3)(1)+(2)(1)+(1)(n), \frac{-1+n}{\sqrt{14} \sqrt{n^{2}+2}}$
Note: Award $\mathbf{A O}$ for incorrect denominator in cosine formula, but subsequent marks may be awarded.
correct working

A1
[4 marks]
continued...

Question 9 continued
(c) METHOD 1
(i) recognizing that $\overrightarrow{\mathrm{PQ}}$ is a scalar multiple of \boldsymbol{b}
eg $\quad \overrightarrow{P Q}=k \boldsymbol{b}$
correct approach to find the scalar multiple
eg $\quad-12=-3 k, 8=2 x, \frac{1}{4} \overrightarrow{\mathrm{PQ}}=\boldsymbol{b}$
$\overrightarrow{P Q}=4 \boldsymbol{b}$
A1
N3
(ii) $m-2=4(1)$
$m=6$

METHOD 2

(i) correct expression $\mathrm{PQ}=k \boldsymbol{b}$
(ii) correct approach to find the scalar multiple
eg $\quad-12=-3 k, 8=2 x, \frac{1}{4} \overrightarrow{\mathrm{PQ}}=\boldsymbol{b}$
correct working
eg $\quad \overrightarrow{\mathrm{PQ}}=4 \boldsymbol{b}, \boldsymbol{b}=\frac{1}{4} \overrightarrow{\mathrm{PQ}}$
$m-2=4(1)$
$m=6$
(d) (i) any correct vector (accept in equation)
eg $\boldsymbol{c}=\left(\begin{array}{c}-11 \\ 8 \\ 6\end{array}\right),\left(\begin{array}{c}-10 \\ 9 \\ 7\end{array}\right),\left(\begin{array}{c}-13 \\ 6 \\ 4\end{array}\right)$
(ii) recognize speed $=|\boldsymbol{a}|$
correct substitution
eg $\sqrt{1^{2}+1^{2}+1^{2}}, \sqrt{1+1+n^{2}}$
speed $=\sqrt{3}\left(\mathrm{~ms}^{-1}\right)$
10. (a) valid reasoning
eg $\quad f^{\prime} \leq 0$, derivative is negative
correct interval, from 0 to d, with any combination of \leq or $<$
eg $0<x<d, 0 \leq x \leq d$
(b) (i) recognizing that $f^{\prime}=0$
eg $\quad x=a, x=0$
$x=d$
A1
N2
Note: Do not award A1 if additional answers given.
(ii) complete valid reasoning for min (may be seen in (i))

R1
eg sign of f^{\prime} changes from negative to positive, labelled sign diagram
(c) recognizing two enclosed regions
eg area a to $0+$ area 0 to d
correct expression for area (may be seen in equation, accept absence of $\mathrm{d} x$)
eg

$$
\int_{a}^{0} f^{\prime}(x) \mathrm{d} x-\int_{0}^{d} f^{\prime}(x) \mathrm{d} x, \int_{a}^{d}\left|f^{\prime}(x)\right| \mathrm{d} x,[f(x)]_{a}^{0}+[f(x)]_{d}^{0}
$$

equating integral expression to15 (must have limits, may be seen after integration)
eg $\quad \int_{a}^{0} f^{\prime}(x) \mathrm{d} x+\left|\int_{0}^{d} f^{\prime}(x) \mathrm{d} x\right|=15, \int_{a}^{0} f^{\prime}(x) \mathrm{d} x+\int_{0}^{d} f^{\prime}(x) \mathrm{d} x=15$
recognizing integral of f^{\prime} is f (seen anywhere)
eg $\quad \int f^{\prime}(x) \mathrm{d} x=f(x)+C$
considers Fundamental Theorem of Calculus
eg $\quad \int_{a}^{b} f^{\prime}(x) \mathrm{d} x=f(b)-f(a)$
correct equation in terms of f
eg $\quad(f(0)-f(a))-(f(d)-f(0))=15,2 f(0)-f(a)-f(d)=15$
correct simplification
eg $2 f(0)-3-(-1)=15,2 f(0)=17$

$$
f(0)=8.5
$$

MARKSCHEME

November 2014

MATHEMATICS

Standard Level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\boldsymbol{R} Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to RM assessor instructions and the document "Mathematics SL: Guidance for e-marking May 2014". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the RM assessor tool. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks. Do not use the ticks with numbers for anything else.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, all the working must have annotations stamped to show what marks are awarded. This includes any zero marks.

All the marks will be added and recorded by RM assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any. An exception to this rule is when work for $\boldsymbol{M} \boldsymbol{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method ($e g$ substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.

N marks

If no working shown, award \boldsymbol{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the N marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or $\boldsymbol{A 0}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then $\boldsymbol{F T}$ marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value ($e g$ probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final $\boldsymbol{A 1}$. Note that if the error occurs within the same subpart, the $\boldsymbol{F T}$ rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted, neither should N marks be awarded for these answers.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an \boldsymbol{M} mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value ($e g$ probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235 .

11 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 -there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

12 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant \boldsymbol{A} marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for $\boldsymbol{F T}$.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Clarification of intermediate values accuracy instructions

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A 0}$ for the final answer. However, do not penalise inaccurate intermediate values that lead to an acceptable final answer.

All examiners must read this section carefully, as there are some changes (in red) since M13.

These instructions apply when answers need to be rounded, they do not apply to exact answers which have 3 or fewer figures. The answers will give a range of acceptable values, and any answer given to 3 or more sf that lies in this range will be accepted as well as answers given to the correct $2 s f$ (which will usually not be in the acceptable range). Answers which are given to 1 sf are not acceptable. There is also a change to the awarding of N marks for acceptable answers.

Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer and the range of acceptable values. This range includes both end values. Once an acceptable value is seen, ignore any subsequent values (even if rounded incorrectly).
Units (which are generally not required) will appear in brackets at the end.

Example

1.73205
$\sqrt{3}$ (exact), 1.73 [1.73, 1.74] (m)
Note that 1.73 is the correct $3 \mathrm{sf}, 1.74$ is incorrectly rounded but acceptable, 1.7 is the correct 2 sf value but 1.72 is wrong.

For subsequent parts, the markscheme will show the answers obtained from using unrounded values, and the answers from using previous correct 3 sf answers. Examiners will need to check the work carefully if candidates use any other acceptable answers. If other acceptable answers lead to an incorrect final answer (ie outside the range), do not award the final $\boldsymbol{A 1}$. This should not be considered as $\boldsymbol{F T}$.

Intermediate values do not need to be given to the correct 3 sf . If candidates work with fewer than 3 sf , or with incorrectly rounded values, this could lead to an incorrect answer, in which case award A0 for the final answer. However, do not penalise intermediate inaccurate values that lead to an acceptable final answer.

In questions where the final answer gains $\boldsymbol{A 2}$, if other working shown, award $\boldsymbol{A 1}$ for a correctly rounded 1 sf answer.

If there is no working shown, award the N marks for any acceptable answer, eg in the example above, if 1.73 achieves $\boldsymbol{N 4}$, then $1.74,1.7,1.7320$ all achieve $\boldsymbol{N} 4$, but 2 achieves NO .

The following table shows what achieves the final mark if this is the only numerical answer seen, as long as there is other working.

	Correctly rounded	Incorrectly rounded
1 sf	No	No
2 sf	Yes	No
3 sf	Yes	Yes (if in the acceptable range)
4 or more sf	Yes (if in the acceptable range)	Yes (if in the acceptable range)

SECTION A

1. (a) y-intercept is $-6,(0,-6), y=-6$
(b) valid attempt to solve
eg $\quad(x-2)(x+3)=0, x=\frac{-1 \pm \sqrt{1+24}}{2}$, one correct answer

$$
x=2, x=-3
$$

A1A1
(c)

Note: The shape must be an approximately correct concave up parabola. Only if the shape is correct, award the following:
$\boldsymbol{A 1}$ for the y-intercept in circle and the vertex approximately on $x=-\frac{1}{2}$, below $y=-6$,
A1 for both the x-intercepts in circles,
A1 for both end points in ovals.
2. (a) correct approach
eg $\quad d=u_{2}-u_{1}, 5-2$

$$
d=3
$$

A1
(b) correct approach
eg $u_{8}=2+7 \times 3$, listing terms
$u_{8}=23$
A1
N2
[2 marks]
(c) correct approach
eg $\quad S_{8}=\frac{8}{2}(2+23)$, listing terms, $\frac{8}{2}(2(2)+7(3))$
$S_{8}=100$
A1
N2
[2 marks]
Total [6 marks]
3. (a) evidence of summing probabilities to 1
eg $\quad \frac{5}{20}+\frac{4}{20}+\frac{1}{20}+p=1, \sum=1$
correct working
eg $\quad p=1-\frac{10}{20}$
$p=\frac{10}{20}\left(=\frac{1}{2}\right)$
A1 N2
[3 marks]
(b) correct substitution into $\mathrm{E}(X)$
$e g \quad \frac{4}{20}(q)+\frac{1}{20}(10)+\frac{10}{20}(-3)$
valid reasoning for fair game (seen anywhere, including equation)
eg $\quad \mathrm{E}(X)=0$, points lost $=$ points gained
correct working
eg $\quad 4 q+10-30=0, \frac{4}{20} q+\frac{10}{20}=\frac{30}{20}$
$q=5$

A1
N2
[4 marks]
4. (a) correct application of $\ln a^{b}=b \ln a$ (seen anywhere)
eg $\quad \ln 4=2 \ln 2,3 \ln 2=\ln 2^{3}, 3 \log 2=\log 8$
correct working
eg $\quad 3 \ln 2-2 \ln 2, \ln 8-\ln 4$
$\ln 2$ (accept $k=2$) A1 N2 [3 marks]
(b) METHOD 1
attempt to substitute their answer into the equation
eg $\quad \ln 2=-\ln x$
correct application of a log rule
eg $\quad \ln \frac{1}{x}, \ln \frac{1}{2}=\ln x, \ln 2+\ln x=\ln 2 x(=0)$
$x=\frac{1}{2}$

METHOD 2

attempt to rearrange equation, with $3 \ln 2$ written as $\ln 2^{3}$ or $\ln 8$
eg $\quad \ln x=\ln 4-\ln 2^{3}, \ln 8+\ln x=\ln 4, \ln 2^{3}=\ln 4-\ln x$
correct working applying $\ln a \pm \ln b$
eg $\quad \frac{4}{8}, 8 x=4, \ln 2^{3}=\ln \frac{4}{x}$
$x=\frac{1}{2}$
5. (a) $q=3$

A1
N1
[1 mark]
(b) correct expression for $f(0)$
eg $\quad p+\frac{9}{0-3}, 4=p+\frac{9}{-q}$
recognizing that $f(0)=4$ (may be seen in equation)
correct working
eg $\quad 4=p-3$

$$
p=7
$$

(c) $y=7$ (must be an equation, do not accept $p=7$)

A1
N1
6. substitution of limits or function
eg $\quad A=\int_{0}^{4} f(x), \int \frac{x}{x^{2}+1} \mathrm{~d} x$
correct integration by substitution/inspection
$\frac{1}{2} \ln \left(x^{2}+1\right)$
substituting limits into their integrated function and subtracting (in any order)
eg $\quad \frac{1}{2}\left(\ln \left(4^{2}+1\right)-\ln \left(0^{2}+1\right)\right)$
correct working
eg $\quad \frac{1}{2}\left(\ln \left(4^{2}+1\right)-\ln \left(0^{2}+1\right)\right), \frac{1}{2}(\ln (17)-\ln (1)), \frac{1}{2} \ln 17-0$
$A=\frac{1}{2} \ln (17)$
A1

Note: Exception to $\boldsymbol{F T}$ rule. Allow full $\boldsymbol{F T}$ on incorrect integration involving a \ln function.
7. attempt to find $\cos \mathbf{C A} B$ (seen anywhere)
eg $\quad \cos \theta=\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AB}} \| \overrightarrow{\mathrm{AC}}|}$
$\cos C \hat{A} B=\frac{-5 \sqrt{3}}{10}\left(=-\frac{\sqrt{3}}{2}\right)$
valid attempt to find $\sin C \hat{A} B$
$e g$ triangle, Pythagorean identity, $\mathrm{C} \hat{\mathrm{A}}=\frac{5 \pi}{6}, 150^{\circ}$
$\sin \mathrm{C} \hat{\mathrm{A}}=\frac{1}{2}$
correct substitution into formula for area
eg $\frac{1}{2} \times 10 \times \frac{1}{2}, \frac{1}{2} \times 10 \times \sin \frac{\pi}{6}$
area $=\frac{10}{4} \quad\left(=\frac{5}{2}\right)$
A1

SECTION B

8. (a) correct working
(A1)

A1 N2
eg $\quad \frac{1}{2} \times \frac{1}{6}$
$\mathrm{P}(C \cap L)=\frac{1}{12}$
A1 N2
[2 marks]
(c) multiplying along the other branch
eg $\quad \frac{1}{2} \times \frac{1}{3}$
adding probabilities of their 2 mutually exclusive paths
eg $\quad \frac{1}{2} \times \frac{1}{6}+\frac{1}{2} \times \frac{1}{3}$
correct working
eg $\frac{1}{12}+\frac{1}{6}$
$\mathrm{P}(L)=\frac{3}{12}\left(=\frac{1}{4}\right)$
eg $\quad 1-\frac{1}{6}$
$p=\frac{5}{6}$
(b) multiplying along correct branches

Question 8 continued

(d) recognizing conditional probability (seen anywhere)
eg $\quad \mathrm{P}(C \mid L)$
correct substitution of their values into formula
eg $\quad \frac{\frac{1}{12}}{\frac{3}{12}}$
$\mathrm{P}(C \mid L)=\frac{1}{3}$
A1
N2
(e) valid approach
(M1)
eg $\quad X \sim \mathrm{~B}\left(3, \frac{1}{4}\right),\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^{2},\binom{3}{1}$, three ways it could happen
correct substitution
(A1)
eg $\quad\binom{3}{1}\left(\frac{1}{4}\right)^{1}\left(\frac{3}{4}\right)^{2}, \frac{1}{4} \times \frac{3}{4} \times \frac{3}{4}+\frac{3}{4} \times \frac{1}{4} \times \frac{3}{4}+\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4}$
correct working
eg $\quad 3\left(\frac{1}{4}\right)\left(\frac{9}{16}\right), \frac{9}{64}+\frac{9}{64}+\frac{9}{64}$
$\frac{27}{64}$
A1
9. (a) recognizing that the local minimum occurs when $f^{\prime}(x)=0$
valid attempt to solve $3 x^{2}-8 x-3=0$
eg factorization, formula
correct working
$(3 x+1)(x-3), x=\frac{8 \pm \sqrt{64+36}}{6}$
$x=3$
A2
Note: Award $\boldsymbol{A} \boldsymbol{1}$ if both values $x=\frac{-1}{3}, x=3$ are given.
(b) valid approach
$f(x)=\int f^{\prime}(x) \mathrm{d} x$
$f(x)=x^{3}-4 x^{2}-3 x+c \quad($ do not penalize for missing " $+c$ ")
$c=6$
$f(x)=x^{3}-4 x^{2}-3 x+6$
A1
N6
[6 marks]
(c) applying reflection
eg $\quad f(-x)$

recognizing that the minimum is the image of A
(M1)
eg $\quad x=-3$
correct expression for x
A1
$e g \quad-3+m,\binom{-3+m}{-12+n},(m-3, n-12)$
10. (a) attempt to substitute $x=1$
$e g \quad \boldsymbol{r}=\binom{1}{\frac{2}{1}}+t\binom{1^{2}}{-2}, L_{1}=\binom{1}{2}+t\binom{1}{-2}$
correct equation (vector or Cartesian, but do not accept " $L_{1}=$ ")
$e g \quad \boldsymbol{r}=\binom{1}{2}+t\binom{1}{-2}, y=-2 x+4 \quad$ (must be an equation)
A1
N2
(b) appropriate approach
$e g \quad\binom{0}{y}=\binom{a}{\frac{2}{a}}+t\binom{a^{2}}{-2}$
correct equation for x-coordinate
eg $\quad 0=a+t a^{2}$
$t=\frac{-1}{a}$
substituting their parameter to find y
$e g \quad y=\frac{2}{a}-2\left(\frac{-1}{a}\right),\binom{a}{\frac{2}{a}}-\frac{1}{a}\binom{a^{2}}{-2}$
correct working
$e g \quad y=\frac{2}{a}+\frac{2}{a},\binom{a}{\frac{2}{a}}-\binom{a}{-\frac{2}{a}}$
finding correct expression for y
eg $\quad y=\frac{4}{a},\binom{0}{\frac{4}{a}}$
$\mathrm{P}\left(0, \frac{4}{a}\right)$

AG

Question 10 continued

(c) valid approach

M1
$e g \quad$ distance formula, Pythagorean Theorem, $\overrightarrow{\mathrm{PQ}}=\binom{2 a}{-\frac{4}{a}}$
correct simplification
eg $\quad(2 a)^{2}+\left(\frac{4}{a}\right)^{2}$
$d=4 a^{2}+\frac{16}{a^{2}}$
AG
(d) recognizing need to find derivative
$e g \quad d^{\prime}, d^{\prime}(a)$
correct derivative
eg $\quad 8 a-\frac{32}{a^{3}}, 8 x-\frac{32}{x^{3}}$
setting their derivative equal to 0
eg $\quad 8 a-\frac{32}{a^{3}}=0$
correct working
eg $\quad 8 a=\frac{32}{a^{3}}, 8 a^{4}-32=0$
working towards solution
eg $\quad a^{4}=4, a^{2}=2, a= \pm \sqrt{2}$
$a=\sqrt[4]{4}(a=\sqrt{2})($ do not accept $\pm \sqrt{2})$

MARKSCHEME

May 2014

MATHEMATICS

Standard Level

Paper 1

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

All examiners must read these instructions carefully, as there are some changes since M13.

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\boldsymbol{A} Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\boldsymbol{R} Marks awarded for clear Reasoning.
\boldsymbol{N} Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking May 2014". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the new scoris tool. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks. Do not use the ticks with numbers for anything else.
- If a part is completely wrong, $\operatorname{stamp} \boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, all the working must have annotations stamped to show what marks are awarded. This includes any zero marks.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any. An exception to this rule is when work for $\boldsymbol{M} \boldsymbol{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.

N marks

If no working shown, award \boldsymbol{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the N marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the N marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or $\boldsymbol{A 0}$ for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then $\boldsymbol{F T}$ marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final $\boldsymbol{A 1}$. Note that if the error occurs within the same subpart, the $\boldsymbol{F T}$ rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F} \boldsymbol{T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted, neither should N marks be awarded for these answers.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an \boldsymbol{M} mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant \boldsymbol{A} marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for FT. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers ($e g 6 / 8$). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Clarification of intermediate values accuracy instructions

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A 0}$ for the final answer. However, do not penalise inaccurate intermediate values that lead to an acceptable final answer.

11 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

12 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets

14. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

SECTION A

1. (a) $h=2, k=3$

A1A1
N2 [2 marks]
(b) attempt to substitute $(1,7)$ in any order into their $f(x)$
(M1)
$e g \quad 7=a(1-2)^{2}+3,7=a(1-3)^{2}+2,1=a(7-2)^{2}+3$
correct equation
eg $\quad 7=a+3$
$a=4$
A1

Total [5 marks]
2. (a) attempt to find d
$e g \quad \frac{16-10}{2}, 10-2 d=16-4 d, 2 d=6, d=6$

$$
d=3
$$

(b) correct approach
eg $\quad 10=u_{1}+2 \times 3,10-3-3$
$u_{1}=4$
(c) correct substitution into sum or term formula
eg $\quad \frac{20}{2}(2 \times 4+19 \times 3), u_{20}=4+19 \times 3$
correct simplification
$e g \quad 8+57,4+61$
$S_{20}=650 \quad$ A1
3. (a) substituting for $(f(x))^{2}$ (may be seen in integral)
eg $\quad\left(x^{2}\right)^{2}, x^{4}$
correct integration, $\int x^{4} \mathrm{~d} x=\frac{1}{5} x^{5}$
substituting limits into their integrated function and subtracting (in any order)(M1)
eg $\quad \frac{2^{5}}{5}-\frac{1}{5}, \frac{1}{5}(1-4)$
$\int_{1}^{2}(f(x))^{2} \mathrm{~d} x=\frac{31}{5}(=6.2)$
A1
(b) attempt to substitute limits or function into formula involving f^{2}
$e g \quad \int_{1}^{2}(f(x))^{2} \mathrm{~d} x, \pi \int x^{4} \mathrm{~d} x$
$\frac{31}{5} \pi(=6.2 \pi)$
A1
4. (a) (i) $\log _{3} 27=3$

A1 N1
(ii) $\log _{8} \frac{1}{8}=-1$

A1
N1
(iii) $\log _{16} 4=\frac{1}{2}$

A1
N1
[3 marks]
(b) correct equation with their three values
$e g \quad \frac{3}{2}=\log _{4} x, 3+(-1)-\frac{1}{2}=\log _{4} x$
correct working involving powers
eg $\quad x=4^{\frac{3}{2}}, 4^{\frac{3}{2}}=4^{\log _{4} x}$
$x=8$
5. recognize need for intersection of Y and F
eg $\quad \mathrm{P}(Y \cap F), 0.3 \times 0.4$
valid approach to find $\mathrm{P}(Y \cap F)$
eg $\quad \mathrm{P}(Y)+\mathrm{P}(F)-\mathrm{P}(Y \cup F)$, Venn diagram
correct working (may be seen in Venn diagram)
eg $0.4+0.3-0.6$
$\mathrm{P}(Y \cap F)=0.1$
recognize need for complement of $Y \cap F$
eg $\quad 1-\mathrm{P}(Y \cap F), 1-0.1$
$\mathrm{P}\left((Y \cap F)^{\prime}\right)=0.9$
6. correct integration (ignore absence of limits and " $+C$ ")
$e g \quad \frac{\sin (2 x)}{2}, \int_{\pi}^{a} \cos 2 x=\left[\frac{1}{2} \sin (2 x)\right]_{\pi}^{a}$
substituting limits into their integrated function and subtracting (in any order)
eg $\quad \frac{1}{2} \sin (2 a)-\frac{1}{2} \sin (2 \pi), \sin (2 \pi)-\sin (2 a)$
$\sin (2 \pi)=0$
setting their result from an integrated function equal to $\frac{1}{2}$
eg $\quad \frac{1}{2} \sin 2 a=\frac{1}{2}, \sin (2 a)=1$
recognizing $\sin ^{-1} 1=\frac{\pi}{2}$
$e g \quad 2 a=\frac{\pi}{2}, a=\frac{\pi}{4}$
correct value
eg $\quad \frac{\pi}{2}+2 \pi, 2 a=\frac{5 \pi}{2}, a=\frac{\pi}{4}+\pi$

$$
a=\frac{5 \pi}{4}
$$

7. (a) $f^{\prime}(x)=3 p x^{2}+2 p x+q$

A2
Note: Award A1 if only 1 error.
(b) evidence of discriminant (must be seen explicitly, not in quadratic formula) (M1) eg $\quad b^{2}-4 a c$
correct substitution into discriminant (may be seen in inequality)
eg $\quad(2 p)^{2}-4 \times 3 p \times q, 4 p^{2}-12 p q$
$f^{\prime}(x) \geq 0$ then f^{\prime} has two equal roots or no roots
recognizing discriminant less or equal than zero
eg $\quad \Delta \leq 0,4 p^{2}-12 p q \leq 0$
correct working that clearly leads to the required answer
eg $\quad p^{2}-3 p q \leq 0,4 p^{2} \leq 12 p q$
$p^{2} \leq 3 p q \quad \boldsymbol{A G}$

SECTION B

8. (a) correct approach

$$
\begin{aligned}
& e g \quad\left(\begin{array}{c}
1 \\
1 \\
5
\end{array}\right)-\left(\begin{array}{l}
2 \\
1 \\
4
\end{array}\right), \mathrm{AO}+\mathrm{OB}, \boldsymbol{b}-\boldsymbol{a} \\
& \overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

(b) (i) correct vector (or any multiple)

$$
e g \quad \boldsymbol{d}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

(ii) any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+t \boldsymbol{b}$ (accept any parameter for t)

$$
\begin{aligned}
& \text { where } \boldsymbol{a} \text { is }\left(\begin{array}{l}
2 \\
1 \\
4
\end{array}\right) \text { or }\left(\begin{array}{l}
1 \\
1 \\
5
\end{array}\right) \text {, and } \boldsymbol{b} \text { is a scalar multiple of }\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \\
& e g \quad \boldsymbol{r}=\left(\begin{array}{l}
1 \\
1 \\
5
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2-s \\
1 \\
4+s
\end{array}\right)
\end{aligned}
$$

Note: Award $\boldsymbol{A} \mathbf{1}$ for $\boldsymbol{a}+\boldsymbol{t} \boldsymbol{b}, \boldsymbol{A} \mathbf{1}$ for $L_{1}=\boldsymbol{a}+\boldsymbol{t} \boldsymbol{b}, \boldsymbol{A} \boldsymbol{0}$ for $\boldsymbol{r}=\boldsymbol{b}+\boldsymbol{t} \boldsymbol{a}$.

Question 8 continued

(c) valid approach
$e g \quad r_{1}=r_{2},\left(\begin{array}{l}2 \\ 1 \\ 4\end{array}\right)+t\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}4 \\ 7 \\ -4\end{array}\right)+s\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$
one correct equation in one parameter
$e g \quad 2-t=4,1=7-s, 1-t=4$
attempt to solve
$e g \quad 2-4=t, s=7-1, t=1-4$
one correct parameter
$e g \quad t=-2, s=6, t=-3$,
attempt to substitute their parameter into vector equation
$e g\left(\begin{array}{c}4 \\ 7 \\ -4\end{array}\right)+6\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$
$\mathrm{P}(4,1,2) \quad$ (accept position vector)
(d) (i) correct direction vector for L_{2}
$e g \quad\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}0 \\ 2 \\ -2\end{array}\right)$
(ii) correct scalar product and magnitudes for their direction vectors
scalar product $=0 \times-1+-1 \times 0+1 \times 1(=1)$
magnitudes $=\sqrt{0^{2}+(-1)^{2}+1^{2}}, \sqrt{-1^{2}+0^{2}+1^{2}}(\sqrt{2}, \sqrt{2})$
attempt to substitute their values into formula
$e g \quad \frac{0+0+1}{\left(\sqrt{0^{2}+(-1)^{2}+1^{2}}\right) \times\left(\sqrt{-1^{2}+0^{2}+1^{2}}\right)}, \frac{1}{\sqrt{2} \times \sqrt{2}}$
correct value for cosine, $\frac{1}{2}$
angle is $\frac{\pi}{3}\left(=60^{\circ}\right)$
9. (a)

Second Game

A1A1A1

Note: Award A1 for each correct bold probability.
eg $\quad \frac{4}{5} \times \frac{1}{6}$
$\frac{4}{30}\left(\frac{2}{15}\right)$
(c) METHOD 1
multiplying along the branches (may be seen on diagram)
eg $\frac{4}{5} \times \frac{5}{6}, \frac{4}{5} \times \frac{1}{6}, \frac{1}{5} \times \frac{2}{3}$
adding their probabilities of three mutually exclusive paths
eg $\frac{4}{5} \times \frac{5}{6}+\frac{4}{5} \times \frac{1}{6}+\frac{1}{5} \times \frac{2}{3}, \frac{4}{5}+\frac{1}{5} \times \frac{2}{3}$
correct simplification
$e g \quad \frac{20}{30}+\frac{4}{30}+\frac{2}{15}, \frac{2}{3}+\frac{2}{15}+\frac{2}{15}$
$\frac{28}{30}\left(=\frac{14}{15}\right)$

Question 9 continued

METHOD 2

recognizing "Bill wins at least one" is complement of "Andrea wins 2"
eg finding P (Andrea wins 2)
$P($ Andrea wins both $)=\frac{1}{5} \times \frac{1}{3}$
evidence of complement
eg $\quad 1-p, 1-\frac{1}{15}$
$\frac{14}{15}$
A1 N3
(d) $\quad \mathrm{P}(B$ wins both $)=\frac{4}{5} \times \frac{5}{6}\left(=\frac{2}{3}\right)$
evidence of recognizing conditional probability
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}$ (Bill wins both |Bill wins at least one), tree diagram
correct substitution
eg $\frac{\frac{4}{5} \times \frac{5}{6}}{\frac{14}{15}}$
$\frac{20}{28}\left(=\frac{5}{7}\right)$
10. (a) valid method for finding side length
eg $\quad 8^{2}+8^{2}=c^{2}, 45-45-90$ side ratios, $8 \sqrt{2}, \frac{1}{2} s^{2}=16, x^{2}+x^{2}=8^{2}$
correct working for area
eg $\quad \frac{1}{2} \times 4 \times 4$

n	1	2	3
x_{n}	8	$\sqrt{\mathbf{3 2}}$	4
A_{n}	32	16	$\mathbf{8}$

A1A1 N2N2 [4 marks]
(b) METHOD 1
recognize geometric progression for A_{n}
eg $u_{n}=u_{1} r^{n-1}$
$r=\frac{1}{2}$
correct working
eg $\quad 32\left(\frac{1}{2}\right)^{5} ; 4,2,1, \frac{1}{2}, \frac{1}{4}, \ldots$
$A_{6}=1$

METHOD 2

attempt to find x_{6}
eg $8\left(\frac{1}{\sqrt{2}}\right)^{5}, 2 \sqrt{2}, 2, \sqrt{2}, 1, \ldots$
$x_{6}=\sqrt{2}$
correct working
eg $\quad \frac{1}{2}(\sqrt{2})^{2}$
$A_{6}=1$

Question 10 continued

(c) METHOD 1
recognize infinite geometric series
$e g \quad S_{n}=\frac{a}{1-r},|r|<1$
area of first triangle in terms of k
eg $\quad \frac{1}{2}\left(\frac{k}{2}\right)^{2}$
attempt to substitute into sum of infinite geometric series (must have k)
$\operatorname{eg} \frac{\frac{1}{2}\left(\frac{k}{2}\right)^{2}}{1-\frac{1}{2}}, \frac{k}{1-\frac{1}{2}}$
correct equation
$e g \frac{\frac{1}{2}\left(\frac{k}{2}\right)^{2}}{1-\frac{1}{2}}=k, k=\frac{\frac{k^{2}}{8}}{\frac{1}{2}}$
correct working
$e g \quad k^{2}=4 k$
valid attempt to solve their quadratic
eg $\quad k(k-4), k=4$ or $k=0$
$k=4 \quad$ A1

METHOD 2

recognizing that there are four sets of infinitely shaded regions with equal area R1
area of original square is k^{2}
so total shaded area is $\frac{k^{2}}{4}$
correct equation $\frac{k^{2}}{4}=k$
$k^{2}=4 k$
valid attempt to solve their quadratic
eg $\quad k(k-4), k=4$ or $k=0$
$k=4 \quad$ A1

MARKSCHEME

May 2014

MATHEMATICS

Standard Level

Paper 1

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

All examiners must read these instructions carefully, as there are some changes since M13.

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
\boldsymbol{A} Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\boldsymbol{R} Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking May 2014". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the new scoris tool. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks. Do not use the ticks with numbers for anything else.
- If a part is completely wrong, $\operatorname{stamp} \boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, all the working must have annotations stamped to show what marks are awarded. This includes any zero marks.

All the marks will be added and recorded by scoris.

Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any. An exception to this rule is when work for $\boldsymbol{M} \mathbf{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.

3
 N marks

If no working shown, award \boldsymbol{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, $\boldsymbol{A}, \boldsymbol{R}$).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or $\boldsymbol{A 0}$ for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then $\boldsymbol{F T}$ marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final $\boldsymbol{A 1}$. Note that if the error occurs within the same subpart, the $\boldsymbol{F T}$ rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F} \boldsymbol{T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted, neither should N marks be awarded for these answers.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an \boldsymbol{M} mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the $\operatorname{mark}(\mathrm{s})$ for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant \boldsymbol{A} marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for FT. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers ($e g 6 / 8$). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Clarification of intermediate values accuracy instructions

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A 0}$ for the final answer. However, do not penalise inaccurate intermediate values that lead to an acceptable final answer.

11 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

12 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets

14. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

SECTION A

1. (a) METHOD 1
approach involving Pythagoras' theorem
eg $\quad 5^{2}+x^{2}=13^{2}$, labelling correct sides on triangle
finding third side is 12 (may be seen on diagram) A1
$\cos A=\frac{12}{13}$
$A G$

METHOD 2

approach involving $\sin ^{2} \theta+\cos ^{2} \theta=1$
$e g \quad\left(\frac{5}{13}\right)^{2}+\cos ^{2} \theta=1, x^{2}+\frac{25}{169}=1$
correct working
$e g \quad \cos ^{2} \theta=\frac{144}{169}$
$\cos A=\frac{12}{13}$
(b) correct substitution into $\cos 2 \theta$
$e g \quad 1-2\left(\frac{5}{13}\right)^{2}, 2\left(\frac{12}{13}\right)^{2}-1,\left(\frac{12}{13}\right)^{2}-\left(\frac{5}{13}\right)^{2}$
correct working
eg $\quad 1-\frac{50}{169}, \frac{288}{169}-1, \frac{144}{169}-\frac{25}{169}$
$\cos 2 A=\frac{119}{169}$
2. (a) correct approach
eg $\quad 6^{x}=36,6^{2}$
2 A1 [2 marks]
(b) correct simplification
eg $\quad \log _{6} 36, \log (4 \times 9)$
2
A1 N2
(c) correct simplification
$e g \quad \log _{6} \frac{2}{12}, \log (2 \div 12)$
correct working
eg $\quad \log _{6} \frac{1}{6}, 6^{-1}=\frac{1}{6}, 6^{x}=\frac{1}{6}$
-1
3.
(a) (i) $f(-3)=-1 \quad$ A1
(ii) $f^{-1}(1)=0 \quad$ (accept $y=$
(b) domain of f^{-1} is range of f
$e g \quad \mathrm{R} f=\mathrm{D} f^{-1}$
correct answer
A1
N2
eg $\quad-3 \leq x \leq 3, x \in[-3,3]$ (accept $-3<x<3,-3 \leq y \leq 3$)
[2 marks]
(c)

Note: Graph must be approximately correct reflection in $y=x$. Only if the shape is approximately correct, award the following: $\boldsymbol{A 1}$ for \boldsymbol{x}-intercept at 1 , and $\boldsymbol{A 1}$ for endpoints within circles.
4. (a) attempt to find gradient
$e g \quad$ reference to change in x is 3 and/or y is $2, \frac{3}{2}$
gradient $=\frac{2}{3}$
A1
N2
[2 marks]
(b) attempt to substitute coordinates and/or gradient into Cartesian equation for a line
eg $\quad y-4=m(x-9), y=\frac{2}{3} x+b, 9=a(4)+c$
correct substitution
(A1)
eg $\quad 4=\frac{2}{3}(9)+c, y-4=\frac{2}{3}(x-9)$
$y=\frac{2}{3} x-2\left(\right.$ accept $\left.a=\frac{2}{3}, b=-2\right)$
(c) any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+\boldsymbol{t} \boldsymbol{b}$ (any parameter for t), where \boldsymbol{a} indicates position eg $\binom{9}{4}$ or $\binom{0}{-2}$, and \boldsymbol{b} is a scalar multiple of $\binom{3}{2}$
$e g \quad \boldsymbol{r}=\binom{9}{4}+t\binom{3}{2},\binom{x}{y}=\binom{3 t+9}{2 t+4}, \boldsymbol{r}=0 i-2 j+s(3 i+2 j)$

Note: Award $\boldsymbol{A} \mathbf{1}$ for $\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{A} \mathbf{1}$ for $L=\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{A} \boldsymbol{0}$ for $\boldsymbol{r}=\boldsymbol{b}+t \boldsymbol{a}$.
5. evidence of anti-differentiation
eg $\quad \int h^{\prime}(x), \int 4 \cos 2 x \mathrm{~d} x$
correct integration
$e g \quad h(x)=2 \sin 2 x+c, \frac{4 \sin 2 x}{2}$
attempt to substitute $\left(\frac{\pi}{12}, 5\right)$ into their equation
$e g \quad 2 \sin \left(2 \times \frac{\pi}{12}\right)+c=5,2 \sin \left(\frac{\pi}{6}\right)=5$
correct working
eg $\quad 2\left(\frac{1}{2}\right)+c=5, c=4$
$h(x)=2 \sin 2 x+4$
6. (a)

Note: Award $\boldsymbol{A 1}$ for x-intercept in circle at $-2, \boldsymbol{A 1}$ for x-intercept in circle at 6 . Award A1 for approximately correct shape.
Only if this $\boldsymbol{A 1}$ is awarded, award $\boldsymbol{A 1}$ for a negative y-intercept.
(b) $\quad f^{\prime \prime}(-2), f^{\prime}(6), f(0)$

A2
7. (a) valid method
$e g \quad u_{2}=S_{2}-S_{1}, 1+k+u_{2}=5+3 k$
$u_{2}=4+2 k, u_{3}=7+4 k, u_{4}=10+8 k$
A1A1A1
(b) correct AP or GP
(A1)
$e g \quad$ finding common difference is 3 , common ratio is 2
valid approach using arithmetic and geometric formulas (M1)
$e g \quad 1+3(n-1)$ and $r^{n-1} k$

$$
u_{n}=3 n-2+2^{n-1} k \quad \text { A1A1 }
$$

Note: Award $\boldsymbol{A 1}$ for $3 n-2, \boldsymbol{A 1}$ for $2^{n-1} k$.

SECTION B

8. (a) (i) correct value 0 , or $36-12 p$ A2
(ii) correct equation which clearly leads to $p=3$
eg $\quad 36-12 p=0,36=12 p$

$$
p=3 \quad \boldsymbol{A} \boldsymbol{G}
$$

(b) METHOD 1
valid approach
eg $\quad x=-\frac{b}{2 a}$
correct working
eg $\quad-\frac{(-6)}{2(3)}, x=\frac{6}{6}$
correct answers
A1A1
eg $\quad x=1, y=0 ;(1,0)$

METHOD 2

valid approach
(M1)
eg $\quad f(x)=0$, factorisation, completing the square

correct working

eg $\quad x^{2}-2 x+1=0,(3 x-3)(x-1), f(x)=3(x-1)^{2}$
correct answers
A1A1
eg $\quad x=1, y=0 ;(1,0)$

METHOD 3

valid approach using derivative
eg $\quad f^{\prime}(x)=0,6 x-6$
correct equation
eg $\quad 6 x-6=0$
correct answers
A1A1
$e g \quad x=1, y=0 ;(1,0)$

Question 8 continued
(c) $x=1$

A1
N1
[1 mark]
(d) (i) $a=3$ A1 N1
(ii) $h=1 \quad$ A1 1
(iii) $k=0 \quad$ A1 [3 marks]
(e) attempt to apply vertical reflection
$e g \quad-f(x),-3(x-1)^{2}$, sketch
attempt to apply vertical shift 6 units up
$e g \quad-f(x)+6$, vertex $(1,6)$
transformations performed correctly (in correct order)
eg $\quad-3(x-1)^{2}+6,-3 x^{2}+6 x-3+6$
$g(x)=-3 x^{2}+6 x+3 \square A 1$
9. (a) valid approach
$e g$ magnitude of direction vector
correct working
$e g \quad \sqrt{(-4)^{2}+2^{2}+4^{2}}, \sqrt{-4^{2}+2^{2}+4^{2}}$
$6\left(\mathrm{~ms}^{-1}\right) \quad$ A1
(b) substituting 2 for t
$e g \quad 0+2(4), \boldsymbol{r}=\left(\begin{array}{l}5 \\ 6 \\ 0\end{array}\right)+2\left(\begin{array}{c}-4 \\ 2 \\ 4\end{array}\right),\left(\begin{array}{c}-3 \\ 10 \\ 8\end{array}\right), y=10$

8 (metres)

N2
[2 marks]

(c) METHOD 1

choosing correct direction vectors $\left(\begin{array}{c}-4 \\ 2 \\ 4\end{array}\right)$ and $\left(\begin{array}{c}4 \\ -6 \\ 7\end{array}\right)$

$$
A 1
$$

evidence of scalar product
M1
$e g \quad a \cdot b$
correct substitution into scalar product
$e g \quad(-4 \times 4)+(2 \times-6)+(4 \times 7)$
evidence of correct calculation of the scalar product as 0
eg $\quad-16-12+28=0$
directions are perpendicular

Question 9 continued

METHOD 2

choosing correct direction vectors $\left(\begin{array}{c}-4 \\ 2 \\ 4\end{array}\right)$ and $\left(\begin{array}{c}4 \\ -6 \\ 7\end{array}\right)$
(A1)(A1)
attempt to find angle between vectors M1
correct substitution into numerator
$e g \quad \cos \theta=\frac{-16-12+28}{|a||b|}, \cos \theta=0$
$\theta=90^{\circ}$
A1
directions are perpendicular
(d) METHOD 1
one correct equation for Ryan's airplane
eg $\quad 5-4 t=-23,6+2 t=20,0+4 t=28$
$t=7$
one correct equation for Jack's airplane
$e g \quad-39+4 s=-23,44-6 s=20,0+7 s=28$
$s=4$
3 (seconds later)

METHOD 2

valid approach
$e g\left(\begin{array}{l}5 \\ 6 \\ 0\end{array}\right)+t\left(\begin{array}{c}-4 \\ 2 \\ 4\end{array}\right)=\left(\begin{array}{c}-39 \\ 44 \\ 0\end{array}\right)+s\left(\begin{array}{c}4 \\ -6 \\ 7\end{array}\right)$, one correct equation

two correct equations

eg $\quad 5-4 t=-39+4 s, 6+2 t=44-6 s, 4 t=7 s$
$t=7 \quad$ A1
$s=4 \quad$ A1
3 (seconds later) A1
10. (a) derivative of $2 x$ is 2 (must be seen in quotient rule)
derivative of $x^{2}+5$ is $2 x$ (must be seen in quotient rule)
correct substitution into quotient rule
eg $\frac{\left(x^{2}+5\right)(2)-(2 x)(2 x)}{\left(x^{2}+5\right)^{2}}, \frac{2\left(x^{2}+5\right)-4 x^{2}}{\left(x^{2}+5\right)^{2}}$
correct working which clearly leads to given answer
eg $\frac{2 x^{2}+10-4 x^{2}}{\left(x^{2}+5\right)^{2}}, \frac{2 x^{2}+10-4 x^{2}}{x^{4}+10 x^{2}+25}$
$f^{\prime}(x)=\frac{10-2 x^{2}}{\left(x^{2}+5\right)^{2}}$
(b) valid approach using substitution or inspection
$e g \quad u=x^{2}+5, \mathrm{~d} u=2 x \mathrm{~d} x, \frac{1}{2} \ln \left(x^{2}+5\right)$
$\int \frac{2 x}{x^{2}+5} \mathrm{~d} x=\int \frac{1}{u} \mathrm{~d} u$
$\int \frac{1}{u} \mathrm{~d} u=\ln u+c$
$\ln \left(x^{2}+5\right)+c$

Question 10 continued

(c) correct expression for area
$e g \quad\left[\ln \left(x^{2}+5\right)\right]_{\sqrt{5}}^{q}, \int_{\sqrt{5}}^{q} \frac{2 x}{x^{2}+5} d x$
substituting limits into their integrated function and subtracting (in either order)
$e g \quad \ln \left(q^{2}+5\right)-\ln \left(\sqrt{5}^{2}+5\right)$
correct working (A1)
$e g \quad \ln \left(q^{2}+5\right)-\ln 10, \ln \frac{q^{2}+5}{10}$
equating their expression to $\ln 7$ (seen anywhere)
eg $\quad \ln \left(q^{2}+5\right)-\ln 10=\ln 7, \ln \frac{q^{2}+5}{10}=\ln 7, \ln \left(q^{2}+5\right)=\ln 7+\ln 10$
correct equation without logs
eg $\quad \frac{q^{2}+5}{10}=7, q^{2}+5=70$
$q^{2}=65$
$q=\sqrt{65}$
Note: Award $A 0$ for $q= \pm \sqrt{65}$.

MARKSCHEME

November 2013

MATHEMATICS

Standard Level

Paper 1

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking November 2013". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the new scoris tool. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks. Do not use the ticks with numbers for anything else.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, all the working must have annotations stamped to show what marks are awarded. This includes any zero marks.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.

N marks

If no working shown, award N marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the N marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the N marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the N marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or A0 for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate)
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the $\boldsymbol{F T}$ rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted, neither should \boldsymbol{N} marks be awarded for these answers.
$7 \quad$ Discretionary marks (d)
An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the
work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an \boldsymbol{M} mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

8 Alternative methods

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant A marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for FT. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Clarification of intermediate values accuracy instructions

Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A 0}$ for the final answer. However, do not penalise inaccurate intermediate values that lead to an acceptable final answer.

Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

14. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first A1 is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

SECTION A

1. (a) appropriate approach
(M1)
eg $\quad \overrightarrow{\mathrm{QP}}=\overrightarrow{\mathrm{QO}}+\overrightarrow{\mathrm{OP}}, \mathrm{P}-\mathbf{Q}$
$\overrightarrow{\mathrm{QP}}=\boldsymbol{p}-\boldsymbol{q}$
A1
N2 [2 marks]
(b) recognizing correct vector for $\overrightarrow{\text { QT }}$ or $\overrightarrow{\mathrm{PT}}$
eg $\quad \overrightarrow{\mathrm{QT}}=\frac{1}{2}(\boldsymbol{p}-\boldsymbol{q}), \overrightarrow{\mathrm{PT}}=\frac{1}{2}(\boldsymbol{q}-\boldsymbol{p})$
appropriate approach
(M1)
eg $\quad \overrightarrow{\mathrm{OT}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{PT}}, \overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{QT}}, \overrightarrow{\mathrm{OP}}+\frac{1}{2} \overrightarrow{\mathrm{PQ}}$
$\overrightarrow{\text { OT }}=\frac{1}{2}(\boldsymbol{p}+\boldsymbol{q})\left(\right.$ accept $\left.\frac{\boldsymbol{p}+\boldsymbol{q}}{2}\right)$
A1
2. (a) evidence of matrix multiplication (in any order)
eg $(1 \times 2)+(2 \times 1)$, one correct element
$\boldsymbol{A} \boldsymbol{B}=\left(\begin{array}{ll}4 & 7 \\ 6 & 3\end{array}\right)$
A2
N3

Note: Award A1 for three correct elements.
(b) $\quad \boldsymbol{A} \boldsymbol{B}+\boldsymbol{C}=\left(\begin{array}{ll}6 & 3 \\ 6 & 4\end{array}\right)$
correct substitution into formula for determinant
eg $(6 \times 4)-(6 \times 3)$
$\operatorname{det}(\boldsymbol{A B}+\boldsymbol{C})=6$
A1
N2
Note: Exception to $\boldsymbol{F T}$: if working shown, award $\boldsymbol{F T}$ on an incorrect 2×2 matrix $\boldsymbol{A B}+\boldsymbol{C}$.
[3 marks]
[Total 6 marks]
3. (a) attempt to find number who took less than 45 minutes
eg line on graph (vertical at approx 45, or horizontal at approx 70) 70 students (accept 69)
(b) 55 students completed task in less than 35 minutes
subtracting their values
(M1)
eg 70-55
15 students
A1
N2
[3 marks]
(c) correct approach
(A1)
eg line from y-axis on 50
$k=33$
A1 N2
[2 marks]
[Total 7 marks]
4. (a) appropriate approach
eg $\quad 2 \int f(x), 2(8)$
$\int_{1}^{6} 2 f(x) d x=16$
A1
N2 [2 marks]
(b) appropriate approach
eg $\int f(x)+\int 2,8+\int 2$
$\int 2 \mathrm{~d} x=2 x \quad$ (seen anywhere)
substituting limits into their integrated function and subtracting (in any order)
eg 2(6)-2(1), 8+12-2

$$
\int_{1}^{6}(f(x)+2) \mathrm{d} x=18
$$

A1
N3
[4 marks]
[Total 6 marks]
5. (a) METHOD 1
attempt to substitute both coordinates (in any order) into f
eg $\quad f\left(\frac{\pi}{4}\right)=6, \frac{\pi}{4}=\sin \left(6+\frac{\pi}{4}\right)+k$
correct working
eg $\quad \sin \frac{\pi}{2}=1,1+k=6$

$$
k=5
$$

A1 N2
[3 marks]

METHOD 2

recognizing shift of $\frac{\pi}{4}$ left means maximum at 6
recognizing k is difference of maximum and amplitude
eg 6-1

$$
k=5
$$

A1 N2 [3 marks]
(b) evidence of appropriate approach
eg minimum value of $\sin x$ is $-1,-1+k, f^{\prime}(x)=0,\left(\frac{5 \pi}{4}, 4\right)$
minimum value is 4
(c) $\quad p=-\frac{\pi}{4}, q=5\left(\right.$ accept $\left.\binom{-\frac{\pi}{4}}{5}\right)$
(M1)

A1 N2 [2 marks]

N2
[2 marks]
[Total 7 marks]
6. recognising need to differentiate (seen anywhere)
eg $f^{\prime}, 2 e^{2 x}$
attempt to find the gradient when $x=1$
eg $\quad f^{\prime}(1)$
$f^{\prime}(1)=2 e^{2}$
attempt to substitute coordinates (in any order) into equation of a straight line eg $\quad y-\mathrm{e}^{2}=2 \mathrm{e}^{2}(x-1), \mathrm{e}^{2}=2 \mathrm{e}^{2}(1)+b$
correct working
eg $\quad y-\mathrm{e}^{2}=2 \mathrm{e}^{2} x-2 \mathrm{e}^{2}, b=-\mathrm{e}^{2}$
$y=2 \mathrm{e}^{2} x-\mathrm{e}^{2}$
A1
7. evidence of discriminant
eg $\quad b^{2}-4 a c, \Delta=0$
correct substitution into discriminant
eg $\quad(k+2)^{2}-4(2 k), k^{2}+4 k+4-8 k$
correct discriminant
eg $k^{2}-4 k+4,(k-2)^{2}$
recognizing discriminant is positive
eg $\quad \Delta>0,(k+2)^{2}-4(2 k)>0$
attempt to solve their quadratic in k
eg factorizing, $k=\frac{4 \pm \sqrt{16-16}}{2}$
correct working
eg $\quad(k-2)^{2}>0, k=2$, sketch of positive parabola on the x-axis
correct values
A2
eg $\quad k \in \mathbb{R}$ and $k \neq 2, \mathbb{R} \backslash 2,]-\infty, 2[\cup] 2, \infty[$

SECTION B

8. (a) interchanging x and y
eg $\quad x=3 y-2$

$$
f^{-1}(x)=\frac{x+2}{3}\left(\text { accept } y=\frac{x+2}{3}, \frac{x+2}{3}\right)
$$

A1
N2
(b) attempt to form composite (in any order)
eg $g\left(\frac{x+2}{3}\right), \frac{\frac{5}{3 x}+2}{3}$
correct substitution
eg $\frac{5}{3\left(\frac{x+2}{3}\right)}$
$\left(g \circ f^{-1}\right)(x)=\frac{5}{x+2}$
(c) (i) valid approach
eg $h(0), \frac{5}{0+2}$
$y=\frac{5}{2} \quad(\operatorname{accept}(0,2.5))$
A1
(ii)

A1A2
Notes: Award A1 for approximately correct shape (reciprocal, decreasing, concave up).

Only if this A1 is awarded, award A2 for all the following approximately correct features: y-intercept at ($0,2.5$), asymptotic to x-axis, correct domain $x \geq 0$.
If only two of these features are correct, award A1.

Question 8 continued
(d) (i) $\quad x=\frac{5}{2} \quad(\operatorname{accept}(2.5,0))$

A1 N1
(ii) $x=0$ (must be an equation)

A1 N1
[2 marks]
(e) METHOD 1
attempt to substitute 3 into h (seen anywhere)
eg $\quad h(3), \frac{5}{3+2}$
correct equation
eg $\quad a=\frac{5}{3+2}, h(3)=a$
$a=1$
A1
N2 [3 marks]

METHOD 2

attempt to find inverse (may be seen in (d))
eg $\quad x=\frac{5}{y+2}, h^{-1}=\frac{5}{x}-2, \frac{5}{x}+2$
correct equation, $\frac{5}{x}-2=3$
$a=1$

A1 [3 marks]
9. (a) (i) correct expression for r

A1
eg $\quad r=\frac{6}{m-1}, \frac{m+4}{6}$
(ii) correct equation
eg $\frac{6}{m-1}=\frac{m+4}{6}, \frac{6}{m+4}=\frac{m-1}{6}$
correct working
eg $\quad(m+4)(m-1)=36$
correct working
eg $\quad m^{2}-m+4 m-4=36, m^{2}+3 m-4=36$
$m^{2}+3 m-40=0$
AG
(b) (i) valid attempt to solve
eg $\quad(m+8)(m-5)=0, m=\frac{-3 \pm \sqrt{9+4 \times 40}}{2}$

$$
m=-8, m=5
$$

(ii) attempt to substitute any value of m to find r
eg $\frac{6}{-8-1}, \frac{5+4}{6}$
$r=\frac{3}{2}, r=-\frac{2}{3}$
A1A1
N3
eg $-8-1,6 \div \frac{-2}{3}$
$u_{1}=-9 \quad$ (may be seen in formula)
correct substitution of u_{1} and their r into $\frac{u_{1}}{1-r}$, as long as $|r|<1$
10. (a) METHOD 1
correct use of chain rule
eg $\frac{2 \ln x}{2} \times \frac{1}{x}, \frac{2 \ln x}{2 x}$
Note: Award $\boldsymbol{A 1}$ for $\frac{2 \ln x}{2}, \boldsymbol{A 1}$ for $\times \frac{1}{x}$.
$f^{\prime}(x)=\frac{\ln x}{x}$
AG

METHOD 2

correct substitution into quotient rule, with derivatives seen
eg $\frac{2 \times 2 \ln x \times \frac{1}{x}-0 \times(\ln x)^{2}}{4}$
correct working
eg $\frac{4 \ln x \times \frac{1}{x}}{4}$
$f^{\prime}(x)=\frac{\ln x}{x}$
(b) setting derivative $=0$
(M1)
eg $\quad f^{\prime}(x)=0, \frac{\ln x}{x}=0$
correct working
eg $\quad \ln x=0, x=e^{0}$
$x=1$

A1

Question 10 continued

(d) equating functions
eg $\quad f^{\prime}=g, \frac{\ln x}{x}=\frac{1}{x}$
correct working
eg $\quad \ln x=1$

$$
q=\mathrm{e} \quad(\text { accept } x=\mathrm{e})
$$

A1
N2
[3 marks]
(e) evidence of integrating and subtracting functions (in any order, seen anywhere)
eg $\quad \int_{1}^{e}\left(\frac{1}{x}-\frac{\ln x}{x}\right) \mathrm{d} x, \int f^{\prime}-g$
correct integration $\ln x-\frac{(\ln x)^{2}}{2}$
substituting limits into their integrated function and subtracting (in any order)
eg $\quad(\ln \mathrm{e}-\ln 1)-\left(\frac{(\ln \mathrm{e})^{2}}{2}-\frac{(\ln 1)^{2}}{2}\right)$
Note: Do not award $\boldsymbol{M 1}$ if the integrated function has only one term.
correct working
eg $\quad(1-0)-\left(\frac{1}{2}-0\right), 1-\frac{1}{2}$
area $=\frac{1}{2}$
AG
Notes: Candidates may work with two separate integrals, and only combine them at the end. Award marks in line with the markscheme.

MARKSCHEME

May 2013

MATHEMATICS

Standard Level

Paper 1

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking
May 2013". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the new scoris tool. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by A1, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means M1 for an attempt to use an appropriate method (eg substitution into a formula) and A1 for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- A marks are often dependent on the \boldsymbol{R} mark being awarded for justification for the \boldsymbol{A} mark, in which case it is not possible to award A1R0. Hence the A1 is not awarded for a correct answer if no justification or the wrong justification is given.

3
 N marks

If no working shown, award \mathbf{N} marks for correct answers. In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of N and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if correct work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen or implied in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1). An exception to this is where at least one numerical final answer is not given to the correct three significant figures (see the accuracy booklet).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if correct work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or $\boldsymbol{A 0}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate. (However, as noted above, if an A mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate)
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted, neither should N marks be awarded for these answers.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an \boldsymbol{M} mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant A marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for $\boldsymbol{F T}$. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully, as there are a number of changes.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Clarification of intermediate values accuracy instructions

Intermediate values do not need to be given to the correct three significant figures. If candidates work with any rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A} \boldsymbol{0}$ for the final answer. However, do not penalise inaccurate intermediate values that lead to an acceptable final answer.

11 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235 .

12 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

14. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

1. (a) (i) $\quad 2 \boldsymbol{a}=\binom{4}{-6}$
correct expression for $2 \boldsymbol{a}+\boldsymbol{b}$
eg $\binom{5}{-2},(5,-2), 5 \boldsymbol{i}-2 \boldsymbol{j}$
(ii) correct substitution into length formula
eg $\sqrt{5^{2}+2^{2}}, \sqrt{5^{2}+-2^{2}}$
$|2 \boldsymbol{a}+\boldsymbol{b}|=\sqrt{29}$
A1
N2
[4 marks]
(M1)
eg $\boldsymbol{c}=-(2 \boldsymbol{a}+\boldsymbol{b}), 5+x=0,-2+y=0$
$\boldsymbol{c}=\binom{-5}{2}$
A1
N2
[2 marks]
Total [6 marks]
2. (a) $x=1, x=-3(\operatorname{accept}(1,0),(-3,0))$

A1A1
N2
[2 marks]
(M1)
eg $\frac{1+-3}{2}, x=\frac{-b}{2 a}, f^{\prime}(x)=0$
correct value, $x=-1$ (may be seen as a coordinate in the answer)
attempt to find their y-coordinate
eg $\quad f(-1),-2 \times 2, y=\frac{-D}{4 a}$
$y=-4$
A1
vertex ($-1,-4$)

METHOD 2

attempt to complete the square
(M1)
eg $x^{2}+2 x+1-1-3$
attempt to put into vertex form
(M1)
eg $(x+1)^{2}-4,(x-1)^{2}+4$
vertex $(-1,-4)$
A1A1
3. (a) evidence of choosing product rule
eg $u v^{\prime}+v u^{\prime}$
correct derivatives (must be seen in the product rule) $\cos x, 2 x$
$f^{\prime}(x)=x^{2} \cos x+2 x \sin x$
A1
N4
(b) substituting $\frac{\pi}{2}$ into their $f^{\prime}(x)$
eg $\quad f^{\prime}\left(\frac{\pi}{2}\right),\left(\frac{\pi}{2}\right)^{2} \cos \left(\frac{\pi}{2}\right)+2\left(\frac{\pi}{2}\right) \sin \left(\frac{\pi}{2}\right)$
correct values for both $\sin \frac{\pi}{2}$ and $\cos \frac{\pi}{2}$ seen in $f^{\prime}(x)$
eg $0+2\left(\frac{\pi}{2}\right) \times 1$
$f^{\prime}\left(\frac{\pi}{2}\right)=\pi$
A1
4. (a) attempt to solve for \boldsymbol{X}

(M1)

eg $\boldsymbol{X A}=\boldsymbol{C}-\boldsymbol{B}, \boldsymbol{X}+\boldsymbol{B}=\boldsymbol{C A}^{-1}, \boldsymbol{A}^{-1}(\boldsymbol{C}-\boldsymbol{B}), \boldsymbol{A}^{-1} \boldsymbol{C}-\boldsymbol{B}$
$\boldsymbol{X}=(\boldsymbol{C}-\boldsymbol{B}) \boldsymbol{A}^{-1} \quad\left(=\boldsymbol{C} \boldsymbol{A}^{-1}-\boldsymbol{B} \boldsymbol{A}^{-1}\right)$
A1
[2 marks]
(b) METHOD 1
$\boldsymbol{C}-\boldsymbol{B}=\left(\begin{array}{cc}1 & 2 \\ -4 & 2\end{array}\right)$ (seen anywhere)
A1
eg $\quad\left(\begin{array}{cc}-2+3 & 1-1 \\ 8+3 & -4-1\end{array}\right),\left(\begin{array}{cc}4-6 & -2+2 \\ -16-6 & 8+2\end{array}\right)$, two correct elements
$\boldsymbol{X}=\left(\begin{array}{cc}1 & 0 \\ 11 & -5\end{array}\right)$
A2
N3
[5 marks]
eg $\quad A^{-1}=\frac{1}{4-6}\left(\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right),\left(\begin{array}{cc}-2 & 1 \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right)$
attempt to multiply either $\boldsymbol{B} \boldsymbol{A}^{\mathbf{- 1}}$ or $\boldsymbol{C A}^{\mathbf{- 1}}$ (in any order)
eg $\frac{-1}{2}\left(\begin{array}{cc}0-3 & 0+1 \\ 4-6 & -2+2\end{array}\right), \frac{-1}{2}\left(\begin{array}{cc}-2-3 & -6+4 \\ \frac{3}{2}+\frac{3}{2} & \frac{9}{2}-2\end{array}\right)$, two correct entries
one correct multiplication
$\boldsymbol{X}=\left(\begin{array}{cc}1 & 0 \\ 11 & -5\end{array}\right)$
Note: Award A1 for three correct elements.
5. (a) METHOD 1
attempt to set up equation
(M1)
eg $2=\sqrt{y-5}, 2=\sqrt{x-5}$
correct working
eg $4=y-5, x=2^{2}+5$
$f^{-1}(2)=9$
A1
N2 [3 marks]

METHOD 2

interchanging x and y (seen anywhere)
(M1)
eg $x=\sqrt{y-5}$
correct working
eg $x^{2}=y-5, y=x^{2}+5$
$f^{-1}(2)=9$
A1
N2 [3 marks]
(b) recognizing $g^{-1}(3)=30$
eg $f(30)$
correct working
eg $\left(f \circ g^{-1}\right)(3)=\sqrt{30-5}, \sqrt{25}$
$\left(f \circ g^{-1}\right)(3)=5$
Note: Award $\boldsymbol{A 0}$ for multiple values, $e g \pm 5$.
[3 marks]
Total [6 marks]
6. attempt to integrate which involves \ln
eg $\ln (2 x-5), 12 \ln 2 x-5, \ln 2 x$
correct expression (accept absence of C)
eg $12 \ln (2 x-5) \frac{1}{2}+C, 6 \ln (2 x-5)$
attempt to substitute $(4,0)$ into their integrated f
(M1)
eg $0=6 \ln (2 \times 4-5), 0=6 \ln (8-5)+C$
$C=-6 \ln 3$
$f(x)=6 \ln (2 x-5)-6 \ln 3 \quad\left(=6 \ln \left(\frac{2 x-5}{3}\right)\right)\left(\right.$ accept $\left.6 \ln (2 x-5)-\ln 3^{6}\right)$
A1
Note: Exception to the FT rule. Allow full FT on incorrect integration which must involve ln.
Total [6 marks]
7. (a) evidence of correct formula
eg $\log a-\log b=\log \frac{a}{b}, \log \left(\frac{40}{5}\right), \log 8+\log 5-\log 5$
Note: Ignore missing or incorrect base.
correct working
eg $\quad \log _{2} 8,2^{3}=8$
$\log _{2} 40-\log _{2} 5=3$
A1
N2
[3 marks]
(b) attempt to write 8 as a power of 2 (seen anywhere)
(M1)
eg $\left(2^{3}\right)^{\log _{2} 5}, 2^{3}=8,2^{a}$
multiplying powers
(M1)
eg $2^{3 \log _{2} 5}, a \log _{2} 5$
correct working

(A1)

eg $2^{\log _{2} 125}, \log _{2} 5^{3},\left(2^{\log _{2} 5}\right)^{3}$

$$
8^{\log _{2} 5}=125
$$

A1
 N3
 [4 marks]

Total [7 marks]

SECTION B

8. (a) (i) valid approach

$$
\begin{aligned}
& \text { eg }\left(\begin{array}{c}
7 \\
-4 \\
3
\end{array}\right)-\left(\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right), \mathrm{A}-\mathrm{B}, \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OB}} \\
& \overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}
6 \\
-2 \\
4
\end{array}\right)
\end{aligned}
$$

(ii) any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+\boldsymbol{t} \boldsymbol{b}$ (accept any parameter for t)

$$
\begin{aligned}
& \text { where } \boldsymbol{a}=\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right) \text { and } \boldsymbol{b} \text { is a scalar multiple of } \overrightarrow{\mathrm{AB}} \\
& \text { eg } \boldsymbol{r}=\left(\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right)+t\left(\begin{array}{c}
6 \\
-2 \\
4
\end{array}\right),(x, y, z)=(1,-2,3)+t(3,-1,2), \boldsymbol{r}=\left(\begin{array}{c}
1+6 t \\
-2-2 t \\
3+4 t
\end{array}\right)
\end{aligned}
$$

A2
N2

Note: Award A1 for $\boldsymbol{a}+\boldsymbol{t} \boldsymbol{b}, \boldsymbol{A 1}$ for $L_{1}=\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{A 0}$ for $\boldsymbol{r}=\boldsymbol{b}+\boldsymbol{t} \boldsymbol{a}$.
(b) recognizing that scalar product $=0$ (seen anywhere)
correct calculation of scalar product
eg 6(3)-2(-3)+4p, 18+6+4p
correct working
A1
eg $24+4 p=0,4 p=-24$
$p=-6$

AG
[3 marks]
continued ...

Question 8 continued

(c) setting lines equal
(M1)
eg $\quad L_{1}=L_{2},\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)+t\left(\begin{array}{c}6 \\ -2 \\ 4\end{array}\right)=\left(\begin{array}{c}-1 \\ 2 \\ 15\end{array}\right)+s\left(\begin{array}{c}3 \\ -3 \\ -6\end{array}\right)$
any two correct equations with different parameters
eg $1+6 t=-1+3 s,-2-2 t=2-3 s, 3+4 t=15-6 s$
attempt to solve their simultaneous equations
one correct parameter
eg $t=\frac{1}{2}, s=\frac{5}{3}$
attempt to substitute parameter into vector equation
eg $\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}6 \\ -2 \\ 4\end{array}\right), 1+\frac{1}{2} \times 6$
$x=4$ (accept $(4,-3,5)$, ignore incorrect values for y and $z)$

A1A1 (M1) (M1)
9. (a) (i) attempt to find $\mathrm{P}($ red $) \times \mathrm{P}$ (red)
(M1)
eg $\frac{3}{8} \times \frac{2}{7}, \frac{3}{8} \times \frac{3}{8}, \frac{3}{8} \times \frac{2}{8}$
$P($ none green $)=\frac{6}{56}\left(=\frac{3}{28}\right)$
A1
N2
(ii) attempt to find $\mathrm{P}($ red $) \times \mathrm{P}$ (green)
(M1)
eg $\frac{5}{8} \times \frac{3}{7}, \frac{3}{8} \times \frac{5}{8}, \frac{15}{56}$
recognizing two ways to get one red, one green
eg $\quad 2 \mathrm{P}(R) \times \mathrm{P}(G), \frac{5}{8} \times \frac{3}{7}+\frac{3}{8} \times \frac{5}{7}, \frac{3}{8} \times \frac{5}{8} \times 2$
$P($ exactly one green $)=\frac{30}{56} \quad\left(=\frac{15}{28}\right)$
A1 N2
(b) $\quad \mathrm{P}($ both green $)=\frac{20}{56}$ (seen anywhere)
correct substitution into formula for $\mathrm{E}(X)$
eg $0 \times \frac{6}{56}+1 \times \frac{30}{56}+2 \times \frac{20}{56}, \frac{30}{64}+\frac{50}{64}$
expected number of green marbles is $\frac{70}{56}\left(=\frac{5}{4}\right)$

Question 9 continued

(c) (i) $\quad P($ jar $B)=\frac{4}{6} \quad\left(=\frac{2}{3}\right)$

A1

A1
N1
[2 marks]
(d) recognizing conditional probability
eg $\mathrm{P}(A \mid R), \frac{\mathrm{P}(\text { jar } \mathrm{A} \text { and red })}{\mathrm{P}(\text { red })}$, tree diagram
attempt to multiply along either branch (may be seen on diagram)
(M1)
eg $\quad \mathrm{P}(\mathrm{jar} \mathrm{A}$ and red $)=\frac{1}{3} \times \frac{3}{8} \quad\left(=\frac{1}{8}\right)$
attempt to multiply along other branch
eg $\quad P($ jar B and red $)=\frac{2}{3} \times \frac{6}{8} \quad\left(=\frac{1}{2}\right)$
adding the probabilities of two mutually exclusive paths
eg $\quad \mathrm{P}(\mathrm{red})=\frac{1}{3} \times \frac{3}{8}+\frac{2}{3} \times \frac{6}{8} \quad\left(=\frac{5}{8}\right)$
correct substitution
eg $\mathrm{P}($ jar $\mathrm{A} \mid$ red $)=\frac{\frac{1}{3} \times \frac{3}{8}}{\frac{1}{3} \times \frac{3}{8}+\frac{2}{3} \times \frac{6}{8}}, \frac{\frac{1}{8}}{\frac{5}{8}}$
$P($ jar A \mid red $)=\frac{1}{5}$
10. (a) substitute 0 into f

(M1)

A1
N2
[2 marks]
(b) $\quad f^{\prime}(x)=\frac{1}{x^{4}+1} \times 4 x^{3} \quad$ (seen anywhere)

Note: Award $\boldsymbol{A 1}$ for $\frac{1}{x^{4}+1}$ and $\mathbf{A 1}$ for $4 x^{3}$.
recognizing f increasing where $f^{\prime}(x)>0$ (seen anywhere) R1
eg $\quad f^{\prime}(x)>0$, diagram of signs
attempt to solve $f^{\prime}(x)>0$
eg $\quad 4 x^{3}=0, x^{3}>0$
f increasing for $x>0$ (accept $x \geq 0$)
A1
(c) (i) substituting $x=1$ into $f^{\prime \prime}$
eg $\frac{4(3-1)}{(1+1)^{2}}, \frac{4 \times 2}{4}$
$f^{\prime \prime}(1)=2$
(ii) valid interpretation of point of inflexion (seen anywhere)
$e g$ no change of sign in $f^{\prime \prime}(x)$, no change in concavity, f^{\prime} increasing both sides of zero
attempt to find $f^{\prime \prime}(x)$ for $x<0$
eg $\quad f^{\prime \prime}(-1), \frac{4(-1)^{2}\left(3-(-1)^{4}\right)}{\left((-1)^{4}+1\right)^{2}}$, diagram of signs
correct working leading to positive value
eg $\quad f^{\prime \prime}(-1)=2$, discussing signs of numerator and denominator
there is no point of inflexion at $x=0$

NO [5 marks]

Question 10 continued

(d)

Notes:Award A1 for shape concave up left of POI and concave down right of POI. Only if this A1 is awarded, then award the following:
A1 for curve through $(0,0)$, A1 for increasing throughout.
Sketch need not be drawn to scale. Only essential features need to be clear.

MARKSCHEME

May 2013

MATHEMATICS

Standard Level

Paper 1

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking
May 2013". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using the new scoris tool. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and A1 for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- A marks are often dependent on the \boldsymbol{R} mark being awarded for justification for the \boldsymbol{A} mark, in which case it is not possible to award A1R0. Hence the A1 is not awarded for a correct answer if no justification or the wrong justification is given.

3
 N marks

If no working shown, award \mathbf{N} marks for correct answers. In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of N and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the N marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if correct work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen or implied in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1). An exception to this is where at least one numerical final answer is not given to the correct three significant figures (see the accuracy booklet).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if correct work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or $\boldsymbol{A 0}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate. (However, as noted above, if an A mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate)
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final A1. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted, neither should N marks be awarded for these answers.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an \boldsymbol{M} mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods
Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms
Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant A marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for $\boldsymbol{F T}$. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully, as there are a number of changes.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

Clarification of intermediate values accuracy instructions

Intermediate values do not need to be given to the correct three significant figures. If candidates work with any rounded values, this could lead to an incorrect answer, in which case award $\boldsymbol{A} \boldsymbol{0}$ for the final answer. However, do not penalise inaccurate intermediate values that lead to an acceptable final answer.

11 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235 .

12 Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

14. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

SECTION A

1. (a) interchanging x and y (seen anywhere)
eg $\quad x=4 y-2$
evidence of correct manipulation
eg $x+2=4 y$
$f^{-1}(x)=\frac{x+2}{4} \quad\left(\right.$ accept $\left.y=\frac{x+2}{4}, \frac{x+2}{4}, f^{-1}(x)=\frac{1}{4} x+\frac{1}{2}\right)$
(b) METHOD 1
attempt to substitute 1 into $g(x)$
eg $\quad g(1)=-2 \times 1^{2}+8$
$g(1)=6$
(A1)
$f(6)=22$

METHOD 2

attempt to form composite function (in any order)
eg $\quad(f \circ g)(x)=4\left(-2 x^{2}+8\right)-2\left(=-8 x^{2}+30\right)$
correct substitution
eg $\quad(f \circ g)(1)=4\left(-2 \times 1^{2}+8\right)-2,-8+30$
$f(6)=22$
2. (a) evidence of multiplying matrices \boldsymbol{A} and \boldsymbol{B} (in any order), (may be seen in (b))
eg $1 \times 2+2 \times 1$, row times column, one correct value in the first row
evidence of correct multiplication ($\boldsymbol{A B}$ may be seen in (b))
eg $\quad 2+2(=p), \boldsymbol{A B}=\left(\begin{array}{cc}4 & 1+2 q \\ 6 & 3\end{array}\right)$
$p=4$
A1
N2
(b) correct equation for q
eg $\quad 1+2 q=-1,\left(\begin{array}{cc}4 & 1+2 q \\ 6 & 3\end{array}\right)=\left(\begin{array}{cc}4 & -1 \\ 6 & 3\end{array}\right)$
working towards solving equation
eg $2 q=-2$
$q=-1$
A1
N2
3. (a) METHOD 1
evidence of correct formula
(M1)
eg $\quad \log u^{n}=n \log u, 2 \log _{3} p$
$\log _{3}\left(p^{2}\right)=12$
A1
N2
METHOD 2
valid method using $p=3^{6}$
(M1)
eg $\quad \log _{3}\left(3^{6}\right)^{2}, \log 3^{12}, 12 \log _{3} 3$
$\log _{3}\left(p^{2}\right)=12$
(b) METHOD 1
evidence of correct formula
eg $\quad \log \left(\frac{p}{q}\right)=\log p-\log q, 6-7$
$\log _{3}\left(\frac{p}{q}\right)=-1$

METHOD 2

valid method using $p=3^{6}$ and $q=3^{7}$
eg $\quad \log _{3}\left(\frac{3^{6}}{3^{7}}\right), \log 3^{-1},-\log _{3} 3$
$\log _{3}\left(\frac{p}{q}\right)=-1$
(c) METHOD 1
evidence of correct formula
eg $\quad \log _{3} u v=\log _{3} u+\log _{3} v, \log 9+\log p$
$\log _{3} 9=2 \quad$ (may be seen in expression)
eg $\quad 2+\log p$
$\log _{3}(9 p)=8$

METHOD 2

valid method using $p=3^{6}$
(M1)
eg $\quad \log _{3}\left(9 \times 3^{6}\right), \log _{3}\left(3^{2} \times 3^{6}\right)$
correct working
A1
eg $\quad \log _{3} 9+\log _{3} 3^{6}, \log _{3} 3^{8}$
$\log _{3}(9 p)=8$

A1
[3 marks]
4. (a) (i) $f(2)=3$
(ii) $\quad f^{-1}(-1)=0$
(b) EITHER
attempt to draw $y=x$ on grid

OR
attempt to reverse x and y coordinates
(M1)
eg writing or plotting at least two of the points $(-2,-1),(-1,0),(0,1),(3,2)$

THEN

5. (a) valid approach to find p
(M1)
eg amplitude $=\frac{\max -\min }{2}, p=6$
$p=3$
A1
N2
[2 marks]
(b) valid approach to find q
(M1)
eg \quad period $=4, q=\frac{2 \pi}{\text { period }}$
$q=\frac{\pi}{2}$
A1
N2
[2 marks]
(c) valid approach to find r
(M1)
eg axis $=\frac{\max +\min }{2}$, sketch of horizontal axis, $f(0)$
$r=2$

A1 N2
 [2 marks]

Total [6 marks]
6. evidence of antidifferentiation
(M1)
eg $\quad \int\left(6 \mathrm{e}^{2 t}+t\right)$
$s=3 \mathrm{e}^{2 t}+\frac{t^{2}}{2}+C$
Note: Award $\boldsymbol{A} 2$ for $3 \mathrm{e}^{2 t}, \boldsymbol{A 1}$ for $\frac{t^{2}}{2}$.
attempt to substitute $(0,10)$ into their integrated expression (even if C is missing)
correct working
eg $\quad 10=3+C, C=7$
$s=3 \mathrm{e}^{2 t}+\frac{t^{2}}{2}+7$
A1 N6

Note: Exception to the $\boldsymbol{F T}$ rule. If working shown, allow full $\boldsymbol{F T}$ on incorrect integration which must involve a power of e.
7. (a) attempt to find quarter circle area
(M1)
eg $\quad \frac{1}{4}(4 \pi), \frac{\pi r^{2}}{4}, \int_{0}^{2} \sqrt{4-x^{2}} \mathrm{~d} x$
area of region $=\pi$
$\int_{0}^{2} f(x) \mathrm{d} x=-\pi$ A2 N3
[4 marks]
(b) attempted set up with both regions
(M1)
eg shaded area-quarter circle , $3 \pi-\pi, 3 \pi-\int_{0}^{2} f=\int_{2}^{6} f$
$\int_{2}^{6} f(x) \mathrm{d} x=2 \pi$
A2
[3 marks]

SECTION B

8. (a) attempt to find p
(M1)
eg $120-70,50+20+x=120$

$$
p=50 \quad A 1
$$

N2
attempt to find q
(M1)
eg $180-20,200-20-20$

$$
q=160
$$

A1
N2
(b) (i) $\frac{70}{200}\left(=\frac{7}{20}\right)$

A1
N1
(ii) valid approach
eg $20+20,200-160$
$\frac{40}{200}\left(=\frac{1}{5}\right)$
A1
N2
[3 marks]
(M1)
eg $\quad 0.4, \frac{40}{100} \times 200$
80 are not selected
(ii) 120 are selected $x=20$
(A1)
A1 N2
[4 marks]
(d) (i) 30 given second chance
(ii) 20 took less than 20 minutes
attempt to find their selected total (may be seen in \% calculation) eg $120+20(=140), 120+$ their answer from (d)(i)

70 (\%)
(M1)
A1
N1

(A1)

A1

 N3[4 marks]
Total [15 marks]
9. (a) $f^{\prime}(x)=\cos x+x-2$

A1A1A1 N3

Note: Award A1 for each term.
(b) recognizing $g(0)=5$ gives the point $(0,5)$
eg vertex, sketch

$$
g(4)=5
$$

A1

Question 9 continued

(d) $g(x)=\frac{1}{2}(x-2)^{2}+3=\frac{1}{2} x^{2}-2 x+5$ correct derivative of g

A1A1
eg $\quad 2 \times \frac{1}{2}(x-2), x-2$
evidence of equating both derivatives (M1)
eg $\quad f^{\prime}=g^{\prime}$
correct equation
eg $\quad \cos x+x-2=x-2$
working towards a solution
eg $\cos x=0$, combining like terms

$$
x=\frac{\pi}{2}
$$

Note: Do not award final A1 if additional values are given.
10. (a) $g(3)=-18, f^{\prime}(3)=1, h^{\prime \prime}(2)=-6$

A1A1A1
(b) $\quad h^{\prime \prime}(3)=0$
valid reasoning
R1
eg $\quad h^{\prime \prime}$ changes sign at $x=3$, change in concavity of h at $x=3$
so P is a point of inflexion
AG
No
[2 marks]
(c) writing $h(3)$ as a product of $f(3)$ and $g(3)$
eg $\quad f(3) \times g(3), 3 \times(-18)$
$h(3)=-54$
A1
N1
[2 marks]
(d) recognising need to find derivative of h
eg $\quad h^{\prime}, h^{\prime}(3)$
attempt to use the product rule (do not accept $h^{\prime}=f^{\prime} \times g^{\prime}$)
eg $\quad h^{\prime}=f g^{\prime}+g f^{\prime}, h^{\prime}(3)=f(3) \times g^{\prime}(3)+g(3) \times f^{\prime}(3)$
correct substitution
(A1)
eg $\quad h^{\prime}(3)=3(-3)+(-18) \times 1$
$h^{\prime}(3)=-27$
attempt to find the gradient of the normal
eg $\quad-\frac{1}{m},-\frac{1}{27} x$
attempt to substitute their coordinates and their normal gradient into the equation of a line
eg $\quad-54=\frac{1}{27}(3)+b, 0=\frac{1}{27}(3)+b, y+54=27(x-3), y-54=\frac{1}{27}(x+3)$
correct equation in any form
A1
N4
eg $y+54=\frac{1}{27}(x-3), y=\frac{1}{27} x-54 \frac{1}{9}$

MARKSCHEME

November 2012

MATHEMATICS

Standard Level

Paper 1

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Note: Changes linked to e-marking are noted in red. Other marking changes since November 2011 are noted in green. In particular, please note the removal of the accuracy and misread penalties and the revised accuracy instructions.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$N \quad$ Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: Guidance for e-marking May 2011". It is essential that you read this document before you start marking. In particular, please note the following. Marks must be recorded using the annotation stamps, using new scoris assessor marking tool. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M} \mathbf{0}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any. An exception to this rule is when work for $\boldsymbol{M} \mathbf{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and A1 for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

If no working shown, award N marks for correct answers. In this case, ignore mark breakdown (M, A, R).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the N marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the N marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets e.g. (M1).

- Implied marks can only be awarded if correct work is seen or if implied in subsequent working (a correct answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen or implied in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).
Must be seen marks appear without brackets e.g. M1.
- Must be seen marks can only be awarded if correct work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or A0 for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (i.e. there is no working expected), then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further A marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate. (However, as noted above, if an A mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error leads to not showing the required answer, there is a 1 mark penalty. Note that if the error occurs within the same subpart, the $F T$ rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates’ own work does not constitute a misread, it is an error.

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10
 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant A marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for FT. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully, as there are a number of changes.

Do not accept unfinished numerical answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (e.g. 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

11 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

12 Style

The markscheme aims to present answers using good communication, e.g. if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, e.g. if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the e.g. notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on lined paper. Sometimes, they need more room for Section A, and use lined paper (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the lined paper, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on the lined paper, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on the lined paper.

Diagrams

The notes on how to allocated marks for sketches usually refer to passing through particular points are having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\mathbf{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded. However, if the graph is based on previous calculations, $\boldsymbol{F} \boldsymbol{T}$ marks should be awarded if appropriate.

SECTION A

1. (a) evidence of multiplying
e.g. one correct element, $(0 \times-4)+(3 \times 5)$
$\boldsymbol{A B}=\left(\begin{array}{ll}15 & 3 \\ 28 & 4\end{array}\right)$
A2

Note: Award A1 for three correct elements.
(b) finding $2 A=\left(\begin{array}{cc}0 & 6 \\ -4 & 8\end{array}\right)$
adding $2 \boldsymbol{A}$ to both sides (may be seen first)
e.g. $\quad \boldsymbol{X}=\boldsymbol{B}+2 \boldsymbol{A}$

$$
\boldsymbol{X}=\left(\begin{array}{cc}
-4 & 6 \\
1 & 9
\end{array}\right)
$$

2. (a) evidence of summing to 1
e.g. $\quad \sum p=1,0.3+k+2 k+0.1=1$
correct working
e.g. $\quad 0.4+3 k, 3 k=0.6$
$k=0.2$
A1
N2
[3 marks]
(b) correct substitution into $\mathrm{E}(X)$ formula
e.g. $\quad 0(0.3)+2(k)+5(2 k)+9(0.1), 12 k+0.9$
correct working
e.g. $\quad 0(0.3)+2(0.2)+5(0.4)+9(0.1), 0.4+2.0+0.9$

$$
\mathrm{E}(X)=3.3
$$

3. (a) correct integration
e.g. $\frac{x^{2}}{2}-4 x,\left[\frac{x^{2}}{2}-4 x\right]_{4}^{10}, \frac{(x-4)^{2}}{2}$

Notes: In the first 2 examples, award $\mathbf{A 1}$ for each correct term. In the third example, award $\mathbf{A 1}$ for $\frac{1}{2}$ and $\boldsymbol{A 1}$ for $(x-4)^{2}$.
substituting limits into their integrated function and subtracting (in any order) (M1)
e.g. $\left(\frac{10^{2}}{2}-4(10)\right)-\left(\frac{4^{2}}{2}-4(4)\right), 10-(-8), \frac{1}{2}\left(6^{2}-0\right)$
$\int_{4}^{10}(x-4) \mathrm{d} x=18$
A1
N2
[4 marks]
(b) attempt to substitute either limits or the function into volume formula
e.g. $\quad \pi \int_{4}^{10} f^{2} \mathrm{~d} x, \int_{a}^{b}(\sqrt{x-4})^{2}, \pi \int_{4}^{10} \sqrt{x-4}$

Note: Do not penalise for missing π or $\mathrm{d} x$.
correct substitution (accept absence of $\mathrm{d} x$ and π)
e.g. $\quad \pi \int_{4}^{10}(\sqrt{x-4})^{2}, \pi \int_{4}^{10}(x-4) \mathrm{d} x, \int_{4}^{10}(x-4) \mathrm{d} x$
volume $=18 \pi$
A1
N2
[3 marks]
Total [7 marks]
4. (a) $f^{\prime}(x)=3 a x^{2}-12 x$

A1A1
N2
Note: Award A1 for each correct term.
(b) setting their derivative equal to 3 (seen anywhere)
e.g. $\quad f^{\prime}(x)=3$
attempt to substitute $x=1$ into $f^{\prime}(x)$
(M1)
e.g. $\quad 3 a(1)^{2}-12(1)$
correct substitution into $f^{\prime}(x)$
e.g. $3 a-12,3 a=15$
$a=5$
5.

Note: All answers must be given in terms of m. If a candidate makes an error that means there is no m in their answer, do not award the final A1FT mark.

METHOD 1

(a) valid approach involving Pythagoras
(M1)

e.g. $\sin ^{2} x+\cos ^{2} x=1$, labelled diagram
correct working (may be on diagram)
e.g. $\quad m^{2}+(\cos 100)^{2}=1, \sqrt{1-m^{2}}$
$\cos 100=-\sqrt{1-m^{2}}$
A1
N2
[3 marks]
(b) $\tan 100=-\frac{m}{\sqrt{1-m^{2}}}\left(\right.$ accept $\left.\frac{m}{-\sqrt{1-m^{2}}}\right)$
(c) valid approach involving double angle formula
e.g. $\sin 2 \theta=2 \sin \theta \cos \theta$
$\sin 200=-2 m \sqrt{1-m^{2}} \quad\left(\right.$ accept $\left.2 m\left(-\sqrt{1-m^{2}}\right)\right)$
A1
N2

Note: If candidates find $\cos 100=\sqrt{1-m^{2}}$, award full $\boldsymbol{F T}$ in parts (b) and (c), even though the values may not have appropriate signs for the angles.
[2 marks]
Total [6 marks]

METHOD 2

(a) valid approach involving tan identity
e.g. $\quad \tan =\frac{\sin }{\cos }$
correct working
e.g. $\quad \cos 100=\frac{\sin 100}{\tan 100}$
$\cos 100=\frac{m}{\tan 100}$
A1
N2
[3 marks]
continued ...

Question 5 continued

(b) $\tan 100=\frac{m}{\cos 100}$

A1
N1
e.g. $\sin 2 \theta=2 \sin \theta \cos \theta, 2 m \times \frac{m}{\tan 100}$
$\sin 200=\frac{2 m^{2}}{\tan 100}(=2 m \cos 100)$ N2
[2 marks]

Total [6 marks]
6. (a) any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+\boldsymbol{t} \boldsymbol{b}$ (accept any parameter for t)
where \boldsymbol{a} is $\left(\begin{array}{c}5 \\ -4 \\ 10\end{array}\right)$, and \boldsymbol{b} is a scalar multiple of $\left(\begin{array}{c}4 \\ -2 \\ 5\end{array}\right)$
A2 N2
e.g. $\quad \boldsymbol{r}=\left(\begin{array}{c}5 \\ -4 \\ 10\end{array}\right)+t\left(\begin{array}{c}4 \\ -2 \\ 5\end{array}\right), \boldsymbol{r}=5 \mathbf{i}-4 \boldsymbol{j}+10 \boldsymbol{k}+t(-8 \mathbf{i}+4 \boldsymbol{j}-10 \boldsymbol{k})$

Note: Award $\mathbf{A 1}$ for the form $\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{A} \mathbf{1}$ for $L=\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{A} \mathbf{0}$ for $\boldsymbol{r}=\boldsymbol{b}+t \boldsymbol{a}$.
(b) recognizing that $y=0$ or $z=0$ at x-intercept (seen anywhere)
attempt to set up equation for x-intercept (must suggest $x \neq 0$)
e.g. $L=\left(\begin{array}{l}x \\ 0 \\ 0\end{array}\right), 5+4 t=x, r=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
one correct equation in one variable
e.g. $-4-2 t=0,10+5 t=0$
finding $t=-2$
correct working
e.g. $\quad x=5+(-2)(4)$
$x=-3 \quad($ accept $(-3,0,0))$
(A1)
7. evidence of rearranged quadratic equation (may be seen in working)
e.g. $\quad x^{2}-3 x+k^{2}-4=0, k^{2}-4$
evidence of discriminant (must be seen explicitly, not in quadratic formula)
e.g. $\quad b^{2}-4 a c, \Delta=(-3)^{2}-4(1)\left(k^{2}-4\right)$
recognizing that discriminant is greater than zero (seen anywhere, including answer)
e.g. $\quad b^{2}-4 a c>0,9+16-4 k^{2}>0$
correct working (accept equality)
A1
e.g. $\quad 25-4 k^{2}>0,4 k^{2}<25, k^{2}=\frac{25}{4}$
both correct values (even if inequality never seen)
e.g. $\pm \sqrt{\frac{25}{4}}, \pm 2.5$
correct interval A1
e.g. $\quad-\frac{5}{2}<k<\frac{5}{2},-2.5<k<2.5$

Note: Do not award the final mark for unfinished values, or for incorrect or reversed inequalities, including $\leq, \quad k>-2.5, k<2.5$.

Special cases:

If working shown, and candidates attempt to rearrange the quadratic equation to equal zero, but find an incorrect value of c, award A1M1R1A0A0A0.

If working shown, and candidates do not rearrange the quadratic equation to equal zero, but find $c=k^{2}$ or $c= \pm 4$, award A0M1R1A0A0A0.

SECTION B

8. (a) (i) median weekly wage $=400$ (dollars)

A1 N1
(ii) lower quartile $=330$, upper quartile $=470$
(A1)(A1)
$\mathrm{IQR}=140$ (dollars) (accept any notation suggesting interval 330 to 470) A1
N3
Note: Exception to the FT rule. Award A1(FT) for an incorrect IQR only if both quartiles are explicitly noted.
[4 marks]
A1 N1
A1
A1
N1 [3 marks]
(M1)
e.g. hours $=\frac{\text { wages }}{\text { rate }}$
correct substitution
e.g. $\frac{400}{20}$
median hours per week $=20$
(d) attempt to find wages for 25 hours per week
e.g. \quad wages $=$ hours \times rate
correct substitution
e.g. $\quad 25 \times 20$
finding wages $=500$
65 people (earn ≤ 500)
15 people (work more than 25 hours)
9. (a) correct approach
e.g. $\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OB}},\left(\begin{array}{l}6 \\ 0 \\ 3\end{array}\right)-\left(\begin{array}{l}5 \\ 2 \\ 1\end{array}\right)$
$\overrightarrow{A B}=\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$
(b) recognizing $\overrightarrow{A D}$ is perpendicular to $\overrightarrow{A B}$ (may be seen in sketch)
e.g. adjacent sides of rectangle are perpendicular
recognizing dot product must be zero
e.g. $\quad \overrightarrow{\mathrm{AD}} \cdot \overrightarrow{\mathrm{AB}}=0$
correct substitution
(A1)
e.g. $\quad(1 \times 4)+(-2 \times p)+(2 \times 1), 4-2 p+2=0$
equation which clearly leads to $p=3$
e.g. $\quad 6-2 p=0,2 p=6$
$p=3$
AG
(c) correct approach (seen anywhere including sketch)
e.g. $\quad \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{OD}}+\overrightarrow{\mathrm{DC}}$
recognizing opposite sides are equal vectors (may be seen in sketch)
e.g. $\quad \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AD}}, \overrightarrow{\mathrm{DC}}=\overrightarrow{\mathrm{AB}},\left(\begin{array}{l}6 \\ 0 \\ 3\end{array}\right)+\left(\begin{array}{l}4 \\ 3 \\ 1\end{array}\right),\left(\begin{array}{l}9 \\ 5 \\ 2\end{array}\right)+\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$
coordinates of point C are $(10,3,4) \quad\left(\operatorname{accept}\left(\begin{array}{c}10 \\ 3 \\ 4\end{array}\right)\right)$
(R1)

A2
N4

Note: Award A1 for two correct values.

Question 9 continued

(d) attempt to find one side of the rectangle
e.g. substituting into magnitude formula
two correct magnitudes
e.g. $\sqrt{(1)^{2}+(-2)^{2}+2^{2}}, 3 ; \sqrt{16+9+1}, \sqrt{26}$
multiplying magnitudes
e.g. $\sqrt{26} \times \sqrt{9}$
area $=\sqrt{234}(=3 \sqrt{26}) \quad($ accept $3 \times \sqrt{26})$
10. (a) METHOD 1
evidence of choosing quotient rule
e.g. $\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$
evidence of correct differentiation (must be seen in quotient rule)
e.g. $\quad \frac{\mathrm{d}}{\mathrm{d} x}(6 x)=6, \frac{\mathrm{~d}}{\mathrm{dx}}(x+1)=1$
correct substitution into quotient rule
e.g $\frac{(x+1) 6-6 x}{(x+1)^{2}}, \frac{6 x+6-6 x}{(x+1)^{2}}$
$f^{\prime}(x)=\frac{6}{(x+1)^{2}}$

METHOD 2

evidence of choosing product rule
e.g. $\quad 6 x(x+1)^{-1}, u v^{\prime}+v u^{\prime}$
evidence of correct differentiation (must be seen in product rule)
e.g. $\quad \frac{\mathrm{d}}{\mathrm{d} x}(6 x)=6, \frac{\mathrm{~d}}{\mathrm{~d} x}(x+1)^{-1}=-1(x+1)^{-2} \times 1$
correct working
e.g. $\quad 6 x \times-(x+1)^{-2}+(x+1)^{-1} \times 6, \frac{-6 x+6(x+1)}{(x+1)^{2}}$
$f^{\prime}(x)=\frac{6}{(x+1)^{2}}$
A1

Question 10 continued

(b) METHOD 1

evidence of choosing chain rule
e.g. formula, $\frac{1}{\left(\frac{6 x}{x+1}\right)} \times\left(\frac{6 x}{x+1}\right)^{\prime}$
correct reciprocal of $\frac{1}{\left(\frac{6 x}{x+1}\right)}$ is $\frac{x+1}{6 x}$ (seen anywhere)
correct substitution into chain rule
e.g. $\frac{1}{\left(\frac{6 x}{x+1}\right)} \times \frac{6}{(x+1)^{2}},\left(\frac{6}{(x+1)^{2}}\right)\left(\frac{x+1}{6 x}\right)$
working that clearly leads to the answer
e.g. $\left(\frac{6}{(x+1)}\right)\left(\frac{1}{6 x}\right),\left(\frac{1}{(x+1)^{2}}\right)\left(\frac{x+1}{x}\right), \frac{6(x+1)}{6 x(x+1)^{2}}$ $g^{\prime}(x)=\frac{1}{x(x+1)}$

METHOD 2

attempt to subtract logs
e.g. $\quad \ln a-\ln b, \ln 6 x-\ln (x+1)$
correct derivatives (must be seen in correct expression)
e.g. $\frac{6}{6 x}-\frac{1}{x+1}, \frac{1}{x}-\frac{1}{x+1}$
working that clearly leads to the answer
e.g. $\frac{x+1-x}{x(x+1)}, \frac{6 x+6-6 x}{6 x(x+1)}, \frac{6(x+1-x)}{6 x(x+1)}$
$g^{\prime}(x)=\frac{1}{x(x+1)}$

AG
No

Question 10 continued

(c) valid method using integral of $h(x)$ (accept missing/incorrect limits or
missing $\mathrm{d} x$)
(M1)
e.g. \quad area $=\int_{\frac{1}{5}}^{k} h(x) \mathrm{d} x, \int\left(\frac{1}{x(x+1)}\right)$
recognizing that integral of derivative will give original function
e.g. $\int\left(\frac{1}{x(x+1)}\right) \mathrm{d} x=\ln \left(\frac{6 x}{x+1}\right)$
correct substitution and subtraction
e.g. $\ln \left(\frac{6 k}{k+1}\right)-\ln \left(\frac{6 \times \frac{1}{5}}{\frac{1}{5}+1}\right), \ln \left(\frac{6 k}{k+1}\right)-\ln (1)$
setting their expression equal to $\ln 4$
e.g. $\quad \ln \left(\frac{6 k}{k+1}\right)-\ln (1)=\ln 4, \ln \left(\frac{6 k}{k+1}\right)=\ln 4, \int_{\frac{1}{5}}^{k} h(x) \mathrm{d} x=\ln 4$
correct equation without logs
e.g. $\frac{6 k}{k+1}=4,6 k=4(k+1)$
correct working
e.g. $\quad 6 k=4 k+4,2 k=4$
$k=2$

MARKSCHEME

May 2012

MATHEMATICS

Standard Level

Paper 1

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
\boldsymbol{R} Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and the document "Mathematics SL: WA Guidance for
e-marking May 2012". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

2
 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award M0 followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means M1 for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.

3 marks

If no working shown, award \boldsymbol{N} marks for correct answers. In this case, ignore mark breakdown ($\boldsymbol{M}, \boldsymbol{A}, \boldsymbol{R}$).

- Do not award a mixture of N and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the N marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets e.g. (M1).

- Implied marks can only be awarded if correct work is seen or if implied in subsequent working (a correct answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen or implied in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets e.g. M1.

- Must be seen marks can only be awarded if correct work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or $\boldsymbol{A 0}$ for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (i.e. there is no working expected), then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award $\boldsymbol{F T}$ marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate. (However, as noted above, if an A mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate)
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite $\mathrm{GP}, \sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error leads to not showing the required answer, there is a 1 mark penalty. Note that if the error occurs within the same subpart, the $F T$ rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then stamp MR against the answer. Scoris will automatically deduct 1 mark from the question total. A candidate should be penalized only once for a particular mis-read. Do not stamp MR again for that question, unless the candidate makes another mis-read.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10
 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant \boldsymbol{A} marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for $\boldsymbol{F T}$. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully, as there are a number of changes.

Do not accept unfinished numerical answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (e.g. 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

11 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

12 Style

The markscheme aims to present answers using good communication, e.g. if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, e.g. if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say"must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the e.g. notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

SECTION A

1. (a) evidence of valid approach
(M1)
e.g. $92+52$, line on graph at $x=31$

$$
p=144 \quad \text { A1 }
$$

(b) (i) evidence of valid approach
(M1)
e.g. line on graph, 0.8×160, using complement

$$
=29.5
$$

A1
N2
(ii) $\quad Q_{1}=23 ; Q_{3}=29$
IQR $=6$ (accept any notation that suggests an interval)
(A1)(A1)
A1
N3
2. (a) $m=2, n=3$

A1A1
N2
[2 marks]
(b) attempt to multiply elements
(M1)

$$
\boldsymbol{A} \boldsymbol{B}=\left(\begin{array}{ccc}
-2 & 0 & -6 \\
-2 & 9 & 3
\end{array}\right)
$$

A2
N3
[3 marks]
(c) $\quad p=3$

A1
N1
[1 mark]
Total [6 marks]
3. (a) $f^{\prime}(x)=6 \mathrm{e}^{6 x}$
(b) (i) evidence of valid approach
e.g. $f^{\prime}(0), 6 \mathrm{e}^{6 \times 0}$
correct manipulation
e.g. $6 \mathrm{e}^{0}, 6 \times 1$
$m=6$
(ii) evidence of finding $f(0)$
e.g. $y=\mathrm{e}^{6(0)}$
$b=1$
(c) $y=6 x+1$
4. (a) $t=0.3$
(b) (i) correct values
e.g. $0.3+0.6-0.7 ; 0.9-0.7$
$r=0.2$
(ii) $\quad q=0.1, s=0.4$
(c) (i) 0.4
(ii) $\quad \mathrm{P}\left(A \mid B^{\prime}\right)=\frac{1}{4}$

A1 N1
[1 mark]
Total [6 marks]
A1
N1 [1 mark]
(MI)

A1
$\boldsymbol{A} \boldsymbol{G}$ No
(M1)

A1 N2
[4 marks]

$A 1$	N1 [1 mark]
$A 1$	
$A G$	$N 0$
$A 1 A 1$	$N 2$
	$[3$ marks]
$A 1$	$N 1$
$A 2$	$N 2$

[3 marks]

Total [7 marks]
5. (a) evidence of valid approach
(M1)
e.g. $\frac{\max y \text { value }-\min y \text { value }}{2}$, distance from $y=-1$
$a=3$
(b) (i) evidence of valid approach
e.g. finding difference in x-coordinates, $\frac{\pi}{2}$
evidence of doubling
e.g. $2 \times\left(\frac{\pi}{2}\right)$
period $=\pi$
$\boldsymbol{A G}$
(M1)
e.g. $b=\frac{2 \pi}{\pi}$
$b=2$
A1
[4 marks]

A1
N1
[1 mark]
Total [7 marks]

A1A1
6. correct integration, $2 \times \frac{1}{2} \ln (2 x+5)$

Note: Award $\boldsymbol{A} \mathbf{I}$ for $2 \times \frac{1}{2}(=1)$ and $\boldsymbol{A} \mathbf{I}$ for $\ln (2 x+5)$.
evidence of substituting limits into integrated function and subtracting
e.g. $\ln (2 \times 5+5)-\ln (2 \times 0+5)$
correct substitution
A1
e.g. $\ln 15-\ln 5$
correct working
e.g. $\ln \frac{15}{5}, \ln 3$
$k=3$
A1
7. (a) attempt to expand
(M1)
e.g. $(\sin x+\cos x)(\sin x+\cos x)$; at least 3 terms
correct expansion
A1
e.g. $\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x$
$f(x)=1+\sin 2 x$
$\boldsymbol{A} \boldsymbol{G}$
N0
[2 marks]
(b)

A1A1
N2

Note: \quad Award $\boldsymbol{A 1}$ for correct sinusoidal shape with period 2π and range [0, 2], $\boldsymbol{A 1}$ for minimum in circle.
(c) $\quad p=2, k=-\frac{\pi}{2}$

SECTION B

8. (a) (i) evidence of correct approach
e.g. $\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OP}}, Q-P$

$$
\overrightarrow{\mathrm{PQ}}=\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right)
$$

(ii) any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+\boldsymbol{t} \boldsymbol{b}$

A2
N2
where \boldsymbol{a} is either $\overrightarrow{\mathrm{OP}}$ or $\overrightarrow{\mathrm{OQ}}$ and \boldsymbol{b} is a scalar multiple of $\overrightarrow{\mathrm{PQ}}$

$$
\text { e.g. } \boldsymbol{r}=\left(\begin{array}{c}
-1 \\
6 \\
-1
\end{array}\right)+t\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right), \boldsymbol{r}=\left(\begin{array}{c}
t \\
4-2 t \\
1+2 t
\end{array}\right), \boldsymbol{r}=4 \boldsymbol{j}+\boldsymbol{k}+t(\boldsymbol{i}-2 \boldsymbol{j}+2 \boldsymbol{k})
$$

(b) choosing a correct direction vector for L_{2}
(A1)
e.g. $\left(\begin{array}{c}3 \\ 0 \\ -4\end{array}\right)$
finding scalar products and magnitudes
scalar product $=1(3)-2(0)+2(-4)(=-5)$
magnitudes $=\sqrt{1^{2}+(-2)^{2}+2^{2}}(=3), \sqrt{3^{2}+0^{2}+(-4)^{2}}(=5)$
substitution into formula
e.g. $\cos \theta=\frac{-5}{\sqrt{9} \times \sqrt{25}}$
$\cos \theta=-\frac{1}{3}$
[7 marks]
continued ...

Question 8 continued

(c) evidence of valid approach
(M1)
e.g. equating lines, $L_{1}=L_{2}$

EITHER

one correct equation in one variable
e.g. $\quad 6-2 t=2$

OR
two correct equations in two variables
e.g. $\quad 2 t+4 s=0, t-3 s=5$

THEN

attempt to solve
(M1)
one correct parameter
e.g. $t=2, s=-1$
correct substitution of either parameter
e.g. $\boldsymbol{r}=\left(\begin{array}{c}4 \\ 2 \\ -1\end{array}\right)+(-1)\left(\begin{array}{c}3 \\ 0 \\ -4\end{array}\right), \boldsymbol{r}=\left(\begin{array}{c}-1 \\ 6 \\ -1\end{array}\right)+(2)\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$
coordinates $\mathrm{R}(1,2,3)$
9. (a) evidence of substituting the point A
(M1)
e.g. $2=\log _{p}(6+3)$
manipulating logs
e.g. $\quad p^{2}=9$
$p=3$
A2
[4 marks]
(b) (i) $\quad y=-2(\operatorname{accept}(0,-2))$

A1
N1
(ii)

A1A1A1A1
Note: Award A1 for asymptote at $y=-3$,
A1 for an increasing function that is concave up, $\boldsymbol{A 1}$ for a positive x-intercept and a negative y-intercept, A1 for passing through the point $(2,6)$.

Question 9 continued

(c) METHOD 1
recognizing that $g=f^{-1}$
evidence of valid approach
(M1)
e.g. switching x and y (seen anywhere), solving for x
correct manipulation
(A1)
e.g. $3^{x}=y+3$
$g(x)=3^{x}-3$
A1

METHOD 2

recognizing that $g(x)=a^{x}+b$
identifying vertical translation
e.g. graph shifted down 3 units, $f(x)-3$
evidence of valid approach (M1)
e.g. substituting point to identify the base
$g(x)=3^{x}-3$
A1
N3 [4 marks]
10. (a) $s^{\prime}(t)=1-2 \cos 2 t$

Note: Award $\boldsymbol{A} 1$ for $1, \boldsymbol{A} 2$ for $-2 \cos 2 t$.
(b) evidence of valid approach
e.g. setting $s^{\prime}(t)=0$
correct working
e.g. $2 \cos 2 t=1, \cos 2 t=\frac{1}{2}$
$2 t=\frac{\pi}{3}, \frac{5 \pi}{3}, \ldots$
$t=\frac{5 \pi}{6}$
A1A2
N3
[3 marks]
(M1)

A1
(A1)

A1
N3
[4 marks]
(c) evidence of valid approach
$e . g$. choosing a value in the interval $\frac{\pi}{6}<t<\frac{5 \pi}{6}$
correct substitution
e.g. $s^{\prime}\left(\frac{\pi}{2}\right)=1-2 \cos \pi$
$s^{\prime}\left(\frac{\pi}{2}\right)=3$
$s^{\prime}(t)>0$

A1

(M1)

Question 10 continued

(d) evidence of approach using s or integral of s^{\prime}

> (M1)
e.g. $\int s^{\prime}(t) \mathrm{d} t ; s\left(\frac{5 \pi}{6}\right), s\left(\frac{\pi}{6}\right) ;[t-\sin 2 t]_{\frac{\pi}{6}}^{\frac{5 \pi}{6}}$
substituting values and subtracting
(M1)
e.g. $s\left(\frac{5 \pi}{6}\right)-s\left(\frac{\pi}{6}\right),\left(\frac{\pi}{6}-\frac{\sqrt{3}}{2}\right)-\left(\frac{5 \pi}{6}-\left(-\frac{\sqrt{3}}{2}\right)\right)$
correct substitution
e.g. $\frac{5 \pi}{6}-\sin \frac{5 \pi}{3}-\left[\frac{\pi}{6}-\sin \frac{\pi}{3}\right],\left(\frac{5 \pi}{6}-\left(-\frac{\sqrt{3}}{2}\right)\right)-\left(\frac{\pi}{6}-\frac{\sqrt{3}}{2}\right)$
distance is $\frac{2 \pi}{3}+\sqrt{3}$
A1A1
N3

Note: Award $\boldsymbol{A 1}$ for $\frac{2 \pi}{3}, \boldsymbol{A 1}$ for $\sqrt{3}$.

MARKSCHEME

May 2012

MATHEMATICS

Standard Level

Paper 1

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
$\boldsymbol{A G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1

General

Mark according to scoris instructions and the document "Mathematics SL : WA Guidance for e-marking May 2012". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any. An exception to this rule is when work for $\boldsymbol{M} \boldsymbol{1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A l}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

If no working shown, award N marks for correct answers. In this case, ignore mark breakdown ($\boldsymbol{M}, \boldsymbol{A}, \boldsymbol{R}$).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the N marks and the implied marks. There are times when all the marks are implied, but the N marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the N marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets e.g. (M1).

- Implied marks can only be awarded if correct work is seen or if implied in subsequent working (a correct answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen or implied in the next line.
- Where there is an (M1) followed by A1 for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).
Must be seen marks appear without brackets e.g. M1.
- Must be seen marks can only be awarded if correct work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to $\boldsymbol{M 0}$ or $\boldsymbol{A 0}$ for incorrect work) all subsequent marks may be awarded if appropriate.

Follow through marks (only applied after an error is made)
Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (ie there is no working expected), then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate)
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error leads to not showing the required answer, there is a 1 mark penalty. Note that if the error occurs within the same subpart, the $F T$ rules may result in further loss of marks.
- Where there are anticipated common errors, the FT answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only FT answers accepted.

6 Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then stamp MR against the answer. Scoris will automatically deduct 1 mark from the question total. A candidate should be penalized only once for a particular mis-read. Do not stamp MR again for that question, unless the candidate makes another mis-read.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8
 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10
 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant A marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for $\boldsymbol{F T}$. Further information on which answers are accepted is given in a separate booklet, along with examples. It is essential that you read this carefully, as there are a number of changes.

Do not accept unfinished numerical answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (e.g. 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

11 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

12 Style

The markscheme aims to present answers using good communication, e.g. if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, e.g. if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the e.g. notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are \boldsymbol{M} marks, the examples may include ones using poor notation, to indicate what is acceptable.

13 Candidate work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

SECTION A

1. (a) evidence of median position
(M1)
e.g. 50, line on sketch
median is 56
A1
N2
[2 marks]
(b) lower quartile $=40$, upper quartile $=70$
(A1)(A1)
interquartile range $=30$
A1
N3
[3 marks]
Total [5 marks]
2. (a) interchanging x and y (seen anywhere)
e.g. $x=2 y-1$
correct manipulation
(A1)
e.g. $x+1=2 y$
$f^{-1}(x)=\frac{x+1}{2}$
A1
N2
[3 marks]
(b) METHOD 1
attempt to find $g(1)$ or $f(1)$
(M1)
$g(1)=5$
$f(5)=9$
(A1)
A1
N2
[3 marks]

METHOD 2

attempt to form composite (in any order)
(M1)
e.g. $2\left(3 x^{2}+2\right)-1,3(2 x-1)^{2}+2$
$(f \circ g)(1)=2\left(3 \times 1^{2}+2\right)-1 \quad\left(=6 \times 1^{2}+3\right)$
(A1)
$(f \circ g)(1)=9$

N2
[3 marks]
Total [6 marks]
3. (a) (i) $a=3$

A1
N1
(ii) METHOD 1
attempt to find period
(M1)
e.g. $4, b=4, \frac{2 \pi}{b}$

$$
b=\frac{2 \pi}{4} \quad\left(=\frac{\pi}{2}\right)
$$

METHOD 2

attempt to substitute coordinates
(M1)
e.g. $3 \cos (2 b)=-3,3 \cos (4 b)=3$
$b=\frac{2 \pi}{4} \quad\left(=\frac{\pi}{2}\right)$
A1 N2
[3 marks]
(b) 0

A1
N1 [1 mark]
(c) recognizing that normal is perpendicular to tangent
e.g. $\quad m_{1} \times m_{2}=-1, m=-\frac{1}{0}$, sketch of vertical line on diagram
$x=2$ (do not accept 2 or $y=2$)

A1
N2
[2 marks]
4. (a) attempt to substitute $\mathrm{P}(X>1)=0.5$

> (M1)
e.g. $r+0.2=0.5$
$r=0.3$
(b) correct substitution into $\mathrm{E}(X)$ (seen anywhere)
e.g. $0 \times p+1 \times q+2 \times r+3 \times 0.2$
correct equation
e.g. $q+2 \times 0.3+3 \times 0.2=1.4, \quad q+1.2=1.4$
$q=0.2$
evidence of choosing $\sum p_{i}=1$
e.g. $p+0.2+0.3+0.2=1, \quad p+q=0.5$
correct working
$p+0.7=1,1-0.2-0.3-0.2, p+0.2=0.5$
$p=0.3$
A1
Note: Exception to the $\boldsymbol{F} \boldsymbol{T}$ rule. Award $\boldsymbol{F T}$ marks on an incorrect value of q, even if q is an inappropriate value. Do not award the final \boldsymbol{A} mark for an inappropriate value of p.
5. (a)

(b) $a=-2, b=-1$

Note: Award $\mathbf{A 1}$ for $a=2, \boldsymbol{A 1}$ for $b=1$.

6. METHOD 1

evidence of valid approach
(M1)
e.g. $b^{2}-4 a c$, quadratic formula
correct substitution into $b^{2}-4 a c$ (may be seen in formula)
e.g. $(k-1)^{2}-4 \times 1 \times 1 ;(k-1)^{2}-4 ; k^{2}-2 k-3$
setting their discriminant equal to zero
M1
e.g. $\Delta=0,(k-1)^{2}-4=0$
attempt to solve the quadratic
(M1)
e.g. $(k-1)^{2}=4$, factorizing
correct working
e.g. $(k-1)= \pm 2,(k-3)(k+1)$
$k=-1, k=3$ (do not accept inequalities)
A1A1

METHOD 2

recognizing perfect square (MI)
e.g. $(x+1)^{2}=0,(x-1)^{2}$
correct expansion
e.g. $x^{2}+2 x+1=0, x^{2}-2 x+1$
equating coefficients of x
e.g. $k-1=-2, k-1=2$
$k=-1, k=3$

A1A1 N2
7. attempt to expand $\left(1+\frac{2}{3} x\right)^{n}$
(M1)
e.g. Pascal's triangle, $\left(1+\frac{2}{3} x\right)^{n}=1+\frac{2}{3} n x+\ldots$
correct first two terms of $\left(1+\frac{2}{3} x\right)^{n}$ (seen anywhere)
e.g. $1+\frac{2}{3} n x$
correct first two terms of quadratic (seen anywhere)
e.g. $9,6 n x ;\left(9+6 n x+n^{2} x^{2}\right)$
correct calculation for the x-term
e.g. $\frac{2}{3} n x \times 9+6 n x ; 6 n+6 n, 12 n$
correct equation
e.g. $6 n+6 n=84,12 n x=84 x$
$n=7$

A1
[7 marks]

SECTION B

8. (a) (i) $h=2, k=1$

A1A1
N2
(ii) attempt to substitute coordinates of any point (except the vertex) on the graph into f e.g. $13=a(0-2)^{2}+1$
working towards solution
A1
e.g. $13=4 a+1$
$a=3$
$A G$
(b) attempting to expand their binomial
e.g. $f(x)=3\left(x^{2}-2 \times 2 x+4\right)+1,(x-2)^{2}=x^{2}-4 x+4$
correct working
(A1)
e.g. $f(x)=3 x^{2}-12 x+12+1$
$f(x)=3 x^{2}-12 x+13 \quad($ accept $A=3, B=-12, C=13)$
A1
N2
[3 marks]
(c) METHOD 1
integral expression
(A1)
e.g. $\int_{2}^{4}\left(3 x^{2}-12 x+13\right), \int f \mathrm{~d} x$

Area $=\left[x^{3}-6 x^{2}+13 x\right]_{2}^{4}$
A1A1A1
Note: Award $\boldsymbol{A 1}$ for $x^{3}, A 1$ for $-6 x^{2}, A 1$ for $13 x$.
correct substitution of correct limits into their expression
A1A1
e.g. $\left(4^{3}-6 \times 4^{2}+13 \times 4\right)-\left(2^{3}-6 \times 2^{2}+13 \times 2\right), 64-96+52-(8-24+26)$

Note: Award $\boldsymbol{A 1}$ for substituting 4, A1 for substituting 2.
correct working
e.g. $64-96+52-8+24-26,20-10$

Area $=10$
A1
N3

Question 8 continued

METHOD 2

integral expression
e.g. $\int_{2}^{4}\left(3(x-2)^{2}+1\right), \int f \mathrm{~d} x$

Area $=\left[(x-2)^{3}+x\right]_{2}^{4}$
Note: Award $\boldsymbol{A} 2$ for $(x-2)^{3}, \boldsymbol{A 1}$ for x.
correct substitution of correct limits into their expression
A1A1
e.g. $(4-2)^{3}+4-\left[(2-2)^{3}+2\right], 2^{3}+4-\left(0^{3}+2\right), 2^{3}+4-2$

Note: Award A1 for substituting 4, A1 for substituting 2.
correct working
e.g. $8+4-2$

Area $=10$
A1
N3
[8 marks]

METHOD 3

recognizing area from 0 to 2 is same as area from 2 to 4
(R1)
e.g. sketch, $\int_{2}^{4} f=\int_{0}^{2} f$
integral expression
(A1)
e.g. $\int_{0}^{2}\left(3 x^{2}-12 x+13\right), \int f \mathrm{~d} x$

Area $=\left[x^{3}-6 x^{2}+13 x\right]_{0}^{2}$
Note: Award $\boldsymbol{A 1}$ for $x^{3}, \boldsymbol{A 1}$ for $-6 x^{2}, \boldsymbol{A 1}$ for $13 x$.

correct substitution of correct limits into their expression

A1(A1)
e.g. $\left(2^{3}-6 \times 2^{2}+13 \times 2\right)-\left(0^{3}-6 \times 0^{2}+13 \times 0\right), 8-24+26$

Note: Award $\boldsymbol{A 1}$ for substituting 2, (A1) for substituting 0 .
Area $=10$
AI
9. (a) (i)

$$
\frac{4}{6}, \frac{3}{6} \text { and } \frac{3}{6}\left(\frac{2}{3}, \frac{1}{2} \text { and } \frac{1}{2}\right)
$$

A1A1A1
N3
(ii) multiplying along the correct branches (may be seen on diagram)
(A1)
e.g. $\frac{3}{7} \times \frac{2}{6}$

$$
\frac{6}{42}\left(=\frac{1}{7}\right)
$$

A1 N2
[5 marks]
(b) $\quad \mathrm{P}($ bag A$)=\frac{2}{6}\left(=\frac{1}{3}\right), \mathrm{P}(\operatorname{bag~} \mathrm{B})=\frac{4}{6}\left(=\frac{2}{3}\right)$ (seen anywhere)
appropriate approach
e.g. $\mathrm{P}(W W \cap A)+\mathrm{P}(W W \cap B)$

correct calculation
e.g. $\frac{1}{3} \times \frac{1}{7}+\frac{2}{3} \times \frac{2}{7}, \frac{2}{42}+\frac{8}{42}$
$P(2 W)=\frac{60}{252}\left(=\frac{5}{21}\right)$
A1

Question 9 continued

(c) recognizing conditional probability
e.g. $\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}, \mathrm{P}(A \mid W W)=\frac{\mathrm{P}(W W \cap A)}{\mathrm{P}(W W)}$
correct numerator
e.g. $\mathrm{P}(A \cap W W)=\frac{6}{42} \times \frac{2}{6}, \frac{1}{21}$
correct denominator
e.g. $\frac{60}{252}, \frac{5}{21}$
probability $\frac{84}{420}\left(=\frac{1}{5}\right)$
10. (a) correct derivatives applied in quotient rule
(A1)A1A1
$1,-4 x+5$
Note: Award (A1) for 1, A1 for $-4 x$ and A1 for 5, only if it is clear candidates are using the quotient rule.
correct substitution into quotient rule
e.g. $\frac{1 \times\left(-2 x^{2}+5 x-2\right)-x(-4 x+5)}{\left(-2 x^{2}+5 x-2\right)^{2}}, \frac{-2 x^{2}+5 x-2-x .-4 x+5}{\left(-2 x^{2}+5 x-2\right)^{2}}$
correct working
e.g. $\frac{-2 x^{2}+5 x-2-\left(-4 x^{2}+5 x\right)}{\left(-2 x^{2}+5 x-2\right)^{2}}$
expression clearly leading to the answer
e.g. $\frac{-2 x^{2}+5 x-2+4 x^{2}-5 x}{\left(-2 x^{2}+5 x-2\right)^{2}}$
$f^{\prime}(x)=\frac{2 x^{2}-2}{\left(-2 x^{2}+5 x-2\right)^{2}}$
(b) evidence of attempting to solve $f^{\prime}(x)=0$
e.g. $2 x^{2}-2=0$
evidence of correct working
e.g. $\quad x^{2}=1, \frac{ \pm \sqrt{16}}{4}, 2(x-1)(x+1)$
correct solution to quadratic
e.g. $\quad x= \pm 1$
correct x-coordinate $x=-1 \quad\left(\right.$ may be seen in coordinate form $\left.\left(-1, \frac{1}{9}\right)\right)$
A1 N2
attempt to substitute -1 into f (do not accept any other value)
e.g. $\quad f(-1)=\frac{-1}{-2 \times(-1)^{2}+5 \times(-1)-2}$
correct working
e.g. $\frac{-1}{-2-5-2} \quad$ A1
correct y-coordinate $y=\frac{1}{9}\left(\right.$ may be seen in coordinate form $\left.\left(-1, \frac{1}{9}\right)\right)$
A1

Question 10 continued
(c) recognizing values between max and min
(R1)
$\frac{1}{9}<k<1$
A2
[3 marks]
Total [16 marks]

MARKSCHEME

November 2011

MATHEMATICS

Standard Level

Paper 1

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

Instructions to Examiners

Abbreviations

\boldsymbol{M} Marks awarded for attempting to use a correct Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.
$\boldsymbol{A} \quad$ Marks awarded for an Answer or for Accuracy; often dependent on preceding \boldsymbol{M} marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.
$\boldsymbol{R} \quad$ Marks awarded for clear Reasoning.
$\boldsymbol{N} \quad$ Marks awarded for correct answers if no working shown.
$\boldsymbol{A} \boldsymbol{G}$ Answer given in the question and so no marks are awarded.

Using the markscheme

1 General

Mark according to scoris instructions and parts of the document "Mathematics SL: Guidance for emarking November 2011". It is essential that you read this document before you start marking. In particular, please note the following.

Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.

- If a part is completely correct, (and gains all the 'must be seen' marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A 0}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.

All the marks will be added and recorded by scoris.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award $\boldsymbol{M 0}$ followed by $\boldsymbol{A 1}$, as $\boldsymbol{A} \operatorname{mark}(\mathrm{s})$ depend on the preceding $\boldsymbol{M} \operatorname{mark}(\mathrm{s})$, if any. An exception to this rule is when work for $\boldsymbol{M 1}$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, e.g. M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (e.g. substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more \boldsymbol{A} marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Once a correct answer to a question or part-question is seen, ignore further working.

N marks

If no working shown, award N marks for correct answers. In this case, ignore mark breakdown ($\boldsymbol{M}, \boldsymbol{A}, \boldsymbol{R}$).

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the N marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

4 Implied and must be seen marks

Implied marks appear in brackets e.g. (M1).

- Implied marks can only be awarded if correct work is seen or if implied in subsequent working (a correct answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the N marks are not the full marks for the question.
- Normally the correct work is seen or implied in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).
Must be seen marks appear without brackets e.g. M1.
- Must be seen marks can only be awarded if correct work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to M0 or $\boldsymbol{A 0}$ for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the answer (ie there is no working expected), then $\boldsymbol{F T}$ marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate)
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer $\boldsymbol{F T}$ marks.
- If the error leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error leads to not showing the required answer, there is a 1 mark penalty. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.
- Where there are anticipated common errors, the $\boldsymbol{F T}$ answers are often noted on the markscheme, to help examiners. It should be stressed that these are not the only $\boldsymbol{F T}$ answers accepted.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). Apply a MR penalty of 1 mark to that question. Award the marks as usual and then stamp MR against the answer. Scoris will automatically deduct 1 mark from the question total. A candidate should be penalized only once for a particular mis-read. Do not stamp MR again for that question, unless the candidate makes another mis-read.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (e.g. probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation D should be used and a brief note written next to the mark explaining this decision.

Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures

Candidates should NO LONGER be penalized for an accuracy error (AP). Examiners should award marks according to the rules given in these instructions and the markscheme. Accuracy is not the same as correctness - an incorrect value does not achieve relevant A marks. It is only final answers which may lose marks for accuracy errors, not intermediate values. Please check work carefully for $\boldsymbol{F T}$.

Do not accept unfinished numerical answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (e.g. 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers.

11 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235.

12 Style

The markscheme aims to present answers using good communication, e.g. if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 - there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, e.g. if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the e.g. notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable.

13 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

SECTION A

1. (a) $x=4$ (must be an equation)

A1 \quad N1
[1 mark]
(b) $h=4, k=2$

A1A1
N2 [2 marks]
(c) attempt to substitute coordinates of any point on the graph into f
e.g. $f(0)=6,6=a(0-4)^{2}+2, f(4)=2$
correct equation (do not accept an equation that results from $f(4)=2$)
e.g. $6=a(-4)^{2}+2,6=16 a+2$

$$
a=\frac{4}{16}\left(=\frac{1}{4}\right)
$$

$$
0
$$

A1
N2
[3 marks]
Total [6 marks]
2. (a) evidence of matrix multiplication (in any order)

$$
\begin{aligned}
\text { e.g. } P Q & =\left(\begin{array}{ll}
3(4)+1(-10) & 3(-2)+1(6) \\
5(4)+2(-10) & 5(-2)+2(6)
\end{array}\right) \\
\boldsymbol{P Q} & =\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right), 2 \boldsymbol{I}
\end{aligned}
$$

(b) $\quad \boldsymbol{P}^{-1}=\frac{1}{2} \boldsymbol{Q},\left(\begin{array}{cc}2 & -1 \\ -5 & 3\end{array}\right)$

A2
N2
[2 marks]
Total [5 marks]

Note: In this question, method marks may be awarded for selecting without replacement, as noted in the examples.
(a) $\quad \mathrm{P}(R)=\frac{6}{8}\left(=\frac{3}{4}\right)$

A1
N1
[1 mark]
(b) attempt to find $\mathrm{P}($ Red $) \times \mathrm{P}($ Red $)$
(M1)
e.g. $\mathrm{P}(R) \times \mathrm{P}(R), \frac{3}{4} \times \frac{3}{4}, \frac{6}{8} \times \frac{5}{7}$
$\mathrm{P}(2 R)=\frac{36}{64}\left(=\frac{9}{16}\right)$
A1
N2
(c) METHOD 1
attempt to find $\mathrm{P}($ Red $) \times \mathrm{P}($ Blue $)$
(M1)
e.g. $\mathrm{P}(R) \times \mathrm{P}(B), \frac{6}{8} \times \frac{2}{8}, \frac{6}{8} \times \frac{2}{7}$
recognizing two ways to get one red, one blue
e.g. $\mathrm{P}(R B)+\mathrm{P}(B R), 2\left(\frac{12}{64}\right), \frac{6}{8} \times \frac{2}{7}+\frac{2}{8} \times \frac{6}{7}$
$\mathrm{P}(1 R, 1 B)=\frac{24}{64}\left(=\frac{3}{8}\right)$

METHOD 2

recognizing that $\mathrm{P}(1 R, 1 B)$ is $1-\mathrm{P}(2 B)-\mathrm{P}(2 R)$
(M1)
attempt to find $\mathrm{P}(2 R)$ and $\mathrm{P}(2 B)$
e.g. $\mathrm{P}(2 R)=\frac{3}{4} \times \frac{3}{4}, \frac{6}{8} \times \frac{5}{7} ; \mathrm{P}(2 B)=\frac{1}{4} \times \frac{1}{4}, \frac{2}{8} \times \frac{1}{7}$
$\mathrm{P}(1 R, 1 B)=\frac{24}{64}\left(=\frac{3}{8}\right)$
4. evidence of anti-differentiation
(M1)
e.g. $\int f^{\prime}(x), \int\left(3 x^{2}+2\right) \mathrm{d} x$
$f(x)=x^{3}+2 x+c($ seen anywhere, including the answer)
A1A1

Attempt to substitute $(2,5)$

$$
\text { e.g. } f(2)=(2)^{3}+2(2), 5=8+4+c
$$

finding the value of c
e.g. $5=12+c, c=-7$
$f(x)=x^{3}+2 x-7$
A1
5. correct substitution into $\mathrm{E}(X)=\sum p x$ (seen anywhere)
e.g. $1 s+2 \times 0.3+3 q=1.7, s+3 q=1.1$
recognizing $\sum p=1$ (seen anywhere)
correct substitution into $\sum p=1$
e.g. $s+0.3+q=1$
attempt to solve simultaneous equations
correct working
e.g. $0.3+2 q=0.7,2 s=1$

$$
q=0.2
$$

6. (a) METHOD 1
evidence of choosing $\sin ^{2} \theta+\cos ^{2} \theta=1$
(M1)
correct working
e.g. $\cos ^{2} \theta=\frac{9}{13}, \cos \theta= \pm \frac{3}{\sqrt{13}}, \cos \theta=\sqrt{\frac{9}{13}}$

$$
\begin{equation*}
\cos \theta=-\frac{3}{\sqrt{13}} \tag{A1}
\end{equation*}
$$

Note: If no working shown, award $N \mathbf{1}$ for $\frac{3}{\sqrt{13}}$.

METHOD 2

approach involving Pythagoras' theorem
(M1)
e.g. $2^{2}+x^{2}=13$,

finding third side equals 3
$\cos \theta=-\frac{3}{\sqrt{13}}$
A1
Note: If no working shown, award $N 1$ for $\frac{3}{\sqrt{13}}$.

Question 6 continued

(b) correct substitution into $\sin 2 \theta$ (seen anywhere)
e.g. $2\left(\frac{2}{\sqrt{13}}\right)\left(-\frac{3}{\sqrt{13}}\right)$
correct substitution into $\cos 2 \theta$ (seen anywhere)
e.g. $\left(-\frac{3}{\sqrt{13}}\right)^{2}-\left(\frac{2}{\sqrt{13}}\right)^{2}, \quad 2\left(-\frac{3}{\sqrt{13}}\right)^{2}-1, \quad 1-2\left(\frac{2}{\sqrt{13}}\right)^{2}$
valid attempt to find $\tan 2 \theta$
(M1)
e.g. $\frac{2\left(\frac{2}{\sqrt{13}}\right)\left(-\frac{3}{\sqrt{13}}\right)}{\left(-\frac{3}{\sqrt{13}}\right)^{2}-\left(\frac{2}{\sqrt{13}}\right)^{2}}, \frac{2\left(-\frac{2}{3}\right)}{1-\left(-\frac{2}{3}\right)^{2}}$
correct working
A1
e.g. $\frac{\frac{(2)(2)(-3)}{13}}{\frac{9}{13}-\frac{4}{13}}, \frac{-\frac{12}{(\sqrt{13})^{2}}}{\frac{18}{13}-1}, \frac{-\frac{12}{13}}{\frac{5}{13}}$
$\tan 2 \theta=-\frac{12}{5}$
Note: If s tudents find answers for $\cos \theta$ which are not in the range $[-1,1]$, award full $\boldsymbol{F} \boldsymbol{T}$ in (b) for correct $\boldsymbol{F} \boldsymbol{T}$ working shown.
[5 marks]
7. (a) METHOD 1
evidence of discriminant
e.g. $b^{2}-4 a c$, discriminant $=0$
correct substitution into discriminant
e.g. $k^{2}-4 \times \frac{1}{2} \times 8, k^{2}-16=0$
$k= \pm 4 \quad$ A1A1

METHOD 2

Recognising that equal roots means perfect square
e.g. attempt to complete the square, $\frac{1}{2}\left(x^{2}+2 k x+16\right)$
correct working
e.g $\frac{1}{2}(x+k)^{2}, \frac{1}{2} k^{2}=8$

$$
k= \pm 4
$$

(b) evidence of appropriate approach
e.g. $b^{2}-4 a c<0$
correct working for k
e.g. $-4<k<4, k^{2}<16$, list all correct values of k
$p=\frac{7}{11}$
A2
8. (a) (i) evidence of approach
(M1)
e.g. $\overrightarrow{\mathrm{PO}}+\overrightarrow{\mathrm{OQ}}, \mathrm{P}-\mathrm{Q}$

$$
\overrightarrow{\mathrm{PQ}}=\left(\begin{array}{c}
2 \\
1 \\
-4
\end{array}\right)
$$

A1
N2
(ii) any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+s \boldsymbol{b}$ (accept any parameter for s)
where \boldsymbol{a} is $\left(\begin{array}{l}2 \\ 4 \\ 8\end{array}\right)$ or $\left(\begin{array}{l}4 \\ 5 \\ 4\end{array}\right)$, and \boldsymbol{b} is a scalar multiple of $\left(\begin{array}{c}2 \\ 1 \\ -4\end{array}\right)$
A2
N2
e.g. $r=\left(\begin{array}{l}2 \\ 4 \\ 8\end{array}\right)+s\left(\begin{array}{c}2 \\ 1 \\ -4\end{array}\right), \boldsymbol{r}=\left(\begin{array}{c}4+2 s \\ 5+1 s \\ 4-4 s\end{array}\right), \boldsymbol{r}=2 \boldsymbol{i}+4 \boldsymbol{j}+8 \boldsymbol{k}+s(2 \boldsymbol{i}+1 \boldsymbol{j}-4 \boldsymbol{k})$

Note: Award $\boldsymbol{A} \mathbf{1}$ for the form $\boldsymbol{a}+s \boldsymbol{b}, \boldsymbol{A 1}$ for $\boldsymbol{L}=\boldsymbol{a}+s \boldsymbol{b}, \boldsymbol{A} \boldsymbol{0}$ for $\boldsymbol{r}=\boldsymbol{b}+s \boldsymbol{a}$.
(b) (i) choosing correct direction vectors for L_{1} and L_{2}
(A1)(A1)
e.g. $\left(\begin{array}{c}2 \\ 1 \\ -4\end{array}\right),\left(\begin{array}{c}3 p \\ 2 p \\ 4\end{array}\right)$
evidence of equating scalar product to 0
(M1)
correct calculation of scalar product
A1
e.g. $2 \times 3 p+1 \times 2 p+(-4) \times 4,8 p-16=0$
$p=2$
A1
(ii) any correct expression in the form $\boldsymbol{r}=\boldsymbol{a}+\boldsymbol{t} \boldsymbol{b}$ (accept any parameter for t)
where \boldsymbol{a} is $\left(\begin{array}{c}10 \\ 6 \\ -40\end{array}\right)$, and \boldsymbol{b} is a scalar multiple of $\left(\begin{array}{l}6 \\ 4 \\ 4\end{array}\right)$
A2
N2
e.g. $\boldsymbol{r}=\left(\begin{array}{c}10 \\ 6 \\ -40\end{array}\right)+t\left(\begin{array}{l}6 \\ 4 \\ 4\end{array}\right), \boldsymbol{r}=\left(\begin{array}{c}10+6 s \\ 6+4 s \\ -40+4 s\end{array}\right), \boldsymbol{r}=10 \boldsymbol{i}+6 \boldsymbol{j}-40 \boldsymbol{k}+s(6 \boldsymbol{i}+4 \boldsymbol{j}+4 \boldsymbol{k})$

Note: Award $\boldsymbol{A 1}$ for the form $\boldsymbol{a}+t \boldsymbol{b}, \boldsymbol{A 1}$ for $\boldsymbol{L}=\boldsymbol{a}+\boldsymbol{t} \boldsymbol{b}$ (unless they have been penalised for $\boldsymbol{L}=\boldsymbol{a}+s \boldsymbol{b}$ in part (a)), $\boldsymbol{A} \boldsymbol{0}$ for $\boldsymbol{r}=\boldsymbol{b}+\boldsymbol{t} \boldsymbol{a}$.

Question 8 continued

(c) appropriate approach
(M1)
e.g. $\left(\begin{array}{l}2 \\ 4 \\ 8\end{array}\right)+s\left(\begin{array}{c}2 \\ 1 \\ -4\end{array}\right)=\left(\begin{array}{c}10 \\ 6 \\ -40\end{array}\right)+t\left(\begin{array}{l}6 \\ 4 \\ 4\end{array}\right)$
any two correct equations with different parameters
A1A1
e.g. $2+2 s=10+6 t, 4+s=6+4 t, 8-4 s=-40+4 t$
attempt to solve simultaneous equations
(M1)
correct working (A1)
e.g. $-6=-2-2 t, 4=2 t,-4+5 s=46,5 s=50$
one correct parameter $s=10, t=2$ A1
$x=22 \quad(\operatorname{accept}(22,14,-32))$

A1
9. (a) (i) $a=8$
(ii) $c=2$
(iii) $d=4$
(b) METHOD 1
recognizing that period $=8$ (A1)
correct working
e.g. $8=\frac{2 \pi}{b}, b=\frac{2 \pi}{8}$

$$
b=\frac{\pi}{4}
$$

METHOD 2

attempt to substitute
M1
e.g. $12=8 \sin (b(4-2))+4$
correct working
e.g. $\sin 2 b=1$

$$
b=\frac{\pi}{4}
$$

AG
(c) evidence of attempt to differentiate or choosing chain rule
(M1)
e.g. $\quad \cos \frac{\pi}{4}(x-2), \frac{\pi}{4} \times 8$
$f^{\prime}(x)=2 \pi \cos \left(\frac{\pi}{4}(x-2)\right) \quad\left(\operatorname{accept} 2 \pi \cos \frac{\pi}{4}(x-2)\right)$

A1 N1

A1 N1 A1 N1 [3 marks] A1

Question 9 continued

(d) recognizing that gradient is $f^{\prime}(x)$
(M1)
e.g. $f^{\prime}(x)=m$
correct equation
e.g. $-2 \pi=2 \pi \cos \left(\frac{\pi}{4}(x-2)\right), \quad-1=\cos \left(\frac{\pi}{4}(x-2)\right)$
correct working
e.g. $\cos ^{-1}(-1)=\frac{\pi}{4}(x-2)$
using $\cos ^{-1}(-1)=\pi \quad($ seen anywhere $)$
e.g. $\pi=\frac{\pi}{4}(x-2)$
simplifying
e.g. $4=(x-2)$
$x=6$
10. (a) finding $f^{\prime}(x)=\frac{1}{2} x$

A1
attempt to find $f^{\prime}(4)$ (M1)
correct value $f^{\prime}(4)=2$
correct equation in any form
(b) area $=\int_{2}^{12} \frac{90}{3 x+4} \mathrm{~d} x$
correct integral
A1A1
e.g. $30 \ln (3 x+4)$
substituting limits and subtracting
e.g. $30 \ln (3 \times 12+4)-30 \ln (3 \times 2+4), 30 \ln 40-30 \ln 10$
correct working
e.g. $30(\ln 40-\ln 10)$
correct application of $\ln b-\ln a$
e.g. $30 \ln \frac{40}{10}$
area $=30 \ln 4$

(c) valid approach
e.g. sketch, area $h=$ area $g, 120+$ their answer from (b)
area $=120+30 \ln 4$

A1
[4 marks]

